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ABSTRACT 

 

This dissertation assesses the economic, social, and environmental impacts of highway 

infrastructure in Brazil. We investigate the relationship between road development and 

economic outcomes, regional disparities, and sustainability during the Growth 

Acceleration Program (PAC) period (2007-2018), a case study marked by deep regional 

heterogeneities in terms of socioeconomic development, infrastructure endowment, and 

environmental degradation. Chapter 2 develops an original three-step econometric 

identification strategy to estimate the causal effects of road investments on development 

outcomes. Using novel granular data on national road investments at the municipal level, 

we propose several instrumental variables (IVs) to overcome two critical endogeneity 

issues in infrastructure studies. To correct measurement errors in the road variable, we 

construct instruments based on the main geographical, environmental, and human-

physical infrastructure project costs. To fix the non-random placement of road 

interventions, we draw different IVs based on global cost minimization methods, historical 

transportation plans, and the propensity of a municipality to receive road investments. 

Using our suitable IVs, results suggest that a 1% increase in road investments raises 

productivity from 0.011% to 0.017%. From these elasticities, we calculate an average 

Return Rate to Highway Investments (RR) of around 21% in Brazil. Our identification 

strategy seems accurate under many robustness checks. We use the data and the 

econometric approach constructed in Chapter 2 in the following empirical exercises. 

Chapter 3 evaluates the heterogeneous impacts of road investments on productivity, 

considering efficiency, road specialization, redistribution, and equity goals of public 

policies. Econometric results point out that the economic impacts of highway investments 

are higher for poorer and less infrastructure-endowed regions, suggesting that road 

policies generate a “social bonus” by reducing regional inequalities, and this policy tool 

might be used for inclusive purposes. From these empirical findings, we augment our 

return rate measure by slicing the RR into an Economic Component (EC), representing the 

isolated impact of roads on productivity, and a Social Component (SC), capturing the 

higher impacts of roads in less developed regions. Chapter 4 measures the environmental 

costs of highway development. We adapt our three-step identification approach to 

estimate the impacts of road investments on Greenhouse Gas Emissions (GHG) in Brazilian 

municipalities. Results show that constructing and enhancing road infrastructure raises 

GHG emissions. We calculate an average Environmental Discount Rate to Highway 

Investments (ER) of around 3% in Brazil. We also identify some heterogeneities in the 

environmental road impacts. The harmful effect of roads on the environment is more 

pronounced in poorer and more remote areas, especially due to the wider road effect in 

increasing deforestation. We use the ER as an Environmental Component (EC) and 

calculate an original Sustainable and Equitable Return Rate to highway investments 

(SERR) at the regional level. We compute an average SERR of 17%, indicating the high 

profitability of road investments even considering social and environmental issues. 

Chapter 5 develops eligibility and prioritization criteria for regionalized road investments 



 

considering economic, social, and environmental issues. The eligibility criteria ensure a 

minimum return level on the investment. The prioritization criteria go beyond the 

economic aspect conventionally considered in the design of infrastructure projects, 

ranking higher those regions with the potential to reduce inequalities and mitigate 

environmental damage through highway investments. Our findings offer novel inputs for 

policymakers, technicians, financial institutions, and civil society in shaping efficient, 

equative, and environmentally conscious road policies. 

 

Keywords: transportation infrastructure; economic development; regional inequality; 

sustainability; highways; roads. 

  



 

RESUMO 

 

Esta tese avalia os impactos econo micos, sociais e ambientais dos investimentos em 

infraestrutura rodovia ria no Brasil. Investigamos a relaça o entre o desenvolvimento 

rodovia rio e os crescimento econo mico, as disparidades regionais e a sustentabilidade 

durante o perí odo do Programa de Aceleraça o do Crescimento (PAC) (2007-2018), um 

estudo de caso marcado por profundas heterogeneidades regionais em termos de 

caracterí sticas socioecono micas, dotaça o de infraestrutura e degradaça o ambiental. O 

Capí tulo 2 desenvolve uma nova estrate gia de identificaça o econome trica em tre s etapas 

para estimar os efeitos causais dos investimentos em estradas sobre a produtividade. 

Usando ine ditos dados granulares sobre investimentos em estradas nacionais em ní vel 

municipal, propomos diversas varia veis instrumentais (IVs) para superar dois problemas 

crí ticos de endogeneidade em estudos sobre infraestrutura. Para corrigir erros de medida 

na varia vel de infraestrutura rodovia ria, construí mos instrumentos com base nos 

principais custos geogra ficos, ambientais e fí sicos-humanos em projetos de 

infraestrutura. Para corrigir problemas de endogeneidade advindos da alocaça o na o 

aleato ria das intervenço es rodovia rias, elaboramos diferentes IVs com base em me todos 

de minimizaça o de custos globais, planos histo ricos de transportes e a propensa o de um 

municí pio a receber investimentos rodovia rios. Usando nossas IVs consideradas 

adequadas, os resultados sugerem que um aumento de 1% nos investimentos em rodovias 

aumenta a produtividade entre 0,011% e 0,017%. A partir dessas elasticidades, 

calculamos uma taxa de retorno econo mico me dia para investimentos em rodovias (RR) 

de cerca de 21% no Brasil. Nossa estrate gia de identificaça o se mostrou precisa sob va rios 

testes de robustez. Usamos os dados e a abordagem econome trica construí da no Capí tulo 

2 nos exercí cios empí ricos subsequentes. O Capí tulo 3 avalia os impactos heteroge neos 

dos investimentos rodovia rios sobre a produtividade, considerando a eficie ncia, a 

especializaça o rodovia ria, a redistribuiça o e a equidade como objetivos das polí ticas 

pu blicas de transportes. Os resultados econome tricos apontam que os impactos 

econo micos dos investimentos em rodovias sa o maiores para regio es mais pobres e 

menos dotadas de infraestrutura, sugerindo que polí ticas rodovia rias geram um "bo nus 

social" ao reduzir as desigualdades regionais, e que essa ferramenta polí tica pode ser 

usada para fins inclusivos. A partir dessas constataço es empí ricas, expandimos nossa 

medida de taxa de retorno em um Componente Econo mico (EC), que representa o impacto 

isolado das rodovias sobre a produtividade, e um Componente Social (SC), que capta os 

impactos mais altos das rodovias em regio es menos desenvolvidas. O Capí tulo 4 mede os 

custos ambientais do desenvolvimento das rodovias. Adaptamos nossa abordagem de 

identificaça o em tre s etapas para estimar os impactos dos investimentos em rodovias 

sobre as emisso es de gases de efeito estufa (GEE) nos municí pios brasileiros. Os 

resultados mostram que a construça o e a melhoria da infraestrutura rodovia ria 

aumentam as emisso es de GEE. Calculamos uma taxa me dia de desconto ambiental para 

investimentos em rodovias (ER) de cerca de 3% no Brasil. Tambe m identificamos algumas 

heterogeneidades nos impactos ambientais das estradas. O efeito prejudicial das rodovias 



 

sobre o meio ambiente e  mais pronunciado em a reas mais pobres e remotas, 

especialmente devido ao efeito mais amplo das rodovias no aumento do desmatamento. 

Usamos a ER como um Componente Ambiental (EC) e calculamos uma original Taxa de 

Retorno Econo mico, Equitativo e Sustenta vel (TREES) para investimentos em rodovias em 

ní vel regional. Mensuramos uma TREES me dia de 17%, indicando a alta rentabilidade dos 

investimentos rodovia rios no paí s mesmo considerando questo es sociais e ambientais. 

Por fim, o Capí tulo 5 desenvolve crite rios de elegibilidade e priorizaça o para 

investimentos rodovia rios regionalizados, considerando questo es econo micas, sociais e 

ambientais. Os crite rios de elegibilidade garantem um ní vel mí nimo de retorno sobre o 

investimento. Os crite rios de priorizaça o va o ale m do aspecto econo mico 

convencionalmente considerado na elaboraça o de projetos de infraestrutura, 

classificando como de mais alta prioridade aquelas regio es com potencial para reduzir as 

desigualdades e mitigar os danos ambientais por meio de investimentos em rodovias. 

Nossas descobertas oferecem novos insumos para formuladores de polí ticas, te cnicos, 

instituiço es financeiras e sociedade civil na elaboraça o de polí ticas rodovia rias eficientes, 

equitativas e ambientalmente corretas. 

 

Palavras-chave: infraestrutura de transporte; desenvolvimento econo mico; desigualdade 

regional; sustentabilidade; rodovias; estradas. 

 

  



 

LIST OF FIGURES 

  

Figure 1.1. Thesis structure and rationality ...................................................................................... 20 
Figure 2.1. Related literature: main IV approaches used in infrastructure-regional 
economic development studies .......................................................................................................... 34 

Figure 2.2.  Three-step empirical approach: identifying causal impacts of highway 
investment on local outcomes ............................................................................................................. 37 

Figure 2.3 Elasticities (a) and return rates to highway investments (b): Brazil, 2007-2018
 ......................................................................................................................................................................... 51 

Figure 3.1. Road infrastructure in Brazil: efficiency (a), redistribution (b), equity (c) and 
road specialization (d) ........................................................................................................................... 64 

Figure 3.2. Average federal highway investments (R$ million) by deciles of efficiency, 
redistribution, equity, and road specialization ............................................................................. 66 

Figure 3.3. Highway investment elasticity (α) by infrastructure reliance (φ) level .......... 68 
Figure 3.4. Infrastructure project costs by decile: Cost Index 1 (a) and Cost Index 2 (b)

 ......................................................................................................................................................................... 75 
Figure 3.5. Return rate to highway investments in Brazil: looking at heterogeneities in 
efficiency, redistribution, equity, and road specialization ........................................................ 78 

Figure 3.6. RR Efficient & Road Specialized & Redistributive & Equative (a) and RR 
Average (b): Pointing Win-Win  Localities for Road Investment ............................................ 81 

Figure 4.1. The impacts of highway infrastructure on GHG emissions ................................... 89 
Figure 4.2. Federal Highway Investments and CO2 Emissions Growth (2007-2018) - 
Elasticity (α*φ): Heterogeneous Impacts ....................................................................................... 98 

Figure 4.3. CO2 Emissions Return Rate to Highway Investments (ERR) under different 
Social Costs of Carbon (SCC) and road impact heterogeneities .......................................... 103 

Figure 4.4. CO2 Emissions Return Rate to Highway Investments (ERR): Brazilian RGIs
 ...................................................................................................................................................................... 104 

Figure 4.5. Sustainable Return Rates to Highway Investments: SRR (a) and SERR (b) 105 
Figure 5.1. The Sustainable and Equitable Return Rate to highway investments (SERR): 
economic component (a), social component (b), environmental component (c), and 
SERR (d) .................................................................................................................................................... 114 

Figure 5.2. Eligible RGIs for highway investments ...................................................................... 118 
Figure 5.3. Priority RGIs for sustainable and equative highway investments .................. 120 
Figure 5.4. SERR and prioritization criteria: State-level aggregation .................................. 123 
Figure 5.5. Highway policy zones description (a), and SERR and prioritization criteria (b)

 ...................................................................................................................................................................... 126 
Figure 5.6. Simulation results: EC, SC, GEC and SERR ................................................................ 130 
Figure 5.7. Simulation results for eligible RGIs: EC, SC, GEC, and SERR .............................. 131 
Figure 5.8. The PAC gains (losses): differences (gap) between PAC and average 
simulations for eligible RGIs SERRs (a) and ratios between the gap and the SERR (b)
 ...................................................................................................................................................................... 132 

  



 

LIST OF TABLES 

 

Table 2.1. Federal Highway Investments and Municipal GDP per capita Growth, 2007-
2018: Third Step 2SLS IV Regressions ............................................................................................. 46 

Table 3.1. Federal Highway Investments and Local Outcomes Growth, 2007-2018: 2SLS 
IV Regressions ........................................................................................................................................... 67 

Table 3.2. Federal Highway Investments controlling by infrastructure reliance (Log 
Highway Investments * φ) and GDP per capita Growth, 2007-2018: Heterogeneity 
Results, 2SLS IV Regressions ............................................................................................................... 71 

Table 3.3. Federal Highway Investments, controlling by infrastructure reliance (Log 
Highway Investments * φ), and GDP per capita Growth by “Ideal Samples”, 2007-2018: 
2SLS IV Regressions ................................................................................................................................ 73 

Table 4.1. Federal Highway Investments and CO2 Emissions Growth (2007-2018): 2SLS 
IV Regressions ........................................................................................................................................... 96 

Table 5.1. The prioritization criteria: RGI level ............................................................................. 119 
Table 5.2. EC, SC, GEC, SEER, and road features: Highway Policy Zones ............................. 127 
  



 

CONTENTS 
 

1. INTRODUCTION ..................................................................................................................................... 17 
 

2. HIGHWAY INFRASTRUCTURE AND ECONOMIC DEVELOPMENT: measuring causal impacts 
of infrastructure investments using a three-step instrumental variable identification strategy .. 25 
2.1. Introduction ...................................................................................................................................... 26 
2.2. Related Literature ........................................................................................................................... 29 
2.2.1. Road infrastructure and regional or local economic development: empirical related 
literature  ..................................................................................................................................................................................... 29 
2.2.2. Main IV approaches in studies on the impacts of road infrastructure on regional or local 
development ................................................................................................................................................................................ 31 
2.2.3. Open points and potential progress ........................................................................................................... 34 
2.3. Measuring causal impacts of road investments on local outcomes: a new three-step 
proposal combining cost-related and non-random placement IVS ............................................. 35 
2.4. Data ...................................................................................................................................................... 37 
2.4.1. National Highway Investments .................................................................................................................... 37 
2.4.2. Infrastructure Project Cost-Related IVs .................................................................................................... 38 
2.4.3. Non-Random Road Allocation IVs ............................................................................................................... 40 
2.4.4. Dependent And Control Variables ............................................................................................................... 41 
2.5. Econometric specification............................................................................................................ 42 
2.5.1. Correcting measurement error bias (the second step): testing cost-related IVs ................... 42 
2.5.2. Fixing omitted variable bias (the third step): including non-random allocation IVs ......... 43 
2.6. Empirical results ............................................................................................................................. 44 
2.6.1. Main results ........................................................................................................................................................... 44 
2.6.2. Falsification test and robustness checks .................................................................................................. 47 
2.7. Assessing the return rate to highway investments: how large can the bias be? ....... 49 
2.8. Concluding remarks ....................................................................................................................... 51 

 

3. INFRASTRUCTURE, GROWTH, AND REGIONAL DISPARITIES: looking at the efficiency, 
redistribution, and equity goals in road investments ...................................................................................... 53 
3.1. Introduction ...................................................................................................................................... 54 
3.2. Related Literature........................................................................................................................... 56 
3.2.1. Road infrastructure and economic activity: empirical literature ............................................... 56 
3.2.2. Looking at efficiency-specialization, equity, and distribution in road investments ............ 57 
3.3. Econometric approach .................................................................................................................. 58 
3.3.1. Measuring causal impacts of highways investments on productivity: the medeiros et al. 
(2024) three-step IV identification approach ............................................................................................................. 58 
3.3.2. Including the local road infrastructure reliance (φ) ......................................................................... 59 
3.3.3. Calculating the return rate to highway investments: the efficiency-specialization, 
distribution, and equity framework ................................................................................................................................. 60 
3.4. Data ...................................................................................................................................................... 61 
3.4.1. National Highway Investments .................................................................................................................... 61 
3.4.2. Road Efficiency, Redistribution, Equity, And Specialization........................................................... 62 
3.4.3. Instruments ........................................................................................................................................................... 63 
3.4.4. Dependent And Control Variables............................................................................................................... 66 
3.5. Econometric results and discussion ......................................................................................... 67 
3.5.1. Baseline estimates .............................................................................................................................................. 67 
3.5.2. Identifying heterogeneities in the return rate to highway investments ................................... 68 
3.5.2.1. Determinants of road investments ............................................................................................... 69 
3.5.2.2. Road Investment Impact Heterogeneity ..................................................................................... 70 



 

3.6. Evaluating the economic return of road investments in Brazil during the PAC period 
(2007-2018) .................................................................................................................................................... 76 
3.6.1. Was the “old” PAC a win-win program? .................................................................................................. 77 
3.6.2. An efficient-specialized and redistributive-equative return rate map ...................................... 80 
3.7. Concluding remarks ....................................................................................................................... 82 

 

4. HIGHWAY INFRASTRUCTURE AND GREENHOUSE GAS EMISSIONS: evaluating the 
environmental costs of road investments in Brazil .......................................................................................... 84 
4.1. Introduction ...................................................................................................................................... 85 
4.2. Related Literature ........................................................................................................................... 88 
4.2.1. Transportation infrastructure and economic development ........................................................... 88 
4.2.2. Highway infrastructure and sustainable development..................................................................... 88 
4.3. Methods .............................................................................................................................................. 91 
4.3.1. Baseline econometric specification ............................................................................................................ 91 
4.3.2. Road Heterogeneity Econometric Specification ................................................................................... 92 
4.3.3. Data........................................................................................................................................................................... 93 
4.3.3.1. GHG emissions ....................................................................................................................................... 93 
4.3.3.2. Highway infrastructure measures and instruments .............................................................. 94 
4.3.3.3. Moderating variables .......................................................................................................................... 94 
4.3.3.4. Additional controls .............................................................................................................................. 95 
4.4. Econometric results and discussion ......................................................................................... 95 
4.4.1. Baseline estimates .............................................................................................................................................. 95 
4.4.2. Road Impact Heterogeneity ........................................................................................................................... 97 
4.4.3. Robustness checks .............................................................................................................................................. 99 
4.5. Including sustainability into the return rate to highway investments ..................... 100 
4.5.1. The CO2 emissions return (discount) rate to highway investments (ERR) and the 
sustainable (and equitable) return rate to highway investments (SRR and SERR)................................. 100 
4.5.2. Results and policy implications .................................................................................................................. 102 
4.6. Concluding remarks .................................................................................................................... 107 

 

5. BRINGING HIGHWAY INVESTMENTS MORE EFFICIENT, INCLUSIVE, AND SUSTAINABLE: 
establishing priorities for the development and evaluation of regionalized road policies in Brazil . 
  .................................................................................................................................................................. 109 
5.1. Introduction ................................................................................................................................... 110 
5.2. The economic, social, and environmental components of the return rate to highway 
investments .................................................................................................................................................. 112 
5.3. The priority classification for highway investments ....................................................... 116 
5.3.1. Eligibility Criteria ............................................................................................................................................. 117 
5.3.2. The prioritization criteria ............................................................................................................................ 118 
5.4. Creating Highway Investment Zones for National Policy Analysis ............................. 121 
5.4.1. State-level SERR and Components ............................................................................................................ 122 
5.4.2. The Spatial Clustering Framework .......................................................................................................... 123 
5.4.3. Method ................................................................................................................................................................... 124 
5.4.4. Results .................................................................................................................................................................... 124 
5.5. An ex-post evaluation of the PAC (2007-2018): looking at economic, social, and 
environmental issues in highway investments ................................................................................ 127 
5.6. Concluding remarks .................................................................................................................... 133 

 

6. CONCLUSION ........................................................................................................................................ 135 

 



 

I. REFERENCES .................................................................................................................................. 136 
 

II. APPENDIX - HIGHWAY INFRASTRUCTURE AND ECONOMIC DEVELOPMENT ................ 145 
A. Study Design (the first step) .................................................................................................................145 
B. Cost-related IV rationality: avoiding (or alleviating) measurement bias of 
monetary highway investments variables ...................................................................................................147 
C. Non-random allocation IVs rationality: avoiding (or alleviating) omitted variable 
bias of highway investment ..................................................................................................................................151 
D. National Highway Investments ...........................................................................................................153 
E. Infrastructure project cost-related IVs ..........................................................................................157 
1. Environmental costs ................................................................................................................................157 
2. Geographical costs ...................................................................................................................................158 
3. Expropriation and interferences (human physical) costs ..........................................................159 
F. Non-Random Road Allocation IVs .....................................................................................................161 
1. LCP-MST IVs ................................................................................................................................................161 
2. Political IVs .................................................................................................................................................165 
3. “Potential Road Intervention Areas” IV ............................................................................................166 
G. Control Variables ........................................................................................................................................169 
H. Correcting measurement error bias and selecting suitable cost-related IVs: the 
second step ....................................................................................................................................................................174 
I. Solving non-random allocation bias: the third step................................................................185 
J. Robustness checks .....................................................................................................................................186 
1. Falsification test ........................................................................................................................................186 
2. Outcomes .....................................................................................................................................................188 
3. Highway investment measure ..............................................................................................................189 
4. Additional robustness checks ...............................................................................................................189 

 

II. APPENDIX - INFRASTRUCTURE, GROWTH AND REGIONAL DISPARITIES ................ 196 
A. Variables description and descriptive statistics ......................................................................196 
B. Additional estimates ................................................................................................................................198 
C. Section 6 Appendix ....................................................................................................................................202 
 

III. APPENDIX - HIGHWAY INFRASTRUCTURE AND GREENHOUSE GAS EMISSIONS .... 205 
A. Variables description and descriptive statistics ......................................................................205 
B. OLS estimates ...............................................................................................................................................207 
C. Heterogeneous road impacts on CO emissions growth ........................................................209 
D. Robustness checks .....................................................................................................................................210 
E. Sensitivity analysis: land use change CO2 emissions .............................................................213 

 

IV. APPENDIX - BRINGING HIGHWAY INVESTMENTS MORE EFFICIENT, 
REDISTRIBUTIVE, AND SUSTAINABLE ................................................................................................. 214 
A. SERR and road features ..........................................................................................................................214 
B. State-level SERR components ..............................................................................................................216 
C. SKATER application ..................................................................................................................................219 
D. Simulation results: sensitivity analysis .........................................................................................222 
 



17 
 

 

1. INTRODUCTION 

 

Infrastructure investment has been seen as a critical policy tool to foster economic 

growth and development. Transportation infrastructure improvements reduce trade 

costs and travel times, raise labor and capital productivity, expand internal and external 

markets, and intensify agglomeration economies. A massive strand of theoretical and 

empirical investigations carried out over decades has argued for the presumed positive 

role of infrastructure investments on the economy (Aschauer, 1989; Baldwin et al., 2001; 

Behrens et al., 2007, 2008; Bird and Straub, 2020; Duran ton et al., 2014; Faber, 2014; 

Hirschman, 1958; Krugman, 1993; Ottaviano, 2008; Puga, 1999; Redding and Turner, 

2015; Straub, 2011; Zhang et al., 2020), which has inspired governments around the world 

to use this policy instrument with the promise of boosting economic activity through 

increasing income and employment. 

Although infrastructure investment has the potential to stimulate economic 

growth and generate prosperity, increased transportation infrastructure has been closely 

associated with regional disparities (Baum-Snow et al., 2020; Cocci and Mira, 2018; Faber, 

2014; Jaworski and Kitchens, 2019; Medeiros and Ribeiro, 2020; Medeiros et al., 2021a, 

2022; Zhang and Ji, 2019). Infrastructure interventions are spatial by nature, serving 

specific geographic areas aimed at linking important economic centers to other economic 

zones, highly populated regions, strategic ports, and so forth, developing lagging regions 

or attending political purposes. On the one hand, win-win situations wherein economic 

growth is achieved with reduced inequality and poverty alleviation might emerge. In these 

cases, infrastructure projects have the potential to help bridging the gap between different 

regions by making it easier for businesses to move to less developed areas with lower 

operating costs and better market access. Additionally, constructing infrastructure might 

facilitate the spread of knowledge, leveling the playing field between regions regarding 

production costs. On the other hand, infrastructure development might bring national 

economic growth, but this wealth may reach some areas at the expense of others. It occurs 

when enhancing connectivity between a remote region and a highly developed area 

amplifies the market benefits experienced by the latter, prompting businesses to relocate 

there. Finally, there is the case in which infrastructure investment promotes a regional 

reorganization of economic activity from one area to another, with null net impacts on the 

economy. In this complex context, the spatial placement of infrastructure is critical in 

shaping the regional economy, and prioritizing regions wherein high economic returns are 

accompanied by decreased inequality has a pivotal role in maximizing the broader 

benefits of transportation investments. 

In addition, infrastructure improvements are deeply related to environmental 

damage (Asher, 2020; Churchill et al., 2021; Emodi et al., 2022; Lin and Chen, 2020; Santos, 

2017; Yao et al., 2023). Road construction and improvement increase GHG emissions 

during the building and maintenance phases through the direct use of materials and 

equipment. Once built, the new infrastructure enhances regional accessibility and 

mobility, impacting GHG emissions through increased transportation demand. Moreover, 
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transportation infrastructure development might enlarge deforestation, water pollution, 

ecological footprint, and other environmental outcomes. Conversely, road improvement 

may reduce pollution by decreasing travel time and distance, promoting agglomeration 

economies, and improving energy efficiency. Besides, the net effect of road investments 

on the environment will be affected by a range of regional features such as agglomeration 

economies, income levels, population scale and density, technology intensity, institutional 

quality, legal environmental protection framework, and so forth. Then, road investments 

might heterogeneously impact the environment, and policymakers should consider it 

when allocating road interventions across regions. 

Despite its evident role in the transportation sector, social and environmental 

benefits (costs) have been broadly overlooked when measuring the returns to 

infrastructure investments. Most studies have focused on the economic issues of road 

investments, mainly by evaluating its impacts on income, travel times, and reducing 

transportation costs (Alam et al., 2022; Quadros and Nassi, 2015; Laird and Venables, 

2017; Welde and Tveter, 2022). These results have been extensively applied, for instance, 

in Cost-Benefit Analysis (CBA), Value for Money (VfM), and several other infrastructure 

project evaluation methods worldwide, influencing national, regional, and local 

governments to elect road interventions primarily based on the economic criteria, 

neglecting, or downplaying the social and environmental components of road 

investments. 

This dissertation sheds light on those issues by estimating the economic returns of 

highway investments conditioned by social and environmental factors in Brazil during the 

Growth Acceleration Program (PAC) period. The Brazilian case is a unique empirical 

setting to evaluate the impacts of transportation infrastructure and how they affect 

regional inequalities and the environment. First, road investments have been 

underperforming for decades since the 1980s, resulting in poor infrastructure stock, 

quality, and access. To overcome these shortcomings and stimulate economic growth, the 

Brazilian Federal Government launched the PAC in 2007 with the promise to develop the 

infrastructure sector, duplicating the levels of highway investments in comparison with 

the previous decade (Medeiros et al., 2021b). Then, the PAC constitutes a rare episode of 

a major expansion of transportation infrastructure in a developing country. Second, Brazil 

is one of the most unequal countries in the world. This condition is exacerbated by huge 

spatial heterogeneities in infrastructure endowment, productivity levels, socio-

environmental characteristics, and so forth (Medeiros et al., 2021a, 2022). Third, Brazil 

has faced several environmental challenges over the past decades. Unlike most developed 

countries and many developing economies, the central contributors to polluting gas 

emissions are land use change and agriculture sectors, which are deeply associated with 

deforestation and economic dynamics in the country. Those regional complexities are 

worthwhile inputs and make Brazil an outstanding case study to evaluate the economic, 

social, and environmental effects of transportation infrastructure investments wherein 

deep regional heterogeneities are expected to exist. 

Moreover, in August 2023, the Brazilian Federal Government instituted the “New” 

PAC, with predicted investment values of around R$ 1.7 trillion in several infrastructure 
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sectors. The main goals of the new (and third) program are similar in comparison to PAC 

1 (2007-2010) and PAC 2 (2011-2014)1, being developing the precarious national 

infrastructure by augmenting public investments and attracting private resources to the 

sector. In addition, to the best of our knowledge, this marks the first instance in Brazilian 

history in which a comprehensive national infrastructure initiative incorporates explicit 

socio-environmental strategies. As one of the main mechanisms to foster inclusive and 

environmentally friendly practices in the infrastructure sector, the Brazilian Federal 

Government prioritizes and facilitates the availability of funds to projects with socio-

environmental characteristics. In the transportation sector, the third PAC introduces the 

"Efficient and Sustainable Transport" pillar, allocating approximately R$ 349.1 billion in 

investments towards various transportation infrastructures, roads being the most 

relevant of them. Additionally, the transport program encompasses numerous 

institutional initiatives to foster social and environmentally conscious road 

infrastructures to accelerate an ecological and inclusive transition. For instance, the 

program expands financial resources and facilitates debentures issuing for projects with 

social, climate and environmental benefits. Furthermore, the new PAC encourages 

ecological transition by issuing sustainable sovereign bonds, expanding resources to the 

Climate Fund (Fundo Clima), endorsing low-carbon transportation options like hybrid and 

electric vehicles, and promoting decarbonization and utilizing sustainable materials in the 

construction sector. 

While those policy devices are critical to the Brazilian economic, inclusive, and 

sustainable development, a precise regionalized measure of highway investments' social 

and environmental costs (or benefits) is lacking. In this context, an evaluation of the “old” 

PACs ‒ in which emphatic social and especially environmental initiatives related to the 

road sector were most part absent ‒is critical to provide evidence on the social and 

environmental gains (losses) from road investments, maximizing its economic returns 

while reducing inequalities and respecting environmental preservation and recovery. 

Therefore, a novel measure of inclusive and sustainable return rate to highway 

investments might represent a key input to policymakers, technicians, financial 

institutions, and civil society in planning, designing, financing, and evaluating current and 

future road policies. This doctoral thesis contributes to the specialized literature on 

infrastructure and regional development following this path. Figure 1.1 outlines the 

arrangement and the rationale behind this dissertation. 

 
1 Whilst the PAC 2 was officially carried out between 2011 and 2014, several unfinished and delayed 
infrastructure buildings continued for several years at least until 2018. Even today, we can observe some 
remaining infrastructure works from the PAC 2. 
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Figure 1.1. Thesis structure and rationality 

 
Source: authors’ elaboration. 
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In Chapter 2, we assess the (economic) road impacts on productivity. We combine 

PAC intervention information with the georeferenced National Highway System data to 

create a novel and granular dataset of federal road investments at the municipal level in 

Brazil between 2007 and 2018. Next, we develop an original econometric strategy dealing 

with the main endogeneity issues in road-development studies. First, the non-random 

placement of road policies poses challenges in determining their causal effects on 

economic activity. Planners may allocate resources to regions where infrastructure 

promises higher returns to induce national economic growth. Conversely, policymakers 

might target less developed and more remote areas to foster a more balanced economic 

development among regions. If it occurs, conventional Ordinary Least Squares (OLS) 

estimates are likely upward biased in the former context while downward biased in the 

latter. Second, highway investment often involves measurement errors from inefficiencies 

and corruption during the project design, construction, and operation phases (Kenny, 

2009; Straub, 2011). Consequently, road-related variables are prone to be overstated, with 

some areas featuring inflated investment values per kilometer of road. As a result, 

measurement errors may obscure the true impact of roads on economic growth and 

development, leading to an underestimation of their profitability. To fix those issues, we 

construct a three-step instrumental variable (IV) identification strategy. The first ex-ante 

step consists of designing a study that minimizes endogeneity concerns by evaluating the 

impacts of a national road program on local productivity, then alleviating broad 

endogeneity issues coming from the non-random placement of roads by the Federal 

Government. In the second step, we instrumentalize our road variable using some of the 

main geographical, environmental, and human physical costs in infrastructure projects to 

correct measurement error bias. In the third step, we combine our second-step cost-

related IVs with several road allocation IVs to correct for omitted variable bias coming 

from the non-random placement nature of highway policies. From this, we identify 

relevant biases from measurement error and omitted variables. Our preferred estimates 

point out consistent road elasticities between 0.011 and 0.017, implying a non-biased 

(economic) return rate to highway investments of around 21.3% in Brazil. We use the data 

and the empirical strategy built in Chapter 2 in the remaining chapters of this thesis. 

In Chapter 3, we include a social component into the return rate to highway 

investments by evaluating regional inequality issues. More specifically, we assess the role 

of transportation infrastructure policies in raising productivity by considering spatial 

heterogeneities in terms of efficiency, road specialization, redistribution, and equity. On 

the economic side, the efficiency goal is tied to the intention of road policies to maximize 

economic benefits by placing infrastructure in regions with greater growth potential. 

Additionally, this profitability could be further boosted by improving roads in areas more 

specialized in the transportation sector. On the inclusion side, redistribution is the policy 

objective utilizing road interventions to promote balanced economic growth across 

regions by focusing on poorer areas. Similarly, equity entails investing in places with 

constrained infrastructure endowment, thus leveling the playing field by regions. By 

evaluating the road impacts on productivity varying the levels of efficiency, road 
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specialization, redistribution, and equity, we calculate an efficient-specialized and 

redistributive-equative return rate to highway investments in Brazil. 

We identify three main findings in Chapter 3. First, highway investments prove to 

be highly beneficial in Brazil, and areas more reliant on road infrastructure benefit more 

from it. Second, the road impacts on productivity are more pronounced in less developed 

municipalities, presenting poor infrastructure, lower productivity levels and relying more 

on roads. Third, the profitability of road investments appears to suffer significantly when 

targeting highly efficient and developed areas, likely due to substantial infrastructure 

project costs and inefficiencies. In other words, focusing solely on highly efficient and 

affluent regions based on expected economic returns may overlook their inefficiencies, 

thus overestimating the economic impact of road investments. Based on our econometric 

results, we estimate an average (economic) return rate to highway investments during the 

PAC to be around 20%. When considering the road features heterogeneities, this return 

rate drops to 11.7%, suggesting that the program excessively targeted more prosperous 

areas wherein road investments did not play a critical role in raising productivity. In other 

words, the (economic and social) PAC return rate could have been higher if the program 

had targeted some win-win places wherein economic returns were expected to hold with 

redistribution and equity, which does not seem to have been the case. 

In Chapter 4, we extend our (economic and social) return rate to highway 

investments by incorporating an environmental component. To do this, we evaluate the 

impact of highway investment on GHG emissions growth in Brazilian municipalities 

between 2007 and 2018. From these estimates, we calculate a carbon dioxide equivalent 

emissions return (discount) rate (ERR), which allows us to compute the Sustainable 

Return Rate (SRR) and the Sustainable and Equitable Return Rate (SERR) to highway 

investments to several Brazilian localities. Then, our preferred SERR includes economic, 

social, and environmental road investment benefits (costs) by combining the road impacts 

on productivity, varying those impacts by social road features such as redistribution and 

equity, and discounting the highway impacts on GHG emissions. 

We obtain three main results in Chapter 4. First, we find that a 1% increase in road 

investments raises GHG emissions by 0.025%. Second, we calculate an average GHG 

emissions (discount) return rate to highway investment (ERR) of 3.0% by blending our 

estimated elasticities and GHG data with Social Cost of Carbon (SCC) measures, 

demonstrating a harmful environmental impact of roads. This implies an average SERR of 

around 17%, indicating a widespread need to develop the Brazilian transportation sector, 

even considering its environmental and social components. Third, we find critical regional 

heterogeneities in our ERR, SRR, and SERR. In general, the environmental damage from 

roads is more pronounced in less populated and poorer localities, which coincides with 

some critical areas in the Brazilian Amazon. In those cases, improving the project 

governance is a vital issue, including the coordination between national, regional, and 

local transportation and environmental institutions. 

Chapter 5 introduces an innovative empirical methodology to delineate priority 

regions for highway investments in the Brazilian context. Unlike preceding research 

primarily emphasizing economic factors (Fernald, 1999; Li et al., 2017; Medeiros et al., 
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2021b; Wang et al.,2020), our approach integrates economic, social, and environmental 

considerations. By doing so, we seek to identify areas where these three dimensions 

intersect, recognizing the potential for infrastructure policies to foster inclusive and 

sustainable economic development. 

Achieving optimal outcomes across economic, social, and environmental domains 

is often challenging. Infrastructure investment decisions frequently prioritize anticipated 

economic gains while overlooking socio-environmental implications. Consequently, 

regions with higher expected profitability tend to attract more public and private 

resources, potentially exacerbating regional disparities and environmental degradation. 

Conversely, underdeveloped and geographically remote areas might be left behind due to 

their smaller economic returns and higher construction costs, particularly during periods 

of fiscal constraint. Given these regional dynamics, a clear prioritization standard for 

investment allocation becomes vital for maximizing economic returns, addressing 

regional disparities, and mitigating environmental risks associated with road 

development. 

Then, in Chapter 5, we reassess the findings obtained in Chapters 2, 3, and 4, 

estimating the Sustainable and Equitable Return Rates to Highway Investments (SERR). 

From these three empirical exercises, we apply economic, social, and environmental 

criteria and clustering methods to identify potential prioritization areas for road 

interventions. We propose criteria for determining eligibility and prioritization of road 

policies at the regional level. The eligibility standards ensure that projects offer attractive 

economic prospects while considering social and environmental considerations. 

Meanwhile, the prioritization criteria categorize regions based on their potential 

economic profitability, aptitude to mitigate regional disparities, and capacity to minimize 

environmental harm from road development. In this step, we identify priority regions 

around the country, suggesting that road investments might be a critical policy tool to 

foster inclusive and sustainable economic growth. Subsequently, our analysis expands to 

encompass broader spatial contexts. We employ clustering techniques to delineate 

highway policy zones, minimizing regional differences in economic, social, and 

environmental road-related issues. This endeavor yields original insights valuable for 

formulating and assessing national road policies, particularly those traversing vast 

geographical expanses and diverse regions. 

Finally, we conduct an ex-post evaluation of the “old” PACs, suggesting avenues for 

applying our return rates and prioritization criteria. This evaluation enables us to state 

that the PAC demonstrated economic efficacy, as it directed investments towards regions 

yielding economic returns surpassing the conventional cut-off rates. However, hindered 

social and environmental repercussions somewhat offset these economic gains. 

Therefore, greater returns (around 31%) on road investments could have been attained 

by directing resources towards our identified priority regions, thereby fostering win-win 

scenarios characterized by a more inclusive and sustainable economic development. 

These essays contribute to the literature strand by examining the impacts of 

transportation infrastructure on regional development in several ways. First, we provide 

novel granular data on national highway investments at the local level and an original 
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three-step IV identification strategy to overcome critical endogeneity issues in 

infrastructure development studies. In addition, we propose some unique instruments for 

road measures based on actual infrastructure project costs and the non-random 

placement nature of transport policies. We are convinced that our empirical scheme can 

be applied, adapted, or extended by several researchers worldwide, contributing to the 

broad empirical literature evaluating causal road impacts on regional development, 

especially to those investigations using reduced-form approaches. Second, we extend the 

conventional economic return rates to highway investments by including social and 

environmental aspects, and then computing our Sustainable and Equitable Return Rate to 

Highway Investments (SERR). The social component monetizes the gains from investing 

in roads in win-win (economically profitable and reducing inequalities) regions marked 

by low productivity and infrastructure endowment, and high efficiency and road 

specialization. The environmental component monetarily discounts the harmful road 

impacts on GHG emissions. Then, our SERR makes different aspects of highway 

investments compatible in an easy-to-interpret measure, allowing society and various 

public and private players to assess the economic profitability of roads, considering 

inclusion and sustainability matters. To the best of our knowledge, this is the first 

regionalized return rate to road investments matching economic, social, and 

environmental issues, thus providing an important contribution to the empirical 

literature evaluating the infrastructure impacts on development. Third, we find road 

impacts on the economy and the environment to be heterogeneous. On the one hand, 

highway investments are more effective in regions characterized by lower productivity 

levels and infrastructure endowment. On the other hand, road interventions harm the 

environment more in poorer, less populated, and more geographically isolated areas, 

especially through an indirect effect on GHG emissions in the land use change sector. From 

these results, we contribute to several studies identifying heterogeneous road impacts on 

development outcomes. Finally, we furnish original eligibility and prioritization criteria to 

categorize regions in terms of economic returns, reducing inequalities and minimizing 

environmental damages. This classification allows policymakers and the society to 

evaluate past, current, and future road policies, providing novel inputs to bring road 

investments more efficient, inclusive, and sustainable. Then, we collaborate with several 

investigations evaluating road policy efficiency, efficacy, and effectiveness, especially 

those concerned with regional disparities and the environment. A more detailed 

description of this dissertation's main and marginal contributions to the specialized 

literature can be seen in each chapter. 
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2. HIGHWAY INFRASTRUCTURE AND ECONOMIC DEVELOPMENT: measuring causal 

impacts of infrastructure investments using a three-step instrumental variable 

identification strategy 

 

 

 

 

Abstract 

This paper provides an original three-step identification strategy using instrumental 

variables to evaluate the causal impact of highway investments on the local economy. First, 

we construct a novel national highway dataset at the municipal level in Brazil using the 

Growth Acceleration Program (PAC) (2007-2018) as a case study. Second, we rely on some 

of the main infrastructure project costs to propose several cost-related instruments to 

correct measurement errors in the road variables. Third, we circumvent the omitted 

variable bias from the non-random placement of roads by building instruments based on 

global cost minimization methods, historical plans, and the propensity of a municipality 

to receive highway interventions. Our identification strategy allows us to identify relevant 

biases from measurement errors and omitted variables. Our preferred estimates point out 

a reliable road elasticity in the range of 0.011 to 0.017. From this, we calculate a non-

biased return rate to highway infrastructure of 21.3% in Brazil, proving the high 

rentability of those investments in the developing world context.  

Keywords: highway infrastructure; regional development; endogeneity; instrumental 

variables. 
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2.1. Introduction 

The economic effects of transportation infrastructure have been explored by 

various studies (Anas, 2020; Aschauer, 1989; Baum-Snow et al., 2017; Baum-Snow et al., 

2020; Chandra and Thompson, 2000; Donaldson and Hornbeck, 2016; Duranton and 

Turner, 2012, 2014; Faber, 2014; Farhadi, 2015; Foster et al., 2023a, 2023b; Michael, 2008; 

Straub, 2011). More interestingly, a substantial part of this literature has provided 

relevant findings on highway investments' role in local economic activity. Generally, the 

findings indicate a positive and direct association between road investments and various 

outcomes, such as economic growth, productivity, employment, and poverty alleviation, 

among others (Allen and Arkolakis, 2014; Arbue s et al., 2015; Bird and Straub, 2020; 

Ghani, Goswami, and Kerr, 2014; Holl, 2016; Huang and Xiong, 2018; Li et al., 2017; 

Percoco, 2015; Wang, Wu, and Feng, 2020).  

Despite the long-standing development of this literature, endogeneity bias remains 

a persistent empirical challenge (Caldero n and Serve n, 2014; Redding and Turner, 2015; 

Roberts et al., 2019; Straub, 2011). First, the non-random allocation nature of road 

policies makes it hard to identify causal impacts. Planners may allocate more resources to 

regions where infrastructure yields higher returns to foster national economic growth. On 

the other hand, policymakers may target less developed and more remote regions to 

promote more equitable economic development across regions. If it occurs, conventional 

Ordinary Least Squares (OLS) estimates are likely upward biased in the former context 

while downward biased in the latter. In addition, highway investment measures often 

embed measurement errors due to inefficiencies and corruption in the infrastructure 

project design phase and its building and operation stages (Kenny, 2009). Then, road 

variables are likely to be inflated because, for many places, we usually observe an 

overpriced amount of investment per kilometer of road. Consequently, the measurement 

error may obscure the real impact of roads on economic growth and development, 

resulting in an underestimation of their profitability. 

To solve the endogeneity issue, most empirical studies have used reduced-form 

estimations under several different instrumental variables (IV) as sources of quasi-

random variation in the observed infrastructure (Foster et al., 2023a, 2023b; Redding and 

Turner, 2015; Roberts et al., 2019). Investigations have proposed instruments based on 

either planned routes (Baum-Snow, 2007; Bird and Straub, 2020; Duranton and Turner, 

2012; Duranton et al., 2014; Hsu and Zhang, 2014; Michaels, 2008; Herzog, 2021; Rokickia 

and Stępniak, 2018), or historical routes (Adler et al., 2020; Baum-Snow et al., 2017; 

Baum-Snow et al., 2020; Duranton and Turner, 2012; Duranton et al., 2014; Garcia-Lo pez 

et al., 2015; Holl, 2012; Holl, 2016; Hsu and Zhang, 2012; Lee, 2021; Martín-Barroso, 

Nunez-Serrano and Velazquez, 2015; Martincus et al., 2017; Percoco, 2015; Rokickia and 

Stępniak, 2018; Zhang, Hu and Lin, 2020), or infrastructure project costs (Holl, 2012; 

Martin-Barroso, Nunez-Serrano, and Velazquez, 2015; Lu et al., 2022; Medeiros et al., 

2021a; Medeiros et al., 2021b; Zhang, Hu, and Lin, 2020) or hypothetical road networks 

built on a global minimization path intended to connect important localities (hubs) (Faber, 

2014; Ghani, Goswami, and Kerr, 2014; Huang and Xiong, 2018; Yang, 2018; Xu and Feng, 
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2022). A relevant part of those studies has combined some IV with the inconsequential 

unit approach pioneered by Chandra and Thompson (2000). We also suggest Redding and 

Turner (2015) and Foster et al. (2023a, 2023b) as reference papers. 

While this strand of literature has developed interesting and robust identification 

strategies for measuring the causal highway impact on several outcomes, some open 

points remain. First, instruments are hard to find in practice, and a highly replicable IV 

approach is needed. Second, researchers have avoided monetary road variables due to 

measurement errors (Caldero n and Serve n, 2014; Straub, 2011). With the increase in 

public administration transparency worldwide in the last decades, investment and 

expense flow data might be an important source of information on the efficacy, efficiency, 

and effectiveness of infrastructure policies. In addition, highway investment variables 

constitute a direct way of measuring infrastructure profitability and providing an easy-to-

understand indicator for planners and society (Fernald, 1999; Li et al., 2017; Wang, Wu, 

and Feng, 2020). Therefore, a reliable identification strategy dealing with measurement 

errors in highway measures is critical. Third, monetary variables have the advantage of 

capturing both road provision and quality. Most empirical studies have used measures of 

physical provision , and empirical approaches to adapt a multitype road intervention 

setting are still lacking. Fourth, a more careful look into the study design is demanding. 

For instance, recent investigations have evaluated the impact of national road programs 

on local outcomes, an approach that considerably reduces endogeneity concerns and has 

provided reliable results (Bird and Straub, 2020; Faber, 2014; Ghani, Goswami, and Kerr, 

2014; Herzog, 2021). 

We propose an original three-step identification strategy using IVs to overcome the 

mentioned issues and estimate the causal impact of highway investments on local 

outcomes. The first ex-ante step consists of designing a study that minimizes endogeneity 

concerns. For this, we use data from a national road policy, the Growth Acceleration 

Program (PAC)2, launched by the Brazilian Federal Government in 2007. We 

georeferenced the PAC data to construct a novel granular national highway investment 

data at the municipal level. 

The PAC has some characteristics that make it an interesting case study. First, 

highway investments were duplicated during the PAC (2007-2018) compared to the 

previous ten years (Medeiros et al., 2021a). Second, the PAC coincided (up to 2015) with 

a relatively high economic growth period in Brazil (Nassif et al., 2015). Third, the program 

faced severe criticism for its inefficiency and poor budget management, as it exhibited 

multiple construction delays and required much more significant investments than the 

original estimates (Amann et al., 2016; Raiser et al., 2017). In this sense, this developing 

economy case study seems appropriate for evaluating the infrastructure-development 

nexus wherein measurement error is highly expected. 

Then, we proceed to our second and third steps to evaluate the causal impact of 

national highway investments on municipal GDP per capita growth in Brazil between 2007 

and 2018. In the second step, we instrumentalize our road variable using some of the main 

 
2 The PAC included several infrastructure sectors. In this study, we focus on road transportation. 
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geographical, environmental, and human physical costs of infrastructure projects to 

correct measurement error bias. We rely on the empirical literature and Brazilian real 

infrastructure projects to develop replicable and reliable cost-related IVs. Conditional on 

controls, the second-step econometric estimations allow us to identify suitable (strong 

and exogenous) cost-related IVs. 

In the third step, we combine our second-step cost-related IVs with several road 

allocation IVs to correct for omitted variable bias coming from the non-random placement 

nature of highway policies. We draw upon the specialized literature and adapt it to the 

Brazilian case to generate IVs treating investment in new and existing roads. The first set 

of instruments is intended to treat economically and politically biased road policies for 

newly connected municipalities. In this case, we use the Least Cost Path - Minimum 

Spanning Tree (LCP-MST) method (Faber, 2014) combined with cost-related measures to 

create hypothetical minimized global cost network instruments. In addition, we utilize the 

Brasí lia Plan (Bird and Straub, 2020) to generate additional and more specific instruments 

to treat political bias in road placement. For already connected municipalities in the 

starting period, we build up a unique instrument using road traffic data to avoid 

endogeneity from municipalities highly prone to receive road interventions. 

Our results show that our empirical strategy is suitable for identifying causal road 

impacts on the local economy. Firstly, the second-step estimates allow us to correct (or 

mitigate) measurement error and to determine expected downward biased OLS 

elasticities. Secondly, third step regressions are critical to fix non-random placement of 

roads bias even after fixing measurement error. In this case,  our findings suggest that the 

PAC prioritized economic development over regional balance, as its actions favored more 

prosperous areas, thus upward biasing “free from measurement error” second-step 

estimates. We find a solid third-step road elasticity ranging from 0.011 to 0.017, implying 

a return rate to highway investment of around 21.3% in Brazil. From that, we can infer 

that Brazil would need to invest 2.5 more in road infrastructure to achieve a suitable road 

stock of 16% of the national GDP, proving the high rentability of highway investments in 

the developing economy scenario. Results remain unchanged under several robustness 

checks. 

Our contributions are manifold. First, we develop a novel three-step IV 

identification strategy to correct measurement errors and non-random road allocation 

bias. We believe that our steps and instruments have a high degree of replicability. Thus, 

we contribute to an extensive strand of the literature using reduced-form equations to 

estimate the causal impacts of highway investments on the economy (Bird and Straub, 

2020; Chandra and Thompson, 2000; Faber, 2014; Herzog, 2021; Michaels, 2008), as well 

as to the overall empirical literature on infrastructure. 

Second, we construct unpublished granular highway investment data at the 

municipal level. This data is particularly relevant as geographically detailed data on 

infrastructure investment is relatively scarce (Brooks and Liscow, 2019). In this sense, we 

contribute to the broad infrastructure-development literature that is interested in 

measuring highway investments and their impact on the economy at the local level. 
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Third, we propose several original and replicable cost-related instruments in our 

second step. We rely on real infrastructure projects to propose geographical, 

environmental, and human physical measures to represent road costs. To the best of our 

knowledge, our study is the first to jointly use those cost types as IVs in the context of 

measurement error bias. In addition, our study tests some of our proposed measures for 

the first time. We complement a range of works using cost-related IVs for transport 

measures (Holl, 2012; Martin-Barroso, Nunez-Serrano, and Velazquez, 2015; Lu et al., 

2022; Medeiros et al., 2021a, 2021b; Zhang, Hu, and Lin, 2020). 

Fourth, we contribute to the empirical literature using LCP-MST instruments for 

road variables in two ways (Faber, 2014; Ghani, Goswami, and Kerr, 2014; Huang and 

Xiong, 2018; Yang, 2018; Xu and Feng, 2022). First, we construct a cost index based on our 

preferred infrastructure project cost variables and include it in the minimization process 

in the LCP-MST method. By doing so, we improve the instruments based on the LCP-MST 

by including different kinds of road costs. Second, we propose a more replicable way of 

establishing the hubs the LCP-MST procedure is connecting. We do this by identifying 

starting and ending points of roads constructed or improved by the PAC, which we believe 

is a reasonable approach when a clear policy identification of targeted cities is absent. 

Similarly, we complement the study by Bird and Straub (2020) by proposing an extension 

of their Brasí lia Plan instrument. 

Fifth, we attempt to empirically deal with the multitype road intervention setting 

(building, paving, enhancements, and duplications) of our data. Our econometric 

specification differentiates municipalities already connected by federal roads in 2006 

from those not linked. Then, we use LCP-MST and Brasí lia Plan instruments for non-

connected municipalities while we create a novel instrument for already connected ones. 

This original instrument, called “potential road intervention areas” IV, is calculated by 

identifying critical points using road traffic data, a measure we believe has not been tested 

in past studies.  

The paper is structured as follows. Section 2 is a literature review. Section 3 

presents the rationality behind our three-step IV identification approach. Section 4 details 

the different sources of data used in the paper. Section 5 introduces the empirical model. 

Section 6 presents the main results and robustness checks. Section 7 discusses our results 

considering the return rate to highway investments. Section 8 concludes. Further 

discussion and robustness checks can be found in the Supplementary Materials, identified 

as Appendices A to J. 

 
2.2. Related literature 

2.2.1. Road infrastructure and regional or local economic development: empirical 

related literature 

An extensive strand of literature has examined the relationship between road 

infrastructure and several economic factors such as output growth (Barzin et al, 2018; 

Baum-Snow et al., 2017; Baum-Snow et al., 2020; Bird and Straub, 2020; Ke and Yan, 2021; 

Rokickia and Stępniak, 2018; Zhang, Hu and Lin, 2020), productivity (Ghani, Goswami and 

Kerr, 2014; Fahardi, 2015; Holl, 2016; Huang and Xiong, 2018; Li et al., 2017; Martín-
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Barroso, Nunez-Serrano and Velazquez, 2015; Xu and Feng, 2022; Yang, 2018; Zhang e Ji, 

2019), trade (Coşar and Demir, 2022; Duranton et al., 2014; Martincus et al., 2017), 

population (Adler et al., 2020; Baum-Snow, 2007; Baum-Snow et al., 2017; Baum-Snow et 

al., 2020; Bird and Straub, 2020; Duranton and Turner, 2012; Faber, 2014; Garcia-Lo pez 

et al., 2015; Gertler et al., 2019, 2022; Jaworskiy and Kitchensz, 2019; Meijers et al., 2012; 

Percoco, 2015) and structural transformation (Albalate and Fageda, 2016; Asher and 

Novosad, 2020; Yang, 2018). Since Aschauer (1989), most studies have shown a significant 

relationship between infrastructure and economic-related outcomes. However, results 

vary critically according to the investigation context and the identification strategy used, 

which is associated with endogeneity issues and with whether the study uses aggregate 

data at the country, regional, or local level. 

