
Journal of Physics A:

Mathematical and Theoretical

     

PAPER

Perfect state transfer in a spin chain without mirror
symmetry
To cite this article: Gabriel Coutinho et al 2019 J. Phys. A: Math. Theor. 52 455302

 

View the article online for updates and enhancements.

You may also like

ASYMPTOTIC PROPERTIES AND
WEIGHTED ESTIMATES FOR
CHEBYSHEV-HAHN ORTHOGONAL
POLYNOMIALS
I I Sharapudinov

-

Dual -1 Hahn polynomials and perfect
state transfer
Luc Vinet and Alexei Zhedanov

-

The Dunkl oscillator in the plane: I.
Superintegrability, separated
wavefunctions and overlap coefficients
Vincent X Genest, Mourad E H Ismail, Luc
Vinet et al.

-

This content was downloaded from IP address 150.164.180.148 on 14/08/2024 at 13:45



1

Journal of Physics A: Mathematical and Theoretical

Perfect state transfer in a spin chain 

without mirror symmetry

Gabriel Coutinho1 , Luc Vinet2,4 , Hanmeng Zhan2   
and Alexei Zhedanov3

1 Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
2 Centre de Recherches Mathématiques, Université de Montréal, PO Box 6128, 

Centre-ville Station, Montréal, Québec, H3C 3J7, Canada
3 Department of Mathematics, School of Information, Renmin University of China, 

Beijing 100872, People’s Republic of China

E-mail: vinet@crm.umontreal.ca

Received 30 May 2019, revised 13 August 2019

Accepted for publication 24 September 2019

Published 11 October 2019

Abstract

We introduce an analytical XX spin chain with asymmetrical transport 

properties. It has an even number N  +  1 of sites labeled by n = 0, · · ·N. It 

does not exhibit perfect state transfer (PST) from end-to-end but rather from 

the �rst site to the next to last one. In fact, PST of one-excitation states takes 

place between the even sites: n ↔ N − n − 1, n = 0, 2, · · · , N − 1; while 

states localized at a single odd site undergo fractional revival (FR) over 

odd sites only. Perfect return is witnessed at double the PST/FR time. The 

couplings and local magnetic �elds are related to the recurrence coef�cients 

of the dual  −1 Hahn polynomials.

Keywords: asymmetric perfect state transfer, fractional revival, spin chains, 

dual  −1 Hahn polynomials

1. Introduction

The use of spin chains as devices to implement quantum information tasks is being thor-

oughly examined. One motivation is that external controls are minimized by calling upon 

chain dynamics to realize desired circuits. It has been found in particular that spin systems 

can be engineered to produce perfect state transfer (PST) [1, 4, 8, 11, 12, 18, 20, 31, 33], that 

is to transport a single qubit from one site to another with probability one. Another function 

is the generation of entanglement which results when spin chains yield fractional revival (FR) 

[3, 13, 15, 17], that is when they evolve a qubit into a superposition of localized states. The 

creation of GHZ states can also be accomplished [14, 19, 24] and the range of one-excitation 

4 Author to whom any correspondence should be addressed.

1751-8121/19/455302+12$33.00 © 2019 IOP Publishing Ltd Printed in the UK

J. Phys. A: Math. Theor. 52 (2019) 455302 (12pp) https://doi.org/10.1088/1751-8121/ab476e



2

states that can be obtained dynamically from an excitation initially located at a single site has 

been looked at [22, 23].

In most studies up to now, it has been assumed that the spin chain is mirror-symmetric, in 

other words that the Hamiltonian is invariant under re�ection with respect to the center of the 

chain. This is in fact necessary to have PST between the extremities of the chain [20]. While 

a �ve-site example was given in [21, section IV.B] with asymmetric transfer, we here present 

a system where PST occurs in the absence of this mirror symmetry for an arbitrary (even) 

number of sites. Note also that [6] offers a general analysis of PST that does not rely on this 

symmetry, and high-�delity state transfer in asymmetric chains has been studied in [2, 7, 32].

