
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Rafael Torres Souza

Assessing Reusable Web Applications: The Django Ecosystem Case

Belo Horizonte
2023

Rafael Torres Souza

Assessing Reusable Web Applications: The Django Ecosystem Case

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: André Cavalcante Hora

Belo Horizonte
2023

2023, Rafael Torres Souza.
Todos os direitos reservados

 Souza, Rafael Torres.

S729a Assessing reusable web applications: [recurso eletrônico]
 the Django Ecosystem case / Rafael Torres Souza- 2023.

 1 recurso online (60 f. il., color.) : pdf.

 Orientador: André Cavalcante Hora.

 Dissertação (Mestrado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de
 Ciências da Computação.
 Referências: f. 54-60

 1. Computação – Teses. 2. Engenharia de software –
 Teses. 3. Website – Desenvolvimento - Teses. 4. Django
 (Recurso eletrônico). I. Hora, André Cavalcante.
 II. Universidade Federal de Minas Gerais, Instituto de Ciências
 Exatas, Departamento de Computação. III.Título.

CDU 519.6*32(043)

Ficha catalográfica elaborada pela bibliotecária Irénquer Vismeg Lucas Cruz
CRB 6/819 - Universidade Federal de Minas Gerais – ICEx

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIÊNCIAS EXATAS

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FOLHA DE APROVAÇÃO

ASSESSING REUSABLE WEB APPLICATIONS: THE DJANGO
ECOSYSTEM CASE

RAFAEL TORRES SOUZA

Dissertação defendida e aprovada pela banca examinadora constituída pelos Senhores:

Prof. André Cavalcante Hora - Orientador

Departamento de Ciência da Computação - UFMG

Prof. Eduardo Magno Lages Figueiredo

Departamento de Ciência da Computação - UFMG

Prof. Marco Túlio de Oliveira Valente

Departamento de Ciência da Computação - UFMG

Belo Horizonte, 14 de dezembro de 2023.

Documento assinado eletronicamente por Andre Cavalcante Hora, Professor do Magistério

Folha de Aprovação 3148951 SEI 23072.219105/2024-78 / pg. 1

Superior, em 01/04/2024, às 10:49, conforme horário oficial de Brasília, com fundamento no
art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Eduardo Magno Lages Figueiredo, Professor do
Magistério Superior, em 01/04/2024, às 12:06, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Marco Tulio de Oliveira Valente, Professor do
Magistério Superior, em 01/04/2024, às 13:23, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

A autenticidade deste documento pode ser conferida no site
https://sei.ufmg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador
3148951 e o código CRC 144A6334.

Referência: Processo nº 23072.219105/2024-78 SEI nº 3148951

Folha de Aprovação 3148951 SEI 23072.219105/2024-78 / pg. 2

To Kecia, Zelia, and Fernando.

Acknowledgments

First of all, I would like to thank my family, who have always supported me and cheered
for my success. It wouldn’t be possible to get here without them.

My extreme gratitude to all the friendships I’ve made, with whom I shared the
good and the bad moments from this journey since my undergraduate. In particular,
my friends from the “Mestres do Método”, who have always been by my side and who
motivate and inspire me so much.

My thanks to the university UFMG, who expanded my horizons by providing
me with so many experiences and putting me in touch with so many incredible people.
Special gratitude to both staff and professors from the Computer Science Department -
especially my advisor and the professors who joined my dissertation’s examination - for
all the valuable lessons and knowledge sharing during these years.

Lastly, my gratitude to all whom I shared - even in quick moments - the yearnings,
frustrations, and joys of this path.

“I knew exactly what to do, but in a much more real sense, I had no idea what to do.”
(Michael Scott)

Resumo

Os aplicativos web modernos são construídos utilizando web frameworks, que oferecem
benefícios como reutilização de recursos e melhoria de produtividade. Ao utilizar esses
frameworks, os desenvolvedores podem contar com várias funcionalidades comumente re-
queridas por aplicações do mundo real, como autenticação, gerenciamento de sessão e
roteamento de URL. Entretanto, apesar dos benefícios, eles não atendem a todas as ne-
cessidades de desenvolvimento. É esperado que nem todos os requisitos sejam satisfeitos
pelo framework selecionado, portanto, os desenvolvedores podem precisar implementar
suas soluções localmente ou contar com bibliotecas externas.

O framework web Django em particular possui um rico ecossistema de pacotes
disponíveis na plataforma Django Packages. Esses pacotes reutilizáveis oferecem diversas
funcionalidades como autenticação moderna, armazenamento em cache, e integrações com
sistemas externos. Devido à estrutura de aplicações construídas com o Django framework,
os desenvolvedores podem reutilizar aplicativos prontos para uso. No entanto, atualmente,
não está claro quais soluções estão disponíveis para serem reutilizadas pelos desenvolve-
dores, ou quão ativo e confiável esse ecossistema realmente é. Estas informações seriam
importantes para caracterizar o ecossistema Django, ajudando os desenvolvedores a en-
tender melhor os aspectos positivos e negativos da adoção deste framework.

Para preencher essa lacuna, propomos um estudo empírico para avaliar o ecos-
sistema Django de aplicações reutilizáveis. Analisamos 487 aplicações reutilizáveis para
entender seu domínio alvo, nível de atividade, testes e compatibilidade. Descobrimos que
as aplicações reutilizáveis estão concentradas principalmente em três categorias: ferra-
mentas de desenvolvedor (27,8%), interfaces de usuário (17,1%) e persistência (15,9%).
Detectamos também que essas categorias possuem características distintas. As ferra-
mentas de desenvolvedor têm a maior concentração de aplicativos jovens e inativos. Em
contrapartida, os aplicativos de persistência são os mais antigos, enquanto os de segurança
são os mais ativos. Além disso, aplicações de desempenho possuem proporcionalmente
mais testes. As versões do Python mais suportadas são 3.7 a 3.11, enquanto as versões
do Django mais suportadas são 3.2 e 4.0. Finalmente, com base em nossas descobertas,
apontamos implicações tanto para profissionais da área quanto para pesquisadores.

Palavras-chave: ecossistemas de software; desenvolvimento web; evolução de software;
estudo empírico; Django web framework.

Abstract

Modern web applications are built on top of web frameworks, which offer benefits such as
feature reuse and productivity improvement. By relying on web frameworks, developers
can safely deal with many needs of real-world web applications, like authentication, session
management, and URL routing. Despite the benefits of relying on web frameworks, they
do not address all the needs to create web applications. It is expected that not all
requirements are satisfied by the selected web framework, therefore, developers may need
to implement their local solutions or rely on external libraries for reusability purposes.

In particular, the Django web framework provides a rich software ecosystem of
reusable packages that are available in the Django Packages platform. These reusable
packages support developers with advanced development aspects, such as modern au-
thentication, caching, and deployment. Due to the Django native structure, developers
can reuse out-of-the-box applications (known as reusable apps). However, currently, it
is not clear what solutions are available to be reused by developers, or how active and
reliable this ecosystem really is. This information would be important to characterize
the Django ecosystem, helping developers to better understand the positive and negative
aspects of adopting this framework.

To overcome this gap, in this research, we propose an empirical study to assess
the Django ecosystem of reusable applications. We analyze 487 reusable applications to
understand their target domain, level of activity, tests, and compatibility. We find that
reusable applications are mostly concentrated in three categories: developer tools (27.8%),
user interface (17.1%), and persistence (15.9%). We also detect that these categories
have distinct characteristics. Developer tools have the highest concentration of young
and inactive applications. In contrast, persistence applications are the oldest ones, while
security ones are the most active. Moreover, performance applications have proportionally
more tests. The most supported Python versions are 3.7 to 3.11, while the most supported
Django versions are 3.2 and 4.0. Finally, based on our findings, we provide implications
for both practitioners and researchers.

Keywords: software ecosystem; web development; software evolution; empirical study;
Django web framework.

List of Figures

1.1 Example of a captcha verification reusable app (mbi/django-simple-captcha). 15

2.1 Example of a text editor reusable app (summernote/django-summernote). . . 19
2.2 Web applications are built using the Django framework and can be empowered

by reusable applications, which are also built using the Django framework. . . 19
2.3 Example of reusable components with the React framework. 21

3.1 Overview of the data collection. 26
3.2 Example of a INSTALLED_APPS configuration (torchbox/django-recaptcha). 28
3.3 Summary of the filtering process to collect the reusable applications. 29

4.1 Categories of reusable applications. 34
4.2 Age distribution of the reusable applications (in years). 36
4.3 Summary of the age of the reusable applications. 36
4.4 Lack of activity distribution of the reusable applications (in months). 37
4.5 Summary of the lack of activity of the reusable applications. 37
4.6 Reasons to deprecate reusable applications. 38
4.7 Distribution of the proportion of test methods of the reusable applications. . . 40
4.8 Summary of the proportion of test methods of the reusable applications. . . . 41
4.9 Summary of reusable applications that inform the supported versions. 42
4.10 Supported Python versions. 42
4.11 Supported Django versions. 43
4.12 Compatibility matrix of Django and Python supported versions. 44
4.13 Distribution of the ratio of supported Python versions (real support) to the

available Python versions (ideal support) in the analyzed reusable application. 45

List of Tables

2.1 Front-end frameworks and component libraries 20

3.1 Django and Python versions . 32

4.1 Django and Python versions . 45

Contents

1 Introduction 14
1.1 Motivation . 14
1.2 Proposed Work . 16
1.3 Contributions . 17
1.4 Outline of the Dissertation . 17

2 Background and Related Work 18
2.1 The Django Framework in a Nutshell . 18
2.2 The Django Ecosystem of Reusable Applications 19
2.3 Reusable Applications in Other Frameworks 20
2.4 Related Work . 21

2.4.1 Software Ecosystem . 21
2.4.2 Framework, Library, and API Reuse 23
2.4.3 Activity of Open-Source Projects 24

2.5 Final Remarks . 25

3 Study Design 26
3.1 Overview . 26
3.2 Collecting Packages . 27
3.3 Selecting Reusable Applications . 27
3.4 Retrieving Code Metrics and Compatibility Data 29
3.5 Research Questions . 30

3.5.1 RQ1: What reusable applications are available for developers in the
Django ecosystem? . 30

3.5.2 RQ2: How active are the reusable applications? 30
3.5.3 RQ3: How tested are the reusable applications? 31
3.5.4 RQ4: How compatible are the reusable applications? 32

3.6 Final Remarks . 32

4 Results 33
4.1 RQ1: What reusable applications are available for developers in the Django

ecosystem? . 33
4.2 RQ2: How active are the reusable applications? 35

4.2.1 Activity Analysis . 35

4.2.2 Deprecation Analysis . 38
4.3 RQ3: How tested are the reusable applications? 40
4.4 RQ4: How compatible are the reusable applications? 41

4.4.1 Supported Versions . 42
4.4.2 Compatibility . 43

4.5 Threats to Validity . 46
4.6 Final Remarks . 47

5 Discussion 48
5.1 Novel empirical data about the Django ecosystem 48
5.2 Low activity-level of reusable applications 49
5.3 Possible low frequency of tests in reusable applications 50
5.4 Compatibility issues of reusable applications 50
5.5 Interest of the Django community: tooling, UI, and persistence 51
5.6 Reusable applications may be merged in the Django framework 51
5.7 Final Remarks . 52

6 Conclusion 53
6.1 Overview . 53
6.2 Future Work . 54

References 55

14

Chapter 1

Introduction

1.1 Motivation

Modern web applications are built on top of web frameworks, which offer benefits
such as feature reuse and productivity improvement, decreasing development costs [46,
34, 50, 41]. By relying on web frameworks, developers can safely handle many needs
of real-world web applications, like authentication, session management, URL routing,
and static file management, to name a few. Nowadays, there are several popular web
frameworks to support web development in most programming languages, for example,
Django for Python, Spring Boot for Java, Laravel for PHP, ASP.NET for C#, and React
for JavaScript.

