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The kth power of a graph G = (V , E), Gk , is the graph whose vertex set is V and in which 

two distinct vertices are adjacent if and only if their distance in G is at most k. This article 

proves various eigenvalue bounds for the independence number and chromatic number of 

Gk which purely depend on the spectrum of G , together with a method to optimize them. 

Our bounds for the k-independence number also work for its quantum counterpart, which 

is not known to be a computable parameter in general, thus justifying the use of integer 

programming to optimize them. Some of the bounds previously known in the literature 

follow as a corollary of our main results. Infinite families of graphs where the bounds are 

sharp are presented as well.

 2021 The Authors. Published by Elsevier B.V. This is an open access article under the 

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

For a positive integer k, the kth power of a graph G = (V , E) on n = |V | vertices, denoted by Gk , is a graph with vertex 

set V in which two distinct elements of V are joined by an edge if there is a path in G of length at most k between them. 

For a nonnegative integer k, a k-independent set in a graph G is a vertex set such that the distance between any two distinct 

vertices on it is bigger than k. Note that the 0-independent set is V (G) and a 1-independent set is an independent set. 

The k-independence number of a graph G , denoted by αk(G), is the maximum size of a k-independent set in G . Note that 

αk(G) = α(Gk).

The k-independence number is directly related to the study of distance- j ovoids in incidence geometry, whose study 

started in generalized polygons by Thas, who investigated the existence of distance-2 ovoids in generalized quadrangles and 

distance-3 ovoids in generalized hexagons (which are simply known as ovoids) [46]. The existence of distance- j ovoids is 

related to the existence of particular perfect codes [11], the separability of particular groups [10], and various other topics.
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In particular, the k-independence number is also closely related to coding theory, where codes relate to k-independent 

sets in Hamming graphs [40, Chapter 17]. The k-independence number of a graph is also directly related to the k-distance 

chromatic number, denoted by χk(G), which is just the chromatic number of Gk . Hence, χk(G) = χ(Gk). It is well known that 

α1(G) = α(G) ≥ n/χ(G). Therefore, lower bounds on the k-distance chromatic number can be obtained by finding upper 

bounds on the k-independence number, and vice versa. The k-independence number has also been studied in several other 

contexts (see [6,16,24,25,19,43] for some examples) and it is related to other combinatorial parameters, such as the average 

distance [26], the strong chromatic index [41], the d-diameter [12], and to the beans function of a connected graph [18].

The study of the k-independence number has attracted quite some attention. Firby and Haviland [26] proved an upper 

bound for αk(G) in an n-vertex connected graph. In 2000, Kong and Zhao [36] showed that for every k ≥ 2, determining 

αk(G) is NP-complete for general graphs. They also showed that this problem remains NP-complete for regular bipartite 

graphs when k ∈ {2, 3, 4} [37]. For each fixed integer k ≥ 2 and r ≥ 3, Beis, Duckworth, and Zito [8] proved some upper 

bounds for αk(G) in random r-regular graphs. O, Shi, and Taoqiu [44] showed sharp upper bounds for the k-independence 

number in an n-vertex r-regular graph for each positive integer k ≥ 2 and r ≥ 3. The case of k = 2 has also received some 

attention: Duckworth and Zito [16] showed a heuristic for finding a large 2-independent set of regular graphs, and Jou, Lin, 

and Lin [32] presented a sharp upper bound for the 2-independence number of a tree.

Most of the existing algebraic work on bounding αk is based on the following two classic results. Let G be a graph with 

n vertices and adjacency matrix eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn . The first well-known spectral bound (‘inertia bound’) for the 

independence number α = α1 of G is due to Cvetković [13]:

α ≤ min{|{i : λi ≥ 0}|, |{i : λi ≤ 0}|}. (1)

When G is regular, another well-known bound (‘ratio bound’) is due to Hoffman (unpublished):

α ≤
n

1− λ1
λn

. (2)

An improvement of the ratio bound was presented by Barnes, as well as a SDP method to calculate it [7].

Abiad, Cioabă, and Tait [1] obtained the first two spectral upper bounds for the k-independence number of a graph: an 

inertial-type bound and a ratio-type bound. They constructed graphs that attain equality for their first bound and showed 

that their second bound compares favorably to previous bounds on the k-independence number. Abiad, Coutinho, and Fiol 

[3] extended the spectral bounds from [1]. Wocjan, Elphick, and Abiad [48] showed that the inertial-type bound from [3]

is also an upper bound for the quantum k-independence number. Recently, Fiol [22] introduced the minor polynomials in 

order to optimize, for k-partially walk-regular graphs, a ratio-type bound.

In this article we present several sharp inertial-type and ratio-type bounds for αk and χk which depend purely on the 

eigenvalues of G , and we propose a method to optimize such bounds using Mixed Integer Programming (MILP). The fact 

that the inertial-type of bound that we consider is also valid to upper bound the quantum k-independence number αqk

[Theorem 7, [48]] justifies the method that we propose in this paper to optimize our bounds. It is not known whether 

the quantum counterparts of α or χ are computable functions [42], and our bounds sandwich these parameters with the 

classical versions. And, in fact, in quantum information theory, the difference αkq(G) − αk(G) is a measure of the benefit of 

quantum entanglement.

If one wants to use the classical spectral upper bounds on the independence number (1) and (2) to bound α(Gk) = αk(G), 

one needs to know how the spectrum of Gk relates to the spectrum of G . In the case when the relation between the 

spectrum of G and Gk is known, we show that previous work by Fiol [21] can be used to derive a sharp spectral bound 

for regular graphs which concerns the following problem posed by Alon and Mohar [5]: among all graphs G of maximum 

degree at most d and girth at least g , what is the largest possible value of χ(Gk)?

In general, though, the relation between the spectrum of Gk and G is not known. We also prove various eigenvalue 

bounds for αk and χk which only depend on the spectrum of G . In particular, our bounds are functions of the eigenvalues 

of A and of certain counts of closed walks in G (which can be written as linear combinations of the eigenvalues and 

eigenvectors of A). Under some extra assumptions (for instance, that of partial walk-regularity), we improve the known 

spectral inertial-type bounds for the k-independence number. Our approach is based on a MILP implementation which finds 

the best polynomials that minimize the bounds. For some cases and some infinite families of graphs, we show that our 

bounds are sharp and that in many cases they coincide with Lovász theta number.