In this paper, we focus on regional and local level studies. Infrastructure is spatial 

by nature (Ottaviano, 2008; Straub, 2008, 2011), and a more geographically disaggregated 

view of the theme can clarify some transmission channels. As transport infrastructure 

buildings serve a limited geographic zone, the results from those policies might expand 

economic growth in some regions and sectors at the expense of others3. This is likely why 

works using regional and local level data provide more heterogeneous results on the role 

of road investment on economic activity (Foster et al., 2023a, 2023b; Redding and Turner, 

2015; Roberts et al., 2019). 

Then, we turn to the main empirical issue in the infrastructure-economic 

development literature: endogeneity bias. First, measurement error bias often occurs, 

especially when using monetary infrastructure variables. Highway investments take time 

to mature and suffer from inefficiencies and delays, particularly in the developing world 

context (Caldero n and Serve n, 2014; Kenny, 2009; Straub, 2011). Second, the placement 

of roads is not random, as policymakers may target places expected to grow more or 

promote economic prosperity in underdeveloped regions (Redding and Rossi-Hansberg, 

2017; Redding and Turner, 2015). In this sense, we can expect endogeneity issues from 

omitted variables and reverse causality. 

Roberts et al. (2019) study a wide range of papers estimating the effects of 

transportation infrastructure on several outcome variables. Around 63.5% used 

identification strategies to address endogeneity concerns, of which 78% used reduced 

form estimations, and 52.6% used IVs. Therefore, most papers rely on IVs, and studying 

this identification approach in detail is critical. 

In the context of IV studies, the main bottleneck is the identification of suitable 

(strong and exogenous) instruments for highway measurement. In successful 

applications, this identification strategy has been quite reliable in identifying the causal 

impacts of road investments on local outcomes (Baum-Snow, 2007; Duranton and Turner, 

2012; Faber, 2014; Holl, 2012). Nonetheless, essential efforts are still needed, especially 

in the developing economy context where data is rough and measurement errors are 

expected to exist in road variables. This issue is accentuated by using monetary variables 

 
3 An extensive literature on Economic Geography has examined the infrastructure issue. For a more detailed 
literature review, we recommend Straub (2008) and Ottaviano (2008). 
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as infrastructure investments or expense flows if those variables might embed 

inefficiencies and mask the true relation between transport infrastructure and economic 

activity. The following section covers the main IV approaches used by the specialized 

literature. 

 

2.2.2. Main IV approaches in studies on the impacts of road infrastructure on 

regional or local development 

Most empirical literature on infrastructure and regional or local development has 

used IVs to identify causal road impacts. These studies can be classified into a few main 

approaches based on the IV rationale and measurement form. We draw upon the seminal 

paper by Redding and Turner (2015), and then we update this literature review and 

propose some advances. To this end, we also rely on Foster et al. (2023a, 2023b), which 

reviewed a massive number of empirical studies on infrastructure and development, 

including the road sector. 

Redding and Turner (2015) identified three main IV strategies. The first one, the 

planned route approach, is an IV strategy relying on planning maps and old documents as 

a source of quasi-random variation for the observed infrastructure (Baum-Snow, 2007; 

Bird and Straub, 2020; Duranton and Turner, 2012; Duranton et al., 2014; Frye, 2016; Hsu 

and Zhang, 2014; Michaels, 2008; Sheard, 2014; Herzog, 2021; Rokickia and Stępniak, 

2018). The rationale behind these IVs is that the planned routes were created to serve 

purposes quite different from those from modern infrastructure development we are 

trying to test (for example, impacts on modern GDP, population, or employment growth). 

Planned routes used in this approach are, for instance, the 1947 USA National Interstate 

Highway Plan and the “Pershing plan” for US data, the Brasilia Road Plan for Brazilian data, 

Japan’s 1987 National Expressway Network Plan applied to Japan, and the project for a 

motorway network by E. Buszma dating from 1945 and the Resolution of the Automotive 

Council for the Council of Ministers plan from 1963 for the Polish case. A similar strategy 

was used by Sheard (2014) applied to the airport sector, using the USA 1944 National 

Airport Plan as IV. 

The second approach, the historical route instrumental variable approach, relies 

on very old transportation routes as a source of quasi-random variation for observed 

infrastructure (Adler et al., 2020; Baum-Snow et al., 2017; Baum-Snow et al., 2020; 

Duranton and Turner, 2012; Duranton et al., 2014; Garcia-Lo pez et al., 2015; Holl, 2012; 

Holl, 2016; Hsu and Zhang, 2012; Lee, 2021; Martín-Barroso, Nunez-Serrano and 

Velazquez, 2015; Martincus et al., 2017; Percoco, 2015; Rokickia and Stępniak, 2018; 

Zhang, Hu and Lin, 2020). The validity of this kind of instrument requires that, conditional 

on controls, factors that do not directly affect economic activity in the localities of interest 

at the period of study (mainly at the end of the twentieth century) determine the 

configuration of these historical networks. In other words, the validity of this 

identification strategy depends critically on the fact that the historical routes served 

different aims (for instance, moving agricultural goods to local markets, achieving 

military, administrative, and commercial goals, and so forth) than they have today (for 

example, to foster economic growth and employment). Several distinct IVs were proposed 
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in this setting, including the 1898 railroad routes and the routes of major expeditions of 

exploration between 1528–1850 for US data, a market access measure based on railroad 

network in 1870 for European regions data, the network of Roman roads for Italy data, 

the old Roman roads, the 1760 Bourbon roads, the 1760 Spanish postal route network 

and an accessibility to final markets in 1857 in the Spanish case, railway connections in 

1952 for Polish data, locations of rail and tram stations in 1897, 1930, and 1960 for South 

Korea data, road and railroad networks in 1962 and postal routes in 1936 for China, and 

the Pre-Columbian Inca road network for the Peruvian case. 

The third one, the inconsequential unit approach, relies on choosing a sample that 

is inconsequential to road allocation in the sense that unobservable attributes do not 

affect the placement of infrastructure (Chandra and Thompson, 2000). Sometimes, this 

strategy is combined with some planned, historical, or cost-related IV (Banerjee et al., 

2012; Bird and Straub, 2020; Faber, 2015; Herzog, 2021; Percoco, 2015). In this approach, 

routes that sought to connect large centers cross (inconsequentially) small units (as a 

small city or municipality) across the pathway. Then, we expect that unobserved 

characteristics of these small units, which are just between targeted hubs, are 

independent of political and economic reasons. 

Another strand of literature has utilized a Least Cost Path - Minimum Spanning 

Tree (LCP-MST) IV (Faber, 2015; Frye, 2016; Ghani, Goswami, and Kerr, 2014; Huang and 

Xiong, 2018; Yang, 2018; Xu and Feng, 2022). This identification strategy tries to answer 

the question of which routes planners would have been likely to build if the sole policy 

objective had been to connect all targeted city nodes on a single continuous network 

subject to global construction cost minimization.  To this end, an LCP-MST network 

connecting large cities (hubs) is generated based on a global cost minimization process. 

The identifying assumption is that this hypothetical highway network should affect city 

outcomes and the spatial allocation of industries only through the actual highway 

network, conditional on controls. The LCP-MST approach has been used especially for 

Chinese data, with some applications for the USA and India. 

A fifth approach uses cost-related environmental and geographical IVs as a source 

of quasi-random variation for highway investments (Holl, 2012; Martin-Barroso, Nunez-

Serrano, and Velazquez, 2015; Lu et al., 2022; Medeiros et al., 2021a; Medeiros et al., 

2021b; Zhang, Hu, and Lin, 2020). The rationale behind this identification strategy is that 

geographical costs directly affect road construction and maintenance. However, they are 

exogenous factors in that they do not directly relate to modern GDP, employment, wages, 

or productivity growth. These IVs are mainly measured as slope, terrain ruggedness, 

altitude, or elevation, and they have been used for Chinese, Spanish, and Brazilian data. 

The literature has also proposed cost-related IVs based on legally protected areas as a 

proxy for environmental costs (Medeiros et al., 2021b) and demographic variables – for 

instance, populational density – to represent physical human costs as expropriation and 

interferences (Zhang e Ji, 2019). We are not arguing that those kinds of costs are equal, 

but they have similar attributes in how they act as some of the main highway 

infrastructure costs. 
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We can also identify another disconnected group of studies using different external 

IVs with distinct rationales. For instance, Coşar and Demir (2016) used the initial share of 

expressways as an instrument for provincial access to gateways. Fedderke and Bogetic 

(2009) constructed a demand for infrastructure IV based on the predicted demand for 

infrastructure stocks using time series econometric models. Baum-Snow (2007) 

combined the planned route IV with national construction rates over time as an IV.  

Storeygard (2016) used oil prices to instrument a road cost variable. Gertler et al. (2019) 

relied on IVs of national and provincial road budgets. As we can see, the IVs used in those 

studies are pretty specific, unlike the other five approaches described before. 

Using panel data models, some studies applied internal instruments (lagged values 

and lagged differenced values of the model variables) in a GMM estimation setting 

(Albalate and Fageda, 2016; Bird and Straub, 2020; Fahardi, 2015; Fingleton and Szumilo, 

2019; Jiwattanakulpaisarn et al., 2010; Ke and Yan, 2021; Liu et al., 2022; Barzin et al., 

2018). Some of those studies combine internal with external IVs (Gertler et al., 2019; Holl, 

2012; Medeiros et al., 2021a).  

Finally, another strand of literature has used an infrastructure reliance measure as 

an identification strategy (Li et al., 2017; Medeiros et al., 2021b; Percoco, 2015; Wang, Wu, 

and Feng, 2020). The rationale behind this strategy is that industries that, for 

technological reasons, tend to rely less on transportation services (e.g., because they move 

lighter goods that tend to be less “road intensive” (Duranton et al., 2014) or because their 

employees do not need to travel long distances for business trips) act as a sort of control 

group for the “treated” ones, i.e., those that rely more on transportation services. This 

approach is particularly suitable when using sector or firm-level data. Some investigations 

have used IVs to correct potential measurement errors in infrastructure reliance measures 

(Li et al., 2017). Medeiros et al. (2021a) combine the infrastructure reliance approach with 

internal and external IVs to estimate the road impact on productivity in Brazilian 

economic sectors. 

Figure 2.1 summarizes the main identification approaches – focusing on those 

using IVs – used by the infrastructure-development literature. The arrows indicate some 

convergence between some identification approaches – for instance, some studies used 

both historical and cost-related IVs, or planned and historical IVs, or some combination of 

the inconsequential unit approach with some external IV, and so forth. On the other hand, 

in most cases, the studies classified as “other external IVs” propose specific IVs and are 

not much related to different frameworks. Similarly, the internal IVs, combined with 

external IVs in a few cases, are mostly unrelated to the historical, planned, LCP-MST, or 

cost-related approaches. 
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Figure 2.1. Related literature: main IV approaches used in infrastructure-regional 
economic development studies 

 

Source: authors’ elaboration. 

 

2.2.3. Open points and potential progress 

The literature using IV identification strategies has provided important 

advancements in identifying the causal impacts of highway investments on local economic 

activity. However, we can raise some gaps in the literature that need careful attention. 

First, strong instruments are hard to find in practice. This issue comes from the 

lack of data in many cases, especially in developing countries, wherein more 

disaggregated data on highways is poor. In addition, while planned routes, historical 

networks, and LCP-MST IVs have been proven to be strong predictors of road measures in 

many applications, their replicability might be limited. In most countries around the 

world, there is no information on historical routes or past road plans we could rely on to 

develop a potential exogenous instrument. Regarding LCP-MST IV, it might be pretty tricky 

to identify cities (hubs) targeted by planners. In developing countries, road projects often 

target areas with high transport demand, but the absence of strategic government 

planning hinders the identification of potential hubs and the creation of artificial 

networks applying the LCP-MST method. 

Second, measurement error bias from highway measures is often overlooked. This 

issue is critical when using monetary measures as investment or expense flows, as long as 

they likely embed infrastructure projects' inefficiencies, corruption, and long-term 

mature nature. While several studies have argued against using monetary variables 

(Caldero n and Serve n, 2014; Straub, 2011), highway investment flows constitute a direct 

way to measure infrastructure profitability and provide an easy-to-understand indicator 

for planners and the society. Also, monetary variables capture quality-related 

investments, which is absent in several applications using physical measures such as road 

length or access. Finally, the number of granular datasets and information about 

infrastructure investment allocation has grown worldwide in the last decades due to the 

increasing demand for transparency in public administration. Using this data is an obvious 
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way to evaluate the efficiency, effectiveness, and cost-benefit of public spending (Brooks 

and Liscow, 2019; Kornfeld and Fraumeni, 2022). Then, providing a robust identification 

strategy dealing with measurement errors in monetary road variables is an essential 

contribution to the empirical literature. 

Third, empirical strategies that deal with different road-building types are scarce. 

Governments might invest in constructing new roads in poorly connected or isolated 

regions or improving existing roads in localities with a higher expected return to 

transportation infrastructure. Those different kinds of interventions have particular costs 

and likely impact economic activity heterogeneously. It implies that the economic return 

of road investment is diverse across the space. Therefore, if data is available to conduct 

this type of analysis, identification strategies handling road intervention heterogeneity 

are critical to provide novel and reliable results on causal road impacts on the local 

economy. 

Finally, an important and not widely used ex-ante step in the identification strategy 

is to rely on a study design that alleviates endogeneity concerns. Some interesting cases 

can be found in the literature evaluating the causal impact of national highway policies on 

local outcomes (Baum-Snow et al., 2017; Bird and Straub, 2020; Faber, 2014; Herzog, 

2021). Those studies evaluate the impact of road investments made by high-level 

governments on economic activity in smaller units such as districts, cities, and 

municipalities. This design reduces endogeneity issues as we do not expect small localities 

to influence national government decisions directly. Then, the policy exogeneity is more 

plausible than studies evaluating road policies impacts on economic activity at the same 

administrative level. In addition, it allows us to work with a substantially larger number 

of observations, even when excluding central cities, using the inconsequential unit 

approach. 

In the next section, we describe our novel identification strategy, trying to solve the 

issues mentioned in detail. In a study design evaluating the impact of a national road 

program on local economic activity, we combine cost-related instruments fixing 

measurement error bias in highway investment variables with LCP-MST, political, and 

propensity to receive road intervention instruments correcting the non-random 

placement of road bias. Whenever feasible, we construct IVs that we believe are quite 

replicable worldwide. By doing so, we provide a reliable empirical approach to identifying 

road impacts on local outcomes. In addition, our strategy allows studies to properly work 

with monetary highway variables, an issue that has been largely neglected so far. 

 
 

2.3. Measuring causal impacts of road investments on local 

outcomes: a new three-step proposal combining cost-related and non-

random placement IVs 

To address the critical issue of measuring the causal impacts of road investment on 

economic activity, we develop a novel empirical strategy in a three-step setting. Our main 

goal is to provide a reliable identification strategy that is robust to measurement error 

and omitted variable bias. 
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First, we describe our study design evaluating the impacts of a national-level 

highway policy on local outcomes. To this end, we rely on a national road program (a 

program within the PAC) implemented by the Brazilian Federal Government between 

2007 and 2018. By desegregating national investments at the municipal level, the 

procedure we describe in detail in the data section, we can evaluate the local impacts of 

an extensive and aggregated road policy. This study design is essential to alleviate 

endogeneity concerns between infrastructure investments and economic activity (Faber, 

2014; Herzog, 2021), as we do not expect municipalities to directly influence the Brazilian 

federal government's decisions to place highways across the country. A more detailed 

description of the motivation behind this first step can be found in Appendix A. 

Second, we correct measurement errors from inefficiencies in road projects using 

the main related geographical, environmental, and human physical costs as IVs for 

highway investments. In this second step, we statistically validate several replicable cost-

related IVs and use them in the succeeding step. This kind of IV may avoid (or alleviate) 

endogeneity bias in two ways. First, they may solve endogeneity issues related to omitted 

variables bias commonly found in infrastructure-economic development studies, as 

proposed by past studies (Holl, 2012; Lu et al., 2022; Martí n-Barroso, Nunez-Serrano, and 

Velazquez, 2015; Zhang, Hu, and Lin, 2020). Second, which we consider more reasonable, 

they might act as a corrective instrument for measurement error bias of highway 

investment variables. This is particularly relevant when using monetary highway 

variables as investment flows in developing economies, wherein a high inefficiency in 

allocating infrastructure investments is expected (Caldero n and Serve n, 2014; Straub, 

2011). A detailed description of the rationale behind these instruments, as well as 

Brazilian examples, can be found in Appendix B4. 

Third, we fix omitted variable issues from the non-random placement of highways 

by combining our previous two steps with IVs related to what we call “the local propensity 

to receive road interventions.” Even when using cost-related IVs to instrumentalize 

highway investments and potentially correct measurement errors, omitted variable bias 

from non-random road placement may persist. Correcting measurement errors from 

infrastructure project inefficiencies is just an (important) part of the problem, but it is 

likely not enough to eliminate endogeneity bias related to the propensity of certain 

localities to receive federal highway interventions. First, governments might allocate 

roads to underdeveloped regions to promote regionally balanced economic growth or 

direct highway investments to more developed localities – wherein the expected return to 

road investment is higher – to foster national economic development. Second, political 

reasons might guide governments to connect the country regionally. Third, by using 

highway investment flows disaggregated by intervention types – as building, paving, 

duplications, enhancements and so forth – as we propose in this study, we also need to 

correct endogeneity bias from the propensity to a locality already connected by a highway 

in the start period to receive a road intervention. In our third step, we utilize three main 

IV types to fix those issues. First, we use the LCP-MST global cost minimization process 

 
4 Figure B1 in Appendix B summarizes the rationale behind cost-related IVs. 
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(Faber, 2014). To calculate our hypothetical road network, we identify potential hubs 

(targeted municipalities) based on the start and end points of the highways receiving PAC 

interventions, which we believe can be easily replicated for several applications. Then, we 

generate a hypothetical road network minimizing the Euclidean distance between hubs 

and geographical, environmental, and human physical costs. To the best of our knowledge, 

no study has applied the LCP-MST minimizing environmental and human physical costs. 

Second, we also try IVs based on Brazilian historical plans (Bird and Straub, 2020), which 

alleviate concerns about politically biased road allocation. Third, we use the proximity to  

which we name “potential road intervention areas” to instrumentalize highway 

investments in municipalities already connected by federal roads in the start period5. To 

this end, we use traffic intensity data to establish cities that are highly likely to receive 

road interventions, being an original and highly replicable instrument. Complementary to 

the proposed IVs, we also use the inconsequential unit approach pioneered by Chandra 

and Thompson (2000) to exclude likely targeted cities. A full description of the rationality 

behind the non-random allocation IVs can be found in Appendix C. Figure 2.2 sums up our 

empirical approach. 

 

Figure 2.32.  Three-step empirical approach: identifying causal impacts of highway 
investment on local outcomes 

 

Source: authors’ elaboration. 

 

2.4. Data 

2.4.1. National highway investments 

To measure the impact of national highway investments on local (municipal) 

economic activity, we construct a new dataset of national investment flows at the 

municipal level from 2007 to 2018. To this end, we use two main publicly available 

 
5 In these cases, buildings are related to lane duplications and road improvements instead of construction 
and paving. 
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datasets. The first one concerns data on investment flows in the highway sector of the 

Federal Government's Growth Acceleration Program (PAC). This dataset includes annual 

information on road investment flows for each of the 27 Brazilian states, including a brief 

description of each intervention. The second one refers to the National Highway System 

(SNV) georeferenced road data made available by the National Highway Infrastructure 

Department (DNIT). From this data, it is possible to identify the length of each road 

segment, its condition (paved, duplicated, and so forth), and the places (municipalities) 

crossed by each one of the intervention road segments. The PAC dataset is not 

georeferenced, which implies we have restricted information about whether and to what 

extent an intervention crosses a municipality. To create a national highway investment 

dataset at the municipal level, we combine the PAC’s data description of each intervention 

and the georeferenced SNV data. The first step was to identify the treated highway codes 

and their starting and ending points from the intervention description of the PAC data. 

Next, the PAC-treated highways were linked to the SNV geolocalized data using the 

highway code and their starting and ending points. Second, we calculated the total PAC 

intervention road length by municipality and use it to measure the share of the road length 

in the municipality in relation to the total intervention road length. As we have investment 

data only by intervention, we use the measured share to compute the highway investment 

by municipality. It should be noted that the maintenance intervention descriptions barely 

describe the state and the highway code. In this sense, it was not possible to geolocate this 

type of investment at the municipal level, and they were excluded from further analysis. 

Then, our main interest variable is the road investment (R$) at the municipal level. As 

robustness checks, we will also try two additional road variables. The first one is a dummy 

variable assuming value one if the municipality received a road investment during the PAC 

period and zero otherwise. The second one is the road length growth rate between 2006 

and 2018. In this case, we use 2006 data from the 2007 National Transport Logistics Plan 

(PNLT) and 2018 data from DNIT6. A detailed description of our infrastructure variables 

can be found in Appendix D7. 

 

2.4.2. Infrastructure project cost-related IVs 

To construct the cost-related IVS, we use a set of variables representing 

environmental, geographical, and expropriation costs at the municipal level. At the 

environmental scope, we use georeferenced data of legally protected areas8 in the National 

Registry of Conservation Units (CNUC), maintained by the Ministry of the Environment 

(MMA). Then, we merge this data with the municipality boundaries shapefile to identify 

whether a legally protected area intersects a municipality. Our variable is a dummy, which 

 
6 We can likely observe measurement error in the road length variable as well, as the PNLT and DNIT files 
are not fully comparable. In addition, there is methodological variations over the years in relation to road 
classifications as federal, state level and so forth. Then, this variable should be used with caution. 
7 Figures D1, D2 and D3 in Appendix D exhibits our constructed highway investment data at the municipal 
level. 
8 The data are divided into six groups: Federal Full Protection and Sustainable Use Conservation Units, State 
Full Protection and Sustainable Use Conservation Units, and Municipal Full Protection and Sustainable Use 
Conservation Units. 
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assumes a value of one if a legally protected area intersects the municipality and 0 

otherwise. Second, we utilize the environmental embargo terms data of the Brazilian 

Institute of Environment and Renewable Natural Resources (IBAMA) inspection system. 

Environmental embargoes represent penalties applied to prevent an exploratory activity 

from continuing. The embargos also serve to inhibit ongoing damage and promote 

environmental recovery. To generate our variable, we first aggregate the number of 

embargoes in the five previous years (2002-2006)9 from the PAC by municipality. Hence, 

we create a dummy variable that assumes a value of 1 if there was an environmental 

embargo in the municipality during this period and 0 otherwise. 

To construct geographic-related IVs, we rely on a few studies measuring 

infrastructure effects on local outcomes using this kind of identification approach (Holl, 

2012; Lu et al., 2022; Martin-Barroso, Nunez-Serrano, and Velazquez, 2015; Medeiros et 

al., 2022; Zhang, Hu, and Lin, 2020). All those works utilize some measure based on slope, 

elevation, ruggedness, or altitude. Our preferred measure is the share of the municipality 

area with a slope above 20%, which corresponds to hilly regions. This variable is highly 

related to road construction in the world and Brazil, as DNIT defines maximum values for 

slopes to be applied to the construction of highways and local roads. The slope is 

characterized by the relation between a gradient and a corresponding distance on a tiny 

scale, which is unlikely to affect any development outcome directly at the aggregated 

municipal level.  To calculate this variable, we use slope raster data from the National 

Institute for Space Research (INPE), which allows us to count the number of slope pixels 

above the 20% cutoff. Then, we generate the share of hilly pixels in relation to the total 

pixels as our main geographic IV. 

We use urban infrastructure building variables to quantify expropriation (human) 

costs. Our preferred variable is the share of urban infrastructure10 building in relation to 

the total municipality area. For this, we use land use and land cover data made available 

by MAPBIOMAS (Souza et al., 2020), extracted at the municipal level. 

We try several other geographical, environmental, and human costs as robustness 

checks. We also create composite cost indexes (Cost Index 1 and Cost Index 2) based on 

dimensionality reduction methods11, as cost types may have some complementary 

characteristics. We generate our composite indexes using our preferred measures ‒ 

legally protected areas, environmental embargos, sloped areas, and urban infrastructure. 

Cost Index 1 can be interpreted as an environmental cost index, while Cost Index 2 can be 

 
9 We take the 5-years sum to avoid potential outliers at using annual data.  
10 This variable is related to construction and infrastructure and is used to generated urban density areas 
measures. 
11 We use Multiple Correspondence Analysis (MCA) for mixed data to generate our composite indexes. We 
use the first two components as they accumulate 59% of the original data variation. We name the first 
component as Cost Index 1, and it is calculated by 𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 1 = 0.58 ∗ 𝐿𝑒𝑔𝑎𝑙 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐴𝑟𝑒𝑎 + 0.51 ∗
𝐸𝑚𝑏𝑎𝑟𝑔𝑜𝑠 +  0.13 ∗ 𝑆𝑙𝑜𝑝𝑒𝑑 𝐴𝑟𝑒𝑎 + 0.08 ∗ 𝑈𝑟𝑏𝑎𝑛 𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒. The second component, which we name 
Cost Index 2, is calculated by 𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 2 = 0.00 ∗ 𝐿𝑒𝑔𝑎𝑙 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐴𝑟𝑒𝑎 + 0.01 ∗ 𝐸𝑚𝑏𝑎𝑟𝑔𝑜𝑠 +  0.49 ∗
𝑆𝑙𝑜𝑝𝑒𝑑 𝐴𝑟𝑒𝑎 + 0.58 ∗ 𝑈𝑟𝑏𝑎𝑛 𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒. We expect the Cost Index 1 to be more plausibly exogenous, 
as it received lower influence from the urban infrastructure variable. 
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seen as a geographical-expropriation index. We describe our preferred and robustness 

checks variables and their sources in detail in Appendix E. 

 

2.4.3. Non-random road allocation IVs 

We use three sets of instruments to represent the “local propensity to receive road 

interventions.” The first ones are constructed using the LCP-MST method. To create our 

LCP-MST hypothetical road system, we first need to point out the hubs that the network 

should connect through a minimization cost process (Dijkstra, 1959; Kruskal, 1956)12. Our 

preferred strategy considers the starting and ending points of highways receiving PAC 

investments as hubs. To identify those central cities, we use SNV georeferenced data and 

generate a dummy variable assuming value one if a municipality is a starting or an ending 

point of a PAC intervention road and zero otherwise. This approach gains relevance, 

especially in country contexts where road policies have no clear direction, making it hard 

to predict which places governments aim to connect. We also try to establish hubs based 

on the centrality of cities and historical population data. In addition, we calculate the LCP-

MST network, minimizing both Euclidean distance and an infrastructure cost index based 

on our preferred geographical, environmental, and human physical variables, allowing us 

to capture better likely paths for road infrastructure interventions aimed at reducing 

overall costs. We describe this procedure and the following non-random allocation IVs in 

detail in Appendix F. Our preferred LCP-MST network can be seen in Figure F2 in Appendix 

F. 

The second ones are based on the Brasí lia Plan. We rely on Bird and Straub (2020) 

to construct political IVs based on historical plans. Bird and Straub constructed a 

hypothetical radial (straight line) network connecting the capital, Brasí lia, to eight critical 

cities around the country. By linking the capital to those cities, the radial network 

established corridors, which incidentally connected other localities along the way. Our 

first political IV is measured as the distance from a municipality center to the nearest 

Brasí lia Plan segment. We replicate the index proposed by Bird and Straub (2020) based 

on buffer zones around the straight lines and the shares of each municipality’s area within 

each zone. Our second political IV is based on the Juscelino Kubitschek (JK) Road Cruise, 

an extension of the Brasí lia Plan. We digitalized old maps to construct our second 

historical instrument. We follow the procedure in Bird and Straub (2020) and apply it to 

the JK Cruise network, generating 60 km buffer zones around the lines (see Figure F5 in 

Appendix F). Then, our two political IVs are distance-based indices from the 

municipalities' centers to the lines weighted by the municipal area shares in the buffer 

zones. 

The third one is based on traffic intensity data. First, we use 2007 PNLT data on 

traffic intensity to identify “potential road intervention areas.” In this data, road segments 

 
12 Following Faber (2014), we use the Dijkstra’s (1959) optimal route algorithm to compute least costly 
construction paths between any bilateral pair of targeted nodes. Then, we use these bilateral cost 
parameters in combination with Kruskal’s (1956) minimum spanning tree algorithm to identify 
the subset of routes that connect all targeted nodes on a single continuous graph subject to global network 
construction cost minimization. 
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are based on the classification A-F of traffic intensity commonly used in transportation 

engineering studies in Brazil. Based on the vehicle flows on federal roads, highway 

segments are classified from A (light traffic) to F (heavy traffic, including huge traffic 

jams). Then, we consider those segments classified as D, E and F as heavy traffic roads, 

being of potential federal government focus. The heavy traffic areas can be visualized in 

Figure F6 in Appendix F. Next, our IV is calculated as the distance from the municipality 

center to the nearest heavy-traffic road segment. The rationale behind this IV is that, 

conditional on controls, municipalities already connected by federal roads in 2006 and 

located close but not so close to “potential road intervention areas” are more likely to 

(inconsequentially) receive highway investments to reduce traffic levels in the critical 

areas. In this case, including demographic controls is an essential condition to ensure IV 

validity, as we can expect heavy traffic roads crossing urban agglomerations to be directly 

impacted by events involving people, such as accidents paralyzing roads, the need for 

traffic signals reducing car travel speed, and so forth. 

 

2.4.4. Dependent and control variables 

Our primary dependent variable is the Gross Domestic Product (GDP) per capita. 

We chose this based on the related literature, in which we observed a massive use of GDP 

as one of the interest variables. In addition, GDP per capita can be used as a proxy for 

productivity, which allows us to calculate the return rate to highway investments and 

provides a more interpretable result for policy purposes. As robustness checks, we also 

use employment, firms, and wages as labor market measures. 

To avoid omitted variable bias, we include an extensive set of controls (see  

Appendix G for more details about the motivation to include those variables and their 

sources and formulas). First, we include the initial level of the dependent variable as a 

control for the municipality development level. We also include the share of poor people 

to control for policies oriented to poverty alleviation, which is a characteristic of most of 

the PAC period. Second, as road infrastructure is served by the federal and state level 

governments, we include state-fixed effects to control regional infrastructure policies. 

Third, the municipality area is included to control for territorial size. This control is critical 

as our main infrastructure variable is based on the PAC road length crossing a municipality 

area. As an additional municipal size variable, we include the formal workforce measured 

as the log of the number of formal workers in 2007. Fourth, we include one important 

control related to the agricultural sector. Fifth, we include the share of exports of each 

municipality in the national exports in 2007 as a control. Sixth, we include a set of controls 

related to complementary infrastructures. Then, we include the distance (km) to the 

nearest port, railroad, and state road in 2006 as controls. Seventh, we control for the 

historical propensity of a municipality to receive federal road investments. Our variable is 

the number of railway stations in 1920, the main transportation sector in that period. 

Finally, we include some controls related to the municipal social and institutional 

background. We first include the Index of Municipal Institutional Quality (IQIM)  to control 

for municipal institutions. Second, we include the population share with master's or 

doctoral degree as a proxy for local social development. Table G1 in Appendix G 
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summarizes our variables and their respective data sources. Table G2 shows descriptive 

statistics. 

 

2.5. Econometric specification 

In this section, we present our empirical approach. The ex-ante first step consists 

of our study design based on disaggregated highway investment data, which evaluates the 

impact of a national road program on local (municipal) outcomes and alleviates broad 

endogeneity issues between road investment and economic activity. From that, we apply 

the next two steps, which we describe in detail below. 

 

2.5.1. Correcting measurement error bias (the second step): testing cost-related IVs 

Our second step uses the main geographical, environmental, and human physical 

costs of infrastructure projects as instruments for our highway investment measure. As 

we described before, the rationality of this step is to correct measurement error bias from 

several inefficiencies in road investments, such as poor project design. Those 

inefficiencies lead to measurement errors, as highway investment flows do not fully 

represent the available road infrastructure for use by the population. 

To overcome this issue, we test for suitable cost-related IVs for highway 

investments. Our main objective is to estimate the long-term effect of improvements in 

highway network on our outcome variables at the municipal level. Our main second stage 

equation is given by: 

 

𝛥𝑌𝑖𝑠 =  𝛽0 + 𝛽1𝛥𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 + 𝛽2𝑋𝑖𝑠 + 𝜃𝑠 + 휀𝑖𝑠, (1) 

 

Where 𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 is the log form of the federal highway investments, 

𝛽0 is a constant term, 𝛽1 is the elasticity of highway investment to our dependent variable, 

𝑌𝑖𝑠 is our dependent variable for municipality i in state s, 𝑋𝑖𝑠 is a vector of control variables, 

𝜃𝑠 is a state fixed effect, 𝛽2 is a vector of parameters related to the control variables and  

휀𝑖𝑠 is the idiosyncratic error term. 

The term 𝛥 represents the change in our dependent variable between 2007 and 

2018, i.e., 𝛥𝑌𝑖𝑠 is the GDP per capita growth rate. As our highway variable measures 

investment flows, the highway change is the sum of the investment flows between 2007 

and 2018. 

In our second step, the corresponding first-stage equation is given by: 

 

𝛥𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 = 𝛽3 + 𝛽4𝐶𝑜𝑠𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐼𝑉𝑖𝑠 + 𝛽5𝑋𝑖𝑠 + 𝜃𝑠 + 𝜖𝑖𝑠, (2) 

 

where 𝐶𝑜𝑠𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐼𝑉𝑖𝑠 is a vector containing our cost-related IVs, and 𝛽3, 𝛽4 and 

𝛽5 are parameters to be estimated. We run equations 1 and 2 using two-stage least squares 

(2SLS) and test for IV strength using robust first-stage F-statistics (Imbens, 2014). This 

approach allows us to identify suitable cost-related IVs for highway investments and, 

hopefully, correct measurement error bias resulting from infrastructure project 

inefficiencies. 
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2.5.2. Fixing omitted variable bias (the third step): including non-random allocation 

IVs 

In our third step, we include a set of “local propensity to receive road interventions” 

(non-random road placement) IVs. Then, we rewrite the first-stage equation as follows: 

 

𝛥𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 = 𝛽6 + 𝛽7𝐶𝑜𝑠𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐼𝑉𝑖𝑠
𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 + 

𝛽8𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠 + 𝛽9𝑋𝑖𝑠 + 𝜃𝑠 + 𝜖𝑖𝑠, 
(3) 

 

where 𝐶𝑜𝑠𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐼𝑉𝑖𝑠
𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 is a vector of suitable cost-related IVs tested in the 

second step, 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠 is a vector of non-random allocation IVs, and  𝛽7 

and 𝛽8 are they respective parameter vectors. 

As we described earlier, the vector of non-random allocation IVs includes several 

LCP-MST, political, and “potential road intervention areas” measures. The first two kinds 

are more related to constructing new roads, as they predict a hypothetical road network 

based on global cost minimization or political reasons. On the other hand, our “potential 

road intervention areas” IV works for municipalities crossed by a federal road in the start 

period, i.e., they are strictly related to duplications or enhancements of existing roads. To 

capture those heterogeneities in road investment, we expand our third step first-stage 

equation as follows: 

 

𝛥𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 = 𝛽10 + 𝛽11𝐶𝑜𝑠𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐼𝑉𝑖𝑠
𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 + 

𝛽12𝐷𝑖𝑠
𝑁𝑒𝑤 × 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠

𝐿𝐶𝑃−𝑀𝑆𝑇 + 

𝛽13𝐷𝑖𝑠
𝑁𝑒𝑤 × 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠

𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙 + 

𝛽14𝐷𝑖𝑠
𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔

× 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠
𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐴𝑟𝑒𝑎𝑠 + 

𝛽15𝑋𝑖𝑠 + 𝜃𝑠 + 𝜖𝑖𝑠 

(4) 

 

where 𝐷𝑖𝑠
𝑁𝑒𝑤 is a dummy variable assuming value 1 whether a municipality were 

not connected by a federal road in 2006, and zero otherwise, 𝐷𝑖𝑠
𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔

 is a dummy variable 

assuming value 1 whether a municipality were crossed by a federal road in 2006, and zero 

otherwise, 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠
𝐿𝐶𝑃−𝑀𝑆𝑇 is a vector of LCP-MST IVs, 

𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠
𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙 is a vector of political based IVs, 

𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠
𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐴𝑟𝑒𝑎𝑠 is our “potential road intervention areas” IVs, 

and 𝛽11 to 𝛽14 are their respective parameters to be estimated. 

By running equations 4 and 1, we expect to correct both measurement error and 

omitted variables bias of road investments. In addition, by differentiating for new and 

existing roads in the start period, we provide a novel strategy to estimate the causal 

impact of highway investments in a multitype road intervention setting.  
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2.6. Empirical results 

2.6.1. Main results 

We start our econometric analysis by running the second-step models. Appendix H 

contains a complete description of the second-step results, correlation matrices, and OLS 

estimations used for comparison (see Figure H1 and Tables H1-I4 in Appendix H). In Table 

H5 in Appendix H, we propose a set of specifications based on our preferred cost-related 

IVs. To check instrument strength, we report KP Wald F and effective F (Olea and Pflueger, 

2013) statistics. Both statistics are robust to heteroskedasticity and weak instruments, 

and the effective F statistic works suitably even in multiple instrument settings (Andrews, 

Stock, and Sun, 2019), as proposed by our identification strategy. The first stage 

regressions show that our preferred cost-related IVs strongly predict the long-term 

changes in the national highway investments at the municipal level. Nonetheless, some 

other cost-related IVs seem to violate exclusion restriction or unconfoundedness. Then, 

we proceed to the third step with five suitable instruments: the legally protected area, 

environmental embargoes, sloped area, Cost Index 1, and Cost Index 2. 

By applying our second-step identification strategy, we fixed (or alleviated) the 

expected measurement error underestimation bias. In this sense, our second step 

parameters may be understood as “free from measurement error” elasticity. Nonetheless, 

two obvious empirical issues remain. First, some measurement error bias might remain if 

our instruments do not fully or genuinely capture the main infrastructure costs, leading 

to inefficiencies. This issue seems more troublesome for human physical IVs, which might 

correlate with socioeconomic variables affecting productivity and infrastructure 

placement. Second, non-random allocation bias might exist even after correcting for 

measurement errors in highway variables. 

Now, we evaluate whether the highway investment impacts found so far remain 

unchanged when correcting for both measurement error and non-random road allocation 

bias using our proposed LCP-MST, historical, and intervention area IVs. We use our 

preferred second-step (and hopefully “free from measurement error”) specifications in 

columns 10 and 11 of Table H5 in Appendix H as our starting point for the third-step 

regressions. Then, we test several specifications using our non-random allocation IVs. 

Table 2.1 summarizes our third step and final econometric results. We start by 

inserting our preferred13 LCP-MST IV using starting and ending road points as hubs 

(columns 1 and 2). Next, we try our “potential road intervention areas” IV (columns 3 and 

4) and Brasí lia Plan (columns 5 and 6) separately. In columns 7 and 8 we include our full 

set of non-random allocation and suitable cost-related IVs as proposed in equation 4. In 

columns 9 and 10, we test a Non-random Allocation Index composed of our preferred LCP-

MST, historical, and intervention areas IVs14. Finally, we use the inconsequential unit 

 
13 We also try LCP-MST IVs based on REGIC and historical cities as robustness checks (Table I1 in Appendix 
I). Results remain stable. We also try the JK Road Cruise IV as a robustness check for historical IV. 
14 To construct our index, we use Principal Component Analysis (PCA). The Non-Random Allocation Index is 
measured as follow: 𝑁𝑜𝑛𝑟𝑎𝑛𝑑𝑜𝑚 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = 0.58 ∗ 𝐿𝐶𝑃|𝑀𝑆𝑇 + 0.58 ∗ 𝐵𝑟𝑎𝑠í𝑙𝑖𝑎𝑃𝑙𝑎𝑛 − 0.57 ∗
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐴𝑟𝑒𝑎𝑠. We use the first principal component, presenting 89% of cumulative data 
variation. 
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approach in all specifications, excluding hubs, historical cities, and/or critical traffic 

points, which would likely cause selection biases. 

All our proposed non-random road allocation IVs strongly correlate with the 

highway investment variable. First-stage results show a consistent correlation between 

instruments and highway investments and suggest that our identification strategy seems 

solid at identifying the causal impacts of road investments on local economic activity. 

Effective-F statistics severely increase by including non-random allocation IVs compared 

to second-step estimates, even after solving (or alleviating) measurement error bias. In 

this sense, our findings restate the critical role in fixing endogeneity bias from the non-

random placement of highway investments, especially using monetary variables. In 

addition, results indicate that our full econometric strategy following equations 1 and 4 is 

suitable for measuring causal road impacts on local productivity in the context of road 

intervention heterogeneity. In contrast, findings put some caution at using only cost-

related IVs in contexts of non-random road policy allocation and seem to indicate cost-

related IVs solving (or alleviating) just a (relevant) part of the problem. 

Now, we turn our analysis to the IV parameter's direction and magnitude. Starting 

with our LCP-MST IV, we find an expected negative relationship with highway investment, 

indicating that municipalities far from the hypothetical LCP-MST network received a 

smaller amount of road investments.  The same holds for our Brasí lia Plan IV, and the 

interpretation is quite similar, suggesting that localities far from the plan lines received 

lesser investments. On the “potential intervention road areas” IV, the positive parameters 

suggest that, for already highway-connected municipalities in 2006, the greater the 

distance from a critical traffic area, the greater the investment received. This result points 

out that planners seem to avoid critical road segments by directing interventions to road 

segments not so close to critical areas. It might be related to the potential correlation 

between population density, other human physical costs, and critical traffic points, which 

is likely impacted by higher economic costs and inefficiency in those segments. Then, 

critical road segments appear to be a strategic (and likely endogenous) feature in road 

policies and using the inconsequential unit approach is overarching in this way. 

Regarding second-stage results, elasticities are stable from 0.011 to 0.017. In other 

words, a one-percent increase in federal highway investment boosts municipal GDP per 

capita by 0.011-0.017 percent. It is important to note that the third-step elasticities are 

not negligibly lower than those in the second step (between 0.02 and 0.03). This result 

suggests that even correcting for measurement error bias, a non-random allocation 

overestimation bias might remain, and our identification strategy is essential to rule those 

issues out. 
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Table 2.1. Federal Highway Investments and Municipal GDP per capita Growth, 2007-2018: Third Step 2SLS IV Regressions 
 1 2 3 4 5 6 7 8 9 10 
Second stage           
Log Highways Investments 0.0165*** 0.0162*** 0.0126** 0.0122*** 0.0110** 0.0110** 0.0124** 0.0124*** 0.0129*** 0.0127*** 
 (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
First stage           
Legal Protected Areas 0.4597***  0.3555***  0.4232***  0.3389***  0.3423***  
 (0.10)  (0.10)  (0.10)  (0.10)  (0.10)  
Environmental Embargos 0.3312***  0.3478***  0.3547***  0.3383***  0.3384***  
 (0.11)  (0.11)  (0.11)  (0.11)  (0.11)  
Sloped Area -1.3606***  -1.6060***  -1.4378***  -1.4601***  -1.4676***  
 (0.31)  (0.31)  (0.32)  (0.30)  (0.29)  
Cost Index 1  0.2586***  0.2274***  0.2389***  0.2177***  0.2190*** 
  (0.05)  (0.05)  (0.05)  (0.05)  (0.05) 
Cost Index 2  0.3571***  0.4427***  0.3756***  0.3882***  0.3896*** 
  (0.07)  (0.07)  (0.07)  (0.07)  (0.07) 
LCP-MST Starting and Ending 
Road Points 

-0.3875*** -0.3918***     -0.1193*** -0.1204***   

 (0.02) (0.02)     (0.04) (0.04)   
Potential Road Intervention Area   0.3252*** 0.3294***   0.0893* 0.1025**   
   (0.02) (0.02)   (0.05) (0.05)   
Brasí lia Plan     -0.3170*** -0.3176*** -0.1421*** -0.1314***   
     (0.01) (0.01) (0.03) (0.03)   
Non-Random Allocation Index         -0.4994*** -0.5035*** 
         (0.02) (0.02) 
Observations 5402 5391 5190 5178 5469 5457 5126 5115 5126 5115 
KP Wald F Statistic 113.896 156.650 97.221 137.336 123.195 169.934 72.567 89.717 106.925 147.383 
Effective F Statistic 104.053 117.056 96.535 108.326 108.318 122.313 73.324 78.795 104.841 112.493 
2SLS critical value for tau=5% 20.184 21.202 19.398 20.783 20.688 21.922 24.187 26.112 20.345 21.008 
R² 0.22 0.22 0.24 0.24 0.23 0.23 0.23 0.23 0.23 0.23 

All regressions include the following set of control variables: GDP per capita in 2007; state fixed effects; municipality area; workforce; agriculture share; exports 
share; distance to the nearest state road; distance to the nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional 

quality; human capital. Robust standard errors are reported in parentheses. * 0.1 ** 0.05 *** 0.01.
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On the direction of the bias, an analysis through the PAC is quite difficult. The 

program had several goals, including connecting underdeveloped regions to 

promote regionally balanced growth and attending developed regions with 

restrained demand for transport investments to foster national economic 

development. Complementary, those motivations might be mixed up with political, 

pre-determined historical infrastructure, and touristic reasons, which is rather hard 

to distinguish. 

Nonetheless, we can provide some elucidation starting from our second-step 

estimates (Table H5 in Appendix H). Suppose that our preferred second-step 

regressions entirely correct for measurement error bias but do not so for non-

random allocation bias. Then, we have a (potentially biased) start point elasticity 

around 0.02 and 0.03, which we compare with our smaller third-step elasticities 

(0.011-0.017). The apparently overestimated second step parameters suggest that, 

“free from measurement error bias”, PAC planners targeted comparatively more 

places with higher expected returns to infrastructure investments and higher 

expected traffic demand (Baum-Snow et al., 2017; Faber 2014). It seems accurate, as 

almost half of the PAC highway investments were allocated to road enhancements 

and duplications in already connected municipalities in 2006. Regarding the other 

half, we expect a mix of underdeveloped-oriented policies – especially in the poorly 

connected North region – and higher expected returns on infrastructure policy, 

mainly in export and agriculture-specialized regions. Medeiros et al. (2021a) found 

that highway investments have higher returns for low-technology-intensive sectors 

such as agriculture and mining in Brazil. In this sense, the PAC's economically more 

developed-oriented nature seems stronger than its regionally balanced growth aims, 

upward biasing estimates “free from measurement error bias” but not solving non-

random allocation issues. Indeed, this interpretation is more suggestive than a 

statement, as we do not entirely know whether cost-related IVs are solving some 

share of the non-random allocation bias or if they are entirely fixing measurement 

error bias. We continue this discussion in section 6. 

 
2.6.2. Falsification test and robustness checks 

In this section, we present several robustness checks to our main results 

shown in the previous topic. First, we propose a falsification test based on a novel 

planned road sample exercise. Second, we try other commonly used dependent 

variables. Third, we test two different measures of road infrastructure. Fourth, we 

run an additional robustness check using the limited information maximum 

likelihood (LIML) estimator, bootstrap standard errors, and excluding potential 

outliers. 

If our instruments are valid, they should affect the outcome only through the 

highway investment variable. Therefore, cost-related and non-random road 

allocation IVs should not affect local economic outcomes not in the highway 

investment pathway. To test the exclusion restriction, we specify a sample closely 

related to our study population but not receiving highway investments. This sample 
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is characterized by municipalities presenting planned roads, i.e., hypothetical 

highways acting as a guideline intended to meet a potential traffic demand. In this 

sense, our rationality behind this falsification test is that places (hypothetically) 

crossed by planned roads were similarly demanding road infrastructure 

interventions, likely exposed to the same potential confounders as the full sample. 

As none of those municipalities received federal highway interventions, the 

falsification test is performed by including the IVs in an alternative specification of 

the outcome equation. Appendix J describes in detail the results of the falsification 

tests and all the subsequent robustness checks. We run the same specifications as in 

Table 2.1 using the planned roads sample and include our preferred cost-related IVs 

separately (columns 1 and 2). Results can be seen in Table J1 in Appendix J. 

Conditional on controls, results suggest that our suitable cost-related and non-

random allocation IVs do not violate exclusion restriction. These results increase 

confidence in our identification strategy. 

Second, we estimate the impact of federal highway investments on 

employment, firms, and wages. Results are summarized in Table J2 in Appendix J. 

Cost-related and non-random allocation IVs strongly predict national highway 

investments for all tested dependent variables. In addition, the signal and 

significance of the first-stage coefficients remained relatively similar, and the road 

impact on outcomes remained positive. 

Third, we try two additional infrastructure variables as robustness checks. 

Several studies correctly argue that monetary variables - such as the investment 

flows used in our study - may contain several measurement errors (Caldero n and 

Serve n, 2014; Kenny, 2009; Straub, 2011). Our dummy variable assumes value one 

if a PAC highway intervention crossed the municipality and zero otherwise. If there 

is too high measurement error in our preferred investment flow variable, the 

intervention dummy variable might alleviate the problem as it no longer contains 

monetary values. Second, we try a road length variable following a vast strand of 

literature. Results are described in Tables J3 and J4 in Appendix J. As expected, the 

highway intervention parameters are positive and significant in all specifications, 

and the same holds for road length. The cost-related and non-random allocation IVs 

work the same way as using continuous highway investment flows, corroborating 

previous estimates. 

Fourth, we try additional robustness checks to raise confidence in our main 

estimates. We run the same specifications of Table 1 using the LIML estimator 

(Anderson and Rubin, 1949). In addition, we also provide bootstrap confidence 

intervals. Young (2022) finds that bootstrapped confidence intervals perform better 

in real-world settings as heteroscedasticity and weak IV assumptions are likely 

violated. Tables J5 and J6 exhibit the results. The findings remain unchanged in both 

cases, indicating that our main estimations are reliable. 

Finally, we try several specifications, excluding potential outliers. Results are 

described in Table J7 in Appendix J. In column 1, we drop all municipalities of the 

state of Sa o Paulo. Sa o Paulo is the most prosperous Brazilian state, representing 
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over 30% of the national GDP. In addition, Sa o Paulo presents the country's best road 

infrastructure, which is substantially privately managed. A significant share of those 

high-quality roads is the responsibility of the Sa o Paulo state government, with 

federal roads a small fraction of the total. The result might be a small fraction of the 

PAC highway investment directed to a high road-demanding state, and an 

underestimation bias could be expected. In column 2, we exclude all municipalities 

in the states in the North region. Those municipalities are characterized by large 

territorial areas, which might bias our highway measure variable as it depends on 

the road length crossing the municipalities. In column 3, we exclude both Sa o Paulo 

and Northern municipalities. In column 4, we consider highway investment values 

smaller than R$ 50 million to be zero. This test is essential as we relied on road 

length crossing municipal areas to construct our highway flow measure, and short 

road segments (and consequentially small investment values) might be poorly 

capturing a highway intervention. Finally, in column 5, we exclude municipalities in 

the top 1 and bottom one percentiles of GDP per capita growth. In general, findings 

remain almost unchanged. The most noticeable variation comes from the exclusion 

of Sa o Paulo municipalities. The elasticity in columns 1 and 3 is around 0.017, while 

our benchmark estimate is 0.012. This result suggests that Sa o Paulo municipalities 

might be slightly downward biasing our estimates. 

 

2.7. Assessing the return rate to highway investments: how large can 

the bias be? 

Now, we return to our main issue: endogeneity bias. We can ask some 

questions. First, is there any remaining bias in our second-step elasticity? If there is, 

what is the magnitude of such a bias? To answer these questions, we compare our 

preferred third-step estimates with second-step and OLS naí ve estimates (Table H5 

and Table H6 in Appendix H, respectively). 

The OLS estimates returned an average highway investment elasticity of 

around 0.004, while the average second-step elasticity is close to 0.025. On the other 

hand, the highway investment elasticity estimated using our full third-step IV 

identification strategy is between 0.011 and 0.017. Our results suggest a meaningful 

bias in OLS regressions and point to a remaining non-random allocation bias in our 

second-step estimates. 

To better illustrate the bias, we calculate the return rate to highway 

investments in Brazil comparing the OLS and our preferred 2SLS-IV estimates. To do 

so, we follow the equation below (Fernald, 1999; Wang, Wu, and Feng, 2020): 

 

𝑅𝑅 = 𝛽ℎ𝑖𝑔ℎ𝑤𝑎𝑦 ∗
𝐺𝐷𝑃

𝐻𝑖𝑔ℎ𝑤𝑎𝑦 𝑆𝑡𝑜𝑐𝑘
        (5) 

 

Where RR is the return rate to highway investments, 𝛽ℎ𝑖𝑔ℎ𝑤𝑎𝑦 is the predicted 

elasticity following equations 1 to 4 in the econometric specification section, GDP is 

the national GDP, and Highway Stock measures, in monetary terms, how much the 
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national highway infrastructure stock is worth. As a proxy for the highway stock, we 

follow Medeiros et al. (2021a) and use the sectoral infrastructure stock estimated by 

Frischtak and Moura o (2017). The study provides a stable road stock of 6.0% of the 

GDP. The Brazilian GDP was around R$ 9.9 trillion in 2022. Considering the road 

stock share in GDP constant over time, the actual Brazilian highway stock is 

supposed to be approximately R$ 594 billion, implying a GDP/Highway Stock ratio 

of roughly 16.7. This ratio is very close to the Chinese one of 19.6, used by Wang, Wu, 

and Feng (2020). 