Despite the benefits of web frameworks, they do not address all requirements to
create web applications. It is expected that not all requirements are satisfied by the
selected web framework, thus, developers may need to implement their local solutions or
rely on external packages for reusability purposes [52, 55]. For example, web frameworks
may provide basic features to handle user authentication, but they may not provide
advanced solutions to authenticate the user via social networks or ensure authentication
security via captchas. In fact, with the popularity of some web frameworks, those external
packages may create an essential software ecosystem of reusable packages that support
building web applications with more productivity and quality.

In particular, the Django web framework [20] is among the most used web frame-
works nowadays1 and is adopted by top tech companies and organizations, such as In-
stagram, Pinterest, and Mozilla.2 In short, Django allows developers to work on both
the front-end and back-end of the web application, this way, developers can build full-
stack applications or focus on the back-end by exposing features to the front-end via
microservices, for example.

Django provides a rich software ecosystem of reusable packages that is available
in the Django Packages platform [22]. The reusable packages support developers with

1https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe
2https://www.djangoproject.com/start/overview

https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe
https://www.djangoproject.com/start/overview

1.1. Motivation 15

advanced development aspects, such as authentication, caching, and deployment. More-
over, due to the Django native structure, developers can reuse out-of-the-box applications
(known as reusable applications) [19]. For example, a blog application may rely on reusable
apps to support post comments and captcha verification instead of developing its own lo-
cal solution from scratch. Figure 1.1 presents a usage example overview of a captcha3

reusable application: after installing the reusable app, the captcha verification can be
directly reused in the project under development. Reusable apps frequently include their
own user interfaces (UI) that can be directly adopted in the project front-end. In the
captcha example, the captcha UI can be fully reused out-of-the-box.

Figure 1.1: Example of a captcha verification reusable app (mbi/django-simple-captcha).

In this research, we propose to explore the Django ecosystem due to two major
reasons. First, despite its relevance, to the best of our knowledge, the Django ecosystem
is under-studied. While there are studies covering other software ecosystems, like An-
droid [30, 16, 38], Apache [3, 17, 4], Spring [40, 41], and Eclipse [45, 11], unfortunately,
we find no research in the context of the Django ecosystem. Currently, it is not clear
what solutions are available to be reused by developers in this important ecosystem, or
how active and reliable this ecosystem really is. This information would be important to
characterize the Django ecosystem, helping developers to better understand the positive
and negative aspects of adopting this framework. Moreover, this would provide the basis
for the development of novel tools to overcome possible limitations. Second, the literature
has largely explored reuse via APIs [51, 56], mostly at the class and method level [10, 49].
However, Django promotes a distinct level of reusability, that is, developers can reuse fully
working applications (i.e., the reusable applications) in their projects. We believe that
this particular way of reuse brings an interesting and unique case to be further explored.

3https://github.com/mbi/django-simple-captcha

https://github.com/mbi/django-simple-captcha

1.2. Proposed Work 16

1.2 Proposed Work

To overcome this gap, in this dissertation, we propose an empirical study to assess
the Django ecosystem. Particularly, we explore the reusable applications and analyze their
target domain, level of activity, frequency of tests, and compatibility. For this purpose,
we qualitatively and quantitatively analyze 487 reusable applications and propose four
research questions:

• RQ1: What reusable applications are available for developers in the Django ecosys-
tem? Reusable applications are mostly concentrated in three categories: devel-
oper tools (27.8%), user interface (17.1%), and persistence (15.9%). We also find
reusable applications related to security (9.7%), communication (5%), and perfor-
mance (3.7%).

• RQ2: How active are the reusable applications? The reusable applications are 7.7
years old and have 10.17 months without commits (on the median). Reusable ap-
plications are deprecated due to multiple issues faced by open-source projects, such
as usurped by competitor, lack of time of the main contributor, based on outdated
technologies, and lack of interest of the main contributor. We also find that reusable
applications are deprecated because they are included in main Django framework,
thus, they are not needed anymore as a separate app and are directly available in
Django.

• RQ3: How tested are the reusable applications? On the median, reusable appli-
cations have 0.45 test methods per non-test method. This means that half of the
reusable applications have less than one test for each non-test method. However,
we find some variation according to the categories, for example, persistence (0.51)
apps have proportionally more tests than user interface ones (0.35).

• RQ4: How compatible are the reusable applications? We find that 80% of the
reusable applications include the supported Python versions, 64% include the Django
versions, and 61% include both Python and Django versions. Upgrading to recent
versions of Django and Python may not be supported in some reusable applications.
For example, among the reusable applications that support Python 3.5, we find that
only 75.44% support Python 3.6 and 64.36% support Python 3.11. However, com-
patibility issues become less problematic in Django versions 3.2 to 4.1 and in Python
versions 3.7 to 3.11.

Overall, we find that the categories of reusable applications have distinct character-
istics. Developer tools have the highest concentration of young and inactive applications.

1.3. Contributions 17

In contrast, persistence applications are the oldest ones, while security ones are the most
active. Moreover, performance applications have proportionally more tests. We also de-
tect compatibility issues faced by reusable applications that could possibly impact client
web applications.

1.3 Contributions

The contributions of this dissertation are twofold: (i) we provide one of the first
empirical studies to explore the Django ecosystem both qualitatively and quantitatively
and (ii) we propose and discuss implications for practitioners and researchers.

Based on our findings, we discuss six implications for researchers and practitioners.
We elaborate on the (1) novel empirical data about the Django ecosystem, which con-
tributes to the software ecosystem literature [30, 16, 38, 3, 17, 4, 40, 41, 45, 11]. Next, we
detail three possible problems faced by the Django ecosystem: (2) the low activity level of
reusable applications, (3) the possible low frequency of tests in reusable applications, and
(4) the compatibility issues of reusable applications. We also discuss (5) the interest of the
Django community in three types of reusable applications: tooling, UI, and persistence.
We conclude by discussing (6) the fact that relevant reusable applications may be merged
in the Django framework.

1.4 Outline of the Dissertation

This dissertation is structured as follows.

• Chapter 2 introduces the Django framework and the reusable applications.

• Chapter 3 presents the study design and assesses the research questions.

• Chapter 4 Presents the results for the proposed research questions. It also presents
threats to validity related to these questions.

• Chapter 5 discusses implications for practitioners and researchers.

• Chapter 6 concludes this dissertation by presenting an overview and suggestions
for future work.

18

Chapter 2

Background and Related Work

This chapter starts by introducing the Django Framework in Section 2.1. Section 2.2
details the framework’s ecosystem and how reusable applications can be integrated into a
project. Section 2.3 explores the reuse of out-of-the-box components on other frameworks.
Section 2.4 presents the related work, and Section 2.5 presents the final remarks.

2.1 The Django Framework in a Nutshell

Django [20] is an open-source web framework for the Python programming lan-
guage. It has a large set of built-in features so developers can focus on development
tasks [20]. These features include authentication, caching, sending emails, sessions, data
validation, pagination, and serialization, to name a few.1 For example, the framework
includes an extensible user authentication system that handles user accounts, groups,
permissions, and cookie-based user sessions.2 Indeed, Django’s built-in features possibly
contributed to its popularity, which is nowadays the most adopted web framework in
Python.

In Django, developers can reuse out-of-the-box applications, which are known as
reusable applications [19]. Figure 2.1 presents an example of a reusable application that
adds a fully working text editor3 in a Django web application. After installing the reusable
application, the text editor can be directly reused in the project. Notice that a reusable
application is different from the traditional API reuse at the class and method level [10,
49]. Reusable applications are fully working applications and they frequently include their
own user interfaces, with their own model, view, and template layers.

1https://docs.djangoproject.com
2https://docs.djangoproject.com/en/4.2/topics/auth
3https://github.com/summernote/django-summernote

https://docs.djangoproject.com
https://docs.djangoproject.com/en/4.2/topics/auth
https://github.com/summernote/django-summernote

2.2. The Django Ecosystem of Reusable Applications 19

Figure 2.1: Example of a text editor reusable app (summernote/django-summernote).

2.2 The Django Ecosystem of Reusable Applications

Django provides a large corpus of reusable applications created by the open-source
community. The Django Packages platform [22] provides a solution to group and ac-
cess this ecosystem of reusable applications. It is a directory of reusable applications,
frameworks, and projects built with the Django framework itself. The Django Packages
platform lists over 4K reusable applications from diverse categories, like authentication,
messaging, and security, to name a few. Figure 2.2 presents an overview of the develop-
ment process in Django. Web applications are built using the Django framework and can
be empowered by reusable applications, which are also built using the Django framework
itself.

Django
Framework

Django
Reusable Apps

Django Web
Application

Figure 2.2: Web applications are built using the Django framework and can be empowered by
reusable applications, which are also built using the Django framework.

Some reusable applications get enough popularity and notoriety over time to be
considered a top choice for their context. For example, the Django Rest Framework4

4https://www.django-rest-framework.org

https://www.django-rest-framework.org

2.3. Reusable Applications in Other Frameworks 20

is a solution to build web APIs with more than 25K stars on GitHub and is currently
being used by companies like Heroku, Mozilla, and RedHat. Other examples of popular
reusable applications include ChatterBot5 (a machine learning, conversational dialog en-
gine for creating chatbots), django-crispy-forms6 (an app to handle forms), Silk7 (a live
profiling and inspection tool), and Django Filter8 (a generic system for filtering from URL
parameters).

2.3 Reusable Applications in Other Frameworks

Just like the reusable applications in Django, there are other frameworks that
provide mechanisms for reuse that are wider than just reusing minor code artifacts like
methods and interfaces. As an example, many frameworks focused on front-end devel-
opment allow users to reuse out-of-the-box user interface components. The import of
ready-to-use components speeds up the development and also helps the standardization
of the application’s design. In addition, users are not only able to export their components
to be easily reused across their projects, but they can also rely on libraries that deliver
the basic components of famous front-end toolkits and design systems, such as Bootstrap9

and Material Design.10 Some of those libraries can be seen in Table 2.1.

Framework Component Libraries

React11 React Bootstrap,12 MUI,13 Chakra14

Angular15 Angular Material,16 Nebular,17 PrimeNG18

Vue19 BootstrapVue,20 Quasar,21 Buefy22

Table 2.1: Front-end frameworks and some of its popular components libraries.

