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Resumo

O Problema da Unidade Areal Modificável (MAUP) afeta significativamente os resultados

da análise espacial ao variar os resultados com base na escala e zonificação das unidades

geográficas utilizadas. Esta tese introduz uma abordagem estocástica inédita para quan-

tificar os efeitos do MAUP, apresentando um ı́ndice que mede a sensibilidade das análises

espaciais às mudanças nas configurações das unidades areais. A metodologia proposta é

baseada no algoritmo SKATER e pode ser utilizada em qualquer análise espacial. Apli-

camos o método proposto a cerca de 2.000 diferentes conjuntos de dados. Os resultados

indicam que os impactos mais pronunciados do MAUP ocorrem em escalas menores, onde a

agregação das áreas altera significativamente os resultados estat́ısticos. O estudo também

revela uma alta correlação entre os efeitos de escala e zonificação, sugerindo a natureza

interligada desses componentes. Embora os ı́ndices propostos forneçam uma ferramenta

valiosa para avaliar o MAUP, desafios computacionais em grandes conjuntos de dados

destacam a necessidade de otimizações algoŕıtmicas adicionais.

Palavras-chave: problema da unidade areal modificável; construção de zonas automa-

tizadas; aprendizado não supervisionado; dependência de zonificação; partição espacial;

clusters espaciais.



Abstract

The Modifiable Areal Unit Problem (MAUP) significantly affects spatial analysis out-

comes by varying results based on the scale and zoning of the geographical units used.

This thesis introduces a novel stochastic approach to quantify the MAUP effects, pre-

senting an index that measures the sensitivity of spatial analyses to changes in areal

unit configurations. The proposed methodology is based on the SKATER algorithm and

can be used in any spatial analysis. We applied the proposed method to around 2,000

different datasets. The findings indicate that the most pronounced impacts of MAUP

occur at smaller scales, where area aggregation significantly alters statistical outcomes.

The study also reveals a high correlation between scale and zoning effects, suggesting the

intertwined nature of these components. While the proposed indices provide a valuable

tool for evaluating MAUP, computational challenges in large datasets highlight the need

for further algorithmic optimizations.

Keywords: modifiable areal unit problem; automated zonation construction; unsuper-

vised learning; zonation dependence; spatial partitioning; spatial clusters.
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Chapter 1

Introduction

The analysis of geographical data often requires partitioning the continuous space into

discrete units, as seen in examples such as disease mapping [18, 32, 17, 28], electoral

redistricting [14, 13, 26], and image analysis [3, 6, 16].

In the case of disease mapping, partitioning is necessary for reasons of confidential-

ity (preventing the exact address locations of disease cases from being disclosed) or data

compatibility (aligning population, economic factors, and disease counts). For electoral

redistricting, partitioning ensures compliance with legislation mandating specific electoral

district divisions to elect representatives. In image analysis, technological constraints re-

quire averaging sensor measurements within a given pixel.

The prevalence of geographical data analysis relying on discrete spatial units raises

questions about the impact of partitioning on the analysis’ conclusions. Analysts have

some discretion in determining the number, shape, and size of these spatial units. How-

ever, sometimes the geographical partitioning of the region is out of the control of the

analyst, such as when she needs to use data from the Census Bureau’s pre-established

zoning. Regardless of whether the partitioning is chosen by the analyst or predetermined,

it was recognized early on that this can significantly affect results [12, 35, 22, 23, 10]

Figure 1.1 illustrates this issue, showing how the variance in the number of points

within each cell changes markedly with different forms of aggregation. Consider initially

the second and third plots, each divided into four areas. The variance s2 dramatically

shifts from 0.92 in the second plot to 25.58 in the third plot. This substantial difference

arises solely from the aggregation method—a phenomenon known as the zoning effect

[23]. Now, compare the second and fourth plots, which have the same grouping shape

(rectangles of equal sizes), but more groups in the fourth plot. Again, there is a five-fold

variation induced by the scale at which the data is aggregated, termed the scale effect

[23].

The potential effect of spatial partitioning in the data analysis is called the Mod-

ifiable Areal Unit Problem (MAUP). It has been a topic of study in the literature for

decades, having first been explicitly identified in the 20th century by [12]. In 1950, [35]

showed that the correlation between wheat yields and potato yield variables measured

in counties of England could vary from 0.22 to 0.99 depending on how the spatial units
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Figure 1.1: The numbers in the upper corner of each sub-image represent the count
of points in each group. The title of each subfigure indicates the variance in the total
number of points across groups. Subfigure (a) displays the data at the individual level.
The zoning effect is illustrated by comparing the second and third plots. The scale effect
is demonstrated by comparing the second and fourth plots.

Source: Developed by the author.

were aggregated. Later, MAUP was brought into prominence through the work of [22, 23].

They showed that one can provide two different geographical partitionings that ultimately

lead to widely different conclusions in the data analysis. At the end of the 20th century,

[10] analyzed the MAUP on the coefficients of a multivariate regression using US census

data. They showed that a coefficient could vary from around 10,000 up to 18,000 de-

pending only on how the spatial units were aggregated. They concluded that ”(...) the

modifiable areal unit problem is shown to be essentially unpredictable in its intensity and

effects in multivariate statistical analysis and is therefore a much greater problem than in

univariate or bivariate analysis. The results of this analysis are rather depressing in that

they provide strong evidence of the unreliability of any multivariate analysis undertaken

with data from areal units.”

Can one obtain any desired measurement simply by organizing spatial data differ-

ently? In principle, yes, but this is not always feasible. Empirically, it has been observed

that extreme sensitivity to the MAUP is not a universal characteristic [10, 30, 8]. In

some data analyses, even a malicious adversarial partitioning approach fails to generate

significant variation in results and measurements extracted from a given dataset.