2. A particular case: known relation between the spectrum of Gk and G

Our main motivation for this section comes from distance colorings, which have received a lot of attention in the litera-

ture. In particular, special efforts have been put on the following question of Alon and Mohar [5]:

Question 2.1. What is the largest possible value of the chromatic number of Gk , among all graphs G with maximum degree at most d

and girth (the length of a shortest cycle contained in G) at least g?
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The main challenge in Question 2.1 is to provide examples with large distance chromatic number (under the condition of 

girth and maximum degree). For k = 1, this question was essentially a long-standing problem of Vizing, one that stimulated 

much of the work on the chromatic number of bounded degree triangle-free graphs, and was eventually settled asymptoti-

cally by Johansson [31] by using the probabilistic method. The case k = 2 was considered and settled asymptotically by Alon 

and Mohar [5].

The aim of this section is to show the first eigenvalue bounds on χk which concern Question 2.1 for regular graphs and 

when we know the relation between the spectrum of Gk and G . This is the case when the adjacency matrix of Gk belongs to 

the algebra generated by the adjacency matrix of G , that is, there is a polynomial p such that p(A(G)) = A(Gk). For instance, 

this happens when G is k-partially distance polynomial [14]. In this framework, and when deg p = k (or, in particular, when 

G is k-partially distance-regular [14]) we can use Proposition 2.2 from [21] to derive spectral bounds. Before stating the 

results, we need to introduce some concepts and notations.

Let G = (V , E) be a graph with n = |V | vertices, m = |E| edges, and adjacency matrix A with spectrum

spG = sp A = {θ [m0]
0 , θ

[m1]
1 , . . . , θ

[md]
d

},

where the different eigenvalues are in decreasing order, θ0 > θ1 > · · · > θd , and the superscripts stand for their multiplicities 

(since G is supposed to be connected, m0 = 1). When the eigenvalues are presented with possible repetitions, we shall 

indicate them by evG : λ1 ≥ λ2 ≥ · · · ≥ λn . Let us consider the scalar product in Rd[x]:

〈 f , g〉G =
1

n
tr( f (A)g(A)) =

1

n

d
∑

i=0

mi f (θi)g(θi). (3)

The so-called predistance polynomials p0(= 1), p1, . . . , pd , which were introduced by Fiol and Garriga in [23], are a sequence 

of orthogonal polynomials with respect to the above product, with deg pi = i, and they are normalized in such a way 

that ‖pi‖2G = pi(θ0) for i = 0, . . . , d. Therefore, they are uniquely determined, for instance, following the Gram-Schmidt 

process. These polynomials were used to prove the so-called ‘spectral excess theorem’ for distance-regular graphs, where 

p0(= 1), p1, . . . , pd coincide with the so-called distance polynomials.

Proposition 2.2. [21] Let G = (V , E) be a regular graph with n vertices, spectrum spG = {θ [m0]
0 , θ

[m1]
1 , . . . , θ

[md]
d

}, and predistance 
polynomials p0, . . . , pd . For a given integer k ≤ d and a vertex u ∈ V , let sk(u) be the number of vertices at distance at most k from u, 

and consider the sum polynomial qk = p0 + · · · + pk . Then, qk(θ0) is bounded above by the harmonic mean Hk of the numbers sk(u), 

that is

qk(θ0) ≤ Hk =
n

∑

u∈V
1

sk(u)

,

and equality occurs if and only if qk(A) = I + A(Gk).

Since it is known that qk(θ0) ≥ qk(θi) for i = 1, . . . , d, Proposition 2.2 and the bounds (1)–(2) yield the following bounds 

on αk and χk:

Corollary 2.3. Let G be a regular graph with eigenvalues λ1 ≥ · · · ≥ λn , satisfying qk(λ1) = Hk . Let q
′
k
= qk−1, so that A(Gk) = q′

k
(A). 

Then,

χk ≥
n

min{|{i : q′
k
(λi) ≥ 0}|, |{i : q′

k
(λi) ≤ 0}|}

, (4)

χk ≥ 1−
q′
k
(λ1)

min{q′
k
(λi)}

, (5)

and the corresponding upper bounds

αk ≤ min{|{i : q′
k(λi) ≥ 0}|, |{i : q′

k(λi) ≤ 0}|}, (6)

αk ≤
n

1− q′
k
(λ1)

min{q′
k
(λi)}

. (7)

Corollary 2.3 provides the first two spectral lower bounds of χk for regular graphs, concerning Question 2.1. This is due 

to the fact that another case where A(Gk) = qk(A) − I (that is, we know the relation between the spectrum of Gk and G) 

is when G is δ-regular graph with girth g and k = 
 g−1
2

�. In this situation, we know that G is k-partially distance-regular 

with intersection numbers ci = 1 (1 ≤ i ≤ k), ai = 0 (0 ≤ i ≤ k − 1), b0 = δ, bi = δ − 1 (1 ≤ i ≤ k − 1) [14,2], and therefore we 

know the expressions for q0 = 1, q1 = 1 + x, and qi+1 = xqi − (δ − 1)qi−1 for i = 1, . . . , k − 1.
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Table 1

Named Sage graphs for which bound (7) from 
Corollary 2.3 is tight.

Name g k αk

Moebius-Kantor Graph 6 2 4

Nauru Graph 6 2 6

Blanusa First Snark Graph 5 2 4

Blanusa Second Snark Graph 5 2 4

Brinkmann graph 5 2 3

Heawood graph 6 2 2

Sylvester Graph 5 2 6

Coxeter Graph 7 3 4

Dyck graph 6 2 8

F26A Graph 6 2 6

Flower Snark 5 2 5

Regarding also Question 2.1, Kang and Pirot [33] provide several upper and lower bounds for k ≥ 3, all of which are 

sharp up to a constant factor as d → ∞. While their upper bounds rely in part on the probabilistic method, their lower 

bounds are various direct constructions whose building blocks are incidence structures. Actually, some tight examples for 

our bound (5) can be constructed from the latter. In particular, from even cycles using the balanced bipartite product ‘��’ 
introduced in [33,34]. Let G1 = (V1 = A1 ∪ B1, E1) and G2 = (V2 = A2 ∪ B2, E2) be bipartite graphs with |A1| = |B1| and 

|A2| = |B2|, also known as balanced bipartite graphs. Assume vertex sets Ai = {ai1, . . .aini } and B i = {bi1, . . .bini } are ordered 

such that (aij, b
i
j) ∈ E i for j = 1, 2, . . . , ni . Then the product G1 �� G2 is defined as 

(

VG1��G2 , EG1��G2

)

with

VG1��G2 := A1 × A2 ∪ B1 × B2

EG1��G2 := {
(

(a1i ,a
2), (b1i ,b

2)
)

| i ∈ {1, . . . ,n1}, (a2,b2) ∈ E2}∪
{
(

(a1,a2i ), (b
1,b2i )

)

| i ∈ {1, . . . ,n2}, (a1,b1) ∈ E1},
which is again a balanced bipartite graph. Moreover, if G1 and G2 are regular with degree d1 and d2 , then G1 �� G2 is 

regular with degree d1 + d2 − 1. The graphs C8 �� C8 , C8 �� C12 , C8 �� C16 and C12 �� C12 , where Cn denotes the cycle on n

vertices, each have girth 6 and satisfy Equation (7) with equality for α2 .

