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Abstract

We apply Cauchy’s interlacing theorem to derive some eigenvalue bounds to the chromatic number using the
normalized Laplacian matrix, including a combinatorial characterization of when equality occurs. Further,
we introduce some new expansion type of parameters which generalize the Cheeger constant of a graph,
and relate them to the colourings which meet our eigenvalue bound with equality. Finally, we point out a
connection to the Erdős-Faber-Lovász conjecture.
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1 Introduction

Let G be a graph without isolated vertices, A its adjacency matrix, and D the

diagonal matrix that records the degrees of the vertices. The matrix

L = I−D−1/2AD−1/2
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is known as the normalized Laplacian matrix of G. The standard reference for an

account of the interplay between combinatorics and the spectral properties of L is

Fan Chung’s book [6]. In this paper, we are interested in which properties of L can

give information about graph colourings. It is unlikely that information contained

solely in the eigenvalues of L could determine χ(G). However one can find some

eigenvalue bounds to χ(G). An eigenvalue bound is considered relatively serious if it

achieves equality for at least one non-trivial infinite class of graphs, and, moreover,

if the equality implies some combinatorial structure. We present a strictly speaking

new bound in Theorem 2.2. Across the paper, we study some consequences of the

equality cases in this bound, and in the last section we comment on a possible

interesting class of examples connected to the Erdős-Faber-Lovász conjecture. We

also introduce in Section 4 new expansion-type of parameters, and compare some

of their properties to the spectrum of L.

2 Interlacing bound for the normalized Laplacian

We begin by re-stating the famous interlacing theorem due to Cauchy (see for

instance [9, Theorem 2.1]).

Theorem 2.1 Let P be a real n × m matrix such that PTP = I and let M be a

symmetric n×n matrix with eigenvalues θ1 ≥ ... ≥ θn. Define N = PTMP and let

N have eigenvalues μ1 ≥ ... ≥ μm and respective eigenvectors v1, ...,vm. Then the

following hold.

(i) The eigenvalues of N interlace those of M, meaning that, for i = 1, ...,m, we

have

θn−m+i ≤ μi ≤ θi.

(ii) If μi = θi or μi = θn−m+i for some i ∈ [1,m], then N has a μi-eigenvector v

so that Pv is a μi-eigenvector of M.

(iii) If, for some integer �, μi = θi for i = 1, ..., � (or μi = θn−m+i for i = �, ...,m),

then Pvi is a μi-eigenvector for M for i = 1, ..., � (respectively i = �, ...,m).

(iv) If the interlacing is tight, that is, if there is an integer k ∈ [0,m] so that

θi = μi for 1 ≤ i ≤ k, and θn−m+i = μi for k + 1 ≤ i ≤ m,

then

MP = PN.

�

Let G be a graph on n vertices. Let A(G) = A be its adjacency matrix, and D

the diagonal matrix that records the degree sequence of G. The matrix D −A is

usually called the Laplacian matrix of G, but in this paper we are interested in its

normalized version

L = I−D−1/2AD−1/2.

Say G contains a (proper) k-colouring, that is, its vertex set can be partitioned into

k independent sets S1, ..., Sk. Let π be this partition and S be its characteristic
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matrix, that is, the 01 matrix whose rows are indexed by the vertices, columns by

the colour classes, and an entry equal to 1 indicates that the vertex corresponding

to the row has been coloured by the class corresponding to the column. By G/π we

denote the quotient graph, meaning, the graph whose vertices are the classes of π

and between any two vertices there is a weighted edge whose weight is equal to the

number of edges between the corresponding classes in G. In particular, G/π has no

loops because π is a (proper) colouring, and STAS = A(G/π).

We define

P = D1/2SN−1/2,

where N is the diagonal matrix whose kth diagonal entry is equal to sum of the de-

grees of the vertices in Sk. In particular, this turns the columns of P into normalized

vectors.

Thus

PTP = I. (1)

Moreover,

PTLP = I−N−1/2A(G/π)N−1/2 = L(G/π). (2)

Observe that 0 is an eigenvalue of both L and L(G/π) with respective eigenvectors

D1/21 and N1/21. If 0 = λ0 ≤ λ1 ≤ ... ≤ λn−1 are the eigenvalues of L, then we

define

σk =
k

∑

j=1

λn−j ,

that is, the sum of the largest k eigenvalues of L.

Theorem 2.2 If σk−1 < k, then k < χ(G).

Proof. This is a consequence of Equations (1) and (2) and Theorem 2.1. In par-

ticular, let k ≥ χ(G), and consider a partition π of V (G) into k independent sets.