Given that MAUP potentially impacts data analysis conclusions, it is crucial to as-

sess its influence in each specific data analysis. Our motivation in this work is to establish

a metric for quantifying the sensitivity of a given data analysis to the MAUP. With such

a metric, one can determine if the MAUP is relevant to the analysis being conducted. If

it is not, there is little concern about the specific partitioning adopted. However, if it is

relevant, extra effort should be dedicated to quantitatively evaluating the sensitivity and

variability of conclusions under different partitioning schemes. Additionally, justification

for the selected partitioning becomes important.

Let T (s, z) be the statistic of interest evaluated in a particular map partitioned

into polygonal regions, such as the correlation between X and Y , two variables measured

in each region. The parameter s denotes the scale or number of regions in which the
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Figure 1.2: Maximum and minimum curves for calculating the Pearson correlation be-
tween household yearly income and commuting time (left) and number of rooms (right).
The maximum s scale corresponds to the Census tract level for Oakland County, MI (left)
and Riverside, CA (right). Data are from the American Community Survey (ACS), year
2020.

Source: Developed by the author.

map has been partitioned, while z serves as an index for the specific zoning adopted with

the s regions. For each number s of regions into which the map may be partitioned, we

estimate the probability distribution of T (s, z) under all possible partitionings z.

We also obtain the m(s) minimum and M(s) maximum values that T (s, z) can

attain for each value of s. This establishes an envelope of viable outputs for T (s, z) at

any given scale s, as depicted in Figure 1.2. In both plots, the vertical axis represents the

Pearson correlation coefficient between two variables, X and Y , at different scale levels s

shown on the horizontal axis. The plot on the left utilizes data from the 2020 American

Community Survey (ACS) at the Census tract level for Oakland County, Michigan, while

the plot on the right pertains to Will County, Illinois. The variables considered are

commuting time and yearly income on the left-hand side plot and the number of rooms

and yearly income on the right-hand side plot. We averaged the variables after creating

spatial clusters. For instance, transitioning from scale s to s + 1 involves creating a

new group. The values for variables X and Y in this new group will be the averages of

the units being grouped. Additionally, it is worth emphasizing that the correlation was

obtained between the spatial units. For example, if a certain county has S Census tracts,

the correlation was calculated by considering each tract as an individual observation.

The correlation at the largest s scale value represents the correlation at the finest

resolution possible, which is the Census tract level. The horizontal blue line denotes this

reference correlation value. As we aggregate adjacent areas, resulting in a smaller number

of larger regions, the correlation betweenX and Y fluctuates within the bounds delineated

by the curves M(s) and m(s).

Within the M(s) and m(s) bound curves, we see a random sample of trajectories.

Each trajectory is obtained by sequentially creating random partitionings as we change

the s scale. Assume that the finest resolution is that with s = n regions when we use all



14

the n Census tracts. We randomly aggregate two regions obtaining s = n− 1 regions and

a value for T (n− 1, z). Next, we randomly aggregate two of the previous regions ending

with s = n− 2 regions, a new partitioning z, and a corresponding value T (n− 2, z). We

keep sequentially aggregating two of the available regions randomly obtaining a new scale

value, a coarser partitioning, and the corresponding T (s, z). Each trajectory shown in

Figure 1.2 represents one realization of this random sequential procedure. In some cases,

as in the left-hand side plot, the curves m(s) and M(s) may represent extreme cases, that

are not easily approached by the random trajectories.

Our main metric is based on the area determined by the envelope divided by its

maximum possible value. We compare the total area enclosed by M(s) and m(s) with the

maximum possible area. The MAUP index is defined as the ratio between the former area

and the latter, jointly capturing the zoning and scale effects. A small ratio indicates low

sensitivity to the MAUP, whereas a large ratio indicates extreme sensitivity to arbitrary

partitioning. In the left-hand side plot, the correlation varies considerably around the

reference blue line, even for scale levels s only slightly smaller than the original resolution.

Conversely, in the right-hand side plot, the correlation remains relatively stable for most

scale levels s, except in cases of unrealistic partitioning using fewer than 25 regions. The

MAUP poses a significant challenge in the first analysis but has minimal impact in the

second analysis.

This first metric represents a pessimistic view. The analyst assumes that the

conclusions must be robust against all arbitrary partitionings. In particular, they consider

an adversarial approach. At each scale (s), the analyst asks what partitionings would move

the statistic under study furthest—both higher and lower—from the value it has at the

most refined resolution. These partitionings could be the choices of an adversary aiming to

interfere with the data analysis at the finest resolution, and they represent the maximum

impact a partitioning can provoke at scale s in the study.

We consider a second metric for the MAUP effect, one less pessimistic. Rather

than considering the maximum impact one could impose in an analysis at any scale s, we

take the average maximum impact that can be made at each scale s. Select a random

trajectory and consider its value T (s, z) at scale level s with one specific partitioning z.

Then, measure the maximum change we can attain at scale s − 1. Finally, average over

all possible partitionings at scale s. This again is divided by its maximum possible value

to obtain a value between 0 and 1.

Our new metrics to evaluate the robustness of spatial data analysis to the MAUP

relies on a spatial partitioning method known as SKATER, introduced by [1]. This is

an algorithm to partition a map into disjoint regions by aggregating connected areas. It

optimizes the creation of homogeneous regions and has great speed [2]. This algorithm is

crucial to make the calculations feasible.

Our method is general and does not presuppose any specific characteristics of
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the T statistic under analysis. In this paper, we demonstrate how our method can be

applied to various forms of T (s, z): any univariate measure (such as mean, variance, or

an inequality index like the Gini index), correlation coefficient between Y1 and Y2, or

regression coefficient β derived from a regression involving Y and a feature vector x.

