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Abstract  
The high rates of COVID-19 lethality have made it necessary to identify groups potentially 
at risk from the disease. The spread of COVID-19 can be better understood with 
epidemiological studies combined with socioeconomic evaluations of the affected 
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populations. This study aimed to use spatially explicit analysis to analyze the influence of 
socioeconomic and health attributes on the viral spread of COVID-19 in the state of Minas 
Gerais using multiple and spatial regressions. The socioeconomic data were collected using 
the platform of the Instituto de Pesquisa Econômica Aplicada (institute of Applied Economic 
Research). Subsequently, regression models were constructed, which included spatial error 
models (SEMs) and spatial lag models (SLMs) for the numbers of COVID-19 cases and 
deaths. For the socioeconomic and pandemic conditions found in the state of Minas Gerais, 
the SEM was the most suitable for the dependent variable Cases, while the SLM was the 
most suitable for the dependent variable Deaths. The results show that municipalities with 
greater longevity among the citizens, better municipal urban infrastructure, and a lower flow 
of people on public transport had fewer deaths from COVID-19. This study provides support 
to pandemic risk mitigation policies and better management of medical resources. 
 
Keywords: Epidemic outbreak; Infection spread; Social-demographic attributes; 
Epidemiologic models. 
 
 
Resumo 
A alta letalidade da COVID-19 traz evidente a necessidade da identificação dos potenciais 
grupos de risco da doença. A disseminação da COVID-19 pode ser melhor compreendida 
com estudos epidemiológicos combinados com avaliações socioeconômicas das 
populações afetadas. O objetivo desta pesquisa foi usar análise espacialmente explicitas 
para analisar a influência de atributos socioeconômicos e de saúde na disseminação viral 
de COVID-19 no estado de Minas Gerais por meio de regressões múltiplas e espaciais. Os 
dados socioeconômicos foram coletados na plataforma do Instituto de Pesquisa Econômica 
Aplicada, e posteriormente, foram construídos modelos de regressão incluindo modelos de 
erro espacial <spatial error models= (SEMs) e de defasagem espacial <spatial lag models= 
(SLMs) para as variáveis número de casos <Cases= e óbitos <Deaths= por COVID-19. Para 
as condições socioeconômicas e pandêmicas encontradas no estado de Minas Gerais, o 
SEM adequou-se melhor para variável dependente 8Cases9 e o SLM para a variável 
dependente 8Deaths9. Os resultados mostram que municípios com maior longevidade, 
infraestrutura urbana municipal, e menor fluxo de pessoas em transportes públicos 
apresentam menores ocorrências de óbitos por COVID-19. Este trabalho fornece subsídios 
a políticas de mitigação de risco de pandemia e melhor gerenciamento de recursos 
médicos. 
 
Palavras–chave: Surto epidêmico; Propagação da infecção; Atributos sociodemográficos; 
Modelos epidemiológicos. 
 

 
1. INTRODUCTION 

 
COVID-19 is an acute respiratory disease originating from China, which was officially 

declared a public health emergency of international concern (PHEIC) by the World Health 

Organization (WHO) on January 30, 2020 (CAPODEFERRO; SMIDERLE, 2020; 

MATTHEW; ELUDOYIN; OLUWADIYA, 2021). More quickly than expected, the severe 

acute respiratory syndrome (SARS) caused by coronavirus was recognized as a disease of 

global medical interest, being declared a pandemic as of March 11, 2020. By June 28, 2021, 
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data demonstrated 180,817,269 infected individuals and 3,923,238 deaths from the disease 

(WHO, 2021). 

Viruses from the family Coronaviridae are capable of infecting mammals and other 

vertebrates. Among the microorganisms able to infect humans, most are responsible for flu-

like symptoms (LANSIAUX et al., 2020). However, the SARS-CoV and MERS-CoV viruses 

cause serious, potentially fatal infections due to the lesions caused to the respiratory tract 

(HENNING et al., 2021). 