Analytic solutions are always attractive in view of their elegance and because they provide 

users with closed formulas [5]. Finding systems with speci�c transport properties that are 

amenable to exact treatment is hence quite pertinent. It is with this perspective that we are 

reporting the discovery of an analytic model that shows PST between its �rst site and the 

one that is next to last. For practical purposes, this perfect state transfer could prove as useful 

as the end-to-end one and might in fact have advantages in certain circumstances when the 

desired target site is not physically located in the extremity of the chain, and while the sites 

are too closely located to allow for a complete uncoupling of the last one. In fact, we believe 

we are contributing to the development of a rich theory of state manipulation in quantum net-

works, that shall eventually lead to having very good analytic understanding of the transport 

tasks which are theoretically achievable.

Each of the spin chains we exhibit in this paper has an even total number N  +  1 of sites and 

satis�es the following interesting features:

 (i)  it exhibits PST between reciprocal even sites n and N  −  n  −  1, n = 0, 2, · · · , N − 1; 

 (ii)  it induces fractional revival of a single qubit initially located on any odd site with the 

resurgences occurring only on the odd sites; 

 (iii)  it shows perfect return at double the PST or FR times.

The paper will unfold as follows. We shall start with generalities regarding the one-excitation 

dynamics of XX spin chains and their connections to orthogonal polynomials. We shall then 

describe the conditions on the one-excitation spectrum and the associated polynomials for 

PST to take place between one end of the chain and any other site, subsequently we shall intro-

duce a newly-found model based on the family of dual  −1 Hahn polynomials and show that it 

realizes the conditions for PST between the �rst and the next to last sites. After observations 

on regularities in the set of coupling constants and local magnetic �elds, we shall proceed to 

demonstrate that this novel analytic spin chain possesses the remarkable transport properties 

that we mentioned above.

The couplings and magnetic �elds of our chains are given in (17), with integer ξ = η + 1 

and PST time π/4.

2. Generalities

We shall be concerned with a spin chain of the XX-type with a Hamiltonian H of the form

H =
1

2

N−1∑

�=0

J�+1(σ
x
�σ

x
�+1

+ σ
y

�
σ

y

�+1
) +

1

2

N∑

�=0

B�(σ
z
�
+ 1) (1)

with J� > 0 the coupling constants and B� the local magnetic �elds. The boundary condi-

tions J0 = JN+1 = 0 are assumed. This operator acts on (C2)⊗(N+1). The symbols σx

�
, σ

y

�
, 
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σ
z

�
 stand as usual for the Pauli matrices with the index � indicating on which of the (N + 1) 

C
2 factors they act. We shall denote by | ↑〉 and | ↓〉 the eigenvectors of σz with eigenvalue 

1 and  −1, respectively. We shall focus on the 1-excitation states | ↓〉⊗(n−1)| ↑〉| ↓〉⊗(N−n+1), 

n = 0, · · · , N , which can be identi�ed with the unit vectors

|n〉 = (0, · · · , 1, · · · , 0, 0) (2)

in CN+1 with the single 1 in the nth entry. It is readily seen that H leaves their linear span 

invariant and is given in that basis by the Jacobi matrix

J =

















B0 J1

J1 B1 J2

. . .
. . .

. . .