The bound (7) is also tight for several named Sage graphs with girth g ∈ {5, 6, 7} and, hence, being k-partially distance-

regular with k = 
(g − 1)/2�, see Table 1.

3. The general case: unknown relation between the spectrum of Gk and G

In the general situation when we do not known the relation between the spectrum of Gk and G , one can make use 

of the following recent spectral bounds for αk given in [3]. Let G be a graph with eigenvalues λ1 ≥ · · · ≥ λn . Let [2, n] =
{2, 3, . . . , n}. Let Rk[x] be the ring of real polynomials with degree at most k. Given a polynomial p ∈ Rk[x], consider the 
following parameters:

• W (p) = maxu∈V {(p(A))uu},
• w(p) = minu∈V {(p(A))uu},
• �(p) = maxi∈[2,n]{p(λi)},
• λ(p) = mini∈[2,n]{p(λi)}.

Theorem 3.1. (Abiad, Coutinho, Fiol [3]). Let G be a graph with n vertices and eigenvalues λ1 ≥ · · · ≥ λn .

(i) An inertial-type bound. Let p ∈ Rk[x] with corresponding parameters W (p) and λ(p). Then,

αk ≤ min{|i : p(λi) ≥ w(p)|, |i : p(λi) ≤ W (p)|}. (8)

(ii) A ratio-type bound. Assume that G is regular. Let p ∈ Rk[x] such that p(λ1) > λ(p). Then,

αk ≤ n
W (p) − λ(p)

p(λ1) − λ(p)
. (9)

For k = 1, the optimal polynomial in (ii) is p(x) = x and gives the Hoffman bound (2)[3]. The best polynomials for k = 2

and k = 3 were respectively given in [3] and [35]. As commented in the Introduction, in the case of k-partially walk-regular 

graphs, the so-called ‘minor polynomials’ are best possible for every value of k, and can be computed efficiently by solving 

a linear programming problem, see Subsection 3.1.1.

In Section 4 we shall prove new eigenvalue lower bounds for χk which only require the use of the spectrum of G , hence 

they will be applicable when the spectrum of G and Gk are not related.
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3.1. Partially walk-regular graphs

A graph G is called k-partially walk-regular, for some integer k ≥ 0, if the number of closed walks of a given length 

l ≤ k, rooted at a vertex v , only depends on l. Thus, every (simple) graph is k-partially walk-regular for k = 0, 1, every 

regular graph is 2-partially walk-regular and, more generally, every k-partially distance-regular is 2k-partially walk-regular. 

Moreover G is k-partially walk-regular for any k if and only if G is walk-regular, a concept introduced by Godsil and Mckay 

in [28]. For example, it is well-known that every distance-regular graph is walk-regular (but the converse does not hold). In 

other words, if G is k-partially walk-regular, for any polynomial p ∈ Rk[x] the diagonal of p(A) is constant with entries

(p(A))uu = w(p) = W (p) =
1

n
tr p(A) =

1

n

n
∑

i=1

p(λi) for all u ∈ V .

Then, with p ∈ Rk[x], (8) and (9) become

αk ≤ min{|i : p(λi) ≥ 1
n

∑n
i=1 p(λi)|, |i : p(λi) ≤ 1

n

∑n
i=1 p(λi)|} (10)

and

αk ≤
∑n

i=1 p(λi) − n · λ(p)

p(λ1) − λ(p)
. (11)

In particular, notice that if tr p(A) =
∑n

i=1 p(λi) = 0, inequality (11) becomes

αk ≤
n

1− p(λ1)
λ(p)

. (12)

This can be seen a generalization of Hoffman bound (2), since it is obtained when, in (12), we take k = 1 and pk(x) = x (in 

this case, note that p(λ1) = λ1 and λ(p) = p(λn) = λn).

In fact, for this case of partially k-walk-regular graphs, Fiol [22] proved that the upper bound in (11) also applies for the 

Shannon capacity � [45] and the Lovász theta number ϑ [39] of Gk .

An alternative, and more direct, proof of (12) is the following. Let G have adjacency matrix A, and let U = {1, 2, . . . , αk}
be a maximal k-independent set in G , such that the first vertices of A correspond to U . Put u = (x1 | 1)� , where x is 

a variable such that the values of x correspond to the vertices in the maximal k-independent set U . Now consider the 

function

φ(x) =
〈u, p(A)u〉

||u||2
=

2αkp(λ1)x+ (n − 2αk)p(λ1)

αkx2 + n − αk

,

which attains a minimum at xmin = 1 − n
αk

. Thus, φ(xmin) gives

λ(p) ≤ φ(xmin) =
p(λ1)

1− n
αk

,

whence (12) follows. The same proof idea was used to extend the ratio bound for oriented hypergraphs, but using the 

normalized Laplacian spectrum [4].

3.1.1. Optimizing the upper bounds for αk

Notice that the bounds (10) and (11) are invariant under scaling and/or translating the polynomial p. Thus, when we are 

looking for the best polynomials, we can restrict ourselves to the following cases:

Bound (10): Upon changing the sign of an optimal solution p, we can always assume we are trying to find p that minimizes 

|{i : p(λi) ≥ w(p)}|. Moreover, a constant can be added to p to make w(p) = 0. Thus, we get

αk ≤ min{|i : p(λi) ≥ 0|}. (13)

The optimization of this bound will be investigated in Section 4.1.

Bound (11): We consider two simple possibilities:

(a) If p = f ∈ Rk[x] is a polynomial satisfying λ( f ) = 0 and f (θ0) = 1, the best result is obtained with the so-

called minor polynomial fk that minimizes 
∑d

i=0mi fk(θi). This case was studied by Fiol in [22]. This polynomial 

can be found by solving the following linear programming problem (LPP): Let fk be defined by fk(θ0) = x0 = 1

and fk(θi) = xi , for i = 1, . . . , d, where the vector (x1, x2, . . . , xd) is a solution of

5
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minimize
∑d

i=0mixi
subject to f [θ0, . . . , θm] = 0, m = k + 1, . . . ,d

xi ≥ 0, i = 1, . . . ,d

(14)

Here, f [θ0, . . . , θm] denote the m-th divided differences of Newton interpolation, recursively defined by 

f [θi, . . . , θ j] =
f [θi+1,...,θ j ]− f [θi ,...,θ j−1]

θ j−θi
, where j > i, starting with f [θi] = fk(θi) = xi , 0 ≤ i ≤ d. Note that, by 

equating these values to zero, we guarantee that fk ∈ Rk[x]. For more details about the minor polynomials, 

see [22]. Then, we get

αk ≤
d

∑

i=0

mi fk(θi) = tr fk(A) and χk ≥
n

∑d
i=0mi fk(θi)

