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ABSTRACT

Species occurrence records provide the basis for many biodiversity studies. They derive

from georeferenced specimens deposited in natural history collections and visual

observations, such as those obtained through various mobile applications. Given the

rapid increase in availability of such data, the control of quality and accuracy constitutes

a particular concern. Automatic filtering is a scalable and reproduciblemeans to identify

potentially problematic records and tailor datasets from public databases such as the

Global Biodiversity Information Facility (GBIF; http://www.gbif.org), for biodiversity

analyses. However, it is unclear how much data may be lost by filtering, whether

the same filters should be applied across all taxonomic groups, and what the effect

of filtering is on common downstream analyses. Here, we evaluate the effect of 13

recently proposed filters on the inference of species richness patterns and automated

conservation assessments for 18 Neotropical taxa, including terrestrial and marine

animals, fungi, and plants downloaded from GBIF. We find that a total of 44.3%

of the records are potentially problematic, with large variation across taxonomic

groups (25–90%). A small fraction of records was identified as erroneous in the strict

sense (4.2%), and a much larger proportion as unfit for most downstream analyses

(41.7%). Filters of duplicated information, collection year, and basis of record, as well

as coordinates in urban areas, or for terrestrial taxa in the sea or marine taxa on land,

have the greatest effect. Automated filtering can help in identifying problematic records,

but requires customization of which tests and thresholds should be applied to the

taxonomic group and geographic area under focus. Our results stress the importance

How to cite this article Zizka A, Antunes Carvalho F, Calvente A, Rocio Baez-Lizarazo M, Cabral A, Coelho JFR, Colli-Silva M, Fantinati
MR, Fernandes MF, Ferreira-Araújo T, Gondim Lambert Moreira F, Santos NMC, Santos TAB, dos Santos-Costa RC, Serrano FC, Alves da
Silva AP, de Souza Soares A, Cavalcante de Souza PG, Calisto Tomaz E, Vale VF, Vieira TL, Antonelli A. 2020. No one-size-fits-all solution to
clean GBIF. PeerJ 8:e9916 http://doi.org/10.7717/peerj.9916



of thorough recording and exploration of the meta-data associated with species records

for biodiversity research.

Subjects Biodiversity, Biogeography, Conservation Biology, Ecology

Keywords Automated cleaning, Automated conservation assessment, Data quality, GBIF,
Neotropics, Species distributions

INTRODUCTION

Publicly available species distribution data have become a crucial resource in biodiversity

research, including studies in ecology, biogeography, systematics and conservation biology.

In particular, the availability of digitized collections from museums and herbaria and

citizen science observations has increased drastically over the last few years. As of today,

the largest public aggregator for geo-referenced species occurrences data, the Global

Biodiversity Information Facility (http://www.gbif.org), provides access to more than 1.5

billion geo-referenced occurrence records for species from across the globe and the tree of

life.

A central challenge to the use of these publicly available species occurrence data in

research is problematic geographic coordinates, which are either erroneous or unfit

for downstream analyses (for instance because they are overly imprecise, Anderson

et al., 2016). Problems mostly arise because data aggregators such as GBIF integrate

records collected with different methodologies in different places at different times—often

without centralized curation and only rudimentary meta-data. For instance, problematic

coordinates caused by data-entry errors or automated geo-referencing from vague locality

descriptions are common (Maldonado et al., 2015; Yesson et al., 2007) and cause recurrent

problems such as records of terrestrial species in the sea, records with coordinates assigned

to the centroids of political entities, or records of species in cultivation or captivity (Zizka

et al., 2019).

Manual data cleaning based on expert knowledge can detect these issues, but it is only

feasible on small taxonomic or geographic scales, and it is time-consuming and difficult

to reproduce. As an alternative, automated filtering methods to identify potentially

problematic records have been proposed as a scalable option, as they are able to deal with

datasets containing up to millions of records and many different taxa. Those methods are

usually based on geographic gazetteers (e.g., Chamberlain, 2016; Zizka et al., 2019; Jin &

Yang, 2020) or on additional data, such as environmental variables (Robertson, Visser &

Hui, 2016). Additionally, filtering procedures based on recordmeta-data, such as collection

year, record type, and coordinate precisions, have been proposed to improve the suitability

of publicly available occurrence records for biodiversity research (Zizka et al., 2019).

Problematic records are especially critical in conservation, where stakes are high.