JN−1 BN−1 JN

JN BN

















. (3)

Such matrices are diagonalized by orthogonal polynomials. Expanding the normalized eigen-

states |xs〉 of J with eigenvalues xs, s = 0, · · · , N  over the occupation basis:

|xs〉 =
N∑

n=0

√
wsχn(xs)|n〉, (4)

where ws are the appropriate normalizing constants, we shall have J|xs〉 = xs|xs〉 provided 

χn(x) are orthogonal polynomials [10] satisfying the three-term recurrence relation:

xχn(x) = Jn+1χn+1(x) + Bnχn(x) + Jnχn−1(x). (5)

As the eigenstates are normalized, we also have

|n〉 =
N∑

s=0

√
wsχn(xs)|xs〉, (6)

which implies that ws plays the role of the weight function:

N∑

s=0

wsχn(xs)χm(xs) = δnm. (7)

(The coef�cients χn(xs) are taken to be real.) We shall also make use of the monic version 

Pn(x) of the polynomials χn(x) which are normalized such that Pn(x) = x
n + · · ·, i.e. such that 

the coef�cient of the leading monomial is 1. The relation between Pn(x) and χn(x) is

Pn(x) =
√

hnχn(x) (8)

with hn = J
2

1
J

2

2
· · · J

2

n
, and we have

xPn(x) = Pn+1(x) + bnPn(x) + unPn−1(x) (9)

with bn = Bn and un = J
2

n
 which con�rms the monic property.

Because of the conditions Ji  >  0, the eigenvalues xs of J are distinct; we shall assume in the 

following that they are ordered x0 < x1 < · · · < xN. The characteristic polynomial is

PN+1(x) = (x − x0) · · · (x − xN). (10)

It is known [10] that the weights ws are given by
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ws =
hN

PN(xs)P′

N+1
(xs)

 (11)

where P′

N+1
(x) = d

dx
PN+1(x).

3. Conditions for PST

At this point, for simplicity, we shall suppose that the single qubit is initially located at the site 

0. To have PST of this qubit at time t  =  T to the site n requires that

e
−iTH|0〉 = e

iφ|n〉 (12)

where φ is an arbitrary phase. Since χ0(x) = 1, given (2), this implies the spectral condition

e
−iTxs = e

iφ
χn(xs). (13)

A necessary condition for this PST readily follows, namely

χn(xs) = ±1 (14)

since the polynomials χn(xs) are real. If we de�ne σn(s) ∈ Z so that χn(xs) = (−1)σn(s), we 

may translate the relation (12) into

Txs = −φ+ πσn(s) + 2πMn(s), (15)

where Mn(s) is a series of integers that may depend on s (and on n as well).

Finding a chain with such a PST property therefore amounts to �nding a family of polyno-

mials χn(x) orthogonal on a discrete grid xs and such that �rst (14) and then (15) are satis�ed. 

The recurrence coef�cients of these polynomials will hence provide the couplings and magn-

etic �elds and will thereby determine the Hamiltonian.

In the familiar case of PST from end-to-end, we have n  =  N and (14) involves the poly-

nomial χN  of degree N. Since the zeros of χN(x) interlace those of PN+1(X) at x  =  xs, we 

conclude that the 1 and  −1 of (14) must alternate between consecutive grid points. Moreover, 

since the sign of P
′

N+1
(xs) goes like (−1)N+s when the eigenvalues are ordered, in view of 

(11), we must have σN(x) = N + s for the weights ws to be positive. We thus retrieve known 

results for PST between the extremities. The condition χN(xs) = (−1)N+s is in fact tanta-

mount [1] to demanding mirror symmetry:

Jn = JN−n+1, Bn = BN−n. (16)

Spin chains with end-to-end PST can thus be obtained by looking for (special cases of) 

orthogonal polynomials with mirror symmetric recurrence coef�cients and checking that their 

orthogonality grid points satisfy (15). A number of analytic models with PST between their 

extremities have been found in that way; among them [1, 11, 12, 20, 31] is the chain associated 

to the Krawtchouk polynomials. There is another one initially found in [27] (see also [28]) 

which is obtained from the much less known dual  −1 Hahn polynomials [10, 30]. We shall 

be exploiting these polynomials again to �nd a chain that is not mirror-symmetric and that 

exhibits for one thing PST between sites 0 and N  −  1. This will require showing that (14) and 

(15) with n  =  N  −  1 are satis�ed for this model.