. (15)

(b) If p = g ∈ Rk[x] is the polynomial satisfying 
∑d

i=0mi g(θi) = 0 and λ(g) = −1, Eq. (12), with λ1 = θ0 , gives

αk ≤
n

1+ g(θ0)
, and χk ≥ 1+ g(θ0). (16)

Hence, the best result is now obtained by maximizing g(θ0). If g(θi) = xi for i = 0, . . . , d, this leads to the 

following LPP:

maximize x0

subject to
∑d

i=0mixi = 0

g[θ0, . . . , θm] = 0, m = k + 1, . . . ,d

xi = zi − 1, zi ≥ 0, i = 1, . . . ,d

(17)

Consequently, both results (a) and (b) are equivalent in the sense that the best polynomial in (a) yields the 

same results as the best polynomial in (b). In the first case, fk is the polynomial that minimizes 
∑d

i=0mi fk(θi), 

subject to fk(θi) ≥ 0 for any i = 1, . . . , d, and fk(θ0) = 1. In the second case, g is the polynomial that maximizes 

g(λ0) under the conditions g(θi) ≥ −1 for any i = 1, . . . , d and 
∑d

i=0mi g(θi) = 0. Now, suppose that g satisfies the 

conditions in (b). Then, the polynomial fk = g+1
g(θ0)+1

satisfies the conditions in (a) and we get

αk ≤
∑d

i=0mi fk(θi) = 1
g(θ0)+1

[

∑d
i=0mi g(θi) + n

]

= n
1+g(θ0)

,

as expected. Similarly, if fk satisfies the conditions in (a), then the polynomial g = nfk−
∑d

i=0mi fk(θi)
∑d

i=0mi fk(θi)
satisfies the 

conditions in (b), and yields the expected bound

αk ≤ n
1+g(θ0)

= 1
n

∑d
i=0mi fk(θi).

4. New spectral bounds for χk

In this section we prove several eigenvalue lower bounds for χk which only require the spectrum of G .

4.1. First inertial-type bound for χk

The first inertial-type bound is a consequence of the bound (8) for αk (for a general value of k, an infinite class of graphs 

which attain such a bound is shown in [1]):

χk(G) ≥
n

min{|i : pk(λi) ≥ w(pk)|, |i : pk(λi) ≤ W (pk)|}
. (18)

We should note that if one considers p2(A) = A2 the bound (18) becomes:

χ2(G) ≥
n

min{|i : λ2
i ≥ δ|, |i : λ2

i ≤ �|}
, (19)

and this bound is tight for an infinite family of graphs. Indeed, consider the incidence graph G of a projective plane PG(2, q), 

then G2 has two cliques of size q2 + q + 1 (corresponding to the points and lines, since any two points are incident to a 

common line and any two lines are incident to a common point). Therefore, χ(G2) ≥ q2 + q + 1 (in fact, equality holds). 

This is an example that Alon and Mohar use in [5]. Note that (19) gives the same bound, as the spectrum of G is

spG = {q + 1[1],
√
q
[q(q+1)]

,−
√
q
[q(q+1)]

,−q − 1[1]}.
In particular, w2(G) = W2(G) = q + 1 (the degree of the graph), whereas there are only two eigenvalues q + 1 and −q − 1

whose square is greater than q + 1. So, as per the inertial-type bound (19), α(G2) ≤ 2, and hence χ(G2) ≥ 2(q2+q+1)
2

.
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4.1.1. Optimization of the first inertial-type bound

Our goal is to introduce a mixed integer linear program (MILP) to compute the best polynomial for the bound (8) (and 

hence the same for the bound (18)). Since such a bound is also valid for the quantum k-independence number and this 

parameter is not computable in general, the use MILPs to find the best polynomial is justified.

Let G have spectrum spG = {θ [m0]
0 , . . . , θ

[md]
d

}. Upon changing the sign of an optimal solution p, we can always assume 

we are trying to find p ∈ Rk[x], and minimizing |{i : p(λi) ≥ w(p)}| or, in terms of multiplicities, min
∑

j:p(θ j)≥w(p)m j . 

Moreover, assuming that w(p) = p(A)uu for some vertex u ∈ V (G), a constant can be added to p(x) making w(p) = 0.

Let p(x) = akx
k + · · ·+a0 , b = (b0, . . . , bd) ∈ {0, 1}d+1 , and m = (m0, . . . , md). The following mixed integer linear program 

(MILP), with variables a0, . . . , ak and b0, . . . , bd , finds the best polynomial for the bound (8):

minimize mTb

subject to
∑k

i=0 ai(A
i)vv ≥ 0, v ∈ V (G) \ {u}

∑k
i=0 ai(A

i)uu = 0
∑k

i=0 aiθ
i
j − Mb j + ε ≤ 0, j = 0, ...,d (∗)

b ∈ {0,1}d+1

(20)

Here M is set to be a large number, and ε(> 0) small. The idea of this formulation is that each b j = 1 represents an index j

so that p(θ j) ≥ w(p) = 0. In fact, condition (∗) gives that p(θ j) ≥ 0 implies b j = 1. (In particular, if p(θ j) = 0, such a value 

of b j is forced by the presence of ε .) So, upon minimizing the quantity of such indices j, we are optimizing p(x) and the 

corresponding bound αk ≤ mTb. For each u ∈ V (G), we write one such MILP and find the best objective value of all. With 

respect to the choices for ε and M , note that we can always set ε = 1 as scaling of the ai ’s is allowed. If the M chosen is 

not large enough, the MILP will be unfeasible and we can repeat with a larger M .

In Table 2, the results of the MILP optimal bound (20) are shown for all named graphs in Sage with less than 100 vertices 

and diameter at least 3. We compare these to the Lovász theta number of Gk and the exact value of α2 . For regular graphs, 

the bound from Corollary 3.3 in [3] is also included. Observe that the bound in [3] generally outperforms our MILP for the 

graphs in Table 2. However, it should be noted that this bound requires regularity, whereas the MILP bound (20) is also 

applicable to irregular graphs. Table 3 shows for n = 4, . . .9 the proportion of irregular graphs on n vertices for which the 

optimal solution of our MILP matches the actual value of α2 .