Considering the high rates of COVID-19 lethality, attention should be given to the need 

to identify groups potentially at risk from the disease, and, consequently, promote 

socioeconomic data evaluation of the affected populations (KHALATBARI-SOLTANI et al., 

2020). Moreover, the use of social indicators should be adopted alongside the evaluation of 

epidemiological data, in view of the possibility of supporting pandemic risk mitigation policies 

and improving management of medical resources (HENNING et al., 2021). 

In its most serious form, COVID-19 is most significant for the elderly population. One 

of the reasons is the greater occurrence of severe pulmonary infection among older patients, 

in addition to the increased levels of blood sugar hindering control of the infection, and the 

risk of cardiac death, according to Liu et al., (2020), who also suggest higher rates of 

comorbidities in this group. 

Furthermore, the immunological system of an elderly individual is not as efficient as 

that of a young adult. When in a situation of comorbidity (such as obesity or arterial 

hypertension), the immunological system of the elderly establishes a condition of chronic 

inflammation, and when the patient is subjected to an infection, such as that caused by 

SARS-CoV-2, an exaggerated immunological response known as cytokine storm syndrome 

can occur (MEFTAHI et al., 2020). Thus, longevity represents a social indicator for the 

epidemiological dynamic of coronavirus. 

Other social indicators such as low income and poor education may be related to 

increased vulnerability to COVID-19, as workers with this profile have greater difficulty 

carrying out their work in home-office and, therefore, are more exposed to viral transmission 

(ATCHISON et al., 2021; DE LAROCHELAMBERT et al., 2020). 

Brazil has 27 federal states, among which, Minas Gerais (MG) stands out as the 

second most populous in the country, being composed of 853 municipalities (IBGE, 2021). 

By June 28, 2021, 1,788,725 cases and 45,924 deaths from COVID-19 had been confirmed 

in MG (SES-MG, 2021). Studies suggest that the Metropolitan Region of Belo Horizonte 

(RMBH) and the Vale do Rio Doce Mesoregion were the main epidemic focuses at the 
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beginning of the expansion process and had an important influence on the spread of SARS-

CoV-2 in the state of Minas Gerais. Regions such as the Triângulo Mineiro and Alto 

Paranaíba also presented elevated risk of infection from the disease (COURA-VITAL et al., 

2021). 

In this context, the aim of this study was to analyze the influence of socioeconomic and 

health attributes on the viral spread of COVID-19 in the state of Minas Gerais through 

multiple spatial regressions. While many studies have focused on public health variables, 

exploring the role of comorbidities in the spread of and deaths from COVID-19 (DE LUCENA 

et al., 2020; EJAZ et al., 2020; SANYAOLU et al., 2020; WANG et al., 2020a, 2020b), studies 

exploring the role of socioeconomic variables are less frequent (BAYODE et al., 2022; 

BENITA; GASCA-SANCHEZ, 2021; GREKOUSIS; WANG; LIU, 2021). The relevance of the 

theme is guided by better understanding of the influence of socioeconomic variables on the 

spread of COVID-19. This is information that could be used to assist public agents in the 

identification of regions with greater need for medical and hospital resources (BENITA; 

GASCA-SANCHEZ, 2021; GREKOUSIS; WANG; LIU, 2021). 

 

2. METHODS 
 

2.1.  Characterization 
 

This is an ecological, analytical study that evaluates how social context interferes in 

the health of the population in the Brazilian state with the second highest population in the 

country in relation to infection from COVID-19. 

 

2.2 Description of the Study Area 
 

The state of Minas Gerais is located in the southeast of Brazil (Figure 1), between 

14º13958= and 22º54900= S and 39º51932= and 51º02935= W (Gov-MG, 2021). The state 

covers an area of 586,528.293 km² and is territorially divided into 853 municipalities, with a 

total population of 21,292,666 inhabitants and a demographic density of 36.30 inhab/km². 
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Figure 1 – Map of the location of Minas Gerais, Brazil. 

Source: Prepared by the authors. 
 