Recently proposed methods for automated conservation assessments could support the

formal assessment procedures for the global Red List of the International Union for the

Conservation of Nature (IUCN) (Dauby et al., 2017; Bachman et al., 2011; Pelletier et al.,

2018). These methods approximate species’ range size, namely the Extent of Occurrence
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(EOO, which is the area of a convex hull polygon comprising all records of a species),

the Area of Occupancy (AOO, which is the sum of the area actually occupied by a

species, calculated based on a small-scale regular grid), and the number of locations

for a preliminary conservation assessment following IUCN Criterion B (‘‘Geographic

range’’). These methods have been used to propose preliminary global (Stévart et al.,

2019; Zizka et al., 2020) and regional (Schmidt et al., 2017; Cosiaux et al., 2018) Red List

assessments. However, all metrics, and especially EOO, are sensitive to individual records

with problematic coordinates. Automated conservation assessments may therefore be

biased, particularly if the number of records is low, as it is the case for many tropical

species.

While automated filters hold great promise for biodiversity research, their use across

taxonomic groups and datasets remains poorly explored. Here, we test the effect of

automated filtering of species geographic occurrence records on the number of records

available in different groups of animals, fungi, and plants. Furthermore, we test the impact

of automated filtering procedures for the accuracy of preliminary automated conservation

assessments compared to full IUCN assessments. Specifically, we evaluate a pipeline of

13 automated filters to flag possibly problematic records by using record meta-data and

geographic gazetteers in two categories: (1) erroneous (coordinates, that are likely wrong,

irrespective of the downstream analyses, for instance due to data entry errors) and (2)

unfit for purpose (coordinates that are not wrong per se, but likely unfit for the planned

downstream analyses, for instance because they are overly imprecise). We address three

questions:

1. Which filters lead to the biggest loss of data when applied?

2. Does the importance of individual filters differ among taxonomic groups?

3. Does automated filtering improve the accuracy of automated conservation assessments?

MATERIAL AND METHODS

Choice of study taxa

This study is the outcome of a workshop held at the Federal University of Rio Grande do

Norte in Natal, Brazil in October 2018 which gathered students and researchers working

with different taxonomic groups of animals, fungi, and plants across the Neotropics

(Fig. 1). Each participant analysed geographic occurrence data from their taxonomic group

of interest and commented on the results for their group. Hence, we include groups based

on the expertise of the participants rather than following an arbitrary choice of taxa and

taxonomic ranks. We acknowledge a varying degree of documented expertise and number

of years working on each group. We obtained public occurrence records for 18 taxa,

including one plant family, nine plant genera, one genus of fungi, three families and one

genus of arthropods, one family of snakes, one family of skates, and one genus of bony fish

(Table 1).

Species occurrence data

We downloaded occurrence information for all study groups from http://www.gbif.org

using the rgbif v1.4.0 package (Chamberlain, 2017) in R (GBIF.org, 2019a; GBIF.org,
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Figure 1 Examples of taxa included in this study. (A) Pilosocereus pusillibaccatus (Pilosocereus), (B) Con-

chocarpus macrocarpus (Conchocarpus); (C) Tillandsia recurva (Tillandsia); (D) Oxyrhopus guibei (Dipsa-

didae); (E) Aethiopella ricardoi (Neanuridae); (F) Tocoyena formosa (Tocoyena); (G) Harengula jaguana

(Harengula); (H) Gaylussacia decipiens (Gaylussacia); (I) Oocephalus foliosus (Oocephalus); (J) Tityus car-

valhoi (Tityus); (K) Prosthechea vespa (Prosthechea), Image credits: (A) Pamela Lavor, (B) Juliana El-Ottra,

(C) Eduardo Calisto Tomaz, (D) Filipe C. Serrano, (E) Raiane Vital da Paz (available under a Creative

Commons Attribution 3.0 Unported License), (F) Fernanda G.L. Moreira, (G) Thais Ferreira-Araujo, (H)

Luiz Menini Neto, (I) Arthur de Souza Soares, (J) Renata C. Santos-Costa, (K) Tiago Vieira.

Full-size DOI: 10.7717/peerj.9916/fig-1

2019b; GBIF.org, 2019c; GBIF.org, 2019d; GBIF.org, 2019e; GBIF.org, 2019f; GBIF.org,

2019g; GBIF.org, 2019h; GBIF.org, 2019i; GBIF.org, 2019j; GBIF.org, 2019k; GBIF.org, 2019l;

GBIF.org, 2019m; GBIF.org, 2019n; GBIF.org, 2019o; GBIF.org, 2019p; GBIF.org, 2020a;
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Table 1 The study groups and their taxonomy. This study includes three marine and 15 terrestrial taxa, seven of them animals, one group of fungi

and ten plants, belonging to 16 different orders. The outlines illustrate the broad taxonomic group (i.e., an evolutionary relative if relative if no icon

of the direct study group was available). Icons from http://www.phylopic.org if available under a Public Domain license otherwise created by the au-

thors (Heath, 2020; Hillewaert, 2006; Hough, 2008;Menchetti, 2020;McNair, 2020a;McNair, 2020b;Müller, 1885; Nimphel, 2020; Petar, 2020; Pohl,

1827; Reinke, 2020; PhyloPic, 2020a; PhyloPic, 2020b;Welter-Schultes, 2017; Xgirouxb, 2020; Veronidae, 2012).

