UNIVERSIDADE FEDERAL DE MINAS GERAIS Instituto de Geociências Programa de Pós-Graduação e Geologia

Anderson Magalhães Victoria

O COMPLEXO ANOROGÊNICO PLUTONO-VULCÂNICO SALTO DA DIVISA (ca. 900 Ma) E SUAS ROCHAS ENCAIXANTES PALEOPROTEROZOICAS (COMPLEXO BUERAREMA) NA FRONTEIRA BAHIA-MINAS

> Belo Horizonte 2023

Anderson Magalhães Victoria

O COMPLEXO ANOROGÊNICO PLUTONO-VULCÂNICO SALTO DA DIVISA (ca. 900 Ma) E SUAS ROCHAS ENCAIXANTES PALEOPROTEROZOICAS (COMPLEXO BUERAREMA) NA FRONTEIRA BAHIA-MINAS

Tese apresentada ao Programa de Pós-Graduação em Geologia da Universidade Federal de Minas Gerais como requisito parcial para obtenção do título de doutor em Geologia.

Orientador(a): Prof. Dr. Antônio Carlos Pedrosa Soares

Coorientador(a): Profa. Dra. Simone Cerqueira Pereira Cruz

Belo Horizonte 2023

V645c Victoria, Anderson Magalhães. 2023 O complexo anorogênico plutono-vulcânico Salto da Divisa (ca. 900 Ma) e suas rochas encaixantes paleoproterozoicas (Complexo Buerarema) na fronteira Bahia-Minas [manuscrito] / Anderson Magalhães Victoria. - 2023. 388 f., enc. il. (principalmente color.) Orientador: Antônio Carlos Pedrosa Soares. Coorientadora: Simone Cerqueira Pereira Cruz. Tese (doutorado) - Universidade Federal de Minas Gerais, Instituto de Geociências, 2023. Área de concentração: Geologia Regional. Bibliografia: f. 138-152. Inclui apêndices. 1. Orogenia - Bahia - Teses. 2. Orogenia - Minas Gerais - Teses. 3. Tempo geológico - Teses. 4. Sedimentos (Geologia) - Teses. 5. Mapeamento geológico -Teses. I. Pedrosa-Soares, Antônio Carlos. II. Cruz, Simone Cerqueira Pereira. III. Universidade Federal de Minas Gerais. Instituto de Geociências. IV. Título. CDU: 551.24(813.8+815.1) Ficha catalográfica elaborada por Elisabete Quatrini Vieira - CRB-6/2210

Ficha catalográfica elaborada por Elisabete Quatrini Vieira – CRB-6/2210 Biblioteca "Vitória Pedersoli", Instituto de Geociências da UFMG

UNIVERSIDADE FEDERAL DE MINAS GERAIS

PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA DO IGC-UFMG

FOLHA DE APROVAÇÃO

O COMPLEXO ANOROGÊNICO PLUTONO-VULCÂNICO SALTO DA DIVISA (ca. 900 Ma) E SUAS ROCHAS ENCAIXANTES PALEOPROTEROZOICAS (COMPLEXO BUERAREMA) NA FRONTEIRA BAHIA-MINAS

ANDERSON MAGALHÃES VICTORIA

Tese submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós-graduação em GEOLOGIA, como requisito para obtenção do grau de Doutor em GEOLOGIA, área de concentração GEOLOGIA REGIONAL, pelo Programa de Pós-graduação em Geologia do Instituto de Geociências da Universidade Federal de Minas Gerais.

Aprovada*em 31 de janeiro de 2023, pela banca constituída pelos membros:

Prof. Tiago Amâncio Novo UFMG

(*A Comissão Examinadora decidiu conceder a distinção "aprovada com louvor" a esta tese.) Belo Horizonte, 31 de janeiro de 2023.

À minha família, em especial, aos meus pais, Átila e Hellen, e minha esposa Luiza. Aos estudantes e pesquisadores interessados no tema desta tese.

AGRADECIMENTOS

A meus pais, Átila Reis Victoria e Hellen Magalhães Simões Victoria, eu agradeço por todas as coisas que conheço. E o pouco que conheço levou ao desenvolvimento desta tese que ofereço e que não seria uma tese sem Pedrosa Soares e Simone Cruz, a quem tenho grande gratidão, estima e apreço! Aprendi muito com Calota sobre o método investigativo de se fazer geologia regional, sempre procurando as coisas no seu devido lugar, interpretando os dados de campo e analíticos com o domínio tectônico na cabeça e esperando o que encontrar à frente. Não há rocha acidental e não há produto geológico sem processo geológico. "Pense sempre no processo e nos modelos!" Com Simone também aprendi muito, especialmente em relação à importância do trabalho de campo sistemático, ao devido cuidado nas medições e amostragem e o tanto que ajuda um bom estudo prévio da geologia regional antes de calçar as botas. Fundamental também ela foi na ajuda com as interpretações geoquímicas e estruturais. Aos mestres, fica aqui o meu carinho e o meu muito obrigado.

Injusto eu seria se não dissesse o nome da moça que sem ela eu nada faria: há muito tempo Luiza Lopes de Araújo entendeu o meu ser e muita força e conselhos me deu para serenidade eu ter, os obstáculos romper e essa tese escrever, sem esmorecer! Somente ela sabe realmente o que vivi, o que sofri e o que sorri. Obrigado, Lulis!

Agradecimentos também a todos os amigos e amigas que fiz na geologia e com quem aprendi e aprendo muito, especialmente em discussões, ideias e insights lançados no bar, tomando aquela gelada que ajuda a pensar. Nessa direção, também destaco a importância de todos do departamento da Pós-Graduação, ficando aqui um abraço especial ao fantástico William, que me ajudou de montão, e à coordenação, na figura da profa. Rosa e do prof. Tião.

Agradeço a Pró-reitoria de Pós-graduação da UFMG e ao Programa de Pósgraduação em Geologia do Instituto de Geociências da Universidade Federal de Minas Gerais, aos órgãos de fomento (CNPq, CAPES). Agradeço a outras instituições que colaboraram com a pesquisa (CODEMIG e CPRM-Serviço Geológico do Brasil), bem como os laboratórios parceiros (SEPURA-IGC/UFMG; CPMTC-IGC/UFMG, NGB-UFBA; Geocronologia-UFOP). A vocês ficam aqui as minhas boas vibrações para dias mais satisfatórios. Em especial, agradeço à CAPES pela bolsa de estudos durante o tempo desta pesquisa e ao projeto de pesquisa do prof. Dr. Antônio Carlos Pedrosa Soares "Evolução do Orógeno Araçuaí e seu embasamento" (CNPq, bolsa Pq-1B), que financiou as atividades de campo e laboratoriais. Agradeço também ao auxílio financeiro (PROAP/CAPES) do Programa de Pós-graduação em Geologia do IGC-UFMG, que ajudou em viagens para participação e divulgação da pesquisa em simpósios e congressos.

Por fim, um salve para a geologia e ao estudo geológico, a quem sirvo com prazer para alimentar a minha sede de saber, com todo o meu humilde esforço e permanente agradecer.

"Quantas rochas têm aqui e qual a relação entre elas? Quantas estruturas têm aqui e qual a relação entre elas?" (Antônio Carlos Pedrosa Soares)

RESUMO

Em termos tectônicos, a região sul do estado da Bahia, divisa com Minas Gerais, está inserida na porção nordeste do cinturão Araçuaí, próximo ao limite com o cráton do São Francisco (CSF) e dentro do domínio estrutural da Zona de Cisalhamento de Itapebi, onde a deformação brasiliana desenvolveu-se ao longo de um corredor transpressivo, de direção NW-SE, com estruturas vergentes para o interior cratônico. Elaborou-se um mapa geológico, em escala 1:100.000, em uma área de aproximadamente 64.000 km² nessa região, com foco no detalhamento das rochas do complexo anorogênico Salto da Divisa e embasamento Paleoproterozoico. As análises laboratoriais realizadas foram: petrografia, litoguímica, geocronologia U-Pb em zircão e geoquímica isotópica Sm-Nd (rocha total) e Lu-Hf (zircão). O complexo Salto da Divisa refere-se a um conjunto diverso de rochas plutônicas, subvulcânicas e vulcânicas, produzidas em razão do magmatismo bimodal (félsico-máfico) decorrente da abertura do rifte Macaúbas, no Toniano inferior. O modelo petrogenético proposto sugere a formação de magma ultramáfico e máfico, de derivação mantélica, contemporâneo à formação de magma granítico, ferroano, tipo-A1. Os corpos graníticos, por sua vez, são heterogêneos e pelo menos três mecanismos petrológicos distintos foram identificados: (i) fusão parcial de crosta; (ii) hibridização; e (iii) cristalização fracionada. Além disso, verificou-se também a presença de leucogranitos à duas micas hidrotermalizados, comumente ricos em fluorita e amazonita, nas bordas e cúpulas de alguns corpos. Traquitos alcalinos insaturados e riolitos subalcalinos completam o acervo magmático. Quanto às rochas encaixantes, o mapeamento levou a uma redefinição cartográfica. Nos mapas regionais, todo o embasamento da porção nordeste do cinturão Araçuaí, entre as cidades de Itapetinga e Eunápolis, está representado pela unidade conhecida como complexo Itapetinga, de direção NW-SE. Na área mapeada, entretanto, sugere-se que o embasamento representa o prolongamento das unidades cratônicas que ocorrem mais a norte e que foram retrabalhadas pela deformação brasiliana. Assim, o complexo Itapetinga foi redefinido e limitado ao conjunto de gnaisses e migmatitos que ocorrem desde a cidade homônima até os arredores de Itarantim. Na parte central da área mapeada, ocorre o prolongamento da unidade conhecida como complexo Ibicaraí, ainda pouco estudada e de origem incerta. A Leste, sugere-se que os ortognaisses granodioríticos a tonalíticos representam a extensão do complexo Buerarema, uma unidade Riaciana (ca. 2.1 Ga) cuja origem remonta a um arco intra-oceânico moderadamente juvenil desenvolvido durante a fase pré colisional da orogênese Minas-Bahia. Os dados de campo, geoquímicos e geocronológicos também mostram que no interior do complexo Buerarema ocorrem intrusões mais recentes (ca. 2.07 Ga e 2.03 Ga), não catalogadas anteriormente, cuja origem está relacionada ao desenvolvimento das fases sin e pós-colisional do Orógeno Paleoproterozoico.

Palavras-chave: Complexo Salto da Divisa; Rifte Toniano; Complexo Buerarema, Orogenia Minas-Bahia.

ABSTRACT

In tectonic terms, the southern region of the state of Bahia, bordering Minas Gerais, is inserted in the northeast portion of the Araçuaí belt, close to the limit with the São Francisco craton (SFC). This region is within the structural domain of the Itapebi Shear Zone, where the Brasiliano deformation developed along a NW-SE transpressive corridor, verging to the cratonic interior. A geological map (1:100.000) was prepared in an area of ca. 64,000 km², focusing on the rocks of the Salto da Divisa anorogenic complex and the related Rhyacian-Orosirian basement. These units were studied through petrographic, lithochemical, geochronological (LA-ICP-MS U-Pb, zircon) and isotopic geochemistry (Sm-Nd and Lu-Hf) analyses. The Salto da Divisa complex refers to a diverse set of plutonic, subvolcanic, and volcanic rocks, produced during the opening of the Macaúbas rift, in the early Tonian. The proposed petrogenetic model suggests the formation of a bimodal magmatism composed of ultramafic and mantlederived mafic swarm contemporaneous to the granitic, ferroan, A1-type- plutons. The granitogenesis, in turn, was heterogeneous and at least three petrological mechanisms were recognized: (i) partial melting of the continental crust; (ii) hybridization; and (iii) fractional crystallization. In addition, it was also verified the presence of hydrothermalized fluorite-amazonite-bearing two-mica leucogranites at the border and at cupola zones of some intrusions. Undersaturated alkaline trachytes and subalkaline rhyolites complete the magmatic set. As for the basement, a cartographic redefinition was carried out. In regional maps, the entire basement of the northeast portion of the Araçuaí belt, between the cities of Itapetinga and Eunápolis, is represented by the unit known as the Itapetinga complex, stretched along the NW-SE trend. In the mapped area, however, it is suggested that the basement represents the extension of the cratonic units that occur further north and that were reworked by the Neoproterozoic deformation during the Brasiliano event. Thus, the Itapetinga complex was redefined, representing the gneisses and migmatites that occur from the Itapetinga city to the western portion of the mapped area, around the Itarantim city. In the central part of the mapped area, the basement represents the extension of the unit known as the Ibicaraí complex, still without investigation and with an uncertain origin. To the east, it is suggested that the basement is the extension of the Buerarema complex, a Rhyacian unit (ca. 2.1 Ga) that represents a moderately juvenile introceanic arc developed during the pre-collisional set of the Minas-Bahia orogeny, which is the tectonic compressive

event responsible for the construction of the São Francisco-Congo paleocontinent. Field, geochemical, and geochronological data show the presence of not previous mapped younger rocks (ca. 2.07 Ga and 2.03 Ga) intrusive within the Buerarema complex, which origin was interpreted as related to the development of the syn and post-colisional stages of the collisional orogen.

Keywords: Salto da Divisa complex; Tonian rift; Buerarema complex, Minas-Bahia orogeny

1 INTRODUÇÃO	.16
1.1 Apresentação	.16
1.2 Estruturação da tese	.17
1.3 Localização e acesso	.17
1.4 Contexto tectônico	. 18
1.5 Articulação cartográfica e mapas geológicos disponíveis	.21
1.6 Mapa geológico atual	.23
1.7 Estratigrafia	.23
1.8 Natureza do problema e objetivos	.27
2 SÍNTESE DO CONTEXTO GEOLÓGICO	.30
2.1 Sobre o cráton do São Francisco e o orógeno Araçuaí-Oeste Congo	.30
2.2 Sobre a orogenia Minas-Bahia e a construção do embasamento do cráton d	0
São Francisco	.31
2.3 Sobre as principais unidades do embasamento do cráton do São Francisco	na
Bahia	. 32
2.3.1 Unidades Paleo-Mesoarqueanas	.34
2.3.2. Unidades Neoarqueanas	.37
2.3.2.1 Complexo granulítico de Jequié e Banda de Ipiaú	.38
2.3.2.2 Complexo granulítico de Ilhéus	.38
2.3.2.3 Complexo Caraíba e unidades associadas	.39
2.3.2.4 Complexo Ibicaraí e unidades associadas	.40
2.3.2.5 Complexo Salvador-Esplanada-Boquim	.40
2.3.3 Unidades Paleoproterozoicas	.41
2.3.3.1 Complexo Saúde	.41
2.3.3.2 Sequência Rio Itapicuru (o arco Rio Itapicuru)	.41
2.3.3.3 Complexo Buerarema-São José (o arco Buerarema)	.41
2.3.3.4 Complexo Rio Real (o arco Costeiro)	.43
2.3.3.5 Complexo Itapetinga	.43
2.3.3.6 Intrusões Riacianas-Orosirianas sin a pós-colisionais	.46
2.3.3.7 Bacias Riacianas-Orosirianas	.47
2.4 Sobre o rifte Toniano e o magmatismo Salto da Divisa	.47
3 ARTIGO 1: SOBRE O COMPLEXO SALTO DA DIVISA E O RIFTE TONIANO.	.52
3.1 Highlights	.52

SUMÁRIO

3.2 Abstract	53
3.3 Introduction	53
3.4. Geological setting	56
3.5 Analytical methods	58
3.5.1 Petrography and lithochemistry	58
3.5.2 U-Pb analyses	58
3.5.3 Lu-Hf analyses	60
3.5.4 Sm-Nd analyses	60
3.6 The Salto da Divisa Complex	61
3.6.1 Ultramafic and mafic rocks	61
3.6.1.1 Ultramafic rocks	61
3.6.1.2 Mafic-intermediate dykes	61
3.6.1.3 Mafic enclaves	63
3.6.2 Hybrid granitoids	63
3.6.3 Granites	65
3.6.3.1 Biotite-amphibole granite	65
3.6.3.2 Biotite granite	65
3.6.3.3 Two-mica granite	66
3.6.4 Metavolcano-sedimentary succession and subvolcanic felsic dykes	67
3.6.4.1 Rhyolite-bearing metavolcano-sedimentary succession	67
3.6.4.2 Subvolcanic trachyte	70
3.7 Analytical results	70
3.7.1 U-Pb and Lu-Hf data	70
3.7.1.1 Hybrid granitoid (sample AV039a)	70
3.7.1.2 Biotite granite (sample D028)	71
3.7.1.3 Metarhyolite (AV052d)	73
3.7.2 Sm-Nd data	74
3.7.3 Lithochemistry	75
3.7.3.1 Pyroxenite	75
3.7.3.2 Mafic enclaves and mafic-intermediate dykes	76
3.7.3.3 Hybrid granitoids	77
3.7.3.4 Biotite-amphibole granites	77
3.7.3.5 Biotite granites	80
3.7.3.6 Two-mica granites	81

3.7.3.7 Volcanic and subvolcanic rocks	81
3.8 Discussion	81
3.8.1 Mantle-derived magmas and their probable fractionates	82
3.8.1.1 Ultramafic and mafic rocks	82
3.8.1.2 Felsic volcanic and subvolcanic rocks	83
3.8.2 Hybrid magmas	85
3.8.3 Crustal melts	86
3.8.3.1 Biotite-amphibole granite	86
3.8.3.2 Biotite granite	87
3.8.3.3 Two-mica granite	
3.9 Conclusions	
3.10 Acknowledgments	91
ARTIGO 2: SOBRE O EMBASAMENTO PALEOPROTEROZOIC	O (COMPLEXO
BUERAREMA E INTRUSÕES SIN A PÓS COLISIONAIS)	93
4.1 Highlights	93
4.2 Abstract	94
4.3 Introduction	95
4.4 Regional geology	
4.4.1 The Buerarema arc	
4.4.2 The syn- and post-collisional magmatism	
4.5 Local geology and sampling	
4.6 Methods	
4.6.1 Petrography and lithochemistry	
4.6.2 Geochronology	
4.6.2.1 U-Pb (SHRIMP) analyses	104
4.6.2.2 U-Pb (LA-ICP-MS) analyses	104
4.6.3 Lu-Hf analyses	
4.6.4 Sm-Nd analyses	
4.7. Results	
4.7.1 Field and petrographic data	
4.7.1.1 Buerarema complex	107
4.7.1.2 Granodioritic intrusion	109
4.7.1.3 High-K intrusions	109
4.7.2 Lithochemistry	

4.7.2.1 Buerarema complex111
4.7.2.2 Granodioritic intrusion113
4.7.2.3 High-K granitoids114
4.7.3 U-Pb (SHRIMP)115
4.7.3.1 Sample LC50116
4.7.3.2 Sample LC51116
4.7.3.3 Sample JM142a118
4.7.4 U-Pb and Lu-Hf (LA-ICPMS)118
4.7.4.1 Sample AV072a118
4.7.4.2 Sample D017119
4.7.4.3 Sample AV173119
4.7.5 Sm-Nd
4.8 Discussions
4.8.1 The extension of the Buerarema complex toward the interior of the Araçuaí
belt
4.8.2 Petrogenesis of the Buerarema complex123
4.8.3 The Buerarema complex and the pre-collisional magmatism
4.8.4 The granodioritic intrusion and the syn-collisional magmatism
4.8.5 The high-K intrusions and the post-collisional magmatism
4.8.6 The nature of the syn- and post-collisional intrusions: Paleoproterozoic
sanukitoids?
4.8.7 The timing of the Rhyacian-Orosirian magmatic episodes in the southern
region of the Eastern Bahia orogenic domain129
4.8.8 Paleogeographic reconstruction and tectonic evolution model
4.9 Conclusions
4.10 Acknowledgments
5. CONCLUSÕES GERAIS135
REFERÊNCIAS138
APÊNDICE A-Materiais suplementares do artigo 1153
APÊNDICE B-Materiais suplementares do artigo 2169
APÊNDICE C-Mapa geológico183
APÊNDICE D-Mapa de pontos e caminhamento184
APÊNDICE E-Banco de dados: estações de campo

APÊNDICE F—Banco de dados: medidas estruturais	248
APÊNDICE G—Relatório petrográfico da área mapeada	261

1 INTRODUÇÃO

1.1 Apresentação

A presente tese de doutoramento é fruto de pesquisa geológica desenvolvida no Departamento de Geologia do Programa de Pós-Graduação do Instituto de Geociências da Universidade Federal de Minas Gerais (IGC-UFMG), na área de concentração em Geologia Regional. Trata-se de uma pesquisa realizada no sul da Bahia e extremo nordeste do estado de Minas Gerais, e envolve a investigação dos processos genéticos envolvidos na formação e evolução das rochas que ocorrem na região, em especial das que fazem do complexo Salto da Divisa, de idade Toniana, e do conjunto de gnaisses e migmatitos que compõe o embasamento Paleoproterozoico, uma unidade produto da manifestação de magmatismo anorogênico bimodal (félsico-máfico) desenvolvido no Toniano inferior, em razão de tectônica extensional no paleocontinente São Francisco-Congo. Adicionalmente, também foram investigadas as rochas encaixantes desses corpos magmáticos e que constituem o embasamento gnaissico-migmatítico da região. Esse embasamento é conhecido na literatura geológica como complexo Itapetinga e, em linhas gerais, vem sendo entendido como um conjunto heterogêneo de gnaisses anfibolíticos e migmatitos de idade Paleoproterozoica e de origem ainda incerta.

O estudo dessas duas unidades se deu por meio de mapeamento geológico na escala 1:100.000 e análises laboratoriais focalizadas em petrografia microscópica; litogeoquímica, geoquímica isotópica Sm-Nd e geocronologia U-Pb em cristais de zircão, seguida de geoquímica isotópica Lu-Hf nos mesmos cristais datados.

Em síntese, esta é uma tese que utiliza as ferramentas da geologia básica (mapeamento geológico e dados analíticos clássicos) para entender melhor os processos petrológicos e tectônicos envolvidos na formação e evolução de um conjunto de rochas existente na fronteira Bahia-Minas Gerais e que até então careciam de detalhamento e estudo sistemático. Com isso, pretende-se não somente contar a história geológica dessas rochas, mas também somar-se aos diversos estudos similares existentes em outras unidades do cráton do São Francisco (CSF), e orógenos marginais, e que, juntas, ajudam a entender melhor como se deu a evolução crustal de uma parte do território brasileiro.

1.2 Estruturação da tese

Esta tese está dividida em cinco capítulos e, ao final, contém os materiais suplementares produzidos (Apêndices A, B, C, D, E, F, G) (Tabela 1.1). Trata-se de uma tese apresentada na forma de artigos científicos focados na geologia regional de uma área no sul da Bahia, divisa com Minas Gerais, com foco em particular na unidade aqui denominada como complexo Salto da Divisa (artigo 1), e em seu embasamento Paleoproterozoico (artigo 2). Importante informar que, em razão do fato dos artigos terem sido submetidos em revistas internacionais, estão apresentados em língua inglesa.

Adicionalmente, outro produto desenvolvido nesta tese é o mapa geológico na escala 1:100.000 apresentado em tamanho A0 no apêndice C e que representa uma inovação tendo em vista a ausência de mapas nessa escala para a área como um todo.

CAPÍTULO 1	Introdução
CAPÍTULO 2	Síntese do contexto geológico regional
CAPÍTULO 3	Artigo 1- Magmatic diversity in continental rifts: A case study on the Early Tonian,
	plutono-volcanic Salto da Divisa Complex, Araçuaí Orogen, Eastern Brazil
CAPÍTULO 4	Artigo 2- The Rhyacian-Orosirian basement at the northeastern region of the Araçuaí
	orogen, Bahia, Brazil: further evidence of an arc accretion followed by syn and post
	collisional plutons during the São Francisco-Congo paleocontinent assembly
CAPÍTULO 5	Conclusões finais
APÊNDICE A	Materiais suplementares do artigo 1
APÊNDICE B	Materiais suplementares do artigo 2
APÊNDICE C	Mapa geológico, em escala 1:100.000, da região entre Itarantim e Itapebi, sul da
	Bahia
APÊNDICE D	Mapa de pontos e caminhamento
APÊNDICE E	Banco de dados – descrição de afloramentos
APÊNDICE F	Banco de dados – medidas coletadas
APÊNDICE G	Relatório petrográfico da área mapeada

Tabela 1.1 Organização da tese.

Fonte: elaborado pelo autor

1.3 Localização e acesso

A área de estudo está inserida em um polígono de aproximadamente 6400 km² (ca. 80 km x 80 km) localizado no nordeste do Brasil, na fronteira entre o extremo nordeste do estado de Minas Gerais e sul da Bahia (Fig. 1.1B). Dista cerca de 820 km da capital mineira, Belo Horizonte, e cerca de 650 km da capital baiana, Salvador. O

aeroporto comercial mais próximo está em Porto Seguro, a aproximadamente 100 km da área, sentido sudeste.

Nessa região, os principais centros urbanos são as cidades mineiras de Jordânia e Salto da Divisa, e as cidades baianas de Itagimirim, Itapebi, Potiraguá, Itarantim e Maiquinique. Os rios Jequitinhonha e Pardo, e afluentes associados, definem a rede hidrográfica. A noroeste da cidade de Itapebi, próximo à BR-101, destaca-se a presença de uma barragem no curso do rio Jequitinhonha, onde opera a Usina Hidrelétrica de Itapebi. A principal rodovia na área é a BR-101, que ocorre na região leste, próximo às cidades de Itagimirim e Itapebi. Os demais acessos ocorrem através de rodovias estaduais e estradas não pavimentadas (Fig. 1.1B).

Figura 1.1 - A) A área de estudo localiza-se no nordeste do Brasil, na fronteira entre o nordeste do estado de Minas Gerais e o sul do estado da Bahia. B) Detalhe da área com destaque para os principais centros urbanos, rios e rotas de acesso.

Fonte: elaborado pelo autor.

1.4 Contexto tectônico

Em termos tectônicos, a área de estudo está inserida no extremo nordeste do Orógeno Araçuaí, no cinturão metamórfico que faz fronteira com o CSF (Fig. 1.2A). A delimitação do CSF e suas faixas dobradas marginais (Almeida, 1977) foi um marco impulsionador para a evolução do conhecimento geológico nos estados de Minas Gerais e da Bahia. A todo o conjunto de rochas dobradas e metamorfizadas que margeiam a porção leste do cráton, em Minas Gerais, e regiões vizinhas na Bahia, esse autor denominou como "Faixa Araçuaí". Posteriormente, constatou-se que essa faixa dobrada corresponde ao cinturão metamórfico de um sistema orogênico completo, limitado pelo CSF e pelo cráton do Congo (Fig. 1.2B): o Orógeno Araçuaí-Oeste Congo (Pedrosa-Soares et al., 1992, 2001, 2007, 2008; Alkmim et al., 2006, 2007, 2017; Cruz et al., 2012).

Figura 1.2 - A) Configuração tectônica esquemática que mostra a disposição dos núcleos cratônicos, e orógenos marginais, formados após o evento Brasiliano/Pan-Africano que resultou na amalgamação do supercontinente Gondwana Ocidental. B) Reconstrução do Orógeno Araçuaí-Oeste Congo à época de Gondwana, quando os crátons do São Francisco e do Congo ainda estavam unidos. A área de estudo localiza-se no extremo nordeste da porção brasileira desse orógeno, no cinturão de dobramentos adjacente à fronteira com o Cráton do São Francisco.

Fonte: Pedrosa Soares et al. (2008).

A formação do orógeno Araçuaí ocorreu no Ediacarano-Cambriano (entre cerca de 660Ma e 490Ma), em decorrência do ciclo Brasiliano/Pan-africano, um evento tectônico compressivo marcado por uma série de colisões diacrônicas entre blocos continentais antigos que culminaram na formação do supercontinente Gondwana Ocidental (Brito Neves e Cordani, 1991; Trompette, 2000; Brito Neves e Fuck, 2013; Brito Neves et al., 2014; Heilbron et al., 2017a, b).

Dentre todos os orógenos produzidos durante o ciclo Brasiliano, o Araçuaí-Oeste Congo possui uma característica única que é a natureza confinada entre os crátons São Francisco e Congo, com presença de um limite curvo na porção norte e com abertura semelhante a um golfo aberto na porção sul (Fig. 1.2B). O modo como se deu sua evolução e os critérios cinemáticos que explicam a sua geometria peculiar são baseados no modelo da tectônica Quebra Nozes (Alkmim et al., 2006, 2007) que, em síntese, consiste no fechamento de bacias sedimentares precursoras a partir de esforços provocados por colisões diacrônicas à distância.

De acordo com a compartimentação tectônica-estrutural do orógeno Araçuaí (Alkmin et al., 2006, 2007, 2017) a área de estudo está inserida no domínio da Zona de Cisalhamento de Itapebi (ZCI), que é representado por um conjunto de zonas de cisalhamento dúcteis e rúpteis, de direção NW-SE, que se estendem por mais de 100 km no segmento nordeste do cinturão Araçuaí (Fig. 1.3A).

Figura 1.3 - A) Divisão tectono-estrutural do Orógeno Araçuaí, com destaque para a localização da área de estudo no domínio da Zona de Cisalhamento de Itapebi (ZCI), uma região onde a deformação Brasiliana atuou por meio de sistemas transpressivos regionais e de direção NW-SE. B) Encarte tectônico na fronteira entre o Cinturão Araçuaí e o Cráton do São Francisco, com destaque para os principais domínios estruturais e a região onde se encontra o limite cratônico.

Fonte: A) Alkmim et al. (2017); B) Folha Itapetinga-Canavieiras (Moraes Filho e Lima 2007).

No contexto de deformação progressiva relacionada ao evento Brasiliano, essas estruturas registram o desenvolvimento de duas fases tectônicas (Correa

Gomes e Oliveira, 2002; Cruz et al., 2012): (i) uma mais antiga, dúctil-rúptil, transpressiva, que é parte de uma flor positiva com expressão em escala regional, marcada por empurrões de S-SW para N-NE, com leve componente direcional dextral, que geraram dobras assimétricas e foliações com direção azimutal entre NW-SE, com fraco mergulho para S-SW; e (ii) uma fase tardia, que representa um sistema transtrativo sinistral, tipicamente rúptil, com formação de famílias de falhas e fraturas de direções N140°, N90° e N45° e mergulhos elevados para SW, S e NW, respectivamente.

O encarte tectônico da folha Itapetinga-Canavieiras (1:250.000; Moraes Filho e Lima, 2007; fig 1.3B) abrange boa parte da área de estudo e destaca os principais domínios estruturais na fronteira entre o cinturão Araçuaí e o CSF. De acordo com esse encarte, as falhas Poções-Itororó e Rio Pardo-Água Preta representam as últimas falhas Brasilianas que afetam o embasamento cristalino e, portanto, definem o limite cratônico. Outras estruturas importantes que ocorrem na área são a falha Planalto-Potiraguá e a, aqui denominada, Zona de Cisalhamento Jordânia-Salto da Divisa, ambas de direção NW-SE e cinemática dextral (fig.1.3B).

1.5 Articulação cartográfica e mapas geológicos disponíveis

Em termos cartográficos, a área de estudo está inserida entre os meridianos -40.3º e -39.5º e entre os paralelos -15.5º e – 16.2º. De acordo com a divisão cartográfica do território brasileiro, o paralelo -16º estabelece um limite cartográfico entre folhas na escala 1.000.000. Como esse paralelo passa pela área, isso significa que é preciso uma compilação de mapas para contemplá-la por completo. No caso, as duas folhas ao milionésimo necessárias são as cartas Salvador (SD-24) e Rio Doce (SE-24) (Fig. 1.4A). Ambas estão mapeadas e as informações geológicas que recobrem a área de estudo estão disponíveis no Mapa Geológico do Estado da Bahia (Dalton de Souza et al., 2003) e no Mapa Geológico do Estado de Minas Gerais (Pinto e Silva, 2014).

Na escala 1:250.000, a área de estudo contempla parte das folhas Itapetinga (SD-24-Y-D) e Guaratinga (SE-24-V-B). A primeira já foi mapeada quatro vezes em projetos, com focos diferentes, que datam das décadas de 70, 80 e anos 2000. São eles (Fig. 1.4B): Projeto Rio Pardo (Carvalho Filho et al., 1973), Projeto Sul da Bahia (Silva Filho et al., 1974a), Projeto Mapas Metalogenéticos e de Previsão de Recursos

Minerais (Moraes Filho, 1988) e Projeto Itapetinga-Canavieiras (Moraes Filho e Lima, 2007). A folha Guaratinga, por sua vez, foi mapeada apenas no Projeto Sul da Bahia (Silva Filho et al., 1974b).

Figura 1.4 - Articulação cartográfica da área de estudo e mapas geológicos disponíveis

Fonte: elaborado pelo autor.

Parte da área de estudo também já foi mapeada na escala 1:100.000 e corresponde às porções mineiras das folhas Itarantim (SD-24-Y-D-IV), Jacinto (SE-24-V-B-I) e Salto da Divisa (SE-24-V-B-II), todas mapeadas pelo Projeto Leste (COMIG, 2000) e agrupadas em um mesmo relatório (Araújo, 2000). Posteriormente, esses mapas foram digitalizados no Projeto Criação de Banco de Dados Geográficos para os Mapas Geológicos do Projeto Leste (Araújo, 2014a, b). Na Bahia, toda a região limitada entre os paralelos -16º e -18º e entre o meridiano -39.30º até a fronteira, foi mapeada na escala 1:100.000 durante o Projeto Extremo Sul da Bahia (Sampaio et al., 2004) (Fig. 1.4B).

Localmente, outros dois mapas produzidos em escala de maior detalhe ocorrem na área de estudo. O mapa do Projeto Prospecto Itapebi (Oliveira, 1984) foi produzido em escala 1:25.000, em um polígono de aproximadamente 25km x 30km nas proximidades das cidades de Itapebi e Itagimirim, e teve como foco principal a investigação de potenciais econômicos para prospecção na região. O segundo é um mapa na escala 1:30.000, produzido em um polígono com cerca de 90km² nos arredores da cidade de Salto da Divisa. Trata-se de um mapa resultante de projeto de trabalho final de graduação do IGC-UFMG, que teve como foco o detalhamento do maciço granítico de Salto da Divisa e sua relação genética e estrutural com as rochas encaixantes (Paixão e Perrella, 2004).

1.6 Mapa geológico atual

Como visto na articulação cartográfica (Fig. 1.4), para contemplar a área como um todo é preciso compilar mapas. A figura 1.5 apresenta uma compilação simplificada dos mapas geológicos mais atuais, e de maior detalhe, até então disponíveis para essa região.

A porção de Minas Gerais abaixo do paralelo -16° se refere ao mapa da Folha Jacinto-Salto da Divisa (1:100.000; Araújo, 2014a), ao passo que a região correspondente na Bahia se refere ao mapa do Projeto Extremo Sul da Bahia (1:100.000; Sampaio et al., 2004). Toda a região acima do paralelo -16° é contemplada pelo mapa do Projeto Itapetinga-Canavieiras (1:250.000; Moraes Filho e Lima, 2007). Vale ressaltar que a nomenclatura estratigráfica adotada em cada um desses mapas é diferente e, para simplificar, adotou-se a nomenclatura utilizada na legenda do mapa do Projeto Itapetinga-Canavieiras.

1.7 Estratigrafia

Ainda que desprovidas de datações geocronológicas precisas, as unidades mais antigas da região são atribuídas ao Arqueano e ocorrem na porção centro-norte da área (Fig. 1.5). Compõe esse embasamento os denominados complexos Ibicaraí e Ibicuí-Ipiaú. O primeiro representa um prolongamento do embasamento granulítico que ocorre na porção interna do CSF (Barbosa e Sabaté, 2004; Barbosa e Barbosa, 2017) e é constituído basicamente por charnockitos, enderbitos, trondhjemitos e

noritos subordinados. O segundo, por sua vez, constitui-se de ortognaisses miloníticos de composição granítica, granodiorítica e tonalítica, por vezes com níveis de metagabbro e lascas de rochas supracrustais (Moraes Filho e Lima, 2007).

Figura 1.5. Mapa geológico atualmente disponível para a área de estudo. Para contemplar a área por completo é preciso compilar os mapas do Projeto Itapetinga-Canavieiras (Moraes Filho e Lima, 2007), Projeto Leste (Araújo, 2014a) e Projeto Extremo Sul da Bahia

O complexo Itapetinga, de idade Riaciana (2124±10 Ma, zircão, U-Pb, SHRIMP; Silva et al., 2002a), é a principal unidade que ocorre na área e abrange uma extensa faixa (ca. 225km), de direção NW-SE, ao longo do trend da deformação Brasiliana relacionado com as estruturas da ZCI (Fig. 1.5). Trata-se de uma unidade heterogênea, constituída por vários tipos de ortognaisses deformados e milonitizados, às vezes migmatizados, com intercalações de anfibolitos e biotititos. É uma unidade ainda muito pouco estudada e sua gênese é incerta.

A suíte Pau Brasil, de idade Riaciana (2090 a 2080 Ma; Pb-Pb evaporação de zircão; Correa Gomes e Oliveira, 2002) representa uma das diversas intrusões Riacianas-Orosirianas formadas durante o evento compressivo responsável pela formação do paleocontinente São Francisco-Congo (Barbosa e Sabaté, 2004; Barbosa e Barbosa, 2017). Na área de estudo, essa suíte está representada por mesopertita granitos porfiríticos, charnockitos, monzodioritos, quartzo monzonitos e tonalitos, todos foliados (Fig. 1.5).

Após longo período de estabilidade tectônica, forças distensivas atuantes no paleocontinente São Francisco-Congo durante o Toniano inferior resultaram na instalação de diversos corpos graníticos intrusivos no embasamento gnáissico (Fig.1.5). Trata-se de um conjunto de corpos graníticos, de afinidade anorogênica (Tipo-A, Loiselle e Wones, 1979; Bonin et al., 2007), cuja idade de cristalização (ca. 915–875 Ma) foi obtida a partir de datações realizadas no maciço de Salto da Divisa (875±10 Ma, zircão, U-Pb, SHRIMP; Silva et al., 2002b, 2008) e no corpo a nordeste de Itarantim (914-899 Ma, Pb-Pb, evaporação de zircão; Menezes et al., 2012a). Recentemente, Victoria (2017) demostrou a presença de riolitos associados a esse magmatismo, comprovando a existência de um sistema plutono-vulcânico que possui grande afinidade química e cronológica com o sistema vulcânico Mayumbiano-Zadiniano que ocupa grande parte do cinturão Oeste-Congo (Tack et al., 2001).

Na transição Toniano-Criogeniano e no Criogeniano médio, um novo evento extensivo no paleocontinente São Francisco-Congo foi responsável pela geração de magma alcalino insaturado ao longo do trend NE-SW, entre as cidades de Itarantim e Itabuna, no interior cratônico. Os diversos corpos sieníticos formados nesse evento são agrupados na denominada Província Alcalina do Sul do Estado da Bahia (PASEBA) (Silva Filho et al., 1974a; Rosa et al., 2007). Dentre eles, as intrusões alcalinas de Itarantim e de Potiraguá (Fg. 1.5) estão dentro do cinturão Araçuaí, ao passo que os demais ocorrem no domínio cratônico (Moraes Filho e Lima, 2007).

A intrusão alcalina de Itarantim é composta de diferentes tipos de sienitos e está envolta por um halo de fenitos. Esses sienitos foram datados em ca. 730-720 Ma (Pb-Pb, evaporação de zircão; Rosa et al., 2007; Conceição et al., 2009) e estudos petrológicos indicam procedência magmática mantélica, seguida de alteração metassomática em sistema geoquímico aberto (Conceição et al., 2009). Os sienitos da região de Potiraguá, por sua vez, datam do intervalo ca. 730-715 Ma (Correa Gomes e Oliveira, 2002; Rosa et al., 2005; Menezes et al., 2012b) com idades obtidas também pelo método Pb-Pb evaporação de zircão, ou por dissolução de titanita (Rosa et al., 2007).

A nordeste de Potiraguá ocorre uma intrusão anortosítica encaixada entre os sienitos da PASEBA e os gnaisses migmatíticos do embasamento arqueano (Fig. 1.5). Ela foi inicialmente estudada por Souto (1972) e investigada mais detalhadamente por Bordini (2003) e Burgos de Carvalho (2005). Esses trabalhos mostram o caráter heterogêneo do corpo, que é majoritariamente constituído de anortositos, mas que também conta com a presença de leucograbros, troctolitos e diques máficos. Não existem dados precisos de datação geocronológica nessas rochas, mas com base na idade Mesoproterozoica para a extração mantélica (T_{DM} Sm-Nd em ca. 1.3 Ga, Bordini 2003; Burgos de Carvalho, 2005), infere-se que sejam rochas contemporâneas ao magmatismo alcalino da PASEBA.

As fases extensionais do Toniano e do Criogeniano também foram responsáveis pela criação de bacias intracontinentais e de margem passiva referentes ao Grupo Macaúbas, o complexo Jequitinhonha e o grupo Rio Pardo (Fig. 1.5). Essas bacias deram origem às rochas sedimentares que foram deformadas e metamorfizadas no evento Brasiliano. Na área de estudo, o grupo Macaúbas da porção noroeste é constituído de muscovita-biotita paragnaisses com níveis de micaxisto, meta-arcóseo, anfibolito, sillimanita-granada xisto, xisto grafitoso e quartzito (Moraes Filho e Lima, 2007). Na porção sudeste, por sua vez, ocorrem mica xistos com granada e sillimanita, com intercalações de rochas calcissilicáticas, além de regiões com presença de meta-diamictitos e quartzitos (Sampaio et al., 2004). O complexo Jequitinhonha, por sua vez, é composto de paragnaisses kinzigíticos bandados, parcialmente migmatizados, com quartzitos e rochas calcissilicáticas subordinadas (Sampaio et al., 2004; Moraes Filho e Lima, 2007; Araújo, 2014a). A porção do grupo Rio Pardo que ocorre na área de estudo é predominantemente

constituída de meta-calcários, meta-dolomitos, quartzitos, filitos e meta-siltitos que compõe as Formações Santa Maria Eterna e Água Preta (Moraes Filho e Lima, 2007).

Ao final da orogênese brasiliana, no Ediacarano e Cambriano, corpos graníticos sin a pós colisionais (Tipo S e Tipo I) foram instalados no núcleo do orógeno Araçuaí-Oeste Congo (Pedrosa Soares et al., 2001). Na porção sudoeste da área (Fig. 1.5), intrusivo no Complexo Jequitinhonha, ocorrem corpos graníticos tidos como do Tipo I e associados à fase de colapso gravitacional do orógeno ocorrida na transição Ediacarano-Cambriano (Araújo, 2000). Esses corpos são predominantemente constituídos de sieno e monzogranitos porfiríticos, com pegmatitos subordinados.

Em uma pequena área no extremo nordeste da área afloram as rochas da formação Salobro, que é entendida como unidade sedimentar depositada discordantemente sobre as rochas do grupo Rio Pardo, em razão da criação de um depocentro bacinal no antepaís do front orogênico brasiliano (bacia foreland; Pedreira, 1999). Compõe essa unidade um conjunto de meta-conglomerados, meta-grauvacas arcoseanas, meta-arenitos, meta-siltitos e ardóseas (Moraes Filho e Lima, 2007).

Do Paleógeno aos dias atuais (Quaternário), em resposta às mudanças locais no nível de base e do processo erosivo, deu-se a deposição das coberturas continentais recentes, genericamente agrupadas no conjunto das coberturas cenozoicas (Fig. 1.5).

1.8 Natureza do problema e objetivos

Dentre as unidades geológicas que ocorrem na área de estudo, duas são objetos de estudo sistemático nesta tese: os granitoides anorogênicos Tonianos, aqui agrupados no denominado complexo Salto da Divisa, e os gnaisses encaixantes mapeados como parte do Complexo Itapetinga (Fig.1.5), duas unidades ainda carentes de estudo detalhado. Assim, os problemas científicos que guiaram esta tese giram em torno da ausência de explicações que explicam como se deu a formação e evolução das rochas que compõe essas unidades. São eles:

(i) Problema 1: apesar da existência de estudos locais em maciços do complexo Salto da Divisa (Silva et al., 2008; Menezes et al., 2012a), grande parte das intrusões são ainda desprovidas de informações geológicas básicas (campo, petrografia e litoquímica). Adicionalmente, Victoria (2017) verificou que além dos granitos e sienogranitos mapeados na folha Itapetinga-Canavieiras (Moraes Filho e Lima, 2007), existem intrusões heterogêneas com granitos associados a litotipos máficos (gabros e diabásios) em processo de mistura de magma. Leucogranitos com amazonita, aplitos, pegmatitos e rochas vulcânicas também foram catalogados e indicam a existência de um magmatismo anorogênico complexo, ainda não compreendido. A ausência de mapas mais detalhados e análises laboratoriais nessas rochas impede a elaboração de um modelo petrogenético que permita compreender a evolução crustal nessa região.

(ii) Problema 2: com relação ao embasamento gnaissico-migmatítico, incluído no denominado complexo Itapetinga (Fig. 1.5), poucas informações existem na literatura a respeito dessas rochas. Silva et al. (2002b) dataram um meta-tonalito gnaissico na região de Eunápolis em ca. 2.1 Ga e mostraram que são rochas ligadas à tectônica Riaciana-Orosiriana envolvida na construção do paleocontinente São Francisco-Congo. Contudo, devido à ausência de maiores informações, não se sabe ao certo a origem dessas rochas (arco magmático? arco de ilhas? Orógeno colisional? Rifte? etc.). Adicionalmente, o complexo Itapetinga foi mapeado em uma extensa área (ca. 6000 km²) no Projeto Itapetinga-Canavieiras (Moraes Filho e Lima, 2007) e foi descrito como uma unidade bastante heterogênea, passível de divisão em estudo mais detalhado. Pelo fato de estar inteiramente inserido no cinturão Araçuaí (Fig. 1.3B), sabe-se também que o complexo Itapetinga representa um conjunto de rochas crustais que foram deformadas na orogênese Riaciana-Orosiriana e que foram posteriormente retrabalhadas pela deformação Neoproterozoica (orogênese brasiliana). Contudo, não se sabe se ele representa uma crosta isolada e independente do paleocontinente São Francisco-Congo (i.e., um micro-continente, por exemplo), ou um terreno acrescionário com características próprias, ou se tem alguma conexão com as unidades cratônicas descritas mais a norte, no interior cratônico. Assim, um estudo detalhado nessas rochas permitirá entender melhor não só a origem, mas também ajuda a entender melhor sobre as rochas do embasamento do CSF e como se deu o seu processo de evolução crustal ao longo do tempo geológico.

(iii) Problema 3. A área de trabalho ainda não está mapeada inteiramente na escala 1:100.000 (Fig. 1.4) e há inconsistências quando se compilam os mapas disponíveis (Fig. 1.5). Por causa da escala mais regional, e ausência de estudos sistemáticas, pouco detalhamento é dado em mapa para o complexo Salto da Divisa e para o complexo Itapetinga.

Em face dessas problemáticas, pretende-se atingir os seguintes objetivos com esta tese:

(i) Objetivo 1: com relação ao complexo Salto da Divisa, objetiva-se compreender os mecanismos petrogenéticos envolvidos na geração dos diversos litotipos existentes e propor um modelo de evolução para o magmatismo produtor dessas rochas.

(ii) Objetivo 2: com relação ao complexo Itapetinga na região mapeada, objetiva-se entender o seu processo de formação e qual a natureza tectônica dessas rochas e o papel desempenhado durante os processos de formação da crosta continental que deu origem ao paleocontinente São Francisco.

(iii) Objetivo 3. mapear a área na escala 1:100.000, com foco nas duas unidades objeto de estudo da tese, e propor uma atualização cartográfica geológica para a região.

2 SÍNTESE DO CONTEXTO GEOLÓGICO

2.1 Sobre o cráton do São Francisco e o orógeno Araçuaí-Oeste Congo

Não há um consenso na literatura para a definição de cráton. Segundo Brito Neves (2011), a definição moderna define que um cráton consiste em um pedaço do interior da litosfera continental que se manteve tectonicamente estável por mais de 100 Ma. Trata-se de uma região isostaticamente positiva e preservada dos efeitos deformacionais e térmicos do último ciclo tectono-termal que afetou as rochas que o circundam (os cinturões dobrados, ou orógenos marginais). Assim, para se estabelecer um domínio cratônico, deve-se responder a duas questões básicas: (i) em relação a quê? Qual área instável? e (ii) quando? Em relação a qual ciclo tectônico?

Em linhas gerais, o cráton do São Francisco (CSF) (Almeida, 1977; Heilbron et al., 2017a) pode ser considerado como a parte de uma crosta continental antiga - o paleocontinente São Francisco-Congo, que permaneceu indeformada durante a consolidação da porção oeste do supercontinente Gondwana, na transição entre o Ediacarano e o Cambriano. Nesse período, os esforços convergentes relacionados ao evento Brasiliano/Pan-Africano foram responsáveis pela colisão de diversas massas continentais que originaram sistemas orogênicos marginais às massas cratônicas estáveis, com embasamento livre de deformação. Após o evento Ediacarano-Cambriano, estabilizou-se o cráton São Francisco-Congo e este permaneceu como uma massa continental unida até o Cretáceo, quando forças distensivas, associadas à formação da crosta oceânica Atlântica, foram responsáveis por segmentá-la em dois blocos cratônicos distintos: o CSF, que ficou residente na atual placa sul-americana, e o cráton do Congo, na placa africana. Para o leitor mais interessado, uma revisão sobre a evolução do CSF está disponível em Heilbron et al. (2017b) e diversas referências internas também podem ser usadas como fonte de consulta.

Um dos sistemas orogênicos desenvolvidos durante o processo de cratonização do paleocontinente SF-Congo foi o orógeno Araçuaí-Oeste Congo (Pedrosa-Soares et al., 1992, 2001, 2007, 2008; Alkmim et al., 2006, 2007, 2017), localizado entre o CSF e o cráton do Congo e contido na reentrância delineada pela porção cratônica a norte e com abertura voltada para sul. Por causa do caráter curvo e do fechamento cratônico a norte, trata-se de um orógeno caracterizado como do tipo confinado (Rogers e Santosh, 2004), originado a partir do fechamento de uma bacia

parcialmente oceanizada em forma de golfo. O modo como se deu a evolução desse orógeno e os critérios cinemáticos que explicam o seu caráter peculiar são baseados no modelo conhecido como tectônica do Quebra Nozes (Alkmim et al., 2006). Em linhas gerais, esse modelo consiste no fechamento do golfo Araçuaí por colisões à distância e avanço do front deformacional para o interior dos aulacógenos existentes no paleocontinente SF-Congo, cuja história geológica remonta a processos extensivos precursores à tectônica Brasiliana.

2.2 Sobre a orogenia Minas-Bahia e a construção do embasamento do cráton doSão Francisco

O CSF estabilizou-se após o evento Brasiliano/Pan-Africano, no Ediacarano-Cambriano. A história do seu embasamento, entretanto, é anterior e remonta ao Paleoproterozoico, quando se deu a colagem de diversos paleocontinentes e arcos Arqueanos em um evento compressivo que culminou na formação do paleocontinente SF-Congo (ver revisão sobre as rochas Arqueanas do CSF em Teixeira et al., 2017 e referências internas). Ressalta-se também que a colagem Paleoproterozoica resulta de um período de intensa tectônica global (ver Cawood et al., 2013 e referências internas) e que, ao final do Orosiriano, culminou na amalgamação do supercontinente Columbia (Nuna), o qual possivelmente teve o paleocontinente SF-Congo como parte integrante (D'Agrella-Filho et al., 2020; Bruno et al., 2021).

Por muito tempo, a tectônica compressiva Paleoproterozoica responsável pela formação do embasamento do CSF ficou conhecida como "Evento Transamazônico". Entretanto, essa denominação é inadequada e deve ser revista, ou abandonada, por diferentes razões cujo detalhamento não é escopo deste trabalho. O leitor interessado pode verificar o conceito histórico e alguma dessas razões em Brito-Neves (2011). Sendo assim, seguindo os passos de Bruno et al. (2021), adota-se aqui o nome "evento Minas-Bahia" para se fazer referência à colagem do paleocontinente SF-Congo, com a ressalva de que as colisões são complexas e diacrônicas, com alguns registros de magmatismo acrescionário também no Sideriano superior (Cruz et al., 2016; Heilbron et al., 2017b; Araújo et al., 2021).

Os processos iniciais do evento Minas-Bahia começaram com o desenvolvimento de um complexo sistema de arcos insulares e continentais durante o Sideriano-Riaciano, seguido de colisão continental no Orosiriano. Uma possível

reconstrução paleotectônica em ca. 2.2 Ga (Bruno et al., 2021) mostra a organização dessas crostas e os principais sistemas de arcos continentais e intra-oceânicos produzidos no contexto pré-colisional. Posteriormente, em torno de 2.08-2.03Ga esse sistema desenvolveu-se para um orógeno colisional acompanhado da intrusão de diversos plútons sin a pós-colisionais (Barbosa e Barbosa, 2017; Heilbron et al., 2017b).

As rochas do embasamento do CSF afloram em unidades preservadas da deformação Brasiliana no seu interior, bem como em unidades retrabalhadas nos sistemas orogênicos que o margeia. A figura 2.1 apresenta a localização dessas principais unidades no interior cratônico e aquelas que ocorrem especificamente dentro do sistema orogênico Araçuaí-Ribeira. Com base na tectônica Paleoproterozoica, alguns autores incluem as unidades da porção sul do CSF, e adjacências, no denominado Domínio Orogênico Minas, enquanto o conjunto que ocorre no leste do estado da Bahia compõe o Domínio Orogênico do Leste da Bahia (Barbosa e Barbosa, 2017; Bruno et al., 2020; Araújo et al., 2021) (Fig. 2.2). Apesar de não se conectarem fisicamente, as similaridades tectônicas, petrológicas, litoquímicas e isotópicas observadas entre esses sistemas apontam para a possibilidade de conexão entre ambos e alguns autores advogam a existência de um sistema único e contínuo no Paleoproterozoico (Degler et al., 2018; Bruno et al., 2020, 2021; Araújo et al., 2021; Grochowski et al., 2021).

2.3 Sobre as principais unidades do embasamento do cráton do São Francisco na Bahia

A figura 2.3 mostra em detalhe a região do CSF destacada na figura 2.2, onde ocorre o Sistema Orogênico do Leste da Bahia (*Eastern Bahia Orogenic System* ou *Eastern Bahia Orogen*), que é entendido como o produto das colisões entre as crostas Arqueanas ao final do evento Riaciano-Orosiriano (Barbosa e Babosa, 2017; Teixeira et al., 2017; Bruno et al., 2021). As unidades que compõe essa região são tradicionalmente individualizadas em "blocos" (Gavião, Jequié e Serrinha) ou "cinturões" (Itabuna-Salvador-Curaçá, Salvador-Esplanada-Boquim), que representam entidades tectônicas com assinaturas químicas e isotópicas particulares (Barbosa e Sabaté, 2004; Oliveira et al., 2010; Barbosa et al., 2012a; Barbosa e Barbosa, 2017; Teixeira et al., 2017).

Figura 2.1. Reconstrução paleotectônica da parte São Franciscana do proto-continente São Francisco-Congo durante o Riaciano. Diferentes núcleos Arqueanos se aproximaram e entre eles formou-se um complexo sistema cinturões acrescionários representados por arcos continentais e arcos de ilhas. No Orosiriano, esse sistema evoluiu para um orógeno colisional.

Fonte: retirado de Bruno et al. (2021).

Entretanto, o uso desses termos para individualizar e distinguir as diferentes unidades do embasamento na Bahia é, por vezes, confuso e passível de discussão. O cinturão Itabuna-Salvador-Curaçá, por exemplo, é apenas uma das partes integrantes do sistema orogênico do leste da Bahia e inclui rochas Neoarqueanas, arco-derivadas, rochas Riacianas, arco-derivadas, além de intrusões Riacianas-Orosisiranas sin a pós colicionais, todas elas metamorfizadas em alto grau durante a fase colisional do orógeno. Nesse sentido, trata-se de uma unidade heterogênea, que inclui rochas de idades diferentes geradas por mecanismos petrogenéticos e tectônicos diferentes. Por isso, neste trabalho, julgou-se mais interessante apresentar as unidades do Sistema Orogênico do Leste da Bahia de acordo com a idade disponível das rochas, medida ou presumida, agrupando cada unidade ao contexto tectônico do seu tempo. A seguir, é feito um breve resumo de cada uma das unidades do embasamento do CSF em evidência na figura 2.3. Uma revisão dessas unidades é importante para melhor compreender as unidades paleoproterozoicas da área de estudo e entender o seu significado tectônico em um contexto mais amplo, fazendo correlações com unidades correspondentes.

Figura 2.2. Registro das principais unidades do embasamento do Cráton do São Francisco, com destaque para as que ocorrem no seu interior e as que estão retrabalhadas pela deformação brasiliana no sistema orogênico Araçuaí-Ribeira.

2.3.1 Unidades Paleo-Mesoarqueanas
Em linhas gerais, as unidades Paleo-Mesoarqueanas que compõe o embasamento cristalino na área delimitada pelo mapa da figura 2.3 são:

(i) Núcleos primitivos Paleoarqueanos: granitoides tonalíticos-granodioríticostrondhjemíticos (TTG) localizados na região a norte de Vitória da Conquista (figura 3) e que fazem parte do maciço Sete Voltas, que contém rochas de ca. 3.4 Ga (TDM em ca. 3.6 Ga), e os maciços Boa Vista-MataVerde (ca. 3.3 Ga; TDM entre 3.5 e 3.5 Ga).
É provável que a origem dessas rochas esteja ligada à fusão parcial de basaltos toleíticos Arqueanos (Barbosa et al., 2012b);

(ii) Gnaisses e migmatitos indivisos: ocorrem em faixa a oeste da zona de cisalhamento Contendas-Jacobina (Fig. 2.3). São gnaisses e migmatitos acinzentados, finos a médios, ainda pouco estudados, sem dados geocronológicos precisos (U-Pb, zircão), mas tidos como correlatos aos gnaisses que compõe o embasamento nas regiões centrais e oeste do paleocontinente Gavião, onde ocorrem os denominados complexos Santa Isabel e Paramirim (Barbosa et al., 2012a; Teixeira et al., 2017);

(iii) Complexo Mairi: ocorre em faixa entre a zona de cisalhamento Contendas-Jacobina e as unidades metassedimentares do grupo Jacobina (Fig. 2.3). Reúne gnaisses e migmatitos graníticos e tonalíticos, associados a sequências supracrustais e corpos máficos-ultramáficos. Todo o conjunto foi submetido a metamorfismo de fácies anfibolito alto durante o evento Riaciano-Orosiriano e os ortognaisses migmatíticos datam em ca. 3.0 Ga, com idades modelo Sm-Nd TDM em torno de 3.2 Ga (Barbosa et al., 2012a e referências internas);

(iv) Complexo Santa Luz: localizado a leste da zona de empurrão Serrinha (Fig. 2.3) constituído de associações heterogêneas de gnaisses-migmatíticos majoritariamente estabilizados em fácies anfibolito (Barbosa et al., 2012a), cuja idade de cristalização varia entre 3.2 e 2.9 Ga (Rios et al., 2009; Oliveira et al., 2010). Baseado nos valores de ENd (+1.1 a 1.0), uma derivação de fonte juvenil é atribuída a esses gnaisses (Oliveira et al., 2010). Ressalta-se que a leste da bacia Mesosozoica de Tucano, em região próxima da costa Atlântica, ocorrem gnaisses migmatíticos TTG muito deformados, granulitizados, de idade Mesoarqueana (ca. 2.9, Silva et al., 2002a), que vêm sendo interpretados como parte do complexo Santa Luz (Silva et al., 2002a; Dalton de Souza et al., 2003; Delgado et al., 2003; Silva, 2006, Barbosa et al., 2012a; Barbosa et al., 2018);

Figura 2.3. Principais unidades do embasamento que compõe o Sistema Orogênico do Leste da Bahia com destaque para a área mapeada nesta tese.

Fonte: elaborado pelo autor com base no mapa geológico da Bahia (Dalton de Souza et al. 2003).

(v) Complexo Uauá: localiza-se a nordeste do complexo Santa Luz e da sequência Rio Itapicuru (Fig. 2.3) e é considerado um segmento crustal alóctone do complexo Santa Luz, sendo essencialmente constituído de ortognaisses graníticos a granodioríticos metamorfizados em fácies granulito, com idade de cristalização entre 3.2 e 2.9 Ga (Oliveira et al., 2010; 2013; 2019). É característico do complexo Uauá a intrusão de rochas máficas-ultramáficas Mesoarqueanas, bem como diques máficos Neoarqueanos. Tendo em vista a variação isotópica obtida para os ortognaisses (ENd positivos e negativos) e geoquímica compatível com rochas de arco, o complexo Uauá vem sendo entendido como as raízes de um arco continental Mesoarqueano (Oliveira et al., 2010).

Adicionalmente, na área delimitada pelo mapa da figura 2.3 ocorrem duas sequências meta-vulcanosedimentares Paleo-Mesoarqueanas e associadas aos gnaisses e migmatitos do embasamento cristalino. São elas (Barbosa et al., 2012a):

(i) Greenstone belt Mundo Novo: ocorre em uma faixa aproximadamente N-S nas proximidades da cidade homônima (Fig. 2.3) e corresponde a uma sequência meta-vulcanosedimentar constituída de anfibolitos toleíticos, tremolititos e rochas meta-ultramáficas, meta-basaltos com pillow lavas, rochas meta-dacitos e meta-pelitos associados a meta-arcóseos e meta-grauvacas. O meta-dacito foi datado em ca. 3.3-3.2 Ga (U-Pb, zircão) e os dados Sm-Nd indicam fontes magmáticas ligadas à crosta juvenil (eNd+0.49 a -1.49) (Peucat et al., 2002);

(ii) Sequência Contendas-Mirante: ocorre na região de Contendas do Sincorá, a noroeste de Vitória da Conquista (Fig. 2.3) e abriga um conjunto metavulcanosedimentar polideformado e reequilibrado em fácies xisto verde. Trata-se de uma sequência bastante heterogênea, com uma diversificada associação de litotipos (rochas meta-vulcânicas félsicas e máficas, rochas metassedimentares de origem químico-exalativas, metacherts, formações ferríferas bandadas, mármores, xistos, meta-grauvacas, meta-pelitos e rochas piroclásticas). A idade de toda essa sequência é ainda objeto de investigações e o posicionamento dessa unidade é dado como Mesoarqueano em razão de idade encontrada em um corpo subvulcânico basal (ca. 3.3 Ma; Barbosa et al., 2012a).

2.3.2. Unidades Neoarqueanas

As unidades Neoarqueanas do Sistema Orogênico do Leste da Bahia podem ser divididas em cinco grupos principais, apresentados nos tópicos subsequentes.

2.3.2.1 Complexo granulítico de Jequié e Banda de Ipiaú

Os granulitos de Jequié são as rochas predominantes do paleocontinente homônimo e que vem sendo entendido como uma das crostas Arqueanas envolvidas na colisão Riaciana-Orosiriana (Fig. 2.1) (Barbosa e Sabaté, 2004; Barbosa et al. 2012a, Barbosa e Barbosa 2017, Teixeira et al. 2017). Ele é constituído de granulitos heterogêneos, orto e paraderivados, granulitos enderbíticos e charnoquíticos. No mapa da figura 2.3, as rochas granulíticas foram genericamente agrupadas no complexo granulítico de Jequié, cuja idade Neoarqueana em torno de 2.7 Ga é atribuída às idades encontradas em granulutos charnoquíticos (Silva et al., 2002a) e enderbíticos (Barbosa e Sabaté, 2004). Idades modelo Sm-Nd TDM variam entre o intervalo 3.3 e 2.9 Ga e os valores mais negativos de ENd sugerem plutonismo derivado do retrabalhamento de crosta Mesoarqueana (Barbosa e Sabaté, 2004; Teixeira et al., 2017). As Idades obtidas em bordas recristalizadas de zircões extraídos desses granulitos indicam que o metamorfismo de alto grau ocorreu em ca. 2.06-2.07 Ga (Silva et al., 2002a; Barbosa e Sabaté, 2004). O limite leste do complexo granulítico de Jequié está em contato tectônico com a denominada "banda de Ipiaú" (Barbosa 2012a), uma faixa constituída de orto e paragnaisses com intercalações de anfibolitos e corpos gabroicos e presença subordinada de rochas metassedimentares. Na região sul da Bahia como um todo é comum as rochas do embasamento estarem granulitizadas. Na banda de Ipiaú, entretanto, as rochas estão equilibradas em fácies anfibolito, o que sugere uma unidade instalada em nível crustal superior e que ficou encravada entre os granulitos que ocorrem na região sul do estado da Bahia durante a colisão Riaciana-Orosiriana (Sampaio et al., 2017).

2.3.2.2 Complexo granulítico de Ilhéus

Na região costeira, nas proximidades de Ilhéus e Una (Fig. 2.3), ocorrem ortognaisses charnoquíticos bandados, cuja idade de cristalização do protólito é tida como Neoarqueana (ca. 2.7 Ga, Silva et al., 2002a). Nos mapas regionais, essas rochas vêm sendo incluídas como parte do complexo Ibicaraí, que é a unidade

predominante na porção sul do estado (Dalton de Souza et al., 2003; Moraes Filho e Lima, 2007). Contudo, entre os granulitos de Ilhéus e os do complexo Ibicaraí ocorre uma faixa de granulitos Paleoproterozoicos (ca. 2.1 Ga, Silva et al., 2002a) tida como de origem acrescionária: o arco Buerarema (Delgado et al., 2003; Silva 2006). Assim, os granulitos de Ilhéus devem ser entendidos como uma unidade a parte, desmembrada do complexo Ibicaraí, e provavelmente referem-se a uma crosta Neoarqueana, ainda pouco conhecida, envolvida durante a colisão Riaciana-Orosiriana, como é o caso do paleocontinente Jequié. Silva (2006) entendeu que, juntamente com os granulito de Salvador (Neoarqueano), a faixa costeira de rochas dessa idade representa o paleocontinente Salvador-Ilhéus, cuja formação se deu entre 2.7 e 2.5 Ga e que teria sido amalgamado ao paleocontinente Jequié e arcos Neoproterozoicos durante a orogênese Riaciana-Orosiriana.

2.3.2.3 Complexo Caraíba e unidades associadas

O complexo Caraíba ocorre nas imediações da cidade homônima e é constituído de ortognaisses granulíticos tonalíticos e enderbíditcos, ortognaisses granodioríticos e charnoenderbíticos e, mais raramente, ortognaisses graníticos e trondjhemíticos. Granulitos gabro-dioríticos ocorrem na forma de corpos lenticulares (Barbosa et al., 2012a). A idade Neoarqueana (ca. 2.6 Ga) para a cristalização do protólito dessas rochas foi obtida em zircões extraídos de enderbito (Silva et al., 2002a) e de ortognaisse tonalítico coletado próximo à mina de Caraíba (Oliveira et al., 2010). Neste último caso, a idade de ca. 2.07 Ga obtida em bordas recristalizadas de zircões indicam a idade do evento metamórfico relacionado à orogenia Riaciana-Orosiriana. As idades modelo para os granulitos do complexo Caraíba oscilam em torno de 2.7 Ga e os valores positivos de ENd (+1.18-+1.89) sugerem origem a partir de um sistema de arco magmático: o arco Caraíba (Oliveira et al., 2010). Os granulitos do complexo Caraíba ocorrem associados a outras duas importantes unidades: o complexo Tanque Novo-Ipirá e o complexo São José do Jacuípe (Fig. 2.3). O primeiro ocorre como lascas e imbricações de rochas supracrustais granulitizadas e representa os sedimentos depositados nas bacias relacionadas ao arco Caraíba (Oliveira et al., 2010). O segundo, por sua vez, refere-se a um conjunto estratiforme de gabros e anortositos interpretados como complexos máfico-ultramáficos formados na raiz do arco Caraíba em ca. 2.58 Ga (Piaia et al., 2017).

2.3.2.4 Complexo Ibicaraí e unidades associadas

O complexo Ibicaraí ocorre na porção sul do estado da Bahia e é majoritariamente constituído de charnoquitos, enderbitos e granulitos trondihemíticos, comumente associados a meta-gabronoritos granulitizados (Moraes Filho e Lima, 2007). Essas rochas possuem idade de cristalização magmática entre 2.8 e 2.6 Ga e idade do metamorfismo granulítico em torno de 2.09 a 2.07 Ga (Silva et al., 2002a; Peucat et al., 2011). Com base em resultados de litoquímica, o complexo Ibicaraí é subdivido nas suítes "TT2" (La/Yb aproximadamente 45 e anomalia positiva de európio) e "TT5" (La/Yb aproximadamente 9 e anomalia negativa de európio), ambas cronocorrelatas e associadas ao desenvolvimento de um arco magmático Neoarqueano (Barbosa et al., 2003; Barbosa et al., 2012a). Peucat et al. (2011) realizaram estudo isotópico Sm-Nd para os granulitos dessa região e as idades modelo TDM dos granulitos variam entre 3.0 e 2.8 Ga. Lascas e imbricações tectônicas colocaram os granulitos do complexo Ibicaraí em contato com um conjunto heterogêneo de granulitos paraderivados denominado complexo Almandina (Moraes Filho e Lima, 2007). A idade e origem dessas rochas ainda não são bem compreendidas, mas elas podem ser interpretadas como rochas de protólito sedimentar formadas em bacias relacionadas ao arco Ibicaraí (Fig. 2.3).

2.3.2.5 Complexo Salvador-Esplanada-Boquim

Na região de Salvador, Esplanada e Boquim (Sergipe), afloram granulitos Neoarqueanos entendidos como uma ramificação dos arcos Caraíba e Ibicaraí (Barbosa et al., 2018). Essas rochas são agrupadas no denominado complexo granulítico Salvador-Esplanada-Boquim, que é majoritariamente constituído de granulitos félsicos com enclaves máficos. Subordinadamente, gnaisses kinzigíticos e quartzitos também ocorrem (Dalton de Souza et al., 2003). A extensão dessa unidade no estado de Sergipe foi estudada por Babosa et al. (2018), que encontraram idades Neoarqueanas (ca. 2.5 Ga) para a cristalização do protólito e constataram a afinidade dos granulitos félsicos e máficos com rochas de arco. Idades semelhantes foram encontradas também nos granulitos enderbíticos de Salvador (Silva, 2006). Os dados geocronológicos realizados também mostram que essas rochas sofreram metamorfismo granulítico entre ca. 2.08 e 2.07 Ga (Barbosa et al., 2018).

2.3.3 Unidades Paleoproterozoicas

As unidades Paleoproterozoicas do Sistema Orogênico do Leste da Bahia podem ser divididas em sete divisões principais, apresentadas nos tópicos subsequentes.

2.3.3.1 Complexo Saúde

Na porção norte do paleocontinente Gavião, em ampla faixa aproximadamente N-S a leste de Jacobina (Fig. 2.3), o complexo Saúde é constituído de paragnaisses aluminosos, kinzigitos, rochas calcissilicáticas e quartzitos. Tais rochas são entendidas como supracrustais depositadas em uma bacia formada em evento tafrogenético no Sideriano, o rifte Saúde (Delgado et al., 2003; Silva, 2006). No evento Riaciano-Orosiriano, essa bacia foi deformada e metamorfizada em fácies anfibolito (Barbosa et al., 2012a).

2.3.3.2 Sequência Rio Itapicuru (o arco Rio Itapicuru)

A unidade conhecida como sequência Rio Itapicuru, também conhecida como greenstone belt Rio Itapicuru, ocupa uma extensa região entre os complexos Santa Luz e Uauá (Fig. 2.3) e representa um conjunto de rochas meta-vulcanosedimentares cuja gênese vem sendo interpretada como os remanescentes de um arco acrescido às margens do complexo Santa Luz, entre ca. 2.1-2.08 Ga (Oliveira, 2010; Baldim e Oliveira, 2021). Em linhas gerais, essa sequência é constituída de basaltos toleíticos, rochas meta-vulcânicas félsicas de composição dacítica e andesítica, meta-tufos e rochas metassedimentares químicas (cherts, jaspilitos, formações ferríferas) e siliciclásticas, de origem turbidítica. Vale ressaltar que mais a norte do mapa apresentado na figura 2.3, no contato leste do complexo Uauá, ocorre a sequência metassedimentar Rio Capim, também de idade Riaciana (ca. 2.1 Ga), e que também vem sendo interpretada como parte do complexo acrescionário desenvolvido entre as crostas Neoarqueanas (complexo Santa Luz e complexo Uauá) durante o Riaciano, sendo o registro de um arco continental na região (Baldim e Oliveira, 2021).

2.3.3.3 Complexo Buerarema-São José (o arco Buerarema)

De acordo com os mapas regionais, a região leste do complexo Ibicaraí está em contato com as unidades conhecidas como complexo Buerarema (Dalton de Souza et al., 2003; Moraes Filho e Lima, 2007) e complexo São José (Dalton de Souza et al., 2003), que ocupam uma faixa mais ou menos paralela à costa atlântica, estendendo-se desde Camamu até os limites do orógeno Araçuaí, ao longo do trend de deformação Paleoproterozoico (N-S e NNE-SSW) (Fig. 2.3). O complexo Buerarema ocorre a sul da Itabuna e é constituído de ortognaisses tonalíticos, dioríticos e graníticos e ortognaisses enderbíticos-trondhjemíticos associados a charnoenderbitos e meta-gabronoritos (Moraes Filho e Lima, 2007). O complexo São José, por sua vez, ocorre a norte de Itabuna e é constituído de enderbitos cálcioalcalinos, com intercalações de meta-gabro, meta-diorito e meta-basaltos toleíticos granulíticos (Dalton de Souza et al., 2003).

Pinho (2005) e Pinho et al. (2011) classificam toda essa região a norte e sul de Itabuna como constituída de granulitos tonalíticos-trondhjemíticos com presença de enclaves e intercalações de granulitos máficos, sendo os granulitos ácidos o produto da diferenciação dos básicos. Com base na composição química dos granulitos da região sul da Bahia, Barbosa et al. (2003) e Barbosa et al. (2012a) constataram assinaturas diferentes dos granulitos que compõe os complexos Buerarema-São José, agrupando-os estes na denominada suíte "TT1". Com base em análises U/Pb em zircão para duas amostras, a idade de cristalização obtida para os granulitos félsicos é de idade Riaciana (ca. 2.1-2.07 Ga; Silva et al. 2002a, Peucat et al. 2011).

A idade de cristalização Riaciana e a assinatura química compatível com rochas de arco (Barbosa et al., 2003; Pinho et al., 2011; Barbosa et al., 2012a), em consonância com os valores relativamente baixos de ENd(t) (-2.0 a -3.1) obtidos para os granulitos "TT1" (Peucat et al., 2011), levou Silva (2006) a interpretar as rochas dos complexos Buerarema e São José como derivadas de um arco magmático moderadamente juvenil Riaciano: o arco Buerarema. Esse arco, entretanto, não é unanimidade na literatura e alguns autores entendem o magmatismo de 2.1 Ga como relacionado à fase sin colisional do evento Riaciano-Orosiriano (Barbosa et al., 2003; Barbosa et al., 2012a; Barbosa e Barbosa 2017; Barbosa et al., 2021).

Em trabalhos recentes, muitas das compilações regionais e reconstruções paleotectônicas têm considerado a existência do arco Buerarema como um dentre os demais arcos Riacianos registrados no Sistema Orogênico do leste da Bahia e que possivelmente estariam conectados com os arcos de mesma idade observados mais

a sul, no Sistema Orogênico Minas (*i.e.*, arco Juiz de fora) (Silva et al., 2016; Degler et al., 2018, Bruno et al., 2020; 2021; Araújo et al., 2021; Grochowiski et al., 2021).

2.3.3.4 Complexo Rio Real (o arco Costeiro)

O complexo Rio Real (Dalton de Souza et al., 2003) ocorre no nordeste do estado da Bahia, a norte de Salvador, e está em contato tectônico, mediante zona de cisalhamento transcorrente, com as rochas Neoarqueanas do complexo granulítico Salvador-Esplanada-Boquim (Fig. 2.3). Recentemente, Barbosa et al. (2018) nomearam essa unidade como "complexo gnáissico-migmatítico granulítico da costa atlântica" e a incluiu no denominado cinturão Salvador-Esplanada-Boquim. O complexo Rio Real é descrito como composto de ortognaisses migmatíticos com intercalações de rochas meta-máficas (Dalton de Souza et al., 2003) e a idade Paleoproterozoica atribuída refere-se a um hornblenda-biotita gnaisse granítico datado em ca. 2.1 Ga na região de Conde (Silva et al., 2002a) (fig. 2.3). Com base nessa idade e na existência de arcos de mesma idade em outras regiões (*e.g.:* arcos Rio Itapicuru, Rio Capim e Buerarema) alguns autores interpretam o complexo Rio Real como derivado de um terreno acrescionário Riaciano colado às margens do complexo granulítico Salvador-Esplanada-Boquim ao final do evento Riaciano-Orosiriano (Delgado et al., 2003; Silva 2006).

2.3.3.5 Complexo Itapetinga

O complexo Itapetinga recebeu essa denominação no mapa geológico da Bahia (Dalton de Souza et al., 2003) e corresponde a um extenso conjunto de gnaisses e migmatitos que forma o embasamento da porção nordeste do Cinturão Araçuaí, na Bahia e em Minas Gerais. Nesse mapa, ele ocorre como uma extensa unidade (cerca de 225 km de comprimento e 50 km de largura) e orientada segundo a direção NW-SE, que é o trend deformacional Brasiliano correspondente às estruturas da Zona de Cisalhamento de Itapebi (Alkmim et al., 2006; 2017). Esse entendimento para o complexo Itapetinga também foi reproduzido no mapa da folha Itapetinga-Canavieiras (Moraes Filho e Lima, 2007). Assim, de acordo com os mapas oficiais (Dalton de Souza et al., 2003; Moraes Filho e Lima, 2007), o complexo Itapetinga é o embasamento da porção nordeste do cinturão Araçuaí e foi desenhado com o trend da estruturação brasiliana, apresentando-se como uma unidade única e contínua, disposta ao longo da faixa NW-SE e que trunca as unidades cratônicas que seguem o trend da deformação Riaciana-Orosiriana, aproximadamente N-S (Figs. 2.2 e 2.3).

Silva (2006), porém, entendeu que o complexo Itapetinga não tem essa dimensão toda e que as rochas da porção sudeste, nos arredores da cidade Itapebi e Eunápolis, representam a continuação do complexo Buerarema observado mais a norte, mas retrabalhado pela deformação brasiliana no cinturão Araçuaí. Dessa forma, o complexo Itapetinga seria a unidade do embasamento restrita mais a noroeste e estaria em contato com essa porção retrabalhada do complexo Buerarema. Contudo, devido à ausência de mapas de detalhe na região, os aspectos cartográficos da continuação do complexo Buerarema no interior do cinturão Araçuaí e a natureza do contato com o complexo Itapetinga ainda permanecem desconhecidos.

Apesar da extensa área, poucos estudos analíticos existem para o complexo Itapetinga e sua idade Paleoproterozoica (ca. 2.1Ga, Silva et al., 2002a) é atribuída à cristalização de um ortognaisse tonalítico próximo à cidade de Eunápolis (Fig. 2.3), sendo este o único dado geocronológico preciso (U-Pb, zircão) disponível até então. Uma das propostas desta tese é investigar com maior detalhe o embasamento nessa região de Itapebi (ver área de estudo na figura 2.3) e testar a ideia proposta por Silva (2006). Para tanto, elaborou-se o estado da arte da tabela 2.1, que sintetiza o conhecimento disponível até então para o embasamento gnaissico-migmatítico da porção nordeste do cinturão Araçuaí.

Referência	Contribuição
Cordani (1973)	Trabalho regional, com foco em dados de campo e geocronológicos em diversas unidades existentes na faixa costeira do Brasil, entre Salvador e Vitória. O autor obteve a idade de
	diversas amostras pelo método Rb-Sr e K-Ar e analisou a evolução geológica das unidades
	do pré-Cambriano. Na região atualmente mapeada como parte do Complexo Itapetinga
	ocorrem gnaisses migmatíticos de composição granítica a granodiorítica e metamorfizados
	em fácies almandina-anfibolito. Dentre as rochas datadas incluem-se dois anfibolitos (ITA-
	104: 540 \pm 31 Ma; e GB-43-44: 506 \pm 25 Ma; K-Ar em antibolio), dois biotita-gnaisses (IIA-
	$(122.550 \pm 60 \text{ Ma}, \text{RD-SI}, \text{e} \text{CA-SI}, 540 \pm 52 \text{ Ma}, \text{R-AI eIII annibolio}, ulti muscovita-biolita-biological analyse (CA-750-B: 1420 + 30 Ma) e um biotita-muscovita-analyse (CA-780-B-C-D: 795 +$
	200 Ma). Essas idades mais novas são interpretadas como rejuvenescimento causado pela
	influência das deformações brasilianas na região. Com base na ausência de idades
	semelhantes obtidas para os gnaisses e granulitos mais a norte (Arqueanos-
	Paleoproterozoicos), o autor mostrou até onde vai a influência do evento brasiliano no estado
	da Bahia, propondo o limite faixa móvel brasiliana-cráton como definido pelas estruturas
	relacionadas ao denominado "Falhamento de Itapebi", de direção NW-SE.
Projeto Rio	Mapa regional, escala 1:250.000. A região atualmente conhecida como Complexo Itapetinga
Pardo (Carvalho	foi descrita como constituída de gnaisses migmatíticos à biotita e anfibólio, do Pré-
Filho et al.	Cambriano médio a inferior, e interpretada como uma sequência metassedimentar de grau
1973)	metamórfico mais baixo que as rochas do embasamento ao redor. E uma unidade
	heterogênea, constituída por biotita-anfibólio gnaisses, localmente migmatíticos, com
	presença de intercalações de biotita-xistos e rochas calcissilicáticas. Em zonas de

 Tabela 2.1. Estado da arte sobre a evolução do conhecimento das rochas que compõe o embasamento da porção nordeste do Cinturão Araçuaí (complexo Itapetinga).

Projeto Sul da Bahia (Silva Filho et al. 1974a, b)	cisalhamento, é comum a presença de quartzo-clorita-xistos e lentes de anfibolito. Na região de Itapebi, a unidade do embasamento é diferente, denomina-se "Gnaisses migmatíticos porfiroides", e é constituída de rochas de granulação grossa cuja feição mais característica é a presença de porfiroblastos de K-feldspato mili a centimétricos. Admite-se que nas proximidades com a intrusão granítica de Ventania (norte de Itapebi), esse caráter porfiroblástico seja produto metassomatismo potássico ocasionado pela instalação do corpo. Mapa regional, escala 1:250.000. A região atualmente conhecida como Complexo Itapetinga foi descrita como "Complexo Metamórfico-Migmatítico", do Pré-Cambriano. Trata-se de uma unidade heterogênea, constituída de biotita-gnaisses e biotita-hornblenda gnaisses, às vezes com intercalações de quartzitos, anfibolitos e mármores. Esse conjunto sofreu migmatização local e, posteriormente, foi intrudido por granitoides. Nas proximidades com as intrusões de Itapebi ocorrem augen-gnaisses. Na região de Itarantim, os gnaisses são finos, leucocráticos e genericamente foram interpretados como leptitos derivados do metamorfismo de grauvacas. Com base nas relações de campo verificadas, e nas idades disponíveis, os autores entendem o Complexo Metamórfico-Migmatítico a norte e fortemente influenciado pelas deformações e metamorfismo que resultaram na cratonização e consolidação da plataforma brasileira (ca. 670-470 Ma).
Projeto	Mapa local, escala 1:25.000. Projeto de mapeamento de detalhe em três corpos graníticos
Prospecto	na região de Itapebi e Itagimirim, com o objetivo de investigar potenciais metalogenéticos. O
Itapebi (Oliveira	embasamento dessas intrusoes (atual Complexo Itapetinga) e formado por biotita-gnaisses
1304)	como nas bordas do corpo de Ventania, ocorrem gnaisses com muscovita, por vezes com
	fluorita. Augen-gnaisses e núcleos migmatíticos também ocorrem com frequência. No
	extremo nordeste da área mapeada, esses gnaisses estão em contato tectônico com
Projeto Manac	gnaisses portiroblasticos, com nucleos pegmatiticos.
Metalogenéticos	de Itapebi e de Ventania corresponde a um conjunto de gnaisses porfiroblásticos que é parte
e de Previsão	do complexo granulítico do cinturão móvel costeiro. Essa é uma unidade do embasamento
de Recursos	Arqueano que contém rochas de fácies granulito e comumente apresenta intercalações de
Minerais	antibolitos. I rata-se de uma unidade formada durante o ciclo Jequié e posteriormente
(MOTAES FIITO 1988)	Brasiliano. Os corpos de Cajubi e de Jordânia, por outro lado, estão encaixados na unidade
,	denominada "Complexo Metamórfico-Migmatítico", que corresponde a uma unidade
	arqueana constituída por biotita-gnaisses, hornblenda-gnaisses, biotita-hornblenda-gnaisses
	e migmatíticos. Tais rochas podem conter intercalações de anfibolito, mármores e quartzitos.
	a identificação de potenciais metalogenéticos nas unidades mapeadas e no contato dos
	gnaisses migmatíticos com a intrusão de Caiubi foram registradas ocorrências de amazonita.
	No contato entre a intrusão de Ventania e os gnaisses porfiroblásticos, por sua vez, foram
Drojoto Looto	encontradas ocorrências de fluorita.
Araúio (2000):	Jacinto-Salto da Divisa e Itarantim (1:100.000). Nesses mapas as rochas correspondentes
	ao atual Complexo Itapetinga foram incluídas no Complexo Caraíba-Paramirim, seguindo a
	mesma nomenclatura adotada por Lima et al. (1981, apud Araújo 2000), que assim
	denominaram os gnaisses bandados da região de Itapebi, diferenciando-os do então
	Complexo Paraliba do Sul, que sena a unidade kinzignica a sul (alualmente connecida como Complexo Jeguitinhonba). Nos mapas apresentados, o então complexo Caraíba-Paramirim
	é o embasamento cristalino do Nordeste do Cinturão Araçuaí e é constituído de biotita-
	allanita-hornblenda-gnaisses com titanita, localmente migmatizados, além de olivina-gabros
	e meta-dioritos. O tipo mais representativo é um hornblenda-biotita-gnaisse cinza escuro,
	tino a medio, de composição granitica, com intercalações de antibolito e normalmente esta
Celino et al.	Além do estudo nos granitos da região sul da Bahia, os autores apresentam o resultado de
(2000)	análise Sm-Nd para o gnaisse encaixante da intrusão de Itagimirim, que possui idade modelo
	(Tdm) em torno de 2.5 Ga e ENd(inicial) de -22. Esses gnaisses foram atribuídos ao
	complexo Caraíba-Paramirim, uma unidade que corresponde ao embasamento Arqueano-
Silva et al	raleuproterozoico exposito na porção nordeste do cinturao Araçual. Trabalho com foco deocronológico em que é apresentado, pela primeira vez, uma idade U-
(2002a)	Pb (SHRIMP) para a cristalização do embasamento gnáissico na região sul da Bahia. Trata-
· · · · · · · · · · · · · · · · · · ·	se de um hornblenda-biotita-meta-tonalito gnáissico coletado em pedreira nas proximidades
	da cidade de Eunápolis. A idade obtida foi de 2124±10 Ma e, segundo os autores, ela permite
	a interpretação de que esse gnaisse esteja relacionado a um magmatismo pré-colisional
Mana Geológico	Telacionado a lase acrescionaria do cinturao Bania Oriental. Mana regional, escala 1:1.000.000. Definição do nome "Complexo Itanetinga" para a unidade
da Bahia	anteriormente conhecida como Complexo Metamórfico-Miamatítico. Trata-se de um conjunto
(Dalton de	de biotita-gnaisses ou hornblenda-biotita-gnaisses, com intercalações de anfibolito e biotitito,

Souza et al. 2003)	em geral miloníticos. O Complexo Itapetinga mapeado possui ca. 220Km de comprimento e ca. 50Km de largura e ocorre por uma longa faixa de direção NW-SE que se encontra totalmente inserida dentro do Cinturão Araçuaí.
Projeto Extremo Sul da Bahia (Sampaio et al. 2004)	Mapa regional, escala 100.000. A porção referente ao Complexo Itapetinga foi denominada como "Ortognaisses migmatíticos da infraestrutura da Faixa Araçuaí". É composta por hornblenda-biotita-gnaisse migmatítico e biotita-gnaisse cortados por diques básicos. A amostra datada por Silva et al. (2002a) (JM-142) corresponde a uma das estações de campo mapeadas e refere-se a um gnaisse migmatítico acinzentado, de granulação média, bandado, aflorante em pedreira abandonada.
Silva (2006)	Livro sobre geocronologia aplicada ao mapeamento geológico, com discussão sobre o Sistema Orogênico do Leste da Bahia e o embasamento cratônico na região. No mapa apresentado, o autor entende a parte sudeste do Complexo Itapetinga mapeado no mapa geológico da Bahia (Dalton de Souza et al. 2003) como correspondente a uma continuação das rochas Riacianas, com afinidade de arco, que ocorrem mais a norte, no interior do cráton (Complexo Buerarema). Dessa forma, os gnaisses anfibolíticos da região de Itapebi e Eunápolis (ca. 2.1 Ga, Silva et al. 2002a) teriam se formado durante a fase pré-colisional Riaciana-Orosiriana. Os gnaisses que ocorrem a noroeste, ou seja, o Complexo Itapetinga de Dalton de Souza et al. (2003) representam uma unidade ainda não datada e de origem incerta.
Teixeira (2006)	Relatório interno sobre a litogeoquímica de algumas unidades da folha Itapetinga- Canavieiras (Moares Filho e Lima 2007). O autor mostra a composição química do Complexo Itapetinga com base nos resultados das análises de 12 amostras. Em função da heterogeneidade química observada, distinguiu-se três grupos litológicos, informalmente denominados "Itapetinga 1", "Itapetinga 2" e "Itapetinga 3". As amostras do "Itapetinga 1" ocorrem nas proximidades da cidade homônima, são metaluminosas a peraluminosas e possuem afinidade calcioalcalina normal a de alto potássio, com anomalias negativas de Nb, Sr, P e Ti, condizentes com magmas produzidos em arcos magmáticos. As amostras referentes ao "Itapetinga 2" ocorrem nas proximidades de Itapebi e são rochas metaluminosas com forte tendência alcalina, ricas em Nb, Ti, Y e Yb, compatível com magmas gerados em ambientes pós-orogênicos. Nesse caso, podem refletir um magma posterior, intrusivo na subunidade "Itapetinga 1". As amostras agrupadas no "Itapetinga 3", por sua vez, estão nas proximidades das cidades de Itapebi e Itarantim e possuem uma química inconclusiva, não compatível com nenhum dos grupos anteriores e nem entre si.
Projeto Itapetinga- Canavieiras (Moraes Filho e Lima 2007)	Mapa regional, escala 1:250.000. O complexo Itapetinga foi interpretado como uma unidade inteiramente inserida no cinturão Araçuaí. É litologicamente e quimicamente bastante heterogênea e predominantemente constituída por hornblenda-biotita-ortognaisses e biotita-ortognaisses sienograníticos a tonalíticos, miloníticos, com níveis de anfibolitos e biotititos associados, normalmente paralelizados com o bandamento. Subordinadamente, ocorrem também hornblenda-biotita-ortognaisses migmatíticos, paragnaisses granadíferos e muscovita-biotita-gnaisses, com intercalações de muscovita-cianita-quartzitos. Rochas metabásicas e metaultrabásicas também ocorrem em alguns locais. A relação entre esses ortognaisses e as rochas supracrustais que o compõe ainda não é compreendida.
	muscovita-biotita-gnaisses, com intercalações de muscovita-cianita-quartzitos. Rochas metabásicas e metaultrabásicas também ocorrem em alguns locais. A relação entre esses ortognaisses e as rochas supracrustais que o compõe ainda não é compreendida.

Fonte: elaborado pelo autor.

2.3.3.6 Intrusões Riacianas-Orosirianas sin a pós-colisionais

Em todo o sistema orogênico do Leste da Bahia ocorrem intrusões de granitoides ou sienitoides com diferentes dimensões e formatos, deformadas ou foliadas, que representam o produto do magmatismo Riaciano-Orosiriano (Fig. 2.3). Uma síntese dessas intrusões é apresentada em Barbosa e Barbosa (2017), que dividem o magmatismo Paleoproterozoico em cinco grandes grupos, considerando as fases pré, sin e pós-colisionais da orogenia. Com base em idades obtidas em bordas recristalizadas de cristais de zircão, Peucat et al. (2011) sugerem que a fase de pico colisional da orogenia ocorreu em ca. 2.08 Ga e, portanto, essa seria a principal fase do magmatismo sin colisional. Por volta de 2.04-2.03 Ga teriam se instalado os

representantes da fase pós-colisional. Barbosa et al. (2012b) apresenta os nomes locais e as características petrográficas de cada intrusão, bem como, quando disponíveis, as características litoquímicas e geocronológicas dessas rochas.

Na área de estudo, o magmatismo orogênico Paleoproterozoico é representado pela suíte Pau Brasil (Moraes Filho e Lima 2007), que ocorre tanto na porção cratônica, quanto nos domínios do cinturão Araçuaí (Fig. 2.3). Trata-se de uma intrusão extensa e heterogênea, majoritariamente constituída de biotita-augengnaisse granítico, porfirítico, com cristais centimétricos de K-feldspato e, por vezes quartzo azulado. Charnoquitos, ortognaisses tonalíticos e graníticos cálcio-alcalinos, de alto potássio e metaluminosos, quartzo-monzonitos, monzonitos e monzodioritos também ocorrem (Moraes Filho e Lima 2007). Correa Gomes e Oliveira (2002) dataram um meta-tonalito e um mesopertita granito foliado dessa suíte em ca. 2.09-2.08 (Pb-Pb, evaporação de zircão) e dados isotópicos Sm-Nd indicam idades modelo (Tdm) em torno de ca. 2.5 Ga e valores negativos de ENd(t) (-4.0 a -3.3). Com base nesses dados, os autores interpretam a suíte Pau Brasil como uma intrusão instalada durante a fase sin colisional do orógeno Riaciano-Orosiriano. Por estar presente dentro do cinturão Araçuaí, a porção sul da suíte Pau Brasil foi posteriormente retrabalhada no evento Brasiliano.

2.3.3.7 Bacias Riacianas-Orosirianas

Durante o soerguimento do orógeno Paleoproterozoico, bacias orogênicas foram geradas e os registros dos sedimentos depositados são verificados atualmente nas rochas metassedimentares da Formação Areião e do Grupo Jacobina (Fig. 2.3). O tipo de bacia associada a essas unidades ainda é discutido e não se sabe ao certo se são de antepaís ou bacias locais formadas durante soerguimento da cadeia de montanhas (ver maiores informações em Barbosa et al. 2012a e referências internas).

2.4 Sobre o rifte Toniano e o magmatismo Salto da Divisa

O paleocontinente São Francisco-Congo originou-se a partir da aglutinação de componentes crustais arqueanos durante o evento orogênico Riaciano-Orosiriano, entre ca. 2.2 e 2.0 Ga. Da sua formação, no Paleoproterozoico, até novo evento compressivo, no Ediacarano-Cambriano, esse paleocontinente experimentou uma

série de eventos extensionais que resultaram na formação de bacias sedimentares e produção de magmatismo anorogênico local (Tupinambá et al. 2007, Pedrosa-Soares et al. 2008, Pedrosa-Soares e Alkmim 2011). Esses eventos são, portanto, precursores à formação dos sistemas orogênicos brasilianos. Nesse caso, onde a atuação da deformação brasiliana se fez presente, as bacias precursoras foram invertidas e as rochas sedimentares que as compõe foram deformadas e metamorfizadas.

Vale ressaltar que os eventos extensivos precursores representaram tentativas incompletas da quebra total do paleocontinente SF-Congo, uma vez que as crostas São Francisco e Congo mantiveram-se unidas pela ponte cratônica Bahia-Gabão desde sua formação, no Riaciano-Orosiriano, até o Cretáceo, quando finalmente foi quebrada em razão da abertura e desenvolvimento da crosta oceânica do Atlântico sul (Porada, 1989; Brito-Neves e Cordani 1991, Pedrosa-Soares et al., 2001, 2008, Barbosa e Sabaté 2004, Heilbron et al. 2017b).

Com base em informações de magmatismo anorogênico e bacias sedimentares associadas, Pedrosa-Soares e Alkmim (2011) advogam que o orógeno Araçuaí-Oeste Congo é precedido de, no mínimo, seis eventos extensionais, sendo os três primeiros (E1, E2, E3) do Paleo-Mesoproterozoico, um na transição Esteniano-Toniano (E4) e os dois últimos Neoproterozoicos: os riftes Toniano (E5) e Criogeniano (E6).

A tafrogênese Toniana representa uma tentativa frustrada de quebra do paleocontinente SF-Congo, tendo em vista que o processo extensional não evoluiu para a formação de crosta oceânica. Esse evento, entretanto, foi responsável pela formação de importante bacia intracratônica onde se depositaram os sedimentos basais do grupo Macaúbas (Alkmim et al. 2006, Martins et al. 2008, Pedrosa-Soares et al. 2008, Babinski et al. 2012, Kuchenbecker et al 2015, Castro et al. 2019), bem como de correlatos litoestratigráficos em bacia no Oeste-Congo, referentes à sequência sedimentar dos grupos Zadiniano e Mayumbiano (Tack et al. 2001). Simultaneamente, esse rifte também foi responsável pela produção de considerável volume de magmatismo bimodal (félsico e máfico), de natureza plutônica e vulcânica, cuja localização atualmente se encontra dispersa em diferentes domínios do orógeno Araçuaí-Oeste Congo, bem como em regiões cratônicas adjacentes (Alkmim et al. 2006, Tupinambá et al. 2007, Pedrosa-Soares et al. 2008, Silva et al. 2008, Pedrosa-Soares e Alkmim 2011, Menezes et al. 2012, Chaves et al. 2019, Castro et al. 2019, Moreira et al. 2020).

Em contextos distensionais, como esses precursores ao orógeno Araçuaí-Oeste Congo, é comum a produção de magmas graníticos com características petrográficas e geoquímicas peculiares, que os diferem dos magmas gerados em ambientes compressivos. Dado sua natureza anorogênica, anidra e alcalina, esses granitos são classificados como do tipo-A. Algumas das principais características observadas no magmatismo anorogênico são (Bonin et al. 2007): i) coexistência entre rochas máficas, ou ultramáficas, com rochas félsicas (magmatismo bimodal); ii) granitos de textura hypersolvus; iii) alta concentração de ferro nos minerais máficos; iv) presença de fluorita ou outros minerais acessórios com halogênios; v) enriquecimento em K2O e Na2O, em detrimento de CaO; vi) altos valores para as razões FeO/MgO e Ga/Al; vii) abundância em Zr, Nb, Y, Ce e elementos terras raras em geral (exceto Eu); e viii) empobrecimento em Ba, Sr, Ti e P.

No caso do rifte Toniano, os registros de magmatismo granítico Tipo-A até então encontrados estão concentrados no cinturão Oeste Congo (Tack et al. 2001), no cinturão Araçuaí ou dentro do CSF. Vale ressaltar que o único exemplo de granitos anorogênicos Tonianos no lado brasileiro ocorrem na área de estudo e são referentes ao magmatismo Salto da Divisa (Fig 1.5).

Os granitos da região de Salto da Divisa são intrusivos em gnaisses do embasamento Paleoproterozoico e foram identificados, ainda que em quantidades diferentes e formatos diferentes, em todos os mapas disponíveis para a região sul da Bahia, desde os mais antigos (Carvalho Filho et al. 1973, Silva Filho et al. 1974, Oliveira 1984, Moraes Filho 1988) até os mais recentes (Dalton de Souza et al. 2003, Sampaio et al. 2004, Moraes Filho e Lima 2007). Além de descrições de campo e petrográficas disponíveis nos relatórios desses mapas, o conhecimento a respeito das características dessas rochas estão disponíveis em artigos e relatórios especializados. Como a investigação detalhada dessas intrusões é um dos objetivos desta tese, o estado da arte referente ao magmatismo anorogênico Salto da Divisa é apresentado na tabela 2.2, que mostra a listagem das principais fontes de informações a respeito dessas intrusões e um resumo simplificado da contribuição fornecida.

Tabela 2.2. Estado da arte sobre a evolução do conhecimento a respeito do magmatismo anorogênico Toniano Salto da Divisa.

Referência	Contribuição
Projeto Rio	Mapa regional, escala 1:250.000. Agrupou sob a denominação de "Granitos e Sienitos", do
Pardo	pré-Cambriano Superior, o conjunto de granitos, granitos alcalinos, sienitos e sienitos
(Carvalho Filho	alcalinos com feldspatoide que ocorrem na Folha Itapetinga. Os autores fizeram estudo
et al. 1973)	petrográfico em algumas intrusões e realizaram medições radiométricas locais. Como

	resultado, foi identificado um alto contraste radiométrico em relação às encaixantes e verificou-se a presença de valores anômalos de urânio em zonas de fratura no corpo de Ventania, a norte de Itapebi.
Projeto Sul da Bahia (Silva Filho et al. 1974a, b)	Mapa regional, escala 1:250.000. Agrupou as intrusões graníticas como uma subunidade de "Rochas eruptivas", de idade incerta. Os granitos são equigranulares, à biotita e, em mapa, correspondem a uma subunidade diferente das intrusões alcalinas insaturadas (sienitos de Potiraguá e de Itaju do Colônia). Os autores apresentam estudos petrográficos e, valendo- se também de critérios de campo, sugerem que os corpos graníticos se originaram a partir da cristalização de fluidos anatéticos produzidos em zonas profundas da crosta e que migraram para a superfície através de zonas de fraqueza. No processo de instalação, alguns corpos teriam provocado metassomatismo potássico nos gnaisses encaixantes (feldspatização).
Projeto Prospecto Itapebi (Oliveira 1984)	Mapa local, escala 1:25.000. Projeto de mapeamento em três corpos graníticos na região de Itapebi e Itagimirim, com o objetivo de investigar potenciais metalogenéticos. Os três corpos são formados por granitos rosados, de granulação grossa, localmente porfiroblásticos, ora isotrópicos, ora com foliação incipiente. Neste trabalho foi realizado petrografia de detalhe nos três corpos e nas rochas encaixantes. As intrusões de Ventania (Serra de Petrolina) e de Itapebi (Serra do Palmitar) são semelhantes, constituídas de biotita granito com fluorita, com leve diferenciação de tipo mais grosso no centro para um tipo menos grosso, e menor quantidade de biotita, nas bordas. No corpo de Itagimirim (Serra do Poço d'Antas e Córrego Fundo) há uma maior diferenciação, com centro granítico e bordas constituídas de granito- gnaisse granodiorítico. Nas zonas de contato com os três corpos ocorrem anfibolitos interpretados como originados a partir do metamorfismo de gabros. Os gnaisses encaixantes são portadores de fluorita e possuem aporte considerável de quartzo, o que indica influência de processo metassomático à época de colocação dos corpos (processo de greisenização). No corpo de Itagimirim foram constatados veios ricos em calcita e sulfetos (galena, calcopirita, pirita e bornita).
Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais (Moraes Filho 1988)	Mapa regional, escala 1:250.000. Agrupou as intrusões graníticas como uma subunidade de "Granitos e granitoides", do Proterozoico Superior. O foco desse trabalho é a identificação de potenciais metalogenéticos nas unidades mapeadas e não foram constatadas ocorrências importantes nos corpos referentes ao magmatismo Salto da Divisa. Os autores classificam essas intrusões com constituída de biotita granitos equigranulares e especulam que sua origem esteja ligada aos eventos magmáticos sin a tardi colisional do ciclo brasiliano.
Conceição e Otero (1996)	Livro em que os autores apresentam o panorama da época a respeito dos magmatismos granítico e alcalino catalogados até então no estado da Bahia. Nessa abordagem, os granitos relacionados ao magmatismo Salto da Divisa foram incluídos na chamada Província Leucogranítica do Sul do Estado da Bahia (PLSEBA), representada por um conjunto de 17 corpos intrusivos no complexo gnáissico-granulítico ou no complexo kinzigítico. Com relação aos corpos de região de Itapebi, Itagimirim e Salto da Divisa é dito que são essencialmente granitos e granodioritos à duas micas, ocasionalmente com anfibóio. São leucocráticos, com raros termos mesocráticos, de granulação média e textura porfirítica. A esses corpos é atribuído o caráter tardi a pós tectônico.
Celino et al. (2000)	Artigo que investiga uma série de maciços graníticos na região sul da Bahia e nordeste de Minas Gerais. Nesse trabalho, as intrusões de Salto da Divisa e de Itagimirim foram agrupadas juntamente com outros maciços mais a sul. Os autores apresentam os primeiros dados isotópicos Sm-Nd para as intrusões na região e para o maciço de Salto da Divisa obteve-se idades modelo TDM em torno de 1.69 Ga e ENd(inicial) entre -6.31 e -5.57. Como conclusão, as intrusões de Salto da Divisa e de Itagimirim são interpretadas como granitos de anatexia, formados no contexto pós colisional do orógeno Araçuaí.
Teixeira (2002)	Relatório interno do projeto de mapeamento do extremo sul da Bahia. Trata-se de um trabalho de litoquímica em que os autores distinguem quimicamente as intrusões de Salto da Divisa (5 amostras) e de Itagimirim (7 amostras) do restante do sul da Bahia. O autor conclui que ambos são granitos gerados a partir da fusão de rochas ígneas e possuem afinidade compatível com suítes LPA (<i>late, pos and anorogenic granites</i>).
Silva et al. (2002b)	Trabalho que propõe uma reavaliação geocronológica de uma série de unidades do orógeno Araçuaí e do cráton do São Francisco. É apresentado a idade de 875±9 Ma (U-Pb, SHRIMP) para um hornblenda-monzogranito foliado (gnaissificado) coletado no maciço de Salto da Divisa. Quimicamente esse granito é indicativo de uma suíte metaluminosa, cálcio-alcalina, de alto potássio. Este trabalho apresenta a primeira idade U-Pb para o magmatismo Salto da Divisa e o fato de serem rochas do Toniano inferior sugere tratar-se de um magmatismo relacionado com a fase rift precursora ao orógeno Araçuaí.
Mapa Geológico da Bahia (Dalton de Souza et al. 2003)	Mapa geológico do estado da Bahia (escala 1:1.000.000), que agrupou as intrusões graníticas na unidade "Granitos anorogênicos", do Toniano. Os autores reconhecem a existência de 5 corpos intrusivos nas regiões de Itagimirim, Itapebi, Salto da Divisa e Jordânia. Tais corpos são constituídos de monzogranito, sienogranito e álcali-granito foliados, calcialcalinos de alto potássio a alcalinos e metaluminosos.