G Coutinho et alJ. Phys. A: Math. Theor. 52 (2019) 455302



5

4. A chain with asymmetric PST

We shall focus on XX spin chain, whose Jacobi matrix is given by (3), with an even number of 

sites labeled by n = 0, · · · , N  with N odd and with couplings Jn and magnetic �elds Bn given 

by

Jn = 2

√

[n]ξ[N − n + 1]η (17a)

Bn = (−1)n+1
2(ξ − η) (17b)

where [m]µ = m + (1 − (−1)m)µ, and ξ and η are two real parameters satisfying ξ, η > −1/2. 

The corresponding Jacobi matrix (3) is diagonalized by the dual  −1 Hahn polynomials intro-

duced in [29] (see also [16]). Useful properties of these functions are collected in the appen-

dix. Essential for our argument is the fact that they are orthogonal on the grid

ys = (−1)s(2s + 2ξ + 2η + 1) + 1, s = 0, · · · , N. (18)

A special case of these chains is already known [27, 28, 30] to exhibit end-to-end PST. Indeed, 

if ξ = η , the chain is readily seen to be mirror-symmetric which implies as already noted that 

χN(xs) = (−1)N+s. The ordered spectral set {xs} (equivalent as a set to {y s}) is given by

xs =

{

−4ξ + 4s − 2N, s = 0, · · · , N−1

2

4ξ + 4s − 2N, s =
N+1

2
, · · · , N

 (19)

and consists of two linear sublattices with step 4 separated by a gap of 8ξ + 4. It is straight 

forward to see that condition (15) is satis�ed for xs given by (22) with

T = (2k + 1)
π

4
, k = 0, 1, 2, · · · (20)

and ξ integer. This recon�rms that the XX chain with speci�cation (17) where ξ = η = an 

integer has PST at time T =
π

4
. (Note that Bn  =  0 in this case.)

We shall now consider PST on these chains with other choices of parameters. As an exam-

ple, set

ξ = η + 1. (21)

Clearly, the corresponding chain is no longer mirror-symmetric. We shall check that it how-

ever induces PST between the sites 0 and N  −  1. To that end, we �rst need to show that 

χN−1(xs) = ±1 and to obtain the corresponding sequence (−1)σN−1(xs) of 1s and  −1s. Here 

ys = (−1)s(2s + 4η + 3) + 1 and the ordered eigenvalues of the Jacobi matrix (3) are

xs =

{

−4η + 4s − 2N − 2, s = 0, · · · , N−1

2

4η + 4s − 2N + 2, s =
N+1

2
, · · · , N.

 (22)

With δ = η + 1, the polynomial χN−1(x) is given by

χN−1(x) = (−1)
N−1

2
3F2

( 1−N

2
, δ + x

4
, δ − x

4

1−N

2
,

2η+3

2

; 1

)

= (−1)
N−1

2
2F1

(

δ + x

4
, δ − x

4

2η+3

2

; 1

) 

(23)

owing to the de�nition of hypergeometric series (see (A.2)). The Gauss series in the second 

equality should be taken to be terminating after N−1

2
 terms since it is simply obtained from 
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cancelling factors in the terminating 3F2. De�nition (23) can be found using the formulas on 

dual  −1 Hahn polynomials gathered in the appendix. The factor (−1)
N−1

2  must be present for 

the leading term of χN−1(x) to be positive.

It follows from (22) that

χN−1(xs) =

{

(−1)s, s = 0, · · · , N−1

2

(−1)s+1, s = N+1

2
, · · · , N.