Taxon Taxon rank Realm Common name ‘Phylum’ Family

Diogenidae Family Marine Hermit crabs Arthropoda Diogenidae

Entomobryidae Family Terrestrial Springtails Arthropoda Entomobryidae

Neanuridae Family Terrestrial Springtails Arthropoda Neanuridae

Tityus Genus Terrestrial Scorpions Arthropoda Buthidae

Arhynchobatidae Family Marine Skates Chordata Arhynchobatidae

Dipsadidae Family Terrestrial Snakes Chordata Dipsadidae

Harengula Genus Marine Herrings Chordata Clupeidae

Thozetella Genus Terrestrial Sac fungi Ascomycota Chaetosphaeriaceae

Conchocarpus Genus Terrestrial NA Angiosperms Rutaceae

Gaylussacia Genus Terrestrial Huckleberries Angiosperms Ericaceae

Harpalyce Genus Terrestrial NA Angiosperms Fabaceae

Iridaceae Family Terrestrial NA Angiosperms Iridaceae

Lepismium Genus Terrestrial Cacti Angiosperms Cactaceae

Oocephalus Genus Terrestrial NA Angiosperms Lamiaceae

Pilosocereus Genus Terrestrial Cacti Angiosperms Cactaceae

Prosthechea Genus Terrestrial Orchids Angiosperms Orchidaceae

Tillandsia Genus Terrestrial Bromeliads Angiosperms Bromeliaceae

Tocoyena Genus Terrestrial NA Angiosperms Rubiaceae

GBIF.org, 2020b). We downloaded GBIF-interpreted data including only records with

geographic coordinates and limited the study area to a rectangle between 90◦S–33◦N

and 35◦W–120◦W reflecting the Neotropics (Morrone, 2014), our main area of expertise.

The natural distributions of all included taxa are confined to the Neotropics except

for Arhynchobatidae, Diogenidae, Dipsadidae, Entomobryidae, Gaylussacia, Iridaceae,

Neanuridae, and Tillandsia, for which we only obtained the Neotropical occurrences. We
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considerGBIF data generally of high quality and use them as a case study becauseGBIF is the

largest, most widely used and taxonomically most comprehensive data source for species

occurrence records; however many more exist (e.g., https://bien.nceas.ucsb.edu/bien/,

http://www.fishbase.de or Guedes et al., 2018). GBIF provides information on the internal

consistency of records, among others including information on decimal rounding of

coordinates, geographic projection, date validity and geospatial issues. Since we specifically

aimed to test the effect of user-level filtering we included records flagged with issues by

GBIF (this was also the default option). Geospatial issues flagged by GBIF only concerned

0.4% of the records used in this study and including them had the added benefit to

make our results directly comparable to other databases, which may use different internal

consistency checks or none at all.

Automated cleaning

We followed the cleaning pipeline outlined by Zizka et al. (2019) and first filtered the

data as downloaded from GBIF (‘‘raw’’, hereafter) using meta-data for those records for

which they were available (although meta-data were often missing, Peterson et al., 2018),

removing: (1) records with a coordinate precision below 100 km (as this represents the

grain size of many macro-ecological analyses); (2) fossil records and records of unknown

source; (3) records collected before 1945 (before the end of the Second World War,

since coordinates of old records are often imprecise); and (4) records with an individual

count of less than one and more than 99. Furthermore, we rounded the geographic

coordinates to four decimal places and retained only one record per species per location

(i.e., test for duplicated records). In a second step, we used the clean_coordinates

function of the CoordinateCleaner v2.0-11 package (Zizka et al., 2019) with default

options to flag errors that are common to biological data sets (‘‘filtered’’, hereafter). These

include: coordinates in the sea for terrestrial taxa and on land for marine taxa, coordinates

containing only zeros, coordinates assigned to country and province centroids, coordinates

within urban areas, and coordinates assigned to biodiversity institutions. See Table 2 for a

summary of all filters we used and their classification into ‘‘erroneous’’ and ‘‘unfit’’.

