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RESUMO 

As perdas nas redes de distribuição de água (RDA) representam uma porcentagem 
significativa da água captada e distribuída. Além do valor diretamente relacionado a 
perda física da água, a identificação, reparo e manutenção geram custos significativos 
o que reflete diretamente no valor repassado aos consumidores. Por isso, essa tese 
apresenta métodos para a detecção e localização de vazamentos. Para isso, são 
primeiramente estudados os comportamentos hidráulicos durante vazamentos e como 
esses eventos afetam parâmetros hidráulicos como pressão e vazão e parâmetros de 
qualidade como a idade da água e a concentração de cloro. Os resultados do estudo 
indicam que os dados de qualidade da água podem ser uma fonte eficaz de 
informações para futuros sistemas de detecção de vazamentos.  Outro aspecto 
abordado é a estratégia de posicionamento ideal de sensores de pressão nas redes 
de distribuição de água. A abordagem apresentada utiliza a teoria de processamento 
de sinal em grafos e algoritmos de agrupamento espectral para identificar os nós mais 
adequados para a instalação dos sensores. Uma métrica baseada na taxa de 
cobertura dos sensores é apresentada para avaliar o sistema de monitoramento de 
pressão e relacionam o número de sensores a taxa de cobertura, assim os operados 
sabem quais são as vantagens para instalação de mais sensores e quantos sensores 
são viáveis para um melhor monitoramento. Além disso, duas propostas para 
detecção de vazamentos são apresentadas, a primeira utiliza como tratamento dos 
dados monitorados a Análise de Componentes Independentes (IQR) e esses dados 
tratamos são analisados por dois algoritmos, Intervalo Interquartil e Perfil de Matriz 
(MP), respectivamente. A metodologia é avaliada utilizando dados de benchmark e 
demonstra ser eficaz na detecção de vazamentos, identificando alguns casos em 
poucos minutos após o início do vazamento. O desempenho varia de acordo com as 
características do vazamento, com o método IQR sendo mais eficiente em 
vazamentos com início abrupto e o método MP se destacando em vazamentos com 
aumento gradual no fluxo. A segunda proposta apresentada para detecção de baseia-
se no processamento de sinal em grafos, onde as mudanças na pressão e qualidade 
da água provocadas pelos vazamentos modificam a estrutura de um grafo temporal, 
e a análise da estrutura do grafo permite a detecção de novos vazamentos. A 
metodologia é validada com sete vazamentos, apresentando uma precisão de 86% 
na identificação desses eventos. A pesquisa ainda apresentas as vantagens em 
utilizar dados monitorados de qualidade da água para a detecção de vazamentos em 
comparação com a utilização dos dados de pressão. Por fim, uma metodologia para 
a localização de vazamentos é proposta na qual utiliza um grafo multicamadas na 
determinação das áreas com provável vazamento. O grafo tem como camadas a 
representação da topologia da rede e a correlação entre os dados monitorados, sendo 
a conexão intercamadas dada pela área de cobertura dos sensores. O estudo 
apresentou uma proposta robusta e promissora para a detecção e localização de 
vazamentos detectando vazamentos 15 minutos após o início e com menos de 50 
metros do real local com vazamento. 
 
Palavras-chave: Redes de distribuição de água; Detecção de vazamentos; 
Localização de vazamentos; Teoria de grafos. 
  



 
 

 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

ABSTRACT 

Losses in water distribution networks (WDN) represent a significant percentage of the 
water catchment and distributed. In addition to the value directly related to the physical 
loss of water, detection, repair, and maintenance generate significant costs, which 
directly reflect the value passed on to consumers. Therefore, this thesis presents 
methods for detecting and localization leaks. To this end, hydraulic behaviours during 
leaks are first studied and how these events affect hydraulic parameters such as 
pressure and flow and quality parameters such as water age and chlorine 
concentration. Study results indicate that water quality data can be an effective source 
of information for future leak detection systems. Another aspect addressed is the ideal 
placement strategy for pressure sensors in WDN. The presented approach uses graph 
signal processing theory and spectral clustering algorithms to identify the most suitable 
nodes for installing sensors. A metric based on the sensor coverage rate is presented 
to evaluate the pressure monitoring system and relate the number of sensors to the 
coverage rate, so operators know what the advantages are for placing more sensors 
and how many sensors are viable. better monitoring. Furthermore, two proposals for 
detecting leaks are presented, the first uses Independent Component Analysis to 
process the monitored data and this data is analysed by two algorithms, Interquartile 
Range and Matrix Profile. The methodology is evaluated using benchmark data and 
proves to be effective in detecting leaks, identifying some cases within a few minutes 
after the start of the leak. Performance varies according to the characteristics of the 
leak, with the IQR method being more efficient in leaks with an abrupt onset and the 
MP method excelling in leaks with a gradual increase in flow. The second proposal 
presented for detection is based on signal processing in graphs, where changes in 
water pressure and quality caused by leaks modify the structure of a temporal graph, 
and the analysis of the graph structure allows the detection of new leaks. The 
methodology is validated with seven leaks, presenting an accuracy of 86% in 
identifying these events. The research also presents the advantages of using 
monitored water quality data to detect leaks compared to using pressure data. Finally, 
a methodology for locating leaks is proposed in which a multilayer graph is used to 
determine areas with probable leaks. The graph has as layers the representation of 
the network topology and the correlation between the monitored data, with the 
interlayer connection being given by the sensors' coverage area. The study presented 
a robust and promising proposal for detecting and locating leaks, detecting leaks 15 
minutes after the beginning and less than 50 meters from the actual leak location. 
 
Keywords: Water distribution networks; Leak detection; Leak localization; Graph 
theory. 
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1.1 Introduction 

The continuous population's growth, coupled with challenges posed by climate change 

and water crises, added complexity to the management and control of Water 

Distribution Networks (WDNs). In response to the increasing water demands, WDNs 

are becoming more interconnected and complex, facilitating the occurrence, and 

spread of faults. Situations that increase the urgency in identifying, repairing, and 

maintaining these faults, particularly due to interconnections that not only impact water 

distribution but also affect road and energy infrastructures (GUIDOTTI et al., 2016; XU 

et al., 2019). A relevant category of faults in this context relates to water losses, which 

can be classified as physical losses resulting from leaks and bursts, and apparent 

losses related to measurement errors, fraud, and clandestine connections (STRAMARI 

et al., 2023). 

The sum of physical and apparent losses, referred to as total losses, represents a 

significant proportion of the total volume of water collected, treated, and distributed in 

supply systems (XIN et al., 2014). According to Trata Brasil Institute in the National 

Information System on Sanitation (SNIS) revealed that in 2019, the average water 

losses in Brazilian distribution networks reached approximately 38% of abstracted and 

treated water (TRATA, 2020). Globally, Liemberger and Wyatt (2019) estimated annual 

losses of around 126 billion m³ in water systems worldwide. These estimates 

underscore the relevance and growing need for the development and implementation 

of methods that can quickly and efficiently identify and locate these losses. 

Methods aimed at mitigating losses, especially in the context of leaks in the water 

distribution phase, have been the subject of ongoing research. A commonly employed 

method uses microphones and sensors to detect ground noises and correlate them 

with potential leaks, classified as the acoustic methods (MARTINI et al., 2016). 

Acoustic approaches are applied locally especially for localization, requiring on-site 

inspection by a specialized technical team that, through their expertise, performs leak 

detection and location (HUNAIDI et al., 2004). Automatic approaches, utilizing acoustic 

information for detection and localization, rely on correlating noises generated by water 

flow, with the system comparing the arrival times of these noises at sensors connected 

to the pipelines (HU et al., 2021). However, the effectiveness of these methods has 

been impaired by interference from noises emitted from other underground networks, 
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such as sewage, gas, and electricity. Additionally, the need for regular physical 

inspections adds time and cost to the overall process (SAGNARD et al., 2016). 

Another area of research focused on early automated leak detection and location is 

based on the analysis of hydraulic data from continuous monitoring, such as flow, 

pressure, and reservoir level data (MOUNCE and MACHELL, 2006; HU et al., 2021). 

The application of mathematical-statistical approaches to analyse this data has shown 

notable progress in this context. Effectiveness in detecting and locating leaks through 

data monitoring depends on optimizing sensor placement. It is essential that these 

devices are strategically placed to acquire data that contributes significantly to 

comprehensive monitoring of the entire network (MYSOREWALA, 2019, CARDOSO 

et al., 2021). Furthermore, the selection of ideal locations for installing sensors at 

certain points in the network considers the challenge associated with the high costs 

involved in purchasing and installing these devices (ALMAZYAD et al., 2014). The 

strategic selection of WDN monitoring locations is a frequent topic of studies, mainly 

due to the importance of monitored data in the control and operation of the entire 

network. Many strategies are proposed for this selection, aiming to maximize network 

coverage (TANYIMBOH and CZAJKOWSKA, 2018; HANH et al., 2019; LI et al., 2019), 

while others focus on choosing points more sensitive to anomalous events, such as 

leaks, pump failures, water contamination (SARRATE et al., 2014; 

CHRISTODOULOU, 2019; SHAHRA and WU, 2020). Additionally, clustering methods 

are employed to identify areas in the network with similar information, such as demand 

and coordinates, and, based on this clustering, choose a representative monitoring 

point (GIUDICIANNI et al., 2020; PENG et al., 2022).  

Sensor placement studies highlight the importance of efficient and economically viable 

monitoring point selection strategies, emphasizing the complexity involved in finding a 

trade-off between network coverage, sensitivity to leak detection, and costs associated 

with implementing these strategies (ZHAO et al., 2020; SANTOS-RUIZ et al., 2022). 

Several methods and approaches have been proposed for the strategic selection of 

sensor placement to meet specific objectives (CASILLAS et al., 2015; HU et al., 2017). 

One such approach is the use of Genetic Algorithms (GA), notably developed for 

solving optimization problems. The GA application stands out for its ability to find 

optimal solutions in challenging contexts (CARRICK and MACLEOD, 2013). 
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Researchers have explored the application of GA in different contexts to meet specific 

objectives (ABOWD and MYNATT, 2000). An example is the methodology presented 

by Cassilas (2013), which uses GAs to optimize sensor placement, aiming to minimize 

the number of undetected leaks. For this, the authors used computational hydraulic 

simulation processes of leaks at each demand node and evaluate how many of these 

nodes the sensor set detects. The authors simulate leaks of different dimensions and 

create pressure sensitivity matrices1 for each case of simulated leak, so GA selects a 

set of sensors that are more sensitive at the different flow rates tested and a higher 

number of nodes in each scenario. The author’s methodology demonstrates the 

effectiveness of GAs in solving practical problems related to monitoring infrastructure 

in water systems. 

GAs addresses problems considering a specific objective, but there are approaches 

that incorporate multiple objectives, and multiobjective algorithms have received 

considerable attention. The use of the Nondominated Sorting Genetic Algorithm II 

(NSGA-II) is particularly notable in this context. Illustrating this application, Cardoso et 

al. (2021) use NSGA-II to place quality sensors considering three objective functions 

that minimize detection time, maximize detection probability, and minimize the number 

of sensors.  Ferreira et al. (2023) employs NSGA-II for the strategic selection of water 

quality monitoring points. The authors aim to maximize two objectives simultaneously: 

monitoring sensitivity to changes in pipe roughness and sensitivity to leak events 

detection. The authors highlight the applicability of NSGA-II in situations where 

optimizing multiple objectives is crucial for decision-making. 

Although approaches to sensor placement have shown satisfactory results, 

approaches using GAs and NSGA-II require post-processing for the choice of result 

sets generated by these methods. In this context, Brentan et al. (2021) proposed a 

multi-criteria decision-making approach, which involves aggregating result sets and 

selecting the most efficient monitoring strategy. Additionally, it is essential to note that 

these methods depend on extensive computational hydraulic simulations for data 

acquisition and result validation, which entails a time-consuming process and 

significant computational effort. The subsequent need for post-processing, coupled 

 
1 The sensitivity matrix represents how variables (such as water flow and pressure) in different parts of 
the network respond to changing conditions at specific points (DEUERLEIN et al., 2017). 
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with the requirement for calibrated WDS models, has contributed to restricting the 

application of these methods. 

Considering the limitations generated when applying approaches that require post-

processing and calibrated networks, methodological proposals from other fields of 

research have been applied. Giudicianni (2020), for example, presents an approach 

that dispenses with the use of hydraulic simulations and GAs for placing water quality 

sensors. Instead, this approach explores the topological connectivity of the WDS, 

identifying and selecting central points in node clusters. The authors adopt a 

representation of the network as a graph2, where vertices correspond to network nodes 

(demand nodes, reservoirs, and tanks), and edges represent pipes, pumps, and 

valves. The representation of WDS as graphs has favoured the application of methods 

related to other research areas, particularly those related to data analysis and object 

relationships. Giudicianni et al. (2022) represents the WDN as a weighted graph3 and 

determines points for sensor placement through graph theory metrics that determine 

which pipes are most central in the network. The application of this approach can also 

benefit other research branches, for example, in the stages of leak detection and 

localization using data monitored by sensors. 

The analysis of hydraulic data is increasingly employed in anomaly detection and 

localization, often associated with physical problems in water distribution networks. 

Various approaches, such as the use of data prediction methods through machine 

learning algorithms, have been proposed for leak detection (AYATI et al., 2022; FAN 

and YU, 2022; FARES et al., 2023). In these methods, algorithms estimate the values 

of monitored data, and any significant deviation between monitored and estimated 

values is interpreted as an anomaly. Another common approach involves mathematical 

and statistical analyses of monitored data (BUCHBERGER and NADIMPALLI, 2004; 

ROMANO et al., 2011; SOLDEVILA et al., 2022). In these methods, algorithms are 

employed to estimate average values and deviations in time series, identifying 

anomalies when the data does not conform to expected patterns. 

 
2 A graph is a mathematical structure that consists of a set of vertices connected by edges that represent 
the relationships between the vertices. 
3 A weighted graph consists of vertices connected by edges that have an associated numerical value, 
called a weight. This weighting adds information such as the intensity or cost of relationships between 
vertices. 
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Despite the promising application of these approaches, their effectiveness is 

intrinsically linked to the availability of high-quality historical data in sufficient quantity, 

including anomalous conditions for training and validating models (HU et al., 2021). 

Seeking to mitigate data shortcomings, data treatment measures, such as filling 

missing data (EMMANUEL et al., 2021), data segmentation to facilitate the 

identification of seasonality (CAI et al., 2020), and noise reduction (YUNJUN et al., 

2019), are essential to ensure the robustness of these models. In this context, data 

preprocessing techniques, such as filtering, normalization, logarithmic transformation, 

and correlation analysis, have been widely adopted. These techniques aim to prepare 

the data for the application of mathematical-statistical algorithms in anomaly detection 

and localization, improving the reliability and effectiveness of the analytical process 

(ZHANG et al., 2019). 

Approaches related to graph theory have stood out as a subject of study in data 

preprocessing. Research in the field of signal analysis in graphs has shown significant 

results in detecting anomalies in complex systems, particularly in interconnected data 

networks. Xie (2021) proposed a methodology to predict failures and improve satellite 

maintenance efficiency through anomaly detection in temporal graphs. The authors 

established a graph with spatial and temporal dependence, using wavelet variance to 

predict the structural values of the graph. The application of signal analysis in graphs 

in WDNs may be viable through the correlation between monitored data in creating 

temporal graphs. Barros (2023a) presented a methodology for leak detection, in which 

temporal pressure monitoring data are used to construct a temporal graph. The 

analysis of vertex importance in this graph is employed as data preprocessing, 

considering each monitoring point as a vertex, and using the correlation between data 

monitored by each sensor as the weight of the edges between vertices. The authors 

concluded that this approach enhances the efficiency of the leak detection process, 

highlighting that leaks substantially influence the correlation between monitored data 

and, consequently, the graph structure. 

After the detection of anomalies, the precise localization of anomalous points is 

essential for repairs and maintenance. Different approaches are proposed to locate 

anomalies, including recognizing behavioural patterns, data classification, and 

prediction. Genetic algorithms and machine learning algorithms, such as the Random 
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Forest algorithm, have been applied to classify contamination data and associate 

anomalous behaviours with leak localization (Barros, 2022; Grbčić, 2021). Despite the 

advantages observed with the use of the Random Forest algorithm, as indicated by 

previous research, this method still has limitations, especially related to data 

acquisition. For its application, extensive hydraulic simulations and calibrated water 

distribution networks are required. 

In this context, graph theory continues to offer advantages over these methods, 

especially in network representation, eliminating the need for extensive simulations. 

Researchers have explored graph theory to locate anomalies in various areas of study. 

Liang (2021) proposed a methodology to locate temporal anomalous data using multi-

temporal graphs, utilizing cross-correlation between time series of satellite, energy, 

and steam turbine data to create the graph. Herrera (2023) presented a proposal to 

identify and highlight critical elements in a complex multilayered network, using distinct 

internet, router, and metro networks as layers of a multilayered graph. The analysis 

between elements of the layers, mainly in relation to the graph, identifies critical 

interlayer vertices and edges, prioritizing management measures. 

As evidenced, the application and robustness of anomaly detection and localization 

methods in WDNs can be enhanced by incorporating different signal sources. In 

addition to conventional hydraulic data, other information sources play a crucial role in 

the leak detection and localization process. Recent studies propose integrating water 

quality sensors, along with specific analytical approaches, mainly to identify and locate 

contaminations. 

However, it is noteworthy that water quality data, such as chlorine concentration, 

turbidity, and conductivity, constitute additional sources of information that may be 

more sensitive to leaks than traditional pressure and flow data. The study conducted 

by Barros (2023) exemplifies the impacts of simulated leaks on water age and chlorine 

concentration. The results indicate that, due to changes in water flows necessary to 

meet demands arising from leaks, water quality parameters can be affected more 

significantly than monitored pressure data. 

Considering the above, the effectiveness in leak detection and localization demands 

the implementation of different stages and sources of information. In this context, this 
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thesis addresses proposals related to the strategic placement of monitoring sensors, 

the impacts of leaks on water quality, specific methods for leak and anomaly detection 

in data, and, finally, a methodology for the precise localization of leaks. Each of these 

approaches is detailed in separate chapters of the thesis. Chapter 2 presents leak 

modelling methods and an analysis of water quality behaviour in simulated leak 

scenarios. Chapter 3 describes a methodology for leak detection through graph signal 

processing, using pressure data. Chapter 4 proposes a methodology for the strategic 

placement of pressure monitoring sensors, using graph signal processing techniques 

and signal sampling methods. Chapter 5 addresses leak detection, also based on 

pressure data, applying statistical methods for anomaly identification in the data. 

Chapter 6 presents an approach for leak localization using multilayered graphs and a 

process for determining similarity between simulated and monitored data. Finally, 

Chapter 7 discusses the contributions presented throughout the body of the thesis. 

1.2 Objectives 

1.2.1 General objective 

The objective of this thesis is to develop a methodology for the detection and 

localization of leaks in water distribution networks through signal processing on graphs 

and patter recognition. For such development, simulations of leaks in the water 

distribution network studied are used to obtain data that will be used throughout the 

process. Therefore, the work is composed of subprocesses that can be characterized 

by the following specific objectives: 

1.2.2 Specific objectives 

• Evaluate the equations proposed in the literature for leak modelling, as well as 

assess the impacts of each leak model on hydraulic and water quality parameters, 

specifically, free chlorine concentration, and water age. 

• Water pressure sensor placement: develop a database containing hydraulic 

and water quality behaviour through computational simulations and, based on this 

data, develop a sensitivity analysis, and apply signal sampling techniques to place 

sensors, aiming to maximize the coverage of the water distribution network. 
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• Detect leaks by identifying anomalies on pressure and quality sensor 

information using graph theory and statistical approaches. 

• Localize leaks using graph theory approach and data similarity algorithm, to 

associate them with leak locations and pinpoint them with maximum precision. 

1.3 Justification 

The efficient management of water resources is a crucial demand in response to the 

growing challenges associated to water scarcity and the need to preserve and 

maximize the efficiency existing infrastructures (XIANG et al., 2021). Brazilian water 

networks in which, even with the development of techniques for detection, localization, 

and repairing leaks, there is still an increasing increase in losses in the distribution 

stage (Figure 1.1), of the water that was collected and treated (TRATA, 2023). 

Figure 1.1 - Losses in water distribution 

 

 

Precise and effective detection, as well as the localization of leaks in water distribution 

systems, are fundamental elements to ensure the sustainability of these 

infrastructures, minimizing water losses and environmental impacts. Conventional 

approaches, such as the use of acoustic equipment and geophysical methods, often 

face limitations in terms of precision and efficacy, especially in complex and extensive 

systems. Therefore, monitoring data is increasingly being explored, employing 

mathematical-statistical methods to analyse this data and mathematical methods for 

network representation. 
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However, the continuous expansion and constant changes in water distribution 

networks have made the computational representation of these networks more 

complex. This complexity is also reflected in monitored hydraulic data, which exhibit 

noise and anomalous behaviours. Seeking to address these challenges, graph theory 

has been applied at various stages in leak detection and localization processes. 

Network representation through graph theory is achieved using weighted graphs, 

incorporating hydraulic and physical information such as flow rate, diameter, and pipe 

length (GIUDICIANNI et al., 2021), while considering connectivity information and the 

importance of nodes in the network. In this context, part of this thesis aims to analyse 

the representation of water distribution networks as graphs, exploring hydraulic and 

connectivity information as weights of graph edges. Additionally, graph theory is 

applied as a pre-processing method for monitored data, creating temporal graphs, and 

analysing the temporal connectivity relationship to detect anomalies. 

In addition to the application of this theory, detection methods using data analysis 

algorithms are employed to identify anomalies in pressure data and associate them 

with leaks in the network. Monitored hydraulic data, including flow, pressure, and 

reservoir levels, are widely used in leak detection and localization processes. However, 

as an additional data source, the inclusion of water quality data may represent an 

innovative potential and enhance leak detection and localization. Variations in water 

characteristics can be correlated with the presence of leaks, contributing, in 

conjunction with hydraulic data, to mathematical-statistical analysis methods. 

Continuous monitoring of these parameters provides information that enriches the 

analysis, contributing to the precision in leak detection and localization. 

This research, therefore, aims to fill existing gaps in the literature by exploring the 

synergy between Graph Theory, statistical methods, and water quality data, offering a 

comprehensive and innovative approach to leak detection and localization. The 

expectation is that the results obtained will not only improve the operational efficiency 

of hydraulic systems but also contribute to the conservation of water resources and 

environmental sustainability. The study aims to provide a significant contribution to 

advancing knowledge in this area, promoting more effective practices in hydraulic 

system management. 
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Abstract 

Leakages in distribution networks can reach more than 30% of the water supplied, 

entailing important risks for the water infrastructure with water contamination issues. 

Therefore, it is necessary to develop new methods to mitigate the amount of water 

wastes. This study proposes to seek for new sources of information that can help for a 

more sustainable water use. Hence, an analysis of the network is presented showing 

the hydraulic behaviour during leaks occurrence, putting emphasis on how these 

events affect and modify water quality parameters, like water age and chlorine 

concentration. The study enhances that water quality data can be an effective source 

of information in case of leaks, being a possible source of information for future 

detection systems. In addition, this study proposes to use graph theory on the water 

network. The results highlight how an analysis of the shortest path between the leak 

location and the reservoir could provide meaningful information for future detection 

systems. 

 

 

 

 

 

 

 

 

 

 

 



28 

 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

2.1 Introduction 

Water is a fundamental resource for life, which is why, in 2000, at the United Nations 

General Assembly, 191 countries agreed on seven main Millennium Development 

Goals (MDG) (MARINHO et al., 2020). Among them, the fundamental target of MDG-

7 was to halve the proportion of people without sustainable access to safe drinking 

water and basic sanitation by 2015 (HUNTER et al., 2010). According to the website 

MDG Brazil (2013), this goal was achieved in advance by the country, but the lack of 

water, sanitation and hygiene is closely linked with other MDGs, such as MDG-4, which 

aims to reduce child mortality. According to Howard et al. (2003) the lack of water, 

sanitation and hygiene is the cause of several diseases that are behind the deaths of 

children around the world. Deaths from diarrheal attributed to insufficient water supply 

and sanitation is ranked as the 6th disease that most kills children. At this point, Brazil 

still registers an infant mortality rate (under one year old) of 15.6 and a child mortality 

rate (under 5 years old) of 19 deaths per thousand births (BRASIL, 2013) 

Although in 2000 1.1 billion people in the world did not have access to quality water 

and its countless benefits, paradoxically, the waste and losses of treated water in 

Water Distribution Network (WDN) in several countries are a real problem. According 

to the World Health Organization (WHO) large cities in Africa, Asia, Latin America, the 

Caribbean and North America have an average loss of water in the distribution system 

of 35%, with Latin America leading this front with 42% (WHO, 2009). Rebouças (2003) 

estimates that this loss may be even greater in Brazil, reaching 60% in some cities, 

against the benchmark values of 5% to 15% in developed countries. 

In the report produced by Trata Brasil (BRASIL, 2019) on water losses caused by leaks 

in pipes, lack of flow meters, measurement errors, clandestine connections, and water 

theft in Brazil, only in 2022, the losses represented 40.25% of water volume in the 

distribution. The study is obtained from the database of the National Sanitation 

Information System (SNIS) and showed that losses are equivalent to 6.5 billion cubic 

meters. This value represents an average loss in total revenue of 39.02%, about 12 

billion reais for service providers (water and sewage). It is worth noting the great social 

impact of these losses, whose wasted volume could supply the 13.5 million people who 

currently reside in favelas for approximately 2 years. 
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It is worth mentioning the measured physical losses, which are losses caused by leaks 

in the network and branches, structural leaks, overflows, and discharges during the 

processes of raw water adduction, treatment, storage, treated water adduction and 

distribution in the network, which directly affect the relation between demand and 

production of water, which resulted in values close to 3.4 billion cubic meters of water 

lost.  

Physical losses represent an increase in the energy cost of pumping water, overuse of 

production and distribution systems and higher cost for managing the environmental 

impact of the activity (BRASIL, 2019). Detecting these leaks is essential to ensure 

reduction of these impacts. For this, different methods are used, one of these for 

example is the ground penetration radar. This method consists of analysing cross-

sectional soil profiles around the pipes to detect water leaks (GOULET, COUTU e 

SMITH, 2013). 

The ground penetration radar method is named as external detection approach, as 

well as the acoustic methods that aim to identify leaks by anomalies in sound waves 

that can travel through pipes and/or surrounding surface when pressurized water leaks 

through an orifice (ASLAM et al., 2018; KHAN et al., 2021). These techniques can 

identify even small leaks, but they have several disadvantages: high time consumption, 

difficult application in large areas, dispersion of the acoustic signal, etc. (KHULIEF et 

al. 2012; GOULET, COUTU e SMITH, 2013). 

The second major category of leak detection uses techniques that are based on the 

continuously monitoring of internal parameters of the pipe, such as water speed or 

pressure, using monitoring   sensors (ABDULSHAHEED, MUSTAPHA e GHAVAMIAN, 

2017; SADEGHIOON et al., 2018). Taking advantage of the large number of 

measurements that can be provided, the Inverse Transient Analysis (ITA) method uses 

data to simulated transient events in pipes looking to improve leak detection 

(CAPPONI et al., 2017; DIAO et al., 2019). A variation of the ITA is the Pressure Flow 

Bypass Method. A leak is considered identified if there are pressure deviations 

between the two edges of the pipe. The efficiency of these models, as well as of several 

other internal detection techniques, depends on the efficient location of the sensors 
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and mainly on the level detail of models to reduce the errors between simulations and 

the actual measured values (ABDULSHAHEED, MUSTAPHA e GHAVAMIAN, 2017). 

Continuous monitoring generates a large amount of data, and this allows the 

application of techniques related to data mining. These techniques are called Data-

driven approaches and look for outliers that deviate from data behaviour patterns and 

associate them with anomalies. Wu and Liu (2017) classify them into three categories: 

classification methods, predictive classification methods, and statistical methods. 

Classification methods generally use data-driven approaches to learn the normal 

behaviour of the network, and thus being able to recognize and classify abnormal 

events like leaks (ZANFEI et al., 2022).  Predictive classification methods differ from 

the classification and rely on the availability of normal hydraulic data (i.e. not affected 

by anomalies). The normal data are therefore used to create a model for making 

predictions and are used techniques like Kalman filter (JUNG and LANSEY, 2015) and 

Support vector machine (XU et al., 2021) to predict the data value and if they have a 

difference greater than a given threshold an anomaly is detected. Finally, statistical 

methods directly use the discrepancies caused by leakage in the measured data to 

detect anomalies. For this, methods such as standard deviations (ROMANO, 

KAPELAN and SAVIĆ, 2014) and independent component analysis (PEREIRA et al., 

2021) have been used in literature. 

The monitoring methods presented so far for leak detection purposes only considers 

hydraulic data, like pressures and flow rates. However, there is also a growing concern 

about the quality of distributed water, such as water contamination by organic and non-

organic pollutants such as arsenic, copper, pesticides and trihalomethanes (HUNTER 

et al., 2010). Bangladesh had the biggest fight against contaminated water in history. 

The country was plagued with the contamination of its surface waters by 

microorganisms, which caused acute gastrointestinal disease, a range of other 

diseases and even death, affecting mainly children. In 1970, the United Nations 

Children's Fund (UNICEF) together with the Department of Public Health Engineering, 

mobilized to build tube wells. In 1983 the first arsenic contamination patients were 

identified and several studies to identify the magnitude of the situation were carried out 

in universities and laboratories. It is estimated that about 42 million people have been 
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exposed to concentrations above 10 µ g/L, which is the maximum level recommended 

by the WHO. Symptoms of arsenic contamination include Skin lesions and different 

types of cancer (bladder, lung, liver, and kidneys) (SMITH, LINGAS and RAHMAN, 

2000). 

Although the mass contamination in Bangladesh was not caused by a direct intrusion 

into a WDN, the risk cannot be underestimated. Fox et al. (2016) demonstrates that an 

external contamination can enter the network and remain at the point of generating 

quality drops during short-term transient pressure events. In Fox et al. (2016) and 

Collins and Boxall (2013) show that the presence of contaminants also below the 

network should not be neglected, as the influence zone does not depend on its 

position. The authors emphasize a greater dependence on the distance between the 

contaminant and the entry orifice, the porous medium around the pipe and the orifice' 

size. 

The contaminants detection in a network is based on the premise that a contaminant 

injected into a WDN, whether deliberately, accidentally, or naturally, will affect at least 

one of the monitored parameters (ARAD et al., 2013). In their work, Perelman et al. 

(2012) demonstrates, using as a parameter the total chlorine, electrical conductivity, 

pH, temperature, total carbon, and turbidity, that even when a parameter does not 

detect the presence of contamination, other parameters detected it and therefore the 

model obtained a satisfactory result. However, to avoid false positives, they assumed 

that at least two parameters should detect the contamination. Because of this, efficient 

sensors placement that monitor these parameters can be a key factor for probability 

and detection time to ensure the fewest number of affected consumers. Therefore, 

sensor placement is usually addressed by multi-objective formulation (ARAD et al., 

2013).  

