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Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs 
such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge 
numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. 
Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance 
model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting 
(IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of 
occupancy of the species. We found a signi昀cant but weak positive relationship between the distribution 
of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also signi昀cant 
but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, 
the pipeline removed half of the NHCs records. Presence-only SDM applications should consider 
this limitation, especially for large biodiversity assessments projects, when they are automatically 
generated without subsequent checking. Our pipeline provides a conservative estimate of a species’ 
area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN 
red list assessments.
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Species distribution models (SDMs) are widely used in the felds of macroecology, biogeography and biodiversity 
research for modelling species geographic distributions based on correlations between known occurrence records 
and the environmental conditions at occurrence localities1,2. SDMs generate geographical maps of a species9 envi-
ronmental suitability, its likelihood of being collected, and its local abundance3. Veir application includes select-
ing conservation areas, predicting the efects of climate change on species ranges and determining the risk of 
species invasions4,5. Ve wide use of SDMs in ecological and conservation research can partly be explained by 
the growing availability of georeferenced species records (e.g. GBIF, SpeciesLink) and environmental data (e.g. 
WorldClim, CliMond)6,7 on the web, together with the user-friendly character of some of the modelling methods.

One of the most commonly used SDMs is MaxEnt, which has become increasingly popular since its introduc-
tion8. Vis machine-learning algorithm estimates a species9 probability distribution that has maximum entropy 
(closest to uniform), subject to a set of constraints based upon our knowledge of the environmental conditions 
at known occurrence sites1. MaxEnt is a presence-only model, enabling scientists to utilize the abundant data 
sources of natural history collections (NHCs), avoiding the high costs of sampling the species throughout their 
extent of occurrence. Presence data are abundant, but absence data are hard to obtain and ogen unreliable due 
to insuocient survey efort. To counter the lack of absences, MaxEnt uses a background sample to contrast the 
distribution of presences along environmental gradients against the distribution background points, randomly 
drawing from the study area.

NHCs, however, may not be independently drawn from the investigated populations due to the non-random 
nature of collecting9,10. Because collectors aim to collect as many species as possible, rare species are ogen over-
represented in herbaria, whereas common species are underrepresented, producing collectors9 bias11. Verefore, 
the relative number of specimens per species in herbaria is not a good representation of the species9 relative 
abundance in the feld. Additionally, NHCs have spatial bias due to geographical diferences in survey efort, data 
storage and mobilization9,10,12. Vis may have negative impacts on the performance of presence-only SDMs if this 
results in environmentally biased sampling12–15. Negative impact of spatial bias is not always present, however16,17.

MaxEnt has shown to outperform other SDMs in several studies18–22. Nevertheless, some drawbacks have 
been identifed. For example, MaxEnt may underestimate the probability of occurrence within areas of observed 
presence, while overestimating it in areas beyond the species9 known extent of occurence23. Like other SDMs, one 
essential assumption of MaxEnt is that the presence-data are an independent sample from the species9 unknown 
probability distribution of occurrence over the study area1. Given the shortcomings of NHCs due to collectors9 
bias mentioned above, this assumption may not be met.

With a large set of plots with quantitative data, species abundances may be estimated by a spatial interpolation 
of local species9 abundances24. Based on plot data, where all species are collected (regardless of commonness 
or rarity), the interpolation method arguably sufers less from the collectors9 bias and is exclusively based on 
location. Ve abundance maps may serve as the species9 estimated probability distribution and a higher local 
abundance implies a higher probability of collecting. Vat is, the chance of encountering a species is higher in a 
region where the relative abundance of that species is high, than where the relative abundance is low. With spa-
tially interpolated abundances we may thus test whether NHCs can actually be considered a random sample of 
the unknown probability distribution.

