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Resumo

Progresso em Processamento de Linguagem Natural (PNL) tem sido ditado pela regra de

mais : mais dados, mais poder de computação, mais complexidade, exemplificado pelos

Large Language Models. Contudo, o treinamento (ou fine-tuning) de modelos grandes e

densos para aplicações espećıficas geralmente requer quantidades significativas de recursos

de computação. Uma maneira de lidar com esse problema é por meio da engenharia de

dados (ED), em vez das perspectivas algoŕıtmicas ou de hardware. Nesse contexto, nosso

foco aqui é em uma técnica de ED pouco investigada, porém com enorme potencial no

cenário atual – Seleção de Instâncias (SI). O objetivo do SI é reduzir o tamanho do con-

junto de treinamento removendo instâncias ruidosas ou redundantes enquanto mantém

(ou melhora) a eficácia dos modelos treinados e reduz o custo do processo de treinamento.

Nesse sentido, a principal contribuição desta tese é dupla. Primeiramente, examinamos

técnicas clássicas e recentes de SI e fornecemos uma comparação cientificamente sólida

aplicadas a uma tarefa essencial de PNL - Classificação Automática de Texto (CAT). Os

métodos SI têm sido normalmente aplicados a pequenos conjuntos de dados tabulares e

não foram sistematicamente comparados na tarefa de CAT. Consideramos várias soluções

CAT de última geração neurais e não neurais aplicadas a diversos conjuntos de dados.

Respondemos a várias questões de pesquisa com base no trade-off do um tripé: eficácia,

eficiência, redução. Nossas respostas revelam um enorme potencial para soluções de SI.

Além disso, no caso de ajuste-fino dos métodos transformers, os métodos SI reduzem a

quantidade de dados necessários, sem perder a eficácia e com ganhos consideráveis de

tempo de treinamento. Considerando as questões reveladas pelas abordagens tradicionais

de SI, a segunda principal contribuição é a proposta de duas soluções de SI. E2SC, um

framework orientado a redundância de duas etapas destinada a grandes conjuntos de

dados com foco particular em transformers. O E2SC estima a probabilidade de cada

instância ser removida do conjunto de treinamento com base em classificadores fracos

escaláveis, rápidos e calibrados. Nossa hipótese é que é posśıvel estimar a eficácia de

um classificador forte (transformer) com um mais fraco. No entanto, como mencionado,

o E2SC concentra-se apenas na remoção de instâncias redundantes, deixando outros as-

pectos intocados, como o rúıdo, que podem ajudar a reduzir ainda mais o treinamento.

Portanto, também propomos o biO-IS, um framework estendido constrúıdo sobre o an-

terior, com o objetivo de remover simultaneamente instâncias redundantes e ruidosas do

treinamento. O biOIS estima a redundância com base no E2SC e captura o rúıdo com o

suporte de uma nova etapa baseada na entropia. Também propomos um novo processo

iterativo para estimar taxas de redução quase ótimas para ambas as etapas.



Nossa solução final é capaz de reduzir os conjuntos de treinamento em 41% em média

(até 60%), mantendo a eficácia em todos os conjuntos de dados testados, com ganhos

de aceleração de 1,67 em média (até 2,46x). Nenhuma outra linha de base foi capaz de

escalar para conjuntos de dados com centenas de milhares de documentos e alcançar re-

sultados com este ńıvel de qualidade, considerando o compromisso entre redução, eficácia

e aceleração do treinamento.

Palavras-chave: seleção de instâncias; classificação automática de texto.



Abstract

Progress in Natural Language Processing (NLP) has been dictated by the rule of more:

more data, more computing power, more complexity, best exemplified by the Large Lan-

guage Models. However, training (or fine-tuning) large dense models for specific appli-

cations usually requires significant amounts of computing resources. Our focus here is

an under-investigated data engineering (DE) technique, with enormous potential in the

current scenario – Instance Selection (IS). The IS goal is to reduce the training set size by

removing noisy or redundant instances while maintaining or improving the effectiveness

(accuracy) of the trained models and reducing the training process cost. In this sense,

the main contribution of this Ph.D. dissertation is twofold. Firstly, we survey classical

and recent IS techniques and provide a scientifically sound comparison of IS methods ap-

plied to an essential NLP task - Automatic Text Classification (ATC). IS methods have

been normally applied to small tabular datasets and have not been systematically com-

pared in ATC. We consider several neural and non-neural SOTA ATC solutions and many

datasets. We answer several research questions based on tradeoffs induced by a tripod:

effectiveness, efficiency, reduction. Our answers reveal an enormous unfulfilled poten-

tial for IS solutions. Furthermore, in the case of fine-tuning the transformer methods,

the IS methods reduce the amount of data needed, without losing effectiveness and with

considerable training-time gains. Considering the issues revealed by the traditional IS ap-

proaches, the second main contribution is the proposal of two IS solutions: E2SC, a novel

redundancy-oriented two-step framework aimed at large datasets with a particular focus

on transformers. E2SC estimates the probability of each instance being removed from the

training set based on scalable, fast, and calibrated weak classifiers. We hypothesize that it

is possible to estimate the effectiveness of a strong classifier (Transformer) with a weaker

one. However, as mentioned, E2SC focuses solely on the removal of redundant instances,

leaving other aspects, such as noise, that may help to further reduce training, untouched.

Therefore, we also propose biO-IS an extended framework built upon our previous one

aimed at simultaneously removing redundant and noisy instances from the training. biO-

IS estimates redundancy based on E2SC and captures noise with the support of a new

entropy-based step. We also propose a novel iterative process to estimate near-optimum

reduction rates for both steps. Our final solution is able to reduce the training sets by 41%

on average (up to 60%) while maintaining the effectiveness in all tested datasets, with

speedup gains of 1.67 on average (up to 2.46x). No other baseline, was capable of scaling

for datasets with hundreds of thousands of documents and achieving results with this level

of quality, considering the tradeoff among training reduction, effectiveness, and speedup.

Keywords: instance selection; automatic text classification.



List of Figures

1.1 Tripod-constraints set: Tradeoff among reduction, efficiency, and effectiveness 22

2.1 Workflow of study selection and analysis of literature (rapid) review. . . . . . 32

2.2 Instance Selection Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Data Representation and Preprocessing Procedure . . . . . . . . . . . . . . . . 47

3.2 CNN, LSBo, and LSSm selection time (in seconds) . . . . . . . . . . . . . . . 63

3.3 Reduction vs SpeedUp Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 The impact of Instance Selection on the class distribution . . . . . . . . . . . 74

4.1 The proposed E2SC Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Number of instances assigned to each specific range (blue) and the number of

correct-predicted instances (green). . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Correlation between KNN and Transformers models. . . . . . . . . . . . . . . 83

5.1 Bi-objective Instance Selection Framework . . . . . . . . . . . . . . . . . . . . 99

5.2 Entropy Visual Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Brier Score Average for each weak-classifier . . . . . . . . . . . . . . . . . . . 105

5.4 Summarizing the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



List of Tables

2.1 Instance Selection Recent Proposals . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Summary of IS Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Datasets Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Parameters Tunning of the Transformers Neural Networks . . . . . . . . . . . 48

3.3 Parameters of the IS methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Results regarding the evaluation metric MacroF1. Legend: (a) ▲: the classi-

fication approach is superior to all others; (b) •: the classification approach

presents the highest result in terms of absolute values, but there are statistical

ties with other approaches; (c) •: the classification approach is statistical

equivalent to the best approach (marked with •) in dataset (line) considered. 52

3.5 Best ATC Approach by Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Percentage of reduction of the training set size. . . . . . . . . . . . . . . . . . 55

3.7 MacroF1 results. We present, for each dataset (row), the MacroF1 results of

the application of IS approaches (columns) considering the best classification

method for each dataset (Table 3.5). Cells with value in bold and with green

background are statistically equivalent to the classification method without

instance selection - NoSel. Furthermore, for each dataset, we present in the

cells with orange background color the results with effectiveness up to 5%

worse than the method without selection (NoSel) respectively. . . . . . . . . . 57

3.8 Instance Selection MacroF1 - Fractorial Ranking Results. . . . . . . . . . . . . 60

3.9 SpeedUp on Total Application Cost of the Instance Selection Methods applied

to the best ATC approach in each dataset. . . . . . . . . . . . . . . . . . . . . 62

3.10 ZeroShot Analysis – MacroF1 Metric . . . . . . . . . . . . . . . . . . . . . . . 65

3.11 ZeroShot Analysis – Time (seconds) and SpeedUp . . . . . . . . . . . . . . . . 65

3.12 Classification Approaches - MacroF1 Fractorial Ranking Results. . . . . . . . . 66

3.13 Effectiveness, reduction and speedup Analysis. We present for each dataset

(row) the MacroF1 results of the application of CNN, LSSm and LSBo IS

approaches (columns) considering theRoBERTa classifier. Cells with value in

bold and with a green background are statistically equivalent to the MacroF1

columns with the higher value (marked as •or ▲). Furthermore, for each

dataset, we present in the cells with orange background color the results with

effectiveness up to 5% worse than the higher MacF1 column, respectively. . . . 67



3.14 Effectiveness, reduction and speedup Analysis. We present for each dataset

(row) the MacroF1 results of the application of CNN, LSSm and LSBo IS

approaches (columns) considering the BART classifier. Cells with value in

bold and with a green background are statistically equivalent to the MacroF1

columns with the higher value (marked as •or ▲). Furthermore, for each

dataset, we present in the cells with orange background color the results with

effectiveness up to 5% worse than the higher MacF1 column, respectively. . . . 68

3.15 Effectiveness, reduction and speedup Analysis. We present for each dataset

(row) the MacroF1 results of the application of CNN, LSSm and LSBo IS

approaches (columns) considering the XLnet classifier. Cells with value in

bold and with a green background are statistically equivalent to the MacroF1

columns with the higher value (marked as •or ▲). Furthermore, for each

dataset, we present in the cells with orange background color the results with

effectiveness up to 5% worse than the higher MacF1 column, respectively. . . . 69