5https://github.com/gunthercox/ChatterBot
6https://github.com/django-crispy-forms/django-crispy-forms
7https://github.com/jazzband/django-silk
8https://github.com/carltongibson/django-filter
9https://getbootstrap.com

10https://m3.material.io
11https://react.dev
12https://react-bootstrap.github.io
13https://mui.com
14https://chakra-ui.com
15https://angular.io
16https://material.angular.io
17https://akveo.github.io/nebular
18https://primeng.org
19https://vuejs.org
20https://bootstrap-vue.org

https://github.com/gunthercox/ChatterBot
https://github.com/django-crispy-forms/django-crispy-forms
https://github.com/jazzband/django-silk
https://github.com/carltongibson/django-filter
https://getbootstrap.com
https://m3.material.io
https://react.dev
https://react-bootstrap.github.io
https://mui.com
https://chakra-ui.com
https://angular.io
https://material.angular.io
https://akveo.github.io/nebular
https://primeng.org
https://vuejs.org
https://bootstrap-vue.org

2.4. Related Work 21

These components deliver functionalities as ready-to-use to the developers, requir-
ing only the installation of the package and the import of the reference in the main code.
The already defined standardized style saves cost and time if the application does not have
any specific requirement in this context. Figure 2.3 shows an example of a code using both
React framework and components from the React Bootstrap library. The library provides
ready-to-use components such as list items and a progress bar, with an already-defined
style.

Figure 2.3: Example of reusable components with the React framework.

We recall that Django reusable applications are working applications and they may
include multiple layers, such as user interfaces, models, views, and templates. Therefore,
in some sense, Django reusable applications are more powerful than the reusable applica-
tions for React, Angular, and Vue, which mostly focus on user interfaces.

2.4 Related Work

2.4.1 Software Ecosystem

Software ecosystems (SECOs) have been a subject with increasing momentum since
early 2000, especially after the work from Messerschmitt et al. [42], which defines it as a
“collection of software products that have some given degree of symbiotic relationships”.
Since then, the definition of what constitutes a SECO has been discussed in many studies.
While some studies focus on the units that are compounding the software ecosystem and

21https://quasar.dev
22https://buefy.org

https://quasar.dev
https://buefy.org

2.4. Related Work 22

the technical relations between them [42, 32] (e.g., shared dependencies and common
technology), other studies highlight the set of actors that are related to maintenance [39,
7].

The evolution of the ecosystem itself across time is being analyzed in different
contexts [14, 25]. Constantinou and Mens [14] study the Ruby ecosystem over a nine-year
period to find growth in many aspects of the ecosystem until early 2014, followed by
an increased abandonment rate for both contributors and projects. German et al. [25]
explores the evolution characteristics of the project GNU R and finds that the ecosystem
of user-contributed packages has been growing at a faster rate than the R core packages.

SECOs have also been the subject of analysis in several contexts. One example
is the evolution and maintenance inside an ecosystem [11, 3], especially in the mobile
context [30, 16, 38]. Bavota et al. [3] analyze the evolution of dependencies between
projects in the Apache ecosystem and find that developers working in this ecosystem are
more attempted to upgrade a dependency when the release involves a substantial number
of bug fixes, but tend to avoid it when there are many changes in the API interfaces.
Businge et al. [11] analyze third-party plugins from the Eclipse ecosystem and find that
their success rate of them is related to their dependency on stable and supported Eclipse
APIs.

Regarding mobile ecosystems, Huang et al. [30] analyze the dependencies on An-
droid applications regarding the upgrade of those dependencies, and find problems hinder-
ing easy updates such as deprecated functions, changed data structures, and dependencies
between different libraries. Derr et al. [16] investigates the library outdatedness problem
on Android by conducting a large-scale library updatability analysis of apps and finds
that more than 80% of the libraries could be upgraded by at least one version without
modifying the application code. Liu et al. [38] analyze analytics libraries used in the
Android ecosystem, specifically the personal information collected by these libraries, and
find that some apps leak users’ personal information through analytics libraries.

Many other aspects are analyzed in the context of SECOs, such as technical
debt [17] and the usage and maintenance of code samples [40, 41]. Digkas et al. [17]
explore the evolution of systems from the Apache ecosystem to calculate the trends of
the technical debt to find that technical debt normalized to the size of the system tends
to decrease over time. Menezes et al. [40, 41] provide insights into how code samples are
maintained and used by developers in both Android and SpringBoot ecosystems.

Despite the relevance of the Django framework and its software ecosystem to build-
ing web applications, to the best of our knowledge, this particular ecosystem is not so well
explored in the literature as other ecosystems such as the ones from Android, Eclipse, and
Apache. Thus, our findings contribute to the software ecosystem literature by shedding
light on multiple aspects of the Django ecosystem.

2.4. Related Work 23

2.4.2 Framework, Library, and API Reuse

Reuse in software development is a field of study that has been extensively ex-
plored at different levels, including frameworks, libraries, and APIs. For example, API
evolution [29, 28] and breaking changes [9, 57, 8] that are introduced along the evolution
is an important research topic. In this context, Hora et al. [29] propose an exploratory
study aimed at observing API evolution and its impact in the Pharo software ecosystem
to provide a basis to better understand how such impact can be alleviated. Brito et al. [8]
analyze the evolution of Java libraries and detect breaking changes, finding that most of
the breaking changes are motivated by the implementation of new features, improvement
of maintainability, and the desire to make the APIs simpler. Xavier et al. [57] measure
the number of breaking changes on Java libraries and their impact on clients, finding that
the frequency of breaking changes increases over time. Brito et al. [9] proposes a tool to
identify API breaking and non-breaking changes between two versions of Java libraries
and report usage scenarios of this tool with real-world Java libraries.

Many other aspects related to software reuse are explored by literature, such as
updatability [35, 44] and migration [54, 33, 2]. For instance, Kula et al. [35] provide
an empirical study regarding the update of library dependencies from Java projects and
found that the majority of the systems keep their outdated dependencies. Mirhosseini
and Parnin [44] analyze the usage of tools like badges and automated pull requests to
warn the developers about stale dependencies on open-source projects and evaluate that
these initiatives improve the upgrade of dependencies when compared to other projects.
Barbosa and Hora [2] study the migration of testing frameworks in Python and find that
most systems are migrating from unittest to pytest. Teyton et al. [54] mine library migra-
tions from several open-source projects and provides recommendations for dependencies
replacements based on static analysis of source code. Kabinna et al. [33] study logging
library migrations in the Apache ecosystem through manual analysis of issues and find
that the main reasons for logging library migration include the increase in flexibility and
performance and reduction of effort spent on code maintenance.

Our study contributes to the corpus of studies in the context of software reuse by
exploring the reusable applications of the Django framework.

2.4. Related Work 24

2.4.3 Activity of Open-Source Projects

Another research topic close to ours includes studies that explore the activities
of open-source projects (OSS). The usage of open-source software in the industry has
been increasing in the last few decades due to several factors, such as the easiness of
contributing and sharing projects with the current platforms. Today, OSS development
is not only maintained by dispersed groups of loosely organized individuals but also by
companies. Naggle [47] analyzes contributions to the Linux project and runs an estimation
framework to estimate the increased productivity returns from the use of OSS, for both
contributors and non-contributors. The author finds that contributors gain a productivity
benefit from the use of OSS that is up to 100% higher than non-contributors.

Considering the benefits and especially the dependency upon the current open-
source software, their survival is extremely important. In this context, some studies
measure the deprecation and the survival of OSS projects [37, 23, 1, 43, 12]. Lin et
al. [37] examine the developer turnover inside OSS from different organizations relating
it to the moment of start contributing and to the types of contributions. The authors
find that developers have higher chances to continue contributing by starting contributing
to the project earlier and focusing on modifying code - instead of creating new code or
creating documentation. Foucault et al. [23] study the source code of open-source projects
to characterize patterns of developer turnover and to determine the effects of turnover on
software quality. Avelino et al. [1] select popular OSS projects, recover the abandoned
and the surviving ones, and conduct a survey with the developers who maintained the
surviving projects. The authors find that the developer’s usage of the systems is the main
motivation to contribute, and lack of time and difficulty in obtaining write access to the
code are the main barriers. Calefato et al. [12] analyze the inactivity of core developers
in OSS organizations through a method that identifies the inactive periods by analyzing
their frequency of contributions. Miller et al. [43] conduct surveys to identify the reasons
and predictive factors behind developer disengagement in OSS. The authors find that
factors such as the popularity of the project play a key role and that transitions (e.g.,
switching jobs) are a common reason to stop contributing. We contribute to this research
line by exploring the activity level of the reusable applications provided by the Django
community.

2.5. Final Remarks 25

2.5 Final Remarks

In this chapter, we discussed the technical background related to this work. We
detailed the Django framework and its key characteristics and discussed the relation be-
tween the framework and its ecosystem. We analyzed how packages from the Django
Packages platform can be integrated into a project built with Django framework. We also
discussed how frameworks of other programming languages relate to external reusable
applications. Finally, we presented the related work.

26

Chapter 3

Study Design

This chapter introduces the study design. Section 3.1 presents an overview of the entire
process. Section 3.2 presents the steps to collect the packages. Section 3.3 presents the
steps to filter the relevant reusable applications among the packages. Section 3.4 details
the extraction of code metrics and compatibility data for each one of the reusable apps.
Finally, Section 3.5 assesses each one of the research questions and Section 3.6 presents
the final remarks.

3.1 Overview

In this study, we aim to explore real-world reusable applications. Therefore, we
rely on the Django Packages platform [22] to collect the applications. Figure 3.1 presents
an overview of the data collection.

Django Packages
Platform

1. Collect packages

3. Retrieve code
metrics

4. Retrieve
compatibility data

Reusable apps
dataset

2. Select reusable
applications

GitHub

PyPI Libraries.io

Figure 3.1: Overview of the data collection.

First, we collect a list of all Django packages available in the Django Packages
platform. Then, we select the packages that are relevant reusable applications. Next,
for each selected reusable application, we extract code metrics from GitHub and retrieve
compatibility data from the Python Package Index (PyPi) [48] and Libraries.io [36]. Fi-

3.2. Collecting Packages 27

nally, we have our dataset of Django reusable applications, which is publicly available at
Zenodo.1 The following sections detail each step.

3.2 Collecting Packages

The first step is to collect the packages available in the Django Packages platform.
Overall, the Django Packages platform provides over 4K packages that can be reused by
developers. As we will analyze the source code of the selected packages, we filter out
packages that do not provide information about the code repository in GitHub. Among
all packages, we found 4,060 with valid references to their GitHub repositories.

However, not all packages are necessarily reusable applications. They can be other
reusable components to help the Django development in some way. Therefore, we need
to carefully select the packages that are indeed reusable applications.

3.3 Selecting Reusable Applications

In this step, we select the packages that are reusable applications. Here, it is
important to notice that we are interested in analyzing relevant and real-world reusable
applications. For this purpose, we apply multiple automated and manual filtering, as
follows.

First, we rely on the categorization proposed by the Django Packages platform
itself to select packages that are classified as applications. Thus, we find 3,323 package
applications. Second, we clone the repository of those packages and access their documen-
tation to ensure they have clear documentation and can be used as a reusable application
by developers. Specifically, we verify whether the documentation files have some reference
to the keyword INSTALLED_APPS, which is the recommended (and official) configura-
tion to import and use reusable applications in Django. The files considered as part of
documentation are the readme and the files with the extension rst or md in root folders
such as doc and docs. For example, Figure 3.2 presents part of the documentation of the
torchbox/django-recaptcha reusable application, which clearly presents how to import it
via the INSTALLED_APPS configuration. After applying this filtering step, we are left

1https://doi.org/10.5281/zenodo.8003371

https://doi.org/10.5281/zenodo.8003371

3.3. Selecting Reusable Applications 28

with 2,365 applications.