Paixão e Perrella (2004)	Trabalho de conclusão de curso focado no mapeamento de detalhe (1:30.000) no maciço granítico a sul de Salto da Divisa (Serra do Bogodo) e rochas encaixantes. O maciço é constituído de biotita-anfibólio granito com fluorita, localmente com presença de granitoides porfiríticos, com granada, em contato com rochas máficas que ocorrem como enclaves facetados ou em contatos difuso, com bordas de reação, indicativo de processos de mistura de magma. Nesse caso, as rochas máficas representam o produto mais primitivo do magmatismo bimodal típico de riftes continentais. Os autores também verificaram composição petrográfica similar entre o biotita-anfibólio granito com fluorita e os ortognaisses encaixantes, o que levou à conclusão de que esses ortognaisses poderiam representar uma fácies magmática mais deformada na borda de um plúton maior.
Projeto Extremo Sul da Bahia (Sampaio et al. 2004)	Mapa regional, escala 100.000. Discriminou as intrusões de Salto da Divisa e de Itagimirim, ambas representativas da unidade "Granitóides pré-tectônicos", do Neoproterozoico inferior. Essas intrusões são constituídas de monzo a sienogranitos foliados, ricos em enclaves e cortados por diques básicos. Baseado nos dados de Teixeira (2002) e de Silva et al. (2002) os autores concluem que essas intrusões estão relacionadas com o magmatismo anorogênico fase rift precursora ao orógeno Araçuaí, que é um provável produto relacionado com ascensão de pluma mantélica à época da fragmentação do supercontinente Rodínia.
Teixeira (2006)	Relatório interno sobre a litogeoquímica de algumas unidades da folha Itapetinga- Canavieiras (Moares Filho e Lima 2007). O autor mostra a afinidade anorogênica dos granitoides relacionados com o magmatismo Salto da Divisa, que é similar a dos maciços de Salto da Divisa e Itagimirim (Teixeira 2002). Amostras analisadas referem-se, exclusivamente, às intrusões de Caiubí e de Ventania. Com base na química obtida, o autor especula que os corpos em questão possuem origem a partir de um magmatismo mantélico que sofreu contaminação crustal.
Projeto Itapetinga- Canavieiras (Moraes Filho e Lima 2007)	Mapa regional, escala 1:250.000. Individualização das intrusões de Itapebi, Ventania, Caiubi- Salto da Divisa, Jordânia e Serra do Mandim, além de diminutas intrusões a noroeste de Itarantim e a leste de Itapebi. Elas fazem parte da unidade "Granitoides Anorogênicos", do Toniano e, de maneira geral são corpos constituídos de granitoides sienograníticos a monzoníticos, acinzentados, com tons rosados e esverdeados, de granulação média a grossa, às vezes com fenocristais de K-feldspato e geralmente foliados. Frequentemente esses corpos estão cortados por diques básicos.
Silva et al. (2008)	Artigo com ênfase nas intrusões de Salto da Divisa e de Itagimirim. É apresentada a idade de 875±9 Ma (U-Pb, SHRIMP; Silva et al. 2002) para o primeiro corpo, o conjunto de análises químicas para ambos (Teixeira 2002), mais o dado Sm-Nd referente à amostra datada (ENd(t) de - 5.58 para a idade de 875 Ma, e TDM em torno de 1.6 Ga). Neste trabalho, os autores propõem o agrupamento dessas intrusões sob a denominação "Suite Salto da Divisa-Itagimirim" e discutem a origem relacionada com o rifte Toniano, precursor à formação do orógeno. Além disso, é feito uma discussão tectônica regional a partir de análise comparativa com representantes anorogênicos, de idade similar, que ocorrem no cinturão Congo Ocidental.
Menezes et al. (2012)	Artigo, com ênfase na intrusão da Serra do Mandim, que ocorre a norte-nordeste de Itarantim. São apresentadas análises químicas referentes a 14 amostras de granito, álcali granito ou sienito e 5 novas idades de cristalização (Pb-Pb, evaporação de zircão) entre o intervalo de ca. 914 Ma – 899 Ma. Diferentemente de Moraes Filho e Lima (2007), que interpretaram a existência de uma única intrusão nessa região, os autores interpretaram a existência de cinco corpos menores (stocks) intrusivos no embasamento gnáissico. Nesse caso, cada uma das idades obtidas refere-se a uma intrusão específica. Devido a química e idade semelhante, tais corpos estariam associados ao mesmo magmatismo do Toniano inferior que, por sua vez está relacionado com a abertura do rifte precursor ao orógeno Araçuaí-Oeste Congo.
Mapa geológico de Minas Gerais (Pinto e Silva 2014)	Mapa geológico do estado da Bahia (escala 1:1.000.000). Os autores reconheceram a existência do corpo de Salto da Divisa. Este corresponde à única intrusão relacionada com o magmatismo Salto da Divisa em Minas Gerais e trata-se da continuação do corpo de Caiubi-Salto da Divisa mapeado em Dalton de Souza et al. (2003) e em Moraes Filho e Lima (2007). No mapa de Minas Gerais os autores agrupam esse magmatismo na unidade "Granito Tipo-A pré-colisional, Granito Salto da Divisa-Itagimirim", que é constituída por monzogranito, sienogranito e álcali granito, foliados, cálcio-alcalinos de alto potássio a alcalinos, de idade em torno de 875 Ma (Silva et al. 2002b, Silva et al. 2008).
Victoria (2017)	Dissertação de mestrado com ênfase nas intrusões relacionadas ao magmatismo Salto da Divisa. Baseado em descrições de campo, novos dados de litoquímica e compilação com dados da literatura o autor mostra a existência de diferentes fácies magmáticas relacionada com as intrusões, o que reflete em um complexo sistema magmático complexo. De caráter inovador, o autor apresenta a existência de riolitos, de idade 913 ± 4Ma (U-Pb, LA-ICP-MS), associados com a intrusão de Itapebi. A presença dessa rocha é discutida com base em uma compilação regional, levando-se em conta os registros magmáticos de idade similar que estariam relacionados com a abertura do rifte Toniano no paleocontinente SF-Congo.

3 ARTIGO 1: SOBRE O COMPLEXO SALTO DA DIVISA E O RIFTE TONIANO

Magmatic diversity in continental rifts: A case study on the Early Tonian, plutono-volcanic Salto da Divisa complex, Araçuaí Orogen, Eastern Brazil (artigo publicado no periódico *Lithos*: https://doi.org/10.1016/j.lithos.2022.106920)

Anderson Victoria^{a*}, Antonio Pedrosa-Soares^{a#}, Simone Cerqueira Pereira Cruz^{b#}, Cristiano Lana^{c#}, Elton Dantas^{d#}, Ivo Dussin^{e#}, Ramon Borges^b

^aUniversidade Federal de Minas Gerais, Programa de Pós-Graduação em Geologia, IGC–CPMTC, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brasil, andersongeo@yahoo.com.br; pedrosasoares@gmail.com

^bUniversidade Federal da Bahia, Programa de Pesquisa e Pós-Graduação em Geologia, Rua Barão de Geremoabo, s/n, Federação, 40170-209, Salvador-BA, Brasil, simonecruzufba@gmail.com

^cUniversidade Federal de Ouro Preto, Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais, Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, 35400-000 Ouro Preto, MG, Brazil

^dUniversidade de Brasília, Instituto de Geociências, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, CEP 70910-900, Brasília, DF, Brazil ^eUniversidade Estadual do Rio de Janeiro, Faculdade de Geologia, R. São Francisco Xavier, 524, Maracanã, 20550-900, Rio de Janeiro, Brasil, ivodusin@yahoo.com.br *Corresponding author: A. M. Victoria, +5531988851011, andersongeo@yahoo.com.br

#Fellow of the Scientific and Technological Research Council of Brazil (CNPq)

3.1 Highlights

i) Dissecting an Early Tonian, anorogenic, plutono-volcanic complex of Eastern Brazil.

ii) Rift's igneous diversity: ultramafic to mafic rocks, granites, felsic volcanic rocks.

iii) From plutonic root to volcanic roof of an ancient anorogenic igneous complex.

iv) Field, lithochemical and isotopic data tracking rift-related igneous processes.

3.2 Abstract

Exposures from plutonic roots to volcanic roofs in deeply eroded regions may disclose the architecture and igneous processes in ancient metamagmatic edifices, like it is the Early Tonian Salto da Divisa complex (SADICO) of Eastern Brazil. Field, petrographic, lithochemical and isotopic (in-zircon U-Pb and Lu-Hf, and whole-rock Sm-Nd) studies were conducted on the SADICO, a plutono-volcanic complex located in the northeast Araçuaí orogen. The SADICO magmatic record comprises (with U-Pb crystallization) ages, and isotopic Hf and Nd data): i) pyroxenite (ϵ Nd(t): +2.2 to -5.3; Nd TDM: 1.2– 1.7 Ga); ii) mafic and intermediate dykes (ε Nd(t):+2.1 to -5.9; Nd TDM: 1.2–1.8 Ga) and enclaves with OIB-like signature; ii) ferroan, A-type granitoid with mafic-felsic mingling-mixing features (885 \pm 9 Ma; ϵ Hf(t): -5 to -7, Hf TDM: 2.0–2.1 Ga; ϵ Nd(t): -3.2 to -4.3, Nd TDM: 1.5–1.7 Ga); iii) fluorite-bearing, metaluminous to peraluminous, ferroan A-type granites, including biotite-amphibole granite (ca. 915 to 875 Ma; ENd(t): -2.8 to -5.8, Nd TDM: 1.6–1.9 Ga), biotite granite (894 \pm 10, ϵ Hf(t): -4 to -11, Hf TDM: 1.9 - 2.3 Ga; ENd(t): -1.6 to -8.0, Nd TDM: 1.4-2.2 Ga), and amazonite-bearing twomica granite (ε Nd(t): -4.0; Nd TDM: 1.7 Ga); iv) rhyolite (905 ± 24 Ma; ε Hf(t): -1 to -8.7, Hf TDM: 1.8 - 2.2 Ga; ENd(t): +3.1, Nd TDM: 1.1 Ga) and subvolcanic silicaundersaturated trachyte (912 \pm 13 Ma, ε Hf(t): -14 to -18, Hf TDM: 2.5 - 2.7 Ga; ε Nd(t): +0.3, Nd TDM: 1.2 Ga), also with ferroan A-type signature. Our integrated petrogenetic model envisages mantle-derived magmas (ultramafic and mafic rocks) evolved by assimilation-fractional crystallization to felsic subvolcanic and volcanic rocks, interacting with granitic magmas produced by crustal anatexis (biotite-amphibole granite) and subsequently fractionated (biotite granite) and highly fractionated (twomica granite) with the involvement of F-rich fluids up to subvolcanic levels.

Keywords: A-type magmatism; Tonian rifting; U-Pb and Lu-Hf; Sm-Nd; Araçuaí – West Congo orogen; Congo – São Francisco paleocontinent

3.3 Introduction

As a specific outcome from global tectonics, anorogenic magmatism provides important knowledge on crustal evolution over geological time. Under the anorogenic magmatism umbrella there is a wide association of rocks whose formation depend upon several factors, including the chemical and mineralogical heterogeneity of the magma source, degree and depth of partial melting, rate of magma migration, and conditions of emplacement and crystallization (Bailey 1983; Wilson 2007). Continental intraplate settings commonly show plutonic and/or volcanic, bimodal, felsic-mafic rock associations, with minor presence of intermediate and ultramafic rocks. Several petrologic processes, concerning distinct rock assemblages, have been suggested for magma genesis and evolution. Accordingly, A-type granites (Loiselle and Wones 1979; Bonin et al., 2007) have been related to fractionation of mafic magmas (Loiselle and Wones 1979; Foland et al., 1986; Turner et al., 1992; Anderson et al., 2003; Bonin et al., 2007; Girei et al., 2019), crustal partial melting (Collins et al., 1982; Whalen et al., 1987; Creaser et al., 1991, 1986; Landenberger and Collins 1996; Frost and Frost 1997; Martin 2006), magma mixing processes (Bédard 1990; Mingram et al., 2000; Yang et al., 2006), and to mixed models involving crustal and mantellic sources (Foland and Allen 1991; Smith et al., 1999; Shellnutt and Zhou 2007; Cheng et al., 2013; Zhang et al., 2014). In turn, mafic rocks petrogenesis quotes the nature of mantellic sources along with crustal assimilation during magma ascent, and their influence on A-type magmas (Cheng et al., 2013; Zhang et al., 2014; Girei et al., 2019).

The paleocontinental region covering the Araçuaí – West Congo Orogenic System and the neighboring São Francisco – Congo Craton comprises many occurrences of anorogenic magmatism and extensional basins formed in the Early Tonian (Fig. 3.1), making up an asymmetrical rift system with the largest volumes of anorogenic igneous rocks emplaced in the West Congo Belt (e.g., Tack et al., 2001; Pedrosa-Soares et al., 2008; Silva et al., 2008; Evans et al., 2015; Thiéblemont et al., 2018; Castro et al., 2019; Chaves et al., 2019; Souza et al., 2022).

In Brazil, the Araçuaí Orogen and adjacent cratonic region show striking evidence of Early Tonian anorogenic magmatism (Fig. 1B), comprising mafic dyke swarms (Evans et al., 2015; Chaves et al., 2019; Caxito et al., 2020), basaltic volcanic rocks (Castro et al., 2019; Moreira et al., 2020; Souza et al., 2022) and granitic plutons of the Salto da Divisa anorogenic complex (SADICO) (Silva et al., 2008; Menezes et al., 2012a; and this paper). On the SADICO area, we conducted detailed field-mapping coupled with petrographic, lithochemical, zircon U-Pb (LA-ICP-MS) geochronology, and Lu-Hf in-zircon and whole-rock Sm-Nd isotope studies, unravelling a thorough magmatic record from plutonic to volcanic rocks with anorogenic signature, formed at

around 900 Ma. Including mantle-derived ultramafic and mafic rocks, hybrid granitoids, metaluminous to peraluminous A-type granites, as well as trachytic subvolcanic and rhyolitic volcanic rocks, the SADICO provides a quite rare example of a well-preserved, ancient, anorogenic igneous complex. Finally, we suggest an integrated model, involving juvenile to crustal igneous sources and petrogenetic processes to explain SADICO evolution.

Fig. 3.1. A) Location of the Araçuaí – West Congo Orogenic System (AWCO) in Western Gondwana. B) The Salto da Divisa Anorogenic Complex (SADICO) and correlatives of the Early Tonian anorogenic magmatism found in the AWCO and adjacent cratonic regions. C) A sketch section illustrating the Early Tonian Araçuaí – West Congo continental rift and related anorogenic magmatism.

Rift-related sedimentary deposits

Fonte: elaborado pelo autor.

Felsic magmatism

Lithospheric mantle

Not to scale

Mafic and ultramafic magmatism

3.4. Geological setting

The Salto da Divisa Anorogenic Complex (SADICO) covers an area around 4.800 km² in the boundary region between the northeastern Minas Gerais and southern Bahia states, Brazil (Fig. 3.2). It comprises seven major granitic intrusions (named Salto da Divisa, Itagimirim, Itapebi, Ventania, Caiubi, Jordânia-Três Pontas and Mandim) and several smaller bodies, emplaced in the Archean–Paleoproterozoic basement of the northeastern Araçuaí Orogen at the boundary with the São Francisco Craton (Fig. 3.1).

The country rocks hosting SADICO intrusions includes granulites and trondhjemites of Archean age, and Rhyacian-Orosirian tonalitic to granodioritic orthogneisses (Peucat et al., 2011; Degler et al., 2018).

Silva et al. (2008) synthesizes previous studies and presented new petrographic, lithochemical and isotopic data on the Salto da Divisa and Itagimirim plutons (Fig. 3.2), revealing the 875 \pm 9 Ma zircon age (U-Pb, SHRIMP) for the igneous crystallization of a foliated fluorite-amphibole-biotite metagranite, and Nd isotopic data (ϵ Nd(t): -5.6; Nd TDM model age: ca. 1.6 Ga) indicating the involvement of the Paleoproterozoic basement in magma genesis. Later, Menezes et al. (2012a) obtained the ages of 914 \pm 3 Ma, 911 \pm 2 Ma, 907 \pm 2 Ma, 905 \pm 4 Ma, and 899 \pm 3 Ma, using the Pb-Pb evaporation method on zircon crystals from granites of the Mandim intrusion (Fig. 3.2).

Silica-undersaturated alkaline intrusions of the Southern Bahia Alkaline Province occur in the SADICO region (Fig. 3.2). Emplaced between 730 - 676 Ma, that alkaline province has been related to a Cryogenian rift precursor of the AWCO (Teixeira et al., 1997; Rosa et al., 2007; Pedrosa-Soares and Alkmim, 2011). The Itarantim syenite (730-720 Ma; Conceição et al., 2009), representing fractionated mantle-derived magma, imprinted fenitization on basement gneisses and on SADICO's granite (Fig. 3.2). Further north, the Potiraguá syenite yielded zircon (Pb-Pb evaporation) and titanite (U-Pb TIMS) ages from ca. 730 Ma to ca. 715 Ma (732 ± 3 Ma, Correa Gomes and Oliveira 2002; 725 ± 2 Ma, Menezes et al. 2012b; 714 ± 8 Ma, Rosa et al., 2007).

Neoproterozoic metasedimentary successions also occur in the SADICO region, representing basin fillings during the Early Tonian and Early Cryogenian extensional events. They include rocks of the Macaúbas (phyllite, micaschist, quartzite and metadiamictite) and Rio Pardo (carbonate, sandstone, greywacke, and pelite) Groups, and Jequitinhonha complex (migmatitic paragneiss, graphite-rich gneiss, and

quartzite; Pacheco et al., 2021), related to the precursor basin of the Araçuaí Orogen (Pedrosa-Soares and Alkmim 2011, Pedrosa Soares et al., 2001; 2008).

Fig. 3.2. Geological map and cross-sections on the Salto da Divisa Complex (SADICO) with distribution of the analyzed samples for lithochemical study (white circles), location of the dated samples (A to D), and compiled ages (E to I): Menezes et al. (2012a); (J) Silva et al. (2008); (L) Rosa et al. (2007); (M) Conceição et al. (2009).

Fonte: elaborado pelo autor.

3.5 Analytical methods

3.5.1 Petrography and lithochemistry

Petrographic studies were conducted on thin sections of all SADICO units, and a summary of the most diagnostic macroscopic and microscopic observations are given in supplementary file 1.

Forty-nine new lithochemical analyses were performed on bulk-rock samples (Fig. 3.2) and the results are given in supplementary file 2. The selected fresh-rock samples were cleaned from veins, fracture coats and fillings, and weathered parts, before being crushed and grinded at laboratories of the Federal University of Bahia (UFBA) and CPMTC Research Center, Federal University of Minas Gerais (UFMG), Brazil. The bulk-rock geochemical analyses were performed by the SGS-GEOSOLTM laboratories (Minas Gerais State, Brazil) according to methods for high-quality petrological procedures: (i) X-ray Fluorescence (XRF) after melting with lithium tetraborate, to detect major elements; (ii) Inductively Coupled Plasma Mass Spectrometry (ICPMS-95A) using lithium metaborate to determine trace elements; and (iii) Ion Mobility Spectrometry (IMS-95A) with lithium metaborate for the Rare Earth Elements (REE). The software GCDKit6.00TM (Janousek et al., 2006) was used to process the data.

3.5.2 U-Pb analyses

U-Pb geochronological analyses on zircon crystals were conducted using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in samples representative of four different units in the SADICO (see location in Fig. 2): (i) AV039a (hybrid granitoid, LAT/LONG -16.017872°/ -39.925579°); (ii) D028 (biotite alkali granite, LAT/LONG -15.970744°/-39.585192°); (iii) AV052d (metarhyolite; LAT/LONG -15.885458°/-39.680915°); and (iv) D023 (trachyte, LAT/LONG -15.533630°/-39.851691°). The results are given in supplementary file 3. Samples AV039a, D028, D023 were prepared at the SEPURA laboratory of the CPMTC Research Centre of the Federal University of Minas Gerais (UFMG), Brazil, following conventional methods of crushing, grinding, sieving, magnetic separation (using Frantz magnetic separator) and concentration of heavy minerals in bromoform dense liquid. Following the same conventional methods, but without using dense liquids, the metarhyolite sample (AV052d) was prepared at the Isotope Geochemistry laboratory of the Federal University of Ouro Preto (UFOP, Brazil). Zircons were selected by careful hand pick up work on heavy minerals concentrates rich in zircon grains, using a binocular stereomicroscope. Zircon grains were mounted in epoxy resin (25 mm wide and 5 mm thick), which were later polished, metalized with graphite and imaged using scanning electron microscopy. Zircon crystals of the metarhyolite sample were imaged using a Quanta-250-FEI machine at the Geochronology Laboratory (MULTILAB) of the Rio de Janeiro State University (UERJ), Brazil, while the other samples were imaged at the UFOP geochronology laboratory, using a JEOL-6510 machine. Both equipments provided the back-scattered electrons (BSE) and the cathodoluminescence (CL) images, used to study the crystals morphology and internal characteristics to select the spot locals on zircon grains. Owing to space restrictions, only CL images from selected zircon crystals are illustrated in Fig. 3.9.

The metarhyolite (AV052d) was analyzed at the MULTILAB laboratory (UERJ). The isotopic data were measured by a laser microprobe (Excimer Laser 193 µm - Photon–Machines Inc. Model ATLEX SI), pulsed with ArF, and coupled to the MC-ICP-MS equipment (Neptune-Plus), with a microprobe spot diameter of 30 µm. The 207Pb/206Pb and the 206Pb/238U ratios were obtained through LA-ICP-MS analysis. The 207Pb/235U ratio was calculated using the natural abundance value of 235U, which is of 238U/137.88. The basic standards GJ-1 (ca. 609 Ma; Jackson et al., 2004) and Plesovice (ca. 337 Ma; Sláma et al., 2008) were used to control the data (supplementary file 3). The results were later corrected and reduced according to the calculation routine of Gerdes and Zeh (2006) and the software ISOPLOTTM (Ludwig, 2008) was used to generate the Wetherill diagrams.

The isotopic data of the remaining samples (AV039a, D028, D023) were obtained at the geochronology laboratory of the UFOP. The analyses were performed using a Thermo-Fisher Element II sector field attached to a CETAC LSX-231 G2 + (=213nm) Nd: YAG laser, with a microprobe spot diameter of 30 μ m. The reduction software GLITTERTM (Van Achterberg et al., 2001) was used to calculate the isotope ratios, and the 235U value was calculated using the natural abundance (238U/137.88). The basic standards GJ-1 (ca. 609 Ma; Jackson et al., 2004) and Blue Berry (ca. 560 Ma; Santos et al., 2017) were used to control the data (supplementary file 3). ISOPLOTTM (Ludwig, 2008) was used to generate the diagrams.

3.5.3 Lu-Hf analyses

In situ Hf-isotope analyses were performed on the successful dated samples using, when possible, the same U-Pb spot. When this was not possible, it was carefully selected a similar domain in the zircon crystal. To avoid inaccurate data, only concordant crystals were selected (95% to 105%). The analyses were conducted at the geochronology laboratory of the UFOP, in a Thermo-Finnigan Neptune Plus multicollector ICP-MS coupled to a Photon-Machine laser system that delivers a beam of 193 nm UV light from a frequency-quintupled Nd:YAG laser. The microprobe spot operated with a diameter of 50 μ m, fluence of 11.22, repetition rate of 5 Hz, and 55% of laser output. Nitrogen was introduced into the Ar sample carrier gas via an Aridus nebulisation system. Results of the analyses are presented in supplementary file 4.

The quality of the results was controlled based on five zircon standards: (i) Blue Berry (176Hf/177Hf: 0.281674 \pm 0.0000028; Santos et al., 2017), (ii) Mudtank (0.282507 \pm 0.000006; Woodhead and Hergt, 2005); (iii) GJ-1 (0.2820000 \pm 0.0000005; Morel et al., 2008); and (iv) Temora (0.282680 \pm 0.000031; Wu et al., 2006). The respective ratios obtained during the analyses are in good agreement with the expected values (supplementary file 4).

The ϵ Hf values were calculated using the Bouvier et al. (2008) chondritic values (176Hf/177Hf: 0.282785; 176Hf/177Hf: 0.0336) and the 206Pb/238U ages. The TDM ages were calculated based on a depleted mantle source using the present-day ratios of 176Hf/177Hf: 0.283294 and 176Lu/177Hf: 0.03933 (Blichert-Toft and Puchtel, 2010). The λ decay constant used for 176Lu was of 1.867 X 10-11 (Söderlund et al., 2004).

3.5.4 Sm-Nd analyses

Representative samples of each unit in the SADICO were collected for Sm-Nd isotope analyses at the Geochronology Laboratory of the Brasilia University (UnB), Brazil, and the results are given in supplementary file 5. Samples were dissolved in a HF-HNO3 mixture in high-pressure Teflon vessels. A 150Nd-149Sm tracer was added to determine Nd and Sm concentrations. Rare Earth Elements (REE) were then purified by cation exchange chromatography, and Sm and Nd were subsequently separated following the procedure of Gioia and Pimentel (2000). Sm and Nd analyses

used a double filament assembly in a Thermoscientific Triton Plus mass spectrometer operating in static mode. The Sm and Nd concentrations and the 147Sm/144Nd ratios have accuracy of 0.5% that corresponds to an \pm 0.5 average error on the initial ϵ Nd values of based on repeated measurements of the JNdi-1 standard, with a long-term (year-round) average during the period of analysis of 143Nd/144Nd = 0.512230 \pm 0.000006.

3.6 The Salto da Divisa Complex

Detailed field mapping coupled with analytical studies on the SADICO have revealed six igneous assemblages variably preserved from deformation and metamorphism, namely: i) ultramafic rocks; ii) mafic-intermediate dykes and enclaves; iii) hybrid granitoids with magma mingling-mixing features; iv) fluorite-bearing highsilica granites, including biotite-amphibole granite, biotite granite and amazonitebearing two-mica granite; v) subvolcanic felsic sill, composed of silica-undersaturated trachyte; and vi) layers and lenses of felsic volcanic rocks, comprising metarhyolite and aegirine metarhyolite (see supplementary file 1).

3.6.1 Ultramafic and mafic rocks

3.6.1.1 Ultramafic rocks

A dark green, high density, massive, inequigranular to porphyritic ultramafic rock forms boulders (Fig. 3.3 a,b,c) and a concordant intercalation (Fig. 3.7a,b,g,h) of ultramafic level, much probably a sill, in the rhyolite-bearing metavolcano-sedimentary succession found close to the northern border of the Itapebi pluton (Fig. 3.2). The ultramafic rocks, named as biotite pyroxenite, show sub-millimetric to millimetric phenocrysts of biotite within a fine-grained groundmass essentially composed of clinopyroxene (\leq 85 vol%) with interstitial iron-oxide minerals (\leq 10 vol%) and minor amphibole (\leq 5 vol%; Figs. 3c and 6h).

3.6.1.2 Mafic-intermediate dykes

Fig. 3.3. Ultramafic and mafic rocks found in the SADICO: a) boulder of pyroxenite found close to the rhyolite-bearing metavolcanic-sedimentary pile near the Itapebi pluton ; b) sample from the pyroxenite "a"; c) thin section from the sample shown in "b"; d) undeformed mafic dyke cutting across the Paleoproterozoic basement; e) sample from the dyke shown in "d"; f) thin section from the sample shown in "e"; g) a swarm of deformed and metamorphosed mafic-intermediate dykes composed of amphibolite, cutting across the basement; h) amphibolite sample from a metamorphosed mafic dyke shown in "g"; i) thin section of the amphibolite sample shown in "h", displaying the regional ductile foliation. am, amphibole; bt, biotite; opq, opaque minerals; pl, plagioclase; cpx, clinopyroxene; ttn, titanite. Scale bar: 0.5 mm.

Fonte: elaborado pelo autor.

Single to multiple mafic-intermediate dykes, ranging in thickness from centimeters to meters, cut across the gneissic basement. Some of them preserve primary igneous minerals and textures (Figs. 3.3 d, e, f), while swarms of deformed and metamorphosed dykes with the regional tectonic foliation are found in high strain zones (Figs. 3.3 g, h, i). The well-preserved dykes consist of mesocratic to melanocratic fine-grained diabase to medium-grained gabbro, essentially composed of tabular plagioclase and intergranular amphibole, with traces of apatite. Biotite, titanite, carbonate and epidote are secondary minerals (Fig. 3.3 f). Deformed and metamorphosed dykes consist of amphibolite, essentially composed of plagioclase

and nematoblastic hornblende oriented along the regional foliation (Fig. 3.3 i). Locally, the dykes show strong alteration of hornblende to biotite, producing fine-grained biotite-amphibole schist with centimetric porphyroblasts of garnet, and other alteration minerals such as carbonate, epidote and titanite.

3.6.1.3 Mafic enclaves

Countless fine- to medium-grained mesocratic to melanocratic enclaves occur within the hybrid granitoids in the Salto da Divisa intrusion (Figs. 3.2 and 3.4). Those enclaves are centimetric to metric in size, exhibiting sharp to diffuse contacts and a range of compositions from basic to hybrid rocks (Figs. 3.4a to d), disclosing both magma mingling and magma mixing interactions with the host granitoid (cf. Hibbard, 1995). In preserved non-hybrid zones, those mafic rocks exhibit dark green amphibole, tabular plagioclase, and brownish biotite are the essential minerals. Clinopyroxene is rare. Ilmenite, apatite and titanite are the main accessory phases.

3.6.2 Hybrid granitoids

Mesocratic hybrid granitoids of intermediate composition rich in mafic enclaves were identified only in the Salto da Divisa intrusion (Fig. 3.2). They are equigranular, medium-grained, porphyritic rocks with centimetric K-feldspar phenocrysts.

Several well-preserved macroscopic primary features suggest magma mingling and mixing processes (cf. Hibbard, 1995), such as: (i) magmatic breccias (Fig. 3.4a); (ii) rounded reworked, mesocratic, finer-grained enclave enveloped by coarser-grained granite (Fig. 3.4b); (iii) finer-grained mafic enclaves and facies with corroded and irregular shaped borders (Fig. 3.4c); (iv) euhedral to subhedral K-feldspar xenocrysts into mafic domains (Figs. 3.4c and d); and (v) diffuse to transitional contacts between mafic and felsic domains (Fig. 3.4d).

The hybrid granitoids, representing outcomes from mixing interactions between gabbroic and granitic magmas, essentially consist of orthoclase, perthitic K-feldspar, quartz, plagioclase, and dark green amphibole, with minor biotite and epidote. Fluorite, ilmenite, apatite, allanite, zircon, and garnet are accessory minerals. Microscopic evidence of the magma mixing processes (cf. Hibbard, 1995) includes: (i) symplectitic amphibole (Fig. 3.4e); (ii) amphibole-mantled quartz (Fig. 3.4e); (iii) blade-shaped

biotite (Fig. 3.4f); (iv) resorbed corroded crystals (Fig. 3.4f); (v) mafic clots immersed into a more felsic host groundmass (Fig. 3.4g); (vi) amphibole to biotite consuming reaction, which is occasionally accompanied by the presence of simplectites and coronitic garnet (Fig. 3.4h).

Fig. 3.4. A hybrid zone in the Salto da Divisa intrusion: a) magmatic breccia; b) elliptical reworked mesocratic enclave; c and d) corroded enclaves with K-feldspar xenocrysts and diffuse contacts; e1, symplectitic amphibole; e2, amphibole-mantled quartz; f3, blade-shaped biotite; f4, resorbed corroded minerals; g5, mafic clots immersed into a more felsic host; h6, amphibole to biotite consuming reaction with coronitic garnet. bt - biotite, ep - epidote, grt - garnet, hbl - hornblende, ilm - ilmenite, kfs - K-felspar, qtz - quartz. Scale bar: 0.5 mm.

Fonte: elaborado pelo autor.

3.6.3 Granites

3.6.3.1 Biotite-amphibole granite

Alkali feldspar granite and syenogranite with variable biotite and amphibole amounts occur in the four major (Salto da Divisa, Itagimirim, Jordânia-Três Pontas and Mandim) plutons and related stocks of the SADICO (Fig. 3.2). Those granites are gravish to pinkish, leucocratic, with biotite and amphibole in aggregates or interstitials. Based on textural differences, three subfacies were recognized: (a) isotropic, equigranular, medium-grained (Fig. 3.5a); (b) isotropic equigranular, fine-grained (microgranites) (Fig. 3.5b); and (c) metagranite with tectonic foliation (Fig. 3.5c). The isotropic subfacies "a" and "b" generally occur in pluton cores, whereas foliated granite ("c") is common at pluton borders affected by the regional deformation imprinted by the Brasiliano Orogenic Event. Well-preserved granites show allotriomorphic to hypidiomorphic textures with perthite and myrmekite intergrowths. The foliated metagranite is rich in ribbon quartz and oriented to stretched mafic minerals. Despite these differences, the three granitic subfacies are characterized by copious K-feldspar (microcline and orthoclase) and quartz, dark green amphibole and brownish biotite, and fluorite, iron-oxide minerals, allanite, and zircon as common accessory minerals (Figs. 3.5d to 5f).

3.6.3.2 Biotite granite

Alkali feldspar granite and syenogranite somewhat rich in biotite are also common in some composite plutons of the SADICO, such as the Itagimirim, Itapebi, Ventania and Caiubi intrusions (Fig. 3.2). Biotite granites form the Itagimirim pluton core, whereas biotite-amphibole granite is found at the pluton borders (Fig. 3.2). In other intrusions, biotite granite largely prevails and are related with two-mica granite.

The biotite granites are pinkish to yellowish, leucocratic and tend to be equigranular and medium-grained (Fig.3.5 g to i), though porphyritic rocks with euhedral K-feldspar phenocrysts also occur. In low strain domains, they are hypidiomorphic and characterized by the enrichment of tabular K-feldspar, interstitial quartz, and biotite. In high strain domains, they are foliated and granolepidoblastic. Perthitic K-feldspar (microcline and orthoclase), quartz, plagioclase and biotite are the essential minerals. Fluorite, allanite, iron-oxide minerals, and zircon crystals are accessories. Rarely, muscovite (~ 1 vol%) replaces biotite in foliated granites (Figs. 3.5 j to l).

Fig. 3.5. Photos from samples and thin sections of biotite-amphibole granites (a, b, d, e), foliated biotite-amphibole metagranite (c and f), and biotite granites (g to I) from SADICO plutons. bt, biotite; fl, fluorite; hbl, hornblende; kfs, K-felspar; ms, muscovite; qtz, quartz. Scale bar: 0.5 mm.

Fonte: elaborado pelo autor.

3.6.3.3 Two-mica granite

Two-mica granite locally occurs at the borders of three SADICO plutons (Itapebi, Ventania and Caiubi; Fig. 3.2). The two-mica granite typically exhibits white and light green portions due the presence of amazonite, which also occurs in pegmatitic veins (Figs. 3.6 a, b). These granites are equigranular, medium-grained, hololeucocratic (< 5% of mafic minerals) to leucocratic. Together with the peculiar white

and light green color given by amazonite, the abundance of muscovite (> 5%) is also a diagnostic feature of the two-mica granite. It consists of albite, microcline, quartz, biotite, and muscovite, as essential minerals, and fluorite, iron-oxide minerals, zircon, and allanite, as accessories minerals (Figs. 3.6 c to d). In high strain domains, polygonal quartz, striking foliation, and deformed twins are common. In low strain zones, biotite and muscovite occur as large platy minerals and strain-free recrystallized quartz is common. Locally, granophyric intergrowth of K-feldspar and quartz is observed (Fig. 3.6 e).

Fig. 3.6. Two-mica granite contains disseminated light-green amazonite (a) or amazonite-rich quartz-feldspathic pockets (b). Photos from thin sections showing: c) oriented microstructure; d) inequigranular isotropic fabrics; e) granophyric intergrowth of K-feldspar and quartz. ab, albite; amz, amazonite; bt, biotite; kfs, K-felspar; mc, microcline; ms, muscovite; qtz, quartz. Scale bar: 0.5 mm.

Fonte: elaborado pelo autor.

3.6.4 Metavolcano-sedimentary succession and subvolcanic felsic dykes

Detailed mapping coupled with new analytical data revealed volcanic felsic rocks interleaved in a metamorphosed volcano-sedimentary succession located near the Itapebi pluton, and injections of subvolcanic felsic rocks hosted by the gneissic basement close to Potiraguá city (Figs. 3.2).

3.6.4.1 Rhyolite-bearing metavolcano-sedimentary succession

Located near the northeast border of the Itapebi pluton (Fig. 3.2), a low-grade metavolcano-sedimentary succession comprises, from the exposed lithostructural top to base (Fig. 3.7 a,b): i) low-strain deformed and recrystallized high-silica metarhyolite (Fig. 3.7 c,d), overlaying (ii) high-strain deformed and recrystallized porphyroclastic biotite schist (i.e., mylonite from porphyritic rhyolite) with corroded porphyroclasts of feldspar and quartz (Fig. 3.7 e,f) and a lens of aegirine metarhyolite (Fig. 3.7 i), enveloping (iii) an intercalation (a sill) of pyroxenite (Fig. 3.7g,h), all together trusted onto (iv) an alternating package of high-silica metarhyolite and quartzite (metasandstone; Fig. 3.7 j) again with (v) porphyroclastic biotite schist (metarhyolite deformed under mylonitic conditions) at the base, attesting the very heterogenous deformation and metamorphic recrystallization on the studied section (Fig. 3.7a).

As the high-silica rhyolite is the most representative and best-preserved rock of the volcanic succession, the sample AV052d was selected for detailed analytical studies. The high-silica rhyolite, composed of K-feldspar, quartz, and iron-oxide minerals, is a gravish, massive, isotropic, equigranular, fine-grained to porphyritic rock with K-feldspar phenocrysts reaching up to 2 mm in length (Fig. 3.7c, d). Although affected by the regional deformation under low-grade metamorphism, several typical volcanic features are still preserved, such as euhedral to subhedral tabular K-feldspar phenocrysts with corrosion borders and embayments, immersed in the fine-grained quartz-feldspathic groundmass (Fig. 3.7d). Along the metavolcano-sedimentary succession, the massive and isotropic high-silica rhyolite grades to a foliated, mesocratic, porphyroclastic biotite schist formed by high-strain mylonitic deformation on the high-silica metarhyolite (Fig. 3.7 a, e, f). A thin lens of light gray aegirine metarhyolite, rich in decussate aegirine crystals and minor clinozoisite (Fig. 3.7 i), occurs between the pyroxenite and a mylonitic shear zone imprinted on the porphyroclastic biotite schist (Fig. 3.7 a). From the thrust shear zone at the base of the southwest package (enclosing the ultramafic sill) to the northeast tip of the section (Fig. 3.7 a), it occurs a metavolcano-sedimentary package consisting of alternating layers of metarhyolite, quartzite (metasandstone; Fig. 3.7 j) and mylonitic metarhyolite (i.e., the porphyroclastic biotite schist; Fig. 3.7e, f).

Fig. 3.7. A rhyolite-bearing metavolcano-sedimentary succession and a subvolcanic trachyte sill found in the SADICO. The metavolcano-sedimentary succession (a, b) comprises metarhyolite (c) with corroded K-feldspar phenocrysts (d), porphyroclastic biotite schist (mylonitic metarhyolite; e) with corroded K-feldspar and quartz crystals (f), aegirine-rich metarhyolite (i) and quartzite (metasandstone; j), hosting a pyroxenite intercalation (g, h). The trachyte sill (k, l) shows non-deformed porphyritic texture (m, n). Mineral abbreviations: aeg, aegirine; bt, biotite; cpx, clinopyroxene; kfs, K-feldspar; ne, nepheline; qtz, quartz. Scale bar: 0.5 mm.

Fonte: elaborado pelo autor.

3.6.4.2 Subvolcanic trachyte

To the north of Potiraguá city, the Paleoproterozoic basement hosts a 30 cmthick felsic injection, much probably a sill, emplaced along the regional gneissic foliation (Figs. 3.2 and 3.7 k). The strongly fractured sill consists of a grayish, massive, fine-grained, silica-undersaturated trachyte (Fig. 3.7 k, I), essentially composed of Kfeldspar and nepheline (Fig. 3.7 m, n) with iron-oxide minerals, acicular apatite, biotite and rare garnet, as accessory minerals, as well as cancrinite and sericite formed by alteration processes. Besides the very fine-grained groundmass, preserved volcanic features include corroded euhedral crystals and phenocrysts of K-feldspar and nepheline, and both seriate and trachytic textures (Fig. 3.7 m, n).

3.7 Analytical results

3.7.1 U-Pb and Lu-Hf data

Aiming to investigate the magmatic crystallization ages and magma sources of distinct SADICO rocks (see sample locations in Fig. 3.2), U-Pb and Lu-Hf (LA-ICP-MS) data were obtained for zircon crystals from a hybrid granitoid (sample AV039a), a biotite granite (sample D028), a metarhyolite (sample AV052d) and a trachyte (sample D023). U-Pb and Lu-Hf data are in the supplementary files 3 and 4, respectively.

3.7.1.1 Hybrid granitoid (sample AV039a)

The AV039a granitoid sample was collected from a hybrid zone free of mafic enclaves in the Salto da Divisa pluton (Fig. 3.2). Twenty-six spot data, out of forty-two spots conducted on zircon crystals, yielded a Discordia age with upper intercept at 885 \pm 9 Ma (2 σ , MSWD = 0.3), and with lower intercept forced to zero (Fig. 3.8a). The other sixteen not used grains were rejected due their poorly analytical quality (see supplementary file 3). The zircons are brownish, translucent, and show high 232Th/238U ratios (1.2 to 2.4), confirming the igneous origin. At least three zircon types were identified in CL images (Fig. 3.9a): (i) homogeneous euhedral pyramidal long prisms (3:1 to 4:1); (ii) heterogeneous subhedral to euhedral crystals with irregular dark internal zones; and (iii) homogeneous euhedral short pyramidal prisms (1:1 to
2:1). Fourteen spots on distinct zircon crystals were selected for Hf-isotope analysis. The obtained 176Hf/177Hf initial ratios range from 0.282031 to 0.282083, resulting in negative ϵ Hf(t) values (-5 to -7) and Hf TDM model ages from 2.0 Ga to 2.1 Ga (Fig. 3.10a, b).

3.7.1.2 Biotite granite (sample D028)

The D028 sample was collected from an equigranular, foliated, biotite granite located at the border of the Itapebi pluton (Fig. 3.2). Out of the forty-two spots conducted on zircon crystals, twenty-two yielded a Discordia age with upper intercept at 894 \pm 10 Ma (2 σ , MSWD = 1.5), and with a lower intercept forced to zero (Fig. 3.8b).

Fig. 3.9. Cathodoluminescence (CL) images on representative zircon crystals from the samples performed for U-Pb and Lu-Hf analyses: a) hybrid granitoid (AV039a); b) biotite granite (D028); c) metarhyolite (AV052d); d) trachyte (D023). Numbers on crystals correspond to the spot reference listed in supplementary file 3. Close to each zircon are given the respective ²⁰⁶Pb/²³⁸U age, and the ε_{Hf(t)} f206c (common lead) and Disc. (discordance) values.

Fonte: elaborado pelo autor.

Six more discordant (6% to 9%) Tonian grains were rejected. Twelve rejected grains are Mesoproterozoic (from ca. 1.5 to 1.0 Ga, with 7% to 23% of discordance), one grain is Paleoproterozoic (ca. 1.7 Ga, 34% of discordance) and the oldest grain is Archean (ca. 2.8 Ga, 44% of discordance). The Tonian zircons are brownish and translucent pyramidal prisms (up to 4:1), and with 232Th/238U ratios (0.65 to 2.46)

compatible to igneous origin. In CL images (Fig. 3.9b), most crystals are homogeneous, but some of them show oscillatory zoning or dark irregular cores with zoned rims. Eighteen spots were selected for the Hf-isotope analysis. The 176Hf/177Hf initial ratios vary from 0.281931 to 0.282156, yielding ϵ Hf(t) from -4.2 to -11 (Fig. 3.10) and Hf TDM model ages from 1.9 Ga to 2.3 Ga.

Fig. 3.10. Isotopic Hf and Nd signatures for analyzed samples. a) General εHf(t) diagram for zircon samples. b) Detailed εHf(t) diagram for zircon samples. c) General εNd(t) diagram for SADICO whole-rock samples, compared to the regional basement.

3.7.1.3 Metarhyolite (AV052d)

From the sixty spots conducted on zircon crystals extracted from the metarhyolite (sample AV052d), all of them yield a Discordia age with upper intercept at 905 ± 24 Ma (2σ , MSWD = 0.19; Fig. 3.8c) and a lower intercept at 697 ± 65 Ma. Most zircon crystals are colorless, prismatic, thin, with 150 µm in maximum length. The 232Th/238U ratios range from 0.19 to 0.51. In CL images (Fig. 3.9c), most crystals show subhedral habitus with homogeneous internal morphology and corroded borders revealing magmatic resorption. Rare heterogenous crystals display oscillatory zoning. Eighteen spots, selected for Hf-isotope analysis, yield 176Hf/177Hf initial ratios ranging from 0.281954 to 0.282172, with negative ϵ Hf(t) values (-1.0 to -8.7; Fig. 10a, b) and Hf TDM model ages from 1.8 Ga to 2.2 Ga.

3.7.1.4 Trachyte (D023)

After twenty-eight spots conducted on zircon crystals from the Potiraguá felsic sill (sample D023), seventeen yield a Discordia age with upper intercept at 912 ± 14 Ma (2σ , MSWD = 0.96; Fig. 3.8d) and a lower intercept forced to zero. Except for one inherited Orosirian grain with alteration features (Fig. 3.9d), the zircons are brownish, translucent, euhedral, and can be divided into two classes: (i) elongated pyramidal acicular (3:1 to 4:1) with up to 250 µm; and (ii) short (100 µm to 150 µm) and stubby prisms with low elongation (1:1 to 2:1). The 232Th/238U ratios varied from 0.78 to 2.46. In CL images, prevail homogeneous crystals with no internal structures. Fifteen spots were selected for the Hf-isotope analysis. The 176Hf/177Hf initial ratios range from 0.281723 to 0.281824, indicating highly negative ϵ Hf(t) values (-14 to -18; Fig. 10a, b) and Hf TDM model ages between 2.5 – 2.7 Ga.

3.7.2 Sm-Nd data

Sm-Nd analyses were conducted on twenty-three whole-rock samples from the SADICO units (supplementary file 5). According to zircon U-Pb ages, the initial age for the isotopic decay was taken as 900 Ma. The results are (Fig. 3.10c): (i) pyroxenite: Nd T_{DM} model age from 1.2 Ga to 1.7 Ga, with ϵ Nd(t) from +2.2 to -5.3; (ii) mafic enclaves from hybrid granitic zone: Nd TDM model ages of 1.6 – 1.8 Ga and ϵ Nd(t) from -3.0 to -5.6; (iii) two samples of distinct mafic dykes gave Nd TDM model ages of 1.2 – 1.3 Ga and positive ϵ Nd(t) values from +1.3 to +2.0, while three samples from

other dykes yielded Nd TDM model ages from 1.6 Ga to 1.8 Ga and negative ε Nd(t) from -2.3 to -5.9; (iii) hybrid granitoids: Nd TDM model ages from 1.5 Ga to 1.7 Ga and ε Nd(t) from -3.2 to -4.3; (iv) biotite-amphibole granites: Nd TDM model ages from 1.6 Ga to 1.9 Ga and ε Nd(t) from -2.8 to -5.8; (v) biotite granites: Nd TDM model ages from 1.4 Ga to 2.2 Ga and ε Nd(t) from -1.7 to -8.0; (vi) amazonite-bearing two-mica granite: Nd TDM model age of 1.7 Ga and ε Nd(t) of -4.0; (vii) subvolcanic trachyte: Nd TDM model age at 1.1 Ga with ε Nd(t) of +3.1.

3.7.3 Lithochemistry

Bulk-rock geochemical analyses from forty-nine samples indorse the bimodal character of SADICO's magmatism (Fig. 3.11a), clearly showing two compositional clusters: the ultrabasic to basic rocks (SiO₂: 42.5 - 51.1 wt%) and the granites (SiO₂: 70.1 - 80.4 wt%). Intermediate rocks (i.e., 52-63 wt% SiO₂) are rather rare, occurring as mafic dykes with slightly intermediate composition (SiO₂: 52.2 - 52.5 wt%), as hybrid granitoids (SiO₂: 57.4 - 63.0 wt%) and as a silica-undersaturated alkaline trachyte (SiO₂: 60.2 wt%; supplementary file 2).

Harker diagrams also lack continuous trends typical of fractional crystallization, showing the two clusters of mafic and felsic rocks, with the few intermediate rocks between them (Fig. 3.12). The subvolcanic silica-undersaturated trachyte tends to plot close to the hybrid granitoids, while the metarhyolite shows an intimate chemical relation with the granites. The Harker diagrams also show a greater dispersion in some major oxides (TiO₂, MgO, Al₂O₃, K₂O and P₂O₅) for ultramafic and mafic rocks in relation to the felsic rocks. This behavior may be related to the remobilization of more mobile elements, as the mafic dykes are more sensible to deformation and metamorphism than the granites, which pluton cores tend to preserve the igneous fabrics and minerals (Fig. 3.5). Conversely, the mafic dykes tend to be more deformed and metamorphosed in the amphibolite facies (Fig. 3.3g to i) while mafic dykes with preserved igneous features are rather rare (Fig. 3.3d to f).

3.7.3.1 Pyroxenite

The pyroxenite samples have compositions of gabbronorite (Fig. 3.11a), with relatively low contents (in wt%) of SiO₂ (43.4-47.7), Al₂O₃ (4.7-6.6) and total alkalis (Na₂O+K₂O: 0.7-1.3), and high contents of MgO (13.4-16.0; #mg number of 59-63), FeO_(t) (16.5-16.7), CaO (9.3-11.9) and TiO₂ (2.4-3.1). They are enriched in compatible trace-elements (e.g., V: 244-296; Co: 84-106; Ni: 295-678 ppm), in incompatible elements (excepting in K, Sr, and Zr; Fig. 13a) and in light REE (La/Yb_N: 11-31) with virtually no Eu anomaly (Eu/Eu*: ~1.0; Fig. 3.13b), likewise to ocean island basalts (OIB) of intraplate settings (Fig. 3.14a-c).

Fig. 3.11. Classification diagrams for the SADICO's samples: a and e) R1-R2 diagram for plutonic and volcanic rocks (De la Roche et al. 1980); b to d) discriminant diagrams of Frost et al. (2001).

Fonte: elaborado pelo autor.

3.7.3.2 Mafic enclaves and mafic-intermediate dykes

In contrast, the samples from mafic-intermediate dykes show higher variations (in wt%) of the SiO₂ (42.5-52.5), TiO₂ (1.8-3.6), Al₂O₃ (10.9-16.6), MgO (2.7-8.8; #mg number = 24-51), CaO (6.1-11.5), Na₂O (0.7-3.5) and K₂O (0.5-4.5) contents, covering a wider compositional range of gabbroic types and monzodiorite (Fig. 3.11a). These

rocks also have lower contents of compatible elements (Ni: 10-135 ppm, Co: 31-68 ppm, V: 172-361 ppm) compared to pyroxenites. Their incompatible element signatures are also close to OIB magmas, excepting the enrichment in Large Lithophile Elements (LILE) such as Cs, Ba and K (Fig. 3.13a). Three mafic dyke samples show flatter REE patterns (La/Yb_N<7), while the others are enriched in light REE (La/Yb_N: 7-24), and all samples show no expressive Eu anomaly (Eu/Eu*: 0.9-1.2; Fig. 3.13b). All samples from these dykes show signature of basaltic magmas emplaced in intraplate continental setting (Fig. 3.14a-b).

3.7.3.3 Hybrid granitoids

The samples from hybrid granitoids show composition of syenite, quartz-syenite and quartz-monzonite (Fig. 11a), with (in wt%) SiO₂ (57.4-63.3), TiO₂ (0.4-1.1), Al₂O₃ (15.6-17.8), MgO (0.7-1.1), FeO_(t) (4.1-10.4 wt%), CaO (2.3-4.3) and Na₂O+K₂O (8.7-9.3) contents, displaying a metaluminous (ASI: 0.85 to 1.0), ferroan, alkaline signature (Fig. 3.11b-d). Harker diagrams suggest the hybrid granitoids crystallized from mixed melts, involving basic and granitic magmas from a bimodal igneous assemblage (Fig. 3.12). The hybrid granitoids are enriched in LILE (Cs, Rb, Ba) and HFSE (Zr + Nb + Y + Ce: 841-1765 ppm), but depleted in Sr, P and Ti (Fig. 3.13c), showing weak fractionation between light and heavy REE (La/Yb_N < 30) and slight positive to moderate negative Eu anomalies (Eu/Eu*: 0.5-1.1) (Fig. 3.13d). Their signatures match with intraplate A1-type granitoids (Fig. 3.14d-f).

3.7.3.4 Biotite-amphibole granites

The biotite-amphibole granite samples are enriched (in wt%) in silica (SiO₂: 72-78), alkalis (Na₂O+K₂O: 8.1-9.3) and poor in CaO (0.4-1.4), TiO₂ (0.1-0.4) and MgO (< 0.1-0.4) (Figs. 3.11a and 3.12). They are metaluminous to slightly peraluminous (ASI: 0.9-1.05), ferroan, alkali-calcic granites (Fig. 3.11b-d), characterized by enrichment in LILE (except Ba) and HFSE (Zr + Nb + Y + Ce: 524-1580 ppm), strong negative anomalies of Sr, P and Ti (Fig. 3.13c), weak REE fractionation (La/Yb_n < 30) and negative Eu anomalies (Eu/Eu*: 0.14-0.47) (Fig. 3.13d). All those chemical attributes fit with their intraplate A-type (mostly A1) granite signature (Fig. 3.14e-f).

Fonte: elaborado pelo autor.

Fig. 3.13. Multi-element spider diagrams (normalized to the primitive mantle of Sun and McDonough, 1989) and REE patterns (normalized to the chondrite of Boyton, 1984) for SADICO's rocks.

Fonte: elaborado pelo autor.

Fig. 3.14. Representative SADICO's samples on tectonic discriminant diagrams, disclosing their overall anorogenic intraplate signature: a) Pearce and Norry (1979); b) Pearce (1982); c) Mesched (1986); d) Pearce et al. (1984); e) Eby (1992); f) Whalen and Hildebrand (2019).

Fonte: elaborado pelo autor.

3.7.3.5 Biotite granites

The biotite granite samples are enriched (in wt%) in silica (SiO₂: 70-76), alkalis (Na₂O+K₂O: 8.6-9.7) and poor in CaO (<0.4-1.6), TiO₂ (0.1-0.5) and MgO (<0.1-0.5) (Figs. 3.11a and 3.12). Their composition is close to the biotite-amphibole granites, being metaluminous to slightly peraluminous (ASI: 0.9-1.05), ferroan and mostly alkalicalcic (Fig. 3.11b-d). They show strong negative anomalies of Ba, Sr, P and Ti, and enrichment in LILE (except Ba), Nb and Zr (Fig. 3.13e). The REE patterns vary from unfractionated to moderately fractionated (La/Yb_N: 4.0 to 44), with moderate to highly negative Eu anomalies (Eu/Eu*: 0.1-0.6) (Fig. 3.13f). They also are within-plate A-type granites, with the prevailing A1-subtype (Fig. 3.14d-f).

The amazonite-bearing two-mica granite samples are even more rich (in wt%) in SiO₂ (74-80) compared to the other granites, being also high-alkalis (Na₂O+K₂O: 8.6-9.7), and low CaO (< 0.4-1.6), TiO₂ (0.1-0.5) and MgO (< 0.1-0.5) granites with metaluminous to peraluminous (ASI: 0.9-1.05), ferroan, alkalic to calc-alkalic signature (Figs. 3.11b-d and 3.12). They are rich in Rb, Th, U and Nb, but show expressive negative anomalies of Ba, Sr, P and Ti (Fig. 3.13g), displaying strong negative Eu anomalies (Eu/Eu*: <0.1-0.2) in gull-wing-shaped REE patterns (La/Yb_N < 10) typical of highly evolved, intraplate, A1-type granites (Figs. 3.13h and 3.14d-f).

3.7.3.7 Volcanic and subvolcanic rocks

Although representative of felsic anorogenic magmatism, the metarhyolite interlayered in the metavolcano-sedimentary succession and the subvolcanic trachyte dyke show contrasting lithochemical features (Figs. 3.11e and 3.12). The metarhyolite contains (in wt%) SiO₂ (71), Al₂O₃ (14), FeO_(t) (4.7), Na₂O (5.2) and K₂O (4.3). In contrast, the trachyte is (in wt%) silica undersaturated (SiO₂: 60) and richer in Al₂O₃ (19), FeO_(t) (6.6) and alkalis (Na₂O+K₂O: 12), being more sodic (Na₂O: 7.3) than potassic (K₂O: 4.7). Both the metarhyolite and trachyte are peraluminous (ASI: 1.03 and 1.05), ferroan and alkaline rocks (Fig. 3.11b-d). Despite the differences in major element compositions, they are characterized by enrichment in LILE (except Ba) and HFSE (Zr + Nb + Y + Ce: 2607 and 1677 ppm), negative anomalies in Ba, Sr, P and Ti, fractionated REE patterns (La/Yb_N < 31) with negative Eu anomalies (Eu/Eu*: < 0.2) and are compatible with anorogenic A1-type magmas (Fig. 3.14d-f).

3.8 Discussion

It has long been known that plutono-volcanic complexes related to continental rifts and large igneous provinces (LIP) show a plethora of distinct igneous rocks, disclosing different magma sources from the mantle to continental crust (e.g., Wilson, 2007; Ernst, 2014). Indeed, our studies unraveled an example of an ancient magma-rich rift zone related to an Early Tonian LIP (Chaves et al., 2019; Souza et al., 2022), exposing since plutonic to volcanic rocks, hosting related dykes and sills: the ca. 900 Ma SADICO – Salto da Divisa plutono-volcanic anorogenic complex (Figs. 3.1, 3.2 and

3.15). Besides revisiting formerly studied SADICO's rocks, we also present discoveries and new robust data for rocks derived from mantle magma sources with variable crustal contamination (mafic-intermediate dykes and mafic enclaves, felsic volcanic rocks, and an ultramafic sill), and crustal melts (biotite-amphibole granite), locally mixed with mafic magma (hybrid granitoids), that evolved by fractional crystallization (to biotite granite) and deuteric processes (to amazonite-bearing two-mica granite), portraying a quite complete anorogenic plutono-volcanic complex (Fig. 3.15).

3.8.1 Mantle-derived magmas and their probable fractionates

The best candidates to be rocks formed from mantellic magmas are the pyroxenites, and the mafic-intermediate dykes and enclaves, as well as the subvolcanic and volcanic felsic rocks can be interpreted as fractionates from mantle-derived magmas.

3.8.1.1 Ultramafic and mafic rocks

The ultramafic rock intercalated in the volcano-sedimentary package (Fig. 3.7b) forms a concordant layer-shaped body with no feature suggesting lava flow or pyroclastic deposit. As the pyroxenite samples comprise modal values of mafic minerals (clinopyroxene, biotite, iron oxide minerals and minor amphibole) higher than 90 vol% (Fig. 3.3a, b, c; Fig.3.7 g, h), they must be classified as ultramafic rocks (cf: Le Maitre et al. 2002). The pyroxenite forms a concordant intercalation hosted by a metavolcano-sedimentary succession comprising rhyolitic intercalations (Fig. 3.7), suggesting an ultramafic sill probably crystallized in subvolcanic levels. Such a mineral assemblage with high contents of MgO, FeO(t), CaO, Ni, Co and V, and the juvenile value for the Nd parameter (ϵ Nd(t) around +2) for sample D017 indicate the pyroxenite sill crystallized from mantellic magma. However, further data, such as #mg < 70 (cf. Frey, 1978), the general enrichment in incompatible trace elements, the fractioned REE patterns similar to OIB, and the ε Nd(t) ranging from juvenile to evolved (-5.3) values related to Nd TDM model ages (1.2 - 1.7 Ga) younger than the regional basement but older than the igneous crystallization age of SADICO's rocks, suggest a previously fractionated mantle magma derived from an enriched mantle source (e.g., garnet-bearing peridotite) that assimilated continental crust during magma ascent (Figs. 3.10 and 3.13a, b). Furthermore, both the pyroxenite sill and the hosting volcanosedimentary succession, dated at around 900 Ma, record the same orogenic foliation (ca. 550 Ma; Serrano et al., 2018) which is much younger than all igneous crystallization ages from SADICO's rocks (Fig. 3.8).

The studied mafic rocks have provided solid data linking them to SADICO's bimodal magmatism (Fig. 3.15), such as: i) preserved igneous features attesting mingling-mixing processes of coeval basaltic and granitic magmas with an Early Tonian crystallization age (885 \pm 9 Ma; Fig. 3.8a) provided by a hybrid zone (Fig. 3.4); (ii) Nd TDM model ages (1.2 to 1.8 Ga; Fig. 3.10c) for mafic dykes and enclaves are younger than the Archean-Rhyacian basement (cf. Peucat et al., 2011; Degler et al., 2018) but older than the ca. 900 Ma crystallization ages of SADICO's rocks (Fig. 3.8); (iii) both mafic dykes and enclaves show lithochemical signatures of intraplate OIB-type magmas, likewise the piroxenite sill (Figs. 3.13a, b and 3.14a, b); and, iv) the mafic dykes with younger Nd *T*_{DM} model ages (1.2 – 1.3 Ga) and positive values of ϵ Nd(t) (+2.0 to +1.3) represents the most primitive mantle magmas preserved in the SADICO, although the difference (ca. 300 Ma) between these model ages and the mean crystallization age for the SADICO (ca. 900 Ma) points to assimilation of older crustal material by the mantellic magmas.

Evidence for assimilation of older continental components by the mantellic magmas that crystallized as mafic dykes and enclaves are: i) in the hybrid granitoid zone, the well-preserved mafic enclaves free of metamorphic-metasomatic alteration show slight enrichment in LILE (Cs, Rb, Ba) compared to OIB-type magmas (Fig. 3.13a); ii) some mafic dykes show anomalous enrichment in Al₂O₃, K₂O, P₂O₅ (Fig. 12) and LILE (Fig. 3.13a); and, iii) the negative ϵ Nd(t) values yielded by mafic enclaves (ϵ Nd(t): -3.0 to -5.6) and some mafic dykes (ϵ Nd(t)): -2.3 to -5.9).

3.8.1.2 Felsic volcanic and subvolcanic rocks

A critical question raised by the discovery of felsic volcanic and subvolcanic rocks refers to their genetic links to the SADICO and their magmatic sources in depth (Figs. 3.2 and 3.7), i.e., whether they are derived from mantellic magmas or crustal melts formed in the same Early Tonian rift-related setting. This issue is addressed by using bulk-rock geochemistry, zircon U-Pb geochronology and isotopic geochemistry (in-zircon Lu-Hf and whole-rock Sm-Nd) data from the volcanic and subvolcanic rocks

and comparing them to data obtained by the same methods applied on other SADICO's rocks.

The metarhyolite (Fig. 3.7), found in the metavolcano-sedimentary succession near the Itapebi pluton (Fig. 3.2), crystallized at about 905 \pm 24 Ma (Fig. 3.8c); thus, within the time span known from SADICO's igneous episodes (915 – 875 Ma, Figs. 3.2 and 3.8). The calculations also show a lower intercept at 697 \pm 65 Ma, which possibly indicates lead loss effect caused by the thermal anomaly related to the Cryogenian rifting event (Rosa et al., 2007; Pedrosa-Soares and Alkmim, 2011), record by the alkaline intrusions named Itarantim (730-720 Ma; Conceição et al., 2009) and Potiraguá (ca. 730 to 715 Ma; Correa Gomes and Oliveira 2002, Menezes et al. 2012b, Rosa et al., 2007).

The metarhyolite and SADICO's granites have lithochemical (major and trace elements) signatures (Figs. 12 and 13) like A1-subtype magmas produced in continental rift settings (Fig. 3.14). The whole-rock Nd T_{DM} model age (1.1 Ga) quite close to the zircon U-Pb crystallization age (905 \pm 24 Ma) and the juvenile ϵ Nd(t) (+3.1) value for the metarhyolite, as well as its association with a pyroxenite sill, suggest a mantellic source for the primary magma that gave rise to the felsic volcanism. However, the Lu-Hf data (TDM model age: 1.8 - 2.2 Ga, ε Hf(t): -1 to -9) suggest moderately juvenile to evolved origin (and/or some crustal contamination and/or metamorphic overprint) for the metarhyolite zircons (Fig. 3.10). The most evolved zircon grains from the metarhyolite show Hf data close to SADICO's hybrid granitoids and granites with ages between 899 – 914 Ma (Hf TDM model ages: 1.9 - 2.3 Ga and ϵ Hf(t): -4 to -11) (Figs. 3.2 and 3.10). Nevertheless, the juvenile Nd signature (whole-rock εNd(t): +3.1; Nd TDM model age: 1.1 Ga) of the metarhyolite clearly contrasts with the evolved isotopic Nd signature given by the SADICO's granitoids and granites (whole-rock εNd(t) from -1.6 to -8.0; Nd TDM model ages from 1.4 Ga to 2.2 Ga). Considering that mafic dykes also show juvenile Nd signature (whole-rock ɛNd(t) (+2.1 to +1.3; Nd TDM model ages: 1.2 - 1.3 Ga), it seems more reasonable to interpret the rhyolitic volcanism as magma formed by fractioning of juvenile basic sources in depth (Fig. 3.15a-c).

The subvolcanic trachyte sill of the Potiraguá region also show lithochemical signature close to A1-type magmas, likewise the SADICO's rhyolitic and granitic rocks (Figs. 3.2, 3.11e-f, 3.13i-j, 3.14d-f). Compared to the rhyolitic magma, the trachyte shows similarities on Nd signature (whole-rock ϵ Nd(t): +0.3, Nd TDM model age: 1.2 Ga), trace-elements composition (Fig. 13i, j) and on crystallization age (912 ± 13 Ma;

Fig. 3.8d), suggesting derivation from a contemporaneous juvenile source. However, considering the alkaline silica-undersaturated composition, contrasting to the subalkaline rhyolite (Fig. 3.11e), together with the much older Hf TDM model ages (2.5 – 2.7 Ga) and more negative values for the ϵ Hf(t) (-14 to -18; Fig. 3.10a, b) given by zircon grains, we suggest the trachytic magma derived from a different source in relation to the rhyolite. In that case, the trachytic and rhyolitic magmas must be contemporaneous, but not cogenetic, representing products of distinct volcanism episodes developed at same time span, during the Early Tonian crustal extension. Furthermore, the presence of an inherited zircon grain of Orosirian age in the studied sample (Fig. 3.9d) suggest crustal contamination on the trachytic magma.

3.8.2 Hybrid magmas

Hybridization involving crustal and mantellic magmas have been reported as one of the main petrogenetic processes to produce anorogenic (A-type) granitic magmas in continental rift settings (Bédard, 1990; Mingram et al., 2000; Yang et al., 2006).

In SADICO's hybrid zones (Figs. 3.2, 3.4 and 3.15), the well-preserved primary features provide robust evidence for mingling (immiscible) and mixing (miscible) processes (Fig. 3.4) between basic and felsic magmas (cf. Marshall and Sparks, 1984; Hibbard, 1995), such as: i) magmatic breccia (Fig. 3.4a), suggesting quick cooling, followed by fracturing, of a basic magma injection into a colder and more viscous felsic magma; ii) rounded mafic enclaves with unaltered cores (Fig. 3.4b), indicating reshaping of sub-solidus batches and erosion on mafic fragment edges, carried by igneous flux into a convective felsic chamber; iii) intermediate-silica granitoids with irregular and transitional contacts, and scattered K-feldspar xenocrysts within mafic domains (Fig. 3.4c, d); and, iv) several microscopic features typical of magma mixing process shown by hybrid granitoids (Fig. 3.4e-h). Furthermore, the crystallization age given by a hybrid granitoid rich in mafic enclaves (885 \pm 9 Ma; Fig. 3.8a) is similar (within error) to the age of a biotite-amphibole granite free of enclaves (875 \pm 9 Ma; Silva et al., 2008; Fig. 3.2), suggesting the coexistence of both mantellic (basic) and crustal (felsic) magmas in the same pluton (the Salto da Divisa pluton; Fig. 3.2).

Most geochemical characteristics shown by the hybrid granitoids are diagnostic of A-type magma, including high contents of alkaline elements (Fig. 3.11a), the ferroan character (Fig.3.11c), general enrichments in HFSE (Zr, Nb, Y and Ce) and REE (cf. Loiselle and Wones, 1979; Bonin et al., 2007), and the within-plate A1-subtype signature (Fig. 3.14d-e) typical of anorogenic granitic rocks generated in continental rift settings (cf. Pearce et al., 1984; Eby, 1992; Whalen and Hildebrand, 2019). Despite the absence of more pronounced anomalies, the hybrid granitoid signatures are very similar to those given by the biotite-amphibole granites (Fig. 3.13a, b), suggesting that the A-type character of the hybrid rocks is an inheritance from the granitic source. The content of Ba and Eu in the hybrid granitoids are exceptions, but this can be explained by the influence of the mafic magmas, which are enriched in both elements (Fig. 3.13a, b).

Silva et al. (2008) presented Nd isotopic data (TDM model age: 1.6 Ga; ε Nd(t): -5.6) for a biotite-amphibole granite (J in Fig. 3.2), demonstrating the involvement of the Paleoproterozoic basement to produce the ca. 875 Ma A-type granitic magma. This agrees with our isotopic data (in-zircon Hf TDM age: 2.0 – 2.1 Ga, and ε Hf(t): -5.2 to - 6.8, Fig. 3.10a, b; and whole-rock Nd TDM age: 1.5 – 1.7 Ga, and ε Nd(t): -3.2 to -4.3, Fig 10c) for the studied hybrid granitoids (ca. 884 Ma; Fig. 3.8a), also suggesting mixed magma sources involving the regional basement.

3.8.3 Crustal melts

Biotite-amphibole granite, biotite granite and two-mica granite comprise the most common varieties of granitic rocks found in the SADICO (Figs. 3.2, 3.5 and 3.6). Despite mineralogical, textural, and structural differences (supplementary file 1), their lithochemical signatures given by major and trace elements are typical of A-type magmas (Loiselle and Wones, 1979; Bonin et al., 2007) produced in intraplate continental rifts (Eby et al., 1992; Whalen and Hildebrand, 2019; Figs. 3.11c, d; 3.13c-h and 3.14c, d). Nevertheless, petrographic, lithochemical and isotopic differences suggest those granites evolved from distinct petrologic processes, from emplacement of crustal granitic melts and fractional crystallization to deuteric-hydrothermal alteration on pluton cupolas.

3.8.3.1 Biotite-amphibole granite

According to zircon U-Pb (SHRIMP; Silva et al., 2008) and Pb-Pb (evaporation; Menezes et al., 2012a) ages, the biotite-amphibole granite varieties have crystallized from ca. 915 Ma to ca. 875 Ma, covering the whole SADICO's evolution time (Fig. 3.2). Despite that, all samples of biotite-amphibole granite show virtually identical lithochemical signatures of A-type magmas with no clear evidence for fractionation from basic magma (Figs. 3.11, 3.12 and 3.13), and isotopic Nd data (ϵ Nd(t): -2.8 to -5.8, TDM model ages: 1.6 to 1.9 Ga; Fig. 3.10c) pointing to crustal sources with basement involvement for the related granitic melts. Actually, those Nd model ages (1.6 – 1.9 Ga) much younger than the zircon crystallization and whole-rock Nd model ages for country orthogneisses with less negative Nd parameters (U-Pb ages: 2.19 – 2.09 Ga; Nd TDM ages: 2.4 – 2.5 Ga, ϵ Nd(t): -1.7 to -3.1; cf. Peucat et al., 2011; Degler et al., 2018) imply in important basement contribution for the Early Tonian crustal melts crystallized as amphibole-biotite granite (Fig. 3.15c). Indeed, such an anorogenic partial melting event was triggered by mantle ascent and mantellic magma migration through the crust during lithosphere-scale extension (Fig. 3.15a).

3.8.3.2 Biotite granite

A sample of biotite-granite (D028) was dated at 894 \pm 10 Ma (Fig. 3.8b), thus within the crystallization range for SADICO's biotite-amphibole granite (915-875 Ma; Silva et al., 2008; Menezes et al., 2012a). As can be observed in zoned intrusions (e.g., Itagimirim pluton; Fig. 3.2), pluton rims composed of biotite-amphibole granite gradually pass to biotite granite cores, suggesting fractional crystallization with amphibole giving place to biotite, from pluton border inwards. Besides field and petrographic information, such an usual differentiation process is also supported by the following analytical evidence: i) most elemental patterns given by the biotite-amphibole granite samples are similar among them and compatible with the same ferroan A-type magma (Figs. 3.11 to 3.14); ii) biotite granite samples show gradually more pronounced Sr and Eu negative anomalies, typical of increasing Ca depletion (Fig. 3.13c-f); iii) the evolved isotopic Hf signature (ϵ Hf (t): -4 to -11, Hf TDM model ages: 1.6 – 2.3 Ga; Fig. 3.10a-b) for the biotite granite, is compatible with the fractioning of a crustal anatectic melt; iv) the isotopic Nd data for the biotite granite (Nd TDM model age: 1.4 – 2.2 Ga; ϵ Nd(t): -1.6 to -8.0, Fig. 3.10c) compared with those

for the biotite-amphibole granite (Nd TDM model age: 1.6 - 1.9 Ga, ϵ Nd(t): -2.8 to -5.8) also suggest a common magmatic source.

As the magmatic differentiation seems to be the mechanism involved on the production of the biotite granites, the presence of the twelve discordant Mesoproterozoic grains in the D028 sample, together with the single Paleoproterozoic and the single Archean discordant crystals (supplementary file 3), suggest the involvement of ancient crust into the source, which is the biotite-amphibole granitic magma. In other words, the presence of these inherited crystals into the biotite granite reflects the involvement of the basement on the biotite-amphibole magma and confirms that crustal anatexis was the petrological mechanism responsible for generation of the biotite-amphibole granitic melts.

3.8.3.3 Two-mica granite

Two-mica granite occurs in pluton cupolas, showing transitional contact with the biotite granite that occurs further inward the intrusion (e.g., Itapebi, Ventania and Caiubi; Figs. 3.2, 3.6 and 3.15f). The transitional contact is characterized by decreasing in biotite and microcline against increasing in muscovite, albite, and fluorite, accompanied by amazonite (green K-feldspar) crystallization, suggesting the two-mica granite is an outcome of late magmatic differentiation by fractional crystallization towards pluton cupolas. Several Harker diagrams outline a fractioning trend from biotite granite to two-mica granite (e.g., TiO₂, MgO, Al₂O₃, FeO_(t), CaO and P₂O₅, versus silica; Fig. 3.12). This fractioning process is also pointed out by multi-element and REE patterns that show increasing depletion in Ba, Sr, Eu, and Ti, from biotite granite to two-mica granite indicate apatite, ilmenite, and plagioclase fractioning to biotite granite, while the seagull-like REE pattern (i.e., roughly flat LREE and HREE segments with a striking Eu anomaly between them) in two-mica granite suggests removal of HREE by allanite, an important accessory phase in the biotite granite.

A two-mica granite sample (AV157) yielded isotopic Nd signature (TDM model age: 1.7 Ga, ϵ Nd(t): -4.0) within the range given by biotite granite samples (Nd TDM model ages: 1.4 – 2.2 Ga, ϵ Nd(t): -1.6 to -8.0; Fig. 3.10c), thus also implying in a crustal origin for the fractionated granitic melt. Besides, the ubiquitous dark-colored zircon grains with striking spongy textures in the two-mica granite (Fig. 3.9e), together with

an abnormal abundance of quartz-feldspathic veins rich in amazonite in pluton cupolas (Fig. 3.6b), suggest influx of hydrothermal fluids that promoted deuteric alteration from the late stage of melt crystallization to final cooling. The relict granophyric microstructure, shown by a non-deformed two-mica granite (Fig. 3.6e), also suggests igneous origin in relatively shallow crustal level. Therefore, the most reliable interpretation for the granitic cupola genesis and evolution starts with fractioning crystallization of biotite granite given rise to two-mica granite that was progressively altered, during cooling, by residual fluids accumulated on the pluton apical zone, according to metasomatic process commonly observed in shallow magmatic systems (e.g.: Li et al., 2018; Chen et al., 2021).

3.9 Conclusions

Among the many occurrences of continental intraplate magmatism emplaced in the São Francisco-Congo paleocontinent during the Early Tonian (Fig. 3.1), the Salto da Divisa anorogenic complex (SADICO) is much probably the best preserved and rather complete record of a plutono-subvolcanic-volcanic edifice, including ultramafic, mafic, and felsic rocks, as well as hybrid zones rich in evidence of mingling-mixing processes involving basic and acid magmas. This heterogenous igneous complex comprises rocks formed directly or indirectly from mantle-derived magmas (pyroxenites, mafic-intermediate dykes and mafic enclaves, and subvolcanic (trachyte) and volcanic (rhyolite) felsic rocks), hybrid granitoids rich in mafic enclaves and magma mingling-mixing features, and crustal melts crystallized as biotite-amphibole granite and successively fractionated melts that formed biotite granite and two-mica granite. This magmatic diversity makes the SADICO a quite rare example of a rift-related Precambrian complex that exposes rocks from the root to roof, cut by dykes and other intrusions crystallized at several crustal levels. Moreover, as it is widely known that Atype granitoids may be produced from different petrogenetic mechanisms, the results obtained in this study show that the SADICO holds examples of anorogenic granitoids produced by magma mixing, crustal anatexis and fractional crystallization superimposed, at pluton cupolas, by deuteric hydrothermal alteration.

Based on presented and compiled data, an integrated petrogenetic model was conceived (Fig. 3.15). The model is driven by crustal thinning triggered by the upwelling of lithospheric mantle, forming a number of mantellic magma injections and heating

the crust under extension to produce crustal melting that mainly evolved by fractional crystallization, from ca. 915 to ca. 875 Ma (Fig. 3.15a), according to the following evolutionary stages:

Fig. 3.15. a) Idealized integrated petrogenetic model proposed for the Salto da Divisa complex. b-f) schematic illustration of each main unit described in this paper with emphasis on the analytical results.

Fonte: elaborado pelo autor.

1) Mantle-derived magmas crystallized as (Figs. 3.15a to 3.15d): i) pyroxenites with lithochemical signatures compatible with anorogenic intraplate magmas, emplaced up to volcanic level and affected by crustal assimilation during the ascent (Fig. 3.15b); ii) OIB-like mafic-intermediate dykes of tholeiitic to alkaline affinities, intruding the Paleoproterozoic basement and SADICO's plutons, representing withinplate basalts with crust assimilation and fractional crystallization processes during ascent (Fig. 3.15b); iii) felsic fractionates from mantle-derived magmas gave rise to contemporaneous subvolcanic dykes composed of silica-undersaturated alkaline trachyte (912 \pm 3 Ma), and volcanic rock piles comprising rhyolites (905 \pm 24 Ma), hosting pyroxenite sills (Fig. 3.15b-d).

2) Accumulation of mantellic magma at the lower crust promoted partial melting producing granitic melts that, invaded by mafic magma injections within a still hot coeval granitic chamber, produced metaluminous hybrid granitoids rich in gabbroic enclaves, showing several magma mingling-mixing features (Fig. 3.15e). The resulting hybrid granitoids, dated at 885 \pm 9 Ma, inherited lithochemical and isotopic signatures from the granitic melt source.

(3) The continuing magma accumulation at mantle-crust boundary zone and influx of mafic magmas into the crust, together with the upwelling of the lithospheric mantle, induced the production of metaluminous to peraluminous A-type, fluorite-bearing, biotite-amphibole granites by crustal anatexis between 915 – 875 Ma, so that multiple diachronous granitic plutons were produced in SADICO (Fig. 3.15e).

(4) Subsequent fractioning of the biotite-amphibole granitic magma produced the metaluminous to slightly peraluminous A-type, fluorite-bearing biotite granites, which are the prevailing rock in some plutons (e.g., the 894 \pm 10 Ma Itapebi pluton; Fig. 3.15f).

(5) In pluton cupolas, biotite granite melt produced highly fractionated, amazonite-bearing, two-mica granite by fractional crystallization followed by deuteric hydrothermal alteration caused by residual fluids accumulated in the pluton apical zone (Fig. 3.15f).

3.10 Acknowledgments

The authors are grateful to the Brazilian research agencies CNPq and CAPES, for author's scholarship and co-authors grants, to the NBG-UFBA and CPMTC-UFMG

for all additional support, to the scientific and technical staffs of the isotope laboratories of the Universidade Estadual do Rio de Janeiro (UERJ) and Universidade Federal de Ouro Preto (UFOP), and to Dr. João Orestes Schneider Santos and an anonymous reviewer for their comments, corrections and suggestions, and Greg Shellnutt for his kind and helpful editorial work.

4 ARTIGO 2: SOBRE O EMBASAMENTO PALEOPROTEROZOICO (COMPLEXO BUERAREMA E INTRUSÕES SIN A PÓS COLISIONAIS)

The Rhyacian-Orosirian basement at the northeastern region of the Araçuaí orogen, Bahia, Brazil: further evidence of an island-arc accretion followed by syn- and post collisional plutons during the São Francisco-Congo paleocontinent assembly

(artigo submetido ao periódico Precambrian Research)

Anderson Victoria^{a*}, Antonio Pedrosa-Soares^{a#}, Simone Cerqueira Pereira Cruz^{b#}, Luiz Carlos Silva ^{e#}, Cristiano Lana^{c#}, Elton Dantas^{d#}, Luiza Lopes de Araújo^{e#}

^aUniversidade Federal de Minas Gerais, Programa de Pós-Graduação em Geologia, IGC–CPMTC, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brasil, andersongeo@yahoo.com.br; pedrosasoares@gmail.com

^bUniversidade Federal da Bahia, Programa de Pesquisa e Pós-Graduação em Geologia, Rua Barão de Geremoabo, s/n, Federação, 40170-209, Salvador-BA, Brasil, simonecruzufba@gmail.com

^cUniversidade Federal de Ouro Preto, Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais, Departamento de Geologia, Escola de Minas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, 35400-000 Ouro Preto, MG, Brazil

^dUniversidade de Brasília, Instituto de Geociências, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, CEP 70910-900, Brasília, DF, Brazil eGeological Survey of Brazil (CPRM), Av. Brasil 1731, CEP 30140-002 Belo Horizonte, MG, Brazil

*Corresponding author: A. M. Victoria, +5531988851011, andersongeo@yahoo.com.br

[#]Fellow of the Scientific and Technological Research Council of Brazil (CNPq)

4.1 Highlights

i) New U-Pb-Hf and Sm-Nd data in the Eastern Bahia orogenic domain, northeastern Brazil.

ii) Rhyacian (ca. 2.1 Ga) pre-collisional intraoceanic arc during the Minas-Bahia orogeny.

iii) New syn- (ca. 2.07 Ga) and post-collisional (2.03 Ga) plutons are reported. Paleoproterozoic sanukitoids are suggested.

iv) A paleogeographic scenario at ca. 2.1Ga is suggested.

4.2 Abstract

Granodioritic-tonalitic orthogneisses, migmatites and deformed meta-granodioritic and high-K intrusions compound the Rhyacian-Orosirian basement units in the northeastern region of the Araçuaí belt, northeastern Brazil. These rocks were deformed and stabilized in amphibolite facies during the Neoproterozoic Brasiliano-Pan African event, but their genesis goes back to the Rhyacian-Orosirian times, when the São Francisco-Congo paleocontinent was amalgamated at the end of the Rhyacian-Orosirian compressive event (Minas-Bahia orogeny-MBO). Field and petrographic data, together with new twenty-two lithochemical analyses, three U-Pb (LA-ICPMS) zircon ages and related Hf studies, thirteen Sm-Nd analyses were conducted. Additionally, three previous U-Pb (SHRIMP) zircon ages were revised, and unpublished data are presented. The crystallization age of 2099±14 Ma obtained for the granodioritic orthogneiss in the interior of the Aracuaí belt is like those from the tonalitic-trondjhemitic granulites of the Buerarema complex in the cratonic interior (ca. 2.19 to 2.10 Ga). This fact, together with the similar lithochemical signatures, compatible with magnesian, calc-alkaline and sodic TTGs magmas, deficient in Nb, Ta, P, Ti, Y, YbN and enriched in LaN/YbN, suggest the extension of the Buerarema complex towards the interior of the Araçuaí belt, where it was reworked by the Neoproterozoic deformation and superimposed metamorphism. The lithochemical signature observed for these orthogneisses is compatible with subduction-related magmas and the juvenile to moderately juvenile signatures (ϵ Hf(t): -0.5 to -4.6; ϵ Ndf(t): -1.6 to -4.6) suggest derivation from intraoceanic mature arcs. The presence of the Rio Itapicuru (ca. 2.08 – 2.14 Ga) and the Costeiro arc (ca. 2.17 Ga) in the Eastern Bahia orogenic domain (the northern segment of the Minas-Bahia orogen in the São Francisco craton) not only corroborates with the interpretation of the pre-collisional Buerarema arc, but also suggest the presence of an expressive oceanic crust between the Archean blocks at ca. 2.1 Ga. One calc-alkaline and metaluminous granodioritic stock and new mapped high-K shoshonitic granitoids are intrusive in the Buerarema complex. Both represent new mapped units and their crystallization ages (2067±5 Ma and 2024±6 Ma, respectively) related with a isotopic record indicative of crustal evolved rocks (EHf(t): -4 to -7; ENdf(t): -2.8 to -3.0; EHf(t): -7 to -14; ENdf(t): -2.4 to -2.6, respectively), suggest magmas produces during the syn and post-collisional phases of the MBO. Although the Paleoproterozoic age, the high content of Ba-Sr in concordance with the elevate ferromagnesian minerals and incompatible trace and REE elements allow the classification of those intrusions as sanukitoid-like rocks. Similar examples are found in the Minas segment of the Minas-Bahia orogen, and these intrusions enter in the discussion whether sanukitoids magmas were limited to the Archean or also occurred during the Paleoproterozoic. Regional compilations of the crystallization and metamorphic ages available in the southern region of the Eastern Bahia orogenic domain indicates the timing of the pre-collisional magmatism between 2.10 to 2.19 Ga, the syn-collisional magmatism from 2.05 to 2.09 Ga, followed by the post-collisional at 2.05 to 2.03 Ga.

Keywords: São Francisco-Congo paleocontinent, Buerarema arc, Minas-Bahia orogeny, Sanukitoids

4.3 Introduction

Crustal growth models and petrogenetic studies suggest a fundamental change in global geodynamics in the middle to late Archean guided by the onset of a significant crustal recycling process, triggered by the subduction, at active convergent margins of plate tectonics (Cawood et al., 2013; Laurent et al., 2014; Hawkesworth et al., 2020, and references therein). Estimates indicate that between ca. 3.0 Ga to 1.7 Ga, the subductions were hotter, the breakoff of the slab occurred in shallower levels, and the production of intra-oceanic and continental arcs were recurrent and possibly more likely to produce larger volumes of magmas (Hawkesworth et al., 2020). In particular, the Rhyacian and Orosirian times has been recognized as a period of intense tectonic activity worldwide, when several diachronic collisions resulted on the amalgamation of the Columbia (Nuna) supercontinent (Zhao et al. 2002, 2004, Evans and Mitchel, 2011; Zhang et al., 2012; Meert and Santosh, 2017; Terentiev and Santosh, 2020; Bruno et al. 2021).

The Minas-Bahia orogeny (MBO) (Degler et al., 2018; Araújo et al., 2021; Bruno et al., 2021, Grochowski et al., 2021; Kuchenbecker and Barbuena, 2023), also known as Rhyacian-Orosirian São Francisco-Congo Orogeny (Baldim and Oliveira 2016, 2021), and formerly known as Trans-Amazonian cycle (Hurley et al. 1967, Almeida et al., 2000), represent a compressive event that juxtaposed Archean crustal fragments against Siderian-Rhyacian intraoceanic and continental arcs, producing the São Francisco(SF)-Congo paleocontinent at the end of the collisional phase (Ledru et al., 1994; Noce et al., 2007; Silva et al., 2002, 2016; Barbosa and Sabaté, 2004; Heilbron et al., 2010, 217; Oliveira et al. 2010; Ruggiero and Oliveira 2010; Peucat et al., 2011; Cruz et al., 2016; Teixeira et al., 2017; Degler et al., 2018, Bersan et al., 2020; Bruno et al., 2020, 2021; Araújo et al., 2021; Baldim and Oliveira 2016, 2021, Grochowski et al., 2021, Kuchenbecker and Barbuena, 2023).

A long time after the stabilization, during the Ediacaran-Cambrian boundary, the SF-Congo paleocontinent experienced new collisions (*i.e.*: the Brasiliano orogeny) that resulted in the cratonization of the ancient Archean-Paleoproterozoic crust and the formation of the surrounded Neoproterozoic orogenic systems (Brito-Neves and Fuck 2013, Almeida et al. 2000, Alkmim et al. 2001, Brito Neves et al., 2021). The Araçuaí orogen (Pedrosa Soares et al., 2001), where this study occurs, is one of those products (Fig. 4.1). Thus, after the Neoproterozoic collision, the São Francisco craton, and its African greater part, the Congo craton, was then stabilized, preserving the records of the MBO in its interior, or reworked inside the Neoproterozoic marginal belts (Fig. 4.1).

The Buerarema complex, object of investigation in this study, is a Rhyacian geological unit located in the Eastern Bahia orogenic domain, which is one of the segments of the SF craton where the rocks related to the MBO outcrops (Fig. 4.1) (Barbosa and Barbosa 2017). The Buerarema complex occur as an NNE-SSW unit in the southern region of the Eastern Bahia orogenic domain, with the northern region inserted into the SF craton and (herein interpreted) with a continuation toward the interior of the Araçuaí belt (*i.e.* the external part of the Neoproterozoic Araçuaí orogen-Pedrosa Soares et al., 2001). In that case, the peace of the Buerarema complex within the Araçuaí belt represent a Paleoproterozoic unit of the SF-Congo paleocontinent that was reworked by the Neoproterozoic compressive deformation.

Fig. 4.1. Schematic illustration of the São Francisco craton highlighting the Archean-Paleoproterozoic units into the cratonic domain or reworked within the Araçuaí-Ribeira orogen.

Fonte: elaborado pelo autor.

Based on the data available so far for the Buerarema complex (Silva et al., 2002, Pinho et al., 2011; Peucat et al., 2011), this unit has been interpreted as derived from a ca. 2.1 Ga pre-collisional moderately juvenile arc related to the same-age Juiz de Fora-Pocrane juvenile arc complex located in the southern region of the MBO and reworked within the Neoproterozoic Ribeira orogen (Silva et al., 2016; Degler et al., 2018; Araújo et al., 2021; Bruno et al., 2021) (Fig. 4.1). However, no information is available so far for the portion of the Buerarema complex inside the Araçuaí belt and the identification of such inliers into the Araçuaí orogen might disclose the still missing physical connection between the arcs of the northern and southern part of the MBO.

New robust petrographic, lithochemical, U-Pb zircon ages coupled with Lu-Hf analysis and Sm-Nd data is presented for the Buerarema complex in this study. The field-mapping of the focused area also revealed the presence of two other memorphosed igneous units intrusive in the Buerarema complex, herein named as: (i) granodioritic intrusion; and (ii) hig-K intrusions. Both units were investigated with the same analytical methods and their petrogenetic and tectonic significance were also interpreted. At the end, a geodynamic and tectonic evolution model for the southern region of the Eastern Bahia orogenic domain is presented.

4.4 Regional geology

Located at the northern region of the SF craton, the Easter Bahia orogenic domain represent the remnants products of the granulitic roots of a collisional orogen developed during the final stages of the MBO (Barbosa and Sabaté, 2004; Barbosa and Barbosa, 2017). In general terms, this region can be synthetized as composed of (Figs.4.1 and 4.2): (i) Gneisses and migmatites that represent fragments of Paleo-Mesoarchean microcontinents; (ii) Neoarchean (ca. 2.5 Ga) gneisses, migmatites and granulites related to continental and intraoceanic arcs systems accreted at the margins of the ancient microcontinents (Neoarchean compressive event). Examples includes the Caraíba arc in the northern region of the Eastern Bahia orogenic domain (Oliveira et al., 2010), the still poorly known Ibicaraí arc in the southern region, and the Salvador-Esplanada-Boquim belt near to the coastal region (Barbosa et al., 2018); (iii) a diverse set of Paleoproterozoic units related to the pre, syn- and post-collisional phases of the MBO.

The pre-collisional magmas produced at ca. 2.1 Ga in the Eastern Bahia orogenic domain are derived from intraoceanic or continental arcs. One example of a continental margin subduction is the ca. 2.2 to 2.1 Ga Rio Capim arc in the northern region of the SF craton, at the margin of the Uauá block (Fig. 4.1) (Baldim and Oliveira 2021). Examples of juvenile to moderately juvenile arcs includes (Fig. 4.2): (i) Rio Itapicuru arc, composed of a felsic mafic volcano-sedimentary association (U-Pb: 2.14 to 2.08 Ga; Nd TDM: 2.2 to 2.12; ENd(t): +2 to +4; Silva et al., 2001; Oliveira et al. 2010; Baldim and Oliveira 2021); (ii) Costeiro arc, still lacking of detailed studies, but

herein envisaged as arc-related based on the U-Pb crystallization age of ca 2.1 Ga from a granitic gneiss (SHRIMP, Silva et al., 2002) and on the Siderian mantle extraction age (TDM 2.3 Ga; Barbosa et al., 2018); and the (iii) Buerarema arc, object of this study.

4.4.1 The Buerarema arc

The Buerarema-São José complex (Dalton de Souza et al. 2003), herein named just as Buerarema complex, occur at the southern region of the SFC, close to the Itabuna city, in an NNE-SSW structural controlled trending that goes from the Atlantic coast towards the interior of the Araçuaí belt (Fig. 4.2). It is composed of calc-alkaline hornblende-biotite-orthogneisses of tonalitic, dioritic and granitic composition, calc-alkaline enderbitic-trondjhemitic orthogneisses and tholeiitic metagabbros. Based on lithochemical modeling, Pinho et al. (2011) presented the bulk-rock composition of these rocks, arguing the origin of the felsic granulites protoliths as a fractionated products from the mafic rocks (i.e.: the metagabbros).

Silva et al. (2002) presented two U-Pb (SRHIMP) zircon ages from the granulites of the Buerarema in the cratonic domain (sample LC50: 2092±6 Ma; sample LC51: 2131±5 Ma) and one age from a tonalitic gneiss located inside the Araçuaí belt (sample JM142a: 2124±10 Ma). However, the isotopic ratios and the zircon cathodoluminescence imagens were omitted by the authors at that time. Access to the original data was obtained and a revision of these three ages were carried out in this paper, which also present the complete geochronological information (see geochronological results below).

Peucat et al. (2011) obtained the same ca. 2.1 Ga crystallization age on granulites in the northern region of the Buerarema complex and performed Sm-Nd studies that indicate Archean mantle extraction ages (TDM: ca. 2.5-2.8 Ga) and moderately juvenile signatures (ENd(t): -2.0 to -3.1) compatible with the moderately arc-related nature of these rocks. Based on these data, and on comparison with contemporaneous arcs related to the MBO (Silva et al., 2016; Degler et al., 2018; Bruno et al., 2021), the Buerarema complex has been interpreted as product of an immature arc (i.e.: Buerarema arc).

Fig. 4.2. Regional map of the part of the Eastern Bahia orogenic domain highlighting the Archean-Paleoproterozoic units affected or produced during the Minas-Bahia orogeny.

Fonte: elaborado pelo autor com base no mapa geológico da Bahia (Dalton de Souza et al., 2003)

4.4.2 The syn- and post-collisional magmatism

A significant amount of high-K granitoids, some of them with adakitic-sanukitoid like composition, and alkaline syenitic intrusions have been described in the Eastern Bahia orogenic domain. Based on the diverse and diachronic set of U-Pb (SHRIMP, LA-ICPMS, TIMS) and Pb-Pb zircon ages, it is difficult to precise a temporal division between the pre, syn- and post collisional phases on the entire domain. Barbosa and Barbosa (2017) suggested an interval between 2.09 to 2.06 Ga for the syn- to late collisional plutons and the interval of ca. 2.05 to 2.04 Ga for the post-collisional magmatism, but with some magmas that probably indicates the extension of the plutonism to ca. 1.9 Ga. Based on the metamorphic ages interpreted from the zircon edges of some intrusions in the southern region of the Eastern Bahia orogenic domain, Peucat et al. (2011) estimates a peak of the high-grade granulitic collision metamorphism around ca. 2.08 Ga.

Close to focused are, at the western region of the Buerarema complex, the Pau Brasil and Anuri intrusions are examples of the collisional magmatism (Fig. 2). The Pau Brasil suite is composed of quartz-monzonitic porphyritic gneisses, charnockites, meta-tonalites and meta-granites with Pb-Pb zircon evaporation ages of 2.09-2.08 Ga, Nd T_{DM} at ca. 2.5 Ga and ENd (t=2.09 Ga) from -3.3 to -4.0 (Correa Gomes and Oliveira 2002). The Anuri syenite, correspond to syenitic augen-gneisses related to an alkaline ultrapotassic magmatism with a U-Pb age of ca. 2.09 Ga, Nd T_{CHUR} at ca. 2.4 to 2.2 Ga and ENd (t=2.09 Ga) from -2 to -4 (Conceição et al., 2007).

4.5 Local geology and sampling

An area of ca. 60x40 km (Fig.4.3) was mapped (1:100.000 scale) using remotesensing analysis (satellite and aero-geophysical images) followed by field work and sampling of the critical rocks for analytical studies.

This area is structure-controlled by thrusts and shear zones indicative of a transpressive tectonic sense verging toward NW and NE (Fig.4.3). The NW-verging thrusts are Rhyacian-Orosirian structures related to the MBO that were later reactivated during the Neoproterozoic compressive event. In contrast, the NW-SE

shears and NE-verging thrusts represent Neoproterozoic structures developed during the formation of the Araçuaí belt.

Fig. 4.3. Geological map and schematic cross-sections of the focused area with location of the collected samples for analytical studies.

Fonte: elaborado pelo autor

The Buerarema complex in the mapped area comprises tonalitic to granodioritic gneisses, locally migmatized and commonly with mafic levels of amphibolite and botitite parallel to the regional foliation. The mapping also revealed the presence of not catalogued intrusions that were also are focus on this paper (Fig.4.3): (i) one intrusion composed of foliated meta-granodiorite (i.e: the granodioritic intrusion); and (ii) high-K meta-granitoids or augen-gneisses (le.: the high-K intrusions).

Expressive A-Type granitic plutons (Victoria et al., 2022) and Cryogenian syenites (Rosa et al., 2007), both related to the development of Neoproterozoic intracontinental rifts, also occurs in the region. Metamorphosed and deformed Neoproterozoic basins and the recent Cenozoic detrital covers complete the lithostratigraphic units of the mapped area (Fig.4.3).

4.6 Methods

4.6.1 Petrography and lithochemistry

After a detailed macroscopic description in field, the petrographic characterization of the rocks related to the Buerarema complex, and granodioritic and high-K intrusions, was conducted using seventeen thin sections. A summary of the most diagnostic macroscopic and microscopic observations is presented in supplementary file 1.

Twenty-one lithochemical analyses were performed on bulk-rock samples (see sample location in Fig. 4.2) and the results are presented in supplementary file 2. From those, nineteen are new data from the Buerarema complex and related intrusions, while two samples of high-K granitoids (JM144 and JM147b) were compiled from the geochemical report (Teixeira 2006) of the regional geological map (Itapetinga-Canavieiras map-1:250.000; Moraes Filho and Lima 2007). All the collected samples for lithochemical study were fresh rocks, free from weathering, veins, fractures and heterogenous discontinuities that could compromise the original composition of the rock. After crushing and grinding at the preparation laboratory of the Geoscience Institute of the Federal University of Minas Gerais, Brazil (SEPURA/CPMTC Research Center), the bulk-rock geochemical analyses were performed by the SGS-GEOSOL laboratory (Minas Gerais State, Brazil). The method used to detect the major-oxide elements was the X-ray Fluorescence (XRF), after melting with lithium tetraborate.

Inductively Coupled Plasma Mass Spectrometry (ICPMS-95A) was used to determine the trace elements, while the Rare Earth Elements (REE) were obtained using an Ion Mobility Spectrometry (IMS-95A), after melting with lithium metaborate. The software GCDKit6.00TM (Janousek et al., 2006) was used to process the data and generate the diagrams.

4.6.2 Geochronology

4.6.2.1 U-Pb (SHRIMP) analyses

A geochronological review of the Archean-Paleoproterozoic basement of the Eastern Bahia orogenic domain, at the northern region of the São Francisco craton (Fig. 4.2), was presented by Silva et al. (2002). However, isotopic ratios and zircon images were omitted in that occasion. Access was obtained to the data from three dated samples corresponding to the Buerarema complex (LC50, LC51 and JM142a) and the recalculated ages, together with the cathodoluminescence zircon imagens and the isotopic ratios, are presented in this study (supplementary file 3).

The zircon crystals were dated using a Sensitive High-Resolution Ion Microprobe (SHRIMP) of the Research Scholl of Earth Sciences, Australian National University. A that time, the standards used to validate the data were the AS3, which gives the 207 Pb/ 206 Pb crystallization age of 1099±0.5 Ma (Paces and Miller, 1993), and the Sri Lanka (CZ3; 572 ± 0.4 Ma; Claoué-Long et al., 1995). The location of the samples is presented in the regional map (Fig. 4.2) and a synthesis of its main characteristics is available in table 4.1.

After the mount preparation, zircon crystals of each sample were analyzed using a Scanning Electron Microscopy (SEM) aiming to obtain the cathodoluminescence images that were useful to verify the zircon morphology and internal structure, allowing to select the best local for positioning the laser spot (diameter of 25µm). The errors reported for each isotopic ratios are 1-sigma and error in standard calibration was 0.17%. The ²³⁵U value was calculated using the natural abundance (²³⁸U/137.88) and the software ISOPLOT (Ludwig, 2008) was used to generate the Wetherill diagrams that provide the crystallization ages (supplementary file 3).

4.6.2.2 U-Pb (LA-ICP-MS) analyses

U-Pb analyses were also conducted using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) in zircons extracted from one sample representative of the Buerarema complex in the focused area (sample AV072agranodioritic gneiss), and two samples representative of the granodioritic intrusion (sample D017-foliated meta-granodiorite) and the high-K intrusion (sample AV173augen gneiss). The isotopic results are presented in supplementary file 3 and a synthesis of all U-Pb ages presented in this study is available in table 4.1.

Table 4.1. Synthesis of the U-Pb dated samples presented in this study. *Ages presented in Silva et al. (2002) but recalculated in this study; ¹Based on the regional geological map of the Bahia state (Dalton de Souza et al., 2003); ²This study; ³Based on interpretation from Silva et al. (2002, 2016), Degler et al. (2018) and this study.

Sample	Rock	Map unit	Tectonic entity ³	Lat. (°)	Long. (°)	U-Pb method
LC51*	Enderbitic gneiss	São José complex ¹	Buerarema arc (São Francisco craton)	-14.5170	-39.1590	SHRIMP
LC50 [*]	Enderbitic gneiss	Buerarema complex ¹	Buerarema arc (São Francisco craton)	-14.7469	-39.1076	SHRIMP
JM142a*	Tonalitic gneiss	Buerarema complex ¹	Buerarema arc (São Francisco craton)	-16.3975	-39.5693	SHRIMP
AV072a	Granodioritic gneiss	Buerarema complex ²	Buerarema arc (Araçuaí belt)	-15.9526	-39.5589	LA- ICPMS
D017	Meta- granodiorite	meta- granodiorite ²	Syn-collisional intrusion (Araçuaí belt)	-15.8764	-39.6616	LA- ICPMS
AV173	High-K augen gneiss	High-K granitoids²	Post-collisional intrusion (Araçuaí belt)	-15.9842	-39.7826	LA- ICPMS

Fonte: elaborado pelo autor

All samples were prepared at the laboratory of the Geoscience Institute of the Federal University of Minas Gerais, Brazil (SEPURA/CPMTC Research Center), following the process of crushing, grinding, sieving and Frantz magnetic separation. After that, the zircon grains were carefully hand-selected using a magnifying binocular microscope and then mounted in epoxy resin (25 mm wide and 5 mm thick), which were later polished and metalized with graphite.

Zircon grains were imaged by a SEM using the JEOL-6510 machine of the isotopic geochemistry laboratory of the Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil. The analyses provided the back-scattered electron and the

cathodoluminescence images used to study the crystal morphology and internal structures that guided the local for positioning the laser spot.