Section 1.1 provides an overview of how the MAUP problem has been addressed in

the literature. We start our technical presentation in Section 2.1 with the definitions and

notations. As the SKATER algorithm is central to our method, we present its original

formulation. In Section 2.2, we discuss the process of obtaining the two enveloping curves

M(s) and m(s) using SKATER. Additionally, we describe how the full probability distri-

bution of T can be estimated for each scale level x. Subsequently, our two new metrics

for quantifying the MAUP in data analysis are derived in Section 2.3. In Section 3.1, we

run an extensive empirical analysis of the metrics. We close the paper with conclusions

in Section 4.

1.1 Related work

MAUP has been a subject of discussion for decades. Perhaps the first to iden-

tify a MAUP effect were [12], where the authors presented illustrative examples of the

scale effect. In particular, they showed a significant change in the correlation coefficient

using multiple datasets. Another early study on the impacts of MAUP in the spatial

analysis was done by [35]. The authors also analyzed the behaviour of the correlation

coefficient in different aggregations of counties in England, also showing that it could

vary widely depending on how the spatial unit were aggregated. The work of [12] was

later replicated by [22], who looked at the zonation effect by maintaining a fixed scale

and generating various map arrangements. The additional simulations showed that the

correlation coefficient could vary even more than before, going from approximately -1 up

to just below 1 only by rearranging the spatial units. These studies raised concerns about

the methodology of spatial data analysis, demonstrating that the correlation coefficient

could exhibit a wide variation depending on the chosen scale and zonation. [10] further

underscored the potential impact of the MAUP on multivariate spatial analysis. They

used data from the US and England censuses to show that the statistics of a multivariate

regression (such as regression coefficients, R2, etc) were also vulnerable to the MAUP.

Additionally, they showed that Moran’s I could vary substantially due to MAUP, but the

results with univariate statistics were less concerning than the results with multivariate

statistics.

However, skepticism persists among some authors regarding the significance of the
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MAUP in spatial analysis. [21], for instance, highlights the absence of practical examples

demonstrating the costly consequences of disregarding the MAUP.

Whether considered a major problem or not, the MAUP often receives insuffi-

cient attention in spatial analysis. [20] identifies two primary reasons for this oversight:

firstly, a lack of engagement with the creation of areal units due to the prevalence of

pre-aggregated spatial data, and secondly, an assumption that the MAUP does not sig-

nificantly impact the analysis. Recent observations, as highlighted by [27], suggest that

this situation persists, with even top-tier journals frequently neglecting to address the

MAUP, particularly its zonation effect. Even though, MAUP has been the subject of nu-

merous empirical investigations [24, 10], particularly in the context of census data, where

arbitrary scales defined by the census authorities are often utilized. [19] explored its impli-

cations on ecological models for air pollution, evaluating differences in coefficients across

multiple scales. Recent studies have also addressed the MAUP in various applications.

For instance, [34] examined the MAUP’s impact on omission errors (when independent

variables are missing from a regression model). [33, 11, 36, 15] analyzed the MAUP in the

context of urban mobility. They showed that MAUP may plays a key role in this field as

well. In geographical health, [28] proposed a method for alleviating the MAUP effect on

single disease maps, and [30] applied this methodology to mental health emergency data.

Various methodologies have been developed to quantify the MAUP. To access the

MAUP effect, in general, the authors compute a statistic in several map arrangements in

different scales. For instance, [4] proposed a Bayesian share-effect model, which considers

the MAUP as a parameter within a Bayesian regression framework. This approach allows

for the assessment of the MAUP effect both locally and globally, providing interpretable

scales and credible intervals. The MAUP parameter facilitates comparisons among maps,

however, it lacks an upper limit. [29] addressed the MAUP by simulations of different

zonations and scales. For each combination of zonation and scale, the authors estimated

a set of parameters and then used regression to extrapolate the values of the parameters

on a minimal unit area. They also constructed an interval for these parameters by simu-

lating that according to the extrapolated values obtained in the first step. [9] examined

the MAUP effect on UK census data, utilizing the predefined scales provided by the UK

census. Their methodology involves calculating the difference in correlation between pairs

of variables across different scales and subsequently testing the significance of these dif-

ferences. It’s worth noting that their approach does not account for variations in scales

or zoning systems. [8] introduced a non-parametric hypothesis test known as S-MAUP to

test if a dataset is suitable to the MAUP. The null hypothesis is that the dataset has no

MAUP effects. The method empirically derives the distribution and critical values.
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Chapter 2

Methodology

2.1 Overview of our method

2.1.1 Definitions and notation

We represent a region partitioned into n small areas by an undirected graph G =

(V,E) where the centroids of the areas are the n vertices or nodes in the set V and E

is the set of edges. There is an edge connecting vertices vi and vj if areas i and j share

geographical boundaries. The left-hand side plot in Figure 2.1 shows a map transformed

into such a graph. A path from node v1 to node vk is a sequence of nodes v1, v2, . . . , vk

that are connected by edges (v1, v2), . . . , (vk−1, vk). A graph is said to be connected if, for

any pair of nodes vi and vj there is at least one path connecting them. We assume that

the adjacency neighborhood graphs are always connected graphs.

We define a spatial cluster or zone as any connected subset of nodes. The right-

hand side plot in Figure 2.1 shows the adjacency graph on the left partitioned into 4

spatial clusters or zones. The graph is partitioned into s spatial clusters G1, . . . ,Gs if the
clusters are disjoint, their union is G, and each one of them is a connected subgraph. The

number s of spatial clusters is referred to as the scale parameter. The specific partitioning

G1, . . . ,Gs is denoted as the zoning and represented by z = (G1, . . . ,Gs).
In area i, we have a k-dimensional feature vector xi = (xi1, . . . , xik) ∈ Rk. For

instance, x might contain k socio-economic characteristics of each area. Using these

attributes, we compute a statistic of interest T (x1, . . . ,xn), such as an inequality index

of the first feature {xi1, i = 1, . . . , n}, the correlation between the first two attributes

in x, or the linear regression of xi1 on the other variables in x. The statistic computed

in the disaggregated map is denoted by T (n, (1, 2, . . . , n)), where the second argument

(1, 2, . . . , n) represents the partitioning when each individual area is one zone.