In the case of k-partially walk-regular graphs, we only need to run the MILP (20) once, since all vertices have the same 

number of closed walks of length smaller than or equal to k. Then, the problem can be formulated follows:

Let G be a k-partially walk-regular graph with diameter D and spectrum spG = {θ [m0]
0 , θ

[m1]
1 , . . . , θ

[md]
d

}. For a given 

k < D (≤ d), let p(x) = akx
k +· · ·+a0 , b = (b0, . . . , bd) ∈ {0, 1}d+1 and m = (m0, . . . , md). Now, the following MILP (21), with 

variables a0, . . . , ak and b0, . . . , bd , finds the best polynomial and the corresponding bound for αk :

minimize mTb

subject to
∑d

i=0mip(θi) = 0
∑k

i=0 aiθ
i
j − Mb j + ε ≤ 0, j = 0, ...,d

b ∈ {0,1}d+1

(21)

Observe that the target polynomial p in (21) could be written as a linear combination of the predistance polynomials 

p1, . . . , pk , since all of them are orthogonal to p0 = 1 with respect to the scalar product in (3): 〈p j, 1〉G = 1
n
tr p j(A) =

w(p j) = 0, j = 1, . . . , k, and, hence, so is p. This allows us to remove the first constraint in (20).

Next we illustrate how the MILP (21) can be used to find the best polynomials to upper bound αk for an infinite family 

of Odd graphs. For every integer  ≥ 2, the Odd graphs O  constitute a well-known family of distance-regular graphs with 

interactions between graph theory and other areas of combinatorics, such as coding theory and design theory. The vertices 

of O  correspond to the  − 1 subsets of a (2 − 1)-set, and adjacency is defined by void intersection. Note that O 3 is the 

Petersen graph. In general, O  is an -regular graph of order n =
(2−1

−1

)

= 1
2

(2


)

, diameter D =  −1, and its eigenvalues and 

multiplicities are θi = (−1)i( − i) and m(θi) = mi =
(2−1

i

)

−
(2−1
i−1

)

for i = 0, 1, . . . ,  − 1. Notice that, with this notation, 

the given eigenvalues do not satisfy the ‘standard’ order θ0 > θ1 > · · · > θ−1 , although this is irrelevant in what follows).

For the case k = D − 1 =  − 2, where αk is the maximum number of vertices mutually at distance D , we have the 

following result:

Proposition 4.1. For the Odd graph O , with diameter D =  −1, the (D −1)-independence number αD−1 = α−2 satisfies the bound

α−2(O ) ≤
{

2 − 2 for odd ,

2 − 1 for even .
(22)

7
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Table 2

Comparison between different bounds for α2 .

Name Bound in [3] ϑ2 [39] Inertial-type bound MILP (20) Inertial-type bound MILP (27) α2

Balaban 10-cage 17 17 19 19 17

Frucht graph 3 3 3 3 3

Meredith Graph 14 10 10 10 10

Moebius-Kantor Graph 4 4 6 4 4

Bidiakis cube 3 2 4 3 2

Gosset Graph 2 2 8 2 2

Gray graph 14 11 19 19 11

Nauru Graph 6 5 8 8 6

Blanusa First Snark Graph 4 4 4 4 4

Pappus Graph 4 3 7 6 3

Blanusa Second Snark Graph 4 4 4 4 4

Poussin Graph - 2 4 - 2

Brinkmann graph 4 3 6 6 3

Harborth Graph 12 9 13 13 10

Perkel Graph 10 5 18 18 5

Harries Graph 17 17 18 18 17

Bucky Ball 16 12 16 16 12

Harries-Wong graph 17 17 18 18 17

Robertson Graph 3 3 5 5 3

Heawood graph 3 2 2 3 2

Herschel graph - 2 3 - 2

Hoffman Graph 3 2 5 4 2

Sousselier Graph - 3 5 - 3

Sylvester Graph 6 6 10 10 6

Coxeter Graph 7 7 7 7 7

Holt graph 6 3 7 8 3

Szekeres Snark Graph 12 10 13 14 9

Desargues Graph 5 5 6 6 4

Horton Graph 26 24 30 30 24

Kittell Graph - 3 5 - 3

Tietze Graph 3 3 4 3 3

Double star snark 7 7 9 10 6

Krackhardt Kite Graph - 2 4 - 2

Durer graph 3 2 3 3 2

Klein 3-regular Graph 13 13 19 19 12

Truncated Tetrahedron 3 3 4 4 3

Dyck graph 8 8 8 8 8

Klein 7-regular Graph 3 3 9 3 3

Ellingham-Horton 54-graph 14 12 20 20 11

Tutte-Coxeter graph 8 6 10 10 6

Ellingham-Horton 78-graph 21 19 27 27 18

Tutte Graph 11 10 13 13 10

Errera graph - 2 4 - 2

F26A Graph 6 6 7 7 6

Watkins Snark Graph 14 9 13 13 9

Flower Snark 5 5 7 7 5

Markstroem Graph 6 6 7 7 6

Wells graph 6 3 9 10 2

Folkman Graph 4 3 5 5 3

Wiener-Araya Graph - 8 12 - 8

Foster Graph 22 22 23 23 21

McGee graph 6 5 7 6 5

Franklin graph 3 2 4 3 2

Hexahedron 2 2 2 2 2

Dodecahedron 5 4 4 4 4

Icosahedron 2 2 4 2 2

Table 3

Proportion of small graphs for which the optimal value of the MILP co-
incides with α2 .

Number of vertices 4 5 6 7 8 9

Proportion 0.86 0.84 0.76 0.62 0.46 0.27

Proof. We claim that, for such graphs, the polynomial p ∈ R−2[x] obtained from the MILP problem, with leading coefficient 

±1, has zeros zi for i = 2, . . . ,  − 1, where zi = θi + (−1)�
i−1
2 �σ for odd , zi = θi + (−1)


i−1
2 �σ for even , and σ is the 

solution in (0, 1) of the equation

8
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Table 4

Infinite family of Odd graphs for which the output from MILP (21) gives the best polynomials for 
upper bounding αk .

α2(O 4)

Bound from the MILP 7 =m0 +m1

Polynomial σ 2 + 3σ − 2 0.561552813

Exact value α2 7

α3(O 5)

Bound from the MILP 8 =m1

Polynomial σ 3 − 12σ + 4 0.336508805

Exact value α3 7

α4(O 6)

Bound from the MILP 11 =m0 +m1

Polynomial σ 4 + 4σ 3 − 46σ + 12 0.238605627

Exact value α4 11

α5(O 7)

Bound from the MILP 12 =m1

Polynomial σ 5 − σ 4 − 41σ 3 + 41σ 2 + 246σ − 36 0.1434068868

Exact value α5 12

α6(O 8)

Bound from the MILP 15 =m0 +m1

Polynomial σ 6 + 7σ 5 − 45σ 4 − 287σ 3 + 256σ 2 + 1372σ − 144 0.1032025452

Exact value α6 15

α8(O 10) Bound from the MILP 19 =m0 +m1

Exact value α8 19

α10(O 12) Bound from the MILP 23 =m0 +m1

Exact value α10 23

α12(O 14) Bound from the MILP 27 =m0 +m1

Exact value α12 27

φ(σ ) = tr p(A) =
−1
∑

j=0

m jp(θ j) =
−1
∑

j=0

m j

−1
∏

i=2

(θ j − zi) = 0. (23)

The reason is that the polynomial p∗ =
∏−1

i=2 (x − zi) satisfies the main condition (23) of the MILP problem (21), and 

either p = p∗ or p = −p∗ minimizes the number of 1’s in the vector b. More precisely, from the definition of p∗ it is 

readily checked that, if σ is not too big,

• If  is odd, then p∗(θ1) < 0 and p∗(θi) > 0 for i = 0, 2, . . . ,  − 1.