Figure 3.2: Example of a INSTALLED_APPS configuration (torchbox/django-recaptcha).

Next, we detect that a few packages are in fact content management systems
(CMS). Therefore, we decided to filter out those packages because they are not in the
scope of our research. This way, we are left with 2,078 applications. We also apply some
filtering to ensure relevant and real-world applications. We select the packages with at
least 100 stars to avoid less popular projects, like toy projects and proofs of concept, for
example. This filtering is commonly adopted in the software mining literature to remove
less popular projects [6, 53]. Here, we also manually inspected the official documentation
of each package to ensure it is a reusable application. After this step, we select 547
packages that are reusable applications.

Lastly, we filter out reusable applications that are self-identified as deprecated to
avoid assessing abandoned applications. One way to detect the application as depre-
cated is when one of the authors marks the repository as archived in GitHub, meaning
it is no longer actively maintained. The other way is when the repository is not marked
as archived but in the description of the repository (i.e., the readme file) the authors
explicitly mention it is deprecated or no longer active. After manually inspecting the doc-
umentation of the applications, we find 487 reusable applications that are not deprecated.

Figure 3.3 summarizes all automated and manual filtering applied to collect reusable
applications and ensure they are in fact relevant ones that can be reused by developers
in their projects. After all the filtering steps, we select 487 reusable applications that are
further explored in this research.

3.4. Retrieving Code Metrics and Compatibility Data 29

All packages
(4,935)

Valid repository
(4,060)

Category Apps or
Frameworks

(3,323)

INSTALLED_APPS
documentation

(2,365)

Not a CMS
(2,078)

≥ 100 stars
(546)

Not deprecated
(487)

Reusable apps
(487)

Figure 3.3: Summary of the filtering process to collect the reusable applications.

3.4 Retrieving Code Metrics and Compatibility Data

We clone the 487 selected reusable applications to compute both source file-level
and commit-level metrics. The source files are analyzed to extract size metrics (such as
the number of lines of code and the number of methods and functions) and test metrics
(such as the number of test methods and non-test methods). We also analyze the control
version system to extract commit-level metrics such as the number of commits and the
date of the latest commit.

Finally, we extract compatibility data of the reusable applications to explore their
support for Python and Django. For this purpose, we rely mainly on Pypi, 2 a software
repository for the Python programming language. In the case we could not detect the
compatibility data in PyPi, we try to extract from Libraries.io,3 a platform that monitors
package releases and indexes data from millions of packages in general. These repositories
(Pypi and Libraries.io) allow developers to inform the supported versions of their applica-
tions. Fortunately, the Django Packages platform links each application to its respective
entry in Pypi (and Pypi links each application to Libraries.io). We rely on this informa-
tion to retrieve the supported Python and Django versions of the reusable applications.
Commonly, versions follow the semantic versioning,4 that is, they are written in the for-
mat X.Y.Z, where X indicates major changes, Y indicates minor changes, and Z indicates
patches. In this study, we keep the versions in the format X.Y to avoid any noise caused
by patch numbers. Thus, versions with patch numbers are mapped to their respective
major/minor versions. For example, version 3.10.1 is categorized as 3.10.

2https://pypi.org
3https://libraries.io
4https://semver.org

https://pypi.org
https://libraries.io
https://semver.org

3.5. Research Questions 30

3.5 Research Questions

3.5.1 RQ1: What reusable applications are available for

developers in the Django ecosystem?

In this research question, we explore what reusable applications are provided in
the Django ecosystem to be used by client projects. For this purpose, we randomly select
216 reusable applications (i.e., 95% confidence level and 5% confidence interval). For
each reusable application, we manually inspect the readme file, and, in cases in which the
readme was unclear, we also explore the official documentation of the reusable application.

We adopt thematic analysis [15] to classify the domain of the reusable applications,
with the following steps: (1) initial reading of the readme file/documentation, (2) gener-
ating a first code for each application, (3) searching for themes among the proposed codes,
(4) reviewing the themes to find opportunities for merging, and (5) defining and naming
the final themes. The first three steps were done by the author of this dissertation, while
steps 4 and 5 were done together with the advisor until consensus was achieved.

Rationale: We aim to better understand what reusable applications are available
in the wild. So far, it is unclear what types of reusable applications are provided to
complement the basic features available in Django. For example, the over-concentration
of a certain type of reusable application may indicate some limitations of Django that are
being overcome by the community.

3.5.2 RQ2: How active are the reusable applications?

This research question is divided into two parts. First, we analyze how active
reusable applications are by assessing two metrics: (1) age and (2) lack of activity. We
compute age by assessing the number of days between the first and last commit. Lack of
activity is computed by assessing the number of days since the last commit.

Another important factor related to activity is deprecation. During the process
of collecting reusable applications, we filter out 59 applications that are explicitly dep-
recated. This high number of deprecated apps motivated us to better understand the
reasons behind it. Among the 59 reusable applications, we find that 33 are either marked
as archived in GitHub or had a short notice about the deprecation in the documentation,

3.5. Research Questions 31

but did not provide any detailed reason. Two reusable applications (umap-project/django-
leaflet-storage and Bearle/django-private-chat) are defined as deprecated due to a change
to a new repository, i.e., the project is still under development, but in another repository.
The remaining 24 applications do provide a detailed reason for the deprecation. Thus,
in the second part, we explore the reasons behind the deprecation of these 24 reusable
applications. Coelho and Valente [13] categorized reasons for the failure of open-source
projects and grouped them into three categories: reasons related to the development team
(e.g., lack of time), reasons related to project characteristics (e.g., the project is obsolete
or outdated technologies), and reasons related to the environment (e.g., usurpation by
competition). We also rely on thematic analysis [15] to classify the deprecation ratio-
nales and take into account the nomenclature adopted in prior work [13] for comparison
purposes.

Rationale: Measuring the activity level can be seen as a proxy of how much
developers can trust reusable applications. Reusable applications that are abandoned
(that is, not explicitly deprecated, but with a long period without any code change) are
probably not well suited for updates and also do not have a good perspective in terms of
new functionalities and bug fixes. Moreover, the analysis of the reasons for deprecation
can bring insights into why reusable applications are discontinued as compared to general
open-source projects [13].

3.5.3 RQ3: How tested are the reusable applications?

This research question provides an overview of the presence of tests in reusable
applications. For each reusable application, we analyze the number of test methods di-
vided by the total number of non-test methods. We analyze the ratio of tests to avoid any
inaccurate assumption guided by absolute numbers, e.g., well-tested small projects with
the same number of tests as larger projects that lack tests. A test method is a method
with the prefix test_ and that is located in a path with the substring test. All other
methods outside the paths with substring test are considered non-test methods.

Rationale: Developers working with the Django framework are likely to include
these reusable applications in the build of their applications, thus, they need to trust that
the applications are working well. Tests are considered one important quality practice to
ensure software applications are well prepared for production usage [24, 5], thus, measuring
the presence of tests in the reusable applications can bring insights into their trustfulness.

3.6. Final Remarks 32

3.5.4 RQ4: How compatible are the reusable applications?

This research question is divided into two parts. First, we analyze the Python and
Django versions supported by the reusable applications. We extract the versions of the
reusable applications from their entry in PyPi or Libraries.io, as detailed in Section 3.4.
In the second part, we explore the compatibility of the reusable applications. We consider
versions that are available in the official Django documentation (see Table 3.1) [21]. That
is, the Django versions 2.2, 3.1, 3.2, 4.0, and 4.1 and the Python versions from 3.5 to 3.11.

Django Versions Python Versions

2.2 3.5, 3.6, 3.7, 3.8 (added in 2.2.8), 3.9 (added in 2.2.17)
3.1 3.6, 3.7, 3.8, 3.9 (added in 3.1.3)
3.2 3.6, 3.7, 3.8, 3.9, 3.10 (added in 3.2.9)
4.0 3.8, 3.9, 3.10
4.1 3.8, 3.9, 3.10, 3.11 (added in 4.1.3)

Table 3.1: Relation of which Python versions are available for each Django framework version,
extracted from the Django documentation [21].

Rationale: The supported versions in terms of both programming language and
framework are fundamental for developers when deciding whether a dependency (e.g., a
reusable application) will be adopted or not. In this context, compatibility of the reusable
applications to Django and Python may directly affect the evolution of their dependent
web applications. For example, suppose that a developer decides to build a web appli-
cation on top of Django 4.0 and relies on a specific reusable application that supports
Django 4.0 but not Django 4.1. Due to the version compatibility of the dependency, the
developer will not be able to upgrade the web application to rely on Django 4.2. Indeed,
version update is also important in the aspect of security, since third-party outdated
dependencies are more likely to have security issues [16, 30, 31].

3.6 Final Remarks

In this chapter, we detailed the process designed to build the dataset of 487 Django
reusable applications. We presented each step of the data collection which raised 4,935
packages, each filter applied - so as the motivations behind it - and how external data
such as code metrics and compatibility data were collected. Finally, we assessed each of
the research questions and presented the rationale for each of them.

33

Chapter 4

Results

In this chapter, we present the results for each one of the proposed research questions.
Section 4.1 presents the domain of the reusable applications, so as the distribution of
the selected sample among these domains. Section 4.2 brings the level of activity of the
reusable applications and the reasons behind the deprecations. Section 4.3 presents the
level of tests of the reusable applications. Section 4.4 analyzes both Python and Django
versions supported by the reusable applications and explores their compatibility. Then,
we present the threats to validity in Section 4.5 and a summary of the findings as final
remarks in Section 4.6.

4.1 RQ1: What reusable applications are available for

developers in the Django ecosystem?

Figure 4.1 presents the results of our manual classification of the reusable appli-
cations. The most frequent category of reusable applications is developer tools (27.8%),
followed by user interface (17.1%) and persistence (15.9%). We also find reusable appli-
cations related to security (9.7%), communication (5%), and performance (3.7%). Next,
we detail and present examples for each category.

Developer Tools. The most frequent category includes reusable applications to sup-
port developers in their development tasks, like debugging, deployment, and caching, to
name a few. For example, the application jazzband/django-debug-toolbar provides panels
that display debug information, while ehmatthes/django-simple-deploy offers a solution
to deploy Django applications. The application mwarkentin/django-watchman exposes a
status endpoint for backend services like databases and caching, while jazzband/django-
hosts provides dynamic and static host resolving.

User Interface. The second most frequent category contains reusable applications re-
lated to the creation of user interfaces, like forms, editors, menus, navigation, and pagi-

4.1. RQ1: What reusable applications are available for developers in the Django
ecosystem? 34

0 10 20 30 40 50 60

Developer Tools

User Interface

Persistence

Security

Communication

Performance

Miscellaneous

Figure 4.1: Categories of reusable applications.

nation. The application jazzband/django-tinymce contains a widget to render form fields
as a rich-text editor. The application rossp/django-menu provides a basic structure for
building multiple navigation menus, while shtalinberg/django-el-pagination provides tools
for endless and lazy pagination. The application fabiocaccamo/django-admin-interface is
a customizable interface for Django’s administration painel [18].

Persistence. The third most frequent category includes reusable applications to deal
with persistence. To name a few examples, the application scholrly/neo4django provides
integration between Neo4j1 databases and Django models, while incuna/django-pgcrypto-
fields supports data encryption and decryption using a PostgreSQL2 extension. The appli-
cation jazzband/django-recurrence provides fields for working with recurring dates, while
ulule/django-linguist offers a persistent way to manage translations for Django models.