Here we test how the geographic distribution of NHCs relates to the species relative abundance. To achieve 
this we address the following questions: (1) Do NHCs represent an independently drawn sample from the 
unknown probability distribution of a species? And (2) how does MaxEnt9s predicted environmental suitability 
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compare to plot abundance data and spatial interpolation of species abundances? To answer these questions, we 
used NHCs and abundance plot data of 227 hyperdominant Amazonian tree species, which are the most common 
tree species that together make up half of all trees with a diameter (dbh) over 10 cm in Amazonia24,25, the most 
biodiverse rainforest on Earth. We used NHCs and MaxEnt to construct presence-only SDMs for all 227 species 
and constructed the abundance maps by spatial interpolation of the plot abundance data for all species as well. 
To answer the frst question, we compared the collection records to the interpolated abundance maps for each 
species. Secondly, we compared MaxEnt9s predicted environmental suitability maps to the same interpolated 
abundance maps for each of the 227 species.

Results
NHCs data distribution and relative abundance analysis. Ve analysis testing our frst question, 
whether NHCs are an independent draw from the unknown probability distribution, resulted in a signifcant 
(P < 0.05), but very weak positive relationship for 149 (66%) species of the 227. For these species the chance of 
being collected indeed increased slightly with higher interpolated relative abundance. For the other 78 species 
(34%), this relationship was non-signifcant or negative (Appendix S1).

Predicted environmental suitability compared to species relative abundances. Further analy-
ses were carried out using only 170 species. Species, that had MaxEnt9s predicted environmental suitability not 

Figure 1. Frequency distributions for 189 signifcant hyperdominant Amazonian tree species of (A) the 
Spearman9s correlation index rho between MaxEnt9s predicted environmental suitability and relative local 
abundance of the plots; (B) Ve slopes of the linear 90th percentile quantile regression between MaxEnt9s 
predicted environmental suitability and the relative local abundance of the plots; (C) Ve true presence 
(sensitivity) of the distribution predicted by the IDW maps compared to the collection localities; and (D) Ve 
true presence (sensitivity) of the distribution predicted by the MaxEnt maps compared to the plot presence.
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signifcantly diferent from a random expectation tested with bias corrected null models, were excluded (57 spe-
cies). For 161 of the 170 species (95%), MaxEnt9s predicted environmental suitability was also signifcantly cor-
related with interpolated abundance (P < 0.05). Ve correlations and, thus the biological signifcance, were low 
however, with a mean rho (Spearman rank correlation) of 0.26 (Fig. 1A). A linear 90th quantile regression revealed 
that for 135 (79%) of the 175 species, the logistic output of MaxEnt could signifcantly (P < 0.05) predict the high-
est 10% of the local relative abundance values. Ve slope of the regression and thus the biological signifcance was 
very low, with a mean slope of only 0.01 (Fig. 1B).

We also investigated the performance of the IDW output against NHCs data and the MaxEnt output against 
plot presence (sensitivity), to check whether the models were accurate references to the occurrence data of each 
other (Appendix S2). Approximately 87% of the grid cells with species9 NHCs were correctly predicted as present 
by the IDW maps with a median true positive rate of 0.87 (Fig. 1C). Ve same analyses for MaxEnt showed that 
88% of the grid cells with plot presence were correctly predicted by MaxEnt maps, with a median true positive 
rate of 0.88 (Fig. 1D). Sensitivity for both analyses was high.

Figure 3. MaxEnt environmental suitability maps for (A) Eperua falcata; (B) Licania alba. MaxEnt maps 
constructed using GBIF records, cleaned GBIF records, kernel-density estimate GBIF records, and kernel-
density estimate GBIF records plus the bufer clip. Black dots: GBIF records. Red dots: GBIF records ager the 
use of the cleaning pipeline. Dashed blue line: bufer based on a convex hull around species cleaned collections. 
Light blue: predicted environmental suitability using GBIF records. Light green: predicted environmental 
suitability using cleaned GBIF records. Medium green: predicted environmental suitability using kernel density 
estimate GBIF records. Dark green: predicted environmental suitability using kernel density estimate GBIF 
records and the bufer clip, resulting in the fnal predicted area of occupancy. Maps created with custom R 
script. Base map source (country.shp, rivers.shp): ESRI (http://www.esri.com/data/basemaps, © Esri, DeLorme 
Publishing Company).