Given the risks of contaminant intrusion and its massive health consequences, quality 

must be a factor when analysing leaks in WDN. According to Kumar et al. (2010), due 

to the chlorination carried out during the adduction and throughout the system, it is 

possible to correlate the loss of water caused by leaks with the loss of chlorine injected 

into the network. Therefore, obtaining data from monitoring stations can serve as a 

basis for identifying any anomaly in chlorine levels. Additionally, due to the dynamic 
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hydraulic flow observed in a network, leaks at different points produce different effects 

on water quality, reinforcing the potential of this parameter in identifying leaks. 

Even if much research is proposed at the literature for detecting leaks and other 

physical anomalies in water systems, most part of them are focused on processing 

hydraulic data (e.g., flow, pressure, tank level) instead using water quality data (e.g., 

free chlorine concentration, pH, turbidity). Since the water quality parameters is not 

often monitored as the hydraulic one and the modelling of mass transportation is much 

more complex than hydraulic equations, water quality parameter are not explored to 

their full potential. For better understanding the water quality changes due to the 

presence of leaks in water distribution systems, this work investigates the effects of 

leaks on water quality parameters and the possibility of using water quality monitoring 

data for detecting leaks. Thus, this work simulates computationally leaks and 

conceptually proves that quality data can be an additional source of information for 

monitoring not only water quality, but also in cases of leaks. For this, Epanet 2.2 and 

the python package Water Network Tool for Resilience (WNTR) (KLISE et al., 2018) 

are used in the simulation processes. Finally, the article also presents a methodology 

to determine the shortest path travelled by water between the reservoirs and the leak 

site. This methodology uses concepts linked to graph theory and analyses changes in 

flows in pipes due to leaks. 

2.2 Material and Methods 

To carry out the water quality study as a leak indicator, EPANET software and the 

WNTR package (KLISE et al., 2018) in Python environment are used. EPANET is 

widely used as a support tool for the analysis of water distribution systems, allowing 

the execution of steady and extended period simulations of the hydraulic behaviour 

and water quality of pressurized distribution systems (ROSSMAN, 2000). WNTR, in 

turn, is based on the EPANET program, but its application programming interface is 

more flexible, allowing for changes in the structure and operations of the network 

(KLISE et al., 2018).  

Knowing that water quality changes due to water loss in cases of leaks (KUMAR et al., 

2010), this research investigates which are the impacts on quality parameters when 

simulated leaks occur. Thus, to perform the simulations, two orifice equations are used 
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to modelling the leaks. Both equations are used in leak simulations to determine which 

one best represents a real leak and its uses in the different stages of this research. 

The simulations are performed varying parameters of the leak, such as its orifice size, 

the duration of the leak and form of start. These parameters variations allow to have 

more simulation scenarios and to observe the influence of different leakages on the 

water quality changes. 

2.2.1 Leakage mathematically modelling 

The simulations are performed using the standard equation of the EPANET 2.2 

Software. For the leak simulation in WDN with EPANET, emitter devices are used. 

According Rossman (2000) such devices are associated to junctions that model the 

flow through orifices or nozzles with direct discharge to the atmosphere. The flow 

through these devices varies depending on the pressure at the junction, according to 

a flow law of the type: 

                                                      𝑞 = 𝐶௘ . 𝑃௬                                                      (2.1)            

where 𝑞 is the flow rate, 𝑃 is the pressure head, 𝐶 is the discharge coefficient and 𝑦 is 

the pressure exponent. 

After the standard simulations, one other equation is used to compare their influence 

on leak detection through quality. The equation is the Standard Orifice Equation 

(COLLINS and BOXALL, 2013): 

                                                  𝑞 = 𝐶௘ ∙ 𝐴 ඥ2𝑔𝑃           .                                        (2.2)            

where 𝐴 is the orifice area and 𝑔 is the gravity acceleration. The orifice equation is 

chosen since the simulation in EPANET mode using the WNTR package does not 

allow the inclusion of leaks in specific periods of the simulation. Therefore, the orifice 

equation is used to determine the leak flow at specific times of the simulation, using 

the hourly pressure and including with additional demand on the network nodes. 
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2.2.2 Simulation process 

Leakage simulations are made proposing three different scenarios where the location 

and duration of the simulated leaks changes. To obtain a more realistic and to perform 

a more robust investigation, all leakage scenarios are considered at 4 different nodes 

during the simulation period. Scenarios A and B presented overlapping leaks with a 

duration of 7 days, while leaks in scenario C does not overlap and have a duration of 

14 days. For all simulations, the same orifice diameters are used: 10 mm, 8 mm, 15 

mm and 9 mm respectively, for the four nodes selected in each scenario. These nodes 

are named Junction 1 to Junction 04 in each scenario and parameters assigned to 

each node are shown in Table 2.1.  

Table 2.1 Leakage scenarios and parameters. 

Scenario A 

  Junction 01 Junction 02 Junction 03 Junction 04 

Nodes 
188 122 50 45 

110 263 241 49 

Start leakage (days) 1 2 2 5 

Duration leakage (hour) 120 144 72 30 

Start form Three days of raise 
Five days of 

raise 
Abrupt 

Two days of 
raise 

Scenario B 

  Junction 01 Junction 02 Junction 03 Junction 04 

Nodes 255 137 29 136 

Start leakage (days) 3 2 1 4 

Duration leakage (hour) 24 3 72 No end 

Start form One days of raise Abrupt Two days of raise 
Seven days of 

raise 
Scenario C 

 Junction 01 Junction 02 Junction 03 Junction 04 

  213 45 150 156 

Start leakage (days) 2 5 7 12 

Duration leakage (hour) 60 21 96 67.2 

Start form Two days of raise Abrupt Three days of raise 
One days of 

raise 

 

All parameters in Table 2.1 are chosen randomly and will be used as they appear, only 

changing the nodes with leaks. Scenarios can also be repeated, but with the change 

of nodes where leaks occur. These variations in sites and parameters allow a variability 

to allow certain range of simulated leaks and improve the investigation process. 
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2.2.3 Nodes sensitivity to leakage  

A sensitivity analysis is performed to determine which nodes or regions in the network 

are most sensitive to leaks. This will allow the determination of possible monitoring 

points, which will be used to expose the results in this research. For this, initially two 

simulation processes are performed. The first lasts 24 hours considering the network 

without leakages and saving hourly pressure and quality data. The second process 

adds a leak to a specific junction and studies its influence on the other network 

junctions. This process is repeated until all junctions are simulated with a leak. Each 

simulation also lasts 24 hours and the pressure and quality data from each junction 

are used to create the hourly sensitivity matrices 𝑆௜௝ determined by Equation: 

                                                  𝑆௜௝ =
஽೔ି஽೔

∗ 

௤ೕ
                                                    (2.3)            

where 𝐷௜ is the pressure or quality data of the node 𝑖 without leaks, 𝐷௜
∗  is the pressure 

or quality data with leakage and 𝑞௝ is the leak flow rate in node 𝑗. This process results 

in two square matrices, one for pressure and another for quality. Through the sensitivity 

matrices are possible to determine the nodes with pressure and quality most influenced 

by leaks. Thus, the analysis of data from the most sensitive nodes are enable a better 

understanding of the behaviour of pressure and quality. 

After checking the sensitivity of each node, a new simulation process is performed with 

a different leak, following the parameters depicted in Table 2.1.  

In the present paper, the water age is used initially as a quality parameter to be 

observed. The age of water can be determined by the EPANET software and has 

supported computational modelling research in water networks (SEYOUM and 

TANYIMBOH, 2017). The pressure and quality of the most sensitive nodes are 

monitored to identify the behaviour of these parameters under different leak scenarios. 

Thus, using mainly the daily average of pressure and quality, it is possible to 

mathematically identify its alteration. 
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2.2.4 Graph theory and shortest path 

To study in more detail the relationships between leakage events and quality variations 

it is possible to use the graph theory, which is a mathematical approach which identifies 

the interactions between objects. A graph is represented by 𝐺 =  (𝑉, 𝐸, 𝑊) where 𝑉 

portrays the vertices of the graph, and these vertices are the representation of the 

objects; 𝐸 are the edges of the graph, representing the connections between vertices; 

and 𝑊 are the edge weights, characterizing stronger or weaker connections between 

vertices. A WDS can be represented by a graph considering the nodes as the vertices 

and the edges as the pipes. The weights of the edges can be the flow rates, head 

losses or roughness of the pipes (ZANFEI et al., 2022; BARROS et al., 2023).   

In the present work, the graph theory is used to determine the shortest paths between 

the nodes and reservoirs, considering the maximum flow rates of the pipes as edge 

weight. Hence, a graph structure is created starting from the network topology, where 

the graph vertices represent the network nodes, while the graph edges represent the 

pipes. Furthermore, at each edge it is assigned a weight that is the maximum flow rate 

of the related pipe. This approach uses the Network Analysis in Python (NetworkX) 

Python package (HAGBERG, SWART and CHULT, 2008), which allows the creation, 

manipulation, and study of dynamic structures of complex networks and graphs.  

The shortest path determination in a graph starts by evaluating a starting point and a 

destination point. After this calculation, the distances between the edges to the 

neighbouring vertices of the starting point are calculated. This distance can be 

considered using the smallest number of edges to the destination vertex, the edge 

weights or other factors attached to the edges. The method determines which 

neighbour vertex has the shortest distance to the starting point, and then performs the 

same process for the determined neighbour vertex, always directing it to the 

destination vertex. At the end of the process is obtained the edges and vertices 

belonging to the shortest path (MAO and ZHANG, 2013). 

2.2.5 Evaluation method 

To quantify the effect of different leaks on water quality parameters it is proposed to 

use two evaluation methods. Firstly, the use of maps to associate variation in the 
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analysed parameters with the spatial characteristics of the network. Secondly, to 

calculate variation in both hydraulic parameters and quality parameters from the 

scenarios affected by leaks, and the normal behaviour of the network (i.e., without 

leaks). Particularly, to emphasize the variations in the different parameters analysed, 

it is proposed to calculate a 𝐷𝑒𝑙𝑡𝑎 parameter defined as the percentage difference 

between the value in the scenario affected by leaks, and the normal condition. This 

parameter is defined as: 

                                               𝐷𝑒𝑙𝑡𝑎 =
஽ି஽∗ 

஽
𝑥100                                                    (2.4)            

where 𝐷 is the pressure or quality data without leaks, 𝐷∗  is the pressure or quality data 

in the scenario with leakages. Thus, it is possible to highlight and quantify the 

modification in the various parameters with respect to the presence of a leak or not. 

2.3 Case study 

The network used for this study Figure 2.1 is presented in the work of Bragalli er al. 

(2012), based on the city's distribution network in the Emilia-Romagna region of Italy, 

Modena. It has a total of 272 nodes, of which 268 are junctions and 4 are reservoirs. 

In addition, it features 317 pipes and has no valves or pumps. 
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Figure 2.1 - Modena Network. 

 

The Figure 2.1 presents the Modena network and highlights some nodes and a 

reservoir, which will be explored during this paper.  This network has been widely used 

in a plethora of problems, like sensor placement (MANKAD  et al., 2022), leak detection 

(BARROS et al., 2023), energy efficiency (LENZI et al., 2013). 

Table 2.2 reports the maximum flow losses caused by leaks in the different scenarios 

of the proposed investigation. 

Table 2.2 - Leakage nodes and flow rates. 

Scenario A 

Nodes 
Flows (L/s) 

188 122 50 35 

2.55 1.45 4.34 1.31 

Nodes 110 263 241 49 

Flows (L/s) 2,36 1,38 4,47 0,98 

Scenario B 

Nodes 255 137 29 136 

Flows (L/s) 2.00 1.59 4.78 0,83 

Scenario C 

Nodes 213 45 150 156 

Flows (L/s) 2,23 1,52 3,39 1,89 
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The maximum leakage flows range from 0,89 to 4,78 L/s, which represent small and 

large leaks according to Quinones-Grueiro et al. (2021), this represents the inclusion 

of different number of leakages in terms of magnitude. Comparing these values to total 

consumption of the network (406,94 L/s), this would mean leakage at 0,2% to 1,17% 

of total consumption. 

2.4 Results and discussions 

2.4.1 Sensitivity analysis 

To evaluate the simulation results graphically, as mentioned above, two average 

sensitivity matrices are created, one for the water quality and another for the pressure. 

These matrices are constructed being the rows representing the node with simulated 

leak and the columns with the sensitivity data of the other network nodes, this is 

possible through Equation 3. Then, the average value for each column of the matrix is 

calculated, resulting in an average value for each node for both quality and pressure. 

These values are shown through the map in Figure 2.2. 

Figure 2.2 - Sensitivity map: (a) Pressure and (b) Quality. 

a)                                                             b) 

  

The sensitivity for both parameters (Fig. 2.2) is lower at nodes around the reservoirs. 

This happens because the reservoirs are at a fixed level (constant hydraulic grade) 

since they supply water directly to these nodes (low head loss influence). Furthermore, 
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the map allows to highlight some nodes that exhibit particularly different sensitivity 

value. A notable point is junction 104, which is highlighted in red in Fig. 2.2 This node 

exhibits high sensitivity for all scenarios, with or without overlapping leaks during the 

simulation period. 

It is proposed to assign junctions 188, 122, 50 and 45 to the parameters of junctions 

01, 02, 03 and 04 of scenarios A to make an additional test. Figure 2.3 show the 

variation of pressure and quality in node 104. 

Figure 2.3 - Node 104 - Monitoring data: (a) Quality variation, (b) Quality variation delta, (c) 
Pressure variation and (d) Pressure variation delta. 

 

For the simulated leak scenario, the nodes had leakage flows following the Table 2.2. 

Even with the highest tested leak flows (4,34 L/s) the pressures in the sensor nodes 

exhibit a low variability. If it is much higher flows than those tested, the entire network 

behaviour is modified and can be easily identified by pressure and quality data. In 

contrast, the water age in the sensor node was significantly affected by small or big 

leakages. It is observed that the Delta parameter for the pressure data (Figure 2.3b) 

changes slightly more than 1%, while the Delta for the quality data have changes 

greater than 500% (Figure 2.3d). This shows that although the pressure is effective 

on the network coverage to detect leaks, water quality data can help to increase this 

value or reduce the sensors number. The study highlights that the use of the quality 

sensor can provide important support in leak detection, given the high variability 

shown during leak events. 
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2.4.2 Pressure and Quality 

After the general analysis of the entire network, shown in Figure 2.2, simulations are 

carried out considering the leakage in specific nodes following the Table 2.2. To 

analyse the influence of simulated leaks in the network, some nodes are also chosen 

to monitor their quality and pressure values. In particular, the nodes 104 and 187, stand 

out due to their higher quality sensitivity and, therefore, are used as sensor nodes in 

the next stages of this research.  

Considering the parameters of scenario, A, and assigning them the properties of 

"Junction 01", "Junction 02", Junction 03" and "Junction 04", to nodes 110, 263, 241 

and 49, respectively, Figure 2.4 highlight the variations of quality and pressure for the 

monitoring node 104. 

Figure 2.4 - Sensitivity of node 104 for leaks in scenario A: (a) Pressure variation, (b) Pressure 
variation delta, (c) Quality variation and (d) Quality variation delta. 

 

It is worth to note that in Figure 2.4 the pressure behavior also does not exhibit 

significant variations. On the other hand, quality varies consistently, showing 

fluctuations of almost 40% its value (Fig. 2.4d), reinforcing its possible role in helping 

to detect leaks. Other scenarios reinforce the role of quality as a future ally for detecting 

leaks in networks. As further confirmation, it shown in Figure 2.5 the results related to 

Scenario B, linking the parameters of junctions 01, 02, 03 and 04 to nodes 255, 137, 

29 and 136, respectively. Figure 2.5 shows the variations of the monitoring node 187. 
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Figure 2.5 - Sensitivity of node 187 for leaks in scenario B: (a) Pressure variation, (b) Pressure 
variation delta, (c) Quality variation and (d) Quality variation delta. 

 

Finally, Figure 2.6 proposes the results for scenario C that assigned to nodes 213, 45, 

150 and 156 the parameters of junctions 01, 02, 03 and 04 presented in Table 1. Node 

153 is used as monitoring node: 

Figure 2.6 - Sensitivity of node 153 for leaks in scenario C: (a) Pressure variation, (b) Pressure 
variation delta, (c) Quality variation and (d) Quality variation delta. 

 

Figure 2.6b highlight that the water age changes due to leaks because, to meet the 

demand and leakage, the water travels different paths, in some cases increasing the 

water velocities in the pipes or receiving water from different reservoirs. However, 

water age is not a real monitoring parameter, so a simulation process observing 

chlorine is proposed afterward. 
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2.4.3 Chlorine simulations 

Although the water age is a known parameter due to its sensible variations, it does not 

have real monitoring way. On the other hand, Chlorine might be well monitored, and it 

has been used for multiple scopes. For instance, to support the location of 

contamination points, to determine the water age and to ensure that the potability 

standards in terms of concentrations are respected. In addition, Gobet et al. (2001) 

present a wireless monitoring sensor that have an accuracy of 0,02mg/L, that promotes 

leakage detection with a slight change in the concentration of the monitored parameter 

(CHENG et al., 2015; CARDOSO et al., 2021). 

Hence, to identify the variations of the chlorine concentration during leak events, it is 

proposed to perform simulations considering the reservoirs as sources of chlorine with 

a continuous supply of water at a concentration of 3,0 mg/L of chlorine. The simulations 

had the flow reaction coefficient equal to -2,5, following the default value for chlorine 

simulations (ROSSMAN, 2000), and the pipe wall reaction coefficient equal to 0,15 

(FISHER et al., 2017).  

As node 104 proved to be dominant for water age sensitivity in the previous scenarios, 

it is proposed to analyze this node once more. This node has a chlorine concentration 

that is very sensitive to leakages at almost all nodes of the network. Figure 2.7 highlight 

the maximum absolute differences of the chlorine concentration values at each node 

with the node 104. These maximum differences are evaluated considering the 

simulations with a leak in each node and for their whole duration. For this, a new 

process of simulations is performed, in this case a 24-hour simulation was performed 

individually at each node and the maximum chlorine concentration was observed at 

node 104. 
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Figure 2.7- Maximum difference in chlorine concentration. 

 

The numerical a chlorine variation shown in Figure 2.7 demonstrates that most of the 

network nodes leakage scenarios (86.6%) affect approximately 1,0 mg/L in the chlorine 

concentration at node 104. With 4 scenarios (1,5%) with values close to 2,0 mg/L and 

3 nodes (1,12%) with approximate values at 3,0 mg/L. Finally, 10,78% of the nodes 

affect up to 1mg/L. 

Considering, for example, a leak at node 37, the chlorine concentration at node 104 is 

completely changed (Figure 2.8). The Figure 2.8 shows that the chlorine concentration 

at node 104 assumes a completely different behavior depending on the presence of a 

leakage at node 37 or not. Although the maximum value changes slightly, passing from 

a 3,00 mg/L without leakage to a 3,05 mg/L with the leakage, the signal exhibits 

consistent variation during time. These variations may provide a significant source of 

information. For example, it can be observed that the concentration difference is 2.5 

times greater than the sensitivity of the monitoring equipment presented by Gobet et 

al. (2001) (0,02mg/L). This would result into a possible detection by the opportune 

sensors. 
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Figure 2.8 - Pressure and chlorine behavior at note 104 with leakage at node 37: (a) Pressure 
variation, (b) Pressure variation delta, (c) Quality variation and (d) Quality variation delta. 

 

Given that the purpose of this study is to support leak detection tasks, and if a sensor 

with a sensitivity of 0,02 mg/L could be placed at node 104, the inducted changes in 

the chlorine concentration due to a leakage could be theoretically detected in 99,5% 

of network nodes. These monitoring data can be used coupled with data-driven 

techniques and hydraulic simulations so that, through them, information such as leak 

location, determination of leak demand and chlorination failure may be rapidly and 

accurately identified and corrected. 

The important variability highlighted in Figure 2.7 and Figure 2.8 was expected also for 

chlorine, because the mass transfer is altered when changing the pipe flow rates to 

meet the leak demands. To assess the changes inducted by leak events in the chlorine 

concentration values during the simulations, it is proposed to use the graph 

representation of the network. In particular, the following section provide an analysis 

of shortest path between the reservoir and node sensors. 

2.4.4 Shortest path and Flow changes 

For this application the Modena network is represented as a graph where the nodes 

are represented by vertices, the pipes are represented by edges and the maximum 

flow rates were used as edge weights. With these assumptions, Figure 2.9 show the 

shortest path results, as well as the maximum flow rates differences for each pipe due 

to a leakage. 
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Figure 2.9 - Network behavior flow – (a) Shortest path – reservoir 269 to node 104 and (b) Flow 
differences – leakage node 37. 

a)                                                                     b) 

  

The Figure 2.9a show the shortest path found through between reservoir 269 and node 

104, with the entire total amount of water needed to supply the node's demand coming 

from reservoir 269. This total amount is determined through the Trace function of the 

Epanet software. Figure 2.9b shown the differences, at each pipe, between the 

maximum flow values without leakages and the maximum flow values with a leak in 

node 37. It can be noticed that there are changes of up to 2,5 L/s, and that there are 

changes in the flow rates in the pipes present in the shortest path between the reservoir 

and node 104. Thus, these changes in the flow rates in the pipes that belong to the 

shortest path explains the variations highlighted in the quality parameters analyzed in 

Section 2.4.2. Another leak is afterward simulated individually at node 133, and Figure 

2.10a) shows the variations of chlorine concentration in node 104, as well as the map 

of the variations of the flow rates during this different leak. 

 

 

 

 



47 

 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

Figure 2.10 - Behavior of quality and flow with leakage 133 – (a) S Chlorine – node 104 and (b) 
Flow differences – leakage node 133. 

a)                                                          b) 

  

It can be observed in Figure 2.10 that, once again, the behavior of the chloride 

concentration at node 104 is altered, even with a leak simulation in a more distant node 

and that receives a smaller contribution of water from reservoir 269. This behavior 

supports more the use of quality data for leak detection, since it was proven that points 

in the network can suffer great changes in quality, even with distant leaks, which 

perhaps wouldn't affect the pressure, for example, of this node. 

2.5 Discussions and partial conclusion 

The water loss and contamination in the Water Distribution Networks is a global 

problem that needs attention for the techniques development that help to reduce such 

damages. Water quality data provides an abundant source of information for the leak 

location and optimization of the sensor placement in the Water Distribution Network. 

In addition to the high sensitivity of such a parameter, the equipment for its monitoring 

is already on the market with a high accuracy, confirming the importance of exploring 

this aspect. 

This research is a proof of concept on water quality monitoring also for leak situations. 

The results show, through computer simulations and the observation of water age and 

chlorine concentration, that the monitored parameters of water quality undergo 

changes greater than pressure (data usually used for detection) and proved to be an 
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additional and effective source of information in case of leaks. The change of water 

paths in the pipes to meet the leak demand modifies the entire behaviour of the quality 

parameters change, and in most cases a significant change is observed. This change 

only does not occur mainly in nodes immediately connected to reservoirs or very close. 

Even so, it stands out in this proof of concept that water quality data can be used for 

various purposes, such as for detecting and locating leaks and failures in the operation 

of pumps and valves. The behaviour of flows was proven by evaluating the shortest 

path, by representing WDS as a graph. Through a simulation of leaks in all nodes, it 

was possible to observe that water quality is strongly affected in some nodes. Thus, a 

small number of sensors placed in the WDN at optimized points, as happened with 

node 104, could mean a great efficiency in detection leaks and a great saving for 

service providers.  

How to monitor the chlorine concentration is effective for detecting leaks, other factors 

may be explored, such as chlorination failures, pump, and valve operation. An 

additional point that can also be explored is the quality sensors placement to detect 

and locate leaks. 
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3  

Novel pressure sensor placement 
method for leakage detection in water 
distribution networks using graph 
signal processing and sampling theory 

 

 

 

 

 

 

This chapter is an adapted version of Barros, D., Giudicianni, C., Creaco., E. 

Meirelles, G., Brentan, B. Novel pressure sensor placement method for leakage 

detection in water distribution networks using graph signal processing and sampling 

theory. Water Resources Research, 2023 (Under review). 
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Abstract 

A suitable strategy for the optimal pressure sensor placement in water distribution 

networks (WDNs) allows water managers and engineers to better monitor and control 

the system also in terms of leakage detection and reduction. This paper addresses the 

task by adopting the innovative graph signal processing theory. First, Spectral 

clustering algorithm is applied to separate nodes with similar sensitivity and 

coordinates and creating a graph for each cluster. Then, three metrics from signal 

sampling on graphs (SSG) theory are employed for selecting nodes as potential sensor 

position. A novel metric, based on coverage rate of placed sensors, is presented for 

the evaluation of the pressure monitoring system, which also allows the definition of 

the most appropriate number of sensors to be installed. The proposed approach is 

applied to two WDNs and compared with other methods known in the scientific 

literature. Results show the effectiveness of the method in placing pressure sensors 

ensuring an extensive coverage to detect leakages with a smaller number of sensors. 
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3.1 Introduction 

 Due to water crisis, climate changes, population growth and more and more 

interconnected and complex systems, efficient management of water distribution 

networks (WDNs) has become a crucial factor in ensuring the provision of clean water 

to the citizens in ever-larger cities (GIUDICIANNI et al., 2020). Current WDN 

management strategies seek to monitor and control the main hydraulic variables, such 

as pressure, flow, reservoir levels as well as the settings of pumps and valves (PÉREZ-

PADILLO et al., 2020; BONILLA et al., 2022). Pressure monitoring is important to 

guarantee the quantity and quality of supplied water, operating the system under 

economic constraints and detect abnormal functioning condition (e.g., leaks, control 

device failure or chemical intrusion) (JUN and KWON, 2019; ZHOU et al., 2019; 

RAMOS et al., 2020).  Santos-Ruiz et al. (2022) stated that pressure sensors are more 

attractive, especially for detecting leaks, because they are cheaper and easier to install 

and maintain than flow sensors. 

Nevertheless, sensors have limitations. Qi et al. (2018) presented metrics to assess 

the capacity of the sensors and highlights five main problems: nodes whose leaks are 

undetected by the sensors; undetected demands, derived from the undetected nodes; 

detection dimension, the number of sensors that detect the anomaly; the leaky region 

detected by a sensor; and the minimum detectable leak flow. Also in this sense, Huang 

et al. (2020) presented an assessment of the impacts of leaks on hydraulics and water 

quality. The authors conclude that the degree of impact of a leak depends not only on 

the diameter of the pipe, but also on its location, the time it occurs and that the effects 

of leaks can affect areas far from the actual location of the leak.  

For helping to improve the management of water systems, several studies proposed 

strategies to monitoring the WDNs (GALUPPINI et al., 2020). Genetics algorithms 

have been applied to select pressure monitoring points addressing different objectives. 

Casillas et al. (2013) used a genetic algorithm to place sensors in a way that minimizes 

the number of non-isolated leaks.  Soroush and Abedini (2019) used a geostatistical 

and genetic algorithm tool with the function the minimize the pressure data variance. 

In this sense, Romero-Ben (2022) presented a methodology for placing sensors using 

a custom genetic algorithm in which it seeks to minimize a metric based on distance 

from the pipe to possible points monitored.  
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Multiple objectives optimization is also applied to determine pressure monitoring points 

in WDN. Ferreira et al. (2022) presented a methodology for placing pressure sensors 

using the NSGA-II algorithm and two objective functions: maximizing the sensitivity of 

pressure monitoring network related to roughness changes in pipes and maximizing 

the sensitivity of the sensor for pipe burst events. The authors present three optimal 

solutions taken from the Pareto front that individually maximizes each objective 

function and a trade-off solution. Hu et al. (2022) also presented a methodology for 

placing pressure sensors using the NSGA-II algorithm but addresses five objective 

functions. The authors also present a multi-criteria approach for the selection of the 

most appropriate sensor sets presented at the Pareto front.  

However, when using multi-objective algorithms this post-processing is necessary to 

select the alternative solution presented that best meets the needs of the operator. In 

this sense, Brentan et al. (2021) presented a multi-criteria decision-making technique 

to cluster solutions from Pareto front to simplify the selection of the most efficient 

monitoring strategy. Approaches for the sensor placement that do not employ multi-

objective algorithms are also widely studied. Sarrate et al. (2014) used the k-means 

algorithm to partition WDNs following the sensitivity to faults of the nodes and choose 

the node closest to the cluster center as the monitoring point. Peng et al. (2022) applied 

the Structural Deep Clustering Network algorithm to partition WDNs following 

topological structure and hydraulic characteristics under multiple operating conditions. 

For each cluster, the highest sensitive point was selected. The authors concluded that 

the number of monitored points is more sensitive to the level of pipe rupture than to 

changes in the number of sensors.  

This question highlights another widely studied aspect, the number of sensors to be 

placed in a network. Indeed, since it is impossible to place sensors at all points in the 

network, mainly due to budget constraints, the optimal number of sensors to be 

installed is still a field for improvement. However, due to difficult application and high 

computational value, approaches that use multi-objective algorithms, greedy 

algorithms, and exhaustive analysis in conjunction with WDN simulations are falling 

into disuse (RAEI et al., 2019; QUINTILIANI et al., 2020; KHORSHIDI et al., 2020). In 

this sense, Perelman et al. (2016) presented an approach using a greedy algorithm 

and a failure simulation process to define which monitoring points are possible to detect 
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the greatest number of failures. However, due to the large computational effort, the 

algorithm resulted unsuitable for large WDNs. In this regard, some research have tried 

to work with different methods that have been successfully applied in other areas (XU 

et al., 2008). Using graph theory tools, Giudicianni et al. (2020) presented a 

methodology for water quality sensor placement without carrying out hydraulic 

simulations, but only exploiting the topological properties of the graph associated to 

the WDN. After a preliminary clustering of the WDN, sensors were placed in the 

topologically most central nodes. Giudicianni et al. (2022) used a weighted graph for 

reducing the computational burden of the optimization phase by defining potential 

sensor locations on the hydraulic/topological-wise most central pipes. 

Graph theory is a mathematics branch that can model and identify complex interactions 

in data by modeling a system as a graph, in which vertices and edges represent the 

objects and the interactions between them (GUTIÉRREZ-PÉREZ et al., 2013). Di 

Nardo et al; (2018) used graph spectral techniques to simplify the management and 

the monitoring of WDNs. Torres et al. (2017) combined graph theory and statistical 

inference to characterize hydraulic performance and water quality. The authors used 

different graph analysis metrics to determine correlations between network elements. 

Di Nardo et al; (2018b) proposed a novel topological based approach for identifying 

primary pipes on which focus field investigation and maintenance in case of limited 

budgets.  Wei et al. (2019) used the Graph Fourier Transform operator to sample WDN 

nodes for the monitoring of water quality to recover the dynamics of the system with a 

limited number of detection points. However, computational problems can be 

generated in very large graphs, making it difficult to analyse and process the 

information. To get around this situation, Signal Sampling on Graphs (SSG) was 

developed to reduce the size of graphs without having large losses in their information 

(TANAKA et al., 2020).  SSG tools seek to find conditions for the recovery of signals 

in the graph, through a subset of vertices (TSITSVERO et al., 2016). Wei et al. (2019) 

used this theory to select sampling points to retrieve quality data from a WDN. The 

authors concluded that by monitoring about 30 to 40% of the nodes, it is possible to 

fully recover the network dynamics. 