In Figure 2.3, we summarize our results in terms of elasticities and return 

rates. Then, Figure 2.3 shows us the elasticity and return rate by estimation group, 

which is measured by the average considering all their respective estimates. In 

addition, we include Foster et al. (2023b) transport sector elasticities as benchmarks 

for comparison as well as the return rates found by Li et al. (2017) and Wang, Wu, 

and Feng (2020) for China, and Medeiros et al. (2021) for Brazil.  

Using the naí ve OLS highway elasticity, we generate an underestimated RR of 

6.35%. In contrast, using the 2SLS estimates based on the second step cost-related 

IVs identification strategy, we calculate an RR of around 40.51%, which we consider 

relatively high even for a developing and lacking highway infrastructure economy 

such as Brazil. Nonetheless, when we turn to our third-step estimations – including 

all robustness checks we have run –we find a stable average elasticity around 0.013, 

implying a return rate to highway investment of approximately 21.3%. This result 

suggests that correcting measurement errors and non-random allocation bias is 

critical to identifying robust infrastructure investment elasticities and return rates. 

In addition, findings put a lot of caution on instrumentalizing highway investment 

variables only by cost-related measures in cases wherein road policies are likely 

guided by economic, political, or need for transportation reasons, as seems to occur 

in Brazil during the PAC. 

While the methodology and data are different and making a full comparison 

among studies is impossible, our calculated RR is in line with those ones calculated 

by Li et al. (2017) and Wang, Wu, and Feng (2020) for the Chinese case, and 

especially with Medeiros et al. (2021a) for the Brazilian case. To evaluate the 

profitability of highway investments in Brazil, we can take the Social Discount Rate 

(TSD) of 8.5% calculated by the Ministry of Economy (2021), broadly used to 

evaluate infrastructure projects in the country. To reduce our third step rate of 

return of 21.3% to the threshold of 8.5%, Brazil would need 2.51 times more 

highways, which implies a road stock of 15.1% of national GDP.  This finding 

corroborates the estimates by Frischtak and Moura o (2017) and Medeiros et al. 

(2021a), predicting an ideal road stock of 13.5% and 16% of GDP, respectively. 

Considering even lower long-run real rates of return from 4% to 5% worldwide, 

Brazil would need to invest 4.26 times more in highway infrastructure, 

strengthening the high profitability of transport investments in the country during 

the PAC period. 
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Figure 2.3 Elasticities (a) and return rates to highway investments (b): Brazil, 
2007-2018 

(a)  

(b)  

Source: authors’ elaboration. 

 
2.8. Concluding remarks 

Using a novel three-step IV identification strategy, we evaluated the causal 

impact of national highway investments on local economic activity in Brazil between 

2007 and 2018. We relied on several original infrastructure project costs and non-

random road placement instruments as sources of quasi-random variation of 

observed highway infrastructure to correct for both measurement error and omitted 

variable biases. We proved that our preferred IVs are conditionally exogenous and 

strong predictors of road investments. In addition, we argue that a substantial part 

of our proposed instruments might be replicated in several applications worldwide. 

Our main results showed that our empirical strategy is suitable for 

identifying causal road impacts on the local economy. First, the second step 

estimates allowed us to correct (or alleviate) measurement errors and determine 

the expected downward-biased OLS elasticities. Second, third step regressions are 
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critical to fix non-random placement of roads bias even after fixing measurement 

error. In this case,  our findings suggest that the PAC prioritizes economic 

development over regional balance, as its actions favor more prosperous areas, thus 

upward biasing “free from measurement error” second step estimates. Results 

remain unchanged under several robustness checks. 

We found a pretty stable road elasticity ranging from 0.011 to 0.017. In other 

words, a one percent increase in highway investments increased municipal GDP per 

capita by 0.011-0.017%. Using a more easy-to-interpret measure, results point to a 

return rate to highway investment of around 21.3% in Brazil, which aligns with 

studies worldwide. Brazil would need to invest 2.5 times more in road infrastructure 

from this return rate, reaching a proper road stock of 15% of the national GDP. This 

result proved the high rentability of highway investment in the developing country 

context. 

While we have contributed to the empirical literature on infrastructure and 

economic development in several ways, some gaps remain. First, it is hard to 

conclude if our second-step estimates are fully corrected for measurement errors in 

the road variable. In addition, cost-related IVs could be fixing some part of the 

expected omitted variable bias, and additional validations might be useful. 

Proposing other cost-related instruments and statistically testing them is an obvious 

way to confirm our identification strategy and results. Second, a similar empirical 

approach could be adapted for panel data models. In this case, we could include 

other cost types, such as national demand and institutional risks, which are issues 

we overlooked in the present research as we worked with cross-sectional data. We 

hope to provide some new evidence on those concerns in further research. 
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3. INFRASTRUCTURE, GROWTH, AND REGIONAL DISPARITIES: looking at the 

efficiency, redistribution, and equity goals in road investments 

 

 

 

Abstract 

This paper evaluates the role of transportation infrastructure policies in raising 

productivity by considering heterogeneities in terms of efficiency, road 

specialization, redistribution, and equity. Using a third-step instrumental variable 

identification approach combined with the infrastructure reliance framework, we 

estimate the causal impacts of road investments on GDP per capita in Brazilian 

municipalities during the Growth Acceleration Program (PAC) period (2007-2018). 

We find positive impacts of road investments on productivity, which can be 

translated into a return rate of over 20%. This effect is larger for less-developed, 

poorly infrastructure-endowed, and more road-specialized municipalities. From 

this, we provide regional focal points constituting win-win (efficient-specialized and 

redistributive-equative) combinations for road policies. In addition, findings suggest 

that Brazil could have achieved higher profitability for road investments by targeting 

redistributive-equative and efficient-specialized interventions. However, 

policymakers need to be cautious as the impact of road investments on productivity 

is constrained in highly efficient localities, likely due to institutional and sectoral 

inefficiencies. 

Keywords: highway infrastructure; regional development; redistribution; equity; 

infrastructure heterogeneity.  
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3.1. Introduction 

A wide range of studies has evaluated the impact of infrastructure 

investments on economic growth, productivity, trade, employment, 

decentralization, poverty alleviation and reducing inequalities, among other 

economic, social, and environmental outcomes (Aschauer, 1989; Banerjee et al., 

2020; Baum-Snow et al., 2017; Bird and Straub, 2020; Duranton et al., 2014; Faber, 

2014; Fedderke and Bogetic, 2009; Foster et al., 2023a, 2023b; Michaels, 2008; 

Medeiros et al., 2021a, 2022; Shi and Huang, 2014; Straub, 2011). Several related 

investigations have provided interpretable measures on the profitability of 

transportation investments by calculating economic return rates (RR), which have 

been used to guide cost-benefit analysis of infrastructure policies worldwide 

(Fernald, 1999; Li et al., 2017; Medeiros et al., 2021b; Wang et al.,2020). 

Nonetheless, this strand of literature has focused on the efficiency goal of 

road policies. The efficiency aim is related to the fact that the road policy seeks to 

maximize economic returns by placing the infrastructure in regions with higher 

growth potential. This lucrativeness could be enhanced by allocating roads to 

localities that are more specialized in the transportation sector. The pioneering 

study by Fernald (1999) proposes a framework in which the national return rate to 

highway investments is calculated by multiplying a road-productivity elasticity 

parameter weighted by the national road reliance by an efficiency measure 

calculated by the Gross Domestic Product (GDP) divided by the national road stock. 

In a simple way, the greater the elasticity, the road specialization, and the efficiency, 

the greater the road investment return of a country, region, or locality. 

While this empirical structure based on the efficiency-specialization aim has 

been followed by numerous researchers, a look at the redistribution and equity 

goals in the road investment return rates has been broadly overlooked. 

Redistribution is the policy purpose that uses road interventions to foster regionally 

balanced economic growth by targeting poorer localities. Similarly, equity means 

investing in places with low infrastructure endowments, equalizing the territory. In 

this context, some works tried to identify whether road policies are guided by 

efficiency or redistribution objectives and whether a trade-off exists between them 

(Cadot et al., 2006; Fageda et al., 2019; De la Fuente, 2004; Kemmerling and Stephan, 

2002; Monastiriotis and Psycharis, 2014; Yamano and Ohkawara, 2000). Evidence 

is mixed, pointing out that road programs are guided by both efficiency and 

redistribution-equity sides and suggesting that there is some trade-off between the 

different policy goals. Although these studies have made significant contributions to 

the literature on infrastructure and development, identifying the road impact 

heterogeneities in terms of efficiency, road reliance, redistribution, and equity 

remains a black box. Our main contributions in this paper follow this path. 

We investigate the highway investment impact heterogeneity on 

productivity in Brazil during the Growth Acceleration Program (PAC) period (2007-

2018). There are three main reasons for making Brazil an interesting case study. 
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First, the PAC (divided into PAC 1 and 2) was the most important Brazilian 

infrastructure program in the last decades, doubling the level of investments in 

highway infrastructure compared to the previous ten years (Medeiros et al., 2021b). 

At the same time, the program was criticized for its broad inefficiencies coming from 

harmful bureaucracy, unfinished buildings, and corruption, making the program's 

efficiency, efficacy, and effectiveness analysis critical and complex (Amann et al., 

2016; Burrier, 2019). Second, Brazil is characterized by deep regional inequalities 

in terms of both income and infrastructure endowment (Medeiros and Ribeiro, 

2020). Third, the PAC period coincided (up to 2015) with relatively good economic 

performance in the Brazilian economy (Nassif et al., 2020). Therefore, our case study 

is ideal for assessing the returns of infrastructure investments in a developing 

country scenario with marked regional disparities. 

In addition, in August 2023, the Brazilian Federal Government launched the 

"New" PAC, predicting investments of around R$ 1.7 trillion in several infrastructure 

sectors. The main goals of the new (and third) program are similar to those of PACs 

1 and 2, which are developing the precarious national infrastructure by augmenting 

public investments and attracting private resources to the sector. Then, an “Old” PAC 

evaluation is critical to identify bottlenecks and provide ways to upgrade the “New” 

PAC into a win-win policy, maximizing the economic returns of road investments 

considering redistribution and equity goals. 

We estimate the impacts of national highway investments on local 

productivity growth at the municipality level using a long-difference econometric 

model (2007-2018). To overcome measurement error and non-random allocation 

biases in infrastructure studies, we combine Medeiros et al. (2024) third-step 

instrumental variable (IV) identification approach with the road reliance parameter 

by Fernald (1999). Next, we identify road impact heterogeneities regarding 

efficiency, road specialization, redistribution, and equity levels. It allows us to 

calculate an efficient-specialized and redistributive-equative return rate to highway 

investments in Brazil.  

We find three main results. First, highway investment is highly productive in 

Brazil, and localities that are more dependent on roads benefit more from it. Second, 

the road impact on productivity is larger for less developed, poorly infrastructure-

endowed, and more road-specialized municipalities. Third, road investment 

profitability appears to be deeply harmed when focusing on attending highly 

efficient places, likely related to huge infrastructure project costs and inefficiencies. 

In short, we provide evidence of win-win combinations for road policies in Brazil. In 

addition, targeting too efficient places and looking at their expected return might 

puzzle the inefficiencies related to them, overestimating the road investment impact 

on the economy. From those results, we calculate an average return rate to highway 

investments during the PAC of around 20%. This RR could have been larger by 

avoiding localities with very high efficiency levels and related inefficiencies and 

focusing on both efficiency-specialization and redistribution-equity goals, which 

does not seem to have occurred. 
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Our main contributions are fourfold. First, to the best of our knowledge, our 

study is the first one to include the redistribution-equity goals in the discussion on 

road investment profitability. We provide novel evidence by estimating road impact 

heterogeneities regarding both policy sides: efficiency-specialization and 

redistribution-equity. Second, our empirical approach allows us to identify “focal 

points” wherein road interventions might achieve win-win outcomes, i.e., 

profitability, redistribution, and equity. Third, we calculate and compare the PAC 

return rate with return rates considering different levels of efficiency, road reliance, 

redistribution, and equity, affording a unique ex-post evaluation of a national 

infrastructure program. Fourth, we contribute to the empirical literature on 

infrastructure by combining the third-step IV identification approach by Medeiros 

et al. (2024) with the infrastructure reliance framework. 

This paper is structured as follows. Section 2 describes the related empirical 

literature. Section 3 presents the econometric approach. Section 4 details the data. 

Section 5 outlines the results. Section 6 evaluates the highway investment 

rentability in Brazil in light of the efficiency, road specialization, redistribution, and 

equity policy goals. Section 7 concludes. 

 

3.2. Related literature 

3.2.1.  Road infrastructure and economic activity: empirical literature 

A massive number of studies has investigated the relationship between 

infrastructure and economic activity (Baum-Snow et al., 2020; Bird and Straub, 

2020; Duranton et al., 2014; Faber, 2014; Fedderke and Bogetic, 2009; Foster et al., 

2023a, 2023b; Jaworski and Kitchens, 2019; Straub, 2011). Since Aschauer (1989), 

several empirical investigations have provided evidence of the positive impact of 

transportation infrastructure investments on productivity and growth (Ghani et al., 

2014; Fahardi, 2015; Herzog, 2021; Holl, 2016; Li et al., 2017; Zhang and Ji, 2019). 

In addition, road investments have been proven to alleviate regional and income 

inequalities (Medeiros and Ribeiro, 2020; Medeiros et al., 2022) and poverty 

(Medeiros et al., 2020; Parikh et al., 2015), potentially constituting a win-win public 

policy. 

Some papers have calculated the economic return rate to infrastructure 

investments to provide a clear and interpretable measure for policymakers. Fernald 

(1999) estimated a RR of 6% using United States data, Li et al. (2017) and Wang et 

al. (2020) found return rates for China of 11% and 23%, respectively, while 

Medeiros et al. (2021) and Medeiros et al. (2024) calculated return rates of 22.2% 

and 21.3%, respectively, using Brazilian data. In most cases, results point out that 

road investments are profitable, especially in the developing world scenario. 

However, one of the main caveats of those papers concerns looking at only 

one side of public policy: efficiency. In other words, the calculated return rates are 

based on a constant road investment-productivity elasticity, and the national or 

regional road investment profitability will be higher the higher the ratio between 

the GDP and the road stock. Redistribution and equity public policy goals are set 



57 
 

 

aside, and no heterogeneity in the road investment impact on productivity is 

investigated. For instance, we might expect more transforming effects of highway 

interventions in less developed and unconnected localities by expanding local 

markets and generating new activities and jobs (Jaworski and Kitchens, 2019; 

Storeygard, 2016). Disregarding these peculiarities might underestimate the return 

rates for underdeveloped localities and overestimate the profitability in developed 

economies. Next, we take into consideration other policy goals in road interventions.  

 

3.2.2.  Looking at efficiency-specialization, equity, and distribution in road 

investments 

While efficiency has been widely studied in infrastructure studies, how road 

investments might heterogeneously impact local outcomes depending on 

redistribution and equity issues has remained overlooked. In this paper, we 

investigate the potential of transportation infrastructure policies to achieve win-win 

combinations characterized by regionally balanced economic growth. 

We can identify four main features proposed by the related literature to 

identify the determinants of road allocation. Efficiency is understood as the 

profitability of road investments and is measured as the ratio between national, 

regional, or local GDP and road stock. Complementary, road specialization (or road 

infrastructure reliance) raises the impact of road investments on productivity by 

maximizing its return as the transport sector's role in the locality is more important. 

In other words, localities more specialized in road infrastructure benefit more from 

road investments. Those two first road features guide the principle of regional policy 

using the transport infrastructure to foster economic growth. On the other side, 

redistribution is mainly represented by GDP per capita or per worker, and the 

principle behind this variable is that the public policy is based on the use of 

transport infrastructure to promote the development of poorer regions. Equity is 

related to the idea of getting the territory right by means of road investments. This 

variable is measured as the total road stock over the geographical area. Then, road 

policies might have redistribution aims in terms of both income levels and 

infrastructure endowment. 

A few studies have examined the existence of a trade-off between efficiency-

specialization and redistribution-equity in road allocation (Albalate et al., 2012; 

Cadot et al., 2006; Fageda et al., 2019; De la Fuente, 2004; Golden and Picci, 2008; 

Kemmerling and Stephan, 2002, 2008; Monastiriotis and Psycharis, 2014; Yamano 

and Ohkawara, 2000). In summary, this trade-off implies that, in most cases, 

investing in efficient-specialized, redistributive, and equative localities are 

conflicting aims. In other words, efficiency comes at the expense of redistribution 

and equity, and the opposite also occurs. 

The findings are controversial. Some investigations found that governments 

intend to use road policies to promote economic growth, mainly guided by efficiency 

goals (Castells and Sole -Olle , 2005; Kemmerling and Stephan, 2008), deepening 

regional inequalities (Cosci and Mira, 2018). On the other hand, other studies point 
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out that transportation policies were guided by equative and redistributive aims 

(Fageda et al., 2019; Fuente, 2004; Monastiriotis and Psycharis, 2014; Yamano and 

Ohkawara, 2000), and higher efficiency was expected to be reached if governments 

had chosen different targets. 

We contribute to the infrastructure and regional development literature by 

evaluating the road investment impact heterogeneity in terms of the efficiency-

specialization and redistribution-equity policy aims. Past studies examined how 

those road features have guided road allocation across countries and regions. 

However, our goal is to evaluate how these road characteristics affect the impact of 

road investment on productivity. From there, we provide novel evidence on the 

efficiency-redistribution trade-off and provide a practical way to identify places 

wherein win-win (efficient, road-specialized, redistributive, and equative) 

combinations could be achieved by investing in roads. 

 

3.3. Econometric approach 

3.3.1. Measuring causal impacts of highways investments on productivity: the 

Medeiros et al. (2024) three-step IV identification approach 

To estimate the causal impacts of road investments on local economic 

development, we rely on the three-step IV identification approach proposed by 

Medeiros et al. (2024). The empirical approach deals with the endogeneity between 

highway investments and local outcomes in three sequential steps. 

The first one concerns the study design. We evaluate the impact of a national 

road program (the PAC) implemented by the Brazilian Federal Government on 

outcomes at the municipal level. This study design is essential to alleviate 

endogeneity concerns between infrastructure investments and economic activity 

(Bird and Straub, 2020; Faber, 2014; Herzog, 2021), as we do not expect most 

municipalities to directly influence the Brazilian Federal Government decisions to 

place highways across the country. 

The second step deals with measurement errors in the road measure. In the 

developing world scenario, infrastructure investments are likely impacted by 

inefficiencies such as corruption, harmful bureaucracy, and poor planning and 

execution. Whether it occurs, the relationship between road investments and 

economic development might be unclear, and biases are expected in conventional 

econometric estimates. Medeiros et al. (2024) tested several IVs related to the main 

geographical, environmental, and human physical infrastructure project costs to 

correct measurement errors in the road variable. They provided a range of suitable 

instruments, which we will replicate in this study. The rationality behind those IVs 

is that infrastructure costs might affect the outcome variable only through the 

highway variable (Holl, 2012; Lu et al., 2022; Martí n-Barroso, Nunez-Serrano, and 

Velazquez, 2015; Zhang, Hu, and Lin, 2020). For instance, we may expect local 

terrain ruggedness making a road project unfeasible or substantially more costly, 

which in turn is expected to affect a region or city economic development. 
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Nonetheless, it is unlikely this observable characteristic will directly impact GDP, 

population, or another economic outcome variable growth. 

The third step corrects for the non-random placements of roads. For this, the 

authors draw several IVs based on hypothetical road networks trying to globally 

minimize road costs, political factors, and the propensity of municipalities to receive 

road interventions15. The hypothetical networks are constructed using the Least-

Cost Path- Minimum Spanning Tree (LCP-MST) method (Dijkstra, 1959; Kruskal, 

1956) following Faber (2014). The political instrument relies on Bird and Straub 

(2020), using the Brasí lia experiment as a source of quasi-random variation in road 

infrastructure construction. Finally, we use a third instrument based on traffic 

intensity data on federal roads, which Medeiros et al. (2024) named “potential road 

intervention areas.” This IV deals with the fact that roads with heavy traffic are 

obvious candidates to receive interventions. In addition, we combine the IVs with 

the inconsequential unit approach by Chandra and Thompson (2000) by excluding 

central municipalities, which alleviates concerns about sample selection. 

The econometric first (1) and second stage (2) equations are described as 

follows: 

 

𝛥𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 = 𝛽1 + 𝛽2𝐶𝑜𝑠𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐼𝑉𝑖𝑠
𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 + 

𝛽3𝐷𝑖𝑠
𝑁𝑒𝑤 × 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠

𝐿𝐶𝑃−𝑀𝑆𝑇 + 

𝛽4𝐷𝑖𝑠
𝑁𝑒𝑤 × 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠

𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙 + 

𝛽5𝐷𝑖𝑠
𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔

× 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠
𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐴𝑟𝑒𝑎𝑠 + 

𝛽6𝑋𝑖𝑠 + 𝜃𝑠 + 𝜖𝑖𝑠 

(1) 

 

𝛥𝑌𝑖𝑠 =  𝛽7 + 𝛼1 × 𝛥𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 + 𝛽8 × 𝑋𝑖𝑠
′ + 𝜃𝑠 + 휀𝑖𝑠          (2) 

 

Where 𝛥 represents the change between 2007 and 2018, 𝑌𝑖𝑠 is our dependent 

variable for municipality i in state s, 𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 is the log form of the 

federal highway investments, α1 is the elasticity of highway investments to our 

dependent variable, 𝐶𝑜𝑠𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐼𝑉𝑖𝑠
𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 is a vector containing suitable and tested 

cost-related IVs (Medeiros et al., 2024), 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠 is a vector of 

non-random allocation IVs, 𝐷𝑖𝑠
𝑁𝑒𝑤 is a dummy variable assuming value 1 whether a 

municipality were not connected by a federal road in 2006, and zero otherwise, 

𝐷𝑖𝑠
𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔

 is a dummy variable assuming value 1 whether a municipality were 

crossed by a federal road in 2006, and zero otherwise, 𝑋𝑖𝑠
′  is a vector of control 

variables, 𝜃𝑠 is a state fixed effect, 𝛽1 to 𝛽8 are parameters to be estimated, 휀𝑖𝑠 and 

𝜖𝑖𝑠 are idiosyncratic error terms. 

 

3.3.2. Including the local road infrastructure reliance (φ) 

To investigate the road infrastructure reliance heterogeneity in Brazilian 

municipalities, we draw upon the studies by Fernald (1999), Li et al. (2017), 

 
15 For a more detailed description on the IVs construction, please see Medeiros et al. (2024). 
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Medeiros et al. (2021), Percoco (2015), and Wang et al. (2021) introducing a 

measure capturing the transportation infrastructure dependence of each 

municipality (φ). Then, our specification is slightly modified as follows: 

 

𝛥𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 × 𝜑𝑖𝑠 = 𝛽9 + 𝛽10𝐶𝑜𝑠𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐼𝑉𝑖𝑠
𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 + 

𝛽11𝐷𝑖𝑠
𝑁𝑒𝑤 × 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠

𝐿𝐶𝑃−𝑀𝑆𝑇 + 

𝛽12𝐷𝑖𝑠
𝑁𝑒𝑤 × 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠

𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙 + 

𝛽13𝐷𝑖𝑠
𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔

× 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑠
𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐴𝑟𝑒𝑎𝑠 + 

𝛽14𝑋𝑖𝑠 + 𝜃𝑠 + 𝜖𝑖𝑠 

(3) 

 

𝛥𝑌𝑖𝑠 =  𝛽15 + 𝛼2 × 𝛥𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 × 𝜑𝑖𝑠 + 𝛽16 × 𝑋𝑖𝑠
′ + 𝜃𝑠 + 휀𝑖𝑠     (4) 

 

Where 𝛽9 to 𝛽16 are parameters to be estimated. By interacting the highway 

investment variable with the municipal road reliance, we control for local road 

specialization heterogeneity. When 𝛼2 is positive, it implies that highway 

investments are productive, and municipalities depending more on road 

infrastructure benefit more from road investments. We contribute to the empirical 

literature on infrastructure by testing the three-step IV identification approach by 

Medeiros et al. (2024) combined with the infrastructure reliance framework 

(Fernald, 1999). 

 

3.3.3. Calculating the return rate to highway investments: the efficiency-

specialization, redistribution, and equity framework 

Some studies have calculated the return rates to infrastructure investments 

around the world (Fernald, 1999, Li et al., 2017, Medeiros et al., 2021, Percoco, 2015; 

Wang et al., 2021). Nonetheless, the literature has focused on the efficiency side of 

road investment following Fernald (1999). In this approach, the return rate to 

infrastructure investment is measured as follows: 

 

𝑅𝑅 =  𝛼 × 𝜑𝑖𝑠 ×
𝐺𝐷𝑃𝑖𝑠

𝐻𝑖𝑔ℎ𝑤𝑎𝑦 𝑆𝑡𝑜𝑐𝑘𝑖𝑠
        (5) 

 

Where RR is the return rate to highway investment, α is the road elasticity to 

productivity growth, and φis is the road reliance. The higher the elasticity and the 

road specialization, the higher the return rate. In addition, the return rate to 

highway investment will be larger the higher is the ratio between the GDP and the 

highway stock. Then, the efficiency (economic, measured as the GDP/Highway Stock 

ratio, and sectoral, measured as the infrastructure reliance parameter) guides the 

rationality behind the conventional return rates to road investments. 

We contribute to the literature by recalculating the return rate to highway 

investments in the light of four interest variables: efficiency, redistribution, equity, 

and road specialization. To this end, we re-estimate Equations 3 and 4, slicing our 

sample into groups below and above the medians of those variables. We also try 
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other specifications by excluding each variable's top 10% and 20% and the bottom 

10% and 20% observations. Based on this approach, we provide novel results on 

the road investment impacts on productivity considering dramatic heterogeneities 

in the spatial distribution of efficiency, redistribution, equity, and road 

specialization. By doing this, we calculate several return rates considering the 

efficiency-equity variations in Brazil. 

To better illustrate how our econometric exercises will be used to calculate 

heterogeneous RR to road investments based on the framework described in Section 

2, we can rewrite Equation 5 as follows: 

 

𝑅𝑅𝑆𝑎𝑚𝑝𝑙𝑒𝑘  =  𝛼𝑆𝑎𝑚𝑝𝑙𝑒𝑘 ∗ 𝜑𝑖𝑠 ∗
𝐺𝐷𝑃𝑖𝑠

𝐻𝑖𝑔ℎ𝑤𝑎𝑦 𝑆𝑡𝑜𝑐𝑘𝑖𝑠
      (6) 

 

Where Sample represents the different below and above the median of 

efficiency, redistribution, equity, and road specialization samples as described 

before, and k=1,…,53 is the number of different combinations between samples of 

our four interest variables. Then, we run one regression to each one of the proposed 

samples following Equations 1-4. For instance, we start by trying two samples 

(k=1,2) of municipalities below and above the median of efficiency. We repeat this 

procedure for the other three interest variables (k=3,…,8). Next, we combine 

samples of our four interest variables, generating a total of 53 different values for 

α16. By estimating different values for α, we can calculate different RR to highway 

investments weighting both goals of efficiency-specialization and redistribution-

equity. If highway impacts on productivity are larger in less developed localities, our 

procedure allows us to correct the return rate by taking different values of α. We 

return to this application in more detail in the results and discussion section. 

We re-run Equations 3 and 4 applying an additional econometric approach, 

including an interaction term between our highway investment variable and the 

efficiency, redistribution, and equity variables. We also interact the instruments 

with the same set of variables to allow the IV estimator to work. 

 

3.4. Data 

3.4.1. National highway investments 

To measure the impact of national highway investments on local (municipal) 

economic activity, we use the unique dataset constructed by Medeiros et al. 

(2024)17. The authors georeferenced the PAC highway investments at the municipal 

level between 2007 and 2018 using data from the Ministry of Transportation and 

the National Highway System (SNV) georeferenced road data made available by the 

 
16 The possibilities are even more extensive. Nonetheless, we try to estimate combinations of samples 
considered “ideal samples”, which are represented by higher values of efficiency and road 
specialization and lower levels of redistribution and equity. 
17 An extensive description of the procedures needed to construct the dataset is provided by the 
authors. 
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National Highway Infrastructure Department (DNIT). Our main road variable is the 

sum of road investments (R$) in the whole period18. As a robustness check, we also 

try a dummy variable assuming value one if a municipality received a road 

intervention and zero otherwise. 

 

3.4.2. Road efficiency, redistribution, equity, and specialization 

We measure efficiency by the ratio between GDP and road stock by 

municipality. GDP can be extracted from the Brazilian Institute of Geography and 

Statistics (IBGE). To construct the road stock variable, we use Frischtak and Moura o 

(2017) sectoral estimates for the Brazilian road stock. The authors found a road 

stock of around R$ 594 billion in 2023 values. Next, we use georeferenced road data 

from the 2007 National Transport Logistics Plan (PNLT) to calculate the road length 

by municipality. We multiply single lanes by one and duplicated lanes by 2 to control 

for road quality and scale in our stock measure. Then, we divide the total road stock 

in monetary terms by our physical measure of road length to generate the monetary 

value by kilometer of road. Finally, we multiply this value by the road length of each 

municipality, which gives us our local road stock variable. Finally, efficiency is 

obtained by dividing the municipal GDP by its road stock. 

Our redistribution variable is measured as GDP per capita. Both GDP and 

population are obtained from the IBGE. Equity is represented by the ratio between 

our calculated municipal road stock and the municipal geographic area (km²). 

 Finally, our road specialization variable is calculated as the share of the 

municipal intermediate consumption related to the land transportation sector. This 

variable is constructed in three steps. First, we use wages and employment sector-

level (four-digit CNAE classification) data from the Annual Social Information 

Report (RAIS) in 2007 to calculate the share of each sector in the total wages 

(employment). Second, we use the 2010 national Input-Output (I-0) table with 68 

economic activities19 to calculate our infrastructure reliance measure following 

Medeiros et al. (2021).  Third, we aggregate the four-digit CNAE sectors into the 

sectoral classification of the I-O table. Then, we multiply the sector share in the total 

wages using the I-O sector-level classification by its respective infrastructure 

reliance value (φsector), obtaining the average infrastructure reliance by 

municipality, i.e., our road specialization measure (φis). 

The spatial distribution of our four variables can be seen in Figure 3.1. Road 

investment efficiency is generally higher in the Southeast and South regions. A 

similar pattern can be observed for redistribution, indicating that the Southeast, 

South, and Mid-West regions have higher levels of GDP per capita. Equity is even 

more concentrated in the more developed regions of the country, also presenting 

 
18 Those investments include construction, paving, duplication, and enhancements. Maintenance 
expenses are not included due to data limitations. 
19 We exclude the land transportation sector to avoid obvious endogeneity issues, and the public 
administration sector as it has some practical issues as the concentration of public administration 
employment in central cities in the RAIS. 
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higher values in coastal areas. Regarding road specialization, we can observe a more 

decentralized distribution, showing that municipalities with different economic 

development levels and road endowments might be highly (low) specialized in road 

infrastructure.  

Figure 3.2 reveals the allocation of road investments by deciles of efficiency, 

redistribution, equity, and road specialization. The Brazilian Federal Government 

focused on attending more efficient regions and more developed regions with a 

larger road endowment. For instance, an average municipality in the upper 10% of 

efficiency received approximately R$ 47.75 million, while an average municipality 

in the bottom 10% received around R$ 5.7 million. The same interpretation holds 

for equity and redistribution.  Regarding road specialization, this characteristic does 

not appear to have driven the PAC road policy. 

 

3.4.3. Instruments 

We apply three main instruments in our econometric models using data from 

Medeiros et al. (2024). To correct measurement error in the road variable, we use 

two cost-related IVs (Cost Index 1 and Cost Index 2), which have been tested and 

considered suitable IVs. Both indexes were constructed using the Principal 

Component Analysis (PCA) by reducing the information of several variables 

representing the main infrastructure project costs. The first index represents 

environmental costs and is mainly composed of the share of legally protected areas 

and the number of environmental embargoes. The second index is more related to 

geographic costs, measured as the share of hilly areas, and human physical costs, 

measured as the share of urban infrastructure building. The higher the indexes, the 

higher the cost of constructing roads in the municipality. 

Our third instrument corrects for the non-random placement of roads. We 

use the Non-Random Allocation Index, which was created using the PCA technique. 

This IV represents the propensity of a municipality to receive a road intervention, 

as it is measured as the first principal component obtained from three original 

indicators. The first original indicator is the distance from a hypothetical network 

constructed using the LCP-MST method. In this case, a global minimization road 

network was generated, connecting the ending and starting points of those roads 

targeted by the PAC. The second original indicator is the distance from the 

hypothetical straight lines of the 1950s Brasí lia Plan following Bird and Straub 

(2020). The third original measure is the distance from a heavy traffic area. The 

higher the Non-Random Allocation Index, the smaller the propensity of a 

municipality to receive road investments. As robustness checks, we also try different 

combinations of instruments using the original indicators instead of the PCA 

indexes.  
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Figure 3.1. Road infrastructure in Brazil: efficiency (a), redistribution (b), equity 
(c) and road specialization (d) 

(a) 

 
(b) 

 

Source: authors’ elaboration. 
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Figure 3.1. Road infrastructure in Brazil: efficiency (a), redistribution (b), equity 
(c) and road specialization (d) 

(c) 

 
(d) 

 

Source: authors’ elaboration.  
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Figure 3.2. Average federal highway investments (R$ million) by deciles of 
efficiency, redistribution, equity, and road specialization 

 

Source: authors’ elaboration. 

 

3.4.4. Dependent and control variables 

Our primary dependent variable is GDP per capita. We use this variable as an 

extensively used proxy for municipal productivity, allowing us to calculate the 

return rates to highway investments. As robustness checks, we also try the number 

of workers (employment) and firms as dependent variables, data we get from RAIS. 

To maintain consistency and comparability of results, we replicate the same 

set of control variables used by Medeiros et al. (2024). The vector of control 

variables is composed of state fixed effects dummies, the initial (2007) level of the 

dependent variable, the share of poor people, municipal geographic area, the 

number of workers, the agriculture share in the GDP, the share of exports in the 

national exports, the distance to the nearest state road, port and railroad, the 

number of railway stations in 1920, the distance to the capital Brasí lia, the Index of 

Municipal Institutional Quality (IQIM) and the population share with a master’s or 

doctoral degree. By including this extensive set of variables, we control for several 

economic, social, institutional, geographical, and historical characteristics that could 

generate omitted variable bias in our regressions. A brief description of the 

variables used can be found in Table A1, and descriptive statistics can be seen in 

Table A2 in Appendix A.  
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3.5. Econometric results and discussion 

3.5.1. Baseline estimates 

Table 3.1 presents our baseline econometric results. In the first three 

columns, we replicate the same regressions by Medeiros et al. (2024)20. In columns 

4-6, we include the infrastructure reliance parameter as specified in Equations 3 and 

4. Cost-related and non-random allocation IVs are strong predictors of road 

investments and are quite suitable IVs, as demonstrated by the Effective F Statistics. 

Results are comparable to Columns 1-3 and remain unchanged for GDP per capita, 

employment, and the number of firms. Higher infrastructure project costs correlate 

with higher road investment levels, and the Non-Random Allocation Index 

negatively influences our highway variable, as expected. 

 

Table 3.1. Federal Highway Investments and Local Outcomes Growth, 2007-2018: 
2SLS IV Regressions 

 1 2 3 4 5 6 

 
GDP per 
capita 

Employment Firms 
GDP per 
capita 

Employment Firms 

Second stage       
Log Highways 
Investments 

0.0127*** 0.0168*** 0.0214***    

 (0.00) (0.00) (0.00)    
Log Highways 
Investments * φ 

   0.2928*** 0.3733*** 0.4781*** 

    (0.11) (0.06) (0.09) 
First stage       
Cost Index 1 0.2190*** 0.2207*** 0.2376*** 0.0084*** 0.0084*** 0.0086*** 
 (0.05) (0.05) (0.05) (0.00) (0.00) (0.00) 
Cost Index 2 0.3896*** 0.3808*** 0.4250*** 0.0139*** 0.0139*** 0.0140*** 
 (0.07) (0.07) (0.07) (0.00) (0.00) (0.00) 
Non-Random 
Allocation Index 

-0.5035*** -0.5069*** -0.5113*** -0.0216*** -0.0216*** -0.0219*** 

 (0.02) (0.02) (0.03) (0.00) (0.00) (0.00) 
Observations 5115 5141 5127 5115 5141 5127 
Effective F Statistic 112.493 114.103 117.330 109.442 110.350 118.250 
2SLS critical value 
for tau=5% 

21.008 20.686 20.826 19.304 19.175 18.993 

R² 0.23 0.12 0.47 0.23 0.11 0.46 

All regressions include the following set of control variables: GDP per capita in 2006; state fixed 
effects; municipality area; workforce; agriculture share; exports share; distance to the nearest state 
road; distance to the nearest railroad; distance to nearest port; railways stations in 1920; distance 

to Brasí lia; institutional quality; human capital. Robust standard errors are reported in 
parentheses. * 0.1 ** 0.05 *** 0.01. 

 

Regarding the second stage regressions, we find positive parameters for the 

road investment variable. It implies that more road specialized municipalities 

benefited more from roads during 2007 and 2018. Those findings corroborate 

several other studies applying the infrastructure reliance approach (Fernald, 1999; 

Li et al., 2017; Medeiros et al., 2021; Percoco, 2015; Wang et al., 2020). 

 
20 In the Medeiros et al.’s paper, the authors provide several robustness checks, including falsification 
tests for the IVs, different dependent variables, and alternative measures for the road investment. In 
unreported regressions, we run the same tests, and econometric results remain unchanged. 
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We can interpret our results using our road specialization parameter21. On 

average, we found a highway investment effect on GDP per capita, weighted by the 

municipal transportation infrastructure reliance, of around 0.29. To interpret this 

parameter in elasticity terms, we test several values of φ (Figure 3.3). Taking the 

average φ of 0.041, we get a road investment elasticity of around 0.012, slightly 

smaller than the average elasticity of 0.013 found by Medeiros et al. (2024), 

disregarding φ. Using the bottom 10% average φ, the elasticity is 0.008 while taking 

the upper 10% average φ, the elasticity is 0.016. 

 

Figure 3.3. Highway investment elasticity by infrastructure reliance (φ) level 

 

Source: authors’ elaboration. 

 

To better elucidate the importance of φ, we can reinterpret our results in 

terms of return rates. For this, we use Equation 5, supposing a constant GDP/Road 

Stock ratio of 16.7 (Frischtak and Moura o, 2017; Medeiros et al., 2024). The average 

φ RR to highway investment is 20.04%, while the bottom 10% RR is 13.36%, and 

the upper 10% RR is 26.72%. In other words, the profitability of investing in the 

10% more road-specialized localities is twice as much as the 10% less road-

dependent. However, those findings do not explore the heterogeneities in the road 

effects on productivity depending on the local contexts of efficiency-specialization, 

redistribution, and equity. In the following regressions, we provide evidence on 

those issues. 

 

3.5.2. Identifying heterogeneities in the return rate to highway investments 

In this section, we investigate the role of efficiency, redistribution, equity, and 

road specialization on the allocation of roads and how those road features balance 

 
21 To test the significance of the local elasticities, we run nonlinear combinations of parameters tests 
(nlcom command in Stata) based on the delta method (Fieveson, 1999). All parameters shown in 
Figure 3 are significant at 1% level. 
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the highway investments impact on productivity. First, we test some correlations 

between our four interest variables and the highway investment measure to identify 

the Brazilian Federal Government's priorities in the placement of roads during the 

PAC. Next, we estimate several models by slicing our data below and above the 

median of our four interest variables, and we test interactions between our 

infrastructure characteristic variables and the highway investments. We also try 

some additional specifications as robustness checks. 

 

3.5.2.1. Determinants of road investments 

Table B1 in Appendix B shows the results of the determinants of road 

investment regressions. In Columns 1-5, we test our variables one by one and all 

together. As a robustness check, in Columns 6-10, we take the average values by 

decile of our four interest variables to avoid issues with outliers. Corroborating 

previous results showed in Figure 2, estimates suggest that efficiency was an 

essential factor in the placement of roads during the PAC. Similarly, the 

redistribution parameters are positive and significant in some regressions, 

indicating that municipalities with higher GDP per capita received more 

investments during the PAC. Regarding the road specialization variable, results 

suggest that more road-specialized localities received more highway investments. 

However, caution is needed as the infrastructure reliance parameter is significant at 

5% or 10% significance levels in some specifications. There is weak and 

controversial evidence that equity was a relevant determinant of road allocation. 

Including equity without other characteristics, we find a negative correlation with 

road investments. Nonetheless, the signal becomes positive when we combine our 

road features, suggesting that localities with higher road endowments received 

more highway investments. 

In short, the PAC appears to be mainly guided by efficiency and road 

specialization aims. In addition, the program invested more in wealthier localities, 

and there is weak evidence suggesting that the same pattern holds for localities with 

more extensive road endowment. These findings indicate a different priority in the 

road allocation in Brazil in comparison with other countries (Fageda et al., 2019; 

Fuente, 2004; Monastiriotis and Psycharis, 2014; Yamano and Ohkawara, 2000), 

wherein a focus on equity and redistribution was found in contrast to efficiency. 

While those studies examined cases wherein there was strong road planning, as in 

Japan and European countries, our results put some caution on the PAC's role as the 

planner of road investments in Brazil in the recent past. By directing the road 

interventions to more prosperous and more profitable municipalities, the PAC 

seems to target places where a high economic return could be more straightforward 

achieved in the short run, neglecting the road investment potential to promote 

structural change and development in the less developed regions of the country 

(Medeiros et al., 2020, 2022; Wang, 2022; Yang, 2018). In the next section, we 

explore whether investing in different municipalities with different levels of 
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efficiency, road specialization, redistribution, and equity presents heterogeneous 

road impacts on productivity.  

 

3.5.2.2. Road Investment Impact Heterogeneity 

In this section, we provide novel results on the road impact heterogeneity in 

terms of efficiency, redistribution, equity, and road specialization. Past studies have 

examined these variables as determinants of road investment and allocation. In this 

paper, we are interested in identifying how those characteristics moderate the road 

impact on local productivity. For instance, we test whether localities below (above) 

the medians of our interest variables present different road-productivity elasticities. 

We expect road investments to be more profitable in more efficient and road-

specialized localities following Equation 5, which was corroborated by our baseline 

econometric results. However, if the impact (α) of road investments is 

heterogeneous depending on the local levels of efficiency, road specialization, 

redistribution, and equity, governments might achieve win-win situations by 

designing efficient-specialized, redistributive, and equative road policies. 

Conversely, if there is a trade-off between efficiency-specialization and 

redistribution-equity, road policies will likely raise winners and losers across the 

country. 

Table 3.2 presents the results of road investment heterogeneity. The first two 

lines exhibit the estimates by slicing our sample below and above the medians of our 

interest variables. Column 1 shows an unexpected result, demonstrating a higher 

road parameter for the bottom 50% of efficiency (0.71) than the upper 50% (0.28). 

Regarding redistribution, we found that roads significantly and positively impacted 

productivity only for the less developed municipalities (0.30). The road impact on 

GDP per capita growth also appears to hold for the more road-specialized localities 

(0.40). No heterogeneity effect was found concerning the equity goal. 

Next, we try additional specifications by excluding the upper and bottom 

10% and 20% of our four interest variables. These tests are important as we have a 

not negligible number of potential outliers. This is particularly relevant in our 

efficiency indicator. Brazil presents some municipalities with extremely high road 

efficiency values. The more extreme example is the city of Sa o Paulo, presenting a 

GDP/Road Stock ratio of around 29,000 against a national ratio smaller than 17. This 

local ratio would imply a very high road profitability in the city. However, Sa o Paulo 

presents huge infrastructure construction complexities related to human physical 

costs as expropriations and interferences because of its critical urban density and 

deep inefficiencies in road investments can be expected to occur there. The most 

critical example is the Sa o Paulo Rodoanel (ring road), a sensitive infrastructure 

project started in 1998. Even today, the ring road is unfinished and presents a cost 

of R$ 34.4 billion, almost three times higher than its initially planned value. In 

addition, the city is the country's most populated and great economic center, which 

puts some caution on the role of road investments in those kinds of municipalities 

as expanding roads there might generate a constrained economic effect. Following 
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the inconsequential unit approach, we dropped central cities in all our regressions, 

which alleviates this issue. However, outliers may have remained, so we proceed 

with the regressions in Lines 3 to 6. 

 

Table 3.2. Federal Highway Investments controlling by infrastructure reliance (Log 
Highway Investments * φ) and GDP per capita Growth, 2007-2018: Heterogeneity 

Results, 2SLS IV Regressions 

 1 2 3 4 
Sample Efficiency Redistribution Equity Road Specialization 

<=50% 0.7068*** 0.3041*** 0.2199 0.0356 

 (0.15) (0.11) (0.17) (0.23) 

>50% 0.2814* 0.1016 0.2126 0.3944*** 

 (0.17) (0.18) (0.15) (0.12) 

>50% & <=90% 0.3328** 0.3261*** 0.1019 0.4163*** 

 (0.17) (0.11) (0.20) (0.14) 

>50% & <=80% 0.6283*** 0.1782* -0.0130 0.4388*** 

 (0.18) (0.09) (0.24) (0.16) 

>10% & <=50% 0.6790*** 0.2718*** 0.5321** 0.2843 

 (0.18) (0.10) (0.23) (0.23) 

>20% & <=50% 0.7214*** 0.1946* 0.4764* 0.3321 

 (0.19) (0.10) (0.29) (0.25) 

All regressions include the following set of control variables: GDP per capita in 2006; state fixed 

effects; municipality area; workforce; agriculture share; exports share; distance to the nearest state 

road; distance to the nearest railroad; distance to nearest port; railways stations in 1920; distance 

to Brasí lia; institutional quality; human capital. Robust standard errors are reported in 

parentheses. * 0.1 ** 0.05 *** 0.01. 

 

By dropping the upper 10% and especially the upper 20% of efficiency, the 

road impact on productivity in the upper 50% converges to a similar level (0.63) 

compared to the bottom 50% (0.71). This result indicates a considerable inefficiency 

in allocating road investments to the most efficient municipalities, places that 

received the most PAC highway investments. The same pattern for redistribution 

suggests a similar road impact between the most developed (0.33) and the less 

developed (0.30) municipalities when dropping the upper 10% of redistribution. 

Regarding equity, excluding the bottom 10% to 20% of equity became the road 

impact on productivity positive and significant for the less road endowed localities. 

As we explore further, the environmental costs of investing in poorly road-endowed 

places might be too high to make road investment profitable in those regions. 

Finally, the road impact on GDP per capita only holds for highly road-specialized 

municipalities, remaining almost unchanged even when excluding the upper 10% 

and 20% of φ. 

Those findings contribute to the specialized literature in several ways. First, 

our results suggest that there is not necessarily a trade-off between efficiency-

specialization and redistribution-equity in Brazil. Employing Equation 5, the higher 

the efficiency, the elasticity (α), and the road reliance (φ), the higher the return rate 

to highway investment. Nonetheless, we find larger elasticities for those places 

characterized by lower levels of efficiency, economic development, and road 

endowment. In this sense, our results show a novel counterbalancing effect between 
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investing in more efficient localities and taking a higher GDP/Road Stock ratio but a 

smaller α versus allocating roads to less efficient and developed municipalities and 

taking a smaller GDP/Road Stock ratio but a higher α. 

A feature that seems to be an essential driver of road investment and its 

efficiency in our study, which has been overlooked by past studies, is the road 

specialization (φ) aim. Investing in more road-specialized places increases the 

return rate to highway investments utilizing the terms α (following Table 3.2 

estimates) and φ. In addition, the road specialization indicator does not present a 

clear pattern of spatial concentration (Figure 3.1), being high or low in 

municipalities with high (low) efficiency, redistribution, and equity values. Then, φ 

increases the RR to road investments but does not necessarily generate a trade-off 

between efficiency and redistribution-equity. In the following econometric results, 

we try to better elucidate the role of road specialization in moderating the impact of 

roads on productivity. 

In Table 3.3, we first slice our data below and above the median of road 

specialization. Then, we combine these samples with below and above the median 

samples of efficiency, redistribution, and equity. By doing this, we can identify 

whether the road impact on productivity persists for specific win-win samples, i.e., 

for samples of municipalities with high efficiency-road specialization, low GDP per 

capita, and wretched road endowment. 

Column 1 presents the results for municipalities above the median of φ. In 

Line 1 of Column 1, we combine this above the median of φ sample with the above 

the median of efficiency municipalities. The same rationality holds for the 

subsequent lines, combining efficiency, redistribution, and equity samples. When 

combining the upper 50% of φ with the upper 50% of efficiency, the road impact on 

productivity is positive and significant. This impact is even higher when dropping 

the upper 10% and 20% of efficiency, corroborating previous estimates. The road 

impact is also favorable for those municipalities above the median of φ and below 

the median of redistribution. For equity, a positive and significant effect appears 

when dropping the bottom 10% of equity, reaffirming previous results. 

In Columns 2 to 6, we combine samples above the median of φ with efficiency, 

redistribution, and equity samples. For instance, in Line 1 of Column 2, we test the 

road impact for municipalities above the median of φ, below the median of 

redistribution, and above the median of efficiency. In Column 2, results are not 

significant, suggesting that for those municipalities with higher road specialization, 

there is a trade-off between efficiency and redistribution goals. 

In Columns 5 and 6, we re-estimate the specifications in Columns 3 and 4, 

respectively, but also select those municipalities below the median of redistribution. 

Results are weak, and caution is needed as our sample becomes relatively smaller, 

but the road impact on productivity remains positive and higher than the average 

parameter of 0.29 in Table 3.1. 
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Table 3.3. Federal Highway Investments, controlling by infrastructure reliance (Log Highway Investments * φ), and GDP per capita 
Growth by “Ideal Samples”, 2007-2018: 2SLS IV Regressions 

 1 2 3 4 5 6 7 

Sample 

Road 

Specialization > 

50% 

Road Specialization>50% 

& Redistribution <= 50% 

Road Specialization > 

50% & Equity <= 50% 

Road Specialization > 
50% & 10% <Equity <= 

50% 

Road Specialization > 
50% & 

Redistribution <= 50% & 
Equity <= 50% 

Road Specialization > 
50% & Redistribution 

<= 50% & 10% < 
Equity <= 50% 

Road 
Specialization <= 

50% 

Efficiency > 50% 0.5023*** 0.2356 0.4172* 0.4823 0.3495 0.5071 -0.1897 

 (0.16) (0.16) (0.23) (0.34) (0.27) (0.35) (0.41) 

50%< Efficiency < 90% 0.5485*** 0.2208 0.5444** 0.8612** 0.4139* 0.5188 -0.1756 

 (0.17) (0.17) (0.24) (0.39) (0.25) (0.38) (0.39) 

50%< Efficiency < 80% 0.6897*** 0.2028 0.6259** 0.8161** 0.4452* 0.2728 0.1989 

 (0.19) (0.16) (0.27) (0.39) (0.25) (0.39) (0.42) 

Redistribution <= 50% 0.4169*** - 0.3218* 0.6186** - - 0.1492 

 (0.12)  (0.18) (0.26)   (0.18) 

Equity <= 50% 0.2685 - - - - - 0.2146 

 (0.18)      (0.34) 

10% < Equity <= 50% 0.4114* - - - - - 0.5596 

 (0.22)      (0.48) 

All regressions include the following set of control variables: GDP per capita in 2006; state fixed effects; municipality area; workforce; agriculture share; exports 

share; distance to the nearest state road; distance to the nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional 

quality; human capital. Robust standard errors are reported in parentheses. * 0.1 ** 0.05 *** 0.01. 
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Finally, we run the same specifications of Column 1 but considering 

municipalities below the median of φ. In this case, we cannot observe significant 

road impacts on productivity, suggesting that higher values of road specialization 

are a critical condition to achieve road investment profitability in Brazil. As 

robustness checks, we run the same specifications in Tables 3 and 4, considering the 

road investment variable without the interaction term (φ). We present the 

estimates in Tables B2 and B3 in Appendix B. Results remain equal. 

Next, we estimate the interaction models by multiplying the highway 

investment by our policy goal variables. Results are described in Table B4 in 

Appendix B. Results indicate that efficiency and redistribution present a significant 

moderating effect on the nexus between road investments and productivity. The 

road impact on GDP per capita falls as the efficiency and redistribution levels 

become larger. In other words, the effect of roads on the local economy is smaller 

for more developed and road-efficient places, corroborating previous estimates. 

Taking the 10% bottom values of efficiency and redistribution, a 1% increase in 

highway investments raises municipal productivity by 0.035% and 0.021%, 

respectively. Nonetheless, the elasticities are not significant when we take the 10% 

top values of efficiency and redistribution. In other words, the positive road impacts 

on productivity do not hold for very efficient and economically developed 

municipalities. 

Now, we provide some explanations for our findings. Our results suggest that 

some road investment combinations could constitute win-win road policies in Brazil. 

In other words, we found positive, significant, and above-the-average road impacts 

on productivity, even considering both highly efficient-specialized and low 

redistribution-equity municipalities. However, we found a smaller road impact on 

productivity in more efficient localities compared to the less efficient ones. 

Interestingly, this impact is almost equalized when dropping municipalities in the 

upper 20% of efficiency. Those issues demand additional discussion. 

First, we might expect the road investment effects on GDP per capita to be 

larger in less developed regions in comparison with wealthier regions, as 

constructing new roads in isolated places may promote a deep process of structural 

change and economic development by expanding market integration and creating 

new activities and jobs (Jaworski and Kitchens, 2019; Storeygard, 2016). If 

efficiency is positively correlated with the levels of economic development, as it 

seems to be in the Brazilian case (Figure 1), this result is not unexpected. The 

evidence found in Table 3.3 indicates a larger road impact for the bottom 50% of 

efficiency and redistribution in comparison with its upper counterparts, which put 

some light in the same direction. 