3.16 Instance Selection Pros (P), Cons (C) and Recommendations (R). . . . . . . 75

4.1 Effectiveness and Efficiency of Weak-Classifiers. . . . . . . . . . . . . . . . . . 82

4.2 New Datasets Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Best ATC Approach by Dataset. Results regarding the evaluation metric

MacroF1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Summary:Best ATC Approach by Dataset . . . . . . . . . . . . . . . . . . . . 86

4.5 Percentage of reduction of the training set size. . . . . . . . . . . . . . . . . . 87

4.6 Macro-F1 - IS approaches (columns) in each dataset (rows) considering the best

classifier (Table 3.5). Cells in bold and green background are statistically equivalent

to no instance selection (NoSel). . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 SpeedUp on Total Application Cost of the IS Methods applied to the best

ATC approach in each dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.8 Comparison Exact vs. Approximate KNN . . . . . . . . . . . . . . . . . . . . 92

4.9 Reduction-Effectiveness-Speedup Results for E2SC in Large Datasets Scenarios 93

4.10 Tripod Results in Small-to-Medium datasets . . . . . . . . . . . . . . . . . . . . . 95

5.1 Artificial Noise Removal Capability Experiment. We present the number of

training instances (# Inst.), the number of randomly switched labels (# Noise),

the reduction achieved by each approach (Reduction), and the respective noise

reduction (Noise Reduction) in percentile and absolute terms. . . . . . . . . . 98

5.2 Parameters of the IS methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Effectiveness and Efficiency of Weak-Classifiers. . . . . . . . . . . . . . . . . . 106



5.4 Impact of adopting LR instead of KNN in the original framework (E2SC) -

Effectiveness vs SpeedUp trade-off – Legend: A red background denotes a

effectiveness loss, while a green background indicates a better overall absolute

speedup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 biO-IS - artificial noise removal capability experiment. Legend: In Table, we

present the number of training instances (# Inst.), the number of randomly

switched labels (# Noise), the reduction achieved by each approach (Reduc-

tion), and the respective noise reduction (in percentile and absolute terms). . . 108

5.6 Macro-F1 for different IS approaches (columns) in each dataset (rows) consid-

ering RoBERTa as the classifier. Cells in bold and green background highlight

results that are not statistically significantly different from those of NoSel. . . 110

5.7 Percentage of reduction of the training set size. Darker cells indicate higher

reductions achieved by the corresponding IS method within the dataset. . . . . 111

5.8 SpeedUp on Total Application Cost of the IS Methods applied to RoBERTa

in each dataset. The greener, the higher speedup; the redder, the higher the

computational cost (average execution time) compared to NoSel. . . . . . . . . 112

C.1 Selection time increase rate: Ratio between the selection time using contex-

tual embeddings and the selection time using TF-IDF as representation input,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.2 Effectiveness Analysis. Statistical comparison between the TFIDF and Contextual

embeddings used as input of the LSSm and LSBo approaches and applied to the

best classifier per dataset (Table 3.5). Legend: (a) ▲: the IS method with the

specific input (TFIDF or Contextual) is statistically superior to its pair; (b) •: the
IS method with the specific input statistically equivalent to its pair; (c) ▼: the IS

method with the specific input statistically worse than its pair. . . . . . . . . . . . 146

D.1 Average Total Time for model training. . . . . . . . . . . . . . . . . . . . . . . 147

E.1 Number of Wrongly Predicted Instances Potential (percentual error) . . . . . . 148

F.1 Impact of Noise Insertion and subsequent Removal. . . . . . . . . . . . . . . . 149

G.1 Weak-classifier algorithms’ hiperparameterization . . . . . . . . . . . . . . . . 151



List of Acronyms

NLP Natural Language Processing

IR Information Retrieval

DE Data Engineering

DL Deep Learning

NN Neural Network

IS Instance Selection

FS Feature Selection

ATC Automatic Text Classification

AI Artificial Intelligence

SOTA State-of-the-Art

TF-IDF Term Frequency — Inverse Data Frequency

MF MetaFeatures

BERT Bidirectional Encoder Representations for Transformers

XLNET Generalized Autoregressive Pretraining for Language Understanding

RoBERTa Robustly optimized BERT approach

GPT Generative Pretrained Transformer

DistilBert Distiled BERT

Albert A Light BERT

BART Bidirectional and Auto-Regressive Transformer

LSTM Long Short Term Memory

GCN Graph Convolutional Networks

KNN K-Nearest Neighbors



SVM Support Vector Machine

RF Random Forest

NB Naive Bayes

NC Nearest Centroid

DT Decision Trees

LR Logistic Regression

XGBoost Extreme Gradient Boosting

LGBM Light Gradient-Boosting Machine

BS Brier Score

CNN Condensed Nearest Neighbor

ENN Edited Nearest Neighbor

IB3 Instance-Based 3

ICF Iterative Case Filtering

DROP3 Decremental Reduction Optimization Procedure 3

LSSm Local Set-based Smoother

LSBo Local Set Border Selector

LDIS Local Density-based IS

CDIS Central Density-based IS

XLDIS eXtended Local Density-based IS

PSDSP Prototype Selection based on Dense Spatial Partitions

EGDIS Enhanced Global Density-based IS

CIS Curious IS

E2SC-IS Effective, Efficient, and Scalable Confidence-Based Instance Selection

biO-IS Bi-Objective Instance Selection Framework

LLM Large Language Model



Contents

1 Introduction 19

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Hypothesis, Research Questions and Findings . . . . . . . . . . . . . . . . 25

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Systematic Literature Review of Instance Selection Methods 31

2.1 Collecting and Selecting Relevant Articles . . . . . . . . . . . . . . . . . . 32

2.2 Criteria for Selecting the IS methods . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Increasing the Coverage and Representativeness of IS methods . . 33

2.3 An Extended Taxonomy of IS Strategies . . . . . . . . . . . . . . . . . . . 35

2.4 Instance Selection Methods Details . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 A Comparative Survey of Instance Selection Methods applied to Non-

Neural and Transformer-Based Text Classification 42

3.1 Comparative Scenario and Experimental Setup . . . . . . . . . . . . . . . . 43

3.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Data Representation and Preprocessing . . . . . . . . . . . . . . . . 45

3.1.3 Text Classification Methods . . . . . . . . . . . . . . . . . . . . . . 47

3.1.4 IS Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.5 Evaluation Metrics and Experimental Protocol . . . . . . . . . . . . 49

3.2 Preliminary Question: What is the best (most effective) classification method/

representation for each of the considered datasets? . . . . . . . . . . . . . . 51

3.3 Experimental Results - Analyses . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 RQ1.1. Are there IS methods capable of reducing the training set

while keeping classifier effectiveness for each investigated scenario? . 54

3.3.2 RQ1.2. What is the impact of applying IS strategies on the text

classification models’ total construction time? . . . . . . . . . . . . 61

3.3.3 RQ1.3. How do IS approaches behave when applied to neural clas-

sification methods (especially Transformers)? . . . . . . . . . . . . . 64



3.3.3.1 Is the Fine-Tuning step really necessary for Automatic

Text Classification? . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3.2 Does the Fine-tuning phase of DL models need a lot of

data as generally accredited in the literature or is a “right

and carefully selected” training set enough for producing

high effectiveness? . . . . . . . . . . . . . . . . . . . . . . 65

3.3.4 Additional Reduction vs. Efficiency Analysis . . . . . . . . . . . . . 71

3.3.5 Additional Analysis: Impact of IS on the class distribution . . . . . 73

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 An Effective, Efficient, and Scalable Confidence-Based Instance Selec-

tion Framework for Transformer-Based Text Classification 77

4.1 The Proposed Framework: E2SC . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.1 Fitting α Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.1.1 Hypothesis and Requirement Verification. . . . . . . 80

4.1.2 Optimizing the β Parameter . . . . . . . . . . . . . . . . . . . . . . 82

4.1.2.1 H2 Verification. Can we estimate the effectiveness be-

havior of a robust model through the behavior of the KNN

model? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.3 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.4 Model Novelty and Main Contributions . . . . . . . . . . . . . . . . 83

4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Experimental Results - Analyses . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Is E2SC capable of reducing the training set while keeping classifier

effectiveness for each investigated scenario (dataset)? . . . . . . . . 87

4.3.2 What is the impact of applying E2SC in the text classification mod-

els’ total construction time? . . . . . . . . . . . . . . . . . . . . . . 89

4.3.3 How flexible is theE2SC framework to adjust to different scalability

application/task requirements? . . . . . . . . . . . . . . . . . . . . 90

4.3.3.1 E2SC Framework Instantiation. . . . . . . . . . . . . . . . 90

4.3.3.2 Second Instantiation Complexity . . . . . . . . . . . . . . 92

4.3.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . 93

4.3.3.4 Enhanced Results in Small-to-Medium datasets . . . . . . 94

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 An Extended Noise-Oriented and Redundancy-Aware Instance Selec-

tion Framework for Transformer-Based Automatic Text Classification 96

5.1 Motivation and Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.1 Noise removal Capability Experiment . . . . . . . . . . . . . . . . . 97

5.2 Bi-objective Instance Selection Framework . . . . . . . . . . . . . . . . . . 99



5.2.1 Redundancy-based approach . . . . . . . . . . . . . . . . . . . . . . 100

5.2.2 Entropy-based approach . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.2.1 Learning Gamma (Γ) Scores . . . . . . . . . . . . . . . . . 101

5.2.2.2 Learning Tetha (θ) Score . . . . . . . . . . . . . . . . . . 102

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.1 Preliminary Question 1. What is the most suitable weak-classifier

to employ within our IS solution? . . . . . . . . . . . . . . . . . . . 105

5.4.2 Preliminary Question 2. What transformer-based classifier should

we consider for our experimentation? . . . . . . . . . . . . . . . . . 107

5.4.3 Is biO-IS capable of reducing noisy instances from the training for

each investigated scenario? . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.4 Is biO-IS capable of reducing the training set while keeping classi-

fier effectiveness for each dataset? . . . . . . . . . . . . . . . . . . . 109

5.4.5 What is the impact of applying biO-IS in the text classification

models’ total construction time? . . . . . . . . . . . . . . . . . . . . 111

5.4.6 Carbon emissions (CO2e) Considerations . . . . . . . . . . . . . . . 112

5.4.7 Visually summarizing the results . . . . . . . . . . . . . . . . . . . 113

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Conclusion and Future Work 115

6.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

References 122

Appendix A Automatic Text Classification Datasets 138

Appendix B Automatic Text Classification Methods 140

Appendix C Alternatives for the IS Input Representation 143

Appendix D Average Total Time for model training 147

Appendix E Wrongly Predicted Instances Potential 148

Appendix F Impact of Noise Insertion and Removal 149

Appendix G Weak-classifier algorithms’ hiperparameterization 151



19

Chapter 1

Introduction

1.1 Motivation

We have been experiencing an unprecedented increase in data availability, which

has lead to enormous difficulties in organizing and retrieving such content in meaningful

ways. Automatic Text Classification (ATC)1 techniques are useful tools in this context

by being able to map textual documents, such as web pages, emails, reviews, tweets, social

media messages, etc., into a set of pre-defined categories of interest for a given application.