The eigenvalues of L(G/π) interlace those of L, so

k = trL(G/π) ≤ σk.

We can however ignore the least eigenvalue of L(G/π) which is 0, thus the inequality

still holds for σk−1. �

Let π = {S1, ..., Sk} be any k-partition of V (G). Then the entries of A(G/π)

record the number of edges between the classes of π. We recall the usual notation

e(S, T ) that counts the number of edges between sets S and T , and vol(S) which is

the sum of the degrees of the vertices in S. Thus

trL(G/π) = k −

k
∑

j=1

e(Sj , Sj)

vol(Sj)
.
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Using interlacing, we reach an interesting lower bound on what any attempt of

colouring a graph with k colours can yield.

Corollary 2.3 For any k-partition π = {S1, ..., Sk} of a graph G, it follows that

k
∑

j=1

e(Sj , Sj)

vol(Sj)
≥ k − σk−1.

�

We have two remarks.

First, Theorem 2.2 indicates that graphs with small chromatic number should

have large normalized Laplacian eigenvalues. For instance, the well-known fact

that bipartite graphs have largest eigenvalue equal to 2 follows immediately from

the result above.

Second, Theorem 2.2 has been, mutatis mutandis, already known for a long time.

Interlacing has seen countless applications in graph theory. As far as we know, first

versions of this technique to study the chromatic number appeared in Haemers

[8], where interlacing for the adjacency matrix was used. In fact, Theorem 2.2 is

equivalent to [4, Proposition 3.6.3 (i)] for regular graphs. More recently, Bollobás

and Nikiforov obtained similar results for the Laplacian matrix [2,3]. Finally, Butler

used interlacing [5, Chapter 5] for the normalized Laplacian and proved almost

the same result (Theorem 36) as Corollary 2.3 above. The only, but yet relevant,

difference is that we have our results for σk−1, and not σk. This seems a small

difference, but note that the results are trivially true if stated with σk instead.

Our main goal over the next sections is to try to provide some new useful insights

about an old technique.

3 Tight interlacing and equitable colourings

Recall that G is a graph with normalized Laplacian matrix L, and we denote its

eigenvalues by 0 = λ0 ≤ ... ≤ λn−1. We also defined σk(G) as the sum of the

k largest eigenvalues of L(G), and made a similar definition for G/π replacing G.

Assume π = {S1, ..., Sk} is a k-colouring with characteristic matrix S. Again, D

is the diagonal matrix recording the degrees of G and N is the diagonal matrix

recording the sum of the degrees of the vertices in each Sj . We now turn our

attention to the case where interlacing (see Theorem 2.1) is tight.

Lemma 3.1 Let π be a k-colouring and P = D1/2SN−1/2. If σk−1 = k, then

interlacing of L = L(G) according to P is tight, and in particular, LP = PL(G/π).

Proof. If σk−1(G) = k, then

k = σk−1(G) ≥ σk−1(G/π) = trL(G/π) = k.

So the inequality holds with equality, and therefore each eigenvalue of L(G/π) must

meet the upper bound given by interlacing, except for the last. Hence interlacing is
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tight, and from Theorem 2.1 item (iv), the equality LP = PL(G/π) holds. �

Consider a partition π = {S1, ..., Sm} of the set [n]. Assume this partition has

characteristic matrix Q (which is n×m). Let M be a symmetric n×n matrix. The

partition π is called equitable to M if

∑

k∈Sj

Mik

is constant for all i which belongs to the same class of π, for all j, or, equivalently,

if the column space of Q is M -invariant. If M = A, then to say that π is equitable

to A is equivalent to saying that the number of neighbours a vertex in class i has

in class j depends only on i and j.

The theorem below is an adaptation of the theory of equitable partitions for

adjacency matrices [7, Chapter 9] to the normalized Laplacians.

Lemma 3.2 Let π be a partition of V (G) with characteristic matrix S, and let

P = D1/2SN−1/2. Then π is equitable to D−1A if and only if L(G)P = PL(G/π).

Proof. We use e(S, T ) to denote the number of edges between sets of vertices

S and T . If S = {a}, we might simply write e(a, T ). First we shall note that

L(G)P = PL(G/π) is equivalent to

D−1A(G)S = SN−1A(G/π).

If this equality holds, and if a is a vertex that belongs to class Si, then

e(a, Sj)

d(a)
= (D−1A(G)S)aj = (SN−1A(G/π))aj =

e(Si, Sj)

vol(Si)
.

So the partition is equitable. On the other hand, if the partition is equitable, then

fix Si, say Si = {a1, ..., af}, and for all Sj , it follows that for all ak, a� ∈ Si, we have

e(ak, Sj)

d(ak)
=

e(a�, Sj)

d(a�)
.