2.3.  Variables considered in the study 
 

Initially, documental research was carried out on the epidemiological attributes of the 

state of Minas Gerais (MG) (SES-MG, 2021), the socioeconomic data, which was collected 

from the platform of the Instituto de Pesquisa Econômica Aplicada (Institute of Applied 

Economic Research) (IPEA, 2021), and the data referring to the population of the 

municipalities of Minas Gerais (FJP, 2019) (Table 1). 

 

Table 1 – Summary of the variables. 
 

Variable Abbreviation Source Scale 

Vulnerability Rate VR (COSTA; MARGUTI, 2015) Municipal 
Urban infrastructure - Social 

Vulnerability Index UI-SVI (COSTA; MARGUTI, 2015) Municipal 

Longevity - Municipal Human 
Development Index L-MHDI (PINTO; COSTA; MARQUES, 

2013) Municipal 

Aging Rate AR (PINTO; COSTA; MARQUES, 
2013) Municipal 

COVID-19 cases Cases (SES-MG, 2021) Municipal 

COVID-19 Deaths  Deaths (SES-MG, 2021) Municipal 

Standardized population STD-P Adapted from FJP (2019) Municipal 
Source: Prepared by the authors. 

 



Caderno de Geografia (2023) v.33, n.72 
ISSN 2318-2962   
DOI 10.5752/p.2318-2962.2023v33n.72p.317 
 

322 

Among the variables made available by IPEA, the following were selected and 

evaluated: vulnerability rate (VR); the subindex of the municipal human development index 

(MHDI): MHDI-Longevity (L-MHDI); the subindex of the social vulnerability index (SVI): 

Urban Infrastructure (UI-SVI); and the Aging Rate (AR). 

The VR and UI-SVI variables were developed by Costa and Marguti (2015) and are 

defined as follows: (i) VR is related to the percentage of people that live in households with 

a per capita income of less than half a minimum wage (R$255,00 or $141,50 in 2010, the 

year when the raw data was obtained through the demographic census) and that spend 

more than an hour to get to work in relation to the total number of people that live in 

households with a per capita income of less than half a minimum wage; (ii) the UI-SVI 

subindex is composed of indicators related to basic sanitation, garbage collection, and the 

urban mobility available to low-income families. 

The L-MHDI subindex is related to life expectancy at birth (PINTO; COSTA; 

MARQUES, 2013), while the AR variable is composed of the percentage of people aged 65 

and older in relation to the total municipal population.  

Municipal population data updated by the Tribunal de Contas da União (Federal Court 

of Auditors) in 2019 (FJP, 2019) were also used. The population data were standardized 

(STD-P) to prevent the absolute population number from interfering in the statistical analysis. 

This variable was standardized using the Z-score method, whereby the values of each 

observation were subtracted from the mean of the variable and the result was divided by the 

value of the standard deviation. The result of these calculations is the Z value associated 

with the observation of interest. 

The data referring to COVID-19 were obtained through the epidemiological bulletins of 

the Secretaria de Estado de Saúde de Minas Gerais (Minas Gerais State Health Secretary) 

(SES-MG, 2021). This database refers to the social and epidemiological data of the 853 

municipalities in the target state. The data were individually organized and separated by 

each municipality. The number of cases and the number of deaths accumulated as a result 

of COVID-19 refer to the period of the first wave of infection in Brazil, from March to October 

2020 (CERQUEIRA et al., 2022).  

A database was created from the obtained data, which was subsequently used to 

execute the multivariate regression analysis using R Core Team software (R Core Team, 

2021). 

No missing values were found among the data used. The absolute quantities of cases 

and deaths in the most populous municipalities are linked to the larger number of inhabitants 
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in these places, which explains the outliers that were found. Removing these outliers from 

the function would result in a low degree of adjustment of the functions, as such, they were 

maintained in the analysis. Outliers are values that go beyond the upper and lower limits of 

the variable, which commonly occurs through typing errors or during data collection; 

however, in this case, the outlier occurs because Belo Horizonte is the city with the highest 

absolute numbers of COVID-19 cases and deaths in the state of Minas Gerais. 