Security. This category contains reusable applications that deal with security concerns,
like authentication, authorization, and security vulnerabilities. For instance, the appli-
cation django-auth-ldap/django-auth-ldap provides a backend that authenticates against
Lightweight Directory Access Protocol (LDAP), while merixstudio/django-trench provides
endpoint APIs to support multi-factor authentication. The application dmpayton/django-
admin-honeypot presents a fake admin login page to log and notify admins of attempted
unauthorized access, while jazzband/django-axes allows tracking suspicious login attempts.

Communication This category includes reusable applications related to all sorts of com-
munication services, like messaging, notification, and email. For instance, the application
jazzband/django-newsletter manages multiple mass-mailing lists, pinax/pinax-messages
provides a user-to-user threaded messaging, and v1k45/django-notify-x provides a notifi-
cation system.

Performance. It contains reusable applications related to increasing performance, man-
aging tasks, or improving automated processes. The application peterbe/django-fancy-

1Neo4j: https://neo4j.com
2PostgreSQL: https://www.postgresql.org

https://neo4j.com
https://www.postgresql.org

4.2. RQ2: How active are the reusable applications? 35

cache provides a decorator to set caching for requests, and opus10/django-pgpubsub presents
a framework for building asynchronous and distributed message processing network. The
application chrisspen/django-chroniker allows managing cron jobs via the Django admin-
istration section, and rq/django-rq provides integration with the Redis3 queue.

Miscellaneous. Finally, this category includes reusable applications with very specific
goals that do not clearly fit in any of the previous categories. For example, the application
django-getpaid/django-getpaid is a payment processing framework, adamcharnock/django-
tz-detect allows the Django application to detect the user’s timezone, and tomwalker/d-
jango_quiz provides a configurable quiz application for Django.

RQ1 Summary: Reusable applications are mostly concentrated in three cate-
gories: developer tools (27.8%), user interface (17.1%) and persistence (15.9%).
We also find reusable applications related to security (9.7%), communication (5%),
and performance (3.7%). This highlights that the overall interest of the community
is mostly in tooling, UI, and persistence.

4.2 RQ2: How active are the reusable applications?

This research question has two parts. First, we analyze how active are reusable
applications by assessing two metrics: age and lack of activity. Second, we explore the
reasons some reusable applications are deprecated over time.

4.2.1 Activity Analysis

Figure 4.2 presents the age distribution (in years) of the reusable applications,
according to the categories defined in RQ1. On the median, we note that the reusable
applications have 7.7 years. Overall, the categories with the oldest applications are per-
formance (8.99 years), persistence (8.69 years), and user interface (8.5 years), while the
category with the youngest ones is developer tools (5.75 years).

Figure 4.3 presents a complementary view of the age distribution. It classifies each
reusable application as young (age is up to the first quartile), medium (age is between

3https://redis.io

https://redis.io

4.2. RQ2: How active are the reusable applications? 36

Performance
Persistence

User Interface

Miscellaneous All
Security

Communication

Developer Tools
0 years

2 years

4 years

6 years

8 years

10 years

12 years

14 years

16 years

Figure 4.2: Age distribution of the reusable applications (in years).

the first and the third quartile), and old (age is greater than the third quartile). Here, we
notice that developer tools have the highest concentration of young applications (33.3%),
while persistence has the highest concentration of old applications (44.1%).

All

User Interface

Communication

Miscellaneous

Persistence

Performance

Security

Developer Tools

25.1%

13.5%

18.2%

20.5%

20.6%

22.2%

23.8%

33.3%

49.9%

62.2%

54.5%

50.0%

35.3%

55.6%

47.6%

50.0%

25.1%

24.3%

27.3%

29.5%

44.1%

22.2%

28.6%

16.7%

Young Medium Old

Figure 4.3: Summary of the age of the reusable applications.

Next, we explore the lack of activity in the reusable applications. This metric is
defined as the number of months since the last commit. Figure 4.4 presents the lack of
activity distribution. On the median, the reusable applications have 10.17 months without
commits. Overall, the categories with the most months without commits are miscellaneous
(17 months), communication (15.37 months), and user interface (11.97 months). On the

4.2. RQ2: How active are the reusable applications? 37

other hand, security has the applications with the least months without commits (7.83
months).

Miscellaneous

Communication

User Interface All

Developer Tools
Persistence

Performance
Security

0 months

20 months

40 months

60 months

80 months

100 months

120 months

140 months

Figure 4.4: Lack of activity distribution of the reusable applications (in months).

Figure 4.5 presents a complementary view of the lack of activity distribution. It
classifies each reusable application as very active (lack of activity is up to the first quartile),
medium (lack of activity is between the first and the third quartile), and inactive (lack
of activity is greater than the third quartile). We can observe that developer tools have
the highest concentration of inactive applications (31.7%), while security has the highest
concentration of active applications (38.1%).

All

Persistence

Communication

User Interface

Performance

Miscellaneous

Security

Developer Tools

25.1%

14.7%

18.2%

18.9%

22.2%

22.7%

23.8%

31.7%

50.1%

61.8%

63.6%

45.9%

55.6%

61.4%

38.1%

45.0%

24.8%

23.5%

18.2%

35.1%

22.2%

15.9%

38.1%

23.3%

Inactive Medium Very active

Figure 4.5: Summary of the lack of activity of the reusable applications.

4.2. RQ2: How active are the reusable applications? 38

RQ2 Summary (part 1): The reusable applications are 7.7 years old and have
10.17 months without commits (on the median). The category developers tools has
the highest concentration of young and inactive applications. In contrast, persis-
tence has the oldest ones, while security has the most active ones.

4.2.2 Deprecation Analysis

We have manually inspected 24 reusable applications with detailed reasons for
the deprecation and grouped them into five categories: usurped by competitor (8 cases),
lack of time of the main contributor (6 cases), based on outdated technologies (4 cases),
included in main Django framework (4 cases), and lack of interest of the main contributor
(2 cases). The results are summarized in Figure 4.6. Four out of five reasons are similar
to a previous study that explored the reasons behind project deprecation [13]: usurped by
competitor, lack of time, lack of interest, and based on outdated technologies. The category
included in main Django framework is novel and specific to our analysis. Next, we detail
each category and provide examples.

0 1 2 3 4 5 6 7 8

Usurped by competitor

Lack of time of
the main contributor

Based on
outdated technologies

Included in main
Django project

Lack of interest of
the main contributor

Figure 4.6: Reasons to deprecate reusable applications.

Usurped by competitor. This category represents the reusable applications that
were deprecated in favor of another one. Examples of apps in this category include
omab/django-social-auth, jbalogh/jingo, and mpasternak/django-monitio, which include a
deprecation warning linking to the competitor app. For example, the app omab/django-
social-auth has the following deprecation note: “This library is deprecated in favor of
python-social-auth”. Another case that was also considered for this category is when one
fork ends up becoming the official repository of the project, like in the reusable appli-

4.2. RQ2: How active are the reusable applications? 39

cation aschn/drf-tracking, which includes the following note: “Work has moved to a fork
to continue on https://github.com/lingster/drf-api-tracking”. Interestingly, the category
usurped by competitor is most frequent in our analysis and also in a prior analysis that
investigated deprecation in open-source projects [13].

Lack of time of the main contributor: This category happens when the author do
not have available time to maintain the reusable app. Notice that lack of of time is a
well known problem in open-source projects [43, 12], and reusable apps are not different.
Examples of apps in this deprecation category include no-dice/django-bootstrap-themes,
byashimov/django-controlcenter, and jazzband/django-admin-sortable. For example, the
author of app byashimov/django-controlcenter provides the following deprecation note:
“Unfortunately, I have no time to add new features”.

Based on outdated technologies: The reusable applications in this category are re-
lated to specific technologies that became deprecated, outdated, or obsolete over time.
Consequently, the reusable application development was also suspended. Examples of
apps in this category include jmcclell/django-bootstrap-pagination, jrief/django-angular,
and dyve/django-bootstrap-toolkit. For example, the app jrief/django-angular has the fol-
lowing deprecation note: “Since AngularJS is deprecated now, this library shall not be
used for new projects anymore. Instead please proceed with my follow-up project django-
formset”. Similarly, the app dyve/django-bootstrap-toolkit provides the following message:
“The time for development on Bootstrap v2 has passed. This app is provided ’as is’, and
will not be updated. Everyone using Django and Bootstrap is encouraged to upgrade to
django-bootstrap3 ”.

Included in main Django Project: These reusable applications were deprecated be-
cause they were merged into the Django main code. Therefore, the client developers of
these applications do not need to depend on them anymore because are directly available
in Django. Next, we present the four reusable applications and their respective depreca-
tion notes:

• carljm/django-secure: Reusable app to improve your Django site’s security: Depre-
cation note: “This project was merged into Django 1.8, and is now unsupported and
unmaintained as a third-party app”.

• elky/django-flat-theme: Reusable app to improve the Django Admin interface. Dep-
recation note: “django-flat-theme is included as part of Django from version 1.9 ”.

• elky/django-flat-responsive: Extension for Django admin. Deprecation note: “django-
flat-responsive is included as part of Django from version 2.0 ”.

• jezdez/django-discover-runner : A test runner based on unittest test discovery. Dep-
recation note: “This runner has been added to Django 1.6 as the default test runner.
If you use Django 1.6 or above you don’t need this app”.

4.3. RQ3: How tested are the reusable applications? 40

Lack of interest of the main contributor: It happens for projects that are abandoned
because the developers do not have interest in their maintenance, for example, due to a
job change. The dataset contains the reusable applications antonagestam/collectfast and
zhangfisher/DjangoUeditor.

RQ2 Summary (part 2): Reusable applications are deprecated due to multiple
issues faced by open-source projects, such as usurped by competitor, lack of time of
the main contributor, based on outdated technologies, and lack of interest of the main
contributor. Interestingly, we also find that reusable applications are deprecated
because they are included in main Django framework, thus, they are not needed
anymore as a separate app and are directly available in Django.

4.3 RQ3: How tested are the reusable applications?

We explore to what extent the reusable applications have tests. Figure 4.7 presents
the distribution of the proportion of test methods by the non-test methods. On the me-
dian, the reusable applications have 0.45 test methods per non-test method. Overall, the
categories with the highest proportion of test methods are persistence (0.51), communi-
cation (0.49), and developer tools (0.48), while the category with the lowest proportion is
user interface (0.35).

Persistence

Communication

Developer Tools

Miscellaneous All
Security

Performance

User Interface

0.0 TMP

0.5 TMP

1.0 TMP

1.5 TMP

2.0 TMP

2.5 TMP

3.0 TMP

Figure 4.7: Distribution of the proportion of test methods of the reusable applications.

4.4. RQ4: How compatible are the reusable applications? 41

Figure 4.8 presents a complementary view of the distribution of the proportion of
test methods. It classifies each reusable application in terms of low (proportion is up to
the first quartile), medium (proportion is between the first and the third quartile), or high
(proportion is greater than the third quartile) amount of tests. Here, we notice that the
miscellaneous category has the highest concentration of applications with a low number
of tests (36.4%), while performance has the highest concentration of applications with a
high number of tests (33.3%).