The isotopic data were measured by using a Thermo-Fisher Element II sector field attached to a CETAC LSX-231 G2 + (=213nm) Nd: YAG laser, with a microprobe spot diameter of 30 μ m. The reduction software GLITTER (Van Achterberg et al., 2001) was used to calculate the isotope ratios, and the ²³⁵U value was calculated using the natural abundance (²³⁸U/137.88). The standards GJ-1 (ca. 609 Ma, Jackson et al, 2004) and Blue Berry (ca. 560 Ma; Santos et al., 2017) were used to control the data (see results in supplementary file 3). The results were later corrected and reduced according to the calculation routine of Gerdes and Zeh (2006) and the software ISOPLOTTM (Ludwig, 2008) was used to generate the Wetherill diagrams.

4.6.3 Lu-Hf analyses

In situ zircon Lu-Hf-isotope analyses were performed in the three LA-ICPMS dated samples. Always as possible, it was preferred positioned the Lu-Hf spot at the same local used for the U-Pb. In the cases where it was not possible, a similar domain observed on the cathodoluminescence images were carefully selected. To avoid inaccurate data, only concordant crystals (95% to 105%) of the U-Pb data were used for the isotopic calculation and interpretation.

The analyses were conducted at the isotopic geochemistry laboratory of the UFOP, in a Thermo-Finnigan Neptune Plus multicollector ICP-MS coupled to a Photon-Machine laser system that delivers a beam of 193 nm UV light from a frequency-quintupled Nd:YAG laser. The microprobe spot operated with a diameter of 50 μ m, fluence of 11.22, repetition rate of 5 Hz, and 55% of laser output. Nitrogen was introduced into the Ar sample carrier gas via an Aridus nebulisation system. Results of the obtained data are presented in supplementary file 4.

The quality of the results was controlled using five zircon standards: (i) Blue Berry (176 Hf/ 177 Hf: 0.281674 ± 0.0000028; Santos et al., 2017), (ii) Mudtank (176 Hf/ 177 Hf: 0.282507 ± 0.000006; Woodhead and Hergt, 2005); (iii) GJ-1 (176 Hf/ 177 Hf: 0.2820000 ± 0.000005; Morel et al., 2008); and (iv) Temora (176 Hf/ 177 Hf: 0.282680 ± 0.000031; Wu et al., 2006). Based on these values and the obtained it is possible to affirm that both are in good agreement with the expected values (supplementary file 4).
The EHf values were calculated using the Bouvier et al. (2008) chondritic values (176 Hf/ 177 Hf: 0.282785; 176 Lu/ 177 Hf: 0.0336) and the 206 Pb/ 238 U LA-ICP-MS U-Pb ages previously obtained for each analyzed spot. The model ages were calculated based on a depleted mantle source using the present-day ratios of 176 Hf/ 177 Hf: 0.283294 and 176 Lu/ 177 Hf: 0.03933 (Blichert-Toft and Puchtel, 2010). The λ decay constant used for 176 Lu was of 1.867 X 10⁻¹¹ (Söderlund et al., 2004).

4.6.4 Sm-Nd analyses

Thirteen samples representative of the studied units were collected for Sm-Nd analyses, which were conducted at the Geochronology Laboratory of the Brasilia University (UnB), Brazil. The results are available in supplementary file 5.

First, each rock was dissolved in a HF-HNO₃ mixture in high-pressure Teflon vessels, and second a ¹⁵⁰Nd-¹⁴⁹Sm tracer was added to determine the Nd and Sm concentrations. REE elements were then purified by cation exchange chromatography, and Sm and Nd were subsequently separated following the procedure of Gioia and Pimentel (2000). Sm and Nd analyses used a double filament assembly in a Thermoscientific Triton Plus mass spectrometer operating in static mode. The Sm and Nd concentrations and the ¹⁴⁷Sm/¹⁴⁴Nd ratios have accuracy of 0.5% that corresponds to an \pm 0.5 average error on the initial ENd values of based on repeated measurements of the JNdi-1 standard, with a long-term (year-round) average during the period of analysis of ¹⁴³Nd/¹⁴⁴Nd = 0.512230 \pm 0.000006.

4.7. Results

4.7.1 Field and petrographic data

4.7.1.1 Buerarema complex

The outcrops of the Buerarema complex are usually heterogenous, composed of orthogneisses and foliated granitoids in association with metamafic rocks (mostly amphibolites and biotitites) that normally occurs as levels of variable thickness with sharp and abrupt contacts. Recently, Victoria et al. (2022) studied those mafic rocks and their Sm-Nd isotopic signatures, together with lithochemical and structural fieldrelations, suggest that they represent injections of anorogenic OIB-like mafic dyke swarm intrusive in the rocks of the Buerarema complex during the Early Tonian rift phase of the SF-Congo paleocontinent. Later, after the Ediacaran-Cambrian compressive event, all these rocks were deformed and the mafic dykes were parallelized to the Neoproterozoic regional foliation in high strain zones, which also contains mylonites, transposition zones and several styles of folds, including intrafolial and isoclinals (Fig. 4.4a-d). Locally, migmatites also occur.

Fig. 4.4. Outcrops and respective explanatory illustration of the Buerarema complex (a-d) and macroscopic (e) and microscopic (f, g) detail of the dated sample (AV072a).

Fonte: elaborado pelo autor

The orthogneisses and the foliated granitoids of the Buerarema complex tend to be light gray, inequigranular, medium to coarse-grained, with mafic minerals lower than 20% (Fig. 4.4e). Thin section analysis shows that they are granolepidoblastic, essentially quartz-feldspatic, with plagioclase prevailing on the K-feldspar in modal content. Biotite is the mafic mineral, muscovite is occasional, and both are oriented along the foliation (Fig. 4.4f, g). Sericite, epidote, and carbonate are secondary minerals, and titanite, allanite, apatite, zircon, and iron-oxides minerals occur as accessories phases (supplementary file 1).

4.7.1.2 Granodioritic intrusion

The mapping led to the recognition of a new granodioritic body intrusive in the Buerarema complex (Fig. 4.3), outcropping as large and compact massif (Fig. 4.5a) composed of a dark-grayish foliated biotite-granodiorite. It is commonly equigranular, medium-grained, but inequigranular types, with sparse subeuhedral feldspar up to 1.0 cm, locally occur (Fig. 4.5b). The essential mineral assemblage verified in the dated sample (D017) is essentially composed of plagioclase, quartz, and minor K-feldspar. Hornblende and biotite are the mafic minerals. Epidote is the main secondary and occur as saussurite in plagioclase or as isolated crystals in biotite clusters. Titanite, zircon and iron-oxide minerals are the accessories phases. The granolepidoblastic fabric, together with the sigmoidal foliation and presence of myrmekites are the main microstructures.

4.7.1.3 High-K intrusions

Field mapping in the studied area also revealed the presence of not previous catalogued rocks with abundant K-feldspar euhedral to subeuhedral crystals, occurring as intrusive bodies in the orthogneiss of the Buerarema complex (Fig. 4.5f). High-K granitoids were also identified as neossomatic phases in rare migmatites of the Buerarema complex but they don't present euhedral to subeuhedral crystals (Fig. 4.5g). The content and size of the K-feldspar are variable depending on the outcrop but usually the (meta)-granitoids are equigranular, coarse grained and full of the subeuhedral centimetric K-feldspar crystals. More rarely, megaporphyritic granitoids extremely rich in pinkish K-feldspar that reaches 5cm also occur (Fig. 4.5h). In cases where those rocks were strongly affected by the Neoproterozoic deformation, they occur as megaporphyritc mylonites (high-K augen gneisses; Fig. 4. 5i).

The dated sample (AV173) is a high-K augen gneiss composed of a biotite-rich fine-grained matrix and centimetric pinkish sigmoidal porphyroclasts (Fig. 4.5j). Besides the considerable amount of K-feldspar (orthoclase), quartz and biotite are the

essential minerals that compounds the fine-grained matrix (Fig. 5k, I). Sericite, epidote, and trace content of carbonate occur as secondary minerals. Titanite and apatite are the accessories phases (supplementary file 1).

Fig. 4.5. New mapped intrusive units of the Buerarema complex. Aspects of the metagranodiorite (a, b) and microscopic detail of the dated sample (D017; c to e). Aspects of the undeformed high-K granitoids (f, g) and highly deformed granitoids in shear zones (augen gneiss), with macroscopic detail (i) and microscopic detail of the dated sample (AV173; j to l).

Fonte: elaborado pelo autor

4.7.2 Lithochemistry

Twenty-one geochemical analyses were conducted on the meta-granitoids and orthogneisses in the focused area (see sample location in Fig. 4.3 and results in supplementary file 2). Eleven samples are from the Buerarema complex, two from the granodioritic intrusion and eight from the high-K rocks, which includes the porphyritic granitoids, augen-gneisses and the neossome migmatites. The results were analyzed in tables using various geochemical parameters (supplementary file 2) and then plotted in geochemical diagrams.

The chemical signatures obtained for the Buerarema complex were compared to data available in the northern region of the unit (Pinho et al., 2011), while the signatures related to the granodioritic intrusion and the high-K intrusions were compared to possibly regional correlatives (Pau Brasil intrusion -Teixeira 2006, Moraes Filho and Lima 2007; and the Anuri syenite-Conceição et al., 2007).

4.7.2.1 Buerarema complex

The orthogneisses and meta-granitoids of the Buerarema complex in the studies area are characterized by a wide range of silica (SiO₂: 63.3-77.3 wt.%), low content of ferromagnesian oxides (FeOtotal+MgO+MnO+TiO₂ from 1.6 to 8.2 wt.%) and mg# number (MgO/(MgO+FeOtotal) mol.) from 0.26 to 0.45. They have moderate CaO (1.4 to 4.5 wt.%) and the elevate content of Na₂O (from 3.7 to 6.3 wt.%) regard K₂O (from 0.2 to 3.0 wt.%), which leads to the high N/K ratio (from 1.4 to 25.6; supplementary file 2). It is prevailing the granitic-granodioritic composition, but tonalitic signatures also occur (De Ia Roche et al., 1980; Fig. 4.6a), and the rocks varies from slightly metaluminous to slightly peraluminous (0.9 < Aluminum Saturation Index – ASI < 1.1; Fig. 4.6b). The low content of K₂O indicates derivation from calc-alkaline magmas on the K₂O vs. SiO₂ and on the AFM diagrams (Irvine and Baragar, 1971; Perecillo and Taylor 1979; Fig. 4.6c, d). In the MALI index vs. ASI diagram (Frost et al. 2001) they belong to the calcic to calc-alkaline magmatic series (Fig. 4.6e).

Considering the Large Ion Lithophile Elements (LILE), the rocks are characterized by a wide variation of Ba (78 to 2090, with an average of 931 ppm) and Sr (171 to 1238 ppm, with an average of 531 ppm), and the low Rb (21 to 86 ppm). Considering the High Field Strength Elements (HFSE), it stands out the low content of

Nb (2 to 21 ppm), Ta (0 to 2 ppm), and the low to moderate Y (3 to 24 ppm) and Zr (88 – 300 ppm). The Sr/Y ratio is high (27-186) and the signatures in multielement diagrams are characterized by the negative anomalies of Nb, P and Ti (Fig. 4.7a). Considering the Rare Earth Elements (REE), the low content of Yb (<1.5, with only one outlier of 1.8 - supplementary file 1) indicates lower content of heavy REE and low to moderate fractionation (La_N/Yb_N : 10 to 51). Except for one positive outlier (Fig. 4.7b), no expressive europium anomalies (Eu/Eu*: 0.6 to 1.3).

Fig. 4.6. Geochemical classification diagrams with plots of the samples of the Buerarema complex and related intrusive units: a) R1-R2 diagram (De la Roche et al., 1980); b) A/NK vs. ASI diagram (Frost et al., 2001); c) K₂O vs. SiO₂ diagram (Perecillo and Taylor, 1979); d) AFM triangular diagram (Irvine and Baragar, 1971); e) MALI index vs. SiO₂ (Frost et al., 2001).

Fonte: elaborado pelo autor

The major oxides and trace multielement signatures of the Buerarema complex in the studied area (Figs. 4.2 and 4.3) were also compared to the signatures from granulites of the Buerarema complex inside the cratonic domain (Pinho et al., 2011). In both major-oxide elements (Fig. 4.6) and multi-elements trace diagrams (Figs. 4.7a, b) it is possible to observe a great geochemical concordance among these rocks, compatible with tonalite-granodioritic calc-alkaline magmas deficient in Nb, P and Ti, and fractioned in REE.

Fonte: elaborado pelo autor

The samples of the granodioritic intrusion are intermediate to acid (SiO₂: 61-66 wt.%), with high ferromagnesian oxides minerals (FeOtotal+MgO+MnO+TiO₂ :7.0-11 wt.%) and mg# varying from 0.28 to 0.38 (supplementary file 2). They are enriched in CaO (1.7-4.4 wt%) and more sodic (Na₂O: 4.4-4.7 wt%) than potassic (K₂O: 1.9-3.0 wt%), which leads to high N/K ratios (1.6 and 2.2). Although petrographic analysis points out to meta-granodiorite (supplementary 1; Fig 4.5c to e), the composition of the analyzed samples differs in the R1-R2 diagram (De la Roche et al., 1980), plotting as tonalite and granitic rocks (Fig. 4.6a). The samples are metaluminous to peraluminous (0.9 < ASI < 1.2; Fig. 4.6b) and belong to the calc-alkaline series on AFM diagram (Irvine and Baragar, 1971; Fig. 4.6c), being also high-K calc-alkaline considering the K₂O vs. SiO₂ diagram (Perecillo and Taylor 1979; Fig. 4.6d). In the MALI index vs. ASI diagram (Frost et al. 2001) these rocks are derived from calc-alkalic and alkalic-calcic magmas (Fig. 4.6e).

The granodioritic intrusion is characterized by the high content of Ba (1665-1992 ppm), Sr (431-645 ppm) and Rb (97-141 ppm), and moderate to elevate Y (22-43), implying in low Sr/Y ratio (<19). Regarding the compatibles-transitional elements, enrichment in V (54ppm) and Ni (15ppm) was observed in one sample. Incompatible trace elements are higher compared to the Buerarema complex, and the multi-element signatures are also characterized by the negative anomalies in Nb and Ti (Fig. 4.7c). There is an enrichment in heavy REE, which can be verified by the high Yb (1.8-3.6 ppm). The curves show low fractionation (La_N/Yb_N < 25), and the europium anomalies are slightly negative (Eu/Eu*:0.6-0.9) (Fig. 4.7d).

Although the meta-granites and the porphyritic gneisses of the Pau Brasil intrusion tend to be more potassic (Fig. 4.6c), there is a great concordance among them and the samples of the granodioritic intrusion (Figs. 4.6; 4.7c and d).

4.7.2.3 High-K granitoids

Porphyritic high-K granitoids (Fig. 4.5h), high-K augen-gneisses (Fig. 4.5i, f) and the high-K neossomatic phases in the migmatites of the Buerarema complex (Fig. 4.5g) were analyzed. The granitoids and gneisses have similar signatures, being intermediate to acid (SiO₂: 54 to 65 wt.%), enriched in ferromagnesian oxides (FeOtotal+MgO+MnO+TiO₂: 5.0 to 15 wt.%) and with mg# varying from 0.29 to 0.42. They are more potassic (K₂O: 3.2 to 5.7 wt.%) than sodic (Na₂O: 3.0 to 4.3 wt.%), with

N/K ratios of 0.6 to 1.0. In contrast, the neossomatic high-K rocks are silica-rich (73 wt.%), poor in ferromagnesian oxides (FeOtotal+MgO+MnO+TiO₂: 2.0 wt.%) and with mg# < 0.32. They are more potassic (K₂O: 5.8 to 6.1 wt.%) than sodic (Na₂O: 3.0%), with N/K ratio of 0.5.

The intrusive high-K granitoids and gneisses have monzonitic to quartzmonzonitic composition while the neossome show granitic composition (Fig. 4.6a). The first varies from metaluminous to peraluminous (0.9 < ASI < 1.1) and the second is peraluminous (1.03 > ASI > 1.1) (Fig. 4.6b). They all belong to the shoshonitic magmatic series (Fig. 4.6c) and are alkalic-calcic or alkalic (Fig.4.6d).

Considering the trace elements, the high-K granitoids and gneisses are enriched in incompatibles, with elevate content in Ba (1713 to 4969 ppm), Rb (75-219 ppm), Sr (279 to 1769 ppm), Y (29 to 82 ppm) and Zr (307 to 1564 ppm), while the high-K neossome tend to be more depleted in those elements (Fig. 4.7e). Regarding the compatibles-transitional elements, four from the six samples have high V (52 to 82 ppm) and Ni (17 to 21 ppm), contrasting with the neossomatic rocks that are depleted in those elements (V<25ppm and Ni<9ppm). The high-K granitoids are enriched in all REE, being the signatures characterized by the elevate values of heavy REE (*e.g.*: Yb: 1.6 to 4.0), the fractionated character of the curves (La_N/Yb_N: 35 to 92) and the slightly negative europium anomalies (Eu/Eu*: 0.6 to 0.97). In contrast, the neossomatic rocks have lower content of all REE, with a much lesser content of heavy REE (*e.g.*: Yb: 0.4). The curves indicate more fractionation (La_N/Yb_N: 57 to 101) and the europium anomalies are variable (Eu/Eu*: 0.8 to 1.2) (Fig. 4.7f).

The chemical signatures of the high-K granitoids were compared to the metasyenites of the Anuri intrusion (Conceição et al., 2007) and there is a great concordance among them, especially considering the trace element signatures (4.7e, f).

4.7.3 U-Pb (SHRIMP)

To complement the information about the Buerarema complex in a broader scenario, this study presents the unpublished U-Pb (SHRIMP) isotopic ratios from three samples dated by Silva et al. (2002). Two samples (LC50, LC51) are located inside cratonic domain and one (JM142a) in the Araçuaí belt, further south from the mapped area in this study (Fig. 4.2). Aiming to improve the ages of these rocks,

recalculations were made in cases when the lower intercept of the discordia indicated ages with no geological validity. In those cases, the lower intercept was forced to zero and the calculated age for the upper intercept was slightly different from the original (Fig. 4.8).

4.7.3.1 Sample LC50

Sample LH50 is a grayish to greenish granulitic orthogneiss with a thin banding marked by melanocratic amphibole-pyroxene rich levels interlayered with massive and strongly recrystallized quartz-feldspatic leucocratic levels. Petrographic analyses show essential mineral assemblage composed of clino and orthopyroxene, biotite, quartz, and plagioclase.

Cathodoluminescence images on zircons grains show a population of euhedral crystals, mostly isometric (1:1) to short prisms (2:1) and with oscillatory zoning (Fig. 4.8a). No evidence of metamorphic overgrowth or internal irregularity was observed, which, together with the high 232 Th/ 238 U ratio (0.34 to 0.75; supplementary file 3), confirm the igneous origin of the zircons. Ten crystals were analyzed, and they yield a concordia crystallization age of 2091± 3 Ma (1 σ ; MSWD = 1.7; Fig. 4.8b).

4.7.3.2 Sample LC51

Sample LC51 is a dark gray, fine-grained, ultramylonitic enderbitic orthogneiss. Petrographic analyses show essential mineral assemblage composed of reliquiar clino and orthopyroxene, hornblende, biotite, quartz, and feldspar. Hornblende and biotite are secondary minerals derived from the metamorphism of the pyroxene. The microstructure is granoblastic and ultramylonitic, composed of millimetric levels of polygonal quartz and plagioclase, interlayered with levels of mafic minerals oriented along the foliation.

Cathodoluminescence images show a zircon population composed of long pyramidal prisms (3:1 to 4:1) characterized by an internal zoned core surrounded by a high luminescent rim, which is discrete in some crystals (Fig. 4.8b) or expressive in others (Fig. 4.8c). The laser spots were positioned on the interior of the crystals to obtain the crystallization age, while the spots positioned in the high luminescent edges objected the investigation of the metamorphic age. Five spots in the zircon cores

indicated a discordia line with upper intercept at 2131 ± 5 Ma (1 σ ; MSWD = 0.58; Fig. 4.8b) and four spots in the rims yield an upper intercept age at 2067 ± 9 Ma (1 σ ; MSWD = 1.8; Fig. 4.8c).

Fonte: elaborado pelo autor

Sample JM142a is a tonalitic orthogneiss that correspond to the paleossome of a metatexite with neossomatic leucocratic quartz-feldspatic veins. Petrographic analyses show essential mineral assemblage composed of hornblende, biotite, quartz, and plagioclase. The microstructure is granoblastic and the mafic minerals are oriented along the foliation.

Cathodoluminescence images of the extracted zircons show a population of prevailing euhedral to subeuhedral pyramidal long prisms (3:10 to 5:1), but also with short prisms (2:1; Fig. 4.8d). They show strong oscillatory zoning and a discrete metamorphic overgrowth verified by the slightly high luminescent rim. Some crystals also show corroded features and rounded edges compatible with crystal consuming during a younger thermal event. Seven from the twelve spots were used to achieve a discordia line with an upper intercept at 2127 ± 5 Ma (1 σ ; MSWD = 1.3; Fig. 4.8d) and a lower intercept forced to zero.

4.7.4 U-Pb and Lu-Hf (LA-ICPMS)

One sample representative of the Buerarema complex (AV072a) and two from the related new mapped intrusions (D017 and AV173) were date in this study using the LA-ICPMS. The sample location is presented in table 4.1 and highlighted in the local map (Fig. 4.3) and the analytical results are in supplementary file 3. After collecting the U-Pb data, Lu-Hf analysis were also conducted with the spot positioned at the same location as the U-Pb (see results in supplementary file 4).

4.7.4.1 Sample AV072a

The zircon crystals extracted from the granodioritic gneiss (Fig. 4.4e) are brownish and translucent. Prevail euhedral long 3: 1 bipyramidal prisms, up to 200 to 300 µm but stubby 2:1 subhedral crystals also occur. Considering the internal features observed in cathodoluminescence images (Fig. 4.9a), these crystals are heterogenous and commonly zoned. Some exhibit a thin high luminescent rim indicative of metamorphic overgrowth. Few crystals also contain inclusions of an undiagnostic mineral (Fig. 4.9a). The Th/U ratios are relatively high (0.17 to 0.66) and compatible with igneous crystals, except for one sample with ratio < 0.1 (supplementary file 3). From the thirty-seven spots conducted this sample, twenty-nine were used to calculate a 207 Pb/ 206 Pb discordia age with an upper intercept at 2099 ± 14 (2 σ , MSWD = 0.41; Fig. 4.10a) and a lower intercept at 550 Ma ± 120 Ma. Although the enormous error, this lower intercept age suggests the influence of Neoproterozoic metamorphic event over the zircons.

Twenty-one spots on distinct zircon crystals were selected for Hf-isotope analysis. The obtained 176 Hf/ 177 Hf initial ratio (0.281347 to 0.281436; supplementary file 4) resulted in negative \mathcal{E} Hf(t) values (-0.5 to -4.6) and Hf TDM model from 2.4 Ga to 2.6 Ga (Fig. 4.11a, b).

4.7.4.2 Sample D017

The zircon crystals extracted from the meta-granodiorite (Fig. 4.5c) are colorless, translucent, euhedral, prismatic (3:1 to 5:1), sizing around 300 μ m to 600 μ m. Based on the internal characteristics observed in cathodoluminescence images, three types of zircons were identified: (i) crystals with a dark core surrounded by a homogeneous brighter rim; (ii) crystals with a vertical zoning; and (iii) homogeneous and non-zoned crystals, occasionally exhibiting a thin high luminescent border (Fig. 4.9b). All the analyzed zircos have high Th/U ratios (0.86 to 2.91), which is consistent to igneous derivation. Twenty-four spots were conducted this sample and twenty-one were used to calculate a ²⁰⁷Pb/²⁰⁶Pb crystallization concordia age at 2067±5 (2 σ ; MSWD = 2.9; Fig. 4.10b).

Twenty concordant spots were later selected for the Hf analyses. The obtained 176 Hf/ 177 Hf initial ratio (0.281266 to 0.281335; supplementary file 4) resulted in negative EHf(t) values (-4.5 to -7.0) and Hf TDM model from 2.6 Ga to 2.7 Ga (Fig. 4.11a, b).

4.7.4.3 Sample AV173

The zircons extracted from the high-K augen gneiss (Fig. 4.5j) are brownish to yellowish, cloudy, with an opaque dark core. Most crystals are short and stubby subhedral prisms (2:1), up to 200 μ m but large (400 μ m) and elongated prisms (3:1) also occurs. In cathodoluminescence images (Fig 4.9c), the short prims are free from zonation and inclusions and exhibit a dark homogeneous core surrounded by an

irregular high luminescent rim. The larger crystals exhibit a spongy texture in some region at the nuclei. The Th/U ratios are high, ranging from 0.30 to 0.73 (supplementary file 2). Fifty-one spots were conducted this sample and twenty-eight were used to calculate a 207 Pb/ 206 Pb discordia age with an upper intercept crystallization age of 2025±7 (2 σ ; MSWD = 0.99) (Fig. 4.10c). The lower intercept was forced to zero.

Twenty-two concordant spots were later selected for Hf analyses. The obtained 176 Hf/ 177 Hf initial ratio (0.281082 to 0.281291; supplementary file 4) resulted in negative EHf(t) values (-7 to -14) and Hf TDM model from 2.7 Ga to 3.1 Ga (Fig. 4.11a, b).

Fonte: elaborado pelo autor

Fig. 4.10. U-Pb diagrams with the crystallization crystallization ages obtained from the representative samples of the Buerarema complex and related intrusions in the focused area: a) granodioritic orthogneiss (AV072a); b) Meta-granodiorite (D017); and c) High-K augen gneiss (AV173).

Fonte: elaborado pelo autor

Fig. 4.11. Isotopic Lu-Hf and Sm-Nd data obtained for the analyzed samples in the study area. a) General EHf(t) diagram for zircon samples; b) Detailed EHf(t) diagram emphasizing the distribution of the samples at their time of crystallization; c) ENd(t) signatures obtained for the Buerarema complex in coparisson to the Neoarchean basement and the signature of the Buerarema complex inside the cratonic domain; d) ENd(t) diagrams for the granodioritic intrusion and the high-K granitoids, both in comparison to the contemporaneous regional intrusions.

Fonte: elaborado pelo autor

Sm-Nd analyses were conducted on thirteen-rock samples, nine from the Burarema complex, two from the granodioritic intrusion and two representative of the high-K intrusions (supplementary file 5). According to the zircon U-Pb ages obtained for these units (Fig. 4.10), the initial age for the isotopic decay was taken as 2.1 Ga, 2.07 and 2.03 Ga, respectively. The Sm-Nd results are: (i) Buerarema complex (Fig. 4.11c) with Nd TDM model age from 2.4 Ga to 2.7 Ga and $\mathcal{E}Nd(t)$ from -1.6 to -4.6; (ii) granodioritic intrusion (Fig. 4.11d) with Nd TDM model ages of ca. 2.5 Ga and $\mathcal{E}Nd(t)$ from -2.7 to -2.9; and (iii) high-K granitoids (Fig. 4.11d), with one sample representative of the intrusive granitoids (Nd TDM: 2.4 Ga; $\mathcal{E}Nd(t)$: -2.4) and one sample representative of the granitic leucossome (Nd TDM. 2.4 Ga; $\mathcal{E}Nd(t)$: -2.6).

4.8 Discussions

4.8.1 The extension of the Buerarema complex toward the interior of the Araçuaí belt

As the gneisses and meta-granitoids of the northern region of the Araçuaí belt were not studied before, the first objective of this geological investigation was to test whether these rocks correspond to the continuation of the Buerarema complex described further north, in the cratonic domain (Figs 4.1 and 4.2). In that case, the connection between both domains as a unique unit is sustained by: (i) the lithochemical similarity observed on the rocks from both domains (Figs. 4.6 and 4.7); (ii) the fact that the crystallization age obtained for the granodioritic gneiss in the investigated area (AV072a: 2099±14; Fig. 4.10a) and the revised age calculated for the tonalitic gneiss further south (JM142a: 2127±5, Fig. 4.8d) are close to the ages found in the cratonic domain, which is given by the ages of the granulitic gneisses revised in this study (LC50: 2091±3 Ma; and LC51: 2131±5 Ma; Fig. 4.8b, c) and the crystallization ages at ca. 2.1 Ga ages presented in Peucat et al. (2011); and (iii) the similar isotopic Sm-Nd signatures (Fig. 4.11c) observed in the gneisses into the Araçuaí belt (Nd TDM: 2.4 Ga to 2.7 Ga; ENd(t):-1.6 to -4.6; this study) and in the cratonic domain (Nd TDM: 2.5 Ga to 2.8 Ga; ENd(t):-2.0 to -3.1; Peucat et al., 2011).

4.8.2 Petrogenesis of the Buerarema complex

The tonalitic-granodioritic composition observed for the rocks of the Buerarema complex on R1-R2 diagram (Fig. 4.6a), together with the Na-Ca enrichment, the low content of ferromagnesian oxides, the low to moderate fractionated patter in REE multielement diagram and variable europium anomalies (Fig. 4.7a, b) are lithochemical signatures compatible with derivation from TTGs magmas (Heilimo et al., 2010; Moyen and Martin, 2012; Laurent et al., 2014). The elevate content of normative albite and anortite on the feldspar triangle (O'Connor 165; Fig. 4.12a) corroborates with the Na-Ca enrichment typical of TTG's. Considering the REE signatures (Fig. 4.12b), the lower values of La/Yb_N and Yb_N in these rocks is also expected for intermediate or acid TTG magmas (Martin, 1986; Moyen and Martin 2012).

Fonte: elaborado pelo autor

Based on the major oxides, the rocks of the Buerarema complex also plots on the TTG field on the N/K-2A/CNK-2FMSB triangular diagram of Laurent et al. (2014) (Fig. 4.12c), excluding the possibility of derivation from magmas with sanukitoid, granitic or hybrid composition.

Pinho et al. (2011) detailed the Buerarema complex in the cratonic domain and described the presence of mafic enclaves into the tonalitic-trondhjemitic granulites. The authors used geochemical modeling to demonstrate the origin of the felsic protoliths by fractional crystallization from the mafic magmas. Although the hypothesis of TTG magmas derivation from the differentiation of the mantle tholeiitic sources faces some resistances (Moyen and Martin 2012), this mechanism can also be interpreted for the rocks in the Araçuai belt, although it is more difficult to identify the contemporaneous mafic rocks because this area was strongly affected by the mafic dyke swarm related to the intracontinental Tonian rift (Victoria et al., 2022) (Fig. 4.4). The hypothesis of a TTG melt derived from a mafic source (tending to low K mafic source) is also sustained by the plots of the Buerarema complex rocks on the source triangular diagram of Laurent et al. (2014) (Fig.4.12d).

4.8.3 The Buerarema complex and the pre-collisional magmatism

TTGs magmas can be generated in more than one geodynamic setting, including in continental or oceanic arcs (Moyen and Martin 2012). As the analyzed rocks of the Buerarema complex has affinity with calc-alkaline magmas characterized by low Nb-Ta-Ti anomalies (Fig. 4.7a), together with the magnesian character (Fig. 4.12e; Frost et al., 2001) and the volcanic-arc affinities on tectonic discriminant diagrams (Fig. 4.12f; Pearce et al., 1984), they probably were produced in arc-related environments.

In that case, based on the ages presented in this study (2091 ± 3 Ma, 2131 ± 5 Ma-Figs. 4.8b and c; 212 ± 5 -Fig. 4.8d; and 2099 ± 14 -Fig. 4.10a), together with the ages of ca. 2.1 Ga available in Peucat et al. (2011) and in Barbosa and Barbosa (2017), it is possible to constrain the interval of 2.19-2.10 Ga as the timing of the pre-collisional magmatism in this region.

The arc-related nature of the Buerarema complex was previously suggested by other authors that dealt with regional compilations (Silva et al., 2016; Degler et al., 2018; Bruno et al., 2021) but the details of such arc remained unknown. The EHf(t) (- 0.5 to -4.6; Fig. 4.11a and b) and the ENd(t) values (-1.6 to -4.6; Fig. 4.11c) presented in this study, together with the Nd-data available in the literature (ENd(t): -2.0 to -3.1; Peucat et al., 2011), points out to a moderately juvenile arc that could be related to an immature continental arc or to an intraoceanic arc with involvement of some felsic crust contamination.

The existence of an oceanic crust in the southern region of the Eastern Bahia orogenic domain is also reinforced by the presence of others contemporaneous arcrelated units found considering the entire orogenic systems related to the Minas-Bahia orogen, such as: (i) the intraoceanic Juiz de Fora-Pocrane arc complex (2.08 to 2.40 Ga; Noce et al., 2007; Heilbron et al., 2017; Degler et al., 2018; Araújo et al., 2021); (ii) the arc-related intrusions in the western Bahia orogenic domain (ca. 2.1 to 2.3 Ga; Cruz et al., 2016); (iii) the 2.12-2.23 Ga arc-related magmatism of the Rio Itapicuru sequence (Silva et al., 2001; Oliveira et al. 2010; Baldim and Oliveira 2021); and (iv) the Costeiro arc at the northern region of the Eastern Bahia orogenic domain (Figs. 4.1 and 4.2), which is still poorly studied but with similar pre-collisional age (2169 \pm 48 Ma; Silva et al., 2002) and with a Siderian mantle extraction age (Nd TDM 2.3 Ga; Barbosa et al., 2018) that may be a clue for an oceanic crust in this region. In fact, the presence of such diverse and well-spatialized juvenile to moderately juvenile arcs not only reinforce the presence of the Buerarema arc in the southern region of the Eastern Bahia orogenic domain, but also suggest the existence of a large oceanic crust at the margin of the Archean blocks before the pre-collisional stages of the Minas-Bahia orogeny.

4.8.4 The granodioritic intrusion and the syn-collisional magmatism

Identified for the first time in the focused region, the meta-granodiorite (Figs. 4.3 and 4.5a to e) possibly represent a stock intrusive in the Buerarema complex and the obtained crystallization age of 2067±5 Ma (Fig. 4.10b) is compatible with the syn-collisional magmatism in the Eastern Bahia orogenic domain (Peucat et al., 2011, Barbosa and Barbosa, 2017). Records of this collisional phase also can be identified in the zircon grains of the Buerarema complex, such as the case of the enderbitic gneiss in the cratonic domain, which contains heterogenous zircons with zoned magmatic nuclei crystallized at 2131±5 Ma, and overgrowth rims indicative of a tectono-thermal event at 2067±9 Ma (Fig. 4.8c).

Due to the spatial proximity (Fig. 4.2), the similar lithochemical signatures (Figs. 4.6; 4.7) and the similar crystallization age, the mapped granodioritic intrusion probably represent a magmatic correlative of the Pau Brasil suite (ca. 2.08-2.09 Ga; Pb-Pb zircon evaporation), which also has been interpreted as a syn-collisional product of the Minas-Bahia orogeny (Correa Gomes and Oliveira, 2002). The isotopic record of the granodiorite presented in this study (EHf(t): -1.6 to -7.0; ENd(t): -2.7) is also consistent with the singatures available for the Pau Brasil granitoids (ENd(t): -3.3 to -4.0; Correa Gomes and Oliveira, 2002) and the low to moderate negative values suggest derivation from moderately juvenile to evolved magma, which can be interpreted as related to the ending of the ca. 2.1 Ga subduction and the onset of the collisional orogen.

4.8.5 The high-K intrusions and the post-collisional magmatism

Also identified for the first time in the focused region, the high-K granitoids and gneisses (Figs.4.3 and 4.5f to I) are intrusive in the Buerarema complex and the obtained crystallization age of 2024±6 Ma (Fig. 4.10b) is compatible to the post-collisional magmatism observed in the Eastern Bahia orogenic domain (see Peucat et al., 2011, Barbosa and Barbosa, 2017 and references therein). Due to the spatial proximity (Fig. 4.2), and the same shoshonite-like affinities and signatures enriched in incompatible elements (Figs. 4.6 and 4.7), the high-K intrusions mapped in the Araçuaí belt probably represent a magmatic correlative of the Anuri syenitic intrusion observed in the cratonic domain (Fig. 4.2) and dated at ca. 2.09 (Conceição et al., 2007). This age, however, was obtained based on a discordia with only two zircons. Also, the presence of such ultrapotassic magmatism during the pre-collisional phase of the orogen is unlikely and it is easier to interpret those 2.09 Ga crystals as inherited and infer the ca. 2.03 Ga as the crystallization age for the high-K Anuri intrusion.

Not only by the age, but when compared to the ca. 2.07 syn-collisional intrusions, the ca. 2.03 Ga high-K granitoids show important differences considering their affinity with shoshonitic magmas (Fig. 4.6c) and the more evolved signatures on zircons (EHf(t): -7 to -14; Fig. 4.11a and b). This indicates the involvement of crustal material during the magmatic evolution, being possible two possibilities: (i) magma derived by the direct partial melting of a felsic crust in mature orogens; or (ii) magma generated by a high-K mantellic source but with a considerable involvement of felsic crust contamination during the ascent.

High-K granitoids related to a neossomatic phase were also observed in migmatites of the Buerarema complex (Fig. 4.5g). Such rocks are shoshonitic and show the same mantle extraction TDM ages (2.4 Ga) and almost equal ENd (t=2.03 Ga) values (-2.4 and -2.6) when compared to the high-K granitoids. However, considering the trace and the REE elements they are quite different, being the neossomatic rocks much more depleted (Fig. 4.7e and f). Explanations for the similar isotopic values and the different lithochemical signatures need a more detailed study, but this fact indicates the presence of distinct high-K rocks in the focused area. Although the crystallization age of the granitic leucossome is still lacking, it is less probable that it is related to the Neoproterozoic high-grade metamorphism in the Araçuaí belt, being more likely to infer that the high-K leucossomatic rocks are related to the metamorphic peak of the Minas-Bahia orogen. The high-K intrusions, dated at ca. 2.03Ga, however, are quite different from these rocks and must be related to the post-collisional phase of this orogen.

4.8.6 The nature of the syn- and post-collisional intrusions: Paleoproterozoic sanukitoids?

Sanukitoids have been described as products of an exotic Ba-Sr-rich magmatic suite formed during a syn- to post-collisional context. They also are characterized by the low Na₂O/K₂O ratios and uniform HREE patters, produced by melting of LILE and REE-metasomatized mantle (Heilimo et al., 2010; Laurent et al., 2014). They represent the transition between the Archean TTGs to modern calcalkaline granitoids and their production have been limited to the onset of subduction times, between ca. 2.5 to 3.0 Ga (Laurent et al., 2015).

However, recently, Bruno et al. (2020) argued the presence of ca. 2.1 Ga Rhyacian sanukitoids in the southern region of the SF craton, in the context of the development of the Mantiqueira arc during the Minas-Bahia orogeny.

In the focused area, the geochemical similarity between the granodioritic intrusion (ca. 2.06 Ga) and the high-K intrusions (ca. 2.03 Ga) with sanukitoids draws attention since they all are enriched in Ba (>1000 ppm), most samples are enriched in Sr (>400 ppm), and also in compatible-transitional elements (V>50 ppm and Ni>15ppm), which is indicative of the dual crustal-mantle enrichment typical of sanukitoid-like rocks (Laurent et al., 2014). The intrusions also are enriched in all

incompatible elements compared to the TTGs signatures of the Buerarema complex in multielement diagrams (Fig. 4.7) and they plot on the sanukitoids field in the discriminant diagram of Laurent et al. (2014) (Fig. 4.12c). In that case, based on the triangular source diagram, these intrusions probably derived from a high-K mafic source (Fig. 4.12d), which must be involved with crustal material at some point, as indicated by the evolved signatures in both Hf and Nd isotopic geochemistry (Fig. 4.11).

Thus, as the same as observed in the southern region of the Minas orogenic domain (Bruno et al., 2020), it also might be possible the existence of Rhyacian-Orosirian (2.06-2.03 Ga) sanukitoid-like rocks in the Eastern Bahia orogenic domain, and this reinforce the hypothesis of Bruno et al. (2020) that sanukitoid-like magmas are not restricted to the Meso-Neoarchean.

4.8.7 The timing of the Rhyacian-Orosirian magmatic episodes in the southern region of the Eastern Bahia orogenic domain

Aiming to constrains the tectonic episodes related to the Minas-Bahia orogeny in the southern region of the Eastern Bahia orogenic domain, all the zircon U-Pb and Pb-Pb evaporation geochronological data (Silva et al., 2002; Correa Gomes and Oliveira, 2002; Conceição et al., 2007; Peucat et al., 2011), including the revised U-Pb SHRIMP ages (Fig. 4.8) and the new U-Pb LA-ICPMS ages (Fig. 4.10), were compiled and presented in a chrono-tectonic diagram (Fig. 4.13).

The plot of the crystallization ages together with the metamorphic ages and the tectonic interpretation of each intrusion allow to establish the following observations: (i) the interval of ca. 2.10 to 2.19 Ga is assumed to be crystallization ages for the Buerarema complex and constrain the pre-collisional magmatism in ca. 90 Ma, which is a long interval for a continuous operation of an intraoceanic arc during the Paleoproterozoic times, when subductions were hotter and faster (Hawkesworth et al., 2020). Thus, it is more plausible to divide the pre-collisional magmatic record into two episodes separated by a gap of tectonic stability: the first pulse of arc related TTG magmatism at ca. 2.19 Ga and a second pulse during ca. 2.10 to 2.17 Ma; (ii) the crystallization age of the one granitic syn-collisional intrusion of the Pau Brasil suite at ca. 2.09 Ga and the presence of some metamorphic ages at this time (considering the errors) suggest the onset of the collisional phase of the orogen at this time. The younger metamorphic ages indicates that the orogen remained active until ca. 2.05

Ga; and (iii) the dated high-K granitoid of ca. 2.03 Ga constrain the interval of ca. 2.05 Ga to 2.03 Ga (minimum age) as related to the post-collisional magmatism.

Fig. 4.13. Chrono-tectonic diagram with the compiled ages related to the Minas-Bahia orogeny in the southern region of the Eastern Bahia orogenic domain.

Fonte: elaborado pelo autor

4.8.8 Paleogeographic reconstruction and tectonic evolution model

Based on what was discussed for the Buerarema complex, a paleogeographical reconstruction of the pre-collisional (ca. 2.2-2.1 Ga) scenario for the Minas-Bahia orogeny is presented considering the Buerarema arc as a mature intraocanic moderately juvenile arc that must be developed between the Jequié and the African Ntem-Chaillu blocks (Fig. 4.14a). Notice that the Jequié and Santa Luz crusts possibly represent Meso-Neoarchean microcontinents that were surrounded by younger Neoarchean accretionary units (i.e.: Ibicaraí terrain, Caraíba arc and Savador-Esplanada terrain).

Thus, the pre-collisional stage envisaged for the southern region of the Eastern Bahia orogenic domain consider the existence of an oceanic crust between the Jequié-Ibicaraí crust and the Ntem-Chaillu block (see a-a' cross section in fig. 4.14.b). This crust was consumed during the compression of the Minas-Bahia orogeny and at the end, the Buerarema arc was accreted to the eastern margin of the Ibicaraí terrain, with a Rhyacian suture zone dividing both units. This collage was followed by the development of a collisional orogen between ca. 2.09 to 2.05 Ga, with production of several syn-collisional plutons and stocks, like the granodioritic intrusion of ca. 2.07 Ga presented in this study (fig. 4.14c). When the compression finished and the orogen began to collapse in a post-collisional scenario, the shoshonitic high-K plutons of ca. 2.03Ga identified in this study were produced (Fig. 4.14d).

Nearly contemporaneous to the Burerarema arc, the Rio Itapicuru (Silva et al., 2001; Oliveira et al. 2010; Baldim and Oliveira 2021) and the Costeiro (Barbosa et al., 2018) arcs must developed in the same oceanic crust between the Jequié-Santa Luz and the Ntem-Chaillu blocks. The Rio Itapicuru, however, also involved the Uauá Archean crust in a complex collision that also developed the continental Rio Capim continental arc at the margin of the Uauá block (Baldim and Oliveira, 2021) (Fig. 14a).

Further west, the existence of an oceanic crust between the Jequié-Santa Luz and the Gavião crusts is confirmed by the presence of the cordilleran magmatic arc at the eastern region of the Gavião block (Fig.4.14a), implying in a subduction verging toward to east (Cruz et al., 2016). This arc was named as the Western Bahia magmatic arc by the authors.

Contemporaneously, a Rhyacian continental arc system has been interpreted at the western margin of the Gavião block and at the correspondent margin of the Guanambi-Correntina crust, justifying the presence of an oceanic crust subducting in both sides (see Barbosa et al., 2021). These arc-system was named here as the Guanambi-Correntina arcs (Fig.4.14a).

At the northern region, an oceanic crust must exist between the eastern region of the Cristalândia-Piauí crust and western region of the Gavião and Sobradinho blocks because a continental margin arc developed in the Cristalândia-Piauí crust around ca. 2.10 to 2.08 Ga (see Barros et al., 2020). This arc system was named here as the Cristalândia-Piauí arcs (Fig.4.14a).

The region between the Porteirinha, Guanhães, Gavião and Jequié blocks remains unclear at ca. 2.1 Ga because it is where the hot nuclei of the Araçuaí orogen developed, with presence of a huge volume of pre-, syn- and post-collisional plutons coexisting with high-grade metamorphic units (Fig. 4.14a). The recognition of basement fragments in this region in challenging, but it is fundamental to better understand which tectonic units were involved in the Minas-Bahia orogeny and comprehend how the SF-Congo paleocontinent evolved.

Fig. 4.14. Paleogeographical scenario for the pre-collisional scenario of the Minas-Bahia orogeny (a) and the proposed tectonic evolution model for the southern region of the Eastern Bahia orogenic system, considering the formation of the Buerarema complex and production of the syn- and post collisional plutons detailed in this study.

Fonte: elaborado pelo autor

Further south, the Mineiro belt correspond to a complex and long-lived (ca. 2.4 to 2.1 Ga) oceanic arc complex, with terminal phases around ca. 2.1 Ga, and with subduction verging for both sides (Fig. 4.14a), between the Belo Horizonte and the Piedade blocks (see Teixeira et al., 201; Bruno et al., 2021 and references therein for details).

Contemporaneously to the final phases of the Mineiro belt complex, it was developing the continental Mantiqueira arc at the eastern region of the Piedade block and futher west, the oceanic crust was subducting and producing the coeval ca. 2.2 to 2.1 Ga Juiz de Fora and Pocrace oceanic arcs (Fig. 4.14a) (Noce et al., 2007; Heilbron et al., 2010, 217; Teixeira et al., 2017; Degler et al., 2018, Bruno et al., 2020, 2021; Araújo et al., 2021; Kuchenbecker and Barbuena, 2023).

4.9 Conclusions

Located in the southern region of the Eastern Bahia orogenic domain, the Buerarema complex comprises TTGs rocks of ca. 2.1 Ga with geochemical and isotopic (Nd and Hf) signatures consistent with the development of an intraoceanic arc during the pre-collisional stage of the Minas-Bahia orogeny. The focused area is inserted into the Araçuaí belt, and it was demonstrated that the granodioritic-tonalitic studied orthogneisses correspond the extension of the Buerarema complex located into the cratonic domain. This information is crucial for regional studies that involves palaeogeographical reconfigurations because it reveals the presence of an important arc-related unit reworked in the Araçuaí Neoproterozoic orogen, which means that may be a clue for the missing physical connection between the Paleoproteozoic arcs traditionally studied in the northern and in the southern region of the São Francisco craton.

Intraoceanic Rhyacian arcs (ca. 2.1 Ga) also are documented in the northern region of the Eastern Bahia orogenic domain (Rio Itapicuru arc and the Costeiro arc) and in the Western Bahia orogenic domain. This indicates the presence of an important an expressive oceanic crust at the margins of the Archean continental crusts during the pre-collisional stage of the Minas-Bahia orogeny.

New Rhyacian-Orosirian syn and post-collisional intrusions were identified in the focused area. The syn-collisional intrusions refer to a calc-alkaline metagranodioritic stock with crystallization age around ca. 2.07 Ga and moderately-juvenile to evolved Hf and Nd signatures (ϵ Hf(t): -4 to -7; ϵ Ndf(t): -2.8 to -3.0). The postcollisional magmatism refers to shoshonitic high-K granitoids with crystallization age of ca. 2.03 Ga and derived from a more evolved magmatic source (ϵ Hf(t): -7 to -14; ϵ Ndf(t): -2.4 to -2.6).

The high content of Br-S, the magnesian character, the calc-alkaline and sodic affinities (high Na2O/K2O) together with the deficiency in Nb, Ta, P, Ti, Y, YbN contrasting to the high LaN/YbN, allow the interpretation of these intrusions as sanukitoid-like rocks. This important to discuss since sanukitoids production has been limited until the late Archean and the intrusions in the southern region of the Eastern Bahia orogenic domain, together with other Paleoproterozoic intrusions in the Minas orogenic domain, possibly indicate the production of sanukitoid-like magmas at least until the Orosirian.

4.10 Acknowledgments

The authors are grateful to the Brazilian research agencies CNPq and CAPES, for author's scholarship and co-authors grants, to the laboratories of the NBG-UFBA and CPMTC-UFMG for the additional support, to the scientific and technical staffs of the isotope laboratories of the Universidade Federal de Ouro Preto (UFOP), and to the reviewer for their comments, corrections, and suggestions.

5. CONCLUSÕES GERAIS

Esta é uma tese de geologia regional, com mapeamento geológico envolvido, que apresenta dados de campo e analíticos para uma parte da região sul da Bahia, divisa com Minas Gerais, com objetivo de entender melhor o processo de evolução crustal na região.

O estudo se concentrou no complexo anorogênico Salto da Divisa, do Toniano inferior (artigo 1) e seu embasamento Riaciano-Orosiriano associado (artigo 2). Verificou-se que o processo petrogenético relacionado às rochas dessas unidades é distinto, sendo o primeiro relacionado a um magmatismo anorogênico relacionado à tentativa de quebra do paleocontinente São Francisco-Congo, ao passo que o segundo refere-se aos processos compressivos do Paleoproterozoico e que culminaram na formação desse paleocontinente. Assim, o que conecta ambos os artigos não é a temática petrogenética, mas sim a temática tectônica, tendo em vista que na mesma região ocorrem rochas que remontam a processos tectônicos diferentes dentro do ciclo de Wilson de uma massa continental. Com base no que foi estudado, e informações da literatura, propõe-se a seguinte evolução tectônica para a região sul da Bahia:

(i) No Riaciano (ca. 2.1 Ga), a paleogeografia da região devia ser formada por uma massa continental heterogênea (bloco Jequié-Santa Luz e terrenos acrescionários Neoarqueanos), um oceano aberto e com diversos arcos de ilhas em formação (arco Rio Itapicuru, arco Costeiro e arco Buerarema) e microcontinentes Arqueanos africanos. A compressão Riaciana-Orosiriana relacionada à orogênese Minas-Bahia fechou esse oceano e, entre 2.09-2.05 Ga deu-se à formação de orógoneno colisional, com acreção dos arcos insulares às margens do paleocontinente Jequié-Santa Luz e pico metamórfico em torno de ca. 2.07 Ga. Entre 2.05 Ga e no mínimo até 2.03 Ga, esse orógeno experimentou as fases tardias da deformação e instalaram-se diversos plútons de granitoides de alto potássio e sienitos alcalinos;

(ii) Após a estabilização, o paleocontinente São Francisco-Congo passou por um período de quiescência tectônico, sem registros de rochas Mesoproterozoicas. Somente no Toniano Inferior (ca. 900 Ma), quando se instalou uma pluma mantélica sobre a massa continental, ocorreu a instalação de diversos registros de rochas plutônicas e vulcânicas relacionadas ao magmatismo Salto da Divisa (ca. 900 – 875) Ma), que representa um complexo anorogênico formado no paleocontinente São Francisco-Congo à época do rifte intractônico;

(iii) Esse rifte, entretanto, não evoluiu para a formação de crosta oceânica, a atividade do Toniano cessou por volta de 875 Ma. Contudo, nova tentativa de quebra do paleocontinente São Francisco-Congo ocorreu no Criogeniano, entre 730 e 675 Ma, com formação das intrusões sieníticas relacionadas à Província Alcalina do Sul do Estado da Bahia. Novamente, esse magmatismo não evoluiu para a formação de crosta oceânica na região;

(iv) Na transição do Ediacarano-Cambriano, em razão da compressão causada pela orogênese brasiliana, esses riftes, e bacias intracontinentais associadas, foram fechados e formou-se a cadeia de montanhas que compõe o cinturão Araçuaí, bem como as intrusões relacionadas com a granitogênese compressiva.

Com relação ao mapa geológico proposto (Apêndice 1) conclui-se que:

(i) Foi feita uma modificação cartográfica em relação aos mapas anteriores quanto ao complexo Itapetinga, uma unidade do embasamento que até então recobria boa parte da área, alongando-se na direção da deformação brasiliana, NW-SE. O embasamento da região foi dividido em três unidades (complexo Itapetinga, complexo Ibicaraí e complexo Buerarema) sendo o contato entre eles de natureza tectônica e dado por empurrões vergentes para NW. O complexo Itapetinga no mapa proposto foi entendido como o conjunto de gnaisses e migmatitos da porção NW e ele é cavalgado pelo complexo Ibicaraí, cuja origem tectônica ainda é desconhecida na região. Este é cavalgado pelas rochas do complexo Buerarema, objeto de estudo detalhado no artigo 2 e interpretado como relacionado a um arco intra-ocêanico, de idade Riaciana. Esses três complexos foram entendidos como a continuação das unidades cratônicas e que estão orientadas segundo o trend deformação Riaciana, de direção NNE-SSW. Possivelmente o contato entre elas é Riaciano, relacionado à fase da orogenia Minas-Bahia, mas que, na área mapeada, foi posteriormente dobrado pela deformação brasiliana. Ressalta-se, ainda, que os complexos Buerarema e Ibicaraí foram inicialmente definidos no interior cratônico, mas o complexo Itapetinga não e, por isso, não possui um correspondente direto no interior do cráton. A continuação dessa unidade a norte seria o embasamento granulítico do bloco Jequié, ou do complexo Gavião, a NW. Dessa forma, no futuro, há de se avaliar a hipótese de abandonar o uso do nome "complexo Itapetinga" para essa unidade, sendo mais fácil entender esses conjuntos de gnaisses e migmatitos como parte do bloco Jequié, ou Gavião, retrabalhados pela deformação e metamorfismo brasilianos, da mesma forma como interpretou-se os complexos Ibicaraí e Buerarema na região mapeada;

(ii) Além das intrusões graníticas Tonianas já conhecidas e mapeadas anteriormente, o complexo Salto da Divisa (artigo 1) também inclui diversos litotipos plutônicos e vulcânicos, félsicos e máficos, associados ao magmatismo anorogênico e que, à exceção do enxame de diques máficos observados nos complexos do embasamento, foram delimitados em mapa e descritos no artigo 1;

(iii) As demais unidades presentes na área não foram objeto de estudo detalhado e qualquer modificação cartográfica em relação aos mapas anteriores se deu por interpretações de imagens aerogeofísicas e de satélite, em consonância com os pontos descritos em campo.

REFERÊNCIAS

- Alkmim, F.F., Marshak, S., Fonseca, M.A., 2001. Assembling West Gondwana in the Neoproterozoic: Clues from the São Francisco craton region, Brazil. Geology 319– 322. https://doi.org/10.1130/0091-7613(2001)029<0319:AWGITN>2.0.CO;2
- Alkmim, F.F., Marshak, S., Pedrosa-Soares, A.C., Peres, G.G., Cruz, S.C.P., Whittington, A., 2006. Kinematic evolution of the Araçuaí-West Congo orogen in Brazil and Africa: Nutcracker tectonics during the Neoproterozoic assembly of Gondwana. Precambrian Res. 149, 43–64. https://doi.org/10.1016/j.precamres.2006.06.007
- Alkmim, F.F., Pedrosa-soares, A.C., Noce, C.M., Cerqueira, S., Cruz, P., 2007. Sobre a Evolução Tectônica Do Orógeno Araçuaí-Congo Ocidental. Genomos 15, 25– 43.
- Alkmim, F. F., Kuchenbecker, M., Reis, H. L. S., Pedrosa Soares, A. C., 2017. The Araçuaí Belt, in: Heilbron, M., Cordani, U.G., Alkmim, F.F. (Eds.). São Francisco Craton, Eastern Brazil, Tectonic Genealogy of a Miniature Continent. Springer International Publishing, Switzerland, pp. 255-276. https://doi.org/10.1007/978-3-319-01715-0
- Almeida, F.F.M., 1977. O cráton do São Francisco. Rev. Bras. Geociências 7, 349– 363.
- Almeida, F. F. M., Brito Neves, B. B., Carneiro, C. D. R., 2000. The origin and Evolution of the South American Platform. Earth Science Reviews, 50, 77-111. https://doi.org/10.1016/S0012-8252(99)00072-0
- Anderson, I.C., Frost, C.D., Frost, B.R., 2003. Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: Implications for the origin of Atype granite. Precambrian Res. 124, 243–267. https://doi.org/10.1016/S0301-9268(03)00088-3.
- Araujo, M. C., 2000. Jacinto/Salto da Divisa/ Itarantim, Folhas SE. 24-V-B-I/ SE. 24-V-B-II/ SD. 24-Y-D-IV, Estado de Minas Gerais, Escala 1:100.000. Programa Levantamentos Geológicos Básicos do Brasil, CPRM, COMIG, Minas Gerais, 74 p.
- Araújo, M. C., 2014a. Folha SE.24-V-B-I Jacinto, Folha SE.24-V-B-II Salto da Divisa. Programa Levantamentos Geológicos Básicos do Brasil (PLGB), Carta geológica, escala 1:100.000, Anexo I. Projeto Criação de Banco de Dados Geográfico para os Mapas Geológicos do Projeto Leste, Minas Gerais, CPRM, CODEMIG, Governo de Minas Gerais, UFMG, CPMTC.
- Araújo, M. C., 2014b. Folha SE.24-Y-D-IV Itarantim, Folha SE.24-Y-D-V Potiraguá. Programa Levantamentos Geológicos Básicos do Brasil (PLGB), Carta geológica, escala 1:100.000, Anexo I. Projeto Criação de Banco de Dados Geográfico para os Mapas Geológicos do Projeto Leste, Minas Gerais, CPRM, CODEMIG, Governo de Minas Gerais, UFMG, CPMTC.
- Araujo, L.E. de A.B., Heilbron, M., Teixeira, W., Dussin, I.A., de Morisson Valeriano, C., Bruno, H., Sato, K., Paravidini, G., Castro, M., 2021. Siderian to Rhyacian evolution of the Juiz de Fora Complex: Arc fingerprints and correlations within the Minas-Bahia Orogen and the Western Central Africa Belt. Precambrian Res. 359. https://doi.org/10.1016/j.precamres.2021.106118
- Babinski, M., Pedrosa-Soares, A.C., Trindade, R.I.F., Martins, M., Noce, C.M., Liu, D., 2012. Neoproterozoic glacial deposits from the Araçuaí orogen, Brazil: Age,

provenance and correlations with the São Francisco craton and West Congo belt. Gondwana Res. 21, 451–465. https://doi.org/10.1016/j.gr.2011.04.008

- Bailey, D.K., 1983. The chemical and thermal evolution of rifts, Developments in Geotectonics. Elsevier B.V. https://doi.org/10.1016/B978-0-444-42198-2.50037-7
- Baldim, M.R., Oliveira, E.P., 2016. Anatomy of the Alto Alegre gneiss dome, São Francisco Craton, Brazil: A geological record of transpression along a Palaeoproterozoic arc-continent collision zone. Precambrian Res. 286, 250–268. https://doi.org/10.1016/j.precamres.2016.10.004
- Baldim, R. M., Oliveira, E. P., 2021. Northeast São Francisco Craton and West-Congo Craton linked before the Rhyacian (2.10–2.04 Ga) orogeny: Evidence from provenance and U-Pb ages of supracrustal rocks from the Rio Capim greenstone belt, Serrinha Block. Precambrian Res. 352, 105985. https://doi.org/10.1016/j.precamres.2020.105985
- Barbosa, J.S.F., Barbosa, R.G., 2017. The Paleoproterozoic Eastern Bahia Orogenic Domain, in: Heilbron, M., Cordani, U.G., Alkmim, F.F. (Eds.). São Francisco Craton, Eastern Brazil, Tectonic Genealogy of a Miniature Continent. Springer International Publishing, Switzerland, pp. 57-69. https://doi.org/10.1007/978-3-319-01715-0
- Barbosa, J.S.F., Sabaté, P., 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features. Precambrian Res. 133, 1– 27. https://doi.org/10.1016/j.precamres.2004.03.001
- Barbosa, J.S.F., Correa-Gomes, L.C., Marinho, M.M., Silva, F.C.A., 2003. Geologia do segmento sul do orógeno Itabuna-Salvador-Curaçá. Rev. Bras. Geociências 33, 33–48.
- Barbosa, J.S.F., Cruz, S.C.P., Souza, J.S., 2012a. Terrenos metamórficos do embasamento, in: Barbosa, J.S.F. (Coordenação geral). Geologia da Bahia, pesquisa e atualização-Volume 1. Companhia Baiana de Pesquisa Mineral (CBPM), pp. 101-201.
- Barbosa, J.S.F., Santos-Pinto, M., Cruz, S.C.P., Souza, J.S., 2012b. Granitoides, in: Barbosa, J.S.F. (Coordenação geral). Geologia da Bahia, pesquisa e atualização-Volume 1. Companhia Baiana de Pesquisa Mineral (CBPM), pp. 327-396.
- Barbosa, J.S.F., Marinho, M.M., De Menezes Leal, A.B., De Oliveira, E.M., De Souza-Oliveira, J.S., De Argollo, R.M., Lana, C., Barbosa, R.G., Santos, L.T.L., 2018. The granulitic roots of the Salvador-Esplanada-Boquim Belt, São Francisco Craton, Bahia-Sergipe, Brazil. Geol. USP Ser. Cient. 18, 103–128. https://doi.org/10.11606/issn.2316-9095.v18-134238
- Barbosa, J.S.F., Luciano, R.L., Cruz Filho, B.E., Santana, J.S., Moraes, A.M.V., Mascarenhas, J.F., 2021. Mapa tectônico-geocronológico do estado da Bahiaimplicações metalogenéticas, escala 1:1.000.000, nota explicativa. Companhia Baiana de Pesquisa Mineral (CBPM), Serviço Geológico do Brasil (CPRM). Salvador, Bahia, 54 p. Mapa geológico em anexo.
- Barbosa, N., Debruyne, D., Barbosa, N. S., Luciano, R. L., Guedes, T. R. S., Reis, C., Barbosa, J. S. F., Pinho, I. C. A., Santos, R. L., Brito, R., 2021. Transition from subduction to Post-Collisional Paleoproterozoic magmatism in the Correntina erosive window of the north São Francisco craton: Evidence for mantle source and slab breakoff from alkaline magmatism by U-Pb, Nd-Sr radiometric and geochemistry data. Precambrian Res. 362, 106314. https://doi.org/10.1016/j.precamres.2021.106314
- Barros, R. A., Caxito, F. A., Egydio-Silva, M., Dantas, E. L., Pinheiro, M. A. P., Rodrigues, J. B., Basei, M. A., S., Virgens-Neto, J., Freitas, M., 2020. Archean and

Paleoproterozoic crustal evolution and evidence for cryptic Paleoarchean-Hadean sources of the NWSão Francisco Craton, Brazil: Lithochemistry, geochronology, and isotope systematics of the Cristalândia do Piauí Block. Gondwana Res. 88, 268-295. https://doi.org/10.1016/j.gr.2020.07.004

- Bédard, J., 1990. Enclaves from the A-Type Granite of the Mégantic Complex, White Mountain Magma Series: Clues to Granite magmagenesis. J. Geophys. Res. 95, 17.797-17.819. https://doi.org/10.1029/JB095iB11p17797.
- Bersan, S. M., Costa, A. F. O., Danderfer, A., Abreu, F. R., Lana, C., Queiroga, G., Storey, C., Moreira, H., 2020. Paleoproterozoic juvenile magmatism within the northeastern sector of the São Francisco paleocontinent: Insights from the shoshonitic high Ba-Sr Montezuma granitoids. Geoscience Frontiers, 11, 1821-1840. https://doi.org/10.1016/j.gsf.2020.01.017.
- Blichert-Toft, J., Puchtel, I.S., 2010. Depleted mantle sources through time: Evidence from Lu-Hf and Sm-Nd isotope systematics of Archean komatiites. Earth Planet. Sci. Lett. 297, 598–606. https://doi.org/10.1016/j.epsl.2010.07.012.
- Bonin, B., 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 97, 1–29. https://doi.org/10.1016/j.lithos.2006.12.007.
- Bordini, R. M., 2003. Geologia do Maciço Anortosítico de Potiraguá, Sul da Bahia. Tese de doutorado. Universidade Federal da Bahia, Instituto de Geociências, Salvador, Brasil, 171 p.
- Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57. https://doi.org/10.1016/j.epsl.2008.06.010.
- Boyton, W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed). Rare earth element geochemistry, Amsterdan, Elsevier, pp. 63-114.
- Brito Neves, B.B., 2011. Glossário de geotectônica. Oficina de textos, São Paulo, 256 p.
- Brito Neves, B.B., Cordani, U.G., 1991. Tectonic evolution of South America during the Late Proterozoic. Precambrian Res. 53, 23–40. https://doi.org/10.1016/0301-9268(91)90004-T
- Brito Neves, B.B., Fuck, R.A., 2013. Neoproterozoic evolution of the basement of the South-American platform. J. South Am. Earth Sci. 47, 72–89. https://doi.org/10.1016/j.jsames.2013.04.005
- Brito Neves, B.B., Fuck, R.A., Pimentel, M.M., 2014. The Brasiliano collage in South America: A review. Brazilian J. Geol. 44, 493–518. https://doi.org/10.5327/Z2317-4889201400030010
- Brito Neves, B.B. de, Fuck, R.A., Campanha, G.A. da C., 2021. Basement inliers of the Brasiliano structural provinces of South America. J. South Am. Earth Sci. 110, 103392. https://doi.org/10.1016/j.jsames.2021.103392
- Bruno, H., Elizeu, V., Heilbron, M., de Morisson Valeriano, C., Strachan, R., Fowler, M., Bersan, S., Moreira, H., Dussin, I., Guilherme do Eirado Silva, L., Tupinambá, M., Almeida, J., Neto, C., Storey, C., 2020. Neoarchean and Rhyacian TTG-Sanukitoid suites in the southern São Francisco Paleocontinent, Brazil: Evidence for diachronous change towards modern tectonics. Geosci. Front. 11, 1763–1787. https://doi.org/10.1016/j.gsf.2020.01.015
- Bruno, H., Elizeu, V., Heilbron, M., de Morisson Valeriano, C., Strachan, R., Fowler,
 M., Bersan, S., Moreira, H., Dussin, I., Guilherme do Eirado Silva, L., Tupinambá,
 M., Almeida, J., Neto, C., Storey, C., 2020. Neoarchean and Rhyacian TTG-

Sanukitoid suites in the southern São Francisco Paleocontinent, Brazil: Evidence for diachronous change towards modern tectonics. Geosci. Front. 11, 1763–1787. https://doi.org/10.1016/j.gsf.2020.01.015

- Bruno, H., Heilbron, M., de Morisson Valeriano, C., Strachan, R., Fowler, M., Bersan, S., Moreira, H., Motta, R., Almeida, J., Almeida, R., Carvalho, M., Storey, C., 2021.
 Evidence for a complex accretionary history preceding the amalgamation of Columbia: The Rhyacian Minas-Bahia Orogen, southern São Francisco Paleocontinent, Brazil. Gondwana Res. 92, 149–171. https://doi.org/10.1016/j.gr.2020.12.019
- Burgos de Carvalho, C. M., 2005. Contribuição ao estudo dos maciços gabroanortosíticos do sul da Bahia, Brasil: mecanismos de deformação e orientação preferencial cristalográfica do plagioclásio. Tese de doutorado. Universidade Federal da Bahia, Instituto de Geociências, Salvador, Brasil, 212 p.
- Carvalho Filho, A. R., Pinto, A. C. F., Sampaio, D. R., Cardoso, M. P., 1973. Projeto Rio Pardo, Relatório Final. Convênio CNEN-CPRM, Diretoria de Operações, Agência Salvador. 113 p. Mapa geológico em anexo.
- Castro, M.P., Queiroga, G., Martins, M., Alkmim, F., Pedrosa-Soares, A., Dussin, I., Souza, M.E., 2019. An Early Tonian rifting event affecting the São Francisco-Congo paleocontinent recorded by the Lower Macaúbas Group, Araçuaí Orogen, SE Brazil. Precambrian Res. 331, 1–21. https://doi.org/10.1016/j.precamres.2019.105351.
- Caxito, F.A., Hagemann, S., Dias, T.G., Barrote, V., Dantas, E.L., Chaves, A.O., Campello, M.S., Campos, F.C., 2020. A magmatic barcode for the São Francisco Craton: Contextual in-situ SHRIMP U Pb baddeleyite and zircon dating of the Lavras, Pará de Minas and Formiga dyke swarms and implications for Columbia and Rodinia reconstructions. Lithos 374–375, 1–18. https://doi.org/10.1016/j.lithos.2020.105708.
- Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2013. The continental record and the generation of continental crust. Bull. Geol. Soc. Am. 125, 14–32. https://doi.org/10.1130/B30722.1
- Celino, J.J., Francisquinibotelho, N.N., Pimentel, M.M., 2000. Genesis of Neoproterozoic Granitoid Magmatism in the Eastern Araçuaí Fold Belt, Eastern Brazil: Field, Geochemical and Sr Nd Isotopic Evidence. Rev. Bras. Geociências 30, 135–139. https://doi.org/10.25249/0375-7536.2000301135139
- Chaves, A.O., Ernst, R.E., Söderlund, U., Wang, X., Naeraa, T., 2019. The 920 900 Ma Bahia-Gangila LIP of the São Francisco and Congo cratons and link with Dashigou-Chulan LIP of North China craton: New insights from U-Pb geochronology and geochemistry. Precambrian Res. 329, 124–137. https://doi.org/10.1016/j.precamres.2018.08.023.
- Chen, S.C., Yu, J.J., Bi, M.F., 2021. Extraction of fractionated interstitial melt from a crystal mush system generating the Late Jurassic high-silica granites from the Qitianling composite pluton, South China: Implications for greisen-type tin mineralization. Lithos 382–383, 105952. https://doi.org/10.1016/j.lithos.2020.105952.
- Cheng, Y., Mao, J., Spandler, C., 2013. Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China. Lithos 175–176, 213–229. https://doi.org/10.1016/j.lithos.2013.04.002.
- Claoué-Long, J. C., Compston, W., Roberts, J., Fanning, C. M., 1995. Two carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. Geochronology Time Scales and Global

Stratigraphic Correlation, SEPM Special Publication, 54. ISBN: 1:56576-024-7

- Collins, W.J., Beams, S.D., White, A.J.R., Chappell, B.W., 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology 80, 189–200.
- Conceição, H., Otero, O.M.F., 1996. Magmatismo granítico e alcalino no estado da Bahia: uma epítome sobre o tema. Governo da Bahia, Superintendência de Geologia e Recursos Minerais, Salvador, Bahia, 119 p.
- Conceição, H., Rosa, M. de L. da S., Oberli, F., Rios, D.C., 2007. Idade U-Pb do dique sienítico Anurí, sul da Bahia: magmatismo alcalino-potássico paleoproterozóico e sua implicação para a orogenia transamazônica no Cráton do São Francisco. Rev. Bras. Geociências 37, 61–69. https://doi.org/10.25249/0375-7536.200737s46169
- Conceição, H., Rosa, M.L.S., Macambira, M.J.B., Galarza, M.A., Rios, D.C., Marinho, M.M., Menezes, R.C.L., Cunha, M.P., 2009. Petrology of the neoproterozoic Itarantim nepheline syenite batholith, São Francisco Craton, Bahia, Brazil. Can. Mineral. 47, 1527–1550. https://doi.org/10.3749/canmin.47.6.1527.
- Cordani, U. G., 1973. Evolução geológica pré-cambriana da faixa costeira do Brasil, entre Salvador e Vitória. Tese de Livre Docência. Universidade de São Paulo, Departamento de Mineralogia e Petrologia, São Paulo, Brasil, 98 p.
- Corrêa-Gomes, L.C., Oliveira, E.P., 2002. Dados Sm-Nd, Ar-Ar e Pb-Pb de corpos plutônicos no sudeste da Bahia, Brasil: implicações para o entendimento da evolução tectônica no limite orógeno Araçuaí/cráton do São Francisco. Rev. Bras. Geociências 32, 185–196. https://doi.org/10.25249/0375-7536.2002322185196.
- Creaser, R.A., Price, R.C., Wormald, R.J., 1991. A-type granites revisited: assessment of a residual-source model. Geology 19, 163–166.
- Cruz, S., Alkmim, F., Silva, A.J.P., Teixeira, L., Pedrosa-Soares, A.C., Correa Gomes, L.C., Souza, J.S., Leal, A.B.M., 2012. Orógeno Araçuaí. In: Barbosa, J.S.F. Geologia da Bahia-Pesquisa a Atualização, 2, Salvador, CBPM, 131-177.
- Cruz, S.C.P., Barbosa, J.S.F., Pinto, M.S., Peucat, J.J., Paquette, J.L., Souza, J.S., Martins, V.S., Chemale, F., Carneiro, M.A., 2016. The Siderian-Orosirian magmatism in the Gavião Paleoplate, Brazil: U-Pb geochronology, geochemistry and tectonic implications. J. South Am. Earth Sci. 69. https://doi.org/10.1016/j.jsames.2016.02.007
- D'Agrella-Filho, M.S., Teixeira, W., Trindade, R.I.F., Patroni, O.A.L., Prieto, R.F., 2020. Paleomagnetism of 1.79 Ga Pará de Minas mafic dykes: Testing a São Francisco/Congo-North China-Rio de la Plata connection in Columbia. Precambrian Res. 338, 1–17. https://doi.org/10.1016/j.precamres.2019.105584
- Dalton de Souza, J., Kosin, M., Melo, R.C., Santos, R.A., Teixeira, L.R., Sampaio, A.R., Guimarães, J.T., Vieira Bento, R., Borges, V.P., Martins, A.A.M., Arcanjo, J.B., Loureiro, H.S.C., Angelim, L.A.A., 2003. Mapa Geológico do estado da Bahia-Escala 1:1.000.000. Programas de Carta Geológica do Brasil ao Milionésimo e Levantamentos Geológicos Básicos do Brasil (PLGB), Convênio de Cooperação a Apoio Técnico-Científico CBPM-CPRM, Salvador, Versão 1.1.
- Delgado, I.M., et al., 2003. Geotectônica do escudo atlântico, in: Bizzi, L.A. et al. (Editores). Geologia, tectônica e recursos minerais do Brasil: texto, mapas e GIS. Brasília, Distrito Federal, Serviço Geológico do Brasil (CPRM), pp. 227-334.
- Dalton de Souza, J., Kosin, M., Melo, R.C., Santos, R.A., Teixeira, L.R., Sampaio, A.R., Guimarães, J.T., Vieira Bento, R., Borges, V.P., Martins, A.A.M., Arcanjo, J.B., Loureiro, H.S.C., Angelim, L.A.A., 2003. Mapa Geológico do estado da Bahia-Escala 1:1.000.000. Salvador, CPRM. Versão 1.1. Programas de Carta Geológica do Brasil ao Milhonésimo e Levantamentos Geológicos Básicos do Brasil (PLGB).
Convênio de Cooperação a Apoio Técnico-Científico CBPM-CPRM.

- Degler, R., Pedrosa-Soares, A., Novo, T., Tedeschi, M., Silva, L.C., Dussin, I., Lana, C. 2018. Rhyacian-Orosirian isotopic records from the basement of the Araçuaí-Ribeira orogenic system (SE Brazil): Links in the Congo-São Francisco palaeocontinent. Precambrian Research 317, 179-195.
- De La Roche, H., Leterrier, J., Grande Claude, P., Marchal, M., 1980. A classification of volcanic and plutonics rocks using R1–R2 diagrams and major element analyses Its relationships and current nomenclature. Chem. Geol. 29, 183–221.
- Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20, 641.
- Ernst, R.E., 2014. Large Igneous Provinces. Cambridge Univ. Press, https://doi.org/10.1017/CBO9781139025300.
- Evans, D.A.D., Mitchell, R.N., 2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology 39, 443–446. https://doi.org/10.1130/G31654.1
- Evans, D.A.D., Trindade, R.I.F., Catelani, E.L., D'Agrella-Filho, M.S., Heaman, L.M., Oliveira, E.P., Söderlund, U., Ernst, R.E., Smirnov, A. V., Salminen, J.M., 2015. Return to Rodinia? Moderate to high palaeolatitude of the São Francisco/Congo craton at 920 Ma. Geol. Soc. London, Spec. Publ. 424, 167–190. https://doi.org/10.1144/sp424.1.
- Foland, K.A., Allen, J.C., 1991. Magma sources for Mesozoic anorogenic granites of the White Mountain magma series, New England, USA. Contrib. to Mineral. Petrol. 109, 195–211. https://doi.org/10.1007/BF00306479.
- Foland, K.A., Gilbert, L.A., Sebring, C.A., Chen, J.F., 1986. 40Ar/39Ar ages for plutons of the Monteregian Hills, Quebec: evidence for a single episode of Cretaceous magmatism. Geol. Soc. Am. Bull. 97, 966–974. https://doi.org/10.1130/0016-7606(1986)97<966:aafpot>2.0.co;2.
- Frey, F.A., Green, D.H., Roy, S.D., 1978. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. J. Petrol. 19, 463–513. https://doi.org/10.1093/petrology/19.3.463.
- Frost, C.D., Frost, B.R., 1997. Reduced rapakivi-type granites: The tholeiite connection. Geology 25, 647–650. https://doi.org/10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2.
- Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A Geochemical Classification for Granitic Rocks. J. Petrol. 42, 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.
- Gerdes, A., Zeh, A., 2006. Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet. Sci. Lett. 249, 47–61. https://doi.org/10.1016/j.epsl.2006.06.039.
- Girei, M.B., Li, H., Algeo, T.J., Bonin, B., Ogunleye, P.O., Bute, S.I., Ahmed, H.A., 2019. Petrogenesis of A-type granites associated with Sn–Nb–Zn mineralization in Ririwai complex, north-Central Nigeria: Constraints from whole-rock Sm-Nd and zircon Lu-Hf isotope systematics. Lithos 340–341, 49–70. https://doi.org/10.1016/j.lithos.2019.05.003.
- Gioia, S.M.C.L., Pimentel, M.M., 2000. The Sm-Nd isotopic method in the Geochronology Laboratory of the University of Brasília. An. Acad. Bras. Cienc. 72, 218–245. https://doi.org/10.1590/s0001-37652000000200009.

- Gradim, D.T., 2012. O Orogeno Aracuai na Regiao de Vicosa, Sudeste de Minas Gerais. MSc dissertation. Instituto de Geociencias, Universidade Federal de Minas Gerais.
- Grochowski, J., Kuchenbecker, M., Barbuena, D., Novo, T., 2021. Disclosing Rhyacian/Orosirian orogenic magmatism within the Guanhães basement inlier, Araçuaí Orogen, Brazil: A new piece on the assembly of the São Francisco-Congo paleocontinent. Precambrian Res. 363, 106329. https://doi.org/10.1016/j.precamres.2021.106329
- Hawkesworth, C.J., Cawood, P.A., Dhuime, B., 2020. The Evolution of the Continental Crust and the Onset of Plate Tectonics. Front. Earth Sci. 8, 1–23. https://doi.org/10.3389/feart.2020.00326
- Heilbron M., Cordani U.G., Alkmim F.F. (Eds.), 2017. São Francisco Craton, Eastern Brazil, Tectonic Genealogy of a Miniature Continent. Springer, 326 pp. https://doi.org/10.1007/978-3-319-01715-0
- Heilbron, M., Cordani, U. G., Alkmim, F. F., 2017a. The São Francisco Craton and its Margins, in: Heilbron, M., Cordani, U.G., Alkmim, F.F. (Eds.). São Francisco Craton, Eastern Brazil, Tectonic Genealogy of a Miniature Continent. Springer International Publishing, Switzerland, pp. 321-331. https://doi.org/10.1007/978-3-319-01715-0
- Heilbron, M., Cordani, U. G., Alkmim, F. F., Reis, H. L. S., 2017b. Tectonic Genealogy of a Miniature Continent, in: Heilbron, M., Cordani, U.G., Alkmim, F.F. (Eds.). São Francisco Craton, Eastern Brazil, Tectonic Genealogy of a Miniature Continent. Springer International Publishing, Switzerland, pp. 255-276. https://doi.org/10.1007/978-3-319-01715-0
- Heilbron, M., Duarte, B.P., Valeriano, C.M., Simonetti, A., Machado, N., Nogueira, J.R., 2010. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U–Pb geochronology: Implications for paleogeographic reconstructions of the São Francisco-Congo paleocontinent. Precambrian Res. 178, 136–148. https://doi.org/10.1016/j.precamres.2010.02.002
- Heilimo, E., Halla, J., Holtta, P., 2010. Discrimination and origin of the sanukitoid series: Geochemical constraints from the Neoarchean western Karelian Province (Finland). Lithos, 115, 27-39. doi: 10.1016/j.lithos.2009.11.001
- Hibbard M., J, 1995. Petrography to petrogenesis. Prentice-Hall, pp. 587.
- Hofmann, A.W., 1997. Mantle geochemistry: The message from oceanic volcanism. Nature. https://doi.org/10.1038/385218a0.
- Hurley, P.M., Almeida, F.M., Melcher, G.C., Cordani, U. C., Rand, J.R., Kawashita K., Vandroros, P., Pinson Jr, H., F.W., 1967. SCIENCE: Test Cont. drift by Comp. Radiom. ages 157, 495–501.
- Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8. 523. https://doi.org/10.1139/e71-055
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017.
- Janousek, V., Farrow, C.M., Erban, V., 2006. Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: introducing Geochemical Data Toolkit (GCDkit). J. Petrol. 47, 1255–1259. https://doi.org/10.1093/petrology/egl013.

- Kuchenbecker, M., Barbuena, D., 2023. Basement inliers of the Araçuaí-West Congo orogen: key pieces for understanding the evolution of the São Francisco-Congo paleocontinent. Journal of South American Earth Sciences, 125, 104299. https://doi.org/10.1016/j.jsames.2023.104299
- Kuchenbecker, M., Pedrosa-Soares, A.C., Babinski, M., Fanning, M., 2015. Detrital zircon age patterns and provenance assessment for pre-glacial to post-glacial successions of the Neoproterozoic Macaúbas Group, Araçuaí Orogen, Brazil. Precambrian Res. 266, 12–26. https://doi.org/10.1016/j.precamres.2015.04.016
- Landenberger, B., Collins, W.J., 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelundi Complex, Eastern Australia. J. Petrol. 37, 145–170. https://doi.org/10.1093/petrology/37.1.145.
- Le Maitre, R.W. (Edit.), 2002. Igneous Rocks. A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd Edition. Cambridge University Press, Cambridge. 236 p.
- Li, H., Palinkaš, L.A., Watanabe, K., Xi, X.S., 2018. Petrogenesis of Jurassic A-type granites associated with Cu-Mo and W-Sn deposits in the central Nanling region, South China: Relation to mantle upwelling and intra-continental extension. Ore Geol. Rev. 92, 449–462. https://doi.org/10.1016/j.oregeorev.2017.11.029.
- Laurent, O., Martin, H., Moyen, J.F., Doucelance, R., 2014. The diversity and evolution of late-Archean granitoids: Evidence for the onset of "modern-style" plate tectonics between 3.0 and 2.5 Ga. Lithos 205, 208–235. https://doi.org/10.1016/j.lithos.2014.06.012
- Ledru, P., Johan, V., Milési, J.P., Tegyey, M., 1994. Markers of the last stages of the Palaeoproterozoic collision: evidence for a 2 Ga continent involving circum-South Atlantic provinces. Precambrian Res. 69, 169–191. https://doi.org/10.1016/0301-9268(94)90085-X
- Loiselle, M.C., Wones, D.R., 1979. Characteristics and origin of anorogenic granites. Abstracts of papers to be presented at the Annual Meetings of the Geological Society of America and Associated Societies, San Diego, California, November 5– 8, vol. 11, p. 468.
- Ludwig K.R. 2008. User's Manual for Isoplot 3.71. A Geochronological Toolkit for Excel. Special Publication Number 4. Berkeley, Berkeley Geochronological Center, pp. 76.
- Marshall, L.A., Sparks, R.S.J., 1984. Origin of some mixed-magma and net-veined ring intrusions. J. Geol. Soc. London. 141, 171–182. https://doi.org/10.1144/gsjgs.141.1.0171.
- Martin, H., 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, 753-756. https://doi.org/10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2
- Martin, R.F., 2006. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos 91, 125–136. https://doi.org/10.1016/j.lithos.2006.03.012.
- Martins, M., Karfunkel, J., Noce, C.M., Babinski, M., Pedrosa-Soares, A.C., Sial, A.N., Liu, D., 2008. A sequência pré-glacial do Grupo Macaúbas na área-tipo e o registro da abertura do rifte Araçuaí. Rev. Bras. Geociências 38, 761–772. https://doi.org/10.25249/0375-7536.2008384761772
- Meert, J.G., Santosh, M., 2017. The Columbia supercontinent revisited. Gondwana Res. 50, 67–83. https://doi.org/10.1016/j.gr.2017.04.011
- Meschede, M., 1986. A method of discriminating between different types of mid-ocean

ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol. 56, 207–218. https://doi.org/10.1016/0009-2541(86)90004-5.

- Menezes, R.C.L., Conceição, H., Rosa, M.L.S., Macambira, M.J.B., Galarza, M.A., Rios, D.C., 2012. Geoquímica e geocronologia de granitos anorogênicos tonianos (ca. 914–899 Ma) da faixa Araçuaí no Sul do estado da Bahia. Geonomos 20, 1– 13. https://doi.org/10.18285/geonomos.v20i1.21
- Menezes, R.C.L., Conceição, H., Rosa, M.L.S., Macambira, M.J.B., Galarza, M.A., Rios, D.C., 2012a. Geoquímica e geocronologia de granitos anorogênicos tonianos (ca. 914–899 Ma) da faixa Araçuaí no Sul do estado da Bahia. Geonomos 20, 1–13. https://doi.org/10.18285/geonomos.v20i1.21.
- Menezes, R.C.L., Conceição, H., Rosa, M.L.S., Galarza, M.A., Rios, D.C., Macambira, M.J.B., 2012b. O Stock Nefelina-Sienítico Rio Pardo, Província Alcalina Do Sul Do Estado Da Bahia. Geonomos 20, 14–22. https://doi.org/10.18285/geonomos.v20i1.22.
- Mingram, B., Trumbull, R.B., Littman, S., Gerstenberger, H., 2000. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: Evidence for mixing of crust and mantle-derived components. Lithos 54, 1–22. https://doi.org/10.1016/S0024-4937(00)00033-5.
- Moreira, H.F., Danderfer, A., Costa, A.F.O., Bersan, S.M., Lana, C.C., Queiroga, G.N., 2020. Record of Early Tonian mafic magmatism in the central Espinhaço (Brazil): New insights for break-up of the Neoproterozoic landmass ancestor of São Francisco-Congo paleocontinent. Geosci. Front. https://doi.org/10.1016/j.gsf.2020.02.007.
- Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z., 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 255, 231–235. https://doi.org/10.1016/j.chemgeo.2008.06.040.
- Moraes Filho, O., 1988. Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais, Folhas SD.24-Y-D Itapetinga e SD.24-Z.C Canavieiras, escala 1:250.000, volume I, texto e mapas. CPRM, Superintendência Regional de Salvador, 89 p. Mapa geológico em anexo.
- Moraes Filho, J. C. R., Lima, E. S., 2007. Região de Itapetinga, sul da Bahia (borda SE do Craton do São Francisco): geologia e recursos minerais. Companhia Baiana de Pesquisa Mineral (CBPM), CPRM. Série Arquivos Abertos, 27, Salvador, Bahia, 68 p. Mapa geológico em anexo.
- Moreira, H.F., Danderfer, A., Costa, A.F.O., Bersan, S.M., Lana, C.C., Queiroga, G.N., 2020. Record of Early Tonian mafic magmatism in the central Espinhaço (Brazil): New insights for break-up of the Neoproterozoic landmass ancestor of São Francisco-Congo paleocontinent. Geosci. Front. https://doi.org/10.1016/j.gsf.2020.02.007
- Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z., 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 255, 231–235. https://doi.org/10.1016/j.chemgeo.2008.06.040
- Moyen, J.F., Martin, H., 2012. Forty years of TTG research. Lithos 148, 312–336. https://doi.org/10.1016/j.lithos.2012.06.010
- Noce, C.M., Pedrosa-Soares, A.C., da Silva, L.C., Armstrong, R., Piuzana, D., 2007.
 Evolution of polycyclic basement complexes in the Araçuaí Orogen, based on U Pb SHRIMP data: Implications for Brazil-Africa links in Paleoproterozoic time.
 Precambrian Res. 159, 60–78. https://doi.org/10.1016/j.precamres.2007.06.001

- O'Connor, J. T., 1965. Granite Classification using the Ab-An-Or diagram. Using geochemical data: Evaluation, Presentation, Interpretation, 58-60.
- Oliveira, M.T.M., 1984. Prospecto Itapebi, investigação preliminar para mineralizações granitogênicas no município de Itapebi. Programa de análise de dados e seleções de área, CBPM, Brasil, 19 p.
- Oliveira, E.P., McNaughton, N.J., Armstrong, R., 2010. Mesoarchaean to Palaeoproterozoic growth of the northern segment of the Itabuna-Salvador-Curaçá orogen, São Francisco craton, Brazil. Geol. Soc. Spec. Publ. 338, 263–286. https://doi.org/10.1144/SP338.13
- Oliveira, E.P., Silveira, E.M., Söderlund, U., Ernst, R.E., 2013. U-Pb ages and geochemistry of mafic dyke swarms from the Uauá Block, São Francisco Craton, Brazil: LIPs remnants relevant for Late Archaean break-up of a supercraton. Lithos 174, 308–322. https://doi.org/10.1016/j.lithos.2012.05.025
- Oliveira, E.P., Talavera, C., Windley, B.F., Zhao, L., Semprich, J.J., McNaughton, N.J., Amaral, W.S., Sombini, G., Navarro, M., Silva, D., 2019. Mesoarchaean (2820 Ma) high-pressure mafic granulite at Uauá, São Francisco Craton, Brazil, and its potential significance for the assembly of Archaean supercratons. Precambrian Res. 331, 105366. https://doi.org/10.1016/j.precamres.2019.105366
- Paces, J. B., Miller, J. D., 1993.Precise U-Pb Ages of Duluth Complex and Related Mafic Intrusions, Northeastern Minnesota: Geochronological Insights to Physical, Petrogenetic, Paleomagnetic and Tectonomagmatic Process Associated With the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research, 98, B8, 13997-14013. doi.org/10.1029/93JB01159
- Pacheco, F.E.R.C., Caxito, F.A., Pedrosa-Soares, A.C., Dussin, I.A., Gonçalves-Dias, T., 2021. Detrital zircon U-Pb and Lu-Hf data for a kinzigitic gneiss (Jequitinhonha Complex, Araçuaí Orogen, SE Brazil) constrain the age of a huge storage of Ediacaran carbon. J. South Am. Earth Sci. 105. https://doi.org/10.1016/j.jsames.2020.102709.
- Paixão, M.M., Perrella, P., 2004. Mapeamento geológico da área do contato entre o Maciço Granítico Salto da Divisa e o Complexo Jequitinhonha, Nordeste de Minas Gerais. Trabalho Geológico de Graduação, monography, Universidade Federal de Minas Gerais. Departamento de Geologia, Belo Horizonte, Brasil. 196 pp. (Monography report).
- Pearce, J. A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In Andesites: Orogenic Andesites and Related Rocks (R.S. Thorpe, ed.). John Wiley & Sons, Chichester, U.K., pp. 525-548.
- Pearce, J.A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. to Mineral. Petrol. 69, 33–47. https://doi.org/10.1007/BF00375192.
- Pearce, J., Harris, N.B.W., Tindle, A.G., 1984. Trace element distribution diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956–983. https://doi.org/10.1093/petrology/25.4.956.
- Pedrosa-Soares, A.C., Alkmim, F.F., 2011. How many rifting events preceded the development of the Araçuaí-West Congo orogen? Geonomos 19, 244–251. https://doi.org/10.18285/geonomos.v19i2.56.
- Pedrosa-Soares, A.C., Noce, C.M., Vidal, P., Monteiro, R.L.B.P., Leonardos, O.H., 1992. Toward a new tectonic model for the Late Proterozoic Araçuaí (SE Brazil)-West Congolian (SW Africa) Belt. J. South Am. Earth Sci. 6, 33–47. https://doi.org/10.1016/0895-9811(92)90015-Q

- Pedrosa-Soares, A.C., Noce, C.M., Wiedemann, C.M., Pinto, C.P., 2001. The Araçuaí-West-Congo Orogen in Brazil: An overview of a confined orogen formed during Gondwanaland assembly. Precambrian Res. 110, 307–323. https://doi.org/10.1016/S0301-9268(01)00174-7.
- Pedrosa-soares, A.C., Noce, C.M., Alkmim, F.F. De, Carlos, L., Babinski, M., Cordani, U., Castañeda, C., 2007. Orógeno Araçuaí: síntese do conhecimento 30 anos após Almeida 1977. Geonomos 15, 1–16.
- Pedrosa-Soares, A.C., Alkmim, F.F., Tack, L., Noce, C.M., Babinski, M., Silva, L.C., Martins-Neto, M.A., 2008. Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuaí-West Congo orogen. Geol. Soc. Spec. Publ. 294, 153–172. https://doi.org/10.1144/SP294.9.
- Pedrosa-Soares, A.C., Dussin, I., Nseka, P., Baudet, D., Fernandez-Alonso, M., Tack, L., 2016. Tonian rifting events on the Congo-São Francisco palaeocontinent: New evidence from U-Pb and Lu-Hf data from the Shinkakasa plutonic complex (Boma region, West Congo Belt, Democratic Republic of Congo). 5th International Geologica Belgica Meeting, Mons, Belgium, Abstract Book, p. 44.
- Pedreira, A.J., 1999. Evolução Sedimentar e tectônica da bacia metassedimentar do Rio Pardo: uma síntese. Rev. Bras. Geociências 29, 339–344. https://doi.org/10.25249/0375-7536.199929339344
- Peccerillo, A., and Taylor, S.R., 1976, Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey: Contributions to Mineralogy and Petrology, v. 58, 63–81, doi:10.1007/BF00384745
- Peucat, J.J., Mascarenhas, J.F., Barbosa, J.S.F., De Souza, S.L., Marinho, M.M., Fanning, C.M., Leite, C.M.M., 2002. 3.3 Ga SHRIMP U-Pb zircon age of a felsic metavolcanic rock from the Mundo Novo greenstone belt in the São Francisco craton, Bahia (NE Brazil). J. South Am. Earth Sci. 15, 363–373. https://doi.org/10.1016/S0895-9811(02)00044-5
- Peucat, J.J., Figueiredo Barbosa, J.S., Conceição de Araújo Pinho, I., Paquette, J.L., Martin, H., Fanning, C.M., Beatriz de Menezes Leal, A., Cruz, S., 2011. Geochronology of granulites from the south Itabuna-Salvador-Curaçá Block, São Francisco Craton (Brazil): Nd isotopes and U-Pb zircon ages. J. South Am. Earth Sci. 31, 397–413. https://doi.org/10.1016/j.jsames.2011.03.009
- Piaia, P., Oliveira, E.P., Valeriano, C.M., 2017. The 2.58 Ga São José do Jacuipe gabbro-anorthosite stratiform complex, Itabuna-Salvador-Curaçá Orogen, São Francisco Craton, Brazil: Root of the Neoarchaean Caraiba continental arc? J. South Am. Earth Sci. 79, 326–341. https://doi.org/10.1016/j.jsames.2017.08.009
- Pinho, I.C.A., 2005. Geologia dos Metatonalitos/Metatrondhjemitos e Granulitos Básicos das Regiões de Camamu-Ubaitaba-Itabuna, Bahia. Tese de doutorado (PhD thesis). Instituto de Geociências, Universidade Federal da Bahia. Salvador. Brasil, 163 p.
- Pinho, I.C.A, Barbosa, J.S., Leal, A.B.M., Martin, H., Peucat, J.J., 2011. Geochemical modelling of the tonalitic and trondhjemitic granulites from the Itabuna-Salvador-Curaçá Block, Bahia, Brazil. J. South Am. Earth Sci. 31, 312–323. https://doi.org/10.1016/j.jsames.2010.11.004
- Pinto, C.P, Silva, M.A., 2014. Mapa Geológico do Estado de Minas Gerais, escala 1.1.000.000, Belo Horizonte, Programa Geologia do Brasil, Integração, Atualização e Difusão de Dados da Geologia do Brasil, CODEMIG, CPRM, Governo Federal., Governo de Minas, Secretaria de Geologia Mineração e Transformação Mineral.

- Porada, H., 1989. Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil. Precambrian Res. 44, 103–136. https://doi.org/10.1016/0301-9268(89)90078-8
- Rios, D.C., Davis, D.W., Conceição, H., Davis, W.J., Rosa, M.L.S., Dickin, A.P., 2009. Geologic evolution of the Serrinha nucleus granite-greenstone terrane (NE Bahia, Brazil) constrained by U-Pb single zircon geochronology. Precambrian Res. 170, 175–201. https://doi.org/10.1016/j.precamres.2008.10.001
- Rosa, M. L. S., Conceicao, H., Macambira, M.J.B., Marinho, M.M., Menezes, R.C.L., Cunha, M.P., Rios, D.C., 2005. Magmatismo Neoproterozóico no Sul do Estado da Bahia, Maciço Sienítico Serra das Araras: geologia, petrografia, idade e geoquímica. Rev. Bras. Geociencias 35, 111–121.
- Rosa, M.L.S., Conceição, H., Macambira, M.J.B., Galarza, M.A., Cunha, M.P., Menezes, R.C.L., Marinho, M.M., Filho, B.E.C., Rios, D.C., 2007. Neoproterozoic anorogenic magmatism in the Southern Bahia Alkaline Province of NE Brazil: U-Pb and Pb-Pb ages of the blue sodalite syenites. Lithos 97, 88–97. https://doi.org/10.1016/j.lithos.2006.12.011.
- Rogers, J.J.W., Santosh, M., 2004. Continents and Supercontinents. Oxford University Press, New York, 289 p.
- Ruggiero, A., Oliveira, E.P., 2010. Caracterização de vulcânicas adakíticas e cálcioalcalinas no greenstone belt do Rio Itapicuru, Bahia: petrogênese e implicações geodinâmicas. Rev. Bras. Geoci. 40 (1), 1–18.
- Sampaio, A. R., Martins, A.M., Loureiro, H.C., Arcanjo, J.B., Moraes Filho, J.C., Souza, J.D., Pereira, L.H., Couto, P.A., Santos, R.A., Melo, R.C., Bento, R.V., Borges, V.P., 2004. Extremo sul da Bahia: geologia e recursos minerais. Companhia Baiana de Pesquisa Mineral (CBPM), CPRM. Serie Arquivos Abertos, 27, Salvador, Bahia, 52 p. Mapa geológico em anexo.
- Sampaio, E.E.S., Barbosa, J.S.F., Correa-Gomes, L.C., 2017. New insight on the paleoproterozoic evolution of the São Francisco Craton: Reinterpretation of the geology, the suture zones and the thicknesses of the crustal blocks using geophysical and geological data. J. South Am. Earth Sci. 76, 290–305. https://doi.org/10.1016/j.jsames.2017.03.006
- Santos, M.M., Lana, C., Scholz, R., Buick, I., Schmitz, M.D., Kamo, S.L., Gerdes, A., Corfu, F., Tapster, S., Lancaster, P., Storey, C.D., Basei, M.A.S., Tohver, E., Alkmim, A., Nalini, H., Krambrock, K., Fantini, C., Wiedenbeck, M., 2017. A New Appraisal of Sri Lankan BB Zircon as a Reference Material for LA-ICP-MS U-Pb Geochronology and Lu-Hf Isotope Tracing. Geostand. Geoanalytical Res. 41, 335– 358. https://doi.org/10.1111/ggr.12167.
- Serrano, P., Pedrosa-Soares, A., Medeiros-Junior, E., Fonte-Boa, T., Araujo, C., Dussin, I., Queiroga, G., Lana, C., 2018. A-type Medina batholith and postcollisional anatexis in the Araçuaí Orogen (SE Brazil). Lithos 320-321, 515-536. https://doi.org/10.1016/j.lithos.2018.09.009.
- Shellnutt, J.G., Zhou, M.F., 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume. Chem. Geol. 243, 286–316. https://doi.org/10.1016/j.chemgeo.2007.05.022.
- Silva Filho, M.A., Moraes Filho, O., Gil, C.A.A., Santos, R.A., 1974a. Projeto Sul da Bahia, Relatório final, Geologia da Folha SD.24-Y-D, Volume I. Convênio DNPM-CPRM, diretoria de operações, agência Salvador, 164 p. Mapa geológico em anexo.

- Silva Filho, M.A., Moraes Filho, O., Figueroa, I., 1974b. Projeto Sul da Bahia, Relatório final, Geologia da Folha SE.24-V-B, Volume V. Convênio DNPM-CPRM, diretoria de operações, agência Salvador, 42 p. Mapa geológico em anexo.
- Silva, M. G., Coelho, C. E. S., Teixeira, J. B. G., Silva, F. C. A., Silva, R. A., Souza, J. A. B., 2001. The Rio Itapicuru greenstone Evolution and review of gold mineralization. Mineralium Deposita, 36, 345-357. DOI 10.1007/s001260100173
- Silva, L.C., 2006. Geocronologia aplicada ao mapeamento regional com ênfase na técnica U-Pb SHRIMP e ilustrada com estudo de casos brasileiros. Publicações especiais do Serviço Geológico do Brasil (CPRM), 134p.
- Silva, L.C., Armstrong, R., Delgado, I.M., Pimentel, M., Arcanjo, J.B.A., Melo, R.C., Teixeira, L.R., Jost, H., Cardoso Filho, J.M., Pereira, L.H.M., 2002a. Reaviliação da evolução geocronológica dos terrenos pré-cambrianos com base em novos dados U-Pb SHRIMP, parte I: limite centro-oriental do cráton São Francisco na Bahia.
- Silva, L.C., Armstrong, R., Noce, C.M., Carneiro, M.A., Pimentel, M., Pedrosa-Soares, A.C., Leite, C.A., Vieira, V.S., Silva, M.A., Paes, V.J.C., Cardoso Filho, J.M., 2002b. Reavaliação da evolução geocronológica dos terrenos pré-cambrianos com base em novos dados U-Pb SHRIMP, Parte II: Orógeno Araçuaí, Cinturão Mineiro e Cráton São Francisco Meridional. Rev. Bras. Geociências 32, 513–528. https://doi.org/10.25249/0375-7536.2002324513528
- Silva, L.C., Pedrosa-Soares, A.C., Teixeira, L.R., Armstrong, R., 2008. Tonian riftrelated, A-type continental plutonism in the Araçuaí Orogen, eastern Brazil: New evidence for the breakup stage of the São Francisco-Congo Paleocontinent. Gondwana Res. 13, 527–537. https://doi.org/10.1016/j.gr.2007.06.002
- Silva, L.C., Pedrosa-Soares, A.C., Armstrong, R., Pinto, C.P., Magalhães, J.T.R., Pinheiro, M.A.P., Santos, G.G., 2016. Disclosing the Paleoarchean to Ediacaran history of the São Francisco craton basement: The Porteirinha domain (northern Araçuaí orogen, Brazil). J. South Am. Earth Sci. 68, 50–67. https://doi.org/10.1016/j.jsames.2015.12.002
- Silva, M.D.G., Coelho, C.E.S., Teixeira, J.B.G., Da Silva, F.C.A., Silva, R.A., De Souza, J.A.B., 2001. The Rio Itapicuru greenstone belt, Bahia, Brazil: Geologic evolution and review of gold mineralization. Miner. Depos. 36, 345–357. https://doi.org/10.1007/s001260100173
- Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.
- Smith, D.R., Noblett, J., Wobus, R.A., Unruh, D., Douglass, J., Beane, R., Davis, C., Goldman, S., Kay, G., Gustavson, B., Saltoun, B., Stewart, J., 1999. Petrology and geochemistry of late-stage intrusions of the A-type, mid-Proterozoic Pikes Peak batholith (Central Colorado, USA): Implications for petrogenetic models. Precambrian Res. 98, 271–305. https://doi.org/10.1016/S0301-9268(99)00049-2.
- Söderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 219, 311–324. https://doi.org/10.1016/S0012-821X(04)00012-3.
- Souza, M.E., Martins, M., Queiroga, G., Pedrosa-Soares, A., Dussin, I., Castro, M.P. de, Serrano, P., 2022. Time and isotopic constraints for the Early Tonian basaltic magmatism in a large igneous province of the São Francisco Congo

paleocontinent (Macaúbas basin, Southeast Brazil). Precambrian Research 373, 106621 (https://doi.org/10.1016/j.precamres.2022.106621).