 (24)

For example, if s = 0, · · · , N−1

2
,

χN−1(xs) = (−1)
N−1

2
2F1

(

s −
N−1

2
, N−1

2
− s + 2η + 2

η + 3

2

; 1

)

 (25)

and one arrives at the �rst line of (24) with the help of the Vandermonde summation formula

2F1

(

−n, b

c
; 1

)

=
(c − b)n

(c)n

 (26)

and the simple fact that (−k − a)k = (−1)k(a + 1)k. The second line of (24) is found in the 

same way. Having observed that the necessary condition (14) is satis�ed with the sequence 

σN−1(s) given by the exponents of  −1 in (24), we now turn to (15) which yields

T(−4η + 4s − 2N − 2) = −φ+ πs + 2π(cs + d), s = 0, · · · ,
N − 1

2
 (27a)

T(4η + 4s − 2N + 2) = −φ+ π (s + 1) + 2π(cs + e), s =
N + 1

2
, · · · , N

 (27b)

with c, d, e integers. Equating the coef�cients of s and the constant terms in (27a) and in 

(27b) shows that PST occurs between the sites 0 and N  −  1 at the times T = π

4
(2c + 1), with 

c integer, provided η is itself an integer. (The phase φ is �xed by the constant part of either 

equation once their compatibility has been ensured.)

5. Remarkable state transport properties

We shall now con�rm that the special PST, FR and return properties we mentioned before are 

indeed realized in the spin chain without mirror-symmetry we have designed. Recall that this 

model is speci�ed by the couplings and �elds given in (17) with ξ = η + 1 with η integer.

Let us �rst underscore some regularities among the corresponding recurrence coef�cients 

bn = Bn and un = J
2

n
 of the monic polynomials Pn(x).

First we note that

bn = (−1)n+1
2, n = 0, · · · , N. (28)

Second, it is directly checked that

u2n−1u2n = uN−2n+1uN−2n, n = 1, 2, · · · , (N − 1)/2 (29)

since [k]η+1 = [k + 2]η when k is odd.

Consider now the amplitude A�m(T) to �nd at site �, a qubit initially at site m, after a time 

T equal to the PST time between the sites 0 and N  −  1:

G Coutinho et alJ. Phys. A: Math. Theor. 52 (2019) 455302
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A�m(T) = 〈�|e−iTH|m〉 =

N∑

s=0

wse
−iTxsχ�(xs)χm(xs). (30)

The second expression is obtained using the expansion (6) and 〈xs〉xs
′ = δss

′. Note that 

A�m(T) = Am�(T). For the model at hand, we know that e−ixsT = e
iφ
χN−1(xs) since we have 

PST between 0 and N  −  1. Let us see what this entails for A�m(T). The three-term recurrence 

relation (9) gives

PN−1(xs) =
xs − bN

uN

PN(xs) (31)

since PN+1(xs) = 0. Using (8), the de�nition of hn and (11) we obtain

wse
−ixsT = e

iφ
wsχN−1(xs) = e

iφ

√

hN−1(xs − bN)

P′

N+1
(xs)

. (32)

Recalling that the Nth order divided difference operators ∆N  can be de�ned by

∆N( f (x)) =

N∑

s=0

f (xs)

P′

N+1
(xs)

, (33)

we thus �nd the following formula:

A�m(T) = e
iφ
√

hN−1∆
N [(x − bN)χ�(x)χm(x)]. (34)

It is known that ∆Nφ(x) = 0 for any polynomial of degree smaller than N and that ∆N(xN) = 1. 

It is therefore manifest that

A�m(T) = 0, if �+ m < N − 1. (35)

 (i)  PST between even sites

  Consider the amplitude A2n,N−2n−1(T) for transfer between the even sites 2n and 

N  −  2n  −  1. In this case the polynomial (x − bN)χ2n(x)χN−2n−1(x) arising in (34) has 

degree N with the coef�cient of xN given by 1/
√

h2nhN−2n−1. It readily follows that

A2n,N−2n−1(T) = e
iφ

√

hN−1

h2nhN−2n−1

= e
iφ (36)

  upon using the property (29) of the recurrence coef�cients for our special model. Since 

the modulus of A2n,N−2n−1(T) is one, we thus �nd that over the time T, PST can occur not 

only between 0 and N  −  1 but between the even sites 2n and N  −  2n  −  1.