Second, the results obtained by excluding the municipalities in the upper 

10% and 20% of efficiency seem strongly related to the Brazilian inefficiencies in 

the infrastructure sector. To better clarify this relationship, we calculate the Cost 

Index 1 and 2 average for each decile of our four interest variables (Figure 3.4). 
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Figure 3.4. Infrastructure project costs by decile: Cost Index 1 (a) and Cost Index 2 
(b) 

(a)  

(b)  
Source: authors’ elaboration. 

 

We can see costs relatively higher than the average for the municipalities in 

the upper 10% or 20% of efficiency, redistribution, and equity. The difference from 

the mean is more pronounced in the Cost Index 2, which represents geographic, 

expropriation, and interference costs. Regarding the Cost Index 1, which mainly 

captures environmental costs, there is a peculiar above-average value for the 

bottom decile of equity, representing higher environmental costs for the poorest 

connected places and might explain why, by excluding those municipalities, we get 

a positive and significant road elasticity for the bottom 50% of equity. These results 
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shed some light on the role of broad inefficiencies in road allocation and how 

institutional shortcomings in the infrastructure sector during the PAC may have 

harmed road profitability across the country. Table B5 in Appendix B presents 

regression results by slicing our sample below and above the median of our two Cost 

Indexes. Our findings suggest that the positive road impact on productivity remains 

only for municipalities with smaller infrastructure project costs, corroborating our 

arguments. 

 

3.6. Evaluating the economic return of road investments in Brazil 

during the PAC period (2007-2018) 

On the one hand, we found some win-win combinations providing higher 

road investment elasticities for highly efficient-specialized and low redistribution-

equity municipalities. On the other hand, the PAC allocated around R$ 37.1 billion to 

municipalities in the upper 20% of efficiency, representing more than 50% of the 

total PAC highway resources, excluding maintenance expenses. This allocation 

raises questions about the program's efficacy, efficiency, and effectiveness, as it 

focused on attending highly efficient, richer, and more costly localities wherein we 

have not found (or found smaller impacts compared with other samples) significant 

road impacts. The PAC's decisions and priorities played a significant role in the 

planning of the Brazilian highway infrastructure, and their impact should not be 

underestimated. In addition, by targeting the efficiency goal, the Brazilian federal 

government appeared to have served more short-term purposes, such as emergency 

buildings and heavy traffic areas, lacking what was expected from the PAC regarding 

its transforming role in the planning of the Brazilian highway infrastructure. 

In addition, some period specificities might explain some of our econometric 

findings. First, Brazil has experienced deep economic, political, and institutional 

crises since 2015 (Arestis et al., 2021; Nassif et al., 2020). Second, the infrastructure 

sector institutional environment was poor during the PAC period, which 

contributed to several inefficiencies represented by a low budget execution, delays 

in road buildings, overpriced inputs, and corruption (Amann et al., 2016; Armijo and 

Rhodes, 2017; Burrier, 2019; Raiser et al., 2017). On top of that, the sharp drop in 

the public investment budget would further reduce the PAC's role as the country's 

infrastructure planner after 2015, with the Brazilian Federal Government focusing 

even more on attending urgent and critical road buildings. 

In this context and considering the rough task of separating the planning and 

design issues of the PAC from the multiple crises Brazil faced during the period, we 

try to evaluate whether the PAC priorities in the road sector provided the most 

efficient, redistributive, and equative choice for the country. In other words, our 

primal aim is to answer whether the PAC could have achieved more satisfactory 

results (or at least the same outputs) in terms of the road investment profitability if 

the Brazilian Federal Government had opted for a more efficient-specialized, 

redistributive, and spatially fair road policy. Second, we provide novel return rate 

maps considering both goals of efficiency-specialization and redistribution-equity, 
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allowing policymakers to identify focal points wherein win-win outcomes were 

expected to be achieved by investing in roads. This analysis opens up the possibility 

of more efficient, redistributive, and spatially fair road policies, offering a hopeful 

vision for the future of road investments in Brazil. 

To this end, we calculate a range of return rates to highway investments 

following Equation 6, considering the road elasticity heterogeneities in Tables 3.3 

and 3.4 and compare them with the PAC return rate. Table C1 in Appendix C 

summarizes the values of αsamplek for each group of municipalities of our calculated 

return rates. The values of φ and the GDP/Road Stock vary by municipality for all 

return rates. As argued before, we take the average of each of our interest variables 

by decile to avoid issues with outliers. Then, we calculate the weighted average RR 

using αsamplek, φ, and GDP/Road Stock for the municipalities treated by the PAC and 

several other “ideal samples” considering groups of above the median of efficiency  

(excluding the upper 20% to avoid high costly localities), and above the median of 

road specialization, and below the median of redistribution, and below the median 

of equity (excluding the bottom 10% to avoid high environmentally costly places). 

We name those groups as “ideal samples” not just because they group road efficient-

specialized municipalities and can be seen as a priority in economic terms, but above 

all because they assemble poorer and less road-endowed municipalities, 

constituting win-win samples whereby redistribution and equity goals are expected 

to be reached in a scenario of high economic profitability. 

 

3.6.1. Was the “Old” PAC a win-win program? 

Before starting our return rate analysis, we can compare the averages of our 

four interest variables in the PAC and our “ideal samples”. Figure C1 in Appendix C 

shows the results. The PAC presented similar efficiency values compared to the 

sample of efficient (upper 50%) municipalities. The same pattern holds for 

redistribution. Thus, the PAC seems to have benefited more efficient and more 

affluent cities. Regarding equity, the municipalities impacted by the PAC showed a 

higher level of road endowment considering all the “ideal samples”, suggesting that 

the PAC prioritized already road-connected regions even excluding maintenance 

expenses. By contrast, the municipalities receiving PAC investments presented one 

of the lowest levels of road specialization. These results suggest that the policy 

priority was mainly guided by efficiency by the side of GDP and not by road 

dependence, to some extent contraposing previous econometric findings. 

Figure 3.5 summarizes the results in terms of return rates to highway 

investments. It is important to note that we are comparing the PAC with samples 

considered ideal because of both public policy aims of efficiency-specialization and 

redistribution-equity. In this sense, we do not compare the PAC with samples of less 

developed or road-endowed but not profitable municipalities, which would be 

unrealistic given the program goals. 

We give examples to better elucidate how the return rates in Figure 3.5 are 

calculated following Equation 6. The “RR average” is our baseline return rate. It 
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assumes α equal to 0.28 (Table 3.1) for all municipalities, allowing φ and GDP/Road 

Stock to vary by municipality. The PAC “RR average” (in green) is calculated by 

taking the weighted average of RR for the municipalities treated by the program, 

considering α equal to 0.28. The same rationality holds for the “ideal samples” (the 

additional eight columns in Figure 3.5). For instance, the “efficient” sample 

considers the weighted average of each proposed RR for those municipalities above 

the median of efficiency. Then, the “RR average” for the “efficient” group takes the 

average of RR for the municipalities above the median of efficiency, considering α 

constant (0.28) for all observations. Similar interpretations can be made for the 

other return rates, but in those cases, we also allow α to vary by groups of 

municipalities following our econometric estimates in Tables 3.2 and 3.3. For 

instance, in the “RR Efficient” return rate, we consider α equal to 0.71 for 

municipalities below the median of efficiency, 0.63 for those above the median but 

below the upper 20%, and zero for the remaining observations. The more 

restrictions we place on our interest variables, the smaller the number of 

municipalities treated as "ideal samples" and the smaller the external validity of our 

identification strategy. 

 

Figure 3.5. Return rate to highway investments in Brazil: looking at 
heterogeneities in efficiency, redistribution, equity, and road specialization 

 

Source: authors’ elaboration. 

 

The first three return rates (“RR Average”, “RR Efficient” and “RR Efficient & 
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any variation in α in terms of redistribution or equity. For those return rates, the 

“ideal samples” characterized by being efficient and road specialized naturally 

present the larger returns. The fourth rate (“RR Efficient & Road Specialized & 

Redistributive & Equative”) includes redistribution and equity in the discussion. 

As expected, the PAC presents a comparable “RR Average” value concerning 

the “ideal samples”, reaffirming its efficiency goal. However, when we allow α to 

vary, other samples become more profitable than the PAC one, suggesting a lack of 

priority of the program in terms of road specialization, redistribution, and equity, 

and its likely excessive focus on more costly and developed localities. Interestingly, 

the return rates for our “ideal samples”, even when considering redistribution and 

equity goals, are comparable to those related to the efficient and road-specialized 

municipalities and, in most cases, higher than the PAC return rate. This result arises 

from the higher α for less developed places that more than compensates for the 

dropping in the GDP/Road Stock ratio when evaluating our “ideal samples.” For 

instance, the PAC “RR Efficient & Road Specialized & Redistributive & Equative” 

return rate, which allows α to vary by groups of all our four interest variables, is 

11.7%. In contrast, the same return rate for the efficient-specialized and below the 

median of redistribution and equity municipalities is 16.1%, reaching 21.1% when 

we drop the 20% more efficient municipalities. A more profound redistributive and 

equative road policy between 2007 and 2018 could have achieved even higher 

economic returns. 

It is worth noting that we are supposing a zero effect (α) for the 

municipalities in the upper 20% of efficiency. Based on regressions in Tables 3 and 

4, investments in the upper 20% of efficiency harm the road profitability in the 

country likely because of the high infrastructure project costs and the related 

institutional and sectoral fragilities. In addition, we might expect a larger and more 

transforming road impact on productivity in less developed and road-endowed 

municipalities. The PAC return rate drops considerably from 20% to around 12% by 

supposing the zero effect. The same pattern holds for the fully efficient samples. 

Note that the PAC return rate under the zero effect becomes the smallest one, 

reinforcing that vast investments were destined for more prosperous places where 

higher economic returns were foreseen. On the other hand, the return rates of the 

samples excluding the upper 20% of efficiency are naturally less affected. In these 

cases, we observe return rates to highway investment from 21.1% to 34.2%.  

Our findings can be interpreted in the light of two additional channels. First, 

the Brazilian infrastructure sector inefficiencies during the PAC seemed deeply 

harmful (Amann et al., 2016; Armijo and Rhodes, 2017; Burrier, 2019). It is likely 

that hugely investing in highly costly localities collided with environmental licenses, 

expropriation and interference disputes, land conflicts, and other issues translated 

into schedule delays, unpredicted financial resources, and unfinished buildings. 

Complementary, the Brazilian institutional, political, economic, and social 

deterioration from 2015 imposes sharp drops in the PAC investments, which 

contributed to the stoppage of several interventions and their efficacy. Second, 
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focusing on the efficiency goal does not seem to be the best option, even in terms of 

profitability. By not looking at the heterogeneities in the road impacts on 

productivity, in which we found significant effects for efficient and specialized 

regions but also for lower road-endowed and with smaller GDP per capita localities, 

the country invested in places wherein the return rate was lower than it could have 

been. In other words, the road investment policy in Brazil during the 2007-2018 

period could have been two to three times higher by targeting efficiency-specialized 

and redistribution-equity places and overcoming infrastructure sector 

inefficiencies. 

 

3.6.2. An efficient-specialized and redistributive-equative return rate map 

This section provides a return rate map based on our estimates considering 

the road impact heterogeneities. We do not expect the Brazilian Federal 

Government to target specific municipalities in allocating roads (Medeiros et al., 

2024), so we construct the maps at the Immediate Geographical Region (RGI) level. 

The 510 RGIs are groups of municipalities in the urban network sharing a common 

local urban center as their basis,  being constructed by the IBGE.  Its design considers 

the connection of nearby cities through dependency relationships and the 

population's movement in search of goods, services, and employment opportunities. 

Then, the RGIs are closely related to transportation goals and can be seen as a 

reasonable spatial scale in terms of highway public policies. The RGI level return 

rates are calculated using the municipal averages of the GDP/Road Stock ratio and 

φ. Then, the RGI measure is an input for evaluating the efficiency goals on both sides 

of GDP and road specialization. 

Next, we create three groups of focal points, i.e., regions representing win-

win policy intervention combinations, as follows: i) municipal redistribution 

average below the median; ii) municipal equity average below the median; and iii) 

municipal redistribution and equity average below the median.  We consider a 

region minimally profitable if its RR  is higher than the Social Discount Rate (TSD) 

of 8.5% (Ministry of Economy, 2021). However, the Brazilian basic interest rate is 

above 12% nowadays, which puts some concern on the profitability levels between 

8.5% and 12%. Then, we filter those focal points with RR above 12% to guarantee a 

reasonable cut-off. 

Figure 3.6 exhibits the return rate maps. Figure 3.6 (a) is our preferred return 

rate, which allows α to vary by municipality groups of efficiency, road specialization, 

redistribution, and equity (“RR Efficient, Road Specialized, Redistributive, and 

Equative” in Figure 5). Figure 3.6 (b) shows the “RR Average” measure, which we 

use as the RR of comparison as heterogeneities in α are not considered.  



81 
 

 

Figure 3.6. RR Efficient & Road Specialized & Redistributive & Equative (a) and RR 
Average (b): Pointing Win-Win  Localities for Road Investment 

(a)

(b)

 

Source: authors’ elaboration. 
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As we can see in Figure 3.6, in the “RR Average” measure, the profitable 

localities are concentrated in the Southeast and South regions, coinciding with the 

most developed part of the country. On the other hand, when we allow α to vary by 

levels of redistribution and equity, a new range of profitable areas is open, especially 

in the inland and poorer regions. Significantly, the number of focal points increases, 

suggesting that a short-sighted look into the efficiency-specialization goals through 

the conventional RR measure might puzzle the Brazilian road investment 

profitability heterogeneity. 

We can decompose our return rate into economic and equality components. 

To obtain the equality component, we subtract the RR Efficient & Road Specialized 

& Redistributive & Equative from the RR Average. This difference shows us the 

increase (decrease) in the return rate to highway investments due to redistributive 

and equative issues. Therefore, the economic component can be taken by the 

difference between the RR Average and the equality component. Figure C2 in 

Appendix C exhibits the economic and equality components. As argued before, 

higher economic returns are concentrated in more developed localities in the South 

and Southeast and in some areas where the agriculture sector has boosted the 

Brazilian economy. On the other hand, the equality component is higher in poorer 

and more isolated regions. It is interesting to note that the equality component is 

larger than the TSD for some RGIs, suggesting that the dropping in road-related 

inequalities more than compensates for investing in roads there, even ignoring the 

economic component. 

Regarding our focal points, we can identify some patterns. First, the equity 

focal points (in gray) are spatially concentrated in the Mid-West and South regions 

and the south of Para . Those regions are characterized by a suitable level of GDP per 

capita but a low level of road endowment, suggesting that they are places with 

substantial growth potential and high demand for highway investments. Second,  the 

redistribution focal points (in green) are localized in the Northeast region, places 

marked by low productivity levels but a proper road provision. Finally, 

redistribution and equity focal points (in blue) are mainly present in the North and 

Northeast regions and in the north of the State of Minas Gerais,  places distinguished 

by being economically and road-endowed poor. It is worth noting that most of the 

RR map is orange (above 8.5%), implying that Brazil needs considerable road 

investments, as we expected, given the lame national and regional infrastructure 

sector scenario. 

 

3.7. Concluding remarks 

Using a novel empirical approach, we estimated the impact of road 

investments on productivity in Brazilian municipalities between 2007 and 2018. 

More specifically, we evaluated how heterogeneities in road efficiency, 

specialization, redistribution, and equity affect the return rate to highway 

investments across the country. 
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Our main results pointed out a positive impact of road investments on 

productivity, corroborating several past studies. In addition, we found higher road 

impacts on GDP per capita for less developed and road-endowed places and lower 

impacts for highly efficient municipalities. Those findings suggest the existence of 

win-win combinations for road policies in Brazil, in which policymakers might 

maximize the road economic returns by investing in both efficient-specialized and 

less developed localities. In addition, huge infrastructure project costs and 

institutional and sectoral inefficiencies likely harm the predicted high profitability 

in extremely efficient places. 

While we contribute to the empirical literature on infrastructure and 

development, some open points remain. First, we cannot affirm whether our results 

hold for other infrastructure sectors even during the same period. Second, we 

compared the PAC with samples considered ideals in the sense that they 

represented efficient-specialized and redistributive-equative groups. However, 

infrastructure might promote a deep process of structural transformation and 

development in less developed and unconnected regions, and a more careful look 

into the redistributive-equative municipalities disregarding efficiency goals is 

needed. Third, road investments are expected to foster economic and social 

prosperity, but these gains may be accompanied by environmental damaging as 

increasing deforestation and greenhouse gas emissions. We hope to provide some 

new evidence on those issues in future research. 
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4. HIGHWAY INFRASTRUCTURE AND GREENHOUSE GAS EMISSIONS: 

evaluating the environmental costs of road investments in Brazil 

 

 

 

Abstract 

This study evaluates the impacts of highway infrastructure development on 

greenhouse gas (GHG) emissions. To this end, we use detailed local-level data from 

Brazilian municipalities during the Growth Acceleration Program (PAC) period 

(2007-2018) and apply an instrumental variable identification approach to 

circumvent endogeneity concerns related to the non-random placement of roads. We 

find that a 1% increase in road investments raises CO2 emissions by 0.025%. Those 

damaging highway effects are sustained for the road, energy, and land use change 

sectors. In addition, findings point out heterogeneous road impacts on CO2 

emissions depending on agglomeration, population scale, deforestation, and 

technology. From the econometric estimates, we calculate an average CO2 emissions 

return rate to highway investments (ERR) of 3.0%, implying a discount on the 

economic benefits of road investments proved in past studies. Finally, we measure a 

sustainable return rate to highway investments (SRR) of around 17%, indicating a 

widespread need to develop the Brazilian transportation sector. It is important to 

note the deep regional heterogeneities in Brazil, wherein we can observe negative 

SRRs for some regions. This research offers valuable insights for policymakers, 

technicians, financial institutions, and civil society in shaping effective and 

environmentally conscious road policies. 

Keywords: transportation infrastructure; regional development; sustainability; 

greenhouse gas emissions.  



85 
 

 

4.1. Introduction 

A broad strand of literature has proven the positive role of transportation 

infrastructure on economic growth and productivity (Aschauer, 1989; Baum-Snow 

et al., 2020; Bird and Straub, 2020; Faber, 2014; Foster et al., 2023a, 2023b; Ghani et 

al., 2014; Herzog, 2021; Jaworskiy and Kitchensz, 2019; Straub, 2011; Zhang e Ji, 

2019). Some of those investigations have calculated economic return rates to 

highway investments as a measure of its profitability, which are used to guide cost-

benefit analysis and transportation policies around the world (Fernald, 1999; Li et 

al., 2017; Medeiros et al., 2021b; Medeiros et al., 2024; Wang et al.,2020). While 

those studies have provided important results, the environmental costs (or benefits) 

of highway investments are put aside (Alam et al., 2022; Quadros and Nassi, 2015; 

Laird and Venables, 2017; Welde and Tveter, 2022). 

In this paper, we evaluate the unclear relationship between highway 

infrastructure development and greenhouse gas (GHG) emissions. On the one hand, 

road construction and enhancement tend to increase GHG emissions in the 

construction and maintenance phases by the direct use of materials and equipment. 

Once the highway is built, the growth in the road network increases regional 

accessibility, population mobility, and interregional traffic flows, boosting 

transportation demand and affecting GHG emissions. On the other hand, road 

development might decrease GHG emissions by reducing travel time and distance, 

which lowers GHG emissions during transportation, as well as by stimulating 

agglomeration economies, reducing energy consumption, and boosting energy 

efficiency. Empirical findings are mixed, pointing out increasing effects (Churchill et 

al., 2021; Emodi et al., 2022; Ghannouchi et al., 2023; Lin et al., 2017; Luo et al., 2018; 

Xiao et al., 2023; Xie et al., 2017; Yao et al., 2023) as well as null or reducing impacts 

(Georgatzi et al., 2020; Ghannouchi et al., 2023; Han et al., 2017; Li and Lu, 2022) of 

highway infrastructure on GHG emissions. In addition, there are heterogenous road 

impacts on GHG emissions depending on agglomeration, development level, 

economic growth, population scale, and technology, among other moderating 

variables. 

While the literature on road infrastructure and GHG emissions has provided 

relevant findings and discussed critical transmission channels, some gaps remain. 

First, to the best of our knowledge, there are no studies that calculate a sustainable 

return rate to highway investments, i.e., adding (discounting) the environmental 

benefits (damages) from the broad evaluated economic returns of road investments, 

which would be relevant to infrastructure policy planning, design, financing, and 

evaluation. Second, investigations using detailed local-level data are scarce, and the 

existing literature relates to China (Han et al., 2017; Li and Lu, 2022; Luo et al., 2018; 

Xiao et al., 2023; Xie et al., 2017; Yao et al., 2023). Using local municipal (city) data 

might capture important heterogeneities across the space, providing new evidence 

to the specialized literature. Third, most papers have studied European countries or 

China, wherein the energy and industry sectors are the most important sources of 
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GHG emissions. Then, analyzing cases in which other sectors, such as land use 

change and agriculture, are more relevant to GHG emissions might shed some light 

on new transmission channels and heterogeneous impacts of road development on 

the environment. We seek to contribute to the literature in those directions. 

We evaluate the impact of highway investment on GHG emissions growth in 

Brazilian municipalities during the Growth Acceleration Program (PAC) period 

(2007-2018). To this end, we use detailed local-level data on national road 

investments and GHG emissions and apply an econometric approach dealing with 

the endogeneity coming from the non-random placement of roads, allowing us to 

identify causal road impacts on greenhouse gas emissions. From these estimates, we 

calculate carbon dioxide equivalent emissions return rates (ERR) and sustainable 

return rates (SRR) to highway investments in several Brazilian localities. 

The Brazilian case study is interesting for several reasons. First, the PAC 

(divided into PAC 1 and 2) was the most important Brazilian infrastructure program 

in the last decades, doubling the level of investments in highway infrastructure 

compared to the previous ten years (Medeiros et al., 2021b). Second, Brazil presents 

deep regional heterogeneities in terms of infrastructure endowment, income 

(Medeiros et al., 2021a, 2022; Medeiros and Ribeiro, 2020), and GHG emissions. 

Third, unlike most studies evaluating the Chinese and European cases wherein 

energy and industry sectors are the most important sources of GHG emissions, the 

Brazilian economy presents the land use change and agriculture sectors as the main 

contributors to GHG emissions. Our case study is ideal for evaluating road 

investments' economic and environmental profitability in a developing country 

context with huge regional disparities and for providing novel transmission 

channels from roads to the environment in a unique environmental scenario. 

Furthermore, the Brazilian Federal Government launched the third PAC in 

August 2023. To the best of our knowledge, this is the first time in Brazilian history 

that an extensive national infrastructure program has included explicit 

environmental proposals. As one of the main mechanisms to foster environmental 

practices in the infrastructure sector, the Brazilian Government prioritizes and 

facilitates the availability of funds to projects with environmental devices promoting 

and accelerating the ecological transition. In the transportation sector, the “new” 

PAC presents the "Efficient and Sustainable Transport" pillar, which deliberates 

investments of around R$ 349.1 billion in several transportation buildings, including 

the road sector. Additionally, the program provides several institutional initiatives 

related to environmentally suitable road infrastructure. For instance, the program 

incentivizes the ecological transition by issuing sustainable sovereign bonds, 

expanding the Climate Fund (Fundo Clima) resources, promoting low-carbon 

transportation such as hybrid and electric vehicles, and encouraging 

decarbonization and using sustainable materials in the construction sector. 

While those policy tools are critical to Brazilian sustainable development, a 

precise regionalized measure of highway investments' environmental costs (or 

benefits) is lacking. In this context, evaluating the “old” PAC ‒ in which emphatic 
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environmental initiatives related to the road sector were mostly absent‒ is critical 

to provide evidence on the environmental costs of road investments, maximizing its 

economic returns while respecting environmental preservation and recovery. Then, 

a novel measure of sustainable return rate to highway investments might represent 

a key input to policymakers, technicians, financial institutions, and civil society in 

planning, designing, financing, and evaluating current and future road policies. 

In this context, we find three main results. First, we find that a 1% increase 

in road investments raises GHG emissions by 0.025%. This result is maintained 

under various specifications capturing heterogeneous road impacts and several 

robustness checks. Second, we calculate an average GHG emissions return rate to 

highway investment (ERR) of 3.0%, demonstrating a harmful environmental impact 

of roads. By subtracting our ERR from the economic return rate to highway 

investments (RR) from Medeiros et al. (forthcoming), we find an average Sustainable 

Return Rate to Highway Investments (SRR) of around 17%, indicating a widespread 

need to develop the Brazilian transportation sector even considering its 

environmental costs. To reduce our average SRR of 17% to the threshold of 8.5%, 

Brazil would need two times more highways, which implies a road stock of 14% of 

national GDP, in line with Frischtak and Moura o (2017) and Medeiros et al. (2021b). 

Third, we find critical regional heterogeneities in our ERR and SRR. In general, the 

environmental damage from roads is more pronounced in less populated and poorer 

localities, which coincides with some critical areas in the Brazilian Amazon. 

Our main contributions to the specialized infrastructure and regional 

development literature are fourfold. First, we propose two novel regional measures 

related to the environmental costs of highway investments: i) the CO2 Emissions 

Return (Discount) Rate to Highway Investments (ERR) and ii) the Sustainable 

Return Rate to Highway Investments (SRR). In doing so, we provide novel, easy-to-

interpret measures in the context of political decision-making. Second, we provide 

original evidence on the relationship between highway infrastructure development 

and GHG emissions in a context wherein land use change and agriculture sectors are 

the most critical contributors to GHG emissions. Third, we advance in relation to past 

studies by evaluating new heterogeneous road impacts on GHG emissions, mainly 

related to the environmental and institutional weaknesses from deforestation and 

illegal land use. Fourth, we circumvent endogeneity issues from the non-random 

placement of roads by adapting an instrumental variable identification approach to 

the GHG emissions context. 

This paper is structured as follows. Section 2 describes the related empirical 

literature. Section 3 presents the methods and data. Section 4 outlines the 

econometric results. Section 5 provides the results regarding the sustainable return 

rate to highway investments. Section 6 concludes. 
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4.2. Related Literature 

4.2.1. Transportation infrastructure and economic development 

A massive strand of literature has investigated the relationship between 

transportation development and economic activity (Baum-Snow et al., 2020; Bird 

and Straub, 2020; Duranton et al., 2014; Faber, 2014; Fedderke and Bogetic, 2009; 

Foster et al., 2023a, 2023b; Jaworski and Kitchens, 2019; Straub, 2011). Since the 

pioneering study by Aschauer (1989), several empirical studies have proven a 

positive role of highway investments on productivity and growth (Ghani et al., 2014; 

Fahardi, 2015; Herzog, 2021; Holl, 2016; Li et al., 2017; Zhang and Ji, 2019). 

Related papers calculated economic return rates (RR) to infrastructure 

investments to provide an easy-to-interpret measure for policymakers and the 

society. Fernald (1999) measured a RR of 6.0% using United States data, Li et al. 

(2017) and Wang et al. (2020) found return rates for China of around 11% and 23%, 

respectively, while Medeiros et al. (2021, forthcoming) and Medeiros et al. (2024) 

measured RRs around between 20% and 22.2% using Brazilian data. In general, 

findings confirm that road investments are profitable, especially in the context of the 

developing world. 

Nonetheless, none of those articles include the environmental costs 

(benefits) of road investments in the return rate. In other words, the measured 

return rates are based on the relationship between highway infrastructure 

investments and economic activity, mainly represented by Gross Domestic Product 

(GDP) or GDP per capita, neglecting any environmental impact from road 

investments such as increased GHG emissions (Churchill et al., 2021; Xie et al., 2017; 

Yao et al., 2023), deforestation (Asher et al., 2020), energy efficiency (Lin and Chen, 

2020), or ecological footprint (Awad et al., 2023). Disregarding the environmental 

impacts of highway investments might bias the return rates and directly impact road 

public policies. Next, we consider the relationship between highway infrastructure 

development and the environment by focusing on GHG emissions, the most 

evaluated environmental outcome in transportation studies. 

 

4.2.2. Highway infrastructure and sustainable development 

A recent strand of literature has investigated the nexus between road 

investments and GHG emissions (Emodi et al., 2022; Georgatzi et al., 2020; 

Ghannouchi et al., 2023; Luo et al., 2018). This relationship is unclear, and there are 

two opposite views on the effect of highway infrastructure development on GHG 

emissions (Xu et al., 2022). On the one hand, in the construction and maintenance 

phases, infrastructure development tends to increase GHG emissions directly by 

using materials and equipment that tend to be characterized by heavy-duty fuel-

intensive equipment and require the use of large quantities of concrete and asphalt 

(Han et al., 2017; Lin et al., 2017). Once the highway is built, the growth in the road 

network increases regional accessibility, population mobility, and interregional 

traffic flows, boosting transportation demand and affecting GHG emissions. On the 

other hand, some investigations suggest that developing highway infrastructure has 
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a GHG reduction effect by lowering travel time and distance, which decreases GHG 

emissions during transportation. In addition, transportation infrastructure 

development might promote agglomeration and technology diffusion, which might 

support the development of energy savings and emissions reduction. 

Following this line of research, some investigations have provided evidence 

of the road impact heterogeneity on GHG emissions (Churchill et al., 2021; Li and Lu, 

2022; Lin et al., 2017; Xiao et al., 2023; Xie et al., 2017; Yao et al., 2023). Figure 4.1 

summarizes the mechanisms. 

 

Figure 4.1. The impacts of highway infrastructure on GHG emissions 

 

Source: authors’ elaboration. 

 

The most evaluated heterogeneity is related to agglomeration economies. 

Developed highway infrastructure optimizes the flows of goods and services and the 

mobility of people within the region, increasing the spatial agglomeration of 

economic activity through economies of scale and scope. In turn, agglomeration and 

GHG emissions are strongly correlated. On the one hand, agglomeration tends to 

increase GHG emissions due to increased production scale and congestion effects. 

On the other hand, some positive externalities in terms of knowledge spillovers and 

technological advances might improve energy efficiency and lower energy 

consumption, decreasing GHG emissions. Studies have found that highway 

infrastructure expands GHG emissions in the early stages of urbanization and 

agglomeration. Still, after agglomeration exceeds a threshold, positive externalities 

from agglomeration are expected to offset the environmentally damaging effects (Xu 

et al., 2022). 

Other researchers have examined different heterogeneity sources, such as 

economic growth, technological innovation, and tourism, among others (Churchill et 

al., 2021; Xiao et al., 2023; Xie et al., 2017). Many studies have proven the positive 

role of highway investments on economic growth (Baum-Snow et al., 2020; Bird and 
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Straub, 2020; Faber, 2014; Ghani et al., 2014). In turn, economic growth is an 

important determinant of  GHG emissions, as investigations have shown a significant 

and non-linear relationship between those variables. In addition, transportation 

infrastructure development fosters the mobility of people, services, and goods, 

enhancing the spread of knowledge and technology. Technology diffusion impacts 

GHG emissions and intensity by stimulating human capital formation and higher 

R&D expenses. Then, the road impacts on GHG emissions are expected to vary 

according to local level of economic growth and technological innovation. 

Besides those investigated moderating variables, other road impact 

heterogeneities might emerge depending on the local context of GHG emissions. For 

instance, land use change has been Brazil's most important contributor to GHG 

emissions. The opening of roads might directly impact GHG emissions by increasing 

the number of vehicles on the roads and expanding deforestation and illegal land 

use. Road construction in isolated areas might boost land supply, decreasing land 

prices and motivating a process of predatory agriculture production wherein 

landowners have enough incentives to buy new lands instead of improving the 

existing ones (Carrero et al., 2022; Da Silva et al., 2023; Ferrante et al., 2021; Lima et 

al., 2022). In addition, the level of deforestation might capture institutional 

weaknesses related to the environment, which may be translated into a more 

harmful effect of road infrastructure development on GHG emissions. Then, road 

investments are expected to present heterogeneous impacts on GHG emissions 

depending on the level of deforestation and the efficacy of the environmental 

regulatory framework. 

Findings are mixed. Some studies found that road investments increase GHG 

emissions (Churchill et al., 2021; Emodi et al., 2022; Ghannouchi et al., 2023; Lin et 

al., 2017; Luo et al., 2018; Xiao et al., 2023; Xie et al., 2017; Yao et al., 2023), while 

other investigations showed null or negative road impact on carbon emissions 

(Georgatzi et al., 2020; Ghannouchi et al., 2023; Han et al., 2017; Li and Lu, 2022). In 

addition, there are heterogenous road impacts on GHG emissions depending on 

agglomeration, development level and economic growth, and population scale, 

among other mediating variables. 

While this literature has provided important evidence on the relationship 

between highway infrastructure and GHG emissions, some gaps remain. First, it is 

hard to interpret how environmentally harmful (or beneficial) road investments are. 

A way to overcome this issue is calculating a return rate to highway investments 

considering its effect on GHG emissions, which past studies have not made. Second, 

most of the investigations have focused on China and European countries, where 

GHG emissions are mainly generated by the energy and industry sectors. Evaluating 

the impact of highway investment on the environment in different countries, where 

GHG emissions depend more on other sectors, such as land use change and 

agriculture, might be an important contribution to the literature. Third, studies on 

the nexus between road infrastructure and environmental outcomes at the regional 

or local levels are scarce, and the existing literature examines the Chinese case. 
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Evaluating the road impacts on GHG emissions using detailed local-level data might 

allow the identification of novel heterogeneities in this relationship. This paper 

seeks to contribute to the literature in those directions. 

 

4.3. Methods 

4.3.1. Baseline econometric specification 

We intend to evaluate the impacts of highway investment on municipal GHG 

emissions growth between 2007 and 2018. Our second-stage equation is specified 

as follows: 

 

∆𝑌𝑖𝑠 = 𝛽0 + 𝛼 ∗ 𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 + 𝛽′𝑋𝑖𝑠 + 𝜃𝑠 + 𝑢𝑖𝑠    (1) 

 

Where Yis is our dependent variable measured as CO2 equivalent emissions, i 

represents municipalities, s indicates the states, Xis is a vector of control variables, 𝜃𝑠 

is a vector of state fixed effects and 𝑢𝑖𝑠 is an idiosyncratic error term. We are 

interested in 𝛼, which measures the impact of highway investment on CO2 

emissions. As we take our variables in log form, α is the elasticity of CO2 emissions 

concerning highway investments. 

To estimate the causal impacts of highway investments on CO2 emissions, we 

adapt the third-step IV identification approach proposed by Medeiros et al. (2024). 

To overcome measurement errors in the road investment variable – due to 

inefficiencies as corruption, harmful bureaucracy, and poor infrastructure project 

planning and execution – as well as reverse causality and omitted variable bias –

policymakers might target more developed regions wherein the returns to 

infrastructure investments are higher, or focus on underdeveloped localities to 

foster regionally balanced economic growth – in the econometric estimates 

evaluating the road impacts on productivity in Brazilian municipalities, the authors 

built several instruments related to the propensity of municipalities to receive road 

interventions. In this paper, the same endogeneity issues may appear whether we 

have omitted variables affecting environmental outcomes and road placement, 

which is highly expected (Asher et al., 2020; Emodi et al., 2022; Li and Luo, 2022). 

Our preferred specification uses a Non-Random Allocation Index, capturing 

the propensity of municipalities to receive highway investments as a source of quasi-

random variation to road investments. To create the index, Medeiros et al. (2024) 

used the Principal Component Analysis (PCA) method to reduce the data 

information from three original instruments. The first is the distance from a 

hypothetical network constructed using the Least Cost Path-Minimum Spanning 

Tree (LCP-MST) method following Faber (2014). This IV is a global minimization 

road network connecting the ending and starting points of those roads targeted by 

the PAC. The rationality behind the LCP-MST instrument is that this hypothetical 

highway network should affect city outcomes and the spatial allocation of industries 

only through the actual highway network, conditional on controls. The second 

original IV follows the Bird and Straub (2020) Brasí lia experiment approach. The 
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instrument is measured as the distance from targeted central cities to the capital 

Brasí lia, and its rationale is that the national Brazilian government in the 1950s and 

1960s aimed to connect the whole country having the new capital Brasí lia as the 

central point of the network, and municipalities in the way among Brasí lia and the 

endpoints were incidentally connected. The third original IV is the distance from the 

municipality center to the nearest heavy traffic area, which Medeiros et al. (2024) 

named “potential road intervention areas” IV. The rationality behind this instrument 

is that conditional on controls, municipalities already connected by roads in the start 

period and nearer to “potential road intervention areas” are more likely to 

(inconsequentially) receive highway investments to reduce traffic levels and 

accidents in the critical areas and its surroundings. However, conditional on 

controls, this “luck” at receiving a federal road intervention would be unrelated to 

economic or political reasons, providing us with a potentially suitable instrument. 

Finally, we rely on the inconsequential unit approach pioneered by Chandra and 

Thompson (2000) and exclude likely targeted and central cities. Then, our first-stage 

regression is specified as follows: 

 

𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 = 𝛾0 + 𝛿 ∗ 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥𝑖𝑠 + 𝛾′𝑋𝑖𝑠 + 휀𝑖𝑠  

           (2) 

 

Where 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥𝑖𝑠 is the instrument. Equations 1 and 2 

are estimated using Two Stage Least Squares (2SLS) estimators. Using this 

econometric approach, we provide evidence of causal highway investment impacts 

on GHG emissions growth. To guarantee a full comparison with the Medeiros et al. 

(forthcoming) economic return rates to highway investments, we also test models 

including an interaction term between the highway variable and an infrastructure 

reliance parameter (φ), as follows: 

 

∆𝑌𝑖𝑠 = 𝛽0 + 𝛼 ∗ 𝜑 ∗ 𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 + 𝛽′𝑋𝑖𝑠 + 𝜃𝑠 + 𝑢𝑖𝑠   (3) 

 

If α is positive in Equation 3, municipalities more dependent on road 

infrastructure are more impacted in terms of GHG emissions growth. 

 

4.3.2. Road heterogeneity econometric specification 

A recent strand of literature has provided evidence of the heterogeneous 

impacts of road investments on environmental outcomes (Churchill et al., 2021; Li 

and Lu, 2022; Lin et al., 2017; Xiao et al., 2023; Xie et al., 2017; Xu et al., 2022; Yao et 

al., 2023). This is important as those heterogeneities might bias our baseline 

estimates and profoundly influence our sustainable return rate to highway 

investments. Then, we adapt our baseline first and second-stage equations to allow 

for road impact heterogeneity as follows: 
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∆𝑌𝑖𝑠 = 𝛽0 + 𝛼 ∗ 𝜑 ∗ 𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 + 𝜆′ ∗ 𝜑 ∗ (𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 ∗

𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟𝑠𝑖𝑠) + 𝛽′𝑋𝑖𝑠 + 𝜃𝑠 + 𝑢𝑖𝑠       (4) 

  

𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠 = 𝛾0 + 𝛿 ∗ 𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥𝑖𝑠 + 𝜏′ ∗

(𝑁𝑜𝑛𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥𝑖𝑠 ∗ 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟𝑠𝑖𝑠) + 𝛾′𝑋𝑖𝑠 + 휀𝑖𝑠  (5) 

 

Where 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟𝑠𝑖𝑠 is a vector of moderating variables related to 

agglomeration economies, technology, deforestation and so forth, which are all 

included in the vector of control variables as well, and 𝜆′ is its respective parameter 

vector to be estimated. The second stage equation (4) identifies road impact 

heterogeneity by including an interaction term between the road variable and a 

moderating variable. To allow identification, we include an interaction term between 

the instrument and the mediator in the first stage equation (5), wherein 𝜏′ 

represents its parameters vector to be estimated. The other expressions are the 

same as Equations 1 and 2. From Equations 3 and 4, we can calculate road impact 

heterogeneity as follows: 

 
𝜕𝑌𝑖𝑠

𝜕𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠𝑖𝑠
= (𝛼 ∗ 𝜑) + (𝜆 ∗ 𝜑) ∗ (𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟𝑠𝑖𝑠)    (6) 

 

Equation 6 describes the marginal road impact on CO2 emissions. We 

estimate α and 𝜆 directly from Equations 3 and 4. Then, we assume values for 

𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟𝑠𝑖𝑠 by taking 10%, 25%, median, 75% and 90% sample values for each 

tested moderator. To estimate the point elasticities, we use tests of nonlinear 

combinations of parameter estimates following the “delta method” (Fieveson, 

1999). 

 

4.3.3. Data 

4.3.3.1. GHG Emissions 

Our primary dependent variable is CO2 equivalent emissions (in tons), which 

we extract from the System for Estimating Greenhouse Gas Emissions (SEEG). All 

gases were converted to CO2 equivalent GWP-AR5. The SEEG platform is a 46-year-

long dataset of greenhouse gas emissions (GHG) in Brazil (1970–2015), providing 

more than 2 million data records for the Agriculture, Energy, Industry, Waste, and 

Land Use Change Sectors at national and subnational levels. The SEEG dataset was 

developed by the Climate Observatory, a Brazilian civil society initiative, based on 

the Intergovernmental Panel on Climate Change (IPCC) guidelines and the Brazilian 

National Inventories embedded with country-specific emission factors and 

processes, raw data from multiple official and non-official sources, and organized 

together with social and economic indicators. Due to the SEEG's highly 

disaggregated information, we can stratify municipal GHG emissions into road, 

energy, land use change, and agriculture sectors and use them as additional 
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dependent variables. A detailed description of the SEEG platform and methodologies 

can be found in Azevedo et al. (2018). 

 

4.3.3.2. Highway infrastructure measures and instruments 

Our interest variable is the sum of federal highway investments between 

2007 and 2018 by municipality. We get highway investment data from Medeiros et 

al. (2024). The authors created a municipal-level federal road investment dataset by 

combining the PAC highway investment data with the georeferenced National 

Highway System (SNV) from the National Highway Infrastructure Department 

(DNIT). We also try two additional road variables as robustness checks to measure 

measurement errors in our road investment measure. The first one is a dummy 

variable assuming value one if the municipality received a road investment during 

the PAC period and zero otherwise. The second one is the road length growth rate 

between 2006 and 2018. In this case, we use 2006 data from the 2007 National 

Transport Logistics Plan (PNLT) and 2018 data from DNIT22. To maintain 

comparability with the economic return rate calculated by Medeiros et al. 

(forthcoming), we use their infrastructure reliance parameter (φ), measured as the 

share of the municipal intermediate consumption related to the land transportation 

sector. The φ data sources are the Annual Social Information Report (RAIS/Ministry 

of Labor) and the 2010 National Input-Output (I-0)(IBGE). 

In addition, we also rely on Medeiros et al. (2024) as the source of our 

instrumental variables. We get the Non-Random Allocation Index as our main IV and 

their three original instruments as robustness checks. In addition, we also get some 

cost-related IVs (Cost Index 1 and 2) related to environmental, geographic, and 

human physical infrastructure project costs to run additional tests. The indexes were 

also created by using the PCA technique, reducing data information from original 

variables as the share of hilly areas in the total area, the share of urban infrastructure 

building in the total area, the share of legally protected environmental areas in the 

total area and the application of environmental embargoes. 

 

4.3.3.3. Moderating variables 

We include an extensive set of controls to avoid omitted variables bias 

following the specialized literature on road infrastructure and GHG emissions 

(Churchill et al., 2021; Emodi et al., 2022; Georgatzi et al., 2020; Ghannouchi et al., 

2023; Han et al., 2017; Li and Lu, 2022; Lin et al., 2017; Luo et al., 2018; Sharif and 

Tauqir, 2021; Xiao et al., 2023; Xie et al., 2017; Xu et al., 2022; Yao et al., 2023) and 

adapting for Brazilian features. First, we describe some variables that will be used 

as both controls and moderators. We include population to control and moderate for 

city scale and agglomeration effects. We also try population density and the share of 

 
22 We can likely observe measurement error in the road length variable as well, as the PNLT and DNIT 
files are not fully comparable. In addition, there is methodological variations over the years in relation 
to road classifications as federal, state level and so forth. Then, this variable should be used with 
caution. 
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road sector CO2 emissions in the total CO2 emissions as robustness checks. Second, 

we include GDP per capita to control for the municipal development level. Third, we 

include the ratio between residential capital and occupied population as a proxy for 

technological innovation. Finally, we include deforestation variation between 1996 

and 2006 as a control for the municipal propensity to raise land use change GHG 

emissions, the country's main source of GHG emissions. 

 

4.3.3.4. Additional controls 

As additional controls, we include the initial (2007) level of GHG emissions to 

control for level and convergence effects. We also include GDP per capita squared to 

control for a potential environmental Kuznets Curve. We include the share of the 

municipality exports in the national exports as a control for trade specialization. Gini 

Index controls for income inequality. Institutional Quality is inserted using the Index 

of Municipal Institutional Quality (IQIM). Human capital is included as the share of 

workers with graduate education. We control for complementary and substitute 

infrastructure by including the Euclidean distance from the municipality center to 

the nearest state road, port, and railroad. To guarantee the suitability of our 

instruments, we also include the distance to Brasilia and the number of railway 

stations in 1920 as controls, as Medeiros et al. (2024) relied on historical data to 

construct some of their IVs. A brief description of the variables used and their 

sources can be found in Table A1, and descriptive statistics can be seen in Table A2 

in Appendix A. 

 

4.4. Econometric results and discussion 

4.4.1. Baseline estimates 

Table 4.1 presents our baseline econometric results by estimating Equations 

1 and 223. In the first five columns, we use our highway investment measure as the 

interest variable. In columns 6-10, we multiply our road variable by the road 

infrastructure reliance parameter (φ) following Fernald (1999). We estimate the 

road investments' impact on CO2 emissions considering the full sample (columns 

“All”) and the road, energy, land use change, and agriculture sectors separately. The 

Non-Random Allocation Index strongly predicts road investments and is a pretty 

suitable IV, as indicated by the high F Statistic values. Regarding the second stage 

regressions, we find a positive relationship between road investments and GHG 

emissions for the full sample as well as for the road, energy, and land use sectors. We 

found no significant road effects on agriculture GHG emissions.

 
23 Tables B1 and B2 in Appendix B presents OLS regressions results as comparison estimates. 
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Table 4.1. Federal Highway Investments and CO2 Emissions Growth (2007-2018): 2SLS IV Regressions 

 1 2 3 4 5 6 7 8 9 10 
Second stage All Roads Energy Land Use Agriculture All Roads Energy Land Use Agriculture 
Log Highways 
Investments 

0.0249*** 0.1335*** 0.1157*** 0.0532*** -0.0030      

 (0.01) (0.02) (0.02) (0.02) (0.01)      
Log Highways 
Investments * φ 

     0.5770*** 3.0916*** 2.6802*** 1.2362*** -0.0702 

      (0.18) (0.51) (0.49) (0.36) (0.14) 
First stage           

Non-Random 
Allocation Index 

-0.4702*** -0.4808*** -0.4826*** -0.4759*** -0.4797*** -0.0203*** -0.0208*** -0.0208*** -0.0205*** -0.0207*** 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.00) (0.00) (0.00) (0.00) (0.00) 
Observations 5142 5142 5142 5142 5142 5142 5142 5142 5142 5142 

KP Wald F Statistic 349.317 359.100 360.198 356.129 360.001 332.469 343.528 344.349 338.341 340.560 
R² 0.23 0.51 0.52 0.22 0.15 0.23 0.50 0.52 0.21 0.15 

All regressions include the following set of control variables: CO2 emissions in 2007; state fixed effects; population; GDP per capita; GDP per capita, square; capital-
labor ratio; exports share; 1996-2006 deforestation; Gini index; institutional quality; human capital; distance to the nearest state road; distance to the nearest 

railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia. Robust standard errors are reported in parentheses. * p<0.1, ** p<0.05, *** p<0.01. 
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We can interpret our findings in terms of elasticity. More directly, a 1% 

increase in highway investments increases CO2 emissions by 0.025%. As expected, 

the elasticity is larger for the road and energy sectors, suggesting that a 1% increase 

in road investments raises road and energy CO2 emissions by 0.134% and 0.116%, 

respectively. These results corroborate several studies that found a damaging effect 

of highway construction and improvement on the environment, especially in the 

urban and road-related context (Churchill et al., 2021; Ghannouchi et al., 2023; Lin 

et al., 2017; Luo et al., 2018; Xie et al., 2017; Yao et al., 2023). 

Moreover,  results point out a positive and significant indirect road effect on 

land use change CO2 emissions. These novel findings might be explained in some 

ways. Opening new highways in isolated and previously environmentally protected 

areas might expand land supply. Therefore, land prices drop because of the 

expanded land offer, and landowners might be more prone to buy new lands instead 

of investing in improving the productive efficiency of the existing ones. This might 

lead to a process of land abandonment, predatory agriculture and illegal 

extractivism, with consequent deforestation and destruction of fauna and flora 

(Carrero et al., 2022; Da Silva et al., 2023; Ferrante et al, 2021; Lima et al., 2022). As 

a result, we might expect an increase in CO2 emissions related to land use change 

from road investments. 

 

4.4.2. Road impact heterogeneity 

In this section, we evaluate the potential heterogeneous effects of road 

investments on GHG emissions. To do this, we interact our road variable with some 

interesting moderating variables following Equations 4 and 5. Then, we calculate 

point GHG emissions elasticities concerning highway investments by applying 

Equation 6. Figure 4.2 exhibits the results. Full estimation results can be seen in 

Table C1 in Appendix C. 

The first moderators we analyze are related to agglomeration economies and 

population scale effects (Lin et al., 2017; Xiao et al., 2023; Xie et al., 2017; Xu et al., 

2022; Yao et al., 2023). We test interactions between our road variable and 

population, using population density as a robustness check. As an additional test, we 

use the share of the road sector's CO2 emissions in relation to the total CO2 

emissions to represent the importance of the road sector in the municipality 

economy and emissions, as well as to identify places wherein high traffic congestion 

is expected. Findings point out that the positive impact of highway infrastructure 

improvement on CO2 emissions is higher for lower levels of our moderating 

variables. For instance, a 1% increase in road investments raises CO2 emissions by 

0.034% in the bottom 10% of the population, while the elasticity is 0.012% in the 

upper 10% of the same variable. The same rationality holds for population density 

and the share of road sector CO2 emissions. These results align with investigations 

reporting a significant moderating effect of agglomeration and population scale on 

the relationship between transportation development and carbon emissions. 

Agglomeration, as the most direct manifestation of the positive externality of 
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highway infrastructure, is the core driver of rapid regional economic growth and 

supports the development of energy savings and emission reductions in society. As 

municipalities reach a certain level of urbanization and agglomeration, the effects of 

roads on CO2 emissions become less harmful (Lin et al., 2017; Xie et al., 2017; Xu et 

al., 2022). 

 

Figure 4.2. Federal Highway Investments and CO2 Emissions Growth (2007-2018) 
- Elasticity (α*φ): Heterogeneous Impacts 

 

Source: authors’ elaboration. 

 

Next, we interact the road variable with GDP per capita and the capital-labor 

ratio to capture heterogeneities regarding local development levels and technology 

innovation, respectively (Churchill et al., 2021; Xie et al., 2017). Like the 

agglomeration economies and population scale moderators, the road impact on CO2 

emissions increases with the levels of GDP per capita and technology. The variation 

is more pronounced in the technology mediator, suggesting an α equal to 0.04% in 

the bottom 10%, 0.01% in the upper 25%, and a non-significant (nearly zero) effect 

in the upper 10%. These findings indicate a greater polluting impact of roads in less 

developed locations, probably due to the construction of new roads and the 

expansion of new markets. As Medeiros et al. (forthcoming) found, the effects of 

highways on the local economy tend to be greater in poorer locations. Technology is 

positively correlated with economic development. In this sense, we expect roads to 

expand CO2 emissions through economic growth and technological innovation 

channels in the initial stages of development. 
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Next, we include an interaction term between the road variable and the 

deforestation variation in the past ten years to the PAC. Results show that the 

damaging highway investments effects on the environment enlarge while 

deforestation in the recent past increases. A higher level of deforestation might 

represent national and local institutional weaknesses, allowing the purchase of new 

lands at lower prices and its illegal use - such as land grabbing. By opening new 

roads, landowners may access new lands that were not available before, turning to 

a process of predatory agriculture production and widespread deforestation 

(Carrero et al., 2022; Da Silva et al., 2023; Ferrante et al., 2021; Lima et al., 2022). 

This finding puts some caution on the role of road policies on sustainable 

development in Brazil, especially in the Brazilian Amazon municipalities, as the 

region has suffered from massive deforestation in the last decades.   

 

4.4.3. Robustness checks 

In this section, we present some robustness checks to increase confidence in 

our main results described so far. First, we used a highway investment flow measure 

as our preferred variable. However, several studies advocate against measuring 

infrastructure in monetary terms as inefficiencies in project planning and design, as 

well as corruption and flawed bureaucracy, might turn investments ineffective in 

terms of building and implementing infrastructure, especially in developing 

economies. In other words, monetary variables might not represent effective 

infrastructure appropriately (Caldero n and Serve n, 2014; Kenny, 2009; Straub, 

2011). This issue is alleviated as we used an IV identification approach dealing with 

endogeneity, but some bias may remain. As robustness checks, we use a dummy 

variable assuming value one if a municipality received a PAC highway intervention 

and zero otherwise. In addition, we try road length growth between 2007 and 2018 

as an interest variable following a vast strand of literature24 (Baum-Snow et al., 

2020; Duranton et al., 2014; Foster et al., 2023a, 2023b; Straub, 2011). Results can 

be seen in Table D1 in Appendix D. Findings corroborate our baseline estimates, 

suggesting a positive impact of road infrastructure on CO2 emissions. In addition, 

we find α equal to 0.10% using the road length variable, which is quite in line with 

the elasticity of 0.08% estimated by Xie et al. (2017). 