ATC models have been demonstrated to be highly relevant given new difficult application

scenarios such as the detection of fake news [112] and hate speech [91], relevance feed-

back [61], sentiment analysis [113], revision of product characteristics [88, 45, 49], inferring

votes in elections [59], assessing satisfaction with government agencies [38], among many

others. Being a supervised task, ATC has benefited from applications that constantly pro-

duce high volumes of (labeled) data (e.g., large-scale social networks, such as Twitter),

in which users can manually classify messages, advertisements, and products, producing

a large volume of annotations [57]. The costs of obtaining large amounts of labeled data

can also be ameliorated by approaches such as crowd [125] and soft labeling [116].

Currently, Transformer-based architectures (including 1st and 2nd generation Trans-

formers such as RoBERTa [85] and BART [78] as well as current Large Language Models

such as GPT4 [13] and LLama3 [131]) stand out as the state-of-the-art (SOTA) in ATC,

achieving remarkable results across various tasks [89, 90, 3, 95]. In more details, these

deep learning approaches can be divided into two steps: (i) pre-training; and (ii) domain

transfer. The pre-training step involves learning the model weights employing an unsu-

pervised task (e.g., Next Sentence Prediction [44]). The fine-tuning step is supervised,

applied to a domain-specific labeled dataset and allows for further model optimization. In

order to achieve such performance, these models rely on huge training sets and complex

architectures with millions of parameters [141]. While these models can exhibit some

degree of effectiveness when used in a zero-shot manner, their fine-tuning for specific

domains or tasks is crucial to ensure increased performance [41].

1In this dissertation, we focus on both binary and multi-class single-label classification by addressing
two types of tasks: i) topic categorization and ii) sentiment analysis (polarity detection).



1.1. Motivation 20

Indeed, according to Andrew Ng [103], there are two main reasons for the successful

results. The first one is the amount of data used to pre-train these models – the GPT-3

model [13], for instance, was pre-trained on 45TB of textual data. The second reason is

the possibility of reusing and adapting the general pre-trained model in multiple tasks by

just fine-tuning the model’s last layers for the specific task, which is considerably faster

than training from scratch for each task.

Among the challenges related to these approaches, we can mention: (i) the need

for large2 amounts of annotated (manually classified) data to perform effective learning;

and (ii) issues related to the scalability of the solutions (even in the fine-tuning stage) in

the face of collections with millions, sometimes billions, of documents.

Regarding the first challenge, several applications that constantly produce data,

such as social networks (e.g., Facebook and Twitter), with a high number of users, have

tools that help the end user to manually classify messages, advertisements, products, etc.

Moreover, crowdsourcing [125] and soft labeling [116] annotation (labeling) methodologies

are also possible solutions for acquiring large amounts of labeled data with reduced costs.

These types of labeling strategies have gained notoriety [57] for allowing a large volume

of annotations without the help of experts. ChatGPT3 – the novel OpenAI artificial

intelligence (AI)-empowered virtual assistant – is an example of a system that utilized

crowdsourcing for annotation. However, the main disadvantage of these strategies is they

are very prone to noise – in the context of classification tasks, represented mainly as in-

stances of the training set assigned to the wrong classes. Indeed, the authors in [94] show

that in review domains, almost a quarter of the instances (23%) are considered difficult to

classify, even for humans. In addition, users (regulars or experts) make mistakes in classi-

fying these difficult instances between 56%-64% of the time. In the case of the ChatGPT

tool, the noise was possibly aggravated as the Kenyan workers responsible for the anno-

tation were notoriously underpaid, earning less than $2 per hour [29]. Thus, noise data

instances can potentially constitute a large portion of the available data in these scenarios.

Regarding the second challenge, despite faster, fine-tuning is still a costly process

that demands expensive computational resources in terms of computational power and

memory demands. For instance, as we shall see in our experiments, the fine-tuning process

on the MEDLINE dataset, used in our experiments only for one transformer (XLNET),

takes approximately 80 hours of uninterrupted processing using specialized GPU hard-

ware. Indeed, from a practical point of view, there are several scenarios in which adopting

fine-tuned deep learning approaches can be very difficult (if not impractical) despite poten-

tial effectiveness gains. For instance, consider a textual classifier applied in a scenario that

requires continuous (constant) re-training (e.g., fraud detection [86], product tagging [9],

2In this work, we adopted the definition given in [150], where the authors defined large-scale datasets
for the automatic text classification task as datasets with the number of samples ranging from hundreds
of thousands to several millions of documents (more than 100,000 documents).

3https://chat.openai.com/

https://chat.openai.com/
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and recommendation [25]). Due to the continuous changes in the data stream source,

these models need constant re-training to reflect modifications in the interest domain.

Constantly re-training (fine-tuning) the model, as mentioned, can be very costly – com-

putationally and financially. The practical solution is usually increasing the time between

consecutive model training (a.k.a. training window), delaying the learning of the temporal

changes in the input data, which, in turn, can affect the effectiveness of the task [101].

Another practical scenario is the challenge posed by using deep learning models in

the context of companies and research groups with financial budget constraints. In both

contexts, the application and experimentation of these models are limited to the available

resources. Moreover, there is often the need to run thousands of experiments to propose

scientifically-sound or practical (commercial) advances regarding the SOTA. For instance,

for this Ph.D. dissertation, we run four thousand experiments using SOTA Transform-

ers corresponding to about 5,600 hours (233 days) of experiments. Any reductions could

bring benefits from several perspectives (financial, energy, etc.).

Another issue related to the cost of training or fine-tuning a deep learning model

is carbon emission. The amount of energy and time required to perform the parameters

adjustment to optimize the models’ effectiveness can vary depending on several factors,

including: (i) the size and complexity of the model; (ii) the use of specialized hardware,

such as GPU and TPU (energy demanding); and (iii) the amount of data. As most of the

world’s electricity is generated using fossil fuels [39], the process above can be considered

directly responsible for releasing carbon dioxide into the environment. In addition, the

study conducted by Patterson et al. [106] highlights that the pre-training phase of GPT-3

consumed 1,287 MW/h. This energy consumption resulted directly in the emission of

at least 552 tons of CO2e. To put this in perspective, this is equivalent to the carbon

footprint generated by running a car for 1.3 million miles, according to the ML CO2 Im-

pact calculator4. Furthermore, the authors estimated that the ChatGPT’s daily carbon

footprint to maintaining the core model is approximately 23 kgCO2e, making it crucial

to address the environmental impact of Transformer models.

Given these scenarios of ever-expanding volumes of data with constant re-training

requirements, budget constraints, and high-demanding energy models, it is desirable to

develop new effective, effective, and scalable strategies to handle those issues properly.

Two (costly) alternatives are developing new deep learning algorithms or more efficient

hardware. Another way to ameliorate these problems is through data engineering [31],

which may be achieved by (not mutually exclusive): (i) Model Compression (or Pruning)

techniques [82, 102] applied to reduce the complexity of the DL models; (ii) Data Pre-

processing techniques [123], aimed at improving the quality of the input training data for

the ATC models. The latter focuses on improving performance while reducing training

time and computational costs. In this dissertation, we focus on this second alternative.

4https://mlco2.github.io/impact/

https://mlco2.github.io/impact/
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In [31], we proposed exploiting a set of preprocessing techniques in a data trans-

formation pipeline for building cost-effective models. That solution achieved improved

effectiveness (e.g., models with higher accuracy) at a much lower cost (e.g., shorter time

for ATC model construction). One of the main contributions of [31] was the explicit incor-

poration into the pipeline of an Instance Selection stage5, a promising set of techniques

and growing research area that helps to deal with many of the aforementioned issues.

In contrast to traditional Feature Selection approaches, in which the main objective

is to select the most informative terms (words), Instance Selection methods are focused

on selecting the most representative instances (documents) for the training set [55]. The

intuition behind this kind of algorithm is to remove potentially noisy or redundant in-

stances from the original training set and improve performance in terms of total time

training time while keeping or even improving effectiveness.

More specifically, IS methods have three main goals: (i) to reduce the number of

instances by selecting the most representative ones; (ii) to maintain (or even improve)

effectiveness by removing noise6 and redundancy; and (iii) to reduce the total time for

applying an end-to-end model (which includes from traditional preprocessing steps to the

model training step). By selecting the most representative instances, IS methods can also

potentially remove noise from erroneous annotations. According to these objectives, IS

methods must respect three fundamental constraints – tripod-constraints set illustrated

in Figure 1.1 – consisting of reducing the amount of training without loss of effectiveness

and with efficiency gains. IS methods seek to optimize these three constraints simultane-

ously. It is important to note that these are conflicting constraints and that some of them

may not be achieved simultaneously in many situations. For example, a quick selection

method could randomly select class instances according to the classes´ distribution in the

training set. Despite being fast in the selection step, this simple approach would probably

suffer regarding the effectiveness of the generated models.