The SSG can be an effective tool for sensor placement in WDN, as the approach 

indicates the vertices to be monitored so that the graph can be well represented and 
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the data from the other vertices retrieved (TANAKA et al., 2020). This is a process 

analogous to placing sensors in WDN that consider pressure, flow, or sensitivity data 

from nodes. The SSG analyses the data of the vertices, and through them seeks to 

recover or evaluate the situation of the other vertices data. Following this line of sensor 

placement through the SSG (SAKIYAMA et al., 2016), working on a literature graph, 

placed sensors on more informative vertices to predict the values of unmonitored 

vertices. Zhou et al. (2022) proposed a novel graph-based hydraulic grade 

reconstruction method to estimate unknown pressures of WDNs by using signal 

processing theory. The method showed to be very efficient in case of limited number 

of sensors since it does not require precise determination of WDN physical parameters. 

Different metrics can be used in the SSG process, looking for vertices or edges that 

best represent the graph. Seshadhri et al. (2014) used the wedge sampling metric, 

which performs the grouping of vertices that best represents the graph. This grouping 

occurs following three concepts: transitivity, local grouping, and degree grouping. Chen 

et al. (2016) used uniform sampling method, projected sampling, and active sampling 

to select vertices in known graphs. The sampling process can be applied to select a 

set of monitoring vertices, to retrieve signals at all unmonitored vertices (TSITSVERO 

et al., 2016; LORENZO et al., 2018). Pesenson et al. (2008) used shape and 

nomenclature, in which the authors found conditions for the recovery of signals from 

the graph through a set of vertices, calling them an exclusivity set. However, previous 

research already worked with metrics that sought to reduce the complexity in 

manipulating data in large graphs. Adamic et al. (2001) introduced a signal sampling 

approach that considers vertices with many connections to other vertices. 

The development of fast and effective techniques for the selection of monitoring points 

without the need for post-processing is still a crucial task to address (BRENTAN et al., 

2021; CARDOSO et al., 2021). Based on the presented text, the current methodology 

addresses the use of graph theory tools and the SSG technique to optimize the 

selection of locations for pressure sensors in WDNs. This innovative approach allows 

for an efficient distribution of sensors based on topological features and centrality 

metrics in WDNs, simultaneously reducing computational complexity compared to 

traditional approaches heavily reliant on hydraulic simulations. 
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In this regard, using the SSG to place monitoring sensors in a WDN can be an efficient 

strategy. Therefore, the present research uses metrics linked to SSG to select 

locations for pressure sensor placement. To guarantee an even distribution of them, 

the spectral clustering process is used to partition the network, and then, separately, 

the SSG tools are applied on each cluster to select the monitoring nodes. An innovative 

metric for evaluating the quality of the monitoring layout is also defined, which relies 

on the simulations of leaks of different intensities and consequent induced pressure 

variations in sensor locations. Finally, a method based on the leakage coverage rate, 

for the selection of the optimal number of pressure sensors to be installed, is proposed. 

3.2 Materials and methods 

This research combines graph theory and signal sampling on graphs for defining an 

optimal pressure sensor placement in a WDN. First, the areas of the WDN are 

modelled as an undirected weighted graph. Then, a signal sampling method is applied 

to determine monitoring points. The description of the methodological steps is 

presented in Figure 3.1. 

Figure 3.1 - General methodology flowchart. 

 

Thereafter, the proposed methodology consists of three main steps: 
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 Simulation process: Epanet software application in a programming environment 

to carry out hydraulic simulations and obtain node sensitivity values. 

 Clustering analysis: application of Spectral clustering method (VON et al. 2007) 

to define areas with similar characteristics. Application of metrics of SSG to 

select potential nodes for pressure sensor placement: Centrality, weights, and 

shorter paths-based sampler; betweenness centrality-based sampler; and 

PageRank based sampler. 

 Evaluation process: application of a novel leakage simulation-based metric for 

the assessment of the monitoring layout. 

The methodology is implemented by dividing the WDN into clusters, where nodes with 

similar sensitivity are grouped. The core concept revolves around treating each cluster 

as a stand-alone graph, enabling the application of SSG metrics to determine optimal 

sensor positioning. This approach is designed to improve sensor distribution across 

the network, as each cluster corresponds to a dedicated sensor. The goal is to achieve 

a more comprehensive coverage of sensors, with each cluster having a sensor, 

improving overall system efficiency. 

3.2.1 Clustering analysis 

Cluster analysis is a set of techniques for data mining and pattern recognition which 

allows understanding the natural structure of a dataset or finding hidden organizations 

in unlabelled datasets, by revealing intrinsic similarities in the data (HAN et al., 2001). 

Clustering algorithms divide a dataset into meaningful groups, leading to groups where 

belonging data are as similar as possible according to a similarity measure or proximity 

relationships. In this work, the spectral clustering is used to define clusters in WDN to 

place sensors in each cluster. To apply the method is mainly used data represented in 

the form of graphs, and the relationships of proximity are represented by the edges of 

the graph. Graph theory base is a mathematics branch with the ability to identify and 

model complex interactions (BIGGS et al., 1986).  

In this work, the WDN is modelled as an undirected weighted graph, considering its 

physical topology as 𝐺 = (𝑉, 𝐸, 𝑊) (GIUDICIANNI et al., 2018), with 𝑉 are objects 

(vertices) corresponding to the network nodes (junction nodes, tanks and reservoirs); 

𝐸 is the interaction between the objects and corresponding to the pipes, valves and 
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pumps in a WDN; and 𝑊, in turn, are the weights assigned to the edges, representing 

stronger connections between certain vertices. 𝑊 can be associated for instance with 

pipe flows and head losses or another physical-chemical parameter (KLISE et al., 

2020). Due to the difficulty on analysing large graphs, it is important to reduce the 

amount of data while keeping as much important information as possible Tanala et al. 

(2020) and Qi et al. (2018). In this way, and seeking to reduce the size of the graphs, 

the theory of sampling signals on graphs was developed. 

To cluster the network based on node similarity, a graph weighted by the maximum 

flow of pipes is used, and sensitivity to leaks is assigned as information to the graph 

vertices. This sensitivity value is determined through computer simulations of leaks at 

each node and the analysis of the impact of the simulated leaks on other nodes in the 

network, following the approach presented by Pérez et al. (2011). The edge weight 

information and vertex sensitivity are used as a feature matrix in the application of the 

Spectral Clustering algorithm (SÁNCHEZ-GARCÍA et al., 2014; VON et al., 2007). The 

spectral clustering process can be described in 5 steps, the first is the calculation of a 

Gaussian affinity matrix (𝐺𝑚) that represents the similarity between vertices 

information. This matrix is determined by: 

                                                  𝐺𝑚 ௜௝ =  
ୣ୶୮ (ି ฮ௫೔ି௫ೕฮ

ଶఙమ
                                                        (3.1)            

where 𝑥௜ and 𝑥௝ are the feature vectors of vertices 𝑖 and 𝑗, respectively. σ is the 

parameter that controls the width of the Gaussian distribution that influences the affinity 

of neighbouring vertices (CHANG and YEUNG, 2008). After this first step, the 

Laplacian matrix (𝐿) is calculated to detain the structure of the connections between 

the vertices, being determined by: 

                                                  𝐿 =  𝐷 − 𝐺𝑚                                                        (3.2)            

where, 𝐷 is a diagonal matrix resulted from the sum of the rows of 𝐺𝑚. 

The next step is the decomposition of 𝐿 to calculate the eigenvalues and eigenvectors:  

                                                  𝐿 𝑥 ∧ = ∧ 𝑥 ∨                                                         (3.3)            
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where ∧  is a eigenvalues matrix and ∨ is a diagonal matrix containing the eigenvectors. 

Thus, the first 𝑘 eigenvectors associated with the smallest eigenvalues higher than 

zero built are selected to form a new matrix (𝑈). The matrix 𝑈 is used assigning to a 

cluster based on its coordinates in the space generated by the selected eigenvectors 

(CHANG and YEUNG, 2008; BERAHMAND et al., 2022). 

3.2.2 Signal sampling process 

Following Leskovec and Faloutsos (2006) guidance on vertex sampling, this article 

uses three vertex sampling metrics to select monitoring points in the subgraphs 

generated by the clustering analysis. The first metric uses a combination of three 

measures: centrality, sum of edge weights, and counting how many shortest paths 

pass through each node. The second metric prioritizes central vertices related to 

information flow. And finally, the third metric is based on the PageRank vertex ranking 

metric. 

3.2.2.1 Centrality, weights, and shorter paths-based sampler (CWSBS) 

The main concept of SSG is to reduce the size of the original graph while preserving 

important properties and features of it. Therefore, graph information can be a 

determining factor for the selection of points for sampling. To meet these factors is 

developed a metric that uses information of vertices centrality, the edge weights, and 

the shortest paths. Thus, each cluster is considered a subgraph (𝐺௚௣) being first 

determined the subgraph centrality (𝑐) (ESTRADA et al., 2005) for each vertex through 

a series of weighted sums: 

                                                  𝑐(𝑖)  =  ∑
ଵ

(ଵାௗ೔,ೕ)
                                                         (3.4)            

where, 𝑖 is the node for which the centrality is calculated. 𝑗 indicates a node belonging 

to the subgraph, excluding the 𝑖 node itself. 𝑑௜,௝ is the shortest path length between 𝑖 

and 𝑗 .This process identifies and ranks vertices with greater centrality. After this step, 

the vertices are sorted based on their higher edge connections. The edge weights are 

represented by matrix 𝑊. Thus, the sum of the edge weights that vertex has is 

considered (HAGBERG et al., 2008; HAGBERG and CONWAY, 2020). 
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The third step calculates how many shorter paths pass through each vertex. For each 

vertex 𝑣௜ in the graph 𝐺௚௣, we determine the shortest path from all other vertices to 𝑣௜ 

and increment a counter for each intermediate node encountered along the way. This 

process can be mathematically represented as follows: 

For each shortest path, increment the centrality count for each vertex that lies on the 

path. This is mathematically expressed as: 𝐶(𝑣௝)  =  𝐶(𝑣௝)  +  1 for all 𝑣௝ on the shortest 

path to 𝑣௜. 

Finally, we combine the subgraph centrality scores for all vertices in 𝐺௚௣. The vertices 

that are most important in the context of our analysis are those with the highest 

centrality scores. The overall subgraph centrality (𝑆௚௖) score can be computed by 

adding the centrality scores of the vertices. Additionally, we give more weight to 

vertices connected to edges with larger weights and shorter paths. The combination of 

these measures can be expressed as: 

𝑆௚௖(𝑣௜)  =  ∑ 𝐶൫𝑣௝൯ +  𝛼 ∙ 𝑊𝑒𝑖𝑔ℎ𝑡(௝ 𝑣௜) +  𝛽 ∙ 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑣௜)              (3.5) 

where 𝑆௚௖(𝑣௜)  is the subgraph centrality score of vertex 𝑣௜. 𝐶൫𝑣௝൯ is the centrality count 

of vertex 𝑣௝ as computed in the previous steps. 𝛼 and 𝛽 are weighting factors for the 

edge weights and path lengths, respectively. 𝑊𝑒𝑖𝑔ℎ𝑡(𝑣௜) is the weight of edges 

connected to vertex 𝑣௜. 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑣௜) is the length of the shortest paths to vertex 𝑣௜ 

These formulas help us identify and rank the most important vertices within the graph 

𝐺௚௣ based on their subgraph centrality scores. 

3.2.2.2 Betweenness centrality- based sampler (BCBS) 

Betweenness centrality vertices sampling approach is applied and uses the measure 

of current flow between vertices to determine the relative importance of each vertex in 

a graph (BRANDES, 2001). The equation for calculating the centrality of approximate 

current flow between vertices is a combination of several measures: 

𝐵𝑐(𝑣)  =  ∑
ఓ(௜,௝ |௩)

ఓ೔,ೕ
                                                 (3.6) 



60 

 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

where, 𝑣 is the vertex for which the betweenness centrality is determined. 𝜇௜,௝ is the 

total number of shortest paths between vertex 𝑖 and vertex 𝑗. 𝜇(𝑖, 𝑗 |𝑣) is the number of 

shortest paths between 𝑖 and 𝑗 that pass-through vertex 𝑣.The higher the value of the 

betweenness centrality for a vertex, the more central and important it is considered in 

the graph in terms of connections and communication between other vertices 

(BRANDES, 2001; HAGBERG et al., 2008; FENG and WANG, 2022). 

3.2.2.3 PageRank Based Sampler (PrBS) 

PageRank metric assigns a score to a vertex based in connectivity, counting the quality 

and quantity of that vertex in terms of connected edges. This metric is introduced by 

Larry Page in 1998 (PAGE, 1998) and uses the random path method. This metric was 

based on users connected to a web browser without an address bar or 'back' option. 

Thus, to access the web page, the user would have to access the page through an 

edge on the previous page or through a button that chooses a page that will be opened 

randomly. The probability of randomly accessing the web page (vertex) is determined 

by: 

𝑃𝑅(𝑖)  =  
(ଵି ఛ) 

ேାఛ ∑
ುೃ(೅ೕ)

ೖ(೔)
೟
ೕసభ

                                                 (3.7) 

where 𝑇௝ represents all edges from vertex 𝑖 to 𝑗; 𝑃𝑅(𝑖)  and 𝑃𝑅(𝑇௝) are the PageRank 

values from vertex 𝑖 to vertex 𝑗; 𝑘(𝑖) is the vertex; 𝜏 is a damping factor usually equal 

to 0.5 (ZHANG and ZHANG, 2019). Finally, the metric selects the vertices with the 

highest values of 𝑃𝑅 as the sampling point. Zheng et al. (2017) applied this concept 

and an adaptation in a graph with one million vertices to reduce information search 

time and increase search accuracy. Therefore, the use of this metric seems a 

promising field to explore for WDN graphs. 

3.2.3 Assessment process 

The methodology presented in this work is based on leak coverage terms. Notably, 

leak simulations are performed individually in the WDN nodes and if this leak changes 

the pressure of at least one monitored node, the leak is considered detected. Leakage 

simulations rely on the addition of a leakage flow rate, as a percentage of the total 
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network demand value (𝑞), individually on each node by using the emitter equation 𝐸௖ 

(KLISE et al., 2020): 

𝐸௖  =  
௤

√௉
                                                       (3.8) 

where 𝑃 is the average daily pressure head. In general, the literature considers that an 

anomaly is detected when changes appear on monitored data, but do not specify what 

value of change in the data. An example of this situation is presented by Cardoso et 

al. (2021) that considers the detection of a contamination in network since one of the 

sensors is affected in any change in the concentration of the monitored behaviour. 

The coverage rate is determined for each monitoring system layout as a function of the 

number of sensors and presented on a Pareto front. A similar methodology is 

presented by Zhao et al. (2020) to evaluate the performance of sensors. The present 

research uses the different quantities of sensors in the termination of the coverage 

rate. Thus, the methodology allows to define the proper number of sensors for each 

percentage of leak detection.  

The coverage rate considers the sensitivity of the sensors to pressure variations. For 

this, two pressure load change limits are considered, respectively 0.5m and 1m, 

simulating the possibility of choosing sensors with different sensitivity. Then, pressure 

changes in the sensors are observed, if a leak in a certain node result in a pressure 

drop greater than the threshold (0.5m or 1m), the leaking node is considered covered. 

The number of sensors to be placed by the method follow a maximum number about 

4% of the total number of WDN nodes, following the indication of Vrachimis et al. 

(2020). 

To evaluate the effectiveness of sensor placement, the present research compares the 

sensor layouts proposed by other researcher working on the tested case studies. In 

this regard, an exhaustive random selection process of sensors will be performed, from 

1 to the maximum number of sensors placed in this research, and among the selected 

monitored nodes. For each number of sensors, the process will calculate the 

corresponding coverage rate. A Monte Carlo analysis is used to estimate the possible 

results of coverage rate and the choice of nodes. 
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3.2.4 Explanatory application 

For a better understanding of the proposed methodology, a simple case study is 

shown. (Figure 3.2) with 5 demand nodes (with demand ranging from 1 to 5 L/s), a 

reservoir and 6 pipes (with length of 230m, diameter of 150mm, and roughness of 90 

according to Hazen-Williams). 

Figure 3.2 - Topology of the explanatory network used to explain the methodological process. 

 

As a first step, a 24-hour simulation is performed, and the pressure data of all nodes 

are saved. Then, a leak per simulation is added individually at each node, with a leak 

flow rate of approximately 1.2 L/s and the pressure is also saved for all nodes. Then, 

sensitivity matrix is calculated, as shown at Table 3.1. 

Table 3.1- Sensitivity matrix calculated to explanatory network. 

Nodes 2 3 4 5 6 
2 0.0754 0.0737 0.0735 0.0730 0.0711 
3 0.0754 0.1018 0.0864 0.0918 0.0894 
4 0.0754 0.0868 0.1026 0.0943 0.0920 
5 0.0754 0.0963 0.0992 0.1105 0.1076 
6 0.0754 0.0963 0.0992 0.1105 0.1610 

 

Node 6 has higher sensitivity to leaks, since it is at a dead-end node and far from the 

reservoir. Thus, the leak at other nodes changes water flows and consequently the 

pressures. For a better understanding of the sensitivity of the nodes, the maximum 
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value is used in the creation of the clusters. The nodes sensitivity, the resulting clusters 

and the nodes selected for monitoring are shown in Figure 3.3. 

Figure 3.3 - Application and results to explanatory network. a) Sensitivity. b) Clusters. c) 
Sensors – CWSBS. d) Sensors - BCBS and PrBS 

                             a)                                                                    b) 

  

                              c)                                                                  d)         

 

  

The maximum values shown in Figure 3.3a corroborate the values presented in Table 

3.1, where it is possible to observe node 6 with greater sensitivity. It is also possible to 

observe the low sensitivity of node 2, since it is directly connected to a fixed level 

reservoir, which makes the pressure less susceptible to changes. The maximum 

sensitivity values are also used to determine the network clusters and are shown in 

Figure 3.3b.  
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The nodes are then clustered with the Spectral clustering process, being nodes 4, 5 

and 6 for cluster 1 and the other nodes for cluster 2. The maximum flow of the pipes is 

used as edge weights, resulting in weighted matrices for each cluster, as shown in 

Table 3.2. 

Table 3.2 - Weight matrix calculated to explanatory network. 

Nodes 4 5 6  Nodes 2 3 
4 0 0.00259 0  2 0 0.00359 
5 0.00259 0 0.00469  3 0.00359 0 
6 0 0.00469 0     

                       a) Cluster 1                                                         b) Cluster 2 

These matrices are used to create graphs using the NetworkX package (HAGBERG 

et al., 2008). The Water Network Tool for Resilience (WNTR) package (KLISE et al., 

2020) is used for the hydraulic simulation process and to acquire data related to WDN, 

such as pressures, flows and node coordinates. After creating the graphs, a signal 

sampling process is carried out on graphs using the Network analysis with Python 

package (HAGBERG and CONWAY, 2020) for calculating the vertex sampling metrics. 

The application of three vertex sampling metrics on the generated clusters sought to 

find two monitoring points in the explanation network, one for each cluster. Nodes 2 

and 5 are selected as monitoring points by the CWSBS metric (Fig. 3.3c). The BCBS 

and PrBS metrics selected the same nodes, 3 and 5, and are shown in Figure 3.3d. 

3.3 Case Studies 

The research proposal is applied on two benchmark networks. The first is the Modena 

network (BRAGALLI et al., 2012). This system model has 268 demand nodes (with an 

elevation ranging from 32m to 42m above sea level), 317 pipes (with diameter ranging 

from 150mm to 350mm, and length ranging from 220m to 1000m) and 4 source nodes 

(with total head of 73.0m, 73.80m, 72.0m, 74.5m). A pattern was used for the hourly 

demand multiplier to represent the typical daily variation in the users’ demand in the 

system, with multiplier values ranging from 0.75 to 1.25. 
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Figure 3.4 shows the topology of the Modena network, as well as the pressure sensors 

placed by Quinones-Grueiro et al. (2021) (upper-right panel) and Mankad et al. (2021) 

(lower-right panel). Quinones-Grueiro et al. (2021) performed several leak simulations 

of different sizes to obtain data to train a neural network. The authors aimed to place 

pressure sensors to detect and estimate the size of leaks in the network. On the other 

hand, Mankad et al. (2021) aimed to place sensors to obtain sufficient hydraulic 

information for monitoring the WDN and estimating pressure values in place. They 

performed simulations of random leaks by increasing the demand of the chosen nodes 

by between 0 and 200% of the original value. 

Figure 3.4 - Modena network and details showing sensors placed from previous works. 

 

The second case study is L-Town WDN (Figure 3.5) (VRACHIMIS et al., 2022). This 

WDN was used during the Battle of the Leakage Detection and Isolation Methods 

(BattLeDIM) and contains 782 demand nodes (with an elevation ranging from 1.5m to 

75.0m above sea level), 905 pipes (with a diameter ranging from 75mm to 200mm, 

and length ranging from 10 to 80m), 2 source nodes (with total head of 100m). A 

pattern was used for the hourly demand multiplier to represent the typical weekly 

variation in the users’ demand in the system, with multiplier values ranging from 0.2 to 

1.4 for residential demand and from 0.5 to 1.2 for commercial demand. Originally this 
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network already has 33 pressure monitoring sensors placed by the organizers of 

BattLeDIM. 

Figure 3.5 - L-town network and detail showing sensors placed on previous work. 

 

Pressure sensors layouts defined in the above-mentioned works: Quinones-Grueiro et 

al. (2021) and Mankad et al. (2021) for the Modena WDN and Vrachimis et al. (2022) 

for the L-Town WDN, have been used for the comparison with those obtained through 

the proposed methodology. 

3.4 Results and discussions 

3.4.1 Application to the Modena network 

The first step is the application of the Spectral clustering process on the sensitivity 

matrix calculated at maximum flow time step to partition the network from 2 to 10 

clusters. As the nodes sensitivity is determined under normal and anomalous 

circumstances, the first simulation process occurs without leaks lasting 24 hours. The 

second process run a leak with a flow rate of 2 L/s individually at each node of the 

network and check the pressure at the other nodes. After these simulations, the 
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sensitivity value to leaks of all nodes is determined and the maximum value is used in 

the clustering process. These sensitivity values can be seen in Figure 3.6. 

Figure 3.6 - Maximum sensitivity - Modena network. 

 

The maximum quantity of clusters refers to twice the number of sensors placed by 

other researches (5 sensors). Indeed, the aim is also to understand what the additional 

advantage would be provided by the addition of a further sensor, and consequently, 

building up a benefit trend as a function of the number of installed sensors. After 

clustering the network, the SSG metrics were applied to select the potential location 

for the sensor in each cluster. Figure 3.7 shows the cluster and the nodes selected for 

sensor placement. 
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Figure 3.7- Maximum sensitivity - Modena network. a) CWSBS. b) BCBS. c) PrBS. 

                                                 a)                                                                                    b)  

 

                                                                                    c)  

 

It is observed in Figure 3.7 that the proposed methodology guaranteed a greater 

spreading of sensors over the WDN. These sensors scattering ensures a better 

probability of event detection (LIU and AUCKENTHALER, 2014). The coverage rate of 

the sensors is calculated to determine the effectiveness of the sensor placement 

process.                                   

This coverage rate is calculated by simulating leakage in all network nodes individually. 

The leaking node is considered covered if the leak in it changes the pressure on at 

least one sensor node by 1m (Fig. 3.8a and Fig. 3.8b) or 0.5m (Fig. 3.8c and Fig. 3.8d). 

Leakage flows considering 0.5% and 1% of the network demand resulted in leakages 

with approximately 2.64 𝐿/𝑠 and 5 𝐿/𝑠. The simulations with these two flow rates allow 
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identifying the sensor coverage to low/medium and high intensity leaks, i.e., whether 

the sensor set is best suited for smaller or larger leaks. 

The researches Quinones-Grueiro et al. (2021) and Mankad et al. (2021) present a 

methodology of sensor placement with a fixed quantity of sensors and do not present 

the monitoring points if a smaller number of sensors is placed. Therefore, and believing 

that the indicated monitoring points are the best even individually, an exhaustive 

process of random choice is carried out between the sensors placed by authors. Thus, 

100 random selection processes are performed among the sensors, and the maximum 

coverage rate is shown in Figure 3.8. 

Figure 3.8 - Coverage rate by number of sensors - Modena network. a) Leak demand: 1% (5 
𝑳/𝒔). b) Leak demand: 0.5% (2.64 𝑳/𝒔). c) Leak demand: 1% (5 𝑳/𝒔). d) Leak demand: 0.5% 

(2.64 𝑳/𝒔). 

1 meter 

                                  a)                                                                     b) 

   

 

0.5 meter 

                                           c)                                                                             d) 
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As expected, these trends show increasing values of the node covered as the number 

of sensors increases up to 10. However, the trend is not strictly monotone, and 

sometimes the addition of a sensor can produce a reduction in the coverage. In Figure 

3.8 it is possible to see that the PrBS achieves equal coverage value for 4 and 5 

sensors, mainly for 1m alteration and with leaks of 5 𝐿/𝑠 (Fig. 3.8a). It can also be seen 

that the 4 sensors placed by BCBS reached a coverage rate (29%) higher than the 5 

sensors placed by the same metric (25%). This difference in coverage rate may be 

related to the locations where the sensors are installed. In fact, if points close to 

reservoirs or with low sensitivity to leaks are chosen, the coverage rate in these 

situations will be lower. Even so, this shows that it is possible to have a broad coverage 

rate with a smaller number of sensors, thus reducing installation costs. 

Still on the results shown in Figure 3.8 it is possible to assess the significant 

improvement if more accurate sensors are placed. This can be better seen in Fig 3.8a 

and 3.8c, where the best coverage rate is 45% achieved by BCBS with 9 sensors for 

1m change and 84% for the same number of sensors, but with a 0.5m change in 

pressure. For smaller leaks (i.e., 2.64 𝐿/𝑠), there is an increase of about 20% in 

coverage rate in all metrics if placed 10 sensors that identify a change of 0.5 m 

compared to sensors that identify a change of 1 m. 

3.4.2 Application to the L-town network 

The methodology is also tested on the L-town network, which has greater hydraulic 

complexities, such as residential, industrial, and commercial demands, in addition to 

having areas isolated by tanks and pressure reducing valves. Detection in these 

isolated areas can be more difficult, since a leak in these areas may not affect pressure 

elsewhere in the network, perhaps requiring sensors placed in the area itself to ensure 

leak detection. Firstly, the Spectral clustering process was applied on the maximum 

hourly sensitivity (Figure 3.9) The maximum number was set according to the number 

of sensors placed on the WDN during the BattLeDIM (VRACHIMIS et al., 2022), 

roughly equal to the 4% of the number of nodes. 
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Figure 3.9 - Maximum sensitivity - L-town Network. 

 

The sensor placement occurred using the metrics of signal sampling, first considering 

the entire network as a graph, and placing one sensor and then using each cluster as 

a graph and placing one sensor per cluster. Figure 3.10 shows the L-town network with 

33 clusters and the sensors placed by each metric. 

Figure 3.10 - Sensors placed and clusters - L-town network (33 sensors). a) CWSBS. b) BCBS. 
c) PrBS. 

                              a)                                                                                       b) 

  

                                                           c) 
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Following the results of placing sensors in the Modena network, the three methods for 

selecting the monitoring points ensured a greater spread of the sensors (Fig. 3.10). To 

check the sensor coverage rate, the leakage simulations on the L-TOWN network also 

used 5 and 10% of the total network demand, which represents leakages with 3.3 𝐿/𝑠. 

Following the results of placing sensors in the Modena network, the three methods for 

selecting the monitoring points ensured a greater spread of the sensors (Fig. 3.10). To 

check the sensor coverage rate, the leakage simulations on the L-TOWN network also 

used 5 and 10% of the total network demand, which represents leakages with 3.3 𝐿/𝑠 

and 6.6 𝐿/𝑠 respectively.  Furthermore, a higher leak flow rate was tested with about 

10 𝐿/𝑠 (about 15% of demand) due to BattLeDIM having leaks with high flow rates, in 

some cases with 20 𝐿/𝑠.  and 6.6 𝐿/𝑠 respectively.  Furthermore, a higher leak flow 

rate was tested with about 10 𝐿/𝑠 (about 15% of demand) due to BattLeDIM having 

leaks with high flow rates, in some cases with 20 𝐿/𝑠.  

To compare the number of sensors placed by the sampling metrics, an exhaustive 

process of random choice is carried out among the sensors placed by BattLeDIM and 

the maximum coverage values for each number of sensors are shown in Figure 3.11. 

This process analyzed the combinations between 1 and 33 among the monitoring 

nodes presented by BattLeDIM and exposes the best maximum coverage rates 

achieved for each quantity. This will help the process of comparing the sensors placed 

by the present research and assess whether a coverage rate like that achieved with 

33 sensors placed with a smaller number of sensors would be possible. concentration 

of 20 mg L-1.  
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Figure 3.11- Coverage rate by number of sensors – L-Town network. a) Leak demand: 0.5% (3.3 𝑳/𝒔). b) Leak demand: 1.0% (6.6 𝑳/𝒔). c) Leak 
demand: 1.5% (10𝑳/𝒔). d) Leak demand: 0.5% (3,3 𝑳/𝒔). e) Leak demand: 1.0% (6,6 𝑳/𝒔). f) Leak demand: 1.5% (10 𝑳/𝒔). 

1 meter 

                                     a)                                                                                     b)                                                                         c)  

 

0.5 meter 
                                     d)                                                                                  e)                                                                           f)  
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It can be seen in Figure 3.11 that the coverage rate is similar between the metrics and 

the sensors placed by BattLeDIM for leaks with 5% of the total network demand, both 

for changes in the sensors pressure of 1m (Fig3.11a). Sensors placed by battle 

achieve higher coverage rate (17%) for all sensor quantities. The sensors placed by 

the proposed approaches reach 12.5% with two sensors placed and this value remains 

for all quantities. These 12.5% are referenced to nodes in area C, whose leaks are 

always covered by the sensors and the area is filled by a tank, which can generate 

significant change in pressures in case of leaks.  

If the leaks are with 10% of the total demand and observing a variation of up to 1m in 

the pressure data of the sensors (Fig. 3.11b) the coverage rate achieved by BattLeDIM 

sensors is almost constant. Meanwhile, the PrBS metric achieves the same results as 

BattLeDIM for 5 to 8 sensors. When placed 13 sensors or more, all metrics and sensors 

placed by BattLeDIM achieve the same results, about 17%. However, the superiority 

of the sensors placed by BattLeDIM is overcome for the larger leak, with 10 𝐿/𝑠. It is 

observed in Figure 3.11c that from 5 sensors placed the metrics CWSBS and PrBS 

have higher results than the BCBS and BattLeDIM. However, with 33 sensors placed 

BCBS achieve the highest coverage rate of 36%, while BCBS and PrBS reaches 23% 

and BattLeDIM reaches 21%.  

Considering the number of sensors placed by BattLeDIM and their coverage rates, with 

22 sensors placed there is a coverage rate of 79% (Fig. 3.11f) and with 33 sensors this 

rate increases only 4%, a small value due to the large addition of sensors. This 

situation can also be observed for the sensors placed by the sampling metrics (Fig. 