Given a spatial zoning z = (G1, . . . ,Gs), there is a feature vector xGi
= (xGi,1, . . . , xGi,k)

associated with the i-th zone. For example, the j-th variable in xGi
can be the mean of
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Figure 2.1: Left: Map of an urban area transformed into a graph G = (V,E). Right: A
spatial partitioning z = (G1, . . . ,G4) of the graph with 4 zones or spatial clusters.

Source: Developed by the author.

the j-th attribute over the subset of areas comprising Gi:

xGi,j =
1

ni

∑
k∈Gi

xk,j

where ni being the number of areas in Gi. We denote by T (s, z) the value of the statistic

calculated with the zoning z = (G1, . . . ,Gs) and the attributes xGi
. That is,

T (s, z) = T (s, (G1, . . . ,Gs)) = T (xG1 , . . . ,xGs)

We denote by L(s) the probability distribution of T (s, z) when the zoning z =

(G1, . . . ,Gs) is selected randomly among all possible partitionings of the map into s spatial

clusters. The random selection is made uniformly, with all possible zonings at s scale level

having the same probability of being selected.

We define two functions:

• M(s) = maxz{T (s, z)} = maxz{T (xG1 , . . . ,xGs)}, the maximum the statistic T can

reach when we scan all possible z zonings for each scale level s.

• m(s) = minz{T (s, z)} == minz{T (xG1 , . . . ,xGs)}, similarly, the minimum value for

each s.

These functions can be plotted as curves and Figure 1.2 illustrates two examples

of the enveloping curves M(s) and m(s). Given a number s of regions, the M(s) and

m(s) enveloping curves are defined by evaluating T (s, z) for all possible spatial partitions

of the map into s regions.
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As the number of partitions is explosive even for a moderate number n of areas, it

is unfeasible in practice to obtain the probability distribution L(s) and the exact values

forM(s) andm(s). We need some heuristics to obtain approximations for the distribution

and for M(s) and m(s). Our method is based on the SKATER algorithm proposed by [1]

and summarized in Section 2.1.2. This is an algorithm to partition a map into disjoint

regions formed by aggregation of connected areas. SKATER optimizes the creation of

homogeneous regions and it is extremely fast compared to alternative spatial partitioning

methods [2].

2.1.2 The SKATER algorithm

The SKATER objective is to aggregate adjacent small areas into larger regions that

are homogeneous with respect to the vector of attributes x. With these attributes, we

calculate a pairwise dissimilarity or cost measure between areas i and j: dij = d(xi,xj).

The pairwise cost can be simply a Euclidean distance between the k-dimensional vectors

xi and xj if their component variables have compatible scales. Given a spatial cluster G,
let µ(G) be the mean vector of its component areas. SKATER has the objective of finding

the partition PG = {G1, . . . ,GC} that minimizes the function

F (G1, . . . ,GC) =
C∑

q=1

∑
i∈Gq

d(xi, µ(Gq)) . (2.1)

It efficiently solves this problem by creating a minimum spanning tree (MST)

T = (V, T ) of the graph G = (V,E) based on the pairwise cost dij. This first step does

not make use of the objective function in (2.1). This is made in the second step, when we

successively and hierarchically prune the MST to obtain the spatial clusters minimizing

F in (2.1).

Thanks to the spanning tree properties, the enumeration problem of this optimiza-

tion is dramatically reduced. A spanning tree is a sub-graph of G = (V,E) containing all

its n vertices in V and with only n − 1 edges from E. These edges are such that there

is one, and only one, path between any two pairs of nodes of V . The left-hand side plot

in Figure 2.2 shows two spanning trees associated with the adjacency graph G = (V,E)

shown in Figure 2.1. These properties ensure that by pruning c−1 edges from a spanning

tree we immediately determine c spatial clusters in the original map. The rightmost plot

in Figure 2.1 shows the spatial clusters determined by the pruning of the thick edges

shown in the third plot.

If n is the number of nodes in V , then any spanning tree has n− 1 edges. Pruning
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Figure 2.2: Left: Two spanning trees associated with the adjacency graph G = (V,E)
shown in Figure 2.1. Third plot: Partitioning of the graph in 5 spatial clusters by pruning
4 edges from the spanning tree. The pruned edges are shown in red. Right: Spatial clusters
determined by the pruning of the red edges in the previous spanning tree.

Source: Developed by the author.

the MST T of k edges partition the graph into k + 1 spatial clusters. SKATER adopts a

sequential procedure, selecting one edge at each iteration. Therefore, the problem becomes

manageable as we need to sequentially select one edge to prune out of those still present

in the MST.

For this pruning stage, we associate a different cost to each of the MST edges rather

than the pairwise cost dij used to build the MST T . Let SSTO =
∑

i || (xi, µ(G)) || be
the dissimilarity between the areas xi and the average attribute profile in the graph G,
where ||.|| denotes the Euclidean norm. Let G1 and G2 be the spatial clusters resulting

from the removal of one edge from T . Consider

SSW =
∑
q

∑
i∈Gq

||xi − µ(Gq)|| q = 1, 2, . . . , Q. (2.2)

The smaller the value of SSW , the more homogeneous the resulting spatial clusters.

Define the cost of removing the edge as equal to STTO − SSW and hence an edge with

a large cost indicates that its removal results in homogeneous spatial clusters.