Figure 1.1: Tripod-constraints set: Tradeoff among reduction, efficiency, and effectiveness

5Instance Selection (IS) is also known in the literature as Selective Sampling, Prototype Selection,
and Instance-Based. For didactic reasons, we will refer to the subject hereafter only by Instance Selection.

6We defined noise as instances incorrectly labeled by humans in the dataset [94] as well as (possible)
outliers that do not contribute (or even get in the way) to model learning (tuning).
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Despite their immense potential, there are just a few studies about IS approaches in

the context of ATC [6, 132], especially in the deep learning scenario. Traditional methods

that have been proposed in the literature for scenarios other than ATC include: Con-

densed Nearest Neighbor (CNN)[62], Edited Nearest Neighbor (ENN)[143] and Decre-

mental Reduction Optimization Procedure (Drop3)[142]. More recent approaches include:

Local Set-based Smoother (LSSm)[79], Local Set Border Selector (LSBo) [79] and Pro-

totype Selection based on Dense Spatial Partitions (PSDSP)[20]. Indeed, most of the IS

methods have been proposed and studied only on small tabular datasets (e.g., toy exam-

ples from UCI7), and the selected instances were applied as input only to weak classifiers,

such as KNN (Chapter 2). In contrast, the datasets in text classification are unstruc-

tured, larger, and more complex, with high dimensionality and potentially high skewness.

As deep learning transformer approaches have a high cost in terms of computational re-

sources, mainly when dealing with large training data, we believe they constitute an ideal

scenario for applying IS techniques.

Accordingly, in this work (Chapter 3), we extensively study the behavior of these

IS techniques in ATC tasks, initially delimiting the scope to multiclass and single-label

classification tasks of textual documents. More specifically, we propose to study the use

of IS strategies in two types of tasks: (i) classification into semantic topics; and (ii)

sentiment classification (polarity detection). The studied datasets8 are widely used in

the literature (ATC benchmarks) and cover various sources and domains, including web

pages, questions and answers (Q&A), news, comments, reviews, social networks, etc.

We also perform an original investigation regarding the impact of IS methods on

state-of-the-art deep learning Transformer approaches (e.g., BERT, RoBERTa, BART,

and GPT). Neural network algorithms, especially Transformers, currently achieve the best

results in several benchmarks used by the scientific community. To achieve such state-of-

the-art performance, they usually rely on large amounts of data in the fine-tuning training

stage of a neural network model [103, 76, 46] – which is diametrically opposed to the phi-

losophy of IS approaches. Thus, investigating whether IS approaches are applicable and

useful for these large deep-learning models is an interesting research goal in itself.

As far as we know, a study of the magnitude and rigor of ours, covering a large set

of IS methods applied to the most recent neural and non-neural ATC solutions, has not

been reported in the literature yet. Indeed, most of the comparative IS results presented

here have not been reported elsewhere. Given that several applications (e.g., news portals,

search engines, market research, among others) exploit ATC models as a basis, our results

may have a direct practical impact on the use of complex ATC models in real applications.

7https://archive.ics.uci.edu/ml/datasets.php
8All used datasets and our code are publicly available on https://github.com/waashk/

instanceselection

https://archive.ics.uci.edu/ml/datasets.php
https://github.com/waashk/instanceselection
https://github.com/waashk/instanceselection
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Besides, considering the aforementioned application potential as well as the ob-

tained results in Chapter 3, we propose in Chapter 4 and Chapter 5, two novel IS

methods able to handle the aforementioned ever-expanding volumes of data with con-

stant re-training requirements and budget constraints domains, with a particular focus

on Transformer-Based architectures. Further details are in the next Sections.

1.2 Objectives

The goal of this Ph.D. dissertation is threefold. Our first objective is to conduct

a comprehensive literature review of both traditional and state-of-the-art methods in the

IS field to gain a thorough understanding of various IS approaches and the advancements

made in recent years. In addition to the literature review, we aim to extend the existing

10-year-old taxonomy [56] of IS strategies, delivering a thorough up-to-date categorization

of IS strategies along with their respective strengths and limitations.

Our second objective is to experimentally compare the traditional and SOTA IS

methods (Chapter 3), given the significant evolution in this field over the past years and

the absence of a recent experimental comparison – the most recent one has been pub-

lished almost a decade ago. Our objective is to study the impact of using IS methods

in an important NLP area – ATC – in which IS methods have a large potential due to

the current computational costs of the SOTA methods in this field and the increasing

volume of textual data to be classified. In particular, regarding the previous objective,

we aim to study and analyze the trade-offs among training set reduction, efficiency, and

effectiveness (tripod-constraints set – Fig. 1.1) of traditional and SOTA IS methods for

Topic Classification and Sentiment analysis tasks.

Finally, our third objective is to address issues and problems revealed by the results

of our previous comprehensive experimental comparison. More specifically, scalability, re-

dundancy and noise removal. In this sense, we propose two novel IS solutions. Firstly, we

propose a redundancy-oriented IS framework aimed at large datasets with a particular fo-

cus on Transformer-Based architectures that is able to reduce the training sets while main-

taining the same levels of effectiveness regardless of the context, with speedup improve-

ments, scaling even for datasets with hundreds of thousands of documents (something

that the traditional IS methods cannot do). Next, we propose an extended IS framework

built upon our first one aimed at simultaneously removing redundant and noisy instances

from the training set. This extended proposal involves a comprehensive analysis of addi-

tional metrics and techniques for noise removal aiming to improve the overall performance

of our IS framework. This extension was motivated by the fact that the first proposed

framework was not designed to effectively handle nor remove noise, which is a potential

issue given the aforementioned scenarios of crowd-sourced and user-generated labeling.
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1.3 Hypothesis, Research Questions and Findings

The main hypothesis (H1) of this Ph.D. dissertation is:

H1: It is possible to simultaneously reduce data, maintain model quality,

and improve time for fine-tuning ATC models through IS methods.

In order to confirm this hypothesis, we propose three research questions for our

Ph.D. dissertation. In sum, RQ1 aims at evaluating the traditional IS approaches pre-

sented in Chapter 2 in the context of the ATC task concerning the posed IS methods

tripod constraints: reduction, effectiveness, and efficiency. Next, considering the litera-

ture gap, RQ2 aims at demonstrating the feasibility of proposing a novel IS framework

and by showing how it can accommodate different requirements posed by distinct scenar-

ios, mainly those associated with big data. Finally, RQ3 aims to investigate the capability

of each IS method to handle and effectively remove noisy instances. The answer to this

question also motivated us to demonstrate the feasibility of proposing a novel extended IS

framework capable of removing simultaneously redundant and noisy instances from the

training set. Next, we present each of the RQs considered in this Ph.D. dissertation in

depth as well as an overview of the main findings of each one of them.

RQ1. What is the impact of applying traditional IS methods in the ATC con-

text regarding the posed constraints? RQ1 aims to evaluate the traditional

IS approaches in the context of the ATC task, focusing on the tripod constraints of

the posed IS methods: reduction, effectiveness, and efficiency.

In order to conduct a thorough evaluation of each constraint, we have divided this

RQ into three incremental sub-questions:

RQ1.1. Are there traditional IS methods capable of reducing the training set

while keeping classifier effectiveness for each investigated scenario? The

objective of RQ1.1. is to investigate the tradeoff between the first two constraints of the

“tripod”: effectiveness and reduction.

As result, we found the IS methods can, in some cases, reduce the training set by

up to 90% while maintaining effectiveness. The studied IS approaches achieved average

reductions between 15.6% (LSSm) to 91.1% (XLDIS). On the other hand, despite the

potential for noise removal motivation, selection methods were not able to improve the

effectiveness of the text classification models in none of the tested textual datasets. We

suggest further studies in the future to investigate this last issue.
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RQ1.2. What is the impact of applying IS strategies on the text classifica-

tion models’ total construction time? We propose to evaluate the impact of IS

(studied in RQ1.1. in terms of effectiveness and training set reduction) regarding poten-

tial speedups on the time to complete the full pipeline process, which corresponds to the

sum of times of preprocessing steps (including IS step) and ML training model.

We found that three traditional IS methods (LSSm, CNN, LSBo) were able to

reduce the total text classification models’ construction time while keeping the effective-

ness in 12 (out of 19) considered datasets – with speedups between 1.04x (CNN - Books)

and 5.69x (LSBo - Reuters90). In the other datasets, we observed that the introduction

of IS approaches caused an overhead in terms of the total time to generate the model

(running the IS methods + model construction), making the whole process more costly

from a computational cost perspective. Overall, considering the three tripod constraints

altogether and all datasets, the best traditional IS method was CNN.

RQ1.3. How do IS approaches behave when applied to neural classification

methods regarding the tripod constraints? This question investigates and chal-

lenges the widespread notion that fine-tuning DL classifiers require a large amount of

labeled data. Our goal is to investigate whether IS methods can work with NN solutions

in face of the current anecdotal and empirical evidence to the contrary.

Our experiments confirm the importance of fine-tuning neural-based models in the

context of ATC to obtain good effectiveness, which is consonant with previous work [34].

Since a large part of the execution time of deep learning models is associated with the fine-

tuning phase, the application of IS approaches is promising. For instance, according to our

analyses, the best selection method (CNN) can reduce the training set in 11 datasets, pro-

ducing speed-ups of model construction time between 1.04x and 3.24x while maintaining

effectiveness. Thus, we can show that deep learning networks do not always need massive

training data for fine-tuning and that a carefully selected training set may be enough to

produce effective models. Indeed, similar effectiveness results were obtained with reduc-

tions ranging up to 72%. This last result may have important implications for the practical

application of large neural network methods, especially Transformer architectures.