- Souto, P. G., 1972. Geologia e Petrografia da área de Potiraguá, Bahia, Brasil. Tese de doutorado, Universidade de São Paulo, Instituto de Geociências, São Paulo, Brasil, 65 p.
- Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
- Tack, L., Wingate, M.T.D., Liégeois, J.P., Fernandez-Alonso, M., Deblond, A., 2001. Early Neoproterozoic magmatism (1000-910 Ma) of the Zadinian and Mayumbian groups (Bas-Congo): Onset of Rodinia rifting at the western edge of the Congo craton. Precambrian Res. 110, 277–306. https://doi.org/10.1016/S0301-9268(01)00192-9.
- Teixeira, L.R., 2002. Relatório Temático de Litogeoquímica, Projeto Extremo Sul da Bahia. Convênio Serviço Geológico do Brasil, CPRM, CBPM, Salvador, 27 p.
- Teixeira, L.R., 2006. Notas sobre a geoquímica de algumas unidades litológicas, Folha Itapetinga 1:250.000. Convênio Serviço Geológico do Brasil, CPRM, CBPM, Salvador, 12 p.
- Teixeira, W., Oliveira, E. P., Marques, L. S., 2017. Nature and evolution of the Archean crust of the São Francisco Craton, in: Heilbron, M., Cordani, U.G., Alkmim, F.F. (Eds.). São Francisco Craton, Eastern Brazil, Tectonic Genealogy of a Miniature Continent. Springer International Publishing, Switzerland, pp. 29-56. https://doi.org/10.1007/978-3-319-01715-0
- Teixeira, W., Kamo, S.L., Arcanjo, J.B.A., 1997. U-Pb Zircon and Baddeleyite Age and Tectonic Interpretation of the Itabuna Alkaline Suite, São Francisco Craton, Brazil. J. South Am. Earth Sci. 10, 91–98. https://doi.org/10.1016/S0895-9811(97)00008-4.
- Terentiev, R.A., Santosh, M., 2020. Baltica (East European Craton) and Atlantica (Amazonian and West African Cratons) in the Proterozoic: The pre-Columbia connection. Earth-Science Rev. 210, 103378. https://doi.org/10.1016/j.earscirev.2020.103378
- Thiéblemont D., Callec Y., Fernandez-Alonso M., Ch`ene F. (2018) A Geological and Isotopic Framework of Precambrian Terrains in Western Central Africa: An Introduction. In: Siegesmund S., Basei M., Oyhantçabal P., Oriolo S. (eds) Geology of Southwest Gondwana. Regional Geology Reviews. Springer, Cham. https://doi.org/ 10.1007/978-3-319-68920-3_5.
- Trompette, R., 2000. Gondwana evolution; its assembly at around 600 Ma. Earth Planet. Sci. Lett. 330, 305–315. https://doi.org/10.1016/S1251-8050(00)00125-7
- Tupinambá, M., Machado, N., Heilbron, M., Ragatky, D., 2007. Meso-neoproterozoic lithospheric extensional events in the São Francisco Craton and its surrounding south American and African metamorphic belts: a compilation of U-Pb ages. Rev. Bras. Geociências 37, 87–91. https://doi.org/10.25249/0375-7536.200737S48791
- Turner, S.P., Foden, J.D., Morrison, R.S., 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos 28, 151–179. https://doi.org/10.1016/0024-4937(92)90029-X.
- Van Achterbergh, E., Ryan, C.G., Jackson, S.E., Griffin, W., 2001. Data reduction software for LA-ICP-MS. In: Sylvester, P. (Ed.) Laser Ablation ICPMS in the Earth Science 29. Mineralogical Association of Canada, p. 239–243.
- Victoria, A. M., 2017. O complexo anorogênico plutono-vulcânico Salto da Divisa (Nordeste de Minas Gerais e Sul da Bahia): implicações para a abertura do rifte

Toniano no paleocontinente São Francisco-Congo. Dissertação de Mestrado. Salvador, Bahia, Instituto de Geologia, Departamento de Geologia, Universidade Federal da Bahia (IGEO-UFBA), pp. 141.

- Victoria, A., Pedrosa-Soares, A., Cruz, S.C.P., Lana, C., Dantas, E., Dussin, I., Borges, R., 2022. Magmatic diversity in continental rifts: A case study on the Early Tonian, plutono-volcanic Salto da Divisa Complex, Araçuaí Orogen, Eastern Brazil. Lithos 434–435. https://doi.org/10.1016/j.lithos.2022.106920
- Zhang, S., Li, Z.X., Evans, D.A.D., Wu, H., Li, H., Dong, J., 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth Planet. Sci. Lett. 353–354, 145–155. https://doi.org/10.1016/j.epsl.2012.07.034
- Zhang, X., Yuan, L., Wilde, S.A., 2014. Crust/mantle interaction during the construction of an extensional magmatic dome: Middle to Late Jurassic plutonic complex from western Liaoning, North China Craton. Lithos 205, 185–207. https://doi.org/10.1016/j.lithos.2014.07.006.
- Zhao, G., Cawood, P.A., Wilde, S.A., Sun, M., 2002. Review of global 2.1-1.8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Rev. 59, 125–162. https://doi.org/10.1016/S0012-8252(02)00073-9
- Zhao, G., Sun, M., Wilde, S.A., Li, S., 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Rev. 67, 91–123. https://doi.org/10.1016/j.earscirev.2004.02.003
- Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib. to Mineral. Petrol. 95, 407–419. https://doi.org/10.1007/BF00402202.
- Whalen, J.B., Hildebrand, R.S., 2019. Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos 348–349, 105179. https://doi.org/10.1016/j.lithos.2019.105179.
- Wilson M., 2007. Igneous Petrogenesis. Springer, pp. 466.
- Woodhead, J.D., Hergt, J.M., 2005. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand. Geoanalytical Res. 29, 183–195. https://doi.org/10.1111/j.1751-908x.2005.tb00891.x.
- Wu, F.Y., Yang, Y.H., Xie, L.W., Yang, J.H., Xu, P., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 234, 105–126. https://doi.org/10.1016/j.chemgeo.2006.05.003.
- Yang, J.H., Wu, F.Y., Chung, S.L., Wilde, S.A., Chu, M.F., 2006. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos 89, 89–106. https://doi.org/10.1016/j.lithos.2005.10.002.

APÊNDICE A-Materiais suplementares do artigo 1

Este apêndice contém os arquivos suplementares do artigo 1, submetidos na revista como arquivos anexos ao manuscrito. São eles: A1) Supplementary File 1: petrographic table; A2) Supplementary File 2: lithochemistry; A3) Supplementary File 3: U-Pb data; A4) Lu-Hf data; and A5) Sm-Nd data.

A1) Supplementary File 1 – Petrographic table

Field and petrographic characte	ristics of Salto da	Divisa complex units	. (Thin sections	were prepared ir	n laborato	ories of the CPM	TC Research
Center of the Federal University	of Minas Gerais-U	FMG, Brazil)					

UNIT	OCCURRENCE	MACROSCOPIC OBSERVATIONS	MICROSCOPIC OBSERVATIONS	ROCKS	MINERAL ASSEMBLY
ULTRAMAFIC INJECTION (PYROXENITE)	Ultramafic injections (dykes and sills) in metavolcano-sedimentary sequence; Boulders scattered on the surface;	Ultramafic, dark green, equigranular, massive, isotropic, and high density.	Decussate pyroxene crystals as dominant phase in the fine-grained-groundmass; angular to ortogonal contacts between pyroxene crystals; tabular biotite phenocrysts.	Pyroxenite	Cpx, Bt, Opq, Hbl
MAFIC-	Dyke swarm intruding the gneissic basement or as enclaves related to hybrid granitoids in the Salto da Divisa pluton. Biotititized	Enclaves : Dark gray, meso-melanocratic, equigranular, fine (diabase) to medium-grained (gabbro).	Enclaves: Intergranular microsctructure, tabular plagioclase	Diabase, Gabbro	Pl, Amp, Bt, Opq, Cpx, Qtz, Ap, Ttn, Ep,
ROCKS	dykes occur as Bt-Grt-mafic schists. Highly deformed and metamorphosed rocks are amphibolites.	Dyke swarm :Dark gray, meso- melanocratic, equigranular, fine to medium-grained (diabase), foliated or preserved (gabbro).	Dyke swarm : nematoblastic; granolepidoblastic (foliated) or integranular, with tabular plagioclase (preserved dyke)	Diabase, Gabbro, Amphibolite, Grt-Bt- mafic schist;	Pl, Amp, Bt, Opq, Qtz, Ap, Ttn, Ep, Cb, Grt
HYBRID GRANITOIDS	Salto da Divisa pluton	Variable color, mesocratic, equigranular medium-grained to inequigranular porphyritic, enriched in mafic enclaves and microgranular fragments (mamga mingling). Miscible hybrid granitoids (magma mixinng) are mesocratic and homogeneous, free of enclaves.	Perthithes, myrmekite, interstitial and symplectitic amphibole, amphibole-mantle quartz, mafic clots into a more felsic horst, bladed-shape biotite, biotitization of amphibole, coronitic garnet	Intermediate- granitoids (quartz- monzonite, monzonite, monzodiorite, quartz-syenite)	Kfs, Amp, Bt, Pl, Qtz, Fl, Ilm, Zrn, Ap, Ttn, Ep, Grt
BIOTITE-AMPHIBOLE GRANITES	Plutons: Itagimirim, Salto da Divisa, Jordânia-Itarantim, Mandim and adjecent minor intrusions	Pinkish to grayish colors, equigranular, grouped into three subfacies: Isotropic, microgranites, and foliated granites. They all are leucocratic, with mafic minerals in aggregates or interstitials.	Isotropic granites: Medium to coarse-grained. Allotriomorphic to hypidiomorphic,perthites, myrmekite, interstitial amphibole, iron-rich amphibole pleochroic in dark-green colors, large and euhedral zircon crystals and minor zircon crystals as inclusions in biotite. Subeuhedral and interstitial fluorite	Biotite-amphibole alkali feldspar granite; Biotite- amphibole syenogranite	Kfs (Mc, Or), Qtz, Pl, Bt, Amp, Opq, Fl, Aln, Zrn, Ser, Ep

			Microgranites: Fine-grained equigranular granited dominated by quartz, twinned albite and orthoclase often in lobade contacts but poligonal recrystallized grains also occur. Subordinated mafic minerals are amphibole and thin crystals of biotite. Subeuhedral and interstitial fluorite Foliated metagranites: granolepidoblastic, ribbon quartz. Subeuhedral and interstitial fluorite	Foliated biotite- amphibole metagranite	
BIOTITE GRANITES	Plutons: Itagimirim, Itapebi, Ventania, Caiubí	Pinkish to yellowish colors, leucocratic, equigranular, medium-grained. More tectonized granites show penetrative foliation. Locally intruded by pegmatitic injections and quartz veins. Internal zones	Isotropic granites: Allotriomorphic to hypidiomorphic,perthites, myrmekite. One specific sample show Kfs subhedral crystals contrasting with interstitial quartz (cumulatic texture)	Biotite alkali feldspar granite;	Kfs (Mc, Or), Qtz, Pl, Bt, Opq, Fl, Aln, Zrn, Ser, Cb.
		of some plutons contain non-deformed isotropic coarse-grained and porphyritic granites with euhedral K-feldspar	Foliated metagranites: granolepidoblastic, complex twining in microcline. Rare muscovite as secondary mineral	Foliated biotite álcali feldspar granite	Ep
TWO-MICA GRANITES	Plutons: Itapebi, Ventania, Caiubí	Whitish with light green tones due to disseminated amazonite presence. Equigranular, medium-grained, foliated, with quartz veins enriched in amazonite and biotite. Hololeucocratic to leucocratic.	Low strain domain: Granophyric texture, granoblastic, strain-free quartz, platy-shape biotite, complex twining in albite, euhedral fluorite, interstitial fluorite; High strain domain: granolepidoblastic, deformed twinning, poligonal contacts	Two-mica granite	Kfs (Mc, Amz), Qtz, Ab, Bt, Ms, Opq, Zrn, Fl
RHYOLITE	Layer and lenses in the metavolcano-sedimentary sequence located at the Northern region of the Itapebi granitic pluton	Grayish, equigranular, fine-grained to porphyritic, with K-feldspar phenocryts that reach 2.0mm. Massive and isotropic samples	K-feldspar and quartz phenocrysts (euhedral to subeuhedral) sometimes corroded and with embayment features. Recrystallized fine- grained quartz-feldspatic matrix with polygonal contacts. Presence of secondary fine-grained epidote crystals and sericite	Metarhyolite	Kfs, Qtz, Opq, Ep, Ser
PORPHYROCLASTIC RHYOLITE	Alternated layers in the metavolcano-sedimentary sequence located at the Northern region of the Itapebi granitic pluton	Dark gray, inequigranular, porphyritic, with phenocrysts of K-feldspar and quartz. Mafic mineral is biotite which is strongly oriented along the sigmoidal schistosity	Inequigranular, granolepidoblastic. K-feldspar and quarz are phenocrysts wrapped by the sigmoidal mylonitic foliation (porphyroclasts). Preserved quartz phenocrysts are sueuhedral and prismatic.	Porphyroclastic biotite schist	Kfs, PI, Qtz, Bt, Ep, Opq
AEGIRINE RHYOLITE	Thin (ca. 15cm) lense in the metavolcano-sedimentary sequence located at the Northern region of the Itapebi granitic pluton	Light grayish, porphyritic, with fine-grained quartz-feldspatic matrix and large euhedral crystals of dark color, stubby shape and prismatic habit (aegirine)	Aegirine decussate euhedral phenocrysts (or porphyroblasts?) up to 3mm, around quartz- feldspatic fine-grained recrystallized matrix. Anomaly amount of fine-grained epidote crystals (clinozoisite). Skeletal and poikilitic aegirine.	Aegirine metarhyolite	Qtz, Fds, Aeg, Ep, Grt
TRACHYTE (Silica- undersaturated)	Subvolcanic felsic dyke cuting across the basement located near the Potiraguá city	Grayish, equigranular, fine-grained to porphyritic, with Kfs phenocryts that reach 3.0mm. Massive, Isotropic and highly fractured	K-feldspar and quartz phenocrysts (euhedral to subeuhedral), trachytic and seriate microstructures, Secondary cancrinite derived from nepheline	Trachyte	Kfs, Ne, Mag, Ap, Bt, Ccn, Grt

A2) Supplementary File 2 - Lithochemistry

	liltromo	fia rooka		Mafic-intermediate rocks											
UNIT	Oltrama	ne rocks	Mafic e	nclaves				Ν	Aafic dyke	swarm					
SAMPLE	D017b	AV052f	AV039b	SD040b	D005b	D004b	AV013b	AV074b	AV057b	AV072b	AV010b	AV011b	AV007	AV012b	AV044b
ROCK	Pyroxenite	Pyroxenite	Gabbro	Gabbro	Amphibolite	Amphibolite	Amphibolite	Meta- trachyandesite	Diabase	Diabase	Amphibolite	Gabbro	Gabbro	Meta- andesite	Gabbro
SiO2	43.40	47.70	50.90	51.10	42.50	44.80	46.00	46.30	46.60	48.20	49.50	49.70	52.20	52.40	52.50
TiO2	3.08	2.39	2.18	1.83	1.84	3.61	3.28	2.71	3.32	1.80	2.79	2.13	2.17	3.08	2.20
AI2O3	6.65	4.68	14.70	14.50	16.60	13.40	13.90	14.30	14.00	14.70	10.90	13.20	15.20	12.90	14.40
Fe2O3	16.70	16.50	11.80	11.80	15.00	17.70	15.50	13.50	14.50	13.00	12.60	16.40	12.10	15.40	11.80
MnO	0.23	0.30	0.19	0.18	0.22	0.23	0.20	0.20	0.21	0.20	0.20	0.20	0.18	0.19	0.17
MgO	16.00	13.40	5.37	6.98	8.82	3.87	4.99	4.89	7.10	7.29	7.34	5.30	4.26	2.70	3.95
CaO	9.29	11.90	8.21	8.44	9.44	7.57	7.75	7.88	9.52	11.50	11.30	8.34	6.12	6.07	9.79
Na2O	0.57	0.95	4.14	2.53	2.50	2.24	2.50	1.12	2.56	0.67	2.01	2.26	3.01	1.47	3.48
K2O	0.11	0.38	1.81	1.83	1.14	2.94	3.49	4.53	1.52	1.99	0.72	1.76	2.75	3.81	0.54
P2O5	0.31	0.50	0.40	0.49	0.37	1.11	0.43	0.82	0.47	0.18	0.62	0.19	0.42	0.83	0.43
L.O.I	2.85	1.76	0.30	0.37	1.51	1.48	1.52	2.05	0.63	0.97	0.50	0.25	0.71	1.63	0.65
Ва	542.00	94.00	976.00	830.00	279.00	963.00	688.00	1937.00	356.00	380.00	266.00	365.00	405.00	1411.00	52.00
Ce	47.90	105.60	91.70	76.80	61.40	96.30	64.10	115.70	73.70	31.10	97.80	23.70	98.50	119.90	93.20
Co	83.70	105.60	67.10	44.10	68.20	55.90	53.20	51.30	50.10	58.70	51.90	53.80	33.60	31.50	31.30
Cs	0.03	0.29	0.56	0.34	0.37	1.54	1.52	0.38	0.73	0.47	0.03	2.35	2.58	0.56	0.03
Cu	129.00	30.00	34.00	29.00	18.00	41.00	35.00	69.00	66.00	84.00	42.00	55.00	6.00	31.00	35.00
Dy	4.35	4.10	4.66	4.96	5.18	7.89	7.54	5.77	5.17	3.18	4.79	5.41	6.01	6.45	4.92
Er	2.02	1.44	2.67	2.67	2.84	3.73	4.12	2.69	2.54	1.81	1.88	2.71	2.99	3.53	2.30
Eu	2.10	2.61	2.18	1.90	2.28	3.96	2.62	3.39	2.44	1.31	2.39	1.52	2.40	2.95	2.26
Ga	19.10	12.20	21.10	16.00	23.20	23.00	23.50	25.00	18.50	16.10	20.10	24.30	17.60	20.50	24.60
Gd	5.79	6.93	6.03	6.50	5.36	10.39	8.41	8.79	6.86	3.62	7.21	5.65	7.37	9.15	6.57
Hf	4.53	3.12	5.62	6.17	3.82	6.17	5.24	5.45	5.70	2.71	4.59	3.50	5.80	6.38	6.29
Но	0.77	0.64	0.94	0.97	1.00	1.44	1.44	0.97	0.94	0.60	0.69	0.96	1.11	1.28	0.81
La	22.50	46.30	47.80	40.60	30.30	52.80	32.90	55.40	33.10	13.70	46.50	10.30	57.20	56.50	50.40
Lu	0.17	0.11	0.34	0.35	0.38	0.54	0.49	0.24	0.28	0.23	0.10	0.26	0.43	0.44	0.21
Мо	1.00	1.00	3.00	1.00	2.00	7.00	2.00	1.00	1.00	1.00	1.00	1.00	5.00	4.00	3.00
Nb	23.71	37.68	35.87	34.99	29.86	46.26	32.97	47.11	44.62	19.20	41.75	9.62	44.82	38.74	47.18
Nd	28.60	49.80	44.00	40.60	32.40	59.70	34.60	57.60	38.60	17.70	49.40	16.20	44.90	57.70	43.30

Lithochemical data obtained for the fourty-nine analyzed samples of the Salto da Divisa complex.

Ni	678.00	295.00	23.00	94.00	135.00	20.00	43.00	29.00	55.00	88.00	118.00	68.00	23.00	10.00	17.00
Pr	6.67	12.85	11.22	10.40	7.92	14.58	7.97	14.24	9.29	4.04	12.24	3.20	11.57	14.39	11.21
Rb	2.90	10.50	47.80	49.40	22.10	128.70	134.20	82.60	29.90	47.90	4.40	187.10	261.60	70.10	21.60
Sm	6.30	9.30	8.40	7.50	6.50	11.80	8.00	10.70	7.60	3.90	9.10	4.70	8.00	10.80	7.70
Sn	14.00	8.10	1.70	2.80	0.40	2.70	0.15	0.15	3.80	2.60	1.40	17.10	67.00	1.50	34.60
Sr	49.00	89.00	520.00	361.00	404.00	349.00	239.00	874.00	610.00	547.00	512.00	241.00	285.00	622.00	618.00
Та	1.73	1.56	2.42	2.14	1.89	3.06	0.03	0.03	2.92	1.60	0.03	0.03	2.73	2.27	0.28
Tb	0.76	0.79	0.85	0.88	0.83	1.43	1.14	0.99	0.97	0.60	0.82	0.75	1.01	1.30	0.81
Th	1.70	3.60	5.20	4.20	2.90	3.10	3.30	4.20	2.10	2.70	4.30	1.40	8.50	3.70	8.90
ТΙ	0.25	0.25	0.25	0.25	0.25	0.25	1.20	0.25	0.25	1.20	0.60	1.30	2.00	0.25	0.25
Tm	0.21	0.16	0.38	0.36	0.37	0.58	0.50	0.29	0.34	0.23	0.15	0.31	0.46	0.54	0.24
U	0.57	0.78	1.27	0.82	0.53	0.85	0.45	0.89	0.48	0.36	0.73	0.03	1.46	0.94	2.08
V	244.00	296.00	168.00	168.00	192.00	191.00	316.00	229.00	318.00	253.00	265.00	361.00	260.00	172.00	263.00
W	54.90	24.70	194.50	53.50	38.20	113.70	1.60	0.05	42.50	97.50	0.80	2.00	2.60	1.70	6.90
Y	18.32	15.71	24.09	24.22	23.64	37.26	38.25	27.17	23.61	14.94	19.97	26.14	29.78	34.49	22.44
Yb	1.40	1.00	2.20	2.20	2.70	3.30	3.70	2.20	2.10	1.50	1.30	2.30	3.00	3.20	2.00
Zn	276.00	339.00	111.00	121.00	118.00	224.00	155.00	290.00	130.00	91.00	137.00	330.00	243.00	177.00	140.00
Zr	128.00	102.00	169.00	286.00	97.00	204.00	204.00	222.00	252.00	66.00	186.00	120.00	196.00	259.00	269.00

UNIT	Ну	/brid granitoi	ids				Bie	otite-amphibol	e granites				
SAMPLE	SD041	AV039a	SD082a	AV108	AV134	AV061	AV042	SD021	AV096	SD049	AV130	AV140	AV059
ROCK	Hybrid syenitoid	Hybrid syenitoid	Hybrid granitoid	Syenogranite	Syenogranite	Syenogranite	Syenogranite	Syenogranite	Syenogranite	Syenogranite	Syenogranite	Alkali feldspar granite	Alkali feldspar granite
SiO2	57.40	63.00	63.30	71.60	71.60	72.70	73.00	73.30	73.90	73.90	74.20	74.40	75.60
TiO2	1.13	0.42	0.78	0.43	0.42	0.30	0.20	0.26	0.24	0.18	0.29	0.13	0.22
AI2O3	15.60	17.80	15.60	12.70	13.20	13.60	12.80	13.50	12.30	12.20	12.30	11.90	12.40
Fe2O3	10.40	4.07	6.92	4.68	2.80	3.12	2.82	3.17	2.99	2.67	2.77	2.58	2.28
MnO	0.25	0.06	0.13	0.10	0.04	0.03	0.05	0.08	0.07	0.06	0.07	0.06	0.03
MgO	1.14	0.75	0.71	0.21	0.41	0.15	0.05	0.05	0.05	0.05	0.18	0.05	0.11
CaO	4.35	2.32	2.82	1.46	1.29	0.98	1.00	0.98	0.96	0.74	0.94	0.62	0.42
Na2O	3.66	4.46	3.36	3.66	3.44	3.87	3.53	3.49	3.20	3.33	3.08	3.84	3.22
K2O	5.03	5.67	5.74	5.13	5.02	5.43	5.32	5.73	5.61	5.36	5.26	4.25	5.32
P2O5	0.39	0.15	0.22	0.06	0.07	0.04	0.02	0.01	0.01	0.01	0.03	0.01	0.03
L.O.I	-0.02	0.75	0.08	0.41	0.12	0.26	0.15	0.20	0.32	0.26	0.19	0.26	0.27
Ва	2955.00	2173.00	1784.00	662.00	1044.00	871.00	503.00	393.00	283.00	248.00	1049.00	150.00	566.00

.

Ce	302.00	105.10	319.50	493.10	173.10	297.20	208.70	426.20	440.70	335.00	233.70	268.40	192.00
Co	30.80	45.60	32.20	493.10	4.70	297.20	208.70	82.50	64.80	56.20	63.90	1.10	1.60
Cs	0.15	0.78	0.34	0.19	0.14	0.29	0.27	0.27	0.12	0.22	0.19	0.03	0.68
Cu	13.00	20.00	10.00	10.00	2.50	2.50	2.50	2.50	2.50	2.50	2.50	6.00	2.50
Dy	21.50	6.08	8.76	12.95	10.08	18.96	19.69	21.03	24.59	21.82	8.21	32.36	20.93
Er	10.78	3.55	4.47	6.17	5.66	9.47	9.90	10.64	12.27	11.70	4.47	15.60	11.91
Eu	4.83	3.00	3.26	3.21	1.89	2.43	1.52	2.00	1.70	1.48	1.72	1.69	1.92
Ga	27.10	26.70	23.50	21.00	20.90	24.50	26.80	30.60	30.00	33.30	22.40	35.70	22.90
Gd	25.76	7.38	12.70	18.61	11.29	21.73	18.97	26.54	28.68	24.06	10.67	32.47	19.09
Hf	21.52	17.22	18.84	23.24	12.53	13.30	9.75	14.07	11.86	16.04	12.31	14.20	10.04
Но	4.08	1.23	1.64	2.34	1.83	3.51	3.77	3.96	4.67	4.36	1.56	5.79	4.12
La	133.80	56.50	155.10	265.60	111.10	184.40	107.40	210.90	217.00	167.00	117.90	120.60	103.60
Lu	1.33	0.54	0.62	0.94	0.63	1.02	0.90	1.23	1.35	1.49	0.57	1.44	1.48
Мо	4.00	3.00	3.00	7.00	1.00	3.00	3.00	8.00	8.00	5.00	4.00	1.00	4.00
Nb	227.36	42.03	74.45	115.69	31.63	47.52	58.62	155.99	154.62	161.81	95.32	234.97	38.02
Nd	143.80	49.70	110.80	182.60	78.40	145.10	89.90	175.20	180.30	135.90	88.80	131.30	111.40
Ni	2.50	7.00	2.50	9.00	2.50	10.00	7.00	2.50	6.00	2.50	2.50	64.00	2.50
Pr	35.93	12.85	31.51	55.19	22.53	41.41	24.87	48.07	49.02	37.61	25.57	33.62	31.73
Rb	63.50	134.50	89.60	105.50	136.60	98.30	108.20	97.60	89.30	122.40	99.40	81.30	129.30
Sm	28.80	9.10	16.50	27.30	13.40	25.90	20.10	30.70	32.90	26.20	13.50	32.30	22.50
Sn	2.50	1.60	2.60	3.50	1.80	2.80	1.90	3.50	4.00	5.00	4.20	0.15	3.70
Sr	267.00	384.00	219.00	74.00	122.00	86.00	44.00	27.00	22.00	20.00	211.00	41.00	43.00
Та	7.59	2.94	3.28	4.74	0.03	2.15	1.96	6.92	6.43	8.38	4.82	3.11	2.05
Tb	3.73	1.01	1.73	2.45	1.64	3.14	3.18	3.87	4.36	3.69	1.55	5.16	3.28
Th	10.80	9.40	18.60	33.80	21.70	10.00	15.30	19.70	22.40	20.80	23.80	27.00	11.40
ТΙ	0.25	0.25	0.25	0.25	0.70	0.25	0.25	0.25	0.25	0.25	0.25	1.20	1.10
Tm	1.41	0.53	0.59	0.87	0.69	1.20	1.23	1.45	1.58	1.67	0.65	1.85	1.79
U	1.25	2.61	1.68	4.37	3.14	1.62	1.41	2.33	2.76	3.21	1.88	7.91	1.76
V	30.00	13.00	10.00	66.00	2.50	12.00	2.50	2.50	2.50	2.50	2.50	2.50	13.00
W	168.40	271.00	202.90	7.50	0.60	1.50	526.70	616.20	502.90	428.50	437.50	2.20	1.40
Y	95.70	30.39	39.52	53.11	51.81	88.07	82.36	96.99	113.85	112.86	43.09	129.27	106.67
Yb	9.20	3.20	3.90	5.90	5.00	7.40	7.00	9.20	9.80	10.50	4.10	11.40	11.40
Zn	331.00	48.00	112.00	76.00	59.00	67.00	83.00	130.00	121.00	159.00	84.00	94.00	56.00
Zr	1140.00	663.00	972.00	918.00	507.00	453.00	284.00	617.00	461.00	603.00	530.00	401.00	308.00

UNIT	Bio	otite-amphibo	ble granites				Biotite grani	tes			Two-mic	a granites
SAMPLE	AV016	SD067	AV123	AV058	AV094	AV167	D028	AV013a	AV158	AV085	AV153	AV154
ROCK	Alkali feldspar granite	Alkali feldspar granite	Alkali feldspar granite	Syenogranite	Alkali feldspar granite	Alkali feldspar granite	Alkali feldspar granite	Syenogranite	Alkali feldspar granite	Alkali feldspar granite	Alkali feldspar granite	Alkali feldspar granite
SiO2	75.70	76.10	77.90	70.10	71.10	73.90	74.40	74.70	75.00	75.90	73.90	74.20
TiO2	0.18	0.10	0.23	0.46	0.34	0.18	0.08	0.18	0.17	0.22	0.16	0.17
AI2O3	11.90	12.60	12.30	14.00	14.00	13.20	12.50	13.00	12.70	12.40	13.70	14.30
Fe2O3	2.40	1.65	1.77	4.29	3.40	1.60	1.59	2.13	1.87	2.10	2.23	2.41
MnO	0.03	0.03	0.03	0.06	0.11	0.02	0.02	0.03	0.03	0.02	0.03	0.02
MgO	0.05	0.05	0.12	0.46	0.16	0.17	0.05	0.05	0.05	0.23	0.05	0.05
CaO	0.68	0.68	0.55	1.65	0.98	0.57	0.65	0.84	0.55	0.44	0.05	0.24
Na2O	3.60	3.57	3.00	4.08	4.09	3.37	4.62	3.72	3.46	3.11	4.75	4.86
K2O	5.24	4.96	5.81	4.54	5.64	5.64	4.24	5.00	5.36	5.48	4.93	5.07
P2O5	0.01	0.01	0.02	0.11	0.05	0.02	0.01	0.03	0.02	0.03	0.01	0.01
L.O.I	0.41	0.29	0.24	0.94	0.61	0.42	0.52	0.18	0.34	0.37	0.23	0.31
Ва	172.00	166.00	342.00	1305.00	579.00	406.00	61.00	991.00	185.00	341.00	178.00	222.00
Ce	188.10	129.50	322.50	189.70	497.10	165.00	158.50	144.80	165.30	150.60	48.70	241.60
Со	188.10	87.60	1.50	51.40	497.10	1.70	98.50	1.50	1.40	2.50	0.70	2.00
Cs	0.15	0.06	0.20	0.48	0.95	0.21	1.18	0.50	0.87	0.21	0.30	0.32
Cu	2.50	2.50	2.50	6.00	2.50	2.50	2.50	6.00	2.50	8.00	2.50	7.00
Dy	28.82	13.23	10.90	18.61	27.59	4.42	19.36	8.77	12.55	2.49	8.25	12.04
Er	18.02	6.53	5.93	10.31	16.94	2.39	13.64	5.81	7.93	1.47	5.64	6.53
Eu	1.31	0.60	1.15	2.17	2.04	0.51	0.33	1.79	0.23	0.35	0.16	0.60
Ga	33.90	28.50	23.30	26.10	35.20	23.60	35.30	27.20	30.40	18.60	40.50	29.40
Gd	22.89	13.51	12.04	19.72	25.89	5.69	15.54	9.02	11.27	3.15	4.19	9.47
Hf	16.18	9.55	9.48	13.23	23.60	5.77	12.42	8.47	9.76	6.30	14.75	15.14
Но	6.03	2.50	1.95	3.68	5.60	0.79	4.17	1.79	2.56	0.43	1.65	2.14
La	92.30	61.50	171.40	90.00	256.10	100.10	77.20	79.50	88.50	97.50	16.00	87.70
Lu	1.86	0.60	0.82	1.19	2.19	0.22	1.82	0.79	1.00	0.11	0.65	0.69
Мо	12.00	4.00	5.00	4.00	19.00	2.00	2.00	3.00	1.00	4.00	3.00	3.00
Nb	233.06	51.84	87.08	59.97	183.12	32.57	179.34	27.38	120.50	20.08	287.72	174.62
Nd	86.00	58.10	105.20	91.70	179.90	51.10	63.70	53.50	60.40	38.80	14.30	68.70
Ni	2.50	2.50	2.50	2.50	2.50	2.50	7.00	2.50	2.50	2.50	2.50	2.50
Pr	23.12	15.24	33.13	23.17	54.61	16.68	18.22	15.53	18.04	13.50	4.08	20.03
Rb	114.10	90.00	184.70	81.90	165.70	134.90	203.20	152.50	208.40	166.10	158.90	139.50

Sm	21.50	13.30	17.50	19.60	32.40	7.70	14.70	9.90	12.60	4.40	3.60	12.40
Sn	1.70	1.30	3.90	5.20	5.90	0.15	6.90	3.20	2.00	0.15	4.40	7.40
Sr	23.00	26.00	41.00	141.00	62.00	102.00	12.00	97.00	29.00	76.00	24.00	27.00
Та	7.67	2.01	2.96	3.11	8.58	0.03	8.68	0.03	3.39	0.03	14.96	10.98
Tb	4.29	2.27	1.76	3.10	4.38	0.70	2.95	1.31	1.84	0.38	0.95	1.82
Th	18.00	10.00	34.10	9.10	30.10	21.70	27.30	17.30	30.50	19.30	16.50	23.30
ТΙ	0.25	0.25	0.90	0.25	0.25	0.80	0.25	1.00	1.00	0.80	0.60	0.25
Tm	2.47	0.77	0.82	1.42	2.41	0.25	2.14	0.80	1.10	0.16	0.78	0.90
U	6.25	1.53	5.01	1.45	5.67	3.87	8.34	3.15	6.37	1.47	10.46	5.23
V	2.50	2.50	2.50	2.50	33.00	2.50	2.50	2.50	2.50	2.50	2.50	10.00
W	417.70	666.80	2.20	353.30	304.60	1.50	731.10	1.70	1.90	3.00	2.30	5.30
Y	143.33	74.52	58.06	97.47	146.33	22.97	127.33	52.45	79.03	12.92	42.61	45.81
Yb	14.50	4.40	6.20	9.10	15.40	2.10	13.80	6.10	7.60	1.50	5.80	5.60
Zn	73.00	17.00	35.00	110.00	138.00	31.00	52.00	70.00	50.00	56.00	127.00	84.00
Zr	487.00	268.00	286.00	506.00	748.00	161.00	216.00	272.00	245.00	216.00	396.00	455.00

UNIT				Two-mica gra	nites			Rhyolite	Trachyte
SAMPLE	AV089	AV009	AV156	AV157	AV165	AV049	AV088	AV052d	D023
ROCK	Alkali feldspar granite	Syenogranite	Alkali feldspar granite	Alkali feldspar granite	Alkali feldspar granite	Alkali feldspar granite	Quartz rich microgranitoid	Alkali feldspar metarhyolite	Nepheline trachyte
SiO2	76.60	76.80	77.00	77.20	77.70	78.30	80.40	70.90	60.20
TiO2	0.02	0.08	0.12	0.04	0.07	0.08	0.10	0.20	0.11
AI2O3	13.10	12.70	12.10	12.00	12.40	11.90	12.60	14.20	18.80
Fe2O3	0.98	1.58	1.57	1.13	1.20	0.61	0.61	4.70	6.59
MnO	0.06	0.02	0.01	0.02	0.01	0.01	0.01	0.02	0.12
MgO	0.05	0.05	0.05	0.05	0.05	0.05	0.15	0.05	0.05
CaO	0.33	0.61	0.25	0.29	0.61	0.48	0.46	0.32	0.46
Na2O	4.09	4.37	3.24	3.60	4.02	3.31	4.61	5.20	7.32
K2O	4.10	4.14	4.21	4.60	4.45	4.92	1.20	4.31	4.75
P2O5	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.03
L.O.I	0.51	0.27	0.92	0.41	0.51	0.54	0.78	0.06	0.77
Ва	5.00	47.00	310.00	5.00	19.00	264.00	394.00	366.00	493.00
Ce	44.40	179.60	36.00	166.00	78.80	100.00	120.30	392.70	424.10
Co	43.60	2.50	36.00	0.70	1.00	1.00	1.30	48.70	35.50
Cs	2.39	1.57	0.20	1.58	0.07	0.03	0.03	0.08	0.18

Cu	2.50	2.50	2.50	2.50	2.50	16.00	2.50	25.00	2.50
Dy	12.61	17.79	7.46	12.02	13.23	7.29	15.67	18.58	9.95
Er	8.92	12.87	5.87	9.03	8.21	4.13	9.83	9.64	5.60
Eu	0.03	0.15	0.22	0.03	0.03	0.08	0.35	0.68	1.17
Ga	30.70	45.80	26.50	39.90	31.50	24.30	31.50	37.90	26.00
Gd	9.87	14.11	3.50	8.21	10.83	6.25	10.72	23.11	14.48
Hf	6.45	14.18	8.75	9.81	6.60	6.03	16.98	33.89	23.75
Но	2.67	3.74	1.70	2.50	2.66	1.36	3.05	3.50	1.95
La	15.70	82.70	11.80	75.40	35.00	56.20	70.90	203.50	265.30
Lu	1.50	2.31	0.82	1.77	1.02	0.51	1.24	1.25	0.84
Мо	1.00	1.00	3.00	1.00	1.00	1.00	1.00	3.00	4.00
Nb	52.51	150.96	93.62	108.38	169.13	62.87	307.07	335.37	280.43
Nd	26.40	68.80	11.40	53.50	34.70	34.80	49.40	159.60	139.70
Ni	2.50	2.50	6.00	2.50	2.50	2.50	5.00	2.50	5.00
Pr	6.44	20.34	3.57	17.82	9.40	10.60	14.82	44.87	45.31
Rb	483.40	382.70	114.00	507.60	281.00	182.40	22.00	50.60	145.70
Sm	9.40	15.10	2.90	10.40	9.90	7.10	11.50	27.90	19.70
Sn	30.70	11.70	2.30	13.60	4.90	1.10	4.00	8.70	13.80
Sr	5.00	5.00	44.00	11.00	5.00	27.00	174.00	76.00	63.00
Та	13.64	15.40	4.70	12.50	6.47	2.21	21.37	19.63	20.06
Tb	1.97	2.52	0.93	1.52	1.89	1.02	2.13	3.38	2.00
Th	29.00	31.30	19.20	46.10	50.10	26.20	39.70	34.30	26.00
TI	1.80	0.90	0.25	1.10	1.00	0.25	0.25	0.25	0.25
Tm	1.47	2.07	0.92	1.53	1.17	0.56	1.48	1.37	0.91
U	5.68	12.07	4.87	9.86	16.00	5.83	5.92	5.46	7.52
v	2.50	2.50	8.00	2.50	2.50	2.50	2.50	28.00	2.50
W	318.20	2.70	2.40	6.00	4.70	1.50	3.00	346.20	239.00
Y	92.52	140.26	39.64	88.99	82.93	42.23	77.81	82.70	50.14
Yb	10.50	16.00	6.10	12.30	8.00	4.20	10.40	8.70	5.70
Zn	35.00	56.00	2.50	23.00	10.00	72.00	7.00	19.00	22.00
Zr	47.00	280.00	186.00	137.00	121.00	150.00	327.00	1796.00	922.00

.

A3) Supplementary File 3 – U-Pb

Summary of the U-Pb (LA-ICP-MS) zircon data obtained for the analyzed samples of the Salto da Divisa complex.

SAMPLE	AV039a - I	lybric	granitoid
--------	------------	--------	-----------

Spot number	U	U f 206				Ratios			Age		Disc.
	(µg g-1)	232Th/238U	(%)	207Pb*/235U	±2s (%)	206Pb*/238U	±2s (%)	Rho	206Pb/238U	±2s (abs)	(%)
AV-039_008	240.2	2.4	0.4951	1.331	2.978	0.141	1.558	0.523	853.0	12.4	0.82
AV-039_011	820.7	1.6	0.0369	1.343	2.404	0.142	1.361	0.566	854.2	10.9	1.29
AV-039_012	98.8	1.8	0.0000	1.405	2.706	0.150	1.433	0.529	900.7	12.0	-0.98
AV-039_013	82.5	1.6	0.0000	1.356	2.712	0.144	1.427	0.526	864.4	11.5	0.74
AV-039_014	129.1	2.0	0.0000	1.388	2.440	0.148	1.320	0.541	887.3	10.9	-0.27
AV-039_017	548.1	1.1	0.0000	1.205	2.516	0.126	1.414	0.562	767.0	10.2	4.58
AV-039_018	358.4	1.3	0.0000	1.320	2.404	0.139	1.329	0.553	838.7	10.4	1.94
AV-039_019	118.0	1.8	1.0000	1.376	4.091	0.146	1.936	0.473	878.2	15.9	0.18
AV-039_020	78.2	1.6	0.0000	1.394	2.538	0.147	1.334	0.526	886.7	11.0	0.05
AV-039_028	68.2	2.2	0.0000	1.384	2.532	0.147	1.349	0.533	886.1	11.1	-0.35
AV-039_030	58.8	1.5	0.3227	1.390	2.786	0.148	1.409	0.506	891.8	11.7	-0.68
AV-039_032	282.3	1.6	0.0000	1.348	2.437	0.142	1.343	0.551	856.0	10.7	1.33
AV-039_035	93.2	1.3	1.0000	1.466	4.097	0.153	1.867	0.456	917.1	15.9	0.04
AV-039_037	52.9	1.2	0.0000	1.390	2.573	0.147	1.350	0.525	885.5	11.1	0.02
AV-039_038	89.9	1.7	0.1859	1.349	2.682	0.142	1.423	0.530	856.8	11.4	1.29
AV-039_039	65.2	2.3	0.0000	1.432	2.806	0.151	1.439	0.513	905.0	12.1	-0.18
AV-039_047	74.6	1.5	0.0000	1.372	2.769	0.144	1.421	0.513	868.2	11.5	1.10
AV-039_049	82.1	1.8	0.0000	1.392	2.523	0.148	1.347	0.534	887.3	11.1	-0.08
AV-039_050	109.9	1.9	0.0000	1.393	2.598	0.148	1.382	0.532	890.5	11.5	-0.41
AV-039_051	57.5	1.7	0.0000	1.392	2.739	0.147	1.430	0.522	886.5	11.8	0.01
AV-039_052	114.4	1.8	0.0723	1.465	2.509	0.153	1.356	0.541	917.0	11.6	0.00
AV-039_053	80.3	2.4	0.0000	1.368	2.797	0.145	1.439	0.515	873.3	11.7	0.32
AV-039_055	103.6	1.7	0.3976	1.379	3.047	0.148	1.528	0.501	887.3	12.6	-0.72
AV-039_056	93.6	2.6	0.0000	1.392	2.661	0.148	1.411	0.530	889.5	11.7	-0.31
AV-039_058	56.1	1.2	0.3004	1.396	3.186	0.148	1.503	0.472	892.3	12.5	-0.45
AV-039_060	64.6	1.2	0.0000	1.238	2.665	0.131	1.399	0.525	791.1	10.4	3.39

Spot number	U		f 206			Ratios			Age (Ma)		Disc.
	(µg g-1)	232Th/238U	(%)	207Pb*/235U	±2s (%)	206Pb*/238U	±2s (%)	Rho	206Pb/238U	±2s (abs)	(%)
D-28_047	1336.7	0.7	0.2007	1.3671	2.5046	0.1393	1.4049	0.5609	840.9	11.1	3.84
D-28_049	347.8	1.0	0.0000	1.4200	2.4508	0.1493	1.2829	0.5235	897.3	10.8	-0.05
D-28_050	517.5	1.0	0.1056	1.4208	2.5352	0.1496	1.2622	0.4979	898.5	10.6	-0.15
D-28_052	51.5	2.0	0.0000	1.4039	2.6889	0.1481	1.3480	0.5013	890.1	11.2	0.00
D-28_055	374.4	1.2	0.0000	1.4019	2.6027	0.1481	1.3209	0.5075	890.1	11.0	-0.10
D-28_057	484.7	1.6	0.0000	1.3691	2.5239	0.1434	1.2939	0.5127	864.1	10.5	1.27
D-28_060	419.8	1.2	1.0000	1.4072	3.9944	0.1474	1.8769	0.4699	886.4	15.6	0.57
D-28_068	886.9	0.8	1.0000	1.3037	4.0442	0.1367	1.9738	0.4881	826.0	15.3	2.46
D-28_070	600.6	0.8	1.0000	1.4245	3.9717	0.1491	1.8649	0.4695	895.9	15.6	0.32
D-28_071	632.4	1.2	0.0638	1.3344	2.4133	0.1399	1.3011	0.5392	844.2	10.3	1.87
D-28_073	850.6	0.9	0.0739	1.4302	2.4285	0.1498	1.2825	0.5281	900.0	10.8	0.12
D-28_078	1053.4	0.9	1.0000	1.4170	4.1036	0.1502	1.8704	0.4558	901.8	15.8	-0.69
D-28_080	858.3	0.6	0.0613	1.1020	2.4518	0.1172	1.2811	0.5225	714.6	8.7	5.22
D-28_088	597.1	0.9	0.0201	1.2729	2.4344	0.1339	1.2975	0.5330	809.8	9.9	2.81
D-28_089	1221.5	1.0	0.0171	1.3516	2.4336	0.1412	1.2726	0.5229	851.3	10.2	1.90
D-28_090	675.4	1.0	1.0000	1.4145	4.0834	0.1486	1.8523	0.4536	893.2	15.5	0.15
D-28_091	632.3	1.0	1.0000	1.3749	4.0506	0.1439	1.8753	0.4630	866.7	15.3	1.26
D-28_094	875.1	1.9	0.1451	1.2420	2.5410	0.1321	1.3921	0.5479	799.9	10.5	2.37
D-28_095	792.0	0.9	0.1387	1.2566	2.4355	0.1364	1.3177	0.5410	824.4	10.2	0.19
D-28_098	817.9	1.7	0.0548	1.4230	2.4368	0.1495	1.2971	0.5323	898.1	10.9	0.01
D-28_099	976.5	0.8	0.0030	1.2588	2.4398	0.1366	1.3008	0.5332	825.1	10.1	0.22
D-28_100	1332.2	0.8	0.0870	1.2580	2.4396	0.1310	1.3173	0.5399	793.4	9.9	4.02

SAMPLE D028 - Biotite alkali feldspar granite

SAMPLE AV052d - Metarhyolite

Spot number	U		f 206			Ratios			Age (Ma)		Disc.
	ppm	²³² Th/ ²³⁸ U	(%)	²⁰⁷ Pb*/ ²³⁵ U	±2s (%)	²⁰⁶ Pb*/ ²³⁸ U	±2s (%)	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s (%)	%
AV-052_39	165.8	0.2	3.7940	1.2034	4.6522	0.1327	1.4652	0.3149	803.0	11.1	-0.4
AV-052_40	256.7	0.5	0.0000	1.5907	1.9026	0.1621	2.5295	0.5867	968.6	4.8	-0.7
AV-052_41	419.1	0.3	0.0000	1.5227	1.5685	0.1576	2.3270	0.5753	943.2	2.9	-1.3

AV-052_42	227.6	0.2	0.0000	1.4950	1.7996	0.1557	2.5099	0.6377	933.0	4.4	-1.7
AV-052_43	291.0	0.2	0.0000	1.4543	1.8538	0.1526	2.9428	0.5013	915.5	3.7	-1.5
AV-052_44	265.2	0.3	0.0000	1.4799	1.0292	0.1543	2.7414	0.7204	925.0	6.4	-1.0
AV-052_45	312.7	0.3	0.0000	1.5015	1.9322	0.1557	2.5386	0.5778	933.0	4.7	-0.7
AV-052_46	314.7	0.3	0.0000	1.4762	1.6763	0.1542	2.9466	0.6897	924.3	4.0	-1.4
AV-052_47	364.7	0.3	0.0000	1.4599	1.9715	0.1530	2.8828	0.8518	917.7	7.1	-1.4
AV-052_48	305.2	0.3	0.0000	1.4762	1.6381	0.1543	2.9333	0.5226	924.9	2.9	-1.6
AV-052_55	214.4	0.2	0.0000	1.6332	1.9262	0.1658	2.6525	0.7045	989.2	6.0	-2.0
AV-052_56	555.3	0.3	1.6258	0.9266	3.0018	0.1072	1.7592	0.2529	656.3	4.7	6.0
AV-052_57	212.3	0.3	0.0000	1.5352	1.9545	0.1582	2.5995	0.6281	946.7	5.3	-0.7
AV-052_58	255.5	0.2	0.0000	1.5052	1.7265	0.1566	2.4460	0.6139	937.7	3.9	-1.9
AV-052_59	386.2	0.3	0.0000	1.6356	1.7244	0.1659	2.5243	0.7237	989.6	4.8	-1.9
AV-052_60	356.1	0.2	0.0027	1.4284	1.9163	0.1505	2.9498	0.5438	903.5	4.2	-1.0
AV-052_61	312.6	0.5	0.0000	1.4591	1.9284	0.1528	2.8693	0.7461	916.4	5.9	-1.1
AV-052_62	321.2	0.3	0.7559	1.5235	1.3042	0.1578	2.6132	0.4702	944.4	5.4	-1.6
AV-052_63	267.5	0.2	0.0000	1.5039	1.7361	0.1563	2.4451	0.6046	936.0	3.9	-1.5
AV-052_64	263.4	0.2	0.5066	1.5281	1.0611	0.1578	2.4992	0.4705	944.8	4.4	-1.1
AV-052_71	322.6	0.2	0.0000	1.5607	1.7651	0.1606	2.5023	0.6565	960.2	4.5	-1.9
AV-052_72	320.4	0.2	0.3337	1.3695	1.1838	0.1458	2.7903	0.6676	877.2	6.5	-0.5
AV-052_73	230.4	0.2	0.0000	1.5326	1.0015	0.1590	2.5647	0.5638	951.1	5.0	-2.7
AV-052_74	314.8	0.2	0.5688	1.5427	1.0395	0.1592	2.5254	0.5054	952.6	4.7	-1.8
AV-052_75	333.6	0.2	0.0000	1.6060	1.7821	0.1644	2.4631	0.5921	981.4	4.2	-3.0
AV-052_76	357.8	0.3	0.0000	1.5995	1.8227	0.1634	2.6126	0.7447	975.4	5.5	-1.8
AV-052_77	242.6	0.5	0.0000	1.5736	1.8128	0.1614	2.4510	0.5548	964.8	4.0	-1.7
AV-052_78	400.4	0.3	0.0000	1.5433	1.0603	0.1589	2.8277	0.7806	950.8	7.3	-1.1
AV-052_79	259.3	0.2	0.0000	1.5704	1.4146	0.1609	2.5646	0.3991	961.6	5.0	-1.0
AV-052_80	364.0	0.3	0.0000	1.5785	1.7641	0.1615	2.4318	0.5651	965.1	3.9	-1.1
AV-052_7	470.6	0.3	0.0000	1.4787	1.5735	0.1543	2.9342	0.5957	925.1	2.9	-1.3
AV-052_8	454.4	0.3	0.0000	1.4364	1.5908	0.1512	2.9357	0.6041	907.6	3.0	-1.3
AV-052_9	645.8	0.5	0.0995	1.3287	1.8618	0.1423	1.6610	0.7669	857.6	5.3	0.3
AV-052_10	393.6	0.3	0.0000	1.5656	1.7082	0.1609	1.4469	0.6311	961.6	4.0	-1.7
AV-052_11	288.5	0.2	0.0000	1.5065	1.7888	0.1564	1.4977	0.6309	936.6	4.3	-1.3

AV-052_12	409.5	0.3	0.0000	1.5182	1.7018	0.1577	2.4331	0.6172	944.0	3.8	-2.3
AV-052_13	460.7	0.2	0.0030	1.4293	1.0875	0.1502	2.8529	0.2535	901.8	4.5	-0.2
AV-052_14	328.2	0.2	0.0000	1.5219	1.7602	0.1576	2.5717	0.7520	943.2	5.0	-1.4
AV-052_15	534.6	0.3	0.0000	1.3580	1.6695	0.1449	2.4337	0.6478	872.6	3.5	-0.6
AV-052_16	345.4	0.2	0.0000	1.3948	0.7605	0.1478	2.5115	0.6726	888.9	4.2	-0.9
AV-052_23	319.5	7.0	1.4606	1.4880	1.2167	0.1530	2.8962	0.4342	917.9	8.2	2.7
AV-052_24	442.5	0.3	0.0000	1.4741	1.7298	0.1540	2.9562	0.7702	923.4	4.8	-1.3
AV-052_25	561.8	0.4	0.0028	1.4372	1.2356	0.1506	2.9646	0.5231	904.2	5.5	0.2
AV-052_26	316.6	0.2	0.0000	1.5654	1.7542	0.1607	2.4238	0.5619	960.6	3.8	-1.4
AV-052_27	434.1	0.3	0.0000	1.5858	1.8799	0.1619	2.4855	0.5518	967.3	4.4	-0.9
AV-052_28	529.8	0.3	0.0000	1.4828	1.6464	0.1546	2.9443	0.6855	926.9	3.8	-1.3
AV-052_29	330.1	0.3	0.0000	1.3237	1.6853	0.1423	2.4040	0.5896	857.9	3.2	-0.7
AV-052_30	245.1	0.2	0.8417	1.2677	1.6668	0.1369	2.7576	0.4545	827.2	5.9	1.8
AV-052_31	579.1	0.5	0.0000	1.4491	1.0298	0.1520	2.8844	0.8193	912.0	7.2	-1.0
AV-052_32	438.4	0.3	0.0000	1.7124	1.9602	0.1712	1.4341	0.4520	1018.8	4.1	-1.8
AV-052_39'	617.4	0.4	0.1487	1.0210	1.9046	0.1169	1.7401	0.8182	713.0	5.0	0.8
AV-052_40'	372.6	0.3	0.0000	1.5102	1.7583	0.1567	2.5686	0.7499	938.2	5.0	-1.3
AV-052_41'	342.6	0.2	0.0000	1.4932	1.6340	0.1555	2.9344	0.5422	931.6	3.0	-1.5
AV-052_42'	257.6	0.2	0.9612	1.2312	1.5191	0.1349	2.4377	0.1737	815.8	3.4	-0.4
AV-052_43'	291.8	0.2	0.0000	1.5307	1.6103	0.1581	2.3690	0.6046	946.3	3.2	-1.3
AV-052_44'	338.0	0.1	1.7905	1.1954	3.2392	0.1296	1.5536	0.1709	785.3	4.1	6.0
AV-052_45'	383.2	0.2	0.0000	1.5244	1.6105	0.1580	2.3771	0.6176	945.9	3.3	-2.0
AV-052_46'	364.6	0.2	0.0000	1.4254	1.6600	0.1502	2.9440	0.6662	902.0	3.7	-0.9
AV-052_47'	552.0	0.3	0.0000	1.4451	1.5698	0.1518	2.9326	0.5721	911.0	2.8	-1.2
AV-052 48'	624.0	0.1	0.0000	1.5914	1.8907	0.1624	2.6701	0.7524	969.8	6.0	-1.0

SAMPLE D023 - Trachyte

Spot number	U		f 206			Ratios			Age		Disc.
	(µg g-1)	232Th/238U	(%)	207Pb*/235U	±2s (%)	206Pb*/238U	±2s (%)	Rho	206Pb/238U	±2s (abs)	(%)
D-23_07	70.0	1.7	0.0000	1.3545	2.5435	0.1416	1.3408	0.5271	853.5	10.7	1.82
D-23_08	196.3	1.0	0.0311	1.3580	2.4785	0.1420	1.3517	0.5454	855.8	10.9	1.72
D-23_09	134.7	2.2	0.3712	1.3025	2.9505	0.1352	1.4390	0.4877	817.3	11.1	3.46

D-23_12	105.7	2.5	0.4506	1.3340	3.0950	0.1396	1.4659	0.4736	842.5	11.6	2.08
D-23_13	50.5	2.0	0.0000	1.3240	2.9127	0.1371	1.3694	0.4701	828.5	10.7	3.22
D-23_16	142.3	1.4	0.3628	1.2798	3.4164	0.1319	1.6393	0.4798	798.9	12.3	4.50
D-23_17	93.5	1.5	1.1759	1.3647	4.6435	0.1463	2.0729	0.4464	880.2	17.1	-0.75
D-23_19	90.4	2.1	0.0131	1.3795	2.5621	0.1453	1.3473	0.5259	874.7	11.0	0.59
D-23_27	73.0	0.8	0.1709	1.3734	2.9537	0.1455	1.4203	0.4809	875.5	11.6	0.21
D-23_28	49.7	2.0	0.0000	1.3784	3.7595	0.1450	1.5574	0.4143	872.6	12.7	0.79
D-23_29	165.9	1.9	1.0000	1.3563	4.0885	0.1421	1.9490	0.4767	856.5	15.7	1.55
D-23_30	74.5	2.2	0.5894	1.3169	3.6203	0.1377	1.6465	0.4548	831.8	12.9	2.48
D-23_31	41.9	1.4	0.0000	1.3175	3.3260	0.1361	1.4529	0.4368	822.8	11.2	3.56
D-23_36	107.0	1.5	1.0000	1.3908	4.0811	0.1467	1.8879	0.4626	882.4	15.6	0.27
D-23_40	63.1	1.5	0.0000	1.3067	2.6324	0.1342	1.3397	0.5089	811.9	10.2	4.31
D-23_15	172.3	0.7	0.0000	1.2869	2.5391	0.1364	1.4208	0.5596	824.2	11.0	1.84
D-23_38	82.1	1.6	1.0000	1.3658	4.0359	0.1368	1.9745	0.4892	826.5	15.4	5.44

A4) Supplementary File 4 – Lu/Hf

Lu-Hf data obtained for the dated samples of the Salto da Divisa complex.

(a) 176Yb/177Hf = (176Yb/173Yb) true x (173Yb/177Hf) meassured x (M173(Yb)/M177(Hf))b(Hf), b(Hf) = ln(179Hf/177Hf true / 179Hf/177Hfmeasured)/ ln (M179(Hf)/M177(Hf))

(b) Mean Hf signal in volt

(c) Uncertainties are quadratic additions of the within-run precision and the daily reproducibility of the zircon standards. Uncertainties for the standard quoted at 2SD

(d) Initial 176Hf/177Hf and EHf calculated using the apparent Pb-Pb ages of respective zircon domains, and the CHUR parameters: 176Lu/177Hf = 0.0336, and 176Hf/177Hf = 0.282785 (Bouvier et

al., 2008)

(e) Two stage "maximum" model age in billion years using the measured 176Lu/177Hf of each spot (first stage = age of zircon), a value of 176Lu/177Hf = 0.0113 for the average continental crust (second stage), and an average MORB (DM) 176Lu/177Lu and 176Hf/177Hf of 0.03933 and 0.283294, respectively (Blichert-Toft and Puchtel, 2010);

Sample AV039a (hybrid granitoid)				Sam	ple (Present d	ay ratios)							
	(a)		(a)				(b)		(c)	(d)	(d)	(c)	(e)
Lu-Hf spot	176Yb/177Hf	±2s	176Lu/177Hf	±2s	178Hf/177Hf	180Hf/177Hf	SigHf (V)	176Hf/177Hf	±2s	176Hf/177Hf (t)	eHf (t)	±2s	TDM2 (Ga)
seq_20200703-125238\seq042.dat	0.02053	16	0.00077	5	1.46725	1.88665	17	0.28204	11	0.282031	-6.82	0.6	2.1
seq_20200703-125238\seq043.dat	0.01758	14	0.00063	4	1.46722	1.88669	14	0.28209	11	0.282076	-5.74	0.5	2.0
seq_20200703-125238\seq046.dat	0.01837	15	0.00063	4	1.46724	1.88693	15	0.28207	13	0.282054	-5.70	0.6	2.0

seq_20200703-125238\seq047.dat	0.02388	19	0.00088	5	1.46726	1.88678	15	0.28207	12	0.282053	-6.06	0.6	2.0	
seq_20200703-125238\seq048.dat	0.01103	9	0.00040	2	1.46726	1.88681	21	0.28207	13	0.282061	-5.65	0.5	2.0	
seq_20200703-125238\seq051.dat	0.00866	7	0.00031	2	1.46720	1.88686	20	0.28207	12	0.282065	-5.68	0.5	2.0	
seq_20200703-125238\seq053.dat	0.02130	17	0.00078	5	1.46724	1.88684	21	0.28206	12	0.282047	-6.29	0.6	2.0	
seq_20200703-125238\seq054.dat	0.02599	21	0.00094	6	1.46726	1.88687	19	0.28206	12	0.282047	-6.20	0.6	2.0	
seq_20200703-125238\seq055.dat	0.02235	18	0.00078	5	1.46721	1.88680	16	0.28208	11	0.282067	-5.55	0.6	2.0	
seq_20200703-125238\seq056.dat	0.01583	13	0.00050	3	1.46723	1.88681	16	0.28207	13	0.282057	-6.34	0.5	2.0	
seq_20200703-125238\seq057.dat	0.02687	22	0.00097	6	1.46724	1.88689	17	0.28206	18	0.282045	-6.65	0.6	2.1	
seq_20200703-125238\seq058.dat	0.00947	8	0.00034	2	1.46723	1.88677	15	0.28208	12	0.282073	-5.23	0.5	2.0	
seq_20200703-125238\seq059.dat	0.01100	9	0.00039	2	1.46721	1.88679	16	0.28208	13	0.282071	-5.41	0.5	2.0	
seq_20200703-125238\seq060.dat	0.02060	17	0.00072	4	1.46722	1.88672	17	0.28210	12	0.282083	-5.18	0.6	2.0	

Sample D028 (biotite granite)				Sam	ple (Present d	ay ratios)							
	(a)		(a)				(b)		(c)	(d)	(d)	(c)	(e)
Lu-Hf spot	176Yb/177Hf	±2s	176Lu/177Hf	±2s	178Hf/177Hf	180Hf/177Hf	SigHf (V)	176Hf/177Hf	±2s	176Hf/177Hf (t)	eHf (t)	±2s	TDM2 (Ga)
seq_20200703-125238\seq063.dat	0.08536	69	0.00306	18	1.46721	1.88681	34	0.28212	12	0.282071	-7.55	0.9	2.0
seq_20200703-125238\seq064.dat	0.06442	52	0.00232	14	1.46722	1.88677	39	0.28207	13	0.282034	-8.14	0.7	2.1
seq_20200703-125238\seq065.dat	0.09025	73	0.00312	19	1.46721	1.88683	25	0.28201	12	0.281953	-9.35	0.9	2.2
seq_20200703-125238\seq066.dat	0.08177	98	0.00278	27	1.46724	1.88670	28	0.28205	24	0.282005	-9.16	1.1	2.1
seq_20200703-125238\seq067.dat	0.06670	74	0.00238	22	1.46723	1.88675	20	0.28211	29	0.282076	-7.19	0.9	2.0
seq_20200703-125238\seq068.dat	0.05637	46	0.00202	12	1.46725	1.88674	25	0.28208	15	0.282046	-5.96	0.7	2.0
seq_20200703-125238\seq070.dat	0.05983	48	0.00209	13	1.46725	1.88678	29	0.28205	15	0.282010	-7.30	0.7	2.1
seq_20200703-125238\seq071.dat	0.07326	59	0.00251	15	1.46724	1.88678	36	0.28209	15	0.282052	-7.04	0.8	2.0
seq_20200703-125238\seq072.dat	0.05158	41	0.00174	10	1.46721	1.88671	25	0.28204	21	0.282016	-7.18	0.7	2.1
seq_20200703-125238\seq073.dat	0.12694	140	0.00399	31	1.46728	1.88672	27	0.28200	17	0.281931	-11.18	1.5	2.3
seq_20200703-125238\seq074.dat	0.03709	34	0.00132	9	1.46728	1.88668	26	0.28218	14	0.282156	-4.17	0.6	1.9
seq_20200703-125238\seq075.dat	0.06160	66	0.00211	17	1.46722	1.88675	22	0.28212	14	0.282081	-5.08	0.8	2.0
seq_20200703-125238\seq076.dat	0.06064	49	0.00222	13	1.46726	1.88660	22	0.28206	17	0.282030	-8.26	0.7	2.1
seq_20200703-125238\seq078.dat	0.04925	48	0.00173	14	1.46717	1.88669	20	0.28209	14	0.282066	-6.11	0.7	2.0
seq_20200703-125238\seq080.dat	0.04494	37	0.00156	10	1.46720	1.88691	24	0.28202	13	0.281991	-8.01	0.6	2.1
seq_20200703-125238\seq081.dat	0.02632	63	0.00092	20	1.46722	1.88670	18	0.28206	24	0.282041	-6.26	0.8	2.0
seq_20200703-125238\seq082.dat	0.11229	99	0.00384	26	1.46724	1.88668	24	0.28210	14	0.282031	-6.70	1.1	2.1
seq_20200703-125238\seq083.dat	0.03123	26	0.00115	7	1.46721	1.88669	48	0.28204	11	0.282023	-7.58	0.6	2.1

Sample AV052d (metarhyolite)		Sam	ple (Present d	ay ratios)									
	(a)		(a)				(b)		(c)	(d)	(d)	(c)	(e)
Lu-Hf spot	176Yb/177Hf	±2s	176Lu/177Hf	±2s	178Hf/177Hf	180Hf/177Hf	SigHf (V)	176Hf/177Hf	±2s	176Hf/177Hf (t)	eHf (t)	±2s	TDM2 (Ga)
seq_20190528-110823\seq023.dat	0.06123	50	0.00194	12	1.46718	1.88680	5	0.28217	16	0.282135	-2.61	0.8	1.9
seq_20190528-110823\seq024.dat	0.07749	63	0.00261	16	1.46713	1.88690	8	0.28214	15	0.282097	-4.15	0.9	1.9
seq_20190528-110823\seq025.dat	0.06244	54	0.00209	16	1.46726	1.88688	6	0.28212	19	0.282082	-4.02	0.8	2.0
seq_20190528-110823\seq026.dat	0.10923	93	0.00359	22	1.46724	1.88700	6	0.28210	16	0.282040	-5.96	1.1	2.0

seq_20190528-110823\seq027.dat	0.07103	58	0.00242	16	1.46715	1.88674	4	0.28215	21	0.282104	-3.91	0.9	1.9	
seq_20190528-110823\seq028.dat	0.07735	63	0.00251	15	1.46722	1.88683	7	0.28214	18	0.282097	-4.13	0.9	1.9	
seq_20190528-110823\seq029.dat	0.07151	60	0.00225	15	1.46728	1.88699	7	0.28211	19	0.282075	-4.38	0.9	2.0	
seq_20190528-110823\seq030.dat	0.06424	54	0.00209	13	1.46716	1.88694	7	0.28217	19	0.282137	-2.26	0.8	1.9	
seq_20190528-110823\seq031.dat	0.05078	41	0.00167	11	1.46717	1.88687	5	0.28219	16	0.282161	-1.76	0.8	1.8	
seq_20190528-110823\seq032.dat	0.05641	47	0.00189	12	1.46715	1.88672	5	0.28214	19	0.282108	-3.23	0.8	1.9	
seq_20190528-110823\seq033.dat	0.07660	62	0.00251	16	1.46710	1.88661	3	0.28213	18	0.282089	-4.12	0.9	1.9	
seq_20190528-110823\seq034.dat	0.07807	64	0.00262	16	1.46732	1.88691	6	0.28214	17	0.282091	-4.34	0.9	1.9	
seq_20190528-110823\seq035.dat	0.06908	56	0.00215	14	1.46716	1.88694	7	0.28217	20	0.282128	-2.76	0.9	1.9	
seq_20190528-110823\seq036.dat	0.06016	48	0.00179	11	1.46718	1.88692	14	0.28199	22	0.281954	-8.70	0.8	2.2	
seq_20190528-110823\seq037.dat	0.07725	63	0.00265	17	1.46738	1.88701	5	0.28222	18	0.282172	-1.00	0.9	1.8	
seq_20190528-110823\seq038.dat	0.08762	71	0.00284	18	1.46726	1.88682	3	0.28220	17	0.282149	-1.63	1.0	1.8	
seq_20190528-110823\seq039.dat	0.08347	72	0.00264	16	1.46726	1.88686	6	0.28213	18	0.282086	-4.04	1.0	1.9	
seq_20190528-110823\seq040.dat	0.05061	41	0.00170	10	1.46729	1.88683	5	0.28218	17	0.282156	-1.73	0.8	1.8	

Sample D023 (trachyte)				Sam	nple (Present d	ay ratios)							
	(a)		(a)				(b)		(c)	(d)	(d)	(c)	(e)
Lu-Hf spot	176Yb/177Hf	±2s	176Lu/177Hf	±2s	178Hf/177Hf	180Hf/177Hf	SigHf (V)	176Hf/177Hf	±2s	176Hf/177Hf (t)	eHf (t)	±2s	TDM2 (Ga)
seq_20200703-125238\seq107.dat	0.01892	21	0.00066	7	1.46731	1.88588	19	0.28176	18	0.281752	-17.47	0.6	2.6
seq_20200703-125238\seq108.dat	0.01929	20	0.00070	6	1.46735	1.88580	22	0.28181	23	0.281795	-15.90	0.6	2.5
seq_20200703-125238\seq109.dat	0.03206	47	0.00109	13	1.46735	1.88582	18	0.28178	21	0.281765	-17.83	0.7	2.6
seq_20200703-125238\seq110.dat	0.03598	30	0.00126	8	1.46737	1.88583	19	0.28182	23	0.281802	-16.94	0.6	2.6
seq_20200703-125238\seq111.dat	0.02894	25	0.00100	7	1.46738	1.88578	18	0.28181	18	0.281792	-16.31	0.6	2.6
seq_20200703-125238\seq112.dat	0.02979	25	0.00108	7	1.46737	1.88574	19	0.28180	18	0.281786	-16.82	0.6	2.6
seq_20200703-125238\seq113.dat	0.02241	18	0.00080	5	1.46733	1.88575	20	0.28184	14	0.281824	-14.33	0.6	2.5
seq_20200703-125238\seq114.dat	0.02335	19	0.00084	5	1.46735	1.88581	21	0.28174	12	0.281727	-17.88	0.6	2.7
seq_20200703-125238\seq115.dat	0.03188	26	0.00111	7	1.46736	1.88594	17	0.28178	11	0.281767	-17.44	0.6	2.6
seq_20200703-125238\seq116.dat	0.02781	22	0.00098	6	1.46732	1.88585	18	0.28178	11	0.281763	-17.77	0.6	2.6
seq_20200703-125238\seq117.dat	0.02796	23	0.00098	6	1.46735	1.88583	20	0.28178	13	0.281761	-17.09	0.6	2.6
seq_20200703-125238\seq118.dat	0.01638	13	0.00059	4	1.46732	1.88585	19	0.28178	11	0.281773	-16.25	0.5	2.6
seq_20200703-125238\seq119.dat	0.02768	22	0.00095	6	1.46739	1.88570	16	0.28179	13	0.281775	-16.24	0.6	2.6
seq_20200703-125238\seq120.dat	0.01939	16	0.00071	4	1.46737	1.88572	19	0.28180	12	0.281784	-17.27	0.6	2.6
seq_20200703-125238\seq121.dat	0.03406	27	0.00118	7	1.46732	1.88576	20	0.28174	13	0.281723	-17.86	0.6	2.7

A5) Supplementary File 5 – Sm/Nd

Sm–Nd data obtained for the analyzed samples in the Salto da Divisa complex. Initial isotope ratios are calculated for t = 0.9 Ga. (m) – measured; (i) – initial value calculated to igneous crystallization age (t = 0.9 Ga). Ages in Ga. TDM model ages after DePaolo (1981).]

.

Sample	Sm (ppm)	Nd (ppm)	¹⁴⁷ Sm ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd (rock)(m)	+/- 2 Sigma	e _{Nd (0)}	T _{DM} age	U-Pb age	¹⁴³ Nd/ ¹⁴⁴ Nd (rock) _(i)	¹⁴³ Nd/ ¹⁴⁴ Nd (CHUR) _(i)	e _{Nd (t)}
				U	LTRAMAFIC RC	OCKS (PYROX	ENITE)				
AV052f	24.154	121.066	0.1206	0.511855	3.00	-15.27	1.74	0.90	0.511143	0.511475	-5.32
D017b	6.886	31.745	0.1311	0.512243	7.00	-7.71	1.18	0.90	0.511469	0.511475	2.25
				Γ	MAFIC ENCLAV	ES (HYBRID 2	ZONE)				
AV039b	8.776	47.979	0.1106	0.511973	8.00	-12.97	1.57	0.90	0.511320	0.511475	-3.01
SD040b	9.108	50.642	0.1087	0.511839	3.00	-15.59	1.77	0.90	0.511197	0.511475	-5.61
					MAFIC-INTER	MEDIATE DY	KES				
D005b	6.815	35.560	0.1159	0.51204	5.00	-11.66	1.56	0.90	0.511356	0.511475	-2.35
D004b	13.054	68.617	0.1150	0.511931	5.00	-13.79	1.71	0.90	0.511252	0.511475	-4.37
AV012b	13.135	71.059	0.1117	0.511834	7.00	-15.67	1.81	0.90	0.511174	0.511475	-5.88
AV072b	4.827	22.008	0.1326	0.512323	9.00	-6.15	1.35	0.90	0.511540	0.511475	1.27
AV057b	9.690	50.541	0.1159	0.512264	4.00	-7.30	1.21	0.90	0.511580	0.511475	2.06
HYBRID GRANITOIDS											
SD041	32.849	166.269	0.1194	0.512003	4.00	-12.39	1.68	0.90	0.511298	0.511475	-3.43
AV039a	9.529	52.322	0.1101	0.511956	2.00	-13.30	1.60	0.90	0.511306	0.511475	-3.25
SD082a	19.784	132.336	0.0904	0.511784	8.00	-16.66	1.55	0.90	0.511251	0.511475	-4.30
	1				BIOTITE-AMPH	IIBOLE GRAN	ITES				
SD003	36.667	197.723	0.1121	0.511985	5.00	-12.73	1.58	0.90	0.511323	0.511475	-2.79
AV016	19.862	90.521	0.1326	0.512086	4.00	-10.76	1.79	0.90	0.511303	0.511475	-3.23
SD067	16.025	71.483	0.1355	0.512063	6.00	-11.22	1.91	0.90	0.511263	0.511475	-4.01
AV042	20.231	92.726	0.1319	0.512024	2.00	-11.97	1.90	0.90	0.511245	0.511475	-4.33
AV061	28.657	170.991	0.1013	0.511761	3.00	-17.11	1.74	0.90	0.511163	0.511475	-5.83
					BIOTITE	GRANITES					
AV094	33.059	194.248	0.1029	0.511996	2.00	-12.52	1.44	0.90	0.511389	0.511475	-1.60
AV058a	23.670	112.941	0.1267	0.511807	3.00	-16.21	2.17	0.90	0.511059	0.511475	-8.05
D028	13.685	57.175	0.1447	0.512031	4.00	-11.84	2.24	0.90	0.511177	0.511475	-5.76
	1				TWO-MI	CA GRANITE					
AV154	13.397	69.853	0.1159	0.51195	7.00	-13.42	1.70	0.90	0.511266	0.511475	-3.96
					METAI	RHYOLITE					

AV052d	31.466	181.033	0.1051	0.512245	6.00	-7.67	1.12	0.90	0.511625	0.511475	3.08
	TRACHYTE										
D023	19.112	136.041	0.0849	0.511983	137.00	-12.77	1.25	0.90	0.511482	0.511475	0.34

APÊNDICE B-Materiais suplementares do artigo 2

Este apêndice contém os arquivos suplementares do artigo 2, submetidos na revista como arquivos anexos ao manuscrito. São eles: A1) Supplementary File 1: petrographic table; A2) Supplementary File 2: lithochemistry; A3) Supplementary File 3: U-Pb data; A4) Lu-Hf data; and A5) Sm-Nd data.

B1) Supplementary File 1- petrographic table

Petrographic table with a synthesis of the main characteristics of the analyzed rocks representative of the Buerarema complex and the intrusions focused in the studied area.

SAMPLE	UTM_N	UTM_E	ROCK (FIELD CLASSIFICATION)	ROCK (PETROGRAPHIC NAME)	MINERAL ASSEMBLY	MICROSCOPIC OBSERVATIONS
				BUERAREMA COM	PLEX (ca. 2.1 Ga orthogneisses)	
AV044a	443805	8244939	Granitoid, fine-grained, light gray, leucocratic (M<5%)	Tonalitic orthogneiss	Quartz, Plagioclase, K-feldspar, Biotite, Opaque minerals, Pyroxene, Epidote	Equigranular, hypdiomorphic, fine-grained, with rare isolated subeuhedral and corroded plagioclase phenocryst. Reliquiar pyroxene as trace mineral
AV055	445435	8229896	Orthogneiss, fine-grained, ligh gray, leucocratic (M<7%), banded, with milimetric milky quartz- feldspathic bands	Orthogneiss	Quartz, Plagioclase, K-feldspar, Biotite, Apatite, Sericite	Equigranular, granolepidoblastic. Strong recrystallization. Fine-grained, submilimetric crystals of biotite and sericite
AV057a	449140	8231588	Banded orthogneiss, fine- grained, ligh gray, leucocratic (M<5%), with milimetric milky quartz- feldspathic bands	Orthogneiss	Quartz, Plagioclase, K-feldspar, Biotite, Sericite, Epidote, Carbonate, Apatite	Equigranular, granolepidoblastic. Strong recrystalization. Medium-grained, submilimetric crystals of biotite and sericite
AV072a	440188	8236225	Biotite orthogneiss, coarse- grained, leucocratic (M~25%)	Biotite granodioritic orthogneiss	Quartz, Plagioclase, K-feldspar, Biotite, opaque minerals, Sericite, Epidote, Apatite, Zircon, Titanite	Inequigranular, fine to medium-grained, granolepidoblastic. Contain myrmekite. Plagioclase > K-feldspar (microcline)

AV074a	439966	8235505	Biotite migmatitic orthogneiss, coarse- grained, mesocratic (M~45%), mylonitic and with folded and irregular neossomatic milimetric to centimetric bands	Biotite tonalitic orthogneiss	Quartz, Plagioclase, Biotite, Epidote, Carbonate, Apatite, Allanite	Inequigranular, fine to medium-grained, granolepidoblastic
AV087a	426668	8230739	Biotite migmatitic orthogneiss (paleossome), medium-grained, leucocratic (M~20%), mylonitic and with folded and boudided neossomatic granitic veins	Biotite granodioritic orthogness	Quartz, Plagioclase, K-feldspar, Biotite, opaque minerals, Epidote, Zircon, Allanite	Inequigranular, medium to coarse-grained, granoblastic, myolitic. Biotite marks the foliation that contour sigmoidal oeriented quartz-feldspathic aggregates
AV091a	414896	8243531	orthogneiss (paleossome), medium-grained, leucocratic (M~25%), mylonitic and with folded and boudded neossomatic	Biotite orthogness	Quartz, Plagioclase, K-feldspar, Biotite, Opaque minerals, Sericita, Epidote	Inequigranular, medium to coarse-grained, granoblastic, myolitic.
AV092	419763	8245026	granitic veins Biotite orthogneiss, medium-grained, light gray, leucocratic (M~25%), banded	Biotite orthogness	Quartz, Plagioclase, K-feldspar, Biotite, Epidote	Equigranular, granolepidoblastic, mylonitic, with sigmoidal foliation, ribbon quartz and micro boudins and pinch and swell of quartz aggregates. Strong recrystallization
D004a	438104	8231553	Biotite orthogneiss, grayish, porphyritic, mylonitic, with fine-grained matrix and sigmoidal feldspar phenocrysts	Biotite orthogness	Quartz, Plagioclase, K-feldspar, Biotite, Apatite	Mylonitic, with equigranular and strongly recrystallized streched quartz-feldspathic matrix, and sigmoidal foliation marked by biotite alignment
			· · ·	RHYACIAN INTRU	SION (ca. 2.07 Ga granodiorite)	
D017	429174	8244623	Granitoid, inequigranular, fine to medium-grained, with sparse feldspar euhedral phenocrysts of ca. 0.5 to 1.0cm. Dark gray, leucocratic (M~20-30%), and foliated	Hornblende-biotite metagranodiorite	Quartz, Plagioclase, K-feldspar, Biotite, Hornblende, opaque minerals, Epidote, Zircon, Titanite	Porphyritic, mylonitic, with subeuhedral phenocryts of plagioclase, commonly with corroded edges.Contain mymerkites and coronitic opaque minerals surounded by epidote
				OROSIRIAN HIGH-K INT	RUSIONS (ca. 2.03 Ga granodiorite)	
AV011a	440100	8237544	Orthogneiss, medium- grained, grayish, banded	Biotite-muscovite orthogneiss	Quartz, K-feldspar, Plagioclase, Biotite, Muscovite, Epidote, Apatite, Zircon, Titanite, Allanite	Equigranular, granolepidoblastic
AV045a	443805	8244939	Orthogneiss, medium- grained, grayish, banded, folded	Biotite orthogneiss	Quartz, K-feldspar, Plagioclase, Biotite, Apatite, Fluorite, Titanite, Zircon	Equigranular, granolepidoblastic, with micro fold (open fold).

AV100	423527	8246704	Granitoid, equigrnular, medium-grained, mesocratic (M~50%), with salt and pepper structure	Biotite metamonzodiorite	Quartz, K-feldspar, Plagioclase, Biotite, Hornblende, opaque minerals, Sericite, Epidote, Carbonate, Apatite, Zircon, Titanite	Granular, hypdiomorphic, enriched in biotite and fine- grained and fractured feldspatic fabric. Rare larger grains of feldspatic and quartz occur and they are corroded. Saussurite is common. Hornblende is rare and is aletered to biotite
AV173	416255	8232651	Augen-gneiss and foliated myolitic syenitoid with preserved centimetric euhedral to subeuhedral K- feldspar pinkish phenocrysts. Megaporphyritic rock.	Biotite mylonitic gneiss with megacrysts of K-feldspar porphyroclats	K-feldspar, Quartz, Plagioclase, Biotite, Opaque minerals, Muscovite, Sericite, Epidote, Carbonate, Zircon, Titanite	Granoblastic, mylonitic, with sigmoidal foliation sourounding sigmoidal centimetric K-feldspar porphyroclasts. Enriched in biotite. Sericitization. Opaques, epidote, carbonate and accessories occur as intersticial phases
AV091b1	414896	8243531	Granitic leucossome in migmatite.Inequigranular, medium to coarse-grained, grayish to pinksish, leucocratic (M~10%), foliated	Biotite meta-leucogranite with muscovite	Quartz, K-feldspar, Plagioclase, Biotite, Muscovite, Epidote, opaque minerals	Granular, hypdiomorphic, enriched in microcline, which sometimes exhibit irregular and deformed twining. Sericitization is common. Perthite is rare. Recrystallized poligonal quartz. Feldspar with curved (lobate) edges
AV091b2	414896	8243531	Granitic leucossome in migmatite.Inequigranular, medium to coarse-grained, grayish to pinksish, leucocratic (M~10%), foliated	Biotite meta-leucogranite with muscovite	Quartz, K-feldspar, Plagioclase, Biotite, Muscovite, Epidote, opaque minerals, Sericite	Granular, hypdiomorphic, enriched in microcline, which sometimes exhibit irregular and deformed twining. Sericitization is common. Perthite is rare. Recrystallized poligonal quartz. Feldspar with curved (lobate) edges
JM144	421104	8253549	Orthogneiss, grayisih, fine- grained	Biotite orthogness	Quartz, K-feldspar, Plagioclase, Biotite, Muscovite, Sericite	Sericitic K-feldspar

B2) Supplementary File 2 - lithochemistry

Lithochemical data for the studied samples of the Buerarema complex and related intrusions.

UNIT	BUERAREMA COMPLEX										
SAMPLE	AV074a	AV072a	AV012a	AV055	AV087a	AV092	D004a	AV091a	AV057a	D005a	AV044a
ROCK	Biotite tonalitic orthogneiss	Biotite granodioritic orthogneiss	Granitic gneiss	Orthogneiss	Biotite granodioritic orthogness	Biotite orthogness	Biotite orthogness	Biotite orthogness	Orthogneiss	Biotite granodioritic orthogness	Tonalitic orthogneiss
SiO2	63.30	67.60	67.80	68.80	69.10	69.50	72.10	72.30	73.30	73.70	77.30
TiO2	0.86	0.67	0.75	0.24	0.34	0.46	0.29	0.30	0.15	0.25	0.18
AI2O3	16.10	16.10	15.30	15.90	14.90	14.90	14.50	14.20	15.50	13.60	13.20
Fe2O3	5.09	3.69	4.43	2.32	4.43	3.97	1.83	2.80	1.35	2.38	1.05
MnO	0.07	0.06	0.05	0.03	0.07	0.06	0.02	0.04	0.03	0.02	0.01

MgO	2.17	1.51	1.03	0.83	1.35	1.30	0.54	0.56	0.35	1.08	0.32
CaO	4.31	2.84	2.33	2.04	3.69	3.37	1.52	1.74	2.18	2.32	1.45
Na2O	4.14	4.80	5.81	5.28	3.66	4.19	5.08	4.09	5.63	4.78	6.35
K2O	2.37	2.37	1.60	2.93	2.45	2.06	2.83	3.01	1.68	1.02	0.25
P2O5	0.30	0.20	0.27	0.11	0.12	0.15	0.08	0.10	0.04	0.11	0.02
L.O.I	0.85	0.39	0.38	0.26	0.68	0.66	0.47	0.66	0.62	0.55	0.34
Ва	1983.00	716.00	675.00	2090.00	509.00	491.00	1311.00	638.00	968.00	784.00	78.00
Ce	157.50	141.50	160.40	48.80	32.70	83.90	43.70	43.40	18.90	48.40	83.20
Co	30.60	35.40	160.40	5.10	32.70	83.90	78.40	43.40	39.20	54.60	2.70
Cs	0.16	0.20	0.18	0.03	0.23	0.10	0.27	0.09	0.11	0.40	0.23
Cu	20.00	6.00	5.00	6.00	62.00	32.00	2.50	7.00	5.00	2.50	5.00
Dy	4.98	3.24	3.17	1.88	2.05	2.19	0.75	0.85	0.92	1.14	2.31
Er	2.37	1.58	1.46	0.90	1.23	1.03	0.45	0.40	0.54	0.74	1.36
Eu	1.84	1.53	2.09	1.36	0.74	1.02	1.31	0.69	0.54	1.15	0.72
Ga	18.80	16.70	17.50	22.20	16.10	19.90	18.00	18.80	17.50	17.60	9.50
Gd	7.62	5.28	5.27	3.07	2.42	3.00	1.15	1.52	1.30	2.15	2.95
Hf	7.33	7.21	6.38	3.89	2.61	6.14	4.70	3.47	5.93	4.12	5.21
Но	0.85	0.58	0.54	0.26	0.42	0.37	0.13	0.14	0.18	0.25	0.44
La	73.30	78.60	90.20	27.10	19.10	51.00	31.50	27.90	10.00	31.30	59.90
Lu	0.26	0.19	0.17	0.03	0.19	0.11	0.06	0.06	0.07	0.12	0.19
Мо	1.00	1.00	3.00	1.00	4.00	5.00	3.00	1.00	1.00	2.00	1.00
Nb	16.29	16.73	14.21	6.87	2.63	9.37	4.41	5.36	15.90	1.76	20.77
Nd	66.40	50.90	59.90	23.00	14.10	28.20	14.10	14.80	8.10	19.60	25.90
Ni	15.00	10.00	12.00	11.00	6.00	10.00	9.00	14.00	33.00	11.00	2.50
Pr	18.59	14.83	18.02	5.79	3.80	8.70	4.28	4.67	2.17	5.65	8.43
Rb	44.00	66.10	33.90	54.20	86.20	77.60	77.70	74.90	23.10	31.00	21.20
Sm	10.60	7.20	8.70	4.40	2.40	4.20	2.10	2.00	1.40	3.10	3.70
Sn	3.10	2.40	0.70	0.15	7.00	0.15	0.90	0.15	4.10	0.40	24.40
Sr	692.00	548.00	547.00	1238.00	297.00	349.00	245.00	171.00	908.00	425.00	426.00
Та	1.34	1.05	0.73	0.03	0.29	0.36	0.97	0.36	1.50	0.37	2.35
Tb	0.97	0.67	0.63	0.27	0.33	0.43	0.14	0.18	0.16	0.28	0.40
Th	3.20	12.40	10.70	1.30	1.10	4.60	1.50	2.80	1.00	14.00	35.30
ті	0.80	0.25	0.25	1.00	0.25	0.25	0.25	0.25	0.25	0.25	0.90
Tm	0.31	0.21	0.21	0.06	0.20	0.14	0.03	0.06	0.08	0.13	0.18
U	0.65	1.25	0.92	0.52	0.56	0.55	0.54	0.67	0.31	0.54	3.41
V	35.00	19.00	121.00	29.00	63.00	71.00	2.50	17.00	2.50	18.00	27.00
W	148.00	202.40	3.20	1.50	315.50	342.00	575.80	339.90	281.70	339.50	4.30

Y	23.72	15.73	14.79	9.77	11.14	9.29	3.48	4.53	4.88	6.37	12.98
Yb	1.80	1.30	1.20	0.80	1.30	0.80	0.50	0.40	0.50	0.60	1.40
Zn	81.00	58.00	43.00	42.00	62.00	45.00	53.00	23.00	20.00	12.00	15.00
Zr	298.00	301.00	256.00	144.00	88.00	228.00	130.00	109.00	235.00	102.00	160.00

UNIT	GRANODI	RITIC INTRUSION	HIGH-K ROCKS							
SAMPLE	D017	D019	AV100	JM147b	AV173	AV011a				
ROCK	Hornblende-biotite metagranodiorite	Hornblende-biotite metagranodiorite	Biotite granitoid (High-K granitoid)	Biotite orthogness (High-K gneiss)	Biotite augen gneiss with megacrysts of K-feldspar porphyroclats (High-K gneiss)	Biotite-muscovite foliated granitoid (High-K granitoid)				
SiO2	61.40	66.70	53.90	56.25	60.00	60.30				
TiO2	1.88	0.90	2.34	2.86	1.09	1.11				
AI2O3	14.20	16.00	14.90	14.08	16.10	16.50				
Fe2O3	7.46	4.87	9.72	8.94	5.44	5.34				
MnO	0.08	0.05	0.14	0.09	0.07	0.08				
MgO	1.61	1.28	3.15	2.40	2.20	1.55				
CaO	4.37	1.68	5.74	3.93	3.41	4.27				
Na2O	4.39	4.73	2.98	3.87	3.91	4.18				
K2O	1.95	3.00	3.24	3.79	4.91	4.36				
P2O5	0.92	0.42	1.54	2.11	0.63	0.41				
L.O.I	1.13	1.35	0.58	1.00	1.04	0.60				
Ва	1655.00	1962.00	3250.00	1712.70	4969.00	2511.00				
Ce	272.30	112.20	345.80	690.80	202.30	202.60				
Co	70.30	77.00	24.40	18.50	13.80	33.50				
Cs	1.30	0.87	0.17	0.40	0.03	2.04				
Cu	95.00	34.00	53.00	63.10	23.00	50.00				
Dy	9.38	4.40	8.31	12.63	5.05	4.71				
Er	4.28	2.39	3.35	4.66	2.09	2.08				
Eu	3.88	2.63	5.05	6.45	3.70	2.40				
Ga	16.70	19.80	24.30	19.60	22.10	20.40				
Gd	15.48	7.71	15.57	25.44	9.27	8.33				
Hf	16.26	8.15	10.88	33.60	8.08	10.19				
Но	1.70	0.85	1.27	2.13	0.77	0.83				
La	131.70	54.60	170.10	321.50	97.20	106.70				
Lu	0.42	0.21	0.28	0.59	0.14	0.25				
Мо	3.00	2.00	1.00	3.40	1.00	6.00				

Nb	27.72	9.93	28.25	49.20	14.21	57.98
Nd	122.20	57.40	155.40	271.60	92.40	80.30
Ni	15.00	9.00	21.00	20.70	17.00	6.00
Pr	33.44	14.23	41.11	75.95	24.32	22.63
Rb	97.40	140.90	75.00	91.20	83.50	219.20
Sm	21.60	10.00	24.40	38.70	14.60	11.70
Sn	26.70	35.80	0.15	1.00	1.40	35.80
Sr	645.00	431.00	1131.00	278.90	1769.00	806.00
Та	2.02	0.96	0.03	2.80	0.03	5.21
Tb	1.87	1.02	1.64	2.72	0.98	1.04
Th	10.20	1.20	5.80	20.70	4.60	13.80
ТΙ	0.25	0.25	1.20		1.10	0.60
Tm	0.54	0.29	0.34	0.78	0.20	0.28
U	1.88	0.79	0.64	5.30	0.71	1.10
V	53.00	24.00	74.00	82.00	52.00	52.00
W	456.00	521.80	1.40	1.00	0.20	188.40
Y	43.09	22.15	36.65	62.20	22.90	21.91
Yb	3.60	1.80	2.50	3.99	1.60	1.70
Zn	116.00	135.00	163.00	63.00	78.00	196.00
Zr	665.00	312.00	479.00	1563.90	307.00	444.00

UNIT			HIGH-K ROCKS	
SAMPLE	AV045a	JM144	AV091b1	AV091b2
ROCK	Biotite foliated granitoid (High-K granitoid)	Biotite orthogneiss (High-K gneiss)	Biotite meta-leucogranite with muscovite (High- K neossome)	Biotite meta-leucogranite with muscovite (High- K neossome)
SiO2	64.10	65.27	73.10	73.80

0102	04.10	00.21	75.10	75.66	
TiO2	0.95	0.57	0.16	0.16	
AI2O3	15.90	16.58	13.80	14.20	
Fe2O3	4.81	3.84	1.66	1.54	
MnO	0.07	0.03	0.03	0.04	
MgO	1.30	0.90	0.37	0.40	
CaO	3.05	2.26	1.02	1.06	
Na2O	4.29	3.45	3.05	2.97	
K2O	4.91	5.70	6.09	5.83	
P2O5	0.34	0.18	0.05	0.05	

L.O.I	0.90	0.80	0.50	0.42	
Ва	2662.00	2206.30	1382.00	1305.00	
Ce	212.10	454.80	49.40	92.10	
Со	9.50	6.00	49.40	66.80	
Cs	0.25	0.40	0.07	0.09	
Cu	21.00	13.00	11.00	14.00	
Dy	5.48	5.04	0.94	0.99	
Er	2.40	2.07	0.46	0.41	
Eu	2.82	2.29	0.82	0.83	
Ga	22.10	21.20	13.90	15.50	
Gd	9.17	9.22	1.74	2.44	
Hf	11.22	11.70	5.76	5.61	
Но	0.87	0.88	0.17	0.16	
La	109.30	238.20	33.80	59.70	
Lu	0.23	0.28	0.05	0.07	
Мо	1.00	3.40	6.00	1.00	
Nb	25.89	14.80	1.22	0.03	
Nd	89.00	131.10	17.10	27.50	
Ni	9.00	20.10	7.00	9.00	
Pr	23.96	42.32	5.34	8.75	
Rb	108.80	171.70	93.30	93.10	
Sm	13.80	16.50	2.50	3.70	
Sn	0.15	2.00	0.15	2.00	
Sr	833.00	349.70	214.00	211.00	
Та	0.03	0.90	0.33	0.03	
Tb	1.03	1.25	0.18	0.24	
Th	12.80	50.80	59.70	108.40	
ТІ	1.20		0.25	0.25	
Tm	0.25	0.31	0.06	0.07	
U	0.85	1.20	5.31	15.20	
v	29.00	44.00	21.00	25.00	
w	0.80	0.50	609.70	402.90	
Y	25.18	23.70	4.01	4.42	
Yb	2.10	1.75	0.40	0.40	
Zn	142.00	59.00	36.00	36.00	
Zr	493.00	508.50	167.00	156.00	

B3) Supplementary File 3 – U/Pb

Summary of U-Pb zircon data (LA-ICPMS and SHRIMP)

SAMPLE AV072a - Granodioritic gneiss (LA-ICPMS)

	U		f 206			Ratios			Age		Disc.
Spot identification	(µg g-1)	232Th/238U	(%)	207Pb*/235U	±2s (%)	206Pb*/238U	±2s (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s (abs)	(%)
AV-072A_072	445	0.29	0.0045	6.484	2.552	0.3634	1.447	0.567	2090	37	2.37
AV-072A_073	577	0.31	1.0000	6.237	3.053	0.3524	1.592	0.521	2076	46	3.30
AV-072A_074	529	0.22	1.0000	5.524	3.070	0.3173	1.574	0.513	2046	47	6.84
AV-072A_075	418	0.30	0.1983	5.483	2.650	0.3181	1.525	0.576	2029	38	6.32
AV-072A_076	709	0.42	0.1462	4.772	2.573	0.2817	1.514	0.588	1998	37	10.25
AV-072A_078	642	0.24	1.0000	6.418	3.047	0.3596	1.555	0.510	2091	46	2.82
AV-072A_087	452	0.58	0.0000	6.465	2.563	0.3621	1.468	0.573	2091	37	2.53
AV-072A_088	715	0.08	0.0000	6.469	2.630	0.3613	1.505	0.572	2096	38	2.75
AV-072A_091	348	0.20	1.0000	5.989	3.062	0.3404	1.604	0.524	2065	46	4.46
AV-072A_092	444	0.22	0.0144	6.487	2.539	0.3639	1.467	0.578	2088	36	2.28
AV-072A_093	642	0.33	0.0116	6.077	2.542	0.3444	1.462	0.575	2070	37	4.12
AV-072A_094	167	0.38	0.0000	6.847	2.890	0.3853	1.479	0.512	2083	44	-0.28
AV-072A_096	399	0.32	0.0000	6.758	2.655	0.3804	1.504	0.566	2082	39	0.25
AV-072A_098	461	0.30	0.0000	6.562	2.557	0.3691	1.468	0.574	2084	37	1.57
AV-072A_099	246	0.38	0.2401	6.218	2.694	0.3546	1.528	0.567	2059	39	2.65
AV-072A_100	648	0.26	0.0471	5.040	2.615	0.2975	1.511	0.578	1998	38	8.18
AV-072A_107	538	0.36	0.0594	5.766	2.831	0.3325	1.569	0.554	2039	42	4.81
AV-072A_108	666	0.66	0.0355	6.750	2.594	0.3786	1.495	0.576	2088	37	0.59
AV-072A_109	525	0.28	0.0678	6.160	2.659	0.3505	1.518	0.571	2063	39	3.23
AV-072A_110	520	0.39	0.0117	6.470	2.588	0.3651	1.489	0.575	2078	37	1.87
AV-072A_111	785	0.37	0.0198	5.011	2.573	0.2959	1.485	0.577	1998	37	8.38
AV-072A_112	614	0.31	0.0565	6.262	2.826	0.3461	1.525	0.540	2115	42	4.97
AV-072A_113	599	0.31	0.1150	6.445	2.781	0.3627	1.512	0.544	2083	41	2.28
AV-072A_115	396	0.33	1.0000	6.429	3.086	0.3635	1.569	0.508	2075	47	1.99
AV-072A_116	595	0.36	0.0234	6.328	2.716	0.3583	1.523	0.561	2072	40	2.51

AV-072A_117	281	0.51	1.0000	6.698	3.116	0.3759	1.597	0.513	2088	47	0.88
AV-072A_118	292	0.50	0.8081	5.719	3.243	0.3294	1.676	0.517	2042	49	5.24
AV-072A_119	673	0.17	1.0000	6.207	3.085	0.3529	1.584	0.514	2065	47	2.98
AV-072A_120	509	0.27	0.1315	5.580	2.832	0.3209	1.547	0.546	2045	42	6.35

SAMPLE AV173 - Quartz-monzonitic augen-gneiss (LA-ICPMS)

.

	U		f 206			Ratios			Age		Disc.
Spot identification	(µg g-1)	232Th/238U	(%)	207Pb*/235U	±2s (%)	206Pb*/238U	±2s (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s (abs)	(%)
AV-173_007	156	0.62	0.0000	6.2446	2.489	0.3659	1.498	0.6019	2011	35	0.20
AV-173_008	136	0.61	0.0401	6.0871	2.541	0.3578	1.509	0.5941	2006	36	0.99
AV-173_012	158	0.46	0.0000	6.3084	2.532	0.3653	1.495	0.5902	2032	36	0.76
AV-173_014	377	0.52	0.0177	6.3215	2.552	0.3640	1.522	0.5964	2042	36	1.16
AV-173_016	188	0.57	0.0418	6.4117	2.494	0.3702	1.459	0.5850	2038	36	0.34
AV-173_017	198	0.41	0.1050	5.6028	2.541	0.3282	1.512	0.5951	2012	36	4.69
AV-173_018	359	0.54	0.1917	5.5033	2.546	0.3204	1.515	0.5951	2023	36	5.91
AV-173_019	123	0.65	0.0000	6.2740	2.579	0.3631	1.510	0.5855	2033	37	1.06
AV-173_020	111	0.65	0.0000	6.4105	2.528	0.3714	1.487	0.5881	2032	36	0.06
AV-173_027	132	0.72	0.1944	6.0229	2.535	0.3416	1.462	0.5766	2069	37	4.43
AV-173_028	213	0.44	0.0000	6.6211	2.604	0.3772	1.512	0.5804	2061	37	0.12
AV-173_029	157	0.57	0.0920	6.2342	2.631	0.3595	1.514	0.5754	2039	38	1.62
AV-173_031	164	0.58	0.0917	6.4255	2.575	0.3702	1.509	0.5859	2041	37	0.43
AV-173_032	142	0.53	0.2384	6.1633	2.516	0.3593	1.465	0.5822	2021	36	1.19
AV-173_034	166	0.30	0.0263	6.5431	2.497	0.3753	1.461	0.5850	2049	36	0.04
AV-173_036	130	0.58	0.0000	6.3831	2.592	0.3693	1.512	0.5831	2034	37	0.36
AV-173_039	209	0.58	0.0000	6.0225	2.655	0.3529	1.536	0.5787	2011	38	1.72
AV-173_040	215	0.51	0.1116	5.4612	2.567	0.3214	1.520	0.5920	2004	37	5.33
AV-173_048	157	0.53	0.0991	6.4261	2.636	0.3724	1.484	0.5628	2031	39	-0.07
AV-173_050	221	0.59	0.0000	6.1643	2.715	0.3604	1.532	0.5643	2015	40	0.93
AV-173_051	441	0.72	0.0681	5.3457	2.527	0.3175	1.499	0.5934	1988	36	5.42
AV-173_052	131	0.64	0.1299	6.2543	2.645	0.3660	1.532	0.5791	2014	38	0.23
AV-173_054	155	0.56	0.2277	5.4551	2.880	0.3217	1.635	0.5678	2000	42	5.20
AV-173_055	276	0.51	0.2625	5.8480	2.662	0.3432	1.552	0.5831	2008	38	2.79

AV-173_058	402	0.48	0.0000	6.2014	2.797	0.3615	1.522	0.5441	2021	42	0.94
AV-173_060	171	0.73	0.0000	5.5911	2.636	0.3263	1.538	0.5836	2018	38	5.08
AV-173_070	32	0.56	0.7796	5.5882	3.228	0.3287	1.605	0.4974	2004	50	4.44
AV-173_071	84	0.53	0.0000	5.8445	2.823	0.3395	1.532	0.5426	2027	42	3.67

SAMPLE D017 – Granodiorite (LA-ICPMS)

•

	U		f 206			Ratios			Age		Disc.
Spot identification	(µg g-1)	232Th/238U	(%)	207Pb*/235U	±2s (%)	206Pb*/238U	±2s (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s (abs)	(%)
D-17_007	255	1.94	0.0427	6.6332	2.357	0.3789	1.245	0.5281	2056	35	-0.40
D-17_008	498	1.37	0.0450	6.6205	2.366	0.3800	1.220	0.5157	2048	36	-0.73
D-17_009	449	2.91	0.1103	6.7219	2.384	0.3838	1.209	0.5073	2057	36	-0.93
D-17_010	149	1.85	1.0000	6.6077	2.917	0.3770	1.383	0.4741	2058	45	-0.13
D-17_011	146	1.08	1.0000	6.6141	2.928	0.3792	1.360	0.4645	2050	46	-0.60
D-17_012	382	1.50	0.0516	6.6052	2.373	0.3781	1.216	0.5123	2053	36	-0.40
D-17_013	221	2.31	0.0945	6.6471	2.471	0.3762	1.308	0.5293	2073	37	0.31
D-17_014	519	2.01	1.0000	6.6680	2.926	0.3785	1.358	0.4640	2067	46	-0.08
D-17_015	238	1.02	1.0000	6.6544	2.925	0.3756	1.334	0.4562	2078	46	0.49
D-17_016	231	2.03	0.0896	6.6677	2.395	0.3791	1.250	0.5218	2064	36	-0.23
D-17_018	184	1.94	1.0000	6.6293	2.938	0.3765	1.380	0.4697	2067	46	0.13
D-17_020	176	1.82	0.0000	6.6437	2.488	0.3761	1.323	0.5317	2072	37	0.32
D-17_030	429	1.44	0.1031	6.6420	2.542	0.3799	1.222	0.4805	2054	39	-0.56
D-17_031	153	1.68	0.0000	6.6651	2.485	0.3790	1.250	0.5029	2065	38	-0.20
D-17_032	118	1.60	0.0000	6.6292	2.645	0.3785	1.362	0.5149	2057	40	-0.34
D-17_033	128	1.88	1.0000	6.6476	3.069	0.3786	1.406	0.4583	2062	48	-0.23
D-17_034	147	2.75	0.0000	6.6440	2.487	0.3745	1.259	0.5063	2080	38	0.68
D-17_035	345	1.05	0.1573	6.6008	2.525	0.3814	1.244	0.4928	2036	39	-1.17
D-17_037	504	0.86	0.0284	6.6172	2.605	0.3790	1.271	0.4878	2052	40	-0.51
D-17_038	279	1.57	1.0000	6.6057	2.965	0.3778	1.356	0.4572	2054	47	-0.32
D-17_040	178	2.25	0.0000	6.6404	2.579	0.3818	1.314	0.5093	2045	39	-1.01
SAMPLE LC51 - Enderbitic gneiss (SHRIMP)

	U		f 206	-		Ratios			Age		Disc.
Spot identification	(ppm)	232Th/238U	(%)	207Pb*/235U	±2s (%)	206Pb*/238U	±2s (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s (abs)	(%)
10.1	787	0.42	0.0097	6.71	1.7	0.3666	1.700	0.991	2135	4	6
4.1	187	0.16	0.0000	6.8	2.5	0.3748	2.100	0.864	2118	22	3
5.1	264	0.18	0.1011	6.71	1.8	0.3671	1.800	0.970	2133	8	5
6.1	318	0.30	0.0240	7.09	1.8	0.3896	1.800	0.980	2124	6	0
8.1	327	0.27	0.0000	6.95	2	0.3811	1.900	0.982	2128	7	2

SAMPLE LC50 - Enderbitic gneiss (SHRIMP)

•

.