Figure 2. Ve predicted area of occupancy by MaxEnt (green) and the IDW map (grey) of (A) Triplaris 
weigeltiana; and (B) Macrolobium acaciifolium. Ve localities of the collections, presence and absence plots are 
also indicated. Maps created with custom R script. Base map source (country.shp, rivers.shp): ESRI (http://www.
esri.com/data/basemaps, © Esri, DeLorme Publishing Company).

http://www.esri.com/data/basemaps
http://www.esri.com/data/basemaps
http://www.esri.com/data/basemaps
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We provide maps (combined MaxEnt and IDW maps [as in Fig. 2]) for all species in the Supplementary 
Material S3. Ve predicted environmentally suitable region and the abundance distribution were similar for 
very abundant species with a large extent of occurence, such as Brosimum rubescens (Fig. S3_14A), Conceveiba 
guianensis (Fig. S3_32A) and Eschweilera coriacea (Fig. S3_49A). Ve same was true in the case of the species 
Clathrotropis glaucophylla (Fig. S3_30A) and Cenostigma tocantinum (Fig. S3_26A), despite the fact that neither 
species has a wide extent of occurence.

Moreover, MaxEnt also correctly predicted the environmental unsuitability of non-forested savanna areas, 
which are located in the north (Brazil, Guianas and Venezuela) and south of the map (northern Bolivia). 
Vese close matches apply to very abundant species with a large extent of occurence, such as Licania micrantha 
(Fig. S3_87A), and Ocotea aciphylla (Fig. S3_111A).

For Triplaris weigeltiana, a species with a northern Amazonian distribution, MaxEnt also correctly predicted 
its absence in these northern non-forested areas (Fig. 2A, S3_160A,B). In this case MaxEnt was able to establish 
a relationship between species distribution and vegetation type, based on climate variables (temperature and 
precipitation) and species occurrence. For Macrolobium acaciifolium, a riverine species, the IDW presented limi-
tations. Vis species is rarely recorded in plots, because the plots are mostly far from river edges. Vus, the species 
was found only in plots near to major rivers such as the Amazon. In this case NHCs provided better information 
about species occurrence, as collectors can reach areas closer to other smaller rivers aiming to collect more spe-
cies. In such a case, MaxEnt maps presented a wider distribution for the species (Fig. 2B, S3_92A–C).

IDW maps predicted widespread distributions for palms, for which the MaxEnt estimates were in sharp 
disagreement. Palms species are more diocult to collect, which can result in a lack of specimens in NHCs24. 
IDW maps appear to be more accurate for these species, because all species are recorded inside plots. In eastern 
Amazonia this was particularly severe because NHCs showed a large lack of occurrence in comparison with plot 
data but also proper locations were rejected by a kernel density estimate (KDE), because of the huge amount 
of palm occurrence data from the Aarhus University Palm Transect Database in western Amazonia. Some of 
the species afected were Attalea butyracea (Fig. S3_8A), Euterpe precatoria (Fig. S3_60A), Iriartea deltoidea 
(Fig. S3_72A), Oenocarpus bacaba (Fig. S3_113A), Oenocarpus bataua (Fig. S3_114A) and Socratea exorrhiza 
(Fig. S3_150A).

NHCs data cleaning treatment and MaxEnt map building. All 227 hyperdominant species had 
records excluded by the data cleaning treatment, the consequence of records that either lack geographic informa-
tion, are duplicates at the used grid cell resolution of 0.5 degree or were outliers based on a kernel-density estimate 
(Appendix S4). An average of 50% of the records was excluded. Ve frst twelve species with the most excluded 
records were palms, with a mean of 96% of excluded records. Ve total average of excluded records decreased to 
43% when palms were taken out of the analyses (Appendix S4). Vis high percentage is due to the huge amount of 
palm occurrence data of the Aarhus University Palm Transect Database26. At this moment this database contains 
543,000 records, all available in GBIF. Most of these records represent observations in many plots inside the same 
grid cell, thus these records were removed and considered as a single observation.