All

Persistence

Security

Developer Tools

User Interface

Communication

Performance

Miscellaneous

25.1%

8.8%

23.8%

26.7%

27.0%

27.3%

33.3%

36.4%

49.9%

64.7%

52.4%

51.7%

45.9%

63.6%

33.3%

43.2%

25.1%

26.5%

23.8%

21.7%

27.0%

9.1%

33.3%

20.5%

Low amount of tests Medium amount of tests High amount of tests

Figure 4.8: Summary of the proportion of test methods of the reusable applications.

RQ3 Summary: On the median, reusable applications have 0.45 test methods per
non-test method. This means that half of the reusable applications have less than
one test for each non-test method. However, we find some variation depending on
the application category, for example, persistence (0.51) apps have proportionally
more tests than user interface ones (0.35).

4.4 RQ4: How compatible are the reusable

applications?

This final research question is divided into two parts. First, we analyze the Python
and Django versions supported by the reusable applications. Second, we explore the
compatibility of the reusable applications.

4.4. RQ4: How compatible are the reusable applications? 42

4.4.1 Supported Versions

Figure 4.9 presents the percentage of reusable applications that inform the sup-
ported Python and Django versions. We notice that 80% of the reusable applications
inform their supported Python versions, while Django versions are found in 64%. More-
over, close to 83% of reusable applications present Python or Django versions, while 61%
present both Python and Django versions.

Python Django Python
or Django

Python
and Django

0

100

200

300

400 80.08%

64.07%

82.96%

61.19%

Figure 4.9: Summary of reusable applications that inform the supported versions.

Figure 4.10 details the supported Python versions of the reusable applications.
We present the support for seven Python versions, from Python 3.5 to 3.11. The most
supported versions are 3.7 to 3.11, all with over 60% of support, while the old versions
3.5 and 3.6 are the most unsupported ones. Figure 4.11 summarizes the support for five
Django versions: 2.2, 3.1, 3.2, 4.0, and 4.1. In this case, the most supported Django
versions are 3.2 and 4.0, while versions 2.2, 3.1, and 4.1 are the most unsupported ones.

v3.5 v3.6 v3.7 v3.8 v3.9 v3.10 v3.11 other
versions

0

50

100

150

200

250

300

350

46.2%

57.7%

68.58%68.99%66.53% 65.3% 62.22%

25.46%

Figure 4.10: Supported Python versions.

4.4. RQ4: How compatible are the reusable applications? 43

v2.2 v3.1 v3.2 v4.0 v4.1 other
versions

0

50

100

150

200

250

42.3% 39.84%

52.77%
49.28%

42.3% 43.12%

Figure 4.11: Supported Django versions.

RQ4 Summary (part 1): We find that 80% of the reusable applications include
the supported Python versions, 64% include the Django versions, and only 61%
include both Python and Django versions. The most supported Python versions are
3.7 to 3.11, while the most unsupported ones are 3.5 and 3.6. The most supported
Django versions are 3.2 and 4.0, while the most unsupported ones are 2.2, 3.2, and
4.1.

4.4.2 Compatibility

Besides identifying the Python and Django versions supported by the reusable
applications, another important aspect is related to the evolution of web applications that
depend on reusable applications. Since reusable applications are used as a complementary
project, they can be a blocker for the evolution of their dependent web applications. For
example, suppose that a developer decides to build a web application on top of Django
3.2 and relies on a specific reusable application that supports Django 3.2 but not Django
4.0. Due to the version compatibility of the dependency, the developer will not be able
to upgrade the web application to rely on Django 4.0.

Figure 4.12a and Figure 4.12b summarize this problem for the Python and Django
versions supported by the reusable applications. In this matrix, each axis presents the
supported versions. Considering i as the version represented on each row, and j as the
version represented in each column, each cell presents the percentage of reusable appli-
cations that support version i that also supports version j. For example, in the Django

4.4. RQ4: How compatible are the reusable applications? 44

matrix, consider the cell 93.3% presented in the first row (v2.2) and second column (v3.1).
This indicates that among the reusable applications that support Django 2.2, 93.3% also
support Django 3.1. Overall, by checking the support for subsequent versions, we notice
that the compatibility tends to decay. For instance, among the reusable applications that
support Django 2.2, 73.93% support Django 3.2, 73.33% support Django 4.0, and 73.3%
support Django 4.1. Notice, however, that this compatibility issue becomes less prob-
lematic from version 3.2 to 4.1. For example, considering the applications that support
Django 3.2 or 4.0, we find that 99.51% support Django 4.1.

The same analysis can be performed in the Python matrix. For instance, consider
the cell 75.44% presented in the first row (v3.5) and second column (v3.6). In this case,
among the reusable applications that support Python 3.5, 75.44% also support Python
3.6. Like in Django, the Python support for subsequent versions also tends to decay. For
instance, considering again the reusable applications that support Python 3.5 (first row),
only 64.36% support Python 3.11 (last column). As in Django, this compatibility issue
becomes less problematic at some point. In this case, from the Python version 3.7 to 3.11.
For example, considering the reusable applications that support Python 3.7, we detect
that 97.03% support Python 3.11. Moreover, among the apps that support Python 3.9
or 3.10, we find that 100% support Python 3.11.

v2.2 v3.1 v3.2 v4.0 v4.1

v2.2

v3.1

v3.2

v4.0

v4.1

100% 93.3% 73.93% 73.33% 73.3%

87.86% 100% 73.15% 73.33% 75.24%

92.23% 96.91% 100% 98.75% 99.51%

85.44% 90.72% 92.22% 100% 99.51%

73.3% 79.9% 79.77% 85.42% 100%

(a) Django versions

v3.5 v3.6 v3.7 v3.8 v3.9 v3.10 v3.11

v3.5

v3.6

v3.7

v3.8

v3.9

v3.10

v3.11

100% 75.44% 61.68% 60.42% 61.11% 61.95% 64.36%

94.22% 100% 82.04% 80.36% 79.01% 79.56% 80.86%

91.56% 97.51% 100% 97.92% 97.22% 97.17% 97.03%

90.22% 96.09% 98.5% 100% 99.38% 99.37% 99.34%

88% 91.1% 94.31% 95.83% 100% 100% 100%

87.56% 90.04% 92.51% 94.05% 98.15% 100% 100%

86.67% 87.19% 88.02% 89.58% 93.52% 95.28% 100%

(b) Python versions

Figure 4.12: Compatibility matrix of Django and Python supported versions.

The previous analysis presented that upgrading to recent versions of Django and
Python may not be supported in some reusable applications. However, it is not clear if
this migration impediment comes from Django and Python themselves. To investigate
this issue more deeply, we further explore the possible compatibility between Django and
Python.

4.4. RQ4: How compatible are the reusable applications? 45

Figure 4.14 presents the Python versions supported by each Django version, as
provided by the Django documentation [21]. For example, Django 3.1 is available on
Python 3.6, 3.7, 3.8, and 3.9, while Django 3.2 is available on Python 3.6, 3.7, 3.8, 3.9,
and 3.10. Therefore, if a reusable application claims to support Django 3.1 and Django
3.2, ideally, it should provide support to their respective Python versions, which is in this
case: Python 3.6, 3.7, 3.8, 3.9, and 3.10 (this would be the ideal support). However,
in practice, it is unclear to what extent the reusable applications support the available
Python versions according to their Django versions. For instance, considering the previous
example, a reusable application could provide support to Python 3.9 and 3.10 only (this
would be the real support).

Django Versions Python Versions

2.2 3.5, 3.6, 3.7, 3.8 (added in 2.2.8), 3.9 (added in 2.2.17)
3.1 3.6, 3.7, 3.8, 3.9 (added in 3.1.3)
3.2 3.6, 3.7, 3.8, 3.9, 3.10 (added in 3.2.9)
4.0 3.8, 3.9, 3.10
4.1 3.8, 3.9, 3.10, 3.11 (added in 4.1.3)

Table 4.1: Relation of which Python versions are available for each Django framework version,
extracted from the Django documentation [21].

To better explore this problem, for each reusable application and its supported
Django versions, we computed the ratio of supported Python versions (real support) to
the available Python versions (ideal support). In this metric, 1 means that the reusable
application supports all available Python versions, while 0 means that it supports none.
Figure 4.13 presents the distribution of the ratio of supported Python versions to the
available Python versions. On the median, the reusable applications support 86% of the
available Python versions. The first quartile is 67%, while the third quartile is 100%.

1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.13: Distribution of the ratio of supported Python versions (real support) to the
available Python versions (ideal support) in the analyzed reusable application.

4This table is already presented in our Study Design. We repeat it here for convenience.

4.5. Threats to Validity 46

RQ4 Summary (part 2): Upgrading to recent versions of Django and Python
may not be supported in some reusable applications. For example, among the
reusable applications that support Python 3.5, we find that only 75.44% support
Python 3.6 and 64.36% support Python 3.11. However, compatibility issues become
less problematic in Django versions 3.2 to 4.1 and in Python versions 3.7 to 3.11.
Lastly, we find that, on the median, the reusable applications support 86% of the
available Python versions.

4.5 Threats to Validity

Selecting reusable applications. The Django Package platform categorizes the Django
packages in apps, frameworks, projects, and other. In this study, we selected the category
apps to detect reusable applications as it is defined as “small components used to build
projects”. We also included the apps from the category framework, which is defined as
“ large efforts that combine many python modules or apps”. Therefore, as this category
could also potentially contain reusable applications, we included it in our filtering process
to avoid losing some relevant applications. However, it is important to note that we
conducted a manual analysis of the dataset to make sure that all packages are reusable
applications.

Availability of the reusable applications in the Django Packages platform. Regarding
the packages used to build our dataset, a first concern is that we can not be sure that
every reusable application from the Django ecosystem is listed in the Django Packages
platform. Despite acknowledging that some applications might not be registered, the
Django Packages platform is an initiative with more than a decade of history and is
well known in the Django community, which gives confidence regarding the provided
applications.

Manual classification of the reusable applications. In RQ1 we manually classified the
reusable applications according to their domain, such as developer tools, user interface,
and persistence. We acknowledge that the definition of these categories involves a certain
degree of subjectivity. To minimize the subjectivity of the manual classification, we
adopted thematic analysis [15].

Generalization of the results. In this study, we assess real-world reusable applications
of the Django framework’s ecosystem. Django and Python are among the most popu-
lar web frameworks and programming languages nowadays. Several big tech companies
are currently using the Django framework to build their applications, and consequently,

4.6. Final Remarks 47

possibly relying on the reusable applications available in this ecosystem. Despite these
observations, our findings – as usual in empirical software engineering studies – may not
be directly generalized to other ecosystems and programming languages. Further studies
should be performed in the future to address other software ecosystems.

4.6 Final Remarks

In this chapter, we presented the results to assess the usage of reusable apps in the
Django ecosystem. The dataset of 487 reusable applications was quantitatively analyzed
in several aspects, a randomly defined sample of 216 was manually categorized, and a set
of 59 deprecated packages was individually assessed. We highlight the following findings:

• Categorization: Packages that aim to help developers in a development task are the
most often subject in the dataset, followed by packages related to user interface and
persistence.

• Activity : Packages identified as deprecated in the Django ecosystem tend to be
abandoned without detailed explanations from the authors, while the rising of al-
ternative options is the most common reason provided. Almost half (49,3%) of the
Django reusable apps had their last commit more than 10 months before the mining
of the data.