	U		f 206			Ratios			Age		Disc.
Spot identification	(ppm)	232Th/238U	(%)	207Pb*/235U	±2s (%)	206Pb*/238U	±2s (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s (abs)	(%)
1.1	332	0.75	0.0675	6.844	0.59	0.3825	0.450	0.750	2095	7	0
2.1	154	0.57	0.1019	6.81	1.1	0.3835	0.950	0.846	2081	11	-1
3.1	120	0.52	0.1702	6.928	1	0.3869	0.730	0.727	2096	12	-1
4.1	104	0.55	0.1566	6.877	1.1	0.3885	0.790	0.688	2076	15	-2
4.2	75	0.38	0.1171	6.837	1.4	0.3847	1.200	0.856	2083	13	-1
5.1	74	0.34	0.0000	6.84	1.3	0.3862	0.950	0.746	2077	15	-1
6.1	176	0.56	0.0000	6.754	0.88	0.3812	0.740	0.847	2078	8	0
7.1	117	0.58	0.0938	6.849	1	0.3815	0.830	0.819	2101	10	1
8.1	67	0.42	0.0926	6.856	1.4	0.3866	0.960	0.671	2079	19	-1
9.1	84	0.42	0.0818	6.92	1.5	0.3877	1.300	0.888	2092	12	-1
10.1	162	0.69	0.0000	6.836	1	0.3839	0.920	0.889	2086	8	0

SAMPLE JM142a - Tonalitic gneiss (SHRIMP)

	U		f 206			Ratios			Age		Disc.
Spot identification	(ppm)	232Th/238U	(%)	207Pb*/235U	±2s (%)	206Pb*/238U	±2s (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s (abs)	(%)
3.1	226	0.31	0.2104	6.794	1.1	0.3742	1.000	0.902	2121	8	3
5.1	255	0.82	0.0107	6.691	1.1	0.3642	0.980	0.911	2141	8	7
5.2	27	0.03	1.4534	7.3	2.3	0.3988	1.800	0.794	2136	25	-1

6.1	487	0.33	-0.1134	6.667	0.97	0.3671	0.910	0.946	2121	6	5
7.1	153	0.09	0.2616	6.758	1.2	0.3682	1.100	0.894	2140	10	6
8.1	575	0.22	0.0392	6.984	1	0.3841	0.990	0.961	2123	5	1
9.1	222	0.05	0.1159	7.068	1.1	0.3867	1.000	0.911	2132	8	1

B4) Supplementary File 4 – Lu/Hf

Lu-Hf data obtained for the dated samples of the Salto da Divisa complex.

(a) 176Yb/177Hf = (176Yb/173Yb) true x (173Yb/177Hf) meassured x (M173(Yb)/M177(Hf))b(Hf), b(Hf) = ln(179Hf/177Hf true / 179Hf/177Hfmeasured)/ ln (M179(Hf)/M177(Hf))

(b) Mean Hf signal in volt

(c) Uncertainties are quadratic additions of the within-run precision and the daily reproducibility of the zircon standards. Uncertainties for the standard quoted at 2SD

(d) Initial 176Hf/177Hf and EHf calculated using the apparent Pb-Pb ages of respective zircon domains, and the CHUR parameters: 176Lu/177Hf = 0.0336, and 176Hf/177Hf = 0.282785 (Bouvier et al., 2008)

(e)Two stage "maximum" model age in billion years using the measured 176Lu/177Hf of each spot (first stage = age of zircon), a value of 176Lu/177Hf = 0.0113 for the average continental crust (second stage), and an average MORB (DM) 176Lu/177Lu and 176Hf/177Hf of 0.03933 and 0.283294, respectively (Blichert-Toft and Puchtel, 2010);

Sample AV173 (Augen gneiss)	(a)		(a)				(b)		(c)	(d)	(d)	(c)	(e)
Lu-Hf spot	176Yb/177Hf	±2s	176Lu/177Hf	±2s	178Hf/177Hf	180Hf/177Hf	SigHf (V)	176Hf/177Hf	±2s	176Hf/177Hf (t)	eHf (t)	±2s	ТDŃ
seq_20200703-125238\seq141.dat	0.00572	5	0.00024	2	1.46742	1.88207	13	0.28130	13	0.281291	-7.06	0.5	2.715
seq_20200703-125238\seq142.dat	0.00751	6	0.00030	2	1.46738	1.88163	14	0.28125	14	0.281237	-9.49	0.5	2.831
seq_20200703-125238\seq143.dat	0.01058	9	0.00043	3	1.46737	1.88164	12	0.28123	14	0.281216	-9.85	0.5	2.864
seq_20200703-125238\seq145.dat	0.00429	3	0.00017	1	1.46743	1.88137	13	0.28124	11	0.281234	-8.73	0.5	2.818
seq_20200703-125238\seq147.dat	0.01056	10	0.00043	3	1.46744	1.88107	14	0.28120	15	0.281187	-10.45	0.5	2.912
seq_20200703-125238\seq148.dat	0.00976	9	0.00039	3	1.46746	1.88083	14	0.28121	14	0.281193	-9.74	0.5	2.890
seq_20200703-125238\seq149.dat	0.00680	7	0.00028	2	1.46734	1.88085	12	0.28120	22	0.281193	-9.53	0.5	2.884
seq_20200703-125238\seq150.dat	0.01203	10	0.00047	3	1.46740	1.88098	13	0.28120	13	0.281177	-10.97	0.5	2.934
seq_20200703-125238\seq151.dat	0.01287	16	0.00051	5	1.46731	1.88065	13	0.28119	17	0.281167	-11.31	0.6	2.954
seq_20200703-125238\seq152.dat	0.02279	25	0.00091	8	1.46734	1.88055	12	0.28123	32	0.281190	-10.96	0.6	2.918
seq_20200703-125238\seq154.dat	0.01560	23	0.00061	8	1.46726	1.88023	12	0.28116	52	0.281137	-12.77	0.6	3.019
seq_20200703-125238\seq155.dat	0.00894	9	0.00035	3	1.46724	1.88018	13	0.28119	19	0.281177	-10.74	0.5	2.929
seq_20200703-125238\seq156.dat	0.01756	16	0.00070	5	1.46722	1.88017	12	0.28115	27	0.281126	-13.34	0.6	3.045
seq_20200703-125238\seq158.dat	0.00674	6	0.00028	2	1.46718	1.87966	12	0.28118	28	0.281173	-11.39	0.5	2.948
seq_20200703-125238\seq159.dat	0.00878	13	0.00035	4	1.46709	1.87975	13	0.28118	29	0.281163	-12.09	0.5	2.974
seq_20200703-125238\seq161.dat	0.00916	10	0.00037	4	1.46713	1.87981	12	0.28118	23	0.281165	-11.40	0.5	2.957
seq_20200703-125238\seq162.dat	0.01752	17	0.00070	6	1.46712	1.87953	11	0.28112	18	0.281096	-13.73	0.6	3.089
seq_20200703-125238\seq163.dat	0.01113	10	0.00045	3	1.46707	1.87920	13	0.28113	14	0.281115	-13.13	0.5	3.054

20200703-125238\seq164.dat 0.01027	10	0.00041	3	1.46713	1.87935	13	0.28112	29	0.281106	-13.96	0.5	3.081
q_20200703-125238\seq165.dat 0.01150	10	0.00046	3	1.46708	1.87918	12	0.28118	17	0.281164	-11.03	0.5	2.951
q_20200703-125238\seq166.dat 0.01039	12	0.00041	4	1.46710	1.87924	13	0.28115	41	0.281138	-12.84	0.5	3.020
20200703-125238\seq167.dat 0.01607	14	0.00062	4	1.46708	1.87919	12	0.28111	18	0.281082	-14.37	0.5	3.119

•

Sample AV072a (Granodioritic gneiss)	(a)		(a)				(b)		(c)	(d)	(d)	(c)	(e)
Lu-Hf spot	176Yb/177Hf	±2s	176Lu/177Hf	±2s	178Hf/177Hf	180Hf/177Hf	SigHf (V)	176Hf/177Hf	±2s	176Hf/177Hf (t)	eHf (t)	±2s	TDM
seq_20200703-125238\seq021.dat	0.00805	7	0.00032	2	1.46723	1.88683	18	0.28137	15	0.281358	-3.79	0.5	2.565
seq_20200703-125238\seq022.dat	0.01244	10	0.00049	3	1.46720	1.88686	14	0.28146	11	0.281436	-0.47	0.5	2.401
seq_20200703-125238\seq023.dat	0.01383	12	0.00051	3	1.46719	1.88686	14	0.28138	13	0.281357	-3.10	0.5	2.552
seq_20200703-125238\seq024.dat	0.01524	15	0.00055	4	1.46713	1.88686	13	0.28138	12	0.281357	-3.22	0.6	2.554
seq_20200703-125238\seq025.dat	0.01009	8	0.00038	2	1.46724	1.88691	14	0.28139	13	0.281378	-2.46	0.5	2.512
seq_20200703-125238\seq026.dat	0.01624	13	0.00059	4	1.46726	1.88688	12	0.28139	12	0.281366	-3.53	0.5	2.550
seq_20200703-125238\seq027.dat	0.00880	7	0.00031	2	1.46717	1.88692	11	0.28136	13	0.281349	-3.84	0.5	2.577
seq_20200703-125238\seq028.dat	0.00984	11	0.00037	4	1.46726	1.88686	12	0.28139	13	0.281377	-2.51	0.5	2.515
seq_20200703-125238\seq029.dat	0.02228	19	0.00079	5	1.46724	1.88680	11	0.28138	16	0.281351	-4.63	0.6	2.592
seq_20200703-125238\seq030.dat	0.02006	19	0.00073	6	1.46723	1.88679	12	0.28139	11	0.281358	-3.23	0.6	2.553
seq_20200703-125238\seq031.dat	0.01130	11	0.00044	3	1.46724	1.88682	13	0.28139	11	0.281372	-3.27	0.5	2.537
seq_20200703-125238\seq032.dat	0.01673	14	0.00063	4	1.46721	1.88674	12	0.28141	12	0.281385	-1.68	0.5	2.488
seq_20200703-125238\seq033.dat	0.01777	16	0.00063	5	1.46720	1.88683	16	0.28140	12	0.281379	-2.61	0.6	2.515
seq_20200703-125238\seq034.dat	0.01355	11	0.00048	3	1.46726	1.88680	14	0.28141	12	0.281390	-2.13	0.5	2.492
seq_20200703-125238\seq035.dat	0.02310	19	0.00083	5	1.46718	1.88680	13	0.28141	10	0.281374	-3.34	0.6	2.536
seq_20200703-125238\seq036.dat	0.01454	12	0.00056	3	1.46722	1.88688	13	0.28138	12	0.281362	-3.40	0.5	2.552
seq_20200703-125238\seq037.dat	0.00859	10	0.00033	3	1.46724	1.88678	15	0.28137	14	0.281354	-3.50	0.5	2.563
seq_20200703-125238\seq038.dat	0.01442	12	0.00051	3	1.46718	1.88670	11	0.28138	12	0.281364	-3.15	0.5	2.545
seq_20200703-125238\seq039.dat	0.01049	9	0.00039	3	1.46725	1.88693	13	0.28138	17	0.281361	-3.53	0.5	2.555
seq_20200703-125238\seq040.dat	0.01220	10	0.00046	3	1.46731	1.88680	12	0.28136	14	0.281347	-4.02	0.5	2.584
seq_20200703-125238\seq041.dat	0.00802	6	0.00031	2	1.46722	1.88678	13	0.28139	12	0.281378	-2.64	0.5	2.517

Sample D017 (Granodiorite)	(a)		(a)				(b)		(c)	(d)	(d)	(c)	(e)
Lu-Hf spot	176Yb/177Hf	±2s	176Lu/177Hf	±2s	178Hf/177Hf	180Hf/177Hf	SigHf (V)	176Hf/177Hf	±2s	176Hf/177Hf (t)	eHf (t)	±2s	TDM
seq_20200703-125238\seq084.dat	0.01147	11	0.00042	3	1.46721	1.88632	14	0.28135	13	0.281330	-4.47	0.5	2.613
seq_20200703-125238\seq085.dat	0.01795	16	0.00062	4	1.46735	1.88525	18	0.28131	15	0.281287	-6.10	0.6	2.699
seq_20200703-125238\seq086.dat	0.01726	17	0.00059	4	1.46740	1.88481	17	0.28130	11	0.281273	-6.76	0.6	2.731
seq_20200703-125238\seq087.dat	0.01059	8	0.00036	2	1.46736	1.88469	17	0.28129	13	0.281279	-6.89	0.5	2.726
seq_20200703-125238\seq088.dat	0.00545	4	0.00021	1	1.46734	1.88464	17	0.28131	11	0.281305	-6.01	0.5	2.676
seq_20200703-125238\seq089.dat	0.01497	13	0.00052	3	1.46736	1.88463	14	0.28129	12	0.281266	-7.05	0.5	2.744
seq_20200703-125238\seq090.dat	0.01283	10	0.00044	3	1.46734	1.88462	15	0.28129	11	0.281273	-7.01	0.5	2.736
seq_20200703-125238\seq091.dat	0.01908	16	0.00066	4	1.46737	1.88474	15	0.28130	12	0.281278	-7.03	0.6	2.730
seq_20200703-125238\seq092.dat	0.01480	12	0.00052	3	1.46740	1.88480	16	0.28129	11	0.281274	-6.90	0.5	2.732
seq_20200703-125238\seq093.dat	0.03586	29	0.00124	7	1.46736	1.88553	15	0.28134	12	0.281296	-6.17	0.6	2.690
seq_20200703-125238\seq094.dat	0.01176	9	0.00042	3	1.46742	1.88548	15	0.28131	11	0.281295	-5.97	0.5	2.687

seq_20200703-125238\seq096.dat	0.01623	13	0.00057	3	1.46733	1.88559	15	0.28133	13	0.281312	-5.24	0.5	2.651
seq_20200703-125238\seq098.dat	0.00848	9	0.00032	3	1.46740	1.88560	19	0.28135	13	0.281335	-4.83	0.5	2.614
seq_20200703-125238\seq099.dat	0.01060	9	0.00036	2	1.46730	1.88571	17	0.28131	12	0.281294	-6.07	0.5	2.691
seq_20200703-125238\seq100.dat	0.00801	7	0.00029	2	1.46735	1.88572	22	0.28131	11	0.281302	-5.96	0.5	2.679
seq_20200703-125238\seq101.dat	0.01132	11	0.00036	3	1.46737	1.88580	16	0.28131	20	0.281300	-5.90	0.5	2.679
seq_20200703-125238\seq102.dat	0.01699	14	0.00058	4	1.46731	1.88567	13	0.28130	20	0.281275	-6.38	0.5	2.720
seq_20200703-125238\seq103.dat	0.01171	10	0.00041	3	1.46736	1.88569	16	0.28134	18	0.281325	-5.41	0.5	2.639
seq_20200703-125238\seq105.dat	0.01867	15	0.00063	4	1.46732	1.88570	16	0.28133	20	0.281310	-5.74	0.6	2.664
seq_20200703-125238\seq106.dat	0.00715	6	0.00024	2	1.46732	1.88574	19	0.28131	18	0.281302	-6.07	0.5	2.681

B5) Supplementary File 4 – Sm/Nd

Sm–Nd data obtained for the analyzed samples in the focused area. (m) – measured; (i) – initial value calculated to igneous crystallization age (t = 2.1 Ga for the Buerarema complex, t= 2.07 Ga for the granodioritic intrusion and t=2.03 Ga for the high-K granitoids. T_{DM} model ages after DePaolo (1981).

Amostra	Sm (nnm)	Nd	147Sm/144Nd	143Nd/ ¹⁴⁴ Nd	± 2SE	eNd (0)	Tdm	U/Pb	¹⁴³ Nd/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	eNd (i)
	(ppm)	(ppm)	(medido)	(medido)			(Ga)	(Ga)	(rocha)(i)	(CHUR)(i)	
			Bueraren	na complex (ca. 2	.1 tonalitio	-granodiori	itic ortho	gneisses)		
A V0 12a	10.121	71.152	0.0860	0.511013	-3	-31.70	2.41	2.1	0.509824	0.509916	-1.80
AV072a	8.746	60.358	0.0876	0.511027	-5	-31.42	2.43	2.1	0.509816	0.509916	-1.97
AV074a	12.199	77.525	0.0951	0.511108	-4	-29.85	2.48	2.1	0.509793	0.509916	-2.42
AV087a	2.427	12.967	0.1131	0.511381	-10	-24.52	2.51	2.1	0.509817	0.509916	-1.95
D004a	2.057	15.219	0.0817	0.510889	-8	-34.11	2.48	2.1	0.509759	0.509916	-3.08
D005a	3.064	20.523	0.0903	0.511083	-10	-30.33	2.41	2.1	0.509835	0.509916	-1.59
AV057a	1.948	8.879	0.1326	0.511597	-14	-20.30	2.72	2.1	0.509763	0.509916	-3.00
AV091a	2.074	14.425	0.0869	0.511009	-9	-31.77	2.44	2.1	0.509807	0.509916	-2.13
AV092	4.453	27.684	0.0972	0.511027	-14	-31.42	2.63	2.1	0.509682	0.509916	-4.58
			R	hyacian intrusion	(ca. 2.07 g	granodioriti	c intrusi	on)			
D017	22.563	139.543	0.0977	0.51114	-3	-29.22	2.49	2.07	0.509814	0.509968	-2.76
D019	10.670	61.193	0.1054	0.511232	-5	-27.42	2.54	2.07	0.509802	0.509968	-2.99
			Or	osirian intrusion (ca. 2.03Ga	a High-K ort	hogneis	ses)			
AV011a (high-K intrusion)	11.448	77.533	0.0893	0.511051	-5	-30.96	2.43	2.03	0.509817	0.509916	-2.42
AV091b (leucossome)	2.421	17.195	0.0851	0.511011	-10	-31.73	2.40	2.03	0.509834	0.509916	-2.62

APÊNDICE C-Mapa geológico

O mapa geológico produzido nesta tese foi realizado em uma área de 6400km², na escala 1:100.000 e é apresentado em papel de tamanho A0. Segue abaixo uma imagem reduzida do mapa.

APÊNDICE D-Mapa de pontos e caminhamento

O mapa de pontos e caminhamento utilizado para confecção do mapa geológico apresentado no Apêndice A é apresentado a seguir em papel de tamanho A0. Segue abaixo uma imagem reduzida do mapa.

APÊNDICE E—Banco de dados: estações de campo

NOME	LATITUDE	LONGITUDE	UTM_N	UTM_E	TITO_AFLO	INTEMPERSIMO	LITOTIPO	UNIDADE	DESCRIÇÃO	MEDIDA	REFERÊNCIA
AV001	۔ 14.805177	-39.025371	8363221.96	497270	Lajedo costeiro	Rocha fresca	Ortognaisse; Diques máficos	Embasamento Arqueano	Gnaisse granítico rosado a acinzentado, médio a grosso, à biotita e anfibólio. Deformado, com presença de dobras em vários estilos. O bandamento é cortado por diques básicos, melanocráticos, de granulação fina e de até 35cm de espessura	Bandamento gnaissico; Dique	Victoria (2023)
AV002	- 14.941364	-39.010907	8348159.36	498827	Lajedo costeiro	Rocha fresca	Ortognaisse; Diques máficos	Embasamento Arqueano	Gnaisse granítico rosado a acinzentado, médio a grosso, à biotita e anfibólio. Deformado, com presença de dobras em vários estilos. O bandamento é cortado por diques básicos, melanocráticos, de granulação fina	Bandamento gnaissico	Victoria (2023)
AV003	- 15.337433	-39.501038	8304289.67	446219	Corte de estrada	Rocha fresca	Gnaisse sienítico	Sienito Anuri	Gnaisse rosado-acinzentado, bem recristalizado e deformado, com cristais de Kfs estirados ao longo da foliação. Médio a grosso Paceto entra sodimentar com alternância de rochas de	Bandamento gnaissico	Victoria (2023)
AV004	- 15.568162	-39.403324	8278790.34	456756	Corte de estrada	Intemperizado	Meta-siltito; meta-arenito	Grupo Rio Pardo	protólito pelítico e arenoso. Está deformado e cortado por veios de quartzo. Acamamento dado por variação composicional e granulométrica e há uma foliação tectônica penetrativa	Acamamento; Foliação	Victoria (2023)
AV005	- 15.576888	-39.407979	8277824.18	456259	Corte de estrada	Moderadamente intemperizado	Meta-siltito; meta-arenito	Grupo Rio Pardo	Pacote meta-sedimentar com alternância de rochas de protólito pelítico e arenoso. Está deformado e cortado por veios de quartzo. Acamamento dado por variação composicional e granulométrica e há uma foliação tectônica penetrativa	Acamamento; Foliação	Victoria (2023)
AV006	- 15.765273	-39.490905	8256967.33	447416	Corte de estrada	Moderadamente intemperizado	Meta-siltito; meta-arenito	Grupo Rio Pardo	Pacote meta-sedimentar com alternancia de rochas de protólito pelítico e arenoso. Está deformado e cortado por veios de quartzo. Acamamento dado por variação composicional e granulométrica e há uma foliação tectônica penetrativa	Foliação	Victoria (2023)
AV007	- 15.875576	-39.5310179	8244755.61	443150	Corte de estrada	Rocha fresca	Gnaisse; Meta- gabro	Complexo Buerarema	Exposição contendo rocha ortoderivada, gnaissica(?), acinzentada, fina a média, bem recristalizada, associada a rocha meta-básica, fina a média, gabroica. Há xenólitos da rocha félsica dentro da básica, além de contatos irregulares e difusos	Foliação	Victoria (2023)
AV008	- 15.895559	-39.54453	8242541.38	441709	Corte de estrada	Intemperizado	Leucogranito; Bt xisto máfico	Complexo Salto da Divisa	Leucogranito esofranquiçado a cinza ciaro, a duas micas, foliado, médio, fraturado. Cortado por diques de metabásica fina, foliada, xistificada (Bt-xisto máfico). Cortado por fraturas/falhas subverticais. Steps indicam vergência para NE	Foliação milonítica; Falha	Victoria (2023)
AV009	۔ 15.917293	-39.561671	8240132.36	439880	Corte de estrada	Rocha fresca	Leucogranito	Complexo Salto da Divisa	Maciço extenso formado por leucogranito esbranquiçado a alaranjado (itemperismo), médio, à duas micas. Esporadicamente, ocorrem enclaves máficos corroídos e dobras desarmônicas provocadas por fluxo magmático.		Victoria (2023)
AV010	- 15.930961	-39.562684	8238620.14	439776	Corte de estrada	Rocha fresca	Granitoide porfirítico; Gnaisse migmatítitico; Metabásica	Complexo Salto da Divisa	Afloramento heterogêneo, com intensa deformação. Contém granitoide porfirítico cinza e gnaisse bandado equigranular, fino, associado com rocha metabásica		Victoria (2023)

AV011	-15.9407	-39.559686	8237543.69	440100	Corte de estrada	Rocha fresca	Biotita gnaisse; Metabásica	Complexo Buerarema	Augen-gnaisse de matriz mesocrática, com porfiroclastos ocelares de Kfs. Associado com gnaisse migmatítico bandado, com melanossoma máfico, fino, e leucossoma tonalítico, cinza. Cortado por dique máfico e veios quartzo-carbonáticos	Foliação milonítica	Victoria (2023)
AV012	- 15.955546	-39.559581	8235901.48	440116	Corte de estrada	Rocha fresca	Augen-gnaisse; Metabásica	Complexo Buerarema	Extenso afloramento heterogêneo, com predominância de augen-gnaisse cinza, médio a grosso, em contato brusco com rocha metabásiuca (diques?) de espessuras variadas e compostos por anfibolito biotitizado, às vezes com blastos de granada	Foliação milonítica	Victoria (2023)
AV013	- 16.042167	-39.613562	8226303.22	434367	Corte de estrada	Rocha fresca	Bt-granito- gnaisse; Anfibolito	Complexo Salto da Divisa	Bt-granito-gnaisse milonítico, acinzentado-rosado, médio a grosso. Está em contato brusco com níveis espessos de metabásica anfibolitizada e orientada segundo a foliação verticalizada do granito	Foliação milonítica	Victoria (2023)
AV014	- 16.087614	-39.619455	8221273.97	433751	Corte de estrada	Intemperizado	Est-Grt-Ms- xisto	Grupo Macaúbas	Xisto avermelhado-bonina-ocre, intemperizado, com abundância de muscovita e presença de porfiroblastos de granada e estaurolita. Está dobrado		Victoria (2023)
AV015	- 16.009486	-39.920324	8229797.22	401534	Corte de estrada	Intemperizado	Migmatito	Embasamento Riaciano arco- derivado	Gnaisse com bandamento muito bem marcado entre níveis centimétricos, ora esbranquiçados, quartzo- feldspáticos, ora escuros, à biotita	Foliação milonítica	Victoria (2023)
AV016	۔ 16.010238	-39.962477	8229693.59	397024	Pedreira	Rocha fresca	Bt-Hb-granito	Complexo Salto da Divisa	Bt-Hb-granito rosado, médio a grosso, foliado, por vezes com presença de níveis máficos concordantes com a foliação. Contém veios de quartzo paralelizados com a foliação e boudinados	Foliação	Victoria (2023)
AV017	- 16.094038	-40.032446	8220386.82	389584	Leito de estrada	Intemperizado	Paragnaisse migmatítico	Complexo Jequitinhonha	Paragnaisse kinzigítico acinzentado, com grafita tipo flake, em contato concordante com nivel de granitoide rosado, médio a grosso (neossoma)		Victoria (2023)
AV018	۔ 16.090927	-40.03595	8220729.11	389207	Lajedo	Intemperizado	Paragnaisse migmatítico	Complexo Jequitinhonha	Paragnaisse migmatítico, com gnaisse bem bandado (paleossoma) em contato brusco com rocha acinzentada, fina (melanossoma) e granitoide rosad (leucossoma). Ocorrem veios aplíticos		Victoria (2023)
AV019	- 15.890203	-40.191067	8242846.78	372489	Corte de estrada	Muito intemperizado	Gnaisse migmatítico	Complexo Itapetinga	Gnaisse cinza-amarelado, médio, friável, com presença de níveis de Bt-xisto máfico paralelo à foliação.	Bandamento gnaissico	Victoria (2023)
AV020	15.860326	-40.201263	8246145.95	371378	Corte de estrada	Muito intemperizado	Bt-gnaisse; Bt- xisto máfico; Pegmatito	Complexo Itapetinga	Gnaisse cinza-amarelado, com presença de níveis de Bt-xisto máfico (biotitito) paralelizados com a foliação. O bandamento varia de mergulho verticalizado a de baixo ângulo, em aspecto de hemiflor. Cortado por veios pegmatítiticos.	Bandamento gnaissico	Victoria (2023)
AV021	- 15.760246	-40.146062	8257251.04	377229	Lajedo	Rocha fresca	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito maciço, porfirítico, rico em fenocristais euédricos a subédricos de Kfs. Possui cor cinza, com tons azulados (provavelmente devido a presença de sodalita)		Victoria (2023)
AV022	- 15.666664	-40.0699525	8267646.68	385331	Corte de estrada	Intemperizado	Bt-gnaisse; Biotitito	Complexo Itapetinga	Gnaisse alaranjado-acinzentado equigranular médio, milonítico, intercalado em níveis de rocha fina, maciça, e Bt-xisto máfico. Níveis finos e maciços assemelham a um quartzito	Foliação milonítica	Victoria (2023)
AV023	- 15.637047	-39.950711	8270983.89	398096	Lajedo	Rocha fresca	Bt-Hb-granito	Complexo Salto da Divisa	Bt-Hb-granito acinzentado, equigranular, fino, foliado. Concentração considerável de magnetita alinhada na foliação.	Foliação	Victoria (2023)

AV024	- 15.257885	-40.250969	8312764.48	365665	Corte de estrada	Rocha intemperizada	Gnaisse	Complexo Itapetinga	Gnaisse intempreziado, com bandamento muito bem marcado entre níveis mili a centimétricos de materia máfico, biotítico, e félsico, quartzo-feldspático	Bandamento gnaissico	Victoria (2023)
AV025	- 15.232707	-40.113419	8315630.02	380423	Corte de estrada	Rocha fresca	Charnoquiito	Embasamento granulítico	Granitoide, médio a grosso, leucocrático, cinza- esverdeado, composto por quartzo, feldspato, biotita, anfibólio e possivelmente piroxênio (charnockito). Os minerais máficos atingem cerca de 10% da rocha. Opacos e possível granada. Ocorrem planos de falha com lineação de estiramento muito bem marcada	Falha	Victoria (2023)
AV026	- 15.065676	-39.987422	8334172.21	393873	Corte de estrada	Rocha fresca	Gnaisse granítico	Suíte Pau Brasil	Granitoide gnaissificado, mesocrático, à biotita, com bandamento (Sn) centimétrico, entre os níveis máficos e félsicos. A rocha está recristalizada. Contém zonas de cisalhamento rúpteis (Falhas), subverticais, com estrias de deslizamento DIP e steps indicando movimento normal.	Foliação	Victoria (2023)
AV027	- 15.580668	-39.411954	8277405.25	455833	Corte de estrada	Rocha fresca	Meta-arenito	Formação Salobro	Trata-se de paredão rochoso amarronzado/rosado, bem estratificado em níveis centimétricos a métricos que marcam bem o acamamento sedimentar. Ocorre uma sucessão sedimentar clástica com meta-arenitos finos, grossos e conglomeráticos	Acamamento	Victoria (2023)
AV028	- 16.021605	-39.911223	8228460.83	402514	Lajedo	Rocha fresca	Bt-Hb-granito	Complexo Salto da Divisa	Bt-Hb-granito rosado-alaranjado, médio, cortado por veios de quartzo		Victoria (2023)
AV029	- 16.008519	-39.922751	8229903.04	401274	Corte de estrada	Intemperizado	Migmatito	Embasamento Riaciano arco- derivado	Bt-gnaisse cinza, médio, com intercalações de anfibolito biotitizado (Bt-xisto máfico). Localmente verifica-se que o anfibolito corta o bandamento. Afloramento bastante deformado e milonitizado. Ocorrem S-C, isoclinais, intrafoliais e boudins	Foliação milonítica	Victoria (2023)
AV030	-16.02839	-39.92229	8227705	401333	Lajedo	Rocha fresca	Bt-Hb-granito	Complexo Salto da Divisa	Hb-Bt-granito rosado, grosso, foliado. Ocorrem fraturas espaçadas e veios de quartzo	Foliação	Victoria (2023)
AV031	- 16.026831	-39.925912	8227875.74	400945	Lajedo	Rocha fresca	Bt-Hb-granito	Complexo Salto da Divisa	Bt-Hb-granito rosado, grosso, isotrópico		Victoria (2023)
AV032	-16.03841	-39.91068	8226602	402580	Lajedo	Rocha fresca	Bt-Hb-granito	Complexo Salto da Divisa	Bt-Hb-granito rosado-alaranjado, médio a grosso, fortemente foliado e cortado por fraturas e veios	Foliação	Victoria (2023)
AV033	- 16.040019	-39.910641	8226424.02	402585	Lajedo	Intemperizado	Bt-gnaisse; Dique anfibolítico	Embasamento Riaciano arco- derivado	Gnaisse cinza claro, médio a grosso, rico em cristais aciculares de anfibólio e com biotita, milonítico, cortado por dique máfico anfibolítico biotitizado	Foliação milonítica	Victoria (2023)
AV034	۔ 16.013126	-39.917526	8229395.86	401835	Lajedo	Rocha fresca	Bt-Hb-granito	Complexo Salto da Divisa	Bt-Hb-granito rosado, médio, com cerca de 10% de máficos e foliação proeminente	Foliação	Victoria (2023)
AV035	- 16.024992	-39.911545	8228085.99	402481	Encosta	Rocha fresca	Bt-Hb-granito; Migmatito (contato)	Complexo Salto da Divisa	Contato. No alto da encosta ocorre Bt-Hb-álcali-granito, rosado-alaranjado, foliado, grosso. Na base da encosta ocorre metatexito com paleossoma máfico, fino a médio, cinza escuro e leucossoma granítico, com dobras pitigmáticas e isoclinais	Foliação	Victoria (2023)

AV036	- 16.023579	-39.959711	8228219.07	397327	Margem de estrada	Intemperizado	Bt-gnaisse; Biotitito	Embasamento Riaciano arco- derivado	Bt-gnaisse coim bandamento muito bem marcardo entre níveis claros, quartzo-feldspáticos, e níveis escuros, à biotita. Os níveis possuem espessura centi a decimétrica. Pode ser um migmatito estromático		Victoria (2023)
AV037	-16.01077	-39.92906	8229651.01	400600	Lajedo	Rocha fresca	Bt-Hb-Qz- monzonito	Complexo Salto da Divisa	Maciço isotrópico, arredondado, composto por granitoide mesocrático, porfirítico, rico em Kfs (monzogranito). Cortado por veios de quartzo		Victoria (2023)
AV038	- 16.013323	-39.928063	8229369.06	400708	Lajedo	Rocha fresca	Bt-Hb-Qz- monzonito; Diabásio	Complexo Salto da Divisa	Granitoide intermediário, porfirítico, rico em Bt-Hb-Kfs em interação com rocha máfica, fina, maciça (Diabásio). Inúmeras feições de magma mingling e localmente magma mixing, com formação de rocha híbrida		Victoria (2023)
AV039	- 16.017872	-39.925579	8228867	400976	Lajedo	Rocha fresca	Bt-Hb-Qz- monzonito; Diabásio	Complexo Salto da Divisa	Granitoide intermediário, porfirítico, rico em Bt-Hb-Kfs em interação com rocha máfica, fina, maciça (Diabásio). Inúmeras feições de magma mingling, com formação de brechas magmáticas		Victoria (2023)
AV040	- 16.010336	-39.924946	8229700.99	401040	Lajedo	Rocha fresca	Migmatito	Embasamento Riaciano arco- derivado	Migmatito com predominância de melanossoma acinzentado, fino a médio, em contato ora irregular, ora reto, com neossoma granítico. Paleossoma é rocha ultramáfica, muito fina. Cortado por aplitos	Foliação	Victoria (2023)
AV041	۔ 16.026157	-39.981295	8227923.07	395019	Blocos e matacões	Rocha fresca	Calcisilicática	Complexo Jequitinhonha	Blocos e matacões dispersos em meio a pasto. Rochas cinza claro, fina, maciça, isotrópica, bem recristalizada.		Victoria (2023)
AV042	- 16.040862	-39.986012	8226293.88	394522	Lajedo	Rocha fresca	Bt-Hb-granito foliado	Complexo Salto da Divisa	Extenso lajedo de Bt-Hb-granito rosado, médio, foliado, com enclaves microgranulares e níveis pouco espessos de biotitito. Truncado por veios pegmatíticos	Foliação	Victoria (2023)
AV043	- 16.004793	-39.938328	8230307.77	399605	Lavra desativada	Rocha fresca	Bt-Hb-Qz- monzonito; Diabásio	Complexo Salto da Divisa	Afloramento dinamitado de Granitoide intermediário (Bt- Hb-Qz-monzonito) rosado a acinzentado, equigranular, médio a grosso. Contém enclaves máficos facetados de dimensões decimétrias a centimétricas		Victoria (2023)
AV044	- 15.873932	-39.524894	8244939.08	443805	Corte de estrada	Rocha fresca	Gnaisse tonalítico	Complexo Buerarema	Maciço heterogêneo com rocha metabásica, cinza escuro-esrvedeada, fina a média, em contato brusco com rocha cinza, equigranular, média. Lembra os afloramentos de granulitos félsicos e máficos que ocorre mais a norte da bacia do Rio Pardo		Victoria (2023)
AV045	-15.92714	-39.562095	8239042.98	439838	Corte de estrada	Rocha fresca	Augen-gnaisse; metabásica	Complexo Salto da Divisa	Anoraniento neterogeneo, deformado, com predominância de augen-gnaisse cinza, leuco a mesocrático. Ocorre em contato brusco com espessos níveis de rocha metabásica, melanocrática a mesocrática, as vezes com Grt (Bt-xisto máfico, anfibolito)		Victoria (2023)
AV046	-15.98876	-39.574202	8232223.13	438561	Corte de estrada	Moderadamente intemperizado	Biotita gnaisse milonítico; Metabásica	Complexo Buerarema	Gnaisse migmatítitico com paleossoma biotitizado, paralelizado com melanossoma cinza , fino. Leucossoma quartzo feldspático ocorre na forma de bolsões e lentes estirados, dobrados, ou como porfiroclastos arredondados	Foliação milonítica	Victoria (2023)
AV047	- 15.907025	-39.569101	8241266.04	439082	Corte de estrada	Intemperizado	Granito- gnaisse; Biotitito	Complexo Salto da Divisa	Afloramento heterogêneo, com Bt-granito grosso, a porfirítico, foliado, em contato brusco com Bt-xisto máfico intemperizado. Material máfico predomina e parece contornar o granito, como um mega boudin, ou um xenólito imerso no domínio máfico	Xistosidade	Victoria (2023)

AV048	- 15.907599	-39.574437	8241200.98	438511	Corte de estrada	Moderadamente intemperizado	Bt-Ms-álcali- granito foliado	Complexo Salto da Divisa	Maciço de Bt-Ms-leucogranito equigranular, médio, cinza-ebranquiçado, com biotita e muscovita, com foliação proeminente.	Foliação	Victoria (2023)
AV049	- 15.902396	-39.596461	8241769.92	436152	Corte de estrada	Rocha fresca	Bt-Ms-álcali- granito	Complexo Salto da Divisa	Maciço de Bt-Ms-granito equigranular, médio, esbranquiçado a alaranjado. Apresenta uma foliação espaçada muito bem marcada. Ou então, é um sistema de juntas regulares que definem uma exfoliação.	Foliação	Victoria (2023)
AV050	- 15.882892	-39.650876	8243910.07	430320	Leito de estrada	Intemperizado	Metadiorito foliado	Corpo diorítico Riaciano	Metadiorito cinza escuro, foliado, à biotita		Victoria (2023)
AV051	- 15.881435	-39.669329	8244065.01	428344	Corte de estrada	Intemperizado	Meta-riolito; Bt- xisto	Complexo Salto da Divisa	Afloramento heterogêneo composto por meta-riolito félsico acinzentado, ora fino e bem recristalizado, ora porfirítico, com anfibólio decussado, intercalado em bt- xisto máfico intemperizado (biotitito). Ocorrem boudins	Xistosidade	Victoria (2023)
AV052	- 15.885458	-39.680915	8243615.99	427105	Corte de estrada	Intemperizado	Dique félsico; hornblendito; Bt-xisto; quartzito	Complexo Salto da Divisa	Sucessão de diques félsicos subvulcânicos acinzentados, afaníticos, ora porfirítico com fenocristais de Kfs ora com porfiroblastos de Amp decussado, intercalado em biotitito, hornblendito, xisto mesocrático grosso e quartzito		Victoria (2023)
AV053	- 15.904672	-39.5926512	8241519.35	436560	Corte de estrada	Intemperizado	Bt-Ms-álcali- granito; Dique máfico	Complexo Salto da Divisa	Afloramento intemperizado de Bt-granito rosado- alaranjado, médio, à duas micas (Bt>Ms). Está cortado por dique máfico com cerca de 50 cm, muito intemperizado, de cor bonina,e biotitizado.	Dique	Victoria (2023)
AV054	- 16.004666	-39.509912	8230481.56	445444	Escavação		Sedimentos semi- consolidados	Cobertura recente	Cobertura sedimentar friável, semi consolidada, de cores variadas (amarelo-laranja-rosa). Predomina silte e areia em pacotes imaturos, com presença de níveis conglomeráticos		Victoria (2023)
AV055	- 16.009959	-39.510013	8229896.03	445435	Corte de estrada	Rocha fresca	Gnaisse tonalítico; metabásica	Complexo Buerarema	Gnaisse acinzentado, fino a médio, bem recristalizado, com intercalações de rocha metabásica, fina. Semelhante a gnaisse TTG. Veios qz-fds e pegmatitos também ocorrem		Victoria (2023)
AV056	- 15.995787	-39.485219	8231470.06	448084	Superficial	Solo	Solo	Cobertura recente	Ponto controle. Solo alaranjado-avermeinado, mavel, areno-siltoso. Nessa região ocorre pilhas de rocha gnaissica britada, como se fosse ponto de descarga de material de pedreira		Victoria (2023)
AV057	- 15.994747	-39.475345	8231587.55	449140	Pedreira	Rocha fresca	Gnaisse tonalítico; Diabásio (dique)	Complexo Buerarema	Gnaisse acinzentado, fino a médio, bem recristalizado, com intercalações de rocha metabásica, fina. Semelhante a gnaisse TTG. Cortado por diques anfibolíticos de espessura métrica e veios pegmatítiticos	Bandamento gnaissico	Victoria (2023)
AV058	- 16.042577	-39.607271	8226259.85	435040	Pedreira	Rocha fresca	Bt-álcali- granito; Anfibolito	Complexo Salto da Divisa	Pedreita ativa. Predomina Bt-álcali-granito rosado, mesocrático, grosso a porfirítico (Kfs de até 3cm). Também ocorre Bt-granito cinza, médio, foliado. Dique de anfibolito ocorrem paralelizados à foliação.	Foliação incipiente	Victoria (2023)
AV059	- 16.025394	-39.67735	8228137.43	427537	Blocos e matacões	Rocha fresca	Bt-Hb-álcali- granito	Complexo Salto da Divisa	Bt-Hb-granito rosado a alaranjado (intemperismo), equigranular grosso e isotrópico		Victoria (2023)
AV060	- 16.014547	-39.686744	8229334.04	426528	Margem de estrada	Intemperizado	Biotita gnaisse milonítico; Anfibolito	Complexo Buerarema	Augen-gnaisse cinza claro, fortemente foliado, com porfiroclastos ocelares de Kfs que atingem até 2cm. Paralelo à foliação, que é subvertical, ocorre nível de anfibolito (dique?)	Foliação milonítica	Victoria (2023)

AV061	- 16.024371	-39.625292	8228268.07	433106	Lajedo	Rocha fresca	Bt-Hb-álcali- granito	Complexo Salto da Divisa	Bt-Hb-granito equigranular, grosso, foliado. Por vezes, pode ser porfirítico. Apresenta-se truncado por veios qz- feldspáticos que preenchem fraturas (gashes). Contém enclaves máficos.	Foliação incipiente	Victoria (2023)
AV062	- 16.032468	-39.539908	8227398.03	442243	Blocos e matacões	Rocha fresca	Bt-Hb-álcali- granito	Complexo Salto da Divisa	Bt-Hb-granito rosado, médio a grosso, ferruginoso, com cerca de 12% de minerais máficos. Exibe uma foliação discreta.	Foliação incipiente	Victoria (2023)
AV063	-16.02503	-39.532862	8228222.76	442995	Lajedo	Rocha fresca	Bt-Hb-álcali- granito	Complexo Salto da Divisa	Bt-Hb-granito, com cerca de 35% de minerais máficos. Exibe uma foliação discreta e é cortado por veios de quartzo	Foliação incipiente	Victoria (2023)
AV064	- 15.943484	-39.562178	8237235.01	439834	Lajedo	Rocha fresca	Augen-gnaisse; Metabásica	Complexo Buerarema	Gnaisse acinzentado, médio a grosso, milonítico, com porfiroclastos ocelares de Kfs estirados na foliação (augen-gnaisse). Ocorre nível máfico de rocha metabásica, fina, paralela à foliação	Foliação milonítica	Victoria (2023)
AV065	- 15.949893	-39.5774976	8236521.58	438196	Corte de estrada	Intemperizado	Bt-Hb-gnaisse	Complexo Buerarema	Rocha cinza-alaranjada, decomposta, fina a média, bem foliada. Contém anfibólio decussado nos planos da foliação. Pode ser Bt-Hb-xisto ou Bt-Hb-gnaisse fino	Xistosidade	Victoria (2023)
AV066	- 15.972399	-39.587518	8234028.99	437131	Lajedo	Rocha fresca	Bt-álcali-granito	Complexo Salto da Divisa	Bt-granito alaranjado-amarronzado, intemperizado, médio a grosso, ferruginoso, com 10 a 15% de máficos.		Victoria (2023)
AV067	-15.97474	-39.594243	8233767.99	436412	Margem de rio	Saprólito	Bt-álcali-granito	Complexo Salto da Divisa	Saprolito de Bt-granito grosso, foliado, marrom		Victoria (2023)
AV068	۔ 15.991386	-39.587172	8231928.77	437174	Lajedo	Rocha intemperizada	Bt-álcali-granito	Complexo Salto da Divisa	Bt-granito alaranjado-amarronzado, intemperizado, médio a grosso, ferruginoso, com 10 a 15% de máficos. Foliação incipiente	Foliação	Victoria (2023)
AV069	- 15.884305	-39.492433	8243800.09	447283	Corte de estrada	Moderadamente intemperizado	Meta-siltito	Grupo Rio Pardo	Meta-siltito com intercalações de metarenito, amarronzado, bem selecionado. A granulação de todo o pacote é fina a média, predominando silte e areia fina. Ocorrem estratificações cruzadas que lembram tipo espinha de peixe.	Foliação	Victoria (2023)
AV070	- 15.902082	-39.554645	8241816.98	440628	Lajedo	Rocha fresca	Álcali-granito foliado	Complexo Salto da Divisa	Exposição bem preservada de granitoide rosado, médio a grosso, à biotita, foliado		Victoria (2023)
AV071	-15.91647	-39.555871	8240225.06	440501	Encosta	Rocha fresca	Bt-Ms-álcali- granito foliado	Complexo Salto da Divisa	Bt-Ms-álcali-granito acinzentado-esnranquiçado, médio a grosso, com foliação anastomosada em cristais maiores de K-feldspato. Muscovita é disseminada na rocha. Cortado por veios de quartzo.	Foliação milonítica	Victoria (2023)
AV072	۔ 15.952623	-39.558896	8236225.01	440188	Corte de estrada	Rocha fresca	Biotita gnaisse milonítico; Metabásica	Complexo Buerarema	Gnaisse cinza, médio a grosso, milonítico, por vezes com porfiroclastos ocelares de Kfs (augen-gnaisse). Está cortado por diques máficos, melanocráticos, de granulação fina, anfibolíticos, de espessura variada	Foliação milonítica	Victoria (2023)
AV073	- 16.004953	-39.593548	8230426.06	436496	Lajedo	Rocha intermperizada	Ms-Bt- leucogranito	Complexo Salto da Divisa	Ms-Bt-granito esbranquiçado com tons esverdeados devido à presença de amazonita. Contém muscovita, é fino a médio e está intemperizado, pouco coeso (friável). Provavel granito hidrotermalizado. Ocorrem veios de quartzo ao longo da foliacão.		Victoria (2023)
AV074	- 15.959123	-39.560984	8235505.39	439966	Corte de estrada	Rocha fresca	Gnaisse migmatítico; Dique máfico	Complexo Buerarema	Afloramento heterogêneo. Predomina augen-gnaisse mesocrático, à biotita, com porfiroclastos de Kfs. Este contém xenólito de gnaisse migmatítitico e é cortado por dique máfico, anfibolítico	Foliação milonítica; Dique	Victoria (2023)

AV075	- 15.934601	-39.647941	8238191.02	430652	Lajedo	Rocha fresca	Bt-álcali-granito porfirítico; Ms- Bt-Leucogranito	Complexo Salto da Divisa	Bt-granito rosado, porfirítico, com presença de fenocristais centimétricos de Kfs. Foliação incipiente. Contém enclaves arredondados, centimétricos, de leucogranito esbranquiçado, equigranular		Victoria (2023)
AV076	- 15.915063	-39.630521	8240358.01	432510	Blocos e matacões	Rocha intemperizada	Bt-álcali-granito	Complexo Salto da Divisa	Bt-granito rosado a amarronzado (cor de intemperismo), grosso, indeformado. Biotita ocorre em agregados arredondados em meio à massa qz-feldspática		Victoria (2023)
AV077	- 15.903009	-39.622375	8241694.03	433378	Lajedo	Rocha fresca	Bt-álcali-granito	Complexo Salto da Divisa	Bt-granito rosado, equigranular, médio, foliado, com presença de muscovita subordinada (<5%). Contém ZC's sinistrais		Victoria (2023)
AV078	- 15.909207	-39.880023	8240909.28	405799	Encosta	Rocha fresca	Bt-álcali-granito	Complexo Salto da Divisa	Extensa exposição de Bt-granito acinzentado-rosado, grosso, rico em magnetita. Contém uma foliação incipiente, enclaves microgranulares máficos biotitizados e diveros veios de quartzo leitoso	Foliação	Victoria (2023)
AV079	۔ 15.901202	-39.866223	8241801	407273	Lajedo	Rocha fresca	Bt-álcali-granito	Complexo Salto da Divisa	Extensa exposição de Bt-granito acinzentado-rosado, grosso, rico em magnetita e foliado.	Foliação	Victoria (2023)
AV080	- 15.863295	-39.887931	8245984.7	404931	Lajedo	Rocha fresca	Bt-Ms-álcali- granito	Complexo Salto da Divisa	Extensa exposição de Bt-Ms-granito acinzentado- esbranquiçado, médio a grosso, em contato com gnaisse friável, bem foliado	Foliação	Victoria (2023)
AV081	- 15.869544	-39.723638	8245361.06	422525	Corte de estrada	Intemperizado	Gnaisse migmatítico	Corpos dioríticos e cumuláticos Orosirianos	Afloramento heterogêneo. Gnaisse migmatítico do tipo folded e estromático. Gnaisse cinza, fino a grosso, é o melanossoma e está em em contato brusco com granitoide cinza claro, médio a grosso, que é o leucossoma	Bandamento gnaissico	Victoria (2023)
AV082	- 15.878104	-39.69647	8244424.01	425437	Cristas	Moderadamente intemperizado	Granitoide megaporfirítico milonítico	Corpos dioríticos e cumuláticos Orosirianos	Granitoide mesocrático, porfirítico, milonítico, com cristais euédricos e ocelares de Kfs rosado que atingem até 5cm. Em alguns locais exibe aspecto gnaissico. A matriz é fina, mesocrática e rica em biotita. Contém Ser intersticial	Foliação milonítica	Victoria (2023)
AV083	۔ 15.894112	-39.556688	8242698.02	440407	Lajedo	Rocha fresca	Metadiorito	Complexo Salto da Divisa	Dioritoide mesocrático, equigranular, isotrópico, à biotita. Contém feldspato rosado e a composição é intermediária (~50% máficos e félsicos)		Victoria (2023)
AV084	- 15.895472	-39.55161	8242549.02	440951	Lajedo	Rocha fresca	Metadiorito	Complexo Salto da Divisa	Maciço heterogêneo. Bt-granito (equigranular, médio) e granitoide máfico (fino a médio, à biotita), em contato brusco. Este predomina e a rocha félsica ocorre na forma de enclaves e veios		Victoria (2023)
AV085	- 15.882881	-39.554537	8243940.98	440634	Lajedo	Rocha fresca	Bt-granito	Complexo Salto da Divisa	Bt-granito rosado a alaranjado, isotrópico, equigranular, médio, de composição: Kfs-Qz-Bt. Cortado por veios de quatzo.		Victoria (2023)
AV086	۔ 15.892217	-39.555487	8242907.98	440535	Lajedo	Rocha fresca	Metadiorito	Complexo Salto da Divisa	Granito-gnaisse cinza-escuro, extremamente cisalhado, com dobras apertadas, boudins. Presença de níveis máficos (Bt) ao longo da foliação	Foliação milonítica	Victoria (2023)
AV087	- 16.001854	-39.685388	8230738.63	426668	Lajedo	Rocha fresca	Biotita gnaisse milonítico; aplito	Complexo Buerarema	Gnaisse cinza, equigranular, bandado (melanossoma) contendo bolsões e lentes deformados de Ms-Bt-granito equigranular, médio, rosado (leucossoma). Estes, encontram-se deformados, dobrados e boudinados	Foliação	Victoria (2023)

AV088	- 15.911358	-39.893676	8240665.13	404339	Corte de estrada	Rocha fresca	Aplito; Bt-xisto máfico	Pegmatito	Maciço constituído por microgranito foliado (aplito), foliado. Contém níveis de biotita-xisto máfico crenulado. Dúvida em saber se é embasamento, ou se está associado ao magmatismo Salto da Divisa Dedreiro destrivido. Concerto Rt leurostante	Foliação	Victoria (2023)
AV089	- 15.859607	-39.88515	8246393.94	405227	Pedreira	Rocha fresca	Bt-Ms-álcali- granito	Complexo Salto da Divisa	esbranquiçado, com tons esverdeados (amazonita). Cortado por veios de quartzo leitoso e pegmatíticos. Há uma foliação incipiente e tensio gashes		Victoria (2023)
AV090	- 15.850821	-39.888473	8247364.38	404867	Corte de estrada	Intemperizado	Augen-gnaisse	Embasamento Riaciano arco- derivado	Augen-gnaisse acinzentado, rico em máficos, com porfiroclastos de Kfs que atingem até 1,5cm.		Victoria (2023)
AV091	- 15.885834	-39.794958	8243531.35	414896		Rocha fresca	Gnaisse migmatítico	Embasamento Riaciano arco- derivado	Gnaisse migmatítico, heterogêneo, com melanossoma constituído por Bt-gnaisse cinza, fino a médio, em contato brusco, dobrado, com metabásica fina (paleossoma) e Bt-granito rosado, médio, foliado (leucossoma)	Foliação	Victoria (2023)
AV092	- 15.872481	-39.74945	8245026.45	419763	Lajedo	Rocha fresca	Bt-gnaisse; Metabásica	Embasamento Riaciano arco- derivado	Bt-gnaisse cinza, médio, bem foliado. Ocorrem intercalações concordantes de níveis máficos e todo o pacote está intrudido por veios qz-feldspáticos	Bandamento gnaissico	Victoria (2023)
AV093	- 15.871786	-39.7317908	8245110	421653	Corte de estrada	Intemperizado	Granitoide megaporfirítico milonítico; Bt- xisto máfico	Corpos dioríticos e cumuláticos Orosirianos	Granitoide creme-cinza escuro, mesocrático, milonítico porfirítico, com em megacristais de Kfs, euédricos ou ocelares, de até 5cm. Está em contato brusco com Bt- xisto máfico. A máfica parece envolver o granitoide (boudin)	Foliação milonítica	Victoria (2023)
AV094	- 15.910706	-39.917357	8240726.27	401803	Lajedo	Rocha fresca	Bt-granito	Complexo Salto da Divisa	Bt-granito rosado, equigranular, grosso. Cortado por veios de quartzo centimétricos que, por vezes, estão falhados	Foliação	Victoria (2023)
AV095	- 15.954854	-39.987845	8235807.88	394281	Corte de estrada	Intemperizado	Anfibolito; Bt- gnaisse	Embasamento Riaciano arco- derivado	Afloramento heterogêneo, com espesso pacote de anfibolito biotitizado (Bt-xisto máfico) intrudido por granito esbranquiçado, grosso. Granitoide mesocrático com cristais maiores de Kfs também ocor	Xistosidade	Victoria (2023)
AV096	-15.9949	-39.971152	8231386.08	396088	Lajedo	Rocha fresca	Bt-Hb-granito	Complexo Salto da Divisa	Bt-Hb-granito rosado, médio, foliado, cortado por veios e bolsões pegmatíticos. Estes contém magnetita euédrica, que atingem até 2cm	Foliação	Victoria (2023)
AV097	- 15.901495	-39.891875	8241757.05	404527	Lajedo	Rocha fresca	Bt-granito porfirítico	Complexo Salto da Divisa	Bt-granito rosado,foliado, porfirítico, rico em cristais subédricos de Kfs que atingem até 2cm. Cortado por veios de quartzo que, por vezes, formam tension gashes (movimento sinistral). Contém enclaves de granito equigranular, rosado	Foliação	Victoria (2023)
AV098	- 15.937048	-39.8796	8237829.57	405858	Margem de estrada	Intemperizado	Granito- gnaisse; Gnaisse bandado (contato)	Complexo Buerarema	Gnaisse cinza, grosso, à biotita, muito bem foliado. Paralelo à foliação ocorre nível de gnaisse bandado, fino a médio, rico em biotita	Foliação milonítica	Victoria (2023)
AV099	- 15.862875	-39.720374	8246100	422872	Corte de estrada	Intemperizado	Bt-xisto máfico; Gnaisse migmatítico	Corpos dioríticos e cumuláticos Orosirianos	Afloramento heterogêneo. Predomina rocha metabásica, melanocrática, cinza escuro, xistificada (Bt- xisto máfico), em contato brusco com augen-gnaisse	Foliação milonítica	Victoria (2023)

cinza escuro com porfiroclastos arrewdondados de até 2cm de Kfs. Há um complexo padrão de deforma

AV100	- 15.857435	-39.714237	8246704.02	423527	Lajedo	Rocha fresca	Metadiorito	Corpos dioríticos e cumuláticos Orosirianos	Dioritoide maciço, com textura sal e pimenta e proporrção semelhante entre minerais félsicos e máficos. É equigranular, médio. Cortado por veios. Estes estão dobrados e falhados		Victoria (2023)
AV101	- 15.789562	-39.744419	8254200.93	420269	Margem de estrada	Rocha fresca	Metacalcário	Grupo Rio Pardo	Metacalcário cinza, bem recristalizado, com estrutura planar-paralela interpretada como acamamento sedimentar	Acamamento	Victoria (2023)
AV102	- 15.784867	-39.74879	8254718.63	419799	Corte de estrada	Intemperizado	Ortognaisse; Dique máfico	Suíte Pau Brasil	Gnaisse cinza, equigranular, médio, leucocrático, com máficos(Bt-Hb) atingindo cerca de 15%. Bem foliado e cortado por dique máfico, fino (meta-diabásio)	Foliação; Dique	Victoria (2023)
AV103	- 15.762975	-39.767035	8257133.31	417836	Lajedo	Rocha fresca	Granitoide porfirítico; metabásica	Embasamento Riaciano arco- derivado	Grande exposição de gnaisse cinza, médio a porfirítico, foliado e cisalhado, com S-C indicando movimento sinistral. Contém quartzo azulado. Está em contato brusco com metabásica cinza-escuro a preto, migmatítica, com venulas leucossomáticas	Foliação	Victoria (2023)
AV104	- 15.803977	-39.727865	8252612.54	422047	Corte de estrada	Muito intemperizado	Bt-xisto; Metabásica (dique)	Embasamento Riaciano arco- derivado	Bt-xisto (ou gnaisse fino?) cinza a bege claro, fino a médio, friável, com biotita. Possui forte lineação ao qual a rocha se desagrega ao golpe do martelo (L-S tectonito). Está cortado por espesso dique de metabásica subvertical	Xistosidade	Victoria (2023)
AV105	- 15.836672	-39.7437939	8248989.8	420354	Lajedo	Rocha fresca	Bt-granito foliado	Embasamento Riaciano arco- derivado	Bt-granito acinzentado, foliado, de granulação média, leucocrático, de composição: Qz-Fds-Bts.		Victoria (2023)
AV106	- 15.667729	-39.991912	8267569.51	393696	Corte de estrada	Rocha fresca	Granito foliado; Bt-xisto máfico	Complexo Itapetinga	Gnaisse cinza, médio, com intercalações centimétricas de Bt-xisto máfico.	Foliação milonítica	Victoria (2023)
AV107	-15.62547	-39.951948	8272263.99	397958	Lajedo	Rocha fresca	Bt-Hb-granito	Complexo Salto da Divisa	Bt-Hb-granito rosado, fino, com foliação espaçada discreta. Contém cristais maiores de anfibólio decussado (hornfels?). Está cortado por veios de quartzo	Foliação	Victoria (2023)
AV108	- 15.598347	-39.983478	8275249.08	394564	Lajedo	Rocha fresca	Bt-Hb-granito	Complexo Salto da Divisa	Bt-Hb-granito rosado, fino a médio, foliado. Contém minerais aciculares de anfibólio orientados	Foliação	Victoria (2023)
AV109	- 15.698775	-40.049451	8264105.3	387546	Corte de estrada	Intemperizado	Bt-gnaisse milonítico	Fenito	Gnaisse acinzentado-alaranjado, milonítico, com porfiroclastos arredondados de Kfs. Composição: Qz- Fds-Bt-Ms (estirada nos planos da foliação)	Foliação milonítica	Victoria (2023)
AV110	- 15.709175	-40.035633	8262962.08	389032	Blocos e matacões	Intemperizada	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito alaranjado, com tons azulados, grosso, isotrópico. Composição: Kfs-Bt-Anf.		Victoria (2023)
AV111	- 15.722922	-40.01098	8261454.07	391681	Lajedo	Rocha fresca	Álcali granito	PASEBA	Alcali granito acinzentado-rosado, equigranular, médio, foliado. Composição: Kfs-Qz-Bt-Hb	Foliação	Victoria (2023)
AV112	۔ 15.731152	-40.0102	8260544.02	391769	Encosta; Lajedo	Rocha fresca	Álcali granito	PASEBA	Alcali granito acinzentado-rosado, equigranular, médio, foliado.	Foliação	Victoria (2023)

AV113	- 15.768978	-40.007063	8256361.06	392125	Lajedo	Intemperizado	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito rosado-alaranjado, fino a médio, rosado, mesocrático. Composição: Kfs-Bt-óxidos de ferro.	Foliação	Victoria (2023)
AV114	- 15.792053	-40.005833	8253808.98	392269	Blocos e matacões	Rocha moderadamente intemperizada	Quartzo-sienito	Província Alcalina do Sul do Estado da Bahia	Rocha acinzentada-alaranjada, equigranular, fina, recristalizada, dominantemente constituída por Kfs, com quantidades menores quartzo. Minerais máficos (biotita?) são traços.		Victoria (2023)
AV115	- 15.840418	-39.998919	8248462.03	393035	Lajedo	Rocha fresca	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito cinza escuro, equigranular, grosso, maciço. Composição: Kfs-Anf-Bt. É cortado por diversos veios de quartzo leitoso, de direção N-S e cinemática sinistral. Próximo aos veios, no sienito, ocorrem cristais maiores de pirita.		Victoria (2023)
AV116	۔ 15.891122	-39.978686	8242863.01	395228	Corte de estrada	Rocha fresca	Augen-gnaisse	Complexo Ibicaraí	Bt-gnaisse acinzentado, de granulação média, milonítico.	Foliação milonítica	Victoria (2023)
AV117	- 15.901937	-39.981076	8241665.38	394978	Corte de estrada	Intemperizado	Granito-gnaisse	Complexo Salto da Divisa	Granito-gnaisse acinzentado-rosado, equigranular, médio, com presença de veios de quartzo paralelos à foliação milonítica	Foliação milonítica	Victoria (2023)
AV118	- 15.874683	-39.975101	8244683.4	395603	Lajedo	Moderadamente intemperizado	Augen-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse acinzentado, fortemente milonítico, com quartzo fitado e porfiroclastos ocelares de Kfs estirados na foliação, que aparente ser de baixo ângulo.	Foliação milonítica	Victoria (2023)
AV119	- 15.771264	-39.957227	8256133.04	397465	Leito de estrada	Moderadamente intemperizado	Metabásica	Sequência meta- sedimentar de idade incerta	Metabásica rica em biotita, fina, xistificada, intemperizada. No chão da estrada ocorrem fragmentos de álcali-sienito acinzentado		Victoria (2023)
AV120	- 15.843613	-39.928861	8248143.04	400539	Margem de estrada	Intemperizado	Gnaisse bandado; Biotitito	Embasamento Riaciano arco- derivado	Gnaisse com bandamento muito bem marcado entre níveis felsicos e máficos, com intercalação centi a decimétricas de metabásica xistificada. Localmente, no contato entre ambos, ocorrem fenocristais de Kfs no domínio máfico. Ocorrem isoclinais	Bandamento gnaissico	Victoria (2023)
AV121	15.839265	-39.901033	8248637.02	403517	Margem de estrada	Intemperizado	Gnaisse bandado; Biotitito	Embasamento Riaciano arco- derivado	Gnaisse com bandamento muito bem marcado entre níveis felsicos e máficos.	Bandamento gnaissico	Victoria (2023)
AV122	- 15.725228	-40.008938	8261200.01	391901	Leito de estrada	Muito intemperizado	Bt-gnaisse	PASEBA	Gnaisse alaranjado-esbranquiçado, equigranular, grosso, friável, com foliação de baixo ângulo muito bem marcada.	Foliação	Victoria (2023)
AV123	- 15.696775	-40.059878	8264320.99	386427	Encosta; Lajedo	Rocha fresca	Álcali granito foliado	Complexo Salto da Divisa	Granitoide rosado, equigranular, médio, com foliação espaçada evidente marcada pelo alinhamento de biotita. Composição: Kfs-Bt	Foliação	Victoria (2023)
AV124	- 15.715005	-40.081065	8262292.76	384167	Lajedo	Rocha fresca	Álcali granito foliado	Complexo Salto da Divisa	Granitoide rosado, equigranular, médio, foliado.		Victoria (2023)

AV125	- 15.742345	-40.090962	8259262.72	383122	Lajedo	Rocha fresca	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito maciço, isotrópico, grosso, acinzentado, com tons azulados, de granulação média a grossa. Composição: Kfs-Anf-Bt-So		Victoria (2023)
AV126	-15.75561	-40.13787	8257768.68	378104	Lajedo	Rocha fresca	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito maciço, isotrópico, grosso, com cristais euédricos a subédricos de Kfs. Possui uma coloração marrom escuro.		Victoria (2023)
AV127	- 15.818703	-40.170153	8250769.65	374684	Lajedo	Rocha fresca	Álcali granito	Complexo Salto da Divisa	Maciço de granitoide rosado pegmatítico, rico em cristais euédricos de Kfs, magnetita e biotita subordinada. Contém foliação de fluxo e enclaves máficos estirados.	Foliação	Victoria (2023)
AV128	- 15.857232	-40.198941	8246489.68	371625	Lajedo	Rocha fresca	Álcali granito; Pegmatito	Complexo Salto da Divisa	Álcali granito grosso, à biotita e anfibólio, cortado por veios e bolsóes pegmatíticos (Kfs). Ocorrem enclaves máficos e zonas biotitizadas.		Victoria (2023)
AV129	- 15.867157	-40.202044	8245389.73	371299	Lajedo	Intemperizado	Gnaisse migmatítico	Complexo Itapetinga	Gnaisse bandado muito deformado, contendo veios pegmatítitcos, quartzo-feldspáticos, paralelos à foliação e dobrados em estilo apertado a isoclinal. Gnaisse é cinza e de granulação média. Contém níveis de Bt-xisto máfico. Movimento é dextral	Foliação milonítica	Victoria (2023)
AV130	- 15.852262	-40.198584	8247039.74	371660	Lajedo	Rocha fresca	Álcali granito foliado; Pegmatito	Complexo Salto da Divisa	Bt-Hb-Álcali-granito rosado, equigranular médio, foliado. Está cortado por pegmatítico rosado, composto basicamente por Kfs e Bt. Dentro do granito ocorrem xenólitos de gnaisse bandado e rodeado por granito cinza, equigranular, mesocrático	Foliação	Victoria (2023)
AV131	۔ 15.800139	-40.223829	8252790.72	368923	Lajedo	Rocha fresca	Sienito	Pegmatito	Rocha alaranjada-rosada, de granulação grossa, isotrópica, rica em Kfs e Hb acicular. Composição: Kfs- Oz-Hb-Bt-Mag		Victoria (2023)
AV132	۔ 15.721316	-40.250964	8261494.18	365964	Encosta	Muito intemperizado	Bt-gnaisse	Grupo Macaúbas	Saprolito de gaisse alaranjado, equigranular, médio, friável, com foliação subvertical. Composição: Kfs-Qz- Bt.	Foliação	Victoria (2023)
AV133	- 15.722397	-40.223671	8261391.7	368890	Lajedo	Rocha fresca	Pegmatito	Contato	Rocha rosada-esbranquiçada, majoritariamente formada por K-feldspato e contendo zonas irregulares com cores diferentes (marrom, branco, laranja) indicativo de processo metassomático. Contém Grd e Magnetita. Cristais de Kís orientados.	Foliação	Victoria (2023)
AV134	- 15.724826	-40.236793	8261114.79	367485	Lajedo	Rocha fresca	Álcali granito foliado	Complexo Salto da Divisa	Grantolde rosado, equigranular, fino, foliado. E contado por veios pegmatíticos boudinados, ou preenchendo gashes. Localmente, na parede de veios, há concentração anômala de biotita	Foliação	Victoria (2023)
AV135	۔ 15.741916	-40.213148	8259238.75	370030	Lajedo	Rocha fresca	Bt-granito- gnaisse; Pegmatito	Complexo Salto da Divisa	Contato. Granito-gnaisse alaranjado-acinzentado, bandado, cortado por intrusão de pegmatito extremamente rico em Kfs.	Bandamento gnaissico	Victoria (2023)
AV136	- 15.766214	-40.168338	8256577.7	374846	Corte de estrada	Intemperizado	Sienito	Província Alcalina do Sul do Estado da Bahia	Rocha equigranular, esbranquiçado-alaranjado, equigranular, sacaroidal. Minerais máficos puntiformes e dispersos parecem ser biotita. Composição: Kfs-Qz-Bt	Foliação	Victoria (2023)

AV137	- 15.842499	-40.11418	8248169.67	380693	Corte de estrada	Muito intemperizado	Bt-Hb-gnaisse	Fenito	Gnaisse acinzentado, esbranquiçado, equigranular, médio, friável. Composição: Fds-Qz-Bt	Bandamento gnaissico	Victoria (2023)
AV138	- 15.843286	-40.107022	8248086.66	381460	Corte de estrada	Pouco intemperizado	Gnaisse anfibolítico	Fenito	Gnaisse com bandamento centimétrico muito bem marcado entre níveis escuros, anfibolíticos, e níveis claros, quartzo-feldspáticos. Composição: Qz-Fds-Bt- Anf	Bandamento gnaissico	Victoria (2023)
AV139	-15.86379	-40.174877	8245778.73	374206	Lajedo	Rocha fresca	Álcali granito	Complexo Salto da Divisa	Álcali granito rosado, equigranular, médio, maciço. Cortado por veios de quartzo. Composto basicamente por Kfs rosado e Qz.		Victoria (2023)
AV140	۔ 15.858189	-40.184388	8246392.66	373184	Lajedo	Rocha fresca	Álcali granito	Complexo Salto da Divisa	Álcali granito rosado, equigranular, médio, aparentemente maciço. É pobre em máficos (Bt-Hb) e rico em magnetita dispersa aleatoriamente na rocha		Victoria (2023)
AV141	- 15.853541	-40.193027	8246901.64	372256	Lajedo	Rocha fresca	Álcali granito foliado; Pegmatito; Gnaisse bandado	Complexo Salto da Divisa	Contato entre lajedo de Bt-Hb-álcali granito rosado, equigranular, médio, foliado, com gnaisse bandadado, intemperizado. Dentro do álcali granito, ocorrem injeções pegmatíticas, por vezes bordejadas porranitoide equigranular, fino, cinza, mesocrát	Foliação	Victoria (2023)
AV142	- 15.912107	-40.174567	8240433.46	374269	Leito de estrada	Intemperizado	Gnaisse migmatítico; Dique máfico	Complexo Itapetinga	Migmatito estromático com bandamento regular muito bem marcado, com intercalações de níveis felsicos, quartzo-feldspáticos, e máficos, à biotita. O bandamento está truncado por diques máficos, anfibolíticos.	Bandamento gnaissico; Dique máfico	Victoria (2023)
AV143	- 15.911841	-40.128496	8240490.07	379201	Drenagem seca	Intemperizado	Gnaisse migmatítico; Bt- xisto máfico	Complexo Itapetinga	Migmatito estromático com bandamento regular muito bem marcado. Localmente apresenta-se dobrado ou boudinado. Expressivos veios esbranquiçados (Fds e Qz leitoso).	Bandamento gnaissico; Lineação de estiramento	Victoria (2023)
AV144	- 15.939919	-40.082203	8237410	384173	Lajedo	Intemperizado	Gnaisse; Bt- xisto máfico	Complexo Itapetinga	Gnaisse com bandamento muito bem marcado entre níveis esbranquiçados, finos, quartzo-feldspático, e níveis máficos, xistificados, à biotita. Níveis félsicos, finos, parecem ser quartzito. (protólito sedimentar?)	Bandamento gnaissico; Lineação de estiramento	Victoria (2023)
AV145	- 15.938953	-40.211156	8237440.99	370369	Encosta	Rocha fresca	Granitoide porfirítico	Suíte G5	Granitoide isotrópico, mesocrático, porfirítico, repleto de fenocristais euédricos a subédricos de Kfs que chegam a atingir até 5,0 cm. Os fenocristais estão orientados segundo uma foliação de fluxo ígneo.	Acamamento ígneo	Victoria (2023)
AV146	- 15.671377	-39.940469	8267191.06	399211	Corte de estrada	Intemperizado	Bt-gnaisse; Dique máfico	Sequência meta- sedimentar de idade incerta	Gnaisse acinzentado, com bandamento berm marcado, aluminoso (contém mica branca), friável, fino a médio, dobrado e falhado. Ocorrem dobras de arraste segundo plano de falha que trunca o bandamento. Dique máfico de espessura métrica acompanha o banda	Plano Axial, Eixo de dobra	Victoria (2023)
AV147	- 15.638386	-39.891985	8270863.06	404392	Corte de estrada	Rocha fresca	Quartzito	Sequência meta- sedimentar de idade incerta	Quartzito esbranquiçado-alaranjado, com finas intercalações de metapelito. Há uma foliação truncanco o acamamento em alto ângulo. Ocorrem veios de quartzo		Victoria (2023)
AV148	- 15.582089	-39.880159	8277096.01	405634	Corte de estrada	Moderadamente intemperizado	Bt-gnaisse	Complexo Ibicuí-Ipiaú	Gnaisse milonítico bem bandado entre níveis quartzo- feldspáticos e níveis ricos em Bt e Hb. O afloramento está bem deformado, com dobras e falhas Falhas com estrias de 45° cortam o bandamento e são reversas	Foliação milonítica; Falha; Estria	Victoria (2023)

AV149	۔ 15.355242	-40.291871	8301968.04	361336	Corte de estrada	Intemperizado	Gnaisse; biotitito	Complexo Itapetinga	Gnaisse bandado com intercalações de níveis de biotitito crenulado. Contém veios de quartzo e apresenta intensa deformação, com dobras apertadas e boudins.	Foliação	Victoria (2023)
AV150	- 15.892403	-39.67992	8242848.08	427214	Lajedo	Rocha fresca	Ms-Bt-álcali- granito	Complexo Salto da Divisa	Ms-Bt-aicáil-granito espranquiçado, com tons esverdeados devido a presença de amazonita. Equigranular, médio, sacaroidal, foliado. É cortado por veios qz-feldspáticos, ora preenchidos também com amazonita	Foliação	Victoria (2023)
AV151	- 15.893126	-39.683136	8242766.98	426870	Lajedo	Rocha fresca	Ms-Bt-álcali- granito; Bt- álcali-granito porfirítico	Complexo Salto da Divisa	Ms-Bt-álcali-granito rosado-acinzentado, médio a grosso, com Kfs de até 1cm. Por vezes, é esbranquiçado, com muscovita. Está foliado	Foliação	Victoria (2023)
AV152	- 15.773502	-39.758734	8255972.02	418729	Corte de estrada	Intemperizado	Metabásica	Dique	Rocha metabásica, melanocrática, grossa, esverdeada, possivelmente um meta-gabro. Ocorrem níveis de rocha leucocrática, com granada.	Foliação	Victoria (2023)
AV153	۔ 15.892712	-39.693774	8242809.03	425731	Lajedo	Rocha fresca	Magnetita- álcali-granito	Complexo Salto da Divisa	Magnetita-álcali-granito rosado, equigranular, médio, isotrópico, com cristis bem formados de Kfs e de aspecto cumulático, com material qz-feldspático e magnetita preenchendo espaço instersticial.		Victoria (2023)
AV154	- 15.895454	-39.698603	8242503.99	425215	Lajedo	Rocha fresca	Magnetita- álcali-granito	Complexo Salto da Divisa	Magnetita-alcali-granito rosado, equigranular, medio, isotrópico, com cristis bem formados de Kfs e de aspecto cumulático, com material qz-feldspático e magnetita preenchendo espaco instersticial		Victoria (2023)
AV155	- 15.900251	-39.694033	8241974.97	425706	Lajedo	Rocha fresca	Ms-Bt-álcali- granito; Bt- álcali-granito porfirítico	Complexo Salto da Divisa	Extenso lajedo de Bt-Ms-granito esbranquiçado, médio, foliado, com envlaves elipsoidais alongados na foliação. Em outros maciços, ocorre Bt-granito porfirítico, com enclaves desse leucogranito com enclaves desse granito esbranquiçado.	Foliação	Victoria (2023)
AV156	- 15.899692	-39.687623	8242039.08	426392	Encosta	Rocha fresca	Bt-álcali-granito porfirítico	Complexo Salto da Divisa	Bt-álcali-granito rosado, grosso a porfirítico, isotrópico, com cristais maiores de Kfs cor de carne e bem formados. Biotita ocorre em agregados arredondados dispersos aleatoriamente		Victoria (2023)
AV157	- 15.896866	-39.689407	8242351.06	426200	Lavra desativada	Rocha fresca	Ms-Bt-álcali- granito	Complexo Salto da Divisa	Lavra abandonada. Bt-Ms-granito esbranquiçado, com tons esverdeados devido a presença de amazonita. Contém encláves máficos elipsoidais estirados na foliação, bem como veios qz-fds, com máficos na borda e ricos em amazonita.	Foliação	Victoria (2023)
AV158	- 15.913955	-39.705347	8240454.98	424500	Lajedo	Rocha fresca	Bt-álcali-granito porfirítico	Complexo Salto da Divisa	Bt-álcali-granito rosado-acinzentado, grosso a porfirítico, com Kfs de até 1.5cm. Por vezes, ocorre textura rapakivi, enclaves de leucogranito esbranquiçado, equigranular, e de rochas máficas. Cortado por zonas de cisalhamento		Victoria (2023)
AV159	- 15.918969	-39.809295	8239859.98	413375	Margem de estrada	Intemperizado	Augen-gnaisse; Dique anfibolítico	Complexo Buerarema	Augen-gnaisse creme-amarronzado, médio, à biotita,com porfiroclastos esbranquiçados de Kfs. A milonitização é intensa e suberticval. Ocorrem mobilizados félsicos qz-fds,esbranquiçados, e um dique máfico, biotitizado, de ca. 40cm paralelos à fol	Foliação milonítica	Victoria (2023)
AV160	- 15.946723	-39.775086	8236803.66	417048	Encosta	Intemperizado	Arenito conglomerático; Arenito arcoseano	Cobertura recente	Pacote sedimentar recente (terraço fluvial), semi- consolidado, com conglomerado basal rico em seixos de qz e matriz areno-siltosa, sotoposto a arenito imaturo, arcoseano e ferruginoso		Victoria (2023)

AV161	- 15.881457	-39.669252	8244062.61	428352	Corte de estrada	Intemperizado	Metariolito, biotita-xisto	Complexo Salto da Divisa	Afloramento heterogêneo composto por meta-riolito félsico acinzentado, ora fino e bem recristalizado, ora porfirítico, com anfibólio decussado, intercalado em bt- xisto máfico intemperizado (biotitito). Ocorrem boudins		Victoria (2023)
AV162	- 16.175027	-39.62003	8211604.05	433719	Pedreira	Rocha fresca	Bt-Hb-granito; Pegmatito	Corpo granítico de procedência incerta	médio a grosso, com cerca de 20% de minerais máficos (Bt e óxidos de ferro). É foliado e cortato por veios pegmatíticos ricos em Kfs, Qz e Ms. Contem enclaves máficos estirados na foliação		Victoria (2023)
AV163	- 15.811899	-39.581291	8251785.08	437748	Corte de estrada	Rocha fresca	Metacalcário Iaminado; Metapelito	Grupo Rio Pardo	Metapelito amarronzado, fino, foliado no barranco em corte de estrada. Próximo, no leito da estrada, ocorre metacalcário com níveis cinza claro a cinza escuro, laminado		Victoria (2023)
AV164	- 15.814986	-39.596613	8251439.01	436108	Lajedo	Rocha fresca	Metacalcário	Grupo Rio Pardo	Metacalcário impuro, acinzentado, laminado, rico em material arenoso e pelítico. Bastante deformado, com dobras, crenulações e ZCs sinistrais.		Victoria (2023)
AV165	- 15.853569	-39.586575	8247174.07	437195	Corte de estrada	Rocha fresca	Bt-álcali-granito com muscovita	Complexo Salto da Divisa	K-feldspato. Contém muscovita subordinada e ocorrem juntas, fraturas (veios) e falha reversa, com vergência para NE.	Falha	Victoria (2023)
AV166	- 15.859308	-39.588285	8246538.72	437014	Corte de estrada	Rocha fresca	Bt-álcali-granito com muscovita	Complexo Salto da Divisa	Bt-granito médio, maciço, com cristais bem formados de K-feldspato dispersos em meio a agragados quartzo-feldspáticos, mais finos. Contém muscovita e está fraturado		Victoria (2023)
AV167	- 15.865493	-39.583256	8245856.05	437554	Corte de estrada	Rocha fresca	Bt-granito	Complexo Salto da Divisa	Bt-granito médio a grosso, isotrópico, rico em K- feldspato. Está fraturado	Fratura	Victoria (2023)
AV168	- 15.897326	-39.568682	8242339.04	439124	Corte de estrada	Rocha fresca	Augen-gnaisse; Metabásica	Complexo Salto da Divisa	Maciço de Bt-granito-gnaisse mesocrático, rico em porfiros de Kfs rosado, em contato brusco com niveis de rocha metabásica, fina, melanocratica, xistificada. Há intenso fraturamento	Foliação milonítica	Victoria (2023)
AV169	- 15.900178	-39.564398	8242024.8	439583	Corte de estrada	Moderadamente intemperizado	Augen-gnaisse; Metabásica	Complexo Salto da Divisa	Rocha metabásica, fina, xistificada (Bt-xisto máfico) em contato brusco com bolsão de augen-gnaisse leuco a mesocrático, cinza, rico em Kfs. Parece ser um xenólito imerso no dompinio máfico e estirado ao longo da foliação	Foliação milonítica	Victoria (2023)
AV170	- 16.077647	-39.700162	8222349	425116	Lajedo	Intemperizado	Cianita-Bt-Ms- xisto	Grupo Macaúbas	Xisto acinzentado-amarronzado, equigranular, médio, à duas micas e intemperizado. Contém porfiroblastos de cianita	Xistosidade	Victoria (2023)
AV171	- 16.054854	-39.737302	8224856.63	421135	Lajedo	Rocha fresca	Metadiamictito	Grupo Macaúbas	Metadiamictito com ampla predominância de matriz xistosa, de composição: Ci-Bt-Ms-Qz-Fds. Os clastos e são facetados a arredondados, de composição quartzítica Metadiamidito deformado, com matriz vistosa, fina	Xistosidade	Victoria (2023)
AV172	-15.98948	-39.781972	8232071	416329	Cristas	Rocha fresca	Metadiamictito	Grupo Macaúbas	predominante. Os clastos são seixos e blocos de quartzito ora facetados, ora estirados ao longo da foliação. Um clasto facetado deforma a matriz e parece indicar clasto pingado	Xistosidade	Victoria (2023)
AV173	- 15.984234	-39.782643	8232651.06	416255	Cristas	Rocha fresca	Granitoide megaporfirítico milonítico	Corpos dioríticos e cumuláticos Orosirianos	Granitoide mesocrático, cinza escuro, porfirítico, com megacristais de Kfs, euédricos ou sigmoidais, de até 6cm, em matriz mescocrática, fina, rica em biotita. Textura porfiroide, com fenocristais em contato (entelhamento). Foliação S-C com topo p	Foliação milonítica	Victoria (2023)

- 15.630091	-40.252128	8271586.01	365780	Corte de estrada	Intemperizado	Bt-Ms-xisto	Grupo Macaúbas	Xisto aluminoso, alaranjado-amarronzado, intercalado em níveis de xisto marrom a cinza escuro. A foliação é subvertical e está levemente dobrada, com dobras abertas de eixo horizontal.	Xistosidade; Eixo de dobra	Victoria (2023)
۔ 15.625179	-40.21087	8272155.05	370200	Corte de estrada	Intemperizado	Augen-gnaisse	Complexo Itapetinga	Augen-gnaisse acinzentado cortado por tension gashes preenchidas por quartzo. Composição: Kfs-Qz-Bt	Foliação milonítica; Lineação de estiramento	Victoria (2023)
- 15.585893	-40.11379	8276558.08	380585	Corte de estrada	Intemperizado	Augen-gnaisse; Biotitito	Complexo Itapetinga	Augen-gnaisse acinzentado, mesocrático, rico porfiroclastos ocelares de Kfs. Níveis de Bt-xistp máfico ocorrem paralelos à foliação.	Foliação milonítica	Victoria (2023)
- 15.624014	-40.067926	8272366.03	385524	Corte de estrada	Intemperizado	Gnaisse migmatítico; Xisto aluminoso	Complexo Itapetinga	Gnaisse bandado médio, cinza, com intercalações de micaxisto cinza, aluminoso, à muscovita, friável, de granulação média	Bandamento gnaissico; Xistosidade	Victoria (2023)
- 15.518904	-40.2453446	8283891.22	366435	Corte de estrada	Muito intemperizado	Qz-Ser-xisto	Grupo Macaúbas	Xisto muito alterado, marrom, fino a médio. Composição: Qz-Fds(caulim)-Bt.	Xistosidade	Projeto Sul da Bahia (1974)
- 15.508939	-40.2302558	8285002.99	368048	Encosta	Muito intemperizado	Ser-quartzito; Pegmatito	Grupo Macaúbas	Quartzito sericítico muito decomposto, de cor rosada- amarelada e granulação fina a média. Contém veios pegmatíticos. Composição: Qz-Fds-Ser-Bt.	Xistosidade	Projeto Sul da Bahia (1974)
- 15.500001	-40.2272169	8285993.7	368368	Crista	Intemperizado	Qz-Ser-Grd-Ci- xisto	Grupo Macaúbas_xisto	Xisto parcialmente alterado, cinza, médio a porfiroblástico. Composição: Qz-Ser-Grd-Fds-Ci.	Xistosidade	Projeto Sul da Bahia (1974)
۔ 15.558452	-40.22039	8279531.36	369137		Muito intemperizado	Qz-Ser-Bt-Ci- xisto	Grupo Macaúbas	Rocha xistosa muito alterada, cinza, fina a média, de composição: Qz-Fds-Ser-Bt-cianita	Xistosidade	Projeto Sul da Bahia (1974)
- 15.596781	-40.2346019	8275282.18	367638	Corte de estrada	Moderadamente intemperizado	Qz-Ser-Bt-Ci- xisto	Grupo Macaúbas	Xisto parcialmente intemperizado, cinza-amarronzado, fino. Composição: Qz-Fds(caulim)-Ser-Bt-Óxidos de Fe- Ci.	Xistosidade	Projeto Sul da Bahia (1974)
- 15.644959	-40.0671289	8270049.32	385621	Pedreira	Rocha fresca	Hb-Bt-gnaisse milonítico	Complexo Itapetinga	Gnaisse cinza claro, porfiroblástico. Composição: Qz- Fds-Bt-Hb.	Foliação milonítica	Projeto Sul da Bahia (1974)
- 15.599542	-40.0413654	8275087.37	388358	Corte de estrada	Muito alterado	Bt-gnaisse milonítico	Complexo Itapetinga	Gnaisse cinza amarelado, fino a médio. Composição: Qz-Fds(caulim)-Bt(descorada). Foliação milonítica reliquiar.	Foliação milonítica	Projeto Sul da Bahia (1974)
- 15.578973	-40.0304944	8277368.56	389513	Lajedo		Bt-gnaisse (leptito)	Complexo Itapetinga	Gnaisse leucocrático, fino. Composição: Qz-Fds-Bt- Mag.	Foliação milonítica	Projeto Sul da Bahia (1974)
- 15.566431	-40.0246531	8278759.01	390132		Intemperizado	Gnaisse milonítico	Complexo Itapetinga	Gnaisse milonítico, médio. composição: Qz-Fds-Mica descorada.	Foliação milonítica	Projeto Sul da Bahia (1974)
- 15.532757	-40.0169219	8282488.11	390944		Muito alterado	Gnaisse milonítico	Complexo Itapetinga	Gnaisse marrom, médio, milonítico. Composição: Qz- Fds-Mica descorada.	Foliação milonítica	Projeto Sul da Bahia (1974)
۔ 15.522449	-40.0102215	8283631.86	391657	Corte de estrada		Gnaisse anfibolítico	Complexo Itapetinga	Gnaisse cinza, médio, com finas intercalações de anfibolito fino, de cor preta. Composição do gnaisse: Qz-Fds-Bt-Hb-Grd	Bandamento gnaissico	Projeto Sul da Bahia (1974)
- 15.531329	-39.9927751	8282658.23	393533	Encosta de serra		Quartzito	Complexo Itapetinga	Quartzito cinza, compacto, estratificado. Composição: Qz-Fds-Ser-Óxidos de ferro	Foliação	Projeto Sul da Bahia (1974)
-15.51678	-40.0038648	8284262.25	392336	Leito de rio	Rocha fresca	Gnaisse migmatítico	Complexo Itapetinga	Gnaisse migmatítico, cinza escuro a cinza claro, fino a médio. Composição: Qz-Fds-Bt	Bandamento gnaissico	Projeto Sul da Bahia (1974)
۔ 15.501271	-40.0389519	8285959.94	388564			Gnaisse (leptito)	Complexo Itapetinga	Gnaisse leucocrático cinza-esverdeado. Composição: Qz-Fds-Grd-Anf-Ep.	Bandamento gnaissico	Projeto Sul da Bahia (1974)
	15.630091 15.625179 15.585893 15.524014 15.518904 15.508939 15.508939 15.508939 15.508452 15.596781 15.596781 15.596781 15.599542 15.599542 15.578973 15.566431 15.532757 15.522449 15.531329 -15.51678	15.630091-40.25212815.625179-40.2108715.625179-40.2108715.585893-40.1137915.624014-40.06792615.518904-40.230255815.508939-40.230255815.508939-40.2203915.558452-40.2203915.596781-40.234601915.599542-40.067128915.578973-40.041365415.578973-40.041365415.556431-40.03494415.5522449-40.016921915.531329-39.9927751-15.51678-40.003864815.501271-40.0389519	15.630091-40.2521288271586.0115.625179-40.210878272155.0515.625179-40.210878276558.0815.58893-40.113798276558.0815.624014-40.067926827306.0315.518904-40.23025588283091.2215.508939-40.22721698285993.715.558452-40.220398279531.3615.596781-40.220398279531.3615.596781-40.23460198275282.1815.596781-40.0671289827049.3215.599542-40.0671289827049.3215.578973-40.034944827368.5615.566431-40.034944827368.5615.522449-40.01022158283631.8615.531329-39.99277518282658.2315.501271-40.0386488284262.2515.501271-40.0386488284262.25	15.630091-40.2521288271586.0136578015.625179-40.210878272155.0537020015.585893-40.113798276558.0838058515.624014-40.0679268272366.0338552415.518904-40.24534468283891.2236643515.508939-40.23025588285092.9936804815.5080939-40.220398285993.736836815.500001-40.22721698285993.736836815.558452-40.220398279531.3636913715.596781-40.23460198275282.1836763815.599542-40.06712898270049.3238562115.599542-40.04136548277368.5638951315.578973-40.034944827368.5139013215.556431-40.02465318278759.0139013215.5522449-40.01022158283631.8639165715.531329-39.99277518282658.23393533-15.51678-40.0386488284262.253923615.501271-40.0386488284262.2539236	15.630091.40.2521288271586.01365780Corte de estrada15.625179.40.210878272155.05370200Corte de estrada15.585893.40.113798276558.08380585Corte de estrada15.624014.40.0679268272366.03385524Corte de estrada15.518904.40.24534468283891.22366435Corte de estrada15.508939.40.23025588285002.99368048Encosta15.50801.40.220398285993.7368368Cirte de estrada15.50801.40.220398279531.36369137Corte de estrada15.596781.40.23460198275282.18367638Corte de estrada15.696781.40.06712898270049.32385621Pedreira15.596781.40.03049448277368.56389513Lajedo15.596781.40.03049448277368.56389513Lajedo15.596781.40.010221582848.11390132.15.52449.40.01022158283631.86391657Corte de estrada15.531759.40.01022158283631.86391657Corte de estrada15.531759.40.00386488284262.25392336Encosta de estrada15.531759.40.00386488284262.25392336Leito de nio15.501779.40.00386488284262.25392336Encosta de estrada15.501779.40.00386488284262.25392336Leito de nio15.501771.40.003864882	15.630001-40.2521288271586.01365780Corte de stradaIntemperizado15.625179-40.210878272155.05370200Corte de stradaIntemperizado15.585893-40.113798276558.08380585Corte de stradaIntemperizado15.624014-40.0679268272366.03385524Corte de stradaIntemperizado15.518904-40.2453446828391.22366435Corte de stradaMuito intemperizado15.508030-40.2302588285002.99368048EncostaMuito intemperizado15.508031-40.220398279531.36369137Muito intemperizado15.558642-40.220398279531.36369137Muito intemperizado15.596781-40.06712898275087.37388368Corte de strada15.596781-40.06712898275087.37388358Corte de strada15.599542-40.04136548275087.37388358Corte de strada15.599543-40.01022158283631.68390132T15.502757-40.01022158283631.86391637Corte de strada15.522449-40.01022158283631.86391637Corte de strada15.531329-39.99277518282658.2339333Encosta de serrad15.501271-40.0038648828426.2539233Leito den serrad15.501271-40.0038648828452.2539233Leito den serrad15.501271-40.0038648828452.253923	15.630091 40.252128 8271586.01 365780 Corte de estrada Intemperizado BLMs-xisto 15.625177 -40.21087 8272155.05 370200 Corte de estrada Intemperizado Augen-gnaisse 15.585893 -40.11379 8276558.08 38058 Corte de estrada Intemperizado Augen-gnaisse; Biotitio 15.624011 -40.067926 8272366.03 38552 Corte de estrada Intemperizado Graisse migmatitico; Xisto aluminoso 15.518904 -40.2453446 828391.22 366045 Corte de estrada Muito intemperizado Q2-Ser-xisto 15.508933 -40.230255 8285002.99 368048 Encosta Muito intemperizado Q2-Ser-Grd-Ci- xisto 15.508953 -40.22039 8279531.36 369137 Muito intemperizado Q2-Ser-Bi-Ci- xisto 15.596781 -40.021619 8275087.37 368368 Corte de estrada Muito alterado Bi-gnaisse mionitico 15.596782 -40.0413654 8275087.37 388358 Corte de estrada Muito alterado Bi-gnaisse mionitico <	15.630091-40.252128271586.01365780Corte de estradaIntemperizadoBi-Ms-xistoGrupo Macaŭbas15.625179-40.210878272155.05370200Corte de estradaIntemperizadoAugen-gnaisse BiotitioComplexo Itapetinga15.585893-40.113798276558.08380585Corte de estradaIntemperizadoAugen-gnaisse BiotitioComplexo Itapetinga15.624014-40.0679268272366.0338552Corte de estradaIntemperizadoGraisse milamitico: Nisto aluminosoComplexo Itapetinga15.518904-40.2453446828391.22366435Corte de estradaMuito intemperizadoG2-Ser-AistoGrupo Macaŭbas15.508051-40.230258828509.29368048EncostaIntemperizadoG2-Ser-Bi-Ci- xistoGrupo Macaŭbas15.508052-40.2272169828593.7368368CritaIntemperizadoG2-Ser-Bi-Ci- xistoGrupo Macaŭbas15.558452-40.23460198275282.1836738Corte de estradaMuito IntemperizadoG2-Ser-Bi-Ci- xistoGrupo Macaŭbas15.558452-40.0671289827049.3238562PedreiraRocha frescaHb-Bi-gnaisse miloniticoComplexo Itapetinga15.558452-40.024634827079.37388368Corte de estradaMuito alteradoBi-gnaisse miloniticoComplexo Itapetinga15.558452-40.024654827067.37388368Corte de estradaMuito alteradoB	15.530091 40.25212 8271586.0 36570 Cafe day strada Intemperizado BtMs-xisto Gupo Macabbas Stato aluminoso, altar-aludado stato artano activaci, haleado aludado media, com odobras 16.62517 40.01379 8272156.00 30200 Corte day Intemperizado Augen-gnaisse Complexo Augen-gnaisse acinzentado, com odobras 15.585893 -40.11379 8272568.00 38652 Corte day Intemperizado Camplexo Complexo Daven-gnaisse acinzentado, mesocrático, no 16.68400 -40.067792 8272368.00 38652 Corte day Intemperizado Graisso Camplexo Suiso andia on delia, cinza, om intercalações de bosition Complexo Graisse bandado média, cinza, om intercalações de correm paralelos ó holdado. Macabas Suiso antilações metados de correm paralelos do lediação. Nesso aluminoso Suiso antilações metados de correm paralelos ó holdado. Suiso antilações metados média, cinza, metados de correm paralelos ó holdado. Suiso antilações metados média, cinza, metados de correm paralelos ó holdado. Suiso antilações metados média, cinza, metados média, cinza, metados média, cinza, metados média, cinza, metados e granalução média, cinza, metados e granalução méd	16.50001 -04.25212 8717 566.0 -0600 -0600 -010000 -010000 -010000 -010000 -010000 -010000 -010000 -010000 -010000 -010000 -010000 -010000 -010000 -010000 -010000 -0100000 -0100000 -0100000 -0100000 -01000000 -01000000 -01000000 -0100000000000000000000000000000000000

CG036	- 15.660909	-40.0433846	8268297.53	388175	Corte de estrada		Granito-gnaisse	Complexo Itapetinga	Granito-gnaisse mesocrático, porfiroblástico, tendendo a augen. Composição: Qz-Fds-Bt-Hb.	Foliação milonítica	Projeto Sul da Bahia (1974)
CG037	-15.66423	-40.0325526	8267935.83	389338	Cristas		Diabásio	Dique	Rocha isotrópica, fina, cinza escuro a preta, com textura diabásica. Está estruturado dentro da foliação gnaissica regional e é moderadamente fraturado	Dique	Projeto Sul da Bahia (1974)
CG038	- 15.668768	-39.9993185	8267450.88	392902	Corte de estrada		Granito-gnaisse	Complexo Itapetinga	Granito-gnaisse leucocrático, equigranular, fino a médio. Composição: Qz-Fds-Bt	Bandamento gnaissico	Projeto Sul da Bahia (1974)
CG039	- 15.662524	-40.0690629	8268105.11	385424		Muito intemperizado	Bt-gnaisse (leptito)	Complexo Itapetinga	Gnaisse cinza claro, fino a médio. Composição: Qz- Fds-Bt.	Bandamento gnaissico	Projeto Sul da Bahia (1974)
CG041	- 15.697514	-40.0467903	8264246.19	387830	Blocos e matacões		Álcali-sienito	Fenito	Boulders de sienito isotrópico, cinza-rosado, grosso, de composição: Fds-Qz-Amp-Bt.		Projeto Sul da Bahia (1974)
CG042	- 15.696475	-40.0348853	8264367.42	389105	Blocos e matacões	Rocha fresca	Gnaisse anfibolítico	Complexo Itapetinga	Gnaisse escuro, médio, enriquecido em hornblenda.		Projeto Sul da Bahia (1974)
CG043	- 15.716617	-40.0142725	8262149.92	391325	Lajedo	Rocha fresca	Hb-Bt-gnaisse	Complexo Itapetinga	Gnaisse cinza a rosado, fino a médio. Composição: Qz- Fds-Bt-Hb (traço)- Mag (traço).		Projeto Sul da Bahia (1974)
CG044	- 15.701032	-40.069778	8263844.72	385368	Corte de estrada	Moderadamente intemperizado	Bt-gnaisse	Complexo Salto da Divisa	Gnaisse cinza-amarronzado, médio. Composição: Qz- Fds-Bt-Mag	Foliação	Projeto Sul da Bahia (1974)
CG045	۔ 15.714543	-40.0724149	8262348.56	385093			Bt-gnaisse	Complexo Salto da Divisa	Gnaisse mesocrático, médio. Composição: Qz-Fds-Bt- Óxidos de ferro	Foliação	Projeto Sul da Bahia (1974)
CG047	- 15.723477	-40.0859874	8261352.81	383644	Corte de estrada		Hb-gnaisse	Fenito	Gnaisse cinza claro, fino a grosso, fraturado, com presença de minerais negros esporádicos e alongados na foliação. Composição: Fds-Hb-Qz	Foliação	Projeto Sul da Bahia (1974)
CG048	- 15.750221	-40.0950125	8258389.13	382692	Blocos e matacões	Rocha fresca	Álcali sienito	Província Alcalina do Sul do Estado da Bahia	Sienito isotrópico, cinza escuro a rosado, grosso a pegmatoide. Composição: Kfs-Bt-Hb.		Projeto Sul da Bahia (1974)
CG050	- 15.745199	-40.082572	8258951.57	384022	Blocos e matacões	Rocha fresca	Álcali sienito	Província Alcalina do Sul do Estado da Bahia	Sienito isotrópico, médio. Composição: Kfs-Bt-Hb.		Projeto Sul da Bahia (1974)
CG051	-15.7557	-40.086909	8257787.55	383564	Corte de estrada	Intemperizado	Bt-gnaisse	Fenito	Gnaisse alterado com presença de veios de quartzo pegmatíticos. Composição: Qz-Fds-Bt		Projeto Sul da Bahia (1974)
CG052	- 15.767227	-40.0873656	8256512.03	383521	Corte de estrada	Intemperizado	Bt-gnaisse milonítico	Fenito	Gnaisse cinza amarronzado, bandado, médio. Composição: Qz-Fds-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)
CG053	- 15.657182	-40.0755358	8268692.64	384727	Lajedo	Intemperizado	Hb-gnaisse	Complexo Itapetinga	Gnaisse cinza claro com minerais máficos puntiformes dispersos aleatoriamente. Composição: Qz-Fds-Hb.	Foliação	Projeto Sul da Bahia (1974)
CG055	- 15.701386	-40.1601983	8263754.5	375679	Lajedo	Rocha fresca	Bt-gnaisse	Fenito	Gnaisse acinzentada a rosada, fino a médio. Composição: Qz-Fds-Bt.	Foliação	Projeto Sul da Bahia (1974)
CG056	- 15.754444	-40.1201217	8257907.83	380005	Encosta de serra	Rocha fresca	Álcali sienito	Província Alcalina do Sul do Estado da Bahia	Sienito isotrópico, cinza escuro, grosso. Composição: Kfs-Hb-Pirita (traço)		Projeto Sul da Bahia (1974)