Downstream analyses

We first generated species richnessmaps using 100x100 km grid cells for the raw and filtered

datasets respectively, using the package speciesgeocodeR v2.0-10 (Töpel et al., 2017).

We then performed an automated conservation assessment for all study groups based

on both datasets using the ConR v1.2.4 package (Dauby et al., 2017). ConR estimates the

EOO, AOO, and the number of locations, and then suggests a preliminary conservation

status based on Criterion B of the global IUCN Red List. While these assessments are

preliminary (see IUCN Standards and Petitions Subcommittee, 2017), they can be a proxy

used by the IUCN to speed up full assessments. We then benchmarked the preliminary

conservation assessments against the global IUCN Red List assessments for the same taxa

(where available), which we obtained fromhttp://www.iucn.org via the rredlist v.0.5.0

package (Chamberlain, 2018).
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Table 2 The automated filters used in this study.

Test Type Basis Rationale

Biodiversity institutions Error Gazetteer-based Records may have coordinates at the location of biodiversity

institutions, e.g., because they were erroneously entered

with the physical location of the specimen or because they

represent individuals from captivity or horticulture, which

were not clearly labeled as such

Equal lat/lon Error Gazetteer-based Coordinates with equal latitude and longitude are usually

indicative of data entry errors

Sea Error Gazetteer-based Coordinates from terrestrial organisms in the sea are usually

indicative of data entry errors, e.g., swapped latitude and

longitude

Zeros Error Gazetteer-based Coordinates with plain zeros are often indicative of data

entry errors

Capitals Unfit Gazetteer-based Records may be assigned to the coordinates of country

capitals based on a vague locality description

Duplicates Unfit Gazetteer-based Duplicated records may add unnecessary computational

burden, in particular for large scale biodiversity analyses

and distribution modelling for many species

Political centroids Unfit Gazetteer-based Records may be assigned to the coordinates of the centroids

of political entities based on a vague locality description

Urban areas Unfit Gazetteer-based Records from urban areas are not necessarily errors, but

often represent imprecise records automatically geo-

referenced from vague locality descriptions or old records

from different land-use types

Basis of record Unfit Meta-data Records might be unsuitable or unreliable for certain

analyses dependent on their source, e.g., ‘fossil’ or

‘unknown’

Collection year Unfit Meta-data Coordinates from old records are more likely to be

imprecise or erroneous coordinates since they are derived

from geo-referencing based on the locality description.

This is more problematic for older records, since names or

borders of places may change

Coordinate precision Unfit Meta-data Records may be unsuitable for a study if their precision is

lower than the study analysis scale

Identification level Unfit Meta-data Records may be unsuitable if they are not identified to

species level.

Individual count Unfit Meta-data Records may be unsuitable if the number of recorded

individuals is 0 or if the count is too high. This may

be related to data-entry or data-basing problems (e.g.,

defaulting to 0 for numerical values), indicate records

from DNA barcoding and in some cases indicate records of

absence.

Evaluation of results

Each author provided an informed comment on the performance of the raw and cleaned

datasets, concerning the number of removed records and the accuracy of the overall

species richness maps. We then compared the agreement between automated conservation

assessments based on raw and filtered occurrences with the global IUCN Red List for those

taxa where IUCN assessments were available (http://www.iucn.org).
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We carried out all analyses in the R computing environment (R Core Team, 2019),

using standard libraries for data handling and visualization (Wickham, 2018;Garnier, 2018;

Ooms, 2014;Ooms, 2019;Hijmans, 2019). All scripts are available from a Zenodo repository

(doi:10.5281/zenodo.3695102).

RESULTS

We retrieved a total of 218,899 species occurrence records, with a median of 2,844 records

per study group and 10 records per species (Table 3, Appendix S1). We obtained most

records for Dipsadidae (64,249) and fewest for Thozetella (51). The species with most

records was Harengula jaguana (19,878).

Our automated tests filtered a total of 97,004 records (Fig. 2, erroneous: 9,254, unfit:

91,298), with amedian of 45% per group (erroneous: 0.3%, unfit: 37.4%). Overall, themost

important test was for duplicated records (on average 35.5% per taxonomic group). The

filtering steps based on record meta-data that filtered the largest number of records were

the basis of records (5.9%) and the collection year (3.4%). The most important automated

tests were for urban area (8.6%) and the occurrence from records of terrestrial taxa in

the sea and marine taxa on land (4.3%, see Table 3 and Appendix S1 in the electronic

supplement for further details and the absolute numbers). Only a few records were filtered

by the coordinate precision, zero coordinates and biodiversity institution tests (Fig. 3).