Ager the kernel density estimate treatment the average of excluded records was 57%, presenting an increment 
of 6.7% in the total amount of records excluded. Eperua purpurea and Eperua leucantha collections were in good 
agreement with plot data distribution, ager outliers were excluded by the kernel density estimate (Appendix S5). 
In the case of Eperua falcata, some occurrences in Colombia and Venezuela were in fact misidentifcations of 
Eperua leucantha, since this species occurs only in the Guianas (H. ter Steege, pers. obs.). Ve kernel density 
estimate function correctly removed these occurrences outside the E. falcata cluster observed in the Guianas 
(Fig. 3A). Some occurrences of Licania alba in southeast Amazonia, an area with no plot data, were also removed 
by the kernel-density estimate function (Fig. 3B).

Because of the use of the bufer treatment to limit MaxEnt predictions around the species9 extent of occur-
rence, MaxEnt maps predicted an area of occupancy close to that of the IDW maps., The median value for 
MaxEnt9s area of occupancy was 1354 0.5-degree grid cells, and the median for IDW was 1217. For 98 (58%) of 
the 170 species, MaxEnt predicted an area of occupancy bigger than the that predicted by IDW, and for 115 (42%) 
of the species IDW had a predicted area of occupancy bigger than MaxEnt. In 15% of the cases (26 species) the 
size diference in area of occupancy was smaller than 5% (Appendix S2).

Discussion
Using NHCs for presence-only SDMs. Collection density was weakly related to relative abundance in 
most tree species, and for 34% there was no positive relationship between the chance of being collected and local 
abundance, violating the assumption of MaxEnt that collection localities are an independently drawn sample 
from a species9 unknown probability distribution1. Ve diferences between the distribution of NHCs and local 
abundance could limit the ability of presence-only SDMs to predict species probability of distribution as pre-
dicted by spatial interpolation of local species9 abundance.

MaxEnt9s premise that species occurrences are drawn randomly from the unknown probability distribution1 
may not be met for two reasons: (1) collections are spatially biased with regard to environmental conditions13; (2) 
and collections are spatially biased with regard to areas of high abundance, with underrepresentation of in areas of 
high abundance and overrepresentation in areas of low abundance. Much attention has been given to the possible 
impacts of spatial bias on the performance of presence-only SDMs, with some showing a negative impact on these 
models13–15, and others arguing for the robustness of MaxEnt against spatial bias17,27. However, little attention has 
been given to the second issue. With our plot dataset, we addressed the relationship between collection localities 
and the predicted spatial abundance distribution.

In 66% of the cases we found that a higher local relative abundance indeed increased the chance of being col-
lected, although the correlations were very weak (Fig. 1A), and the majority of collections originated from areas 
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with a low relative abundance due to the large areas where a given species9 abundance is low. Even hyperdominant 
species are usually only dominant in one or two of the six regions of Amazonia, most hyperdominant species 
have a large geographic extent of occurrence but are habitat specialists24. Steege et al.25 also found that abundance 
is a poor predictor for the number of collections of a species compared to the size of its extent of occurrence. 
Additionally, herbaria are characterized by the earlier discussed collectors9 bias11. Although we addressed the 
spatial bias of survey efort by including a bias based background fle in our MaxEnt modelling, the lack of a 
signifcant positive relationship between relative abundance estimated by IDW and collection density for many 
species suggests that this assumption of MaxEnt is not met because of the way species are collected.

MaxEnt maps vs. IDW maps. We also asked if MaxEnt maps would be a close match to the IDW maps. In 
general, environmental suitability does not refect a species abundance. Presence-only SDMs, such as MaxEnt, 
are based on correlations between species presence and environmental conditions, predicting the environmental 
suitability for a species, and not their realized distribution5. Relative abundance in the other hand is based solely 
on abundance, estimating the number of trees belonging to each species in the grid cells28. Ve Spearman9s rank 
correlation and the linear 90th percentile quantile regression showed a very weak positive relationship between 
MaxEnt9s predicted environmental suitability and IDW relative abundance prediction at plot localities, contrary 
to the results of VanDerWal et al.29, who found a strong relationship between the two. Veir research difers in that 
they modelled a biogeographical region with tropical and subtropical rainforests, and also drier and warmer envi-
ronments. Ve relationship between environmental suitability and local abundance is likely to be stronger when 
more (extreme) divergent conditions are included, such as areas from diferent biomes. Perhaps Amazonia9s less 
divergent conditions, representing perhaps a one single biome, in a much larger area, are potentially responsible 
for this weak relationship.