CG057	۔ 15.779132	-40.1404652	8255164.92	377840	Lajedo		Hb-gnaisse	Fenito	Gnaisse cinza claro, grosso. Composição: Qz-Fds-Hb		Projeto Sul da Bahia (1974)
CG058	۔ 15.604775	-40.075277	8274490.47	384725	Corte de estrada		Gnaisse anfibolítico milonítico	Complexo Itapetinga	Gnaisse com níveis porfiríticos, miloníticos, de cor geral cinza-escuro, granulação média. Composição: Qz-Fds- Bt.	Foliação milonítica	Projeto Sul da Bahia (1974)
CG059	۔ 15.591256	-40.086388	8275979.93	383526	Corte de estrada		Hb-gnaisse	Complexo Itapetinga	Gnaisse cinza claro, fino a médio. Composição: Qz- Fds-Hb-Mag. Ocorrem veios de quartzo concordantes com a foliação.	Bandamento gnaissico	Projeto Sul da Bahia (1974)
CG063	- 15.636034	-40.2605619	8270923.17	364880	Cristas		Quartzito	Grupo Macaúbas	Cristas orientadas de quartzito duro, cinza-claro, com estraficações cruzadas e granulação média. Composição: Qz-Fds(caulim)-Bt	Xistosidade	Projeto Sul da Bahia (1974)
CG064	- 15.697444	-40.2496996	8264136.04	366084	Crista		Bt-gnaisse milonítico	Grupo Macaúbas	Gnaisse cinza, médio a grosso, localmente com textura augen. Composição: Qz-Fds-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)
CG066	- 15.753735	-40.2622241	8257900.35	364779	Lajedo		Sill-Ms-gnaisse	Grupo Macaúbas_xisto	Gnaisse cinza, médio, de composição: Qz-Fds-Bt-Ms- Sill.	Foliação	Projeto Sul da Bahia (1974)
CG068	- 15.740736	-40.2475486	8259347.87	366343	Blocos e matacões		Quartzito	Grupo Macaúbas	Blocos e matacões de quartzito mais ou menos alinhados na direção N10E. Rocha marrom acinzentada, fina a média, composta essencialmente de guartzo e rica em óxidos de ferro.		Projeto Sul da Bahia (1974)
CG069	-15.78471	-40.2396513	8254487.8	367218	Corte de estrada	Moderamanete intemperizado	Bt-augen- gnaisse	Complexo Itapetinga	Gnaisse parcialmente alterado, cinza-amarronzado, médio a grosso. Composição: Qz-Fds-Bt. Localmente é milonítico.	Foliação milonítica	Projeto Sul da Bahia (1974)
CG070	- 15.888907	-40.2038446	8242982.34	371120	Lajedo		Gnaisse migmatítitco	Complexo Itapetinga	Gnaisse migmatítico acinzentado, contendo veios pegmatítitcos concordantes com a foliação, em estrutura estromática. Localmente tende a migmatito do tipo dobrado. Granulação média. Composição: Qz-Fds- Bt-Hb-Mag	Bandamento gnaissico	Projeto Sul da Bahia (1974)
CG071	- 15.869489	-40.2633111	8245093.16	364740	Corte de estrada	Moderamente intemperizado	Gnaisse migmatítitco	Complexo Jequitinhonha	Migmatito cinza-amarronzado, médio, cortado por veios quartzo-feldspáticos. Composição: Qz-Fds(caulim)-Bt	Bandamento gnaissico	Projeto Sul da Bahia (1974)
CG076	- 15.914136	-40.1890685	8240200.18	372718	Lajedo		Gnaisse migmatítico	Complexo Jequitinhonha	Gnaisse cinza claro, médio. Composição: Qz-Fds-Bt- Grd. Pegmatitos também ocorrem associados	Foliação	Projeto Sul da Bahia (1974)
CG077	- 15.915168	-40.1990169	8240079.9	371653	Blocos e matacões		Granito-gnaisse	Complexo Jequitinhonha	Granitoide aparentemente isotrópico, cinza claro, médio. Composição: Qz-Fds-Bt-Pirita		Projeto Sul da Bahia (1974)
CG078	- 15.920466	-40.2040167	8239490.77	371121	Corte de estrada	Muito intemperizado	Gnaisse migmatítico	Complexo Jequitinhonha	Rocha muito alterada e muito tectonizada. Aparentemente é migmatito. Cor geral é marrom, granulaç~eo média. Composição: Qz-Fds-Bt.	Foliação milonítica	Projeto Sul da Bahia (1974)
CG079	- 15.927973	-40.2140762	8238653.98	370049			Granitoide porfirítico	Suíte G5	Granitoide porfirítico cinza, com matriz de granulação grossa e porfiroblastos euédricos a subédricos de Kfs cujo comprimento médio é de 1,5cm. Composição: Kfs- Qz-Bt-Mag.	Foliação	Projeto Sul da Bahia (1974)
CG089	- 15.937288	-40.0892427	8237697.15	383418	Lajedo		Gnaisse leucocrático, equigranular, fino a médio (leptito)	Complexo Itapetinga	Gnaisse leucocrático, cinza-rosa, fino. Composição: Qz- Fds-Bt.	Foliação	Projeto Sul da Bahia (1974)

CG090	۔ 15.949661	-40.0804786	8236333.22	384363	Corte de estrada	Moderadamente intemperizado	Bt-Hb-gnaisse	Complexo Itapetinga	Gnaisse bandado, cinza, fino a médio, com presença de níveis anfibolíticos concordantes com a foliação. Composição: Qz-Fds-Bt.	Bandamento gnaissico	Projeto Sul da Bahia (1974)
CG091	- 15.978057	-40.0459319	8233210.6	388077	Lajedo		Gnaisse	Complexo Itapetinga	Gnaisse cinza-rosado, médio. Composição: Qz-Fds-Bt.	Bandamento gnaissico	Projeto Sul da Bahia (1974)
CG092	- 15.992195	-40.0176471	8231661.55	391111	Lajedo		Bt-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse cinza rosado, médio, de composição: Qz-Fds- Bt	Bandamento gnaissico	Projeto Sul da Bahia (1974)
CG093	- 15.997151	-40.0022842	8231121.28	392758	Lajedo		Augen-gnaisse	Embasamento Riaciano arco- derivado	Augen-gnaisse rosado, de granulação média, com porfiroclastos de Kfs com tamanho médio de 1cm. Composição: Qz-Fds-Bt		Projeto Sul da Bahia (1974)
CG094	- 16.000289	-40.0138477	8230768.05	391522	Blocos e matacões		Bt-granito	Complexo Salto da Divisa	Granitoide cinza claro, grosso, de composição: Qz-Fds- Bt-Grd		Projeto Sul da Bahia (1974)
CG097	- 15.845694	-40.2044136	8247762.86	371031			Pegmatito	Pegmatito	Filão pegmatítitco, de composição: Qz-Kfs-Ms-Amz. Não foi possível determinar espessura e atitude		Projeto Sul da Bahia (1974)
CG098	- 15.821898	-40.2153035	8250388.73	369850	Lajedo		Bt-gnaisse migmatítico	Complexo Itapetinga	Gnaisse cinza, médio, tendendo a augen. Composição: Qz-Fds-Bt-Grd. Verifica-se a presença de sclieren.	Bandamento gnaissico	Projeto Sul da Bahia (1974)
CG105	- 15.773003	-40.1526687	8255835.87	376529	Corte de estrada	Intemperizado	Bt-gnaisse milonítico	Fenito	Gnaisse cinza-amarelado, médio, algo milonítico. Composição: Qz-Fds-Bt.	Foliação milonítica	Projeto Sul da Bahia (1974)
CG106	- 15.788336	-40.1531788	8254139.27	376483	Blocos e matacões	Rocha fresca	Essexito	Província Alcalina do Sul do Estado da Bahia	Sienito mesocrático, bem deformado, indicando zona de borda de intrusão. Cor cinza-esverdada, granulação grossa. Composição: Fds-Px(ou Anf)-Ne-Pirita-Mag.		Projeto Sul da Bahia (1974)
CG107	- 15.867037	-40.1599722	8245428.41	375804	Blocos e matacões		Gnaisse granodiorítico	Complexo Salto da Divisa	Gnaisse cinza claro, fino. Composição: Qz-Fds-Bt-Mag- Pirita		Projeto Sul da Bahia (1974)
CG109	- 15.663719	-39.9739209	8268022.02	395622	Blocos e matacões	Rocha fresca	Bt-gnaisse milonítico	Complexo Itapetinga	Gnaisse cinza escuro, médio a grosso, localmente porfiroblástico, tendendo a augen. Composição: Qz- Fds-Bt		Projeto Sul da Bahia (1974)
CG110	- 15.664508	-39.9534332	8267944.69	397818	Corte de estrada	Moderadamente decomposto	Gnaisse (leptito)	Complexo Itapetinga	Gnaisse amarelado. Composição:Qz-Fds		Projeto Sul da Bahia (1974)
CG111	- 15.669861	-39.9466514	8267355.86	398548	Corte de estrada		Bt-gnaisse	Sequência meta- sedimentar de idade incerta	Gnaisse leucocrático, cinza claro, rico em quartzo (semelhante a um quartzito). Composição: Qz-Fds-Bt- Mag-Hb (possivelmente)	Bandamento gnaissico	Projeto Sul da Bahia (1974)
CG114	- 15.648762	-39.8723867	8269724.01	406498	Crista		Quartzito	Sequência meta- sedimentar de idade incerta	Rocha cinza claro, fina, de composição: Qz-Ser-Óxidos de ferro.	Acamamento; Fratura	Projeto Sul da Bahia (1974)
CG115	- 15.586631	-39.8812167	8276593.15	405523		Moderadamente intemperizado	Gnaisse	Complexo Ibicuí-Ipiaú	Gnaisse cinza-amarronzado, fino, intensamente fraturado. Composição: Qz-Fds-Ser-Fragmentos de rocha	Fratura	Projeto Sul da Bahia (1974)

CG115	- 15.586645	-39.880862	8276591.71	405561		Moderadamente intemperizado	Gnaisse	Complexo Ibicuí-Ipiaú	Gnaisse intensamente fraturado, cinza-amarronzado, fino, de composição? Qz-Fds-Ser-Fragmento de rocha		Projeto Sul da Bahia (1974)
CG116	- 15.562579	-39.8998797	8279245.38	403510	Crista		Sienito	Complexo Salto da Divisa	Rocha sienítica muito fraturada, compacta, grossa, constituída predominantemente de Kfs, biotita, anfibólio e pirita. Quartzo é raro.		Projeto Sul da Bahia (1974)
CG118	۔ 15.533423	-39.8586197	8282488.84	407922	Lajedo		Augen-gnaisse	Complexo Ibicuí-Ipiaú	Augen gnaisse acinzentado. Composição: Qz-Fds-Bt- Mag-Ep.	Foliação milonítica	Projeto Sul da Bahia (1974)
CG119	- 15.530995	-39.8694231	8282752.82	406762	Blocos e matacões	Rocha fresca	Fonolito	Complexo Ibicuí-Ipiaú	Rocha cinza, afanítica, com raros fenocristais azulados de sodalita.		Projeto Sul da Bahia (1974)
CG120	- 15.538552	-39.8483629	8281925.93	409024	Lajedo		Augen-gnaisse	Complexo Ibicuí-Ipiaú	Augen-gnaisse cinza, bem deformado. Composição: Qz-Fds-Bt-Mag.	Foliação milonítica	Projeto Sul da Bahia (1974)
CG121	- 15.560653	-39.9093976	8279454.14	402489			Migmatito	Complexo Ibicuí-Ipiaú	Migmatito dobrado, cinza, médio, de composição Qz- Fds-Bt-Grt. Dique de traquito ocorre associado		Projeto Sul da Bahia (1974)
CG122	- 15.770309	-40.0943277	8256167.26	382777	Corte de estrada	Intemperizado	Bt-gnaisse milonítico	Fenito	Gnaisse cinza amarronzado, médio. Composição: Qz- Fds-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)
CG123	-15.77242	-40.1028455	8255928.88	381866	Corte de estrada	Muito intemperizado	Bt-gnaisse milonítico	Fenito	Gnaisse cinza a marrom, médio, muito decomposto, junto ao contato com corpo sienítico. Composição: Fds- Qz-Bt.		Projeto Sul da Bahia (1974)
CG124	- 15.825093	-40.1353014	8250083.25	378420			Bt-gnaisse	Fenito	Gnaisse cinza, médio. Composição: Qz-Fds-Bt-Mag.	Foliação	Projeto Sul da Bahia (1974)
CG126	- 15.836808	-40.0921576	8248811.67	383048	Blocos e matacões		Gnaisse leucocrático, equigranular, fino a médio (leptito)	Fenito	Gnaisse leucocrático, cinza-claro, médio. Composição: Qz-Fds-Bt		Projeto Sul da Bahia (1974)
CG127	- 15.825309	-40.0757773	8250092.8	384796	Lajedo		Bt-gnaisse	Fenito	Gnaisse cinza, médio a grosso. Composição: Qz-Fds-Bt	Foliação	Projeto Sul da Bahia (1974)
CG128	- 15.803216	-40.0514289	8252550.18	387391	Lajedo		Hb-Bt-gnaisse	Complexo Itapetinga	Gnaisse cinza-rosado, médio. Composição: Qz-Fds-Bt- Anf.	Foliação	Projeto Sul da Bahia (1974)
CG274	- 15.755475	-39.5175161	8258044.35	444563	Corte de estrada		Metapelito	Grupo Rio Pardo	Metapelito xistificado, cinza-avermelhado, de granulação muito fina	Xistosidade	Projeto Sul da Bahia (1974)
CG275	-15.73801	-39.5458653	8259968.61	441521	Corte de estrada		Metapelito	Grupo Rio Pardo	Rocha quartzo-pelítica, cor vermelho-tijolo, xistificada, granulação muito fina, composto por quartzo e sericita.	Xistosidade	Projeto Sul da Bahia (1974)
CG276	- 15.718955	-39.5445574	8262076.74	441655	Corte de estrada	Moderadamente intemperizado	Filito	Grupo Rio Pardo	Rocha pelítica, cinza-marrom avermelhado, xistificada, fraturada	Xistosidade	Projeto Sul da Bahia (1974)
CG277	-15.67446	-39.5451758	8266998.38	441577	Corte de estrada		Metapelito	Grupo Rio Pardo	Metapelito cinza esverdeado, muito fino, xistificado, contendo disseminação de óxidos de ferro.	Xistosidade	Projeto Sul da Bahia (1974)
CG278	۔ 15.653261	-39.5431243	8269343.95	441790	Corte de estrada		Metapelito	Grupo Rio Pardo	Metapelito cinza-amarronzada xistificado, granulação muito fina.	Xistosidade	Projeto Sul da Bahia (1974)
CG279	-15.62516	-39.5316727	8272455.4	443010	Corte de estrada		Metapelito	Grupo Rio Pardo	Metapelito cinza-amarronzado, muito fino, moderadamente fraturado.	Xistosidade	Projeto Sul da Bahia (1974)
CG280	۔ 15.615753	-39.5176112	8273499.72	444515	Corte de estrada		Metapelito	Grupo Rio Pardo	Rocha pelítica xistificada, cinza, de granulação muito fina.	Xistosidade	Projeto Sul da Bahia (1974)
CG281	- 15.605366	-39.5101382	8274650.61	445313	Pedreira	Rocha fresca	Metacalcário	Grupo Rio Pardo	Metacalcário carbonoso, acamadado, cinza escuro, muito fino. Composição: Cb-Matéria orgânica	Acamamento	Projeto Sul da Bahia (1974)
CG282	۔ 15.581718	-39.5049809	8277267.71	445860	Corte de estrada	Rocha fresca	Metacalcário	Grupo Rio Pardo	Metacalcário acamadado, cinza escuro, fina, rico em matéria orgânica. Efervescente ao HCI.	Acamamento	Projeto Sul da Bahia (1974)

CG284	-15.52423	-39.5038453	8283626.92	445967	Corte de estrada		Meta-arcóseo	Formação Salobro	Meta-arcóseo cinza, compacto, duro, fino a médio, localmente conglomerático. Composição: Qz-Fds-Ser. Intercalado em filito bem xistificado, cinza claro, fino.	Acamamento	Projeto Sul da Bahia (1974)
CG285	- 15.512712	-39.5034961	8284901.09	446001	Corte de estrada	Moderadamente intemperizado	Metapelito	Formação Salobro	Rocha pelítica, fracamente metamorfizada, tendendo a um quartzo-filito, xistificado. Cor cinza-amarronzada, grnaulação muito fina. Composição: Qz-Ser.	Xistosidade	Projeto Sul da Bahia (1974)
CG287	- 15.506091	-39.6595576	8285587.98	429261			Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário cinza escuro, muito fino, com nítido acamamento. É fracamente efervescente ao HCI.	Acamamento	Projeto Sul da Bahia (1974)
CG288	-15.51534	-39.6698309	8284561.54	428162	Cristas		Metaarcóseo	Grupo Rio Pardo	Rocha acinzentada, arenosa, dura, compacta, de granulação média. Composição: Qz-Fds-Fragmentos de rocha	Acamamento	Projeto Sul da Bahia (1974)
CG289	- 15.532926	-39.6689624	8282616.49	428261	Lajedo		Gnaisse	Suíte Pau Brasil	Gnaisse aparentemente granulítico, leucocrático, médio. Composição: Qz-Fds-Bt.	Foliação	Projeto Sul da Bahia (1974)
CG289	-15.53305	-39.6688318	8282602.87	428275	Lajedo	Rocha fresca	Gnaisse	Suíte Pau Brasil	Rocha gnaissica, aparentemente granulítica, leucocrática, média, de composição: Qz-Fds-Bt	Foliação	Projeto Sul da Bahia (1974)
CG290	- 15.554174	-39.6725445	8280264.95	427885	Corte de estrada		Gnaisse milonítico	Suíte Pau Brasil	Gnaisse cinza-esverdeado, com foliação milonítica proeminente. Granulação fina a média, contendo raros porfiroclastos de Kfs em meio à matriz constituída por Fds-Qz-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)
CG291	-15.56315	-39.6818662	8279268.81	426888	Corte de estrada		Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário marrom, muito fino, fraturado		Projeto Sul da Bahia (1974)
CG292	- 15.577949	-39.6864036	8277630.23	426407	Corte de estrada		Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário cinza, muito fino, com acamamento muito bem marcado.	Acamamento	Projeto Sul da Bahia (1974)
CG293	۔ 15.592931	-39.6913577	8275971.32	425881	Lajedo		Bt-gnaisse	Suíte Pau Brasil	Gnaisse cinza, médio a grosso, bem foliado e bem fraturado, Contém quartzo azul.	Foliação	Projeto Sul da Bahia (1974)
CG294	۔ 15.597139	-39.677151	8275510.73	427406	Alto de morro	Rocha fresca	Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário cinza-amarronzado, microcristalino, com acamamento bem marcado. Fracamente efervescente ao HCI.	Acamamento	Projeto Sul da Bahia (1974)
CG295	-15.6081	-39.6387132	8274310.97	431530	Corte de estrada		Metapelito	Grupo Rio Pardo	Metapelito (filito) cinza, xistificado, contendo porfiroblastos de pirita euédrica de até 4mm.	Acamamento	Projeto Sul da Bahia (1974)
CG296	- 15.584674	-39.6415674	8276901.34	431216	Leito de rio	Rocha fresca	Metacalcário	Grupo Rio Pardo	Metacalcário cinza, muito fino, com nítido acamamento, contendo pirita e mica. O acamamento é muito bem marcado. Efervescente ao HCI.	Acamamento	Projeto Sul da Bahia (1974)
CG297	- 15.528258	-39.6608205	8283135.56	429133	Corte de estrada		Metacalcário	Grupo Rio Pardo	Metacalcário cinza, microcristalino, efervecente ao HCI. Exibe nítido acamamento	Acamamento	Projeto Sul da Bahia (1974)
CG303	۔ 15.863729	-39.5852867	8246050.55	437336	Corte de estrada	Rocha fresca	Bt-granito com muscovita	Complexo Salto da Divisa	Granitoide cinza-rosado, médio, maciço e fraturado. Composição: Qz-Fds-Bt-Ms. Pode ser um granito de anatexia	Fratura	Projeto Sul da Bahia (1974)
CG304	- 15.797869	-39.5948757	8253332.92	436289	Pedreira desativada		Mármore	Grupo Rio Pardo	Antiga lavra de exploração para brita. Metacalcário cinza-amarronzado, estratificado, de granulação muito fina	Acamamento	Projeto Sul da Bahia (1974)
CG305	۔ 15.750541	-39.6174699	8258561.32	433854			Mármore	Grupo Rio Pardo	Metacalcário cinza-azulado, muito fino, acamadado e micáceo (sericita)	Acamamento	Projeto Sul da Bahia (1974)
CG306	۔ 15.745113	-39.6446597	8259153.04	430939	Gruta		Mármore	Grupo Rio Pardo	Metacalcário marmorizado, de cor branca a cinza, granulação muito fina. Há uma gruta de extensão desconhecida, com estalactites		Projeto Sul da Bahia (1974)
CG307	۔ 15.736849	-39.6499295	8260065.48	430371	Corte de estrada		Metapelito	Grupo Rio Pardo	Metapelito amarronzado, bastante deformado, brechado, com veios de quartzo		Projeto Sul da Bahia (1974)

CG308	- 15.723455	-39.6536316	8261545.9	429970			Metacalcário	Grupo Rio Pardo	Metacalcário cinza, esbranquiçado, microcristalino, com superfície doa floramento rica em cavidades de dissolucão.	Acamamento	Projeto Sul da Bahia (1974)
CG309	- 15.718532	-39.6577105	8262089.1	429532	Corte de estrada		Metacalcário milonítico	Grupo Rio Pardo	Metacalcário cinza, muito fino, bem deformado, milonítico, rico em veios de quartzo, muita sericita, brechações e com talco associado.		Projeto Sul da Bahia (1974)
CG310	-15.69877	-39.6449111	8264279.32	430896	Corte de estrada	Moderadamente intemperizado	Metapelito	Grupo Rio Pardo	Metapelito xistificado, cor vermelho tijolo, granulação fina.		Projeto Sul da Bahia (1974)
CG311	- 15.696364	-39.6311315	8264549.86	432372	Corte de estrada		Metaarenito	Grupo Rio Pardo	Rocha arenosa, cinza a esverdeada contituída por quartzo, feldspato e sericita.	Acamamento; Foliação	Projeto Sul da Bahia (1974)
CG312	- 15.727842	-39.5998644	8261077.62	435732	Corte de estrada		Metapelito	Grupo Rio Pardo	Metapelito argiloso, cor vermelho-tijolo, xistificada, cortada por veios de quartzo	Xistosidade	Projeto Sul da Bahia (1974)
CG717	-15.5308	-40.1605436	8282626.22	375539	Crista		Hb-gnaisse	Complexo Itapetinga	Grande afloramento de gnaisse cinza-rosado, fino a médio. Composição: Qz-Fds-Anf-Mag	Bandamento gnaissico	Projeto Sul da Bahia (1974)
CG742	- 15.797512	-40.231307	8253076.68	368120	Corte de estrada	Moderadamente intemperizado	Bt-augen- gnaisse	Complexo Itapetinga	Gnaisse cnza-amarronzado, médio, milonítico, com veios de quartzo concordantes à foliação. Composição: Qz-Fds-Bt-Mag.	Foliação milonítica	Projeto Sul da Bahia (1974)
CG743	- 15.753514	-40.2181495	8257952.5	369501	Corte de estrada	Muito intemperizado	Bt-gnaisse	Complexo Itapetinga	Gnaisse cinza-amarronzado, médio, cortado por veios de quartzo. Composição: Qz-Fds-Bt	Foliação	Projeto Sul da Bahia (1974)
CG744	- 15.757376	-40.2066719	8257532.39	370733	Lajedo		Bt-gnaisse milonítico	Fenito	Gnaisse cinza, médio, milonítico. Composição: Qz-Fds- Bt-Mag	Foliação milonítica	Projeto Sul da Bahia (1974)
CG745	- 15.765559	-40.1806055	8256642.82	373531	Blocos e matacões		Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito cinza, grosso, isotrópico. Composição: Kfs-Anf		Projeto Sul da Bahia (1974)
CG746	- 15.754995	-40.1731998	8257815.97	374318	Corte de estrada	Intemperizado	Bt-gnaisse milonítico	Fenito	Gnaisse marrom, médio, milonítico, em contato com intrusão sienítica. Composição: Qz-Fds-Bt.	Foliação	Projeto Sul da Bahia (1974)
CG747	-15.64533	-40.043055	8270021.17	388202	Lajedo		Augen-gnaisse	Complexo Itapetinga	Augen-gnaisse cinza, porfirítico, com porfiroclastos de Kfs de até 2cm. Composição: Qz-Fds-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)
CG748	- 15.619955	-40.0183378	8272841.12	390838	Lajedo		Bt-granito- gnaisse	Complexo Salto da Divisa	Gnaisse cinza a rosado, médio. Composição: Qz-Fds- Bt-Mag	Foliação	Projeto Sul da Bahia (1974)
CG749	۔ 15.611622	-40.0085228	8273768.02	391886	Lajedo		Granito-gnaisse milonítico	Complexo Salto da Divisa	Gnaisse porfiroblástico, cinza, tendendo a augen. Composição: Qz-Fds-Bt.	Foliação milonítica	Projeto Sul da Bahia (1974)
D001	- 16.229378	-39.697511	8205565.02	425456	Lajedo	Rocha fresca	Meta-tonalito	Dúvida	Meta-tonalito à biotita, rico em enclaves máficos arredondados a subarredondados, de tamanhos diversos centi a decimétricos. Pode ser corpo arco- derivado Paleoproterozoico, ou corpo G5, tipo A2		Victoria (2023)
D002	- 16.174513	-39.620162	8211660.86	433705	Pedreira	Rocha fresca	Bt-granito	Corpo granítico de procedência incerta	médio a grosso, com cerca de 20% de minerais máficos (Bt e óxidos de ferro). É foliado e cortato por veios pegmatíticos ricos em Kfs, Qz e Ms. Contem enclaves máficos estirados na foliação	Foliação	Victoria (2023)
D003	- 16.002414	-39.588018	8230708.6	437087	Corte de estrada	Intemperizado	Ms-Bt- leucogranito	Complexo Salto da Divisa	Bt-Ms-granito esbranquiçado a alaranjado (intemperismo), friável e caulinizado. Granulação é média a grossa e apresenta muscovita orientada segundo a foliação	Foliação milonítica	Victoria (2023)

D004	- 15.994807	-39.578493	8231552.94	438104	Corte de estrada	Rocha fresca	Bt-gnaisse; Metabásica	Complexo Buerarema	Bt-gnaisse cinza, médio, equigranular, com bandamento milimétrico bem marcado entre níveis f'pelsicos e máficos. Lembra migmatito estromático. Ocorre em contato brusco, parelo à foliação, com biotitito (paleossoma?)	Bandamento gnaissico	Victoria (2023)
D005	- 15.947005	-39.567261	8236844.05	439291	Lajedo	Rocha fresca	Gnaisse migmatítico	Complexo Buerarema	Afloramento heterogêneo formado por gnaisse migmatítico com predominância de melanossoma mesocrático, equigranular, fino a médio (dirito-gabro). Leucossoma de injeção e em bolsões é quartzo- feldspático		Victoria (2023)
D006	۔ 15.949921	-39.575347	8236519.12	438427	Margem de estrada	Intemperizado	Bt-gnaisse	Complexo Buerarema	Gnaisse cinza, tino a medio, bandado, dobrado e cortado por veios, também dobrados. Contém intercalações de níveis de rocha máfica, xistificada, paralela ao bandamento	Bandamento gnaissico	Victoria (2023)
D007	- 15.949906	-39.571936	8236521.78	438792	Margem de estrada	Intemperizado	Migmatito	Complexo Buerarema	Mobilizado leucossomático xistificado. A rocha é um biotita-muscovita-xisto acinzentado-amarronzado, médio		Victoria (2023)
D008	- 15.945495	-39.55928	8237013.39	440145	Corte de estrada	Rocha fresca	Augen-gnaisse; Gnaisse migmatítitico; Metabásica	Complexo Buerarema	Afloramento heterogêneo. Ocorre augen-gnaisse cinza, com níveis de rocha metabásica (biotita-xisto máfico, às vezes com Grt) paralelos à foliação. Deformação intensa, com presença de dobras intrafoliais e isoclinais	Foliação milonítica	Victoria (2023)
D009	- 15.855707	-39.594324	8246935.23	436366	Margem de estrada	Muito intemperizado	Bt-gnaisse	Complexo Buerarema	Gnaisse muito intemperizado com bandamento centi a decimétrico bem marcado entre níveis esbranquiçados, ricos em feldspato, e níveis escuros, à biotita	Bandamento gnaissico	Victoria (2023)
D010	- 15.867655	-39.599689	8245611.93	435795	Corte de estrada	Rocha intemperizada	Bt-Ms-álcali- granito	Complexo Salto da Divisa	Bt-granito esbranquiçado a alaranjado (cor de intemperismo), médio. Contém muscovita e está caolinizado e friável em locais mais intemperizados. Há uma foliação espaçada incipiente	Foliação	Victoria (2023)
D011	- 15.874911	-39.578803	8244815.57	438034	Corte de estrada	Rocha fresca	Bt-álcali-granito com muscovita	Complexo Salto da Divisa	Bt-granito isotrópico, rosado a alaranjado (intemperismo), equigranular, médio. Contém muscovita subordinada		Victoria (2023)
D012	- 15.909482	-39.612125	8240981.23	434477	Corte de estrada	Intemperizado	Bt-gnaisse; Granito (contato)	Complexo Buerarema	Bt-gnaisse bandado, intemperizado, médio, bandamento marcado pela alternancia entre níveis qz- feldspáticos, brancos, e níveis máficos, à biotita. Próximo, há um contato com Bt-0Ms-leucogranito equigranular, médio	Bandamento gnaissico	Victoria (2023)
D013	۔ 15.913407	-39.613841	8240546.51	434295	Lajedo	Rocha fresca	Bt-álcali-granito equigranular	Complexo Salto da Divisa	Bt-álcali-granito esbranquiçado a rosado, em lajedo duro de quebrar Equigranular, médio e foliado. Contém muscovita.	Foliação	Victoria (2023)
D014	- 15.918402	-39.612763	8239994.31	434412	Encosta	Rocha fresca	Bt-álcali-granito equigranular	Complexo Salto da Divisa	Bt-álcali-granito rosado, equigranular, médio, isotrópico, com cristais maiores de Kfs de até 1cm		Victoria (2023)
D015	15.923713	-39.611311	8239407.27	434569	Lajedo	Rocha fresca	Bt-álcali-granito equigranular; Bt-álcali-granito porfirítico	Complexo Salto da Divisa	Contato brusco entre Bt-álcali-granito rosado, equigranular, médio, e Bt-álcali-granito porfirítico. Ambos são isotrópicos. Fácies porfirítica contém enclaves centimétricos do álcali-grnaito equigranular		Victoria (2023)

D016	- 15.930043	-39.60132	8238710.16	435640	Margem de estrada	Intemperizado	Gnaisse migmatítico	Complexo Buerarema	Afloramento heterogêneo. Predomina gnaisse meso- melanocrático cinza escuro, rico em biotita, em contato brusco com leucogranitoide quartzo-feldspático e veos pegmatíticos. Ocorrem dobras e zonas de transposição	Foliação milonítica	Victoria (2023)
D017	- 15.876417	-39.661556	8244622.75	429174	Lajedo	Rocha fresca	Metadiorito	Corpo diorítico Riaciano	Metadiorito mesocrático, acinzentado, equigranular, médio, com textura do tipo sal e pimenta em função do contraste entre cinza-rosado de cristais de Kfs e o cinza escuro a preto da biotita. Há uma foliação incipiente	Foliação	Victoria (2023)
D017.1	۔ 15.875571	-39.662034	8244716.17	429123	Blocos e matacões	Rocha fresca	Ultramafito (piroxenito)	Complexo Salto da Divisa	Blocos dispersos em meio a pasto e nas margens da estrada. Rocha esverdeada, equigranular média, maciça, composta essencialmente por anfibólio. É muito densa e isotrópica		Victoria (2023)
D018	- 15.871128	-39.663626	8245207.11	428951	Lajedo	Rocha fresca	Metadiorito	Corpo diorítico Riaciano	Granitoide mesocrático, acinzentado, médio, foliado. Composição: Qz-Fds-Bt-Hb	Foliação	Victoria (2023)
D019	- 15.880582	-39.659882	8244162.58	429355	Cristas		Metadiorito foliado	Corpo diorítico Riaciano	Metadiorito mesocrático, acinzentado, equigranular, médio, de composição: Qz-Fds-Bt. Está foliado e localmente apresenta cristais euédricos de Kfs.	Foliação	Victoria (2023)
D020	- 15.881944	-39.651911	8244014.59	430209	Lajedo		Metadiorito foliado	Corpo diorítico Riaciano	Metadiorito mesocrático, acinzentado, equigranular, médio, de composição: Qz-Fds-Bt. Está cortado por veios pegmatíticos, quartzo-feldspáticos	Foliação	Victoria (2023)
D021	- 15.896055	-39.631089	8242460.48	432443	Corte de estrada	Moderadamente intemperizada	Bt-álcali-granito equigranular; Bt-xisto máfico	Complexo Salto da Divisa	Afloramento heterogêneo, com presença de Bt-álcali- granito rosado a esbranquiçado, com muscovita, foliado e em contato brusco com bt-xisto máfico (dique?)	Foliação	Victoria (2023)
D022	- 15.527906	-39.8773644	8283091	405909	Corte de estrada	Intemperizado	Bt-gnaisse; Traquito	Complexo Ibicuí-Ipiaú	Bt-gnaisse grosso, bem badado, milonítico, com níveis félsicos esbranquiçados, quartzo-feldspáticos, e níveis máficos ricos à biotita. Paralelo ao bandamento está encaixado dique de subvulcânica alcalina, cinza, fina, maciça, bem fraturada	Bandamento gnaissico; Dique	Victoria (2023)
D023	-15.53363	-39.8516908	8282469	408665	Barranco escavado	Muito intemperizado	Bt-gnaisse; Traquito	Complexo Ibicuí-Ipiaú	Gnaisse alaranjado-amarronzado, bem decomposto, friável, grosso, com bandamento muito bem marcado. Dique félsico traquítico, bem fraturado, de aproximadamente 60cm de espessura ocorre concordante à foliação	Bandamento gnaissico; Dique	Victoria (2023)
D024	- 15.543912	-39.8073002	8281350	413430	Lajedo	Rocha fresca	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito marrom escuro, médio a grosso, isotrópico. Composição: Kfs-NeÓxidos de Ferro		Victoria (2023)
D025	- 16.087931	-39.61937	8221238.93	433761	Corte de estrada	Intemperizado	Estaurolita- xisto	Grupo Macaúbas	Xisto avermelhado-bonina-ocre, intemperizado, com abundância de muscovita e presença de porfiroblastos de granada e estaurolita. Está dobrado	Xistosidade; Lineação de estiramento	Victoria (2023)
D026	- 16.066543	-39.622274	8223603.96	433443	Cava desativada	Intemperizado	Ms-xisto; Filito carbonoso; Quartzito	Grupo Macaúbas	Área escavada na margem da estrada. Aflooramento heterogêneo. Ms-Bt-xisto avermelhado-alaranjado com intercalação de filito acinzentado, brilhante e pulverulento, com aspecto grafitoso e quartzito sacaroidal. Dobras apertadas e veios de qz	Xistosidade; Lineação de estiramento	Victoria (2023)

D027	- 16.005335	-39.597315	8230382.64	436093	Lajedo	Rocha intemperizada	Ms-Bt- leucogranito	Complexo Salto da Divisa	Ms-Bt-granito esbranquiçado com tons esverdeados devido à presença de amazonita. Contém muscovita, é fino a médio e está intemperizado, pouco coeso (friável). Provavel granito hidrotermalizado.		Victoria (2023)
D028	- 15.970744	-39.585192	8234212.76	437379	Corte de estrada	Rocha fresca	Bt-álcali- granito; Bt-xisto máfico	Complexo Salto da Divisa	Bt-granito rosado, médio a grosso, foliado, em contato brusco com Bt-xisto máfico (dique biotitizado). Próximo ao contato, o granito é aluminoso (com Ms), mais fino e acinzentado-esbranquiçado	Foliação	Victoria (2023)
D029	- 15.976083	-39.563617	8233628.54	439690	Corte de estrada	Intemperizado	Augen-gnaisse; Metabásica	Complexo Buerarema	Maciço heterogêneo, com predominância de augen- gnaisse grosso, rico em porfiroclastos de Kfs. Está em contato brusco com rocha metabásica, fina, melanocr patica, xistificada (dique??)	Foliação milonítica	Victoria (2023)
D030	- 15.869081	-40.20188	8245176.97	371318	Lajedo	Intemperizado	Gnaisse migmatítico; Dique máfico	Complexo Itapetinga	Bt-gnaisse equigranular, medio, bandado, com niveis e lentes de Bt-xisto máfico paralelas com a foliação. Ocorre zona de transposição, com dobras intrafoliais e isoclinais. Xenólitos de gnaisse dentro dos níveis máficos.	Foliação milonítica	Victoria (2023)
D031	- 15.832788	-40.1808	8249205.01	373552	Leito de estrada	Intemperizado	Gnaisse migmatítico; Álcali-granito (contato)	Complexo Itapetinga	Contato entre gnaisse migmatítiticode injeção (lit par lit) com leucossoma lenticular, granitico, dobrado, em meio à melanossoma máfico, rico em biotitita. Está em contato brusco com granitoide rosado, equigranular, médio, rico em magnetita.	Bandamento gnaissico	Victoria (2023)
D032	- 15.829737	-40.1758962	8249545.54	374075	Leito de estrada	Intemperizado	Gnaisse migmatítico	Complexo Itapetinga	Gnaisse bandado com niveis félsicos injetados no máfico (gnaisse lit par lit). O bandamento está dobrado com Pax NW-SE. Nivel leucocrático é Bt-granitoide equigranular, médio. Níveis máficos são de anfibolito a Bt-xisto máfico	Bandamento gnaissico	Victoria (2023)
D033	۔ 15.807525	-40.158055	8252013.48	375973	Leito de estrada	Intemperizado	Bt-gnaisse	Fenito	Bt-gnaisse, acinzentado-esbranquiçado, equigranular, médio, foliado. Composição: Kfs-Qz-Bt.	Foliação	Victoria (2023)
D034	- 15.799892	-40.147248	8252864.27	377126	Corte de estrada	Muito intemperizado	Bt-gnaisse	Fenito	Bt-gnaisse, acinzentado-esbranquiçado, equigranular, médio, bandado. A rocha é friável e pulveriza ao golpe do martelo. Composição: Kfs-Qz-Bt.	Bandamento gnaissico	Victoria (2023)
D035	- 15.793532	-40.147074	8253567.99	377140	Blocos e matacões	Rocha fresca	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito cinza, médio a grosso, com cerca de 30 a 40% de minerais máficos (Anf, Bt).		Victoria (2023)
D036	- 15.787662	-40.147205	8254217.32	377123	Blocos e matacões	Rocha fresca	Sienito; Essexito	Província Alcalina do Sul do Estado da Bahia	Qz-sienito cinza, médio a grosso, foliado, recristalizado, de composição dominante: Kfs-Anf-Bt-Qz. Também ocorrem blocos de rocha básica, fina, maciça, fina (Essexito).		Victoria (2023)
D037	- 15.779752	-40.149085	8255091.31	376917	Leito de estrada	Intemperizado	Kfs-granito- gnaisse fenitizado	Fenito	Bt-granito-gnaisse, acinzentado-esbranquiçado, equigranular, médio. A rocha é friável e pulveriza ao golpe do martelo. O bandamento é dado pela alterância entre níveis centimétricos, ora esbranquiçados, ora acinzentados. Composição: Kfs-Qz-Bt.	Bandamento gnaissico	Victoria (2023)
D038	- 15.770085	-40.153901	8256157.96	376395	Corte de estrada	Intemperizado	Bt-gnaisse; Anfibolito; Dique félsico	Fenito	Bt-gnaisse equigranular, médio, bandado, com níveis anfibolíticos. É cortado por dique pegmatítico, leucocrático, de ca. 50 cm de espessura e composto essencialmente por Kfs. O gnaisse é pobre em quartzo.	Bandamento gnaissico; Dique	Victoria (2023)

D039	- 15.758701	-40.144821	8257422.69	377361	Encosta; Lajedo	Rocha fresca	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito acinzentado, inequigranular, médio a grosso, maciço, apararentemente isotrópico e rico em fenocristais euédricos a subédricos de Kfs. Mineral máfico (Anf) atinge cerca de 30% da rocha.		Victoria (2023)
D040	- 15.672642	-39.890486	8267074.25	404569	Leito de estrada	Intemperizado	Bt-xisto; Quartzito	Sequência meta- sedimentar de idade incerta	Xisto bege a alaranjado, médio, friável, com nível de Bt- xisto máfico (biotitito). Mais à sul na sul na estrada, em barranco próximo, ocorre associado com quartzito fino a médio, alaranjado. Duvida se este é concordante ou se trunca a foliação	Xistosidade	Victoria (2023)
D041	- 15.680613	-39.891471	8266192.03	404467	Corte de estrada	Intemperizado	Bt-gnaisse fino ou Bt-xisto	Sequência meta- sedimentar de idade incerta	Gnaisse fino ou xisto, bege, médio, bem foliado, com filmes de manganês percolados nos planos da foliação.	Foliação	Victoria (2023)
D042	- 15.686418	-39.892677	8265549.32	404340	Lajedo	Rocha fresca	Metabásica; Augen-gnaisse	Sequência meta- sedimentar de idade incerta	Predomina metabásica, cinz escuro a esverdeado, fino a médio, foliado, que corta gnaisse cinza, grosso, bem bandado, milonítico. A foliação na básica é de baixo ângulo e o bandamento é verticalizado	Foliação milonítica	Victoria (2023)
D043	- 15.706678	-39.889833	8263309.39	404654	Leito de estrada	Intemperizado	Gnaisse	Sequência meta- sedimentar de idade incerta	Gnaisse cinza porfirítico, cinza, rico em bioita, com cristais maiores de Kfs	Foliação milonítica	Victoria (2023)
D044	- 15.761709	-39.913696	8257210.75	402124	Solo	Solo	Solo	Cobertura recente	Ponto controle. Solo silto-argiloso, amarronzado. É a cobertura do pasto que ocorre na região aplainada, muito pobre em afloramentos rochosos.		Victoria (2023)
D045	- 15.777304	-39.922502	8255481.46	401188	Solo	Solo	Solo	Cobertura recente	Ponto controle. Solo silto-argiloso, amarronzado. É a cobertura do pasto que ocorre na região aplainada, muito pobre em afloramentos rochosos.		Victoria (2023)
D046	- 15.787287	-39.935119	8254371.13	399841	Solo	Solo	Solo	Cobertura recente	Ponto controle. Solo silto-argiloso, amarronzado. É a cobertura do pasto que ocorre na região aplainada, muito pobre em afloramentos rochosos.		Victoria (2023)
D047	- 15.772413	-39.956563	8256006.26	397537	Leito de estrada	Intemperizado	Bt-gnaisse migmatítico; Metabásica	Sequência meta- sedimentar de idade incerta	Afloramento heterogêneo e complexo. Predomina metabásica, cinza escuro a esverdeada, fina a média, com foliação de baixo ângulo, em contato com Bt- gnaisse bandado, grosso, com foliação verticalizada		Victoria (2023)
D048	- 15.755801	-39.962702	8257840.97	396871	Corte de estrada	Muito intemperizado	Bt-xisto	Sequência meta- sedimentar de idade incerta	Xisto esbranquiçado acinzentado, equigranular, médio, com uma proeminente foliação de baixo ângulo. Composição principal: Qz-Fds-Bt-Ms. Está cortado por veios de quartzo subverticais.	Xistosidade; Veio	Victoria (2023)
D049	- 15.743056	-39.980068	8259242.33	395004	Corte de estrada	Muito intemperizado	Gnaisse saprolitizado	Fenito	Saprólito marrom-esbranquiçado, equigranular médio, com foliação bem marcada entre níveis esbranquiçados ricos em Kfs e níveis alaranjados ricos em mica alterada (biotita, preferencialmente). Rocha bastante friável.	Bandamento gnaissico	Victoria (2023)

D050	- 15.732592	-39.984612	8260397.66	394511	Corte de estrada	Muito intemperizado	Gnaisse saprolitizado	Fenito	Saprólito marrom-esbranquiçado, equigranular médio, com bandamento bem marcada entre níveis leucocráticos, ricos em Kfs, e níveis micaceos, preferencialmente rico em biotita e com alguma muscovita. Rocha bastante friável.	Bandamento gnaissico	Victoria (2023)
D051	- 15.723423	-39.975033	8261416.74	395533	Solo	Solo	Solo	Cobertura Cenozoica	Ponto controle. Solo silto-argiloso, amarronzado. É a cobertura do pasto que ocorre na região aplainada, muito pobre em afloramentos rochosos.		Victoria (2023)
D052	- 15.725995	-39.971708	8261133.85	395891	Ravina	Muito intemperizado	Gnaisse saprolitizado	Complexo Itapetinga	Saprólito alaranjado-amarronzado, equigranular, grosso, rico em Kfs e foliação bem desenvolvida. Parece ser gnaisse alterado ou microclinito.	Foliação	Victoria (2023)
D053	- 15.727917	-39.961128	8260926.41	397025	Solo	Solo	Solo	Cobertura recente	Ponto controle. Solo silto-argiloso, amarronzado. E a cobertura do pasto que ocorre na região aplainada, muito pobre em afloramentos rochosos.		Victoria (2023)
D054	۔ 15.651179	-40.099919	8269343.33	382110	Encosta de serra	Rocha fresca	Álcali granito foliado	Complexo Salto da Divisa	Subida para o pico da Serra das Tres Pontas. A rocha e um Bt-granito bege, equigranular, médio, bem foliado, de composição Kfs-Qz-Bt. Os grãos são suborredadado o a rocho tem consecto popercidal		Victoria (2023)
D055	- 15.643961	-40.101092	8270141.2	381980	Encosta de serra	Rocha fresca	Álcali granito foliado	Complexo Salto da Divisa	Subida para o pico da Serra das Três Ponto de parada conhecido como Titanic. A rocha é um Bt- granito bege, equigranular, médio, bem foliado, de composição Kfs-Qz-Bt. Os grãos são subarredondados e a rocha tem aspecto sacaroidal.	Foliação	Victoria (2023)
D056	- 15.642577	-40.100676	8270294.54	382024	Topo de serra	Rocha fresca	Álcali granito foliado	Complexo Salto da Divisa	Topo da Serra das Três Pontas. Elevação: 1080m. A rocha é um Bt-granito bege, equigranular, médio, bem foliado, de composição Kfs-Qz-Bt. Os grãos são subarredondados e a rocha tem aspecto sacaroidal.		Victoria (2023)
D057	- 15.571275	-39.878283	8278293.1	405830	Leito de estrada	Intemperizado	Bt-gnaisse; Anfibolito	Complexo Ibicuí-Ipiaú	Gnaisse equigranular, médio, esbranquiçado- amarronzado, decomposto. Composição: Kfs-Qz-Bt. Está bem foliado e é cortado por dique de aproximadamente 2,0m de espessura de rocha básica maciça, fresca, equigranular média, cinza escuro a verde.	Bandamento gnaissico; Dique	Victoria (2023)
D058	- 15.573777	-39.88769	8278012.15	404823	Leito de estrada	Moderadamente intemperizado	Bt-Ms-xisto; Anfibolito	Complexo Salto da Divisa	Bt-Ms-xisto bege, alaranjado, médio, em contato brusco com nível anfibolítico	Foliação	Victoria (2023)
D059	- 15.568998	-39.891591	8278539.07	404402	Leito de estrada	Intemperizado	Bt-xisto	Complexo Salto da Divisa	Bt-xisto (ou quartzito?) bege, cinza claro, equigranular, médio, fraturado.	Foliação; Fratura	Victoria (2023)
D060	- 15.574529	-39.897208	8277924.69	403802	Leito de estrada	Intemperizado	Augen-gnaisse; Traquito; Metabásica	Complexo Ibicuí-Ipiaú	Bt-augen-gnaisse, cinza, cortado por dique félsico, cinza, afanítico (traquito/riolito) e por dique de rocha metabásica, fina, xistificada (Bt-xisto máfico).	Foliação milonítica; Dique	Victoria (2023)
D061	- 15.562937	-39.911416	8279200.57	402273	Leito de estrada	Intemperizado	Xisto; Bt-xisto máfico	Complexo Ibicuí-Ipiaú	Xisto (ou quartzito?) cinza-esbranquiçado, equigranular, médio, à biotita. Contém níveis de biotita-xisto máfico. O bandamento está dobrado, com eixo subhorizontal com caimento para SE.	Foliação; Eixo de dobra	Victoria (2023)
D062	- 15.566186	-39.902385	8278845.27	403243	Leiito de estrada	Intemperizado	Bt-xisto; Bt- xisto máfico	Complexo Ibicuí-Ipiaú	Xisto alaranjado-esbranquiçado, médio, decomposto, com níveis de Bt-xisto máfico paralelos à foliação. O bandamento está dobrado, com eixo subhorizontal com caimento para SE.	Foliação; Eixo de dobra	Victoria (2023)

D063	15.572141	-39.900091	8278187.56	403492	Cristas	Rocha fresca	Traquito	Complexo Ibicuí-Ipiaú	Rocha maciça, equigranular, afanítica, cinza claro, composta predominantemente por Kfs. Sericita ocorre nos planos de quebra da amostra.		Victoria (2023)
D064	-15.57258	-39.89331	8278142.05	404219	Lajedo	Rocha fresca	Gnaisse migmatítico	Complexo Salto da Divisa	Gnaisse migmatítico bem preservado, composto predominantemente por melanossoma cinza escuro, fino a médio, associado com leucossoma granítico, cinza claro, equigranular, grosso, rico em biotita e foliado.		Victoria (2023)
D065	-15.61942	-39.867581	8272971.93	406999	Corte de estrada	Rocha fresca	Metadiorito	Corpo Gabro- anortosítico	Rocha mesocrática, equigranular, média, com textura sal e pimenta.		Victoria (2023)
D066	- 15.640165	-39.896593	8270664.18	403899	Corte de estrada	Muito intemperizado	Bt-gnaisse; Bt- xisto máfico	Sequência meta- sedimentar de idade incerta	Bt-gnaisse amarelado-esbranquiçado, rico em Kfs e Qz, equigranular, médio, bem foliado. Ocorrem níveis de Bt- xisto máfico, fino, paralelizado com a foliação. Ambas as rochas estão bem decompostas.	Bandamento gnaissico	Victoria (2023)
D067	- 15.639772	-39.898509	8270706.79	403693	Lajedo	Rocha fresca	Metabásica	Sequência meta- sedimentar de idade incerta	Rocha básica, equigranular, fina, cinza escuro a esverdeado e cortado por veios de quartzo. No contato do veio com a rocha básica ocorre biotitito com biotita flake (alteração hidrotermal). É dura de quebrar e está foliada.	Foliação	Victoria (2023)
D068	- 15.634723	-39.905815	8271262	402908	Corte de estrada	Muito intemperizado	Quartzito	Sequência meta- sedimentar de idade incerta	Rocha alaranjada-esbranquiçada, equigranular, média, friável, praticamente composa por quartzo e sericita.	Foliação	Victoria (2023)
D069	- 15.640245	-39.896061	8270655.57	403956	Corte de estrada	Muito intemperizado	Metabásica	Sequência meta- sedimentar de idade incerta	Rocha básica, maciça, equigranular, média, amarronzada-esverdeada, rica em biotita. Está foliada.	Foliação	Victoria (2023)
D070	- 15.664033	-40.090842	8267926.34	383090	Lajedo	Intemperizado	Álcali-granito	Complexo Salto da Divisa	Rocha equigranular, média, rica em cristais de Kfs-Qz e mineral máfico que parece ser Anfibólio ou Opaco. É pouco coesa, friável e pulveriza facilmente. Há uma foliação incipiente dada pelo alinhamento dos minerais máficos.	Foliação	Victoria (2023)
D071	- 15.661904	-40.096125	8268158.95	382523	Leito de drenagem	Rocha fresca	Álcali granito foliado	Complexo Salto da Divisa	Blocos e matacões rolados da Serra das Três Pontas e acumulados na drenagem seca. Ocorre Anfibólio- granito rosado, grosso, bem magnético e bem foliado. Apesar de fresca, a rocha é pouco coesa e pulverulenta.		Victoria (2023)
D072	- 15.650176	-40.079424	8269465.57	384306	Lajedo	Intemperizado	Kfs-granito- gnaisse fenitizado	Complexo Salto da Divisa	Granitoide marrom-alaranjado, equigranular, médio, foliado, rico em Kfs. Está decomposto e pulveriza facilmente ao golpe do martelo.	Foliação	Victoria (2023)
D073	- 15.640899	-40.085583	8270488.49	383641	Blocos e matacões	Intemperizado	Álcali granito foliado	Complexo Salto da Divisa	Granitoide marrom-alaranjado, equigranular, médio, foliado, rico em Kfs-Qz-Bt.Também ocorre sericita dispersa. A rocha é pouca coesa e tende a pulverizar ao golpe do martelo.		Victoria (2023)
D074	- 15.637262	-40.08686	8270890.15	383502	Lajedo	Rocha fresca	Álcali granito foliado	Complexo Salto da Divisa	Granitoide rosado, equigranular, foliado, composto por Kfs-Qz-Bt. Apesar de fresca, a rocha é pouco coesa e pulverulenta. Os lajedos parecem ser alóctones.	Foliação	Victoria (2023)

D075	۔ 15.620101	-40.115948	8272772.49	380373	Pedreira	Rocha fresca	K-felspato (Pegmatito)	Pegmatito	Pedreira de feldspato extraído em pegmatito de espessura decamétrica.		Victoria (2023)
D076	- 15.622477	-40.108057	8272514.06	381221	Corte de estrada	Intemperizado	Metassomatito (K-feldspato)	Carbonatito (fenito)	Afloramento confuso, predominantemente composto por rocha rosada, equigranular, fina, foliada, extremamente rica em Kfs e com quartzo. Paralelo à foliação ocorre Bt-xisto máfico, amarronzado, equigranular, médio, bem intemperizado.	Foliação	Victoria (2023)
D077	۔ 15.668719	-40.091078	8267407.8	383067	Lajedo	Intemperizado	Álcali-granito foliado	Complexo Salto da Divisa	Rocha esbranquiçada, equigranular, média, foliada, composta por Kfs-Máficos (Anf, Opq)-Oz. Os minerais estão recristalizados e são de aspecto sacaroidal. Há uma foliação incipiente marcada por trama granoblástica.	Foliação	Victoria (2023)
D078	- 15.680521	-40.101659	8266096.3	381940	Corte de estrada	Muito intemperizado	Fenito	Fenito	Gnaisse migmatítico amarronzado-esbranquiçado, equigranular médio, ora com bandas mesocráticas bem foliadas, ora com bandas maciças, compostas predominantemente por Kfs e uma mica fosca, marrom. A rocha é friável, sacaroidal e pulveriza facilmente	Bandamento gnaissico	Victoria (2023)
D079	- 15.685285	-40.118834	8265559.62	380102	Corte de estrada	Intemperizado	Fenito	Fenito	Granitoide amarronzado-alaranjado, equigranular, médio, friável. Composição: Kfs-Qz-Bt.	Foliação	Victoria (2023)
D080	- 15.694139	-40.138793	8264568.71	377968	Corte de estrada	Intemperizado	Fenito; Metabásica	Fenito	Gnaisse bandado rico em Kfs. Cor amarronzada- alaranjada, equigranular, médio. Contém intercalações de metabásica monominerálica em anfibólio. É cortado por veios de quartzo.	Bandamento gnaissico	Victoria (2023)
D081	-15.69545	-40.146898	8264418.98	377100	Corte de estrada	Muito intemperizado	Saprolito; Pegmatito	Pegmatito	Saprolito de rocha extremamente rica em Kfs. Cor alaranjada, equigranular, média. Há uma foliação reliquiar e é cortada por veios de quartzo.	Foliação; Fratura (veio)	Victoria (2023)
D082	- 15.701309	-40.155904	8263765.55	376139	Corte de estrada	Intemperizado	Fenito	Fenito	Rocha bege-alaranjada, maciça, fina, extremamente rica em Kfs e com porções aleatórias ricas também em biotita.		Victoria (2023)
D083	- 15.704861	-40.161194	8263369.49	375574	Corte de estrada	Muito intemperizado	Kfs-fenito	Fenito	Rocha esbranquiçada-alaranjada, fina, friàvel, composta quase que exclusivamente por Kfs (microclilinito), com algumas porções em que se identifica uma foliação incipiente e concentração maior de biotita.	Foliação	Victoria (2023)
D084	- 15.698555	-40.124691	8264088.24	379482	Lajedo	Intemperizado	Kfs-granito- gnaisse fenitizado	Fenito	Granito-gnaisse, acinzentado-alaranjado, equigranular, médio, foliado, rico em máficos (Bt e/ou anfibólio). Apesar de aparentemente fresca, a rocha é pouco coesa e pulverulenta. Composição: Kfs-Qz-Bt (ou anfibólio).	Foliação	Victoria (2023)
D085	- 15.705053	-40.134212	8263363.93	378466	Corte de estrada	Intemperizado	Kfs-granito- gnaisse fenitizado	Fenito	Gnaisse bandado, com predomínio de nível mesocrático, cinza escuro a cinza claro, equigranular, fino, rico em máficos (biotita e/ou anfibólio), em relação a nível quartzo-feldspático, esbranquiçado. A rocha é pulverulenta, sem coesão	Bandamento gnaissico	Victoria (2023)
D086	- 15.707336	-40.138758	8263108.74	377980	Lajedo	Intemperizado	Kfs-granito- gnaisse fenitizado	Fenito	Granitoide mesocrático, cinza escuro a cinza claro, equigranular, fino, de composição intermediária, foliado. Apesar de fresca, a rocha é pouco coesa e pulverulenta. No leito da estrada ocorre gnaisse caulinizado, com foliação bem evidente.	Foliação; Lineação de estiramento	Victoria (2023)
D087	- 15.716965	-40.133545	8262046.48	378544	Corte de estrada	Muito intemperizado	Kfs-granito- gnaisse fenitizado	Fenito	Saprolito de granitoide amarronzado-alaranjado, equigranular, médio, foliado. Composição: Kfs-Qz-Bt.	Foliação	Victoria (2023)
D088	۔ 15.626518	-40.107544	8272067.29	381278	Pedreira	Rocha fresca	Calcita	Carbonatito	Pedreira de calcita pura extraída de pegmatito. Produção de blocos para rocha ornamental.		Victoria (2023)

D089	- 15.622513	-40.12446	8272500.85	379462	Leito de estrada	Intemperizado	Migmatito; Pegmatito	Complexo Itapetinga	Gnaisse cinza-alaranjado, médio, milonítico, com intercalações centimétricas a métricas de anfibolito. Cotém pegmatito de feldspato grosso associado, com biotita decussada grossa	Foliação milonítica	Victoria (2023)
D090	- 15.632593	-40.12149	8271387.39	379787	Blocos e matacões	Rocha fresca	Álcali granito	Complexo Salto da Divisa	Álcali granito rosado, equigranular, médio, maciço, rico em magnetita puntiforme dispersa aleatoriamente.		Victoria (2023)
D091	- 15.649454	-40.117261	8269524.46	380250	Lajedo	Rocha fresca	Migmatito	Complexo Itapetinga	Migmatito rico em melanossoma anfibolítico e neossoma granítico, equigranular, médio, de composição Qz-Fds-Anf-Bt e disperso aleatoriamente, lembrando padrao stockwork. Finas vênulas quartzo- feldspáticas cortam o melanossoma.	Bandamento gnaissico	Victoria (2023)
D092	- 15.608344	-40.138196	8274060.52	377981	Leito de estrada	Muito intemperizado	Pegmatito	Pegmatito	Saprolito amarronzado-alaranjado, equigranular, médio, intemperizado, foliado. A foliação está cortada por veios pegmatíticos ricos em Kfs caulinizado.	Foliação	Victoria (2023)
D093	- 15.613873	-40.142441	8273446.41	377529	Lajedo	Rocha fresca	Álcali granito foliado	Complexo Salto da Divisa	Álcali granito rosado, equigranular, médio, bem foliado, cortado por veios pegmatíticos leucocráticos de composição Qz-Kfs-Bt. Esses veios estão encaixados segundo uma direção preferencial.	Foliação	Victoria (2023)
D094	- 15.669461	-40.252062	8267230.41	365813	Corte de estrada	Intemperizado	Grd-Ms-Bt-xisto	Grupo Macaúbas	Xisto marrom escuro-bonina, equigranular, médio, friável. Composição: Ms-Bt-Grd-Qz-Fds	Xistosidade	Victoria (2023)
D095	- 15.675649	-40.240495	8266553.09	367057	Leito de estrada	Intemperizado	Bt-gnaisse	Complexo Itapetinga	Bt-gnaisse equigranular, médio acinzentado a marrom, friável.	Bandamento gnaissico	Victoria (2023)
D096	-15.67506	-40.221759	8266629.92	369064	Solo	Solo	Solo	Cobertura recente	Ponto controle. Solo areno-silto-argiloso, amarronzado, com presença de grânulos e seixos de de quartzo.		Victoria (2023)
D097	- 15.682997	-40.209391	8265759.43	370395	Solo	Solo	Solo	Cobertura recente	Ponto controle. Solo areno-silto-argiloso, amarronzado, com presença de grânulos e seixos de de quartzo.		Victoria (2023)
D098	-15.69531	-40.210746	8264396.38	370258	Lajedo	Rocha fresca	Gnaisse migmatítico	Complexo Itapetinga	Migmatito com predominância de melanossoma cinza escuro a esverdeado, equigranular, foliado. Neossoma granítico, esbranquiçado, em bolsões e níveis bem deformados dentro do material escuro.	Bandamento gnaissico	Victoria (2023)
D099	-15.69863	-40.201169	8264034.93	371286	Leito de estrada	Intemperizado	Bt-gnaisse; Bt- xisto máfico	Complexo Itapetinga	Gnaisse bandado, com bandas centimétricas de material félsico, quartzo-feldspático, e bandas escuras, xistificadas e ricas em biotita (biotita-xisto máfico).	Bandamento gnaissico	Victoria (2023)
D100	- 15.624667	-40.185598	8272226.96	372909	Corte de estrada	Muito intemperizado	Bt-gnaisse	Complexo Itapetinga	Bt-gnaisse esbranquiçado-alaranjado, rico em Kfs e Qz, equigranular, médio, bem foliado e friável.	Bandamento gnaissico	Victoria (2023)
D101	-15.58904	-40.102692	8276216.12	381777	Corte de estrada	Intemperizado	Bt-gnaisse; Bt- xisto máfico	Complexo Itapetinga	Gnaisse esbranquiçado-alaranjado, rico em Kis e Q2, equigranular, médio, bem foliado. Ocorrem níveis de Bt- xisto máfico, fino, paralelizados com a foliação. Ambas as rochas estão bem decompostas. A foliação é milonítica.	Bandamento gnaissico	Victoria (2023)
D102	- 15.648289	-39.852667	8269784.87	408611	Corte de estrada	Rocha fresca	Sienito	Província Alcalina do Sul do Estado da Bahia	Meta-sienito rosado, mesocrático, equigranular, médio, com presença de uma proeminente lineação de estiramento (L-tectonito). Composição: Kfs-Bt-Hb-Grd (porfiroblástica). Cortado por dique de metabásica, fina, rica em biotita.	Lineação de estiramento; Dique; Fratura	Victoria (2023)

D103	- 15.655109	-39.84629	8269033.17	409298	Lajedo	Rocha fresca	Sienito; Essexito	Província Alcalina do Sul do Estado da Bahia	Sienito acinzentado, equigranular, grosso, isotrópico. Contém enclaves e bolsões de rocha máfica, cinza escura, fina a média (Essexito).		Victoria (2023)
D104	- 15.663585	-39.841455	8268097.6	409820	Lajedo	Rocha fresca	Gnaisse	Província Alcalina do Sul do Estado da Bahia	Gnaisse (granitoide bem foliado) equigranular, médio, rosado-acinzentado, mesocrático. Composição: Kfs+Qz+Máficos (Bt, Anf, Px?).	Foliação	Victoria (2023)
D105	- 15.670259	-39.835684	8267361.76	410441	Corte de estrada	Rocha fresca	Metacalcário	Sequência meta- sedimentar de idade incerta	Rocha carbonática, bege a cinza claro, equigranular, muito fina, bem recristalizada. Contém impurezas de coloração cinza escuro. Há uma proeminente lineação a qual a rocha quebra facilmente ao golpe do martelo (estria de falha?).	Estria	Victoria (2023)
D106	- 15.698895	-39.818851	8264201.06	412257	Leito de estrada	Muito intemperizado	Gnaisse migmatítico	Sequência meta- sedimentar de idade incerta	Bt-gnaisse equigranular, médio, friável, com níveis neossomáticos descontínuos, pegmatítiticos, esbranquiçados, quartzo-feldspáticos.	Foliação	Victoria (2023)
D107	- 15.704168	-39.826313	8263614.64	411460	Leito de estrada	Muito intemperizado	Xisto; Metabásica	Sequência meta- sedimentar de idade incerta	Rocha amarronzada-alaranjada, equigranular, média, friável, xistificada, muito intemperizada. Ocorre associada com metabásica, fina, esverdeada, paralelizada com a foliação (xisto máfico).	Foliação	Victoria (2023)
D108	- 15.715949	-39.817985	8262314.88	412357	Encosta	Muito intemperizado	Pegmatito; metabásica	Sequência meta- sedimentar de idade incerta	Rocha marrom-alaranjada, equigranular, média, friável, rica em K-feldspato, associada com biotita-xisto máfio paralelizado com a foliação. Níveis pegmatíticos, esbranquiçados, também ocorrem ocorrem e são concordantes.	Foliação	Victoria (2023)
D109	-15.72036	-39.816148	8261827.69	412556	Leito de estrada	Rocha fresca	Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário, bege a cinza claro, equigranular, criptocristalino, bem recristalizado. Está bem fraturado.	Fratura	Victoria (2023)
D110	- 15.723416	-39.817079	8261489.25	412458	Lajedo	Rocha fresca	Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário bege a cinza claro, criptocristalino, bem recristalizado, com feições de dissolução na superfície do afloramento (lapiás). Ocorrem planos persistentes que parecem refletir a foliação espaçada.	Foliação	Victoria (2023)
D111	-15.72698	-39.816861	8261095.08	412483	Lajedo	Rocha fresca	Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário bege a cinza claro, criptocristalino, bem recristalizado, com feições de dissolução na superfície do afloramento (lapiás).		Victoria (2023)
D112	- 15.733359	-39.819166	8260388.48	412238	Lajedo	Rocha fresca	Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário bege-acinzentado, criptocristalino, bem recristalizado, com faixas submilimétricos de material escuro (impuereza). Esses planos parecem refletir uma foliação espaçada. Está bem fraturado.	Foliação	Victoria (2023)
------	----------------	------------	------------	--------	---------------------	--------------------------------	---------------------------------------	--	---	---	-----------------
D113	- 15.736918	-39.818666	8259994.98	412293	Corte de estrada	Intemperizado	Bt-gnaisse	Embasamento Riaciano arco- derivado	Bt-gnaisse fino a médio, bem foliado. Há uma clivagem de crenulação incipiente nos mais mais micáceos, xistificados.	Foliação	Victoria (2023)
D114	- 15.739557	-39.817766	8259703.42	412391	Leito de estrada	Moderadamente intemperizado	Augen-gnaisse; Bt-xisto máfico	Embasamento Riaciano arco- derivado	Afloramento complexo. Gnaisse cinza, inequigranular, médio a grosso, milonítico, com porfiroclastos sigmoidais e foliação S-C indicando movimento dextral. Níveis de Bt-xisto máfico (biotitito). A foliação milonítica está dobrada.	Foliação milonítica; Lineação de estiramento	Victoria (2023)
D115	-15.70684	-39.806844	8263327.11	413547	Corte de estrada	Rocha fresca	xisto carbonático	Sequência meta- sedimentar de idade incerta	Xisto carbonático (ou metacalcário sericítico), cinza claro, equigranular, fino, sedoso, rico em carbonato e sericita	Xistosidade	Victoria (2023)
D116	- 15.709645	-39.80327	8263018.28	413931	Corte de estrada	Intemperizado	Metabásica	Sequência meta- sedimentar de idade incerta	Rocha amarronzada, equigranular, fina, foliada.		Victoria (2023)
D117	- 15.712731	-39.796758	8262679.54	414631	Corte de estrada	Moderadamente intemperizado	Metabásica; Bt- gnaisse bandado	Embasamento Riaciano arco- derivado	Rocha cinza escuro, fina a média, foliada e aparentemente intrusiva em Bt-gnaisse grosso, bandado. Bandamento está verticalizado.	Bandamento gnaissico	Victoria (2023)
D118	- 15.719587	-39.79319	8261922.56	415016	Encosta de morro	Rocha fresca	Bt-gnaisse migmatítico	Embasamento Riaciano arco- derivado	Gnaisse cinza claro a cinza escuro, mesocrático, equigranular, médio, bandado, com níveis e lentes de leucossoma quartzo-feldspatico.	Bandamento gnaissico	Victoria (2023)
D119	- 15.728642	-39.791544	8260921.55	415196	Corte de estrada	Intemperizado	Ser-xisto	Embasamento Riaciano arco- derivado	Xisto cinza claro, fino a médio, com uma proeminente lineação em relação a uma estrutura planar (L- tectonito). É uma rocha diferente do Bt-gnaisse bem bandado verificado anteriormente na estrada.	Xistosidade	Victoria (2023)
D120	- 15.738091	-39.787085	8259878.08	415677	Lajedo	Rocha fresca	Gnaisse migmatítico	Embasamento Riaciano arco- derivado	Gnaisse cinza claro, equigranular, médio, bem bandado. Localmente é neossoma migmatítico, com presença de rocha básica, cinza escuro, média, rica em anfibólio (anfibolito) em contato brusco e irregular (melanossoma).	Bandamento gnaissico	Victoria (2023)
D121	- 15.744572	-39.786703	8259161.3	415721			Bt-xisto; Biotitito; Pegmatito	Embasamento Riaciano arco- derivado	Bt-xisto cinza claro, fino a médio, friável, bem foliado, intercalado em Bt-xisto máfico, amarronzado, extremamento rico em biotita (biotitito). Ocorre veio pegmatítico caulinizado concordante com a foliação	Xistosidade	Victoria (2023)

D122	-15.75184	-39.776546	8258361.34	416812	Blocos e matacões	Rocha fresca	Gnaisse migmatítico; Granito	Embasamento Riaciano arco- derivado	Blocos de gnaisse migmatítico cinza claro a cinza escuro, à biotita, em contato brusco com neossoma granítico, rosado, equigranular, médio		Victoria (2023)
D123	- 15.757915	-39.770444	8257691.72	417468	Lajedo	Rocha fresca	Gnaisse migmatítico	Embasamento Riaciano arco- derivado	Gnaisse migmatítico com predominância de paleossoma gnaissico, mesocrático, cinza, equigranular, médio, em detrimento de faixas, bolsões e veios leucossomáticos, esbranquiçados, equigranular, médio		Victoria (2023)
D124	- 15.587543	-39.811244	8276521.99	413025	Blocos e matacões	Rocha fresca	Anortosito	Corpo Gabro- anortosítico	Rocha cinza escuro, equigranular, grossa, maciça e extremamente rica em plagioclásio (anortosito). Os blocos estão bastante fraturados.		Victoria (2023)
D125	- 15.519275	-39.875079	8284046.8	406150	Corte de estrada	Moderadamente intemperizado	Bt-gnaisse; Fonolito	Complexo Ibicuí-Ipiaú	Gnaisse cinza a marrom, grosso, bandado, milonítico. Está truncado por rocha maciça, isotrópica, fina, cinza escuro, provável fonolito subvulcânico.	Foliação milonítica	Victoria (2023)
D126	- 15.482832	-39.903015	8288065.73	403137							Victoria (2023)
D127	- 15.467321	-39.912378	8289777.32	402125							Victoria (2023)
D128	- 15.442536	-39.921895	8292514.71	401093							Victoria (2023)
D129	- 15.447651	-39.919506	8291949.98	401351							Victoria (2023)
D130	- 15.431396	-39.956248	8293730.96	397401							Victoria (2023)
D131	- 15.367671	-39.977714	8300770.02	395066							Victoria (2023)
D132	- 15.306078	-40.001053	8307572.11	392529							Victoria (2023)
D133	- 15.263812	-40.020137	8312238.14	390458							Victoria (2023)
D134	- 15.240106	-40.035315	8314852.86	388816							Victoria (2023)
D135	- 15.221601	-40.053729	8316890.46	386828							Victoria (2023)
D136	- 15.204794	-40.071928	8318740.18	384864							Victoria (2023)
D137	- 15.139856	-40.076854	8325921.22	384300							Victoria (2023)
D138	۔ 15.168271	-40.083738	8322774.22	383576							Victoria (2023)
D139	- 15.205624	-40.103001	8318631.75	381527							Victoria (2023)
D140	- 15.217892	-40.100782	8317275.81	381772							Victoria (2023)
D141	-15.22905	-40.128433	8316026.29	378808							Victoria (2023)
D142	- 15.202936	-40.141566	8318907.82	377383							Victoria (2023)
D143	- 15.237515	-40.125065	8315091.71	379175							Victoria (2023)
D144	- 15.249603	-40.148002	8313741.62	376718							Victoria (2023)
D145	- 15.253598	-40.169852	8313287.18	374374							Victoria (2023)

D146	۔ 15.251932	-40.180056	8313465.57	373277							Victoria (2023)
D147	۔ 15.229215	-40.090415	8316028.81	382892							Victoria (2023)
D148	- 15.223395	-40.097758	8316668.68	382100							Victoria (2023)
D149	- 15.528632	-39.848897	8283023.03	408962	Blocos e matacões	Rocha fresca	Ignimbrito? Lamprífiro?	Província Alcalina do Sul do Estado da Bahia	Rocha vulcanoclástica, de aspecto brechado devido à presença de fragmentos mili a centimétricos de material máfico (afanítico) e félsico, esbranquiçado (feldspato? Fragmento de rocha?). A matriz da rocha é felsica, equigranular, média, acinzent		Victoria (2023)
D150	- 15.529363	-39.842756	8282944.77	409621	Lajedo	Intemperizado	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito equigranular, grosso, esbranquiçado- amarronzado, bem fraturado.	Fratura	Victoria (2023)
D151	- 15.526571	-39.837017	8283256.04	410236	Corte de estrada	Intemperizado	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito equigranular, grosso, esbranquiçado- amarronzado, bem fraturado.	Fratura	Victoria (2023)
D152	- 15.528077	-39.819709	8283096.63	412093	Leito de rio	Rocha fresca	Álcali-granito	Província Alcalina do Sul do Estado da Bahia	Álcali-granito rosado-acinzentado, equigranular, grosso, com cerca de 10% de minerais máficos, orientados segundo uma direção preferencial. Composição: Kfs- Qz-Máficos (Bt+Anf). Cortado por veios pegmatíticos, quartzo-feldspáticos.	Foliação, Pegmatito	Victoria (2023)
D153	- 15.536351	-39.8057614	8282187.05	413592	Lajedo	Rocha fresca	Sienito	Corpo gabro- anortosítico	Rocha cinza escuro, média a grossa, isotrópica. Composição: Feldspato-Óxidos de Ferro		Victoria (2023)
D154	- 15.536093	-39.794581	8282220.07	414791	Lajedo	Rocha fresca	Granulito	Corpo Gabro- anortosítico	Rocha equigranular, média, mesocrática, composta por minerais máficos (Bt+Px?) e feldspato. Há uma foliação discreta. Parece tratar-se de granulito	Foliação	Victoria (2023)
D155	- 15.549508	-39.785796	8280739.6	415738	Lajedo	Rocha fresca	Basalto	Dique	Rocha básica, cinza escuro a verde escuro, afanítica, maciça e isotrópica.		Victoria (2023)
D156	-15.5559	-39.768858	8280039.14	417557	Lajedo	Rocha fresca	Gnaisse bandado; Dique máfico	Embasamento Riaciano arco- derivado	Gnaisse cinza, equigranular, médio, com bandamento bem marcado. É cortado por dique básico, com cerca de 2 a 5 cm de espessura	Bandamento gnaissico	Victoria (2023)
D157	- 15.552685	-39.737267	8280406.71	420944	Lajedo	Rocha fresca	Gnaisse migmatítico; gnaisse bandado	Embasamento Riaciano arco- derivado	Gnaisse migmatítico com paleossoma mesocrático, rico em agregados máficos orientados e neossoma bege- esbranquiçado, à feldspato. Médio a grosso, com bandamento bem marcado	Bandamento gnaissico	Victoria (2023)
D158	- 15.514028	-39.729831	8284685.59	421726	Corte de estrada	Moderadamente intemperizado	Gnaisse bandado; Dique máfico	Embasamento Riaciano arco- derivado	Gnaisse bandado esbranquiçado-alaranjado, equigranular, médio, bandado. Aspecto granítico em amostra de mão. Está cortado por dique máfico e é bem fraturado.	Bandamento gnaissico	Victoria (2023)
D159	- 15.499158	-39.719038	8286334.38	422879	Leito de estrada	Intemperizado	Granitoide porfirítico	Suíte Pau Brasil	Granitoide mesocrático, grosso a porfirítico, repleto de fenocristais mili a centimétricos de K-feldspato. Contém quartzo azulado.	Foliação	Victoria (2023)

D160	- 15.490786	-39.71165	8287263.1	423668	Lajedo	Rocha fresca	Granitoide porfirítico	Suíte Pau Brasil	Granitoide mesocratico, grosso a portiritico, repleto de fenocristais mili a centimétricos de K-feldspato. Contém quartzo azulado. Apesar de não haver uma orientação		Victoria (2023)
D161	- 15.241245	-39.177783	8314983.17	480909							Victoria (2023)
D162	۔ 15.222163	-39.176799	8317093.86	481013							Victoria (2023)
D163	- 15.138516	-39.263426	8326336.44	471698							Victoria (2023)
D164	-15.13496	-39.264878	8326729.57	471542							Victoria (2023)
D165	۔ 15.117606	-39.264619	8328649.07	471567							Victoria (2023)
D166	۔ 15.105765	-39.272047	8329957.79	470767							Victoria (2023)
D167	- 15.095028	-39.288258	8331143.15	469024							Victoria (2023)
D168	- 15.072205	-39.295352	8333666.51	468258							Victoria (2023)
D169	- 15.071867	-39.304468	8333702.57	467278							Victoria (2023)
D170	- 15.065051	-39.316859	8334454.58	465945							Victoria (2023)
D171	- 14.966848	-39.317769	8345316.29	465832							Victoria (2023)
D172	۔ 14.993792	-39.33429	8342333.51	464060							Victoria (2023)
D173	-	-39.331225	8337680.03	464397							Victoria (2023)
D174	15.083446	-39.340957	8332416.1	463359							Victoria (2023)
D175	15 175778	-39.42834	8322187	453988							Victoria (2023)
D176	15 298059	-39.490163	8308647.54	447377							Victoria (2023)
IF279	16.179619	-39.5635953	8211113.39	439753	Corte de estrada	Saprolito	Gnaisse decomposto	Grupo Macaúbas	Manto cristalino totalmente decomposto, micáceo, com presença de pequenos veios de quartzo		Projeto Sul da Bahia (1974)
IF280	۔ 16.194209	-39.5015903	8209516.71	446386	Encosta de morro		Filito	Grupo Macaúbas	Filito cinza-esverdeado, coeso e laminado, com níveis milimétricos ricos em manganês e ferro.		Projeto Sul da Bahia (1974)
IF281	- 16.194109	-39.5137334	8209524.52	445088	Blocos e matacões	Intemperizado	Quartzito	Grupo Macaúbas	Quartzito contendo óxidos de manganês e de ferro, às vezes de textura sacaroidal		Projeto Sul da Bahia (1974)
IF282	- 16.209437	-39.5211985	8207826.89	444294	Corte de estrada	Saprolito	Gnaisse decomposto	Grupo Macaúbas	Manto argiloso, laterizado, de coloração amarelada		Projeto Sul da Bahia (1974)
IF537	- 16.137865	-40.1285853	8215484.34	379327			Migmatito	Complexo Jequitinhonha	Migmatito cinza, médio, estromático, de composição: Qz-Fds-Bt-Grd	Foliação	Projeto Sul da Bahia (1974)
IF538	- 16.162207	-40.114264	8212799.54	380873	Margem de estrada	Intemperizado	Migmatito	Complexo Jequitinhonha	Migmatito médio, estromático, de composição: Qz-Fds- Bt-Grd	Foliação	Projeto Sul da Bahia (1974)
IF539	۔ 16.180211	-40.1197028	8210804.63	380303			Migmatito	Complexo Jequitinhonha	Migmatito cinza, médio, estromático, de composição: Qz-Fds-Bt-Grd. A foliação é bem desenvolvida	Foliação	Projeto Sul da Bahia (1974)

IF540	- 16.182346	-40.1290435	8210562.96	379305			Migmatito	Complexo Jequitinhonha	Migmatito cinza, médio, estromático, de composição: Qz-Fds-Bt-Grd	Foliação	Projeto Sul da Bahia (1974)
IF542	- 16.082861	-40.1081136	8221581.46	381484			Migmatito	Complexo Jequitinhonha	Migmatito leucocrático, médio, levemente foliado bastante recortado por veios pegmatíticos compostos de quartzo	Foliação	Projeto Sul da Bahia (1974)
IF543	-16.07656	-40.0848067	8222291.74	383973			Migmatito	Complexo Jequitinhonha	Migmatito esbranquiçado, médio, estromático, de composição: Qz-Fds-Bt-Grd. O paleossoma é gnaissico	Bandamento gnaissico	Projeto Sul da Bahia (1974)
IF548	- 16.017553	-39.8431851	8228939.88	409791			Augen-gnaisse	Corpos dioríticos e cumuláticos Orosirianos	Augen-gnaisse de granulação média,com porfiroclastos de coloração esbranquiçada	Foliação milonítica	Projeto Sul da Bahia (1974)
IF549	- 16.072919	-39.8136853	8222827.61	412972		Muito intemperizado	Bt-Grd-xisto; Gnaisse	Grupo Macaúbas	Bt-gnaisse bastante intemperizado, algo migmatítico, com microbras. A 100m ocorre Bt-Grd-xisto.		Projeto Sul da Bahia (1974)
IF563	-16.15276	-40.2233668	8213778.54	369202			Migmatito	Complexo Jequitinhonha	MIgmatito cinza, médio a grosso, com estrutura estromática. Composição: Qz-Fds-Bt-Grd. Localmente está dobrado	Foliação	Projeto Sul da Bahia (1974)
JC008	- 16.141096	-40.2716435	8215037.73	364031	Margem de rio	Intemperizado	Bt-granito (anatexia)	Complexo Jequitinhonha	Rocha cinza-claro, equigranular, sem foliação visível, composta por quartzo, feldspato e biotita. Cortada por veios pegmatíticos. Classficada como biotita-granito de anatexia		Projeto Sul da Bahia (1974)
JC009	- 16.155063	-40.2526994	8213504.83	366067	Margem de rio		Migmatito	Complexo Jequitinhonha	Migmatito de cor variada, granulação média, foliado e cortado por veios pegmatíticos. Composição: Fds-Qz- Grt-Bt	Foliação	Projeto Sul da Bahia (1974)
JC010	- 16.150178	-40.2181728	8214067.54	369755	Margem de rio		Migmatito	Complexo Jequitinhonha	Migmatito de cor variada, granulação média, foliado e cortado por veios pegmatíticos. Composição: Fds-Qz- Grt-Bt	Foliação	Projeto Sul da Bahia (1974)
JC011	- 16.147233	-40.1982527	8214405.86	371883			Bt-granito (anatexia)	Complexo Jequitinhonha	Xenólito de rocha equigranular, média, cinza, não foliada, composta por quartzo, feldspato e biotita, imerso em rocha leucocrática, inequigranular, sem orientação, composta essencialmente por feldspato e quartzo		Projeto Sul da Bahia (1974)
JC012	- 16.146797	-40.1871366	8214460.97	373072	Margem de estrada		Migmatito	Complexo Jequitinhonha	Migmatito foliado, com leucossoma à base de quartzo- feldspato-granada-biotita (traço) e paleossoma composto essencialmente de biotita e menores quantidades de quartzo-feldspato-granada	Foliação	Projeto Sul da Bahia (1974)
JC013	- 16.075173	-40.0734793	8222451.5	385184	Margem de rio		Migmatito	Complexo Jequitinhonha	Gnaisse rico em biotita e granada. Está cortado por veios pegmatíticos	Foliação	Projeto Sul da Bahia (1974)
JC014	-16.08165	-40.0548403	8221745.23	387182	Margem de rio		Migmatito	Complexo Jequitinhonha	Afloramento de grandes dimensões na margem direita do rio Jequitinhonha, constituído por um complexo migmatítico bastante dobrado e cortado por veios pegmatíticos. Composição: Qz-Fds-Bt-Grd.	Foliação	Projeto Sul da Bahia (1974)
JC015	- 16.086379	-40.0134901	8221244.15	391607			Migmatito	Complexo Jequitinhonha	Afloramento heterogêneo constituído por biotita-gnaisse com granada e sillimanita (paleossoma) e leucossoma pegmatítico, quartzo-feldspático, paralelo à foliação do gnaisse	Foliação	Projeto Sul da Bahia (1974)

JC016	- 16.019337	-39.9857266	8228675.34	394541			Hb-Bt-gnaisse; Biotitito	Embasamento Riaciano arco- derivado	Granito-gnaisse, bem foliado, com bandas claras, quartzo-feldspáticas, alternadas em bandas escuras, à biotita e hornblenda	Bandamento gnaissico	Projeto Sul da Bahia (1974)
JC017	۔ 16.060837	-39.9843635	8224084.86	394709	Corte de estrada		Granito-gnaisse migmatítico	Complexo Itapetinga	Granito-gnaisse migmatítico, amarelado, médio, foliado, de composição: Fds-Qz-Bt-Hb	Foliação	Projeto Sul da Bahia (1974)
JC023	- 16.091208	-39.6659856	8220860.91	428776	Margem de estrada	Muito intemperizado	Cianita-Bt-xisto	Grupo Macaúbas	Afloramento ruim, bastante intemperizado, de xisto constituído de Qz-Fds-Bt-Cianita-Mag	Xistosidade	Projeto Sul da Bahia (1974)
JC024	-16.09287	-39.6447132	8220684.24	431052		Muito intemperizado	Cianita-Bt-xisto	Grupo Macaúbas	Afloramento ruim de rocha xistosa, à cianita e biotita. Paralelamente afloram blocos de quartzo leitoso e cascalheira de seixos arredondados no leito da estrada		Projeto Sul da Bahia (1974)
JC025	- 16.066547	-39.8932605	8223497.47	404457	Leito de estrada		Gnaisse migmatítico	Complexo Buerarema	Gnaisse de coloração rosada, de composição: Fds-Qz- Hb-Bt, cortada por veios de quartzo e por rocha leucocrática, equigranular fina, sem orientação, composta por quartzo e feldspato		Projeto Sul da Bahia (1974)
JC027	- 16.086001	-39.8382785	8221369.87	410347		Saprolito	Bt-gnaisse	Grupo Macaúbas	Gnaisse totalmente decomposto, à biotita, cortado por veios de quartzo e por rocha leucocrática, equigranular fina		Projeto Sul da Bahia (1974)
JC028	-16.07398	-39.8092633	8222712.07	413445	Blocos e matacões		Quartzito	Grupo Macaúbas	Rocha mesocrática, esverdeada, equigranular fina.		Projeto Sul da Bahia (1974)
JC029	- 16.083138	-39.7646556	8221717.13	418220			Cianita-Bt-xisto	Grupo Macaúbas	Bt-xisto com porfiros de cianita alongada na direção da foliação		Projeto Sul da Bahia (1974)
JC030	- 16.089028	-39.7310892	8221078.57	421813		Muito intemperizado	Cianita-xisto	Grupo Macaúbas	Afloramento ruim, muito intemperizado, de rocha xistosa contendo magnetita e cianita		Projeto Sul da Bahia (1974)
JC031	- 16.087931	-39.6975466	8221212.26	425400			Cianita-xisto	Grupo Macaúbas	Xisto cinza, médio, rico em biotita e cianita porfiroblástica orientada na direção da foliação	Xistosidade	Projeto Sul da Bahia (1974)
JC032	- 16.083198	-39.6846797	8221740.46	426774			Cianita-Bt-xisto	Grupo Macaúbas	Afloramento pobre de xisto cinza, médio, de composição: Qz-Fds-Bt-Cianita-Mag		Projeto Sul da Bahia (1974)
JC035	- 16.076323	-39.6239862	8222521.56	433263	Corte de estrada	Intemperizado	Quartzito	Grupo Macaúbas	Quartzito sacaroidal, dobrado, com níveis ferruginosos e com intercalações de muscovita-xisto	Foliação	Projeto Sul da Bahia (1974)
JC036	- 16.047645	-39.6189353	8225695.5	433794	Corte de estrada	Rocha fresca	Bt-granito- gnaisse, Bt- xisto máfico	Complexo Salto da Divisa	Granito-gnaisse cinza claro, médio, foliado, composto	Foliação	Projeto Sul da Bahia (1974)
JC037	- 16.008043	-39.6122202	8230078.49	434499	Margem de estrada	Rocha intemperizada	Ms-Bt-granito- gnaisse	Complexo Salto da Divisa	Gnaisse leucocrático, friável, de cor amarelada, granulação fina a média. Composição: Qz-Fds-Bt-Ms.	Foliação	Projeto Sul da Bahia (1974)
JC038	- 16.005066	-39.6143175	8230407.16	434274		Rocha intemperizada	Ms-Bt-granito- gnaisse	Complexo Salto da Divisa	Gnaisse leucocrático, friável, médio. Composição: Qz- Fds-Bt-Ms		Projeto Sul da Bahia (1974)
JC039	- 16.007501	-39.6235406	8230134.83	433288		Rocha intemperizada	Ms-Bt-granito- gnaisse	Complexo Salto da Divisa	Gnaisse leucocrático, médio. Composição: Qz-Fds-Bt- Ms		Projeto Sul da Bahia (1974)
JC040	- 16.006207	-39.6837219	8230257.71	426848	Blocos e matacões	Rocha fresca	Bt-granito	Complexo Salto da Divisa	Bt-granito rosado, grosso, maciço. Composição: Qz- Fds-Bt		Projeto Sul da Bahia (1974)

JC041	- 16.094483	-39.6209651	8220513.65	433592	Corte de estrada		Cianita-Bt-xisto	Grupo Macaúbas	Cianita-biotita-xisto, amarelado, médio e foliado, com intercalações de filito grafitoso. A cianita encontra-se em abundância	Xistosidade	Projeto Sul da Bahia (1974)
JC042	- 16.128573	-39.6093627	8216746.22	434844	Corte de estrada	Muito intemperizada	Cianita-xisto	Grupo Macaúbas	Rocha cinza claro, dobrada, rica em criostais de cinaita e muito intemperizada		Projeto Sul da Bahia (1974)
JC044	-16.18336	-39.6075914	8210686.24	435051	Corte de estrada	Saprolito	Ms-Bt-xisto	Grupo Macaúbas	Rocha xistosa totalmente decomposta, bastante micácea e cortada por veios de quartzo	Xistosidade	Projeto Sul da Bahia (1974)
JC073	- 16.143955	-40.1231913	8214813.66	379908	Leito de estrada	Intemperizado	Migmatito	Complexo Jequitinhonha	Migmatito avermelhado (cor de intemperismo) cortado por veios de quartzo e com estrutura interna, reliquiar, preservada.	Foliação	Projeto Sul da Bahia (1974)
JC081	- 16.062737	-40.2035099	8223750.81	371267		Intemperizado	Migmatito	Complexo Jequitinhonha	Rocha bastante intemperizada, guardando uma foliação residual. Composta de quartzo grnaular, feldspato caulinizado, biotita e granada	Foliação	Projeto Sul da Bahia (1974)
JC082	-16.04545	-40.2183019	8225654.21	369673			Granito-gnaisse	Suíte G5	Gnaisse cortado e enriquecido por veios de feldspato. A rocha é leucocrática, média e composta de quartzo- feldspato-granada		Projeto Sul da Bahia (1974)
JC083	-16.03963	-40.221676	8226295.96	369308			Migmatito	Complexo Jequitinhonha	Migmatito cinza, médio, algo foliada e dobrada por veios pegmatíticos e composta por Qz-Fds-Bt-Grd		Projeto Sul da Bahia (1974)
JC084	- 16.035774	-40.2238794	8226721.18	369070	Leito de córrego		Migmatito	Complexo Jequitinhonha	Migmatito cinza, médio a grosso, foliado e de composição: Qz-Fds-Bt-Mag	Foliação	Projeto Sul da Bahia (1974)
JC085	- 16.017226	-40.2218179	8228774.57	369279			Migmatito	Complexo Jequitinhonha	Migmatito cinza, médio a grosso, cortado por veios pegmatíticos, sem direção preferencial, e composta de quartzo-feldspato-beiotita-granada-magnetita.		Projeto Sul da Bahia (1974)
JC086	- 16.009385	-40.2233544	8229641.08	369109			Migmatito	Complexo Jequitinhonha	Migmatito cinza, médio, foliado, cortado por veios de pegmatíticos. Composição: Qz-Fds-Bt-Grd-Mag		Projeto Sul da Bahia (1974)
JC087	- 16.000714	-40.2276899	8230597.68	368639			Migmatito	Complexo Jequitinhonha	Migmatito cinza, gnaissico, cortado por veios pegmatíticos ricos em feldspato, foliado, cisalhado. Composição: Qz-Fds-Bt		Projeto Sul da Bahia (1974)
JC200	- 16.111364	-39.846812	8218560.42	409446		Muito intemperizado	Sill-gnaisse	Grupo Macaúbas	Afloramento bastante intemperizado de rocha porfiroblástica, grossa, com pórfiros de sillimanita, feldspato e biotita		Projeto Sul da Bahia (1974)
JC201	- 16.117866	-39.8442198	8217842.28	409726			Sill-gnaisse	Grupo Macaúbas	gnaissica, mesocrática, paleossomática, e outra neossomática. Coloração cinza, granulação grossa, foliada e de composição: Qz-Fds-Qz-Bt-Sill (oórfiros)	Bandamento gnaissico	Projeto Sul da Bahia (1974)
JC202	- 16.152106	-39.8417996	8214055.45	410000		Muito intemperizado	Sill-gnaisse	Grupo Macaúbas	Rocha gnaissica, bastante alterada, com porfiroblastos de sillimanita, quartzo e feldspato		Projeto Sul da Bahia (1974)
JC203	-16.17479	-39.8451816	8211544.48	409649		Muito intemperizado	Sill-gnaisse	Grupo Macaúbas	Rocha gnaissica porfiroblástica, composta por Qz-Fds- Bt-Sill, muito alterada. Pórfiros são de Sillimianita		Projeto Sul da Bahia (1974)
JC204	- 16.142414	-39.8361757	8215130.06	410597		Muito intemperizado	Sill-gnaisse	Grupo Macaúbas	Afloramento bastante alterado, provavelmente um migmatito representado por um neossoma porfiroblástico, à sillimanita, e um paleossoma de biotita-gnaisse		Projeto Sul da Bahia (1974)
JC205	- 16.173096	-39.8020514	8211750.42	414259			Sill-gnaisse	Grupo Macaúbas	Afloramento heterogêneo, composto por uma parte gnaissica rica em biotita e outra porfiroblástica, rica em sillimanita e feldspato		Projeto Sul da Bahia (1974)

JC206	- 16.184464	-39.7860571	8210499.41	415974	Corte de estrada		Sill-gnaisse	Grupo Macaúbas	Afloramento heterogêneo, dobrado, composto por gnaisse mesocrático, à biotita, e uma poarte félsica à silliminatia, quartzo e feldspato. Contém veios pegmatíticos orietados aleatoriamente	Bandamento gnaissico	Projeto Sul da Bahia (1974)
JC209	-16.03132	-39.8271858	8227423.77	411509		Muito intemperizado	Bt-gnaisse	Complexo Buerarema	Gnaisse bastante intemperizado, com bandamento gnaissico preservado. Coloração cinza, granulação média, composta de Qz-Fds-Bt	Bandamento gnaissico	Projeto Sul da Bahia (1974)
JC210	۔ 16.005515	-39.8528347	8230267.38	408754			Augen-gnaisse	Corpos dioríticos e cumuláticos Orosirianos	Augen-gnaisse de coloração cinza, de granulação média, constituída de porfiroclastos de feldspato, quartzo, biotita e granada. Veios de quartzo leitoso ocorrem na região		Projeto Sul da Bahia (1974)
JC211	-16.00538	-39.8345974	8230290.24	410705			Gnaisse migmatítico	Complexo Buerarema	Gnaisse migmatítico muito bem foliado, de coloração cinza, granulação média e composição: Qz-Fds-Bt. É cortado por veior de quartzo e veios pegmatíticos	Bandamento gnaissico	Projeto Sul da Bahia (1974)
JC212	- 16.003108	-39.8442892	8230537.31	409667			Augen-gnaisse	Corpos dioríticos e cumuláticos Orosirianos	Gnaisse cinza, de granulação média, contendo augens de feldspato envoltos pela biotita e quartzo		Projeto Sul da Bahia (1974)
JC217	- 16.215646	-39.6940453	8207085.37	425822	Leito de córrego	Rocha fresca	Granito	Corpo granítico de procedência incerta	Rocha homogênea, cinza, média, composta de Qz-Fds- Bt. Inclui relictos de gnaisse mesocrático. Trata-se d egranito de anatexia		Projeto Sul da Bahia (1974)
JC218	-16.14509	-39.6567574	8214903.56	429782		Muito intemperizado	Sill-gnaisse	Grupo Macaúbas	Rocha rica em biotita com porfiroblastos de sillimanita. Apresenta coloração cinza, granulação média, foliação bem marcada. Composição: Qz-Fds-Sill		Projeto Sul da Bahia (1974)
JC219	۔ 16.125689	-39.6474557	8217052.84	430770	Leito de estrada	Saprolito	Sill-gnaisse	Grupo Macaúbas	Afloramento totalmente decomposto, mas ainda com uma foliação dinstinguível. Composição: Qz-Mica- Sillimanita	Xistosidade	Projeto Sul da Bahia (1974)
JC220	- 16.179273	-39.6316704	8211130.6	432476	Morrote	Saprolito	Bt-gnaisse	Grupo Macaúbas	Afloramento totalmente decomposto de biotita-gnaisse em morro às margens da estrada. Excaixado nele ocorre veio pegmatito lavrado		Projeto Sul da Bahia (1974)
JC221	۔ 16.007848	-39.9680921	8229955.25	396422			Gnaisse migmatítico	Complexo Ibicaraí	Afloramento no local denominado Tombo, de migmatito com alternância de termos máficos e félsicos e nítida foliação. Em alguns locais está homogêneo e composto de Qz-Fds-Bt	Bandamento gnaissico	Projeto Sul da Bahia (1974)
JC248	-16.04123	-39.9740547	8226259.19	395801			Bt-gnaisse	Complexo Ibicaraí	Gnaisse migmatítico, bem foliado, médio, de coloração rosada e composta de Qz-Fds-Bt-Grd.	Bandamento gnaissico	Projeto Sul da Bahia (1974)
JM001	- 16.162461	-39.850486	8212906.08	409076	Corte de estrada	Intemperizado	Arenito argiloso	Cobertura recente	Arenito argiloso, creme a avermelhado com grânulos e raros seixos dispersos		Projeto Extremo Sul da Bahia (2004)
JM006	- 16.045249	-39.9040287	8225848.53	403295	Margem de estrada		Bt-gnaisse milonítico	Embasamento Riaciano arco- derivado	Biotita-gnaisse milonítico, de coloração cinza, granulação fina a média, com alternância entre bandas quartzo-feldspáticas e bandas máficas, à biotita	Foliação milonítica	Projeto Extremo Sul da Bahia (2004)
JM016	- 16.085351	-39.6647902	8221509.28	428902	Corte de estrada	Moderadamente intemperizado	Bt-xisto	Grupo Macaúbas	Xisto cinza-esverdeado, com tons de creme, de granulação média	Xistosidade	Projeto Extremo Sul da Bahia (2004)

JM026	- 15.704387	-40.2551277	8263364.47	365507	Corte de estrada	Muito intemperizado	Bt-Ms-gnaisse	Grupo Macaúbas	Rocha cinza, muito intemperizada. Composição: Qz- Fds-Bt-Ms	Xistosidade	Projeto Itapetinga- Canavieiras (2007)
JM027	- 15.772722	-40.2428881	8255812.06	366863	Corte de estrada	Moderadamente intemperizado	Bt-gnaisse; Biotitito	Complexo Itapetinga	Gnaisse cinza com intercalações de biotitito. Ocorre Grd e Anf nos níveis máficos.		Projeto Itapetinga- Canavieiras (2007) Projeto
JM028	-15.80253	-40.2298674	8252522.47	368277	Lajedo	Moderadamente intemperizado	Pegmatito	Pegmatito	Pegmatito cinza claro. Composição: Kfs-Qz-PI-Bt		Itapetinga- Canavieiras (2007) Projeto
JM029	- 15.847842	-40.2018322	8247526.77	371309	Lajedo	Moderadamente intemperizado	Granito-gnaisse	Complexo Salto da Divisa	Granito-gnaisse cinza, de composição: Kfs-PI-Qz-Amp- Bt		Itapetinga- Canavieiras (2007) Projeto
JM030	- 15.807004	-40.152847	8252074.22	376530	Lajedo	Intemperizado	Ortognaisse	Fenito	Gnaisse cinza claro. Composição: Kfs-PI-Qz-Bt		Itapetinga- Canavieiras (2007)
JM030	- 16.212315	-39.6939853	8207453.86	425827	Lajedo		Hb-Bt-granito	Corpo granítico de procedência incerta	Granitoide cinza escuro, médio, isotrópico, de composição: Qz-Fds-Bt-Hb		Extremo Sul da Bahia (2004)
JM032	- 16.110261	-39.8405659	8218685.09	410113	Lajedo	Moderadamente intemperizado	Sill-xisto	Grupo Macaúbas	Rocha xistosa, cinza, com tons creme	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM033	- 15.650798	-39.9001269	8269486.38	403525	Corte de estrada	Intemperizado	Bt-gnaisse	Sequência meta- sedimentar de idade incerta	Gnaisse granítico, cinza claro.	Foliação	Projeto Itapetinga- Canavieiras (2007)
JM033	- 16.134545	-39.8379682	8215999.8	410402	Voçoroca	Intemperizado	Sill-Grd-Bt-xisto	Grupo Macaúbas	Xisto esverdeado, médio, de composição: Qz-Fds-Bt- Grd-Sill	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM034	- 15.629908	-39.8785624	8271806.91	405827	Corte de estrada	Moderadamente intemperizado	Sienito	Província Alcalina do Sul do Estado da Bahia	Quartzo-sienito cinza claro, grosso. Composição: Kfs- Hb-Qz-Bt-All		Projeto Itapetinga- Canavieiras (2007)
JM034	- 16.166793	-39.8173741	8212441.19	412618	Margem de estrada	Intemperizado	Xisto	Grupo Macaúbas	Xisto alterado, de coloração avermelhada, com tons esbranquiçados	Xistosidade; Clivagem de crenulação	Projeto Extremo Sul da Bahia (2004) Projeto
JM039	- 16.208038	-39.7227299	8207916.37	422753	Barragem	Muito intemperizado	Xisto, Metarenito	Grupo Macaúbas	Xisto avermelhado, bastante alterado, composto por Qz-Fds-Mica e com intercalações de metarenito		Extremo Sul da Bahia (2004)
JM040	- 16.167672	-39.7827109	8212358.42	416325	Corte de estrada	Moderadamente intemperizado	Bt-xisto	Grupo Macaúbas	Xisto cinza-esverdeado e creme-avermelhado, médio	Xistosidade	Projeto Extremo Sul

JM042	- 15.713414	-39.794743	8262604.79	414847		Moderadamente intemperizado	Ortognaisse; Metabásica	Embasamento Riaciano arco- derivado	Ortognaisse cinza	Foliação milonítica	Projeto Extremo Sul da Bahia (2004)
JM059	- 16.048997	-39.7382395	8225504.14	421032	Blocos e matacões		Quartzito	Grupo Macaúbas	Quartzito cinza escuro, silicificado.Localmente, ocorre blocos de quartzo de veio		Projeto Extremo Sul da Bahia (2004)
JM060	-16.03573	-39.7596736	8226963.51	418734	Lajedo	Rocha fresca	Bt-xisto	Grupo Macaúbas	Xisto cinza, fino a médio, com xistosidade realçada pela concentração de biotita	Xistosidade	Extremo Sul da Bahia (2004)
JM061	۔ 16.021564	-39.7375987	8228539.09	421090	Corte de estrada	Intemperizado	Ms-xisto	Grupo Macaúbas	Xisto de coloração creme-avermelhado, fino a médio, rico em muscovita e quartzo	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM062	- 16.008434	-39.6902643	8230009.04	426149	Lajedo		Bt-gnaisse milonítico	Complexo Buerarema	Biotita-gnaisse milonítico, cinza claro ea creme, médio, com feições de cisalhamento bem evidentes	Foliação milonítica	Projeto Extremo Sul da Bahia (2004)
JM066	- 16.079372	-39.7147384	8222152.82	423558	Lajedo		Bt-Ms-xisto	Grupo Macaúbas	Xisto de coloração cinza, granulação fina, de composição: Qz-Fds-Bt-Ms-Grd	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM067	- 16.048482	-39.8196841	8225528.44	412319	Leito de rio	Rocha fresca	Bt-gnaisse	Complexo Buerarema	Gnaisse cinza, fino a médio, com bandamento de espaçamento milimétrico	Bandamento gnaissico	Projeto Extremo Sul da Bahia (2004)
JM068	- 16.066742	-39.8203905	8223508.09	412252	Margem de estrada	Intemperizado	Bt-xisto	Grupo Macaúbas	Xisto cinza-esverdeado e avermelhado, fino a médio	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM069	۔ 16.210274	-39.5577257	8207724.08	440390	Voçoroca	Intemperizado	Xisto	Grupo Macaúbas	Rocha xistosa, alterada, avermelhada, composta de quartzo e micas	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM073	۔ 15.592544	-40.2349348	8275750.77	367599	Lajedo	Moderadamente intemperizado	Bt-Ms-gnaisse milonítico	Grupo Macaúbas	Composição: Bt-Ms-Qz-Kfs-Pl	Foliação milonítica	Projeto Itapetinga- Canavieiras (2007)
JM075	- 16.071764	-39.7486986	8222981.57	419922	Margem de estrada		Ms-Bt-xisto	Grupo Macaúbas	Xisto cinza, fino, composto por Qz-Fds-Bt-Ms. Está dobrado e crenulado.	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM076	- 16.067598	-39.7533295	8223440.72	419425	Lajedo		Ms-Bt-xisto	Grupo Macaúbas	Xisto cinza-esverdeado, fino a médio, composto por Qz- Fds-Ms-Bt	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM077	-16.08532	-39.8694677	8221431.52	407011	Corte de estrada	Intemperizado	Bt-xisto	Grupo Macaúbas	Xisto esverdeado, com tons avermelhados, de granulação fina.	Xistosidade	Projeto Extremo Sul