Entomobryidae, Diogenidae, and Neanuridae had the highest fraction of filtered

records (Table 3). In general, the different filters we tested were of similar importance for

different study groups. There were few outstanding exceptions, including the particularly

high proportions of records filtered by the ‘‘basis of record test’’ for Tityus (7.0%),

Dipsadidae (5.6%), Prosthechea (5.0%) and Tillandsia (4.9%), by the collection year

for Dipsadidae (11.3%), by the taxonomic identification level for Tityus (1.6%), by the

capital coordinates for Oocephalus (6.1%) and Gaylussacia (3.2%), by the seas/land test

for Diogenidae and Thozetella, and by the urban areas test for Oocephalus (13.3%) and

Iridaceae (12.3%). Furthermore, Entomobryidae differed considerably from all other study

taxa with exceptionally high numbers of records filtered by the ‘‘basis of record’’, ‘‘level of

identification’’ and ‘‘urban areas’’ tests.

Geographically, the records filtered by the ‘‘basis of record’’ and ‘‘individual count’’

tests were concentrated in Central America and southern North America, and a relatively

high number of records were filtered due to their proximity to the centroids of political

entities were located on Caribbean islands (Fig. 3). See Appendix S2 for species richness

maps using the raw and cleaned data for all study groups.

We found IUCN assessments for 579 species that were also included in our distribution

data from 11 of our study groups (Table 4, Appendix S3). The fraction of species evaluated

varied among the study group, with a maximum of 100% for Harengula and Lepismium

and a minimum of 2.3% for Iridaceae (note that the number of total species varied

considerably among groups). The median percentage of species per study group with an

IUCN assessment was 15%. A total of 102 species were listed as Threatened by the IUCN

global Red List (CR = 19, EN = 40, VU = 43) and 477 as Not Threatened.
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Table 3 The impact of automated filtering on occurrence records for 18 Neotropical taxa downloaded from http://www.gbif.org. From column six onwards the num-

bers show the percentage of records flagged by the respective test. Only tests that flagged at least 0.1% of the records in any group are shown. Individual records can be

flagged by multiple tests, therefore the sum of percentages from all tests can supersede the total percentage.

Summary Errors Unfit

Taxon Total
records

Fraction
flagged
[%]

Fraction
error
[%]

Fraction
unfit
[%]

Biodiversity
Institutions
[%]

Sea/land
area
[%]

Zeros
[%]

Capitals
[%]

Duplicates
[%]

Political
centroids
[%]

Urban
areas
[%]

Basis of
record
[%]

Collection
year
[%]

Coordinate
precision
[%]

Id-level
[%]

Individual
count
[%]

Diogenidae 13,840 68.7 44.3 38.2 0.0 44.3 0.0 0.7 33.8 0.2 1.3 1.7 2.5 0.0 0.0 0.0

Entomobryidae 2,767 90.3 0.1 90.3 0.1 0.0 0.0 0.1 85.5 0.0 70.1 72.9 2.0 0.0 72.1 0.0

Neanuridae 689 66.9 0.0 66.9 0.0 0.0 0.0 0.0 62.4 0.0 2.0 2.9 1.3 0.0 0.0 0.0

Tityus 1,018 55.2 0.5 54.9 0.5 0.0 0.0 1.2 43.5 0.1 6.9 7.0 0.4 1.8 1.6 0.0

Arhynchobatidae 14,633 38.5 3.8 37.4 0.0 3.8 0.0 0.0 35.4 0.0 1.9 1.7 1.3 0.0 0.9 0.0

Dipsadidae 64,249 57.7 0.3 57.6 0.3 0.0 0.0 1.8 46.3 0.4 8.5 5.6 11.3 0.8 0.0 0.1

Harengula 36,697 31.0 5.5 27.8 0.0 5.5 0.0 0.2 27.0 0.1 0.2 1.0 0.4 0.0 0.3 0.0

Thozetella 51 35.3 23.5 29.4 0.0 23.5 0.0 0.0 27.5 0.0 2.0 0.0 0.0 0.0 0.0 0.0

Conchocarpus 1,551 43.2 0.5 42.9 0.1 0.4 0.0 0.0 39.6 0.9 2.3 0.5 1.9 0.1 0.0 0.0