Second, we try additional IV combinations to validate our identification 

strategy. Table D2 in Appendix D presents the results. In Column 1, we include two 

infrastructure cost indexes following the three-step IV identification approach by 

Medeiros et al. (2024). In Columns 2-4, we use the three original non-random 

allocation instruments instead of the Non-Random Allocation Index. In Columns 5-

7, we include the two cost indexes jointly with the original non-random placement 

IVs. Results remain almost unchanged, presenting a stable elasticity. 

 
24 It is important to mention that this measure likely has measurement errors (perhaps more 
problematic than the monetary measure) due to changes in methodology and issues related to spatial 
disaggregation. Therefore, the results should be taken with caution. 



100 
 

 

Third, we run the same baseline models considering CO2 emissions in 2018 

levels instead of growth rates as dependent variables. Results (Table D3 in Appendix 

D) are preserved. Next, we try additional robustness checks to alleviate concerns 

about CO2 emissions regional heterogeneity. First, we exclude all municipalities 

belonging to Amazon states. Those localities have suffered the most from 

deforestation in the past decades, and very high amounts of CO2 emissions related 

to land use change might affect our baseline estimates. Second, we drop 

municipalities in the state of Para . Para  received emblematic road buildings in 

environmental terms, some crossing extensive native people lands and generating 

huge environmental damages and land conflicts (Medeiros et al., 2024). Third, we 

exclude municipalities of the state of Sa o Paulo to alleviate issues related to high 

urbanization and development levels, which might impact our estimates due to a 

substantial share of CO2 emissions related to the road and energy sectors. Finally, 

we estimate the road effects on CO2 emissions growth pertaining to the land use 

change sector by excluding municipalities of the Amazon states. If our baseline 

estimates capture a regional road effect in the Brazilian Amazon, this robustness 

check should not present a significant parameter to road investments. Results can 

be seen in Table D4 in Appendix D. Findings remain, corroborating our baseline 

estimates. In unreported estimates, we also try the limited information maximum 

likelihood (LIML) and the generalized method of moments (GMM) estimators, and 

the results are unchanged. 

 

4.5. Including Sustainability into the Return Rate to Highway 

Investments 

4.5.1. The CO2 Emissions Return (Discount) Rate to Highway Investments 

(ERR) and the Sustainable (and Equitable) Return Rate to Highway Investments (SRR 

and SERR) 

In this section, we provide a novel measure we call Sustainable Return Rate 

to Highway Investments (SRR). To do this, we take the (economic) Return Rates (RR) 

calculated by Medeiros et al. (forthcoming) – which consider the road impact on 

productivity measured as GDP per capita, i.e., economic returns25 – and discount 

from it our CO2 emissions Return Rate (ERR). To calculate the ERR, we adapt the 

return rate formula used by several studies (Fernald, 1999; Medeiros et al., 2021; 

Medeiros et al., 2024, forthcoming; Wang et al., 2020) as follows: 

 

𝐸𝑅𝑅𝑟 =  𝛼 ∗ 𝜑𝑟 ∗
𝐶𝑂2𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑟

𝑆𝐶𝐶

𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝑆𝑡𝑜𝑐𝑘𝑟
        (7) 

 

 
25 The formula used by Medeiros et al. (2024) to calculate the RR is: 𝑅𝑅𝑟 = 𝛼 ∗ 𝐺𝐷𝑃𝑟/𝑅𝑜𝑎𝑑𝑆𝑡𝑜𝑐𝑘𝑟 , 
where α is the road elasticity in relation to GDP per capita, which multiplies the ratio between 
regional GDP and the road stock. 
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 Where CO2EmissionsrSCC is the total CO2 emissions in monetary terms, 

𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝑆𝑡𝑜𝑐𝑘𝑟 is the stock of roads in monetary terms and r represents Brazilian 

Immediate Geographical Regions (RGI). 

We follow Medeiros et al. (forthcoming) in some steps to construct our ERR 

and to guarantee comparability with their RR. First, we alleviate issues with outliers 

by taking the decile average values of the ratio between CO2 emissions and the 

highway stock and then applying these averages to each municipality. Additionally, 

we exclude municipalities in the top and bottom 1% when calculating those averages 

to reduce measurement error bias from extraordinarily high and low ratio values. 

Second, we include the infrastructure reliance parameter (φis) to allow local road 

dependence heterogeneity to work. Third, we aggregate the municipality values at 

the RGI level by taking the average values of φ and the ratio between CO2 emissions 

and road stock, i.e., dividing those variables by the number of municipalities in each 

RGI. This third step is essential to policy implications as we do not expect the 

Brazilian Federal Government to target specific municipalities in allocating roads. 

The 510 RGIs are groups of municipalities in the urban network sharing a common 

local urban center as their basis, being constructed by the IBGE. Its design considers 

the connection of nearby cities through relationships of dependency and the 

movement of the population in search of goods, services, and employment 

opportunities. Then, the RGIs are closely related to transportation goals and can be 

seen as a reasonable spatial scale regarding national highway public policies. 

To construct the road stock variable, we follow Medeiros et al. (2021a) and 

Medeiros et al. (2024, fortchomingb) by using the Frischtak and Moura o (2017) 

sectoral estimates for the Brazilian road stock. The authors found a road stock of 

around R$ 594 billion in 2023 values. Next, we use georeferenced road data from the 

2007 National Transport Logistics Plan (PNLT) to calculate the road length by 

municipality. We multiply single lanes by one and duplicated lanes by 2 to control 

for road quality and scale in our stock measure. Then, we divide the total road stock 

in monetary terms by our physical measure of road length to generate the monetary 

value by kilometer of road. Finally, we multiply this value by the road length of each 

municipality, which gives us our local road stock variable. 

To generate our ERR, we also need to quantify CO2 emissions in monetary 

terms. To this end, we use the measure of the Social Cost of Carbon (SCC). The SCC is 

an estimate of the cost, in dollars, of the damage done by each additional ton of 

carbon emission. SCC estimates mostly evaluate the impacts of carbon emissions on 

health outcomes, agricultural production, and property values. 

However, there is no consensus on the SCC value to be applied. Then, we use 

some benchmark SCCs to ensure consistency in our results. The first SCC we use is 

the Brazilian Government one (Ministry of Economy, 2022). The Brazilian 

government's SCC of around US$ 31 was mainly guided by a literature review 

considering several studies estimating the SCC worldwide (Nordhaus, 2016). The 

Brazilian Government's SCC is in line with the Ricke et al. (2018) median SCC for 

Brazil of around U$$ 24.2 – the authors calculated country-level SCC values for 
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several developed and developing economies –which we also use as SCC in our ERR 

calculation. Recent studies have established substantially larger SCC values 

considering different contexts and methodologies (Rennert et al., 2022). For 

instance, the US Government SCC – one of the most relevant SCCs guiding carbon 

pricing and environmental policies around the globe – is around US$ 51. Even so, 

several academics consider the North American SCC low, suggesting values above 

US$ 100. In this sense, we also consider the SCC of U$$ 113 proposed by the United 

Nations Environment Programme (UNEP, 2014), also identified in the UK 

Government’s Stern report as the central, business-as-usual scenario value. Finally, 

we convert the SCCs to the Brazilian currency (R$) using an exchange rate of R$/US$ 

5.17. 

Importantly, we have demonstrated some significant heterogeneous road 

impacts on CO2 emissions. Whether Brazilian municipalities and regions present 

high variability in the values of the moderator variables, we can expect some bias in 

our ERR by taking a single average α value. To alleviate this issue, we adapt Equation 

7 using the road heterogeneity impact results as follows: 

 

𝐸𝑅𝑅𝑟 = ((𝛼 ∗ 𝜑𝑟) + (𝜆 ∗ 𝜑𝑟) ∗ 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟𝑟)) ∗
𝐶𝑂2𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑟

𝑆𝐶𝐶

𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝑆𝑡𝑜𝑐𝑘𝑟
    (8) 

 

Where 𝜆 is the interaction term parameter allowing the road impact 

heterogeneities to exist, and 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟𝑖𝑠 is the moderator values taken by the 

municipal average by RGI. 

Finally, we calculate our Sustainable Return Rate to Highway Investments 

(SRR) as follows: 

 

𝑆𝑅𝑅𝑟 = 𝑅𝑅𝑟 − 𝐸𝑅𝑅𝑟         (9) 

 

Equation 9 shows two opposite sides of road policies. In other words, the 

higher the ERR, the lower the positive economic returns of road investments to 

society. 

 

4.5.2. Results and policy implications 

Figure 4.3 shows the ERR results. We calculate several ERRs by trying 

different SCC values and varying our parameters, following the results in Sections 

4.1 and 4.2. Our ERR ranges from 0.01 ‒ using the Rick et al. (2018) SCC and the 

parameters following the population density moderator specification ‒  to 0.07 ‒ 

taking the UNEP (2014) SCC and the parameters from the average α specification. To 

establish a benchmark for the ERR, we suggest taking the average value of all ERRs 

exhibited in Figure 4.3, indicating an average ERR of 0.03 (3.0%). 

The average economic return rate (RR) by Medeiros et al. (2024, forthcoming) 

is around 20%. Discounting our ERR from the average RR implies an SRR ranging 

from 13% to 19% in Brazil. On average, we find a high SRR of 17%. This result 
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corroborates the consensus on the deep precarity of the Brazilian transportation 

infrastructure sector, even considering environmental damages. 

 

Figure 4.3. CO2 Emissions Return Rate to Highway Investments (ERR) under 
different Social Costs of Carbon (SCC) and road impact heterogeneities 

 

Source: authors’ elaboration. 

 

Nonetheless, Brazil presents huge regional heterogeneities in terms of CO2 

emissions and road dependence and looking at those features might reveal some 

spatial inequalities in the ERR and SRR. Figure 4.4 shows the ERR at the regional 

scale. We can observe a substantial number of regions presenting low ERR values 

between approximately zero and 0.025. However, for an important part of RGIs in 

the north and part of the Mid-West regions – more specifically, in the Brazilian 

Amazon area –, our results indicate ERRs above 0.07, reaching peak values of around 

0.19. Highway investments might constitute an environmentally damaging policy 

tool for those with high ERR values. 

To better elucidate how the environmental and economic issues of highway 

policies are operating, we display the SRR in Figure 5. In Figure 4.5 (a), we show the 

Sustainable Return Rate to Highway Investments (SRR) considering the average RR 

calculated by Medeiros et al. (forthcoming). In the RR Average, the authors consider 
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the road impact on productivity equal to all units. In Figure 4.5 (b), we show the 

Sustainable and Equitable Return Rate to Highway Investments (SERR), which 

considers the RR Efficient & Road Specialized & Redistributive & Equative measured 

by Medeiros et al. (forthcoming). In this second return rate, the authors allowed the 

road impact on productivity to vary by units and found that the road investment 

profitability is higher for less developed and poorer infrastructure-endowed places. 

Then, we evaluate the road return in terms of economic profitability (RR), weighting 

by social conditions considering equity features (RR Efficient & Road Specialized & 

Redistributive & Equative), and sustainability (ERR). The SERR is our preferred 

estimate as it deals with a broader range of road policy characteristics, going beyond 

the widely evaluated economic issue. 

 

Figure 4.4. CO2 Emissions Return Rate to Highway Investments (ERR): Brazilian 
RGIs 

 

Source: authors’ elaboration. 

 

While we observe a high average SRR, Figure 4.5 shows some critical regional 

disparities in Brazil. First, we can observe positive SRRs for most of the country, as 

expected due to historical bottlenecks in the Brazilian road sector. However, many 

RGIs in the north and Mid-West regions present negative SRRs, implying that the 

environmental costs are higher than the economic benefits of constructing and 

improving roads in those localities.  



105 
 

 

Figure 4.5. Sustainable Return Rates to Highway Investments: SRR (a) and SERR 
(b) 

(a)

 

(b) 

 

Source: authors’ elaboration.
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When considering the SERR, the number of non-profitable RGIs drops as the 

economic (and equitable) return is higher for the poorer places, especially in the 

North and Northeast regions. Evaluating the SERR, we have a larger number of RGIs 

presenting return rates above 8.5%, the cut-off rate following the Social Discount 

Rate (TSD) calculated by the Brazilian Ministry of Economy (2021). Even so, some 

unprofitable and environmentally vulnerable RGIs remain. 

Finally, we evaluate the sensitivity of our ERR and SERR measures to land use 

change GHG emissions, Brazil's leading source of GHG emissions. To this end, we 

provide some naí ve counterfactual exercises supposing drops of 25%, 50%, 75%, 

and 100% in land use change GHG emissions and recalculate our ERR and SERR. 

Results are described in Table E1 in Appendix E. Our ERR decreases from the average 

of 3.0% to 2.54% and 1.42%, supposing a 25% and 100% reduction in land use GHG 

emissions, respectively. Consequently, our SERR increases from the average of 17% 

to 17.46% and 18.58%, taking the 25% and 100% reduction in land use GHG 

emissions, respectively. 

Additionally, we generate a new SERR considering the energy sector CO2 

emissions26 (Figure E1 in Appendix E). This exercise aims to avoid the damaging 

road impacts from deforestation and agriculture, which might be somewhat out of 

control of the transport sector authorities such as the Ministry of Transport and the 

DNIT. Then, we restrict the emissions more directly related to the highway 

improvements, as those are strictly associated with increased traffic flows and urban 

activity. In this case, we consider the elasticity of the energy sector CO2 emissions 

growth concerning highway investments to be equal to 0.12, as shown in Table 4.1. 

The average ERR under the energy sector CO2 emissions analysis is around 1.3% 

(less than half of the ERR considering emissions from land use change and 

agriculture), while the average SERR is close to 18.7%. It is important to mention 

that several RGIs become economically and environmentally profitable when we 

evaluate only the energy sector's CO2 emissions. This result indicates 

complementary policies' critical role in preventing deforestation and preserving and 

restoring the environment, especially in the Amazon region. 

Our findings regarding sustainable return rates to highway investments have 

important policy implications. First, the average return rate to road investments is 

high even considering the environmental issue, indicating a widespread need to 

develop the Brazilian transportation sector. To reduce our average SRR of 17% to the 

threshold of 8.5%, Brazil would need two times more highways, which implies a road 

stock of 14% of national GDP, in line with Frischtak and Moura o (2017) and 

Medeiros et al. (2021). Second, the environmental damage from roads is more 

pronounced in less populated and poorer localities, which coincides with some 

critical areas in the Brazilian Amazon. For some of those RGIs, we can observe 

negative SRRs and SERRs, suggesting that the economic benefits are not offsetting 

 
26 We calculate the energy sector ERR following results in Columns 3 and 8 in Table 1. Then, we use 
the ERR Average and ERR φ specification as in Figure 3. 
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the raising in environmental costs from road-related GHG emissions. Then, public 

road policies must be implemented jointly with environmental tools to ensure 

environmental preservation and recovery. Third, even if moderate, we found a 

positive average road impact on CO2 emissions, implying a discount on the economic 

return rate to road investments. 

Additional public policies might be essential to alleviate those harmful road 

impacts. For instance, taxes and subsidies for clean technologies such as electric 

vehicles and energy systems might make them more attractive. Once those 

technologies achieve a certain level of production scale, costs tend to fall, and the 

incentives to produce and use clean technologies become high enough (Greene et al., 

2014; Santos, 2017). The same might hold for research and development (R&D) 

expenses in clean technology. Finally, improving the institutional and regulatory 

environmental framework is critical, especially for road project design, execution, 

and evaluation in environmentally vulnerable areas. Improving project governance 

and coordinating transportation and environmental institutions are vital issues. 

 

4.6. Concluding remarks 

We evaluated the impact of highway investments on GHG emissions in 

Brazilian municipalities during the PAC period (2007-2018). Using an IV 

identification strategy dealing with the non-random allocation of roads, we find an 

increasing effect of roads on CO2 emissions, showing that a 1% rise in road 

investments expands CO2 emissions by 0.025%. This damaging effect of road 

investments on the environment holds for the road, energy, and land use change 

sectors. We also found important heterogeneous road impacts on CO2 emissions 

depending on agglomeration, population scale, deforestation, and technology. In 

short, less agglomerated and populated and poorer localities are more adversely 

affected by road investments. We detected a new transmission channel from road 

investment to CO2 emissions from deforestation, proving that municipalities with 

higher deforestation in the previous period to the PAC suffered more from the 

damaging effects of highways on the environment. Findings are robust to different 

specifications, varying dependent and independent variables and instruments, 

excluding groups of municipalities, and changing estimators. 

From this, we calculated an average CO2 Emissions Return Rate to Highway 

Investments (ERR) of 3.0%, implying a discount on the economic benefits of road 

investments proved in past studies. Next, we measured a Sustainable Return Rate to 

Highway Investments (SRR) of around 17%, indicating a widespread need to 

develop the Brazilian transportation sector. It is essential to note the existence of 

deep regional heterogeneities in Brazil, wherein we can observe negative SRRs and 

SERRs for some regions – especially in the Brazilian Amazon–suggesting that the 

economic benefits are not offsetting the raising in environmental costs from road-

related CO2 emissions in those places. 
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While we contribute to the empirical literature on infrastructure and 

development in several ways, some gaps remain. First, we evaluated just one 

outcome in a wide range of environmental factors potentially impacted by roads. 

Future research might expand our study by focusing on deforestation, energy 

efficiency, water pollution, and ecological footprint, among others. Second, a more 

detailed analysis of the moderating role of environment-related institutions on the 

nexus between highway investments and GHG emissions might provide important 

and novel evidence to the literature, especially in countries wherein land use change 

and agriculture are relevant contributors to GHG emissions. Third, differentiating 

the short-run and the long-run environmental impacts of road investments may 

provide important policy implications in terms of pollution from material and 

equipment in the construction phase versus the environmental damage caused by 

the increased traffic flows when the highway is already built. 
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5. BRINGING HIGHWAY INVESTMENTS MORE EFFICIENT, INCLUSIVE, AND 

SUSTAINABLE: establishing priorities for the development and evaluation of 

regionalized road policies in Brazil 

 

 

 

 

Abstract 

Infrastructure investments are crucial for economic growth, social equity, and 

environmental sustainability. However, in many cases, such investments prioritize 

economic returns over social and environmental consequences, leading to regional 

disparities and environmental degradation. This study proposes an empirical 

strategy to classify priority regions for highway investments in Brazil, considering 

economic, social, and environmental issues arising from road investments. We apply 

this proposal to different spatial scales, allowing us to think about local, regional, 

and national road policies. Our findings offer novel inputs for policymakers, 

technicians, financial institutions, and civil society in shaping efficient, equative, and 

environmentally conscious road policies. We then conduct an ex-post evaluation of 

the Growth Acceleration Program (PAC)(2007-2018) to demonstrate how our 

framework can be applied for public policy purposes. From this, we find that the 

program generated meaningful economic returns, but this return could have been 

30% higher if the government had focused on our priority regions. New road policies 

may achieve better results by directing investments to win-win regions with the 

potential to increase economic growth, reduce inequalities and mitigate 

environmental damage. 

Keywords: transportation investments; efficiency; redistribution; equity; 

sustainability.  
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5.1. Introduction 

Infrastructure investment is a powerful policy tool for fostering economic 

growth by increasing productivity, expanding internal and external markets, and 

intensifying agglomeration economies (Aschauer, 1989; Asher and Novosad, 2020; 

Bird and Straub, 2020; Coşar et al., 2022; Roberts et al., 2020). These investments 

might also bring social benefits by alleviating poverty and inequalities within and 

between regions (Medeiros and Ribeiro, 2020; Medeiros et al., 2021a, 2022). In 

addition, infrastructure interventions affect several environmental outcomes, such 

as greenhouse gas (GHG) emissions, deforestation, energy efficiency and savings, the 

ecological footprint, and so forth (Awad et al., 2023; Churchill et al., 2021; Emodi et 

al., 2022; Lin and Chen, 2020; Xu et al., 2022). In this sense, infrastructure policies 

might achieve win-win combinations distinguished by promoting inclusive and 

sustainable economic growth. 

Nonetheless, these best arrangement scenarios in economic, social, and 

environmental terms are unlikely to occur. In most cases, infrastructure investments 

are driven by expected economic returns, overlooking socio-environmental road 

components (Alam et al., 2022; Caldero n and Serven, 2014; Laird and Venables, 

2017; Quadros and Naci, 2015; Straub, 2011; Welde and Tveter, 2022). Wealthier 

regions will likely receive greater private resources because of their higher 

predictable profitability. On the other hand, when infrastructure investments are 

lacking and the public budget for capital expenditures is constrained ‒ as it occurred 

in Brazil in the past decade‒, underdeveloped and geographically more inaccessible 

regions might be left behind due to their smaller economic returns and higher 

environmental costs. In this context, setting priorities is critical in maximizing 

economic returns, reducing regional inequalities, and mitigating environmental 

damage from road development, especially in developing country scenarios marked 

by scarce infrastructure investment levels. 

In this section, we propose a novel empirical approach to classify priority 

regions for highway investments in Brazil. Unlike previous studies focusing on 

economic concerns (Fernald, 1999; Li et al., 2017; Medeiros et al., 2021b; Wang et 

al.,2020), we target places where economic, social, and environmental issues work 

together. The main aim of this chapter is to translate our empirical findings into a 

policy-making-oriented approach, providing easy-to-interpret inputs for 

policymakers in planning, designing, financing, and evaluating efficient, 

redistributive, and sustainable public road policies across the country. Specifically, 

we offer a regionalized framework containing unique inputs aimed at improving the 

effectiveness of national highway investments in light of the Growth Acceleration 

Program (PAC). 

To do this, we reassess the findings obtained in Chapters 2, 3, and 4, 

estimating the Sustainable and Equitable Return Rates to Highway Investments 

(SERR). In Chapter 2, we built a novel econometric identification strategy to estimate 

the causal impacts of road investments on economic activity. Using this econometric 
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approach, we calculated some efficient, road-specialized, redistributive and equative 

return rates to highway investments in Chapter 3, then considering critical economic 

and social infrastructure features. In Chapter 4, we extend our economic and social 

return rates by discounting the harmful environmental impacts of roads and 

computing a novel and regionalized sustainable and equitable return rate for 

highway investments. From these three empirical exercises, we apply economic, 

social, and environmental criteria and clustering methods to identify potential 

prioritization areas for road interventions in Brazil. 

First, we describe the economic, social (equality-related), and environmental 

components of the return rates to highway investments calculated in the past 

Chapters of this Thesis. By doing so, we clarify the different factors that increase 

(decrease) the return rates for each Brazilian Immediate Geographical Region (RGI). 

Second, we propose eligibility and prioritization standards for road policies at the 

regional scale. The eligibility criteria guarantee economically attractive returns 

while respecting social and environmental issues. The prioritization criteria classify 

RGIs by considering their economic profitability and the propensity to reduce 

regional inequalities and avoid environmental damage from roads. Those standards 

constitute original inputs to develop focalized road policies. Third, we extend our 

analysis by considering more aggregated spatial levels. We apply clustering methods 

to create highway policy zones, minimizing the dissimilarities between regions in 

economic, social, and environmental road-related issues. Thus, we provide novel 

evidence for planning and evaluating national road policies, especially those 

crossing extensive geographical areas and different regions. Finally, we carry out an 

ex-post evaluation of the “old” PAC (PAC 1 and 2, 2007-2018), raising some ways to 

use our findings and prioritization criteria in different spatial scales. To the best of 

our knowledge, this is the first ex-post impact evaluation of the PAC discussing its 

priorities in economic, social, and environmental terms. In this way, we contribute 

to the specialized literature on transportation infrastructure and regional 

development (Banerjee et al., 2020; Baum-Snow et al., 2020; Duranton et al., 2014; 

Faber, 2014; Herzog, 2021; Jaworski and Kitchens, 2019; Lu et al., 2022; Zhang and 

Ji, 2019; Zhang et al., 2020) by providing new evidence to develop more cost-

effective, inclusive, and sustainable road policies at diverse spatial scales, which we 

expect to be applicable to interventions of different extensions as well as reaching 

diverse regions. 

The remainder of this paper is organized as follows. Section 2 describes the 

economic, social, and environmental components of the return rate to highway 

investments. Section 3 details the priority classification for highway investments. 

Section 4 outlines highway investment zones for the national policy analysis. Section 

5 presents an ex-post evaluation of the PAC, looking at economic, social, and 

environmental issues in highway investments. Section 6 concludes. 
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5.2. The economic, social, and environmental components of the 

Sustainable and Equitable Return Rate to Highway Investments (SERR) 

To develop the eligibility and prioritization criteria for road policies, we start 

from our preferred and broader return rate to highway investments calculated in 

Chapter 4. Our Sustainable and Equitable Return Rate to highway investments 

(SERR) is calculated considering economic issues – through the road impacts on 

productivity –, social features – at reducing infrastructure-related inequalities 

across municipalities –, and environmental aspects – at increasing GHG emissions. 

Then, we decompose the SERR into three components as follows: 

 

𝑆𝐸𝑅𝑅𝑟 = 𝐸𝐶𝑟 + 𝑆𝐶𝑟 − 𝐺𝐸𝐶𝑟        (1) 

 

Where EC is the economic component, SC is the social (equality-related) component, 

GEC is the environmental component linked to GHG emissions, and r represents the 

510 Brazilian RGIs. 

To obtain the SC, we subtract the RR Average (RR) from the RR Efficient & 

Road Specialized & Redistributive & Equative (RREE), both computed in Chapter 3, 

as follows: 

 

𝑆𝐶𝑟 = 𝑅𝑅𝐸𝐸𝑟 − 𝑅𝑅𝑟          (2) 

 

The RR only considers the economic returns of road investments, ignoring 

heterogenous impacts in social terms and disregarding environmental effects from 

roads. The RREE captures heterogenous road impacts on productivity depending on 

infrastructure features such as efficiency, road specialization, redistribution, and 

equity. Redistribution is the policy purpose that uses road interventions to foster 

regionally balanced economic growth by targeting poorer localities. Similarly, equity 

means investing in places characterized by low infrastructure endowment, 

equalizing the territory. In Chapter 3, we found a larger road impact on GDP per 

capita in less developed municipalities characterized by poor infrastructure and low 

productivity, suggesting a “social bonus” at investing in roads in those localities. In 

this sense, the RREE includes economic and social (equality-related) issues, and the 

SC captures the increased (decreased) road impact (the “social bonus”) for places 

with lower GDP per capita and road endowment levels. 

Consequently, the economic component is represented as follows: 

 

𝐸𝐶𝑟 = 𝑅𝑅𝐸𝐸𝑟 − 𝑆𝐶𝑟           (3) 

 

The EC is the RREE discounted from its social component and obviously 

equalizes the RR from Chapter 3. In other words, the EC represents the isolated 

economic returns of road investments, the road impact on productivity overlooking 

heterogeneous effects from redistribution and equity, or even the road impact on 

productivity supposing the same average road impact for all regions. 
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Finally, the GEC is equal to the CO2 emissions Return Rate (ERR) in Chapter 

4, which considers the road impacts on GHG emissions related to the energy sector. 

As highway investments increase GHG emissions, the GEC enters with a negative sign 

in Equation 1. We avoid the CO2 emissions from the land use change and agriculture 

sectors to direct our public policy recommendations to the transportation 

authorities. In addition, we impose an additional environmental condition to 

highlight the potential expanding effects of roads on land use change GHG emissions 

as follows: 

 

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑓𝑜𝑐𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 {1 𝑖𝑓 𝑆𝐸𝑅𝑅𝑟
𝑒𝑛𝑒𝑟𝑔𝑦

≥ 0.12 𝑎𝑛𝑑 𝑆𝐸𝑅𝑅𝑟
𝑎𝑙𝑙 < 0.12 𝑎𝑛𝑑 𝐺𝐸𝐶𝑟

𝐷𝑒𝑐𝑖𝑙𝑒 = 10

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

(4) 

 

Where 𝑆𝐸𝑅𝑅𝑟
𝑒𝑛𝑒𝑟𝑔𝑦

 represents the return rate discounting the road impacts on the 

energy sector CO2 emissions, 𝑆𝐸𝑅𝑅𝑟
𝑎𝑙𝑙 is the return rate deducting the highway 

impacts on the CO2 emissions of all sectors including land use change, and 𝐺𝐸𝐶𝑟
𝐷𝑒𝑐𝑖𝑙𝑒 

is the GEC decile. Equation 4 indicates that we have an environmental point of 

attention when the RGI attends three requirements. First, the return rate to highway 

investment is higher than 12% considering energy-related CO2 emissions. Second, 

the SERR drops to levels smaller than 12% at taking all GHG emission sectors, 

including the land use change and agriculture. Third, the RGIs are in the top 10% of 

the GEC variable and assume large values (above 7.24%) for the environmental 

component. Therefore, the environmental focal points are regions wherein the 

environmental component is critical in defining road profitability, and broad 

government participation is expected in both transportation and environmental 

sides to ensure that the environmental costs do not offset economic and social 

benefits from roads. 

Figure 5.1 shows the SERR components as well as the SERR itself. The RGIs 

with higher economic returns are concentrated in the more developed regions of the 

country ‒ the South and Southeast ‒and in some inland areas, wherein the 

agriculture sector has boosted the economy in the last decades. Those more 

profitable places coincide largely with regions crossed by privately managed 

highways, suggesting the higher attractiveness of those roads for private partners 

mainly guided by economic profit. Figure A1 in Appendix A shows the privately 

managed highways and the economic component, supporting our arguments. In 

Table A1 in Appendix A, we summarize the SERR and its components by public or 

private roads, suggesting that private partners are likely looking for road segments 

with higher expected economic returns. 
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Figure 5.1. The Sustainable and Equitable Return Rate to highway investments 

(SERR): economic component (a), social component (b), environmental component 

(c), and SERR (d) 

(a) 

  

(b) 
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Figure 5.1. The Sustainable and Equitable Return Rate to highway investments 

(SERR): economic component (a), social component (b), environmental component 

(c), and SERR (d) 

(c)

 

(d)     

Source: authors’ elaboration. 
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The social component tends to be larger for the poorer and more remote RGIs 

and smaller for the wealthiest regions. The results in Chapter 3 pointed out that road 

impacts on the economy are higher for less developed and poorer infrastructure-

endowed places. Thus, investing in highway development might be an important 

inclusive policy tool. This can be seen in the strong social component in the 

Northeast and North regions, which are largely characterized by low productivity 

and transportation infrastructure levels. 

The environmental component is more significant in the North and part of 

the Mid-West regions. As we argued in Chapter 4, this result is closely related to the 

recent deforestation in the Brazilian Amazon, places that still have huge forest areas 

and are suffering the most from the environmentally damaging effects of roads. The 

environmental focal points presented in the map corroborate the findings. In these 

cases, the interaction between transportation and environmental institutions is 

critical to guarantee minimum negative road impacts on the environment. 

Regarding the SERR in Figure 5.1 (d), we can observe several profitable places 

across the country. This result indicates the well-known need to develop the 

Brazilian transportation infrastructure sector. There are a relevant number of 

profitable RGIs in the poorer Northeast and North regions as well as in the richer 

South, Southeast, and Mid-West, suggesting that road policies might be used for 

national and regional development purposes. 

Finally, we analyze the correlation between the SERR and its components 

with road features such as efficiency, redistribution, equity, and road specialization. 

Figure A2 in Appendix A shows the correlation matrix. The economic component 

positively correlates with all road features, suggesting that regions with higher 

efficiency, GDP per capita, road endowment and transportation reliance are more 

profitable for highway investments. On the other hand, the social component is 

negatively correlated with all those variables, indicating less developed regions as 

those benefiting more from the “social bonuses” of road interventions. The 

environmental component presents a strong and negative correlation with equity 

while a positive correlation with road specialization. These results suggest that 

regions highly specialized in roads present higher environmental costs from roads. 

However,  as these highways densify in space ‒ as the equity measure indicates ‒ the 

environmental cost becomes smaller. Next, we set the eligibility and prioritization 

criteria. 

 

5.3. The priority classification for highway investments 

In this section, we provide eligibility and prioritization criteria for highway 

policies in Brazil. The eligibility requirement follows a minimum profitability cut-off 

that considers social and environmental issues. The prioritization criteria classify 

the RGIs by their profitability, amplifying redistribution and equity, and minimizing 

environmental damage. 
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5.3.1. Eligibility criteria 

The eligibility standard seeks to guarantee a minimum level of profitability to 

road investments considering social and environmental conditions. To do this, we 

first take the SERR calculated in Chapter 4, as this return rate includes all highway 

investment components. Then, we compare the SERR with two benchmark rates. 

The first is the Social Discount Rate (TSD)(Ministry of Economy, 2021) of 8.5% per 

year. The TSD is broadly used to evaluate infrastructure project returns in Brazil.  

The second one is the basic interest rate (Selic rate), which guides most private 

investment returns in the country. The Selic rate was around 12% per year in the 

past twelve months, the value we take as the second cut-off. While the TSD is more 

suitable for evaluating public infrastructure investments, the Selic rate is expected 

to capture the minimum profitability level expected by the private sector more 

realistically. 

As the Brazilian economy has presented several financing and funding issues 

over its history (Armijo and Rhodes, 2017; Burrier, 2019; Carranza et al., 2014), it 

would be unreasonable to establish eligible RGIs with return rates below the cut-off 

rates. In addition, we want to provide policy recommendations in the light of an 

already started road program (the “New” PAC), which drives us to suggest 

interventions that might be effective even in the short and medium term. We are not 

arguing that the non-eligible regions must not receive highway investments, but that 

infrastructure projects in those regions may lack profitability or present issues 

related to increasing inequality or environmental damage. Then, they might demand 

more time and effort in the planning and project design phases. On the other hand, 

the eligible RGIs are win-win localities wherein profitability is achieved even 

considering potential regional inequalities and environmental harm from roads. 

It is important to note that the SERR includes social and environmental 

features. In addition, the SERR assumes value zero for some highly road-efficient 

places wherein inefficiencies are expected due to huge geographic, environmental, 

expropriation, and interferences infrastructure project costs. Those places will also 

need highway investments, but they might need more careful planning, design, and 

execution from the government. Due to its large expected economic return, private 

investment might emerge as a potential solution, as it works for the state roads in 

the State of Sa o Paulo, and road investments in maintenance might be critical for 

areas with extensive infrastructure stock. 

In this context, the eligibility criteria can be described as follows: 

 

𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 {

𝑁𝑜𝑡 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝑖𝑓 𝑆𝐸𝑅𝑅𝑟 < 8.5%
𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑐𝑎𝑢𝑡𝑖𝑜𝑛 𝑖𝑓 𝑆𝐸𝑅𝑅𝑟 ≥ 8.5% 𝑎𝑛𝑑 𝑆𝐸𝑅𝑅𝑟 < 12.0%

𝐹𝑢𝑙𝑙𝑦 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝑖𝑓 𝑆𝐸𝑅𝑅𝑟 ≥ 12.0%
}  

(5) 

 

The eligibility criteria ensure the return rate to highway investments to be 

larger than a minimum profitability level (8.5%). For those eligible places assuming 
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SERR values between 8.5% and 12%, we suggest caution as profitability might be 

insufficient, especially for policies aimed at attracting private resources. RGIs 

presenting SERR greater than 12% are deemed fully eligible for road investments. 

When the SERR is smaller than the minimum 8.5% cut-off rate, we consider the RGI 

not eligible.  

Figure 5.2 shows the eligible RGIs. There are 233 (45.69%) fully eligible RGIS, 

118 (23.14%) eligible with caution RGIs, and 159 (31.18%) not eligible RGIs. In 

other words, more than 68% of the RGIs seem to demand highway investments, even 

considering social and environmental issues. In the next step, we classify those 

eligible RGIs to provide the best options for fostering economic activity, reducing 

inequalities, and restricting environmental damages. 

 

Figure 5.2. Eligible RGIs for highway investments 

 

Source: authors’ elaboration. 

 

5.3.2. The prioritization criteria 

The prioritization requirement aims to classify the RGIs according to the 

three SERR components. The main goal of this proposal is to allow policymakers to 

target places where highway investments might promote more sustainable and 

regionally balanced economic growth. We start by taking the eligible RGIs. 

The priority criteria are defined in Table 5.1. Priority 1 is the best-case 

scenario, composed of profitable RGIs with EC and SC values above the median and 
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GEC values below the median. In other words, Priority 1 regions are those wherein 

win-win combinations are fully achieved, configuring highway investments 

potentially increasing economic growth, reducing inequalities, and minimizing 

environmental costs. There are 28 RGIs classified as Priority 1, showing a high 

return rate to highway investments (Columns Average SERR) of 21.5%, three to four 

times larger than the average for the group of non-eligible RGIs. 

 

Table 5.1. The prioritization criteria: RGI level 

Prioritization 
level 

EC SC GEC 
RGIs 

(≥12.0%) 
RGIs 

(≥8.5%) 

Average 
SERR 

(≥12.0%) 

Average 
SERR 

(≥8.5%) 

Priority 1 
Above 
median 

Above 
median 

Below 
median 

28 28 0.215 0.215 

Priority 2 
Below 
median 

Above 
median 

Below 
median 

38 71 0.160 0.133 

Priority 3 
Above 
median 

Above 
median 

Above 
median 

34 34 0.210 0.210 

Priority 4 
Above 
median 

Below 
median 

Below 
median 

40 62 0.144 0.129 

Priority 5 
Below 
median 

Above 
median 

Above 
median 

37 58 0.155 0.135 

Priority 6 
Below 
median 

Below 
median 

Below 
median 

2 14 0.124 0.103 

Priority 7 
Above 
median 

Below 
median 

Above 
median 

54 78 0.154 0.139 

Priority 8 
Below 
median 

Below 
median 

Above 
median 

- 6 - 0.098 

Not eligible - - - 277 159 0.074 0.053 
Source: authors’ elaboration. 

 

Priority 2 covers those RGIs with suitable social and environmental 

conditions but presenting EC values below the median. In this case, we can observe 

a smaller SERR average compared to Priority 1. Nonetheless, the average SERR of 

16% and 13.3%, considering the cut-off rates of 12% and 8.5%, respectively, suggest 

a high profitability for those localities. 

Equivalent interpretations can be made to the following priority criteria. 

Priority 3 meets the EC and SC requirements but presents large environmental costs. 

Priority 4 attends economic and environmental criteria, while the SC is smaller than 

the median. Priority 5 does not meet EC and GEC requirements but does so for the 

SC. Priority 6 satisfies environmental conditions but presents values below the 

median of EC and SC. Priority 7 respects the EC requirement, while SC and GEC 

assume inappropriate values. Finally, Priority 8 is those RGIs with SERR above the 

cut-off of 8.5%, but that do not meet any other prioritization criteria. 

Figure 5.3 shows the results. Regarding Priority 1, we can observe some best-

case scenarios for road investments in the coastal area of the Northeast region and 

inland RGIs in the Southeast and South regions. When we include Priorities 2 to 4 

into the analysis, which is characterized by not attending one of the prioritization 

requirements, we can identify some potential groups for road investments. The 
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Priority RGIs in the Northeast coastal zones are enlarged, indicating that the region 

is a critical target for fostering sustainable and inclusive development through road 

improvement. Some Priorities also emerge in inland areas of the Northeast region 

and the north of the State of Minas Gerais, places characterized by low levels of GDP 

per capita and infrastructure endowment. By extending the Priority levels, 

considerable Priority RGIs appear in the coastal and inland areas of the Southeast 

region, localities marked by higher productivity and population density levels and 

high demand for infrastructure interventions. The same pattern holds for the new 

Priority RGIs in the inland areas of the South and Mid-West regions, distinguished 

by agribusiness as an economic driver. 

 

Figure 5.3. Priority RGIs for sustainable and equative highway investments 

 

Source: authors’ elaboration. 

 

Finally, we extend our examination by looking at Priorities 5 to 8. Those RGIs 

do not meet two or more prioritization criteria but are profitable. Several Priority 

RGIs arise in some of the wealthiest areas of the country. This result is expected as 

we do not meet social and environmental requirements in many regions. For 

instance, the novel Priority RGIs in the more developed Southeast and South regions 

present a low social component. In addition, several environmental focal points 

emerge as Priority RGIs in the Mid-West and North regions. In these cases, the 

economic component mainly guides the priority classification, likely due to the 

expanding agricultural activity and the consequent need for infrastructure 
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development. However, this economic benefit is being constrained by huge 

environmental costs from transportation activity, deforestation, and small social 

bonuses from reducing inequalities. That is why those RGIs do not appear to be the 

first priority in our rank. 

The prioritization criteria allow identifying RGIs wherein highway 

investments are expected to foster economic growth, alleviate inequalities, and 

prevent environmental costs. As eligible RGIs fall in the priority classification, the 

lower the predicted road investment returns become and the greater the public 

policy efforts to prevent social and environmental harm. In the next section, we 

complement this more disaggregated analysis at the RGI level by evaluating the 

return rate to road investments at larger regional scales. We propose some highway 

investment zones for road policies by aggregating RGIs with similar SERR 

components. 

 

5.4. Creating highway investment zones for national policy analysis 

We have classified the RGIs in priority terms for road policies. This input 

might guide policymakers to invest in places to foster economic growth, reduce 

inequalities, and avoid environmental damage from road development. However, 

some practical issues may emerge. Some priority RGIs might be geographically 

isolated, and a place-based investment would be unrealistic. For instance, we do not 

expect the federal government to allocate small road segments (less than 100 km) 

to concession programs even if the economic, social, and environmental returns are 

large enough in that RGI and its surroundings. For instance, the average highway 

length of federal concessions is 522 km. In addition, national road interventions are 

likely to target specific road segments linking important economic centers to other 

economic zones, highly populated regions, ports, and so forth. In several cases, those 

road investments will cover extensive highway segments, and a more aggregated 

view might provide some valuable additional insights into road policies. For 

instance, those points are not problems when evaluating a bridge building or a road 

segment upgrade in an urban area. Then, the more regionally aggregated proposal 

complements the RGI scale as we have local, regional, and national road 

interventions. 

In this section, we complement Sections 2 and 3 by aggregating our findings 

using two different approaches. First, we evaluate our SERR and its components at 

the state level. It is important to clarify to state governments and society how 

national highway investments might be a critical policy tool to stimulate sustainable 

and balanced economic development in each state. In addition, this aggregation 

might provide insights for state level road policies as well. Second, we use spatial 

clustering methods to generate highway investment areas based on the three SERR 

components. In this exercise, we seek to overcome administrative borders by 

providing road policy zones based on the similarity between the RGIs in terms of 

economic, social, and environmental road issues constrained by spatial proximity. 
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From this, we provide some contributions to think about inclusive and sustainable 

public road policies at the national level from a regionalized perspective. 

 

5.4.1. State-level SERR and components 

In this exercise, we aggregate the RGI data used so far at the state level. We 

do this by taking simple averages of the EC, SC, GEC, and SERR variables for each of 

the 26 Brazilian states plus the Federal District. Next, we apply the same 

prioritization criteria following Table 5.1. Figure 5.4 shows the state SERRs. The 

economic, social, and environmental components can be seen in Figures B1, B2, and 

B3 in Appendix B. Most (77.8%) of the states meet the eligibility criteria, being 

profitable for highway investments. 

It is interesting to note that the states with Priority 1 and 2 are localized in 

the Northeast region. Even taking a more aggregated SERR measure, our findings 

continue to suggest that investing in those places might promote a more sustainable 

and inclusive economic growth. On the other hand, while the most profitable states 

are concentrated in the South and Southeast regions, they lack social or 

environmental requirements and are mostly classified with lower priority levels 

(mainly 7, but also 3 and 4). Finally, most Mid-West and North states present SERR 

between 8.5% and 12%, suggesting some caution in proposing road policies in those 

places. This is especially due to the higher environmental costs in those states. 

Our findings provide some contributions to public policies. First, we can 

project the expected economic benefit from road investments, respecting social and 

environmental issues. This is useful for federal and state governments in designing 

national, regional, and local road interventions. Second, the prioritization criteria 

provide a practical framework for structuring public road policies according to 

society's concerns regarding economic growth, reducing inequalities, and dodging 

environmental damage. At the state level aggregation, we observe only one state 

(Alagoas) satisfying the three component requirements, i.e., presenting profitability 

higher than 8.5%, high social and economic components, and low environmental 

costs. Except for this case, the Brazilian federal government must decide to deal with 

issues in at least one of the three SERR components. In this context, the prioritization 

criteria provide a tool for weighing the component's importance when developing 

road policies across the country. Moreover, Figure 5.4 gives us some understanding 

of the inevitability of articulating a broad transportation policy, including both 

federal and state-level roads. If states with high social and environmental priority 

lack resources to invest in infrastructure, we might expect increasing inequality and 

environmental degradation from roads. The same holds whether more developed 

states are implementing strong road programs, as it occurs in Sa o Paulo and other 

high-income states in the South, Southeast, and Mid-West regions. 
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Figure 5.4. SERR and prioritization criteria: State-level aggregation  

 

Source: authors’ elaboration. 

 

In this application, we focus on administrative borders. Nonetheless, places 

in different states might present similar road features, and geographically bounding 

our analysis and policy implications into state boundaries can hinder the 

development of an effective national road program. In the next section, we seek to 

overcome this issue by establishing road policy zones based on spatial clustering 

methods. 

 

5.4.2. The spatial clustering framework 

In this section, we create highway investment zones for policy analysis. To 

this end, we apply the Spatial ‘K’luster Analysis (SKATER)(Assunça o et al., 2006), an 

efficient data-management technique for finding homogeneous groups of elements 

in a heterogeneous dataset (da Silva et al., 2014). This method allows us to consider 

groups with a spatial location, in our case, the RGIs. 

Infrastructure development is spatial by nature, as highways will serve 

specific geographic areas connecting one place to another (Straub, 2011). In other 

words, road policies are designed spatially, and they will cover road segments aimed 

at impacting specific localities, and the effectiveness of this instrument is deeply 

correlated with the infrastructure characteristics of regions. For instance, we expect 

more developed regions to be more attractive for private investments due to their 

higher projected profitability. Regions presenting vital environmental issues will 
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likely require additional administrative and economic efforts as environmental 

licenses and financial resources, and places characterized by lacking infrastructure 

endowment and lower income levels may not be financially attractive, which will 

probably raise the importance of public investment in developing those regions. 

Therefore, clustering regions in terms of economic, social, and environmental road-

related issues might be interesting for re-thinking national road policies, which is 

our goal in this exercise. 

 

5.4.3. Method 

The SKATER builds off a connectivity graph to represent spatial relationships 

between neighboring regions, where each region is represented by a node and edges 

represent connections between them. Edge costs are calculated by evaluating the 

dissimilarity between neighboring areas. The connectivity graph is reduced by 

pruning edges with higher dissimilarity until we are left with n nodes and n-1 edges. 

At this point, any further pruning would create subgraphs, and these subgraphs 

become cluster candidates. The SKATER algorithm works by iteratively partitioning 

the graph by identifying which edge to remove to minimize the within-cluster sum 

of squares (a measure of how tight each cluster is) and maximizing the between-

cluster sum of squares (a measure of how separated each cluster is from the others). 

(Assunça o et al., 2006). 

We use the economic, social, and environmental SERR components as our 

interest variables in the clustering process. We construct the spatial constraints 

using a first-order queen matrix of spatial weights. In addition, we try geographic 

area constraints to guarantee a minimum cluster size. This constraint prevents 

highway policy zones (clusters) from being too small, which might be an issue in 

designing public road interventions and concession programs in several 

circumstances. 

We apply the SKATER method, trying several combinations of the number of 

clusters and geographic area constraints. The results in terms of the total within-

cluster sum of squares, the between-cluster sum of squares, and the ratio of between 

to total sum of squares, as well as a detailed description of the SKATER application, 

can be seen in Appendix C. Based on those statistics and the practical applicability 

of the clusters, our preferred SKATER result consists of 10 highway policy zones 

constrained by having at least 3% of the national geographic area. As a robustness 

check, we also use the combination of 27 clusters restricted by having at least 1% of 

the national geographic area. Those clusters complement one another due to the 

hierarchical nature of the SKATER method, in which the new and smaller clusters 

(in the 27-cluster scenario) are partitions of the previous and larger clusters (in the 

10-cluster scenario).   

 

5.4.4. Results 

Figure 5.5 shows the results of our preferred highway policy zones. The map 

includes the SERR values as polygon colors and indicates the priority level of each 
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zone. Eight out of ten zones present SERR values higher than the 8.5% cut-off, 

suggesting the high road profitability in the country in this new aggregation level as 

well. As we can see by taking the zone aggregation, there is no region in the best-

case scenario (Priority 1) or even in Priority 2. This result suggests that spatially 

broader road policies will likely deal with one or more economic, social, or 

environmental issues in road planning, designing, and execution. In addition, by 

aggregating RGIs in larger zones, our findings provide some elucidation on the 

profitability of road programs covering extensive geographical areas and road 

segments. When evaluating the more disaggregated RGI level, we could find several 

regions in Priority 1. However, that is not the case for the SKATER zone level, 

suggesting that the zones mix profitable and non-profitable RGIs. The SERR values 

are more concentrated in the zone scale, presenting a minimum value of 0.058 and 

a maximum value of 0.154. This result raises confidence in our cluster results in 
representing the Brazilian road infrastructure sector, especially in planning and 

designing national public policies seeking to connect distant locations or improve 

the connections among them. In the Brazilian context, it seems more reasonable and 

representative to expect a more moderate return on highway investments when they 

cross extensive regions with different levels of income per capita, infrastructure 

endowment, and geographical, environmental, and human-physical costs. This 

greater complexity of extensive buildings is often followed by inefficiencies due to 

institutional weaknesses in the country (Amann et al., 2016; Armijo and Rhodes, 

2017; Burrier, 2019; Raiser et al., 2017). 

The average highway policy zone SERR is 0.110, which is in line with the 

internal return rates (IRR) between 8% and 10% established by the National Land 

Transport Agency (ANTT) to guide several concession programs across the country, 

including road segments over 1,000 km in length. Those findings are particularly 

interesting in the infrastructure sector due to its spatial nature, wherein extensive 

road buildings and concession programs should cover places in different income per 

capita and infrastructure endowment levels to assure poorer and non-profitable 

regions receiving road investments coming from the profits in more lucrative areas. 

This implicit cross-subsidization between regions might act as a reducing inequality 

policy tool through road investments (Sousa and Da Silva Filho, 2022). By mixing 

profitable and non-profitable regions but respecting some degree of similarity 

between them in economic, social, and environmental terms, our spatial clustering 

application seems to consider this infrastructure sector particularity indirectly. 

Next, we evaluate the SERR components and the efficiency, redistribution, 

equity, and road specialization features at the highway policy zone level. Table 5.2 

exhibits the results. The economic component is larger in the South and Southeast 

regions, represented by zones 3, 4, 5, and especially 7, the latter assuming an EC of 

30%. In general, those regions are marked by higher GDP per capita, infrastructure 

endowment, road specialization, and efficiency, which explains, to a large extent, the 

higher expected economic return from road investments there. 
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Figure 5.5. Highway policy zones description (a), and SERR and prioritization 

criteria (b) 

(a)  

(b)  

 

Source: authors’ elaboration.
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Table 5.2. EC, SC, GEC, SEER, and road features: Highway Policy Zones 

Zone EC SC GEC SERR Priority 
Efficiency 

(GDP/Road 
Stock) 

Redistribution 
(GDP per 
capita) 

Equity (Road 
Stock/Area) 

Road 
specialization 

(φ) 

1 0.098 0.023 0.007 0.114 6 9.644 14.690 8.122 0.038 

2 0.077 0.028 0.012 0.093 6 9.427 26.770 5.804 0.040 

3 0.190 -0.035 0.014 0.141 7 20.192 43.735 7.904 0.042 

4 0.149 -0.017 0.010 0.122 4 21.251 30.115 9.124 0.042 

5 0.126 0.041 0.013 0.154 3 11.392 39.532 7.987 0.042 

6 0.122 0.013 0.022 0.113 7 30.534 27.980 2.658 0.043 

7 0.300 -0.176 0.014 0.110 7 66.469 49.596 11.407 0.044 

8 0.056 0.036 0.016 0.076 Not eligible 7.214 15.817 0.685 0.032 

9 0.085 0.056 0.018 0.122 5 6.541 17.006 3.201 0.044 

10 0.152 -0.079 0.015 0.058 Not eligible 15.883 19.497 1.351 0.042 

Source: authors’ elaboration. 

 

Regarding the social component, zones 9 and 5 present the higher values. 

Region 9 seems to be a redistributive priority due to its low GDP per capita and road 

endowment levels. Zone 5 is distinguished by a high GDP per capita level but an 

average value for the equity variable, suggesting that roads might be an essential 

policy tool to expand the region's transportation connectivity. On the other hand, 

zone 7 presents a huge harmful social component due to its large values for all the 

infrastructure characteristics. 

Zone 6 has a higher environmental component. Most of this zone is in the 

Brazilian Amazon, which presents extensive forest areas. Constructing roads in 

those places has directly promoted the spread of transportation activity but also 

increased deforestation. The result is a higher environmental cost from direct and 

indirect GHG emissions, which seems to be well captured by our clusters. 

In short, the zones constructed by applying the SKATER method seem to 

suitably represent the Brazilian infrastructure road sector. These areas are 

particularly appropriate for evaluating national infrastructure policies wherein 

highway segments cross large geographic areas, as the clusters aggregate similar 

regions in economic, social, and environmental terms, respecting spatial proximity. 

In addition, the highway policy zones might be combined with the more 

disaggregated state and RGI levels, spatial scales that can complement one another 

in planning and designing national, regional, and local road policies. 