Therefore, answering RQ1, our evaluation of the tripod constraints (reduction -

efficiency - effectiveness) of several traditional IS methods demonstrates that in the major-

ity of the cases - 12 out 19 – specific IS methods - namely LSSm, CNN, LSBo – can reduce

the size of the training set without effectiveness losses, leading to efficiency improvements.

Specifically, in the case of fine-tuning the transformer methods, the IS methods reduce the

amount of data needed, without losing effectiveness and with considerable training-time

gains. However, there is also a significant number of cases in which the requirements of

the tripod cannot be fully satisfied by any traditional method. Moreover, traditional IS

strategies demonstrated not scaling for the big data scenario (e.g., datasets with more
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than 100K instances). Therefore, these findings neither totally support nor completely

refute our posed hypothesis. Our experiments indicate an affirmative answer for RQ1 –

there are traditional IS methods are capable of simultaneously reducing data, maintaining

model quality, and improving time for fine-tuning models. These results highlight that

further investigation of IS methods applied to the ATC context is needed, particularly

concerning recent transformer architectures. In any case, our study concerning RQ1 re-

veals that there is a lot of room for developing more efficient, effective, and scalable IS

methods for the big data scenario in general. This answer leads to the following RQ:

RQ2. Can a novel instance selection method focused on redundancy removal

overcome the limitations of existing IS methods to achieve the tripod

restrictions in the ATC scenario? This RQ aims to demonstrate the feasibility

of proposing a novel IS framework and by showing how it can accommodate different

requirements posed by distinct scenarios, mainly those associated with big data.

In order to provide a more efficient, effective, and scalable IS method – addressing

the posed research question RQ2 – we propose the E2SC framework, our first redundancy-

oriented IS solution. We compare E2SC proposal with six robust state-of-the-art instance

selection baseline methods considering as input of the best of seven deep learning text

classification methods in a large benchmark with 19 datasets. Our experimental eval-

uation show that E2SC managed to significantly reduce the training sets (by 27% on

average; varying between 10% and 60% of reduction) while maintaining the same levels

of effectiveness in 18 (out of 19) considered datasets. Also, we found that E2SC was

able to reduce the total text classification models’ construction time while keeping the

effectiveness in all (19) considered datasets – with speedups of 1.25 on average, varying

between 1.02x (Books) and 2.04x (yelp reviews). Overall, considering the three tripod

constraints altogether and all datasets, the best IS method so far was our first proposed

framework. Finally, to demonstrate the flexibility of our framework to cope with large

datasets, we propose two modifications. Our enhanced solution managed to increase the

reduction rate of the training sets (to 29% on average) while maintaining the same levels

of effectiveness in all datasets, with speedups of 1.37 on average. In addition, the frame-

work scaled to large datasets, reducing them by up to 40% while statistically maintaining

the same effectiveness with speedups of 1.70x.

Despite being innovative and achieving significant results in terms of effectiveness,

efficiency, and reduction, the E2SC framework focused only on redundancy, leaving

some other aspects that may help to further reduce training untouched. One such aspect

is noise, here defined as instances incorrectly labeled by humans in the dataset [94] as well

as (possible) outliers that do not contribute (or even get in the way) to model learning

(tuning). Indeed, according to [94], users, whether regular individuals or experts, make a

reasonable amount of mistakes while labeling complex instances – between 56% and 64%
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of the time. Other few noisy instances (a.k.a., outliers) may be correctly labeled, but

they differ so significantly from other instances from the same class that they are either

useless for the sake of learning (tuning) or may even be detrimental to the process.

Noisy instances can potentially constitute a significant portion of available data

in these contexts. Noisy (training) instances may not only degrade the model’s effective-

ness by incorporating misleading patterns in the model but may also be detrimental to

performance as they need to be processed to extract and incorporate these patterns into

the model. If the amount of noise is significant, there will certainly be negative impacts

on effectiveness and efficiency. However, in a simulated scenario designed to evaluate the

capability of the IS baseline methods and our previous solution to remove noise, none of

the IS solutions satisfactorily performed the task. This answer leads to the following RQ:

RQ3. Is it possible to extend the previous proposal to not only remove redun-

dancy but also remove noise, enhancing the level of quality considering

all tripod criteria? The objective of this RQ is to demonstrate the feasibil-

ity of proposing a novel extended IS framework capable of remove simultaneously

redundant and noisy instances from the training set.

In order to remove simultaneously redundant and noisy instances from the train-

ing – addressing the posed research question RQ3 — we propose the extended biO-IS

framework, our ultimate IS solution. We compare biO-IS with seven robust state-of-

the-art instance selection baseline methods, including our first proposal, E2SC, in the

text classification domain considering the same benchmark covering 22 datasets. Our

experimental evaluation reveals that, in a simulated scenario designed to evaluate the ca-

pability of the IS baseline methods and our previous solution to remove noise, none of the

IS solutions were capable of satisfactorily performing the task. On the other hand, biO-

IS managed to remove up to 66.6% of the manually inserted noise. Moreover, biO-IS

managed to significantly reduce the training sets (by 40.1% on average; varying between

29% and 60% of reduction) while maintaining the same levels of effectiveness in all of the

considered datasets. Also, biO-IS managed to consistently provide speed-ups of 1.67x

on average (maximum of 2.46x). No baseline, not even our previous SOTA solution,

was capable of achieving results with this level of quality, considering all tripod criteria.

Indeed, the only other method capable of maintaining the effectiveness on all datasets

was E2SC; biO-IS improves over E2SC in 41% regarding reduction rate and from 1.42 to

1.67 (on average) regarding speedup, achieving the SOTA in the Instance Selection field.
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1.4 Contributions

Our work in the Instance Selection field has been validated and published in the

main Information Retrieval (IR) and Natural Language Processing (NLP) conferences

and journals in the last four years only, including two published papers in the Informa-

tion Processing and Management (IP&M) (h-index: 123, Impact Factor: 8.6, A1), a

worldwide leading journal in Information Retrieval [34, 31], covering respectively: (1) a

comprehensive comparative study of the cost-effectiveness of neural and non-neural ap-

proaches and representations for ATC; (2) three new steps (MetaFeatures, Sparsification,

and Instance Selection) into the traditional pre-processing phase of pipelines for text clas-

sification as well as a thorough and rigorous evaluation of the trade-offs between cost and

effectiveness associated with the introduction of these new steps. These first two articles

helped to define the scope of the Ph.D. dissertation.

There is also a publication in ACM Computing Surveys (CSUR)(h-index: 213,

Impact Factor: 16.6, A1) [36], a worldwide leading journal in Computer Science The-

ory and Methods, covering comprehensive literature review of both traditional and SOTA

methods in the IS field as well as an extensive experimental comparison between these

methods; the International Conference on Research and Development in Information

Retrieval (SIGIR) [33], covering our first proposal of a novel redundancy-oriented IS

framework aimed at large datasets with a particular focus on transformers. Finally, this

dissertation also resulted in a submitted paper (under review) to the ACM Transactions

on Information Systems (TOIS) (h-index: 95, Impact Factor: 5.6, A1), which includes

the proposal of an extended noise-oriented and redundancy-aware IS framework for ATC.

Furthermore, this dissertation led to several international collaborations. Specifi-

cally, a period was spent abroad under the supervision of Professor Fabrizio Sebastiani,

focusing on the investigation of IS strategies through Feature Selection. The collabora-

tion with Prof. Fabrizio enabled connections with two other globally respected research

groups headed by Prof. Nicola Ferro from the University of Padua and Prof. Davide Bac-

ciu from the University of Pisa. Through the collaboration with Prof. Ferro, we had a full

paper accepted at the International Conference on the Theory of Information Retrieval

(ICTIR) [105], introducing an innovative Quantum Annealing (QA) IS approach. As far

as we know, our solution was the first to apply QA to the IS problem and it offers a new

Quadratic Unconstrained Binary Optimization formulation. Our collaboration with Prof.

Bacciu has also led to the establishment of a research project, currently in its early stages.

This dissertation also resulted in several undergraduate students advising. We

highlight the work present in [51], accepted in the Scientific Initiation Paper Competi-

tion (CTIC) in the annual Congress of the Brazilian Computing Society (CSBC) covering

the proposal of instance selection-inspired Undersampling strategies for bias reduction

in the context of transformer-based text classification – work co-advised by the propo-
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nent. This work also resulted in a submitted paper (under review) to the Conference on

Empirical Methods in Natural Language Processing (EMNLP).

In addition to these works directly obtained from this Ph.D. Dissertation, in this

doctoral period, we also contributed to another (IP&M) [41] paper studying how BERT-

based contextual representations effectively improve NLP tasks, particularly ATC, which

is directly related to highly separable characteristics that allow the simplest classifiers to

achieve high effectiveness. This work also contributed to other papers in important confer-

ences and journals, such as Neurocomputing [54] (h-index: 196, IF: 5.5), JMIR [147]

(h-index: 197, IF: 7.4), CIKM [97], ACL [137], WSDM [136], SBBD [119], JIS [135],

WebMedia [69, 134, 22, 52, 124], and Value in Health [146].

Finally, for the sake of reproducibility, we make the documented code of all com-

pared methods (IS and classifiers) as well as the preprocessed and raw datasets, including

the division in folds, available to the community for replication and further comparisons.

We consider that making the code used in our experimental protocol, including the meth-

ods we had to implement ourselves, along with the datasets and the appropriate documen-

tation is very useful for reproducibility and comparison of future IS and ATC methods.

1.5 Roadmap

The remainder of this Ph.D. dissertation is organized as follows.

Chapter 2 This chapter covers a literature review of the most traditional and/or current

IS methods and provides a new extended IS taxonomy. Also, we describe the relevant

works from the IS literature based on the retrieved approaches from the literature

review, presenting their methodology, strengths, and weaknesses.

Chapter 3 This chapter provides a thorough and comprehensive cost-effectiveness survey

by applying the IS methods retrieved in the previous chapter in the context of

automatic text classification.