Gaylussacia 3,998 47.2 0.1 47.1 0.1 0.1 0.0 3.2 41.8 1.1 5.2 0.7 4.4 0.6 0.0 0.0

Harpalyce 870 33.1 0.0 33.1 0.0 0.0 0.0 1.0 26.0 1.3 3.8 0.5 5.5 0.7 0.0 0.9

Iridaceae 23,127 33.6 0.5 33.5 0.4 0.1 0.0 1.0 17.1 0.4 12.3 0.9 4.7 0.1 0.0 1.3

Lepismium 825 29.7 0.0 29.7 0.0 0.0 0.0 0.1 21.9 0.1 7.8 0.0 2.1 0.0 0.0 0.0

Oocephalus 883 49.3 0.0 49.3 0.0 0.0 0.0 6.1 41.9 0.8 13.3 0.0 0.7 0.3 0.0 0.1

Pilosocereus 1,940 25.9 0.2 25.9 0.2 0.0 0.0 0.5 16.8 0.5 2.1 1.8 7.0 0.0 0.0 0.9

Prosthechea 6,617 31.5 0.1 31.5 0.0 0.0 0.1 0.4 19.6 1.7 0.9 5.0 8.3 0.1 0.0 0.2

Tillandsia 42,222 35.3 0.4 35.2 0.3 0.0 0.0 0.7 19.8 0.7 9.2 4.9 5.1 0.1 0.0 1.0

Tocoyena 2,922 37.6 0.3 37.4 0.0 0.2 0.0 0.8 32.3 0.8 5.0 0.1 1.9 0.2 0.0 0.5

Total 218,899 44.3 4.2 41.7 0.2 4.0 0.0 1.0 32.3 0.4 7.1 4.2 5.6 0.3 1.0 0.4
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Figure 2 The absolute number of records flagged as erroneous or unfit by automated geographic fil-

ters in a dataset of 18 Neotropical taxa including animals, fungi, and plants, plotted in a 100× 100 km

grid across the Neotropics (Behrmann projection).

Full-size DOI: 10.7717/peerj.9916/fig-2

We obtained automated conservation assessments for 2,181 species in the filtered

dataset. Based on the filtered data, the automated conservation assessment evaluated 1,382

species as possibly threatened (63.4%, CR = 495, EN = 577, VU = 310, see Appendix

S3 for assessments of all species). The automated assessment based on the filtered dataset

agreed with the IUCN assessment for identifying species as possibly threatened (CR, EN,
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Figure 3 Geographic location of the occurrence records flagged by the automated tests applied in this

study.Only filters that flagged at least 0.1% of records in any taxon are shown. (A) Basis of records, (B)

Collection year, (C) Coordinate precision, (D) Identification level, (E) Individual count, (F) Capitals, (G)

Biodiviersity Institutions, (H) Duplicates, (I) Political centroids, (J) Sea/land area, (K) Urban areas, (L)

Zeros.

Full-size DOI: 10.7717/peerj.9916/fig-3

VU) for 358 species (64%; Table 4). Filtering reduced the EOO by 18.4% and the AOO by

9.9% on median per group. For the raw dataset the agreement with IUCN was higher at

381 species (65.7%).

DISCUSSION

Automated flagging based on meta-data and automatic tests filtered on average 45% of

the records per taxonomic group; 25.9%–90.3% as ‘‘unfit’’ and 0%–44.3% as ‘‘erroneous’’.

The filters for basis of record, duplicates, collection year, and urban areas flagged the
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Table 4 Conservation assessment for 11 Neotropical taxa of plants and animals based on three datasets. IUCN: global Red List assessment obtained from http://www.

iucn.org; GBIF Raw: preliminary conservation assessment based on IUCN Criterion B using ConR and the raw dataset from GBIF; GBIF filtered: preliminary conserva-

tion assessment based on IUCN Criterion B using ConR and the filtered dataset. Only taxa with at least one species evaluated by IUCN shown.

IUCN GBIF Raw GBIF Filtered

Taxon n taxa Evaluated

[%]

Threatened

[%]

n taxa Threatened

[%]

Match with

IUCN [%]

n taxa Threatened

[%]

Match with

IUCN [%]

EOO change

compared

to raw [%]

AOO change

compared

to raw [%]

Arhynchobatidae 37 51.3 17.9 39 35.9 45.0 39 41.0 40.0 −32.7 −18.5

Dipsadidae 520 68.0 8.8 638 58.3 63.0 598 59.9 61.2 −2.3 −15.6

Harengula 4 100.0 0.0 4 0.0 100.0 4 0.0 100.0 −38.0 −36.9

Conchocarpus 4 8.7 0.0 46 63.0 100.0 45 62.2 100.0 −15.3 −7.1

Gaylussacia 2 3.3 0.0 61 59.0 50.0 58 60.3 50.0 −22.5 −8.6

Harpalyce 3 15.0 5.0 20 65.0 66.7 17 58.8 50.0 −18.4 −16.5

Iridaceae 13 2.3 0.2 531 64.4 50.0 466 62.9 62.5 −18.2 −12.3

Lepismium 6 100.0 0.0 6 16.7 83.3 6 16.7 83.3 −33.9 −7.9

Pilosocereus 41 80.9 19.1 47 55.3 73.7 46 56.5 71.1 −8.5 −5.8

Tillandsia 54 11.6 6.0 464 61.4 85.2 453 62.7 83.3 −13.7 −9.9

Tocoyena 3 13.6 4.5 22 31.8 66.7 21 38.1 66.7 −23.0 −9.5
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highest fraction of records (Question 1). The importance of different tests was similar