 

2.4.  Statistical analyses 
 
2.4.1.  Spatial autocorrelation of the COVID-19 cases and deaths dependent variables 
 

Global Moran9s I was obtained using GeoDa software (ANSELIN; SYABRI; KHO, 

2010) and a spatial association (autocorrelation) was verified between COVID-19 Cases 

and Deaths. Maps were then generated using Local Moran I (LISA), on which significant 

autocorrelated groupings were highlighted. The tests used the localizations yi and the 

weighted mean of the neighboring values wyi, which resulted in the Moran scatter plot 

represented by a straight line centered on the point of coordinates yi = 0 and wyi = 0, being 

thus divided into four quadrants. The upper-right quadrant and the lower-left quadrant 

correspond to positive associations, there being positive values surrounded by positive 

values in the upper-right quadrant and negative values surrounded by negative values in 

the lower-left quadrant. The lower-right and upper-left quadrants demonstrate negative 

associations, that is, in the lower-right quadrant there are positive values surrounded by 

negative values and in the upper-left quadrant, negative values surrounded by positive 

values (ANSELIN, 1995; CHI; ZHU, 2008). 

 

2.4.2.  Regression models 
 

For the regression models, number of COVID-19 cases (Cases) and number of 

COVID-19 deaths (Deaths) were used as dependent variables, and the other variables were 

introduced through the Stepwise method (THOMPSON, 1995), as explanatory variables. 

Subsequently, the multiple linear regression (MLR) predictions were verified, and no 

transgression was found. 

Global Moran9s I was verified in the residuals of the two ordinary least squares (OLS) 

regression models for verification of spatial dependence in the errors, using the neighbors 

matrix for contiguity in the queen model. The Lagrange multiplier test (ASTAIZA-GÓMEZ, 

2020) was then applied to select the spatial regression models to be applied to each of the 



Caderno de Geografia (2023) v.33, n.72 
ISSN 2318-2962   
DOI 10.5752/p.2318-2962.2023v33n.72p.317 
 

324 

two dependent variables. Significance at a level of 1% on the robust Lagrange multiplier test 

was adopted as selection criteria for the modelling method to be used for each set of 

variables. As such, the spatial error model (SEM) and the spatial lag model (SLM) were 

adjusted for the response variables of Deaths and Cases. The spatial error model 

adjustments were verified using the Hausman spatial test (KELLEY PACE; LESAGE, 2008). 

The spatial lag model adjustments were verified using simulation of the significance of direct 

and indirect impacts attributed to the independent variables used in each of the SLMs. 

 

3. RESULTS 
 

The spatialization of COVID-19 cases and deaths accumulated during the period 

corresponding to the first wave of infection (March to October 2020) for the municipalities in 

the state of Minas Gerais is presented first (Figure 2). 

 

 
Figure 2 – Spatialization of COVID-19 data in the state of Minas Gerais, Brazil. Data accumulated from 

March 2020 to the end of October 2020.  A) Distribution of cases due to SARS-CoV-2 infection. B) 
Distribution of deaths. 

Source: Prepared by the authors. 

 

Through the application of Global Moran's I, the existence of a spatial autocorrelation 

was found in the data on number of COVID-19 cases and deaths in relation to the 

populations of the municipalities of Minas Gerais (Figure 3).  
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Figure 3 – Global Moran scatter plot for variables of cases and deaths from SARS-CoV-2 in the state of 

Minas Gerais, Brazil (Mar-Oct. 2020). 
Source: Prepared by the authors. 

 

Through analysis of the Moran scatter plots, a positive spatial autocorrelation was 

found, in which municipalities with high numbers of COVID-19 cases or deaths tended to be 

surrounded by neighboring municipalities also with high numbers of cases or deaths. The 

same principle can be observed for municipalities with low numbers of COVID-19 cases or 

deaths. For better visualization of the spatial autocorrelation, Local Moran's Is were 

calculated (Figure 4).    

 

 

Figure 4 – Spatial autocorrelation in the first wave of COVID-19 in the state of Minas Gerais, Brazil. 4A. 
Autocorrelation map of cases. 4B. Autocorrelation map of deaths. 