 (ii)  FR on odd sites

  It follows from unitarity that a qubit initially at an odd site is revived at only odd sites after 

time T. We provide detailed calculations on the amplitudes.

  Let us now examine the state at time T of a qubit initially located at site 1; that is, let us 

look at the amplitude Am1(T) = e
iφ
√

hN−1∆
N((x − bN)χ1(x)χm(x)). From (5) we have

χ1(x) =
1

√

h1

(x − b0) (37)

  and since b0  =  −2 and bN  =  2,

G Coutinho et alJ. Phys. A: Math. Theor. 52 (2019) 455302
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(x − bN)χ1(x) =
1

√

h1

(x2
− 4). (38)

  In view of (34), Am1(T)  =  0 for m �= N − 2, N − 1, N. We can rule out a transition from 1 to 

the even site N  −  1 for the following reason. It is manifest from the explicit formula (A.3) 

for Pn(x; η + 1, η, N) with n even where only factors of the form (δ + x

4
)k(δ −

x

4
)k  occur, 

that the polynomial PN−1 will only involve monomial of even degrees. Multiplying this 

polynomial by (x2  −  4) will not generate a term of odd degree N and hence A1,N−1(T)  =  0. 

−2

2

2

−2

2

−2

6

√

7

6

√

7

4

√

2

4

√

2

2

√

55

π

4

π

8

3π

8

π

2
0

Figure 1. Perfect state transfer and periodicity.
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2

2

−2

2

−2

6

√

7

6

√

7

4

√

2

4

√

2

2

√

55

π

4

π

8

3π

8

π

2
0

Figure 2. Fractional revival.
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It follows that after time T there is FR over the sites N  −  2 and N of the qubit initially at 

site 1. The amplitude AN−2,1(T) is readily computed to be

AN−2,1(T) = e
iφ

√

hN−1

h1hN−2

= e
iφ

√

uN−1

u1

 (39)

  so that the probabilities for the transitions |1〉 → |N − 2〉 and |1〉 → |N〉 are respectively

P1→N−2 =

uN−1

u1

and P1→N = 1 −

uN−1

u1

. (40)

One can argue in a similar fashion that a qubit initially at the site 2n  −  1 will undergo frac-

tional revival over the odd sites N, N − 2, · · · , N − 2n after time T.

 (iii)  Perfect return

  Simple reasoning �nally shows that perfect return will be observed at double the PST/FR 

time T. Indeed we know that in the eigenbasis of the Jacobi matrix,

e−iTJ = Diag(e−iTs) = Diag(±1). (41)

  It immediately follows that

e−i2TJ = [Diag(e−iTs)]2 = I (42)

  and hence single qubits come back to their original positions after 2T.

 (iv)  Example

  Here we display the spin chain on six nodes obtained with the choices ξ = 3 and η = 2. 

The shade is proportional to the �delity—the blacker, the more likely to measure |1〉 at the 

corresponding site. First, we have the situation of perfect state transfer from the �rst site 

to the second last, at time π/4, and periodicity at time π/2 (�gure 1).

  Second, we display fractional revival, as described in (ii) above (�gure 2).

6. Conclusion

We have presented an analytic XX spin chain without mirror symmetry that exhibits interest-

ing transport properties. This chain with an even number of sites exhibits PST between its 

even sites and FR over its odd sites.

The prospect for experimental realizations seems good and that could probably be achieved 

in photonic lattice following approaches already employed [9, 26]. In any event the results 

presented here illustrate the wealth of tasks that spin chains can accomplish and suggest fur-

ther studies.

It is natural to ask if there are other similar examples of analytic spin chains without mirror 

symmetry and with interesting transport properties. In this respect, one might wish to obtain a 

characterization of such models and their symmetries and to develop constructive algorithms 

that could solve the corresponding inverse spectral problems. We plan on following up on 

these questions.