To test their further predictive performances we also converted both outputs to binary maps. Some studies 
have addressed questions about the transformation of SDM predictions into discrete representations such as 
binary maps, aiming to estimate area of occupancy, species richness and others applications30–33. Binary maps 
can add more uncertainties to model predictions, especially because it is necessary to set a threshold to distin-
guish between species presence and absence, which can be selected arbitrarily or without taking into account the 
context of the study. However, we avoided thresholds based on specifcity (prediction of absences) because of 
the lack of absence data34. In many cases our MaxEnt binary maps presented an area of occupancy close to those 
made with IDW, presenting a high median sensitivity (88%). Moreover our MaxEnt binary maps also correctly 
predicted absence in naturally non-forested areas in northern Amazonia for many species (Appendix S3).

MaxEnt9s environmental suitability mostly predicted much larger area of occupancy than those predicted with 
the IDW relative abundance. We reduced this efect estimating species extent of occurrence using a convex hull 
around each species records, plus a bufer of 300 km. Vis approach minimized MaxEnt9s overestimation of the 
area of occupancy beyond the species9 known geographical range (extent of occurrence), over climatically suitable 
areas, by restricting the species9 predicted suitable habitat, providing a more conservative estimate for the species9 
area of occupancy (Appendix S5)35,36.

Ve IDW relative abundance models showed an opposite behaviour, underpredicting areas where collections 
are present but where no plots have recorded the species. Ve high sensitivity of the MaxEnt compared to those of 
the IDW is in agreement with a previous study37, where models ft to presence-only data yielded higher sensitivity 
but a lower specifcity than presence-absence models. Nevertheless, in our case, the IDW relative abundance 
yielded sensitivity rates based on collection localities that were as high as the sensitivity rates of MaxEnt9s pre-
dicted environmental suitability based on plot presence localities (87%). Vus, both models function similarly in 
predicting species presences.

Collections versus abundance plot data. In some cases, collections were located outside the species9 
extent of occurrence predicted by the IDW maps. Vis divergence follows from the methodical diferences 
between collections and plot assessments. Ve distributions as predicted by the IDW do not always cover the 
whole species9 extent of occurrence. Because there are only 550 individuals (on average) in one plot, and 16,000 
tree species in Amazonia24, one plot obviously cannot contain all species that are present in the surrounding area. 
Furthermore, many plots, lacking a given species, are within the extent of occurrence predicted by IDW, and 
many plots with absences are located in close proximity to plots with presence data. Vis results in low specifcity 
values. NHCs comprise a species9 range including areas of low abundance; while plot data have information on 
abundance, but may miss areas of low abundance, and, thus, may miss rare species more easily.

Environmental suitability versus dispersal limitation. Ve second large diference between the two 
models is the theoretical principles they are based upon. MaxEnt is based on environmental suitability, which is 
appropriate since correlations between species9 distributions and climate are evident5,36. Nevertheless, predicting 
actual (realized) distributions also requires information on biotic interactions, dispersal limitation, and other 
environmental variables, which are beyond presence-only SDM5. IDW, on the other hand, is based on location 
only. Vus, both models cover only one of the three explanatory variables for species distributions. Again, it will 
depend on the aim of the research which type of model is most suitable. In either case predicted species distribu-
tions need to be interpreted with caution.

Collection data and cleaning pipeline. We propose a cleaning pipeline to remove possible inconsisten-
cies in collection data. Unlike species-specifc approaches, many studies use large numbers of species, lacking 
correction because of the great number of references and specialists to be consulted38. Collection data availa-
ble in global datacentres, such as GBIF, cannot carry out thorough data-correction procedures, and the qual-
ity of the records has been debated and tested in some cases39. Some records have no locality information, or 
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coordinates are based on cities close to the observed distribution, and may contain duplicated data or zeros as 
information38–40.