Source: Prepared by the authors. 
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The multiple linear regression models (MLRs) for the different sets of variables were 

better adjusted when the Stepwise method was used. The MLR models have distinct 

explanatory variables (independent) for the response variables (dependent) of numbers of 

COVID-19 cases and deaths.   

The model defined for the number of cases indicated two significant independent 

variables. This model and the explanatory variables can be seen in Table 2.  

 

Table 2 – OLS regression for the dependent variable Cases. 
 

  Estimate Std. Error  t value Pr(>|t|) Tolerance VIF 

Intercept 167.2840 45.3670 3.6870 0.0002 - - 

STD-P 2071.6560 29.6130 69.9580 0.0000 0.9639 1.0374 

VR -15.4870 5.6620 -2.7350 0.0064 0.9639 1.0374 

Multiple R-squared: 0.8549, Adjusted R-squared: 0.8546  

F-statistic: 2505 on 2 and 850 DF, p-value: < 2.2e-16 

Source: Prepared by the authors. 
 

The first MLR model was significant, explaining the behavior of 85.46% of the number 

of cases through these two independent variables. According to the variance inflation factor 

(VIF) value for each explanatory variable, there was no multicollinearity between the 

variables.  

For the MLR model with COVID-19 deaths as the dependent variable, five independent 

variables were found. The model had adjusted R² of 94.04% (Table 3).  

 
Table 3 – OLS regression for the dependent variable Deaths. 

 

  Estimate Std. Error  t value Pr(>|t|) Tolerance VIF 

Intercept 41.4169 16.5355 2.5050 0.0124 - - 

Cases 0.0266 0.0002 112.3020 0.0000 0.9377 1.0664 

VR 0.7081 0.1733 4.0860 0.0000 0.3169 3.1551 

AR 0.5855 0.2635 2.2220 0.0265 0.9602 1.0415 

L-MHDI -58.7739 19.4907 -3.0150 0.0026 0.7707 1.2976 

UI-SVI -18.6187 7.3303 -2.5400 0.0113 0.2904 3.4434 

Multiple R-squared: 0.9408, Adjusted R-squared:  0.9404 
F-statistic: 2691 on 5 and 847 DF, p-value: < 2.2e-16 

Source: Prepared by the authors. 

 

The variable with the greatest impact on the function was the number of COVID-19 

cases, given that it is not possible to have deaths from the disease without having cases of 

the same. The second most important explanatory variable was VR, followed by L-MHDI, 
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UI-SVI, and AR, respectively. It is noteworthy that the explanatory variables of Cases, VR, 

and AR are directly proportional, contrasting with the variables L-MHDI and UI-SVI.  

After confirming the existence of a spatial autocorrelation in the residuals of the OLS 

models through Global Moran's I (Cases = 0.1033; Deaths = 0.0949), the Lagrange 

multiplier test was applied to verify the method of the spatial model to be applied (Table 4).   

   
Table 4 – Lagrange multiplier test. 

 

  Test Result p-value 

Deaths 

Lmerr 20.1940 7.00E-06 

Lmlag 22.4120 2.20E-06 

RLMerr 10.4500 1.23E-03 

RLMlag 12.6680 3.72E-04 

Cases 

Lmerr 23.9100 1.01E-06 

Lmlag 0.0998 7.52E-01 

RLMerr 31.4910 2.00E-08 

RLMlag 7.6810 5.58E-03 

Source: Prepared by the authors. 
  

There was a greater level of significance for the spatially lagged spatial dependence 

structure for the dependent variable Deaths than for the autocorrelation structure in errors, 

when robust diagnostic tests were taken into consideration (MLRlag and MLRerr, 

respectively). The opposite was observed for the dependent variable Cases.   

Considering the criterion of 1% significance on the robust Lagrange multiplier 

diagnostic test, both spatial models, SEM and SLM, were selected to model the dependent 

variables of Cases and Deaths. Adjustments to the spatial models were found from the sets 

of variables that best modelled the respective dependent variables through MLR (Tables 5, 

6, 7, and 8). The result of the Hausman spatial test for validation of the adjusted SEM models 

can be observed in Tables 5 and 6.   