JM078	- 16.085735	-39.8502504	8221394.1	409066	Corte de estrada	Intemperizado	Sill-xisto; Calcissilicática; Grafita-xisto; Bt-xisto	Grupo Macaúbas	Sequência metassedimentar com alternância de diferentes tipos de xistos (Sill-xisto, Grafita-xisto, Bt- xisto) e rocha calcissilicática	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM079	- 16.029096	-39.8332124	8227667.22	410864	Voçoroca		Hb-Bt-gnaisse	Complexo Buerarema	Gnaisse cinza claro, médio, composto de Qz-Fds-Bt- Hb. O gnaisse está dobrado.	Bandamento gnaissico; Eixo de dobra	Projeto Extremo Sul da Bahia (2004)
JM080	- 16.025674	-39.8143317	8228053.82	412882	Lajedo		Augen-gnaisse	Corpos dioríticos e cumuláticos Orosirianos	Augen-gnaisse cinza escuro, médio a grosso, com foliação milonítica muito bem marcada. Composição: Qz-Fds-Bt-Hb	Foliação milonítica	Projeto Extremo Sul da Bahia (2004)
JM081	- 16.117474	-39.7427519	8217927.28	420577	Marrgem de estrada	Intemperizado	Sill-xisto	Grupo Macaúbas	Xisto creme-esverdeado a avermelhado, de granulação média e composição: Qz-Fds-Mica-Sill	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM082	-16.15735	-39.7370849	8213518.29	421198	Margem de estrada	Moderadamente intemperizado	Bt-Sill-xisto	Grupo Macaúbas	Xisto esverdeado, creme e avermelhado, médio a grosso, de composição: Qz-Fds-Bt-Sill	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM083	۔ 16.139128	-39.7334924	8215535.43	421575	Corte de estrada	Intemperizado	Sill-xisto	Grupo Macaúbas	Xisto de colorações creme avermelhado e esverdeado, de granulação média e composição: Qz-Fds-Bt-Sill	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM084	-16.17171	-39.562415	8211988.64	439877	Lajedo	Rocha fresca	Bt-Xisto	Grupo Macaúbas	Xisto cinza, com tons esverdeados, de granulação média e aspecto bandado	Xistosidade; Lineação de estiramento	Projeto Extremo Sul da Bahia (2004) Projeto
JM085	- 16.171068	-39.5425167	8212065.42	442004	Margem de estrada	Intemperizado	Xisto	Grupo Macaúbas	Xisto alterado, avermelhado, fino, constituído de quartzo, feldspato e mica	Xistosidade	Extremo Sul da Bahia (2004)
JM086	۔ 16.078592	-39.5561325	8222291.21	440521	Margem de estrada		Ms-xisto	Grupo Macaúbas	Xisto creme avermelhado, de granulação fina a média, rico em quartzo e muscovita		Extremo Sul da Bahia (2004)
JM087	-16.07497	-39.5409039	8222696.18	442149	Margem de rio	Rocha fresca	Bt-gnaisse milonítico	Complexo Buerarema	Biotita-gnaisse cinza, fino a médio, com foliação milonítica muito bem marcada. A composição do gnaisse é granítica.	Foliação milonítica; Lineação de estiramento	Projeto Extremo Sul da Bahia (2004)
JM088	- 16.136386	-39.8730503	8215780.59	406652	Leito de estrada		Hb-Bt-gnaisse	Complexo Buerarema	Gnaisse cinza, médio, com alternância de bandas quartzo-felspáticas e bandas máficas, à biotita e anfibólio	Bandamento gnaissico	Projeto Extremo Sul da Bahia (2004) Projeto
JM089	- 16.140505	-39.8419908	8215338.74	409975	Voçoroca	Intemperizado	Sill-xisto	Grupo Macaúbas	Xisto de coloração cinza, com toins creme avermelhado, de granulação fina a média e dobrado	Xistosidade	Extremo Sul da Bahia (2004)

JM095	- 16.150997	-39.5798953	8214274.77	438002	Margem de estrada	Intemperizado	Ms-Bt-xisto	Grupo Macaúbas	Xisto avermelhado, fino a médio, composto de Qz-Fds- Ms-Bt	Xistosidade; Lineação de estiramento	Projeto Extremo Sul da Bahia (2004) Projeto
JM096	- 16.140584	-39.5536669	8215434.36	440803	Corte de estrada	Intemperizado	Ms-xisto	Grupo Macaúbas	Xisto de coloração esverdeada a avermelhada, de granulação fina, rico em muscovita	Xistosidade	Extremo Sul da Bahia (2004) Projeto
JM097	- 16.034085	-39.5008769	8227229.67	446419	Corte de estrada		Quartzito	Grupo Macaúbas	Quartzito com tons creme-avermelhados, composto essencialmente de quartzo e sericita	Foliação	Extremo Sul da Bahia (2004) Projeto
JM098	-16.0107	-39.507713	8229814.64	445681	Margem de rio	Rocha fresca	Bt-Px-Hb- gnaisse milonítico	Complexo Buerarema	Gnaisse cinza escuro a esverdeado, médio, de composição: Qz-Fds-Bt-Px-Hb. A foliação é milonítica	Foliação milonítica	Extremo Sul da Bahia (2004)
JM099	- 16.001965	-39.5094305	8230780.47	445495	Corte de estrada	Intemperizado	Arenito	Cobertura recente	Arenito granuloso, de cor creme e aspecto macio, com presença de fração argilosa		Extremo Sul da Bahia (2004)
JM101	- 16.164022	-39.5961677	8212829.04	436266	Corte de estrada	Intemperizado	Ms-Bt-xisto	Grupo Macaúbas	Xisto alterado de coloração creme, esverdeada e avermelhada, granulação fina a média		Extremo Sul da Bahia (2004)
JM102	- 16.060784	-39.5916719	8224250.62	436714			Bt-granito	Complexo Salto da Divisa	Bt-granito foliado	Foliação	Projeto Extremo Sul da Bahia (2004)
JM103	- 16.017878	-39.6690299	8228971.73	428424	Lajedo	Rocha fresca	Bt-granito	Complexo Salto da Divisa	Lajedos, blocos e matacões de granitoide cinza com tons rosados, médio a grosso, com eventuais cristais de feldspato		Projeto Extremo Sul da Bahia (2004)
JM104	- 16.080664	-39.6315036	8222038.86	432460	Margem de estrada	Intemperizado	Xisto	Grupo Macaúbas	Xisto de coloração avermelhada, médio, composto majoritariamente de Qz-Ms-Bt		Projeto Extremo Sul da Bahia (2004)
JM104	۔ 15.885616	-40.1596396	8243373.2	375851	Blocos e matacões	Moderadamente intemperizado	Bt-granito	Complexo Salto da Divisa	Granito cinza, médio, de composição: Mc-PI-Qz-Bt		Projeto Itapetinga- Canavieiras (2007)
JM105	-16.08079	-39.6439644	8222020.83	431128	Corte de estrada	Intemperizado	Xisto	Grupo Macaúbas	Rocha xistosa, intemperizada, de cor creme- avermelhada, composta majoritariamente de Qz-Ms-Bt	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM107	- 15.836506	-40.1292524	8248824.07	379075	Leito de estrada	Moderadamente intemperizado	Bt-gnaisse; Anfibolito	Fenito	Gnaisse cinza, com intercalações de anfibolito. Composição: Pl-Qz-Anf.		Projeto Itapetinga- Canavieiras (2007)
JM107	- 16.062968	-39.6996009	8223973.05	425171	Corte de estrada		Estaurolita- xisto	Grupo Macaúbas	Xisto cinza esverdeado, fino a médio, com xistosidade muito bem marcada e dobrada	Xistosidade; Lineação de estiramento	Projeto Extremo Sul da Bahia (2004)

JM109	- 15.760037	-40.1242305	8257286.79	379568	Frente de lavra	Rocha fresca	Ne-sienito	Província Alcalina do Sul do Estado da Bahia	Sienito melanocrático, muito grosso. Composição: Kfs- Aeg-Aug-Bt-Anf-Ne-Ap-Ttn		Projeto Itapetinga- Canavieiras (2007)
JM109	- 16.185372	-39.8700002	8210362.86	407001	Leito de estrada		Hb-Bt-gnaisse; Anfibolito	Complexo Buerarema	Gnaisse cinza com tons de creme e esverdeados, médio, alternado em níveis anfibolíticos	Bandamento gnaissico; Eixo de dobra	Projeto Extremo Sul da Bahia (2004)
JM109	- 15.760282	-40.1241259	8257259.73	379579	Frente de Iavra	Rocha fresca	Nefelina-sienito	Província Alcalina do Sul do Estado da Bahia	Sienito cinza escuro, melanocrático, grosso, de composição: Kfs-Aeg-Aug-Bt-Amp-Ne-Ap-Ttn		Projeto Itapetinga- Canavieiras (2007)
JM110	-15.67737	-40.0635461	8266465.78	386023	Leito de estrada	Moderadamente intemperizado	Ortognaisse	Complexo Itapetinga	Gnaisse cinza, fino. Composição: Qz-Fds-Bt	Foliação	Projeto Itapetinga- Canavieiras (2007)
JM110	- 16.155132	-39.8396474	8213721.65	410232	Corte de estrada		Sill-xisto	Grupo Macaúbas	Xisto de coloração cinza esverdeado, granulação média, composto por Qz-Fds-Bt-Sill	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM111	- 16.079328	-39.8382785	8222108.13	410344	Corte de estrada	Moderadamente intemperizado	Sill-Bt-xisto	Grupo Macaúbas	Xisto esverdeado e avermelhado, médio	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM112	- 15.588383	-40.0912747	8276295.13	383001	Corte de estrada		Hb-Bt-gnaisse; Anfibolito	Complexo Itapetinga	Horbnlenda-biotita-gnaisse cinza, milonítico, com intercalações de anfibolito. Composição: Qz-Fds-Bt-Hb.	Foliação milonítica	Projeto Itapetinga- Canavieiras (2007)
JM112	- 16.076673	-39.8275178	8222406.43	411494	Corte de estrada	Moderadamente intemperizado	Ms-Bt-xisto	Grupo Macaúbas	Xisto acinzentado, fino a médio, de composição: Qz- Fds-Bt-Ms	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM113	- 16.084423	-39.7603723	8221576.67	418679	Corte de estrada	Moderadamente intemperizado	Sill-Bt-xisto	Grupo Macaúbas	Xisto cinza-esverdeado e avermelhado, de granulação média a grossa	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM114	-16.08902	-39.7450283	8221074.18	420322	Corte de estrada	Intemperizado	Cianita-xisto	Grupo Macaúbas	Xisto esverdeado a avermelhado, fino, rico em cianita	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM132	-15.63439	-39.8665977	8271316.34	407112	Corte de estrada	Moderadamente intemperizada	Metagabro; Gnaisse milonítico	Corpo Gabro- anortosítico	Rocha básica (Hb-Bt-Pl-Qz), verde claro e gnaisse milonítico, cinza.		Projeto Itapetinga- Canavieiras (2007)
JM134	- 15.666428	-39.8394583	8267783.95	410035	Leito de estrada	Moderadamente intemperizado	Gnaisse milonítico; Metacalcário	Província Alcalina do Sul do Estado da Bahia	Gnaisse bege em contato com metacalcário dolomítico, bege		Projeto Itapetinga- Canavieiras (2007)

JM135	- 15.693981	-39.8034139	8264750.94	413909			Metacalcário; Metapelito	Sequência meta- sedimentar de idade incerta	Metacalcário cinza escuro, com intercalações de metapelito cinza claro.		Projeto Itapetinga- Canavieiras (2007)
JM136	- 15.692614	-39.7881118	8264908.41	415549	Lajedo		Ortognaisse	Embasamento Riaciano arco- derivado	Ortognaisse cinza, milonítico, de composição: Qz-Pl- Kfs-Bt. Contem enclaves máficos.	Foliação milonítica	Projeto Itapetinga- Canavieiras (2007)
JM137	-16.14509	-39.6555615	8214903.97	429910	Barragem	Moderadamente intemperizado	Sill-xisto	Grupo Macaúbas	Sillimanita-xisto cinza-esverdeado, médio a grosso	Xistosidade; Eixo de dobra	Projeto Extremo Sul da Bahia (2004)
JM137	- 15.695204	-39.7419133	8264639.74	420500	Lajedo	Moderadamente intemperizado	Ortognaisse	Embasamento Riaciano arco- derivado	Ortognaisse cinza claro a bege, médio, milonítico, de composição: PI, Kfs, Qz, Bt	Foliação milonítica	Projeto Itapetinga- Canavieiras (2007)
JM138	- 16.160068	-39.6581892	8213246.22	429634	Lajedo		Sill-xisto; Quartzito	Grupo Macaúbas	Xisto cinza, fino a médio, composto por Qz-Fds-Bt-Sill, com intercalações de quartzito com hornblenda e granada	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM138	- 15.689719	-39.7301541	8265250.91	421758	Lajedo	Moderadamente intemperizado	Ortognaisse	Embasamento Riaciano arco- derivado	Ortognaisse cinza claro, milonítico, de composição: Bt- Qz-Kfs-Pl	Foliação milonítica	Projeto Itapetinga- Canavieiras (2007)
JM139	- 16.150985	-39.6077591	8214267.57	435023	Lajedo	Rocha fresca	Bt-granito	Corpo granítico de procedência incerta	Granito cinza, médio, foliado, composto de Qz-Fds-Bt	Foliação	Projeto Extremo Su da Bahia (2004)
JM139	- 15.680299	-39.717102	8266297.62	423154	Corte de estrada	Moderadamente intemperizado	Gnaisse granítico	Suíte Pau Brasil	Gnaisse granítico cinza, médio, milonítico, de composição: Bt-Pl-Qz-Kfs-Hb	Foliação milonítica	Projeto Itapetinga- Canavieiras (2007)
JM140	- 15.665558	-39.7024773	8267933.51	424716		Moderadamente intemperizado	Charnockito; Metamonzonito	Suíte Pau Brasil	Granulito charnockítico e metamonzonito. Ambos são cinza, de granulação grossa e no afloramento não é possível a individualização de ambos como unidades distintas. Composição: Kfs-PI-Qz-Hb		Projeto Itapetinga- Canavieiras (2007)
JM141	- 15.680958	-39.6777875	8266238.69	427367	Corte de estrada	Moderadamente intemperizado	Meta- monzogranito	Suíte Pau Brasil	Meta-monzogranito cinza, milonítico, de composição: PI-Mc-Bt-Qz	Foliação milonítica	Projeto Itapetinga- Canavieiras (2007)
JM144	- 15.795144	-39.7362945	8253586.46	421141			Bt-Ms-gnaisse	Corpos dioríticos e cumuláticos Orosirianos	Gnaisse cinza claro, fino, de composição: Qz-PI-Kfs-Bt- Ms	Xistosidade	Projeto Itapetinga- Canavieiras (2007)
JM145	- 15.835901	-39.7203941	8249083.85	422860		Moderadamente intemperizado	Bt-gnaisse; Anfibolito	Embasamento Riaciano arco- derivado	Gnaisse cinza, de composição: Qz-PI-Bt-Anf. Ocorre associado com anfibolito	Bandamento gnaissico	Projeto Itapetinga- Canavieiras (2007)

JM146	- 16.194806	-39.8095305	8209345.57	413469	Lajedo		Sill-xisto	Grupo Macaúbas	Xisto cinza com tons de creme, médio, de composição: Qz-Fds-Bt-Sill. Associado com Bt-granitoide	Xistosidade	Projeto Extremo Sul da Bahia (2004) Projeto
JM147	- 16.198985	-39.8169113	8208880.16	412682	Margem de córrego		Sill-xisto	Grupo Macaúbas	Xisto cinza-esverdeado, médio, de composição: Qz- Fds-Bt-Grd-Sill	Xistosidade	Extremo Sul da Bahia (2004)
JM148	- 16.147323	-39.8261943	8214591.39	411667	Margem de rio	Rocha fresca	Bt- monzogranito	Corpo granítico de procedência incerta	Rocha granítica, de cor cinza, granulação média, isotrópica, ou com tênue orientação		Projeto Extremo Sul da Bahia (2004)
JM149	- 15.880483	-39.767609	8244134.2	417822	Corte de estrada	Moderadamente intemperizada	Bt-gnaisse; Metagabro	Embasamento Riaciano arco- derivado	Bt-gnaisse cinza, de composição: Hb-Qz-Pl-Bt-Cal. Associado com rocha máfica, melanocrática (metagabro)		Projeto Itapetinga- Canavieiras (2007)
JM150	- 15.886345	-39.7787934	8243481.36	416627	Corte de estrada	Moderadamente intemperizada	Bt-gnaisse	Embasamento Riaciano arco- derivado	Bt-gnaisse, cinza, de composição:Bt-Qz-Kfs-Pl	Bandamento gnaissico	Projeto Itapetinga- Canavieiras (2007)
JM154	- 15.789765	-39.717466	8254188.52	423156	Rocha fresca	Lajedo	Ortognaisse tonalítico	Corpos dioríticos e cumuláticos Orosirianos	Gnaisse cinza claro, tonalítico, médio, milonítico. Composição: PI-Qz-Bt-Ttn	Foliação milonítica	Projeto Itapetinga- Canavieiras (2007)
JM155	-15.63365	-39.8782286	8271393.11	405864	Corte de estrada	Moderamente intemperizado	Ortognaisse	Província Alcalina do Sul do Estado da Bahia	Ortognaisse tonalítico, cinza. Composição: PI-Qz-Bt- Ttn.	Foliação	Projeto Itapetinga- Canavieiras (2007)
JM173	-16.01617	-39.6857706	8229154.9	426633	Margem de estrada		Gnaisse milonítico; Anfibolito	Complexo Buerarema	Gnaisse cinza claro, fino a médio, composto de Fds-Qz- Bt e com marcante foliação milonítica	Foliação milonítica	Projeto Extremo Sul da Bahia (2004)
JM173	- 15.885075	-39.7274713	8243641.59	422121		Intemperizado	Granito-gnaisse milonítico	Complexo Buerarema	Granito milonítico, de composição: Mc, Ab, Bt	Foliação milonítica	Itapetinga- Canavieiras (2007)
JM176	- 16.213075	-39.7434976	8207351.26	420535	Corte de estrada		Sill-xisto	Grupo Macaúbas	Xisto ciunza esverdeado, médio, de composição: Qz- Fds-Bt-Sill.		Projeto Extremo Sul da Bahia (2004)
JM177	۔ 16.095621	-39.7449145	8220343.94	420337	Lajedo	Intemperizado	Quartzito	Grupo Macaúbas	Lajedo em pequena cachoeira, onde ocorre quartzito creme a cinza claro, com tons avermelhados. Composição: Qz-PI-Mica-Diopsídeo	Foliação	Projeto Extremo Sul da Bahia (2004)
JM178	- 16.009599	-39.8078718	8229834.73	413566	Lajedo		Quartzito	Grupo Macaúbas	Pequeno lajedo e grandes blocos de quartzito creme, cinza e esverdeados, de granulação fina a média e composição: Qz-Mag-Ep	Foliação	Projeto Extremo Sul da Bahia (2004)

JM178 JM179	- 15.876764 -16.00498	-39.5307777 -39.8027131	8244624.19 8230347.93	443176 414116	Corte de estrada Margem de rio	Moderadamente intemperizado	Metabásica; Ortognaisse Bt-xisto	Complexo Buerarema Grupo Macaúbas	Rocha metabásica, preta, fina, associada com ortognaisse cinza, de composição: Bt-Qz-Kfs-Pl Xisto cinza, de granulação média, com alternância mili a centimétrica entre níveis mais claros e mais escuros	Xistosidade	Projeto Itapetinga- Canavieiras (2007) Projeto Extremo Sul da Bahia (2004)
JM180	- 16.017825	-39.8397863	8228911.2	410155	Margem de estrada		Bt-gnaisse	Complexo Buerarema	Gnaisse cinza claro, médio, majoritariamente constituído de Qz-Fds-Bt. O gnaisse está dobrado	Bandamento gnaissico; Eixo de dobra	Projeto Extremo Sul da Bahia (2004)
JM181	- 16.010565	-39.846187	8229711.61	409467	Lajedo		Augen-gnaisse	Corpos dioríticos e cumuláticos Orosirianos	Augen-gnaisse cinza, fino a médio, com pórfiros de Kfs estirados na foliação milonítica	Foliação milonítica	Projeto Extremo Sul da Bahia (2004)
JM182	- 16.005786	-39.8563917	8230235.83	408373	Lajedo	Rocha fresca	Augen-gnaisse	Corpos dioríticos e cumuláticos Orosirianos	Augen-gnaisse cinza, médio a grosso	Foliação milonítica	Projeto Extremo Sul da Bahia (2004)
JM186	-16.09572	-39.5896699	8220386.55	436939	Lajedo		Metadiamictito	Grupo Macaúbas	Metadiamictito de cor cinza, sustentado por matriz xistosa, com clastos de quartzito	Xistosidade	Projeto Extremo Sul da Bahia (2004)
JM187	- 16.094181	-39.5614083	8220565.3	439961	Margem de estrada	Intemperizado	Ms-xisto	Grupo Macaúbas	Xisto de coloração creme avermelhada, fina a média, de composição: Ser-Qz-Ms	Xistosidade; Lineação de estiramento	Projeto Extremo Sul da Bahia (2004)
JM217	- 15.842693	-40.2670264	8248055.35	364324	Corte de estrada	Moderadamente intemperizado	Bt-gnaisse; Anfibolito	Complexo Itapetinga	Gnaisse cinza. Composição: PI-Bt-Anf.	Bandamento gnaissico	Projeto Itapetinga- Canavieiras (2007)
JM218	- 15.775733	-39.7898879	8255712.92	415393	Lajedo	Moderadamente intemperizado	Gnaisse milonítico	Embasamento Riaciano arco- derivado	Gnaisse ciinza claro, milonítico, de composição: Qz- Kfs-PI-Bt	Foliação milonítica	Projeto Itapetinga- Canavieiras (2007)
JM219	- 15.775517	-39.7216733	8255763.12	422700	Lajedo	Moderadamente intemperizado	Metacalcário	Grupo Rio Pardo	Metacalcário esbranquiçado		Projeto Itapetinga- Canavieiras (2007)
JM221	- 15.798328	-40.0008657	8253117.35	392804	Lajedo	Moderadamente intemperizado	Ortognaisse	Província Alcalina do Sul do Estado da Bahia	Gnaisse cinza claro, de composição: Qz-Kfs-PI-Bt- Magnetita		Projeto Itapetinga- Canavieiras (2007)
JM222	- 15.833926	-40.0006432	8249179.29	392847		Moderadamente intemperizado	Augen-gnaisse	Província Alcalina do Sul do Estado da Bahia	Gnaisse cinza, de composição: Qz-Kfs-PI-Bt		Projeto Itapetinga- Canavieiras (2007)

JM223	- 15.870295	-39.9769866	8245167.87	395399			Ortognaisse, Anfibolito	Embasamento Riaciano arco- derivado	Gnaisse cinza, rico em Qz-PI-Bt-Anf.		Projeto Itapetinga- Canavieiras (2007)
JM227	- 15.552792	-39.6754128	8280416.77	427577	Encosta de morro	Moderamente intemperizada	Meta- monzonito	Suíte Pau Brasil	Rocha cinza escuro, grossa, milonítica, de composição: Qz-Bt-Hb-Kís	Foliação milonítica	Projeto Itapetinga- Canavieiras (2007)
JM259	- 16.194389	-39.6062626	8209466.6	435197	Margem de estrada, Cascalheira	Intemperizado	Xisto; Arenito	Grupo Macaúbas	Cascalheira abandonada onde ocorre arenito seixoso sobreposto a xisto alterado, avermelhado		Projeto Extremo Sul da Bahia (2004)
JM288	-16.09861	-39.5773341	8220070.68	438260	Margem de rio		Grd-Ms-Bt-xisto	Grupo Macaúbas	Xisto de cor cinza, fina a média, de composição: Qz-Bt- Ms-Grd	Xistosidade; Eixo de dobra	Projeto Extremo Sul da Bahia (2004)
JT001	- 15.694568	-40.067877	8264560.87	385569			Granito-gnaisse	Complexo Salto da Divisa			Torres (2017)
JT002	- 15.695563	-40.0664673	8264451.55	385720			Granito-gnaisse	Complexo Salto da Divisa			Torres (2017)
JT003	- 15.697055	-40.0654722	8264286.96	385828			Saprolito	Complexo Salto da Divisa			Torres (2017)
JT005	- 15 728021	-40.0831875	8260851.71	383947			Saprolito	Fenito			Torres (2017)
JT036	-	-40.0443805	8263858.18	388090			Saprolito	Fenito			Torres (2017)
JT040	- 15.714646	-40.0879829	8262328.73	383425			Saprolito	Complexo Salto da Divisa			Torres (2017)
JT077	- 15.713524	-40.0838162	8262455.12	383871			Granito-gnaisse	Complexo Salto da Divisa			Torres (2017)
JT079	۔ 15.710841	-40.0837778	8262751.95	383874			Saprolito	Complexo Salto da Divisa	Granitoide foliado, intemperizado, de composição: Kfs- Qz-Ab-Bt-Di-Ilmenita		Torres (2017)
JT101	- 15.696459	-40.1047346	8264331.44	381620			Fenito saprolitizado	Complexo Salto da Divisa			Torres (2017)
JT102	- 15.696736	-40.1034381	8264301.43	381759			Fenito	Complexo Salto da Divisa			Torres (2017)
JT103	- 15.694977	-40.1034381	8264496.09	381758			Saprolito	Complexo Salto da Divisa			Torres (2017)

LC022	- 16.176507	-39.5951669	8211448.16	436377	Garimpo desativado		Pegmatito	Pegmatito	Filão pegmatítico composto por quartzo, feldspato e muscovita. Garimpado no ano de 1952, quando se extraiu cerca de 1,5t de muscovita		Projeto Sul da Bahia (1974)
LC023	- 16.176346	-39.6220658	8211457.44	433502			Pegmatito	Pegmatito	Filão pegmatítico cuja paragênese é formada por Qz- Fds-Ms-Turmalina. É garimpado para água Marinha e muscovita		Projeto Sul da Bahia (1974)
LC025	- 16.129294	-39.7590521	8216613.45	418838			Pegmatito	Pegmatito	Pegmatito cuja paragênese inclui Qz-Fds(caulim)-Ms- Turmalina. Exposto em um túnel com 3 ramificações, de 5m de comprimento, 0,5m de largura e 0,5m de altura		Projeto Sul da Bahia (1974)
LC028	- 16.130074	-39.6600794	8216563.48	429422			Pegmatito	Pegmatito	Filão pegmatítico exposto em um poço de 3m de diâmetro por 0,5m de profundidade. Paragênese formada por Qz-Fds-Ms-Tur		Projeto Sul da Bahia (1974)
LC029	- 16.142167	-39.6410774	8215232.23	431458		Muito intemperizado	Pegmatito	Pegmatito	Filão pegmatítico cuja paragênese é constituída por Qz- Fds (totalmente caolinizado)-Ms-Turmalina. Informações locais indicam extração de água marinha e muscovita		Projeto Sul da Bahia (1974)
LC030	- 16.052838	-39.6201771	8225120.67	433663			Gnaisse migmatítico	Complexo Buerarema	Gnaisse cinza, médio, localmente migmatizado. Composição: Qz-Fds-Bt-Grd		Projeto Sul da Bahia (1974)
LC031	- 16.164708	-39.6414415	8212738.53	431426	Encosta de colina		Pegmatito	Pegmatito	Filão pegmatítico composto por quartzo e feldspato bastante caolinizado, exposto em mais de seis túneis em diferentes níveis da encosta		Projeto Sul da Bahia (1974)
LM031	- 15.613869	-39.8704592	8273584.7	406688			Metagabro	Corpo Gabro- anortosítico	Rocha esverdeada, granular média. Composição: Fds- Anf-Ep		Projeto Sul da Bahia (1974)
LM033	-15.62823	-39.8726883	8271995.16	406456			Sienito	Província Alcalina do Sul do Estado da Bahia	Quartzo-sienito grosso. Composição: Fds-Hb-Qz		Projeto Sul da Bahia (1974)
LM036	- 15.861462	-39.7474847	8246246.16	419969			Gnaisse migmatítico	Embasamento Riaciano arco- derivado	Gnaisse migmatítico, com estrutura estromática, formado de Qz-Fds-Bt, em contato com gnaisse porfirtítico, de mesma composição		Projeto Sul da Bahia (1974)
LM050	۔ 15.972878	-39.5617297	8233983.66	439891			Augen-gnaisse	Complexo Buerarema	Sequência de rocha gnaissica, à biotita, muito fraturada e dobrada, localmente migmatizada, com estrutura augen. Ocorre Ms-Bt-gnaisse associado Bt-Hb-gnaisse	Foliação milonítica	Projeto Sul da Bahia (1974)
MK003	- 16.039746	-39.9083186	8226455.31	402833	Corte de estrada		Augen-gnaisse	Embasamento Riaciano arco- derivado	Augen-gnaisse protomilonítico, grosso, leucocrático, de provável composição granítica. Associado com dique máfico anfibolítico e veios de leucogranito	Foliação milonítica	Projeto Extremo Sul da Bahia (2004)
MK004	- 16.091538	-39.8627136	8220746.66	407736	Corte de estrada		Sill-xisto; Grd- Bt-gnaisse	Grupo Macaúbas	Sequência de rocha metassedimentar metamorfizada e dobrada. Predominam Sill-Bt-Qz-xisto associado com Grd-Bt-gnaisse.	Xistosidade; Eixo de dobra	Projeto Extremo Sul da Bahia (2004)
MK013	- 16.001315	-39.5845214	8230831.25	437461	Lajedo		Ms-Bt- leucogranito	Complexo Salto da Divisa	Ms-Bt-granito gnaissico, milonítico, fino a médio, leucocrático	Foliação milonítica	Projeto Extremo Sul da Bahia (2004) Projeto
MK016	- 16.151411	-39.59521	8214224.36	436365	Corte de estrada		Bt-xisto; Metarenito	Grupo Macaúbas	Sequência metassedimentar composta por Bt-Qz-xisto fino a médio, intercalado em quartzito	Xistosidade	Extremo Sul da Bahia (2004)

OM015	- 15.551128	-39.818456	8280547.22	412237	Pedreira	Rocha fresca	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito azul, grosso, isotrópico, explorado como rocha ornamental. Composição: Fds-Ne-So-Bt. O sienito está encaixado em Bt-gnaisse.		Projeto Sul da Bahia (1974)
OM081	-15.63401	-39.6999091	8271424.21	424979	Gruta		Metacalcário dolomítico	Grupo Rio Pardo	Gruta de 20m de largura por 4m de altura em forma de abóboda, constituída por metacalcário cinza escuro, microcristalino a fino, com microdobras.		Projeto Sul da Bahia (1974)
OM082	-15.63955	-39.6929202	8270813.84	425730	Pedreira		Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário branco, com cinza escuro, microcristalino, compacto, em pedreita com cerca de 50m x 100m.		Projeto Sul da Bahia (1974)
OM083	- 15.679176	-39.6692461	8266438.72	428282			Mármore	Grupo Rio Pardo	Mármore cinza claro a cinza escuro, microcristalino, compacto. Contém quartzo e pirita e está foliado	Foliação	Projeto Sul da Bahia (1974)
OM084	۔ 15.683637	-39.6687113	8265945.35	428341	Pedreira	Rocha fresca	Mármore	Grupo Rio Pardo	Pedreira de dimensões 10m x 6m. Mármore branco, microcristalino, compacto, microcristalino, deformado. Contém quartzo e sericita Mármore de coloração branca, microcristalino		Projeto Sul da Bahia (1974)
OM085	۔ 15.731129	-39.6173158	8260708.71	433864	Pedreira		Mármore	Grupo Rio Pardo	compacto, em pedreira com cerca de 50m x 7m. Há também uma gruta com 8mx5mx4m, onde ocorrem estalactites.		Projeto Sul da Bahia (1974)
OM087	-15.79741	-39.6584014	8253363.54	429485	Pedreira desativada		Mármore	Grupo Rio Pardo	Mármore rosado com bandas cinza claro e escuras, de granulação média, com micro dobras. Afloramento em forma de pedreira com 40x25m. Composição: Cal-Dol- Qz-Ser-Mica marrom-Pirita-Calcopirita-Flogopita		Projeto Sul da Bahia (1974)
OM088	- 15.800974	-39.6449489	8252973.72	430927	Pedreira desativada		Mármore	Grupo Rio Pardo	Mármore rosado, com bandas acinzentadas, de granulação média, com micro dobras e micro fraturas. Ocorre em pedreira com cerca de 20x5m. Composição: Cal-Dol-Pirita-Calcopirita-Flogopita		Projeto Sul da Bahia (1974)
OM089	-15.79603	-39.638855	8253522.62	431578	Pedreira		Mármore	Grupo Rio Pardo	Marmore rosado, com niveis acinzentados, medio, com micro dobras. Forma uma pedreira com cerca de 30x10m. Composição: Qz-Cal-Ser-Mica marrom claro- Floqopita		Projeto Sul da Bahia (1974)
OM090	- 15.798329	-39.5988425	8253280.85	435864	Pedreira		Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário dolomítico, microcristalino, cinza escuro, com faixas cinza claro. Composição: Cb-Qz-Ms. Afloramento com cerca de 70x40m		Projeto Sul da Bahia (1974)
OM091	- 15.754843	-39.6725734	8258067.4	427952	Pedreira		Mármore	Grupo Rio Pardo	Jazida explorada e abandonada. Mármore rosado, com bandas cinza escuro, fino a médio. Apresenta microdobras e fraturas. Contém quartzo, pirita e calcopirita		Projeto Sul da Bahia (1974)
OM092	- 15.765776	-39.6766196	8256856.68	427522	Pedreira	Rocha fresca	Mármore	Grupo Rio Pardo	Mármore rosado com faixas cinza, médio, microdobrado e com fraturas. Apresenta zonas com cristais mili a centimétricos de calcita. Contém sericita e pirita	Foliação	Projeto Sul da Bahia (1974)
OM093	- 15.767888	-39.6908348	8256618.04	426000	Pedreira	Rocha fresca	Mármore	Grupo Rio Pardo	Mármore rosado com faixas cinza, médio, microdobrado e com fraturas. Contém calcita, quartzo, pirita, calcopirita, sericita e flogopita	Foliação	Projeto Sul da Bahia (1974)
OM094	- 15.803848	-39.6671398	8252648.34	428551	Pedreira desativada		Mármore	Grupo Rio Pardo	Mármore rosado, com bandas cinza-escuro, de granulação fina a microcristalino. Afloramento em forma de pedreira com cerca deo 30mx8m.		Projeto Sul da Bahia (1974)

OM096	-15.65481	-39.8289167	8269073.64	411160			Sienito	Província Alcalina do Sul do Estado da Bahia	Nefelina-sodalita-sienito isotrópico, cinza azulado, grosso. Composição: Ne-So-Kfs-Bt-Anf (ou Px)		Projeto Sul da Bahia (1974)
OM097	- 15.912429	-39.8912687	8240547.72	404597			Pegmatito	Pegmatito	Filão de pegmatito aflorando em extensão de cerca de 20m, com paragênese formada por quartzo, muscovita, feldspato e amazonita. Nao foi possível medir a espessura devido a cobertura de solo		Projeto Sul da Bahia (1974)
OM098	- 15.903633	-39.8966556	8241518.3	404016			Pegmatito	Pegmatito	Rocha cinza-rosada, nao foliada, composta por agregados de feldspato e quartzo, imersa em matriz fina, cinza, composta por quartzo, feldspato e biotita		Projeto Sul da Bahia (1974)
OM099	۔ 15.856482	-39.885708	8246739.37	405166			Migmatito	Complexo Salto da Divisa	Migmatito homogêneo, médio a grosso, cinza. Composição: Qz-Fds-Kfs-Amz-Bt-Ms		Projeto Sul da Bahia (1974)
OM100	- 15.607054	-39.6446895	8274424.7	430889			Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário dolomítico cinza-azulado, microcristalino, com disseminação de enxofre. Contém intercalação de talco-xisto.	Acamamento	Projeto Sul da Bahia (1974)
OM101	- 15.539841	-39.6563879	8281855.71	429612	Cascalheira		Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário dolomítico com veios de quartzo. A desagregação desses veios reslta em cobertura de cascalho.		Projeto Sul da Bahia (1974)
OM102	- 15.528292	-39.6494091	8283135.52	430357	Pedreira	Rocha fresca	Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário dolomítico com intercalações de talco- xisto. Utilizado na fabricação de inseticida.		Projeto Sul da Bahia (1974)
OM103	۔ 15.519031	-39.6621232	8284155.83	428990	Morrote		Mármore	Grupo Rio Pardo	Mármore branco, microcristalino, maciço		Projeto Sul da Bahia (1974)
OM118	۔ 15.516986	-39.5235332	8284423.09	443853	Encosta	Rocha fresca	Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário dolomítico, cinza claro a cinza médio, microcristalino, compacto, homogêneo.	Acamamento	Projeto Sul da Bahia (1974)
OM119	- 15.508323	-39.5415139	8285376.54	441922	Pedreira		Metacalcário dolomítico	Grupo Rio Pardo	Meta-calcário dolomítico, compacto, microcristalino, cinza-claro a cinza, fraturado, com microdobras. Pedreira de 20m x 10m. Presença de nódulos e vênulas de sílex.	Acamamento	Projeto Sul da Bahia (1974)
OM120	- 15.517486	-39.5399204	8284363.45	442096	Pedreira	Rocha fresca	Metacalcário dolomítico	Grupo Rio Pardo	Pedreira com cerca de 20m x 6m. Metacalcário dolomítico, microcristalino, compacto, cinza claro a cinza médio, com níveis argilosos.	Acamamento	Projeto Sul da Bahia (1974)
OM121	۔ 15.578196	-39.5082514	8277656.47	445508	Pedreira	Rocha fresca	Metacalcário	Grupo Rio Pardo	Metacalcário cinza escuro, argiloso, microcristalino. Contém talco e quartzo.	Acamamento	Projeto Sul da Bahia (1974)
OM122	۔ 15.606749	-39.5059872	8274498.61	445758			Metacalcário	Grupo Rio Pardo	Metacalcário cinza escuro, microcristalino, carbonoso, muito argiloso. Contpem vênulas de calcita e lâminas de talco interestratificadas.		Projeto Sul da Bahia (1974)
OM125	۔ 15.760618	-39.5164482	8257475.75	444678	Encosta		Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário dolomítico, microcristalino, estratificado, bem recristalizado, cinza escuro.	Acamamento	Projeto Sul da Bahia (1974)
OM126	۔ 15.561119	-39.6420339	8279506.74	431159	Encosta de morro		Mármore	Grupo Rio Pardo	Mármore branco, microcristalino, impuro, com fraturas regulares.		Projeto Sul da Bahia (1974)
OM127	- 15.591496	-39.6417724	8276146.6	431197	Encosta de morro		Mármore	Grupo Rio Pardo	Mámore microcristalino, homogêneo, compacto. Contém quartzo e sericita.		Projeto Sul da Bahia (1974)
OM128	- 15.526493	-39.6775541	8283325.21	427338	Encosta de morro		Mármore	Grupo Rio Pardo	Mármore branco, homogêneo, microcristalino,		Projeto Sul da Bahia (1974)
OM129	- 15.534849	-39.6806381	8282399.79	427010	Encosta de morro		Mármore	Grupo Rio Pardo	Mármore branco, homogêneo, compacto, microcristalino.		Projeto Sul da Bahia (1974)

OM142	- 15.916328	-40.1606417	8239974.77	375762			Paragnaisse com grafita	Complexo Itapetinga	Paragnaisse de granulação média, composto por Qz- Fds-Bt-Grd-Gf. A grafita é impura e apresenta baixa concentração na rocha.		Projeto Sul da Bahia (1974)
OM156	۔ 16.087336	-39.6502481	8221294.66	430458		Intemperizado	Bt-Grd-Ci-xisto	Grupo Macaúbas	Afloramento de rocha xistosa alterada que produz um solo argiloso avermelhado contendo fragmentos de material ferruginoso e pequenos cristais de crianita		Projeto Sul da Bahia (1974)
OM157	- 16.072355	-39.6996026	8222934.62	425174			Pegmatito	Pegmatito	Veio pegmatítico constituído de Qz-Fds-Mica-Tur- Cianita. Esta última ocorre como cristais aciculares azulados de até 10cm de comprimento		Projeto Sul da Bahia (1974)
RS129	-15.72883	-40.0500245	8260780.12	387501	Blocos e matacões	Rocha fresca	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito cinza escuro, grosso. Composição: Kfs-Px-Anf- Óxidos de ferro		Projeto Sul da Bahia (1974)
RS130	- 15.720293	-40.0021517	8261749.46	392626	Lajedo	Intemperizado	Bt-gnaisse	Complexo Itapetinga	Gnaisse cinza-amarronzado, médio. Composição: Qz- Fds-Bt-Mag(traço)	Foliação	Projeto Sul da Bahia (1974)
RS131	- 15.594583	-39.8594058	8275723	407865	Crista		Migmatito	Complexo Ibicuí-Ipiaú	Migmatito cinza, com estrutura do tipo 'folded'. Granulação média. Composição: Qz-Fds-Bt.	Fraturas	Projeto Sul da Bahia (1974)
RS132	۔ 15.590445	-39.8493875	8276185.06	408937	Blocos e matacões		Metabásica	Complexo Ibicuí-Ipiaú	Rocha meso-melanocrática, fina a média. Composição: Px-Anf-Fds-Cb.		Projeto Sul da Bahia (1974)
RS133	- 15.586979	-39.839537	8276572.69	409992	Lajedo		Migmatito	Complexo Ibicuí-Ipiaú	Migmatito cinza escuro, médio, com estrutura do tipo 'folded' que lateralmente passa para um tipo augen. Composicão: Qz-Fds-Bt.		Projeto Sul da Bahia (1974)
RS135	۔ 15.578416	-39.7921065	8277539.31	415074	Blocos e matacões	Rocha fresca	Anortosito	Corpo Gabro- anortosítico	Rocha cinza escuro, média a grossa, constituída predominantemente de feldspato e mineral máfico (Anf ou Px).	Fratura	Projeto Sul da Bahia (1974)
RS136	۔ 15.572493	-39.7791674	8278199.6	416459	Lajedo		Granulito milonítico	Embasamento Riaciano arco- derivado	Granulito cinza-esverdeado, fino a médio, intensamente fraturado. Composição: Qz-Fds-Bt-Ser-Px	Foliação	Projeto Sul da Bahia (1974)
RS137	- 15.565581	-39.7617441	8278970.93	418324			Charnockito	Embasamento Riaciano arco- derivado	Rocha granulítica cinza-esverdeada, de granulação média e composição: Fds-Qz(azul)-Px	Foliação	Projeto Sul da Bahia (1974)
RS139	- 15.681251	-39.8248933	8266150.31	411602			Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário dolomítico esbranquiçado. A superfície do afloramento é rica em cavidades de dissolução que destacam os planos de acamamento	Acamamento	Projeto Sul da Bahia (1974)
RS142	-15.63794	-39.8888721	8270913.8	404726	Corte de estrada	Moderadamente alterada	Bt-gnaisse	Sequência meta- sedimentar de idade incerta	Gnaisse cinza-amarronzado, médio. Composição: Qz- Fds-Bt-fragmentos de rocha		Projeto Sul da Bahia (1974)
RS143	- 15.649525	-39.9023251	8269626.21	403289	Corte de estrada		Milonito (Filonito)	Sequência meta- sedimentar de idade incerta	Rocha fortemente milonítica, fina, tendendo a filonito, amarronzada, de composição: Qz-Ser	Foliação milonítica	Projeto Sul da Bahia (1974)

RS144	-15.66542	-39.9170035	8267861.09	401723	Corte de estrada	Intemperizado	Cataclasito	Sequência meta- sedimentar de idade incerta	Rocha cataclástica, marrom-amarelada, fina a média. Composição: Qz-Ser	Bandamento gnaissico	Projeto Sul da Bahia (1974)
RS145	- 15.656663	-39.9487843	8268814.8	398313	Lajedo		Bt-gnaisse (leptito)	Complexo Itapetinga	Gnaisse rosado a cinza claro, fino, leucocrático. Composição: Qz-Fds-Bt-Mag.	Bandamento gnaissico	Projeto Sul da Bahia (1974)
RS148	- 15.537937	-39.8389396	8281997.95	410034	Leito de rio	Rocha fresca	Gnaisse	Complexo Ibicuí-Ipiaú	Gnaisse cinza, leucocrático, fino. Composição: Qz-Fds- Bt-Mag.		Projeto Sul da Bahia (1974)
RS149	- 15.534087	-39.829817	8282427.65	411011	Blocos e matacões		Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito cinza, grosso. Composição: Kfs-Anf. Acessórios: Mag-Bt-Ne		Projeto Sul da Bahia (1974)
RS150	- 15.530931	-39.813028	8282783.66	412810	Blocos e matacões		Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito cinza a localmente azulado, maciço, homogêneo, grosso. Composição: Fds-Ne-So-Bt- Óxidos de ferro.		Projeto Sul da Bahia (1974)
RS152	- 15.586768	-39.7823654	8276619.29	416121	Corte de estrada	Muito intemperizado	Granulito milonítico	Embasamento Riaciano arco- derivado	Rocha marrom-amarelada, muito alterada, milonitizada e fraturada, fina. Composição: Qz-Fds-Máficos	Foliação milonítico	Projeto Sul da Bahia (1974)
RS153	- 15.607824	-39.7811023	8274290.65	416265	Lajedo		Granulito	Embasamento Riaciano arco- derivado	Rocha muito fraturada de aspecto granulítico, de cor cinza-esvedeado, de granulação fina a média, constituído de quartzo azul, feldspato e mineral máfico esverdeado a preto	Foliação	Projeto Sul da Bahia (1974)
RS154	- 15.612645	-39.7641566	8273763.94	418084	Lajedo		Gnaisse granulítico	Embasamento Riaciano arco- derivado	Rocha granulítica mesocrática, fina a média, muito fraturada, consttuída de quartzo (azul), feldspato e mineral máfico esverdeado	Foliação	Projeto Sul da Bahia (1974)
RS155	- 15.633718	-39.7394209	8271442.19	420744			Bt-gnaisse	Embasamento Riaciano arco- derivado	Bt-gnaisse leucocrático (cinza claro-esverdeado), de granulação média, constituído de Qz-Fds-mineral máfico escuro. Sistema de micro-falhas a juntas ocorrem perpendicular à foliação	Foliação	Projeto Sul da Bahia (1974)
RS156	- 15.661853	-39.7444615	8268328.08	420214	Lajedo		Granulito	Embasamento Riaciano arco- derivado	Granulito cinza-escuro-esverdeado, de granulação fina, de composição: Qz-Fds-mineral máfico esverdeado-Bt	Foliação	Projeto Sul da Bahia (1974)
RS157	-15.66713	-39.7269892	8267750.8	422089			Granulito	Embasamento Riaciano arco- derivado	Rocha granulítica bandada, cinza, média, de composição: Qz-Fds-mineral máfico esverdeado	Foliação	Projeto Sul da Bahia (1974)
RS158	- 15.663022	-39.7173768	8268208.78	423118			Augen-gnaisse	Suíte Pau Brasil	Rocha gnaissica aparentemente granulítica, com porfiros de Kís em estrutura augen. A cor é cinza escuro e a composição é: Qz (azul)-Fds-Bt-Amp ou Px	Foliação milonítica	Projeto Sul da Bahia (1974)

RS159	- 15.559788	-39.7431225	8279618.82	420319	Lajedo		Gnaisse bandado	Embasamento Riaciano arco- derivado	Gnaisse leucocrático bandado, de apecto granulítico, granulação média a grossa, com visível alternância de bandas quartzo-feldspáticas e bandas mais escuras	Bandamento gnaissico	Projeto Sul da Bahia (1974)
RS160	- 15.560202	-39.7261561	8279579.3	422138			Gnaisse milonítico	Embasamento Riaciano arco- derivado	Zona de falha superimposta em gnaisse quartzo- feldspatico (quartzo azulado), com desenvolvimento de cataclasitos e localmente milonitos	Foliação	Projeto Sul da Bahia (1974)
RS161	- 15.537346	-39.7323738	8282105.25	421463	Crista		Gnaisse milonítico	Embasamento Riaciano arco- derivado	Gnaisse milonítico, cinza, cataclasado, de granulação fina, de composição: Qz-Fds-Ser	Foliação milonítica	Projeto Sul da Bahia (1974)
RS162	- 15.526638	-39.7324653	8283289.7	421449	Lajedo		Augen-gnaisse	Embasamento Riaciano arco- derivado	Augen-gnaisse cinza, fino a médio, de composição: Qz- Fds-Bt-Ser	Foliação milonítica	Projeto Sul da Bahia (1974)
RS163	- 15.502887	-39.7193954	8285921.78	422842			Gnaisse milonítico	Suíte Pau Brasil	Rocha gnaissica mostrando evidente estiramento mineral e intenso fraturamento. Cor cinza claro, granulação grossa e composição: Qz-Fds-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)
RS166	- 15.695288	-39.8961211	8264566.5	403975			Augen-gnaisse	Sequência meta- sedimentar de idade incerta	Gnaisse cinza, porfirítico, com estrutura augen. Composição: Qz-Fds-Bt.	Foliação milonítica	Projeto Sul da Bahia (1974)
RS167	- 15.763848	-39.9228706	8256969.9	401142	Cristas	Moderadamente intemperizado	Quartzito	Sequência meta- sedimentar de idade incerta	Quartzito cinza-rosado, fino, de composição: Qz-Ser- Fds (caulim)-Óxidos de ferro	Foliação	Projeto Sul da Bahia (1974)
RS168	۔ 15.844322	-39.8969302	8248079.47	403959	Corte de estrada	Moderadamente intemperizado	Gnaisse anfibolítico	Embasamento Riaciano arco- derivado	Gnaisse com finas intercalações de anfibolito. É de cor cinza-amarronzada, granulação média e composição: Qz-Fds-Bt-Hb	Bandamento gnaissico	Projeto Sul da Bahia (1974)
RS169	- 15.859921	-39.8809638	8246361.12	405676	Lajedo		Bt-granito	Complexo Salto da Divisa	Granito isotrópico, cinza, grosso, levemente foliado. Composição: Qz-Fds-Bt		Projeto Sul da Bahia (1974)
RS170	- 15.607153	-39.8720143	8274326.96	406519	Corte de estrada		Metagabro	Corpo Gabro- anortosítico	Rocha cinza-esverdeada, isotrópica, moderadamente fraturada, granular fina a média. Composição: Fds-Anf- Bt-Ep.	Foliação	Projeto Sul da Bahia (1974)
RS171	- 15.622864	-39.8547405	8272596.51	408378	Lajedo		Álcali-sienito	Província Alcalina do Sul do Estado da Bahia	Sienito cinza claro, médio, isotrópico, fraturado. Composição: Fds-Anf-Bt-Ser-Qz (traço)		Projeto Sul da Bahia (1974)

RS172	- 15.630655	-39.8458486	8271738.46	409334	Encosta de morro		Álcali-sienito; Traquito	Província Alcalina do Sul do Estado da Bahia	Sienito cinza, isotrópico, médio associado com provável dique traquítico. Composição: Kfs-Anf.		Projeto Sul da Bahia (1974)
RS173	- 15.701839	-39.8109228	8263878.64	413108			Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário dolomítico, cinza, fino, fortemente estratificado, com sericita	Acamamento	Projeto Sul da Bahia (1974)
RS174	- 15.705656	-39.808794	8263457.3	413338			Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário cinza escuro, fino, esbranquiçado, sericítico, estratitifcado, com laminação microdobrada. A superfície do afloramento é rica em cavidades de dissolução		Projeto Sul da Bahia (1974)
RS175	- 15.712875	-39.7941773	8262664.67	414907	Crista		Bt-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse mesocrático, médio, de composição: Qz-Fds- Bt-òxidos de ferro	Foliação	Projeto Sul da Bahia (1974)
RS176	- 15.716153	-39.7867358	8262305.03	415706	Lajedo		Bt-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse cinza escuro, médio. Composição: Qz-Fds-Bt- Hb-Óxidos de ferro	Bandamento gnaissico	Projeto Sul da Bahia (1974)
R\$177	۔ 15.727912	-39.7496855	8261018.67	419680	Margem de rio	Intemperizado	Migmatito	Complexo Ibicaraí	Afloramento lavado pelo rio Angelim. Rocha gnaissica milonítica, com estrutura augen, cinza escuro, de composição: Qz-Fds-Hb-Bt. Cortado por veios de quartzo pegmatítiticos	Foliação milonítica	Projeto Sul da Bahia (1974)
RS178	- 15.729045	-39.7276643	8260901.53	422040			Migmatito	Suíte Pau Brasil	Gnaisse migmatítitico, cinza, médio, de composição: Qz-Fds-máfico esverdeado (epidoto?)	Foliação milonítica	Projeto Sul da Bahia (1974)
RS179	۔ 15.731714	-39.6771991	8260624.25	427448	Encosta de morro		Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário rosado, fino, estartificado e micáceo.	Acamamento	Projeto Sul da Bahia (1974)
RS180	- 15.756172	-39.5638839	8257954.5	439596	Corte de estrada		Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário cinza, muito fino, estratificado	Acamamento	Projeto Sul da Bahia (1974)
RS181	-15.69159	-39.8134766	8265011.38	412830	Cristas		Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário dolomítico, cinza escuro, muito fino, com raros níveis arenosos intercalados no acamamento	Acamamento	Projeto Sul da Bahia (1974)
RS182	- 15.689194	-39.8019684	8265281.11	414062			Metacalcário; Bt-gnaisse	Sequência meta- sedimentar de idade incerta	Contato de metacalcário com Bt-gnaisse cinza, fino a médio, muito fraturado.		Projeto Sul da Bahia (1974)
RS183	- 15.665422	-39.7952273	8267913.49	414775	Cristas		Bt-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse cinza claro, de granulação média, constituído de Qz-Fds-Bt	Bandamento gnaissico	Projeto Sul da Bahia (1974)

RS184	- 15.690909	-39.7704329	8265103.97	417443	Cristas	Augen-gnaisse	Embasamento Riaciano arco- derivado	Augen-gnaisse cinza, de composição: Qz-Fds-Bt- Mineral máfico prismático (Anf e Px)	Foliação milonítica	Projeto Sul da Bahia (1974)
RS185	-15.67682	-39.7093149	8266685.33	423987	Blocos e matacões	Gabro	Dique	Grandes matacões de rocha gabroica, cinza escuro a preto, isotrópica, de granulação média a grossa e composição: Qz(raro)-Amp-Bt-Pirita		Projeto Sul da Bahia (1974)
RS186	- 15.688271	-39.6703557	8265432.17	428166		Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário dolomítico, com superfície do afloramento rica em cavidades de dissolução. Cor cinza, granulação fina e estratificação bem marcada.	Acamamento	Projeto Sul da Bahia (1974)
RS187	- 15.639209	-39.7046821	8270847.41	424470	Cristas	Bt-gnaisse	Suíte Pau Brasil	Gnaisse cinza escuro, granulação grossa, algo porfirítica, com quartzo azulado.	Foliação milonítica	Projeto Sul da Bahia (1974)
RS188	- 15.631368	-39.7029775	8271715.4	424649	Gruta	Metacalcário dolomítico	Grupo Rio Pardo	Gruta rica em estalactites. Metacalcário cinza, laminado, com microdobras		Projeto Sul da Bahia (1974)
RS189	- 15.554408	-39.7624682	8280206.58	418242		Gnaisse	Embasamento Riaciano arco- derivado	Gnaisse cinza escuro, aparentemente granulítico, de composição: Qz (azul)-Fds-Bt	Bandamento gnaissico	Projeto Sul da Bahia (1974)
RS191	- 15.532592	-39.8062198	8282602.63	413541	Lajedo	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito cinza-rosado, médio, isotrópico. Composição: Kfs-Máfico indistinto		Projeto Sul da Bahia (1974)
RS193	- 15.503664	-39.8851582	8285769.32	405062	Blocos e matacões	Sienito	Província Alcalina do Sul do Estado da Bahia	Sienito cinza, médio a grosso. Composição: Fds-Hb-Qz (traço)		Projeto Sul da Bahia (1974)
RS194	- 15.719593	-39.8032164	8261917.81	413941	Lajedo	Bt-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse cinza claro, fino a médio. Composição: Qz- Fds-Bt-Óxidos de ferro.	Bandamento gnaissico	Projeto Sul da Bahia (1974)
RS195	- 15.729544	-39.798028	8260819.18	414501	Lajedo	Bt-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse cinza claro, médio. Composição: Qz-Fds-Bt.	Bandamento gnaissico	Projeto Sul da Bahia (1974)
RS196	- 15.749057	-39.7845026	8258666.03	415959	Lajedo	Hb-Bt-gnaisse migmatítico	Embasamento Riaciano arco- derivado	Lajedo alongado de gnaisse migmatítico, aparentemente granulítico	Foliação	Projeto Sul da Bahia (1974)
RS197	- 15.761468	-39.7688557	8257299.36	417640	Leito de rio	Augen-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse granulítico fortemente tectonizado, com quartzo azul. No geral, a rocha é cinza, porfirítica, com estrutura augen e composição: Qz-Fds-Bt-Amp-Px	Foliação	Projeto Sul da Bahia (1974)

RS198	- 15.781383	-39.7621341	8255098.86	418368	Lajedo		Gnaisse	Embasamento Riaciano arco- derivado	Gnaisse granulítico cinza, fino, de composição: Qz (azul)-Fds-Bt-Px		Projeto Sul da Bahia (1974)
RS200	- 15.792949	-39.7418404	8253827.28	420546	Corte de estrada		Gnaisse milonítico	Complexo Ibicaraí	Rocha fortemente cisalhada, milonítica. Cor marrom, granulação fina a média, Parece tratar-se de zona de falha.	Foliação milonítica	Projeto Sul da Bahia (1974)
RS201	-15.79987	-39.7188457	8253070.22	423012		Corte de estrada	Anfibolito	Dique	Rocha anfibolítica parcialmente alterada e muito fraturada. Cor cinza-preto a avermelhado. Composição: PL-PI-Ap		Projeto Sul da Bahia (1974)
RS202	- 15.806612	-39.7007333	8252330.9	424954		Lajedo	Augen-gnaisse	Embasamento Riaciano arco- derivado	Augen-gnaisse aparentemente granulítico, porfirítico, de mariz fina, come estrutura augen. Contém quartzo azulado, Fds-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)
RS203	- 15.811538	-39.6753667	8251794.89	427673	Base de serra		Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário cinza-rosado, fino, sericítico e com níveis de quartzito. Está estratificado, com microdobras convolutas.	Acamamento	Projeto Sul da Bahia (1974)
RS204	- 15.801036	-39.6488903	8252965.53	430505	Escavação		Metacalcário	Grupo Rio Pardo	Escavação em atioramento na formna de antiteatro. Metacalcário dolomítico, laminado, com microbras, rosado, granulação fina a média, contendo mica marrom nos planos do acamamento	Acamamento	Projeto Sul da Bahia (1974)
RS205	- 15.979115	-39.5641384	8233293.04	439635	Corte de estrada		Augen-gnaisse	Complexo Buerarema	Augen-gnaisse cinza, de composição: Qz-Fds-Bt e pórfiros de Kfs. Contém intercalações de níveis máficos enriquecidos em biotita, paralelos com a foliação.	Foliação milonítica	Projeto Sul da Bahia (1974)
RS207	- 15.854958	-39.5864476	8247020.45	437209	Corte de estrada		Bt-granito	Complexo Salto da Divisa	Granitoide isotrópico, cinza-claro, médio, de composição: Qz-Fds-Bt.		Projeto Sul da Bahia (1974)
RS208	- 15.801319	-39.6111452	8252946.37	434547	Lajedo		Metacalcário dolomítico	Grupo Rio Pardo	Metacalcário estratificado, com cavidades de dissolução. Possui cor cinza-azulada, granulação fina e contém mica nos planos da foliação	Acamamento	Projeto Sul da Bahia (1974)
RS210	- 15.874177	-39.7772895	8244828.01	416783	Corte de estrada	Moderadamente intemperizada	Augen-gnaisse	Embasamento Riaciano arco- derivado	Augen-gnaisse marrom-avermelhado, de composição: Qz-Fds-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)
RS212	- 15.969095	-39.987877	8234232.45	394285	Margem de estrada	Moderadamente intemperizado	Bt-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse amarronzado, constituído de Qz-Fds-Anf-Bt. Em certos níveis, há maior enriquecimento de biotita.	Bandamento gnaissico	Projeto Sul da Bahia (1974)
RS213	۔ 15.917244	-39.9798416	8239972.63	395118	Corte de estrada	Moderadamente intemperizado	Bt-gnaisse milonítico	Embasamento Riaciano arco- derivado	Gnaisse milonítico amarronzado, constituído de Qz- Fds-Bt. A granulação é média, podendo localmente ser pegmatoide	Foliação milonítica	Projeto Sul da Bahia (1974)
RS215	-15.9165	-39.9403351	8240074.37	399347	Lajedo		Augen-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse porfirítico, cinza, de composição: Qz-Fds-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)

RS217	- 15.914895	-39.8804568	8240279.84	405756	Lajedo	Intemperizado	Bt-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse cinza-amarelado, médio a grosso, constituído de quartzo, feldspato, biotita e magnetita.		Projeto Sul da Bahia (1974)
RS218	- 15.973363	-39.8395691	8233829.92	410159			Augen-gnaisse	Complexo Buerarema	Augen-gnaisse cinza escuro, de composição: Qz-Fds-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)
RS219	۔ 15.871893	-39.7173106	8245103.56	423203	Lajedo		Augen-gnaisse	Complexo Buerarema	Augen-gnaisse cinza, com porfiroclastos de Kfs e composição: Qz-Fds-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)
RS220	- 15.957688	-39.5282514	8235673.27	443469			Gnaisse milonítico	Complexo Buerarema	Grande zona de falha com mais de 2Km de largura, com milonitos, cataclasitos e filonitos. É intenso o fraturamento das rochas vizinhas. No geral, a rocha é cinza, fina a média, de composição: Qz-Fds-Ser-Talco- Grd-Hb	Foliação milonítica	Projeto Sul da Bahia (1974)
RS221	۔ 15.962777	-39.5614055	8235101.07	439922	Corte de estrada		Augen-gnaisse	Complexo Buerarema	Zona de cisalhamento com augen-gnaisse e xisto tectônico, à biotita		Projeto Sul da Bahia (1974)
RS222	- 15.894286	-39.5420959	8242682.9	441969	Corte de estrada		Bt-granito	Complexo Salto da Divisa	Rocha granítica, moderadamente intemperizada, fraturada, com aparente orientação de biotita. A cor é cinza claro, granulação média, de composição: Qz-Fds- Bt		Projeto Sul da Bahia (1974)
RS223	-15.88497	-39.5361358	8243715.02	442605	Corte de estrada		Granito-gnaisse milonítico; Bt- xisto máfico	Complexo Salto da Divisa	Zona de cisalhamento com cataclasito e xistos tectônicos melanocráticos, ricos em biotita. A rocha é de granulação fina e contém Qz-Fds-Bt. É cortada por veios de granitoides e pegmatíticos.	Foliação milonítica	Projeto Sul da Bahia (1974)
RS224	- 15.878404	-39.5306393	8244442.84	443191	Corte de estrada		Hb-Bt-gnaisse	Complexo Buerarema	Gnaisse cinza escuro, mesocrático, fino a médio, de composição: Qz-PI-Bt-Hb. É cortado por veios de quartzo e aplitos.	Foliação	Projeto Sul da Bahia (1974)
RS225	- 15.844453	-39.5253229	8248199.82	443751	Corte de estrada	Muito intemperiizado	Metacalcário	Grupo Rio Pardo	avermelhado, argiloso.Distinguem-se camadas de quartzito sericítico rico em carbonato, cor esbranquiçada, granulação fina, em alternância com com leitos argilosos produtos da alteração de calcário		Projeto Sul da Bahia (1974)
RS226	- 15.829105	-39.5339527	8249895.22	442823	Corte de estrada	Muito intemperiizado	Metacalcário	Grupo Rio Pardo	Saprólito muito decomposto, argilosa, fina, com vestígios de metacalcário esbranquiçado, fino, maciço		Projeto Sul da Bahia (1974)
RS227	- 15.822948	-39.5313613	8250576.98	443098	Corte de estrada	Muito intemperizado	Metacalcário	Grupo Rio Pardo	Rocha muito decomposta, avermelhada e argilosa, com finas intercalações de quartzito branco. O material argiloso é calcífero, sendo produtop de alteração de calcário		Projeto Sul da Bahia (1974)
RS228	- 15.813827	-39.5291596	8251586.55	443332	Solo	Solo	Areias quartzosas inconsolidadas	Cobertura recente	Material arenoso, branco, inconsolidado, tamanho areia fina a média, predominantemente constituído de quartzo.		Projeto Sul da Bahia (1974)
RS229	- 15.805649	-39.5221351	8252493.03	444082	Corte de estrada	Moderadamente alterada	Filito; Ser-xisto	Grupo Rio Pardo	Filito, rico em sericita, em afloramento dobrado, com sinforme local. Contém intercalações de sericita-xisto cinza, contendo óxidos de ferro	Eixo de dobra	Projeto Sul da Bahia (1974)
RS230	- 15.791406	-39.5108891	8254071.47	445282	Corte de estrada		Metacalcário	Grupo Rio Pardo	Metacalcário cinza-azulado, muito fino, fracamente efervecente ao HCI	Acamamento	Projeto Sul da Bahia (1974)
RS240	- 15.986918	-39.5696103	8232428.25	439052	Corte de estrada		Gnaisse milonítico	Complexo Buerarema	Gnaisse cinza, constituído de Qz-Fds-Bt, com intercalações de níveis melanocráticos com cerca de 1m de espessura, de composição: Hb-Bt-Fds-Qz	Foliação milonítica	Projeto Sul da Bahia (1974)
RS241	- 15.903014	-39.5994597	8241700.69	435831	Lajedo		Bt-gnaisse	Complexo Buerarema	Rocha gnaissica, com fraca orientação, de cor cinza, granulação média e composição: Qz-Fds-Bt.	Bandamento gnaissico	Projeto Sul da Bahia (1974)

RS242	-15.8993	-39.6140831	8242106.9	434264		Moderadamente intemperizado	Bt-gnaisse milonítico	Complexo Buerarema	Rocha gnaissica, milonítica, fraturada, de composição: Qz-Fds-Bt e traços de muscovita. Localmente a rocha passa para um Qz-Grd-Bt-Fds gnaisse cinza escuro, médio, com porfiroblastos de granada	Foliação milonítica	Projeto Sul da Bahia (1974)
RS244	- 15.903654	-39.7106168	8241592.55	423932	Blocos e matacões	Moderadamente intemperizado	Granito-gnaisse	Complexo Salto da Divisa	Rocha isotrópica, cinza claro, grossa, de composição: Qz-Fds-Bt. Parece ser granito de anatexia		Projeto Sul da Bahia (1974)
RS245	- 15.929993	-39.6988352	8238683.17	425203	Blocos e matacões		Bt-álcali-granito	Complexo Salto da Divisa	Granitoide cinza-rosado, grosso, de composição: Qz- Fds-Bt-óxidos de ferro. Muscovita pode ocorrer em quantidades traço. Trata-se de granito de anatexia.		Projeto Sul da Bahia (1974)
RS246	- 15.949282	-39.6882863	8236553.23	426339	Blocos e matacões		Bt-álcali-granito	Complexo Salto da Divisa	Granitoide cinza-rosado, grosso, de composição: Qz- Fds-Bt-óxidos de ferro. Muscovita pode ocorrer em quantidades traço. Trata-se de granito de anatexia.		Projeto Sul da Bahia (1974)
RS247	- 15.963437	-39.6700298	8234993.69	428298	Blocos e matacões		Ms-Bt- leucogranito	Complexo Salto da Divisa	Granito isotrópico, fraturado, de cor cinza-rosado. Textura granular, grossa e composição: Qz-Fds-Bt-Ms. Trata-se de granito de anatexia.		Projeto Sul da Bahia (1974)
RS248	-15.95755	-39.66578	8235646.43	428751			Bt-granito- gnaisse	Complexo Salto da Divisa	Gnaisse cinza claro, fino, de composição; Qz-Fds-Bt. Contém níveis enriquecidos em biotita.	Foliação	Projeto Sul da Bahia (1974)
RS249	- 15.953621	-39.6302372	8236092.87	432553	Lajedo		Bt-granito- gnaisse	Complexo Salto da Divisa	Gnaisse cinza, grosso, de composição: Qz-Fds-Bt		Projeto Sul da Bahia (1974)
RS250	- 15.865839	-39.5079684	8245838.81	445615	Margem de estrada		Mármore	Grupo Rio Pardo	Metacalcário estratificado, com micro dobras convolutas, cor cinza, granulação muito fina e contendo níveis sericíticos intercalados	Acamamento	Projeto Sul da Bahia (1974)
RS432	- 15.680102	-39.5285922	8266378.8	443355	Corte de estrada		Filito	Grupo Rio Pardo	Filito cinza, bem deformado, sericítico.	Xistosidade	Projeto Sul da Bahia (1974)
RS433	۔ 15.678222	-39.5019215	8266593.77	446213		Moderadamente intemperizado	Filito	Grupo Rio Pardo	Filito cinza-marrom, xistificado, muito fino, sericítico	Xistosidade	Projeto Sul da Bahia (1974)
RS551	- 15.718894	-40.0406466	8261884.21	388500	Blocos e matacões	Rocha fresca	Álcali sienito	Província Alcalina do Sul do Estado da Bahia	Sienito isotrópico, cinza, grosso. Composição: Kfs-Anf.		Projeto Sul da Bahia (1974)
RS552	- 15.775038	-40.0475271	8255669.51	387794	Lajedo		Gnaisse leucocrático, equigranular, fino a médio (leptito)	Fenito	Gnaisse leucocrático, cinza claro, fino a médio. Composição: Qz-Fds-Mag.	Foliação	Projeto Sul da Bahia (1974)
RS553	- 15.781822	-40.0504567	8254917.5	387483	Lajedo		Gnaisse leucocrático, equigranular, fino a médio (leptito)	Fenito	Gnaisse leucocrático, cinza, médio. Composição: Fds- Qz-Bt-Mag.	Foliação	Projeto Sul da Bahia (1974)

RS554	- 15.797208	-40.0508209	8253215.14	387453	Lajedo		Gnaisse leucocrático, equigranular, fino a médio (leptito)	Complexo Itapetinga	Gnaisse cinza claro, médio. Composição: Qz-Fds-Bt- Mag (traços).	Foliação	Projeto Sul da Bahia (1974)
RS555	- 15.821869	-40.0633724	8250480.19	386122	Lajedo		Gnaisse leucocrático, equigranular, fino a médio (leptito)	Complexo Itapetinga	Gnaisse cinza claro, fino a médio. Composição: Qz- Fds-Bt-Mag. Minerais máficos são traços.	Foliação	Projeto Sul da Bahia (1974)
RS556	- 15.833838	-40.0594106	8249158.25	386553	Lajedo		Álcali sienito	Província Alcalina do Sul do Estado da Bahia	Sienito isotrópico, cinza escuro, inequigranular fino a médio. Composição: Fds-Bt-Amp		Projeto Sul da Bahia (1974)
RS557	- 15.847649	-40.0564081	8247631.96	386883	Lajedo		Gnaisse leucocrático, equigranular, fino a médio (leptito)	Província Alcalina do Sul do Estado da Bahia	Gnaisse cinza claro, fino a médio, de composição: Qz- Fds-Bt-Mag. Minerais máficos são traços.	Foliação	Projeto Sul da Bahia (1974)
RS558	- 15.862878	-40.0414193	8245955.19	388496	Lajedo		Gnaisse leucocrático, equigranular, fino a médio (leptito)	Província Alcalina do Sul do Estado da Bahia	Rocha gnaissica, leucocrática, média. Composição: Qz- Fds-Bt-Mag (traço)	Foliação	Projeto Sul da Bahia (1974)
RS559	- 15.873771	-40.0288964	8244756.76	389843	Lajedo		Sienito	Província Alcalina do Sul do Estado da Bahia	Rocha isotrópica, sienítica, maciça, cinza, grossa. Composição: Fds-Anf-Pirita(traço)		Projeto Sul da Bahia (1974)
RS560	۔ 15.878922	-40.020418	8244191.34	390753	Corte de estrada	Intemperizado	Bt-gnaisse	Complexo Ibicaraí	Bt-gnaisse descorado	Foliação	Projeto Sul da Bahia (1974)
RS561	۔ 15.882343	-40.0055442	8243820.59	392348	Lajedo		Aplito	Pegmatito	Rocha hololeucocrática, cinza-rosada, fina, de composição: Qz-Fds-Mag	Foliação	Projeto Sul da Bahia (1974)
RS562	- 15.874162	-39.9963225	8244730.3	393331	Corte de estrada		Gnaisse anfibolítico	Complexo Ibicaraí	Gnaisse com intercalações finas de níveis máficos, anfibolíticos. Cor geral cinza escuro, granulação média e composição: Qz-Fds-Hb	Bandamento gnaissico	Projeto Sul da Bahia (1974)
RS563	- 15.858099	-39.9729707	8246519.13	395823	Corte de estrada		Gnaisse milonítico	Embasamento Riaciano arco- derivado	Gnaisse cinza-amarelado, de composição: Qz-Fds-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)
RS564	۔ 15.849472	-39.9619642	8247478.91	396997			Augen-gnaisse	Embasamento Riaciano arco- derivado	Augen-gnaisse cinza, de composição: Qz-Fds-Bt. A foliação milonítica é subhorizontal	Foliação milonítica	Projeto Sul da Bahia (1974)

RS565	- 15.836459	-39.9360228	8248931.05	399769	Corte de estrada	Intemperizado	Gnaisse bandado	Embasamento Riaciano arco- derivado	Gnaisse cinza-amarronzado, bastante intemperizado, com níveis quartzo-feldspáticos alternados em níveis ricos biotita, xistificado	Bandamento gnaissico	Projeto Sul da Bahia (1974)
RS566	- 15.728107	-39.9037967	8260932.5	403168	Corte de estrada	Intemperizado	Xisto aluminoso	Sequência meta- sedimentar de idade incerta	Rocha acinzentada, fina, aluminosa, predominantemente constituída de quartzo, sericita e óxidos de ferro.	Foliação	Projeto Sul da Bahia (1974)
RS567	- 15.736933	-39.9002139	8259957.78	403556	Fundo de vale		Metacalcário brechado	Sequência meta- sedimentar de idade incerta	Rocha calcárea, fraturada, algo brechoide. Granulação muito fina		Projeto Sul da Bahia (1974)
RS568	- 15.742487	-39.8886144	8259348.67	404802			Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário esbranquiçado, muito fino, dolomítico, acamadado, bem fraturado.	Acamamento	Projeto Sul da Bahia (1974)
RS569	- 15.744425	-39.8815871	8259137.41	405555			Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário esbranquiçado, muito fino, calcítico, acamadado, bem fraturado.	Acamamento	Projeto Sul da Bahia (1974)
RS570	- 15.747322	-39.8720258	8258821.15	406581	Leito de estrada		Metacalcário brechado	Sequência meta- sedimentar de idade incerta	Metacalcário esbranquiçado, fraturado e brechado, muito fino, calcítico.		Projeto Sul da Bahia (1974)
RS571	- 15.751451	-39.8679695	8258366.21	407018			Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário esbranquiçado, fino, dolomítico e silicoso.	Acamamento	Projeto Sul da Bahia (1974)
RS572	- 15.757825	-39.8663759	8257661.77	407191			Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário cinza esbranquiçado, fino, fraturado e brechado. Composição dolomítica e silicosa	Fratura	Projeto Sul da Bahia (1974)
RS573	-15.76442	-39.8624628	8256933.94	407613			Quartzito	Sequência meta- sedimentar de idade incerta	Quartzito cinza claro, fino, estratificado, carbonático	Acamamento	Projeto Sul da Bahia (1974)

RS574	- 15.770044	-39.8564873	8256314.4	408256			Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário cinza-branco, muito fino, muito fraturado, localmente brechado, calcítico e silicoso.	Acamamento; Fratura	Projeto Sul da Bahia (1974)
RS575	- 15.773208	-39.8503009	8255967.13	408920			Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário esbranquiçado, muito fino, dolomítico e silicoso	Acamamento	Projeto Sul da Bahia (1974)
RS576	- 15.776484	-39.8437085	8255607.53	409628			Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário esbranquiçado, muito fino, dolomítico.	Acamamento	Projeto Sul da Bahia (1974)
R\$577	- 15.780058	-39.8400708	8255213.71	410019	Corte de estrada		Bt-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse cataclasado em zona de falha que coloca em contato com metacalcário.	Foliação milonítica	Projeto Sul da Bahia (1974)
RS578	- 15.791463	-39.8324038	8253955.31	410845	Lajedo		Gnaisse migmatítico	Embasamento Riaciano arco- derivado	Gnaisse migmatítitico cinza, médio a grosso, localmente contendo porfiroblastos e vênulas de biotita dispostos degundo a foliação, lembrando estrutura schiliren. Composto por Qz-Fds-Bt	Foliação	Projeto Sul da Bahia (1974)
RS579	- 15.808969	-39.8322339	8252018.82	410871	Corte de estrada	Moderadamente intemperizado	Bt-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse cinza, rico em níveis biotitíticos, de granulação média e composição: Qz-Fds-Bt	Bandamento gnaissico	Projeto Sul da Bahia (1974)
RS580	- 15.821989	-39.8418745	8250574.4	409844	Corte de estrada	Moderadamente intemperizada	Bt-gnaisse	Embasamento Riaciano arco- derivado	Gnaisse amarrozado, médio, de composição: Qz- Fds(caulinizado)-Ser-Bt	Foliação milonítica	Projeto Sul da Bahia (1974)
RS581	- 15.855078	-39.8607515	8246905.83	407838		Moderadamente intemperizada	Bt-gnaisse	Embasamento Riaciano arco- derivado	Rocha amarronzada, média, fortemente estirada, constituída de quartzo e biotita	Foliação milonítica	Projeto Sul da Bahia (1974)
RS735	- 15.828679	-39.689168	8249894.01	426201			Augen-gnaisse	Embasamento Riaciano arco- derivado	Augen-gnaisse com pórfiros centimétricos de Kfs e matriz rica em Qz-Bt-Ser. Localmente está dobrado e comumente está fraturado	Foliação milonítica	Projeto Sul da Bahia (1974)
RS737	- 15.867498	-39.7332063	8245583.86	421500			Augen-gnaisse	Corpos dioríticos e cumuláticos Orosirianos	Augen-gnaisse com porfiroblastos bem formados de Kfs. Contém Qz-Fds-Bt e veios centimétricos de feldspato	Foliação milonítica	Projeto Sul da Bahia (1974)
RS738	_ 15.860505	-39.7666254	8246344.62	417919			Bt-gnaisse bandado	Embasamento Riaciano arco- derivado	Rocha leucocrática, média, bem foliada, com faixas quartzo-feldspáticas e faixas com biotita	Bandamento gnaissico	Projeto Sul da Bahia (1974)

RS739	- 15.893978	-39.8742621	8242596.59	406409	Encosta		Bt-granito	Complexo Salto da Divisa	Granito isotrópico, granular grosso, de composição: Qz- Fds-Bt		Projeto Sul da Bahia (1974)
SD001	- 15.986399	-40.0001177	8232311.82	392984			Bt-Hb-granito foliado	Complexo Salto da Divisa	Bt-Hb-granito rosado-acizentado, fino a médio, bem foliado. Contem 40% de Kfs rosado, 40% de quartzo fitado, 15% de biotita e 15% d eplagioclasio. Ocorrem injeções pegmatíticas e veios de quartzo	Foiliação	Paixão e Perrella (2004)
SD002	- 15.974423	-40.0000123	8233636.84	392989	Lajedo	Rocha fresca	Bt-Hb-granito foliado	Complexo Salto da Divisa	Bt-Hb-granito rosa, fino a médio, foliado, de aspecto gnaissico, com presença de veios de quartzo, estirados ao logo da foliação (boudins). Dobras intrafoliais também ocorrem.		Paixão e Perrella (2004)
SD003	- 15.989195	-40.0010038	8232002.03	392891			Bt-Hb-granito foliado	Complexo Salto da Divisa	Bt-Hb-granito rosado-acinzentado, médio, bem foliado, de aspecto gnaissico. Composição: Kfs-Qz-PI-Bt-Anf- Fluorita (roxa)Contém bolsões pegmatíticos		Paixão e Perrella (2004)
SD006	- 16.062971	-39.9889735	8223846.44	394217	Lajedo		Gnaisse migmatítico	Complexo Jequitinhonha	Gnaisse migmatítico cinza claro, médio, composto predominantemente por quartzo-feldspato e biotita. Está cortado por veios pegmatíticos e graníticos. Dúvida em saber se é orto, ou paraderivado		Paixão e Perrella (2004)
SD007	۔ 16.074515	-39.9895435	8222569.08	394162	Lajedo		Paragnaisse migmatítico	Complexo Jequitinhonha	Altoramento extenso. Paragnaisse migmatitico cinza, fino a médio, com bandamento milimétrico. Contém porfiroblastos centimétricos de granada e é cortado por veios de quartzo e graníticos		Paixão e Perrella (2004)
SD010	-16.09461	-40.0015148	8220339.85	392892			Paragnaisse migmatítico	Complexo Jequitinhonha	Paragnaisse migmatítico, com neosoma granítico, com <5% de Bt. Cortado por pegmatito.		Paixão e Perrella (2004)
SD012	- 16.080216	-39.9916813	8221937.33	393936	Corte de estrada		Paragnaisse	Complexo Jequitinhonha	Paragnaisse migmatítico, cinza escuro, rico em biotita, com Qz-Fds-Grt. Neossoma é quartzo-feldspático, as vezes com Bt, e médio a pegmatítico. Dobras intrafoliais		Paixão e Perrella (2004)
SD018	-16.05385	-39.9848405	8224857.6	394654	Lajedo		Paragnaisse	Complexo Itapetinga	Grt-Bt-paragnaisse milonítico, cinza escuro, com sillimanita. Cortado por veios de quartzo boudinados. Contém bandas de rocha calcisilicática		Paixão e Perrella (2004)
SD019	۔ 16.048435	-39.9862657	8225455.99	394499	Margem de rio		Grt-Sill-xisto	Complexo Itapetinga	Grt-Sill-Ms-Qz-Bt-xisto, médio, milonítico		Paixão e Perrella (2004)
SD027	- 16.037349	-39.9924937	8226679.25	393827	Margem de rio		Paragnaisse	Complexo Itapetinga	Paragnaisse acinzentado, milonítico, com bandas mais e menos ricas em biotita. Cortado por veios pegmatíticos métricos (2x20m), por vezes boudinados		Paixão e Perrella (2004)
SD040	- 16.018498	-39.9309351	8228795.15	400403	Lajedo	Rocha fresca	Bt-Hb-Qz- monzonito; Microgabro; Aplito	Complexo Salto da Divisa	Granitoide intermediário, mesocrático, porfirítico, rico em Bt-Hb-Kfs misturado com rocha máfica fina a média (micrograbro), com formação de rocha híbrida. Cortado por veios apliticos quartzo-feldpáticos		Paixão e Perrella (2004)
SD041	۔ 16.019804	-39.9336649	8228649.44	400112	Lajedo	Rocha fresca	Bt-Hb-Qz- monzonito; Microgabro	Complexo Salto da Divisa	Granitoide intermediário, porfirítico, mesocrático, rico em Bt-Hb-fenocristais de Kfs. Contém enclaves arredondados de microgabro		Paixão e Perrella (2004)
SD049	۔ 16.026013	-39.9144844	8227971.61	402167	Encosta	Rocha fresca	Bt-Hb-granito	Complexo Salto da Divisa	Bt-Hb-granito cinza claro, grosso, foliado		Paixão e Perrella (2004)
SD053	۔ 16.020121	-39.8984443	8228630.94	403880	Margem de estrada	Intemperizado	Bt-gnaisse	Complexo Ibicaraí	Bt-gnaisse intemperizado, cinza claro, fino a médio		Paixão e Perrella (2004)

SD060	- 16.042051	-39.9255636	8226192.21	400990	Corte de estrada	Muito intemperizado	Bt-gnaisse; Biotitito	Embasamento Riaciano arco- derivado	Bt-gnaisse com intercalação de Bt-xisto máfico		Paixão e Perrella (2004)
SD061	- 16.037173	-39.9396027	8226725.09	399485	Margem de estrada	Intemperizado	Bt-gnaisse; Biotitito	Embasamento Riaciano arco- derivado	Bt-gnaisse com intercalação de Bt-xisto máfico (biotitito)		Paixão e Perrella (2004)
SD062	- 16.028368	-39.9504295	8227693.81	398322	Blocos		Biotitito	Embasamento Riaciano arco- derivado	Blocos de Bt-xisto máfico (biotitito) no meio da trilha e fragmentos alóctones de quartzo de veio		Paixão e Perrella (2004)
SD067	- 16.013922	-39.9560997	8229289.2	397708	Pedreira	Rocha fresca	Álcali-granito	Complexo Salto da Divisa	Afloramento dinamitado. Granito rosa claro, fino a médio, isotrópico. Há bolsões centimétricos de material pegmatítico		Paixão e Perrella (2004)
SD074	- 16.059168	-39.9814377	8224271.01	395021	Lajedo		Sill-Bt- paragnaisse	Complexo Itapetinga	Paragnaisse milonítico, bem deformado. Contém boudins de rocha calcio-silicática que indicam movimento dextral. Dobras isoclinais inrafoliais também ocorrem.		Paixão e Perrella (2004)
SD082	- 16.015561	-39.9279698	8229121.48	400719	Lajedo	Rocha fresca	Bt-Hb-Qz- monzonito; Microgabro	Complexo Salto da Divisa	Granitoide intermediário, porfiritico, mesocrático, rico em Bt-Hb-fenocristais de Kfs. Está cortado por dique máfico (diabásio?), que está rompido, com enclaves orientados de acordo com fluxo magmatico e envooltos por material felsico esbranguica		Paixão e Perrella (2004)
SD092	- 16.028133	-40.0094672	8227690.01	392006	Leito de córrego		Gnaisse, Bt- xisto máfico	Complexo Itapetinga	Gnaisse cinza, médio, com intercalações de Bt-xisto máfico (biotitito; anfibolito biotitizado). Ocorrem veios pegmatíticos		Paixão e Perrella (2004)
SD095	-16.0151	-39.9815056	8229146.2	394991	Corte de estrada		Bt-gnaisse; Biotitito	Embasamento Riaciano arco- derivado	Bt-gnaisse com intercalação de Bt-xisto máfico (biotitito)	Bandamento gnaissico	Paixão e Perrella (2004)
SD102	- 16.042877	-39.9922513	8226067.82	393856	Leito de rio		Paragnaisse; Ortognaisse	Complexo Itapetinga	Contato entre orto e paragnaisse. Ortognaisse é cortato por veios e bolsões pegmatíticos e contpém intercalação de biotitito. Ocorrem tension gashes no paragnaisse		Paixão e Perrella (2004)
SD104	۔ 16.000417	-39.9270597	8230797.34	400809	Margem de estrada		Biotitito; Bt- gnaisse	Embasamento Riaciano arco- derivado	Rocha máfica biotititizada (biotitito) disposta em faixas métricas e com intercalações de Bt-gnaisse com Grt. Cortado por veios de qzto deformados, com pinch and sewll	Bandamento gnaissico	Paixão e Perrella (2004)
SD113	- 15.998227	-39.9627594	8231022.23	396988			Bt-Hb-Qz- monzonito; Microgabro	Complexo Salto da Divisa	Bt-Hb-granitoide, grosso, rosado. Ocorrem bolsões irregulares de microgranito cinza. Cortado por veios pegmatíticos que atingem até 60cm. Localmente cisalhado		Paixão e Perrella (2004)
SD118	- 16.003395	-39.9585561	8230452.52	397440			Bt-Hb-Qz- monzonito; Microgabro	Complexo Salto da Divisa	Granitoide rosado, grosso, rico em enclaves máficos facetados, de granulação fina e tamanhos decimétricos. O microgabro também ocorre em lajedo e é cortado por veios graniticos		Paixão e Perrella (2004)
SL007	- 15.555881	-40.2198153	8279816.12	369197	Encosta de morro	Intemperizado	Xisto; Quartzito	Grupo Macaúbas	Xisto cinza a avermelhado, fino, com presença de quartzito fino esbranquiçado-amarelado.	Xistosidade	Projeto Itapetinga- Canavieiras (2007)

SL012	- 15.613202	-40.1601786	8273510.4	375627	Encosta de morro	Intemperizado	Ortognaisse; Biotitito	Complexo Itapetinga	Gnaisse cinza, fino, com presença de níveis máficos ao longo da foliação.	Bandamento gnaissico	Projeto Itapetinga- Canavieiras (2007)
SL014	- 15.596325	-39.8547233	8275532.29	408368	Lajedo	Moderadamente intemperizado	Ortognaisse	Complexo Ibicuí-Ipiaú	Gnaisse cinza, mesocrático, fino. Composição: Qz-Pl- Bt-Anf		Projeto Itapetinga- Canavieiras (2007)
SL017	- 15.752822	-39.5098913	8258339.74	445379	Corte de estrada		Metapelito	Grupo Rio Pardo	Rocha composta por biotita e quartzo		Projeto Itapetinga- Canavieiras (2007)
SL021	- 15.894944	-39.5428811	8242609.86	441885	Corte de estrada		Granito-gnaisse	Complexo Salto da Divisa	Granito-gnaisse cinza claro a esbranquiçado, de composição: Ab-Qz-Mc-Bt	Foliação	Projeto Itapetinga- Canavieiras (2007)
SL059	- 15.728528	-39.8983338	8260888.4	403754	Lajedo		Quartzito	Sequência meta- sedimentar de idade incerta	Quartzito esbranquiçado, fino, foliado, sericítico.	Foliação	Projeto Itapetinga- Canavieiras (2007)
SL060	- 15.744208	-39.8741264	8259164.78	406355	Leito de estrada	Moderadamente intemperizado	Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário cinza claro, muito fino, calcítico.		Projeto Itapetinga- Canavieiras (2007)
SL062	- 15.755145	-39.8647823	8257958.95	407361			Metacalcário	Sequência meta- sedimentar de idade incerta	Metacalcário cinza, muito fino, acamadado, calcítico	Acamamento	Projeto Itapetinga- Canavieiras (2007)
SL080	- 15.743015	-40.2474273	8259095.77	366357	Frente de lavra	Rocha fresca	Bt-gnaisse	Complexo Itapetinga	Gnaisse cinza escuro. Composição: PI-Kfs-Qz-Bt	Bandamento gnaissico	Projeto Itapetinga- Canavieiras (2007)

APÊNDICE F-Banco de dados: medidas estruturais

NOME	LATITUDE	LONGITUDE	ESTRUTURA	DIP_DIRE	DIP	ROCHA	REFERÊNCIA
AV001	-39.025371	-14.805177		0	0		Tese_AndersonVictoria
AV002	-39.010907	-14.941364		0	0		Tese_AndersonVictoria
AV003	-39.501038	-15.337433		0	0		Tese_AndersonVictoria
AV004	-39.403324	-15.568162		0	0		Tese_AndersonVictoria
AV005	-39.407979	-15.576888		0	0		Tese_AndersonVictoria
AV006	-39.490905	-15.765273		0	0		Tese_AndersonVictoria
AV007	-39.52589992	-15.87993822	Foliação espaçada	50	40	Gnaisse migmatítico; Metagabro	Tese_AndersonVictoria

AV008	-39.54568096	-15.89326693	Foliação milonítica	10	35	Ms-Bt-álcali-granito
AV010	-39.55430169	-15.92713063	Foliação milonítica	215	55	Augen-gnaisse; Metabásica
AV011	-39.5543332	-15.93861149	Foliação milonítica	195	40	Augen-gnaisse
AV013	-39.61465443	-16.04070892	Foliação milonítica	10	80	Bt-Hb-granito foliado
AV016	-39.96336416	-16.00895896	Foliação	70	85	Bt-Hb-granito foliado
AV018	-40.03698448	-16.09718089	Foliação espaçada	45	85	Paragnaisse migmatítico
AV019	-40.191067	-15.890203	Bandamento gnaissico	220	70	Bt-gnaisse; Bt-xisto máfico
AV020	-40.201263	-15.860326	Bandamento gnaissico	35	80	Bt-gnaisse; Bt-xisto máfico
AV022	-40.069598	-15.666664	Bandamento gnaissico	255	55	Kfs-granito-gnaisse: Bt-xisto máfico
AV024	-40.250969	-15.257885	5	0	0	
AV025	-40.113419	-15.232707		0	0	
AV026	-39.987422	-15.065676		0	0	
AV027	-39.411954	-15.580668		0	0	
AV029	-39.92307619	-16.0065492	Bandamento gnaissico	70	75	
AV030	-39.92529716	-16.03077802	Foliação espaçada	40	85	
AV033	-39.91112909	-16.0368386	Bandamento gnaissico	155	65	Bt-gnaisse; Biotitito
AV034	-39.91585624	-16.01462863	Foliação espaçada	40	80	Bt-Hb-granito
AV035	-39.911545	-16.024992	3 1 3	45	80	5
AV036	-39.95836622	-16.02352487	Bandamento gnaissico	55	90	Ortognaisse anfibolítico
AV042	-39.9882613	-16.0382212	Foliação espaçada	30	75	Bt-Hb-granito foliado
AV044	-39.52153162	-15.87267747	Foliação espaçada	120	20	Gnaisse granulítico
AV046	-39.57338859	-15.98528157	Foliação milonítica	120	40	Bt-gnaisse; Metabásica
AV047	-39.56726498	-15.90478799	Foliação milonítica	215	20	Augen-gnaisse; Metabásica
AV048	-39.5720265	-15.91042023	Foliação espaçada	190	45	Bt-Ms-álcali granito
AV049	-39.59581743	-15.89801395	Foliação espaçada	265	30	Bt-Ms-álcali granito
AV051	-39.67101372	-15.87877143	Xistosidade	240	50	Metariolito; Metabásica
AV052	-39.68322224	-15.88257046	Foliação	290	60	Metariolito; Metabásica; Bt-xisto; Quartzito
AV055	-39.51250112	-16.01048052	Foliação	125	55	Gnaisse equigranular fino
AV057	-39.47871084	-15.99026586	Foliação	60	80	Gnaisse equigranular fino
AV060	-39.6942068	-16.01530451	Foliação milonítica	245	85	Augen-gnaisse; Anfibolito
AV061	-39.62103056	-16.02341843	Foliação espaçada	180	75	Bt-Hb-granito
AV062	-39.5383863	-16.03557942	Foliação incipiente	90	55	Bt-Hb-granito
AV063	-39.53203038	-16.02641059	Foliação	110	45	Bt-Hb-granito
AV064	-39.57113781	-15.93665415	Foliação milonítica	185	50	Augen-gnaisse
AV0665	-39.58074893	-15.94814039	Xistosidade	30	55	
AV068	-39.58640008	-15.99348637	Foliação espaçada	110	65	Bt-granito
AV071	-39.5536461	-15.91607706	Foliação milonítica	220	50	Bt-Ms-álcali-granito foliado
AV072	-39.55319277	-15.9554531	Foliação milonítica	195	85	Augen-gnaisse; Metabásica
AV074	-39.560984	-15.959123	Dique	205	70	Augen-gnaisse; Metabásica (Dique)
AV075	-39.64635336	-15.93432023	Foliação	230	65	Bt-granito porfirítico com enclaves
AV077	-39.62560922	-15.90505746	Foliação	245	60	Bt-granito
AV078	-39.87804816	-15.9090886	Foliação	210	75	Bt-álcali-granito
AV079	-39.86725653	-15.89992028	Foliação espaçada	120	40	Bt-álcali-granito
AV080	-39.88951161	-15.86146371	Foliação espaçada	180	15	Bt-Ms-álcali-granito
AV081	-39.72225041	-15.86710898	Bandamento gnaissico	155	65	Gnaisse migmatítico
AV082	-39.69804291	-15.87678442	Foliação milonítica	110	60	Augen-gnaisse
AV086	-39.55723843	-15.88988883	Foliação milonítica	210	40	Augen-gnaisse; Metabáscia

Tese_AndersonVictoria Tese_Anderson Tese_AndersonVictoria Tese_AndersonVictoria

AV087	-39.68248689	-16.00160997	Foliação
AV088	-39.89740082	-15.91275139	Foliação
AV090	-39.88637316	-15.84999849	Foliação milonítica
AV091	-39.794958	-15.885834	Foliação
AV092	-39.74945	-15.872481	Bandamento gnaissico
AV093	-39.72988347	-15.8732064	Foliação milonítica
AV094	-39.92104897	-15.90671889	Foliação espaçada
AV095	-39.98585707	-15.95211557	Xistosidade
AV096	-39.9733342	-15.99137475	Foliação
AV097	-39.89141975	-15.90011263	Foliação espaçada
AV098	-39.87784489	-15.932867	Bandamento gnaissico
AV099	-39.71788906	-15.86367928	Foliação milonítica
AV102	-39.74879	-15.784867	Bandamento gnaissico
AV104	-39.72518674	-15.80357257	Xistosidade
AV105	-39.74379391	-15.83667233	Foliação
AV106	-39.991912	-15.667729	Bandamento gnaissico
AV107	-39.951948	-15.62547	Foliação espaçada
AV108	-39.983478	-15.598347	Foliação espaçada
AV109	-40.049451	-15.698775	Foliação milonítica
AV111	-40.01063705	-15.72285753	Foliação espaçada
AV112	-40.0102	-15.731152	Foliação espaçada
AV113	-40.007063	-15.768978	Foliação espaçada
AV116	-39.97876924	-15.88629337	Foliação milonítica
AV117	-39.98960747	-15.90404255	Foliação milonítica
AV118	-39.975101	-15.874683	Foliação milonítica
AV120	-39.93102357	-15.84513336	Bandamento gnaissico
AV121	-39.90309211	-15.84050514	Bandamento gnaissico
AV123	-40.059878	-15.696775	Foliação
AV124	-40.081065	-15.715005	Foliação
AV127	-40.170153	-15.818703	Foliação
AV129	-40.202044	-15.867157	Foliação milonítica
AV130	-40.198584	-15.852262	Foliação espaçada
AV132	-40.250964	-15.721316	Foliação espaçada
AV133	-40.22340845	-15.72249661	Foliação espaçada
AV134	-40.236793	-15.724826	Foliação
AV135	-40.213148	-15.741916	Bandamento gnaissico
AV136	-40.168338	-15.766214	Foliação espaçada
AV137	-40.11354718	-15.84080423	Bandamento gnaissico
AV138	-40.10460905	-15.84431829	Bandamento gnaissico
AV141	-40.193027	-15.853541	Foliação espaçada
AV142	-40.174567	-15.912107	Bandamento gnaissico
AV143	-40.128496	-15.911841	Bandamento gnaissico
AV144	-40.08426074	-15.93576157	Bandamento gnaissico
AV146	-39.940469	-15.671377	Foliação espaçada
AV147	-39.891985	-15.638386	Foliação espaçada
AV148	-39.880159	-15.582089	Bandamento gnaissico
AV149	-40.291871	-15.355242	

210 45 Bt-gnaisse; Aplito 195 30 Aplito; Bt-xisto máfico 185 20 Augen-gnaisse 170 40 Gnaisse migmatítico 190 70 Bt-gnaisse; Metabásica 140 80 Granitoide megaporfirítico milonítico 240 60 Bt-álcali-granito porfirítico 235 70 Anfibolito; Bt-gnaisse 45 80 Bt-Hb-granito foliado 225 70 Bt-granito porfirítico Bt-gnaisse porfirítico; Metabásica 130 35 135 85 Bt-xisto máfico; Augen-gnaisse Bt-gnaisse; Dique máfico 145 80 70 Bt-xisto; Metabásica 140 140 85 Bt-gnaisse porfirítico 245 35 Bt-gnaisse; Bt-xisto máfico Bt-Hb-granito 245 80 335 88 Bt-Hb-granito 270 35 Gnaisse milonítico 80 Álcali granito foliado 235 Álcali granito foliado 310 60 180 20 Sienito 150 20 Gnaisse porfirítico; Metabásica 145 30 Augen-gnaisse 160 20 Augen-gnaisse Gnaisse bandado; Metabásica 170 30 160 25 Gnaisse bandado; Metabásica 305 25 Álcali-granito foliado 350 80 Álcali-granito foliado 245 70 Sienito 190 70 Bt-gnaisse milonítico; Bt-xisto máfico 190 50 Álcali granito foliado; Pegmatito 295 85 Bt-gnaisse 305 80 K-feldpato metassomatito com granada 85 Álcali granito foliado 110 290 70 Bt-gnaisse; Pegmatito 235 40 Bt-gnaisse 210 60 Bt-Hb-gnaisse 195 70 Bt-Hb-gnaisse 200 70 Álcali granito foliado; Pegmatito; Gnaisse bandado 35 65 235 65 Gnaisse bandado; Bt-xisto máfico 60 70 Bt-gnaisse; Metabásica 130 60 225 Quartzito 50 265 30 Bt-gnaisse 0 0

Tese AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese AndersonVictoria Tese AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese AndersonVictoria Tese AndersonVictoria Tese AndersonVictoria Tese_Anderson Tese_AndersonVictoria Tese_AndersonVictoria Tese AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese AndersonVictoria Tese_AndersonVictoria Tese AndersonVictoria Tese_AndersonVictoria Tese_Anderson Tese_AndersonVictoria Tese AndersonVictoria Tese AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria
AV150	-39.67653251	-15.89225446	Foliação
AV151			Foliação espaçada
AV152	-39.758734	-15.773502	Foliação
AV155	-39.69617489	-15.90163656	Foliação espaçada
AV157	-39.69143189	-15.89478016	Foliação espaçada
AV158	-39.705347	-15.913955	Zona de cisalhamento
AV159	-39.809295	-15.918969	Foliação milonítica
AV163	-39.57906121	-15.81176083	Foliação
AV164	-39.59438924	-15.81545074	Foliação
AV169	-39.56260791	-15.90106886	Foliação milonítica
AV170	-39.6985747	-16.07651992	Xistosidade
AV171	-39.737302	-16.054854	Xistosidade
AV172	-39.781972	-15.98948	Xistosidade
AV173	-39.782643	-15.984234	Foliação milonítica
AV174	-40.252128	-15.630091	Xistosidade
AV175	-40.21087	-15.625179	Foliação milonítica
AV176	-40.11379	-15.585893	Foliação milonítica
AV177	-40.067926	-15.624014	Xistosidade
CG-022	-40.24500264	-15.51947139	Xistosidade
CG-023	-40.22954069	-15.50866465	Xistosidade
CG-024	-40.22721309	-15.499853	Foliação
CG025	-40.22039392	-15.55911168	Xistosidade
CG-026	-40.23436652	-15.59676474	Xistosidade
CG-027	-40.06684721	-15.64493045	Foliação espaçada
CG-028	-40.04111936	-15.59958187	Foliação milonítica
CG-029	-40.03014966	-15.57853048	Foliação espaçada
CG-030	-40.02431436	-15.56656813	Foliação milonítica
CG-031	-40.01631164	-15.53292914	Foliação milonítica
CG-032	-40.00962899	-15.52236124	Foliação
CG-034	-40.00341258	-15.51645564	Foliação espaçada
CG-035	-40.03836174	-15.5011741	Foliação
CG-036	-40.04300988	-15.66171432	Foliação milonítica
CG-038	-39.99876186	-15.66859365	Bandamento gnaissico
CG-039	-40.06891406	-15.66241477	Foliação espaçada
CG-043	-40.01402646	-15.71692605	Foliação espaçada
CG-044	-40.06957592	-15.70145375	Foliação espaçada
CG-045	-40.07211387	-15.71461451	Foliação espaçada
CG-047	-40.08565215	-15.72379268	Foliação
CG-055	-40.16278899	-15.69944312	Foliação espaçada
CG-058	-40.07511708	-15.60467516	Foliação milonítica
CG-059	-40.08602257	-15.59165988	Bandamento gnaissico
CG-063	-40.26033033	-15.63604964	Xistosidade
CG-064	-40.24924343	-15.69772903	Foliação milonítica
CG-066	-40.25984528	-15.75491658	Foliação espaçada
CG-069	-40.23941245	-15.78549287	Foliação milonítica
CG-070	-40.20332917	-15.88907871	Bandamento gnaissico
CG071	-40.26315945	-15.86979077	Foliação