So there are constants A,B and q1, ..., qf such that e(ak, Sj) = Aqk and d(ak) = Bqk.

Then it is immediate to check that for all a ∈ Si,

e(Si, Sj)

vol(Si)
=

A
∑

qk
B
∑

qk
=

A

B
=

e(a, Sj)

d(a)
,

thus L(G)P = PL(G/π). �

Using Theorem 1 from [10], the following lemma is straightforward. We provide

a proof that follows immediately from Theorem 2.2.
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Lemma 3.3 Let λ = λn−1 be the largest eigenvalue of the normalized Laplacian

matrix L of a graph G. Then

χ ≥ 1 +
1

λ− 1
.

Proof. If k = χ, then χ ≤ σχ−1(G) ≤ (χ− 1)λ, which implies the result. �

We can now provide a significant consequence for the case where equality in the

lemma above holds.

Theorem 3.4 Let G be a graph which admits a colouring with k colours, and let

λ = λn−1 be its largest normalized Laplacian eigenvalue. If

λ =
k

k − 1
,

then this colouring is equitable with respect to D−1A.

Proof. If π is a k-colouring, we have k = (k − 1)λ ≥ σk−1(G) ≥ σk−1(G/π) = k.

In this case, σk−1(G) = k, and by Lemma 3.1 we have a tight interlacing ac-

cording to π, resulting in the equality LP = PL(G/π). Therefore, by Lemma 3.2,

π must be equitable with respect to D−1A. �

4 Regular colourings

We say that a colouring of a graph G is regular if between any two colour classes

there is the same number of edges. For a partition π = {S1, . . . , Sm} of V (G), define

(i) γ(π) =
mini �=j e(Si, Sj)

maxi volSi
,

(ii) γ∗(π) =
maxi �=j e(Si, Sj)

mini volSi
.

Moreover, for reasons that will become clear quite soon, define

(iii) ψk(G) = max
π,k-partition

γ(π),

(iv) φk(G) = min
π,k-partition

γ∗(π).

Lemma 4.1 If π is a k-partition of V (G), then

γ(π) ≤
1

k − 1
,

with equality if and only if π is a regular coloring.
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Proof.

γ(π) =
mini �=j e(Si, Sj)

maxi volSi
≤

1

(k
2
)

(

volG
2

)

maxi volSi

≤

1

(k
2
)

(

volG
2

)

1
k volG

=
1

k − 1
.

The first inequality follows from assuming that all edges of the graph are equally

distributed between the classes, and if this holds with equality, then the second

inequality (which is immediate) also holds with equality. �

Lemma 4.2 If π is a k-colouring of G, then

γ∗(π) ≥
1

k − 1
,

with equality if and only if π is a regular colouring.

Proof. The proof is very similar to that of Lemma 4.1. �

It is fair to say that the larger γ(π) is, the better π is as an attempt to regularly

color G. Likewise, the smaller γ∗(π) is, the more π looks like a clustering with clus-

ters of roughly the same number of edges. These comments motivate the definitions

of ψk(G) and φk(G). Note that φ2(G) is indeed the so called Cheeger constant of

G.

Lemma 4.3 Let π be a k-partition of V (G), G/π be the quotient graph, and 0 =

θ0 ≤ θ1 ≤ ... ≤ θk−1 be the eigenvalues of L = L(G/π). Then

kγ(π) ≤ θ1 and θk−1 ≤ kγ∗(π).

Proof. Recall that N is the diagonal matrix recording the row sums of L. From the

Rayleigh quotient expression for the eigenvalues and the Courant-Fisher Theorem

(see for instance [4, Chapter 2]), it follows that

θ1 = min
v⊥N·1

(N1/2v)TL(N1/2v)

(N1/2v)T (N1/2v)

= min
v⊥N·1

∑

i,j(vi − vj)
2e(Si, Sj)

∑

i v
2
i volSi

≥ min
v⊥1

∑

i,j(vi − vj)
2e(Si, Sj)

∑

i v
2
i volSi

≥ γ(π)min
v⊥1

∑

i,j(vi − vj)
2

∑

i v
2
i

= γ(π)k,
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where the last equality follows from the fact that all non-zero eigenvalues of the

conventional Laplacian matrix (k−1)I−A(Kk) of the complete graph on k vertices

are equal to k. The other inequality from the statement follows analogously. �

Theorem 4.4 Let G be graph. Fix k between 1 and n. Recall the definitions of

ψk(G) and φk(G) from the beginning of this section. Again, let λ0 ≤ λ1 ≤ ... ≤ λn−1

be the eigenvalues of L(G), the normalized Laplacian matrix of G. Then

(i) ψk(G)k ≤ λn−(k−1), and

(ii) φk(G)k ≥ λk−1.