 

5.5. An ex-post evaluation of the “old” PAC (2007-2018): looking at 

economic, social, and environmental issues in highway investments 

In this section, we provide some paths to evaluate road programs in the light 

of our calculated economic, social, and environmental components. We intend to 

provide practical tools to allow stakeholders to apply the methodology built up 

throughout this thesis when evaluating infrastructure policies in Brazil. 
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To that end, we start by running an ex-post impact evaluation of the PAC by 

comparing its results with what would have happened if the interventions had been 

allocated randomly across regions. We divide this naive exercise into some steps. 

First, we reassess the PAC highway investment data constructed in Chapter 2 and 

aggregate it at the RGI level. To identify the regions treated by the PAC, we use a 

dummy variable assuming value one if the RGI received some road investment and 

zero otherwise, which we call treatment in this application. Using the treatment 

variable instead of the PAC highway investments reduces the problem of randomly 

placing high investment values to locations where building a highway may not be 

reasonable. The PAC targeted 215 out of 510 RGIs. Second, we randomly assign our 

treatment variable to regions, repeating the process 10,000 times to ensure a 

suitable number of observations. From this, we provide a benchmark for what would 

have occurred if road investments had been allocated accidentally, regardless of 

economic, social, environmental, and political issues. Third, we compare the PAC's 

EC, SC, GEC, and SERR values with those provided by the simulations. 

Figure 5.6 shows the results. Findings suggest the program being 

economically biased, allocating investments to RGIs with a higher economic 

component, corroborating previous results in Chapters 2 and 3. The average 

simulation results return an EC of 0.136, while the average EC for the regions treated 

by the PAC is 0.145. On the other hand, the social component of -0.015 is smaller 

than the average simulation value of -0.0058. This finding supports the argument 

that the PAC assigned a considerable amount of financial resources to more 

developed regions wherein road improvements did not play a predominant role in 

raising productivity during the evaluated period, lacking some part of the “social 

bonuses” expected at investing in poorer places. In addition, wealthier regions are 

characterized by higher geographic, environmental, expropriation, and interference 

infrastructure project costs, which appears to have narrowed the highway 

investments' impact on the economy due to inefficiencies in the planning, design, 

and execution phases. The GEC is slightly higher for the PAC regions (0.014) in 

comparison with the simulation average (0.013). As a robustness check, we also run 

simulations considering the road impacts on GHG emissions of all sectors. Results 

are exhibited in Figure D1 in Appendix D. Based on this exercise, the environmental 

PAC costs rise to 0.033, while the average simulation GEC considering all sectors is 

0.030. Whereas the difference between PAC and simulation values is still small, those 
values more than double in relation to the GEC considering the energy sector only, 

reinforcing the importance of complementary policies to secure environmental 

preservation. 

By evaluating all SERR components together, our results indicate that the PAC 

achieved a similar outcome even compared with average values of RGIs wherein 

economic, social, environmental, and political issues are expected to be random. This 

is represented by a PAC SERR of 0.116, while the simulation average is 0.117. The 

PAC SERR falls to 0.096 when considering the road impacts on GHG emissions in all 

sectors, including land use change, whereas the simulation average is 0.100. While 
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the PAC yielded meaningful economic effects on the economy, the program targeting 

criteria did not seem effective regarding social and environmental components, 

assimilating itself to a policy implemented at random. 

Next, we run the same randomization process but allocating roads to the 

eligible RGIs following our framework in Section 5.3. The results are described in 

Figure 5.7. The average simulation values for the EC, SC, GEC, and SERR are then 

0.140, 0.025, 0.012, and 0.152, respectively. Even considering eligible RGIs, which 

present highway returns above 8.5%, the average EC for PAC RGIs is higher than the 

simulation average. Nonetheless, the PAC social and environmental results are far 

behind from which could be achieved by applying the resources to prioritized 

regions. This result suggests that the above-average economic benefits from the PAC 

were somewhat offset by social and environmental losses.  

In Figure 5.7, we cannot visualize the PAC values for the SC, GEC, and SERR, 

indicating that the social and environmental PAC outcomes would barely be 

achieved even under 10,000 random combinations of targeted priority RGIs. It is 

important to note that the PAC values will be even more distant from the simulation 

values when selecting only higher priority regions (especially Priority 1, but also 

Priorities 2 to 4). 

As complementary tests, we replicate the same simulations at the state and 

highway policy zone levels but using the highway investment values as all states and 

zones were treated by the program. Results can be seen in Table D1 in Appendix D, 

corroborating previous findings using the RGI spatial scale. In short, the PAC road 

allocation provides poorer social and environmental results when compared with 

the randomization averages, while it provides superior economic returns. At the 

state level, we calculate the EC, SC, GEC, and SERR for the PAC being equal to 0.150, 

-0.017, 0.014, and 0.120, respectively. Findings are corroborated at the Highway 

Policy Zone level, presenting EC, SC, GEC, and SERR equal 0.145, -0.018, 0.013, and 

0.117, respectively. 

The evaluation carried out so far suggests that PAC highway investments 

generated solid and positive effects on the economy, even considering social and 

environmental issues and several institutional and political constraints that have 

hampered the program's implementation and effectiveness (Amann et al., 2016; 

Armijo and Rhodes, 2017; Burrier, 2019; Raiser et al., 2017). On the other hand, the 

PAC social component is negative, and the environmental component is higher than 

the simulations' averages regardless of the regional scale used. 

In this sense, we ask whether the PAC could have achieved better outcomes 

through a more redistributive, equitable, and environmentally friendly road 

allocation. To answer this question, we reassess the simulation findings for eligible 

RGIs (Figure 5.7) and calculate the differences between the PAC's economic, social, 

and environmental components and the simulation averages. We consider the 

average values of the simulation for eligible RGIs as benchmarks. Figure 5.8 shows 

the results. 
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Figure 5.6. Simulation results: EC, SC, GEC and SERR 

 

Source: authors’ elaboration. 

PAC: 0.145 

PAC: -0.015 

PAC: 0.014 

PAC: 0.116 
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Figure 5.7. Simulation results for eligible RGIs: EC, SC, GEC, and SERR 

 

Source: authors’ elaboration. 

PAC: 0.145 

PAC: -0.015 

PAC: 0.014 

PAC: 0.116 
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In Figure 5.8a, the symbol in orange describes the gap between the PAC and 

simulation results. In economic terms, results suggest a slightly positive difference of 0.5 

percentage points in favor of the PAC due to its economic bias. On the other hand, the social 

component presents a substantial gap of 4 percentage points, while the environmental 

cost gap is 0.20, reaffirming that the PAC could have reached better social and 

environmental results by focusing on priority localities. The overall result is a gap of 3.6 

percentage points in the PAC SERR in relation to the prioritized regions simulations SERR. 

 

Figure 5.8. The PAC gains (losses): differences (gap) between PAC and average 
simulations for eligible RGIs SERRs (a) and ratios between the gap and the SERR (b) 

(a)  

(b)  

Source: authors’ elaboration. 

 

Figure 5.8b exhibits the ratios between the gap values and the PAC and simulation 

SERRs. These measures allow us to identify how much (in percentage terms) of the road 

investment return has “vanished” by not guiding road allocation on economic, social, and 

environmental priority areas or how much (in percentage terms) the PAC could have 

gained by placing its interventions in priority places. The total gap represents 23.68% of 

the simulation SERR, suggesting that almost one-quarter of the road profitability in a 
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priority allocation scenario would be “wasted” due to an inefficient road placement 

following the “old” PAC. Similarly, the total gap is 31.03% of the PAC SERR, indicating that 

the program could have been almost a third more profitable if it had focused on priority 

regions. It should be noted that those ratios would be even higher if our simulations had 

considered RGIs classified as priority one only or priorities 1 to 4. The SC is the most 

critical component in explaining the SERR gap, with a (negative) contribution of 34.48% 

and 26.32% taking the PAC SERR and Simulation SERR, respectively. The EC represents a 

(positive) contribution of 4.31% and 3.29%, while the GEC represents a (negative) 

contribution of 1.72% and 1.32%. Then, this exercise corroborates previous findings 

indicating the inadequate PAC investments prioritization in ineffectively attending poorer 

and less infrastructure-endowed regions. 

In brief, the ex-post evaluation conducted in this section allows us to state that the 

PAC was an economically effective program, investing in regions with returns significantly 

above the conventionally used cut-off return rates. Nonetheless, those economic benefits 

are, to some degree, counterbalanced by harmful social and environmental components. 

Then, higher road investment returns could have been achieved by allocating investments 

to priority regions, ensuring a win-win  scenario marked by a more equitable and 

environmentally friendly economic growth.  

 

5.6. Concluding remarks 

We proposed an empirical strategy to rank priority regions for road investments in 

Brazil. Unlike previous papers focusing on economic issues, we considered those places 

where inclusive and sustainable economic growth might arise from road investments as 

priorities. Our analysis is conducted at different spatial scales, providing insights into 

local, regional, and national road policies. Due to the pronounced infrastructure deficit in 

Brazil, we identified eligible regions for road investments in different parts of the country. 

The economic component is generally greater in the South and Southeast, the social 

component is larger in the North and Northeast, and the environmental costs are superior 

in the North and Center-West. By evaluating the returns on investment at a more local 

level (RGIs), it is possible to identify regions where road investments can generate growth, 

reduce inequalities, and respect the environment. When the analysis is more aggregated 

at the state or zone level, it becomes more challenging to find win-win combinations, with 

regions showing at least one weakness in terms of the three components evaluated. This 

result sheds some light on the huge complexity of implementing national infrastructure 

policies aimed at building, improving, or granting to private partners extensive road 

segments, which will cross different regions of the country with diverse economic, social, 

and environmental attributes. 

Next, we conducted an ex-post evaluation of PAC 1 and 2 (2007-2018), applying our 

prioritization criteria. From this, we clarified some ways to use our results for public 

policy aims. Our PAC evaluation suggests that the program was economically effective, 

providing economic returns above the commonly used cut-off return rates. However, the 

economic benefits were somewhat offset by constrained social and environmental 

components, suggesting that the PAC could have achieved equal or better results by 
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focusing on poorer regions with less infrastructure stock. We calculated a gap in the PAC 

return rate compared with a hypothetical priority region return rate equal to 3.6%, 

suggesting that the program profitability could have been increased by 30% by allocating 

investment to priority RGIs in economic, social, and environmental terms. 

While we contribute to the empirical literature on infrastructure and regional 

development in some ways, gaps remain. We provided several inputs for transportation 

policy planning, designing, funding, and evaluation. From this, future research might focus 

on the best road management model (public, private, PPP, and so forth), depending on the 

economic, social, and environmental components. In addition, succeeding studies can use 

our inputs to explore cross-subsidies viability in the Brazilian road transportation sector, 

identifying the road investment rentability by region or road segment. Finally, our analysis 

can be extended to evaluate new road programs as the New PAC. 
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6. CONCLUSION 

 

This dissertation aims to investigate the role of transportation infrastructure investments 

in promoting inclusive and sustainable economic growth. We construct a novel dataset at 

the municipal level and employ a three-step IV identification strategy to infer causal road 

impacts on economic activity, regional inequality, and the environment. From those 

empirical inputs, we calculate regionalized sustainable and equitable return rates to 

highway investments in Brazil. 

We have some broad results. First, road infrastructure development successfully increases 

productivity. However, this impact is likely biased when not considering measurement 

error in infrastructure variables and the non-random placement nature of transportation 

policies. Second, road impacts on productivity are larger for poorer and less 

infrastructure-endowed regions. This finding points out that road interventions can be 

used to promote economic growth and reduce regional disparities. Third, the road impacts 

on the environment proved to be harmful. The damaging effect of roads on GHG emissions 

is higher for poorer and more remote regions, suggesting the existence of some trade-off 

between social bonuses by reducing inequalities and environmental costs by raising 

pollution. Fourth, we compute novel sustainable and equitable return rates to highway 

investments and provide criteria for classifying Brazilian regions in terms of maximizing 

(minimizing) economic, social, and environmental benefits (costs). From these return 

rates, we identify win-win localities wherein economic growth is expected to be achieved 

with reduced regional inequalities and minimized environmental damages. 

These findings pose an essential question: can road infrastructure policies promote 

inclusive and sustainable economic growth? This is particularly important for developing 

countries that are marked by deep regional unevenness and environmental issues, such 

as Brazil. If public authorities aim to increase welfare, reduce inequality, and avoid 

environmental degradation, our results point out some best-case scenarios wherein those 

outcomes can work together. Nonetheless, in most cases, governments will have to deal 

with economic, social, or environmental issues undermining road investment returns. 

Then, establishing priority areas plays a pivotal role in maximizing the broader returns to 

road investments. This dissertation develops new tools to guide policymakers in planning, 

designing, financing, executing, and evaluating more efficient, inclusive, and sustainable 

transportation policies. Empirical exercises in all chapters can be replicated for other 

developing countries upon data availability and adapted for other Brazilian infrastructure 

sectors and subsectors such as sanitation, power, telecommunications, railroads, airports, 

and ports.  
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I. APPENDIX - HIGHWAY INFRASTRUCTURE AND ECONOMIC 

DEVELOPMENT 

 

A. Study Design (the first step) 

Our main goal is to estimate causal impacts of highway investments on local 

outcomes. To this end, we rely on a national road program (a program within the 

PAC) implemented by the Brazilian Federal Government between 2007 and 2018.  

By desegregating national investments at the municipal level, procedure we describe 

in detail further ahead in the data section, we can evaluate local impacts of an 

extensive and aggregated road policy. This study design is important to alleviate 

endogeneity concerns between infrastructure investments and economic activity 

(Faber, 2014; Herzog, 2021), as we do not expect municipalities directly influencing 

the Brazilian federal government decisions at placing highways across the country. 

Currently, Brazil has 5,570 municipalities into 27 states. Whilst we might expect 

some important and direct political influence of the state level governments on the 

federal government investment priorities potentially biasing econometric estimates, 

this issue is quite reduced at using municipal level data. 

One evident way that municipalities might influence federal government decisions 

is by their population and economic activity. Central cities may receive priority 

treatment from federal infrastructure policies in order to attend massive 

populations and foster national economic growth. However, the most part of 

Brazilian municipalities are medium or small sized. In 2006, around 4,986 (89,5%) 

out of 5,570 municipalities had less than 50,000 inhabitants. Only 130 (2,3%) 

municipalities had population above 200,000. At average, a municipality had 

0,018% of the national population, indicating that municipal population is unlikely 

to affect federal public policy decisions directly in the vast majority of cases. 

Second, elected federal deputies may request policies more directly from the federal 

government. In this regard, the representatives may act in favor of the municipalities 

that gave them the most votes. Each Brazilian State elects a certain number of federal 

deputies by nominal votes. The deputies may demand financial resources for 

projects in specific regions and cities, as well as influence legislations and norms that 

will impact infrastructure policies. In this sense, if we observe a high share of votes 

for a federal deputy coming from a specific municipality, we can suppose that deputy 

devoting greater efforts to serve his electorate. Nonetheless, this argument seems to 

hold for a few large municipalities, especially the 27 state capitals. For instance, in 

the 2006 election in Sa o Paulo – the most populated Brazilian state –, an elected 

federal deputy received an average of 162,827 nominal votes. Only 17,7% of the 

municipalities of Sa o Paulo had an electorate greater than that in 2006, indicating 

that in most cases a reasonable number of municipalities is needed to elect a 
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candidate. In addition, 434 federal deputies were nationally elected, a considerable 

number that raises doubts on the political strength of a single deputy to directly 

influence federal decisions in favor of a specific city. 

In this sense, evaluating the federal road policy impact on local outcomes strongly 

alleviates broad endogeneity issues. First, it is unlikely that small and medium sized 

municipalities have any direct political power to influence federal policies in their 

favor. Second, even whether we believe a few large and potentially targeted cities 

influencing directly federal decisions, we can use the inconsequential unit approach 

to exclude them, which allows us to keep a large number of “non-targeted” 

observations. 
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B. Cost-related IV rationality: avoiding (or alleviating) 

measurement bias of monetary highway investments variables 

A way of dealing with measurement error (and maybe omitted variable) bias of road 

measures is choosing reliable cost-related IVs. Conditional on controls, cost-related 

IVs – for instance, geographical, environmental, and physical human costs as 

expropriation and interferences – might affect the outcome variable only through 

the highway variable (Holl, 2012; Lu et al., 2022; Martí n-Barroso, Nunez-Serrano, 

and Velazquez, 2015; Zhang, Hu, and Lin, 2020). We may expect local terrain 

ruggedness making a road project unfeasible, which in turn is expected to affect a 

region or city economic development. Nonetheless, it is unlikely this observable 

characteristic will directly impact GDP, population, or another outcome variable 

growth. Similarly, environmental costs – as the extent or existence of legally 

protected areas – and physical human costs – as expropriation and interferences due 

to highly urban density – directly affect the feasibility and success of an 

infrastructure project but are unexpected to directly affect outcome variables. 

This kind of IV may avoid (or alleviate) endogeneity bias in two ways. First, they may 

solve endogeneity issues related to omitted variables bias commonly found in 

infrastructure-economic development studies, as proposed by past studies (Holl, 

2012; Lu et al., 2022; Martí n-Barroso, Nunez-Serrano, and Velazquez, 2015; Zhang, 

Hu, and Lin, 2020). Second, and which we consider to be more reasonable, they 

might act as a corrective instrument for measurement error bias of highway 

investment variables. This is particularly relevant when using monetary highway 

variables as investment flows in developing economies wherein a high inefficiency 

in allocating infrastructure investments is expected (Caldero n and Serve n, 2014; 

Straub, 2011). 

Then, instrumentalizing the road variable by the main infrastructure costs may 

reduce both inefficiency bias - it is expected that more costly locations tend to have 

greater delays in buildings, making infrastructure investment impacts on outcome 

variables unclear - and road variable (specially the monetary ones) measurement 

error bias - for instance, more geographical, environmental and physical human 

costly locations may obviously demand a higher level of investment per length of 

road, requiring the construction of tunnels, bridges, expropriation and 

compensation payments, which might be reflected into unclear economic returns. 

To better elucidate how cost-related IVs can affect road investments, we use some 

emblematic Brazilian cases. First, we briefly describe the iconic example of the BR-

381/262 highway segment crossing the states of Minas Gerais (MG) and Espí rito 

Santo (ES) to contextualize how cost-related inefficiencies occur in practice. The 

highway is noted by its poor quality and high traffic accident incidence and death 

rates, and buildings in many segments of the road has been demanded for decades. 

According to the CNT 2022 Highway Survey, one of the most critical segments of the 

highway, between the municipalities of Joa o Monlevade and Martins Soares in the 
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state of Minas Gerais, is in the 345º position in terms of road quality, out of 510 

segments evaluated. According to data from the Federal Highway Police (PRF), the 

BR-381 is the fourth highway in number of accidents and the fifth in accidents with 

deaths. Due to its critical safety and quality condition, the highway segment is known 

as the "Highway of Death". 

The BR-381/262 (MG/ES) segment is also emblematic because its several risks and 

project complexity. The road crosses areas with high population and urban 

infrastructure density, demanding huge additional monetary resources and time 

efforts to solve expropriation and interferences conflicts. Several delays occurred in 

the building schedule due to expropriation and evacuation disputes, as many 

households did not accept the expropriation terms offered by the Brazilian 

government. Those issues indirectly affected the population welfare through its 

direct impact on the efficacy and efficiency of the investments in the highway. The 

conflictive status of the road required a long time to be solved, and supplemental 

money was needed to both attend the impacted population and maintain unfinished 

road segments which were not being effectively used by the society. 

In 2022, the Brazilian Federal Government tried to grant the BR-381/262 (MG/ES) 

segment. The result was the auction cancelation due to the lack of private partner 

interest. It was the fourth time that the “Highway of Death” auction was cancelled. 

The road sector private agents argued that the project was too risky – as it required 

massive investments and could suffer from several external interferences –, and it 

would require higher financial compensation to be taken. 

A second interesting case is the BR-163 north segment between the states of Mato 

Grosso (MT) and Para  (PA). This segment was constructed in the 1970s, but it has 

never been completely paved until recently. The typical road segment picture was 

kilometers of stuck trucks for weeks during raining periods. As those trucks mostly 

carried perishable beans to the Brazilian northern ports, they had several economic 

losses strictly associated with the poor road condition. 

The BR-163 north segment is also symbolic because it crosses a large legal protected 

indigenous area. To mitigate potential negative environmental and social impacts of 

the road paving – as deforestation, illegal extractivism and so forth –, the Brazilian 

government released the “BR-163 Sustainable Plan” (Plano BR-163 Sustentável) in 

2006. The plan was designed to improve the institutional quality of civil society 

organizations in the region in terms of its monitoring, evaluation, and information 

system, as well as expanding the mechanisms of social participation and control. 

Due to its critical environmental sensibility, the BR-163 project received massive 

demands from environmental and indigenous organizations. To cover some of those 

requirements, the Environment and Renewable Natural Resources (IBAMA) listed 

13 conditions to be met by the National Highway Infrastructure Department (DNIT) 

in paving the road. Among them, it included a study on the need to build passages 
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for animals, a Monitoring Program for Water Courses, an implementation schedule 

for the Fire Fighting Program, and that the DNIT should inform IBAMA and the 

National Institute for Colonization and Agrarian Reform (INCRA) on the occurrence 

of quilombola communities found in influence of the highway segment. In practice, 

those needs implied additional economic and bureaucratic costs. In addition, the 

buildings in the BR-163 north segment were paralyzed several times due to native 

people interventions claiming for environmental protection and conservation. It 

incurred in several schedule delays and conflicts on land rights. Even in 2020, some 

BR-163 north segments were not fully paved.  

Another segment of the BR-163 in the Serra da Caixa Furada in the state of Mato 

Grosso (MT) presented huge geological issues in a duplication building. In 2014, it 

occurred a landslide in the road, which implied 5 years of complete stoppage in the 

building. Due to its geology complexity, the building resumption and the 

reconstruction of the destructed highway demanded several additional financial 

efforts. The investments applied in the initial stage were rather inefficient as the 

population was not able to use the incomplete road duplication. In addition, more 

money was required to recover the collapsed highway segment and to maintain the 

already constructed (but not used) road segments. Figure B1 summarizes how 

geographical, environmental, and physical human costs may impact road 

infrastructure projects. 

 

Figure B1. Geographical, environmental, and human physical costs in infrastructure 
projects 

 

Source: authors’ elaboration. 
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The high infrastructure project risk heterogeneity in Brazil, which resulted in empty 

auctions as in the “Highway of Death” case, forced the Brazilian road sector 

authorities to rethink the assumptions guiding the rate of return methodology used 

to establish tariffs and economic-financial balances in the sector.  Recent resolutions 

(6.002/2022, 6.003/2022 and 6.004/2022) on the calculation methodology of the 

Weighted Average Cost of Capital (WACC) were approved in December 2022 by the 

National Land Transportation Agency (ANTT). 

The pivotal new resolutions aim was to include the main risk components in road 

infrastructure projects to calculate the federal highway sector WACC. To do so, the 

ANTT established several measurable indicators related to traffic demand, 

geographical, environmental, and physical human costs of road projects. For 

instance, the responsible actors must report the road length crossing legal protected 

areas, urban areas, and hilly areas. Also, the ANTT 6.002/2022 resolution included 

measures related to road projects expropriation and interferences costs, illegal 

urban occupation, and traffic demand risk. 

Whilst the new resolutions focus on new road concession projects – including both 

brownfield and greenfield projects –, they provide us some reliable (and 

measurable) indicators that can be adapted to predict the feasibility and correct 

measurement errors of different types of road investments, as building, paving, 

duplication, enhancements and so forth. As the new ANTT methodology relies on 

real infrastructure projects, they are based on computable and highly replicable 

measures. Relying on the infrastructure-development literature (Holl, 2012; Lu et 

al., 2022; Martí n-Barroso, Nunez-Serrano, and Velazquez, 2015; Medeiros et al., 

2021b; Zhang, Hu, and Lin, 2020) and measures based on real Brazilian 

infrastructure project costs, in the next sections we propose some cost-related IVs 

to overcome endogeneity issues in road investment variables. 

In short, we propose several geographical, environmental, and human physical 

infrastructure project costs to correct measurement error in highway investment 

variable. As several inefficiencies are likely to occur in the developing country 

context, we might expect the highway measure to be inflated, implying a higher value 

per kilometer of road. It puzzles the relationship between road infrastructure and 

economic activity as a larger number of roads (in monetary terms) is needed to 

generate an additional unit of output, tending to downward biased OLS road 

elasticity estimates. By instrumentalizing our highway variable by strong and 

exogenous cost-related instruments, we intend to fix (or alleviate) measurement 

error bias.   
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C. Non-random allocation IVs rationality: avoiding (or alleviating) 

omitted variable bias of highway investment 

Even using cost-related IVs to instrumentalize highway investments and potentially 

correct measurement error, omitted variable bias from non-random road placement 

may persist. Correcting for measurement error from infrastructure projects 

inefficiencies is just a (important) part of the problem, but it is likely not enough to 

eliminate endogeneity bias related to the propensity of certain localities to receive 

federal highway interventions. 

First, governments might allocate roads to underdeveloped regions to promote 

regionally balanced economic growth or directing highway investments to more 

developed localities – wherein the expected return to road investment is higher – to 

foster national economic growth. If it occurs, naí ve OLS regressions would be 

underestimated in the former context, whilst overestimated in the latter. 

To correct those issues, several studies have relied on LCP-MST instruments to 

generate exogenous sources of variation for highway measures based on a global 

minimization cost network. We can easily apply the LCP-MST method to Brazilian 

data as well as several other economies. In a more general and replicable way, we 

can stablish targeted points based on road network data. Starting and ending points 

of a road receiving federal investments are clearly potential hub candidates. From 

these core cities, we could calculate LCP-MST hypothetical networks and generate 

instruments for highway measures. For instance, the capital Brasí lia is the starting 

point for all radial roads, whilst for longitudinal, transversal, or diagonal roads, 

starting and ending points represent economic, touristic, or even political hubs. In 

this way, this approach might provide a comprehensive and highly replicable way of 

stablishing hubs in studies whereby targeted cities are not so clear.  Other way to 

identify potential hubs is through historical Census data – for instance, highly 

populated cities hundreds of years ago – or historical plans. Then, the same LCP-MST 

procedure might be applied to generate IVs to correct non-random placement of 

road investments. 

In addition, the LCP-MST allow us to include the main infrastructure costs in the 

minimization cost path. In other words, we might be interested in minimizing the 

global network cost not only based on Euclidean distances, but also on the main 

geographical, environmental, and human physical costs. As we argued in the 

previous section, Brazil has several infrastructure costs and risks constraints, and 

including those characteristics in the minimization LCP-MST procedure can enhance 

our constructed instrument and empirical strategy. Some studies have used raster 

data to include geographical costs in the minimization path (Faber, 2014), approach 

we improve by adding environmental and human physical indicators. 

Second, governments might be guided by political reasons, as to regionally connect 

the country. If political allocation bias occurs, we could expect OLS estimates be 
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biased towards zero. In Brazil, we have the Brasí lia Plan case proposed by Bird and 

Straub (2020) to instrument local road improvements in a political biased road 

policy context. We also have the Brasí lia JK Road Cruise, which is an extension of the 

Brasí lia Plan and includes some additional targeted cities. In both cases, the 

rationale behind the instruments is that the national Brazilian government in the 

1950s and 1960s aimed to connect the whole country having the new capital Brasí lia 

as the central point of the network, and municipalities in the way among Brasí lia and 

the end points were incidentally connected. In this sense, we can use those historical 

plans to generate exogenous instruments – based on the distance from the 

hypothetical lines connecting cities targeted by the plans to Brasí lia – for highway 

investments.  

Third, by using highway investment flows disaggregated by intervention types – as 

building, paving, duplications, enhancements and so forth – as we will propose in 

this study and describe in further detail in the next section, we also need to correct 

endogeneity bias from the propensity to a locality already connected by a highway 

in the start period to receive a road intervention. In the Brazilian case, we might 

anticipate the federal government prioritizing road segments with critical traffic 

intensity or traffic accidents. In addition, in the context of underdeveloped 

economies as Brazil, poor institutions, scarce economic resources, and low planning 

capacity tends to narrow extensive planned road networks around the country, 

confining infrastructure interventions to just attend infrastructure demanding 

localities. If it occurs, municipalities crossed by those critical segments are an 

obvious intended group, and an upward bias in OLS estimates is expected. We can 

generate “potential road intervention areas” instruments based on traffic safety or 

traffic intensity data, which we believe are available for several countries. The 

rationality behind this instrument is that, conditional on controls, municipalities 

already connected by roads in the start period and farther to “potential road 

intervention areas” are more likely to (inconsequentially) receive highway 

investments to reduce traffic levels and accidents in the critical areas and its 

surrounding. However, this “luck” at receiving a federal road intervention would be 

unrelated to economic or political reasons, providing us a potentially suitable 

instrument. 

In short, we propose a range of LCP-MST, historical and “potential road intervention 

areas” instruments to correct for the non-random placement of roads. As 

governments might be guided by political and economic reasons, we could observe 

downward or upward bias in OLS regressions. By using a “free from measurement 

error” road variable, our proposed non-random allocation instruments have the 

rough aim to correct for remaining omitted variables biases.   
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D. National Highway Investments 

To measure the impact of national highway investments on local (municipal) 

economic activity, we construct a new dataset of national investment flows at the 

municipal level from 2007 to 2018. To this end, we use two main publicly available 

datasets.  

The first one concerns data of investment flows in the highway sector of the Federal 

Government's Growth Acceleration Program (PAC). This dataset includes annual 

information on road investment flows for each one of the 27 Brazilian states, 

including a brief description of each intervention. As an illustrative example, it is 

reported whether there was a building intervention on Highway 1 between Local X 

(it can be the name of a municipality, the number of a km of a road or other local as 

a port, a connection with another road infrastructure as state or municipal and so 

forth) and Local Y. The data allows us to differentiate interventions in road 

construction, paving, duplication, enhancements, or maintenance. 

The second one refers to the National Highway System (SNV) georeferenced road 

data made available by the National Highway Infrastructure Department (DNIT). 

From this data, it is possible to identify the length of each road segment, its condition 

(paved, duplicated and so forth), and the places (municipalities) crossed by each one 

of the intervention road segments. 

The PAC dataset is not georeferenced, which implies we have restricted information 

about whether and in which extent a municipality is crossed by an intervention. To 

create a national highway investment dataset at the municipal level, we combine the 

PAC’s data description of each intervention and the georeferenced SNV data. 

The first step was to identify the treated highway codes and its starting and ending 

points from the intervention description of the PAC data.  Next, the PAC treated 

highways were linked to the SNV geolocalized data using the highway code and their 

starting and ending points. It should be noted that the starting and ending points of 

the two datasets are not fully compatible, which made it necessary to manually 

match them one by one. 

Second, we calculated the total PAC intervention road length by municipality and use 

it to measure the share of the road length in the municipality in relation to the total 

intervention road length. As we have investment data only by intervention, we use 

the measured share to compute the highway investment by municipality. It should 

be noted that the maintenance intervention descriptions barely describe the state 

and the highway code. In this sense, it was not possible to geolocate this type of 

investment at the municipal level, and they were excluded from further analysis. 

Therefore, the investments refer to building and paving, and duplications and 

enhancements. The Figure D1 exhibits the PAC highway interventions. 
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Figure D1. Federal Highway Investments: Municipal Data Construction 

 

Source: authors’ elaboration. 

 

To illustrate how the proportion was measured, we show in Figure D1 the example 

of the municipality of Nova Era, which was crossed by an PAC intervention in the 

highway BR-381. The total road length covered by one of the buildings in the BR-381 

was 163 km, whilst the total investment on it in 2009 was R$ 10.8 million. Around 

25 km (15%) of the intervention road segment crosses Nova Era. Multiplying the 

road intervention proportion of 15% for Nova Era by the total intervention highway 

investment, the municipality directly received around R$ 1.6 million in investments 

in 2009. Then, the same procedure was performed annually for all interventions and 

treated municipalities. 

Figure D2 shows the sum of PAC highway investments distributed by municipality 

between 2007 and 2018. The program directly reached out 703 municipalities, 

totalizing R$ 77.3 billion, excluding investments in road maintenance. This data is 

particularly relevant as granular data on infrastructure investment is quite limited 

(Brooks and Liscow, 2019). In most cases around the world, data is aggregated at the 

national level, and it is difficult to standardize. 

Figure D3 shows the highway investments path during the PAC using the constructed 

data. The federal highway investments more than duplicated in the PAC’s period in 

comparison with the previous decade (Medeiros et al., 2021b). Our data similarly 
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follows the PAC investments growth pattern27, presenting a constant rising during 

the first years. From 2015, the highway PAC investment abruptly dropped following 

several political and economic Brazilian crisis. 

Whilst our municipal data seems to be rather representative and provides a novel 

and important source to measure local impacts of road national investments, it has 

some practical issues. First, as our investment measure is based on road lengths 

crossing municipal boundaries, large area municipalities might overestimate 

highway investments. For instance, a municipality can receive a wide road segment, 

but its economic center be far from the nearest road. Whether it occurs, we could 

observe and highway investment overestimation. This problem is critical in the 

North and Mid-West regions. Second, as exposed by several studies (Caldero n and 

Serve n, 2014; Straub, 2011), monetary measures as ours are more likely to be 

constrained by institutional issues as inefficiency, corruption, and harmful 

bureaucracy. In this sense, a suitable identification strategy is needed at measuring 

the causal highway investment impact on local outcomes using this data. 

As robustness checks, we will also try two additional road variables. The first one is 

a dummy variable assuming value one if the municipality received a road investment 

during the PAC period, and zero otherwise. The second one is the road length growth 

rate between 2006 and 2018. In this case, we use 2006 data from the 2007 National 

Transport Logistics Plan (PNLT) and 2018 data from DNIT28. 

 

 
27 We cannot fully compare our data with the one from Medeiros et al. (2021b) as they accounted for 
maintenance expenses. However, they compared the road investments annual average of R$ 12.31 
billion in the PAC period against an annual average of R$ 5.26 billion between 1995 and 2006. 
28 We can likely observe measurement error in the road length variable as well, as the PNLT and DNIT 
files are not fully comparable. In addition, there is methodological variations over the years in relation 
to road classifications as federal, state level and so forth. Then, this variable should be used with 
caution. 



156 
 

 

Figure D2. Federal Highway Investments by Municipality 

 

Source: authors’ elaboration. Black lines are state boundaries. 

 

Figure D3. PAC Highway Investments (2022 R$ billion): Georeferenced Municipal 
Data 

 

Source: authors’ elaboration. Notes: the values do not account for investments in maintenance. 
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E. Infrastructure project cost-related IVs 

To construct the cost-related IVS we use a set of variables representing 

environmental, geographical and expropriation costs at the municipal level. The next 

subsections describe in detail the proposed variables. 

 

1. Environmental costs 

At the environmental scope, we use georeferenced data of legal protected areas29 

available in the National Registry of Conservation Units (CNUC), maintained by the 

Ministry of the Environment (MMA). Then, we merge this data with the 

municipalities boundaries shapefile to identify whether a legal protected area 

intersects a municipality. Our variable is a dummy which assumes value 1 if the 

municipality is intersected by a legal protected area, and 0 otherwise. 

Second, we utilize the environmental embargo terms data of the Brazilian Institute 

of Environment and Renewable Natural Resources (IBAMA) inspection system. 

Environmental embargoes represent penalties applied to prevent an exploratory 

activity from continuing. The embargos also serve to prevent ongoing damage and 

promote environmental recovery. For instance, penalties are applied to prevent 

activities with potential to damage the environment, such as deforestation, 

pollution, and hunting. The application of environmental embargoes by IBAMA 

occurs mainly in cases where the degradation or damaging activity involves 

permanent legal protected areas. To generate our variable, we first aggregate the 

number of embargoes in the five previous years (2002-2006)30 from the PAC by 

municipality. Hence, we create a dummy variable which assumes value 1 if there was 

an environmental embargo in the municipality during this period, and 0 otherwise. 

We also try the share of forest area in relation to the total municipality area in 2006 

as a third option. This variable came from MAPBIOMAS (Souza et al., 2020) land 

cover and land use data, which can be obtained at the municipal level. Whilst this 

variable can capture an important cost of infrastructure building, it may lack 

variation as Brazil has an enormous forest area. In this sense, weak instrument 

issues might be expected. 

It is important to point out that the institutions accountable for the data are utterly 

independent from municipalities. The legal protected areas data are administered 

by the Brazilian (federal) environmental protection system and are controlled by the 

Chico Mendes Institute for Biodiversity Conservation (ICMBio), as part of the 

National System of Nature Conservation Units (SNUC). Similarly, IBAMA is a federal 

 
29 The data are divided into six groups: Federal Full Protection and Sustainable Use Conservation 
Units, State Full Protection and Sustainable Use Conservation Units, and Municipal Full Protection 
and Sustainable Use Conservation Units. 
30 We take the 5-years sum to avoid potential outliers at using annual data.  
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agency related to the MMA. In this sense, concerns about the environmental IVs 

exogeneity condition are quite reduced. 

The rationale behind the environmental IVs is that they impact the feasibility and 

the efficiency of a highway investment. Conditional on controls, we can expect 

environmental issues causing delays and rising infrastructure projects costs, which 

in turn may (indirectly) affect outcome variables. 

 

2. Geographical costs 

To construct geographic-related IVs we rely on a few studies measuring 

infrastructure effects on local outcomes using this kind of identification approach 

(Holl, 2012; Lu et al., 2022; Martin-Barroso, Nunez-Serrano, and Velazquez, 2015; 

Medeiros et al., 2022; Zhang, Hu, and Lin, 2020). All those works utilize some 

measure based on slope, elevation, ruggedness, or altitude. 

Our preferred measure is the share of the municipality area with slope above 20%, 

which corresponds to hilly areas. This variable is highly related to road construction 

in the world and in Brazil, as DNIT defines maximum values for slope to be applied 

to the construction of highways and local roads. Slope is characterized by the 

relation between a gradient and a corresponding distance in a very small scale, 

which is unlikely to affect any development outcome directly at the aggregated 

municipal level.  To calculate this variable, we use slope raster data from the National 

Institute for Space Research (INPE), which allows us to count the number of slope 

pixels above the 20% cutoff. Then, we generate the share of hilly pixels in relation to 

the total pixels as our main geographic IV. 

We could try several other geographical variables as additional IVs. The first 

candidate is the municipal average altitude. The second is an elevation-based 

measure, calculated as the percentage of non-plain areas in the total municipality 

area (Lu et al., 2022). Both variables are made available by INPE. Other variables 

could be average rain, temperature, the proportion of mass water in the total 

municipal area, longitude, and latitude.  All those variables are available in public 

dataset from the IBGE and the National Information System on Water Resources 

(SNIRH) of the National Water Agency (ANA). 

However, it is important to note that all those potential IVs are much more likely to 

violate the exclusion restriction than our preferred slope measure. Geographical 

variables measured as average altitude, elevation, rain or even temperature has been 

used to instrumentalize several other independent variables. The most common 

case is institutions, in which we can cite the study of Iasco-Pereira, Romero and 

Medeiros (2021) using latitude, longitude, temperature, rainfall and altitude as IVs 

to municipal institutional quality in a growth equation like ours. If geographical IVs 

affects economic growth through pathways other than highway building, exclusion 
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restriction is likely to be violated (Felton and Stewart, 2022). In addition, whilst the 

slope variable has a strict relationship with highway building norms in Brazil, some 

of the other variables may suffer from excess of generality. For instance, even in a 

high (low) altitude or elevation municipality, there exist unlimited (limited) areas 

with adequate slope to construct highways.    

Like the environmental cost IVs, we expect an indirect impact of geographic costs on 

outcome variables through the infrastructure measure. Geology complexity tends to 

raise the level of road investments as well as its efficiency. On the other hand, 

geographical cost is more easily predicted in the study design phase of the 

infrastructure project, which might imply hilly regions to be avoided by planners 

following engineering guidelines. Then, the relationship between geographical 

instruments will depend on the opposite forces of the higher costs in geographically 

complex areas and the ability of planners to avoid those areas. 

 

3. Expropriation and interferences (human physical) costs 

 

To quantify expropriation (human) costs we use urban infrastructure building, 

demographic, and land conflict variables. In the urban context, our preferred 

variable is the share of urban infrastructure31 building in relation to the total 

municipality area. For this, we use land use and land cover data made available by 

MAPBIOMAS (Souza et al., 2020), extracted at the municipal level. Our second 

measure is populational density, measured as the number of inhabitants divided by 

the area (km²) of the municipality in 2000. The source is the 2000 Demographic 

Census of the Brazilian Institute of Geography and Statistics (IBGE). 

Those urban related demographic variables represent only a part of the problem. It 

is likely that policymakers will avoid highly dense areas precisely to avoid economic 

costs of expropriating households and properties. Most of the federal highway 

extension run through rural areas. However, these areas can also present different 

cost levels related to human expropriation and interference issues. As seen in 

Section 3, there are localities where the population have invaded highway segments 

claiming their land rights. In this sense, there are also additional costs arising from 

expropriation and interference in the context of rural and isolated regions. 

To represent expropriation and interferences costs in the rural context, we use data 

from the CEDOC Dom Toma s Balduí no of the Pastoral Land Commission (CPT) on 

land conflicts. More specifically, we get data on households involved in land conflicts 

in 2006. From that, we aggregate the number of households involved in land conflicts 

and create a dummy variable which assumes value 1 if the municipality present one 

 
31 This variable is related to construction and infrastructure and is used to generated urban density 
areas measures. 
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or more land conflicts, and 0 otherwise. This variable is a proxy for expropriation 

and interferences costs in the rural context, as it captures the propensity of a 

municipality to be impacted by some kind of dispute in rural areas. We argue that 

the greater the number of households involved in conflicts in the rural context, the 

greater tends to be the expropriation costs and the larger tends to be the propensity 

of the population to interfere in potential road buildings crossing the municipality. 

All expropriation and interference costs are likely to violate the exclusion restriction 

for some reasons. First, urban agglomeration – as sometimes measured as 

population density, which in turn is highly correlated with urban infrastructure 

building as well – can promote economic growth. Second, rural land conflicts might 

come from disputes on land rights but also involve economic interests as 

extractivism and deforestation. If it occurs, we might observe a direct human 

expropriation and interference effect on economic outcomes. It increases our 

concern on exclusion restriction and makes critically necessary a careful model 

specification including several control variables to block potential instrument-

outcome confounding. 

The rationality of these IVs is that physical human costs – as expropriation and 

interferences – will demand more resources and time to build road projects, 

conditional on controls. In this way, they also affect outcome variables trough 

infrastructure. In this case, however, we need to be further careful in including 

control variables as physical human costs are expected to be highly correlated with 

demographic variables. To the best of our knowledge, urban infrastructure has not 

been tested as an urban cost-related instrument before as well as our land conflict 

variable is a novel measure to expropriations and interferences in the rural context. 
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F. Non-Random Road Allocation IVs 

We use three sets of instruments to represent the “local propensity to receive road 

interventions”. The first ones are constructed using the LCP-MST method. The second 

ones are based on the Brasí lia Plan. The third one is based on traffic intensity data. 

 

1. LCP-MST IVs 

To construct our LCP-MST hypothetical road system, we first need to point out the 

hubs that the network is supposed to connect through a minimization cost process 

(Dijkstra, 1959; Kruskal, 1956)32. Our preferred strategy considers the starting and 

ending points of highways receiving PAC investments as hubs. To identify those 

central cities, we use SNV georeferenced data and generate a dummy variable 

assuming value 1 if a municipality is a starting or an ending point of a PAC 

intervention road, and zero otherwise. For instance, the BR-262 presents the 

municipalities of Cariacica (ES) and Corumba  (MS) as starting and ending points. 

Cariacica is part of the Metropolitan Region of Vito ria (ES), the capital of the state of 

Espí rito Santo (ES), a coastal area containing one of the most important ports of the 

country (the Vito ria Port). On the other hand, Corumba  is a hinterland municipality 

in the Mid-West region bordering Bolí via. In addition, Corumba  is one of the most 

important and richer cities of the Mato Grosso do Sul (MS) state. This example 

elucidates how the starting and ending points approach might raise hubs of different 

kinds. Corumba  seems to represent a mixture of a political hub – due to its proximity 

to an international border – and economic hub – due to its economic importance to 

the regional economy. In a similar rationality, we can identify several other (74 

ending or starting points) hubs related to economic, political, touristic or a 

combination of those factors and others. This approach gains relevance specially in 

country contexts wherein road policies have no clear direction, being hard to predict 

which places governments aimed to connect. 

Second, we also try to stablish hubs based on the centrality of cities. For this end, we 

use the Regions of Influence of Cities (REGIC/IBGE) survey of 2007. The REGIC 

classifies municipalities in order of its influence on other cities in terms of goods and 

services provided – for instance, the existence of universities, airports, health 

facilities and so forth. Then, municipalities are classified into five classes: 

metropolis; regional capitals; sub-regional centers; zone centers; and local centers. 

Local centers are municipalities with less influence on others, while metropolis are 

the most central Brazilian cities. In 2007, the two up classes were represented by 75 

(1,4%) municipalities out of 5,280 municipalities evaluated, a similar number 

 
32 Following Faber (2014), we use the Dijkstra’s (1959) optimal route algorithm to compute least 
costly construction paths between any bilateral pair of targeted nodes. Then, we use these bilateral 
cost parameters in combination with Kruskal’s (1956) minimum spanning tree algorithm to identify 
the subset of routes that connect all targeted nodes on a single continuous graph subject to global 
network construction cost minimization. 
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compared to our ending and starting point hubs. To better illustrate the survey 

hierarchy, Vito ria (ES) is classified as regional capital (second class) and Corumba  

(MS) as zone center (fourth class). Based on the REGIC, we create a hub dummy 

variable assuming value 1 if the municipality is a metropolis or a regional capital, 

and zero otherwise. It is important to note that this approach considerably modifies 

the considered hubs in comparison with using the starting and ending points of 

intervention roads, suggesting that this survey captures more local related influence 

that might be far from federal government aims. In addition, this approach is more 

likely to exclude potential political hubs from being hubs if they are more regionally 

isolated, as the survey is based on urban centrality and the linkages among cities. 

Third, we use population historical data from IBGE to stablish which we call 

“historical” hubs. We create a dummy variable assuming value 1 if a municipality had 

population above 50,000 in 1920, and zero otherwise. This condition is observed for 

98 municipalities, then considered hubs. If current infrastructure policies are just 

following a path dependence dynamic - represented by historical variables as 

population in 1920- aiming to serve historically important cities with restrained 

demand for transportation infrastructure, the considered highly populated 

historical cities are obvious hub candidates. In this case, we obviously observe a 

concentration of hubs in coastal areas, as those were first populated due to its access 

facilities and proximity to ports. 

Next, we use the LCP-MST approach to generate hypothetical road networks 

minimizing the costs of connecting all the stablished hubs for each one of our three 

proposed groups of hubs. First, we generate simpler hypothetical networks based 

on Euclidean distance (see Figure F1). Then, we improve the Euclidean distance-

based hypothetical networks by including our preferred geographical, 

environmental, and human physical costs in the LCP-MST minimization cost path. 

To create an infrastructure project cost weight, we rely on the ANTT resolutions 

discussed in earlier sections. ANTT stablished several geographical, environmental, 

and human physical indicators, among others. For each one of those cost-related 

measures, the ANTT methodology provided weights capturing their importance on 

the feasibility of transport projects. We filter the indicators related to geographical, 

environmental, and human physical costs, and recalculate the importance (weight) 

of each cost on project feasibility. Environmental costs received a weight of 23.43%, 

geographical costs 42.68%, and human physical costs 33.89%. Then, we multiply 

our preferred cost-related measures – sloped area for geographical costs, a weighted 

averaged of legal protected areas and embargos for environmental costs, and a 

weighted average of urban infrastructure and land conflicts for human physical costs 

– of each cost type by their respective ANTT weights. Our cost index ranges from 0 

to 1, and the higher its value the more it costs to build roads. Finally, the cost-related 

weights are interacted with the Euclidean distance and this interaction is used at 

calculating the LCP-MST network for each one of three potential hubs approaches. 
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It is important to note the that those novel infrastructure cost-related hypothetical 

networks are potential instruments for correcting (or alleviating) both 

measurement error and omitted variable bias from non-random allocation of road 

investments, constituting an important contribution of this work. We also try 

additional cost measures as robustness checks. 

From the hypothetical networks, we create our non-random allocation LCP-MST 

instruments. The instruments are measured as the log form of the distance from the 

municipality center to the nearest hypothetical road segment. Figure F2 shows the 

cost-related ANTT LCP-MST network using starting and ending road points as hubs. 

REGIC and Historical networks can be seen in Figures F3 and F4. 

 

Figure F1. LCP-MST hypothetical road networks: Euclidean distance 

 

Source: Authors’ elaboration. 
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Figure F2. LCP-MST hypothetical road networks: starting and ending road points 
using cost-related weights in the cost minimization path 

 

Source: authors’ elaboration. 

Figure F3. LCP-MST hypothetical road networks: REGIC hubs using cost-related 
weights in the cost minimization path 

 

Source: Authors’ elaboration. 
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Figure F4. LCP-MST hypothetical road networks: Historical hubs using cost-related 
weights in the cost minimization path 

 

Source: Authors’ elaboration. 

 

2. Political IVs 

We rely on Bird and Straub (2020) to construct political IVs based on historical plans. 

Bird and Straub constructed a hypothetical radial (straight line) network connecting 

the capital Brasí lia to eight important cities around the country. By linking the 

capital to those cities, the radial network established corridors, which incidentally 

connected other localities along the way. The rationality behind this instrument in 

that, conditional on controls, the Brasí lia Plan was designed to attend quite different 

(political) purposes than modern productivity growth. 

Our first political IV is measured as the distance from a municipality center to the 

nearest Brasí lia Plan segment. We replicate the same index proposed by Bird and 

Straub (2020) based on buffer zones around the straight lines and the shares of each 

municipalities’ area within each zone. 

Our second political IV is based on the Juscelino Kubitschek (JK) Road Cruise, an 

extension of the Brasí lia Plan. We digitalized old maps to construct our second 

historical instrument. The JK Road Cruise’s main goals were the same described by 

Bird and Straub (2020) for the Brasí lia Plan, i.e., to serve the future Brazilian capital 

and to connect the whole country to spread the governmental power on the territory 

as well as to expand the consumption of domestically produced goods and services 

(Brasil, 1956a, 1956b, 1958). The JK Road Cruise included more hubs than the 
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Brasí lia Plan, likely indicating the political bias at developing some specific regional 

areas not directly connected to Brasí lia. We follow the procedure in Bird and Straub 

(2020) and apply it to the JK Cruise network, generating 60 km buffer zones around 

the lines. Then our two political IVs are distance-based indices from the 

municipalities centers to the lines weighted by the municipal area shares into the 

buffer zones. Figure F5 exhibits our two historical networks based on the Brasí lia 

Plan. 

 

Figure F5. Historical IVs: the Brasí lia Plan 

(a)  (b)  
 

Source: (a) Bird and Straub (2020); (b) authors’ elaboration. 

 

3. “Potential Road Intervention Areas” IV 

An additional econometric issue at using highway investment variables is related to 

the intervention heterogeneity. The vast empirical literature on infrastructure, 

growth and productivity has mainly examined the impact of the construction of new 

roads (Foster et al., 2023a, 2023b). However, in our data, around a half of the total 

federal highway investment was devoted to duplications and enhancements in 

localities already connected by the national road network in the PAC starting year.  

To overcome this issue, we calculate an original instrument based on traffic intensity 

data in federal roads. 

First, we use 2007 PNLT data on traffic intensity to identify “potential road 

intervention areas”. In this data, road segments are based on the classification A-F of 

traffic intensity commonly used in transportation engineering studies in Brazil. 

Based on the vehicles flows in federal roads, highways segments are classified from 

A (light traffic) to F (heavy traffic, including huge traffic jams). Then, we consider as 
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heavy traffic roads those segments classified as D, E and F, being of potential federal 

government focus. Figure F6 shows the “potential road intervention areas”.  

 

Figure F6. Potential Road Intervention Areas 

 

Source: authors’ elaboration. 

 

Next, our instrument is calculated as the distance from the municipality center to 

the nearest heavy traffic road segment. The rationale behind this IV is that, 

conditional on controls, municipalities already connected by federal roads in 2006 

and located close, but not so close to “potential road intervention areas” are more 

likely to (inconsequentially) receive highway investments to reduce traffic levels in 

the critical areas. In this case, including demographic controls is a critical condition 

to ensure IV validity, as we can expect heavy traffic roads crossing urban 

agglomerations being directly impacted by events involving people, as accidents 

paralyzing roads, need for traffic signals reducing cars travel speed and so forth. 

In Figure F6 we can visualize two patterns relating PAC road interventions and the 

“potential road intervention areas”. First and obvious, some heavy traffic areas were 

targeted by the PAC. In this case, we can rely on the inconsequential unit approach 

and exclude aimed cities. Second, there are interventions close, but not so close to 

the “potential road intervention areas”, likely indicating that highway investments 
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were in some part (incidentally) directed to surrounding cities to reduce traffic 

congestion in the critical points.  
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G. Control Variables 

Our main dependent variable is the Gross Domestic Product (GDP) per capita. We 

made this choice based on the related literature in which we observe a massive use 

of GDP as one of the interest variables33. In addition, GDP per capita can be used as a 

proxy for productivity, which allow us to calculate the return rate to highway 

investments and provide a more interpretable result for policy purposes. As 

robustness checks, we also use employment, firms, and wages as labor market 

measures. 

To avoid omitted variable bias, we include an extensive set of controls. Our control 

variables are based on the same group of studies described previously in Figure 2.1. 

We also include some controls to capture specificities related to the Brazilian 

context. 