3.11f). Notably, for the RNS metric and with 22 sensors a coverage rate of 77% was 

obtained equal to that for 33 sensors, while for the PrBS metric with 25 and 30 sensors 

(Fig. 3.11f) a coverage rate of 77% was achieved. This proves that analysing the 

performance trend of the monitoring system can be a determining factor in terms of 

economic savings and leakage detection, since it is possible to obtain similar coverage 

rates with a smaller number of sensors. 

This same behaviour is repeated if more sensitive sensors are used, which detect 

changes in 0.5 meters or more in pressure. For leaks with 0.5% of demand (Fig. 3.11d). 

the sensors placed by CWSBS and BCBS reach a maximum coverage rate of 13% 



75 

 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

and the sensors placed by PrBS and BattLeDIM reach about 15%. For leaks with 1% 

of network demand (Fig. 3.11e), the sensors placed by the battle achieve higher 

coverage rate (57% with 32 sensors). Among the approaches presented, the one with 

the highest coverage rate is BCBS with 31 sensors and 55% coverage. However, the 

highest coverage rates for leakage with 10 𝐿/𝑠 (Fig. 3.11f) are achieved by the signal 

sampling metrics, reaching 92% for the CWSBS and BCBS metrics. While metric 

achieves its highest coverage rate with 30 sensors placed (91%). For the sensors 

placed by BattLeDIM the maximum coverage value is reached with 33 sensors and 

about 82%. 

 To identify the coverage rate achieved by BattLeDIM sensors in the exhaustive 

process of choosing the nodes, Figure 3.12 and 3.13 shows this rate by the number of 

sensors and can help in comparing the results with the used signal sampling metrics. 

Figure 3.12- Maximum, mean and minimum coverage rate by 1 meter - Sensors BattLeDIM). a) 
Leak demand: 0.5% (3.3 𝑳/𝒔). b) Leak demand: 1.0% (6.6 𝑳/𝒔). c) Leak demand: 1.5% (10𝑳/𝒔). 

a) 

 

b) 
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c) 

 

For a better visualization of the results, it is decided to reduce the scale of the y-axis 

(covered nodes (%)) of Figure 3.12. It is confirmed in Figure 3.12 that even with higher 

leak flow rates, there is not a very significant impact on the pressure of the sensor 

nodes. In all cases shown in Figure 3.12a the maximum coverage rate is 12% being 

the detection of nodes in area C. Leaks in this area are easily identified due to their 

supply being exclusively by a tank connected to a pump. Thus, when a leak occurs, 

the level of the tank reduces and affects the pressure on all nodes in the area. For 

leaks with 10% of demand (Fig. 3.12b) it reaches the maximum detection with 9 

sensors (17%) and keeping the value close to this percentage for other quantities of 

sensors. It can be observed that the best coverage rate when analyzing changes equal 

to or greater than 1m occurs for leaks of 10 𝐿/𝑠, reaching 25% coverage with 24 and 

30 sensors placed. It is observed that in all cases shown in Figure 3.12 the boxes 

remain with a constant size for the different numbers of sensors. It turns out that the 

behaviour for all cases is asymmetric, which means that there is a big difference 

between the minimum and maximum values as the locations of the sensors are 

changed. 

However, if the sensitivity of the sensors is better than 0.5m, better results are achieved 

(Fig. 3.13). 
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Figure 3.13 - Maximum, mean and minimum coverage rate by 0.5 meter - Sensors BattLeDIM). 
a) Leak demand: 0.5% (3.3 𝑳/𝒔). b) Leak demand: 1.0% (6.6 𝑳/𝒔). c) Leak demand: 1.5% (10𝑳/𝒔). 

a) 

 

b) 

  

c) 

 

The Figure 3.13a shows that the maximum, mean and minimum values almost do not 

change for leaks of 3.3 𝐿/𝑠, with an increase of 2% between the mean and maximum 

values and an increase of 3% between the minimums and averages.  However, for 

leaks of 6.6 𝐿/𝑠 (Fig.3.13b) a maximum coverage rate is achieved with 32 sensors 

placed (58%). For leaks of 7.8 𝐿/𝑠 but analysing variations greater than or equal to 
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0.5m (Fig. 3.13c), a peak of 81% coverage is reached with 33 sensors placed. In this 

case, the data are more symmetrical since the coverage rate does not vary greatly 

when the sensor locations are changed. Since with smaller number of sensors, the 

maximum values are similar (mainly for the case exposed in (Fig. 3.13a), this 

corroborates once again about not needing a larger number of sensors. Thus, if a 

better observation of the number of sensors and locations were carried out, it would 

be possible to reduce the number of sensors. 

This means that to ensure greater detection of leaks in this network, sensors would be 

needed to capture smaller changes in pressure. And that for sensors that are not so 

accurate, a smaller amount will already guarantee the maximum coverage rate. This 

shows that, for this network, many sensors placed would not improve the coverage 

rate for leaks of small intensities, because the coverage rate reaches its maximum 

value already with 6 sensors placed. Nonetheless, for leaks with 10% of the total 

network demand, there is an increase of 12% between the coverage rate of the 

minimum and mean values and of 8% between the mean and maximum values. This 

same percentage is observed for leaks with 10 𝐿/𝑠. 

3.5 Discussion and partial conclusion 

In this work, we focus on the placement of pressure sensors for leak detection to 

ensure an efficient distribution of sensors, considering network topological 

characteristics and centrality metrics in graphs. This process proved to be easy to 

implement, with low computational effort and achieved high leakage coverage rates. 

For this, clustering approach, graph theory and signal sampling on graph tools are 

used in the methodological process. The coverage rate in this work is presented in an 

innovative way, simulating leaks in all nodes of the studied networks, and considering 

it covered when the pressures in the sensors changed by more than 0.5 and 1 meter. 

The signal sampling metrics used for the selection of the monitored nodes proved to 

be effective and achieved higher coverage rates compared to sensors placed by 

another research. For the L-town network, the proposal proved to be more effective for 

smaller leaks.  
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This work also brought a focus on the number of sensors placed, which showed that 

with a smaller number of sensors it is possible to achieve results equal to those 

obtained when there are more sensors placed. This situation is also confirmed for the 

sensors placed in the L-town network by BattLeDIM, since an exhaustive process is 

carried out by varying the quantities of sensors and the maximum, mean and minimum 

coverage rates being exposed. 

Another factor addressed in this research that deserves attention is the clustering 

process using the nodes coordinates as parameters and their sensitivity to leaks 

because this did not guarantee that these nodes are connected to each other by pipes, 

which makes it impossible to apply the SSG. Another limiting factor is that the change 

in pressure can occur due to pattern variability and therefore such technique is useful 

compared to monitoring of several days. Therefore, in future works it would be more 

feasible to use the connectivity of the nodes in the clustering process. Another point 

indicated for future work would be the use of new SSG metrics, also considering edge 

sampling, monitoring for example water quality, tank levels and flow rates. 
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4  

Signal processing and pattern 
recognition for leak detection in water 
distribution network 

 

 

 

 

 

 

 

This chapter is an adapted version of Barros, D., Pereira, T., Meirelles., G., 

Fernandes. W., Brentan, B. Signal processing and pattern recognition for leak 

detection in water distribution network. Journal of Water Resources Planning and 

Management, 2023. 
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Abstract 

Leaks are a constant problem in water distribution systems, resulting in wasting 

resources, environmental impacts, and financial losses. Thus, it is crucial to develop 

effective and agile methods to detect network leaks. In this context, this study proposes 

a leak detection methodology using three different processes. The first consists of 

treating monitoring data through Independent Component Analysis, while the other two 

detection processes use the Interquartile Range (IQR) and Matrix Profile (MP) 

techniques, respectively. The methodology is evaluated based on a set of reference 

data provided by the Battle of Leakage Detection and Isolation Methods competition. 

The results indicate that the proposed approach is effective in detecting leaks, with 

some cases being detected in a few minutes after the beginning of the leak. It is worth 

mentioning that the IQR method presents better performance in detecting leaks with 

abrupt onset, while the MP method is more efficient in leaks with gradual increase in 

flow. In summary, the proposed methodology offers a robust and promising approach 

for fast and accurate leak detection in water distribution networks. 
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4.1 Introduction 

Monitoring fluid transport represents a challenge for the sustainable and secure 

operation of any pressurised pipeline due to the imminent occurrence of leaks and 

ruptures, which can be attributed to the gradual deterioration of the intrinsic properties 

of the pipeline or to sudden unforeseen events (ZAMAN et al., 2020). Leaks and bursts 

in water distribution systems (WDS) in developing countries are the most important 

problem to be solved when thinking about the efficiency of the system. For example, 

only 61.5 Liters for every 100 Liters of treated water are in fact counted as used by 

consumers in Brazil, and this water loss can occur in two ways, namely: apparent or 

real (TRATA, 2020). The apparent loss is related to the use of water for unauthorised 

purposes or due to measurement errors, whereas the real loss consists of leaks in 

pipelines, branches, and reservoirs (TRATA, 2020). A study developed by the World 

Bank pointed out that 48.6 billion cubic meters of water are lost annually in the supply 

networks, representing about 14.6 billion dollars (RASHID et al., 2014). Thus, it is 

evident that water loss is a major problem that generates high negative impacts from 

environmental and economic perspectives. 

Leaks can be classified as reported, unreported or background leaks (ADEDEJI et al., 

2017). The first two have similar occurrences, however the identification in those 

reported is only visually possible by people who surround the occurrence region, 

allowing optimised repair operations. On the other hand, background leaks, eventually 

caused in joints, are incipient and have low flow magnitudes, presenting great 

detection complexity without the aid of more robust methods (ADEDEJI et al., 2017). 

The issue of leak detection in hydraulic systems has been extensively explored in the 

literature, with computational and statistical methods that can be applied to models for 

predicting anomalous network conditions (DARSANA and VARIJA, 2018). The known 

leak detection methodologies are generally classified as external and internal 

approaches (GOULET et al., 2013). Acoustic analysis has been extensively explored 

in external methods since the 1990s. Leakages can be identified by analysing noise 

patterns that arise from abnormal conditions. This detection can be achieved using 

portable equipment operated by personnel or through stationary noise measurement 

sensors placed at predetermined locations (HUNAIDI et al., 2004; CHEW et al., 2023). 

Nevertheless, the accuracy of noise measurement can be significantly impacted by 
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external factors. Successful measurement in certain instances necessitates the 

operator’s expertise (XU et al., 2019). 

The continuous monitoring system of the Water Distribution Networks (WDN) is used 

in internal methods to take advantage of the interconnectivity of the hydraulic systems. 

With this, it is possible to optimise the sensors placement and improve the detection 

effectiveness of anomalous events (HUANG et al., 2015). Internal methods commence 

with the strategic placement of sensors within water supply infrastructures. There are 

two primary methodologies which are prominent in leak detection and localization. The 

model-based approach involves utilising a hydraulic model, implemented through 

simulation software to faithfully represent the network’s hydraulic behaviour. This 

method entails comparing real-world hydraulic data with simulated information for 

accurate localization. On the other hand, data-driven approaches dismiss the need for 

a hydraulic model. Instead, they use measurements from in-network monitoring 

devices to extract insights for effective leak detection and localization. Both 

methodologies are commonly preferred and extensively utilised strategies in practical 

applications (RAJABI et al., 2023). 

Algorithms can be modelled to collect and interpret data from WDS, which can 

significantly decrease instrumentation costs (HE et al., 2018). Network information, 

such as pressure and flow rate, can be monitored by sensors and later processed by 

computational methods, which enable identifying leak signal behaviours (CUGUERO-

ESCOFET et al., 2017). Computational methods that treat and recognise leak patterns 

in time series can be exhaustive processes, and even so are widely used (SANTOS 

and PEREIRA, 2014; ZHANG et al., 2016). Thus, we can list the following machine 

learning algorithms to perform this processing work: Support Vector Machines (SVM) 

(MOUNCE et al., 2010); Singular Value Decomposition (SVD) (OLIVEIRA 2016); and 

Artificial Neural Networks (ANN) (MUHAREMI et al., 2019).   

The pressure and flow rate parameters measured at a network point when analysing 

hydraulic networks can be influenced by several conditions, such as: the variable 

demand of consumption during the day; valve closing and opening operations; the 

roughness coefficient; the pipe diameters; and the occurrence of associated leaks 

(ORMSBEE and LINGIREDDY, 1997). When the value of a monitored parameter can 



84 

 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

be affected by several intrinsic elements of the network, the information can 

encompass a mixture of data with different attributes.  

Blind Source Separation (BSS) has been explored since the 1980s as an important 

signal processing tool of a multivariate nature (COMON and JUTTEN, 2010). This 

technique aims to identify and filter out noise associated with a given set of 

observations, effectively separating the original signals into distinct sources. By doing 

so, the method enables more accurate analysis and interpretation of the underlying 

data. The use of Principal Component Analysis (PCA) makes it possible to convert a 

set of supposedly correlated variables into a data set with linearly uncorrelated 

variables. Another methodology widely used in the field of signal processing is 

Independent Component Analysis (ICA), which enables determining signal sources, 

also with the aid of mathematical operations (GAO et al., 2014). 

The data obtained when modelling WDS and evaluating hydraulic parameters through 

a series of observations may exhibit amplitude variations within expected ranges. The 

Interquartile Range (IQR) is a useful tool for classifying a sample of data by dividing it 

into equal quartiles of a normal distribution, with the IQR value representing the 

difference between the third and first quartiles (JEONG et al., 2017). This tool can help 

visualise the range of the expected (or default) domain, aiding in decision-making. The 

IQR can also be used to identify points in a time series where deviations from the 

expected pattern occur. When no pattern is present, the points which deviate 

significantly from the expected results can represent system anomalies. 

There are various approaches to detect anomalies in data, including methods that 

assess recurrent patterns, associate them with failures or trends, and perform sliding 

window analyses using specific evaluation parameters over the entire time series. One 

of these techniques is the matrix profile method, which annotates a time series and 

measures similarities between sub-sequences to identify differences (LI et al., 2022). 

The Matrix Profile (MP) is highly effective at extracting characteristic patterns of time 

series, such as motifs and discords, by evaluating the distances between all sub-

sequences and their nearest neighbours (GUIDOTTI and D’ONOFRIO, 201). Motifs 

are sub-sequences of the time series which are like each other, while discords are 

those that differ significantly from the others. Researchers have used the MP method 
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to identify discords in energy time series to highlight large loads between buildings 

(NICHIFOROV et al., 2020) and to label events in synchrophasor data (SHI et al., 

2019). 

Considering that the hydraulic state of water distribution networks is driven by the 

interaction of user consumption, leaks, and operation of control devices, in this work it 

is assumed that the information (i.e., flow rate and pressure data) collected by the 

water monitoring sensors can be understood as a mixture of vectors from different 

sources (HONGYU et al., 2016). Thus, the data available in the Battle of Leak 

Detection and Isolation Methods (BattLeDIM 2020) (VRACHIMIS et al., 2022) is used 

to develop a methodology to improve the detection of anomalous events in WDS. 

BattLeDIM is a significant benchmark for leakage detection and localization, which has 

been employed by researchers with model-based methods (LI et al., 2022; 

STEFFELBAUER et al., 2022), data-driven methods (DANIEL et al., 2022; WANG et 

al., 2022), and simulation-based approaches (MIN et al., 2022). Although recent 

research addresses leak detection, there are still techniques to be explored in terms 

of detection speed and accuracy. Certain methodologies require a calibrated network 

with established demand patterns, pump operation routines, and known tank levels in 

order to achieve a dependable detection process (STEFFELBAUER et al., 2022; 

DANIEL et al., 2022). However, as the water distribution network ages, the calibration 

precision might be compromised, and the inherent variability in demand could render 

some methodologies ineffective. There consequently exists a substantial opportunity 

to deploy robust and efficient approaches which directly focus on the monitored data, 

thereby circumventing any undue influence stemming from preprocessing of the 

network under examination. 

This article presents a data-based approach and BattLeDIM data is processed using 

the ICA algorithm, which separates it into sources associated or not with leak patterns. 

After this processing, the IQR and MP methods are applied in all data. Upper and lower 

limits are determined by the IQR method, and an anomaly is highlighted when the 

processed data exceed these limits. These limits are then updated throughout the data 

analysis when applying the method. A process seeking to identify the sensitivity of the 

methodology is also performed, comparing the results of the methods with the 

beginning of leaks. In turn, it is possible to point out the most accurate moment when 
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the anomaly began. Finally, this methodology proved to be a tool which facilitates 

visualizing detected anomalous events. 

4.2 Materials and Methods 

This study focuses on the combination of a BSS method and statistical approaches for 

detecting leaks. Thus, the ICA algorithm, the IQR metric, and the MP method are used 

to achieve this goal. Pressure data of a monitoring system is initially processed and 

separated into two sources using the fast ICA algorithm. Both the IQR metric and the 

MP method are subsequently applied for the same purpose (i.e., to detect anomalies 

in the signal source separated by the ICA). However, in the case of the IQR metric, it 

is essential to determine upper and lower limits at each time step. Anomaly detection 

is then triggered whenever the data exceed these limits. 

The methodological framework is described as a flowchart in Figure 4.1. 

Figure 4.1 - Flowchart of the methodological process 
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The combination of the ICA algorithm, IQR metric and MP method seeks to ensure 

robust and reliable detection of anomalies in complex situations, where the application 

of only one technique may not guarantee the expected accuracy. 

4.2.1 Independent Component Analysis (ICA) 

Brown et al. (2001) presents a discussion named the Cocktail Party Problem, and this 

is a classic example of the signal separation methodology which refers to the process 

of isolating individual signals from mixed or composite signals. This problem occurs in 

various situations, including festive events where multiple sound sources are present, 

and distinguishing between them becomes a difficult task for the listener. The use of 

microphones strategically placed can help capture all the sounds present in the 

environment in such situations. The primary goal is to identify a single sound source, 

such as a person’s voice, from the mixed signals using advanced BSS algorithms. By 

exploring the linear independence between the emitted signals by each source, these 

algorithms can extract the original, independent components from the mixed signals, 

enabling to identify the required voice within the festive environment (COMON, 2004). 

The ability to isolate individual sound sources has significant advantages in various 

fields, including speech processing, music analysis, and biomedical signal processing. 

Thus, the Cocktail Party Problem has become a crucial test scenario for evaluating 

and developing signal separation techniques, including ICA (COMON, 2004). 

Making an analogy with the elements presented, we take a number 𝑁 of vectors 

(recorded sounds) by a number 𝑀 of samples collected (microphones) as input, and 

then processing the data with BSS makes it possible to identify components that are 

separated according to their previously unknown nature. 

Equating the problem, a signal can be represented by a matrix 𝑋 with transposed 
rows with dimension 𝑁 𝑥 𝑀: 

 

𝑋ே௫ெ = ൥
𝑋ଵଵ ⋯ 𝑋ଵெ

⋮ ⋱ ⋮
𝑋ேଵ ⋯ 𝑋ேெ

൩ 

where 

𝑋௜ = [𝑋௜,ଵ, 𝑋௜,ଶ, ⋯ , 𝑋௜,ெ]் 
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It is assumed that 𝑋 is a linear combination of the original vectors, corresponding to 

the multiplication between a matrix 𝐴 (mixture matrix) and a matrix 𝑆 with a structure 

like 𝑋: 

𝑋 = 𝐴𝑆                                                       (4.1) 

The 𝑋 components correspond to the sounds recorded in the cocktail analogy and 𝑆 

to the original, individual sounds. The proposed algorithm has the role of finding matrix 

𝐴. However, matrix 𝑆 is also unknown. ICA does not guarantee that sources are 

separate or that all original sources are retrieved, but it seeks to find transformations 

that maximise statistical independence between components. A variation of ICA that 

aims to solve some of the limitations and computational challenges associated with the 

direct application of ICA is Fast-ICA. This variation is optimised to converge quickly to 

independent solutions and typically uses a negentropy approach to measure statistical 

independence. 

Thus, to estimate both matrices, the fast-ICA algorithm is used for the separation 

process. The measured signals, 𝑋, are initially centred, removing the average value of 

each component. After centralization, the data are processed by a whitening 

technique, which is a linear transformation of the data based on decomposed 

eigenvectors of the correlation matrix from the centralised data (OLSHAUSEN and 

FIELD, 2004). 

𝑋 = 𝐷଴.ହ𝑉்𝑋                                                      (4.2) 

In which: 𝑉் is the eigenvector transposition matrix calculated from the correlation 

matrix, 𝐷 is the diagonal matrix of eigenvalues and 𝑋 is the centred matrix of the 

measured signals. 

Based on the lightening data, fast-ICA starts an iterative process to minimise the non-

Gaussianity of a vector of definite weight 𝑤 projected onto 𝑋 Under the projection 𝑢 =

𝑤𝑇𝑋, a non-quadratic function 𝑓(𝑢), the first term of the derivative 𝑓’(𝑢) and the second 

derivative term 𝑓′′(𝑢) are computed to estimate a new value of 𝑤: 

𝑤 =
ாቀ௑௙ᇲ൫௨೟൯ቁିா(௑൫௙ᇲᇲ(௨)௪൯)

หா൫௑௙ᇲ(௨೟)൯ିா(௑(௙ᇲᇲ(௨)௪))ห
                                              (4.3) 
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where 𝐸 is the expectation operator over all argument values. By determining the value 

of 𝑤, the separate sources 𝑆 are calculated as the final projection 𝑢 =  𝑤𝑇𝑋 =  𝑆. 

The fast-ICA method is used to partition data into sources whose quantities are 

determined by the operator, but in smaller quantities than the original data. In the 

context of water supply networks, initial tests indicate that the flow and pressure signals 

ultimately resemble a demand signal and a noise signal (BRENTAN, et al., 2021. 

However, when dealing with the noise signal, additional methodologies are necessary 

to automatically identify anomalies. By identifying such anomalies, it then becomes 

possible to effectively carry out corrective measures. 

4.2.2 Interquartile Range application 

The interquartile range (IQR) method is commonly used to develop an effective 

anomaly detection methodology that can automatically identify anomalies in the output 

of the fast-ICA algorithm. The separation of the independent components obtained 

through fast-ICA can be evaluated using boxplots of the IQR method. The distance 

between the first (𝑄1) and third quartiles (𝑄3) is a variability measure of the data, and 

any values that fall beyond 1.5 times the IQR are considered as potential outliers. This 

approach enables identifying anomalies which significantly deviate from the expected 

values of the signal. By automating this process, the IQR-based anomaly detection 

methodology can be used in real-time data analysis without relying on manual 

inspection by operators, making it a valuable tool for a range of applications, including 

fault diagnosis and quality control. Overall, the IQR-based methodology provides a 

reliable and efficient way to detect anomalies in complex data sets, contributing to 

improve data analysis and decision-making processes. 

The sample needs to be divided into quartiles and then the difference between the 

third and first quartiles is computed to calculate its IQR: 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1                                                      (4.4) 

This method is also known as the “Rule of 1.5(𝐼𝑄𝑅)”, which means that data will be an 

outlier when it is “1.5(𝐼𝑄𝑅)” higher than 𝑄3, or lower than 𝑄1. Or further, low outliers 

can be understood as those below “𝑄1 −  1.5(𝐼𝑄𝑅)”, and high outliers when they are 

above “𝑄3 +  1.5(𝐼𝑄𝑅)”. It is worth mentioning that an outlier is not necessarily an 
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anomaly, it can represent a peak in demand or a measurement error of the sensors, 

for example. The coefficient 1.5 within the equation is subject to modification for 

performance optimization. To elaborate, the introduced variable, denoted as "𝑉ு௅ 

(𝐼𝑄𝑅)," has been conceived to facilitate adaptations to the 𝑉ு௅ value based on distinct 

datasets under analysis (WAN et al., 2014). This flexible nature of the 𝑉ு௅ parameter 

allows for temporal adjustments, and in this context, the present study uses dynamic 

calibration within defined time intervals. The initiation of the anomaly detection process 

aligns with application of the ascertained 𝑉ு௅value following each stipulated time 

window. This strategic approach facilitates discerning anomalies within the dataset. In 

cases where persistent undetected anomalies persist, a re-calibration of values 

ensues, subsequently prompting a repetition of the detection procedure aimed at 

uncovering any additional anomalies. 

4.2.3 Matrix profile concept 

The Matrix Profile (MP) is a concept of time series analysis that consists of calculating 

the similarity between sub-sequences of a time series, developed by Yeh et al. (2016). 

The MP is a data structure that contains the minimum distance between each sub-

sequence and the most similar sub-sequence in another part of the time series. The 

distance is calculated using a dissimilarity measure, such as Euclidean distance. 

It is first necessary to define a window of length 𝑚 to calculate the Matrix Profile, which 

is the size of the sub-sequences to be compared. Then, each sub-sequence of length 

𝑚 is compared with all other sub-sequences of length 𝑚 in the time series. The 

distance between each pair of sub-sequences is calculated and the minimum distance 

value is stored in the MP. The result is a time series of length 𝑛 − 𝑚 + 1, where each 

value represents the minimum distance between a sub-sequence and its most similar 

sub-sequence (GHARGHABI et al., 2017; ZYMBLER and IVANOVA, 2021). 

MP is used in various time series analysis applications such as anomaly detection 

(LAN et al., 2021), pattern classification (ASYALI et al., 2006) and time series 

clustering (LI et al., 2022). It enables efficiently and accurately identifying similar 

patterns and anomalies in a time series. 
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4.3 Case study - The Battle of Leakage Detection and Isolation Methods 

The methodology presented herein was applied to the L-Town network to conduct 

simulations and verify the sensitivity of processing hydraulic data signals and generate 

statistical control charts which enables improved leak detection in water supply 

networks. This case-study network is inspired by a city on the island of Cyprus, and it 

was presented in the academic context of Battle of the Leakage Detection and Isolation 

Methods (BattLeDIM) (VRACHIMIS et al., 2022) as a study tool in leak detection. 

To ensure conditions like reality, the L-Town network has 42.6 km of pipe network 

supplied by two reservoirs. The control system of this network is composed by one 

pressure reducing valve and one pump. The system meets a demand of 10,000 

inhabitants in three sub-regions, where areas B and C are highlighted and the rest of 

the network is area A (Figure 4.2) There are 37 sensors installed along the network (1 

water level sensor in the tank, 3 flow meters and 33 pressure sensors) which collect 

the average value data every 5 minutes by a Supervisory Control and Data Acquisition 

(SCADA) to analyse the pressure, reservoir level and flow variables. 

Figure 4.2 - L-town network topology representing the sub-regions 

 

One of BattLeDIM's goals is to identify leaks along L-Town pipelines. All data from L-

Town sensors are grouped into two periods, one referring to the year 2018, used as a 
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reference for the operation pattern, and another for 2019, which is the period for 

analysis of the events described in BattLeDIM. 

It is important to highlight that leaks are observed simultaneously through the network 

databases, even if they did not start at the same time. This situation arises because 

many leaks are only addressed once they have reached a significant level of flow or 

have caused enough anomalous events that are easily detectable. As a result, each 

leak is individually analysed or examined within sets starting from the most recent 

periods. Figure 4.3 displays all the leaks that occurred during the data period analysed 

in this study. 

Figure 4.3 - Leaks for the 2019 database. 

 

 

Figure 4.3 shows that 9 leaks have a gradual increase in flow until they reach a stable 

condition. A 7-day sliding window is applied to analyse these leaks (which in general 

are the most common and difficult to be detected quickly) before the leak starts and 

continues up to two days after the stabilised flow. The reason for selecting a 7-day 

duration is because the pressure/flow patterns exhibit a quasi-periodic nature with a 

frequency of one week, which can be attributed to the social behaviour of water usage 

(BRENTAN et al., 2017). This process has two objectives: first, it enables determining 

the detection sensitivity of the methods by indicating the flow rate at which the leak 
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was detected; and second, it enables detecting leaks with long gradual growth, since 

other leaks can start during this growth, and this affects the detection process. 

It is important to note that three leaks remained constant during the entire period. 

Although these leaks were pre-existing, they provide a realistic scenario for detecting 

new leaks in water distribution systems, where the other methodologies may not be 

able to detect them.  

A sliding window of 4 days prior to the event is utilised in leaks with gradual growth to 

analyse the temporal variations and determine the presence of other leakages. 

However, it is important to note that the duration of the analysed data greatly impacts 

the information that can be extracted from the MP technique. A larger dataset allows a 

larger sliding window, and therefore more detailed and accurate analyses. In turn, 

utilizing a 4-day sliding window for MP pre-processing is acceptable if it serves the 

specific analysis objective. It is essential to carefully select the window size to ensure 

a robust and precise analysis. The IQR calculation can also enhance the accuracy of 

the analysis with a larger sample size. 

4.3.1 Evaluation metrics for leak detection algorithm 

Data in which the beginning of the leaks are known will be used to evaluate the 

methodology presented. Thus, the detection time after the beginning of the anomalies 

will be used as an evaluation criterion. Another evaluation process will be related to 

the intensity value of the anomaly flow at the time of detection. Thus, it will be possible 

to observe the sensitivity of the method in relation to the size of the leaks. In the 

meantime, BattLeDIM presents evaluation methods which will also be used in the 

present study. 

The assessments presented follow a purely economic approach with respect to the 

water profit saved over a year from successful leak detection (VRACHIMIS et al., 

2022). The battle organisers also present methods for assessing the leak sites, but 

these will not be explored. One of the evaluation processes is called True Positive, 

where one considers true detection if the leak meets the following condition: 

𝑡௦௧
௟ ≤ 𝑡ௗ

௛ ≤ 𝑡௘௡ௗ
௟                                                       (4.5) 
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where 𝑡ௗ
௛ is the detection time, 𝑡௦௧

௟  and 𝑡௘௡ௗ
௟  is the start and end time of leakage 𝑙. 

Another valuation approach presented is Profit from water saved related to profit 𝑝௪
௛  

(euro) of water saved by detecting a leak and determined by: 

𝑝௪
௛ =  ൬∑ 𝑞௟(𝑘)∆𝑡

௧೐೙೏
೗

௞ୀ௧೏
೓ ൰ 𝑐௪                                         (4.6) 

where by detection 𝑙, 𝑞௟(𝑘) flow rate of leakage 𝑙 at each discrete time step 𝑘. ∆𝑡 is the 

duration of the discrete time step and 𝑐௪ is the cost (euro) of water per cubic meter.  

The total score 𝑇𝑠 is determined by the detection set, which is determined by: 

𝑝௪
௛ =  ∑ 𝑠௛௛∈஽ + ∑ (𝑝௪

௛ + 𝑐௛
௥)௛∈஽                                          (4.7) 

where 𝑠௛ is the score per given detection 𝑘 and 𝑐௛
௥ is the repair crew cost. These 

evaluation processes are presented by the BattLeDIM developers, who provide an 

algorithm for determining these and other evaluation processes (VRACHIMIS et al., 

2022). 