Acknowledgments

We have bene�ted from stimulating discussions with Christino Tamon. [21] was brought to 

our attention after circulation of the �rst version of this paper. Two of us (G C) and (A Z) 

would like to thank the Centre de Recherches Mathématiques (CRM) for its hospitality while 

G Coutinho et alJ. Phys. A: Math. Theor. 52 (2019) 455302



10

this work was initiated. The research of L V is supported in part by a discovery grant from 

NSERC (Canada) and that of A Z by the National Science Foundation of China (Grant No. 

11771015).

Appendix. The dual  −1 Hahn polynomials

We collect here relevant information on the dual  −1 Hahn polynomials [16, 29] which in monic 

form are denoted Pn(x; ξ, η, N). They depend on two real parameters ξ, η with ξ, η > −1 and 

on an integer N and have been introduced as a q  =  −1 limit of the dual q-Hahn polynomials 

[25]. They satisfy the three-term recurrence relation

xPn(x) = Pn+1(x) + (−1)n+1(2ξ + (−1)N
2η)Pn(x) + 4[n]ξ[N − n + 1]ηPn−1(x)

 (A.1)

with [n]µ = n + (1 − (−1)n)µ. Note that the variable x has been shifted by 1 with respect to 

the de�nitions in [16, 29]. We shall only record formulas that pertain to the case N odd. Recall 

that the hypergeometric series rFs  is de�ned by

rFs

(

a1, · · · , ar

b1, · · · , bs

; z

)

=

∞
∑

k=0

(a1)k · · · (ar)k

(b1)k · · · (bs)k

zk

k!
 (A.2)

with (c)k = c(c + 1) · · · (c + k − 1). For N odd, the dual  −1 Hahn polynomials are given by

Pn(x; ξ, η, N) =















16
n

2

(

1−N

2

)

n

2

(

2ξ+1

2

)

n

2

3F2

(

−

n

2
,δ+ x

4
,δ− x

4
1−N

2
,

2ξ+1

2

; 1

)

, n even

16
n−1

2

(

1−N

2

)

n−1

2

(

2ξ+3

2

)

n−1

2

(x + 2ξ − 2η)3F2

(

−

n−1

2
,δ+ x

4
,δ− x

4
1−N

2
,

2ξ+3

2

; 1

)

, n odd

 (A.3)

where δ =
ξ+η+1

2
.

These polynomials obey an orthogonality relation of the form

N∑

s=0

ws(ξ, η, N)Pn(ys; ξ, η, N)Pm(ys; ξ, η, N) = νn(ξ, η, N)δn,m (A.4)

on the grid points

ys = (−1)s(2s + 2η + 2ξ + 1) + 1. (A.5)

The weights and normalization factors are given by

ws(η, ξ, N) =



















(−1)
s

2

k( 1−N

2 ) s

2

(ξ+ 1

2 ) s

2

(η+ξ+1) s

2

( s

2 )!(η+
1

2 ) s

2

( N+3

2
+η+ξ) s

2

, s even

(−1)
s

2

k( 1−N

2 ) s−1

2

(ξ+ 1

2 ) s+1

2

(η+ξ+1) s−1

2

( s−1

2 )!(η+ 1

2 ) s+1

2

( N+3

2
+η+ξ) s−1

2

, s odd

νn(η, ξ, N) =

{

16n
(

n

2

)

!
(

1−N

2

)

n

2

(

ξ + 1

2

)

n

2

(

−N

2
− η

)

n

2

, n even

−16n
(

n−1

2

)

!
(

1−N

2

)

n−1

2

(

ξ + 1

2

)

n+1

2

(

−N

2
− η

)

n+1

2

, n even.

 (A.6)
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where

k =

(

η + 1

2

)

N+1

2

(η + ξ + 1) w+1

2

. (A.7)
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