First, we include the initial level of the dependent variable as a control for the 

municipality development level. Municipalities with different levels of development 

can present different returns to infrastructure investments. In addition, this variable 

captures convergence effects (Cosci and Mirra, 2017). It is an important control as 

policymakers may act to promote balanced economic growth or to foster national 

growth by targeting developed regions. We also include the share of poor people to 

control for policies oriented to poverty alleviation, which is a characteristic of the 

most part of the PAC period. 

Second, as road infrastructure is served by the federal and state level governments, 

we include state fixed effects to control for regional infrastructure policies. This 

variable also controls for other types of state fixed effects - as institutional, 

geographical, environmental, and political. This control is also relevant because the 

PAC realized several investments in road maintenance. However, this road 

investment data is only available at the state level and cannot be disaggregated by 

municipality. In this sense, this fixed effect controls for omitted variable bias of other 

types of PAC road investments. 

Third, municipality area is included to control for territorial size. This controls is 

critical as our main infrastructure variable is based on the PAC road length crossing 

a municipality area. Then, including this variable is important to not confusing the 

true highway investment impact on outcomes with the highway impact in a 

municipality that has just a large area, then receiving more investments because it 

has a longer highway extension. In addition, this variable also accounts for the 

possibility that smaller/larger places may have other systematic differences such as 

institutional quality (Bird and Straub, 2021). As an additional municipal size 

 
33 About 69% of the studies listed in Figure 2.1 used GDP, GDP per capita or some productivity 
measure as one of the main dependent variables. 
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variable, we include the formal workforce measured as the log of the number of 

formal workers in 2007. 

Fourth, we include one important control related to the agricultural sector. The PAC 

period coincided with a period of basic products prices appreciation. If governments 

aimed at meeting the existing demands of their growing economic sectors, 

investments in infrastructure may have been partly due to the performance of the 

agriculture sector in the period (Medeiros et al., 2021b). Then, municipalities 

specialized in agriculture may have been more likely to receive federal road 

investments. In this sense, we use the agriculture share in GDP in 2007 as a control. 

Fifth, infrastructure investments are seen as an important determinant of exports 

performance (Coşar and Demir, 2016; Duranton et al., 2014). Exporting 

municipalities may have received a higher priority in the allocation of national 

infrastructure investments in the period of good performance in the international 

market. Then, we include the share of exports of each municipality in the national 

exports in 2007 as a control. 

Sixth, we include a set of controls related to complementary infrastructures. 

Municipalities well connected with federal and state road networks as well as port 

and rail infrastructures might be able to benefit more from national road 

investments. For example, municipalities served with high quality state road 

network can observe a greater impact of federal highways investments, as these 

roads may complement other well-established infrastructures. Then, we include the 

distance (km) to the nearest port, railroad, and state road in 2006 as controls. 

Seventh, we control for the historical propensity to a municipality to receive federal 

road investments. Our variable is the number of railway stations in 1920, the main 

transportation modal in that period. This variable controls for the propensity of 

municipalities to receive highway investments because they are historically well 

located in the country's transportation network. This control is particularly 

important to the validity of our physical human (interferences and expropriation) 

IVs as well as our LCP-MST IV based on historical hubs, as they are correlated with 

demographic and historical variables. In other words, controlling for this variable 

also alleviates the problem of non-random allocation of federal investments based 

on past infrastructure. We also control for the distance to the capital Brasí lia to 

overcome political related policy aims.  

Finally, we include some controls related to the municipal social and institutional 

background. Those controls are relevant, specially to avoid validity issues on our 

geographical and expropriation IVs. Geography is the key determinant of climate and 

natural resource endowments, and it can also play a fundamental role in the disease 

burden, transport costs, and the extent of diffusion of technology from more 

advanced areas that societies experience. It therefore exerts a strong influence on 

agricultural productivity and the quality of human resources (Rodrik, Subramanian 
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and Trebbi, 2004). In addition, if expropriation and interferences are related to land 

conflicts influenced by economic activity as extractivism, a direct effect of it on 

economic growth may exist. In this sense, we first include the Index of Municipal 

Institutional Quality (IQIM)34 to control for municipal institutions. Second, we 

include the population share with master or doctoral degree as a proxy for local 

social development. Table G1 summarizes our variables and their respective data 

sources. Table G2 shows descriptive statistics. 

 
34 The IQIM index was constructed considering three dimensions: first, the degree of participation of 
the population in the public administration, considering capacity of decision, equality, deliberation, 
and influence in resource allocation; second, the financial capacity of each municipality, the degree to 
which the funds are generated by the local economic activity without federal resource transfers; and 
third, the management capacity of local government. The IQIM was normalised to stay between zero 
and one. The closer to one the index is, the better the institutions are (Iasco-Pereira, Romero, and 
Medeiros, 2021). 



172 
 

 

Table G1. Variables description 

Type Variable Description Source 

Highway 
Highway Investments PAC Highway Investments (R$) MINFRA 

Highway Intervention 
1 if the municipality received PAC highway investments and 

0 otherwise 
MINFRA 

 Highway Length Highway length (km) growth between 2006 and 2018 
PNLT (2007) and 

DNIT 

IVs 

Legal Protected Area 
1 if the municipality is intersected by a legal protected area 

and 0 otherwise 
MMA 

Environmental Embargos 
1 if there was an environmental embargo in the 
municipality during this period and 0 otherwise 

IBAMA 

Forest area Forest area (km²)/Total area (km²)  

Slope 
Area with slope above 20% (which corresponds to hilly 

areas) (km²)/Total area (km²) 
INPE 

Altitude Average altitude (m) INPE 

Non-plain areas Non-plain areas/Total area (km²) INPE 

Urban infrastructure Building and infrastructure area (km²)/ Total area (km²) 
MAPBIOMAS 
(Souza et al., 

2020) 

Population density Population/Area (km²) IBGE 

Land conflicts 
1 if there exist a household involved in land conflicts and 0 

otherwise 
CEDOC - CPT 

Cost Index 1 First component of the MCA - 

Cost Index 2 Second component of the MCA - 
LCP-MST Starting and Ending 

Road Points 
Distance to the nearest LCP-MST hypothetical line using 

starting and ending road points as hubs 
MINFRA 

LCP-MST REGIC 
Distance to the nearest LCP-MST hypothetical line using 

REGIC first three classes as hubs 
REGIC 

LCP-MST Historical 
Distance to the nearest LCP-MST hypothetical line using 
historical cities (cities with population above 50,000 in 

1920) as hubs 
IBGE 

Brasí lia Plan 
Distance to the nearest Brasí lia Plan line (weighted by the 

municipality area share into the buffer zone) 
Bird and Straub 

(2020) 

JK Road Cruise 
Distance to the nearest JK Road Cruise line (weighted by the 

municipality area share into the buffer zone) 
Brasil (1956) 

Potential Road Intervention 
Area 

Distance to the nearest road segment classified as heavy 
traffic (D, E or F classification) 

PNLT (2007) 

Non-Random Allocation Index First component of the PCA - 

Dependents 

GDP per capita Gross Domestic Product (R$)/Population RAIS and IBGE 
Wages Wages (R$) RAIS/MTE 

Firms Number of firms RAIS/MTE 

Employment Number of workers RAIS/MTE 
 GDP per capita, lagged Gross Domestic Product (R$)/ Number of workers in 2007 IBGE 

 Share of poor people (%) Population below the poverty line/Total population  

Controls 

Area Municipality area (km²) IBGE 

Work force Number of formal workers RAIS/MTE 
Agriculture share (%) Agriculture Value Added (R$)/ Total Value Added (R$) IBGE 

Exports share (%) Municipal Exports (US$) / National Exports (US$) MDIC 
Distance to state road Distance (km) to the nearest state road MINFRA 

Distance to railroad Distance (km) to the nearest railroad MINFRA 
Distance to port Distance (km) to the nearest federal port MINFRA 

Railways stations in 1920 Number of railways stations in 1920 
Rede Ferrovia ria 

Federal S/A 

Distance to Brasí lia Distance (km) to the capital Brasí lia  

Institutional Quality Institutional quality municipal index (IQIM) 
Ministry of 
Planning 

Human Capital (%) Workers with master of doctoral degree/Total workers RAIS/MTE 

Source: Author’s elaboration. Note: IBGE - Brazilian Institute of Geography and Statistics; ANA - National Water 

and Sanitation Agency; BCB - Central Bank of Brazil; INPE - National Institute for Space Research; IBAMA - 

Brazilian Institute of Environment and Renewable Natural Resources; MDIC - Ministry of Development, 

Industry, Commerce and Services; MINFRA - Ministry of Infrastructure; PNLT - National Transport Logistics 

Plan; MT – Ministry of Transport; RAIS - Annual Social Information Report; MTE - Ministry of Labor and 

Employment; SIM - Mortality Information System; MS – Ministry of Health.
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Table G2. Descriptive statistics 

Type Variable Obs Mean Std. Dev. Min Max 

Highway 
Highway Investments 5,570 1.273 3.449 0.000 14.772 

Highway Intervention 5,570 0.125 0.331 0.000 1.000 

IVs 

Legal Protected Area 5,570 0.424 0.494 0.000 1.000 

Environmental Embargos 5,570 0.385 0.487 0.000 1.000 

Forest area 5,568 0.377 0.261 0.000 0.994 

Slope 5,565 0.134 0.177 0.000 0.745 

Altitude 5,507 412.476 293.136 0.000 1628.000 

Non-plain areas 5,575 0.998 0.009 0.749 1.000 

Urban infrastructure 5,555 0.020 0.069 0.000 1.000 

Population density 5,565 3.134 1.417 -2.029 9.454 

Land conflicts 5,575 0.063 0.243 0.000 1.000 

Cost Index 1 5,550 0.000 1.141 -1.375 4.578 

Cost Index 2 5,550 0.000 1.020 -2.573 10.767 

LCP-MST Starting and Ending Road 
Points 

5,565 3.706 2.110 -13.816 6.941 

LCP-MST REGIC 5,565 3.825 1.074 -0.112 6.763 

LCP-MST Historical 5,565 4.233 1.307 -1.141 7.344 

Brasília Plan 5,566 4.965 1.635 1.609 7.310 

JK Road Cruise 5,568 4.181 1.648 1.204 7.310 

Potential Road Intervention Area 5,565 4.605 1.452 -3.546 7.670 

Non-Random Allocation Index 5,565 0.000 1.634 -2.279 2.851 

Dependents 

GDP per capita 5,564 0.329 0.346 -2.130 3.083 

Wages 5,563 0.068 0.142 -0.632 7.093 

Firms 5,548 0.178 0.290 -0.301 4.170 

Employment 5,564 0.793 0.498 -2.272 6.529 
 GDP per capita, lagged 5,564 2.791 0.724 1.096 6.533 
 Share of poor people (%) 5,565 41.057 22.776 0.700 90.760 

Controls 

Area 5,570 6.205 1.279 1.271 11.980 

Work force 5,536 6.049 2.169 0.000 15.023 

Agriculture share (%) 5,564 0.220 0.153 0.000 0.839 

Exports share (%) 5,570 0.000 0.001 0.000 0.034 

Distance to state road 5,565 5.599 37.296 0.001 740.818 

Distance to railroad 5,565 333.165 258.873 0.353 1271.520 

Distance to port 5,565 91.916 215.006 0.031 2081.518 

Railways stations in 1920 5,570 0.536 2.877 0.000 107.000 

Distance to Brasília 5,565 1075.822 445.390 0.000 2872.215 

Institutional Quality 5,505 3.023 0.551 1.000 4.904 

Human Capital (%) 5,564 0.001 0.004 0.000 0.174 
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H. Correcting measurement error bias and selecting suitable cost-

related IVs: the second step 

Before we start the econometric analysis, we present some correlations and 

preliminary tests on our instruments. Figure H1 shows the correlation matrix 

including the highway investment variables and the proposed instruments. Highway 

variables are positively associated with environmental and expropriation IVs and 

negatively with geographical IVs. Obviously, in most cases, IVs correlate more 

strongly with other IVs of the same type. For instance, urban infrastructure and 

population density are highly correlated. The same occurs (in lower magnitude) 

between legal protected areas and environmental embargos or sloped areas and 

altitude. The lower correlation among cost-related IVs of different types seems to 

suggest that those variables capture different spectrums of infrastructure project 

costs. It is important to note that the forest area variable presented a very poor 

correlation with the highway variables, which places some caution on the following 

analyses. 

Table H1 shows naí ve OLS estimations on the relationship between highway 

investments and cost-related IVs. We include the full set of controls. In Table H2, we 

include naí ve OLS estimations without controls. We also try our highway 

intervention dummy variable as an additional highway investment variable (Tables 

H3-H4). The results remain unchanged. Results corroborates the relationships 

observed in the correlation matrix. As we can see, the estimated coefficients for 

forest area and populational density are not significant, likely indicating a weak IV 

issue. In Column 10, we include all IVs together, and results remain unchanged. In 

Columns 11-15 we include combinations of our preferred instruments for 

environmental, expropriation and geographical costs. Results suggest that all our 

preferred cost-related IVs are significantly correlated with the highway investment 
variables. 

In Table H5, we propose a set of specifications based on our preferred cost-related 

IVs. As we believe different kinds of costs affecting infrastructure investment in 

different forms and magnitudes, we start by including at least one measure of each 

cost type by specification. We have not included forest area and population density 

in Table 1 regressions as they did not influence highway investments. To check 

instrument strength, we report KP Wald F and effective F (Olea and Pflueger, 2013) 

statistics. Both statistics are robust to heteroskedasticity and weak instruments, and 

the effective F statistic works suitably even in multiple instruments setting 

(Andrews, Stock and Sun, 2019), as proposed by our identification strategy.  

The first stage regressions show that our cost-related IVs are strong predictors of 

the long-term changes in the national highway investments at the municipal level. 

Nonetheless, some IVs seem to violate exclusion restriction or unconfoundedness. 
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Figure H1. Correlation matrix: National Highway investments and potential cost-related IVs 

Variables 

Infrastructure 
Cost-Related IVs Non-Random Allocation IVs 
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Log Highways Investments 1.00                   

Highway Intervention 0.97 1.00                  

Legal Protected Areas 0.12 0.12 1.00                 

Environmental Embargo 0.19 0.17 0.24 1.00                

Forest Area 0.01 0.01 0.14 0.09 1.00               

Sloped Area -0.08 -0.07 0.11 0.05 0.08 1.00              

Altitude -0.10 -0.08 -0.05 -0.05 -0.24 0.19 1.00             

Non-Plain Areas -0.10 -0.08 0.01 -0.03 0.06 0.04 0.17 1.00            

Urban Infrastructure 0.15 0.14 0.08 0.06 -0.12 -0.04 -0.02 -0.16 1.00           

Populational Density 0.06 0.06 -0.06 -0.09 -0.31 0.14 0.04 -0.09 0.58 1.00          

Land Conflicts 0.10 0.09 0.14 0.12 0.09 -0.09 -0.13 0.02 0.00 -0.10 1.00         

Cost Index 1 0.18 0.17 0.76 0.71 0.13 0.36 -0.01 -0.03 0.29 0.08 0.12 1.00        

Cost Index 2 0.17 0.15 -0.03 0.08 -0.14 -0.70 -0.14 -0.15 0.74 0.31 0.07 0.00 1.00       

LCP-MST Start/End Points -0.12 -0.10 -0.02 -0.03 0.17 0.02 0.09 0.08 -0.20 -0.26 0.00 -0.06 -0.16 1.00      

LCP-MST REGIC -0.11 -0.11 -0.05 -0.08 0.07 -0.03 0.02 0.00 -0.16 -0.31 -0.10 -0.12 -0.10 0.12 1.00     

LCP-MST Historical -0.08 -0.07 -0.07 -0.10 0.09 -0.11 -0.03 -0.03 -0.19 -0.29 -0.05 -0.16 -0.07 0.16 0.28 1.00    

Brasília Plan -0.02 -0.03 -0.06 -0.11 -0.04 0.10 -0.22 -0.09 -0.12 0.03 0.01 -0.09 -0.16 -0.11 -0.03 0.02 1.00   

JK Road Cruise -0.05 -0.05 -0.01 -0.05 -0.09 -0.02 -0.07 0.13 -0.21 -0.19 0.04 -0.08 -0.14 0.00 0.03 0.11 0.40 1.00  

Intervention Areas -0.08 -0.08 0.01 0.00 0.42 -0.26 -0.26 0.10 -0.25 -0.44 0.14 -0.12 -0.01 0.21 0.09 0.17 0.01 0.16 1.00 

Source: author’s elaboration. 
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Table H1. Highway Investments and Cost-Related IVs: Naive OLS Regressions 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Legal Protected 
Areas 

0.390***         0.350*** 0.434***  0.423***   

 (0.10)         (0.10) (0.10)  (0.10)   
Environmental 

Embargos 
 0.372***        0.276**  0.374***  0.367***  

  (0.11)        (0.11)  (0.11)  (0.11)  
Forest Area   -0.037       0.325      

   (0.24)       (0.26)      
Sloped Area    -1.270***      -1.126*** -1.364*** -1.199*** -1.362*** -1.201*** -1.141*** 

    (0.33)      (0.35) (0.33) (0.33) (0.33) (0.33) (0.33) 
Altitude     -0.001***     -0.001***      

     (0.00)     (0.00)      
Non-plain areas      -32.862***    -22.882**      

      (9.40)    (9.28)      
Urban 

Infrastructure 
      3.981***   3.316** 3.455*** 3.534*** 3.454*** 3.530*** 3.686*** 

       (1.28)   (1.37) (1.29) (1.29) (1.29) (1.29) (1.30) 
Populational 

Density 
       -0.041  -0.135      

        (0.14)  (0.14)      
Land conflicts         0.561** 0.486**   0.525** 0.542** 0.557** 

         (0.25) (0.25)   (0.25) (0.25) (0.25) 
Constant -5.289*** -5.361*** -5.597*** -5.262*** -5.668*** 26.971*** -4.451*** -5.572*** -5.553*** 18.795** -3.887*** -4.021*** -3.853*** -3.981*** -4.185*** 

 (1.32) (1.31) (1.32) (1.31) (1.31) (9.44) (1.33) (1.31) (1.31) (9.28) (1.34) (1.33) (1.33) (1.32) (1.33) 
Observations 5468 5468 5466 5468 5468 5468 5456 5468 5468 5455 5456 5456 5456 5456 5456 
R2 Adjusted 0.148 0.148 0.146 0.148 0.154 0.153 0.148 0.146 0.147 0.165 0.153 0.152 0.154 0.153 0.151 

All regressions include the following set of control variables: GDP per capita in 2006; state fixed effects; municipality area; work force; agriculture share; exports 
share; distance to the nearest state road; distance to nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional quality; 

human capital. Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01. 
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Table H2. Highway Investments and Cost-Related IVs: Naive OLS Regressions without controls 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Legal 
Protected 
Areas 

0.853***         0.527*** 0.853***  0.765***   

 (0.10)         (0.09) (0.10)  (0.10)   
Environmental 

Embargos 
 1.320***        1.100***  1.298***  1.228***  

  (0.10)        (0.10)  (0.10)  (0.10)  
Forest Area   0.087       -0.074      

   (0.17)       (0.16)      

Sloped Area 
   -1.579***      -1.473*** -1.734*** -1.651*** -1.558*** -1.503*** -

1.289*** 
    (0.21)      (0.22) (0.21) (0.21) (0.21) (0.21) (0.20) 

Altitude     -0.001***     -0.001***      
     (0.00)     (0.00)      

Non-plain 
areas 

     -33.504***    -22.878**      

      (8.83)    (9.55)      
Urban 

Infrastructure 
      7.325***   5.424*** 6.679*** 6.627*** 6.759*** 6.684*** 7.214*** 

       (1.17)   (1.39) (1.15) (1.13) (1.15) (1.13) (1.17) 
Populational 

Density 
       0.125***  0.064      

        (0.05)  (0.05)      
Land conflicts         1.505*** 0.910***   1.159*** 1.078*** 1.396*** 

         (0.26) (0.25)   (0.26) (0.25) (0.26) 
Constant 0.911*** 0.765*** 1.241*** 1.483*** 1.750*** 34.721*** 1.130*** 0.881*** 1.178*** 23.592** 1.013*** 0.865*** 0.952*** 0.803*** 1.216*** 

 (0.05) (0.05) (0.08) (0.06) (0.09) (8.82) (0.05) (0.15) (0.05) (9.52) (0.06) (0.06) (0.06) (0.06) (0.06) 
Observations 5570 5570 5568 5565 5507 5570 5555 5565 5570 5493 5550 5550 5550 5550 5550 
R2 Adjusted 0.015 0.035 -0.000 0.006 0.010 0.008 0.021 0.002 0.011 0.078 0.041 0.060 0.048 0.066 0.036 

Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01.
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Table H3. Highway Investments and Cost-Related IVs: Naive Logit Regressions without controls 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

                
Legal Protected Areas 0.731***         0.518*** 0.750***  0.691***   

 (0.08)         (0.09) (0.08)  (0.08)   
Environmental 

Embargos 
 1.005***        0.864***  1.010***  0.964***  

  (0.08)        (0.09)  (0.08)  (0.09)  
Forest Area   0.155       0.105      

   (0.15)       (0.16)      
Sloped Area    -1.335***      -1.453*** -1.501*** -1.424*** -1.366*** -1.303*** -1.111*** 

    (0.25)      (0.27) (0.25) (0.26) (0.26) (0.26) (0.26) 
Altitude     -0.001***     -0.000**      

     (0.00)     (0.00)      
Non-plain areas      -14.920***    -11.203***      

      (3.82)    (4.14)      
Urban Infrastructure       3.616***   1.923*** 3.177*** 3.236*** 3.252*** 3.296*** 3.566*** 

       (0.52)   (0.63) (0.49) (0.49) (0.50) (0.50) (0.54) 
Populational Density        0.113***  0.101**      

        (0.04)  (0.04)      
Land conflicts         0.913*** 0.507***   0.660*** 0.631*** 0.854*** 

         (0.13) (0.14)   (0.14) (0.14) (0.14) 
Constant -2.301*** -2.419*** -2.000*** -1.783*** -1.618*** 12.946*** -2.034*** -2.307*** -2.019*** 8.422** -2.212*** -2.335*** -2.257*** -2.382*** -1.972*** 

 (0.06) (0.06) (0.07) (0.05) (0.07) (3.81) (0.04) (0.13) (0.04) (4.12) (0.07) (0.07) (0.07) (0.07) (0.05) 
Observations 5570 5570 5568 5565 5507 5570 5555 5565 5570 5493 5550 5550 5550 5550 5550 
R2 Adjusted                

Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01. 
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Table H4. Highway Investments and Cost-Related IVs: Naive Logit Regressions 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

                
Legal Protected 

Areas 
0.339***         0.326*** 0.399***  0.394***   

 (0.10)         (0.10) (0.10)  (0.10)   
Environmental 

Embargos 
 0.201*        0.122  0.205*  0.201*  

  (0.11)        (0.11)  (0.11)  (0.11)  
Forest Area   0.221       0.559**      

   (0.26)       (0.28)      
Sloped Area    -1.328***      -1.478*** -1.505*** -1.278*** -1.506*** -1.282*** -1.252*** 

    (0.39)      (0.40) (0.39) (0.39) (0.39) (0.39) (0.39) 
Altitude     -0.001***     -0.001***      

     (0.00)     (0.00)      
Non-plain areas      -17.157***    -11.308***      

      (4.98)    (4.28)      
Urban 

Infrastructure 
      1.767***   1.339* 1.342** 1.434** 1.341** 1.432** 1.514** 

       (0.62)   (0.70) (0.63) (0.62) (0.63) (0.63) (0.63) 
Populational 

Density 
       -0.089  -0.133      

        (0.11)  (0.11)      
Land conflicts         0.242 0.195   0.219 0.236 0.244 

         (0.17) (0.17)   (0.17) (0.17) (0.17) 
Constant -6.683*** -6.727*** -6.866*** -6.484*** -6.856*** 10.030** -6.276*** -6.766*** -6.847*** 5.570 -5.744*** -5.852*** -5.728*** -5.831*** -5.959*** 

 (1.09) (1.09) (1.10) (1.11) (1.09) (5.02) (1.12) (1.10) (1.10) (4.33) (1.12) (1.12) (1.12) (1.12) (1.13) 

Observations 5467 5467 5465 5467 5467 5467 5455 5467 5467 5454 5455 5455 5455 5455 5455 
R2 Adjusted                

All regressions include the following set of control variables: GDP per capita in 2006; state fixed effects; municipality area; work force; agriculture share; exports 
share; distance to the nearest state road; distance to nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional quality; 

human capital. Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01. 
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Table H5. Federal Highway Investments and Municipal GDP per capita Growth, 2007-2018: Second Step 2SLS IV Regressions 
 1 2 3 4 5 6 7 8 9 10 11 
Second stage            
Log Highways 
Investments 

0.0287*** 0.0243** 0.0074 0.0024 0.0251*** 0.0336*** 0.0415*** 0.0347** 0.0259*** 0.0339*** 0.0240*** 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) 
First stage            
Legal Protected 
Areas 

0.4580***  0.2859*** 0.3914*** 0.4478*** 0.4997*** 0.5096***  0.4255*** 0.4719***  

 (0.10)  (0.10) (0.10) (0.10) (0.10) (0.10)  (0.10) (0.10)  
Environmental 
Embargos 

 0.3876***      0.4292*** 0.3390*** 0.3721***  

  (0.11)      (0.11) (0.11) (0.11)  
Sloped Area -1.4738*** -1.2936***   -1.4695*** -1.7850*** -1.7880*** -1.5968*** -1.5083*** -1.8155***  
 (0.33) (0.33)   (0.33) (0.33) (0.33) (0.33) (0.33) (0.33)  
Altitude   -0.4280***         
   (0.06)         
Non-plain Areas    -28.3482***        
    (9.77)        
Urban 
Infrastructure 

5.0701*** 5.2007*** 5.0793*** 5.0443*** 5.0867***    4.9258***  
 

 (1.22) (1.22) (1.19) (1.23) (1.22)    (1.21)   
Land Conflict     0.5528** 0.5469**      
     (0.25) (0.25)      
Cost Index 1           0.0160*** 
           (0.00) 
Cost Index 2           0.0329*** 
           (0.01) 
Observations 5466 5466 5331 5466 5466 5478 5478 5478 5466 5478 5466 
KP Wald F Statistic 21.128 17.582 28.017 15.729 17.215 18.282 24.594 18.772 18.012 19.699 27.275 
Effective F Statistic 20.857 18.677 29.628 14.354 16.429 15.538 24.599 18.671 18.795 20.054 33.915 
2SLS critical value 
for tau=5% 

21.250 21.256 22.085 25.517 23.039 17.848 3.238 4.208 22.554 14.091 14.888 

2SLS critical value 
for tau=10% 

13.299 13.292 13.639 15.597 13.984 11.258 3.118 3.636 13.806 9.009 9.888 

R² 0.17 0.19 0.24 0.23 0.19 0.15 0.10 0.14 0.19 0.15 0.19 

All regressions include the following set of control variables: GDP per capita in 2007; state fixed effects; municipality area; work force; agriculture share; exports 
share; distance to the nearest state road; distance to nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional quality; 

human capital. Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01.
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In columns 1 and 2 we include our preferred measures of each infrastructure cost 

type. In both cases, effective F statistics are not large enough when compared to the 

2SLS critical value for 𝜏 equal to 5%, but they are using 𝜏 equal to 10%. Next, we try 

several other IV combinations in columns 3-10. 

In columns 3 and 4 we replace sloped area for altitude and non-plain areas, 

respectively. In column 5 we include the land conflict variable together with urban 

infrastructure, whilst in column 6 we exclude urban infrastructure and maintain 

land conflict. The low effective F statistic in columns 4, 5 and 6 points to weak 

instruments issues and likely estimation bias. We then investigate the reasons for 

those issues. In addition, the non-significant and quite smaller highway parameters 

in columns 3 and 4 raises concerns in using altitude and non-plain areas as IVs for 

highway investments. 

Regarding geographical IVs, our main suggestion is the inadequacy of the altitude – 

at least as it is measured, being the municipal average altitude – and the non-plain 

area variables as IVs. Geography variables, as average altitude, are used as controls 

in income equations as ours to capture the direct geography impact (through 

agricultural productivity, for instance) and the indirect impact (through the 

institutional quality channel) on economic growth. In our estimations, the direct 

impact seems to be non-negligible – and, whether it occurs, geography affects both 

income and highway investments, and estimation bias is expected. This finding 

cautions against using the average altitude measure as IV in studies about 

infrastructure and development in underdeveloped countries as Brazil. On the other 

hand, our preferred measure (sloped area) is the proportion of hilly areas in relation 

to the total municipal area, which means that even municipalities located in high 

(low) average altitude areas might have a large (small) proportion of their area 

geographically suitable for road investments at lower costs. The differences between 

these two geographical variables can be seen in the far from high correlation (0.18) 

between them (Figure A1), suggesting that they are predicting geographical issues 

quite distinctly. In addition, the non-plain area presents quite small variation (mean 

around 0.99 and standard deviation around 0.01), as Brazil is characterized by small 

parcels of non-plain areas, and this lack of variation might be affecting econometric 

results. 

On the expropriation and interferences variables, results put caution about using 

this kind of infrastructure project costs as IV. Urban infrastructure seems to be a 

suitable but slightly weak IV for highway investments, as its inclusion in the model 

lowers effective F statistics below the critical values in some specifications (it can be 

seen comparing columns 10 and 9, for instance). Even conditional on several 

controls, urban infrastructure is likely impacting economic growth directly. 

Similarly, land conflicts seem to have a non-negligible direct effect on growth, which 

is likely related to economic related land disputes as extractivism. 

Next, in columns 7 and 8 we try combinations of our preferred environmental and 

geographical cost IVs, as they seem to be more plausibly exogenous in comparison 

to the human physical costs. Both specifications are satisfactory, presenting effective 

F statistics suitable at the 5% level. In column 9 we include urban infrastructure 
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together with our suitable IVs based on columns 7 and 8. We can note that, when 

including the urban infrastructure measure, effective F statistic decreases to a level 

smaller than the 2SLS critical values when choosing 𝜏 equal to 5%. This finding 

corroborates the results obtained in the previous columns and raises some caution 
at using expropriation and interferences measures as IVs to road investments. 

Finally, we also try some composite cost indexes (Cost Index 1 and Cost Index 2) 

based on dimensionality reduction methods35, as cost types may have some 

complementary characteristics. In addition, working with a smaller number of 

instruments might alleviate weak IV and overidentification concerns. We generate 

our composite indexes using our preferred measures ‒ legal protected areas, 

environmental embargos, sloped area, and urban infrastructure. Cost Index 1 can be 

interpreted as an environmental cost index, whilst Cost Index 2 can be seen as a 

geographical-expropriation index.  Results in column 11 shows a significant effect of 

both cost indexes on highways and effective F statistics considerably increases. 

Then, we turn our analysis to the IVs parameters signals and magnitude. 

Environmental IVs positively affect federal highway investments. This result was 

expected as more environmental costly places might demand a higher level of 

investments per kilometer of road. Similarly, the higher the expropriation and 

interferences costs, the higher the value of investments in federal highways tends to 

be demanded. On the other hand, geographical costs negatively affect highway 

investments. One possible explanation is that geographic costs can be more easily 

predicted from engineering studies in the design phase of the infrastructure project. 

In this sense, its negative sign may represent the fact that these regions are being 

avoided by planners. On the other hand, expropriation costs have a highly 

unpredictable aspect as they are impacted by legal disputes involving people. In the 

same way, environmental costs might raise additional bureaucracy due to 

environmental licenses not initially planned in the infrastructure project design, as 

well as lead to new legal disputes involving native populations claiming for their 

rights on legally protected areas.  

Regarding the signal and magnitude of the highway investment parameter in the 

second stage, it corroborates an extensive number of previous studies which found 

a positive highway investment impact on local outcomes. Based on our specifications 

with suitable effective-F statistics, we find a second step highway investment 

elasticity between 0.02 and 0.03, which is in the range between 0 and 0.06 found by 

Foster et al. (2023b) based on a huge number of infrastructure econometrics studies. 

 
35 We use Multiple Correspondence Analysis (MCA) for mixed data to generate our composite indexes. 
We use the first two components as they accumulate 59% of the original data variation. We name the 
first component as Cost Index 1, and it is calculated by 𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 1 = 0.58 ∗
𝐿𝑒𝑔𝑎𝑙 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐴𝑟𝑒𝑎 + 0.51 ∗ 𝐸𝑚𝑏𝑎𝑟𝑔𝑜𝑠 +  0.13 ∗ 𝑆𝑙𝑜𝑝𝑒𝑑 𝐴𝑟𝑒𝑎 + 0.08 ∗ 𝑈𝑟𝑏𝑎𝑛 𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒. 
The second component, which we name Cost Index 2, is calculated by 𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 2 = 0.00 ∗
𝐿𝑒𝑔𝑎𝑙 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐴𝑟𝑒𝑎 + 0.01 ∗ 𝐸𝑚𝑏𝑎𝑟𝑔𝑜𝑠 +  0.49 ∗ 𝑆𝑙𝑜𝑝𝑒𝑑 𝐴𝑟𝑒𝑎 + 0.58 ∗ 𝑈𝑟𝑏𝑎𝑛 𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒. 
We expect the Cost Index 1 to be more plausibly exogenous, as it received lower influence from the 
urban infrastructure variable. 
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In Foster et al. paper, the average elasticity for the transportation sector is 0.03, 

which brings our estimates even closer to the basis. 

Finally, we can discuss the direction of the measurement error bias by comparing 

our estimations in Table 1 with OLS regressions (see Table H6). As we expected, the 

OLS elasticities (around 0.004) are downward biased. Whereas inefficiencies and 

delays due to geographical, environmental, and human physical issues occur, 

measurement error takes place by inflating the highway investment variable. In 

other words, more economic resources are needed to construct or improve a 

kilometer of road that will be finally used by the population. This measurement error 

leads to an underestimation of the strength of the (positive) association between 
transportation infrastructure and economic activity. 

By applying our second step identification strategy, we fixed (or alleviated) the 

expected measurement error underestimation bias. In this sense, our second step 

parameters may be understood as a kind of “free from measurement error” elasticity. 

Nonetheless, two obvious empirical issues remain. First, if our instruments are not 

fully or truly capturing the main infrastructure costs leading to inefficiencies, some 

measurement error bias might remain. This issue seems more troublesome for 

human physical IVs. Second, non-random allocation bias might exist even after 

correcting for measurement error in highway variable. The next section presents 

several tests on the latter bottleneck. 



184 
 

 

Table H6. Federal Highway Investments and Municipal GDP per capita Growth, 2007-2018: OLS Regressions 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Log Highways 
Investments 

0.0006 0.0004 0.0078*** 0.0069*** 0.0041*** 0.0043*** 0.0043*** 0.0042*** 0.0040*** 0.0040*** 0.0040*** 0.0036*** 0.0035** 0.0035** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
Log GDP 2007   -0.2792*** -0.2823*** -0.3227*** -0.3370*** -0.3390*** -0.3435*** -0.3444*** -0.3446*** -0.3446*** -0.3661*** -0.3721*** -0.3721*** 

   (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) 
Log Municipal 

area 
   0.0258*** 0.0136*** 0.0043 0.0042 0.0004 -0.0029 -0.0031 -0.0035 0.0126** 0.0134*** 0.0134*** 

    (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) 
Log employment     0.0269*** 0.0396*** 0.0394*** 0.0407*** 0.0424*** 0.0425*** 0.0427*** 0.0275*** 0.0268*** 0.0268*** 

     (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
Agriculture share 

(% GDP) 
     0.2852*** 0.2890*** 0.2780*** 0.2876*** 0.2872*** 0.2881*** 0.2898*** 0.2774*** 0.2774*** 

      (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 
Exports by 

municipality (% 
total) 

      5.3664 5.4599 5.6395 5.6710 5.7111 7.2610 7.4979 7.4931 

       (4.64) (4.61) (4.62) (4.63) (4.63) (4.70) (4.84) (4.84) 
Distance to 
Brasilia 

       -0.0001*** -0.0002*** -0.0002*** -0.0002*** -0.0001** -0.0001*** -0.0001*** 

        (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
Distance to the 

nearest state road 
        0.0007*** 0.0007*** 0.0007*** 0.0006*** 0.0006*** 0.0006*** 

         (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
Distance to the 
nearest port 

         0.0000 0.0000 0.0000 0.0000 0.0000 

          (0.00) (0.00) (0.00) (0.00) (0.00) 
Distance to the 
nearest railroad 

          0.0000 0.0000 0.0000 0.0000 

           (0.00) (0.00) (0.00) (0.00) 
Share of poor 
people (%) 

           -0.0042*** -0.0044*** -0.0044*** 

            (0.00) (0.00) (0.00) 
Number of railway 
stations in 1920 

            -0.0013 -0.0013 

             (0.00) (0.00) 
Institutional 

Quality 
            0.0198** 0.0198** 

             (0.01) (0.01) 
Graduate 

education (% 
workers) 

             0.0396 

              (0.72) 
Constant 0.3280*** 0.4168*** 1.1915*** 0.9970*** 1.0422*** 1.0023*** 1.0088*** 1.2527*** 1.3167*** 1.3100*** 1.2939*** 1.3994*** 1.3633*** 1.3633*** 

 (0.00) (0.04) (0.05) (0.05) (0.06) (0.05) (0.05) (0.08) (0.08) (0.09) (0.09) (0.10) (0.10) (0.10) 

Observations 5564 5564 5564 5564 5535 5535 5535 5535 5535 5535 5535 5535 5478 5478 

State FE N Y Y Y Y Y Y Y Y Y Y Y Y Y 
R2 Adjusted -0.000 0.071 0.237 0.242 0.256 0.265 0.265 0.268 0.271 0.271 0.271 0.284 0.285 0.285 

Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01. 



185 
 

 

I. Solving non-random allocation bias: the third step 

 

Table I1. Federal Highway Investments and Municipal GDP per capita Growth, 
2007-2018: 2SLS IV Regressions 

 1 2 3 4 5 6 
Second stage       
Log Highways Investments 0.0109** 0.0109** 0.0147*** 0.0144*** 0.0097* 0.0096** 
 (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) 
First stage       
Legal Protected Areas 0.4795***  0.4877***  0.4387***  
 (0.10)  (0.10)  (0.10)  
Environmental Embargos 0.3503***  0.3530***  0.3369***  
 (0.11)  (0.11)  (0.11)  
Sloped Area -1.4095***  -1.5196***  -1.6325***  
 (0.31)  (0.31)  (0.31)  

Cost Index 1 
 -

0.4253*** 
 0.2654***  0.2326*** 

  (0.02)  (0.05)  (0.05) 
Cost Index 2  0.2683***  0.3676***  0.3668*** 
  (0.05)  (0.07)  (0.07) 
LCP-MST REGIC -0.4213*** 0.3602***     
 (0.02) (0.07)     
LCP-MST Historical   -0.3840*** -0.3869***   
   (0.02) (0.02)   
JK Road Cruise     -0.3312*** -0.3312*** 
     (0.02) (0.02) 
Observations 5402 5391 5402 5391 5402 5391 
KP Wald F Statistic 118.735 162.994 116.089 158.400 112.011 151.930 
Effective F Statistic 111.454 122.519 111.443 121.939 96.225 103.699 
LIML critical value for tau=5% 19.954 21.214 19.696 20.974 20.885 22.720 
R² 0.23 0.23 0.22 0.22 0.23 0.23 

All regressions include the following set of control variables: GDP per capita in 2006; state fixed 
effects; municipality area; work force; agriculture share; exports share; distance to the nearest state 
road; distance to nearest railroad; distance to nearest port; railways stations in 1920; distance to 
Brasí lia; institutional quality; human capital. Robust standard errors reported in parentheses. * 0.1 

** 0.05 *** 0.01. 
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J. Robustness checks 

In this section, we present several robustness checks to our main results showed in 

the previous two topics. First, we propose a falsification test based on a novel 

planned road sample exercise. Second, we try other commonly used dependent 

variables. Third, we test two different measures of road infrastructure. Fourth, we 

run additional robustness check using the limited information maximum likelihood 
(LIML) estimator, bootstrap standard errors, and excluding potential outliers. 

 

1. Falsification test 

If our instruments are valid, they should affect the outcome only through the 

highway investment variable. Therefore, cost-related and non-random road 

allocation IVs should have no effect on local economic outcomes that are not in the 

highway investment pathway. A way to test the exclusion restriction is using 

falsification tests based on alternative study samples (Felton and Stewart, 2022; 

Pizer, 2016). A useful falsification sample would not be exposed to the treatment 

(highway investment), but it would be subjected to all the potential confounders that 

might be correlated with the instrument and the outcome, like demographic, 
economic, complementary infrastructure, and institutional features. 

To test the exclusion restriction, we specify a sample closely related to our study 

population but not receiving highway investments. First, we select all municipalities 

which had federal planned roads in 2006. We extracted this data from the same 2007 

PNLT shapefile. Second, we use the 2018 SNV shapefile to compare36 whether those 

planned roads in 2006 were still classified as planned in 2018. Next, we excluded 

those municipalities that presented planned roads for both years and received PAC 

investments, as it could capture an inefficiency or a long-time to build infrastructure 

issue. 

Following the DNIT road terminology, planned highways are those roads that do not 

physically exist yet. Practically, planned roads represent a hypothetical highway 

acting as a guideline intended to meet a potential traffic demand. In this sense, our 

rationality behind this falsification test is that places (hypothetically) crossed by 

planned roads were similarly demanding road infrastructure interventions, likely 

exposed to the same potential confounders as the full sample. As none of those 

municipalities received federal highway interventions, the falsification test is 

performed by including the IVs in an alternative specification of the outcome 

equation. Table J1 summarizes the results. We run the same specifications of Table 

2 using the planned roads sample and include our preferred cost-related IVs 
separately as well (columns 1 and 2). 

 
36 It is important to note that those two datasets are not fully comparable, as methodological changes 
occurred and some measurement error is expected. Then, results need to be taken with caution. 
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Table J1. Falsification test: OLS regressions 

 1 2 3 4 5 6 7 8 9 10 11 12 
Legal Protected 
Areas 

0.0256  0.0267  0.0272  0.0262  0.0250  0.0269  

 (0.03)  (0.03)  (0.03)  (0.03)  (0.03)  (0.03)  
Environmental 
Embargos 

0.0349  0.0344  0.0349  0.0334  0.0351  0.0342  

 (0.03)  (0.03)  (0.03)  (0.03)  (0.03)  (0.03)  
Sloped Area 0.0243  0.0217  0.0198  0.0207  0.0215  0.0204  
 (0.10)  (0.10)  (0.10)  (0.10)  (0.10)  (0.10)  
Cost Index 1  0.0219  0.0222  0.0226  0.0217  0.0219  0.0222 
  (0.02)  (0.02)  (0.02)  (0.02)  (0.02)  (0.02) 
Cost Index 2  0.0066  0.0073  0.0078  0.0072  0.0073  0.0075 
  (0.03)  (0.03)  (0.03)  (0.03)  (0.03)  (0.03) 
LCP-MST Starting 
and Ending Road 
Points 

  -0.0040 -0.0040     0.0164 0.0135   

   (0.01) (0.01)     (0.02) (0.02)   
Potential Road 
Intervention Area 

    0.0061 0.0056   0.0112 0.0098   

     (0.01) (0.01)   (0.02) (0.02)   
Brasí lia Plan       -0.0054 -0.0049 -0.0074 -0.0062   
       (0.01) (0.01) (0.02) (0.02)   
Non-random 
Allocation Index 

          -0.0081 -0.0075 

           (0.01) (0.01) 
Observations 403 400 403 400 403 400 403 400 403 400 403 400 
R² 0.41 0.40 0.41 0.40 0.41 0.41 0.41 0.40 0.41 0.41 0.41 0.40 

All regressions include the following set of control variables: GDP per capita in 2007; state fixed effects; municipality area; work force; agriculture share; exports 
share; distance to the nearest state road; distance to nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional quality; 

human capital. Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01.
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The results show that GDP per capita growth is not correlated with our proposed 

cost-related IVs in the falsification sample between 2007 and 201837. Conditional on 

controls, results suggest that our suitable cost-related and non-random allocation 

IVs do not violate exclusion restriction. These results increase confidence on our 
identification strategy. 

 

2. Outcomes 

In this section, we estimate the federal highway investments impact on employment, 

firms, and wages. This test is important to validate our empirical strategy and to 

confirm the highway investment influence on local outcomes. We use the 

econometric specification in column 10 of Table 2 and apply it to each one of the 

dependent variables using formal labor market data from RAIS/MTE. 

Table J2 shows the results. For all tested dependent variables, the cost-related and 

non-random allocation IVs are strong predictors of national highway investments. In 

addition, the signal and significance of the first stage coefficients remained quite 

similar, as well as remains positive the road impact on outcomes.  Our results suggest 

that our identification strategy is suitable not only for the GDP per capita variable, 

but that it might also be suitable for predicting the highway investment impacts on 
several other labor market local outcomes. 

 

Table J2. Federal Highway Investments and Municipal Outcomes Growth, 2007-
2018: 2SLS IV Regressions 

 1 2 3 
Second stage ∆Employment ∆Firms ∆Wages 
Log Highways Investments 0.0168*** 0.0214*** 0.0697*** 
 (0.00) (0.00) (0.01) 
First stage    
Cost Index 1 0.2207*** 0.2376*** 0.2133*** 
 (0.05) (0.05) (0.05) 
Cost Index 2 0.3808*** 0.4250*** 0.3683*** 
 (0.07) (0.07) (0.07) 
Non-random allocation Index -0.5069*** -0.5113*** -0.5056*** 
 (0.02) (0.03) (0.02) 
Observations 5141 5127 5141 
KP Wald F Statistic 146.472 149.102 145.535 
Effective F Statistic 114.103 117.330 112.904 
2SLS critical value for tau=5% 20.686 20.826 20.609 
R² 0.12 0.47 0.20 

All regressions include the following set of control variables: GDP per capita in 2007; state fixed 
effects; municipality area; work force; agriculture share; exports share; distance to the nearest state 
road; distance to nearest railroad; distance to nearest port; railways stations in 1920; distance to 
Brasí lia; institutional quality; human capital. Robust standard errors reported in parentheses. * 0.1 

** 0.05 *** 0.01. 

 
37 In unreported estimations, the exceptions are urban infrastructure and populational density 
variables, which presented significant coefficients in all specifications even controlling for past GDP, 
population, distance to complementary infrastructures and past infrastructure. This result seems to 
indicate that expropriation and interferences IVs in the urban context are likely violating exclusion 
restriction. On the other hand, the land conflict IV, which is related to the rural context, appears to be 
uncorrelated with GDP per capita growth in the falsification sample. 
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3. Highway investment measure 

Several studies correctly argues that monetary variables - such as the investment 

flows used in our study - may contain several measurement errors (Caldero n and 

Serve n, 2014; Kenny, 2009; Straub, 2011). To increase our empirical strategy 

reliability, we also try a dummy (intervention) measure of road infrastructure. 

Related studies have used similar measures to capture access to highways (Asher 

and Novosad, 2017; Frye, 2016; Michaels, 2008; Percoco, 2015; Zhang, Hu and Lin, 

2020). Our dummy variable assumes value 1 if the municipality was crossed by a 

PAC highway intervention, and zero otherwise. If there are too high measurement 

error in our preferred investment flow variable, the intervention dummy variable 

might alleviate the problem as it does not contain monetary values anymore. On the 

other hand, the intervention variable gives the same weight to all municipalities 

receiving highway investments, which is a not negligible empirical issue. Second, we 

try a road length variable following a vast strand of literature (Baum-Snow et al., 

2020; Duranton et al., 2014; Foster et al., 2023a, 2023b; Straub, 2011). Tables J3 and 

J4 summarizes the results using the same specifications following Table 2.1. As 

expected, the highway intervention parameters are positive and significant in all 

specifications, and the same holds for road length. The cost-related and non-random 

allocation IVs work in the same way as at using continuous highway investment 

flows, corroborating previous estimates. 

 

4. Additional robustness checks 

To raise confidence on our main estimates, we run the same specifications of Table 

2.1 using the LIML estimator (Anderson and Rubin, 1949). In the overidentification 

scenario as proposed by our identification strategy, 2SLS estimates might be biased 

towards OLS as the bias is proportional to the degree of overidentification (Angrist 

and Krueger, 2001). In overidentified models, LIML is approximately unbiased in the 

sense that the median of its sampling distribution is generally close to the population 

parameter being estimated. In addition, we also provide bootstrap confidence 

intervals. Young (2022) finds that bootstrapped confidence intervals perform better 

in real-world settings as heteroscedasticity and weak IV assumptions are likely 

violated. Tables J5 and J6 exhibits the results. In both cases findings remain 

unchanged, indicating that our main estimations are reliable. 