   
Table 5 – Spatial Error Model for the dependent variable Cases. 

 

     Estimate Std. Error z value Pr(>|z|) 

Intercept 153.5790 51.1049 3.0052 0.0027 

STD-P 2085.6600 29.6845 70.2609 0.0000 

VR -12.8595 5.8593 -2.1947 0.0282 

Lambda: 0.20437, LR test value: 18.363, p-value: 0.000018256 

Wald statistic: 16.034, p-value: 0.00006221 

Spatial Hausman test = 5.1663, df = 3, p-value = 0.16 

Source: Prepared by the authors. 
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Table 6 – Spatial Error Model for the dependent variable Deaths. 
 

  Estimate Std. Error z value Pr(>|z|) 

Intercept 31.3724 16.9979 1.8457 0.0649 

Cases 0.0265 0.0002 113.0656 0.0000 

VR 0.3518 0.1812 1.9414 0.0522 

AR 0.7191 0.2844 2.5282 0.0115 

L-MHDI -47.9822 20.1030 -2.3868 0.0170 

UI-SVI -7.2494 7.6786 -0.9441 0.3451 

Lambda: 0.24093, LR test value: 19.906, p-value: 0.0000081342 

Wald statistic: 23.194, p-value: 0.0000014648 

Spatial Hausman test = 64.599, df = 6, p-value = 5.21e-12 

Source: Prepared by the authors. 

 

Table 7 – Spatial Lag Model for the dependent variable Cases. 
 

  Estimate Std. Error z value Pr(>|z|) 

Intercept 167.6076 45.2865 3.7010 0.0002 

STD-P 2073.4858 30.2929 68.4479 0.0000 

VR -14.9066 6.0197 -2.4763 0.0133 

Rho: -0.0074912, LR test value: 0.096132, p-value: 0.75652 

Wald statistic: 0.092352, p-value: 0.76121 

Source: Prepared by the authors. 

 

Table 8 – Spatial Lag Model for the dependent variable Deaths. 
 

    Estimate Std. Error z value Pr(>|z|) 

Intercept 37.3502 16.2514 2.2983 0.0215 

Cases 0.0264 0.0002 111.9597 0.0000 

VR 0.3195 0.1827 1.7483 0.0804 

AR 0.7694 0.2611 2.9471 0.0032 

L-MHDI -56.5489 19.1499 -2.9530 0.0031 

UI-SVI -8.5403 7.3824 -1.1568 0.2473 

Rho: 0.079466, LR test value: 23.117, p-value: 0.0000015241 

Wald statistic: 24.66, p-value: 0.00000068404 

Source: Prepared by the authors. 
 

In addition, the impacts of the independent variables used in the spatial lag models 

were measured (Tables 9 and 10). Inferences on the direct and indirect impacts related to 

the parameters obtained for the independent variables of the spatial lag model were 

simulated using the Markov Chain Monte Carlo (MCMC) estimation method for Bayesian 

inference (GELFAND et al., 1990; LESAGE, 1997; LESAGE; PACE, 2009).  

   
 

 

 



Caderno de Geografia (2023) v.33, n.72 
ISSN 2318-2962   
DOI 10.5752/p.2318-2962.2023v33n.72p.317 
 

329 

Table 9 - Spatial Lag Model impact tests for Cases. 
 

  Variables Direct Indirect Total 

Impact 
measures 

STD-P 2073.5060 -15.4376 2058.0684 

VR -14.9067 0.1110 -14.7957 

Simulated      
z-values 

STD-P 70.5097 -0.3429 40.5894 

VR -2.5453 0.2114 -2.4965 

Simulated     
p-values 

STD-P 0.0000 0.7316 0.0000 

VR 0.01092 0.83261 0.012542 

  Source: Prepared by the authors. 
 

Table 9 shows the simulated p-values for the SLM impacts for the dependent variable 

Cases. The independent variables STD-P and VR had significant direct impacts and 

insignificant indirect impacts.  