The procedure is iterated until some stopping rule is met. For example, until

any additional partitioning results in spatial clusters with population less than a critical

threshold. Another possible stopping rules are: to stop if the decrease of the objective

function (2.1) is small or if a desired number s of spatial clusters is reached. Summarizing

the entire procedure, the SKATER algorithm is given by Algorithm 2.1.

The SKATER algorithm complexity is O(|V |2 log |V |). This is because the mini-

mum spanning tree stage is executed in O(|E|+ |V | log |V |) running times, using Prim’s

algorithm with a Fibonacci Heap [7]. Stage 2 requires O(|V |2 log |V |) and therefore the

total execution time is O(|E| + |V | log |V |) + O(|V |2 log |V |) = O(|V |2 log |V |). A com-

parison between SKATER and other spatial partitioning methods was provided in [2],

concluding that it yields excellent results in terms of creating homogeneous regions in a

much shorter execution time compared to the alternatives.
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Algorithm 2.1: SKATER

Data: graph G = (V,E) with attribute values {xv} for v ∈ V
Result: Spatial partition PG = {G1, . . . ,Gs}
// Calculate pairwise dissimilarities

dij ← ||xi − xj||
// Build a minimum spanning tree (MST)

T ←MST (G)
// Initialize the partition

PG ← ∅
// Prune T of (u, v)∗ s.t. (2.2) is minimized

(u, v)∗ = argminSSW
PG ← {G1,G2}
while stopping rule is not met do

// Repeat the pruning step splitting the spatial cluster among

G1, . . . ,Gq that minimizes (2.2)

end
return PG

Algorithm 2.2: Obtaning random partitions

Data: graph G = (V,E) with attribute values {xv} for v ∈ V
Result: Spatial partition PG = {G1, . . . ,Gs}
// Generate pairwise dissimilarities at random

dij ← generateRandomNumber
// Build a minimum spanning tree (MST)

T ←MST (G)
// Initialize the partition

PG ← ∅
// Prune T of (u, v)∗ at random

PG ← {G1,G2}
for 2 to n do

// Repeat the pruning step splitting the spatial cluster among

G1, . . . ,Gq at random

end
return PG

2.2 Estimating L(s) and the extreme bounds M(s),

and m(s)

As in SKATER, we start with the adjacency graph between the regions. We as-

sign independent and identically distributed continuous random variables dij as edges’

weights. Next, an MST is created. Sequentially deleting one edge at a time from the

MST we create a series of partitionings at the n − 1, n − 2, . . . , 2 scale levels. At each

step of the sequence, we select a random edge from the tree to be deleted creating an
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additional spatial cluster. At each scale level s and using the specific random parti-

tioning z produced by the deletions, we calculate the statistic T (s, z). The sequence

{T (n, zn), T (n− 1, zn−1), . . . , T (2, z2)} is connected and shown as a random trajectory in

Figure 1.2. By repeating this process independently B times we generate several trajec-

tories. The B simulated values at a fixed scale s, {T (s, z(1)s ), . . . , T (s, z
(B)
s )}, is a random

sample from the L(s) probability distribution and they can be used to estimate the L(s)
parameters, including M(s) and m(s). This process is described in the Algorithm 2.2.

On one hand, this is an algorithm that works regardless of the statistic T (s, z).

On the other hand, obtaining the estimates for M(s) and m(s) may require a substantial

number of simulations (B). Hence, we propose a second method that, although not

providing an estimate for the distribution L(s), estimates the extreme bounds M(s) and

m(s) more directly. However, this second method is more restrictive because it is a

costly sampling procedure, even if based on the fast SKATER algorithm to obtain the z

partitionings.

To obtain M(s) and m(s) we propose one additional modification in the usual

SKATER second stage. Instead of partitioning the MST at random, we will prune the

edge that maximizes (or minimizes) T (s, z). For that, we need to assign new costs to

the tree edges when we split the MST. Remind a fundamental property of the spanning

tree: removing any s − 1 edges from the tree creates s spatial clusters determining a

z = (G1, . . . ,Gs) partitioning with the current value

T (s, z) = T (s, (G1, . . . ,Gs)) = T (xG1 , . . . ,xGs)

for the statistic of interest (see Figure 2.2). At this step, we assign a new cost to each

of the n − s remaining edges in the tree. If an edge is removed, we split a given spatial

cluster into two new ones, giving rise to a new partitioning z∗, the scale changes to s+ 1

and the statistic of interest assumes the value T (s + 1, z∗). The cost measure assigned

to each edge of the current tree is 1/T (s + 1, z∗) and it has different values at different

edges. To prune the current tree, we select that edge that minimizes 1/T (s + 1, z∗). To

obtain m(s) we select that one that minimizes T (s+ 1, z∗).

The first split of the MST may require a different approach depending on the T

statistic. Suppose, for example, that T is the correlation coefficient. Pruning the MST of

one of its (i, j) edges results in two subtrees, T1 and T2, and the corresponding two spatial

clusters that define the zoning z(i,j) = (G(i,j)1 ,G(i,j)2 ) with scale level s = 2. After deleting

an (i, j) edge from T , we can calculate the statistic of interest with the two spatial regions

z(i,j) determined by the two T1 and T2 subtrees. But the correlation coefficient based on

any two points is always +1, −1, or 0. Therefore, we change the criterion for the first

split. In this case, instead of maximizing (or minimizing) the correlation coefficient based

on two points, we maximize the slope of the line passing through the two points, so the

cost will be Cij =
yi2−yj1
xi2−xi1

. Algorithm 2.3 displays this method.
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Algorithm 2.3: Estimating M(s) when T (s, z) is the correlation

Data: graph G = (V,E) with attribute values {xv} for v ∈ V
Result: Spatial partition PG = {G1, . . . ,Gs}
// Calculate pairwise dissimilarities as the orthogonal projection

dij ← generateRandomNumber
// Build a minimum spanning tree (MST)

T ←MST (G)
// Initialize the partition

PG ← ∅
// Prune T of (u, v)∗ that maximizes (or minimizes) the slope

(u, v)∗ = argmax slope
PG ← {G1,G2}
for 2 to n do

// Repeat the pruning step splitting the spatial cluster among

G1, . . . ,Gq maximizing (or minimizes) the correlation

end
return PG

Even though this method produces better estimates ofM(s) and m(s), it still relies

on simulations of multiple trajectories, which can still have a high computational cost. We

also developed a single-shot estimator to M(s) and m(s) when T (s, z)is the correlation

coefficient. That is, the method does not require several simulations of T (s, z), instead, it

estimates the values of M(s) and m(s) only once. However, this method crucially depends

on the selection of an appropriate dissimilarity measure dij for the SKATER first stage.