• Tests : More than half (55%) of the reusable applications have less than 0.5 test
methods per productive method. When grouping by categories, applications related
to Persistence are slightly better in this aspect.

• Compatibility : Packages supporting older versions such as Django framework 2.2 and
3.1 have less compatibility support for the subsequent versions of the framework.
The same applies to packages supporting versions like Python 3.5 and 3.6, with less
compatibility support for the subsequent version of the programming language.

48

Chapter 5

Discussion

In this chapter, we assess the results that are presented in the previous chapter and the
implications for both practitioners and researchers. Section 5.1 explores some empirical
data about the Django ecosystem. Section 5.2 and Section 5.3 discuss, respectively, the
level of activity and the level of tests of the reusable applications. Section 5.4 analyzes
the compatibility issues of the reusable applications. Section 5.5 explores the high-level
domains and the interest of the community of the Django ecosystem. Section 5.6 highlights
the occurrences of reusable applications being merged into the source code of the Django
framework, and then, we present a summary of the findings as final remarks in Section 5.7.

5.1 Novel empirical data about the Django ecosystem

Despite the relevance of the Django ecosystem, to the best of our knowledge,
it is under-studied by the literature. While there are studies covering other software
ecosystems, like Android [30, 16, 38], Apache [3, 17, 4], Spring [40, 41], and Eclipse [45, 11],
unfortunately, we find no research in the context of Django.

In this research, we address four important aspects of the Django ecosystem: target
domain, activity level, frequency of tests, and compatibility. In RQ1, we found that
reusable applications are mostly concentrated in three categories: developer tools (27.8%),
user interface (17.1%) and persistence (15.9%). Overall, we find that the categories of
reusable applications have distinct characteristics. For example, developer tools have the
highest concentration of young and inactive apps, while persistence applications are the
oldest ones. In RQ2, we detected that reusable applications are 7.7 years old but have
10.17 months without commits (on the median). Moreover, they are deprecated due to
multiple issues, such as usurped by competitor, lack of time of the main contributor, based
on outdated technologies, included in main Django framework, and lack of interest of the
main contributor. In RQ3, we found that 55% of the reusable applications have less
than 0.5 test methods per non-test method. Lastly, RQ4 showed that 80% of the reusable

5.2. Low activity-level of reusable applications 49

applications include the supported Python versions, 64% include the Django versions, and
61% include both Python and Django versions. Moreover, upgrading to recent versions of
Django and Python may not be supported in some reusable applications. Therefore, our
findings contribute to the software ecosystem literature [30, 16, 38, 3, 17, 4, 40, 41, 45, 11]
by shedding some light on multiple important aspects of the Django ecosystem and their
possible impact on client applications.

5.2 Low activity-level of reusable applications

The lack of evolution of a software system can affect client applications in sev-
eral ways such as bugs and security breaches remaining as not solved, new requirements
raised from context changes not being addressed, blocking of other component’s versions
upgrades, etc. This stagnation can be caused by an explicit deprecation and by the project
abandonment [13].

In our analysis, we found that 33 projects were deprecated without providing
details and 2 projects were moved to new repositories. We also detected that 24 reusable
applications were explicitly deprecated, including reasons such as usurped by competitor,
lack of time, lack of interest, and based on outdated technologies, which is in line with
prior literature [13].

When there is no explicit notice of deprecation, the definition of an open-source
project as abandoned is not trivial. Some previous studies followed the strategy of setting
a threshold that ranges from 2 months to 1 year without activity to decide if the project
is not being maintained [14, 37, 23, 1]. In RQ2, we found that almost half (49,3%) of the
Django reusable applications had their last commit more than 10 months before the data
collection. Therefore, it is fair to say that a considerable number of reusable applications
are suspected of being abandoned, which clearly should be a concern for practitioners and
the overall Django community.

5.3. Possible low frequency of tests in reusable applications 50

5.3 Possible low frequency of tests in reusable

applications

RQ3 shows that, on the median, reusable applications have 0.45 test methods per
non-test method. This means that half of the reusable applications have less than one test
for each non-test method. However, we find some variation according to the categories,
for example, persistence (0.51) apps have proportionally more tests than user interface
ones (0.35). Of course, not all methods of the application should necessarily be tested,
for example, there may exist trivial, debug-only, and non-runnable code that do not need
tests [26, 27]. Considering that software testing is a vital practice to ensure software
quality [24, 5], our results about the overall low frequency of tests in reusable applications
may be a concern for the community. Further studies are needed to deeply explore this
issue, for example, metrics like line and branch coverage can be used to better gauge the
overall test quality.

5.4 Compatibility issues of reusable applications

Always relying on updated versions of third-party dependencies is a best practice
important for accessing new features, bug fixes, and security fixes [16, 30, 31]. However,
RQ4 showed that reusable applications that provide support to certain versions of Django
and Python are more problematic to update to subsequent versions. Particularly, the
reusable applications that support Django versions 2.2 and 3.1 and Python versions 3.5
and 3.6 are more critical and deserve attention from developers. For example, from the
applications supporting Django 3.1, only 73.15% support Django 3.2. This means that
over 25% of these reusable applications would block the evolution of the web application
in case developers want to upgrade to start using Django version 3.2. Notice, however,
that this compatibility issue becomes less problematic in recent Django (3.2 to 4.1) and
Python versions (3.7 to 3.11). For example, considering the applications that support
Django 3.2 or 4.0, we find that 99.51% support Django 4.1. Similarly, among the apps
that support Python 3.9 or 3.10, we find that 100% support Python 3.11. This analysis
can help practitioners when selecting reusable applications. It is important to verify the
features provided by the reusable applications, but also their available support to recent
versions of Django and Python. This can avoid future problems such as the need to
fully rewrite parts of the web application to use a new reusable application to unblock a

5.5. Interest of the Django community: tooling, UI, and persistence 51

framework or programming language upgrade.

5.5 Interest of the Django community: tooling, UI,

and persistence

In RQ1, we found that reusable applications are mostly concentrated in three
categories that reflect the interest of the Django community. The most frequent category
is developer tools (27.8%), which includes reusable applications to support developers in
their development tasks, like debugging, deployment, and caching, to name a few. It
is important to recall that developer tools have the highest concentration of young (and
inactive) applications, which may reinforce its relevance for the community but short
life-cycle. The second most frequent category is user interface (17.1%), which contains
reusable applications related to the creation of user interfaces, like forms, editors, menus,
navigation, and pagination. The third most frequent category is persistence (15.9%),
which includes reusable applications to deal with persistence. This shows that the overall
interest of the community is in tooling, UI, and persistence. These results shed some light
on the possible directions the Django framework can evolve to better embrace the needs
of the community.

5.6 Reusable applications may be merged in the

Django framework

In RQ2, we also find that some reusable applications are included in main Django
framework, thus, they are not needed anymore as a separate app and are directly available
in Django. This is an interesting finding, suggesting that a reusable application may
become vital for the ecosystem, being integrated into the main project. This shows that
the Django framework itself is evolving to embrace the community’s needs, showing that
the Django maintainers are open-minded to accommodate relevant reusable applications.

5.7. Final Remarks 52

5.7 Final Remarks

In this chapter, we discussed the results presented in the previous chapter and
some implications for both practitioners and researchers regarding the outcomes of this
work. We discussed aspects such as compatibility, activity, tests, and target domain, as
its intersections, and also explored topics such as the interest of the community according
to our findings and the evolution of the framework by merging reusable applications into
the main framework’s code.

53

Chapter 6

Conclusion

This chapter concludes this dissertation. We provide an overview of the study in Sec-
tion 6.1 and we propose future work in Section 6.2.

6.1 Overview

In this dissertation, we proposed an empirical study to assess the Django ecosys-
tem. We explored the reusable applications and analyzed their target domain, level of
activity, frequency of tests, and compatibility. We qualitatively and quantitatively ana-
lyzed 487 reusable applications provided by the Django Packages platform and answered
four research questions. Our main findings can be summarizes as follows:

• RQ1: What reusable applications are available for developers in the Django ecosys-
tem? Reusable applications are mostly concentrated in three categories: devel-
oper tools (27.8%), user interface (17.1%), and persistence (15.9%). We also find
reusable applications related to security (9.7%), communication (5%), and perfor-
mance (3.7%).

• RQ2: How active are the reusable applications? The reusable applications are 7.7
years old and have 10.17 months without commits (on the median). Reusable appli-
cations are deprecated due to multiple issues faced by open-source projects, such as
usurped by competitor, lack of time of the main contributor, based on outdated tech-
nologies, and lack of interest of the main contributor. We also detected that reusable
applications are deprecated because they are included in main Django framework,
thus, they are not needed anymore as a separate app and are directly available in
Django.

• RQ3: How tested are the reusable applications? On the median, reusable appli-
cations have 0.45 test methods per non-test method. This means that half of the
reusable applications have less than one test for each non-test method. However,

6.2. Future Work 54

we found some variation according to the categories, for example, persistence (0.51)
apps have proportionally more tests than user interface ones (0.35).

• RQ4: How compatible are the reusable applications? We found that 80% of the
reusable applications include the supported Python versions, 64% include the Django
versions, and 61% include both Python and Django versions. Upgrading to recent
versions of Django and Python may not be supported in some reusable applications.
However, compatibility issues become less problematic in recent Django (3.2 to 4.1)
and Python versions (3.7 to 3.11).

Finally, we discussed six implications for researchers and practitioners. We elab-
orated on the (1) novel empirical data about the Django ecosystem, which contributes
to the software ecosystem literature We detailed three possible problems faced by the
Django ecosystem: (2) the low activity level of reusable applications, (3) the possible low
frequency of tests in reusable applications, and (4) the compatibility issues of reusable
applications. We also discussed (5) the interest of the Django community in three types
of reusable applications: tooling, UI, and persistence. We concluded by discussing (6) the
fact that relevant reusable applications may be merged in the Django framework.

6.2 Future Work

As future work, we plan to perform more qualitative analysis to better understand
why some reusable applications are more required by the community, for example, devel-
oper tools, user interface, and persistence. We also plan to better understand from the
developer’s perspective the reasons to adopt and avoid reusable applications. Regarding
tests, we plan to better explore how well-tested are the reusable applications by computing
metrics like line and branch coverage. Finally, we plan to perform a client-side analysis
to assess how the reusable applications are used in practice.

55

References

[1] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander Sere-
brenik. On the abandonment and survival of open source projects: An empirical
investigation. In 13th International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 1–11, 2019.

[2] Lívia Barbosa and Andre Hora. How and why developers migrate python tests.
In International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 538–548. IEEE, 2022.

[3] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Se-
bastiano Panichella. How the apache community upgrades dependencies: an evolu-
tionary study. Empirical Software Engineering, 20:1275–1317, 2015.

[4] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Se-
bastiano Panichella. The evolution of project inter-dependencies in a software ecosys-
tem: The case of apache. In 2013 IEEE International Conference on Software Main-
tenance, pages 280–289, 2013.

[5] Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.

[6] Hudson Borges, Andre Hora, and Marco Tulio Valente. Understanding the factors
that impact the popularity of GitHub repositories. In 32nd IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 334–344, 2016.

[7] Jan Bosch and Petra Bosch-Sijtsema. From integration to composition: On the
impact of software product lines, global development and ecosystems. Journal of
Systems and Software, 83(1):67–76, 2010.