   
Table 10 - Spatial Lag Model impact tests for Deaths. 

 

  Variables Direct Indirect Total 

Impact 
measures 

Cases 0.0264 0.0022 0.0287 

VR 0.3198 0.0272 0.3471 

AR 0.7703 0.0655 0.8358 

L-MHDI -56.6127 -4.8178 -61.4306 

UI-SVI -8.5500 -0.7276 -9.2776 

Simulated         
z-values 

Cases 118.3050 5.0383 58.6114 

VR 1.7849 1.7663 1.7962 

AR 2.8907 2.3556 2.8704 

L-MHDI -2.9474 -2.5188 -2.9458 

UI-SVI -1.0653 -1.0241 -1.0656 

Simulated         
p-values 

Cases 0.0000 0.0000 0.0000 

VR 0.0743 0.0773 0.0725 

AR 0.0038 0.0185 0.0041 

L-MHDI 0.0032 0.0118 0.0032 

UI-SVI 0.2867 0.3058 0.2866 

Source: Prepared by the authors. 

 

However, the impact tests in relation to the SLM for the dependent variable Deaths 

(Table 10) demonstrated that the variables UI-SVI and VR were not significant at the 5% 

level of probability. On the other hand, the independent variables Cases, AR, and L-MHDI 

had significant direct and indirect impacts.  
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4.  DISCUSSION 
 

Through the analysis of the results, it was possible to perceive that there was no great 

spatial dependence in the disposition of the numbers of COVID-19 cases and deaths. 

However, clusters were identified in certain regions of the state through positive spatial 

autocorrelation, that is, locations with positive values were surrounded by neighbors with 

positive values and locations with negative values were surrounded by neighbors with 

negative values. Moreover, the variables that were significant in the Linear Regression 

Models indicate that the independent variables influenced the numbers of cases and 

deaths.   

It is noteworthy that the variables that explain the behavior of the variables Cases and 

Deaths were different when the multiple regression models were analyzed. For the 

dependent variable Cases, the number of inhabitants and the vulnerability rate managed to 

explain 85.46% of the observations; whereas for Deaths (adjusted r² = 94.04%), the 

independent variable with the greatest significance was Cases, followed by VR.   

Through the application of the Lagrange multiplier test on the OLS residuals, significant 

values were obtained in relation to the spatial dependence structure (Table 3). The SLM and 

SEM were selected for Cases and Deaths due to the robust diagnostic test results. With the 

application of the robust tests, possible interference of the spatial autocorrelation in the 

errors was considered, when spatially lagged dependence of the variables and vice-versa 

were evaluated (ANSELIN et al., 1996). 

Evaluation of the OLS and SEM models through application of the Hausman spatial 

test, enabled the inference that the analogue coefficients estimated for the set of variables 

with the dependent variable Deaths were statistically different (p-value = 0.00). However, 

the insignificant p-value (0.16) of the Hausman spatial test for the OLS and SEM models for 

the dependent variable Cases indicated that the coefficients of the parameters did not differ 

statistically (KELLEY PACE; LESAGE, 2008). Therefore, it was considered that the 

adjustment of the OLS and SEM models was suitable for Cases and unsuitable for Deaths. 

Nevertheless, it is worth emphasizing that the OLS models resulted in high R² values and 

that the p-values of the autoregressive coefficients of the SEM models were significant 

(λCases = 0.000018256 and λDeaths = 0.0000081342). 

When analyzing the variables of the SLM models after carrying out the tests, the direct 

and indirect impacts of the variables can be interpreted separately. According to LeSage 

and Pace (2009), the changes observed in the independent variables in relation to a given 

municipality can potentially affect the dependent variable in the other municipalities. 
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In the SLM for Cases, the variables STD-P and VR only led to an increase in the 

number of COVID-19 cases within the municipalities; there was no indirect impact. However, 

in the SLM model for Deaths, the independent variables VR and UI-SVI did not have a 

significant impact at the 5% level of probability. It can be observed that as with the SLM 

model for Deaths, the independent variables VR and UI-SVI were not significant for the SEM 

model for Deaths. This contrasted with the significance of these independent variables in 

the model obtained through MLR to model Deaths. 