This appropriate dissimilarity measure varies with the statistic T (s, z).

To explain how this single-shot estimator works, we will focus on a specific T (s, z)

statistic, the usual Pearson correlation index between two variables X and Y measured

in each region. The index is invariant by location and scale so we can consider the case

where the variables are standardized with mean zero and unit standard deviation. In

this case, the linear regression line has a slope equal to 1 or -1, and the most extreme

correlation is obtained when all the (xi, yi) are perfectly aligned along one of these lines.

Consider the curveM(s), which is the maximum value for the correlation coefficient

at the s scale. If we aggregate the areas i and j, their points (xi, yi) and (xj, yj) will be

substituted by the average (xm, ym) where xm = (xi + xj)/2 and ym = (yi + yj)/2. This

average may be weighted by, for example, population sizes. The dij pairwise dissimilarity

measure for the SKATER first stage is given by the orthogonal projection distance between

the (xm, ym) mean point and the line y = x (if the global correlation is positive) or y = −x
(if it is negative). Considering the positive case, the distance (and dissimilarity) is given

by dij = |ym − xm|/
√
2. As the denominator is the same for all pairs, it can be ignored.

We build a minimum spanning tree based on these dij dissimilarity measures. To obtain

m(s), we take the distance to the line associated with y = −x which is associated with

the most extreme negative correlation of the standardized variables. This implies that
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Algorithm 2.4: Estimating M(s) in an efficient way when T (s, z) is the correlation

Data: graph G = (V,E) with attribute values {xv} for v ∈ V
Result: Spatial partition PG = {G1, . . . ,Gs}
// Calculate pairwise dissimilarities as the orthogonal projection

if ρ > 0 then
dij ← |ym − xm|

end
else

dij ← |ym + xm|
end
// Build a minimum spanning tree (MST)

T ←MST (G) // Initialize the partition

PG ← ∅
// Prune T of (u, v)∗ that maximizes (or minimizes) the slope

(u, v)∗ = argmax slope PG ← {G1,G2} for 2 to n do
// Repeat the pruning step splitting the spatial cluster among

G1, . . . ,Gq maximizing (or minimizes) the correlation

end
return PG

Figure 2.3: Comparing single-shot estimator (dotted line) with the estimates of M and
m (solid red lines). Each black line represents an output of the algorithm 2.3 using the
usual Pearson correlation coefficient as T (s, z). Data is from Riverside County of 2020
ACS. The correlation was evaluated between the proportion of the black population and
household income.

Source: Developed by the author.
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dij = |ym + xm|/
√
2. This method is displayed at Algorithm 2.4. Figure 2.3 displays

several outputs of Algorithm 2.3 and its efficient version (Algorithm 2.4). Note that the

estimates produced by the optimized version are frequently close to the ones produced by

the costly algorithm.

2.3 The MAUP index

Based on the distribution L(s) and the bounds M(s) and m(s), we introduce

two different measures for the MAUP effect. The zoning effect is associated with the

variation of the statistic T under different aggregations at the same scale level s. This is

measured by the range M(s) −m(s) which represents the interval within which we can

create zonings at scale s. Consider the left-hand side plot in Figure 1.2. When s = 100,

we can create zonings producing correlation varying from -0.81 to 0.77, approximately,

while when s = 200, this variation has a smaller interval from -0.58 to 0.57. As this

range fluctuates with s, the only way to obtain a single measure of the zoning effect is by

summarizing the range M(s) −m(s) over s. The most obvious way is by averaging the

different values of M(s)−m(s). By linearly interpolating between the discrete values of

s, we can propose an index based on the area between the M(s) and m(s) curves. The

larger this area, the larger the zoning effect. Considering the plots in Figure 1.2, we have

a much larger zoning effect in the left-hand side plot than in the right-hand side plot. To

obtain a reference value, we consider the maximum value this area could reach. This is

given by the rectangle determined by horizontal lines at the extremes of M(s) and m(s).

That is, with height given by h = maxs M(s) − mins m(s) and basis equal to the scale

level range n − 0. Then, by interpolating the discrete-based M(s) and m(s), we define

the MAUP effect Iz by integrating the zoning effect at scale s over all possible scales with

an optional weighting function w(s):

Iz =

∫ n

0
(M(s)−m(s))w(s)ds

h
∫ n

0
w(s)ds

(2.3)

The w(s) weight function is useful if we want for discarding or downplaying unreasonable

scales. Near the lower end of the scale range, when we have maps with a very small

number of regions, such as s = 2 or 3, we have the largest variation in the statistics.

As shown in Figure 1.2, the theoretically extreme values +1 and −1 for the correlation

coefficient are observed only very close to the lower end of the scale range. Similarly, s

values very close to their maximum are likely to be of little interest. The reason is that,

starting at the maximum scale s = n, the next smaller scale value, equal to n − 1, can
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be obtained only by aggregating two adjacent areas leaving all the others as they were

initially. This implies that the change in the T statistic is likely to be tiny, as can be

observed again in the right-most extreme scale values in Figure 1.2. Maps formed by such

a small number of regions or with practically the same regions as the original map are

likely to be of little value and we may want to downweight these s values, concentrating

the calculation of (2.3) on intervals of practical value. This is obtained with the weight

function w(s). For example, we may define W (s) = 1 only when s ∈ (δ, n− δ∗) for some

positive δ and δ∗.