We used a pipeline that cleans collection data by removing records with a lack of geographic information38, 
and we strongly recommend the use of analytical tools to correct inconsistencies present in global databases. Ve 
cleaning process also removed coordinates considered spatial outliers by a kernel-density estimate, omitting loca-
tions too far from the central part of the distribution, which we assume to be misidentifcations.

Our results suggest that half of the species records are likely inconsistent, missing geographical information, 
such as latitude, longitude or locality. Palms were the most impacted species, because the huge amount of records 
available with high levels of redundancy.

We used a kernel density estimate (KDE) to remove geographical outliers of the NHCs. Vis function removed 
e.g. occurrences outside the Eperua falcata cluster observed in the Guianas (Fig. 3A), and Licania alba in south-
east Amazonia (Fig. 3B). Although the KDE excluded only a small number of records compared to the previous 
cleaning step, it was able to identify some isolated occurrences, which we considered likely misidentifcations. Ve 
KDE, however, showed limitations with palm species, removing some eastern Amazonia records, simply caused 
by the great number of collections in the Aarhus University Palm Transect Database in western Amazonia.

Conclusion
We have shown that the NHCs violate the assumption of MaxEnt that collection localities are an independently 
drawn sample from a species9 unknown probability distribution. Although we found a relationship between 
NHCs and relative abundance for some species, it was very weak. Additionally, we found that the majority of 
MaxEnt9s predicted environmental suitability values difer from those of the IDW relative abundance values, and 
its results cannot be interpreted as an abundance estimate. Nevertheless, MaxEnt predicts probability of occur-
rence well, and both models largely overlap and predict similar areas of occupancy, showing high sensitivities. 
Furthermore, NHCs data should undergo cleaning processes before being used to represent occurrences in spe-
cies distribution models. We showed that, half of the species records are likely inconsistent, missing geographical 
information, such as latitude, longitude or locality, and it also may represents misidentifcations of the species. We 
therefore conclude that distribution maps as generated by MaxEnt should be used with caution. Veir application 
should not be based solely on unsupervised models, especially because their easily constructed distribution maps 
are tempting to utilize without indication of probable errors. Vis outcome is particularly important for biodiver-
sity assessments, for which SDMs of a large number of species are automatically generated without subsequent 
checking. Our pipeline provides a conservative means to do so. As our pipeline removes inconsistencies from 
NHCs data and estimates area of occupancy in an area slightly larger than the extent of occurrence of a species, 
compatible with IUCN red list assessments35,41.

Methods
Species. We focused our analysis on 227 hyperdominant Amazonian tree species. Ve hyperdominant species 
are the most common tree species in Amazon, and together make up half of all trees with a diameter (dbh) over 
10 cm24. We chose only hyperdominant species to reduce the emergence of too many 8false absences9 when plot 
data are interpolated into abundance maps. Vey present the largest probability of occurrence in the plots where 
they are present in the surrounding area.

Collections. Species collections were downloaded from GBIF (August 2017, www.gbif.org). We used data 
from the species9 complete extent of occurrence to prevent defciencies that are associated with SDMs based on 
a species9 partial geographic range, such as under-prediction42. All individuals were assigned to species level; 
intraspecifc levels were ignored.

Taxonomic names were checked with the Taxonomic Name Resolution Service (TNRS, http://tnrs.iplant-
collaborative.org/). Although misidentifcation may represent a major problem in tree plots, we assume it is less 
severe in common species such as the hyperdominants; which are better represented in herbaria and more likely 
to be collected fertile25. We assume that misidentifcation is within acceptable limits.

Collections cleaning pipeline. Ve cleaning pipeline consisted of a two-step process to remove inconsist-
encies from GBIF downloaded data (GBIF records). Ve frst step consisted of removing all records with missing 
latitude, longitude or locality information (imprecise georeferences)39 and all duplicates at 0.5-degree spatial res-
olution40. With the GeoClean function from speciesgeocodeR R Package38 we also removed coordinates assigned 
to capital cities, coordinates with latitude equal to longitude, coordinates equal to exactly zero; coordinates based 
on centroids of provinces, and corrected country references (cleaned GBIF records).