Three evaluation approaches in addition to these metrics are tested, called Recall, 

Precision and 𝐹ଵ. Recall identifies anomalous instances, Accuracy measures the ratio 

of correct anomaly detection to false alarms, and 𝐹ଵ is the harmonic mean weighted 

between Recall and Accuracy, ranging from 0 (worst) to 1 (best) (DANIEL et al., 2022). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
்௉

்௉ାிே
                                                    (4.8) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
்௉

்௉ାி௉
                                                 (4.9) 

 

𝐹ଵ =  
ଶ ௫ ோ௘௖௔௟௟ ௫ ௉௥௘௖௜௦௜௢௡ 

ோ௘௖௔௟  ௉௥௘௖௜௦௜௢௡
                                              (4.10) 

 

where TP is True Positive; FN is False Negative and FP is False Positive.  These 

variables are related to the correct detection of leaks. 
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4.4 Results and Discussions 

The results are divided into two parts: the first examines the constituent elements 

obtained through implementing the fast-ICA technique, while the other focuses on 

identifying leaks using IQR and MP. In this study, only the pressure data from the 33 

sensors are used as input to the fast-ICA to partition the data into two sources. One of 

these sources exhibited patterns that were consistent with many sensors, specifically 

those positioned in area A. Figure 4.4 presents the normalised pressure from 29 

sensors in area A in relation to the signal source separated using fast-ICA in two 

components. In addition, Figure 4.4 shows the normalised pressure of areas B and C, 

and the signal with noise separated by fast-ICA. 

Figure 4.4 - Normalized pressures and Component 1 via fast-ICA. a) Component 1 and Pressure 
normalized – Area A. b) Pressure normalized - Area B. c) Normalized pressure - Area C. 

a) 

 

b)                                                                            c) 

  

 

Figure 4.4a displays the data collected by sensors located in area A, along with the 

first component separated by fast-ICA. The pattern observed in this component 
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corresponds to changes in pressure in area A. Interestingly, the pressures measured 

in areas B and C (shown in Figure 4.4b and 4.4c, respectively), which were also used 

in the fast-ICA processing, have no effect on the behaviour of the data. The 

observations imply that alterations in pressure detected in region A are distinct from 

those occurring in regions B and C, and that the initial component isolated by fast-ICA 

is predominantly influenced by pressure fluctuations in region A. The contrast in 

pressure responses witnessed between regions B and C can be ascribed to the 

presence of a pressure reducing valve at the entry point of area B, as well as the fact 

that area C is being supplied by a tank. 

These findings provide important insights into the dynamics of the system under study 

and highlight the utility of fast-ICA in identifying meaningful components in complex 

datasets. Since this signal source (Fig. 4.4a) does not have visible anomalies, it is not 

used in the leak detection process of this article. Nevertheless, the information can be 

utilised to fulfil the requirements of diverse research endeavours, for instance, 

forecasting demand patterns and scrutinizing extraneous signals present in the data. 

On the other hand, the component 2 (Fig. 4.5) follows a unique pattern using data from 

all areas, considered in this study as noise, and is used for the leak detection analysis. 

Figure 4.5 - Component analyses 2 via fast-ICA. 

 

4.4.1 Leak detection via IQR and MP 

The component 2 resulting from the ICA application is analysed by IQR and MP 

methods. For this, data from the separated source is analysed for 7 days before the 

abrupt leaks occur. However, a new process using a one-day sliding window is 
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performed in leaks that grow gradually and have other leaks during the growth period, 

considering 4 days before the leak. Moreover, the analysis continues in all cases until 

2 days after the beginning of the leaks. This ongoing analysis process allows us to 

assess whether leaks are detected during the growth of other leaks, how much time it 

takes to detect it and at what magnitude (flow rate) the detection was possible. 

The analysis of two cases of leaks is presented in this work. The first refers to the leak 

in p514 pipe occurred after about 52 days and has an average leakage flow of 15.4 

𝐿/𝑠 (25% of total demand). By analysing this leak individually through the separate 

source by the ICA and IQR and MP methods it was possible to detect it with 10 minutes 

after its beginning. Figure 4.6 shows an example of the detection process for the leak 

in the p514 pipe. 

Figure 4.6 - Leak detection - p514. a) Detection IQR. b) Detection MP 

a) 

 

b) 

 

Fig. 4.6a shows the component 2 obtained by the ICA after applying the IQR, as well 

as the lower and upper limits, the moments when anomalies were detected and a 

vertical line indicating the beginning of the leak. The IQR method detected the anomaly 
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10 minutes after the leak appeared. On the other hand, the MP method (Fig. 4.6b) had 

a delay, detecting the anomaly four-time steps (20 minutes) after the leak started. The 

MP method requires a certain amount of data for training purposes, and as such, the 

time steps displayed in Figure 4.6b do not include the initial days used for the 

comparison process, as these time steps were used solely for training and are not 

represented in the graph. 

The second example of the detection process is presented in Figure 4.7, which shows 

the leak occurred in the p523 pipe starting after about 16 days and with an average 

flow of 28 𝐿/𝑠 (48%). 

Figure 4.7- Leak detection - p523. a) Detection IQR. b) Detection MP 

a) 

 

b) 

 

The detection process presented in Figure 4.6 shows a large variation in the data from 

the source separated by the ICA. Thus, the detection processes are very accurate, 

being detected immediately after its start by the IQR method in the first 5 minutes 

(Fig.5.6a) and 10 minutes by the MP method (Fig. 4.6b). In contrast to the IQR 
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approach, the MP method was utilised to solely detect the anomalous point in the time 

series, which stands out from the rest. 

Two limitations of the proposed methodology should be highlighted: the same IQR 

limits may not be accurate in all cases and the number of days used by the MP method 

may affect the detection accuracy.  The first limitation occurs due to the changes and 

number of days considered after the beginning of the leaks, since the interquartile 

interval is based on the maximum, average and minimum values of the data set. 

Outliers are easily exposed when an anomaly affects this data very intensely. 

However, in cases of minor changes the limits can consider this anomaly within the 

limits. Wan et al. (2014) seeks to solve this limitation developing equations that can 

determine the values of interquartiles. The second limitation is the number of days 

used for behaviour analysis in the MP application. In this study, the standard is to use 

the first 7 days prior to the leak, but sometimes more accurate results are obtained 

using only the initial 3 days. Table 4.1 presents the information with the best results for 

all leaks, including the maximum and minimum limits, days used by the MP method, 

detection delay and amount of water lost until leak detection. 
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Table 4.1 - Results and definitions - proposed methodology.  

  IQR MP 

Leaks Days before Days after Limits Detection (h:m) Flow in detection time (L/s) Days base Detection (h:m) Flow in detection time (L/s) 

p123* 7 1 3.7 11:45 0.01 4 25:50:00 0.01 

p142 7 1 3.3 13:15 26.29 4 29:10:00 26.74 

p193* 7 5 3.3 71:40:00 0.05 4 126:45:00 0.11 

p257 Undetected 

p277* 2 4 3.5 78:50:00 0.04 2 10:05 0.01 

p280 2 1 1.9 18:40 5.23 1 17:45 5.24 

p331 3 5 1.5 174:30:00 10.53 3 36:45:00 10.54 

p426 3 5 1.5 00:55 13.10 3 01:55 13.15 

p427 Undetected 

p455* 3 5 1.5 327:10:00 0.47 3 327:30:00 0.47 

p514 7 2 1.8 00:10 15.39 7 24:05:00 15.38 

p523 7 1 2.5 00:05 28.19 4 20:40 28.07 

p586* 4 4 1.5 58:45:00 0.17 4 66:25:00 0.2 

p653* 3 5 2.2 01:55 0.2 4 21:00 0.02 

p654 Undetected 

p680 4 2 4.1 22:35 5.37 4 01:35 5.36 

p710 3 5 2.2 17:15 5.48 3 09:50 5.53 

p721* 3 5 2.2 61:00:00 0.3 3 33:55:00 0.3 

p762* 3 5 2.2 75:25:00 0.2 3 31:40:00 0.3 

p800* 2 4 2.0 09:45 0.2 2 66:50:00 0.47 

p810 Undetected 

p827 7 1 2.7 00:05 26.11 4 10:25 26.44 

p879* 3 5 2.2 00:45 0.2 3 17:05 0.2 

 * - Leaks with increasing start    



101 

 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

Table 4.1 presents the results obtained by the proposed methodology for each leak, 

including the absence of detection in three cases (P257, p427 and p654). The 

processing period before and after the beginning of the leak is shown, and the values 

for leaks with a non-abrupt start are usually less than the 7 days initially proposed. This 

is because leaks with gradual onset affect the monitored data less intensively, starting 

with small flows. In addition, it is necessary to consider more days after the start of the 

event to identify the flow rate at which the method detected the leak. The processing 

window is adjusted in some cases of abruptly starting leaks due to the proximity to 

other events or the fact that they occur while other leaks have not yet reached stability, 

as occurs in cases p331, p420, p680 and p710. 

Table 5.1 shows the 𝑉ு௅ values used to detect each leak. A value of 1.5 was initially 

considered, but values between 1 and 5 were tested to determine which would have 

better performance in terms of shorter detection time, meaning less time steps after 

the beginning of the leak. The IQR method generally proved to be more effective than 

the MP method during the detection process, but it is important to emphasise that the 

definition of the IQR limits is extremely sensitive to the available sample and quite 

subjective. The IQR method detected the leak faster than the MP method in 12 of the 

19 detected leaks. However, the MP method was more effective in detecting leaks that 

occur during leaks with increasing onset before stabilizing. This behaviour is especially 

evident in the detection of p331, p680 and P710 leaks, in which the MP method was 

faster in the detection. 

The days used as the basis for the MP method of each leak are also presented in Table 

4.1. The standard value used was 4 days before the beginning of the leak, but the best 

results in some cases were obtained with different values, always lower or equal to the 

days of processing used by the IQR method. Finally, Table 4.1 also displays the flow 

rates of the leaks in the detection times. This process was performed to identify the 

detection method sensitivity to leaks. It was found that leaks are always identified after 

reaching 0.1 𝐿/𝑠 in the case of leaks with increasing onset, and the highest detection 

rate was 0.47 𝐿/𝑠 in the leakage of p455 pipeline. Flow rates for leaks with an abrupt 

start remain practically constant, only oscillating with varying pressures. However, it is 

important to note that it is necessary to make a value judgment regarding the detection 
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time. The difference between the two methods in the first example presented was only 

10 minutes, while it was 5 minutes in the second example. 

The assessment considers the evaluation process presented by BattLeDIM, which 

provides an Economic score for the tested approaches. The IQR method shows an 

Economic score of €354,360, while the MP method shows €353,860. Both values 

represent water savings throughout the year, the two highest values achieved by battle 

participants are €264,873 and 260,562, and the perfect score value is €523,124 

(VRACHIMIS et al., 2022). This highlights the effectiveness of the leak detection 

process, as the Economic Scores displayed exceed those of competitors in battle. 

Some other evaluation methods offered by BattLeDIM are not applicable in this study, 

as it also focuses on the location of leaks. However, the organisers of BattLeDIM 

present an open source that in addition to calculating the Economic score, also 

presents the True Positive and False Positive rates. The present methodology 

presents 23 True Positives through the code, which is the maximum possible value. 

This also results in maximum values for Recall, Precision and 𝐹ଵ =  1, which are 

normally presented ratings. However, it should be noted that the code presents True 

Positives regarding the leak detection during the time it occurs, which means that even 

if the detection time is long, the leak is considered covered if it is detected during its 

occurrence. The detection times after the start of the leak are shown in Table 5.1. 

Another aspect within the proposed methodology is evident in the undetected leakages 

(p257, p427, p654, and p810). These leaks originated before 2019, which is the data 

used, making the methodology unable to identify changes associated with these pre-

existing leaks. This circumstance highlights the need for historical data for applying the 

methodology. This results in loss of information and consequent anomalies that occur 

during this data or prior to it are not detected. However, we highlight the possibility of 

applying the methodology to real-time data analysis or for detecting other anomalies, 

because there is no need for hydraulic simulations or calibrations.  In addition, the 

methodology gains more and more robustness and accuracy over time due to the 

implementation of a sliding time window that encompasses the detection of new 

anomalies in cases where they persist without interruption. 
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4.5 Discussion and partial conclusions 

This study describes a new methodological approach to detect leaks through pre-

processing monitoring data using fast-ICA. This pre-processing generates separate 

signal sources, two of which are identified in the study: one follows the patterns of the 

monitoring data, and another contains noise. The source with noise is used as input 

for a detection process using the IQR and MP methods. However, the application of 

these methods requires some definitions, such as the IQR dimensions and the data 

used as the basis of behaviour for the MP method. Several values are tested for both 

techniques and those that presented better performance in terms of the leak detection 

speed are presented. 

Finally, the benchmark data for leak detection methodologies presented in the Battle 

of Leak Detection and Isolation Methods (BattLeDIM) competition are used to validate 

the proposed methodology. The methodology can detect leaks with gradual start from 

0.1 L/S. The detection for leaks with an abrupt start occurred in a few minutes after the 

beginning of the leak in some cases, but others were immediately detected, requiring 

only the data of the next monitoring time step. However, some steps still require 

adjustments, such as the definition of the interquartile interval values for the IQR 

method and a better definition for data used as a basis for applying the MP method. 
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This chapter is an adapted version of Barros, D., Souza, R., Meirelles., G., Brentan, 

B. Leak Detection in Water Distribution Networks Based on Graph Signal Processing 

of Pressure Data. Journal of hydroinformatics, 2023. 
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Abstract 

Leakages in water distribution networks (WDNs) affect the hydraulic state of the entire 

or a large part of the network. Statistical correlation computed among pressure sensors 

monitoring network nodes aids the detection and localization of such leaks. This opens 

the possibility to work with water network databases, where graph signal processing 

(GSP) tools aid to understand changes in pressure signals due to leakages in the 

hydraulic system. This paper presents a methodology to time-varying pressure signals 

on graph structures. The core of this methodology is based on changing of pressure, 

due to leaks, that modifies the graph structure. Computing for each time step a new 

topology of the graph and applying centrality analysis based on PageRank, it’s possible 

to identify the presence of new leaks at water system. A confusion matrix evaluates 

the precision of the proposed methodology on defining where and when such leakages 

start and end. Seven leaks are used to validate the process, which presented 86% in 

accuracy terms. The results show the benefits of the method in terms of speed, 

computational efficiency, and precision in detecting leakages. 
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5.1 Introduction 

The water distribution network (WDN) is an essential infrastructure responsible for 

supplying citizens with drinkable water. Therefore, damage to pipes has an important 

impact on the water distribution process and on water quality and network hydraulics 

(HU et al., 2021). In addition, a large portion of the treated water is lost in the WDN, 

due to leaks, theft, measurement failures and several other factors (SILVA et al., 2021). 

According to Fan et al. (2021) in UK around 3,281 Megalitres of water were lost 

between 2009 and 2011, and in US around 15% of the treated water supplied is lost 

annually. In Brazil, it’s estimated that in 2019 there were losses of about 38% in water 

distribution (OLIVEIRA et al., 2021). This shows that even with researches focused on 

loss reduction and leak detection, the methodologies proposed still require further 

development, mainly aimed at fast and effective leak detection and easy application in 

WDN. 

Leaks are linked to losses in the water distribution process and are classified as 

reported, unreported or background leakage (ADEDEJI et al., 2017). Reported leaks 

are visible on the ground and are easily detected by the public or employees of network 

administrators (CHAN, CHENG and XIONGHU, 2018). On the other hand, unreported 

leaks are like those reported, but they do not emerge from the ground. And finally, 

background leakage is small and difficult to detect by normal methods, and often go 

unnoticed for a long time, resulting in significant losses (Abdulshaheed, Mustapha and 

GHAVAMIAN, 2017). Different methods are applied to detect leaks, and they can be 

classified as visual inspection, transient-based approach, model-based approach, and 

data-driven approach (CHAN, CHENG and XIONGHU, 2018). 

Visual and sensor-based strategies require the use of mobile inspection equipment 

linked to optical, electromagnetic, or acoustic sensors. However, it is an expensive and 

time-consuming process, and often, especially the acoustic signals, are influenced by 

the soil type and pipe material (FAN et al., 2021). Transient based approaches analyse 

and evaluate the pressure transient wave caused by hydraulic chances in the system 

to detect leaks. This wave can quickly travel through the entire network and affect 

flows, pressures, contract or expand pipes and many other parameters to the system 

(AYATI et al., 2019). Since the wave speed usually are high, from 400𝑚/𝑠 for PVC 

pipes achieving 1200m/s for iron pipes, transient sensors are more expensive and 
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transient responses decay rapidly, making it difficult for large applications (FAN et al., 

2021). Model-based leak detection methods include, for example, the use of sensitivity 

matrices created in normal situations and with known leaks (SALGUERO et al., 2019; 

GENG et al., 2019) and calibration approaches (SOPHOCLEOUS, SAVIC and 

KAPELAN, 2019). These methods are capable to detect leaks; however, they require 

calibrated hydraulic models, with user demand data, pipe conditions and pressure 

BEHAVIOUR, leading to results very sensitive to modelling and measurement errors 

(FAN et al., 2021; HU et al., 2021). Finally, data-based methods include feature 

classification methods (Sun et al., 2019), prediction classification methods (LAUCELLI 

et al., 2016), mathematical-statistical methods (QUIÑONES-GRUEIRO et al., 2018) 

and unsupervised clustering (GEELEN et al., 2019). These methods use network 

monitoring data, such as pressure, flow, and reservoir levels. Hu et al. (2021) 

concludes that data-based detection methods do not require deep WDN 

comprehension, but require large amounts of data, being more suitable when there is 

a large amount of historical network data under analysis. 

Leak detection process using mathematical-statistical tools has been successfully 

used in research related to WDN. Brentan et al. (2021) use time series of hydraulic 

data (pressure, flow, and reservoir levels) and apply the algorithm fast Independent 

Component Analysis (fastICA) to separate the hydraulic data into independent 

components. The authors analyse the independent components with a statistical 

control algorithm to detect abrupt changes to identify cyber-attacks in WDN. Gao et al. 

(2014) use a Blind Signal Separation (BSS) process on flow and pressure data to 

detect leaks and separate the leaks flow from the node total flow. Okeya et al. (2014) 

use historical demand data, a network hydraulic model and a modified Kalman Filter 

method to detect leaks in networks. The authors predict hourly demand through 

historical data, apply the predicted data in the hydraulic model to estimate flows and 

pressures, and apply the Kalman Filter to calculate corrected demands at the current 

time step driven by the difference between predicted and observed data (ZANFEI et 

al., 2022). 

Computational mathematical methods successfully used in other research fields can 

be explored and applied to reduce losses in water distribution systems. In this sense, 

complex networks can be an effective tool for this analysis, since this theory models 
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and identifies interactions through the relationship between objects and has been 

widely used in network analysis (TAKALA et al., 2020). Complex networks are linked 

to graph theory, but with a more irregular, complex structure that can evolve 

dynamically over time. The application of this theory began with the effort to define new 

concepts and measures to characterize the topology of graphs and thus united a series 

of principles and statistical properties (BOCCALETTI et al., 2006).   

Systems modelled as a graph are represented by set of vertices and edges 

(STANKOVIC et al., 2019). Turning to the data acquired by the WDN monitoring 

sensors, it is possible to statistically correlate these data for the creation of graphs. As 

this monitoring occurs at each defined time steps, the graph is also updated with each 

time step. Thus, events in the physical WDN can affect the structure of the graph and 

consequently the metrics that evaluate such graph. In this perspective, studying the 

relationship and interactions of hydraulic data (e.g., flow, pressure, water quality 

parameters) can help in the leaks detection and location. Methods linked to graph 

theory have been successfully used to detect anomalies in radar images (PHAN, 

MARCIER and MICHEL, 2015), detect connectivity patterns in human brain networks 

(Farahani et al., 2019; Wright, Marco Venneri, 2021), detect anomalies in the integrity 

of structures (Kaveh, Rahmani and ESLAMLOU, 2022) etc. These researches create 

graphs from the relationship between the monitored data and as soon as new data are 

issued, the verification of some graph parameters happen, such as amount of 

information (PHAN, MARCIER and MICHEL, 2015) and information paths (FARAHANI 

et al., 2019; KAVEH, RAHMANI and ESLAMLOU, 2022).  

Since the application of data signal processing on water distribution systems is still 

incipient, this work presents a methodology for leak detection based on graph signal 

processing of pressure data. For this, the pressure data of each monitored nodes are 

used to create a graph structure and then, a vertex ranking metric is used. This process 

is performed with the historical data to recognize the pattern of vertex classifications. 

When the centrality metric deviates from the historical pattern behaviors, an anomaly 

is then detected and associated with leaks in the network. The proposed methodology 

proved to be fast, effective and with low computational effort for leak detection.  
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5.2 Methods 

This section presents the methodology for leak detection based on graph signal 

processing.  The process starts considering the historical pressure data and as they 

are made available for the graph’s creation. For this, the data will be treated in a Python 

programming environment and the graph signal processing package (PyGSP) 

(DEFFERRARD et al., 2017) is used to calculate the correlation between the data. The 

graphs will be created with the correlation calculated at each time step using the 

Network Analysis package in Python (NetworkX) (Hagberg and Conway, 2020). After 

creating the graph, PageRank node ranking metric is employed. This metric assigns a 

rank value to the vertices based on the edge structures. After classifying the nodes 

with the historical data, as more data is monitored, the new classification value of the 

vertices is determined, and, if this value does not follow the historical trend, a leak in 

the network is indicated. 

The first step for the development of this methodology is the leak simulation. For this, 

the Water Network Tool for Resilience package is used (KLISE et al, 2017). After the 

simulations, the pressure data at the monitoring points of the network are correlated 

and used in the creation of graphs. Every process follows the flowchart shown in Figure 

5.1. 

Figure 5.1 - Flowchart of the methodological process. 
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To model a graph (𝐺), in general, its objects are determined, called vertices (𝑉) and 

the interaction between these vertices that is called edges (𝐿), being then the graph 

representation as 𝐺 =  (𝑉, 𝐿). The graph and its interactions can be expressed as an 

adjacency matrix (𝐴), which is a Boolean matrix with columns and rows indexed to 

vertices. Thus, when there is the interaction between the vertices, the edge is 

represented as value 1 in the matrix 𝐴. A weighted graph can be created by adding 

values to the edges, which is called edge weights. This results in a matrix of weights 

(𝑊), now no longer Boolean, because it contains values other than 0 and 1 

(STANKOVIC et al., 2019).     

The modelling of WDN as graphs is possible by modelling considering the network 

physical topology, with the vertices corresponding to the nodes (junction nodes, tanks, 

and reservoirs) and the edges representing the links (pipes, pumps, and valves) (DI 

NARDO and DI NATALE, 2011). Another way to model the WDN as a graph is by the 

correlation between the monitored data. In this case, the vertices represent the 

monitoring nodes, and the edges are the interactions between these nodes (BEZERRA 

et al, 2022). 

5.2.1 Graph creation via pressure data correlation 

The graphs are created using pressure data at each time step. For this, the research 

of Kalofolias (2016) is used. The authors present a process of creating graphs from 

temporal data, calculating distance between pairs of vertices and penalizing edges with 

high weights. The authors use a 𝑋 data matrix, where the columns (𝑥௩ଵ, 𝑥௩ଶ, ⋯ , 𝑥௩௜)  

represent the sensors and the rows the time signals. The method calculates the 

distances between data pairs, creating a 𝑍 distance matrix: 

 𝑍௜௝ =  ‖𝑋௩௜ − 𝑋௩௝ ‖ଶ      (5.1) 

denoting the distance between the temporal data of vertices 𝑣௜  and 𝑣௝. This method 

assumes that the smoothness between 𝑍 and the edge weight matrix (𝑊) is small: 

                         ∑ ∑ 𝑊௩೔ ௩ೕ  𝑍௩೔௩ೕ௩ೕ௩೔
                             (5.2) 

and create a graph that minimizes very high weights on 𝑊, so that: 
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min
ௐ ∈ 𝐖∗

‖𝑊 ∘ 𝑍‖ଵ,ଵ + 𝑓(𝑊)                (5.3) 

where 𝑾∗ is a set of adjacency matrices (determined by the variation of weights over 

time). The matrix function 𝑓(𝑊)  prevents the matrix 𝑊 from having a value of zero, 

controlling its sparsity and imposing a data-dependent structure.   

This methodology calculates the distance between data pairs to create the matrix 𝑊, 

being implemented by the package PyGSP. The data are separated into a square 

matrix (𝑋) where the columns represent the pressure data acquired by a set of sensors 

(𝑁)௦ in the network and the rows are the temporal data (𝑡). A graph will be generated 

as monitoring data becomes available. However, the first graph will have the amount 

of data equal to the number of sensors, this to generate a square matrix of weights 𝑊. 

Once a new data is available, the oldest data is removed, always keeping the matrix 

𝑊 square. Finally, the matrix 𝑊 is used in the graph creation and the vertices are 

ranked with each new graph. 

5.2.2 Leak detection using ranking vertex 

To measure the importance of web pages, Page (1999) proposed a method to rank 

each page based on the web structure. PageRank algorithm can be described as a 

way of evaluating the web page importance, based on the links quantity and quality 

that direct to it. In a classic discrete-time finite-state random walk model, Yao, Mark 

and Rabbat (2012) denote by 𝑃 in 𝑛 𝑥 𝑛 transition matrix, where 𝑛 is the number of 

states and 𝑃௚௛ is the probability of transition from state 𝑔 to state ℎ. A stationary 

distribution value 𝑠 is defined as: 

𝒔் = 𝒔்𝑃                 (5.4) 

𝑠. 𝑡.      𝒔௚ ≥ 0      𝑎𝑛𝑑      ∑ 𝒔ଵ = 1௡
௚ୀଵ      (5.5) 

where 𝑠் is the eigenvector of 𝑃 that corresponds to the eigenvalue 1. 

PageRank ranking modifies the random walk model to: 

𝒔் = 𝛼 𝒔்𝑃 + (1 −  𝛼)𝒕𝒗
𝑻               (5.6) 



112 

 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

where 𝒕𝒗 is a column vector named teleport vector, which satisfies ∑ 𝑡௩௚ = 1௡
௚ୀଵ  and 𝛼 

is a scalar called the damping factor. The teleport vector and the damping factor are 

considered so that there is communication between pages (vertices) in case of graph 

not connected. Thus, the equation 5.6 corresponds to the union of two random walks, 

one with the matrix 𝑃 and the other that is the transition from state 𝑔 to any other state 

with probability 𝑡௩, and has 𝛼 as mixing parameter. In the initial iteration all vertices are 

considered equal with 𝑡௩௚ = 1/𝑛 and  𝛼 = 0.85  (YAO, MARK, and RABBAT, 2012), 

but over the interactions the weights of vertices and edges are being updated. This 

makes the convergence rate limited and empirically mimics the behavior of web users. 

The PageRank values of vertices are given in simplified form by: 

𝑃𝑅(𝑢) = 𝛼 ∑
௉ோ(௖)

ே೎
௖∈𝑩(௨)                 (5.7) 

where 𝑢 represents the web page (or the vertex in a graph), 𝐵(𝑢) is the set of vertices 

that point to 𝑢𝑃𝑅(𝑢), 𝑃𝑅(𝑐) are classification scores of vertices 𝑢 and 𝑐; 𝑁௖ is the 

number of edges leaving vertex 𝑐 (XING et al., 2004). 

To detect leaks, we used the maximum values determined by the PageRank metric. 

The maximum score does not refer to a specific vertex, but the highest value achieved 

by all vertices. The data of the first 7 days that are simulated without leaks, are used 

as maximum base values, and are compared with the data of the next days of 

simulation. If this comparison exceeds a threshold, it will be considered a data 

anomaly. The determination of this stipulated value will be determined by a sensitivity 

analysis and chosen the percentage that presents the best result. Finally, a confusion 

matrix will be generated between two sets of data, the first considering the simulated 

leaks, where the moments of beginning and end are known, and the second with the 

times with anomaly detections.  

A confusion matrix is generally used in classification problems between two sets of 

data in four combinations: true positive (TP), true negative (TN), false positive (FP) and 

false negative (FN) (BERRY et al., 2021). Table 5.1 shows how the classifications are 

arranged in the confusion matrix. 
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Table 5.1 – Confusion matrix example. 

  Observed 
  Positive Negative 

Estimated 
Positive TP FP 
Negative FN TN 

 

Between the two data sets in the confusion matrix, there is one with the real 

observations, in the case of this research they are the known leaks, and another with 

the observations predicted by the method. In other words, in this work, the observed 

data are the time that the known leaks start, and the estimated data are the time that 

PageRank values vary significantly from the normal trend, higher than a marginal error. 

To evaluate the confusion matrix, the accuracy metric, which is the correct proportion 

of the method, is used. For this, the equation follows: 

𝐴𝑐 =  
்௉ା்ே

்௉ ା ்ே ା ி௉ାி
𝑥 100               (5.8) 

The results are between 0 and 100, with 100 being a perfect prediction result (BERRY 

et al., 2021). 

5.3 Case Study 

The WDN presented by Bragalli et al. (2012) is adapted and a set of leaks are 

simulated for the application of the methodology presented in this work. This network 

is based on the distribution network of the Italian city Modena, in the Emilia-Romagna 

region, and it is composed of 268 nodes, 4 reservoirs, 317 pipes and does not have 

valves and pumps, as shown in Figure 5.2. 
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Figure 5.2– Modena network 

 

The research of Mankad, Balasubramaniam and Babji (2021) uses this network to 

place pressure sensors to detect and locate leaks. The authors placed 5 pressure 

sensors (exposed in Fig. 5.2) and only the data from these sensors will be considered 

in the process of graphs generation. This means that the 𝑋 data matrix (equation 4.1) 

will have 5 columns and will result in graphs with 5 vertices. A leak simulation process 

is also required due to lack of leakage scenarios in this network. Therefore, 7 nodes 

were selected with leak points, and these are shown in Figure 5.2. 

5.3.1 Simulation process 

Since there is no real monitoring data for this network, a leak simulation process will 

be performed using the Water Network Tool for Resilience (WNTR) package (KLISE 

et al., 2017). Leaks will be considered as an additional demand flow at the network 

nodes, with the leakage flow rate (𝑞) being determined by the orifice equation: 

𝑞 =  𝐶ௗ𝐴 ඥ2𝑔𝑃               (5.9) 

where 𝐶ௗ is the discharge coefficient, 𝐴 is the orifice area, 𝑔 is the gravity acceleration 

and 𝑃 is the pressure at the leak point. As the leak flow affects the node pressure and 
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the pressure determines the leak flow, an iterative process must be carried out until 

the pressure and the leak flow rate stabilize and then this flow is used in addition to the 

demand. The 𝐶ௗ utilized is equal to 0.6, following the research of Van Zyl (2014). The 

area values will be chosen randomly between 0.00012m² and 0.00050m², values used 

in the research of Van Zyl and Cassa (2014). 

Another factor with random choice will be the leaks start times and their durations. The 

entire simulation process is done for 40 days, with the first 7 days without leaks to 

obtain a reference historical data. After that date, leaks are included. During the 

simulation process the base demand and the hourly multiplication factor are multiplied 

by a randomness factor, in this study considered between 0.9 to 1.1, making the 

process closer to reality. The sensors have an acquisition frequency of one hour, 

meaning that a graph will be created, and PageRank will be calculated every hour. 

5.4 Results and discussion 

Seven leak scenarios are performed at different locations on the network. The leaks 

are simulated with different magnitudes and behaviors: in some cases, there is an 

increase in flow over time and in others there was an abrupt appearance of leaks. 