As previously mentioned, the metric Iz encapsulates a pessimistic perspective,

reflecting an analyst’s determination to ensure the robustness of the analysis against

arbitrary partitionings. This approach adopts an adversarial mindset, considering at each

scale s the partitionings that could potentially exert the greatest influence on the statistic

under examination. These partitionings represent the choices of an adversary seeking to

disrupt the analysis based on the refined data, aiming to ascertain the maximum impact

a partitioning could impose on the analysis at scale s.

We introduce a second metric to assess the MAUP effect, which takes a less pes-

simistic stance. A justification for this is that the pessimistic approach may be extreme.

Figure 1.2 shows that the M(s) and m(s) curves represent extreme bounds with the large

number of simulated trajectories staying far away from these limits. This implies that

Iz is not measuring the typical effect of a chance partitioning of the space but rather a

purposely partitioning aiming at driving the statistic to its maximum or minimum values.

In this sense, these extreme partitionings are not representative of what may occur if

the new geography is not intentionally planned to maximally change T . The calculation

of this metric is similar to the previous, but instead of focusing on the extreme zoning

systems obtained using the Algorithm 2.4, we use as M(s) and m(s) in the Equation 2.3

the maximum and minimum of T (s, z) observed in the random trajectories (the red lines

in the Figure 1.2). We denote this metric as Im.

2.3.1 The scale effect

The scale effect is related to the variation of the statistic T due to a change in the

scale that the data was aggregated, keeping the same zoning system. To access the scale

effect, instead of focusing on the maximum potential impact of partitionings at any scale

s, one could consider the average maximum impact achievable at each scale s. A random

trajectory is selected, and its value T (s, z) at scale level s is examined under a specific

partitioning z, then the maximum difference between T (s, z) and the extreme bounds at
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the next scale level would measure the change in the statistic due to a change in a single

scale for a fixed zoning system z: max(|M(s − 1) − T (s, z)|, |m(s − 1) − T (s, z)|). This

represents how much the statistic T can vary due to a single change in the scale level.

The two differences are the slopes of the line that connects an extreme bound at s − 1

and T (s, z). So, the scale effect is measured by the average of these differences over the

zoning systems:

Is =
1

Z × (n− 1)

Z∑
z=1

n∑
s=2

max(|M(s− 1)− T (s, z)|, |m(s− 1)− T (s, z)|), (2.4)

where Z is the total of different zoning systems. There is no upper limit for this metric.

One important point is that the scale and zoning effects are tangled. When we

average over different scale levels s, or over different zoning systems z, we mix up the

zoning effect with the scale effects. We will show in the section 3.1.3 that the correlation

between Is and Iz is close to 1. This way, these two measures carry the same information

and should use only one of them.
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Chapter 3

Results

3.1 Empirical analysis

In this section, we show the performance of our measure in a large number of

datasets. We start with a brief description of the data we used and how it is collected,

and then we proceed to the results.

Figure 3.1: Map of Pennsylvania Divided into ACS Census Tracts

Source: Developed by the author.
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Figure 3.2: Boxplot of each variable across the states.

Source: Developed by the author.

3.1.1 Datasets

We utilized data from the 2020 American Community Survey (ACS) for our anal-

yses, measured at the Census tract level, which was subsequently aggregated up to the

county level. Our dataset encompassed counties in California (CA), Florida (FL), Georgia

(GA), Illinois (IL), Michigan (MI), New York (NY), North Carolina (NC), Ohio (OH),

Pennsylvania (PA), and Texas (TX). Figure 3.1 displays the state of Pennsylvania divided

into census tracts. Counties with fewer than 20 census tracts were excluded, resulting in

a total of 319 counties. The number of Census tracts varied from 23 to 2,460 (in Los

Angeles), with the first quartile, median, and third quartile equal to 32, 52, and 115, re-

spectively. We used the following variables: average commute time (in minutes), average

household income (in American dollars), percentage of the Black population, and average

number of rooms in the residence.

The data was collected using the tidycensus [31] R [25] package. Some of the

variables were provided as counts within ranges of values For instance, the annual income

is given in several ranges (0 - 5,000$, 5,000$ - 10,000$, etc). In these cases, we calculated

the mean value of each range and multiplied it by the number of observations in that
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Figure 3.3: Typical behaviour of M(s) and m(s). The solid blue line indicates the corre-
lation at the original scale. Upper left: Harris County (TX) using household income and
proportion of black population. Upper right: Franklin County (OH) using proportion of
the black population and number of rooms. Lower left: San Joaquin County (CA) using
household income and proportion of black population. Lower right: Washtenaw County
(MI) using commuting time and household income.

Source: Developed by the author.

range and tract. We then divided by the total population of the tract to approximate the

mean value. Figure 3.2 shows boxplots for each variable at the census tract level for each

state analyzed.

3.1.2 Results

To validate the methodology proposed in the previous sections, we analyzed the

correlation coefficient between the specified pairs of variables. In the pessimistic sce-

nario (Algorithm 2.4), our methodology was applied to each county and each pair of

variables, leading to a total of 1914 distinct scenarios (319 counties with 6 pairs of

variables each). Due to computational constraints, we used only 30 counties for each

pair of variables for the random scheme (Algorithm 2.2). For each scale, we simulated

100 random zoning systems. The results are available on an interactive platform de-
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Figure 3.4: Boxplot of Iz for each pair of variables and state.