In the second step we used a kernel-density estimate function to remove spatial outliers from the cleaned GBIF 
data, assuming that these are misidentifcations or incorrect coordinates not fltered by the step described above. 
Vis function calculates a fxed-bandwidth kernel-density estimate of the point process density function that pro-
duced the point patterns43, using the density.ppp function from spatstat R Package44 to generate a kernel-density 
estimate. Outliers were identifed and removed based on the kernel-density values for each species coordinate, 
using a threshold based on a quantile function from stats R Package45 (kernel-density estimate GBIF records).

Ve quantile threshold was set according to the number of Amazonian regions in which a species occurred, 
six in total as defned by ter Steege et al.24. Ve quantile threshold was larger for species with narrow distribution 
(occurring in one to three Amazonian regions) and smaller for species with wide distribution (occurring in more 
than three Amazonian regions). As some hyperdominants are very widely distributed in Amazonia a larger quan-
tile threshold cuts of too many occurrences, removing not only outliers, but also potential correct occurrence or 
entire occurrence clusters. Both steps reduced the number of species collection records (Appendix S4), and the 
predicted area of occupancy (Appendix S5).

http://www.gbif.org
http://tnrs.iplantcollaborative.org/
http://tnrs.iplantcollaborative.org/
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Plot abundance data. Abundance maps were constructed using 1675 1-ha tree inventory plots well distrib-
uted across Amazonia (defned as the tropical rain forest of the Amazon basin and the Guyana Shield) from the 
Amazon Tree Diversity Network (ATDN) (http://atdn.myspecies.info/). All individuals with ≥10 cm diameter at 
breast height (dbh) were recorded within the plots24. Because a relatively small number of collections from these 
plots have been deposited in herbaria, they constitute a dataset nearly independent from the NHCs.

Constructing abundance maps. Inverse distance weighting (IDW) interpolation was used to create abun-
dance maps from the plot abundance data. First, Amazonia was divided into 2193 0.5-degree grid cells. We then 
constructed the inverse distance weighting (IDW) models based on relative abundance following ter Steege et 
al.28. Ven, the relative abundance (RA) for each cell was defned as RAi = ni/N, where: ni = the number of indi-
viduals of species i, and N = the total number of trees. IDW models were based on the nearest 150 plots within a 
limit of 300 km distance. Each plot weight was calculated by taking the square root of the distance in degrees. Ve 
150 plots that were taken into account ensured that within an area consisting of absence plots only, the species 
is predicted to be absent. In addition, the 3-degree distance limit causes the model to predict the absence of a 
species when no occurrence plots are present within a radius of 3 degrees. Vis setting is based on the notion that 
within a non-environmental model a species9 extent of occurrence is restricted by dispersal limitation only46. Ve 
maximum dispersal distance has been optimized to a 3-degree distance by determining the best match between 
the IDW maps and the Fisher9s Alpha diversity map of all species47.

Constructing presence-only SDMs using MaxEnt. We used MaxEnt version 3.3.3 k1,48, to con-
struct presence-only SDMs for all the 227 species. Data of 19 environmental variables were downloaded 
from WorldClim6. Vese included variables related to temperature and precipitation. Since collinearity, the 
non-independence of predictor variables, potentially leads to the wrong identifcation of relevant predictors for 
the model, we used the common Spearman9s rank correlation coeocient threshold of |rho| >0.7 to identify cor-
related variables49.

Subsequently, we selected least correlated variables (|rho| <0.7) based on biological relevance and their load-
ings in a principal component analysis (PCA). Ve PCA consisted of all environmental variables for all collection 
localities of the 227 species. For temperature, we selected isothermality, temperature seasonality, and maximum 
temperature of warmest month. For precipitation we chose annual precipitation, wettest month precipitation and 
driest month precipitation. All the environmental variables were cropped to the extent of the Neotropics42, and 
aggregated to a 0.5-degree spatial resolution, using the function 8mean9 from R package 8raster950. We used precip-
itation and temperature variables to assess MaxEnt9s predicted environmental suitability based on climate only. In 
the MaxEnt feature settings we excluded the product, threshold and hinge features given their lack of biological 
justifcation with the variables used34,36.