Chapter 4 This chapter introduces E2SC – effective, efficient, and scalable confidence-

Based instance selection – a novel two-step framework aimed at large datasets with

a particular focus on transformer-based architectures, our first IS proposal.

Chapter 5 In this chapter, we introduce biO-IS – an extended bi-objective instance

selection framework built upon our previous one aimed at simultaneously removing

redundant and noisy instances from the training, our second IS method proposal.

Chapter 6 Ultimately, in this chapter, we conclude the Ph.D. dissertation, summarizing

our main findings and proposing some directions for further investigation.
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Chapter 2

Systematic Literature Review of

Instance Selection Methods

In this chapter, we present a critical analysis (a.k.a., rapid (systematic-based) literature

review1) of the most traditional and/or recent (state-of-the-art) proposals in the Instance

Selection (IS) area. The objective of this review is to comprehensively assess the most

relevant works related to IS strategies applied in different scenarios. In particular, we

focus on experimentally-oriented studies, that is, studies that have strong experimental

and empirical components to support their findings.

To achieve our objective, we collected a set of 100 publications2 that included the

most cited articles related to IS. We assume that highly cited articles are potentially in-

fluential as they have received much attention. From those, we selected the most popular

methods to include in our experimental assessment of IS methods applied to ATC. We

also selected a set of recently proposed methods (considered state-of-the-art) to complete

our experimental comparison. At the end of this literature review process, which is further

detailed next, we end up with a mix of the traditional and state-of-the-art set of methods,

comprising 13 IS strategies to be evaluated in the next Chapter in the ATC scenario.

A simplified version of the rapid review procedure is shown in Figure 2.1. First, we

collected articles returned by a set of four queries submitted to Google Scholar. Second,

we used each article’s unique URL to remove duplicates (deduplication phase). This pro-

cedure resulted in 1,740 unique articles 2. Third, we ranked the remaining articles by the

number of citations. Fourth, we classified the articles, in ranked order, according to the

desired criteria of (i) being related to IS and (ii) conducting experimental comparisons

among methods. Fifth, we filtered out articles that did not match the criteria, up to the

point that we achieved 100 relevant articles 3. From these articles, we selected the most

popular and most recent methods to be compared in our experimental assessment. The

remainder of this chapter provides detailed information for each of the phases, depicted

in Figure 2.1 and the process of selecting the IS methods.

1From now on, we will use the terms ‘literature review’, ‘rapid review’ and ‘critical analysis’ inter-
changeably.

2The list of articles can be found at https://shorturl.at/zCLW7
3Up to this point, we had inspection-ed 702 articles in ranked order.

https://shorturl.at/zCLW7
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Figure 2.1: Workflow of study selection and analysis of literature (rapid) review.

2.1 Collecting and Selecting Relevant Articles

We used the Google Scholar4 search engine to submit four queries to generate our

initial set of articles. Google Scholar was our choice for two main reasons: (i) high cov-

erage - it includes digital libraries from prestigious publishers such as ACM, IEEE, and

Elsevier, as well as preprint repositories such as Arxiv; and (ii) it contains information

about the number of citations for each research paper, an important criterion for our

selection of method. To be more precise, we issue the following four distinct queries5 :

“Instance Selection”, “Selective Sampling”, “Prototype Selection”, and “Instance Based”.

These queries were issued to the search engine without any venue or year filter.

We chose this setting to maximize the coverage of our queries. We gathered the first 500

papers (sorted by citations) for each submitted query, totaling 2000 papers using this

approach. We deduplicated this list of papers by using the unique papers’ URLs. After

filtering out duplicates, we ended up with 1,740 unique papers ordered by the number of

citations, as mentioned before.

We then manually classified the papers, in the ranked order, into two categories:

• RELEVANT: consisting of papers whose main objective is to propose and/or

evaluate an IS method (experimentally-oriented study).

• IRRELEVANT: Non-experimental or not related to the IS subject ( i.e., papers

that do not fit into the aforementioned category).

We continue the process up to the point in which we selected the 100th RELEVANT

paper, which corresponds to position 702nd of the ranked list by citations.
4https://scholar.google.com/
5Despite having different objectives, the areas of IS and undersampling are related, as both deal with

techniques that aim to select a subset of representative data. Therefore, another potential query would
be “undersampling”. Indeed, considering this query, in another work [51], we systematically mapped
the literature on undersampling methods, identifying and implementing 14 methods among the most
popular and used, evaluating them in conjunction with Transformers classifiers from four perspectives: (1)
classification effectiveness; (2) efficiency (time); (3) generalizability (bias); and (4) scalability. However,
as our focus in this dissertation is IS, we chose not to include these results in this dissertation. The
results of this parallel work can be found in [51].

https://scholar.google.com/
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It is worth emphasizing that all 100 papers are on the main subject of interest

and are based on experimental work, as opposed to purely theoretical work. Among the

selected 100 articles, the least cited has 21 citations, and the most cited has 7,158 citations.

2.2 Criteria for Selecting the IS methods

We examined the 100 selected publications, paying close attention to the IS meth-

ods used in each paper’s experimental section. Two volunteers analyzed each paper to

double-check the presence of each IS method. Three computer science researchers with

contributions to IR and machine learning made up the volunteer group.

Summary of the Results We found five highly used methods in experimental com-

parisons:

• More than half (56%) of the analyzed top-100 relevant papers use the Decremental

Reduction Optimization Procedure 3 (DROP3) method in their experiments.

• The Condensed Nearest Neighbor (CNN) is present in 44% of the analyzed papers.

• Edited Nearest Neighbor (ENN) and Instance-Based 3 (IB3) are used as a baseline

in 34% and 30% of the selected papers, respectively.

• 26% of the analyzed papers use Iterative Case Filtering (ICF) as a baseline.

Accordingly, in our experimentation evaluation of IS methods for ATC, we consider

DROP3, CNN, ENN, IB3 and ICF.

2.2.1 Increasing the Coverage and Representativeness of IS

methods

As mentioned, our goal with this literature review is to select the most relevant IS

strategies to evaluate them thoroughly in the ATC context. However, several of the most

popular methods selected for our study are quite old. ICF, for instance, was proposed 20

years ago (2002).

In the meantime, the advantages of IS methods have been increasingly perceived by

the research and practitioner communities, especially given the rise of expensive neural

methods and the availability of large datasets. This has led to the proposals of new
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methods in the last few years (5-7 years), which, by being newer, are not as popular or

cited as the ones we chose in the previous step.

Thus, to increase the coverage and representativeness of the IS methods, and to

reflect the field’s evolution in our experimental evaluation, we selected several recent

proposals in the IS area, some of which can be considered state-of-the-art in the field,

according to the procedure explained below.

Method Year

LSSm: Local Set-based Smoother 2015
LSBo: Local Set Border Selector 2015
LDIS: Local Density-based IS 2016
CDIS: Central Density-based IS 2016
XLDIS: eXtended Local Density-based IS 2017
PSDSP: Prototype Selection based on Dense Spatial Partitions 2018
EGDIS: Enhanced Global Density-based IS 2020
CIS: Curious IS 2022

Table 2.1: Instance Selection Recent Proposals

To avoid re-evaluating irrelevant papers, we removed the 602 papers considered

irrelevant by the previous analysis from our list of 1702 deduplicated articles (Phase 2).

Thus, we were left with 1102 papers: 1002 non-analyzed papers, and the 100 most cited

articles related to IS.

Since our goal now is to reflect the field’s evolution, focusing on the newest and

state-of-the-art methods, we applied a filtering procedure in which we removed, from the

set of 1102 papers, those older than ten years. We assumed that relevant methods to be

used in our experiments, which have been proposed by papers published more than ten

years ago, had been most probably selected in our previous step. This filtering procedure

resulted in 636 papers to be analyzed.

Next, we (re)sorted the list of 636 papers now by their Google Scholar rank

(GSRank[115, 7]) scores. Given a query, the GSRank score corresponds to a paper’s

position in the ranked list returned by Scholar. As we have four queries, for papers that

appeared in more than one list, we used the highest position in any of them.

We then proceeded to manually classify the papers, by reading and analyzing

each paper individually, in the ranked order of the GSRank score. We considered as

RELEVANT, papers: (i) whose main objective is to propose and/or evaluate an IS method

(experimentally-oriented study); (ii) in which the proposed IS method is compared with

at least 3 of those previously cited (most popular methods). The second rule aims at

selecting proposals that have been adequately evaluated in their context. We consider

that a proposal was well evaluated if it was compared to the most traditional methods in

the IS area. This final filtering resulted in eight recent proposals (considered) state-of-the-

art. These methods along with the year they were proposed are presented in Table 2.1.
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2.3 An Extended Taxonomy of IS Strategies

We propose a new taxonomy of IS strategies by extending a 10-year-old taxonomy

proposed in [56]. This previous IS methods taxonomy was proposed in a different context,

considering different types of datasets (small tabular ones) and different learning methods.

For instance, deep learning neural network methods were not considered in the envisioned

scenarios by the time that taxonomy was proposed.

As mentioned, the field has significantly evolved since the proposal of the original

taxonomy. These advances are reflected in our new extended taxonomy with three new

categories – represented in green in Figure 2.2 – and eight new, recently proposed methods

– written with black color letters in Figure 2.2. The new categories refer to approaches

based on density, spatial hyperplanes, and clustering-based approaches proposed since

2015s. Following we present a brief discussion for each category – previously existent and

new ones.

Figure 2.2: Instance Selection Taxonomy

Condensation algorithms perform noise removal by creating data subsets, which

are used later to reduce the number of instances. The Condensed Nearest Neighbor

(CNN) [62] is one of the most well-known approaches within this category. Edition al-

gorithms perform removing noisy instances by employing filters. The most traditional

method in this category is Edited Nearest Neighbor (ENN) [143]. The more recently pro-

posed Local Set-based Smoother (LSSm) [79] (2015) also falls in this category. Hybrid

algorithms combine the condensation and editing paradigms. Hybrid algorithms can be

subdivided into three approaches: Incremental, Decremental, and Batch. The Incremen-

tal approach starts with an empty subset S and, for each instance s in the training set, s

is inserted in the final subset S if meets certain requirements. Decremental algorithms

perform the opposite task of incremental ones. The subset S starts containing every
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training instance, and an instance s is removed from S if some requirement is fulfilled.