305	60	Ms-Bt-álcali-granito
285	50	Ms-Bt-álcali-granito
295	70	Metabásica
310	70	Ms-Bt-álcali-granito
330	70	Ms-Bt-álcali-granito
340	90	Bt-granito
165	85	Augen-gnaisse; Dique anfibolítico
40	75	Filito; Metacalcário
20	75	Metacalcário
40	60	Augen-gnaisse; Metabásica
30	85	Cianita-Bt-Ms-xisto
340	60	Metadiamictito
220	85	Metadiamictito
210	85	Augen-gnaisse megaporfirítico
280	65	Bt-Ms-xisto
80	80	Bt-gnaisse milonítico
230	75	Augen-gnaisse; Metabásica
250	85	Xisto aluminoso
260	90	Qz-Ser-xisto
220	80	Ser-quartzito
220	80	Grt-Ci-Xisto
240	45	
310	50	Qz-Ser-Bt-Ci-xisto
270	80	Hb-Bt-gnaisse
300	90	Gnaisse milonítico
290	90	Gnaisse leucocrático, fino (leptito)
300	90	Gnaisse milonítico
290	90	Gnaisse milonítico
240	90	Grt-gnaisse anfibolítico
270	90	Gnaisse migmatítico
250	90	Gnaisse leucocrático, fino (leptito)
60	90	Hb-Bt-gnaisse
210	60	Gnaisse leucocrático equigranular fino (Leptito)
240	50	Gnaisse leucocrático equigranular fino (Leptito)
260	80	Hb-Bt-gnaisse
315	80	Bt-gnaisse
340	80	Bt-gnaisse
350	70	Hb-gnaisse
330	45	Bt-gnaisse
240	70	Gnaisse anfibolítico milonítico
250	80	Hornblenda-gnaisse
275	80	Quartzito
290	85	Bt-gnaisse milonítico
265	80	Sill-Ms-gnaisse
250	50	Bt-gnaisse milonítico
210	80	Gnaisse migmatítitco
200	70	Migmatito

Tese_AndersonVictoria Folha Itapetinga (1974) Folha Itapetinga (1974) Folha Itapetinga (1974) Projeto Sul da Bahia (1974) Folha Itapetinga (1974)

CG-076	-40 18906852	-15 01/13621	Foliação espaçada
CG-078	-40.20386651	-15 92061569	Foliação espaçada Foliação milonítica
CG-079	-40 2138597	-15 92795806	Foliação espacada
CG-089	-40 09443639	-15 93351966	Foliação espaçada
CG-090	-40 07737102	-15 95277266	Bandamento gnaissico
CG-091	-40 04431454	-15 98196008	Bandamento gnaissico
CG-092	-40 01742024	-15 99220875	Bandamento gnaissico
CG-093	-40.00235197	-15 00700100	Egliação milonítica
CG-095	-40.00233137	-15.82180802	Foliação espacada
CG-111	-30 0/638/76	-15.66086063	Foliação espaçada
CG-118	-39.858/7157	-15.53304818	Foliação espaçãoa Foliação milonítica
CG 120	20 84820261	15 53003250	Foliação milonítica
CG 122	40.00205454	15 7706254	Foliação milonítica
CG 124	40.09393434	15 92521261	Foliação
CG 127	40.13303326	15 92599626	Foliação
CG-127	40.07344007	15.02000020	Foliação
00074	-40.033439	-15.00330209	Follação
CG274	-39.51/64//6	-15.75369924	Alsiosidade Faliação
CG-275	-39.54566626	-15./301/011	Follação
CG-276	-39.54463092	-15./1938/69	Xistosidade
00.070	-39.54511202	-15.0/43401/	Xistosidade
CG-278	-39.54294456	-15.65360053	Xistosidade
CG-279	-39.53166034	-15.62529261	Xistosidade
CG-280	-39.51760222	-15.61532736	Xistosidade
CG-285	-39.50318821	-15.51264975	Xistosidade
CG-289	-39.66761475	-15.53364794	Follação espaçãoa
CG290	-39.64709813	-15.55430399	Foliação milonítica
CG-293	-39.69057041	-15.59308351	Foliação espaçada
CG-311	-39.63099407	-15.69660999	Foliação espaçada
CG-312	-39.59973345	-15.72813123	Xistosidade
CG-717	-40.16041531	-15.53098227	Foliação
CG-721	-40.12010924	-15.58935035	Foliação milonítica
CG-742	-40.23103701	-15.79728769	Foliação milonítica
CG-743	-40.21559725	-15.75330838	Foliação espaçada
CG-744	-40.20630156	-15.75724117	Foliação milonítica
CG-746	-40.17284688	-15.75489203	Foliação
CG-747	-40.04269553	-15.64534457	Foliação milonítica
CG-748	-40.01760378	-15.62010693	Foliação espaçada
CG-749	-40.00841319	-15.61106223	Foliação milonítica
D001	-39.697511	-16.229378	
D002	-39.62020276	-16.17218524	Foliação espaçada
D003	-39.58771764	-16.00434171	Foliação
D004	-39.57678016	-15.99531824	Foliação milonítica
D005	-39.57332896	-15.94219743	Foliação espaçada
D008	-39.55118515	-15.94455137	Foliação milonítica
D009	-39.59657783	-15.85616628	Bandamento gnaissico
D010	-39.59749333	-15.86496581	Foliação espaçada
D012	-39.60949271	-15.91076024	Foliação

210	90	Gnaisse migmatítitco
200	90	Gnaisse migmatítitco
210	90	Granitoide porfirítico
60	80	Gnaisse leucocrático, equigranular, fino a médio (leptito)
50	80	Bt-Hb-gnaisse
50	80	Bt-gnaisse
50	70	Bt-gnaisse
40	90	Augen-gnaisse
225	70	Bt-gnaisse migmatítico
140	80	Gnaisse
240	60	Augen-gnaisse
220	45	Augen-gnaisse
350	45	Bt-gnaisse milonítico
220	70	Bt-gnaisse: Sienito
300	40	Bt-gnaisse
275	45	Hb-Bt-gnaisse
300	65	
0	10	Metapelito
285	25	Metapelito
210	30	Metapelito
240	20	Metapelito
200	45	Metapelito
265	45	Metapelito
130	40	Metapelito
260	20	Gnaisse granulítico
270	30	Gnaisse granulítico
280	45	Bt-granito-gnaisse
180	80	Meta-arenito impuro
330	45	Meta-pelito
245	55	Hb-gnaisse
250	85	Bt-gnaisse milonítico: Metabásica
250	65	Bt-gnaisse milonítico
260	65	Bt-gnaisse
285	70	Bt-gnaisse milonítico
240	10	Bt-gnaisse (Sienito?)
275	80	Augen-gnaisse
295	90	Bt-granito-gnaisse
135	85	Granito-gnaisse milonítico
0	0	3 1 1 1
10	80	Bt-granito
150	30	Bt-Ms-granito
105	25	Bt-gnaisse: Metabásica
185	35	Gnaisse migmatítico
185	45	Augen-gnaisse: Metabásica
155	40	Bt-gnaisse
320	80	Bt-Ms-álcali-granito
245	40	Bt-gnaisse: Granito
2.0		Et ghalooo, oranno

Folha Itapetinga (1974) Projeto Sul da Bahia (1974) Folha Itapetinga-Canavieiras (2007) Folha Itapetinga (1974) Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria

D013	-39.61683561	-15.9134063	Foliação espaçada
D016	-39.59829858	-15.93048842	Foliação milonítica
D018	-39.66822318	-15.87189159	Foliação espaçada
D019	-39.66005883	-15.88421067	Foliação espaçada
D020	-39.64769318	-15.88147352	Foliação espaçada
D021	-39.62894743	-15.89758522	Foliação espaçada
D022	-39.87717379	-15.52803204	Bandamento gnaissico
D023	-39.8516908	-15.53362964	Bandamento gnaissico
D025	-39.62152611	-16.08718586	Foliação
D026	-39.62403715	-16.06737441	Xistosidade
D028	-39.58519569	-15.96833946	Foliação espaçada
D029	-39.56006006	-15.97606024	Foliação milonítica
D030	-40.20188	-15.869081	Foliação milonítica
D031	-40.1808	-15.832788	
D032	-40.175933	-15.829795	
D033	-40.158055	-15.807525	Foliação espaçada
D034	-40.147248	-15.799892	Bandamento gnaissico
D037	-40.149085	-15.779752	Bandamento gnaissico
D038	-40.153901	-15.770085	Bandamento gnaissico
D040	-39.890486	-15.672642	Foliação espaçada
D041	-39.891471	-15.680613	Foliação milonítica
D042	-39.892677	-15.686418	Foliação milonítica
D043	-39.889833	-15.706678	Foliação milonítica
D047	-39.956563	-15.772413	Xistosidade
D048	-39.962702	-15.755801	Xistosidade
D049	-39.980068	-15.743056	Bandamento gnaissico
D050	-39.984612	-15.732592	Bandamento gnaissico
D052	-39.97161171	-15.72635627	Foliação espaçada
D055	-40.101092	-15.643961	Foliação espaçada
D057	-39.878283	-15.571275	Foliação
D058	-39.88769	-15.573777	Foliação espaçada
D059	-39.891591	-15.568998	Foliação espaçada
D060	-39.897208	-15.574529	Foliação milonítica
D061	-39.911416	-15.562937	Foliação espaçada
D062	-39.902385	-15.566186	Foliação
D068	-39.905815	-15.634723	Foliação espaçada
D070	-40.090842	-15.664033	Foliação espaçada
D072	-40.079424	-15.650176	Foliação espaçada
D074	-40.08686	-15.637262	Foliação
D077	-40.091078	-15.668719	Foliação espaçada
D078	-40.101659	-15.680521	Bandamento gnaissico
D079	-40.118834	-15.685285	Foliação espaçada
D080	-40.138793	-15.694139	Bandamento gnaissico
D081	-40.14674029	-15.69545301	Foliação espaçada
D083	-40.161194	-15.704861	Foliação espaçada
D084	-40.124691	-15.698555	Foliação espaçada
D085	-40.134212	-15.705053	Bandamento gnaissico

245	60	Bt-álcali granito com muscovita
245	50	Bt-gnaisse
310	60	Metadiorito
280	50	Metadiorito
280	60	Metadiorito
200	40	Bt-álcali-granito; Bt-xisto máfico
215	50	Bt-gnaisse; Traquito
235	60	Bt-gnaisse; Traquito
20	80	Estaurolita-Grt-Ms-xisto
210	75	Ms-xisto; Grafita-filito
30	25	Bt-álcali-granito; Bt-xisto máfico
110	40	Augen-gnaisse; Metabásica
205	30	Bt-gnaisse milonítico; Bt-xisto máfico
140	90	Gnaisse bandado; Álcali-granito
160	80	Gnaisse bandado
265	45	Bt-gnaisse
240	45	Bt-gnaisse bandado
175	40	Bt-ortognaisse bandado
210	80	Bt-gnaisse bandado; Metabásica; Pegmatito
225	40	Bt-gnaisse, milonítico; Metabásica
235	30	Bt-gnaisse
220	80	Metabásica; Augen-gnaisse
240	45	Augen-gnaisse
255	15	Metabásica; Bt-gnaisse
240	15	Xisto aluminoso
90	35	Gnaisse saprolitizado
110	10	Gnaisse saprolitizado
260	45	Gnaisse saprolitizado
260	70	Alcali-granito foliado
265	45	Bt-gnaisse; Anfibolito
250	75	Bt-gnaisse; Anfibolito
245	60	Bt-gnaisse
235	65	Augen-gnaisse; Traquito; Metabásica
210	70	Gnaisse equigranular fino; Metabásica
240	60	Gnaisse equigranular fino; Metabásica
260	70	Gnaisse decomposto
270	70	Kfs-granito-gnaisse fenitizado
245	50	Kfs-granito-gnaisse fenitizado
255	55	Alcali-granito foliado
270	45	Kfs-granito-gnaisse fenitizado
350	80	K-feldspato-Bt-fenito
330	65	Kfs-granito-gnaisse fenitizado
355	75	Kfs gnaisse fenitizado; Metabásica
325	65	Kfs-fenito
330	45	Kfs-fenito
0	45	Kfs-granito-gnaisse fenitizado
0	30	Kfs-granito-gnaisse fenitizado

Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_Anderson Tese_AndersonVictoria Projeto Extremo Sul da Bahia (2004) Tese_AndersonVictoria Tese AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_Anderson Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria

D086	-40.138758	-15.707336	Foliação espaçada	315	45	Kfs-granito-gnaisse fenitizado
D089	-40.12446	-15.622513	Foliação milonítica	255	85	Migmatito; Pegmatito
D091	-40.117261	-15.649454	Foliação espaçada	270	65	Migmatito
D093	-40.142441	-15.613873	Foliação	120	85	Ortognaisse (Fenito)
D094	-40.252062	-15.669461	Xistosidade	275	80	Grt-Ms-Bt-xisto
D095	-40.240495	-15.675649	Foliação espaçada	270	85	Bt-gnaisse
D098	-40.210746	-15.69531	Foliação espaçada	110	90	Gnaisse migmatítico
D099	-40.201169	-15.69863	Bandamento gnaissico	115	90	Gnaisse bandado; Metabásica
D100	-40.185598	-15.624667	Foliação espaçada	100	85	Bt-gnaisse
D101	-40.102692	-15.58904	Foliação milonítica	260	85	Bt-gnaisse milonítico
D106	-39.818851	-15.698895	Foliação espaçada	255	30	Bt-gnaisse
D-108	-39.81775276	-15.71580196	Foliação espaçada	150	70	Metabásica; Pegmatito
D-110	-39.81754754	-15.72385619	Foliação espaçada	260	30	Metacalcário
D-112	-39.8188988	-15.73346514	Foliação espaçada	265	30	Metacalcário
D114	-39.817766	-15.739557	Foliação milonítica	285	80	Augen-gnaisse
D115	-39.806844	-15.70684	Xistosidade	225	45	Metacalcário sericítico
D117	-39.796758	-15.712731	Bandamento gnaissico	125	85	Metabásica; Bt-gnaisse bandado
D118	-39.79319	-15.719587	Bandamento gnaissico	120	90	Bt-gnaisse
D119	-39.79068725	-15.72827932	Xistosidade	150	90	Bt-xisto
D120	-39.787085	-15.738091	Bandamento gnaissico	130	90	Bt-gnaisse migmatítico
D121	-39.78637464	-15.74426297	Xistosidade	120	75	Bt-xisto
D125	-39.875079	-15.519275	Foliação milonítica	230	50	Bt-gnaisse; Fonolito
D126	-39.903015	-15.482832		0	0	
D127	-39.912378	-15.467321		0	0	
D128	-39.921895	-15.442536		0	0	
D129	-39.919506	-15.447651		0	0	
D130	-39.956248	-15.431396		0	0	
D131	-39.977714	-15.367671		0	0	
D132	-40.001053	-15.306078		0	0	
D133	-40.020137	-15.263812		0	0	
D134	-40.035315	-15.240106		0	0	
D135	-40.053729	-15.221601		0	0	
D136	-40.071928	-15.204794		0	0	
D137	-40.076854	-15.139856		0	0	
D138	-40.083738	-15.168271		0	0	
D139	-40.103001	-15.205624		0	0	
D140	-40.100782	-15.217892		0	0	
D141	-40.128433	-15.22905		0	0	
D142	-40.141566	-15.202936		0	0	
D143	-40.125065	-15.237515		0	0	
D144	-40.148002	-15.249603	Foliação milonítica	285	80	Bt-gnaisse; Bt-xisto máfico
D145	-40.169852	-15.253598		0	0	
D146	-40.180056	-15.251932		0	0	
D147	-40.090415	-15.229215		0	0	
D148	-40.097758	-15.223395	-	0	0	
D152	-39.819709	-15.528077	Foliação espaçada	285	40	Sienito
D154	-39.79412641	-15.53609961	Foliação espaçada	280	85	

Tese_AndersonVictoria Folha Itapetinga (1974) Tese_Anderson Tese_Anderson Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_AndersonVictoria Tese_Anderson Tese_AndersonVictoria Tese_Anderson Tese_AndersonVictoria Tese_AndersonVictoria

D156	-39.768858	-15.5559	Bandamento gnaissico	290	55	Ortognaisse; Basalto (dique)
D157	-39.737267	-15.552685	Bandamento gnaissico	280	85	Ortognaisse
D158	-39.729831	-15.514028	Bandamento gnaissico	265	65	Ortognaisse
D159	-39.719038	-15.499158	Foliação espaçada	255	55	
D160	-39.71165	-15.490786	Foliação espaçada	240	60	
D161	-39.177783	-15.241245		0	0	
D162	-39.176799	-15.222163		0	0	
D163	-39.263426	-15.138516		0	0	
D164	-39.264878	-15.13496		0	0	
D165	-39.264619	-15.117606		0	0	
D166	-39.272047	-15.105765		0	0	
D167	-39.288258	-15.095028		0	0	
D168	-39.295352	-15.072205		0	0	
D169	-39.304468	-15.071867		0	0	
D170	-39.316859	-15.065051		0	0	
D171	-39.317769	-14.966848		0	0	
D172	-39.33429	-14.993792		0	0	
D173	-39.331225	-15.035869		0	0	
D174	-39.340957	-15.083446		0	0	
D175	-39.42834	-15.175778		0	0	
D176	-39.490163	-15.298059		0	0	
GC033	-39.99259001	-15.53093534	Foliação	250	70	Quartzito
IF537	-40.12741109	-16.13750691	Foliação espaçada	50	85	Migmatito
IF538	-40.11360004	-16.16207464	Foliação espaçada	210	70	Migmatito
IF539	-40.11916903	-16.17994364	Foliação espaçada	40	70	Migmatito
IF540	-40.12850973	-16.18287929	Foliação espaçada	55	65	Migmatito
IF542	-40.10757997	-16.0828609	Foliação espaçada	30	90	Migmatito
IF543	-40.0897799	-16.08377528	Bandamento gnaissico	45	65	Migmatito
IF-545	-39.94912686	-16.1224614	Foliação	225	70	Gnaisse migmatítico; Calcita pegmatítica
IF-548	-39.84238309	-16.01722069	Foliação milonítica	75	45	Augen-gnaisse migmatítico
IF563	-40.22322351	-16.15262401	Foliação espaçada	160	60	Migmatito
JC009	-40.25193941	-16.15571483	Foliação espaçada	215	75	Migmatito
JC010	-40.21762988	-16.14985181	Foliação espaçada	215	75	Migmatito
JC012	-40.18670064	-16.1472325	Foliação espaçada	40	50	Migmatito
JC014	-40.05976975	-16.08556896	Foliação espaçada	35	90	Migmatito
JC015	-40.00956961	-16.09001036	Foliação espaçada	40	90	Migmatito
JC016	-39.98241407	-16.01985646	Bandamento gnaissico	240	90	Hb-Bt-gnaisse
JC017	-39.97999383	-16.06532168	Foliação espaçada	40	90	Granito-gnaisse migmatítico
JC023	-39.66468763	-16.09231799	Xistosidade	50	70	Cianita-Bt-xisto
JC029	-39.76458724	-16.08304517	Foliação	50	80	Cianita-Bt-xisto
JC031	-39.69455705	-16.08782218	Xistosidade	165	60	Cianita-Bt-xisto
JC035	-39.62159592	-16.07780978	Xistosidade	220	60	Quartzito
JC036	-39.61769646	-16.04868883	Foliação espaçada	20	80	Bt-gnaisse; Bt-xisto máfico
JC037	-39.609885	-16.00777199	Foliação	160	40	Bt-Ms-gnaisse
JC041	-39.62050986	-16.09414134	Xistosidade	190	60	Cianita-biotita-xisto
JC044	-39.60984449	-16.18407843	Xistosidade	170	75	Ms-Bt-xisto
JC073	-40.12244392	-16.14410479	Foliação espaçada	55	60	Migmatito

Tese_AndersonVictoria Folha Itapetinga (1974) Projeto Extremo Sul da Bahia (2004) Projeto Extremo Sul da Bahia (2004) Folha Itapetinga (1974) Folha Itapetinga (1974) Folha Itapetinga (1974) Projeto Sul da Bahia (1974) Folha Itapetinga (1974) Folha Itapetinga (1974) Projeto Sul da Bahia (1974) Folha Itapetinga (1974) Projeto Extremo Sul da Bahia (2004) Folha Itapetinga (1974) Projeto Extremo Sul da Bahia (2004) Folha Itapetinga (1974)

10004	40.0004.0707	40.00070700	
	-40.20310/9/	-10.002/3/38	Foliação espaçada
JC084	-40.22351219	-16.03009020	Poliação espaçãoa
JC201	-39.84375261	-16.11844391	Bandamento gnaissico
JC206	-39.78486226	-16.1841381	Bandamento gnaissico
JC209	-39.82703187	-16.03143281	Bandamento gnaissico
JC210	-39.85153276	-16.00161264	Foliação milonítica
JC211	-39.83418842	-16.00500257	Bandamento gnaissico
JC219	-39.64711259	-16.12625436	Xistosidade
JC221	-39.97085571	-16.01059912	Bandamento gnaissico
JC248	-39.96953378	-16.04215259	Bandamento gnaissico
JC256			Bandamento gnaissico
JM006	-39.89984914	-16.0437675	Foliação milonítica
JM026	-40.25460578	-15.70470009	Xistosidade
JM031	-39.6427524	-16.11951972	Foliação
JM032	-39.84033124	-16.11052081	Xistosidade
JM033	-39.83745922	-16.13462083	Xistosidade
JM034	-39.81707448	-16.16644802	Xistosidade
JM040	-39.78210696	-16.16748637	Xistosidade
JM060	-39.75907773	-16.03630567	Foliação
JM061	-39.73719108	-16.02155409	Xistosidade
JM062	-39 69309494	-16 00841975	Foliação milonítica
JM066	-39 71353012	-16 08048875	Xistosidade
JM067	-39 81973568	-16.04890656	Xistosidade
IM068	-39 82011717	-16.06701659	Xistosidade
JM069	-39 55803418	-16 20823436	Xistosidade
IM073	-40 23436216	-15 59295721	Foliação milonítica
IM075	-39 75021817	-16.07542858	Xistosidade
IM076	-39 75275634	-16.06711991	Xistosidade
IM077	-39 86948759	-16.08614762	Xistosidade
IM078	-30 85011600	-16.08636286	Xistosidade
	-30 83262008	-16.020/01	Bandamento gnaissico
	20 91201276	16 02610424	Eoliação milopítico
	20 7/226102	16 1190617	Vistosidado
	-39.74220192	16 15720011	Xistosidade
	-39.73033090	-10.13720011	Xistosidade
JIVIU83	-39.73314933	-10.13936517	Xistosidade
JIVI004	-39.30332130	-10.17022215	Vistosidade
JIVIU85	-39.54183458	-10.1709827	
JIVIU87	-39.53806962	-16.07363515	Foliação milonítica
JMU88	-39.87251261	-16.13649677	Bandamento gnaissico
JM095	-39.57898417	-16.1507623	Xistosidade
JM096	-39.55323674	-16.14034801	Xistosidade
JM097	-39.50274812	-16.03217844	Foliação espaçada
JM098	-39.50409303	-16.01050042	Foliação milonítica
JM099	-39.84150116	-16.14029605	Xistosidade
JM102	-39.58799723	-16.05934423	Foliação espaçada
JM105	-39.641695	-16.08157732	Xistosidade
JM106	-39.66653941	-16.08379747	Xistosidade

30	90	Migmatito
50	60	Migmatito
50	90	SII-gnaisse
70	70	Sill-gnaisse
140	40	Bt-gnaisse
80	60	Augen-gnaisse migmatítico
100	50	Gnaisse migmatítico
50	45	Sill-gnaisse
70	75	Bt-gnaisse migmatítico
40	80	Bt-gnaisse migmatítico
70	75	Bt-gnaisse
140	70	Bt-gnaisse milonítico
270	85	Bt-gnaisse (xisto?)
50	45	Grt-Ms-Bt-xisto
20	85	Sill-xisto
100	35	Sill-Grt-Bt-xisto
210	45	Xisto
100	80	Vt-xisto
155	80	Bt-xisto
170	40	Ms-xisto
240	70	Bt-gnaisse milonítico
0	80	Bt-Ms-xisto
145	55	Bt-gnaisse
140	30	Bt-xisto
50	60	Xisto
120	30	Bt-gnaisse milonítico
75	55	Ms-Bt-xisto
145	70	Ms-Bt-xisto
70	45	Bt-xisto
35	75	Sill-xisto; Calcissilicática; Grafita-xisto; Bt-xisto
115	55	Hb-Bt-gnaisse
80	50	Augen-gnaisse
10	30	Sill-xisto
60	75	Sill-xisto
100	30	Sill-Bt-xisto
20	85	Bt-xisto
65	55	Xisto
345	80	Bt-gnaisse milonítico
70	80	Hb-Bt-gnaisse
20	80	Ms-Bt-xisto
60	55	
280	65	Quartzito
155	70	Bt-Px-Hb-gnaisse milonítico
85	50	Sill-gnaisse
170	85	Bt-granito foliado
10	85	xisto
60	30	Bt-xisto

Projeto Sul da Bahia (1974) Folha Itapetinga (1974) Projeto Sul da Bahia (1974) Extremo Sul da Bahia (2004) Folha Itapetinga-Canavieiras (2007) Projeto Extremo Sul da Bahia (2004) Folha Itapetinga-Canavieiras (2007) Projeto Extremo Sul da Bahia (2004) Projeto Extremo Sul da Bahia (2004)

JM107	-39.7022857	-16.06253982	Xistosidade
JM109	-39.86939926	-16.18549475	Bandamento gnaissico
JM110	-40.06346121	-15.67735211	Foliação espaçada
JM110	-39.83896293	-16.15513192	Xistosidade
JM111	-39.83784748	-16.08055141	Xistosidade
JM112	-39.82730077	-16.07796855	Xistosidade
JM113	-39.75898439	-16.08429192	Xistosidade
JM114	-39.74481345	-16.08963041	Xistosidade
JM136	-39.78764438	-15.69260711	Bandamento gnaissico
JM137	-39.74184184	-15.69517953	Foliação milonítica
JM137	-39.65476417	-16.14482423	Xistosidade
JM138	-39.72976804	-15.68964929	Foliação milonítica
JM138	-39.6590757	-16.16221433	Xistosidade
JM139	-39.7165216	-15.68037678	Foliação milonítica
JM139	-39.60685979	-16.15077906	Foliação espaçada
JM141	-39.67761019	-15.6810391	Foliação milonítica
JM144	-39.7352282	-15.79486259	Xistosidade
JM145	-39.71907982	-15.83707835	Bandamento gnaissico
JM146	-39.80849177	-16.19459832	Xistosidade
JM147	-39.81643362	-16.1987938	Xistosidade
JM150	-39.77827474	-15.88706444	Bandamento gnaissico
JM154	-39.71717166	-15.79040399	Foliação milonítica
JM155	-39.87802464	-15.63365483	Foliação espaçada
JM173	-39.68771799	-16.01930669	Foliação milonítica
JM173	-39.7252729	-15.88307614	Foliação milonítica
JM177	-39.74434535	-16.09539335	Foliação espaçada
JM178	-39.80757281	-16.00981787	Foliação espaçada
JM179	-39.80177449	-16.004942	Xistosidade
JM180	-39.83787569	-16.01639221	Bandamento gnaissico
JM181	-39.84570935	-16.00989601	Foliação milonítica
JM182	-39.85913123	-16.01308321	Foliação milonítica
JM186	-39.58916462	-16.09648701	Xistosidade
JM187	-39.56114792	-16.09506697	Xistosidade
JM217	-40.26717656	-15.84269285	Foliação espaçada
JM218	-39.78968241	-15.7763611	Bandamento gnaissico
JM219	-39.7214944	-15.77540658	Foliação
JM223	-39.97842849	-15.87117081	Bandamento gnaissico
JM227	-39.67455483	-15.55268868	Foliação milonítica
JM228	-39.57673445	-16.09860959	Xistosidade
MK003	-39.9038006	-16.0398789	Foliação milonítica
MK004	-39.86259995	-16.09238955	Xistosidade
MK013	-39.58261412	-16.00110271	Foliação milonítica
MK016	-39.59473107	-16.15157027	Xistosidade
OM083	-39.6690642	-15.67907719	Foliação espaçada
OM-092	-39.67643935	-15.76625023	Foliação espaçada
OM-093	-39.69097324	-15.76784896	Foliação espaçada
OM-86	-39.74865861	-15.78800614	Foliação

20	85	Estaurolita-xisto
115	80	
240	70	Bt-gnaisse
70	60	Sill-xisto
50	55	Sill-Bt-xisto
105	45	Ms-Bt-xisto
75	50	Sill-Bt-xisto
230	85	Cianita-xisto
300	85	Ortognaisse
290	85	Ortognaisse milonítico
115	60	Sill-xisto
290	55	Ortognaisse milonítico
265	70	Sill-xisto, Quartzito
310	45	Gnaisse granítico milonítico
225	85	Bt-granito
300	50	Meta-monzogranito milonítico
200	70	Bt-Ms-gnaisse fino (xisto)
165	60	Bt-gnaisse; Anfibolito
140	70	Sill-xisto
350	85	Sill-xisto
210	60	Bt-gnaisse
160	90	Ortognaisse milonítico
220	65	Ortognaisse tonalítico
240	85	Gnaisse milonítico; Anfibolito
120	55	Granito-gnaisse milonítico
50	75	Quartzito
85	60	Quartzito
90	80	Bt-xisto
91	70	Bt-gnaisse
70	85	Bt-gnaisse
70	85	Augen-gnaisse
10	60	Metadiamictito
155	55	Ms-xisto
285	60	Bt-gnaisse; Anfibolito
130	85	Gnaisse granulítico
255	55	Meta-calcário
160	40	Ortognaisse; Anfibolito
290	65	Meta-monzonito
60	60	Grd-Ms-Bt-xisto
145	65	Augen-gnaisse
210	60	Sill-Bt-xisto
130	30	Ms-Bt-granito-milonítico
245	80	
290	60	Mármore
10	30	Mármore
30	20	Mármore
130	90	Migmatito porfiroblástico

~ --

Projeto Extremo Sul da Bahia (2004) Projeto Extremo Sul da Bahia (2004) Projeto Itapetinga-Canavieiras (2007) Projeto Extremo Sul da Bahia (2004) Folha Itapetinga-Canavieiras (2007) Folha Itapetinga-Canavieiras (2007) Projeto Extremo Sul da Bahia (2004) Folha Itapetinga-Canavieiras (2007) Projeto Extremo Sul da Bahia (2004) Folha Itapetinga-Canavieiras (2007) Projeto Extremo Sul da Bahia (2004) Folha Itapetinga-Canavieiras (2007) Folha Itapetinga-Canavieiras (2007) Folha Itapetinga-Canavieiras (2007) Projeto Extremo Sul da Bahia (2004) Projeto Extremo Sul da Bahia (2004) Folha Itapetinga-Canavieiras (2007) Folha Monte Pascoal (1974) Folha Itapetinga-Canavieiras (2007) Projeto Extremo Sul da Bahia (2004) Folha Itapetinga-Canavieiras (2007) Projeto Extremo Sul da Bahia (2004) Folha Itapetinga-Canavieiras (2007) Folha Monte Pascoal (1974) Folha Itapetinga-Canavieiras (2007) Folha Monte Pascoal (1974) Folha Itapetinga-Canavieiras (2007) Projeto Extremo Sul da Bahia (2004) Folha Itapetinga (1974) Folha Itapetinga (1974) Folha Itapetinga (1974) Folha Itapetinga (1974)

014 07	20 65678627	45 70700400	Foliooão
DIVI-67	-39.000/002/	-15.79726426	Follação Follação concordo
RO-100	-40.00209176	-15.72004206	Foliação espação
RO-100	-39.77924713	-15.57250001	Foliação espação
RO-137	-39.70120000	-10.00002001	Follação Foliação milonítico
R5143	-39.90334455	-15.65093255	
RS-144	-39.91669469	-15.66514516	Faina
RS-148	-39.83925493	-15.53810313	Follação
RS-152	-39.78219192	-15.58694692	Foliação milonítica
RS-153	-39.78060644	-15.6086478	Foliação espaçada
RS-154	-39.76405235	-15.61271426	Foliação
RS-155	-39.73910545	-15.63367786	Foliação
RS-156	-39.74384239	-15.66166618	Foliação
RS-157	-39.7267876	-15.66696476	Foliação
RS-158	-39.71685277	-15.66299083	Foliação milonítica
RS-159	-39.74264127	-15.56018468	Bandamento gnaissico
RS-160	-39.72597673	-15.55995139	Foliação milonítica
RS-161	-39.73215489	-15.53729314	Foliação milonítica
RS-162	-39.73194873	-15.52677911	Foliação milonítica
RS-163	-39.7189608	-15.50265867	Foliação milonítica
RS-166	-39.89565048	-15.69539803	Foliação milonítica
RS-167	-39.92276305	-15.76363409	Foliação espaçada
RS-168			Bandamento gnaissico
RS-170	-39.87110509	-15.60738672	Foliação espaçada
RS175	-39.80072126	-15.71060816	Foliação espaçada
RS-176	-39.78590028	-15.71592935	Bandamento gnaissico
RS-177	-39.74969013	-15.72788077	Foliação milonítica
RS-178	-39.72788931	-15.72889814	Foliação
RS-183	-39.79462063	-15.66552315	Bandamento gnaissico
RS-184	-39.77032252	-15.69081076	Foliação milonítica
RS-187	-39.70459981	-15.63914723	Foliação milonítica
RS-189	-39.76223284	-15.55439072	Bandamento gnaissico
RS-194	-39.80298091	-15.71956706	Bandamento gnaissico
RS-195	-39.79788883	-15.72954468	Bandamento gnaissico
RS-196	-39.78358306	-15.74922705	Foliação
RS-197	-39.77199055	-15.76035485	Foliação
RS-200	-39.74170378	-15.79292541	Foliação
RS-202	-39.70316514	-15.80766323	Foliação milonítica
RS-210	-39.77690112	-15.87407751	Foliação milonítica
RS-212	-39 9894772	-15 97368524	Bandamento gnaissico
RS-213	-39 97609376	-15 91419717	Eoliação milonítica
RS-214	-39 98203285	-15 898053	Foliação milonítica
RS-215	-39 94100982	-15 91453749	Foliação milonítica
RS-218	-39 83924215	-15 97382807	Foliação milonítica
RS-210	-30 71385637	-15 86033720	Foliação milonítica
PS 220	-03.1 1000001	15 0500007	Foliação milonítica
DC 220	-33.32043113	15 99660606	Foliação milonítica
NO-220	-39.33370142	-10.00009025	
KO-224	-39.33558/15	-13.8/9/2311	rollação

200 70	Mármore
260 80	Bt-gnaisse
250 80	Granulito milonítico
280 30	Charnoquito
225 65	Filonito
225 65	Cataclasito
260 90	Gnaisse leucocrático, fino (leptito)
280 80	Granulito
285 70	Granulito
280 30	Granulito máfico
290 40	Granulito
290 80	Granulito mesocrático
270 50	Gnaisse granulítico
290 80	Augen-gnaisse
255 60	Ortognaisse
265 50	Gnaisse granulítico milonítico
255 60	Gnaisse milonítico
255 80	Augen-gnaisse
240 70	Gnaisse milonítico fraturado
200 80	Augen-gnaisse
250 45	Quartzito
225 45	Gnaisse anfibolítico
250 75	Metagabro
290 75	Bt-gnaisse
280 70	Bt-gnaisse
315 80	Augen-gnaisse
315 90	Gnaisse migmatítico
220 80	Bt-gnaisse
285 60	Augen-gnaisse
230 45	Bt-gnaisse milonítico
300 45	Gnaisse granulítico
285 60	Bt-gnaisse
315 90	Bt-gnaisse
345 80	Gnaisse migmatítico
320 80	Augen-gnaisse
140 90	Gnaisse granulítico
130 90	Augen-gnaisse
180 60	Augen-gnaisse
60 90	Bt-gnaisse
150 30	Biotita-gnaisse milonítico
150 20	Augen-gnaisse milonítico
70 90	Augen-gnaisse
90 60	Augen-gnaisse
140 90	Augen-gnaisse
180 65	Gnaisse milonítico
20 35	Granito-gnaisse milonítico; Bt-xisto máfico
80 20	Bt-gnaisse

Folha Itapetinga (1974) Folha Itapetinga (1974) Folha Itapetinga (1974) Folha Itapetinga (1974) Projeto Sul da Bahia (1974) Folha Itapetinga (1974) Tese_AndersonVictoria Folha Itapetinga (1974) Folha Itapetinga (1974)

RS-227	-39.52948277	-15.82327278	Foliação
RS-240	-39.5670474	-15.98569304	Foliação
RS-241	-39.59899767	-15.90571888	Foliação espaçada
RS-242	-39.61232426	-15.89898435	Foliação milonítica
RS-243			Foliação
RS-248	-39.66847588	-15.95616183	Foliação espaçada
RS-432	-39.52808201	-15.68038409	Xistosidade
RS-433	-39.5017629	-15.67852627	Foliação
RS-552	-40.05156297	-15.77302371	Foliação espaçada
RS-553	-40.05320644	-15.78182172	Foliação espaçada
RS-554	-40.05405376	-15.79679112	Foliação espaçada
RS-555	-40.06311692	-15.82172755	Foliação
RS-557	-40.05796568	-15.85002734	Foliação
RS-558	-40.04324047	-15.86534139	Foliação
RS-560	-40.0188783	-15.87759684	Foliação espaçada
RS-561	-40.00656164	-15.88513896	Foliação espaçada
RS-562	-39.99659332	-15.8717678	Bandamento gnaissico
RS-563	-39.97128192	-15.85894463	Foliação milonítica
RS-564	-39.95925749	-15.84868409	Foliação milonítica
RS-565	-39.93618225	-15.8391782	Bandamento gnaissico
RS-566	-39.90324114	-15.72847736	Foliação espaçada
RS577	-39.83682284	-15.78092572	Foliação milonítica
RS-578	-39.83175882	-15.79121111	Foliação
RS-579	-39.83189834	-15.80851171	Foliação
RS-580	-39.84525293	-15.82570027	Foliação milonítica
RS-581	-39.86328366	-15.85310386	Foliação milonítica
RS-735	-39.68985271	-15.83182405	Foliação milonítica
RS-737	-39.73005498	-15.86593474	Foliação milonítica
RS-738	-39.7662868	-15.86059109	Foliação
SD-01	-39.99980173	-15.98612449	Bandamento gnaissico
SD015	-39.99426517	-16.03079443	Foliação
SD-02	-40.00175989	-15.9770968	Bandamento gnaissico
SD024	-39.99191431	-16.03762252	Foliação
SD028	-39.98775926	-16.04458355	Foliação
SD060	-39.92699125	-16.04443572	Bandamento gnaissico
SD064	-39.94754328	-16.02035439	Foliação
SD072	-39.98339112	-16.05579164	Foliação
SD092	-40.01172476	-16.03118026	Foliação
SD101	-39.99379748	-16.04371421	Foliação
SD102	-40.0006156	-16.02638633	Foliação
SD-104	-39.9258676	-16.00097432	Foliação
SD-53	-39.89976561	-16.0251477	Bandamento gnaissico
SD-61	-39.94082128	-16.03551381	Bandamento gnaissico
SD-95	-39.97861518	-16.01494504	Bandamento gnaissico
SL-012	-40.15995321	-15.61302318	Bandamento gnaissico
SL-07	-40.21939899	-15.5562143	Xistosidade
SL-080	-40.24701497	-15.7429276	Foliação espaçada

100	20	Hb-Bt-xisto
250	80	Bt-gnaisse
250	60	Bt-gnaisse milonítico
330	90	Bt-Ms-gnaisse
240	20	Bt-granito-gnaisse
240	60	Filito
240	70	Filito
290	45	Gnaisse leucocrático, equigranular, fino a médio (leptito)
280	40	Gnaisse leucocrático, equigranular, fino a médio (leptito)
280	30	Gnaisse leucocrático, equigranular, fino a médio (leptito)
290	30	Gnaisse leucocrático, fino a médio (Leptito)
290	30	Gnaisse leucocrático, fino a médio (Leptito)
65	30	Gnaisse leucocrático, fino a médio (Leptito)
55	20	Bt-gnaisse
110	30	Gnaisse leucocrático, fino (leptito)
130	80	Gnaisse anfibolítico
130	40	Gnaisse milonítico
110	10	Augen-gnaisse
180	30	Bt-gnaisse
210	25	Qz-Ser-xisto
150	80	Bt-gnaisse
130	50	Gnaisse migmatítico
155	50	Bt-gnaisse
160	60	Gnaisse milonítico
190	60	Gnaisse milonítico
130	85	Augen-gnaisse
150	85	Augen-gnaisse
310	70	Gnaisse leucocrático, fino (leptito)
65	70	Bt-Hb-ortognaisse
220	80	
65	70	Bt-Hb-ortognaisse
52	80	
225	85	
160	90	Bt-gnaisse; Biotitito
40	90	
55	75	
60	90	
45	78	
55	90	
235	90	Metabásica; Bt-ortognaisse
60	70	Bt-ortognaisse
25	90	Ortognaisse anfibolítico
240	75	Ortognaisse; Metabásica
285	85	Ortognaisse; Anfibolito; Biotitito
250	85	Xisto; Quartzito
250	70	Bt-gnaisse

40 Metacalcário quartzítico

140

Folha Itapetinga (1974) Paixão e Perrella (2004) Tese_Anderson Paixão e Perrella (2004) Tese_Anderson Tese_Anderson Paixão e Perrella (2004) Tese_Anderson Tese_Anderson Tese_Anderson Tese_Anderson Tese_Anderson Paixão e Perrella (2004) Paixão e Perrella (2004) Paixão e Perrella (2004) Paixão e Perrella (2004) Folha Itapetinga-Canavieiras (2007) Folha Itapetinga-Canavieiras (2007) Folha Itapetinga-Canavieiras (2007)

SL-	-39.65034058	-15.69738385 Foliação	220 30) Metacalcário	Folha Itapetinga-Canavieiras (2007)
SL-	-39.89775323	-15.72897738 Foliação espaçada	220 30) Quartzito	Folha Itapetinga-Canavieiras (2007)

APÊNDICE G-Relatório petrográfico da área mapeada

Este relatório contém os dados petrográficos produzidos, e compilados da literatura, para as unidades do embasamento Neoarqueano-Paleoproterozoico e do magmatismo anorogênico Toniano que ocorrem na área mapeada. No primeiro caso trata-se de gnaisses tidos como Neoarqueanos e incluídos nos complexos Itapetinga e Ibicuí-Ipiaú, gnaisses representantes do magmatismo pré-colisional Riaciano (complexos Ibicaraí e Buerarema) e as intrusões sin a pós-colisionais relativas ao evento Riaciano-Orosiriano (suíte Pau Brasil, corpo tonalítico Riaciano e corpos cumuláticos Orosirianos). As rochas tonianas referem-se aos produtos ultramáficos e máficos, às diferentes unidades plutônicas observadas nos corpos graníticos do complexo Salto da Divisa, bem como às unidades subvulcânicas e vulcânicas produtos do magmatismo bimodal do rifte.

1. EMBASAMENTO NEOARQUEANO

O mapa simplificado da figura 1 apresenta as unidades do embasamento Arqueano-Paleoproterozoico e a localização das amostras laminadas. Ressalta-se que ainda não existem idades geocronológicas precisas e estudos aprofundados para as rochas mapeadas como parte dos complexos Itapetinga e Ibicuí-Ipiaú, de modo que ambos foram interpretados como de origem Neoarqueana, conforme o mapa do Projeto Itapetinga-Canavieiras (Moraes Filho e Lima 2007).

1.1. Complexo Itapetinga

<u>Amostras laminadas</u>: 1 (AV022; Figura 1) <u>Amostras compiladas</u>: 7 (CG027, CG029, CG034, CG035, CG059, CG070, RS145), relativas ao Projeto Sul da Bahia (Silva Filho et al. 1974).

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
AV022	385368	8267647	Biotita gnaisse	Este estudo
CG027	385641	8269953	Hornblenda-biotita gnaisse	Projeto Sul da Bahia (Silva Filho et al. 1974) *
CG029	389631	8277307	Leptito	Projeto Sul da Bahia (Silva Filho et al. 1974)*
CG034	392361	8284306	Biotita leptito	Projeto Sul da Bahia (Silva Filho et al. 1974)*
CG035	388555	8285993	Leptito	Projeto Sul da Bahia (Silva Filho et al. 1974) *
CG059	383606	8275795	Hornblenda gnaisse	Projeto Sul da Bahia (Silva Filho et al. 1974)*
CG070	371223	8242830	Hornblenda gnaisse	Projeto Sul da Bahia (Silva Filho et al. 1974)*

 RS145
 398386
 8268772
 Leptito
 Projeto Sul da Bahia (Silva Filho et al. 1974)*

 * As coordenadas geográficas do ponto foram estimadas com base em digitalização e georreferenciamento do mapa apresentado

Síntese petrográfica das amostras do complexo Itapetinga na área mapeada:

	AV022a	AV022a		CG027**		CG029**	CG034*	*
Minerais	Hornblenda-bio	otita nada	Hornblenda	-biotita		Leptito	Biotita lept	tito
Quartzo	X	nada	gilaioc X	.0		x	x	
K-feldspato	X		X			X	X	
Plagioclásio	×		Y			X		
Biotita	X X	X				X	Х	
Anfibólio	X		X					
Opacos	X		X			Х	Х	
Muscovita						Х		
Sericita			Х			Х		
Epidoto			Х				Х	
Clorita			Х					
Carbonato			Х					
Granada	Х							
Apatita			Х			Х	Х	
Zircão			Х			Х	Х	
Titanita							Х	
Allanita								
Observações	Forte recristalização Milonitização. Bio primas de anfibólio intesticiais. Microc bem formada	Ima granoblastica. Inte recristalização. onitização. Biotita e mas de anfibólio esticiais. Microclina m formada		Milonitização. Porfiroclastos de K- feldspato		granoblástica. o ondulante	Trama granoblástica. Extinção ondulante	
(continuação)		1	**	1		**	-	
Minerais	CG035**	Horr	CG036 ^{**}	CG0 Hornh)59 ^{**} Ienda	CG070** Hornblenda	RS145	5**
minerals	Leptito	11011	gnaisse	gnai	isse	gnaisse	Leptit	0
Quartzo	Х		Х	>	(Х	Х	
K-feldspato	Х		Х	>	K	Х	Х	
Plagioclásio	Х		Х	>	(Х	Х	
Biotita			Х		Х		Х	
Anfibólio	Х		Х	>	x x			
Opacos	Х		Х	>	x x		Х	
Muscovita								
Sericita			Х			Х		
Epidoto	Х							
Clorita								
Carbonato			Х			Х		
Granada								
Apatita	Х		Х	>	(Х	Х	
Zircão	Х		Х				Х	
Titanita	Х		Х	>	(Х		
Allanita			Х					
Observações	Trama granoblástica. Extinção ondulante	Foliaç Miloni Porfire feldsp ondula	ão penetrativa. tização. oclastos de K- ato. Extinção ante	Foliação penetrati Extinção ondulant	va. e.	Foliação penetrativa. Extinção ondulante.	Trama granoblástica Microclina pe Extinção onc	a. ertítica. dulante

** Retirado do Projeto Sul da Bahia (Silva Filho et al. 1974)

Figura 1. Localização das amostras laminadas referentes às unidades do embasamento Arqueano-Paleoproterozoico da área mapeada.

PALEOPRTEROZOICO

MAGMATISMO PRÉ-COLISIONAL (rochas arco-derivadas) (ca. 2.1 Ga)

Complexo Buerarema: (meta-) tonalitos, granodioritos, gnaisses tonalíticos-granodioríticos, gnaisses migmatíticos. Rochas de granulação média a grossa, leuco a mesocráticas e comumente cortadas por diques e enxames máficos 25

26 Complexo Ibicaral: gnaisses tonalíticos e granodioríticos miloníticos, migmatitos e granulitos indiferenciados. Cortados por diques e enxames máficos, anfibolitizados e biotitizados, paralelizados com a foliação.

NEOARQUEANO

Complexo Ibicui-Ipiaú: ortognaisses tonalíticos, granodioríticos e graníticos normalmente bandados e migmatíticos, comumente miloníticos 27

Complexo Itapetinga: ortognaisses tonaliticos, granodioríticos e graníticos bandados e migmatíticos, comumente miloníticos 28

AV 022	10	RS 131	19	RS 202	28	AV 046a
CG027	11	RS 137	20	AV 090	29	AV074a
3 CG029	12	RS 160	21	AV091a,b	30	AV072a
CG034	13	RS 155	22	AV 092	31	AV 011a
CG035	14	RS 175	23	SD 104	32	AV 044a
CG059	15	RS 177	24	CG092	33	RS224
RS 145	16	RS 196	25	JC025a,b	34	RS 220
B CG070	17	AV 103	26	AV 060a	35	AV 055
9 CG 118	18	RS 198	27	AV 087a,b	36	AV 057a

5

15

0

Detalhe da amostra laminada:

1.2. Complexo Ibicuí-Ipiaú

Amostras laminadas: 0

<u>Amostras compiladas</u>: 2 (CG118 e RS131; figura 1), relativas ao Projeto Sul da Bahia (Silva Filho et al. 1974).

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
CG118	407873	8282521	Biotita gnaisse milonítico	Projeto Sul da Bahia (Silva Filho et al. 1974)*
RS131	408100	8275456	Migmatito alterado	Projeto Sul da Bahia (Silva Filho et al. 1974)*

* As coordenadas geográficas do ponto foram estimadas com base em digitalização e georreferenciamento do mapa apresentado

Síntese petrográfica das amostras do complexo Ibicuí-Ipiaú na área mapeada:

Minerais	CG118 ^{**} Biotita gnaisse milonítico	RS131 ^{**} Migmatito alterado
Quartzo	Х	Х
K-feldspato	Х	Х

Plagioclásio	x	X
Biotita	X	Х
Opacos	X	
Muscovita		X
Sericita	X	Х
Epidoto	X	Х
Clorita	X	
Carbonato	X	
Apatita	X	Х
Zircão		Х
Titanita	X	Х
Observações	Trama deformada e bem orientada. Milonitização. Plagioclásio saussuritizado. Epidoto estirado na foliação.	Sericitização e saussuritização intensa. Forte recristalização. Trama foliada. Extinção ondulante

**Retirado do Projeto Sul da Bahia (Silva Filho et al. 1974)

2. MAGMATISMO PRÉ-COLISIONAL RIACIANO (UNIDADES ARCO-DERIVADAS)

2.1. Complexo Ibicaraí

<u>Amostras laminadas</u>: 6 (AV090, AV091a, AV091b, AV092, AV103, SD104; figura 1). Ressalta-se que a amostra com inicial "SD" é relativa a Paixão e Perrela (2004) e obteve-se acesso neste estudo para análises complementares.

<u>Amostras compiladas</u>: 8 (RS137, RS160, RS155, RS175, RS177, RS196, RS202, CG092), relativas ao Projeto Sul da Bahia (Silva Filho et al. 1974).

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
AV090	404867	8247364	Biotita gnaisse milonítico	Este estudo
AV091a	414896	8243531	Biotita gnaisse migmatítico (paleossoma)	Este estudo
AV091b	414896	8243531	Biotita granito (neossoma)	Este estudo
AV092	419763	8245026	Biotita gnaisse	Este estudo
AV103	417836	8257133	Gnaisse milonítico	Este estudo
SD104	400823	8230802	Biotita-hornblenda gnaisse	Este estudo
RS137	418343	8278992	Charnockito	Projeto Sul da Bahia (1974)*
RS160	422181	8279561	Cataclasito	Projeto Sul da Bahia (1974)*
RS155	420792	8271461	Biotita gnaisse	Projeto Sul da Bahia (1974)*
RS175	414935	8262698	Gnaisse migmatítico	Projeto Sul da Bahia (1974)*
RS177	419686	8261006	Gnaisse migmatítico	Projeto Sul da Bahia (1974)*
RS196	415989	8258644	Gnaisse migmatítico	Projeto Sul da Bahia (1974)*
RS202	424915	8252395	Migmatito alterado	Projeto Sul da Bahia (1974)*
RS198	418387	8255016	Gnaisse migmatítico	Projeto Sul da Bahia (1974)*
CG092	391117	8231644	Biotita gnaisse	Projeto Sul da Bahia (1974)*

* As coordenadas geográficas do ponto foram estimadas com base em digitalização e georreferenciamento do mapa apresentado

Síntese petrográfica das amostras do complexo Ibicaraí na área mapeada:

	AV09	0	А	V091a		AV091b	AV092		AV1	03	SD104d	RS137
Minerais	Biotita gna miloníti	aisse co	g miç (pale	Biotita naisse gmatítico eossoma)	(n	Biotita granito neossoma)	Biotita gnais	sse	Gnais miloní	sse ítico	Biotita- hornblenda gnaisse	Charnockit o
Quartzo	Х			Х		Х	Х		Х		х	Х
K-feldspato	Х			Х		Х	Х		X		х	
Plagioclásio	b X			Х		Х	Х		X		х	Х
Biotita	Х			Х		Х	Х		X		х	
Anfibólio											х	
Piroxênio												Х
Opacos	Х			Х		Х			X		Х	Х
Sericita	Х			Х							Х	
Epidoto	Х			Х		Х	Х		X		Х	
Clorita									X			
Carbonato											х	
Granada											Х	
Apatita												Х
Zircão	Х											
Titanita												
Allanita												
Observaçõo s	Trama granolepido a. Forte recristalizaç Milonitizaçã	blástic íão. o.	rar grar . Fo recri o. Milo Bioti prim anfil intes Micr bem	na noblástica rte istalizaçã nitização. ita e nas de pólio sticiais. roclina formada	M o. fe pc	ilonitizaçã K- Idspato orfirítico	Equigranular, granulação média. Trama granolepidobl a. Milonitizaçî Microboudins	de a ástic ão.	recrista a. Fenocrista preserv de K- feldspa Matriz f forteme recrista a. Fenocri fraturac	ca, stais ados to. ina, inte lizad stal lo	Trama granoblástic a. Extinção ondulante	Trama orientada. Extinção ondulante.
(continuação	b)	1						1				
Minerais	RS160 Cataclasito	RS1 Bioti gnais	55 ita sse	RS177 Gnaisse migmatíti	e co	RS175 Gnaisse migmatític o	RS196 Gnaisse migmatítico	R Gi mig	S198 naisse matítico	r	RS202 Vigmatito alterado	CG092 Biotita gnaisse
Quartzo	Х	Х		Х		Х	Х		Х		Х	Х
K- feldspato		х		х		х	х		х			Х
Plagioclá	Y	×		x		x	Y		x		Y	Y
Biotita	×	X		X		X	X		X		X	×
Anfibólio	X	~ ~		x		X	x		Λ		~	Λ
Piroxênio				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~						
Opacos	х	Х		х		Х	Х		Х		х	Х
Sericita	X	X		X		Х	X		X		X	X
Epidoto	х	Х		Х		Х	Х		Х		х	Х
Clorita		Х				Х						
Carbonat o	х	х		х					х			
Granada												
Apatita	Х	Х				Х	Х		Х		Х	Х
Zircão		Х		Х		Х	Х		Х			Х
Titanita	Х	Х				Х	Х		Х			
Allanita							Х		х		х	

Observaç ões	Saussuritiza ção. Plagioclásio turvo alterado em contraste com quartzo límpido. Fraturas. Extinção ondulante.	Grano- lepidoblást ica. Microclina pertítica.	Plagioclási o saussuritiz ado. K- feldspato pertítico. Anfibólio é tremolita- actinolita	Extinção ondulante . Fraturas. Máficos em aglomera dos. Anfibólio é tremolita- actinolita	Microclina pertítica. Forte recristaliza ção. Extinção ondulante. Fraturas.	Sericitizaçã o e saussuritiza ção. Fraturas. Extinção ondulante	Microclina pertítica. Forte recristalização.Ex tinção ondulante. Fraturas.	Forte recristaliza ção. Foliação proeminent e. Extinção ondulante.
-----------------	---	---	--	---	--	---	--	--

**Retirado do Projeto Sul da Bahia (Silva Filho et al. 1974)

Detalhe das amostras laminadas:

2.2. Complexo Buerarema

<u>Amostras laminadas</u>: 10 (AV011a, AV044a, AV046a, AV055, AV057a, AV060a, AV072a, AV074a, AV087a, AV087b; figura 1).

Amostras compiladas: 4 (JC025a, JC025b, RS220, RS224), relativas ao Projeto Sul da Bahia (Silva Filho et al. 1974).

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
AV011a	440100	8237544	Biotita gnaisse	Este estudo

AV044a	443805	8244939	Gnaisse tonalítico	Este estudo
AV046a	438561	8232223	Biotita gnaisse milonítico	Este estudo
AV055	445435	8229896	Gnaisse tonalítico	Este estudo
AV057a	449140	8231588	Gnaisse tonalítico	Este estudo
AV060a	426528	8229334	Biotita gnaisse milonítico	Este estudo
AV072a	440188	8236225	Biotita gnaisse milonítico	Este estudo
AV074a	439966	8235505	Biotita gnaisse migmatítico	Este estudo
AV087a	426668	8230739	Biotita gnaisse milonítico	Este estudo
AV087b	426668	8230739	Leucogranito (aplito)	Este estudo
JC025a	404422	8223524	Granito-gnaisse migmatítico (paleossoma)	Projeto Sul da Bahia (1974)*
JC025b	404480	8223570	Leucogranito (neossoma)	Projeto Sul da Bahia (1974)*
RS220	443455	8235697	Migmatito	Projeto Sul da Bahia (1974)*
RS224	443224	8244624	Hornblenda-biotita gnaisse	Projeto Sul da Bahia (1974)*

* As coordenadas geográficas do ponto foram estimadas com base em digitalização e georreferenciamento do mapa apresentado

Síntese petrográfica das amostras do complexo Buerarema na área mapeada:

	AV011a	AV044a	AV046a	AV055	AV057a	AV060a	AV072a
Minerais	Biotita gnaisse granodiorítico	Gnaisse granodioríti co	Bt gnaisse milonítico	Biotita gnaisse granodiorític o	Biotita gnaisse granodiorític o	Biotita- hornblenda- epidoto gnaisse milonítico	Biotita gnaisse granodiorítico
Quartzo	Х	Х	Х	Х	Х	Х	Х
K- feldspato	х	х	Х	х	х	х	х
Plagioclási o	Х	х	Х	х	Х	х	Х
Biotita	Х	Х	Х	Х	Х	Х	Х
Anfibólio						Х	
Piroxênio		Х					
Opacos		Х		Х	Х		Х
Muscovita	Х			Х	Х		
Sericita							Х
Epidoto	Х	Х		Х	Х	Х	Х
Clorita				Х	Х		
Carbonato					Х		
Granada						Х	
Apatita	Х		Х		Х		Х
Zircão	Х						Х
Titanita	Х					Х	Х
Allanita	Х						
Observaçõ es	Equigranular, granolepidoblást ica.	Equigranul ar, hipdiomórfi ca, fina. Cristal isolado de plagioclásio corroído (vulcânica?	Granolepidoblást ica. Quartzo fitado. Foliação milonítica penetrativa	Equigranula r, média. Forte recristalizaç ão. Trama orientada. Finas palhetas de biotita e muscovita	Equigranula r, média. Forte recristalizaç ão. Trama orientada. Finas palhetas de biotita e muscovita	Inequigranul ar, porfirítica. Milonitizaçã o. Epidotizaçã o (clinozoisita) . Microfalha em granada	Inequigranular, granolepidoblást ica. Mirmequita

(continuaç	ão)						
Minerais	AV074a	AV087a	AV087b	RS224**	RS220**	JC025a**	JC025b**

	Biotita gnaisse migmatítitico	Biotita gnaisse	Leucogranito (aplito)	Hornblenda- biotita gnaisse	Migmatito	Granito- gnaisse (paleossom a)	Leucogranit o (neossoma)
Quartzo	Х	Х	Х	Х	Х	Х	Х
K-feldspato	Х	Х	Х			Х	Х
Plagioclásio	Х	Х	Х	Х	Х	Х	Х
Biotita	Х	Х	Х	Х	Х	Х	Х
Anfibólio				Х		Х	
Piroxênio							
Opacos		Х	Х		Х	Х	Х
Muscovita			Х				Х
Sericita			Х	Х	Х	Х	Х
Epidoto	Х	Х		Х	Х	Х	
Clorita					Х		
Carbonato	Х			Х	Х	Х	
Granada							
Apatita	Х			Х	Х	Х	
Zircão		Х		Х	Х	Х	Х
Titanita	Х			Х	Х		
Allanita		Х					
Observaçõe s	Inequigranular, granolepidoblástic a. Extinção ondulante	Inequigranula r, granoblástica. Trama orientada	Inequigranula r, hipdiomórfica a granoblástica. Trama orientada	Fortte recristalizaçã o. Extinção ondulante. Trama orientada	Foliação sigmoidal. Milonitizaçã o. Porfiroclasto s de Pl	Ortoclásio pertítitico. Trama orientada. Extinção ondulante	Equigranular Alotriomórfic a

Detalhe das amostras laminadas:

3. INTRUSÕES SIN A PÓS-COLISIONAIS (EVENTO RIACIANO-OROSIRIANO)

Na área mapeada foram identificadas três unidades intrusivas nos complexos arco-derivados Riacianos e interpretadas como resultante do magmatismo sin a pós colisional da orogenia Riaciana-Orosiriana. São elas: (i) suíte Pau Brasil (ca. 2.08Ga); (ii) corpo tonalítico sin-colisional (ca. 2.06 Ga); e (iii) corpos cumuláticos Orosirianos (ca. 2.03 Ga). A localização das amostras laminadas em cada uma dessas unidades é apresentada no mapa da figura 2.

Figura 2. Localização das amostras laminadas referentes às intrusões sin a pós-colisionais da orogenia Riaciana-Orosiriana na área mapeada.

3.1. Suíte Pau Brasil (ca. 2.08 Ga)

Amostras laminadas: 1 (AV102; figura 2);

<u>Amostras compiladas</u>: 4 (CG290, RS158, RS178, RS187), relativas ao Projeto Sul da Bahia (Silva Filho et al. 1974).

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
AV102	419799	8254719	Gnaisse granítico milonítico	Este estudo
CG290	427752	8280316	Gnaisse milonítico	Projeto Sul da Bahia (1974)*
RS158	423056	8268026	Mesopertita granulito	Projeto Sul da Bahia (1974)*
RS178	422035	8260963	Migmatito alterado	Projeto Sul da Bahia (1974)*
RS187	424497	8270740	Migmatito alterado	Projeto Sul da Bahia (1974)*

* As coordenadas geográficas do ponto foram estimadas com base em digitalização e georreferenciamento do mapa apresentado

Síntese petrográfica das amostras da suíte Pau Brasil na área mapeada:

	AV102	CG290	RS158	RS178	RS187
Minerais	Gnaisse granítico milonítico	Gnaisse milonítico	Mesopertita granulito	Migmatito alterado	Migmatito alterado
Quartzo	Х	Х	Х	Х	Х
K-feldspato	Х	Х	Х	Х	Х
Plagioclásio	Х		Х	Х	Х
Biotita	Х	Х	Х	Х	Х
Anfibólio			Х		
Piroxênio			Х		
Opacos	Х	Х	Х	Х	Х
Muscovita	Х		Х	Х	
Sericita	Х	Х	Х	Х	Х
Epidoto	Х	Х		Х	
Clorita			Х		
Carbonato					Х
Granada					
Apatita	Х	Х	Х	Х	Х
Zircão		Х		Х	Х
Titanita		Х			Х
Allanita		Х			
Observações	Inequigranular, fina a média. Pórfiros de K- feldspato preservados, deformados e com bordas serrilhadas. Sericitização. Forte recristalização	Milonitização.Extinção ondulante. Epidoto estirado na foliação	Mesopertita. Hiperstênio altera para hornblenda	Inequigranular. Microclina pertítitica. Saussuritização	K-feldspato pertítitico. Extinção ondulante. Saussuritização

Detalhe da amostra laminada:

3.2. Corpo tonalítico Riaciano (ca. 2.06 Ga)

Amostras laminadas: 1 (D017; figura 2).

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
D017	429174	8244623	Meta-tonalito foliado	Este estudo

	D017
Minerais	Meta-tonalito foliado
Quartzo	X
K-feldspato	Х
Plagioclásio	X
Biotita	X
Anfibólio	X
Opacos	X
Epidoto	X
Granada	X
Zircão	X
Titanita	
Observações	Foliação milonítica. Fenocristais sigmoidais de plagiocásio com bordas serrilhadas. Mirmerquitas. Coroa de epidoto em minerais opacos

Síntese petrográfica da amostra do corpo tonalítico Riaciano na área mapeada:

Detalhe da amostra laminada:

3.3. Corpos Orosirianos (ca. 2.03 Ga)

Amostras laminadas: 3 (AV082, AV100, AV173)

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
AV082	425437	8244424	Monzonito megaporfirítico a K-feldspato, foliado	Este estudo
AV173	416255	8232651	Monzonito megaporfirítico a K-feldspato, milonítico (augen-gnaisse)	Este estudo
AV100	423527	8246704	Biotita monzodiorito	Este estudo

Síntese petrográfica das amostras dos corpos Orosirianos na área mapeada:

Minerais	AV082	AV100	AV173
	Monzonito megaporfirítico	Biotita monzodiorito	Monzonito megaporfirítico milonítico (augen-gnaisse)
Quartzo	X	X	Х
K-feldspato	X	X	Х
Plagioclásio	X	Х	Х
Biotita	X	X	X
Anfibólio	X	Х	
Piroxênio			
Opacos	X	X	Х
Muscovita	X	Х	X
Sericita	X	Х	X
Epidoto	X	Х	X
Carbonato	X	Х	X
Apatita	X	X	
Zircão			X
Titanita	X	Х	X
Observações	Porfirítica, com fenocristais de K-feldspato pertítico. Entelhamento de K-feldspato. Sericitização. Minerais micáceos e acessórios são intersticiais	Inequigranular, fina a média. Biotita porfirítica. Foliação incipiente. Quartzo geminado e corroído. Saussuritização. Hornblenda é traço e altera para biotita	Foliação milonítica. Granolepidoblástica. Forte recristalização. Sericitização. Minerais micáceos e acessórios sãoi intersticiais

Detalhe das amostras laminadas:

4. COMPLEXO SALTO DA DIVISA

O complexo Salto da Divisa representa o magmatismo bimodal, plutônico e vulcânico, produzido durante a abertura do rifte Toniano, em evento extensivo precursor à formação do orógeno Araçuaí. Nos tópicos a seguir são apresentadas as características petrográficas referentes a cada fácies magmática identificada neste estudo (Figura 3): (i) rochas ultramáficas; (ii) enxames e diques máficos; (iii)

granitoides híbridos; (iv) granitoides à biotita e anfibólio; (v) granitoides à biotita; (vi) granitoides à duas micas; e (vii) rochas vulcânicas e subvulcânicas.

Figura 3. Localização das amostras de rochas ultramáficas e máficas do complexo Salto da Divisa que foram objeto de estudo petrográfico.

4.1. Rochas ultramáficas

Amostras laminadas: 2 (AV052f, D017.1; figura 3);

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
AV052f	427105	8243616	Piroxenito com flogopita	Este estudo
D017.1	429123	8244716	Piroxenito com flogopita	Este estudo

Síntese petrográfica das rochas ultramáficas do complexo Salto da Divisa:

Minoroio	AV052f	D017.1			
winerais	Flogopita-piroxenito (lamprófiro ultramáfico?)	Piroxenito com flogopita (lamprófiro ultramáfico?			
Piroxênio	X	X			
Flogopita	X	X			
Opacos	X	Х			
	Porfirítica, com fenocristais de flogopita e matrix	Equigranular, média, à base de piroxênio			
Observações	à base de piroxênio decussado e opacos.	decussado e opacos e, esporadicamente,			
	Isotrópica	cristais bem formados de flogopita. Isotrópica			

Detalhe das amostras laminadas:

4.2. Rochas máficas

<u>Amostras laminadas</u>: 12 (AV007b, AV044b, AV010c, AV010d, AV011b, AV072b, AV074b, AV046, AV057b, AV058b, AV013b, AV060b, AV039; figura 3); <u>Amostras compiladas</u>: 03 (SD040b, SD082b - Paixão e Perrella 2004; CG088; Silva Filho et al. 1974).

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
AV007b	443145	8244756	Meta-gabro	Este estudo
AV010c	439776	8238620	Anfibolito	Este estudo
AV010d	439776	8238620	Anfibolito	Este estudo
AV011b	440104	8237544	Meta-gabro	Este estudo
AV013b	434367	8226303	Anfibolito	Este estudo
AV039	400976	8228867	Gabro	Este estudo
AV044b	443805	8244939	Meta-gabro	Este estudo
AV046b	438561	8232223	Anfibolito	Este estudo
AV058b	449140	8231587	Meta-diabásio	Este estudo
AV058d	435040	8226260	Biotitito	Este estudo
AV060b	426528	8229334	Anfibolito	Este estudo
AV072b	440188	8236225	Anfibolito	Este estudo
AV074b	439966	8235505	Biotitito com pórfiros de carbonato	Este estudo
SD040b	400413	8228791	Gabro	Paixão e Perrella (2004) #
SD082b	400720	8229135	Gabro	Paixão e Perrella (2004) #
CG088	379226	8240502	Anfibolito	Projeto Sul da Bahia (1974)**

[#] Amostra coletada e laminada por Paixão e Perrella (2004) e cedida para análise complementar neste estudo;
^{**} As coordenadas geográficas do ponto foram estimadas com base em digitalização e georreferenciamento do mapa apresentado

Síntese petrográfica das rochas máficas do complexo Salto da Divisa:

	AV007b	AV04	4b	AV010c		AV010d	AV011b	AV072b
Minerais	Meta-gabro	Meta-	diabásio	Epidoto-bio anfibolito	tita	Anfibolito	Meta-gabro	Anfibolito
Quartzo	Х	Х	Х			Х		
K-feldspato								
Plagioclásio	Х	Х		Х		Х	Х	Х
Biotita	Х	Х		Х			Х	Х
Anfibólio	Х	Х		Х		Х	Х	Х
Piroxênio		Х						
Opacos		Х						
Epidoto	Х	Х		Х			Х	Х
Clorita				Х			Х	
Granada								
Carbonato								
Apatita	Х							
Zircão								
Titanita	Х	Х	Х			Х	Х	Х
Observações	Equigranular, hipidomórfica. Subofítica. Trama isotrópica. Pla relia ura Pla relia cor		ranular, média, omórfica. oclásio me. ênio iar zado. oclásio iar iar	Equigranula média. Gra lepido- nematoblás Biotitização	ar, no- stica.	Equigranular, nematoblástica. Foliação contínua e crenulada.	Inequigranular, hipdiomórfica. Foliação incipiente. Cristal de hornblenda geminada (Carlsbad)	Granulação fina. Foliação contínua. Microestrutura nematoblástica.
(continuaçã	ão)							
	AV074b		AV046b		AVC)58d	AV013b	AV060b
Minerais	Biotitito com carbonato		Anfibolito Bi		Biot	itito	Gabro	Anfibolito
Quartzo			Х					
K-feldspato								

Х

Х

Х

Х

Plagioclásio

Х

Biotita	x	X	х	х		
Anfibólio	X 2	X		X	X	
Piroxênio						
Opacos					Х	
Epidoto	Х			Х		
Clorita						
Granada						
Carbonato			Х			
Apatita					Х	
Zircão						
Titanita	X	X		Х		
Observações	Granulação fina. I Foliação contínua. I Microestrutura / nematoblástica. a	Nematoblástica. Foliação contínua. Anfibólio é actinolita.	Equigranular, média, lepidoblástica. Foliação contínua. Biotitização.	Granulação fina, equigranular, hipdiomórfica. Isotrópica, interdigitações e inclusões de máficos em minerais félsicos e vice-versa.	Equigranular, média, nematoblástica. Foliação contínua.	
(continuação)				•	
<u> </u>	AV057b	AV039b	SD040b	SD082b	CG088	
Minerais	Meta-diabásio	Biotita anfibolito	Gabro Gabro		Anfibolito	
Quartzo		Х				
K-feldspato						
Plagioclásio	Х	Х	Х	Х	Х	
Biotita	Х	Х	Х	Х		
Anfibólio	Х	Х	Х	Х	Х	
Piroxênio			Х		Х	
Olivina			Х			
Opacos		Х	Х		Х	
Epidoto		Х	Х			
Clorita	X					
Granada						
Carbonato		X				
Apatita		Х			Х	
Zircão						
Titanita	Х	Х	Х	Х	Х	
Observações	Equigranular, fna a média, hipdiomórfica. Foliação incipiente. Plagioclásio ripforme.	Granulação fina, foliação contínua, microdobras, clivagem de crenulação.	Equigranular, média, hipdiomórfica, isotrópica. Plagioclásio ripforme. Hornblenda intersticial. Olivina reliquiar com borda de piroxênio.	Equigranular, média, hipdiomórfica, isotrópica. Plagioclásio ripforme. Hornblenda intersticial. Granada anédrica, arredondada	Granoblástica. Hornblenda verde intensa e intercrescida com diopsideo (verde pálido).	

Detalhe das amostras laminadas:

4.3. Granitoides híbridos

<u>Amostras laminadas</u>: 12 (AV039(1), AV030(2), AV043, AV045a, AV045b, AV083, AV084a, figura 4);

<u>Amostras compiladas</u>: SD040a, SD041, SD079, SD082a, SD118a. Analisadas por Paixão e Perrella (2004) e gentilmente cedidas para análise complementar.

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
AV039a (1)	400976	8228867	Granitoide híbrido	Este estudo
AV039a (2)	400976	8228867	Granitoide híbrido	Este estudo
AV043	399605	8230308	Granito	Este estudo
AV045a	439838	8239043	Monzonito foliado	Este estudo
AV045b	439838	8239043	Monzonito mesocrático foliado	Este estudo
AV083	440407	8242698	Monzonito	Este estudo
AV084a	440951	8242549	Granitoide híbrido	Este estudo
SD040a	400413	8228791	Monzonito	Paixão e Perrella (2004) #
SD041	400126	8228655	Granitoide híbrido	Paixão e Perrella (2004) #
SD079	400902	8229579	Monzonito	Paixão e Perrella (2004) #

SD082a	400720	8229135	Granitoide híbrido	Paixão e Perrella (2004) #			
SD118a	397470	8230450	Granitoide híbrido	Paixão e Perrella (2004) #			
# Amostra coletada e laminada por Paixão e Perrella (2004) e cedida para análise complementar neste estudo;							

Síntese petrográfica dos granitoides híbridos do complexo Salto da Divisa:

	AV039(1)	AV039(2)	SD082a	SD040a	SD041	AV043
Minerais	Granitoide híbrido à botita e anfibólio	Granito com fluorita				

Quartzo	х		x	х	Х		x	X
K-feldspato	Х		Х	Х	Х		Х	Х
Plagioclásio	Х		Х	х	Х		Х	Х
Biotita	Х		Х	Х	Х		Х	Х
Anfibólio	Х		Х	Х	Х		Х	
Opacos	Х		Х	Х	Х		Х	Х
Epidoto	Х		Х	Х	Х		Х	
Sericita					Х			Х
Granada	Х		Х		Х			
Carbonato					Х			Х
Apatita	Х		Х	Х	Х		Х	Х
Fluorita	Х		Х					Х
Zircão	Х		Х					Х
Allanita				Х			Х	
Titanita	Х		Х	Х	Х		Х	
Observações	Inequigr Mirmequ arfvedso coronítio agregad e acicula	nequigranular, fina a média, hipdiomórfica. Fenocristais de Kfs euédrico. Pertitas. firmequitas. Anfibólio verde escuro intenso (provável hastingsita ou até mesmo rfvedsonita). Granada poiquilítica bem formada. Grana esqueletal e granada oronítica. Microestruturas de hibridização (anfibólio simplectítico e intersticial, gregados máficos em domínio félsico, quartzo manteado, biotita em forma de espada acicular, alteração de anfibólio em biotita, contatos difusos e irregulares)						Equigranular, média, hipdiomórfica. Maficos e acessórios são intersticiais em meio à massa quartzo-feldspática levemente orientada.
(continuaçã	ăo)							
<u> </u>		AV045a	a	AV045b		AV083		AV084
Minerais		Quartzo-monzonito foliado		Xisto máfico com granada		Biotita-granodiorito foliado		Biotita-granodiorito foliado
Quartzo		Х		Х		Х		Х
K-feldspato		Х		Х		Х		Х
Plagioclásio		Х		Х		Х		Х
Biotita		Х		Х		Х		Х
Anfibólio								
Opacos		Х		Х				Х
Epidoto						Х		Х
Sericita		Х		Х				
Granada								
Carbonato		Х		Х				Х
Apatita		Х		X		Х		Х
Fluorita		Х		Х				
Zircão		Х		X				
Allanita								
Titanita								
Observações		Inequigranular, granolepidoblástica. Foliação espaçada sigmoidal		Inequigranular, porfirítica, granolepidoblástica, foliação sigmoidal. Porfiroblastos de granada esqueletal.		Granolep porfirítica espaçad Porfirocla plagioclá Epidotiza	vidoblástica, a. Foliação a, sigmoidal. astos de sio tabular. ação	Granolepidoblástica, equigranular, média. Halo pleocroico em biotita. Epidotização.

Detalhe das amostras laminadas:

4.4. Granitos à biotita e anfibólio

<u>Amostras laminadas</u>: 17 (AV059, AV061, AV096, AV016, AV028, AV030, AV031, AV042, AV130; AV140, AV141, AV134, AV135, AV123, AV111, AV023, AV108; figura 5);

<u>Amostras laminadas</u>: 10 (SD021, SD049, SD067, SD071, Paixão e Perrella 2004; CG40, CG044, CG046, CG097, CG107; Silva Filho et al. 1974; JT001; Torres 2017);

12 Biotita-anfibólio-álcali feldspato granitos e sienogranitos com fluorita. Equigranulares finos (microgranitos) ou inequigranulares médio a grossos,indeformados ou foliados

M	OSTRAS	LAM	MINADAS					21	CG 047
1	AV 059	6	AV 030	11	AV042	16	CG107	22	AV 135
2	AV 061	7	AV 031	12	AV 130	17	AV 135	23	AV 111
3	AV 096	8	SD021	13	AV 140	18	AV 134	24	CG044
4	AV 016	9	SD049	14	AV 141	19	AV 123	25	AV108
5	AV 028	10	SD067	15	CG097	20	CG044	26	AV 023

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
AV059	427537	8228137	Biotita-anfibólio álcali granito rosado	Este estudo
AV061	433106	8228268	Biotita-anfibólio álcali granito rosado	Este estudo
AV096	396088	8231386	Biotita-anfibólio granito foliado	Este estudo
AV016	397024	8229694	Biotita-anfibólio granito foliado	Este estudo
AV028	402514	8228461	Biotita-anfibólio álcali granito	Este estudo
AV030	401333	8227705	Biotita-anfibólio álcali granito rosado	Este estudo
AV031	400945	8227876	Biotita-anfibólio álcali granito rosado	Este estudo
AV042	394522	8226294	Biotita-anfibólio granito foliado	Este estudo
SD021	401344	8227700	Biotita-anfibólio álcali granito rosado	Paixão e Perrella (2004)
SD049	402153	8227935	Biotita-anfibólio álcali granito	Paixão e Perrella (2004)
SD067	397719	8229295	Biotita-anfibólio álcali granito	Paixão e Perrella (2004)
SD071	397518	8228962	Biotita-anfibólio álcali granito	Paixão e Perrella (2004)

AV130	371660	8247040	Biotita-anfibólio álcali granito foliado	Este estudo
AV140	373184	8246393	Biotita-anfibólio álcali granito	Este estudo
AV141	372256	8246902	Biotita-anfibólio álcali granito foliado	Este estudo
AV134	367485	8261115	Microgranito foliado	Este estudo
AV135	370030	8259239	Microgranito foliado	Este estudo
AV123	386427	8264321	Microgranito foliado	Este estudo
AV111	391681	8261454	Microgranito foliado	Este estudo
AV023	398096	8270984	Microgranito foliado	Este estudo
AV108	394564	8275249	Biotita-anfibólio álcali granito	Este estudo
CG040	385893	8266468	Granito-gnaisse	Projeto Sul da Bahia (1974)
CG044	385381	8263859	Granito-gnaisse	Projeto Sul da Bahia (1974)
CG046	384084	8262657	Granito-gnaisse	Projeto Sul da Bahia (1974)
CG097	371200	8247665	Granito-gnaisse	Projeto Sul da Bahia (1974)
CG107	375674	8245387	Granodiorito	Projeto Sul da Bahia (1974)
JT001	385721	8264482	Hornblenda-biotita gnaisse	Torres (2017)

Síntese petrográfica dos granitoides à biotita e anfibólio do complexo Salto da Divisa:

AV059	AV061	AV096	AV016	AV028	
Biotita-anfibólio álcali feldspato granito, com fluorita	Biotita-anfibólio álcali feldspato granito, com fluorita	Biotita-anfibólio álcali feldspato granito foliado	Biotita-anfibólio álcali feldspato granito foliado, com fluorita	Biotita-anfibólio álcali feldspato granito foliado	
Х	Х	Х	Х	Х	
Х	Х	Х	Х	Х	
Х	Х	Х	Х	Х	
Х	Х	Х	Х	Х	
Х	Х	Х	Х	Х	
			Х	Х	
				Х	
Х					
Х	Х		Х		
Х	Х	Х			
	Х				
Inequigranular, média a grossa, alotriomórfica, isotrópica. K-feldspato pertítico, anfibólio verde escuro com tons azulados, mirmequitas, zircões grandes e bem formados.	Inequigranular, média a grossa, alotriomórfica, isotrópica. K- feldspato pertítico, mirmequitas.	Granoblástica com biotita e anfibólio marcando bem a foliação. Anfibólio fortemente pleocroico. K- feldspato pertítico. Anfibólio com inclusões de plagioclásio e quartzo e intersticial	Granoblástica com biotita e anfibólio marcando bem a foliação. Anfibólio fortemente pleocroico. K- feldspato pertítico. Quartzo fitado	Inequigranular, alotriomórfica, com cristais deformados, com geminação dobrada. Foliação incipiente. K-feldspato pertítico, mirmequitas, reação de consumo de anfibólio para biotita. Anfibólio fortemente pleocroico e escuro.	
	AV059 Biotita-anfibólio álcali feldspato granito, com fluorita X X X X X X X X X X X X X X X X X X X	AV059AV061Biotita-anfibólio álcali feldspato granito, com fluoritaBiotita-anfibólio álcali feldspato granito, com fluoritaXXInequigranular, média a grossa, alotriomórfica, isotrópica. K-feldspato pertítico, anfibólio verde escuro com tons azulados, mirmequitas, zircões grandes e bem formados.	AV059AV061AV096Biotita-anfibólio álcali feldspato granito, com fluoritaBiotita-anfibólio álcali feldspato granito, com fluoritaBiotita-anfibólio álcali feldspato granito foliadoXX<	AV059AV061AV096AV016Biotita-anfibólio álcala feldspato granito, com fluoritaBiotita-anfibólio álcali feldspato granito foliadoBiotita-anfibólio álcali feldspato granito foliadoBiotita-anfibólio álcali feldspato granito foliado, com fluoritaXXX </td	

loonanaað	uo,					
	AV030	AV031	AV042	SD021	SD049	
Minerais	Biotita-anfibólio álcali feldspato granito	Biotita-anfibólio álcali feldspato granito	Biotita-anfibólio álcali feldspato granito foliado, com fluorita	Biotita-anfibólio álcali feldspato granito	Biotita-anfibólio álcali feldspato granito, com fluorita	
Quartzo	Х	Х	Х	Х	Х	
K-feldspato	Х	Х	Х	Х	Х	

Plagioclásio	х		х		X		х		х
Biotita	Х		Х		Х		Х		Х
Anfibólio	Х		Х		Х		Х		Х
Opacos	Х		Х		Х		Х		Х
Epidoto	Х						Х		
Muscovita	covita								
Sericita	Sericita								
Granada									
Carbonato									
Apatita							Х		
Fluorita					Х				Х
Zircão	Х		Х				Х		Х
Allanita							Х		
Titanita									
Observações	Inequigranular, média a grossa, alotriomórfica. K- feldspato pertítico, bservações de anfibólio para biotita. Anfibólio fortemente pleocroico e escuro.		Inequigranular, média a grossa, alotriomórfica. K- feldspato pertítico, reação de consumo de anfibólio para biotita. Anfibólio fortemente pleocroico e escuro.		G cc an fo fo pl fe pe Q	ranoblástica Inequigranular, média a grossa, alotriomórfica. K- feldspato pertítico, reação de consumo de anfibólio para leocroico. K- blotta. Anfibólio fortemente ertítico. pleocroico e escuro. tuartzo fitado		Inequigranular, média a grossa, alotriomórfica. K- feldspato pertítico, reação de consumo de anfibólio para biotita. Anfibólio fortemente pleocroico e escuro. Fluorita intersticial. Foliação discreta	
(continuaçã	ăo)								
		SD067		SD071		AV130		AV140	AV141
Minerais		Álcali feldspato granito com magnetita		Biotita álcali- granito foliado, com fluorita, foliado		Biotita-anfibólio álcali-granito foliado, com fluorita		Biotita- anfibólio álcali-granito foliado, com fluorita	Biotita-anfibólio álcali-granito foliado, com fluorita
Quartzo		Х		Х		Х		Х	Х
K-feldspato		Х		Х		Х		Х	Х
Plagioclásio		Х		Х		Х		Х	Х
Biotita		Х		Х		X		Х	Х
Anfibólio				Х		Х		Х	Х
Opacos		Х				Х			Х
Epidoto				Х		Х			
Muscovita									
Sericita				Х					
Granada									
Carbonato									
Apatita				Х					
Fluorita				Х		х		Х	
Zircão				Х		Х			
Allanita									
Titanita				Х					
Observações		Equigranular, média, alotriomórfica, isotrópica. Mobilizado quartzo- feldspático rico em opacos bem formados (magnetita). Máficos menores do que 5%		Equigranular, média, granoblástica, co cerca de 5% de minerais máficos intersticiais. K- feldspato pertítiti e sericitizado. Fluorita intersticia	om , co al	Inequigranular, mpedia a grossa hipdiomórfica a granoblástica, cr foliação dada pe alinhamento dos máficos. Anfiból escuro.		Equigranular, média, hipdiomórfica, isotrópica.	Equigranular, média, hipdiomórfica. Foliação espaçada dada por alinhamento de máficos e feldspato preservados. Aparente orientação de fluxo magmático devido a pouca presença de junções tríplices

		AV1	34	AV135		AV123		AV11	1	AV	023
		Biotit	a-anfibólio	Biotita-		Biotita-an	fibólio	Biotita	a-anfibólio	Anf	ibólio
Minera	nis	micro	ogranito	microgranito		microgram	nito	micro	granito	mic	rogranito com
		foliado, com		foliado, com		foliado, c	om	foliado	o, com	bio	tita e fluorita,
Quartza			ta	v				TIUOIIta	a		800
Qualizo				A X		^ 		∧ ∨		^ V	
R-ieldspalo		^ V		х Х		^ 		A V			
Plaglociasio				A X		^ 		∧ ∨		^ V	
Antibália		^ V		^		^ 		×			
		×				×		X		×	
Opacos						^		^		^	
Epidoto		^									
Rerieite											
Granada											
Granada											
Carbonato											
Apatita		V				V		V		V	
		^				X		×		X	
Zircao						~				×	
Allanita		v								^	
Папна		^						Fault			
							Equigranular.		Equigranular,		iação incipiente,
		Equi	granular,	Equigranular,	fina,	fina,	alar,	grano	blástica.	rec	ristalização de
		tina,	oblástica	granoblastica Palbetas de k	, niota	hipdiomó	rfica.	Foliaç	ão dada	qua	artzo e telospato
Observações		foliac	la. Anfibólio	definem a foli	ação,	Tricliniza	ção de	por bi	otita e	Anf	ibólio intersticial
,		verde	e escuro,	que tende a t	er	Anfibólio	а,	antibo	dos	e v	erde muito
		com	elevada cor	microestrutura bandada.		esverdea	do	Esses	máficos	esc	uro, de elevada
		de in	terferência.			fortemente		tendem a ser		cor	de
								interst	iciais.	inte	enerencia.
(continuaçã	<u>o)</u>		1	1	1		1		r		1
	AV108		CG040	CG044	CG04	46	CG09	7	CG107		JT001
	Anfibólio		Biotita-								
Minerais	microgram	ito	anfibólio	Biotita	Biotita	a onaisse	Migma	tito	Granodiorito		Anfibólio-
	com biotit	a e liada	granito-	gnaisse	Diotite	a grialooo	lingina		Charlouion		biotita gnaisse
	nuonia, io	llado	gnaisse								
Quartzo	Х		X	X	Х		X		X		X
K-feldspato	X		X	X	X		X		X		X
Plagioclásio	Х		X	X	Х		X		X		X
Biotita	Х		X	Х	Х		X		Х		X
Anfibólio	Х		Х				Х				Х
Opacos	Х		Х	Х	Х		Х				Х
Epidoto				Х	Х		Х				
Muscovita					Х				Х		Х
Sericita					Х				Х		
Granada											
Carbonato											
Apatita			Х		Х		Х		Х		
Fluorita	Х		Х								
Zircão	Х			Х	Х		Х		Х		
Allanita	Х				Х		Х		Х		
Titanita							Х				

Observações	Foliação incipiente, recristalização de Qz e Fds moderada a alta. Anfibólio intersticial e verde muito escuro, de elevada cor de interferência.	Rocha foliada.	Extinção ondulante.	Enriquecimento em microclina. Extinção ondulante.	Amostra heterogênea, com textura irregular.	Granular, hipdiomórfica.	Inequigranular, fina a grossa, foliada (bandada)
-------------	---	-------------------	------------------------	--	--	-----------------------------	---

Detalhe das amostras analisadas:

AV141

4.5. Granitos à biotita

<u>Amostras laminadas</u>: 10 (AV013a, AV058a, AV078, AV085, AV094, AV117, AV156, AV158, AV167, D028; figura 6);

Amostras compiladas: 4 (CG303, RS214, RS216, RS246 Silva Filho et al. 1974);

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
AV013a	434367	8226303	Biotita granito foliado	Este estudo
AV058a	435040	8226260	Biotita granito	Este estudo
AV078	405799	8240909	Biotita granito	Este estudo
AV085	440634	8243941	Biotita granito	Este estudo
AV094	401803	8240726	Biotita granito	Este estudo
AV117	394978	8241665	Granito milonítico	Este estudo
AV156	426392	8242039	Biotita granito	Este estudo
AV158	424500	8240455	Biotita granito	Este estudo
AV167	437554	8245856	Biotita granito	Este estudo
CG303	437380	8246126	Granito-gnaisse	Projeto Sul da Bahia (1974)
D028	437379	8234213	Biotita granito foliado	Este estudo
RS214	395057	8241870	Granito foliado	Projeto Sul da Bahia (1974)
RS216	401642	8240475	Biotita granito	Projeto Sul da Bahia (1974)

RS246	428800	8235458	Biotita granito	Projeto Sul da Bahia (1974)
-------	--------	---------	-----------------	-----------------------------

Figura 6. Localização das amostras laminadas dos granitoides à biotita do complexo Salto da Divisa.

Síntese petrográfica dos granitoides à biotita do complexo Salto da Divisa:

	AV013a	AV058a	D028	AV156	AV158	RS246
Minerais	Biotita álcali- feldspato granito foliado	Biotita sienogranito	Biotita granito com fluorita foliado	Biotita álcali- feldspato granito com fluorita	Biotita álcali- feldspato granito com fluorita	Biotita- granito
Quartzo	х	х	х	х	х	Х
K-feldspato	х	Х	х	Х	х	Х

Plagioclásio	х	Х	x	х	x	х
Biotita	х	Х	х	Х	х	Х
Opacos		Х	х	Х	х	Х
Clorita	х					
Epidoto	х					
Muscovita			х		х	Х
Sericita		Х				Х
Carbonato		Х				
Apatita		Х				
Fluorita	х	Х	х	Х	х	Х
Zircão		Х	х	Х	х	Х
Allanita	Х	Х				
Titanita		Х				
Observações	Equigranular, média, granolepidoblástica. Foliação tende a ser sigmoidal. Cloritização incipiente de biotita. Fluorita intersticial.	Inequigranular, porfirítica, hipdiomórfica, isotrópica. K- feldspato pertítico. Biotita intersticial e em aglomerados. Carbonato bem formado em aglomerado máfico.	Equigranular, média, granolepidoblástica, com domínios hipdiomórficos. Plagioclásio é albita e exibe geminação irregular ou deformada. Muscovita é alteração de biotita. Quartzo límpido e recristalizado. Biotita com inclusão de zircão	Inequigranular, média a grossa, hipdiomórfica, isotrópica. K- feldspato pertítico, mirmequitas. Plagioclásio é albita. Biotita escura. Muscovita é traço. Fluorita bem formada. Biotita com inclusão de zircão.	Equigranular, média, hipdiomórfica, isotrópica. K- feldspato pertítico, mirmequitas. Plagioclásio é albita. Biotita em aglomerados ou intersticial. Cristais grandes, ou finas palhetas. Fluorita bem formada. Biotita com inclusão de zircão.	Granulação grossa a porfirítica. Extinção ondulante

(continuação)

	AV085	AV167	CG303
Minerais	Biotita álcali-feldspato granito com fluorita	Biotita álcali-feldspato granito com fluorita	Granito-gnaisse
Quartzo	X	Х	X
K-feldspato	Х	Х	Х
Plagioclásio	X	X	Х
Biotita	Х	Х	Х
Opacos	Х	Х	Х
Clorita			Х
Epidoto	Х		
Muscovita	X	X	X
Sericita			
Carbonato			
Apatita	Х		
Fluorita		Х	Х
Zircão	X		
Allanita	X	X	X
Titanita			

		Inequigranular, hipdiomórfica,	
Observações	Inequigranular, média a grossa,	porfirítica. Foliação sigmoidal	Microclina pertítitica.
	hipdiomórfica, porfirítica.	incipiente. K-feldspato pertítico,	Extinção ondulante.
	Foliação incipiente. K-feldspato	Allanita bem formada	Biotita parcialmente
	pertítitico, mirmequitas.	metamítica, K-feldspato	cloritizadas. Muscovita
	Muscota é traço. Biotita em	manteado por quartzo. Biotita	em pequena
	aglomerados.	em aglomerados e também na	quantidade.
		foliação.	
(continuação)			

leonandaça	0) 		[
Minerais	AV078	AV094	AV117	RS214	RS216
	Biotita álcali- feldspato granito, com fluorita	Biotita álcali- feldspato granito	Sienogranito milonítico	Granito foliado	Biotita granito
Quartzo	X	х	х	х	х
K-feldspato	X	Х	Х	х	Х
Plagioclásio	X	Х	х	х	Х
Biotita	X	Х	х	х	Х
Opacos	Х	Х	х	х	Х
Clorita					
Epidoto					
Muscovita			Х		
Sericita			х	х	
Carbonato					
Apatita		Х		х	Х
Fluorita	Х	Х	х	х	Х
Zircão	X	х	Х	х	Х
Allanita		х		х	Х
Titanita	X	Х		х	х
Observações	Inequigranular, média a grossa, hipdiomórfica. Ortoclásio pertítico. Contatos lobados. Recristalização incipiente. Fluorita intersticial. Biotita em agregados.	Equigranular, grossa. Ortoclásio pertítico. Plagioclásio tabular é albita. Agregados máficos orientados com fluxo. Zircão abundante, associado a estes agregados e inclusos em biotita.	Equigranular, médio. Forte recristalização, com contatos poligonais. Trama quartzo-feldspática orientada. Presença considerável de albita. Microfraturas e microfalhas.	Forte recristalização. Extinção ondulante. Máficos em agregados intersticiais. Titanita bem formada	Microclina pertítica. Biotita pouco abundante e ocorre em aglomerados, em associação com titanita.

Detalhe das amostras laminadas

4.6. Granitos à duas micas

<u>Amostras laminadas</u>: 10 (AV008, AV009, AV048, AV049, AV165, AV153. AV154, AV157, AV089, AV088; figura 7);

Amostras compiladas: 2 (RS169, RS244; Silva Filho et al. 1974).

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
AV008	441709	8242541	Granitoide esbranquiçado foliado	Este estudo
AV009	439880	8240132	Álcali granito	Este estudo
AV048	438539	8241202	Granitoide esbranquiçado foliado	Este estudo
AV049	436152	8241770	Álcali granito	Este estudo
AV088	404339	8240665	Microgranito (subvulcânica?)	Este estudo
			Granitoide branco-esverdeado,	
AV089	405227	8246394	com amazonita, foliado	Este estudo
AV153	425731	8242809	Álcali granito	Este estudo
AV154	425215	8242504	Álcali granito	Este estudo
			Granitoide branco-esverdeado,	
AV157	426200	8242351	com amazonita, foliado	Este estudo
AV165	437195	8247174	Álcali granito	Este estudo
RS169	405575	8246319	Muscovita-Biotita gnaisse	Projeto Sul da Bahia (1974)
RS244	423588	8241155	Biotita granito	Projeto Sul da Bahia (1974)

Figura 7. Localização das amostras laminadas dos granitoides à duas micas do complexo Salto da Divisa.

Síntese petrográfica dos granitoides à biotita do complexo Salto da Divisa:

	AV008	AV009	AV165	AV048	AV049
Minerais	Biotita-muscovita granito foliado	Biotita-muscovita granito foliado	Biotita-muscovita granito	Biotita-muscovita granito foliado	Biotita-muscovita granito
Quartzo	х	х	х	х	х
K-feldspato	х	х	х	х	х
Plagioclásio	х	х	Х	х	Х

Biotita	х	х		х		х			х
Opacos				Х					
Muscovita	Х	Х		Х		х			Х
Fluorita	Х	Х		Х		Х			Х
Zircão		Х							
Allanita	Х	Х							
Observações Inequigranular, média a grossa a porfirítica, foliada, milonítica, com fenocristais subédricos reliquiares. Foliação sigmoidal.		Eo hi te Fo	quigranular, pdiomórfica, ndendo a anoblástica. pliação incipiente	Equigranular, hipdiomórfica, isotrópica. K- feldspato pertítitico. Saussuritização.		Equigranular, média, foliada, granolepidoblástica. Microclina geminada. Plagioclásio bem geminado é albita. Muscovita altera biotita.		stica. m vita. a	Inequigranular, fina a média, hipdiosmórfica. Intercrescimento reliquiar entre quartzo e K- feldspato (textura granofífira). Biotita pálida.
(continuaçã	io)				-			-	
	AV153		AV154		AV157			RS24	14
Minerais	Álcali-feldspato granito		Álcali-feldspato	granito	Biotita-n granito f	nuscovita oliado		Biotit	a granito
Quartzo	Х		Х		Х			x	
K-feldspato	Х		Х		Х			X	
Plagioclásio	Х		Х		X			X	
Biotita	Х		Х		Х		Х		
Opacos	Х		Х		Х		Х		
Muscovita					X			X	
Fluorita	Х		Х		х			Х	
Zircão					Х			Х	
Allanita							Х		
ObservaçõesInequigranular, média a grossa a porfirítica, hipdiomórfica. K- feldspato pertítitico, Quartzo intersticial entre cristais maiores de K- felsdpato. Albitização. Microestrutura núcleo-manto em cristais maiores de K-feldspato.Inequigranular, m grossa a porfirític hipdiomórfica. K- pertítitico, Quartz entre cristais mai felsdpato. Microestrutura núcleo-manto em cristais maiores de K-feldspato		média a ica, 4-feldspato tzo intersticial aiores de K- zação. núcleo-manto ores de K-	Equigrai K-feldsp com ger complex límpido s deforma pálida e deforma bem forr	nular, méc ato e albit ninações cas. Quart: sem ção. Biotit placoide, ção. Fluor nada.	lia. a zo a sem ita	Gran Extin palhe	ulação grossa. ção ondulante. Finas etas de biotita.		
(continuaçã	(continuação)								
	AV089		RS169			AV088			
Minerais	Biotita-muscovita granito foliado		Muscovita-biotita gnaisse		se	Microgranito ou subvulcânica			
Quartzo	X		X		X				
K-feldspato	X			X			Х		
Plagioclásio	X		Х	X		Х			
Biotita	X			Х		Х			
Opacos	X			X					
Muscovita	X		X		Х				

Fluorita	x	Х	
Zircão	x	Х	
Allanita		Х	
Observações	Equigranular. Granoblástica. Geminação polisintética e Carlsbad, frequentemente deformada e complexa. Fluorita é intersticial ou como cristais bem formados, disseminados. Mica incolor a marrom, com cores de muscovita a nicois cruzados.	Equigranular, média, dominantemente quartzo- feldspática, com biotita e muscoviuta orientada na foliação. Extinção ondulante. Microclina pertítica. Plagioclásio é albita.	Equigranular, fino.Granolepidoblástica, forte recristalização. Plagioclásio é albita. Pode ser também um riolito.

Detalhe das amostras laminadas

4.7. Associação meta-vulcanosedimentar e diques félsicos subvulcânicos

A norte-nordeste do corpo granítico de Itapebi foi identificada uma região onde ocorre uma associação meta-vulcanosedimentar heterogênea, composta por, no mínimo, cinco tipos de rochas diferentes: meta-riolito, biotita xisto máfico (fino a porfirítico), rocha ultramáfica e quartzito. O croqui da figura 8 sintetiza a distribuição espacial dessas rochas em afloramento, bem como o local de coleta de amostras utilizadas para a produção de lâminas para estudo petrográfico.

Figura 8. Localização das amostras laminadas da associação meta-vulcanosedimentar do complexo Salto da Divisa.

<u>Amostras laminadas</u>: 10 (AV051, AV052a, AV052b, AV052c, AV052d, AV052e, AV052f, AV052g, AV052h; figura 9).

Nome	UTM_E	UTM_N	Rocha (classificação de campo)	Referência
AV051	428344	8244065	Meta-riolito com aegirina e granada	Este estudo
AV052a	427105	8243616	Meta-riolito	Este estudo
AV052b	427105	8243616	Biotita-xisto	Este estudo
AV052c	427105	8243616	Meta-riolito	Este estudo
AV052d	427105	8243616	Meta-riolito	Este estudo
AV052e	427105	8243616	Biotita-xisto porfirítico	Este estudo
AV052f**	427105	8243616	Piroxenito com flogopita	Este estudo
AV052g	427105	8243616	Meta-riolito com aegirina e epidoto	Este estudo
AV052h	427105	8243616	Quartzito ferruginoso	Este estudo
D022	405909	8283091	Traquito	Este estudo
D023	408665	8282469	Traquito	Este estudo

**Rocha detalhada no tópico das rochas ultramáficas do Complexo Salto da Divisa

Figura 9. Localização das amostras laminadas da sequência meta-vulcanosedimentar e diques félsicos subvulcânicos do complexo Salto da Divisa.

<u>Síntese petrográfica das rochas metavulcano-sdimentares e diques félsicos</u> <u>subvulcânicos do complexo Salto da Divisa</u>:

Minerais	AV051	AV052a	AV052b	AV052c
	Meta-riolito com aegirina e granada	Meta-riolito	Biotita-xisto	Meta-riolito
Quartzo	Х	Х	х	Х
K-feldspato	Х	Х	х	Х

Plagioclásio					
Nefelina					
Biotita	Х	Х	х	Х	
Opacos	Х	Х	Х	Х	
Cancrinita					
Aegirina	Х				
Epidoto			Х		
Granada	Х				
Apatita					
Observações	Matriz quartzo- feldspática fina, recristalizada, orientada. Fenocristais reliquiares de K- feldspato e quartzo corroídos. Pórfiros de Aegirina e granada euédricos e poiquiloblásticos.	Matriz quartzo- feldspática fina, recristalizada, orientada. Fenocristais euédricos a subédricos de K- feldspato. Finas palhetas de biotita orientadas na foliação.	Granolepidoblástica, fina. Enriquecimento em biotita castanho- avermelhada.	Ma felo rec Felo sub felo cor opa Fin orie	triz quartzo- dspática fina, ristalizada, orientada. nocristais euédricos a bédricos de K- dspato. Bordas rroídas e inclusões de aco nos fenocristais. as palhetas de biotita entadas na foliação.
(continuaçã	ăo)	· · ·			
Minereie	AV052d	AV052e	AV052g		AV052h
Minerais	Meta-riolito	Biotita-xisto porfirítico	Meta-riolito com aegirina e Qua		Quartzito ferruginoso
Quartzo	Х	X		Х	
K-feldspato	Х	X			
Plagioclásio	X				
Nefelina					
Biotita	Х	Х			х
Opacos	Х	Х			х
Cancrinita					
Aegirina			х		
Epidoto		Х	х		
Granada					
Apatita					
Observações	Matriz quartzo- feldspática fina, recristalizada, orientada. Fenocristais euédricos a subédricos de K-feldspato. Bordas corroídas e golfos de corrosão nos fenocristais. Fenocrostal geminado (sanidina). Finas palhetas de biotita.	Inequigranular, porfirítica, granolepidoblástica, com foliação sigmoidal. Cristais euédricos, piramidais de quartzo. Biotita castanho- avermelhada.	Matriz quartzo-feldspática fina, recristalizada, orientada. Fenocristais reliquiares de K-feldspato e quartzo corroídos. Pórfiros de Aegirina euédricos, poiquiloblásticos e esqueltais. Concnetração anômala de epidoto		Equigranular, média, com zonas de microfalha- fraturas com finos cristais recristalizados (gauge?). Óxido de ferro intersticial e finas palhetas de biotita castanho- avermelhada.
(continuaçã	ao)				

Minereio	D022	D023
Willerais	Traquito	Traquito
Quartzo		
K-feldspato	x	x

Plagioclásio			
Nefelina	х	х	
Biotita	X	x	
Opacos	x	x	
Cancrinita	х	х	
Aegirina			
Epidoto			
Granada			
Apatita	X	x	
Observações	Matriz fina orientada segundo fluxo magmático. Fenocristais euédricos e subédricos de K- feldspato, por vezes corroídos. Microestrutura traquítica. Cancrinita é alteração de nefelina.	Matriz fina orientada segundo fluxo magmático. Fenocristais euédricos e subédricos de K-feldspato, por vezes corroídos. Microestrutura traquítica. Cancrinita é alteração de nefelina.	

Detalhe das amostras laminadas