• If  is even, then p∗(θi) > 0 for i = 0, 1, and p∗(θi) < 0 for i = 2, . . . ,  − 1.

In other words, in the first case b = (0, 1, 0, . . . , 0), and hence, α−2 ≤ m1 = 2 − 2; whereas, in the second case, b =
(1, 1, 0, . . . , 0), and hence, α−2 ≤m0 +m1 = 2 − 1, as claimed. Moreover, φ(0) and φ(1) have different signs, so that there 

exists some σ ∈ (0, 1) such that (23) holds. �

In Table 4 we show some examples of the results obtained for  = 4, . . . , 8, 10, 12, 14. For the first values, we also 

indicate the polynomial φ(σ ), which is shown to be monic with a convenient scaling (obtained dividing (23) by ±
(2−1

−1

)

), 

together with its ‘key zero’ σ0 ∈ (0, 1). Also, we compare the obtained MILP bound with the exact value of αk .

Note that, when  increases, σ tends to zero and hence the target polynomial p is closer and closer to the minor poly-

nomial fk up to a constant multiplicative factor. This gives an interesting view of the relationship between the inertial- and 

ratio-type methods. Moreover, the same result of Proposition 4.1 can also be proved by using only the minor polynomials, 

see [22].

We should also note that, except for the Odd graph O 5 , all the obtained bounds are tight. In fact, in the even case 

 = 2k, one can check that the vertices at maximum distance 2k − 1 from each other constitute a 2 − (4k − 1, 2k − 1, k − 1)

symmetric design (see [30] for its definition). Such combinatorial structures exist, at least, for k = 2, . . . , 7 [47], which give 

the optimal values in Table 4 when  = 2, 4, . . . , 14. In fact these are Hadamard designs, equivalent to Hadamard matrices, 

and therefore existence is known for many more parameters. In particular, the 7 vertices of O 4 correspond to the lines (or 

the points) of the Fano plane (see Fig. 1), and the 11 vertices of O 6 are the points of the Paley biplane.

Another infinite family of graphs for which (21) behaves nicely is a particular family of Cayley graphs. Let G be a finite 

group with identity element 1 and let S ⊆ G . The (directed) Cayley graph �(G, S) is a graph with vertex set G and an arc for 

every pair u, v ∈ G such that uv−1 ∈ S . If S is inverse-closed and does not contain 1, then �(G, S) is symmetric and loopless, 

in which case we may view it as a simple undirected graph. Consider for each n ≥ 3 the Cayley graph �n := �(D2n, S2n)

on the dihedral group D2n = 〈a, b | an = b2 = (ab)2 = 1〉 and inverse-closed subset S2n = {a, a−1, b} ⊂ D2n . Then {�n}n≥3

is a family of connected, 3-regular graphs on 2n vertices. The graph �n is known as the prism graph [27] and the above 

construction as a Cayley graph is due to Biggs [9, pag. 126]. These graphs are vertex-transitive and, hence, walk-regular, 

9
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Fig. 1. Maximal set of vertices in O 4 (α2 = 7) at mutual distance 3 (each pair of vertices—lines of the Fano plane F7—has exactly one common digit—vertex 
of F7).

Table 5

An infinite family of Cayley graphs �n for which the MILP bound equals α2 when n �= 2 mod 4.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MILP bound 1 2 2 4 3 4 4 6 5 6 6 8 7 8

α2 1 2 2 2 3 4 4 4 5 6 6 6 7 8

but not distance-regular. Thus the Delsarte LP bound does not apply. Table 5 shows the behavior of the MILP bound on 

�n for 3 ≤ n ≤ 16. Note that the optimal value equals exactly α2 when n �= 2 mod 4. This trend continues if we solve the 

MILP for larger values of n. An easy way to prove that the exact values of α2 are those expected from the table (α2 = 2k if 

n = 4k + i for i = 0, 1, 2, and α2 = 2k + 1 if n = 4k + 3) is to view �n as the Cayley graph on the Abelian group Zn × Z2

with generating set S = {±(1, 0), ±(0, 1)}. Then the graph can be represented by a plane tessellation with rectangles n × 2

[50] (or embedding on the torus) which allows us a neat identification of the maximum 2-independent vertex sets.

4.2. Second inertial-type bound for χk

The bound (18) can be strengthened when k = 1 and pk(A) = A as follows (see Elphick and Wocjan [17, Th. 1]). Let 

n+ = |i : λi > 0|, n0 = |i : λi = 0|, and n− = |i : λi < 0|. Then,

χ(G) ≥ 1+max

(

n+

n− ,
n−

n+

)

≥
n

n0 +min{n+,n−}
, (24)

with equality for the two bounds only if n0 = 0, since

1 +max

(

n+

n− ,
n−

n+

)

=
n+ + n−

min{n+,n−}
.

The goal of this section is to extend the inertial-type bound (24) to the distance chromatic number χk(G) in the case when 

G is k-partially walk-regular.

Theorem 4.2. Let G be a k-partially walk-regular graph with adjacency matrix eigenvalues λ1 ≥ · · · ≥ λn . Let pk ∈ Rk[x] such that 
∑n

i=1 pk(λi) = 0. Then,

χk ≥ 1+max

( |{ j : pk(λ j) < 0}|
|{ j : pk(λ j) > 0}|

)

. (25)

Proof. Here we use an argument analogous to the one in [17, Th. 1], but using pk(A) instead of A. The proof in [17] relies 

on the fact that there exist χ − 1 unitary matrices U i such that:

χ−1
∑

i=1

U i AU
∗
i = −A.

Now we consider pk(A) instead of A and a k-partially walk-regular graph G with 
∑n

i=1 pk(λi) = 0 (recall that pk(A) has 

constant zero diagonal if and only if trpk(A) = 0, or equivalently, 
∑n

i=1 pk(λi) = 0)). Then it follows that

10
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χk−1
∑

i=1

U i pk(A)U∗
i = −pk(A). (26)

Observe that the above holds because Theorem 6 in [49] is also valid for weighted adjacency matrices with zero diagonal. 