across taxonomic groups, with particular exceptions for the tests on basis of record,

collection year, capital coordinates, and urban areas (Question 2). The results for species

richness were similar between the raw and filtered data with some improvements using the

filters. We found little impact of filtering on the accuracy of the automated conservation

assessments Question 3).

The relevance of individual filters

The aimof automated filtering is to identify possibly problematic records that are unsuitable

for particular downstream analyses. While those records filtered as ‘‘erroneous’’ will

likely cause problems for most biodiversity research, those filtered as ‘‘unfit’’ might have

varying impact, depending on the type and spatial resolution of the downstream analyses.

Unwanted effects include an unnecessary computational burden, which can be a bottleneck

for large-scale analyses (i.e., duplicates, Antonelli et al., 2018), and increased uncertainty

(due to low precision), or completely compromising results. For instance, records assigned

to country centroids might be acceptable for inter-continental comparisons, but are likely

to be erroneous for species distribution modelling on a local scale. The importance of

each test and the linked thresholds must be judged based on the specific downstream

analyses. As our results show, it may be advisable to adapt automated tests to the

geographic study area or the taxonomic study group. For instance, the high number

of records flagged for centroids on the Lesser Antilles (Fig. 3) might be overly strict

(https://data-blog.gbif.org/post/country-centroids/), although we chose a conservative

distance for the Political centroid test (1 km).

Several factors may explain the high proportion of records flagged as duplicates. First,

the deposition of duplicates from the same specimen at different institutions is common

practice, especially for plants, where a specimen duplication is entirely feasible. Second,

independent collections at similar localities may occur, in particular for local endemics.

Third, low coordinate precision, for instance based on automated geo-referencing from

locality descriptions, may lump records from nearby localities. Fourth, different data

contributors might add the same record to GBIF, if their sources overlap, as can for

instance be the case for the Barcode of Life and Plazi databases.

Similarities and differences among taxa

The number of records flagged by individual tests was similar across study groups,

suggesting that similar problems might be relevant for collections of plants and animals.

Therefore, the same filters can be used across taxonomic groups. Some notable exceptions

stress the need to adapt each filter to the taxonomic study group to balance data quality

and data availability. The high fraction of records filtered by the ‘‘basis of record’’ filter

for Tityus, Dipsadidae, Prosthechea and Tillandsia, were mostly caused by a high number

of records in these groups based on unknown collection methods, which might be caused

by the contribution of specific datasets lacking this information for these groups. The high

fraction of records flagged by the ‘‘collection year’’ filter for Dispadidae was caused by a

high collection effort in the late 1880s and early 1900s, as can be expected for a charismatic
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group of reptiles, but also by 500 records dated to the year 1700. The latter records likely

represent a data entry error: they are all contributed to GBIF from the same institution, and

the institution’s code for unavailable collection dates is 1700-01-01–2014-01-01, which has

likely erroneously been converted to 1700. The high number of species flagged at capital

coordinates and within urban areas for the plant groups Iridaceae andOocephalusmight be

related to horticulture, since at least some species in those groups are commonly cultivated

as ornamentals. This was supported by the detailed examination of the data for Iridaceae,

which showed that after filtering 1605 records from 69 exotic species remained in the

dataset, stressing the importance to address these species in certain taxonomic groups.

The general agreement between the species richness maps based on raw and filtered data

was encouraging, in terms of the use of this data for large-scale biogeographic research

(Fig. 4, Appendix S2). The filter based on political centroids had an important impact on

species richness patterns, which is congruent with the results from a previous study in the

coffee family (Maldonado et al., 2015). Records assigned to country or province centroids

are often old records, which are geo-referenced at a later point based on vague locality

descriptions. These records are at the same time more likely to represent dubious species

names, since they might be old synonyms or type specimens of species that have only been

collected and described once, which are erroneously increasing species numbers.