Proof. This is an immediate consequence of Lemma 4.3 and interlacing. �

Corollary 4.5 Suppose G has a regular k-colouring, and σk−1 = k. Then λn−1 =

k/(k − 1).

Proof. From Lemma 4.1, it follows that ψk(G) = 1/(k − 1). From Theorem 4.4,

we have k/(k − 1) ≤ λn−(k−1), which, in addition to σk−1 = k, leads to λn−1 =

k/(k − 1). �

The concept of regular colourings also interacts nicely with the results in the

previous section.

Theorem 4.6 Suppose λn−1 = k/(k−1) and that G admits k-colouring. Then any

k-colouring of G is regular.

Proof. From Theorem 2.2, it follows that σk−1 ≥ k, and thus

λn−(k−1) = · · · = λn−1 =
k

k − 1
.

As a consequence, just like we argued in Theorem 3.4, it follows that all eigenvalues

of the quotient graph are equal to k/(k − 1), except for the 0 eigenvalue. It is

straightforward to verify that the quotient graph is a complete graph where all

edges have the same edge weight. �

Corollary 4.7 Suppose λn−1 = k/(k − 1) and that G admits k-colouring. Then

any vertex a has precisely d(a)/(k − 1) neighbours of each colour different from its

own.

Proof. Let π be a k-colouring. From Theorem 3.4 and Theorem 4.6, we know that

π is equitable with respect to D−1A and is a regular colouring. That is, there are

constants ³ and ´ such that

L(G)P = P(³I+ ´J),

where J is the all 1s matrix. From this it follows that the rows of L(G)P are

constant, with the exception of the entry in the column that corresponds to the

class that contains the vertex of the row. This is equivalent to what we wanted to

prove. �

G. Coutinho et al. / Electronic Notes in Theoretical Computer Science 346 (2019) 345–354352



Note that Corollary 4.7 offers a quite strong integrality condition on the degrees

of all vertices of a graph that satisfy Lemma 3.3 with equality.

5 Concluding remarks

A natural question at this point is whether there are examples of graphs whose

colourings are equitable with respect to D−1A or regular. A hypergraph is a graph

in which edges are allowed to have more than 2 vertices. A uniform hypergraph

has all edges with the same number of vertices. A colouring of the vertex set of a

hypergraph is strong if the vertices in each edge all have distinct colours. Finally,

a linear hypergraph is such that any two edges intersect in at most one vertex.

The standard reference is [1]. Linear hypergraphs appear naturally in connection

to partial linear spaces.

Given an m-uniform linear hypergraph, one forms the underlying graph by re-

placing each edge by a clique on m vertices. Thus m-uniform hypergraphs cor-

respond to the union of several copies of Km so that two of these copies share

no edge in common. Thus, strongly colouring the hypergraph or properly colour-

ing its underlying graph amounts to the same task. The topic of colouring such

graphs has received a considerable amount of attention because of the well-known

Erdős-Faber-Lovász conjecture, which proposes that any m-uniform linear hyper-

graph on m edges is m-strongly colourable (it obviously cannot be coloured with

fewer colours). Now we observe that any m-strong colouring of an m-uniform lin-

ear hypergraph on e hyperedges (or any colouring of its underlying graph G) must

necessarily be

• equitable with respect D(G)−1A(G), as for any fixed colour, the number of neigh-

bours of this colour that a vertex has is proportional to the its degree; and

• regular, as each colour class has precisely e edges in G towards any other colour

class.

We checked several graphs G which are the underlying graph of an m-uniform linear

hypergraph and that satisfy χ(G) = m. For all of them we saw λn−1 = m/(m− 1),

a fact that we do not know yet how to explain. We therefore ask the question

• if G admits an m-colouring which is equitable with respect to D−1A and regular,

is it true that λn−1 = m/(m− 1) ?

Note that an affirmative answer to this question immediately implies that λn−1 =

m/(m − 1) is a necessary condition for the Erdős-Faber-Lovász conjecture to hold

for a graph.

Another natural question is how the bound in Theorem 2.2 compares to other

eigenvalue bounds. According to our computations, in most cases it tends to be

better than Hoffman’s bound but slightly worse than the bound in [4, Proposition

3.6.3 (i)] due to Haemers. However, it seems that there are several cases in which

our bound performs better, including many of the underlying graphs of uniform

linear hypergraphs.
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