Let v1, . . . , vn be the eigenvectors of unit length corresponding to the eigenvalues pk(λ1) ≥ · · · ≥ pk(λn). Let pk(A) = pk(B) −
pk(C), where

pk(B) =
|{ j:pk(λ j)>0}|

∑

i=1

pk(λi)v iv
∗
i , pk(C) =

n
∑

i=n−|{ j:pk(λ j)<0}|+1

−pk(λi)v iv
∗
i .

Observe that pk(B) and pk(C) are positive semidefinite matrices, and we also know that rank(pk(B)) = |{ j : pk(λ j) > 0}|
and rank(pk(C)) = |{ j : pk(λ j) < 0}|. Denote by P+ and P− the orthogonal projections onto the subspaces spanned by the 

eigenvectors corresponding to the positive and negative eigenvalues of pk(A), respectively:

P+ =
rank(pk(B))

∑

i=1

v iv
∗
i and P− =

n
∑

i=n−rank(pk(C))+1

v iv
∗
i .

Note that

pk(B) = P+pk(A)P+ and pk(C) = −P−pk(A)P−.

Then, equation (26) can be rewritten as follows

χk−1
∑

i=1

U i pk(B)U∗
i −

χk−1
∑

i=1

U i pk(C)U∗
i = pk(C) − pk(B),

and, if we multiply both sides by P− , we obtain

P−
χk−1
∑

i=1

U i pk(B)U∗
i P

− − P−
χk−1
∑

i=1

U i pk(C)U∗
i P

− = pk(C).

Now, since we know that P−
χk−1
∑

i=1

U i pk(C)U∗
i P

− is positive semidefinite, we obtain

P−
χk−1
∑

i=1

U i pk(B)U∗
i P

− � pk(C)

(where, with X, Y being matrices, X � Y means that X − Y is positive semidefinite). Finally, we use the facts that the rank 

of a sum or is at most the sum of the ranks of the summands, and the rank of a product is at most the minimum of the 

ranks of the factors. This, together with Lemma 2 in [17] (that is, if X, Y ∈ Cn×n are positive semidefinite and X � Y , then 

rank(X) ≥ rank(Y )), yields the desired inequality

(χk − 1) |{ j : p(λ j) > 0}| ≥ |{ j : p(λ j) < 0}|. �

Note that the bound from Theorem 4.2 is equivalent to

χk ≥ 1+max

( |{ j : pk(λ j) > 0}|
|{ j : pk(λ j) < 0}|

,
|{ j : pk(λ j) < 0}|
|{ j : pk(λ j) > 0}|

)

.

Observe also that the maximum is taken over all polynomials pk .

Regarding the second inertial-type bound (25), we note that not all graphs allow for an improvement of such bound due 

to the presence of zeros, and in that case one can better use the inertial-type bound (8) which we optimize for αk (and 

hence also for χk) in Section 4.1.1.

11
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4.2.1. Optimization of the second inertial-type bound

Similarly to our discussion in Section 4.1.1 for the optimization of the first inertial-type bound, we can use MILPs to 

optimize the polynomials appearing in the second inertial-type bound (25). For this bound, however, we must solve n

MILPs to obtain the best possible bound. The procedure goes as follows: for each  ∈ {1, ..., n − 1}, we solve the following 

MILP:

maximize 1+ n−1Tb


subject to
∑n

j=1

∑k
i=0 aiλ

i
j = 0

∑k
i=0 aiλ

i
j − Mb j + ε ≤ 0, j = 1, ...,n

∑k
i=0 aiλ

i
j − Mc j ≤ 0, j = 1, ...,n

∑n
i=1 ci = 

b ∈ {0,1}n, c ∈ {0,1}n

(27)

Unlike the previous MILP (20), which optimized the first inertial-type bound for χk , for the above MILP we require 

b ∈ {0, 1}n, c ∈ {0, 1}n since here we look at all eigenvalues, including the repeated ones. As before, the ai are the coefficients 

of the polynomial of degree at most k, say p(x) = akx
k + · · · + a0 , and the first constraint is the hypothesis of the theorem, 

that is tr p(A) = 0. The second constraint implies that if p(λ j) ≥ 0, then b j = 1, whereas the third constraint implies that if 

p(λ j) > 0, then c j = 1. Thus, we have:

• |{ j : pk(λ j) > 0}| = 1Tc =
∑n

i=1 ci =  (fourth constraint),

• |{ j : pk(λ j) = 0}| = 1T(b − c), and

• |{ j : pk(λ j) < 0}| = n − 1Tb,

from where we set the function to maximize.

In theory, this MILP is a sound way to approximate Theorem 4.2. However, in practice the limited precision of MILP 

solvers leads to implementation problems for certain graphs. Consider for example the prism graph �4 , for which MILP (20)

was tight. Solving MILP (27) with Gurobi for k = 2, we find optimal value 7. This is clearly not a valid lower bound, as 

χ2(�4) = 4. The corresponding optimal parameters are p2(x) = 833.3249999999999x2 − 1666.6499999999999x − 2499.975

and b = (1, 0, 0, 0, 0, 0, 0, 1), c = (0, 0, 0, 0, 0, 0, 0, 1). In other words, eigenvalue 3 is supposedly a root of p2 and the other 

eigenvalues are not. However, due to rounding this is not exactly true: 3 is not a root of p2 , but it is a root of the polynomial 

833 1
3
x2 −1666 2

3
x −2500 (or its monic equivalent x2 −2x +3), which has eigenvalue −1 as a second root. Eigenvalue 1 with 

multiplicity 3 is then the only eigenvalue such that this polynomial is negative, so the bound becomes 1 + 3
1

= 4, which is 

tight.

In general, it is hard to prevent these types of errors, as no MILP solver has perfect accuracy. For k = 2, we will consider 

a restriction of MILP (27), where this can be detected and prevented. For a regular graph G with eigenvalues d = λ1 ≥ λ2 ≥
· · · ≥ λn , consider the polynomial p2(x) = x2 +bx −d. This polynomial has two distinct roots x1 < 0 < x2 such that x1x2 = −d

and b = −(x1 + x2). Moreover, note that for any choice of b, it satisfies the trace condition 
∑n

i=1 p2(λi) = 0. Therefore, it 

corresponds to a valid solution of MILP (27). Since the optimal polynomial is fixed up to the coefficient b, we can now 

calculate which eigenvalues are root pairs of p2 and fix the bound accordingly.