Figure 5.3 shows the behavior of leak flows for each node where leaks are simulated. 

It can be observed that there were leaks occurring in a spaced way and a situation of 

simultaneous leaks in different locations (nodes 120 and 224). 
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Figure 5.3 - Leakage flow behaviour 

 

The entire simulation process considered that the sensors emitted monitoring signals 

every hour, resulting in a dataset with 960 measurements. In this sense, there are the 

same amount of graph creations and nodes rankings by the PageRank metric, since 

each measurement is used in the process. The graphs change as pressure data 

changes at monitoring points. This change can be observed in the edge weights in 

Figure 5.4. 
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Figure 5.4 - Graphs in anomalous situations. 

                                 a)   without leakage                                                 b) node 250 

 

                                 c) node 120                                                                d) node 49 

 

Figure 5.4 shows four distinct situations of the weights in the graph. The first (Fig. 5.4a) 

exposes the graph in a leak-free situation. And the other figures (Fig. 5.4 b, c, and d) 

show the graphs generated at the peak moments of the leaks at the 250, 120 and 49 

nodes, respectively. Thus, Figure 5.5 shows these values throughout the simulation, 

including the moments when there are leaks. 
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Figure 5.5 - PageRank maximum values 

 

It can be observed in Figure 5.5 that the maximum PageRank values change 

significantly when there are leaks in the network, not having much relation with the 

intensity of the leaks. It can be seen, for example, that leakage at node 250, even with 

a high value of leakage, does not significantly impact the behavior of PageRank values, 

especially when compared to leakage at nodes 120 and 224, which are of lower 

intensity, but which cause considerable changes in PageRank values. On the other 

hand, the leak at node 6 does not cause a change in behavior, probably because it is 

a short time, low-flow leak, which the sensors may not have been able to monitor.  

To define the marginal error, a sensitivity analysis is performed, in which the process 

varied between 1 and 10% the hourly PageRank values calculated during historical 

data (7 days of data) looking for the highest true positive values. This analysis showed 

that, considering a margin of error higher than 5%, the TP values are very low (134 - 

13%, times detect and percentage of total). However, if the marginal error is 1%, the 

detection has a high value of false positives (202 - 21%). Thus, it indicates a margin of 

error of 2%, both in this application and in future applications, as it is the percentage 

that achieves the best TP values. The detection moments using the margin of error 

equal to 2% is exposed in Figure 5.6. 
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Figure 5.6- Anomaly detection. 

 

It can be seen in Figure 5.6 that some leaks are detected throughout their duration 

(nodes 120, 224 and 49). As for the leaks at nodes 250, 43 and 6, the detection takes 

place in certain time steps, but during a large part of the leaks’ duration. However, the 

leak at node 153, which lasts until the end of the simulation, is detected in just a few 

moments. For a better understanding of the results, a confusion matrix is created and 

is shown in Table 5.2. 

Table 5.2 – Confusion matrix. 

  Observed 
  Positive Negative 

Estimated 
Positive 655(68%) 14(1.46%) 
Negative 113(11.7%) 176(1.3%) 

 

Evaluating the confusion matrix in terms of accuracy, the detection method obtained 

an 86% score. This means, according to Chicco, Totsch and Jurman (2021), that there 

is high accuracy in leak detection. This shows that the leak detection process proposed 

in this research guarantees a good detection rate using monitoring data already 

performed based on the application. The proposed methodology is easy and quick to 

execute, proving to be an effective approach to leak detection. 
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5.5 Discussion and partial conclusions 

This research presented a methodology for leak detection that makes use of the 

ranking of vertices in graphs by the PageRank metric. The proposed methodology 

creates graphs with the correlation between the pressure data emitted by monitoring 

sensors using graph creation and analysis packages in a Python programming 

environment. It was shown that the graphs undergo changes when leaks occur. Thus, 

there are also changes in the vertex ranking values, and these changes are used to 

detect leaks. A historical series of hourly pressure data is used to learn the vertices 

rank for the different days, and the leak is detected when the maximum PageRank 

value of the vertices is different from those learned from the historical data. The 

proposal achieved a score of 86% based on seven simulated leaks with the results 

evaluated in terms of the accuracy of a confusion matrix. The methodology proved to 

be easy and quick to apply.  

Even so, there are still points to be improved. Some of these points can be addressed 

in future works, seeking, for example, to use new ways of creating graphs, such as 

methods that consider the topology of the network. New vertex classification metrics 

can also be used considering, for example, the centrality of the vertices or the number 

of degrees and using other sources of monitoring data, such as: flows, reservoir levels 

and water quality. Another approach that can be followed as plans is leak detection by 

methods linked to graph theory, as through the connection between the sensor nodes 

and the other network nodes. 
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Abstract 

To reduce losses in water distribution networks, data-driven approaches have been 

explored, mainly with the aim of detecting leaks. Detection approaches have used 

monitored hydraulic data, such as pressure, flow, and tank levels, however monitored 

water quality data can present anomalies associated with leaks more intensely than 

hydraulic data. Therefore, this paper presents a methodology for detecting leaks 

through statistical analysis of pressure, water age and residual chlorine concentration 

data. By a preprocessing, the correlation between the monitored data is used as a 

weight matrix to create a temporal graph, and the z-score algorithm analyzes the graph 

structural values and points out anomalies. The detection method proved to be more 

effective when using the ranking values of the graph vertices created with water age 

and chlorine concentration data, especially in comparison to the use of pressure data. 
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6.1 Introduction 

The reduction of losses in water distribution networks is continually studied to reduce, 

of course, the physical losses of the resource, but also reduce the price distributed to 

consumers. Losses in the water distribution stage are related to leaks, frauds and 

measurement failures and can represent a significant portion of the water collected 

and treated by companies (BOZTAŞ et al., 2019). Take as an example the Brazilian 

average of losses in 2021, which was approximately 40% of the water collected 

(TRATA, 2023). Furthermore, leaks can cause problems to urban infrastructure, such 

as structural damage, soil erosion and interruption of services (ADEDEJI et al., 2017). 

And repairing these leaks can influence other networks, such as traffic, internet, and 

energy. Therefore, WDN control approaches are studied and presented so that 

operators can take accurate forecasting and repair measures. 

Leak detection approaches, especially for non-apparent leaks, are constantly evolving. 

An example of this are acoustic methods, widely studied in the 1990s (FUCHS and 

RIEHLE, 1991; HUNAIDI and CHU; 1999). This method is initially carried out manually 

using microphones and the operator's experience determined the occurrence and 

location of the leak (HUNAIDI et al., 2004). Due to the difficulty related to on-site 

inspection and the impossibility of analyzing the entire network in this way, noise 

analysis began to use automated methods to detect anomalies. Different approaches 

are presented for this, for example, microphones were installed at the beginning and 

end of the pipes and the noises from the microphones are compared and analyzed by 

statistical analysis algorithms in search of anomalies associated with leaks (SANTOS 

et al., 2013). However, acoustic inspection approaches require the installation of 

microphones in many pipes, which makes its application difficult. Furthermore, 

acoustic monitoring is influenced by noise from other networks, such as traffic, gas, 

and sewage, in addition to common everyday noise pollution (NAVARRO et al., 2020).  

Hydraulic monitoring of the network at fixed points is also used to detect leaks in WDN. 

Pressure, flow, and reservoir level data are widely explored in anomaly prediction and 

detection (DARSANA and VARIJA, 2018). To achieve this, research addresses 

different techniques, for example, Di Nardo et al. (2015) which uses a genetic algorithm 

trained with historical pressure and flow data to predict the monitored values, if the new 

monitored value is not close to the predicted value, an anomaly is pointed out. Shao 
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et al. (2019) also use monitored pressure and flow data to detect leaks by comparing 

monitored and simulated data. However, the method proposed by the authors is 

strongly influenced by noise in the data, since no pre-treatment of the data was not 

carried out, in addition, smaller leaks are not identified because they are ignored due 

to modeling uncertainties and the need for large memory. computational system to 

store data from simulated scenarios. 

Model-based detection methods use WDN computational modeling, estimate hydraulic 

behavior through simulations and point out anomalies when monitored data do not 

coincide with simulated values. Nasirian et al. (2013) presents an approach that uses 

network calibration to detect and estimate the size of leaks, through comparison 

between monitored and simulated data. Moasheri and Ghazizadeh (2021) also present 

a model-based method for detecting anomalies by comparing simulated and monitored 

data. To do this, the authors calibrate the nodal demands and the roughness of the 

pipes and estimate the pressure values at different points in the network. However, 

model-based methods require a much information to calibrate the network, such as 

pipe roughness, nodal demands, pipe, and pump flows, as well as other information 

that may not be easily acquired or information that changes over time, such as the 

pipes roughness (JADHAO and GUPTA, 2018).  

To avoid calibration processes, data-driven methods have also been explored to detect 

leaks in WDN. Detection approaches that use data-driven methods analyze monitored 

data to identify deviations from behavioral patterns, unusual data, associate data 

behavior with known anomalies, or outline points in the data (HU et al., 2021). Daniel 

et al. (2022) present a detection method data-driven through semi-supervised linear 

regression analysis of pressure data, using data from pairs of sensors. However, the 

method presented by the authors can be influenced by fluctuations in pressure values, 

as these change over time. Barros et al. (2023b) present a data-based detection 

method, but the authors use the correlation between the monitored data as a way of 

pre-treatment of the data, using the value of this correlation to create a temporal graph 

and analyze the topological information of the graph to detect leaks. The authors state 

that analyzing the structure of graphs can favor the application of statistical data 

analysis methods as they present marked anomalous behavior when leaks occur. 
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However, the approach presented by the authors can still be explored using all the 

information in the graph and analyzed using statistical methods. 

Graph theory has favored the management and control of WDN, through structural and 

relationship analysis in WDN modeled as graphs (SITZENFREI, 2021). A graph has 

vertices, which represent objects, and edges representing the interaction between 

objects (BIGGS et al.,1986). To represent a WDN, research has represented demand 

nodes, tanks and reservoirs as vertices, the edges represent pipes, correlations 

between demand and pressure data. Torres et al. (2017) explore the performances of 

several WDNs using hydraulic, water quality and demand information as a basis for 

creating the graph. The authors show that the metrics related to graph analysis have 

strong links with network performance measures, such as maximum losses and 

average water age, and the authors also indicate the use of these metrics in 

approaches to detecting and locating leaks. 

Using different data sources can favor the detection of anomalies using data-driven 

approaches. For example, as mentioned by Torres et al. (2017) which uses water 

quality information to create graphs and explore WDN performance. In this sense, 

Barros et al. (2023a) exposes the advantages of using water quality data to detect 

leaks. The others carry out leak simulations and monitor pressures, water age and 

chlorine concentration, in which more significant changes are observed in water age 

and chlorine concentration data in cases of leaks. The authors conclude and explain 

that to meet the flow of leaks, water may travel different paths or even require the 

supply of another tank or reservoir, a situation that changes water quality parameters. 

In general, approaches that use PageRank values as a form of data pre-processing 

proved to be more efficient for detecting anomalies. Furthermore, water quality data 

are more affected in cases of leaks, which favors the detection process. Taking it into 

account, this research presents a data-driven leak detection approach that utilizes data 

on pressure, water age, and chlorine concentration. The correlation among the 

monitored data is used to create the temporal graph, in which all vertices in the graph 

are classified temporally using a graph analysis metric. The ranking values are then 

analyzed by a statistical analysis algorithm, which points out anomalies in the ranking 

data for each vertex and for each type of data used to create the graph. The study 
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shows that the classification of data referring to graphs created with data on water age 

and chlorine concentration favors detection compared to the same approach that uses 

pressure data. 

6.2 Material and methods 

The present study is mainly based on the research of Barros et al. (2023a) and Barros 

et al. (2023b), in which the first research is used as a basis for the process of 

mathematical and computational modeling of leaks, and the second research used as 

a basis for the creation of a temporal graph based on the correlation between 

monitored data. This research is compound by computational simulations of leaks, 

creation of a temporal graph through the correlation among monitored data and the 

data anomaly detection via the Z-score statistical analysis algorithm. 

6.2.1 Leakage modeling and simulation process 

The leak simulation process is carried out in a Python programming environment using 

the Water Network Tool for Resilience (WNTR) library (KLISE at al., 2017). The WNTR 

library is based on the EPANET software (ROSSMAN et al. 2000), however, due to its 

use in a programming environment, it is possible to include different methods and 

algorithms both during the simulation process and in the analysis of the results 

obtained in the process. To simulate leaks with WNTR, it is possible to use the emitter 

equation, which is already implemented in the library and software. However, when 

using the emitter equation, it is not possible to select specific periods for the beginning 

and end of the leaks, since when including an emitter, it is considered throughout the 

entire simulation time. 

However, using the standard orifice equation 6.1 it is possible to determine the leak 

flow rate, and add it as demand to the WDN nodes during the simulation. This 

determines the size of the leak, start and end times and whether leaks with an abrupt 

start or gradual growth in flow will be considered. For this, the orifice equation is 

described by: 

𝑞 =  𝐶ௗ𝐴 ඥ2𝑔𝑃               (6.1) 
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where 𝑞 is the flow rate, 𝑃 is the pressure head, 𝐶ௗ is the discharge coefficient, 𝐴 is 

the orifice area and 𝑔 is the gravity acceleration. The computational hydraulic 

simulation considers a total simulation time, and leaks are distributed across demand 

nodes in the WDN, with different dimensions and starting shape, all chosen randomly. 

The size of the leak is considered through the variation in area 𝐴 in the equation 6.1 

and the form of onset, such as abrupt or gradual growth, is determined by multiplying 

reduction factors until it reaches the maximum value of 𝑞. 

The simulation process also considers monitoring sensors previously installed on the 

network and saves hydraulic and water quality data at the monitored points. Pressure 

data is used as the standard approach in the present research, since it is the data 

normally used for leak detection. However, water age data will also be used for leak 

detection. The water age information is related to the time that the water travels from 

the reservoir until it reaches the demand nodes (ROSSMAN et al. 2000). To consider 

this information in the simulation process, the 'AGE' function is used as a quality 

parameter in the WNTR library. 

In addition to the water age, an additional simulation process is carried out, with the 

same characteristics as the simulated leaks, but considering the chlorine 

concentration. For this, the analyzed WDN reservoirs are considered as a source of 

continuous chlorination at a concentration of 3 mg/L of chlorine. Simulations with 

chlorine concentration also consider the flow reaction coefficient at -2.5 and pipe wall 

reaction coefficient equal to 0.15 (ROSSMAN et al. 2000; BARROS et al. 2023b). This 

information is added prior to the beginning of the simulation process, which includes 

information on chlorine concentration in the reservoirs individually and information on 

reaction coefficients globally. This approach during the simulation process uses the 

'CHEMICAL' function as a quality parameter. The data obtained in this simulation 

process is then used in the leak detection process, but previously treated through the 

correlation between the monitored data to create a temporal graph. 

6.2.2 Temporal graph creation 

Barros et al. (2023b) presents an approach for creating a temporal graph based on the 

correlation of monitoring data. To do this, the authors consider a matrix of monitored 

data 𝑋, with each column of this matrix referring to a monitoring node (𝑣ଵ, 𝑣ଶ, ..., 𝑣௜) 
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and the column lines refer to the data monitored at time 𝑡. Thus, the Euclidean distance 

of the data monitored at time 𝑡 for each column 𝑣 is assigned to the distance matrix 𝑍 

and calculated by: 

𝑍௜௝ =  ‖𝑋௩௜ − 𝑋௩௝ ‖ଶ      (6.2) 

A matrix 𝑍 is created every 𝑡 in 𝑋 and this matrix is used as a weight matrix in the graph 

creation (KALOFOLIAS, 2016). As the matrix 𝑍 is updated every 𝑡, this new information 

is assigned to the graph, thus creating a temporal graph. 

A graph is normally represented by 𝐺 = (𝑉, 𝐸) where 𝑉 is the vertices of the graph and 

𝐸 is the set of edges (SITZENFREI, 2021). The representation of the graph is also 

possible through matrices, in which an adjacency matrix represents the relationship 

between the vertices, in which it is a Boolean matrix indexed by the vertices of the 

graph (BIGGS and = LLOYD, 1986). However, to represent graphs whose vertices 

have strong or weak relationships between them, a weight matrix (𝑊) is used. The 

matrix 𝑊, also indexed by the vertices, has values assigned to the connection between 

the vertices, with values that can represent different types of information, for example, 

research related to WDN analysis normally uses hydraulic information such as flow, 

length, and roughness of pipes (TORRES et al., 2017; SITZENFREI, 2021). 

The present research uses the matrix 𝑍 as the weight matrix 𝑊 in creating the temporal 

graph (𝐺௧). The vertices of 𝐺௧ refer to the columns of 𝑋, that is, the graph 𝐺௧ has vertices 

that represent the network monitoring nodes. The edges of 𝐺௧ are the Euclidean 

distance values between the data monitored at each 𝑡. Barros et al. (2023b) observed 

that the graph structure changes temporally, and that these changes also reflect 

anomalous behavior in the WDN, for example in cases of leaks. Therefore, analyzing 

the temporal graph structure is treating of monitored data, since anomalies may not be 

strongly reflected in the monitored data. However, anomalies related to leaks can 

strongly impact the correlations between the data and the graph structure. 

6.2.3 Detection approach via ranking vertex analysis 

The structural values of 𝐺௧ change over time, which is reflected in the behavioral 

analysis of the importance of vertices and edge weights. Therefore, analyzing the 
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importance of vertices and edges in a temporal graph can shed light on issues not 

observed in other analyses. Therefore, the present research analyzes the structure of 

𝐺௧ based on the importance of the vertices. For this, the metric presented by Page 

(1999) is used, which ranks the importance of vertices based on the general structure 

of the graph, and the quantity and quality of edges directed to the vertices. The ranking 

metric presented by Page (1999) is called PageRank and is determined by: 

𝑃𝑅(𝑣௜) = (1 − 𝑑) ∑
௉ோ൫௩ೕ൯

ேೡೕ
௩ೕ∈௏ೡ೔

    (6.3) 

where 𝑣௜ is the vertex in analysis, 𝑉௩೔
 is the set of vertex that are connected to 𝑣௜. 𝑃𝑅(𝑣௜) 

and 𝑃𝑅(𝑣௜) are ranking score of vertex 𝑣௜ and 𝑣௝. 𝑁௩ೕ
 denotes the number of outgoing 

edges of vertex 𝑣௝. 𝑑 is a dampening factor that is usually set to 0.85.  

Barros et al. (2023b) showed that PageRank values change over time and associated 

these changes with network leaks. However, the authors only use the maximum 

PageRank values, referring to a vertex of the graph, and detect changes based on 

direct comparison between the initial days of the simulated data, in which there are no 

leaks. The present research uses the PageRank values for all vertices of the graph 𝐺௧, 

that is, all the sensors in the network, and uses the z-score algorithm to statistically 

analyze and point out anomalies in the PageRank values. 

6.2.3.1 z-score algorithm 

The z-score algorithm developed by Altman (1968) evaluates the relationship of a 

value in terms of the mean and standard deviation in a set of values. The algorithm 

was initially developed to evaluate the prediction of company bankruptcy using 

financial and economic indices. However, the use of the z-score in other analyzes has 

proven effective, such as detecting anomalies in health, behavioral and investment 

data (ANUSHA et al.,2019). The z-score value is calculated in this research by: 

𝑍𝑠௧,௩೔
=  

௉ோ(೟,ೡ೔)ି ௠௘௔௡(௉ோ൫ೢೞ:೟షభ,ೡ೔൯)

௦௧ௗ(௉ோ൫ೢೞ:೟షభ,ೡ೔൯)
    (6.4) 
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where 𝑍𝑠௧,௩೔
 is the z-score value for the data at vertex 𝑣௜ at time 𝑡. 𝑃𝑅(௧,௩೔) is the 

PageRank value of vertex 𝑣௜ at time 𝑡. 𝑚𝑒𝑎𝑛(𝑃𝑅(௪௦:௧ିଵ,௩೔)) is the mean of the PageRank 

values for  𝑣 considering the temporal data 𝑡 − 1 up to a stipulated window size 𝑤𝑠. 

The 𝑤𝑠 refers to a quantity of data prior to 𝑃𝑅(௧,௩೔) under analysis, and consider a 

current evaluation, that is, a sliding window of data that runs through the data. At each 

iteration the window moves considering the next data and removing the oldest data. 

Thus, 𝑤𝑠 always has the same amount of data, but the behavior of the data throughout 

the analysis is considered when evaluating new data. 

The analysis also considers a sliding window to allow evaluating data that changes 

over time, an example is related to the pressure behavior in the WDN, which changes 

over time due to changes in the roughness of the pipes and unrepaired background 

leaks. This research uses a sliding window of 7 days of data to obtain mean and 

standard deviation values, as it contains demand behavior on all days of the week. 

However, the process individually evaluates the data used in the first sliding window, 

that is, the data monitored during the initial 7 days, also evaluates the data from the 

first day. At the end of the evaluation of the first 7 days, each new monitored and 

analyzed data included in the data window slides and the oldest data is deleted. 

To evaluate the performance of the proposed method, simulated leaks are used, since 

the start and end times are known, and the time elapsed after the start until detection 

is indicated. Leak simulations are used mainly because there is no monitoring of water 

quality in benchmark problems related to detecting and locating leaks. Detection is 

considered correct if it occurs during the leak, determined by: 

𝑡௦௧
௟ ≤  𝑡ௗ

௛ ≤ 𝑡௘௡ௗ
௟                (6.5) 

where 𝑡ௗ
௛ is the detection time, 𝑡௦௧

௟  and 𝑡௘௡ௗ
௟  is the start and end time of leakage 

𝑙 (VRACHIMIS et al., 2022). Thus, the detection time after the start of the leaks will be 

evaluated, and if detections occur that do not follow the equation 6.5 this is considered 

a False Positive, a failed detection. 
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6.3 Case study 

As a case study, this research uses the Modena network presented by Bragalli et al. 

(2012). The Modena network (Fig. 6.1) is based in an Italian city and has 268 demand 

nodes, 4 reservoirs and 317 pipes. This network was also used by Barros et al. (2023a) 

and Barros et al. (2023b) in leak simulation and water quality analysis processes. 

Therefore, to provide a more robust analysis of the results, the same hydraulic 

parameters are used for leak simulations (flow, duration, and form of onset) and quality 

simulations (water age, chlorine concentration and reaction coefficients). 

Figure 6.1 - Case study information 

a) Modena Network 

 

b) Leakages 
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Figure 6.1a shows the network topology, in addition to the nodes used as leak sources 

and sensor nodes. The sensor nodes follow those presented by Mankad et al. (2022). 

Figure 6.1b shows the duration and flow rate of the simulated leaks. The simulation 

process follows, as mentioned, the standards presented by Barros et al. (2023b) in 

which it considers the duration of the simulation to be 40 days, data monitored every 

hour, and a sliding window of 7 days. However, the authors consider a random rate of 

the multiplication factor of the base demand of the consumption nodes. In this work, 

random values varying by 10% of the hourly multiplication factor are also considered. 

At the end of the leak simulation process, three matrices of monitored data 𝑋 are 

obtained, referring to data on pressure, water age and chlorine concentration. Each 

matrix is analyzed individually, in which the temporal graphs referring to each matrix 

are created, the vertices are ranked and anomalies in the ranking value of the vertices 

are detected using the z-score algorithm. Furthermore, the data is evaluated 

individually at each time 𝑡, which reflects the application in cases of real-time data 

analysis. 

6.4 Results and discussion 

The results presented corroborate the research by Barros et al. (2023a) and Barros et 

al. (2023b) in different aspects. Firstly, the use of quality data proved to be effective in 

detecting leaks. Furthermore, analyzing the structure of graphs can also be an efficient 

way of pre-processing data since its structure and PageRank values change in cases 

of anomalies in the monitored data. Therefore, to demonstrate the best efficiency in 

detecting leaks using the structural data of the time graph, the pressure and water age 

data resulting from the simulation process are shown in Figure 6.2. 
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Figure 6.2 - Monitoring data analysis 

                             a) Pressure data                                              b) Water age data 

 

 

Figure 6.2a shows that some anomalies are detected in the sensor data at nodes 39 

and 117. Even so, the sensor 39 detected 3 anomalies, but 2 cases are reported as 

false positives, since the detection is occurring at times when there were no leaks. A 

similar scenario is shown in Figure 6.2b as anomalies are also detected only in data 

from sensors 39 and 117. However, the z-score algorithm detected anomalies before 

the leaks began in the data from both sensors, this is because the data used in the 

sliding window is also analyzed in comparison to the initial data. 
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On the other hand, the use of the correlation between the monitored data obtained in 

the simulation in the creation of the temporal graph and the ranking of the vertices 

proved to be a practical and effective way of pre-processing the data. Figure 6.3 shows 

the PageRank values considering the pressure and water age data when creating the 

temporal graphs. 

Figure 6.3 - PageRank value detection 

                             a) Pressure data                                              b) Water age data 

 

It is possible to observe in Figure 6.3a the behavior of the PageRank values referring 

to the monitored pressure data change dramatically when leaks occur. The behavior 

of sensor data 117 (Fig. 6.2a) stands out as it presents behavior like that presented by 

Barros et al. (2023b), which once again corroborates the application of the proposed 
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method. However, anomaly detection using the z-score algorithm is more effective 

using data from other sensors, for example data from sensors at nodes 114 and 39. In 

both sensors, detection occurs immediately after the start of the simulated leaks, and 

the number of false positives is also reduced. Anomalies are also detected in sensor 

data at nodes 56, 117 and 169, but with lower quantity and precision. Furthermore, it 

is noteworthy that in some cases leaks are not detected. 

When using water age data in the process of creating the graph and ranking the 

vertices, the behavior of PageRank values is even more pronounced, as shown in 

Figure 6.3b the detection of anomalies in the PageRank values referring to data on 

nodes 39 and 117 also occurs immediately after the start of the leaks in some cases. 

The moments of detection always occur during the leak, and there are no false positive 

detections. Therefore, the approach that uses water age data to determine PageRank 

values is more accurate in detecting leaks, which can be seen numerically in Table 

6.1, compared to the approach that uses PageRank data. related to monitored 

pressure and stands out even more than the direct use of pressure and water age data. 

Furthermore, it is noteworthy that this approach did not present false positives and that 

the data from the sensors are complementary for the effective detection of leaks. For 

example, the leak at node 6 is detected only by sensor 117 and the leak at node 49 

was detected only by sensors 39 and 56. Even so, no anomalies were detected in the 

data from sensor 169. 

However, the water age data is not actually monitored, therefore, the behavior of the 

chlorine concentration at the same monitoring points was considered, and the 

concentration data is also analyzed by the z-score algorithm and used in creating the 

temporal graph. In this sense, Figure 6.4 presents the behavior of chlorine 

concentration and PageRank values, and the moments with identified anomalies. 
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Figure 6.4 - Chlorine concentration 

                             a) Monitoring data                                             b) PageRank values 

  

 

Figure 6.4a shows that more anomalies are highlighted in the chlorine concentration 

data for sensors 39 and 117, which follows the approach that uses water age (Fig. 

6.2b). However, also detecting many false positives. Furthermore, once again changes 

in the data are not visibly noticeable. This influences the number of false positives 

identified, in which the detection algorithm using the chlorine concentration detects 

leaks a few hours after the beginning, which can be pointed out as a detection bias, 

since several anomalies are identified and many of them are not related to leaks. 
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On the other hand, the detection of anomalies in PageRank values is more significant 

compared to the direct use of chlorine concentration data. Still, the behavior of 

PageRank data is like the behavior of water age, which is expected due to the 

equations used by the WNTR software. However, it is observed that the PageRank 

values using the chlorine concentration (Fig. 6.4b) present greater noise than the 

PageRank values using the water age (Fig. 6.3b). An example of this can best be seen 

in the sensor 39 data in both cases. 

The numerical results of the leak detection are highlighted in Table 6.1, which 

individually presents the simulated leaks, the leak onset time, and the detection time 

after the leak onset. Table 6.1 also shows the leak flow rates at the time of detection. 

Table 6.1 - Detection process results 

 

The values presented in Table 1 refer to the hours after the start of the leaks, which 

considers the leak detected when detection occurs within the leak simulation period. If 

the detections are not associated with leaks, they are considered False Positives. It 

can be seen in Table 1 that when directly using pressure data, the leak detection 

method achieves the worst results. Only detecting the leak at node 43, 10 hours after 

the start. On the other hand, the PageRank values referring to the use of pressure data 

already show better results. It is observed that leaks at nodes 43 and 49 occur 

immediately after the start of the leak. However, even this approach did not detect the 

leaks at nodes 250, 120, and 6. 

Although detections occur a few hours after the start of the leaks, directly using water 

age data may not mean the correct detection of leaks. The maximum peaks of the 

values are marked with anomalies, as seen in Fig. 6.2b, and some cases coincide with 

the beginning of the leak. Unlike this, PageRank data that uses water age data 

Monitoring PageRank Monitoring PageRank Monitoring PageRank

250 192 6 N.D. N.D. N.D. 1(1L/s) N.D. 2(1L/s)
120 240 2 N.D. N.D. 2(2L/s) 1(2L/s) 2(2L/s) 1(2L/s)
224 288 3 N.D. 14 (1L/s) 2(1L/s) 5(1L/s) 2(1L/s) 10(1L/s)
43 432 6 10(1L/s) 1(1L/s) 4(1L/s) 32(2L/s) 3(1L/s) N.D.
49 648 7 N.D. 1(7L/s) 33(7L/s) 1(7L/s) 33(7L/s) 3(7L/s)
6 816 2 N.D. N.D. 2(1L/s) 1(1L/s) 2(1L/s) N.D.

153 864 2 N.D. 18(1L/s) 23(1L/s) 1(1L/s) (1L/s) 7(1L/s)

Node 
leaks

N.D. - Not detected

Pressure Data Water age data chlorine concentrationMax. leak flow 
(L/s)

Start 
Time (h)
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presents different behavior when in the presence of leaks and reflects in the detection 

times, where 5 of the 7 simulated leaks are detected immediately after the starting of 

the leak (nodes 250, 120, 49, 6 and 153). 

Finally, the direct use of chlorine concentration presented, as expected, similar results 

to the approach that uses the water age. However, in this case several false positives 

were also reported. The approach that uses PageRank values referring to chlorine 

concentration data also presents results like the approach related to water age; 

however, two leaks were not detected, at nodes 43 and 6. It is also noteworthy that 

two false positives are pointed out in sensor data 39.  

The individual analysis of data from each sensor proved to be complementary 

compared to using only data from one monitoring point and can favor approaches for 

leak localization. Taking as an example the leak at node 6 that was detected by 

sensors 56 and 39 in the approaches using PageRank values and water age and 

chlorine concentration data. In the example in question, both sensors are close to the 

leak, and the leak localization can be determined, for example, by the sensor coverage 

area and the intersections between the covered areas. 

 Furthermore, the approach proposed in this article can still be improved if optimally 

positioned quality monitoring sensors are used. To analyze the results in comparison 

with pressure and water quality data, this research uses the pressure monitoring 

sensors presented by Mankad et al. (2022). However, the authors use a methodology 

that exploits pressure data to estimate pressures at other nodes, detect leaks and 

estimate the state of the network. Therefore, the detection process presented here can 

have significant gains if it uses optimally placed water quality monitoring sensors, or 

even the joint use of hydraulic and water quality data. 