Source: Developed by the author.

veloped by the authors using the Shiny R package [5], accessible via the following link:

https://vriffel.shinyapps.io/maup/. Figure 3.3 displays the typical behaviours of

M(s) and m(s). Note that as the scale of aggregation approaches the original data, the

extreme boundaries align more closely with the original value of T (n). When |T (n)| is
large, one of the boundaries is constrained by its value, thereby reducing the MAUP effect.

The boxplot in Figure 3.4 illustrates the distribution of Iz for each pair of variables

across different states. Overall, Iz varied around 0.4 and 0.55. The analysis reveals that

the correlation between average commute time to work and household income experienced

more pronounced MAUP effects, whereas the correlation between household income and

the number of rooms witnessed fewer MAUP influences. There is noticeable variation

in the distribution of Iz for different pairs of variables across states. For instance, the

median Iz for the correlation between the black population and the number of rooms in

Illinois was 0.37, whereas for other states, this value was approximately 0.45.

We also plotted Iz for each pair of variables in each county against their respective

correlation coefficients, as seen in Figure 3.5. The blue line shows a smooth of the Iz values

adjusted by the LOESS method. The data indicate that the MAUP effect correlates with

the value of the statistics obtained at the original scale. Statistics closer to -1 or 1 exhibit

a less pronounced MAUP effect, while those nearer to 0 show a greater MAUP effect.

Also, when the correlation at the original scale was closer to zero, the variance of Iz seems

to be greater.

When we analyze the typical behaviour of M(s) and m(s) (Figure 3.3), we see that

the effect of MAUP is more concentrated at smaller scale values. That is, we observe more

extreme values for M(s) and m(s) when the scale is lower. To investigate this, Figure

3.6 displays the cumulative effect of Iz on the respective percentiles at the original scale.

https://vriffel.shinyapps.io/maup/
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Figure 3.5: Plot of Iz for each county and pair of variables against its respective correlation
at the original scale. The blue line is the estimates using the LOESS method.

Source: Developed by the author.

Figure 3.6: Cumulative effect of Iz on the respective percentiles at the original scale. The
black line is the percentile average of accumulated Iz. The red lines indicate the 5th and
95th of the accumulated Iz.

Source: Developed by the author.

Here, the black line represents the mean accumulated Iz, while the red lines denote the

5th and 95th percentiles. In the median, we see that almost 50% of the MAUP was found

in around 25% of the total number of areas.

3.1.3 Random scenario

As previously, we display in Figure 3.7 four typical scenarios generated by different

zoning systems. These plots reveal that aggregations can be more volatile in certain

scenarios than in others, indicated by a larger variance in L(s). For instance, comparing

the two plots on the right shows that the lower figure exhibits a significantly greater
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Figure 3.7: Typical behaviour on the random scenario. Each black line represents a
simulation from L(s). The solid blue line indicates the correlation at the original scale.
The solid red line indicates the maximum and minimum at each scale. Upper left: Wilson
County (NC) using commuting time and proportion of black population. Upper right:
DuPage County (IL). Lower left: Lee County (FL). Lower right: Union County (NC),
the latter three the correlation was calculated between commuting time and household
income.

Source: Developed by the author.

variation in the values of T (s, z), a characteristic captured by Is.

The boxplot in Figure 3.8 shows the distribution of Im values obtained under the

random scheme. Once again, we observe numerous high values for the index. This raises

concerns that different indexes might lead to varying conclusions when applied to the

same data. As anticipated, the values of Iz (the pessimistic scenario) tend to be higher

than those in the random scheme (Im). Figure 3.9 compares the MAUP effect values

obtained in both the pessimistic and random schemes. With a correlation coefficient

of 0.64 between the two measurements, it indicates that both methods generally deliver

consistent conclusions. Additionally, it is noteworthy that in only a few instances did the

pessimistic scheme yield lower values than the random scheme.

Finally, Figure 3.10 illustrates the relationship between Iz and Is. This plot clearly

indicates a high correlation between the scale effect and the zoning effect, suggesting that

using both Iz and Is may be redundant for measuring MAUP in a dataset. The correlation

between Iz and Is was found to be 0.99.
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Figure 3.8: Boxplot of Im for each pair of variables. HI stands for household income,
BP for the proportion of the Black population, NR for the number of rooms and Ct for
commuting time.

Source: Developed by the author.

Figure 3.9: Plot of both MAUP measurements. The solid line denotes the identity line.

Source: Developed by the author.

Figure 3.10: Plot of the scale effect (Is) and the zoning effect (Iz). Both of measurements
are highly correlated.

Source: Developed by the author.
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Chapter 4

Conclusions

In this study, we introduce a novel stochastic approach to quantify the effects of the

Modifiable Areal Unit Problem (MAUP) in spatial analyses. Our findings indicate that

while MAUP can significantly impact certain analyses, its influence is not universal and

varies with the context and data granularity. We propose an index that is both easy to

use and interpret in practice. Although we utilized the correlation coefficient to derive

our results, the proposed method is versatile and applicable to any spatial analysis.

The indices we developed offer a robust metric for evaluating the sensitivity of

analyses to MAUP. Our observations reveal that the most significant variations due to

MAUP occur at smaller scales, where the aggregation of areas has a more pronounced

effect on the calculated statistics. Additionally, we found that scale and zoning effects

seem to be intertwined.

While our methods provide a solid foundation for evaluating the MAUP, they also

have limitations. For instance, the need for significant computational power to calculate

the extremes M(s) and m(s) in large datasets can be a challenge. Future work may focus

on algorithmic optimizations or the development of more efficient methods for estimating

these limits.

Additionally, exploring the application of our metrics in different statistics and

contexts, such as environmental studies and public health, could provide further insights

into the applicability and robustness of our methods. Additional work is also needed

to thoroughly investigate the index and establish a threshold at which MAUP becomes

problematic.
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