The Batch approaches also start with a subset S containing the whole set of training

instances. However, differently from Decremental, it proceeds by deciding whether each

instance satisfies the removal criteria before eliminating any instances. In this way, Batch

approaches first mark each instance to be removed or not. Then, all those instances that

do meet the requirements are immediately eliminated. IB3 [2], DROP3 [142], ICF [12] and

more recent LSBo [79] (2015) are the most referenced approaches within this category.

We extend this taxonomy [56] with three new categories. The first one is composed

of Density algorithms that attempt to select instances by measuring the hyperplane den-

sity. As we will detail in the next Chapter, LDIS (2016), CDIS (2016), XLDIS (2018), and

EGDIS (2020) [92] methods try to keep the densest instances in the training set. What

differs from those methods is the way they define or capture density. Spatial Hyper-

plane category is composed of algorithms that divide the feature space with separating

hyperplanes and perform sampling in each defined sub-division. The PSDSP [20] (2018)

algorithm is a representative method of this category. Lastly, Clustering-based uses

clustering techniques to aggregate instances and, later, perform a sampling within each

cluster. The most recent and state-of-the-art is the Curious IS (CIS) [100] method (2022).

In the next section, we provide detailed information about the aforementioned IS

approaches considered in our experimentation evaluation for the ATC context.

2.4 Instance Selection Methods Details

As previously mentioned, in [56], the authors proposed five categories to classify

the IS algorithms according to their paradigm. We extended that taxonomy by propos-

ing three new categories to contemplate recently proposed methods. In Table 2.2, we

summarize all the considered IS methods, providing a concise description and the time

complexity of each one, which we detail in the following paragraphs.

Condensed Nearest Neighbor (CNN) [62] is one of the most referenced approaches

within the Condensation category. CNN starts from a solution set S containing a ran-

dom instance of each class. Next, it iteratively predicts the class for each instance x in

the original set of instances T (leveraging the K-Nearest Neighbors classifier). Finally,

it includes in S the misclassified instances. CNN’s authors consider the instances close

to the classification boundary as the most representative ones. As these instances are

more challenging to classify due to the diversity usually present in these areas, CNN’s

estimator considers, in each iteration, only instances present in S. This tends to promote

the selection of more representative instances close to the boundary´s frontiers. The time
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Method (Brief Description) Complexity Proposed Application

CNN [62] includes misclassified instances (leveraging KNN classifier) in the solution set S. O(n3) 2-D uniform dist
ENN [143] removes incorrectly classified instances from the solution set S. O(n2) 2-D uniform dist
IB3 [2] is based on a ”wait and see“ strategy choosing the best instances from the records. O(n2 log n) Tabular data
Drop3 [142] filters noise and removes instances further away from the decision boundary. O(n3) Tabular data
ICF [12] is an association set approach based on concepts of reachability and coverage. O(n2) Tabular data
LSSm [79] chooses instances based on their usefulness - influence over other instances. O(n2) Tabular data
LSBo [79] inserts the instances in the solution sorted by the cardinality of the local set. O(n2) Tabular data
LDIS [18] assumes as representative instances those with higher density. O(

∑
l∈L |c(l)|2) Tabular data

CDIS [19] also keeps denser instances, but adopts another density concept. O(
∑

l∈L |c(l)|2) Tabular data
XLDIS [17] extends LDIS adopting the local density ordering concept. O(

∑
l∈L |c(l)|2) Tabular data

PSDSP [20] retrieves the centroid instances of a set of predefined hyperplane partitions. O(n) Tabular data
EGDIS [92] is a global density-based IS approach based on an irrelevance function. O(n2) Tabular data
CIS [100] is a clustering-based approach that adopts curiosity and intrinsic reward concepts. O(n3) Tabular data

Table 2.2: Summary of IS Methods.

complexity of CNN is O(n3), where n is the size of the original set.

The most traditional Edition method is the Edited Nearest Neighbor (ENN) [143].

ENN starts by inserting all instances of the original set T into the solution set S. Next,

it uses the K-Nearest Neighbors classifier to iteratively classify all x ∈ S (considering the

set {S − {x}} as possible neighbors). Finally, it removes incorrectly classified instances

from S. The time complexity of ENN is O(n2).

Hybrid algorithms attempt to combine the condensation and editing paradigms,

with the best examples being the IB1, IB2, IB3 [2] methods, DROP1-5 [142], ICF [12]

and LSBo [79]. Likewise the condensation methods, IB1 starts with an empty solution

set S, then finds the most similar instance y for each sample x present in the original set

T. If the distance d(x, y) is greater than a given threshold, it includes x in the solution set

S. IB2 only inserts the erroneously classified instances into the solution set S, verifying

whether the class of both instances x and y are the same. It includes x in the solution set

S when it is not. The objective of IB2 is to find and insert in S instances closest to the

decision boundary. Finally, IB3 is the direct extension of IB2 – which selects and stores

only the wrongly classified instances. However, IB3 is based on a “wait and see” strategy

choosing the instances that generated the best classifiers given the selected records. The

time complexity of IB3 algorithm is O(n2 log(n)).

The Decremental Reduction Optimization Procedure (DROP1-5 [142]) approach

is an ordering and filtering approach following N rules. DropN is a family of five different

algorithms. This group of methods is defined through a set of decremental instance reduc-

tion procedures. The first rule (Drop1) removes instances that do not impact the model’s

generalization. It starts with S=T and, in a trial-and-error way, removes instances that

do not degenerate the model’s accuracy. This reduction rule is known to be effective for

removing many instances, also tending to remove noise. Drop2 removes instances con-

sidering the original set T , checking whether removing an instance x could impact the

classification of its neighbors in the set T . The main idea is to order the instances to

minimize the impact on the neighborhood-based classification. Drop2 first removes the

furthest instances for its nearest enemy (another class instance). The goal is to remove in-



2.4. Instance Selection Methods Details 38

stances further away from the decision boundary. Drop3 consists of adding noise-filtering

and then applying Drop2. The filtering is similar to ENN, removing any misclassified in-

stances from the solution set S. There are two other rules (Drop4 and Drop5) based on

more rigorous noise filters and the selection of decision boundaries. Since Drop3 presents

the best trade-off between reduction and accuracy [100, 92, 79], we will focus our studies

on it. The time complexity of DROP3 algorithm is O(n3).

The ICF [12] is an association set-based approach based on concepts of reachabil-

ity and coverage. Coverage of an instance x is the set of instances y ∈ T such that the

distance d(x, y) is less than the distance from x to its nearest neighbor of another class

(i.e., nearest enemy ne(x) ) as defined in Equation 2.1.

Coverage(x) = {y|d(x, y) < d(x, ne(x))} (2.1)

In turn, the reachability of an instance x is the set of instances y that have x in

their Coverage set as stated in Equation 2.2.

Reachability(x) = {y|x ∈ Coverage(y)} (2.2)

In summary, reachability regards the neighborhood of the instance, while coverage

regards the associations of an instance. Consequently, ICF maintains instances that can

classify others without explicitly maintaining them in the training set. In practice, this is

done iteratively by discarding instances whose reachability is greater than coverage. The

time complexity of ICF is O(n2).

In [79], the authors proposed three algorithms: Local Set-based Centroids Selec-

tor (LSCo), Local Set-based Smoother (LSSm) and Local Set Border Selector (LSBo),

highlighting the results presented by the last two. While LSSm is considered an editing

method and LSBo is a hybrid method, both leverage the concept of local set (LS). By

definition, an LS is a set of instances contained in a sub-region of the feature space hy-

perplane, such that all instances that make up the LS are of the same class. In other

words, considering an instance x, LS(x) can be defined as the set of instances y such that

the euclidean distance between x and y is less than the euclidean distance between x

and its nearest neighbor of another class (a.k.a. the nearest enemy of x – ne(x)). LSSm

and LSBo also depend on three other definitions: usefulness (Equation 2.3), harmfulness

(Equation 2.4), and LS cardinality (LSC) (Equation 2.5). Given an instance, e, useful-

ness u(e) is the number of instances with e belonging to their LS. Harmfulness h(e) is the

number of instances that have e as their closest neighbor to another class (ne(c)). Finally,

LSC is the number of instances belonging to the LS of e (LS(e)).

u(e) = |x|e ∈ LS(x)| (2.3)

h(e) = |x|ne(x) = e| (2.4)
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LSC(e) = |LS(e)| (2.5)

In LSSM the set S is composed of instances that have u(e) > h(e). An instance e

with high usefulness has importance/influence for many other instances. Consequently, e

must belong to the solution set S. The time complexity of LSSm is O(n2). In turn, LSBo

starts with noise removal by applying LSSM. Next, it calculates the local sets and orders

the instances according to their LSC. Finally, inserts e into S if there is no intersection

between e’ local set and S. Since decision boundary instances will be computed and in-

serted first into the set S, these instances (e) will enable the correct (further) classification

of the instances belonging to its LS. Like LSSm, the time complexity of LSBo is O(n2).

Unlike LSSm and LSBo, whose objective is to keep the instances present on the

decision boundary, the Density approaches try to keep the instances that are present in

denser regions. In [18], the authors proposed the Local Density-based IS (LDIS) method.

LDIS analyzes each data class separately. LSSm and LSBo perform a global search in the

dataset. In contrast, LDIS performs a local search by class, assuming as representative

instances those with higher density (as defined in Equation 2.6). Consequently, the run-

time complexity becomes O(
∑

l∈L |c(l)|2), where l is a specific class belonging to the set

of classes L and |c(l)| is the number of instances belonging to class l. In mode details:

Dens(x, P ) = − 1

|P |
∑
y∈P

d(x, y) (2.6)

where x is an arbitrary instance, P is the set of instances of the class to which x and y

belong, d is a measure of distance. LDIS iterates over k instances y closest to x, inserting

x into S if Dens(x, c(l)) > Dens(y, c(l)). This property guarantees that if an arbitrary

instance x is denser than all its neighbors, it will be present in the solution set S.