6.5 Discussion and partial conclusions 

This research addressed leak detection processes using pressure and water quality 

data. For this, approaches were tested, which use simulated data on pressure, water 

age and chlorine concentration. However, a form of data pre-treatment is used, in 

which the correlation between data is considered to create temporal graphs and the 

structure of these graphs is evaluated using the PageRank vertex ranking metric. 
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Although widely used for leak detection, pressure data proved to be less effective for 

leak detection compared to water age and chlorine concentration data. In general, 

directly using monitored data may not favor detection methods, therefore, the way to 

pre-treat this data is indicated using the ranking of the graph's vertices. This data pre-

treatment made the application of the z-score algorithm for anomaly detection more 

efficient, as it is possible to visibly identify changes in the data. Even so, there are ways 

to implement the proposed method, mainly using other methods to determine the 

correlation of data to create the temporal graph. It is also possible to use different 

metrics to evaluate the structure of the temporal graph. Furthermore, the method can 

also be used to locate leaks. 
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This chapter is an adapted version of Barros, D., Meirelles., G., Brentan, B.  Water 

distribution networks represented as Multilayer Graphs: leak detection and localization 

approach. Water research, 2023. (Under review). 
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Abstract 

Water distribution networks (WDN) of increasing size and complexity pose significant 

management challenges and increase the risk of failures. Globally, it is estimated that 

126 billion m³ of non-revenue water are lost annually, highlighting the urgency of 

measures to mitigate losses. This study proposes a methodology that uses graph-

based correlation and multilayer graph analysis for leak detection and localization in 

WDNs. The detection process involves correlating monitored data to create a temporal 

graph and classify vertices. The classification values are then analysed by the z-score 

and IQR algorithms to detect anomalies. The localization process uses a multilayer 

graph approach that combines sensor data, the network topology, and an approach to 

determining the sensor coverage area. The DTW algorithm is also used to determine 

the similarity between monitored and simulated leak data, identifying likely leak 

locations. The results demonstrate the effectiveness of the methodology, detecting 

anomalies 15 minutes after the start of the leak and locating them 50 meters from the 

actual location of the leak. The research highlights the advantages of multi-layer 

graphs, offering insights into leak location, sensor coverage and reducing network 

sample space. 
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7.1 Introduction 

Water distribution networks (WDNs), essential for supplying cities, are gradually 

becoming larger and more complex, making management challenging and increasing 

the likelihood of failures. In this context, it is worth noting that globally, an estimated 

126 billion m³ of unbilled water are lost annually, representing significant losses in 

terms of both financial and water resource aspects (LIEMBERGER and WYATT, 

2019). A survey conducted by the Brazilian National Sanitation Information System 

showed that approximately 40% of captured and treated water is lost due to leaks, 

measurement errors, and theft (TRATA, 2023). These estimates highlight the need for 

the implementation and development of measures to mitigate these losses, focusing 

on agile and effective approaches. 

Strategies to reduce losses, especially those related to leaks, have been subject to 

constant development (VAIRAVAMOORTHY and LUMBERS, 1998; DE VRIES, et al., 

2015; RAJABI et al., 2023). Conventional field approaches often involve the use of 

acoustic devices to detect the noises associated with leaks (HUNAIDI et al., 2004). 

However, the effectiveness of these methods has been increasingly compromised due 

to the presence of underground utilities, such as gas, electricity, and internet cables, 

as well as the need for technical teams to physically inspect the networks, making the 

process more time-consuming and costly (SAGNARD et al., 2016). Therefore, the 

automation of leak detection and localization processes has become a frequent 

research topic. In this context, hydraulic monitoring data collected by sensors are 

analysed using mathematical and statistical approaches that identify anomalies and 

associate them with potential leak locations (CHOUDHARY et al., 2021). 

Monitored pressure and flow data are applied in different leak detection and 

localization approaches. Perez et al. (2009) use pressure data, a calibrated network 

model, and a genetic algorithm to identify leaks based on the discrepancy between the 

monitored and simulated data. Meanwhile, Romano et al. (2010) use pressure and flow 

data to detect leaks in real-time, employing artificial neural network (ANN) techniques 

to predict the values of the monitored data and subsequently analyse the difference 

between the observed and predicted data. In recent years, methods involving artificial 

intelligence, such as artificial neural networks and machine learning, have been widely 

explored (LIU et al., 2019; MASHHADI et al., 2021). 
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However, it is important to note that the quality of results obtained through these 

methods depends on the quality of the monitored data and the calibration of the 

analysed network, which becomes a challenge due to the constant modifications and 

expansions of WDNs. In response to this challenge, there is a growing trend towards 

the application of methods that focus exclusively on the monitored data, aiming to 

identify failures and represent the network in a more mathematical way (KIRSTEIN et 

al., 2019). Kaghazchi et al. (2021), for example, model a WDN for irrigation using 

Hybrid Bayesian Networks for hydraulic simulations and operational performance 

evaluation. Wu et al. (2021) represent WDN through game-theoretic to consider the 

water network's operating characteristics and seek to minimize the worst-case 

disruption impacts. Yu et al. (2023) model a WDN as a graph to evaluate the resilience 

of networks through the individual importance of nodes and the proportion of 

indispensable nodes. 

Graph theory, a branch of mathematics that explores connections between objects, 

has played an important role in network analysis in various research domains 

(BEELER, 2015). A graph contains a set of vertices that represent objects, and these 

vertices are connected by edges indicating the relationship between the objects. The 

relationship between vertices can consider different approaches, such as physical 

(MUNIKOTI et al, 2021), temporal (SHINKUMA et al., 2019), similarity relationships 

(XU et al., 2019), among others. Thus, the values of these relationships are considered 

as weights of these edges and represent stronger or weaker connections between the 

vertices. This theory has been applied in WDN as a representation and analysis 

method, so that the vertices represent the nodes (demand, tanks, and reservoirs) of 

the networks and the edges represent the pipes, pumps, and valves. The weight of the 

relationships between the vertices follows different approaches, such as using the flow 

rate, diameters, and length of the pipes (TZATCHKOV et al., 2008; SITZENFREI, 

2021).  

The application of graph theory allows the evaluation of WDN through approaches 

linked to complex network analysis, such as, for example, identifying critical vertices 

through centrality metrics (AGATHOKLEOUS et al., 2017) or evaluating the 

relationship between vertices to detect leaks (BARROS et al., 2023). Furthermore, this 

theory allows the representation of correlations in monitored data (KALOFOLIAS, 
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2016) and in the networks themselves as graphs (SITZENFREI, 2021; GIUDICIANNI 

et al., 2021). 

Recently, methodologies have been developed that represent WDNs as graphs for 

leak detection. For example, SHEKOFTEH and JALILI (2020) employed the Girvan-

Newman algorithm to partition a graph based on edge weights, adopting an approach 

that uses ANN to classify the monitored data. However, this method is sensitive to 

fluctuations in demand and uncertainty in pressure data, which can lead to inaccurate 

results. To mitigate errors resulting from uncertainties in monitoring data, Barros et al. 

(2023) present an approach based on the maximum classification values of graph 

vertices using the PageRank metric. To detect anomalies in the monitored data, the 

authors constructed graphs based on the correlation between pressure data monitored 

by sensors, which are susceptible to variations due to hydraulic behavior or network 

faults, affecting the graph structure and consequently impacting the classification of 

graph vertices. However, the authors exclusively employ maximum vertex 

classification, where classification values are assigned to all vertices, but the analysis 

is limited to only the maximum values. Nevertheless, the PageRank metric assigns 

ratings to all vertices, with these vertices representing the monitored nodes. Thus, 

notable fluctuations in PageRank values can serve as indicators of anomalies within 

the sensor's coverage area, thus providing information that favors the detection and 

localization of anomalies. 

In a sensor monitored WDN, the representation of the network can consider both the 

network elements and the vertices and edges of a graph, to represent the network 

topology itself, as well as to analyse the correlation between the monitored data. This 

implies the existence of two distinct graphs, although they share the same vertices. 

This situation opens possibilities for the application of approaches related to multilayer 

graphs, which represent graphs that share vertices, considering multiple types of 

relationships, with each relationship between vertices resulting in a new perspective of 

the graph (LIU et al., 2022). In the context of this approach, Herrera et al. (2023) 

explored performance indicators of a communication network as layers in a multilayer 

graph, allowing for the analysis and evaluation of network performance in different 

aspects. Additionally, the authors highlighted how interlayer information can be helpful 

in monitoring, control, and problem classification within the network. 
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Multilayer graphs are explored for different purposes, such as the one presented by 

Stahl et al. (2019) to plan the trajectory of racing vehicles based on a multilayer graph 

that has layers related to the actions to be taken, the costs for traveling different paths, 

and the relationship of speed between competitor in the race. This approach can also 

favour the detection of subgraphs through mapping between the relationships between 

layers (BREDERECK et al., 2019). Although this approach has been widely explored 

in other areas of research, its use in relation to WDN is still scarce. For example, one 

can explore, as layers in a Multilayer graph, the relationship between monitored data 

and topological relationships. Also explore subgraphs through the relationship of 

sensors with their coverage areas. Thus, it may be possible to apply this approach to 

the process of detecting and locating leaks. 

Based on the considerations presented, the main objective of this research is to 

develop a methodology for leak detection and localization that utilizes multiple graphs 

within a multilayer structure. To achieve this purpose, the methodology employs three 

distinct approaches in graph creation: one based on network elements, another that 

creates a graph with temporal variations through the correlation between monitored 

data, and finally, the integration of these two graphs into a multilayer structure, where 

the interaction between the layers is represented by the areas considered covered by 

the sensors. The detection process begins with the use of the correlation graph to rank 

the vertices, employing statistical methods to identify anomalies and classify the 

vertices with the highest discrepancies. Then, the vertices with the highest anomalies 

are integrated into a graph based on the network topology, forming the layers of a 

multilayer graph that is used in the leak localization process. Finally, considering the 

nodes covered by the sensors in the multilayer structure, leak simulations are 

performed, and a percentage of similarity between the monitored and simulated data 

indicates the likely leak locations. 

7.2 Methodology 

The methodology developed and applied in this study is based on two main processes. 

The first creates a graph through the correlation between monitored data, classifies 

the vertices of this graph, and uses the classification information to detect leaks. The 

second application addresses a multilayer graph in which a topological graph of the 
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entire network is considered a layer, the correlation graph of monitored data is another 

layer and the interlayer relationship is given by the sensors' coverage area. 

The vertex classification process uses methods such as z-score (ALTMAN, 2017) and 

IQR (WAN et al., 2014) to identify vertices that are likely to leak. The edge multilayer 

analysis process identifies edges that are shared by multiple vertices, which can be 

used to locate the leaks. In this approach, two graphs are built. The first one represents 

the correlation among monitored data, where the vertices correspond to the monitored 

nodes. The second graph is an abstraction the WDN, where network nodes are 

represented by vertices, and the pipes are represented by edges. By combining these 

two graphs, a multilayer graph is built, interconnecting the sensor graph and the WDN 

graph through edges that represent the node coverage. The leak detection process 

employs the z-score and IQR methods to identify and classify sensor vertices that 

exhibit anomalies in the data. Finally, leakage isolation is accomplished through the 

analysis of the edges in the multilayer graph. Figure 7.1 illustrates the steps involved 

in applying this methodology. 

Figure 7.1 - Flowchart methodology 
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7.2.1 Graph theory application 

Graph theory is explored here in three different approaches to detecting and locating 

leaks. The first approach uses the relationship between monitored data to create a 

temporal graph. Then, the WDN topology is modelled as a graph weighted by the pipe 

flows. And finally, a multilayer graph is created with the correlation graph and 

topological graph, being interconnected by a sensor coverage relationship determined 

by a metric that determines shortest paths and proximity between vertices. 

7.2.1.1 Hydraulic data-based graph (𝐺௦) 

Given a monitored water network, each monitored point is represented as a vertex in 

a graph, and the interaction between these vertices can be established through the 

Pearson correlation between the information at each vertex. The method proposed by 

Kalofolias (2016) addresses the creation and learning of graphs through soft signals. 

The author presents the concepts for creating a sparse graph, that is, a graph with a 

reduced number of vertices but which maintains structural properties of the complete 

graph. In this work, this method is applied, but without reducing the number of vertices 

in the graph. That is, a graph is constructed from a matrix of monitoring data 𝑋, where 

the columns represent different signal sources (nodes monitored in the WDN), and the 

rows correspond to temporal data 𝑡. Each column of 𝑋 is treated as a vertex in the 

graph (𝑥௩ଵ, 𝑥௩ଵ, ..., 𝑥௩ଵ), and edges are defined based on the distances between data 

pairs. each column. 

A graph can be expressed through a square matrix that denotes the interconnections 

between its vertices, being called an adjacency matrix (𝐴) when the edges do not have 

weights, and a weight matrix (𝑊) when specific information is associated to these 

edges. The method proposed by Kalofolias (2016) calculates a pairwise distance 

matrix (𝑍) for each 𝑡 of the data and between all vertices, which also results in a square 

matrix, and it is used to create the graph. This matrix 𝑍 is determined by: 

     𝑍௜௝ =  ‖𝑋௩௜ − 𝑋௩௝ ‖ଶ              (7.1) 

However, the process of creating the matrix 𝑍 results in correlation values between all 

vertices, thus, this amount of information makes it difficult to understand the behaviour 

of the graph and the underlying tasks (YAN et al., 2006). Barros et al. (2023) presents 
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a similar process for the matrix 𝑍 creation but does not prioritize strong connections, 

which we observed influence the achievement of better results. For this, an extra 

analysis is conducted to prioritize only strong edges between vertices. Thus, Matrix 𝑊௦ 

is created: 

if 𝑊௜௝  ≤ 𝑚𝑒𝑎𝑛 (𝑍) then 𝑊௜௝ = 0                               (7.2) 

if 𝑊௜௝  > 𝑚𝑒𝑎𝑛 (𝑍) then 𝑊௜௝ = 𝑍௜௝ 

The 𝑊௦ matrix is used to create a 𝐺௦ graph which is applied in the anomaly detection 

process on the monitored data. For this, the process of creating the 𝑍 and 𝑊௦ matrices, 

in addition to the creation of the 𝐺௦ graph, occurs every 𝑡. This results in an application 

that can be used in a database and can also be applied to real-time data. 

7.2.1.2 Topological based graph (𝐺்) 

To represent the WDN as a graph (𝐺்). In this representation, the set of vertices (𝑁), 

correspond to the junctions (demand nodes, tanks, and reservoirs), while the set of 

edges (𝐸) represents the pipes, pumps and valves that connect these vertices. These 

connections are mathematically represented by an adjacency matrix (𝐴ே௫ே), where the 

elements 𝑎௜௝ describe the network topology (TZATCHKOV et al., 2008; SITZENFREI, 

2021).  

Each edge 𝐸 of the graph 𝐺் can have different weights, according to the analysis to 

be performed. In the case of leak localization, the edge weights are determined by the 

maximum pipe flows in the WDN. In this work, to obtain the edge weights, a simulation 

of the network is performed using the library Water Network Tool for Resilience 

(WNTR) (KLISE et al., 2017). Through this simulation, information about the amount 

of water flowing through each pipe of the network is obtained, allowing for appropriate 

weights to be assigned to the 𝐺் edges. 

The approach makes the representation more realistic by incorporating information 

about the flow capacity of each pipe. When considering the edge weights in the 

construction of the 𝑊ீ் matrix, the specific transport capacity along the connections is 

reflected, making the modelling more faithful to real network conditions. This inclusion 

of details about the flow capacity of the pipes enhances the analysis by considering 
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the physical constraints of the system, which in turn contributes to more accurate and 

applicable results in identifying potential leak locations. In essence, when considering 

the practical aspect of flow capacity, the graph representation comes closer to the 

effective operational dynamics of the water network, providing more realistic and 

practically useful results (ANCHIETA et al., 2023). 

7.2.1.3 Multilayer graph creation (𝐺ெ௅) 

A multilayer graph is a structure in which each layer represents different types of 

interactions or relationships between system elements. These layers can be 

interconnected through edges, which can be weighted, directed or undirected, 

depending on the nature of the interactions (KIVELÄ et al., 2014). This approach allows 

the individual analysis of each layer, understanding the specific dynamics between the 

elements in each context. Furthermore, the joint analysis of the multilayer graph 

provides a holistic view of the system, revealing patterns of interaction between the 

layers (LIU et al., 2022). 

In this work, the first layer involves the graph 𝐺் based on the topological features of 

the water network model, and he second layer is the graph 𝐺௦ based on hydraulic data 

correlation. A process is used to evaluate the correlation between layers, choosing to 

analyze the sensor coverage area with an emphasis on the proximity between nodes 

and sensors. To achieve this, we adopted a proposal based on network partitioning 

approaches. In the method presented by Goa et al. (2017) the Dijkstra algorithm is 

employed to calculate the shortest paths between nodes, resulting in the division of 

WDN. Within the scope of this work, sensors play a central role, and a coverage region 

is delimited because of this process.  

This process involves the use of the graph 𝐺் and the application of Dijkstra's algorithm 

(DIJKSTRA, 2022). Dijkstra's algorithm is used to find the shortest path between nodes 

in the network, considering the edge weights. In this paper, the maximum pipe 

flowrates are used because this information can indicate the importance of the pope's’ 

contribution to contribute the total water demand (SITZENFREI et al., 2020). Using 

Dijkstra's algorithm, one can accurately estimate the areas around sensor nodes based 

on the edge weights. This algorithm plays a crucial role in determining which network 

nodes are in the operational range of each sensor. By identifying this information, it is 
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used in the process of locating possible leaks.  However, considering all the vertices 

covered by the sensors is not a realistic option, because usually one sensor reaches 

values between 8% (BARROS et al., 2023) to 25% coverage (ZHAO et al., 2020). 

Therefore, this considers the sensors coverage to 8% of the total network nodes. In 

case of specific areas in a WDN, the operator can choose the most applicable quantity 

for the problem. Thus, this application is mathematical formulation: 

if 𝑑[𝑖] + 𝜔(𝑖, 𝑗)  >  𝑑[𝑗]                                     (7.3) 

 then 𝑑[𝑗] = 𝑑[𝑖] + 𝜔(𝑖, 𝑗)   

where 𝑑[𝑗] represents the estimated distance between vertex 𝑖 and the source vertex 

𝑗, while 𝜔(𝑖, 𝑗) is the weight of the edge connecting vertices (𝑖, 𝑗). The application of 

this algorithm results in the construction of matrix 𝑊஼௥ with dimensions 𝑁 x 𝑋௦ where 𝑁 

corresponds to the number of vertices in the graph 𝐺் . The 𝑊஼௥ matrix presents the 

distances between the sensor and all network nodes and this information is used as a 

method of determining the sensor coverage rate. 

These matrices 𝑊ீ், 𝑊஼௥ and 𝑊௦ are used for building the extended matrix (𝑊௘௫) which 

will be used for the creation of the multilayer graph (𝐺ெ௅) (GARG et al., 2021). Figure 

7.2 presents the ordering of the matrices for the matrix 𝑊௘௫ creation. 

Figure 7.2 - Extended matrix (𝑾𝒆𝒙) composition 
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Figure 7.2 shows the matrix 𝑊ீ் that represents the graph of the first layer, 𝑊௦ the 

graph in the second layer and 𝑊஼௥ are the inter-layer connections. These inter-layer 

connections are the search spaces for the anomaly location, so it will be considering 

only the coverage area of the most affected sensors. 

7.2.2 Leak detection approach 

The methodology for detecting leaks follows three consecutive steps. Initially, the 

temporal graph 𝐺௦is constructed, followed by the classification of the vertices using the 

PageRank metric (PAGE, 1999). The classification values assigned to the vertices are 

then analyzed by the z-score and IQR algorithms, which look for anomalous moments 

in the data. During this procedure, the algorithms not only detect anomalies, but also 

point out which vertices present the most striking changes in the behavior of PageRank 

values. Finally, the vertices identified with the greatest changes are then used in the 

second stage of this study, which consists of locating the leaks. 

7.2.2.1 Vertex ranking process 

The vertex ranking process is conducted sequentially, using the PageRank metric, 

which is derived from the PageRank matrix. The PageRank algorithm, originally 

developed by Page (1999), plays a key role in this methodology for assessing the 

importance and influence of each vertex within the network. By employing the 𝐺௦ graph, 

which can change with each step 𝑡 due to the calculation of correction between the 

monitored data, the importance of vertices can also be changed. Therefore, this 

dynamic application of the PageRank metric can quantify the importance of vertices as 

the data is employed, ensuring a continuous and adaptive evaluation of the structural 

importance of the graph.  

The PageRank method was originally developed by Page (1999) with the goal of 

ranking web pages, considering the endorsements from other important pages. This 

method can be applied to graphs by considering the connections between vertices. 

The PageRank metric is based on a random walk model on the graph, assigning a 

"PageRank" value to each vertex, represented by a probability vector. PageRank 

𝑃𝑅(𝑣௜) is calculated by using a recursive equation expressed by: 

     𝑃𝑅(𝑣௜) =  
(ଵିௗ)

௜
+ 𝑑 × (

௉ோ(௩భ) 

௅(௩భ) 
+

௉ோ(௩మ) 

௅(௩మ) 
+ ⋯ )    (7.4) 
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where 𝐿(𝑣ଵ)  represents the number of edges outgoing from vertex 𝑣௜, and 𝑑 is a 

damping factor (usually set to 0.85) (YAN and DING, 2011). Initially, each vertex is 

assigned an equal PageRank value. Through an iterative equation, the relative 

relevance of the vertices is successively updated, considering the importance of their 

neighbors. This process is repeated until the scores converge, indicating that the 

vertex relevance has stabilized. The steady state reflects the final rankings of vertices 

based on their PageRank scores, evidencing their importance and influence on the 

structure of the graph. Vertices with higher PageRank scores are considered more 

important or influential in the network (Gu et al., 2022). 

Using this process helps reduce noise in the data and reveals more significant changes 

when anomalies occur, making the application of the detection algorithm more effective 

due to the data noise reduction. 

7.2.2.2 Anomaly detection and affected sensors 

Despite the data noise reduction obtained through the determination of PageRank 

values, an automated process is necessary to reliably point out the anomalies and 

which sensors have the greatest anomalies. Therefore, the PageRank values for each 

sensor over time are analyzed using two distinct approaches, which are jointly applied 

to detect anomalies and identify sensors most affected by anomalies. This process 

identifies anomalies in the data, which suggests potential anomalies in the system and 

pinpoints the sensors with the most significant deviations. These identified sensors 

play a crucial role in the leak localization phase during the second stage of the 

research. 

The first stage uses a statistical measure known as the z-score (𝑍௦), which quantifies 

how deviant a data point is from the mean in terms of standard deviations. The z-score 

is determined by the following equation: 

 𝑍௦ =  
௉ோ൫௩೔,ೕ൯ ିఓ

ఙ
                (7.5) 

where 𝑃𝑅൫𝑣௜,௝൯ is PageRank value for vertex 𝑣௜ in time 𝑡, 𝜇 is the average value of the 

variable, and 𝜎 is the standard deviation of the variable (KIZILÖZ et al., 2022). 
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The second stage of this process uses the Interquartile Range (IQR) (WAN et al., 2014) 

method to evaluate the PageRank value of each sensor. The IQR is a statistical 

measure that indicates the dispersion of values around the median. It can be calculated 

by subtracting the first quartile (Q1) from the third quartile (Q3) and represents a 

measure of data variability. Values exceeding 1.5 times the IQR are considered 

possible outliers. This can be expressed as an equation: 

𝐼𝑄𝑅 =  𝑄3 −  𝑄1                                  (7.6) 

and the Outliers are expressed: 

𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 =  𝑄3 +  1.5 𝑥 𝐼𝑄𝑅                                   (7.7) 

𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 =  𝑄1 −  1.5 𝑥 𝐼𝑄𝑅                                  (6.8) 

This exceed value (1.5) is usually an empirical choice that aims to balance the 

detection of significant outliers without removing many values that can be normal 

variations. This approach allows to identify anomalies that deviate significantly from 

the expected signal values. By automating this process, the anomaly detection 

methodology based on IQR can be applied to real-time data analysis, without relying 

on manual inspection by operators. 

The z-score helps identify data points that deviate significantly from the mean, while 

the IQR method assists in detecting outliers in the dataset (CHIKODILI et al., 2020). 

The z-score considers all values in the calculation, making it sensitive to outliers, while 

the IQR focuses on quartiles and data variability, making it more robust against the 

influence of such values (CHIKODILI et al., 2020). By using the z-score and IQR in 

combination, we leverage the sensitivity of the z-score in identifying deviations in 

average and standard deviation, while benefiting from the robustness of the IQR in 

handling extreme values.  

The detection process takes place when the data exhibits significant changes based 

on the defined thresholds for z-score and IQR. In the detention process, the time-

varying PageRank data for each vertex is evaluated, and if a data point exceeds the 

criteria set by the z-score and IQR, it is considered a deviation, and the vertex is 
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identified as a potential anomaly. Once all the vertices with deviations are identified, a 

ranking process is initiated to rank the vertices, using the maximum z-score value and 

the IQR value as the primary criteria. The higher the values, the higher the ranking of 

the vertex in relation to the set of vertices indicated with anomalies. In this way, a set 

of vertices 𝑋௦ is generated, representing the potential nodes with detected anomalies. 

The vertices in 𝑋௦ are also vertices in the graphs 𝐺் and 𝐺௦, with the sensors' coverage 

area represented as vertices in the graph 𝐺ெ௅. The sensors' coverage area in 𝑋௦ are 

then used in a leak simulation process, carried out with the WNTR package. Then, the 

behavior of the simulated data is compared with the monitored data and a similarity 

method is applied to indicate the location of the leak. 

7.2.3 Leak isolation approach 

After the preliminary identification of the potential leakage region, i.e., sensors with the 

most significant alterations, a refinement of the localization process is initiated. This 

process has two main objectives: locating the leak by comparing monitored and 

simulated data and narrowing down the search space, as simulating and comparing all 

possible points demands substantial computational effort. 

In the leakage simulation stage, a flow of approximately 3% of the network total 

demand is individually added to each demand node within the coverage area of 

sensors 𝑋௦. This percentage of total demand is based on that proposed by Quinones 

et al. (2019) for large leaks. This flow is chosen to strongly impact the sensors and 

exhibit characteristics in monitored data that may be associated with leaks. During the 

simulation, only data from sensors 𝑋௦ are stored and compared with monitored values 

(presented in the monitored data matrix 𝑋 to measure the similarity between the 

temporal data sequences, both monitored and simulated. 

To carry out the comparison process, the Dynamic Time Warping (DTW) algorithm 

(SAKOE and CHIBA, 1978) is employed. DTW is an algorithm used for comparing time 

series with different lengths or temporal changes (BURSTYN et al., 2021). It enables 

the comparison of data sequences even when they are not temporally aligned. The 

DTW algorithm is used to calculate the similarity between time series and identify 

anomaly points based on discrepancies in behavior patterns between simulated and 
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monitored data. The application of this algorithm involves several steps, with the first 

being the creation of the cost matrix. Initially, the algorithm creates a cost matrix (or 

distance matrix) of size 𝑔𝑥ℎ, where ℎ is the size of the simulated data sequence, and 

𝑔 is the size of the monitored data sequence. The matrix is filled iteratively, with each 

value determined by: 

     𝐷(𝑥, 𝑧) = |𝑠(𝑥)  −  𝑚(𝑧) |ଶ    (7.9) 

where 𝐷(𝑥, 𝑧) represents the cost of aligning point 𝑥 in the simulated sequence with 

point 𝑧 in the monitored sequence. 𝑠(𝑥)  is the value at position 𝑥 in the simulated 

sequence, and 𝑚(𝑧) is the value at position 𝑧 in the monitored sequence.  

After this step, the values in the matrix 𝐷 are updated, also iteratively, based on the 

costs of adjacent positions, aiming to find the minimum cost from the starting position 

(0𝑥0) to the ending position (ℎ𝑥𝑔) (KEOGH and RATANAMAHATANA, 2005). For this 

purpose, the recurrent equation 7.10 is apply: 

𝐷(𝑥, 𝑧) = |𝑠(𝑥) −  𝑚(𝑧)|ଶ + 𝑚𝑖𝑛 {𝐷(𝑥 − 1, 𝑧), 𝐷(𝑥, 𝑧 − 1), 𝐷(𝑥 − 1, 𝑧 − 1)}  (7.10) 

Thus, the total alignment cost between the data sequences is determined by the value 

in the last cell of the cost matrix, i.e., 𝐷(ℎ𝑥𝑔). The subsequent step in the algorithm's 

application reconstructs the path of the minimum cost traversed in the matrix by 

tracking the positions that minimized the cost in the previous step. This step indicates 

the alignment between simulated and monitored data. Finally, the algorithm assigns a 

similarity measure to each simulated node, utilizing the average similarity measure 

calculated by: 

𝑆𝑖𝑚(𝑛) = 1 −
஽(௡,௚)

௚
    (7.11) 

Where S𝑖𝑚(𝑛) is the measure of similarity between the nth simulated node, 𝐷(𝑛, 𝑔) is 

the alignment cost of the nth simulated node with the last position of the monitored 

sequence (𝑔), and 𝑔 is the size of the monitored data sequence. Thus, nodes with 

higher percentage values of similarity are identified as potential leak locations. The 

effectiveness and accuracy of the proposed methodology are determined by 

comparing the identified leakage locations with the actual leakage site. Reference data 
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and networks are employed to validate and assess the methodology, as outlined in the 

subsequent sections of the study. 

7.3 Aplication: Battle of Leakage Detection and Isolation Methods (BattLeDIM) 

The proposed methodology is evaluated using the benchmark problem presented in 

the Battle of Leakage Detection and Isolation Methods (BattLeDIM), described in detail 

by Vrachimis et al. (2022). The benchmark utilizes the L-Town WDN, which is designed 

to resemble a real network. The L-Town network is characterized by variations in flows 

and pressures over time, including changes in demand, pump, and valve operations, 

as well as the occurrence of multiple leaks introduced at different moments, intensities, 

and duration. The L-Town network consists of 905 pipes, totalling approximately 42 km 

in length, 782 junctions, 3 pressure reducing valves, 2 reservoirs, and 1 pump. 

Additionally, the network has 33 pressure monitoring points distributed at different 

locations. The data provided for evaluation spans a period of two years, with accurate 

measurements taken every 5 minutes, without delays. 