[8] Aline Brito, Marco Tulio Valente, Laerte Xavier, and Andre Hora. You broke my
code: understanding the motivations for breaking changes in apis. Empirical Software
Engineering, 25:1458–1492, 2020.

[9] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. APIDiff: Detect-
ing API breaking changes. In 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), Tool Track, pages 507–511, 2018.

[10] Raymond P. L. Buse and Westley Weimer. Synthesizing api usage examples. In 2012
34th International Conference on Software Engineering (ICSE), pages 782–792, 2012.

REFERENCES 56

[11] John Businge, Alexander Serebrenik, and Mark van den Brand. Survival of eclipse
third-party plug-ins. In 2012 28th IEEE International Conference on Software Main-
tenance (ICSM), pages 368–377, 2012.

[12] Fabio Calefato, Marco Aurelio Gerosa, Giuseppe Iaffaldano, Filippo Lanubile, and
Igor Steinmacher. Will you come back to contribute? investigating the inactivity of
oss core developers in github. Empirical Software Engineering, 27(3):76, 2022.

[13] Jailton Coelho and Marco Tulio Valente. Why modern open source projects fail. In
25th International Symposium on the Foundations of Software Engineering (FSE),
pages 186–196, 2017.

[14] Eleni Constantinou and Tom Mens. Socio-technical evolution of the ruby ecosystem in
github. In 2017 IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 34–44, 2017.

[15] Daniela S Cruzes and Tore Dyba. Recommended steps for thematic synthesis in
software engineering. In International Symposium on Empirical Software Engineering
and Measurement, pages 275–284, 2011.

[16] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. Keep me
updated: An empirical study of third-party library updatability on android. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 2187–2200. ACM, 2017.

[17] Georgios Digkas, Mircea Lungu, Alexander Chatzigeorgiou, and Paris Avgeriou. The
evolution of technical debt in the apache ecosystem. In Software Architecture: 11th
European Conference, ECSA 2017, Canterbury, UK, September 11-15, 2017, Pro-
ceedings 11, pages 51–66. Springer, 2017.

[18] Django. Django Admin. https://docs.djangoproject.com/en/4.2/ref/

contrib/admin, October, 2023.

[19] Django. Django Applications. https://docs.djangoproject.com/en/4.2/intro/

reusable-apps, October, 2023.

[20] Django. Django framework. https://djangoproject.com, October, 2023.

[21] Django. FAQ: What Python version can I use with Django?
https://docs.djangoproject.com/en/4.1/faq/install/

#what-python-version-can-i-use-with-django, October, 2023.

[22] Django Packages Org. Django Packages. https://djangopackages.org, October,
2023.

https://docs.djangoproject.com/en/4.2/ref/contrib/admin
https://docs.djangoproject.com/en/4.2/ref/contrib/admin
https://docs.djangoproject.com/en/4.2/intro/reusable-apps
https://docs.djangoproject.com/en/4.2/intro/reusable-apps
https://djangoproject.com
https://docs.djangoproject.com/en/4.1/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/4.1/faq/install/#what-python-version-can-i-use-with-django
https://djangopackages.org

REFERENCES 57

[23] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C. Murphy, and Jean-Rémy
Falleri. Impact of developer turnover on quality in open-source software. In Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages
829–841. ACM, 2015.

[24] Martin Fowler. Refactoring. Addison-Wesley Professional, 2018.

[25] Daniel M. German, Bram Adams, and Ahmed E. Hassan. The evolution of the r
software ecosystem. In 2013 17th European Conference on Software Maintenance
and Reengineering, pages 243–252, 2013.

[26] Andre Hora. What code is deliberately excluded from test coverage and why? In
International Conference on Mining Software Repositories (MSR), pages 392–402.
IEEE, 2021.

[27] Andre Hora. Excluding code from test coverage: Practices, motivations, and impact.
Empirical Software Engineering, 1:1–36, 2023.

[28] Andre Hora, Anne Etien, Nicolas Anquetil, Stephane Ducasse, and Marco Tulio
Valente. APIEvolutionMiner: Keeping API evolution under control. In IEEE Con-
ference on Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), Tool Demonstration Track, pages 420–424, 2014.

[29] Andre Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien,
and Stephane Ducasse. How do developers react to API evolution? a large-scale
empirical study. Software Quality Journal, 26(1):161–191, 2018.

[30] Jie Huang, Nataniel Borges, Sven Bugiel, and Michael Backes. Up-to-crash: Evaluat-
ing third-party library updatability on android. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 15–30, 2019.

[31] Kaifeng Huang, Bihuan Chen, Congying Xu, Ying Wang, Bowen Shi, Xin Peng,
Yijian Wu, and Yang Liu. Characterizing usages, updates and risks of third-party
libraries in java projects. Empirical Softw. Engg., 27(4), 2022.

[32] Slinger Jansen, Anthony Finkelstein, and Sjaak Brinkkemper. A sense of community:
A research agenda for software ecosystems. In 2009 31st International Conference
on Software Engineering-Companion Volume, pages 187–190. IEEE, 2009.

[33] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E. Hassan. Logging
library migrations: A case study for the apache software foundation projects. In
Proceedings of the 13th International Conference on Mining Software Repositories,
pages 154–164. ACM, 2016.

REFERENCES 58

[34] Dino Konstantopoulos, John Marien, Mike Pinkerton, and Eric Braude. Best prin-
ciples in the design of shared software. In International Computer Software and
Applications Conference, pages 287–292, 2009.

[35] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. Do developers update their library dependencies? an empirical study on the
impact of security advisories on library migration. Empirical Software Engineering,
23:384–417, 2018.

[36] Libraries IO. Libraries IO. https://libraries.io, October, 2023.

[37] Bin Lin, Gregorio Robles, and Alexander Serebrenik. Developer turnover in global,
industrial open source projects: Insights from applying survival analysis. In 2017
IEEE 12th International Conference on Global Software Engineering (ICGSE), pages
66–75, 2017.

[38] Xing Liu, Jiqiang Liu, Sencun Zhu, Wei Wang, and Xiangliang Zhang. Privacy
risk analysis and mitigation of analytics libraries in the android ecosystem. IEEE
Transactions on Mobile Computing, 19(5):1184–1199, 2020.

[39] Mircea Lungu. Towards reverse engineering software ecosystems. In 2008 IEEE
International Conference on Software Maintenance, pages 428–431, 2008.

[40] Gabriel Menezes, Bruno Cafeo, and Andre Hora. Framework code samples: How
are they maintained and used by developers? In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages
1–11. IEEE, 2019.

[41] Gabriel Menezes, Bruno Cafeo, and Andre Hora. How are framework code samples
maintained and used by developers? the case of android and spring boot. Journal of
Systems and Software, 1:1–30, 2021.

[42] David G Messerschmitt, Clemens Szyperski, et al. Software ecosystem: understanding
an indispensable technology and industry, volume 1. MIT press Cambridge, 2003.

[43] Courtney Miller, David Gray Widder, Christian Kästner, and Bogdan Vasilescu. Why
do people give up flossing? a study of contributor disengagement in open source. In
Open Source Systems: 15th IFIP WG 2.13 International Conference, OSS 2019,
Montreal, QC, Canada, May 26–27, 2019, Proceedings 15, pages 116–129. Springer,
2019.

[44] Samim Mirhosseini and Chris Parnin. Can automated pull requests encourage soft-
ware developers to upgrade out-of-date dependencies? In 2017 32nd IEEE/ACM

https://libraries.io

REFERENCES 59

International Conference on Automated Software Engineering (ASE), pages 84–94,
2017.

[45] Kazunori Mizushima and Yasuo Ikawa. A structure of co-creation in an open source
software ecosystem: A case study of the eclipse community. In 2011 Proceedings
of PICMET ’11: Technology Management in the Energy Smart World (PICMET),
pages 1–8, 2011.

[46] Simon Moser and Oscar Nierstrasz. The effect of object-oriented frameworks on
developer productivity. Computer, 29(9), 1996.

[47] Frank Nagle. Learning by contributing: Gaining competitive advantage through
contribution to crowdsourced public goods. Organization Science, 29(4):569–587,
2018.

[48] Python Package Index. PyPi. https://pypi.org, October, 2023.

[49] Dong Qiu, Bixin Li, and Hareton Leung. Understanding the api usage in java.
Information and software technology, 73:81–100, 2016.

[50] Steven Raemaekers, Arie van Deursen, and Joost Visser. Measuring software library
stability through historical version analysis. In 2012 28th IEEE International Con-
ference on Software Maintenance (ICSM), pages 378–387, 2012.

[51] Mohamed Aymen Saied, Ali Ouni, Houari Sahraoui, Raula Gaikovina Kula, Kat-
suro Inoue, and David Lo. Improving reusability of software libraries through usage
pattern mining. Journal of Systems and Software, 145:164–179, 2018.

[52] Widura Schwittek and Stefan Eicker. A study on third party component reuse in
java enterprise open source software. In Proceedings of the 16th International ACM
Sigsoft Symposium on Component-Based Software Engineering. ACM, 2013.

[53] Hudson Silva and Marco Tulio Valente. What’s in a github star? understanding
repository starring practices in a social coding platform. Journal of Systems and
Software, 146:112–129, 2018.

[54] Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc. A study of library
migrations in java. Journal of Software: Evolution and Process, 26(11):1030–1052,
2014.

[55] Jeffrey Voas and George Hurlburt. Third-party software’s trust quagmire. Computer,
48(12):80–87, 2015.

[56] Wei Wang and Michael W. Godfrey. Detecting api usage obstacles: A study of ios and
android developer questions. In 2013 10th Working Conference on Mining Software
Repositories (MSR), pages 61–64, 2013.

https://pypi.org

REFERENCES 60

[57] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. Historical and
impact analysis of API breaking changes: A large scale study. In 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages 138–
147, 2017.

	Introduction
	Motivation
	Proposed Work
	Contributions
	Outline of the Dissertation

	Background and Related Work
	The Django Framework in a Nutshell
	The Django Ecosystem of Reusable Applications
	Reusable Applications in Other Frameworks
	Related Work
	Software Ecosystem
	Framework, Library, and API Reuse
	Activity of Open-Source Projects

	Final Remarks

	Study Design
	Overview
	Collecting Packages
	Selecting Reusable Applications
	Retrieving Code Metrics and Compatibility Data
	Research Questions
	RQ1: What reusable applications are available for developers in the Django ecosystem?
	RQ2: How active are the reusable applications?
	RQ3: How tested are the reusable applications?
	RQ4: How compatible are the reusable applications?

	Final Remarks

	Results
	RQ1: What reusable applications are available for developers in the Django ecosystem?
	RQ2: How active are the reusable applications?
	Activity Analysis
	Deprecation Analysis

	RQ3: How tested are the reusable applications?
	RQ4: How compatible are the reusable applications?
	Supported Versions
	Compatibility

	Threats to Validity
	Final Remarks

	Discussion
	Novel empirical data about the Django ecosystem
	Low activity-level of reusable applications
	Possible low frequency of tests in reusable applications
	Compatibility issues of reusable applications
	Interest of the Django community: tooling, UI, and persistence
	Reusable applications may be merged in the Django framework
	Final Remarks

	Conclusion
	Overview
	Future Work

	References