Overall, we consider the effect of the automated filters as positive since they identified

the above-mentioned issues and increased the data precision and reduced computational

burden (Table 3, Appendix S2). However, in some cases filters failed to remove major

issues, often due to incomplete meta-data. For instance, for Diogenidae we found at least

two records of an species known only from Eocene fossils (Paguristes mexicanus) which

slipped the ‘‘basis of record’’ test because they were marked as ‘‘preserved specimen’’ rather

than ‘‘fossil specimen’’. Furthermore, for Entomobryidae we found that for 1,996 records

the meta-data on taxonomic rank was ‘‘UNRANKED’’ despite all of them being identified

to species level, leading to a high fraction of records removed by the ‘‘Identification level’’

filter. Additionally automated filters might be overly strict or unsuitable for certain taxa.

For instance, in Entomobryidae, 2,004 samples were marked as material samples and

therefore removed by our global filter retaining only specimen and observation data, which

in this case was overly strict.

The filters we included in this study address a set of important but relatively easy

to identify problems. In fact, the internal quality control of GBIF does flag some of

the problems we tested for (i.e., zero coordinates, equal lat/lon) while others might

be implemented in the near future (country centroids, https://data-blog.gbif.org/post/

country-centroids/). While this internal quality control is very helpful, we see a huge

potential to overcome issues with data quality in a user-feedback system that allows users

to provide expert assessments, i.e., a meta-annotation of records being challenged (and

why). Such a system would not need to change the original data and could include multiple

levels to account for differing opinions.

As next steps for automated filtering, tests for intrinsic consistency and support by

external data (if available) can help to detect additional problematic records. For instance,

testing if records’ coordinates fall within the state or province of collection noted for a
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Figure 4 Illustrative examples of the difference in species richness between the raw and filtered

dataset (raw - filtered) from four of the study taxa. (A) Dipsadidae (Total number of species in the

dataset, n= 637), (B) Harengula (n= 4), (C) Thozetella (n= 9), (D) Tillandsia (n= 464). Photo credits for

(C) by Tiago Andrade Borges Santos, otherwise as in Fig. 1.

Full-size DOI: 10.7717/peerj.9916/fig-4

record (intrinsic) or testing if they agree with external species distribution information, for

example from http://www.iucn.org (vertebrates; extrinsic) or https://wcsp.science.kew.org/

(selected seed plant families; extrinsic) can further corroborate the accuracy of a record’s

geographic referencing. If such tests are included, it is essential to account for the sampling

year, in particular for older records, since the names of political entities may change

and the ranges of species may shift. Furthermore, while in this study we focused on

meta-data and geographic filtering, taxonomic cleaning—the resolution of synonymies

and identification of accepted names—is another important part of data curation, but
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depends on taxon-specific taxonomic backbones and synonymy lists which are not readily

available for many groups and often are contradictory within individual taxa.

The impact of filtering on the accuracy of automated conservation
assessments

The accuracy of the automated conservation assessment was in the same range as found

by previous studies (Nic Lughadha et al., 2019; Zizka et al., 2020). The similar accuracy of

the raw and filtered dataset for the automated conservation assessment was surprising, in

particular given the EOO and AOO reduction observed in the filtered dataset (Table 4)

and the impact of errors on spatial analyses observed in previous studies (Gueta & Carmel,

2016). The robustness of the automated assessment was likely due to the fact that the

EOO for most species was large, even after the considerable reduction caused by filtering.

This might be caused by the structure of our comparison, which only included species

that were evaluated by the IUCN Red List (and not considered as Data Deficient ) and at

the same time had occurrences recorded in GBIF. Those inclusion criteria are likely to

have biased the datasets towards species with large ranges, since generally more data are

available for them. The robustness of automated conservation assessments to data quality

is encouraging, although these methods are only an approximation (and not replacements)

of full IUCN Red List assessments, especially for species with few collection records (Rivers

et al., 2011).

CONCLUSIONS

Our results suggest that between one quarter to half of the occurrence records obtained

fromGBIFmight be unsuitable for downstream biodiversity analyses.While themajority of

these records might not be erroneous per se, they are overly imprecise and thereby increase

uncertainty of downstream results or add computational burden on big data analyses.

While our results suggest that large-scale species richness patterns and automated

conservation assessments are largely resilient to the effects of problematic occurrence

records, they also stress the importance of (meta-)data exploration prior to most

biodiversity analyses. Automated filtering can help to identify problematic records, but

also highlight the necessity to customize tests and thresholds to the specific taxonomic

groups and geographic area of interest. The putative problems we encountered point to

the importance to train researchers and students to curate species occurrence datasets and

to visibly associate user-feedback with individual records on aggregator platforms such as

GBIF so that it can contribute to the overall accuracy and precision of public biodiversity

databases.
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