Figure 7.3 presents the topology of the L-Town network, including its structural 

elements such as pipes, junctions, reservoirs, and the tank. This visual representation 

provides an overview of the complexity and size of the network, which serves as a 

challenging scenario for leak detection and localization. The L-Town benchmark 

scenario provides a realistic and comprehensive testbed for evaluating the 

effectiveness and performance of leakage detection and localization methods. It allows 

researchers and practitioners to compare different approaches and algorithms under 

consistent conditions, fostering advancements in the field of water distribution network 

management. 
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Figure 7.3 - L-town network 

 

The use of the L-Town network as a benchmark allows for the evaluation of the 

efficiency of the proposed methodology in a realistic and complex context. Based on 

the data provided by the network, simulations can be conducted, leakage detection 

and localization algorithms can be applied, and the obtained results can be compared 

with the actual locations of leaks present in the benchmark. This analysis validates the 

methodology's ability to correctly identify the leak locations and assesses its precision 

in relation to the expected results. Furthermore, the data is processed considering 

District Metered Areas (DMA), as in general, the behavior of sectors follows similar 

patterns. Similarly, since the areas in the L-Town network are separated by a pressure 

control valve (Area B) and a tank (Area C), the pressures in these areas exhibit distinct 

characteristics. Therefore, the methodology is applied individually for each area. 

7.3.1 BattLeDIM evaluation metrics 

To evaluate the methodological performance proposals for detecting and locating 

BattLeDIM leaks, the organizers present a database in which the start time, duration 

and size of leaks are known. Thus, four initial criteria are considered in the evaluation: 

detection time after the start of the leak; the flow rate of the leak at the time of detection; 

the maximum leak flow; and the location distance to the actual leak location. In addition 
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to these criteria, the assessment approaches presented by BattLeDIM are also used 

in the present study. These assessments address the economic impact related to profit 

saved throughout the year due to successful detection and localization (VRACHIMIS 

et al., 2022). 

The first evaluation metric is denominated True Positive and considers leak detection 

if the following condition is met: 

𝑡௦௧
௟ ≤  𝑡ௗ

௛ ≤ 𝑡௘௡ௗ
௟                (7.12) 

where 𝑡ௗ
௛ is the detection time, 𝑡௦௧

௟  and 𝑡௘௡ௗ
௟  is the start and end time of leakage 𝑙. The 

organizers also present the Profit from Water Saved related to value 𝑝௪
௛  (euro) of water 

saved due to correct leak detection, described by: 

𝑝௪
௛ =  ൬∑ 𝑞௟௧೐೙೏

೗

௞ୀ௧೏
೓ (𝑘)∆𝑡൰ 𝑐௪               (7.13) 

where by detection 𝑙, 𝑞௟(k) flow rate of leakage 𝑙 at each discrete time step 𝑘. ∆𝑡 is the 

duration of the discrete time step and 𝑐௪ is the cost (euro) of water per cubic meter.  

Finally, a Total Score (𝑇𝑠) is determined to evaluate the entire detection and 

localization set. For this, the total score is determined by: 

𝑇𝑠 =  ∑ 𝑆௛ =௛∈஽ ∑ (𝑝௪
௛ + 𝑐௛

௥)௛∈஽                (7.14) 

where 𝑆௛  is the score per given detection 𝑙 and 𝑐௛
௥ is the repair crew cost. 

7.4 Results and discussions 

The proposed methodology allows real-time analysis of monitoring data, and this 

approach is used on data provided by BattLeDIM, which is evaluated at monitoring 

intervals immediately after issuance. The matrix 𝑋 represents the monitoring data and 

the first step consists of creating the graph 𝐺௦ that explores the correlation between the 

monitored pressure data and the determination of PageRank values.  The entire 

database is analyzed sequentially, that is, at each time step, but the application of the 

methodology for 3 periods that refer to a leak in each area of the L-town network is 
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exposed in detail. These graphs are generated considering the pressure sensors in 

the network area under analysis. 

7.4.1 Multilayer graph creation applied to L-Town 

The first analysis presented refers to the application of the methodology using the 

sensors in area A and highlights the first 24 days of 2019 of the monitored data. The 

other applications are performed with the 3 sensors in Area C and the only sensor in 

Area B. However, related to Area B, it does not involve the first stage of the 

methodology because there is only one sensor which makes it impossible to create the 

𝑍 matrix for this area. 

The temporal graph 𝐺௦ is monitored at each time step and, also at each time step, the 

PageRank value is assigned to each vertex of the graph 𝐺௦. Figure 7.4 shows the 

normalized PageRank values for the first 24 days of data and referring to the 29 

sensors in Area A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



160 

 

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos 

Figure 7.4 - PageRank values - Area A 

 

Figure 7.4 shows that PageRank values on some sensors change after a few days. 

This change is more noticeable in some cases, and the anomaly detection method 

using the z-score and IQR algorithm pointed out anomaly points and which sensors 

show greater changes in behavior in the data. Figure 6.5 shows the 5 sensors with the 

biggest anomalies identified and the pressures that were monitored by these same 

sensors. 
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Figure 7.5 - Data behavior 

a) Pressure 

 

b) PageRank values 

 

Figure 7.5a presents a portion of the pressure monitoring data provided by BattLeDIM 

for Area A. By visually inspection of the data, one can notice the behavior and similarity 

among them. However, starting from 2019-01-15, a leakage in pipe p523 appears at 

the network. The changes on pressure domain are not as easily apparent by just 

analyzing the monitored data. On the other hand, PageRank values also show similar 
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and repetitive behavior, but the behavior changes visibly when the leak begins 

(Fig.7.5b). The detection method is applied and was able to identify moments of 

anomalies, as well as point out, for each leakage case. All detection moments pointed 

out by the detection process are exposed in Table 6.1. In addition to this process, the 

z-score and IQR methods pointed to each case the sensors with the highest values of 

changes and thus begins the process of leak localization. 

For this, Area A is considered with the graph 𝐺், and the 5 sensors with the highest 

anomalies are selected to create the graph 𝐺௦. This number of sensors is chosen 

because they present significantly higher discrepancies than other quantities. The 

Dijkstra algorithm is applied and considers around 60 nodes as covered by sensors; 

this represents around 8% of the vertices of the graph 𝐺் as the sensor coverage area.  

The nodes present in the sensors' coverage area are used as sources of leaks in a 

simulation process. This occurs mainly to reduce the search space and processing 

time of these simulations. The flow rate used in the simulations was approximately 4 

L/s, the simulated data is only saved from the monitoring points. Thus, the DTW 

algorithm determines the similarity value between the monitored data and the 

simulated data. The results of these processes, considering the leakage in pipe p523, 

can be seen in Figure 7.6. 

Figure 7.6 - Methodology application - Area A 

a) Multilayer Graph - Area A 
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b) Localization Leak - p523 

 

The Figure 7.6a shows the resulting multilayer graph from the proposed methodology. 

It can be observed that there is a dispersion among the sensors with the highest 

detected anomalies. However, the three most indicated sensors (green, blue, and grey 

edges) show higher alterations compared to the other sensor. Therefore, the vertices 

that have edges with both sensors are used to simulate leaks, and the similarity 

between the simulated and monitored data is determined. The Figure 6.6b shows the 

vertices with the highest similarity values determined by the DTW method. It is worth 

noting that the vertices with the highest similarities surround the actual leak location 

(black box) at about 50 meters. This distance is calculated using the coordinates of the 

node identified as the leak source and the average of the coordinates of the initial and 

final nodes of the leaking pipe. 

The application of the methodology related to Area C exposed here, presents the 

detection related to the leak in node n280. The leak in this node began on 02/10/2019, 

and the monitored data and PageRank values for the sensors in this area are shown 

in Figure 7.7. 
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Figure 7.7 - Data behavior – Area C 

a) Pressures 

 

b) PageRank value 

 

In Figure 7.7a it is possible to observe that the behavior of the monitored pressures 

hardly changes after the start of the leak. Although less intense, PageRank values 

change over time and this change was detected by the proposed algorithms (Fig. 7.7b). 

Thus, the leak localization process began, using the 3 sensors in the area to create 

the 𝐺௦ graph, mainly due to the small number of sensors in this area. Thus, the 
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coverage area is determined using the Dijkstra algorithm and the nodes in this area 

are used in the leak simulation process. The multilayer graph and the locations with 

the highest probability of leaks are shown in Figure 7.8. 

Figure 7.8 - Methodology application - Area C 

a) Multilayer Graph - Area C 

 

b) Localization Leak - p280 
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Figure 7.8c shows the multilayer graph related to Area C. An anomaly is detected, and 

the sensors at nodes n31 and n4 (red and green, respectively) are pointed out as 

having the highest changes. Thus, the nodes that showed the highest behavior 

similarity values with the real data (Fig. 7.8b) are approximately 60 meters away from 

the actual leakage location. It can be observed in Figure 7.8b that all nodes present 

high similarity values, which may be because nodes in this network have similar 

pressures controlled by the tank. Therefore, a leak can affect the water level in the 

tank, and this level change can affect the pressure in all nodes of the DMA. 

The third application of the methodology is performed in Area B (Fig. 7.9), but the 

localization process occurs based on the determination of similarity values. 

Figure 7.9 - Leak Localization - Area B p680 

 

The accuracy in locating the leak in the p680 pipe, shown in Figure 7.9, is not as high 

compared to other leaks. However, the approach can identify anomalies in the data 

after 45 minutes of the start of the leak. The methodology is applied to all leaks 

identified by BattLeDIM, and Table 7.1 shows the time elapsed from the actual leakage 

start time to detection, the leak flow at the time of detection, the maximum leak flow 

rate, the distance between the location indicated and the report time detection. until 

leak detection. 
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Table 7.1 - Detection and localization results. 

 Detec. time (h:m) Flow leak detec. (L/s) Max flow leak (L/s) Local. dist. (m) Report time 

p123* 1016:20 3.2 919 237 2019-10-20 12:25 
p142 04:40 26.88 2704 132 2019-06-13 05:45 
p193* 869:30 3.31 1036 378 2019-07-08 20:10 
p257 Undetected 
p277* 1023:00 2.74 736 290 2019-07-20 21:55 
p280 00:20 5.16 526 46 2019-02-10 13:25 
p331 00:35 10.65 1093 327 2019-04-20 10:45 
p426 08:40 13.25 1356 224 2019-10-26 22:05 
p427 Undetected 
p455* 885:00 3.1 1105 75 2019-11-17 05:00 
p514 00:25 15:38 1558 192 2019-04-02 21:05 
p523 00:15 28.6 2839 43 2019-01-15 23:15 
p586* 296:35 3.13 2052 127 2019-08-22 07:15 
p653* 48:30 3.29 1828 164 2019-03-05 13:40 
p654 Undetected 
p680 00:45 5.36 537 204 2019-07-10 09:30 
p710 02:55 5.56 558 42 2019-03-24 17:15 
p721* 763:15 5.12 1318 147 2019-09-08 22:15 
p762* 314:50 1.03 1571 238 2019-11-14 01:05 
p800* 193:20 3.11 2195 48 2019-08-25 03:20 
p810 Undetected 
p827 01:35 26.05 2646 152 2019-01-24 20:05 
p879* 501:30 3.02 1093 286 2019-12-17 19:25 

 * - Leaks with increasing start.   
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The Table 7.1 displays the results of the application, generating pertinent discussions. 

Initially, the effectiveness of the detection process stands out, revealing the 

identification of anomalies in the data just 15 minutes after the start of the leak (leak 

p523). Leaks were detected at nodes p280, p514, p331 and p680 up to 45 minutes 

after the beginning, all these cases are leaks that started abruptly. However, it is worth 

noting that in some cases, detection occurred several hours after the leak began. 

These cases present leaks characterized by a gradual increase in flow, such as those 

observed in leaks in p123, p277, p455 and p721. Leak detection in these pipes occurs 

more than 700 hours after the start of the leak. However, as these leaks have a gradual 

increase in flow rates, this also gradually changes the monitored data. Such behavior 

introduces complexity into data analysis, as temporal changes are minimal and impact 

the data uniformly. This complexity is even more evident in the localization process, 

where establishing similarities between data points produces less pronounced results. 

Consequently, there are increasing disparities between the location suggested by the 

method and the actual location of the leak. 

Table 7.1 also presents the flow rate of the leak at the time of detection due to the 

difficulty in quickly detecting leaks with gradual flow growth. It is observed that in most 

cases of leaks with gradual growth, detection occurs when the flow reaches about 3 

L/s (p123, p193, p277, p455, p586, p653, P800, p879). Except for two cases, the leak 

in p721, where detection occurs when the flow reaches 5.12 L/s, and the leak in p762, 

where it is detected when the flow is at about 1 L/s. However, it is noteworthy that 

these detection times are lower than the maximum values, such as the flow rate at 

which the leak was detected in p762 (1.03 L/s), while its maximum flow value reached 

15.71 L/s. 

As mentioned, the process of locating these leaks is not as accurate, but in some 

cases, the distance is less than 100 meters (p455, P800). Noteworthy are the leaks in 

Pipes p523 and P710, with distances to the exact location of the leak of 43 and 42 

meters, respectively. On the other hand, the leak in the p193 pipe results in the greatest 

distance (378 meters), but this leak presents gradual growth of the flow. Additionally, 

the leak in the p331 pipe stands out, which has an abrupt start and was indicated 327 

meters from the actual location of the leak. This situation occurs in a region where the 
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pressures show little variation and do not significantly affect the data during the 

simulation of leaks. 

These greater distances are also reflected in the evaluation process presented by the 

BattLeDIM organizers. The approach identifies 17 leaks as True Positive and 2 as 

False Positive. This means that of the 23 leaks, 17 are detected correctly and two 

others are detected but in the wrong locations. These values corroborate the results 

presented in Table 6.1 in two main factors: regarding the 4 leaks that are not detected 

(p257, p427, p654 and p810); and the leaks in tubes p193 and p331 where the distance 

indicated between the actual location of the leak is greater than 300 meters. Locations 

greater than 300 meters are considered failures by BattLeDIM organizers. Even so, 

the Total score presented by the methodology proposed in this work is equal to 

€243491, a higher value close to the highest achieved by BattLeDIM participants 

(€264873 and €260562). The perfect Total Score, if all leaks were detected and located 

immediately, would be €523154. The Report file indicating the locations and time of 

the report is presented as an appendix; this file can be used in the BattLeDIM 

evaluation software. 

Some relevant points of this research are the approaches that can be considered when 

working with Multilayer graphs, as they offer several advantages, such as determining 

the coverage area of the sensors by different methods and reducing the graph using 

subgraphs. Another important point is the determination of similarity through the 

application of DTW. Although it is a fast process, it becomes impractical when the 

sampling space is too large. This problem was solved by reducing the sample space 

to only the nodes covered by the sensors indicated in the simulation process. However, 

even with good results, there is still room for improvement, especially because this 

process indicates which sensors are most impacted, which influences the search 

space for the leak. 

7.5 Discussion and partial conclusions 

The proposed methodology for leak detection and localization in WDN demonstrated 

promising results when applied to the benchmark problem presented in BattLeDIM. 

This approach, based on graph analysis and monitoring data, was able to detect 

anomalies in the network pressure data, indicating the presence of leaks within 15 
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minutes of their onset. However, it is important to highlight that the effectiveness of 

leak detection and localization may vary depending on the nature of the leaks. Leaks 

with a gradual flow increase presented additional challenges, as changes in data over 

time were smaller, resulting in delayed detections and less precise localizations. 

Despite these limitations, the overall score achieved by the proposed methodology was 

competitive compared to other participants in BattLeDIM, demonstrating its ability to 

compete with established approaches. 

The presented methodology represents a significant advancement in leak detection 

and localization in water distribution networks, especially in situations where changes 

in data are more subtle. Nevertheless, there is still room for improvement, particularly 

in addressing a WDN as a graph since the interaction between vertices can be 

represented in various ways. Studying and analyzing these representations could 

contribute to refining the methodology and expanding its potential in leak detection and 

localization in water distribution networks. 
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8.1 Final considerations 

The present thesis addresses methodologies aimed at mitigating leaks in the water 

distribution phase, presenting specific approaches for the detection and localization of 

these leaks. The research also examines the impacts of leaks on water quality. To 

achieve these purposes, equations employed in the computational modelling of leaks 

were tested to enhance the realism of computational hydraulic simulations, striving to 

strike a balance between reducing computational effort and obtaining results that are 

more faithful to reality. To carry out effective detection and localization, the strategic 

placement of monitoring sensors in the network is essential, ensuring coverage in 

cases of leaks and providing monitored data that contribute to the comprehensive 

control and management of the system. 

The efficiency of the detection and localization processes is ensured through the 

efficient placement of sensors, especially concerning detection time and accuracy in 

localization. The thesis presents various approaches to detection, directly utilizing 

monitored pressure data in statistical analysis algorithms and exploring the correlations 

between these data to optimize results. Additionally, it proposes a methodology for 

leak localization that incorporates topological information of the network, as well as the 

correlation between monitored data in the creation of distinct graphs, using these 

graphs as layers of a multilayer graph. The proposals have proven effective, and 

advancements in each stage are detailed in the subsequent subsections. 

8.1.1 Computational Modeling of Leaks  

To simulate leaks in water distribution network (WDN) models, the emitter equation 

(Eq. 2.1) and the standard orifice equation (Eq. 2.2) are widely employed. While these 

equations provide representative results, there are formulations that consider the 

material behavior and shape of the orifices. Van Zyl and Cassa (2014) propose a 

modified orifice equation to calculate leakage flows in viscoelastic polyethylene pipes, 

addressing different hydrodynamic simulation processes and orifice shapes. The 

authors conclude that the orifice area increases linearly with pressure, except for 

circular orifices. Van Zyl et al. (2017) also introduce modifications to the orifice 

equation, considering elastic, viscoelastic, plastic deformations, and fractures in the 

pipes. 
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Although modifications to the orifice equation provide more accurate results regarding 

the real behaviour of the material during leakage simulations, their application 

increases computational effort and the time required to obtain results. During the 

development of this thesis, the equations proposed by Van Zyl and Cassa (2014) and 

Van Zyl et al. (2017) were tested and compared with conventional emitter and orifice 

equations. It was observed that the flow rates calculated by the modified equations 

exhibited similar behaviours to the standard orifice equation, but due to high sensitivity 

to pressure, flow peaks occurred during periods of elevated pressure, as illustrated in 

Figure 8.1. The figure depicts flow rates under normal network conditions and during 

leakage simulations using the standard orifice equation, the emitter equation, and the 

modified orifice equation proposed by Van Zyl and Cassa (2014).  

Figure 8.1 – Flow behavior of leaks - equations

 

While modelling leaks with the modified orifice equation is more realistic, the standard 

orifice equation yields similar results. However, using the modified equation requires 

additional information about the pipes, such as material, elastic modulus, and wall 

thickness, making the simulation process more computationally intensive. For this 

reason, the studies in this thesis exclusively utilized the orifice and emitter equations 

in leakage simulations, primarily because the presented scenarios considered all 

nodes in the network as potential sources of leaks. 
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8.1.2 Effects of Leaks on Water Pressure and Quality 

Computational leak simulations were employed at different stages of the present study. 

Initially, all nodes in the network were designated as potential sources of leaks, with 

the flow from these leaks added to the demand of consumer nodes. The purpose of 

these simulations was to analyse two primary behaviours: the sensitivity of all nodes 

in the network to leaks in other nodes and the effects of leaks at a specific node on the 

pressure and water quality in other nodes. The second chapter of this thesis explores 

these two situations, addressing both the sensitivity of nodes and the influence of 

simulated leaks on pressure and water quality in other network nodes. It is observed 

that the pressure sensitivity of nodes in leak scenarios yields similar results for 

neighbouring nodes, particularly in regions where node pressures and elevations are 

comparable. 

However, water quality sensitivity does not entirely follow this pattern of similarity 

among neighbouring nodes. Some network nodes exhibit significantly higher sensitivity 

values for water quality than other nodes, including their neighbours. It was noted that, 

due to the demand of certain nodes and the water trajectory to meet this demand, 

water quality can cause substantial changes in the water reaching the nodes. This 

directly affects sensitivity to water quality in some nodes, making them more 

susceptible to leaks in other parts of the network. Therefore, it was found that 

modifications in water flows to meet leak demands cause water to travel new paths or 

receive water from additional sources. Thus, the research demonstrated that water 

quality can be an additional source of information for more effective leak detection, 

considering that, in some cases, variations in water quality are more pronounced than 

changes in node pressures. However, it is important to emphasize that water quality 

monitoring is less common, especially in Brazilian networks, and the corresponding 

sensors are more expensive compared to pressure and flow sensors. 

8.1.3 Leak Detection Approach 

The leak detection proposals presented in this study incorporate different data 

preprocessing approaches. In Chapter 4, an approach employs Independent 

Component Analysis (ICA) for data processing, using the Interquartile Range (IQR) 

and Matrix Profile (MP) statistical methods to automatically identify anomaly points in 
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the data. A second approach, presented in Chapters 5, 6 and 7, uses the correlation 

between monitored data to create temporal graphs and analyzes the structural 

relationship using Z-score algorithms, in chapters 6 and 7 and IQR, in chapter 7. In the 

approaches exposed in chapters 6 and 7, in addition to pointing out the moments of 

anomalies in the monitored data, the algorithm also indicates which sensors have 

undergone changes and which have had the greatest changes in values, which are 

then used in the leak location stage, also presented in chapter 7. 

Both detection methods, especially those discussed in Chapters 4 and 7, utilized the 

Battle of the Leakage Detection and Isolation Methods (BattLeDIM) reference 

database. This makes it possible to compare and analyze results between the 

proposed methodologies. Leaks in the p514 and p523 pipelines were quickly detected 

by both approaches. However, the method using ICA and the IQR algorithm detected 

the leaks 10 and 5 minutes after onset, respectively, while the MP approach detected 

the same leaks at 24 and 20 hours, respectively. The method that uses graphical 

structural relationships and Z and IQR scoring algorithms detected the leak in the p514 

pipe within 25 minutes and the leak in the p523 pipe within 15 minutes after the start. 

However, both methods faced challenges in detecting leaks with increasing flow, as 

observed in the p455 pipeline leak. The IQR and MP methods, applying the ICA 

algorithm, detected the leak 327 hours after the beginning when it reached a flow rate 

of 0.45 L/s. The same leak was detected by Z-score and IQR methods using graphical 

structural data just 885 hours after onset, when the flow reached 3 L/s. However, this 

was not the last moment of detection of this second approach; this method detected 

only 1,016 hours after the start of the leak in p123 and 1,023 hours after the start of 

the leak in the p277 pipe when they reached 3.2 and 2.7 L/s, respectively. 

Despite late detections, the method presented in Chapter 7 demonstrates consistency 

in flow at the time of detection, except for the leak in the p762 pipeline. All leaks with a 

gradual increase in flow rate were detected when approaching 3 L/s. In contrast, the 

method presented in Chapter 4 detected leaks with increasing flow more quickly, 

although in some rupture cases detection occurred many hours after onset. The leak 

in the p331 pipeline, which occurs abruptly, reaching flow rates close to 10 L/s, was 
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detected by the ICA and IQR method 174 hours after the beginning. This same leak is 

detected by the Z-score and IQR approach just 35 minutes after initiation. 

These results highlight that both methods have advantages and limitations, making 

them options that meet the needs of systems managers. However, even considering 

late detections, the method that uses the correlation between monitored data to create 

the temporal graph seems, from my perspective, more advantageous, mainly because 

this approach can facilitate the application of other techniques, such as the one 

presented in Chapter 7 for leak location and represent the relationship between data 

and WDN in a more comprehensive way. 

Although not using the BattLeDIM benchmark problem, the approaches covered in 

chapters 5 and 6 use the Modena network (BRAGALLI et al. 2012) and a sequence of 

simulated leaks to generate data and address techniques for detecting anomalies in 

data. However, although the simulation process follows the same parameters, the 

studies focus on leak detection through the analysis of pressure and water quality data, 

in this case evaluating the age of the water and chlorine concentration. Focusing on 

what is presented in chapter 3 on the behavior of quality data in leak situations, the 

research presented in chapter 6 explores the advantages of using quality data to detect 

leaks and compares these results with an approach that uses pressure data. 

Even though the anomaly detection process presented in chapter 5 has achieved 

satisfactory results, there is only a comparison between the values from the initial days 

of the leak simulation with the pressure data for the next simulated days. This 

approach, although functional for validating the model, does not have guaranteed 

applicability due to the behavior pattern of the monitored parameters changing over 

time, mainly due to seasonality and changes in tube roughness. Therefore, the method 

proposed in chapter 6 applies a current data analysis window, so that changes in the 

standard behavior of the parameters are included throughout the analysis. Using the 

mean and standard deviation of the data in this sliding window, the z-score algorithm 

points out moments of anomalies in 6 databases: pressure data, water age and 

chlorine concentration, and vertex ranking data in created temporal graphs with data 

on pressure, water age and chlorine concentration. 
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Using vertex ranking data from a graph created through the correlation between data 

monitored by sensors proved to be an effective way of pre-treating data. Detecting 

anomalies in vertex ranking data generally occurs faster than directly using monitoring 

data. These results are explored in chapter 6, for example the leak at node 43 which 

was detected 10 hours after the start if pressure data was used and was detected 1 

hour after the start if the vertex ranking data of a created graph was used. with the 

correction between pressure data. 

Also noteworthy is the use of water quality data to detect leaks. The advantages of 

using data on water age and chlorine concentration compared to pressure data, 

normally used for detection, proved to be more assertive for detecting leaks, both using 

the data directly and using correlation and ranking of vertices. The simulation process 

carried out 7 leak simulations at different nodes of the network, however directly using 

the pressure data in search of anomalies resulted in the detection of only one leak, as 

mentioned, 10 hours after its beginning. When directly using water age, 6 leaks are 

detected, with 5 detected less than 5 hours after the start. On the other hand, when 

using the correlation between the water age data and the ranking process of the 

vertices of the temporal graph, the detection process occurs for all simulated leaks, 

with 5 of them being detected 1 hour after the beginning. 

All the above shows that exploring water quality to detect leaks can represent a 

significant increase in reducing losses in water distribution networks. Even though the 

water quality parameters are slowly changed, related to the water path time to the 

monitoring points, the change in the parameters is more pronounced than the pressure 

data and this is reflected in the detection process. Furthermore, the detection process 

presented in Chapter 6 can still be explored using data from optimally positioned quality 

sensors. The research uses as monitoring points the locations determined by the 

approach of Mankad et al. (2022), however, the authors use a methodology focused 

on pressure monitoring. Therefore, by using an approach that considers optimization 

of water quality coverage, the detection process can become more comprehensive and 

accurate. Even so, using the same locations for positioning pressure and quality 

sensors can be advantageous in terms of operational efficiency, by centralizing the 

sensors in a single location; in reducing costs due to infrastructure, cables, and energy; 

in ease of maintenance, repairs, and replacement. 
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Furthermore, the different changes in monitored water quality data can favor leak 

location methods, since the changes are more pronounced and this behavior is 

different for each sensor analyzed, as explained in chapter 6. Thus, the methods 

locations can point out the sensor coverage area with the greatest changes as leak 

locations and apply other approaches for more precise location of leaks. 

8.1.4 Leak Localization Approach 

The proposed approach for leak localization is based on the use of sensors that 

exhibited significant variations during the detection process. Initially, the sensor 

coverage region is delimited, considering the probable leakage area. The coverage 

extension of these sensors is determined through an algorithm that considers the 

proximity and weights of edges in a topological graph weighted by pipe flow. 

Subsequently, only the nodes within this area are used as leakage sources in a 

simulation process, aiming to minimize computational efforts and reduce processing 

time. The simulation results, including monitored pressure information, are then 

compared with monitored pressure data. From this comparison, a similarity value is 

determined between the data from each simulated node and the monitored data, 

resulting in the presentation of a probability distribution for the location, indicating the 

likely leakage region. 

The methodology employed for localization demonstrated effectiveness in identifying 

leaks according to the BattLeDIM benchmark, locating them within less than 50 meters 

from the actual leak location. However, the difficulty in detecting leaks with gradual 

flow growth was also evident in the localization. For instance, the leak in pipe p193 

was located at 378 meters from the actual leak location. This leak was identified by the 

method proposed in Chapter 6 after 869 hours from the onset of the leak when the flow 

rate reached approximately 3.3 L/s. In contrast, using the IQR algorithm, the leak was 

detected 71 hours after the onset, while the MP algorithm detected the leak in 126 

hours, both presented in Chapter 4. 

Additionally, notable are the leaks in pipes p455 and p800, characterized by gradual 

flow growth, located at 75 and 48 meters, respectively, from the actual leak location. 

Despite the detection time being 885 hours for the leak in p455 and 193 hours for the 

leak in pipe p800, both were also identified when reaching approximately 3 L/s. The 
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effectiveness in localization in these cases can be attributed to the proximity of leaks 

to sensors and reservoirs, resulting in consistent pressures, especially due to proximity 

to reservoirs, influencing pressures at monitored points. Another noteworthy case is 

related to the leak in pipe p331, detected 35 minutes after the onset, but localized 327 

meters from the actual leak location. It was observed that, due to the pipe in question 

being in a sequential line of pipes, the method identified the pipe at the end of this 

sequence as the probable leak location. 

Overall, the proposal for leak localization presented satisfactory results compared to 

other methods proposed in the literature. This is primarily due to the use of an approach 

that capitalizes on the interconnection of network topology, correlation between 

monitored data, and computational reduction during hydraulic simulation processes. 

Furthermore, the approach provides an alternative to determining the area monitored 

by sensors, using an algorithm for the determination of shorter paths between two 

vertices in graphs, considering the weights of connections between vertices and the 

distance to the monitored vertex. 

8.1.5 Advances and Next Steps 

Despite the lack of frequent and continuous monitoring in parts of water distribution 

networks, this thesis encompasses phases related to leak detection and localization in 

these systems. The research scope includes modelling leaks, sensor implementation, 

and culminates in the detection and localization of leaks. Overall, the adopted 

approach prioritizes the use of freely accessible tools, easily applicable algorithms, and 

data analysis methods previously validated in other research areas. The purpose is to 

facilitate the adoption of these methods by system operators and managers, aiming at 

reducing financial and resource losses. Notably, a 1% reduction in system losses can 

translate into substantial savings over the year, also impacting users' economies. 

The proposal begins with leak modelling and sensor placement, relying exclusively on 

a computational network model that network management companies may possess. 

The proposed leak modelling covers pressure and water quality behaviours using 

available network models. Given the significant investment required for sensor 

installation, the proposed approaches allow operators to seek a balance by considering 
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the installation of pressure or quality sensors, thus favouring leak detection and 

localization methods through network monitoring. 

The approach for leak detection using Independent Component Analysis demonstrates 

advantages when applied to sets of multiple monitored data. This technique allows the 

separation of independent components in complex and multivariate data sets, as 

evidenced in Chapter 4, where it proved effective in leak detection. Conversely, if only 

one type of data is monitored, creating a temporal graph through the correlation 

between data from different monitored points can facilitate leak detection through 

graph structural analysis. 

The above highlights opportunities to improve leak detection and localization methods. 

An example would be exploring the correlation between diverse monitored data in the 

creation of temporal graphs. Although the correlation between pressure data has been 

used in building the temporal graph, the use of multiple data for this purpose, such as 

flow, pressure, water quality, and reservoir levels, has not been fully explored. Thus, 

analysing the structures and relationships of this graph can result in significant 

advancements in network management, especially using complex network analysis 

methods widely employed in sectors like energy networks, the internet, and 

interpersonal relationships. 

Furthermore, there is room to explore different ways of representing water distribution 

networks as graphs, attributing hydraulic, physical, and relational information between 

elements to vertices and edges. This approach can favour not only the reduction of 

physical losses but also pressure control, the determination of measurement districts, 

and the optimized operation of pumps and valves. 
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