Correcting for geographical sampling bias has been found to improve the predictive performance of MaxEnt14. 
Also, environmental bias can be assessed by environmental fltering, which improves MaxEnt discriminatory 
ability51. We produced a bias fle to employ the target-group background method recommended by Phillips and 
Dudík52, an option which is implemented in MaxEnt. Ve bias fle consisted of a binary raster grid based on all 
Amazon tree species collections25, at each grid cell downloaded from GBIF, which refects local survey efort. 
Vis is an essential step in the analysis, given MaxEnt9s assumption that the occurrences are independently drawn 
from the unknown probability distribution of the species. Without a bias fle, sampling bias could severely reduce 
models accuracy. We used the bias fle to produce a background fle according the eforts of collection. Finally we 
used a convex hull around cleaned occurrences (kernel-density estimate GBIF records) of each species to estimate 
their extent of occurrence sensu35, plus a bufer of 300 km, equal to the bufer set for the IDW analysis, to crop the 
area of predicted environmental suitability29,41. Ve latter is our predicted area of occupancy.

Data analysis. We compared collection presences and absences to IDW relative abundance to answer our 
frst question whether NHCs are independent drawn from the unknown probability distribution. A binomial gen-
eralized linear model (logit regression) was used to determine if a signifcant positive relationship existed between 
the probability of being collected and predicted local relative abundance.

To answer the second question, how MaxEnt9s predicted environmental suitability compares to IDW relative 
abundance, we frst tested which species9 MaxEnt maps were signifcantly diferent from random expectation 
with a bias corrected null-model53. For each species, 99 null-models were generated by randomly drawing n 
collection localities without replacement from the same spatial grid as the environmental layers, with n being the 
number of geographically unique collections for that species. Using an upper one-sided 95% confdence interval, 
we determined the probability value of the observed AUC as calculated by MaxEnt against those generated by the 
null distribution. If the species9 observed AUC value ranks 95 or above, the chance that a random set of n points 
could generate an equally good model is less than 5%, hence considered signifcantly diferent from random 
expectation. All species for which the SDM prediction did not deviate signifcantly from random expectation 
were excluded from further analysis.

Second, a Spearman Rank Correlation test was used to test the relationship between MaxEnt logistic output 
and IDW relative abundance at plot localities. Additionally, following VanDerWal et al.29, we determined the 
linear 90th percentile quantile regression between the IDW relative abundance and MaxEnt logistic outputs at 
plot localities. Ve confdence intervals of the linear quantile regressions were calculated with the Markov chain 
marginal bootstrap method as suggested by Kocherginsky et al.54. We computed the correlations and regressions 
for all plots separately, even if multiple plots were present in one grid square.

Vird, we tested the predictive performance of MaxEnt and IDW. For MaxEnt, its logistic output was trans-
formed into binary maps with a 10% training presence threshold. Although the maximum sum of sensitivity and 

http://atdn.myspecies.info/
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specifcity is considered to be the best threshold method for presence-only SDMs by Liu et al.55, we followed the 
advice of Merow et al.34 to avoid measures with specifcity because they are based on absences that are unknown 
in this analysis. Ven we tested its sensitivity by calculating true positive rate of the binary maps against plot 
presence. Vat is, the fraction of the grid cells with a plot for which MaxEnt predicted the species correctly to be 
present. Finally we calculated the median predicted area of occupancy.

For IDW, its output was transformed into binary maps by converting the grids cells with RA >0 into 1. Last, 
naturally non-forested areas were excluded from the maps based on Soares-Filho et al.56. We then calculated its 
output true positive rate against collections presences and absences. Vat is, the fraction of the grid cells with a 
collection for which the IDW relative abundance predicted the species correctly to be present. Finally we also 
calculated the median predicted area of occupancy for IDW.

All calculations and analyses were performed with R version 3.0.33, including the R packages raster50, rgdal57, 
gstat58, dismo59, vegan60, quantreg61, sp62, rJava63 and SDMTools64.
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