The independent variable STD-P only had a direct impact on transmission of SARS-

CoV-2, indicating that in municipalities with larger populations, there was a larger number of 

cases of the pandemic disease. Within the SLM model for Cases, the direct impact of VR 

demonstrated that there was greater transmission of the virus in municipalities with an 

increased flow of people with low income on public transport. According to Moreno et al., 

(2021), genetic material from different genomes of SARS-CoV-2 was found in underground 

trains and on buses in the city of Barcelona, demonstrating the risk of using public transport 

during the pandemic. In Brazil, collective public transport is used mainly by people with 

medium and low incomes (CARVALHO; PEREIRA, 2012).  

The independent variable L-MHDI, related to longevity of the population, had 

significant direct and indirect impacts in the SLM model for Deaths. The result indicates that 

in municipalities where the population achieves greater longevity, and in the neighboring 

municipalities, there was a reduced number of COVID-19 deaths as the coefficient of the 

variable had a negative value. According to Pinto et al., (2013), a higher L-MHDI value in a 

given municipality may suggest that there are better living conditions and access to health 

services for the resident population. As such, the direct and indirect impacts of the variable 

L-MHDI may be associated with the hospital infrastructure existing in each municipality and 

the access available to the resident and floating population (from neighboring cities).  

Also regarding SLM for the dependent variable Deaths, it was found that the 

independent variable AR directly and indirectly impacts the number of deaths in the 

municipalities of the state of Minas Gerais. The direct impact of the variable was the most 

significant for the model (p-value = 0.0032 against 0.0118) and demonstrates that in 

municipalities with a higher aging rate there was a greater number of COVID-19 deaths. 

This result reiterates the findings of Liu et al., (2020) and Mefhati et al., (2020), who stated 

that the increased frailty (cellular and systemic) of the elderly, combined with contamination 

from the disease, can lead to more severe pulmonary infections and trigger immunological 

complications, which increases the chance of lethality for these individuals. 
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COVID-19 spread throughout the state of Minas Gerais and, as reported by Oronce et 

al., (2020), certain socioeconomic factors have been identified as relevant to increasing the 

probability of transmission and deaths from the disease. Regions with larger populations 

where a considerable portion of the population are found in a situation of vulnerability 

(SANNIGRAHI et al., 2020; YILDIRIM; GEÇER; AKGÜL, 2021), as in the Metropolitan 

Region of Belo Horizonte and the west of the state, were severely affected by the disease.  

The present study shows that municipalities with populations with greater longevity, 

better municipal urban infrastructure, and a lower flow of people on public transport present 

less COVID-19 deaths. Therefore, this study provides support to mitigating the spread of the 

disease, emphasizing the need for investment in the cleaning and maintenance of transport 

infrastructure in areas with higher transmission rates. A study carried out in Turkey identified 

prominent preventative practices against COVID-19, such as limitations on the use of 

collective transport and the frequent washing of hands. In the United States, Karmakar et 

al., (2021) identified that in counties where there was greater social vulnerability, there were 

higher rates of transmission and death from the disease. 

It can be observed through this study that each dependent variable was best explained 

by distinct spatial regression models. For the socioeconomic and pandemic conditions found 

in the state of Minas Gerais, SEM was most suitable for the dependent variable Cases, and 

SLM was most suitable for the dependent variable Deaths. 

 
4. CONCLUSIONS 
 

It was observed in this study that spatial regression models are important for studies 

involving socioeconomic variables and their relationships with COVID-19, especially SLM, 

due to the possibility of individual evaluation of the direct and indirect impacts associated 

with each independent variable used in the models. It has been conclusively demonstrated 

that municipalities with greater longevity, better municipal urban infrastructure, and a lower 

flow of people on public transport had less COVID-19 deaths. These findings value the 

evaluation of socioeconomic data for the contention of diseases such as COVID-19, or even 

for directing healthcare and financial resources to places of risk. 
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