To find an optimal value of b we do not need to solve an MILP. Instead, the following greedy strategy suffices. Suppose 

λ is the smallest negative eigenvalue such that p2(λ) < 0. To maximize the numerator of Equation (25), it is better to 

choose x1 close to λ, as this will increase the value of x2 . For every negative eigenvalue λ, we therefore compute the bound 

for x1 = λ − σ with σ > 0 small. By placing x1 or x2 close to 0, we also cover the cases where exactly all negative or 

all positive eigenvalues lie in the negative range of p2 . Finally, we set every eigenvalue as a root of p2 and compute the 

corresponding lower bound. Observe that this strategy can easily be adapted for the polynomial −p2 , which also satisfies 

the trace condition. To obtain the best value bound, we consider all above cases for p2 and −p2 and take the maximum.

In Table 2, we compute the corresponding upper bound on α2 for the named Sage graphs and compare it to previous 

results. Note that these values are an upper bound for the actual optimum of MILP (27), as we restricted the optimal 

polynomial. On this particular set of graphs, the bound generally performs better than MILP (20), most notably on the 

Gosset graph and Klein 7-regular graph. Like MILP (20), MILP (27) is tight for the incidence graphs of projective planes 

PG(2, q) with q a prime power and the prism graphs �n with n �= 2 mod 4. Note that the latter are generalized Petersen 

graphs with parameters (n, 1). The bound is also tight for (generalized) Petersen graphs with (n, k) ∈ {(5, 2), (8, 3), (10, 2)}. 
The second graph is also known as the Möbius-Kantor graph and is walk-regular, but not distance-regular.

4.3. First ratio-type bound for χk

Let G be a graph with eigenvalues λ1 ≥ · · · ≥ λn and let [2, n] = {2, 3, . . . , n}. Given a polynomial pk ∈ Rk[x], recall 
the following parameters: W (pk) = maxu∈V {(pk(A))uu}, w(pk) = minu∈V {(pk(A))uu}, �(pk) = maxi∈[2,n]{pk(λi)}, λ(pk) =
mini∈[2,n]{pk(λi)}.

12
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Then notice that, for a regular graph, the upper bound (9) for αk of Theorem 3.1(ii) [3] becomes (28). In the next 

theorem we show that such inequality also holds for a general graph.

Theorem 4.3. Let G be a graph with n vertices, adjacency matrix A, and eigenvalues λ1 ≥ · · · ≥ λn . Let pk ∈ Rk[x] such that pk(λ1) >

pk(λi) for i = 2, . . . , n. Then,

χk ≥
pk(λ1) − λ(pk)

W (pk) − λ(pk)
. (28)

Proof. The proof uses an argument which follows the main lines of reasoning as Haemers does for deriving a lower bound 

for χ of any graph in [29, Th. 4.1 (i)]. However, as the last steps are different, we include the complete proof. Let ν =
(ν1, . . . , νn) be the (positive) Perron (column) λ1-eigenvector of A. Let V1, . . . , Vχk

be the color classes of Gk . Let S̃ be the 

n × χk matrix with entries

( S̃)u j =
{

νu, if u ∈ V j,

0, otherwise.

Notice that, with the appropriate length of the vector 1, we have

S̃1 = ν and S̃�ν = (
∑

u∈V1
ν2
u , . . . ,

∑

u∈Vχk
ν2
u )�.

Let S be the matrix S̃ with all its column vectors normalized. That is, S = S̃ D
1
2 where D = S̃� S̃ = diag(

∑

u∈V1
ν2
u , . . . ,

∑

u∈Vχk
ν2
u ). Now consider the χk × χk matrix B = S�pk(A)S which, as it is readily checked by using the above, has eigen-

value pk(λ1) with eigenvector D
1
2 1. Moreover, since each principal submatrix of B corresponding to a color class has all its 

off-diagonal entries equal to zero, we have

(B)ii =
∑

u∈V i

(S�)iu(pk(A))uu(S)ui =
∑

u∈V i

(pk(A))uu
ν2
u

∑

v∈V i
ν2
v

≤ W (pk)
1

∑

v∈V i
ν2
v

∑

u∈V i

ν2
u = W (pk), i = 1, . . . ,χk.

By using interlacing (see [20,29]), all the eigenvalues of B must be between λ(pk) and pk(λ1). Hence,

χkW (pk) ≥
χk
∑

i=1

(B)ii = tr(B) ≥ pk(λ1) + (χk − 1)λ(pk)

and the result follows. �

4.4. Second ratio-type bound for χk

In this section we extend the algebraic bound for χ by Haemers [29, Th. 4.1(ii)] to the distance chromatic number.

Theorem 4.4. Let G be a k-partially walk-regular graph with adjacency matrix eigenvalues λ1 ≥ · · · ≥ λn . Let pk ∈ Rk[x] such that 
∑n

i=1 pk(λi) = 0, and let �1 ≥ �2 ≥ · · · ≥ �n be the eigenvalues of pk(A). If �2 > 0, then

χk ≥ 1−
�n−χk+1

�2
. (29)

Proof. An analogous interlacing argument as the one used in as in [29, Th. 4.1 (ii)] applies here, where instead of the 

adjacency matrix A and the quotient matrix B , now we consider linear combinations of both matrices, pk(A) and pk(B). �

5. Concluding remarks

We should note that computing our eigenvalue bounds (using the MILPs) is, for small graphs like the ones we tested, 

significantly faster than solving the SDP of the Lovász theta bound, and in many cases our bounds perform fairly well, as 

shown in Table 2.

The optimization of the first inertial-type bound (8) using the MILP (20) has special interest since our first inertial-type 

bound (8) provides an upper bound for the quantum k-independence number [48, Theorem 7], which is, in general, not 

known to be a computable parameter.
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While for distance-regular graphs one can use the celebrated linear programming bound by Delsarte [15] on Gk in order 

to bound αk , our inertial-type bound (8) and its MILP (20) are more general. This is because they can also be applied to 

vertex-transitive graphs which are not distance-regular or, in general, to walk-regular graphs which are not distance-regular.

For walk-regular graphs, it is expected that our first inertial bound implementation (21) does not improve the ratio-

type bound involving the minor polynomials [22]. This is due to the fact that our MILP (21) uses a linear combination 

of the eigenvalue multiplicities which is more restrictive than the multiplicity linear combination used with the minor 

polynomials. However, our first inertial-type bound implementation with the MILP (20) is more general than the ratio-type 

bound implementation from [22], since the latter requires walk-regularity while our first inertial-type bound (8) and its 

MILP (20) apply to general graphs.

We end with two open problems that we feel are most natural to try next. The same MILP method as we use in 

Sections 4.1.1 and 4.2.1 could be useful to find the target polynomial in other graphs and/or for other values of k. Some graph 

candidates would be vertex-transitive graphs which are not distance-regular (since otherwise one can just use Delsarte LP 

bound). Finally, note that, given a graph, our MILP formulations to optimize the spectral bounds for αk and χk have a fixed 

number of input variables [38]. Thus, it would be interesting to study the complexity of such MILP formulations.
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