Next, we try several specifications excluding potential outliers. In this set of 

estimations, we use column 10 of Table 2.1 as our benchmark specification. Results 

are described in Table J7. In column 1, we drop all municipalities of the state of Sa o 

Paulo. Sa o Paulo is the richest Brazilian state, representing more than 30% of the 

national GDP. In addition, Sa o Paulo presents the best road infrastructure of the 

country, which is in substantial part privately managed. The major share of those 

high-quality roads is responsibility of the Sa o Paulo state government, being federal 

roads a small fraction of the total. The result might be a small fraction of the PAC 

highway investment directed to a high road demanding state, and an 

underestimation bias could be expected. In column 2, we exclude all municipalities 

pertaining to North region states. Those municipalities are characterized by large 
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territorial areas, which might bias our highway measure variable as it depends on 

the road length crossing the municipalities. In column 3, we exclude both Sa o Paulo 

and Northern municipalities. In column 4, we consider highway investment values 

smaller than R$ 50 million to be zero. This test is important as we relied on road 

length crossing municipal areas to construct our highway flow measure, and short 

road segments (and consequentially small investments values) might be poorly 

capturing a highway intervention. Finally, in column 5 we exclude municipalities in 

the top 1 and bottom 1 percentiles of GDP per capita growth. In general, findings 

remain almost unchanged. The most noticeable variation comes from the exclusion 

of Sa o Paulo municipalities. In columns 1 and 3, the elasticity is around 0.017, whilst 

our benchmark estimate is 0.012. This result suggest that municipalities of Sa o Paulo 
might be slightly downward biasing our estimates. 
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Table J3. Federal Highway Intervention and Municipal GDP per capita Growth, 2007-2018: 2SLS IV Regressions 
 1 2 3 4 5 6 7 8 9 10 
Second stage           
Highway Intervention 0.1613*** 0.1594*** 0.1236** 0.1206** 0.1057** 0.1065** 0.1231** 0.1215** 0.1262** 0.1239** 
 (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) 
First stage           
Legal Protected Areas 0.0445***  0.0332***  0.0405***  0.0322***  0.0325***  
 (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  
Environmental Embargos 0.0208**  0.0235**  0.0228**  0.0226**  0.0226**  
 (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  
Sloped Area -0.0940***  -0.1309***  -0.0997***  -0.1175***  -0.1185***  
 (0.03)  (0.03)  (0.03)  (0.03)  (0.03)  
Cost Index 1  0.0227***  0.0185***  0.0215***  0.0178***  0.0179*** 
  (0.00)  (0.00)  (0.00)  (0.00)  (0.00) 
Cost Index 2  0.0264***  0.0349***  0.0280***  0.0301***  0.0303*** 
  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 
LCP-MST Starting and Ending 
Road Points 

-0.0392*** -0.0396***     -0.0129*** -0.0129***   

 (0.00) (0.00)     (0.00) (0.00)   
Potential Road Intervention Area   0.0326*** 0.0330***   0.0091* 0.0102**   
   (0.00) (0.00)   (0.00) (0.00)   
Brasí lia Plan     -0.0316*** -0.0317*** -0.0135*** -0.0128***   
     (0.00) (0.00) (0.00) (0.00)   
Non-random Allocation Index         -0.0503*** -0.0507*** 
         (0.00) (0.00) 
Observations 5402 5391 5190 5178 5469 5457 5126 5115 5126 5115 
KP Wald F Statistic 114.906 159.088 96.673 137.599 124.326 172.444 72.896 90.639 107.042 148.520 
Effective F Statistic 104.916 128.927 96.316 118.452 107.287 131.457 74.150 85.131 105.074 125.647 
2SLS critical value for tau=5% 19.156 18.280 18.468 17.721 19.684 19.487 24.055 24.703 19.174 17.705 
R² 0.22 0.22 0.24 0.24 0.23 0.23 0.24 0.24 0.23 0.24 

All regressions include the following set of control variables: GDP per capita in 2007; state fixed effects; municipality area; work force; agriculture share; exports 
share; distance to the nearest state road; distance to nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional quality; 

human capital. Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01. 
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Table J4. Federal Highway Length and Municipal GDP per capita Growth, 2007-2018: 2SLS IV Regressions 
 1 2 3 4 5 6 7 8 9 10 
Second stage           
Highway Length 0.0599*** 0.0618*** 0.0392* 0.0402* 0.0413* 0.0423** 0.0464** 0.0481** 0.0433** 0.0449** 
 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 
First stage           
Legal Protected Areas 0.0631**  0.0412  0.0553**  0.0407  0.0376  
 (0.03)  (0.03)  (0.03)  (0.03)  (0.03)  
Environmental Embargos 0.0735**  0.0816***  0.0842***  0.0747**  0.0742**  
 (0.03)  (0.03)  (0.03)  (0.03)  (0.03)  
Sloped Area -0.0595  -0.0824  -0.0950  -0.0639  -0.0433  
 (0.08)  (0.08)  (0.08)  (0.08)  (0.08)  
Cost Index 1  0.0473***  0.0397***  0.0441***  0.0386***  0.0374*** 
  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 
Cost Index 2  0.0284**  0.0287**  0.0278*  0.0265*  0.0216 
  (0.01)  (0.01)  (0.01)  (0.01)  (0.01) 
LCP-MST Starting and Ending 
Road Points 

-0.0962*** -0.0963***     -0.0365*** -0.0371***   

 (0.01) (0.01)     (0.01) (0.01)   
Potential Road Intervention Area   0.0834*** 0.0836***   0.0682*** 0.0690***   
   (0.01) (0.01)   (0.02) (0.02)   
Brasí lia Plan     -0.0701*** -0.0700*** 0.0159 0.0171*   
     (0.00) (0.00) (0.01) (0.01)   
Non-random Allocation Index         -0.1205*** -0.1204*** 
         (0.01) (0.01) 
Observations 5402 5391 5190 5178 5469 5457 5126 5115 5126 5115 
KP Wald F Statistic 78.667 105.397 67.451 90.156 79.975 106.662 49.599 59.166 73.442 97.481 
Effective F Statistic 74.122 97.551 73.153 96.950 64.749 85.279 49.766 60.408 71.571 98.108 
2SLS critical value for tau=5% 19.242 16.584 19.462 15.656 20.755 18.607 24.240 23.681 19.691 16.136 
R² 0.21 0.21 0.23 0.23 0.23 0.22 0.23 0.23 0.23 0.23 

All regressions include the following set of control variables: GDP per capita in 2007; state fixed effects; municipality area; work force; agriculture share; exports 
share; distance to the nearest state road; distance to nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional quality; 

human capital. Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01.
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Table J5. Federal Highway Investments and Municipal GDP per capita Growth, 2007-2018: LIML IV Regressions 

 1 2 3 4 5 6 7 8 9 10 
Second stage           
Log Highways Investments 0.0167*** 0.0163*** 0.0128** 0.0123*** 0.0112** 0.0111** 0.0127** 0.0126*** 0.0130*** 0.0128*** 
 (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) 
First stage           
Legal Protected Areas 0.4597***  0.3555***  0.4232***  0.3389***  0.3423***  
 (0.10)  (0.10)  (0.10)  (0.10)  (0.10)  
Environmental Embargos 0.3312***  0.3478***  0.3547***  0.3383***  0.3384***  
 (0.11)  (0.11)  (0.11)  (0.11)  (0.11)  
Sloped Area -1.3606***  -1.6060***  -1.4378***  -1.4601***  -1.4676***  
 (0.31)  (0.31)  (0.32)  (0.30)  (0.29)  
Cost Index 1  0.2586***  0.2274***  0.2470***  0.2177***  0.2190*** 
  (0.05)  (0.05)  (0.05)  (0.05)  (0.05) 
Cost Index 2  0.3571***  0.4427***  0.3744***  0.3882***  0.3896*** 
  (0.07)  (0.07)  (0.07)  (0.07)  (0.07) 
LCP-MST Starting and Ending 
Road Points 

-0.3875*** -0.3918***     -0.1193*** -0.1204***   

 (0.02) (0.02)     (0.04) (0.04)   
Potential Road Intervention Area   0.3252*** 0.3294***   0.0893* 0.1025**   
   (0.02) (0.02)   (0.05) (0.05)   
Brasí lia Plan     -0.3170*** -0.3176*** -0.1421*** -0.1314***   
     (0.01) (0.01) (0.03) (0.03)   
Non-random Allocation Index         -0.4994*** -0.5035*** 
         (0.02) (0.02) 
Observations 5402 5391 5190 5178 5469 5457 5126 5115 5126 5115 
KP Wald F Statistic 113.896 156.650 97.221 137.336 123.195 169.934 72.567 89.717 106.925 147.383 
Effective F Statistic 104.053 117.056 96.535 108.326 108.318 122.313 73.324 78.795 104.841 112.493 
LIML critical value for tau=5% 11.784 19.258 11.535 19.848 11.675 19.872 9.119 14.261 12.006 19.770 
R² 0.22 0.22 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.23 

All regressions include the following set of control variables: GDP per capita in 2006; state fixed effects; municipality area; work force; agriculture share; exports 
share; distance to the nearest state road; distance to nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional quality; 

human capital. Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01.
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Table J6. Federal Highway Investments and Municipal GDP per capita Growth, 2007-2018: 2SLS IV Regressions, Bootstrap 

 1 2 3 4 5 6 7 8 9 10 
Second stage           
Log Highways Investments 0.0167*** 0.0163*** 0.0128** 0.0123*** 0.0112** 0.0111** 0.0127* 0.0126*** 0.0130*** 0.0128*** 
 (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) 
First stage           
Legal Protected Areas 0.4717***  0.3522***  0.5168***  0.2715***  0.3919***  
 (0.10)  (0.09)  (0.09)  (0.09)  (0.10)  
Environmental Embargos 0.3521***  0.2537**  0.4822***  0.2391**  0.4339***  
 (0.10)  (0.11)  (0.11)  (0.11)  (0.11)  
Sloped Area -1.3929***  -1.5401***  -1.4923***  -1.6424***  -1.1440***  
  0.1414***  0.1988***  0.1725***  0.2889***  0.3117*** 
Cost Index 1  (0.05)  (0.05)  (0.05)  (0.05)  (0.05) 
  0.3435***  0.5802***  0.4647***  0.4671***  0.3779*** 
Cost Index 2  (0.07)  (0.08)  (0.06)  (0.07)  (0.07) 
           
LCP-MST Starting and Ending 
Road Points 

-0.3643*** -0.3687***     -0.1954*** -0.1582***   

 (0.02) (0.02)     (0.04) (0.04)   
Potential Road Intervention Area   0.3293*** 0.3150***   0.0421 0.0788   
   (0.02) (0.02)   (0.05) (0.05)   
Brasí lia Plan     -0.3058*** -0.3461*** -0.1296*** -0.1202***   
     (0.01) (0.02) (0.04) (0.03)   
Non-random Allocation Index         -0.5297*** -0.5502*** 
         (0.03) (0.02) 
Observations 5402 5391 5190 5178 5469 5457 5126 5115 5126 5115 
KP Wald F Statistic 113.896 156.650 97.221 137.336 123.195 169.934 72.567 89.717 106.925 147.383 
R² 0.22 0.22 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.23 

All regressions include the following set of control variables: GDP per capita in 2006; state fixed effects; municipality area; work force; agriculture share; exports 
share; distance to the nearest state road; distance to nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional quality; 

human capital. Bootstrapped standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01.



195 
 

 

Table J7. Federal Highway Investments and GDP per capita Growth, 2007-2018: 2SLS IV 
Regressions, Additional Robustness Checks 

 1 2 3 4 5 
Second stage      
Log Highways Investments 0.0165*** 0.0124** 0.0172*** 0.0103*** 0.0118*** 
 (0.00) (0.01) (0.01) (0.00) (0.00) 
First stage      
Cost Index 1 0.2105*** 0.1756*** 0.1637*** 0.4942*** 0.2240*** 
 (0.05) (0.05) (0.05) (0.10) (0.05) 
Cost Index 2 0.4829*** 0.3690*** 0.4697*** 0.7491*** 0.3935*** 
 (0.08) (0.07) (0.08) (0.15) (0.07) 
Non-random allocation Index -0.5200*** -0.4506*** -0.4649*** -0.5613*** -0.4986*** 
 (0.03) (0.03) (0.03) (0.04) (0.02) 
Observations 4553 4685 4123 5115 5013 
KP Wald F Statistic 139.029 113.102 104.261 63.067 144.673 
Effective F Statistic 115.795 81.081 83.184 49.303 108.496 
2SLS critical value for tau=5% 19.585 21.902 20.523 24.925 21.311 
R² 0.26 0.23 0.25 0.22 0.20 

All regressions include the following set of control variables: GDP per capita in 2006; state fixed effects; 
municipality area; work force; agriculture share; exports share; distance to the nearest state road; distance 
to nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional 

quality; human capital. Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01. 
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II. APPENDIX - INFRASTRUCTURE, GROWTH AND REGIONAL DISPARITIES 

 

A. Variables description and descriptive statistics 

 

Table A1. Variables description 

Type Variable Description Source 

Highway 
Highway Investments PAC Highway Investments (R$) MINFRA 

Highway Intervention 
1 if the municipality received PAC highway 

investments and 0 otherwise 
MINFRA 

Road Related 
Variables 

Efficiency Gross Domestic Product (GDP)(R$)/Road Stock (R$) 

IBGE, Frischtak 
and Moura o 
(2017) and 
PNLT (2007) 

Redistribution Gross Domestic Product (GDP)(R$)/Population IBGE 

Equity Road Stock/Area (km²) 
PNLT (2007) 
and IBGE 

Road Specialization 
Share of the intermediate consumption related to 

the land transportation sector (%) 
RAIS/MTE and 
IBGE (2018) 

IVs 

Legal Protected Area 
1 if the municipality is intersected by a legal 

protected area and 0 otherwise 
MMA 

Environmental Embargos 
1 if there was an environmental embargo in the 
municipality during this period and 0 otherwise 

IBAMA 

Slope 
Area with slope above 20% (which corresponds to 

hilly areas) (km²)/Total area (km²) 
INPE 

Urban infrastructure 
Building and infrastructure area (km²)/ Total area 

(km²) 

MAPBIOMAS 
(Souza et al., 

2020) 
Population density Population/Area (km²) IBGE 

Cost Index 1 

First component of the MCA. Formula: 
𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 1 = 0.58 ∗ 𝐿𝑒𝑔𝑎𝑙 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐴𝑟𝑒𝑎

+ 0.51 ∗ 𝐸𝑚𝑏𝑎𝑟𝑔𝑜𝑠 +  0.13
∗ 𝑆𝑙𝑜𝑝𝑒𝑑 𝐴𝑟𝑒𝑎 + 0.08
∗ 𝑈𝑟𝑏𝑎𝑛 𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒. 

Medeiros et al. 
(2024) 

Cost Index 2 

Second component of the MCA. Formula: 
𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 2 = 0.00 ∗ 𝐿𝑒𝑔𝑎𝑙 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐴𝑟𝑒𝑎

+ 0.01 ∗ 𝐸𝑚𝑏𝑎𝑟𝑔𝑜𝑠 +  0.49
∗ 𝑆𝑙𝑜𝑝𝑒𝑑 𝐴𝑟𝑒𝑎 + 0.58
∗ 𝑈𝑟𝑏𝑎𝑛 𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 

Medeiros et al. 
(2024) 

LCP-MST Starting and 
Ending Road Points 

Distance to the nearest LCP-MST hypothetical line 
using starting and ending road points as hubs 

MINFRA 

Brasí lia Plan 
Distance to the nearest Brasí lia Plan line (weighted 
by the municipality area share into the buffer zone) 

Bird and Straub 
(2020) 

Potential Road Intervention 
Area 

Distance to the nearest road segment classified as 
heavy traffic (D, E or F classification) 

PNLT (2007) 

Non-Random Allocation 
Index 

First component of the PCA. Formula: 
𝑁𝑜𝑛𝑟𝑎𝑛𝑑𝑜𝑚 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥

= 0.58 ∗ LCP
− MST Starting and Ending Road Points + 0.58
∗ 𝐵𝑟𝑎𝑠í𝑙𝑖𝑎𝑃𝑙𝑎𝑛 − 0.57
∗ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐴𝑟𝑒𝑎𝑠 

Medeiros et al. 
(2024) 

Dependents 
GDP per capita Gross Domestic Product (R$)/Population RAIS and IBGE 

Firms Number of firms RAIS/MTE 
Employment Number of workers RAIS/MTE 

 GDP per capita, lagged 
Gross Domestic Product (R$)/ Number of workers 

in 2007 
IBGE 

 Share of poor people (%) Population below the poverty line/Total population  

Controls 

Area Municipality area (km²) IBGE 
Work force Number of formal workers RAIS/MTE 

Agriculture share (%) 
Agriculture Value Added (R$)/ Total Value Added 

(R$) 
IBGE 

Exports share (%) Municipal Exports (US$) / National Exports (US$) MDIC 
Distance to state road Distance (km) to the nearest state road MINFRA 
Distance to railroad Distance (km) to the nearest railroad MINFRA 
Distance to port Distance (km) to the nearest federal port MINFRA 
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Railways stations in 1920 Number of railways stations in 1920 
Rede 

Ferrovia ria 
Federal S/A 

Distance to Brasí lia Distance (km) to the capital Brasí lia  

Institutional Quality Institutional quality municipal index (IQIM) 
Ministry of 
Planning 

Human Capital (%) 
Workers with master of doctoral degree/Total 

workers 
RAIS/MTE 

Source: Author’s elaboration. Note: IBGE - Brazilian Institute of Geography and Statistics; ANA - National Water 

and Sanitation Agency; BCB - Central Bank of Brazil; INPE - National Institute for Space Research; IBAMA - 

Brazilian Institute of Environment and Renewable Natural Resources; MDIC - Ministry of Development, 

Industry, Commerce and Services; MINFRA - Ministry of Infrastructure; PNLT - National Transport Logistics 

Plan; MT – Ministry of Transport; RAIS - Annual Social Information Report; MTE - Ministry of Labor and 

Employment; SIM - Mortality Information System; MS – Ministry of Health. 

 

Table A2. Descriptive statistics 

Type Variable Obs Mean Std. Dev. Min Max 

Highway 
Highway Investments 5,570 1.273 3.449 0.000 14.772 

Highway Intervention 5,570 0.125 0.331 0.000 1.000 

Road 
Related 

Variables 

Efficiency 5,570 26.541 405.054 0.000 29,0003.920 

Redistribution 5,570 29.309 27.908 4.373 461.033 

Equity 5,570 7.706 7.333 0.000 102.086 

Road Specialization 5,570 0.041 0.020 0.000 0.107 

IVs 

Legal Protected Area 5,570 0.424 0.494 0.000 1.000 

Environmental Embargos 5,570 0.385 0.487 0.000 1.000 

Slope 5,565 0.134 0.177 0.000 0.745 

Urban infrastructure 5,555 0.020 0.069 0.000 1.000 

Population density 5,565 3.134 1.417 -2.029 9.454 

Cost Index 1 5,550 0.000 1.141 -1.375 4.578 

Cost Index 2 5,550 0.000 1.020 -2.573 10.767 

LCP-MST Starting and Ending Road 
Points 

5,565 3.706 2.110 -13.816 6.941 

Brasília Plan 5,565 4.965 1.635 1.609 7.310 

Potential Road Intervention Area 5,565 4.605 1.452 -3.546 7.670 

Non-Random Allocation Index 5,565 0.000 1.634 -2.279 2.851 

Dependents 

GDP per capita 5,564 0.329 0.346 -2.130 3.083 

Wages 5,563 0.068 0.142 -0.632 7.093 

Firms 5,548 0.178 0.290 -0.301 4.170 

Employment 5,564 0.793 0.498 -2.272 6.529 
 GDP per capita, lagged 5,564 2.791 0.724 1.096 6.533 
 Share of poor people (%) 5,565 41.057 22.776 0.700 90.760 

Controls 

Area 5,570 6.205 1.279 1.271 11.980 

Work force 5,536 6.049 2.169 0.000 15.023 

Agriculture share (%) 5,564 0.220 0.153 0.000 0.839 

Exports share (%) 5,570 0.000 0.001 0.000 0.034 

Distance to state road 5,565 5.599 37.296 0.001 740.818 

Distance to railroad 5,565 333.165 258.873 0.353 1271.520 

Distance to port 5,565 91.916 215.006 0.031 2081.518 

Railways stations in 1920 5,570 0.536 2.877 0.000 107.000 

Distance to Brasília 5,565 1075.822 445.390 0.000 2872.215 

Institutional Quality 5,505 3.023 0.551 1.000 4.904 

Human Capital (%) 5,564 0.001 0.004 0.000 0.174 
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B. Additional estimates 

 

Table B1. Determinants of road infrastructure investments, 2007-2018: OLS Regressions 

 1 2 3 4 5 6 7 8 9 10 
Efficiency 0.2251***    0.2883***      

 (0.06)    (0.08)      
Redistribution  0.3603***   0.1665      

  (0.12)   (0.13)      
Equity   -0.0356  0.1956**      

   (0.07)  (0.09)      
Road 

Specialization 
   0.3179* 0.4022**      

    (0.18) (0.18)      
Efficiency, 

Decile Average 
     0.2672***    0.2726*** 

      (0.06)    (0.08) 
Redistribution, 
Decile Average 

      0.2943**   0.1062 

       (0.12)   (0.13) 
Equity, Decile 

Average 
       -0.1235**  0.0316 

        (0.05)  (0.07) 
Road 

Specialization, 
Decile Average 

        0.3955** 0.4115** 

         (0.16) (0.16) 
Observations 5466 5466 5466 5466 5466 5466 5466 5466 5466 5466 

R² 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 
All regressions include the following set of control variables: Cost Index 1, Cost Index 2, Non-Random Allocation Index, GDP per capita in 2006; state fixed effects; 
municipality area; work force; agriculture share; exports share; distance to the nearest state road; distance to nearest railroad; distance to nearest port; railways 

stations in 1920; distance to Brasí lia; institutional quality; human capital. Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01.
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Table B2. Federal Highway Investments and Local Outcomes Growth, 2007-2018: 
2SLS IV Regressions 

 1 2 3 4 
Sample Efficiency Redistribution Equity Road Specialization 

<=50% 0.0294*** 0.0124*** 0.0092 0.0011 

 (0.01) (0.00) (0.01) (0.01) 

>50% 0.0123* 0.0054 0.0102 0.0200*** 

 (0.01) (0.01) (0.01) (0.01) 

>50% & <=90% 0.0149** 0.0143*** 0.0051 0.0190*** 

 (0.01) (0.00) (0.01) (0.01) 

>50% & <=80% 0.0275*** 0.0077* 0.0000 0.0191*** 

 (0.01) (0.00) (0.01) (0.01) 

>10% & <=50% 0.0288*** 0.0114*** 0.0223** 0.0098 

 (0.01) (0.00) (0.01) (0.01) 

>20% & <=50% 0.0314*** 0.0084 0.0199 0.0121 

 (0.01) (0.00) (0.01) (0.01) 

All regressions include the following set of control variables: GDP per capita in 2006; state fixed 

effects; municipality area; work force; agriculture share; exports share; distance to the nearest state 

road; distance to nearest railroad; distance to nearest port; railways stations in 1920; distance to 

Brasí lia; institutional quality; human capital. Robust standard errors reported in parentheses. * 0.1 

** 0.05 *** 0.01. 
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Table B3. Federal Highway Investments and Local Outcomes Growth by “Ideal” Samples, 2007-2018: 2SLS IV Regressions 

 1 2 3 4 5 6 7 

Sample 

Road 

Specialization > 

50% 

Road Specialization>50% 

& Redistribution <= 50% 

Road Specialization > 

50% & Equity <= 50% 

Road Specialization > 
50% & 

10% <Equity <= 50% 

Road Specialization > 
50% & 

Redistribution <= 50% & 
Equity <= 50% 

Road Specialization > 
50% & Redistribution 

<= 50% & 
10% < Equity <= 50% 

Road 
Specialization <= 

50% 

Efficiency > 50% 0.0246*** 0.0143 0.01958* 0.0217 0.0184* 0.0261 -0.0067 

 (0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.01) 

50%< Efficiency < 

90% 
0.0273*** 0.0148 0.0258** 0.0296** 0.0219* 0.0269 -0.0059 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) 

50%< Efficiency < 

80% 
0.0345*** 0.0127 0.0302** 0.0438** 0.0212* 0.0141 0.0068 

 (0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.01) 

Redistribution <= 

50% 
0.0220*** - 0.0165* 0.0316** - - 0.0048 

 (0.01)  (0.01) (0.01)   (0.01) 

Equity <= 50% 0.0133 - - - - - 0.0070 

 (0.01)      (0.01) 

10% < Equity <= 
50% 

0.0205* - - - - - 0.0185 

 (0.01)      (0.02) 

All regressions include the following set of control variables: GDP per capita in 2006; state fixed effects; municipality area; work force; agriculture share; exports 

share; distance to the nearest state road; distance to nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional quality; 

human capital. Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01. 
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Table B4. Federal Highway Investments and Local Outcomes Growth, 2007-2018: 2SLS 
IV Regressions, interaction models 

 1 2 3 
    

Log Efficiency 0.1132***   
 (0.01)   
    
Log Redistribution  0.3492***  
  (0.03)  
    
Log Equity   0.0032 
   (0.01) 
Log Highways Investments * φ 0.9727*** 1.5382*** 0.0884 
 (0.19) (0.58) (0.21) 
Log Highways Investments * Log Efficiency * φ -0.2146***   
 (0.08)   
Log Highways Investments * Log Redistribution * φ  -0.4516**  
  (0.19)  
Log Highways Investments * Log Equity * φ   0.1005 
   (0.09) 
Observations 5113 5115 5115 
KP Wald F Statistic 58.859 62.838 72.128 
Hansen J p-value 0.051 0.057 0.114 
R² 0.25 0.14 0.23 

All regressions include the following set of control variables: GDP per capita in 2006; state fixed effects; 
municipality area; work force; agriculture share; exports share; distance to the nearest state road; distance 
to nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional 

quality; human capital. Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01. 

 

 

Table B5. Federal Highway Investments and Local Outcomes Growth by infrastructure project 
costs samples, 2007-2018: 2SLS IV Regressions 

 1 2 3 4 5 6 7 8 

 
Cost Index 
1 <= 50% 

Cost 
Index 1 > 
50% 

Cost Index 
2 <= 50% 

Cost 
Index 2 > 
50% 

Cost Index 
1 <= 50% 

Cost 
Index 1 > 
50% 

Cost Index 
2 <= 50% 

Cost 
Index 2 > 
50% 

Log Highways 
Investments 

0.0197** 0.0057 0.0182** 0.0071     

 (0.01) (0.01) (0.01) (0.01)     
Log Highways 
Investments * φ 

    0.4769** 0.1326 0.4286** 0.1602 

     (0.19) (0.15) (0.21) (0.14) 
Observations 2637 2478 2603 2512 2637 2478 2603 2512 
KP Wald F 
Statistic 

58.401 85.173 53.674 91.821 53.265 81.483 51.271 86.178 

R² 0.21 0.25 0.21 0.25 0.20 0.25 0.21 0.25 

All regressions include the following set of control variables: GDP per capita in 2006; state fixed effects; 

municipality area; work force; agriculture share; exports share; distance to the nearest state road; distance 

to nearest railroad; distance to nearest port; railways stations in 1920; distance to Brasí lia; institutional 

quality; human capital. Robust standard errors reported in parentheses. * 0.1 ** 0.05 *** 0.01. 
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C. Section 6 Appendix 

 

Table C2. Values of α by return rate 

Return Rate Condition (s) Αsamplek Source 
Number of 

Municipalities 
RR Average Full sample 0.2928 Table 1 - Column 4 5,570 

RR Efficient 

Efficiency <= 50% 0.7068 Table 3 – Column 1 

1,668 
50% < Efficiency & Efficiency 

<= 90% 
0.6283 Table 3 – Column 1 

Other 0.2928 Table 1 - Column 4 

RR Efficient & Road 
Specialized 

50% < Efficiency & Efficiency 
<= 90% & 50% <Road 

Specialization 
0.6897 

Table 4 – Column 1 
and Table 4 – 
Column 1 

915 

Other RR Efficient - 

RR Efficient & Road 
Specialized & 

Redistributive & Equative 

50% < Efficiency & Efficiency 
<= 90% & 50% < Road 

Specialization & 10% < Equity 
& Equity <= 50% 

0.8161 Table 4 – Column 4 

176 
50% < Efficiency & Efficiency 

<= 90% & 50% < Road 
Specialization & Equity <= 50% 

& Redistribution <= 50% 

0.4452 Table 4 – Column 5 

Other 
RR Efficient & 

Road Specialized 
- 

RR Efficient: 0 effect on 
efficiency upper 20% 

80% < Efficiency 0 - 
1,668 

Other RR Efficient - 

RR Efficient & Road 
Specialized: 0 effect on 
efficiency upper 20% 

80% < Efficiency 0 - 
915 

Other 
RR Efficient & 

Road Specialized 
- 

RR Efficient & Road 
Specialized & 

Redistributive & Equative: 
0 effect on efficiency upper 

20% 

80% < Efficiency 0 - 

176 
Other 

RR Efficient & 
Road Specialized 
& Redistributive 

& Equative 

- 

Source: authors’ elaboration. 
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Figure CII.1. PAC and “Ideal Samples” averages: efficiency (a), redistribution (b), equity 
(c) and road specialization (d) 

(a) (b)

(c) 

(d)

 

Source: authors’ elaboration. 
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Figure C2. Return Rate to Highway Investments: Economic (a) and Equality (b) 

components 

(a)  

(b)  
Source: authors’ elaboration. 
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III. APENDIX - HIGHWAY INFRASTRUCTURE AND GREENHOUSE GAS 

EMISSIONS 

 

A. Variables description and descriptive statistics 

 

Table A1. Variables description 

Type Variable Description Source 

Highway 

Highway Investments PAC Highway Investments (R$) MINFRA 

Highway Intervention 
1 if the municipality received PAC highway 

investments and 0 otherwise 
MINFRA 

Highway Length 
Road Length (km). Duplicates lanes were multiplied 

by 2, whilst single lanes were multiplied by 1 
PNLT (2007) 
and MINFRA 

IVs 

Legal Protected Area 
1 if the municipality is intersected by a legal 

protected area and 0 otherwise 
MMA 

Environmental Embargos 
1 if there was an environmental embargo in the 
municipality during this period and 0 otherwise 

IBAMA 

Slope 
Area with slope above 20% (which corresponds to 

hilly areas) (km²)/Total area (km²) 
INPE 

Urban infrastructure 
Building and infrastructure area (km²)/ Total area 

(km²) 

MAPBIOMAS 
(Souza et al., 

2020) 
Population density Population/Area (km²) IBGE 

Cost Index 1 

First component of the MCA. Formula: 
𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 1 = 0.58 ∗ 𝐿𝑒𝑔𝑎𝑙 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐴𝑟𝑒𝑎

+ 0.51 ∗ 𝐸𝑚𝑏𝑎𝑟𝑔𝑜𝑠 +  0.13
∗ 𝑆𝑙𝑜𝑝𝑒𝑑 𝐴𝑟𝑒𝑎 + 0.08
∗ 𝑈𝑟𝑏𝑎𝑛 𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒. 

Medeiros et al. 
(2024) 

Cost Index 2 

Second component of the MCA. Formula: 
𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 2 = 0.00 ∗ 𝐿𝑒𝑔𝑎𝑙 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝐴𝑟𝑒𝑎

+ 0.01 ∗ 𝐸𝑚𝑏𝑎𝑟𝑔𝑜𝑠 +  0.49
∗ 𝑆𝑙𝑜𝑝𝑒𝑑 𝐴𝑟𝑒𝑎 + 0.58
∗ 𝑈𝑟𝑏𝑎𝑛 𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 

Medeiros et al. 
(2024) 

LCP-MST Starting and 
Ending Road Points 

Distance to the nearest LCP-MST hypothetical line 
using starting and ending road points as hubs 

MINFRA 

Brasí lia Plan 
Distance to the nearest Brasí lia Plan line (weighted 
by the municipality area share into the buffer zone) 

Bird and Straub 
(2020) 

Potential Road Intervention 
Area 

Distance to the nearest road segment classified as 
heavy traffic (D, E or F classification) 

PNLT (2007) 

Non-Random Allocation 
Index 

First component of the PCA. Formula: 
𝑁𝑜𝑛𝑟𝑎𝑛𝑑𝑜𝑚 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥

= 0.58 ∗ LCP
− MST Starting and Ending Road Points + 0.58
∗ 𝐵𝑟𝑎𝑠í𝑙𝑖𝑎𝑃𝑙𝑎𝑛 − 0.57
∗ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝐴𝑟𝑒𝑎𝑠 

Medeiros et al. 
(2024) 

Dependent 
CO2 emissions, 2018 CO2 emissions (ton) in 2018 SEEG 

CO2 emissions growth 
Log(CO2 emissions, 2018) – Log(CO2 emissions, 

2007) 
SEEG 

Moderators 
and Controls 

CO2 emissions, 2007 CO2 emissions in 2007 SEEG 

GDP per capita, 2007 
Gross Domestic Product (R$)/ Number of workers 

in 2007 
IBGE 

GDP per capita squared, 
2007 

Gross Domestic Product (R$)/ Number of workers 
in 2007, squared 

IBGE 

Population Population in 2006 IBGE 
Population Density Population in 2006/Geographic Area (km²) IBGE 

Road CO2 emissions (%) 
Road sector CO2 emissions (ton)/ Total CO2 

emissions (ton) 
SEEG 

Capital-Labor ratio Residential Capital Stock (R$)/Occupied Population IBGE 
Exports share (%) Municipal Exports (US$) / National Exports (US$) MDIC 

Deforestation (1996-2006) 
Variation in the deforestation rate between 1996 

and 2006 
MapBiomas 

Gini Index Gini Index, 2000 IBGE 

Institutional Quality Institutional quality municipal index (IQIM) 
Ministry of 
Planning 

Human Capital (%) Workers with graduate education/Total workers RAIS/MTE 
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Distance to state road Distance (km) to the nearest state road MINFRA 
Distance to railroad Distance (km) to the nearest railroad MINFRA 
Distance to port Distance (km) to the nearest federal port MINFRA 

Railways stations in 1920 Number of railways stations in 1920 
Rede 

Ferrovia ria 
Federal S/A 

Distance to Brasí lia Distance (km) to the capital Brasí lia IBGE 

Source: authors’ elaboration. 

 

 

Table A2. Descriptive statistics 

Variable Mean Std. Dev. 

Highway Investments 1.270 3.447 

Highway Intervention 0.125 0.331 

Highway Length Growth (2007-2018) 0.375 0.985 

Cost Index 1 -0.002 1.139 

Cost Index 2 -0.003 1.013 

Non-Random Allocation Index 3.000 1.635 

LCP-MST Starting and Ending Road Points 1.956 2.119 

Potential Road Intervention Area 2.288 2.516 

Brasília Plan 2.455 2.749 

CO2 Emissions Growth (2007-2018) 0.038 0.448 

CO2 Emissions, 2007 11.591 1.310 

GDP per capita, 2007 2.790 0.724 

GDP per capita squared, 2007 8.307 4.395 

Population 9.384 1.154 

Population Density 3.131 1.414 

Road CO2 emissions (%) 0.092 0.122 

Capital-Labor ratio 2.899 0.574 

Exports share (%) 0.000 0.001 

Deforestation (1996-2006) -0.006 0.216 

Gini Index -0.611 0.127 

Institutional Quality 3.023 0.552 

Human Capital (%) 0.001 0.004 

Distance to state road 6.872 0.517 

Distance to railroad -0.348 1.623 

Distance to port 5.462 0.946 

Railways stations in 1920 3.200 1.924 

Distance to Brasília 0.535 2.878 

Source: authors’ elaboration. 
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B. OLS estimates 

 
Table B1. Federal Highway Investments and CO2 Emissions Growth (2007-2018): OLS Regressions 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Highways 
Investments 

0.0042* 0.0051** 0.0142*** 0.0078*** 0.0061*** 0.0057*** 0.0056*** 0.0056*** 0.0055** 0.0056*** 0.0056*** 0.0057*** 0.0057*** 0.0057*** 0.0064*** 0.0065*** 0.0065*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
CO2 Emissions, 
2007 

  -0.1164*** -0.2111*** -0.2246*** -0.2274*** -0.2273*** -0.2271*** -0.2242*** -0.2258*** -0.2258*** -0.2258*** -0.2232*** -0.2232*** 
-

0.2292*** 
-

0.2302*** 
-

0.2303*** 
   (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
Population    0.1501*** 0.1494*** 0.1504*** 0.1477*** 0.1490*** 0.1492*** 0.1483*** 0.1478*** 0.1480*** 0.1459*** 0.1458*** 0.1551*** 0.1594*** 0.1590*** 
    (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
GDP per capita     0.1058*** 0.3258*** 0.3027*** 0.2971*** 0.2894*** 0.2920*** 0.2896*** 0.2903*** 0.2909*** 0.2909*** 0.2892*** 0.2947*** 0.2943*** 
     (0.01) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) 
GDP per capita, 
square 

     -0.0339*** -0.0311*** -0.0297*** -0.0287*** -0.0290*** -0.0289*** -0.0290*** -0.0290*** -0.0290*** 
-

0.0289*** 
-

0.0292*** 
-

0.0292*** 
      (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
Ratio Capital-
Labor 

      0.0214 0.0224 0.0199 0.0225 0.0221 0.0221 0.0229 0.0229 0.0405** 0.0510*** 0.0510*** 

       (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 
Exports by 
municipality (% 
total) 

       -7.9912 -8.2465 -8.1240 -8.2866 -8.2064 -8.3464 -8.3464 -2.8651 -2.6049 -2.7886 

        (6.46) (6.50) (6.50) (6.54) (6.55) (6.55) (6.55) (6.66) (6.63) (6.47) 
Deforestation 
1996-2006 

        0.1166*** 0.1173*** 0.1171*** 0.1171*** 0.1170*** 0.1170*** 0.1064*** 0.1008*** 0.1008*** 

         (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 
Gini Index          0.0569 0.0547 0.0548 0.0533 0.0533 0.0223 0.0090 0.0087 
          (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) 
Institutional 
Quality 

          0.0088 0.0090 0.0081 0.0081 0.0037 0.0028 0.0028 

           (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
Graduate 
education (% 
workers) 

           -0.6813 -0.5552 -0.5552 -0.7394 -0.5189 -0.5308 

            (1.01) (1.00) (1.00) (1.00) (0.98) (0.98) 
Distance to 
Brasilia 

            0.0575*** 0.0575*** 0.1150*** 0.1111*** 0.1108*** 

             (0.02) (0.02) (0.02) (0.02) (0.02) 
Distance to the 
nearest state 
road 

             0.0000 -0.0005 -0.0004 -0.0004 

              (0.00) (0.00) (0.00) (0.00) 
Distance to the 
nearest port 

              0.0469*** 0.0435*** 0.0436*** 

               (0.01) (0.01) (0.01) 
Distance to the 
nearest railroad 

               0.0152*** 0.0153*** 

                (0.00) (0.00) 
Number of 
railway stations 
in 1920 

                0.0005 

                 (0.00) 
Constant 0.0324*** -0.0180 1.5943*** 1.4764*** 1.3763*** 1.0586*** 1.0714*** 1.0601*** 1.0708*** 1.1220*** 1.1057*** 1.1021*** 0.6587*** 0.6587*** -0.0884 -0.2179 -0.2121 
 (0.01) (0.06) (0.11) (0.10) (0.10) (0.13) (0.13) (0.13) (0.13) (0.14) (0.14) (0.14) (0.22) (0.22) (0.25) (0.25) (0.25) 

State FE N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Observations 5559 5559 5559 5553 5553 5553 5496 5496 5494 5494 5490 5490 5489 5489 5489 5489 5489 
R² 0.001 0.076 0.140 0.210 0.223 0.225 0.228 0.228 0.231 0.231 0.231 0.231 0.232 0.232 0.235 0.238 0.238 

* p<0.1, ** p<0.05, *** p<0.01 
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Table B2. Federal Highway Investments and CO2 Emissions Growth (2007-2018): OLS Regressions 
 1 2 3 4 5 
 All Roads Energy Land Use Agriculture 
Highways Investments 0.0065*** 0.0212*** 0.0220*** -0.0043 0.0035** 
 (0.00) (0.00) (0.00) (0.00) (0.00) 
CO2 Emissions, 2007 -0.2303*** -0.6416*** -0.6397*** -0.2784*** -0.0122** 
 (0.01) (0.02) (0.02) (0.01) (0.01) 
Population 0.1590*** 0.7530*** 0.7384*** 0.1171*** -0.0122* 
 (0.01) (0.03) (0.03) (0.02) (0.01) 
GDP per capita 0.2943*** 0.7858*** 1.0141*** 0.1962 0.0917 
 (0.06) (0.17) (0.15) (0.13) (0.06) 
GDP per capita, square -0.0292*** -0.0679*** -0.0824*** -0.0347* -0.0128 
 (0.01) (0.02) (0.02) (0.02) (0.01) 
Ratio Capital-Labor 0.0510*** 0.0267 0.0574 -0.0428 0.0028 
 (0.02) (0.06) (0.06) (0.04) (0.02) 
Exports by municipality (% total) -2.7886 -19.1449** -9.8519 -2.7054 -4.5264 
 (6.47) (8.43) (10.89) (15.78) (5.56) 
Deforestation 1996-2006 0.1008*** 0.0233 0.0379 0.1157 -0.0305 
 (0.03) (0.08) (0.08) (0.08) (0.03) 
Gini Index 0.0087 0.1316 0.1251 0.3269*** 0.0054 
 (0.05) (0.14) (0.14) (0.10) (0.04) 
Institutional Quality 0.0028 -0.0464 -0.0553 -0.0314 0.0210* 
 (0.01) (0.04) (0.03) (0.03) (0.01) 
Graduate education (% workers) -0.5308 -2.1816 -2.6223 -3.2895 0.3049 
 (0.98) (2.64) (2.58) (2.22) (0.94) 
Distance to Brasilia 0.1108*** -0.1451** -0.1663*** 0.3517*** 0.0559** 
 (0.02) (0.06) (0.06) (0.05) (0.02) 
Distance to the nearest state road -0.0004 -0.0013 0.0093 0.0012 -0.0048 
 (0.00) (0.01) (0.01) (0.01) (0.00) 
Distance to the nearest port 0.0436*** 0.0768*** 0.0536*** 0.0887*** 0.0599*** 
 (0.01) (0.02) (0.02) (0.02) (0.01) 
Distance to the nearest railroad 0.0153*** 0.0125 0.0096 0.0317*** 0.0037 
 (0.00) (0.01) (0.01) (0.01) (0.00) 
Number of railway stations in 1920 0.0005 -0.0130*** -0.0115*** 0.0086* 0.0051* 
 (0.00) (0.00) (0.00) (0.00) (0.00) 
Constant -0.2121 -2.0948*** -2.1991*** -0.7282 -0.5189** 
 (0.25) (0.65) (0.62) (0.54) (0.24) 
State FE Y Y Y Y Y 
Observations 5489 5489 5489 5489 5489 
R² 0.238 0.551 0.552 0.238 0.156 

* p<0.1, ** p<0.05, *** p<0.01 
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C. Heterogeneous road impacts on CO emissions growth 

 

Table C1. Federal Highway Investments and CO2 Emissions Growth (2007-2018) - Elasticity (α*φ): Heterogeneous Point Impacts 

Sample 
Roads CO2 Emissions (%) Log GDP per capita Log Ratio Capital-Labor Population Density Deforestation (1996-2006) Population 

Coeff. [95% Conf. Interval] Coeff. [95% Conf. Interval] Coeff. [95% Conf. Interval] Coeff. [95% Conf. Interval] Coeff. [95% Conf. Interval] Coeff. [95% Conf. Interval] 

10% 0.028 0.012 0.045 0.035 0.010 0.061 0.040 0.017 0.064 0.022 0.005 0.039 0.017 0.001 0.032 0.034 0.013 0.055 

25% 0.027 0.011 0.043 0.031 0.011 0.052 0.031 0.014 0.049 0.018 0.004 0.033 0.021 0.006 0.036 0.030 0.012 0.048 

50% 0.024 0.009 0.040 0.023 0.009 0.038 0.020 0.006 0.034 0.015 0.001 0.029 0.024 0.010 0.039 0.024 0.010 0.039 

75% 0.018 0.003 0.033 0.016 0.002 0.031 0.010 -0.006 0.026 0.013 -0.002 0.027 0.027 0.013 0.042 0.019 0.004 0.033 

90% 0.004 -0.017 0.026 0.010 -0.010 0.030 0.003 -0.018 0.023 0.009 -0.008 0.026 0.032 0.016 0.048 0.012 -0.005 0.029 

All regressions include the following set of control variables: CO2 emissions in 2007; state fixed effects; population; GDP per capita; GDP per capita, square; capital-
labor ratio; exports share; 1996-2006 deforestation; Gini index; institutional quality; human capital; distance to the nearest state road; distance to nearest railroad; 

distance to nearest port; railways stations in 1920; distance to Brasí lia. Robust standard errors reported in parentheses. 
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D. Robustness checks 

 

 
Table D1. Federal Highway Investments and CO2 Emissions Growth (2007-2018): 2SLS IV Regressions 

 1 2 3 4 5 6 7 8 9 10 
Second stage All Roads Energy Land Use Agriculture All Roads Energy Land Use Agriculture 
Highway 
Intervention 

0.2457*** 1.3293*** 1.1520*** 0.5282*** -0.0300      

 (0.08) (0.22) (0.21) (0.15) (0.06)      
Highway 
Length Growth 

     0.1010*** 0.5500*** 0.4765*** 0.2168*** -0.0125 

      (0.03) (0.09) (0.09) (0.06) (0.02) 
First stage           
Non-Random 
Allocation 
Index 

-0.0476*** -0.0483*** -0.0485*** -0.0479*** -0.0484*** -0.1158*** -0.1167*** -0.1172*** -0.1168*** -0.1158*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) 
Observations 5142 5142 5142 5142 5142 5142 5142 5142 5142 5142 
KP Wald F 
Statistic 

347.700 357.426 358.430 353.998 356.778 254.337 257.484 258.945 257.720 249.632 

R² 0.23 0.51 0.53 0.22 0.15 0.22 0.49 0.51 0.21 0.15 
All regressions include the following set of control variables: CO2 emissions in 2007; state fixed effects; population; GDP per capita; GDP per capita, square; capital-
labor ratio; exports share; 1996-2006 deforestation; Gini index; institutional quality; human capital; distance to the nearest state road; distance to nearest railroad; 

distance to nearest port; railways stations in 1920; distance to Brasí lia. Robust standard errors reported in parentheses. * p<0.1, ** p<0.05, *** p<0.01. 
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Table D2. Federal Highway Investments and CO2 Emissions Growth (2007-2018): 2SLS IV Regressions 
 1 2 3 4 5 6 7 
Second stage        
Log Highways 
Investments 

0.6151*** 0.5317*** 0.5891*** 0.6112*** 0.5994*** 0.6108*** 0.6430*** 

 (0.17) (0.19) (0.20) (0.18) (0.17) (0.18) (0.17) 
First stage        
Cost Index 1 0.0069***    0.0074*** 0.0065*** 0.0066*** 
 (0.00)    (0.00) (0.00) (0.00) 
Cost Index 2 0.0113***    0.0104*** 0.0122*** 0.0111*** 
 (0.00)    (0.00) (0.00) (0.00) 
Non-Random 
Allocation Index 

-0.0204***       

 (0.00)       
LCP-MST Starting and 
Ending Road Points 

 -0.0150***   -0.0151***   

  (0.00)   (0.00)   
Potential Road 
Intervention Area 

  0.0128***   0.0130***  

   (0.00)   (0.00)  
Brasí lia Plan    -0.0121***   -0.0121*** 
    (0.00)   (0.00) 
Observations 5131 5142 5142 5142 5131 5131 5131 
KP Wald F Statistic 116.199 310.790 288.358 326.464 108.806 102.897 112.932 
R² 0.22 0.23 0.22 0.22 0.22 0.22 0.22 
All regressions include the following set of control variables: CO2 emissions in 2007; state fixed effects; population; GDP per capita; GDP per capita, square; capital-
labor ratio; exports share; 1996-2006 deforestation; Gini index; institutional quality; human capital; distance to the nearest state road; distance to nearest railroad; 

distance to nearest port; railways stations in 1920; distance to Brasí lia. Robust standard errors reported in parentheses. * p<0.1, ** p<0.05, *** p<0.01. 
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Table D3. Federal Highway Investments and CO2 Emissions Levels (2018): 2SLS IV Regressions 
 1 2 3 4 5 

Second stage All Roads Energy Land Use Agriculture 
Log Highways Investments * 

φ 
0.5770*** 3.0916*** 2.6802*** 1.2362*** -0.0702 

 (0.18) (0.51) (0.49) (0.36) (0.14) 
First stage      

Non-Random Allocation 
Index 

-0.0203*** -0.0208*** -0.0208*** -0.0205*** -0.0207*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) 
Observations 5142 5142 5142 5142 5142 

KP Wald F Statistic 332.469 343.528 344.349 338.341 340.560 
R² 0.90 0.67 0.71 0.77 0.95 

All regressions include the following set of control variables: CO2 emissions in 2007; state fixed effects; population; GDP per capita; GDP per capita, square; capital-
labor ratio; exports share; 1996-2006 deforestation; Gini index; institutional quality; human capital; distance to the nearest state road; distance to nearest railroad; 

distance to nearest port; railways stations in 1920; distance to Brasí lia. Robust standard errors reported in parentheses. * p<0.1, ** p<0.05, *** p<0.01. 

 

Table D4. Federal Highway Investments and CO2 Emissions Growth (2007-2018): 2SLS IV Regressions 
 1 2 3 4 

Second stage 
All – Excluding 

municipalities in Amazon 
All – Excluding 

municipalities in Para  
All – Excluding 

municipalities in Sa o Paulo 
Land Use – Excluding 

municipalities in Amazon 
Log Highways Investments * φ 0.6137*** 0.6938*** 0.4980*** 1.2692*** 

 (0.20) (0.19) (0.19) (0.44) 
First stage     

Non-Random Allocation Index -0.0187*** -0.0196*** -0.0208*** -0.0188*** 
 (0.00) (0.00) (0.00) (0.00) 

Observations 4383 5004 4585 4383 
KP Wald F Statistic 243.015 311.298 301.298 246.454 

R² 0.20 0.20 0.24 0.22 
All regressions include the following set of control variables: CO2 emissions in 2007; state fixed effects; population; GDP per capita; GDP per capita, square; capital-
labor ratio; exports share; 1996-2006 deforestation; Gini index; institutional quality; human capital; distance to the nearest state road; distance to nearest railroad; 

distance to nearest port; railways stations in 1920; distance to Brasí lia. Robust standard errors reported in parentheses. * p<0.1, ** p<0.05, *** p<0.01.
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E. Sensitivity analysis: land use change CO2 emissions 

 

Table E1. Sensitivity Analysis: Drops in Land Use Change CO2 emissions 
Drop in Land Use Change CO2 Emissions Average ERR Average SERR 

25% 2.54% 17.46% 
50% 2.17% 17.63% 
75% 1.79% 18.21% 
100% 1.42% 18.58% 

Source: authors’ elaboration. 

 
 

Figure E1. Sustainable Return Rates to Highway Investments: SERR 

 
 

Source: authors’ elaboration. 
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IV. APENDIX - BRINGING HIGHWAY INVESTMENTS MORE EFFICIENT, 

REDISTRIBUTIVE, AND SUSTAINABLE 

 

A. SERR and road features 

 

Figure A1. Privately managed highways and SERR 

 

Source: authors’ elaboration. 

 

Table A1. SERR and its components: public and private management 

Variable Public Private 

EC 0.0970 0.1701 

SC 0.0120 -0.0415 
GEC 0.0123 0.0143 

SERR 0.0965 0.1143 
Source: authors’ elaboration. 
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Figure A2. Correlation matrix: SERR and road features 

 EC        

EC 1.000 SC       

SC -0.870 1.000 GEC      

GEC 0.179 -0.075 1.000 SERR     

SERR -0.050 0.534 0.069 1.000 
Efficiency 

(GDP/Road Stock) 
   

Efficiency 
(GDP/Road Stock) 

0.400 -0.420 0.066 -0.166 1.000 Redistribution 
(GDP per capita) 

  

Redistribution 
(GDP per capita) 

0.556 -0.431 0.248 0.066 0.198 1.000 Equity (Road 
Stock/Area) 

 

Equity (Road 
Stock/Area) 0.552 -0.478 -0.385 0.021 0.284 0.326 1.000 

Road specialization 
(φ) 

Road specialization 
(φ) 0.362 -0.079 0.383 0.435 0.036 0.291 0.095 1.000 
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B. State level SERR components 

 

Figure B1. Economic Component (EC): state-level 
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Figure B2. Social Component (SC): state-level 
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Figure B3. Environmental component (GEC): state level 
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C. SKATER application 

We start by creating 27 clusters as we have the state administrative boundaries as a 

benchmark for comparison. The results in terms of the total within-cluster sum of 

squares, the between-cluster sum of squares, and the ratio of between to total sum 

of squares as well as a detailed description of the SKATER application results can be 

seen in Table C1. Whilst the resulted clusters fitted well following the sum of squares 

statistics, some clusters are very small, and the practical application of those regions 

is doubt. Then, we generate 27 clusters again but constraining then to have at least 

1% and 2% of the national geographical area. The cluster seems to be more suitable 

to represent highway policy zones, but some small regions remain. 

Next, we compute clusters only based on the geographic area constraint. We force 

each cluster geographic area to be from 1 to 5 percent of the national geographic 

area. In those cases, we do not impose any constraint in terms of the number of 

clusters. Then, the resulted SKATER contains 64, 34, 20, 17 and 12 zones for the 1, 

2, 3, 4 and 5 percent constraints, respectively. We can see a huge drop in the ratio of 

between to total sum of squares from the 1% to the 2% geographic constraint, a 

small from the 2% to the 3% geographic constraint, and again a higher decrease 

from the 3% to 4% geographic constraint. This result suggests that using the 1% or 

3% geographic constraints appears to be more suitable. In addition, we can observe 

an apparently more appropriate highway zone size when taking geographic 

constraints higher than 3%. 

Thereafter, we generate new clusters by imposing the number of regions equal to 10 

and varying the clusters geographic area to be from 1% to 5% of the national graphic 

area. Obviously, the ratio of between to total sum of squares decreases in comparison 

with the previous SKATER applications as we impose a reduced number of clusters 

to be computed. On the other hand, the created highway zones seem to suitably 

characterize the regions in terms of their economic, social, and environmental 

features. We observe small drops in the ratio of between to total sum of squares from 

the 1% to the 3% geographic constraint, then a considerable decrease is observed 

from the 3% to the 4% geographic constraint. This result suggests choosing the 

clusters generated following the 3% geographic constraint. 

As robustness checks, we try several combinations varying the number of clusters 

from 11 to 19 or 20, and taking the geographic constrains of 1% and 3%. Then, 19 

new combinations are generated. As expected, even varying the number of clusters, 

the results from the 1% geographic constraint appears to have practical issues, as 

very small zones remain. Regarding the 3% geographic constraint combinations, the 

increasing in the number of clusters rises the ratio of between to total sum of squares 

very slightly, then suggesting that we might hold the 10 clusters generated using the 

same geographic constraint.
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Table C1. SKATER application results 
Number of regions Minimum Geographic Area (%) The total within-cluster sum of squares The between-cluster sum of squares The ratio of between to total sum of squares 

27 - 423.686 1103.310 0.723 

27 2 854.201 672.799 0.441 

27 1 714.392 812.608 0.532 

64 1 633.789 893.211 0.585 

34 2 848.798 678.202 0.444 

20 3 915.733 611.267 0.400 

17 4 1023.170 503.831 0.330 

12 5 1044.200 482.804 0.316 

10 5 1057.960 469.038 0.307 

10 4 1059.090 467.913 0.306 

10 3 961.956 565.044 0.370 

10 2 957.929 569.071 0.373 

10 1 923.023 603.977 0.396 

11 3 952.034 574.966 0.377 

12 3 944.264 582.736 0.382 

13 3 938.892 588.108 0.385 

14 3 933.831 593.169 0.388 

15 3 925.125 601.875 0.394 

16 3 922.531 604.469 0.396 

17 3 920.176 606.824 0.397 

18 3 917.854 609.146 0.399 

19 3 916.512 610.488 0.400 

11 1 906.461 620.539 0.406 

12 1 890.722 636.278 0.417 

13 1 875.721 651.279 0.427 

14 1 832.947 694.053 0.455 

15 1 818.659 708.341 0.464 

16 1 804.906 722.094 0.473 

17 1 791.255 735.745 0.482 

18 1 779.233 747.767 0.490 

19 1 768.133 758.867 0.497 

20 1 760.835 766.165 0.502 
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In short, we get two main and conflicting (and expected) results from the SKATER 

applications. First, as we increase the number of clusters to around 27 following the state 

boundaries as a benchmark, the results in terms of the ratio of between to total sum of 

squares improve. Nonetheless, when we increase the number of clusters, very small 

clusters are generated, especially when the geographical area restrictions are zero or 

smaller. The result suggests that the practical use of those zone for public policy aims 

might be hampered. Second, by limiting the number of clusters to be around 10, the zones 

generated seem to appropriate represent regional characteristics for road policy 

development purposes. However, the ratio of between to total sum of squares is smaller 

in comparison with the 27 clusters. That said, we opt for the 10 clusters constrained by 

the 3% geographic area requirement, which seems to represent the Brazilian reality in a 

more reasonable way. As a robustness check, we also use the 27 clusters restricted by 1% 

of the national geographic area. Due to the hierarchical nature of the SKATER technic, the 

27 clusters complement the 10 clusters as the latter are partitions of the former. Then, if 

the generated 10 highway policy zones are considered too large, the 27 clusters results 

provide mechanisms to visualize and evaluate more disaggregated road policy zones. The 

preferred clusters generated applying the SKATER can be seen in Figure 1.  
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D. Simulation results: sensitivity analysis 

 

Figure D1. Simulation results: EC, SC, GEC and SERR considering all sectors in GHG 

emissions 

 

 

Table D1. Summary of results: simulations using state and highway policy zone levels 

Sample EC SC GEC SERR 

State Level     

PAC 0.1503 -0.0169 0.0137 0.1198 

Simulations 0.1281 -0.0109 0.0124 0.1048 

Highway Policy Zone Level     

PAC 0.1477 -0.0177 0.0134 0.1166 

Simulations 0.1358 -0.0111 0.0141 0.1105 

 

 

 

PAC: 0.033 

PAC: 0.096 