Based on LDIS, two extensions emerged: Central Density-based IS (CDIS) [19]

and eXtended Local Density-based IS (XLDIS) [17]. CDIS also uses the idea of keeping

denser instances, evaluating them separately by class (local search strategy). However, it

adopts another definition of density, as pointed out in Equation 2.7.

density(x, P ) =

∑
y∈P

1
1+d(x,y)

1 + d(x, centroid(pkn(x, k)))
(2.7)

where x is an arbitrary instance, and P is the set of class instances to which x and y

belong. The numerator represents the multiplicative inverse of the x distance for every

y of the same class. The denominator corresponds to the distance between x and the

centroid of x’s class. In this way, CDIS selects the densest instances closest to the centroid

of each class. By using a local search strategy by class, the CDIS has time complexity

proportional to O(
∑

l∈L |c(l)|2), where l is a specific class belonging to the set of classes

L and |c(l)| is the number of instances belonging to class l.
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The eXtended Local Density-based IS (XLDIS) adopts the exact definition of den-

sity presented in Equation 2.6. Additionally, it introduces the definition of local density

ordering (LDO) as the order of the instance x in the set c(l(x)) (i.e., the class it belongs

to) according to its local density. The LDO defines the analysis order of the instances

since the local density is directly related to how representative the instance x is to its

neighbors. In short, XLDIS inserts x in S when x has the largest LDO among its partials

k-neighborhood. The time complexity of XLDIS is O(
∑

l∈L |c(l)|2).
Most density techniques are based on the concept of local density – a function that

evaluates an instance x by considering examples from the same class of x, which might

lead to both reduction and accuracy improvements. However, this concept has some lim-

itations. As these algorithms have a only local view of the dataset (locally by class),

both reduction and effectiveness can be limited to the algorithm knowledge of the specific

class. To address these limitations, the authors in [92] propose two global density-based

IS algorithms called Global Density-based IS (GDIS) and Enhanced Global Density-based

IS (EGDIS). The GDIS algorithm uses the relevance function to assess each instance’s

importance. In summary, the number of neighbors from the same class of an instance

x determines the relevance of that instance. In the analyzed data tabular context, the

GDIS algorithm achieves good classification accuracy values but with a decrease in reduc-

tion rate. EGDIS aims to address this issue using another function called the irrelevance

function. This function determines the number of neighbors from another class. This

modification improves the results by enhancing both the reduction rate and effectiveness.

Since EGDIS presents the best trade-off between reduction and accuracy, we will focus

our studies on it. The time complexity of EGDIS algorithm is O(n2)).

Spatial HyperPlane algorithms divide the hyperplane space of the features to

later choose representative instances of each subspace. In [20] the authors proposed the

Prototype Selection method based on Dense Spatial Partitions (PSDSP), which also uses

a local search strategy by class. First, PSDSP separates instances by class, and for each

class divides the hyperplane into n partitions of the same size. Then, PSDSP retrieves

the centroid for each hyperplane (in descending order by the number of instances) and

inserts it into S. The time complexity of PSDSP algorithm is linear (O(n)).

Finally, the Curious IS (CIS) [100] is a clustering-based strategy that incorporates

the notions of intrinsic reward and curiosity. CIS starts by clustering the instances,

where each cluster is considered a system state. Starting without any cluster in the

solution, the reward agent selects a new cluster of instances in each loop episode to join

the already selected clusters (state). The intrinsic reward is proportional to the decrease in

the learner’s prediction error. Ultimately, the algorithm’s output is a matrix representing

the trade-off between model improvement and the selected data size. The time complexity

of CIS method is O(n3).
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2.5 Summary

In this chapter, we presented a critical analysis of the state-of-the-art proposals

in the Instance Selection field. The objective of this evaluation was to comprehensively

assess the most relevant works related to IS strategies applied in different scenarios. In

particular, we focused on experimentally-oriented studies, that is, studies that have strong

experimental and empirical components to validate their conclusions.

The results of our searches and analyses reinforced our perception that IS methods

are almost exclusively applied to tabular structured data — and their application in NLP

tasks is rare, which is odd since this is one of the areas that could benefit most from this

type of method. In sum, from the 100 considered IS papers, 92 of them considered just

tabular data. We propose to investigate the use of IS methods along with ATC models,

which have been highly popular in applications as diverse as the detection of fake news

and hate speech, sentiment analysis, revision of product characteristics, inferring opinions,

and assessing the satisfaction of products and services, among many others.

We also proposed a new taxonomy of IS strategies by extending the one proposed

in [56]. As mentioned, this prior IS methods taxonomy was proposed in a different context,

assessing different dataset types (small tabular ones) and other learning techniques (e.g.,

deep learning neural network techniques were not considered in the envisioned scenarios).

Last, we also provided detailed information about the thirteen IS approaches ev-

idenced in our critical analysis that we will consider in our experimentation evaluation

for the ATC context. Therefore, in the next chapter, we provide a complete experimental

evaluation comparing the IS methods detailed above, combining them with state-of-the-

art automatic text classification strategies. Our objective with this set of experiments is

to answer the first posed research question (RQ1).
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Chapter 3

A Comparative Survey of Instance

Selection Methods applied to

NonNeural and Transformer-Based

Text Classification

In this chapter, we propose to assess the tradeoff among reduction, efficiency, and

effectiveness of these 13 most representative traditional IS methods (Section 2.4) applied

to the ATC task using large and varied datasets. It is essential to notice that the selected

IS methods presented in the previous chapter have been tested only with small structured

tabular datasets (such as those from the UCI repository). Regarding ATC methods, we

considered the current SOTA in the text classification field: the transformer-based ar-

chitectures, such as BERT, XLNet, RoBERTa, and others. These methods have a high

cost in terms of computational resources, mainly when dealing with large labeled training

data. Therefore, they constitute an ideal scenario for the application of IS techniques.

In more detail, we can divide the use of deep learning networks into two phases.

In the first phase, there is a massive training where the weights of deep learning networks

are estimated on unsupervised tasks (e.g., masked language model and next word predic-

tion) over a huge unlabeled dataset. This phase usually requires huge amounts of training

data and massive computational power, meaning that only a few corporations are usually

capable of performing such tasks. The most common use of these pre-trained network

models encompasses a second stage in which a fine-tuning step is necessary to adjust the

model to a different and specific domain (a.k.a., domain transfer) as we apply the model

to a task potentially different from the initially proposed one. Fine-tuning these networks

requires fewer examples than learning from scratch. As the methods tested in the present

work are supervised and, therefore, demand the class label of each document, our focus in

this work is to study the effect of the application of IS methods on the fine-tuning stage

(See Section 3.3.3). This is also the most common task performed by most researchers

and practitioners when applying deep network models to real-world ATC tasks.
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As with most NLP tasks, ATC is directly impacted by the availability of large

training data and the new computationally expensive approaches. In our investigation,

we considered the current state-of-the-art text classification methods: the Transformer-

based architectures, such as BERT, XLNet, RoBERTa, and others. These methods have

high costs in terms of computational resources, mainly when dealing with large training

data. As such, they constitute an ideal scenario for applying IS techniques. Last, but

not least important, we should emphasize that our work, as far as we know, is the first

to apply IS as a preprocessing step before using transformer-based architectures in the

ATC context. This contribution is realized using an experimental study whose rigor and

magnitude (seven transformer methods and thirteen IS approaches) have not yet been

reported in the literature on IS.

3.1 Comparative Scenario and Experimental Setup

This section introduces the experimental setup, which includes: (i) the used datasets;

(ii) the considered text classification and IS methods; (iii) the data representation and

preprocessing techniques; and (iv) the evaluation metrics and experimental protocol.

3.1.1 Datasets

To evaluate IS methods, we consider nineteen datasets in two types of text clas-

sification task: i) topic classification; and ii) sentiment classification (a.k.a. polar-

ity detection). Regarding the division into Sentiment Analysis and Topic classification,

most studies on text classification organize their experiments into these two broad cate-

gories [80, 98]: associating a sentiment (polarity) or a subject (topic) with a piece of text.

Classical references show that these two subtasks constitute the main text classification

tasks [121, 5, 80, 14, 34]. Within these two broad text classification tasks, the considered

datasets represent several domains and applications. For the topic classification task,

we consider domains as diverse as web pages categories (WebKB), newsgroups (20NG),

scientific papers in computer science (ACM and DBLP), academic articles/journals cat-

egorization (Web Of Science), medical documents (OHSUMED), books genres (Books),
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and question subject classification (TREC). For the sentiment classification task, we con-

sidered the domains of movie reviews (MR), product reviews (yelp reviews), opinions and

comments about businesses, news comments (vader nyt), movie sentiment polarity, binary

subjective or objective classification (Subj), and opinion polarity detection (MPQA).

Justifications on the Datasets’ Representativeness and the Tasks All these

datasets 1 have been widely used as benchmarks by most works in the text classification

field [80, 98]. The large majority of the works in the literature on text classification

organize their experiments into these two broad categories: Sentiment Analysis and Topic

classification. Indeed, classical references show that these two subtasks constitute the

main text classification tasks [121, 5, 80, 14, 34].

Indeed, in a recent survey in the field [80], considering traditional and deep learning

approaches, the authors evaluated 38 datasets used in 51 different works. The datasets

evaluated in our work are present in more than half of them (specifically, in 33 of these

works). In that work, all 38 datasets are categorized either for sentiment analysis (11)

or topic classification (27). The topic classification category is further subdivided into

four subclasses: (i) News Classification (e.g., 20NG dataset); (ii) Topic Labeling (e.g.,

OHSUMED); (iii) Question Answering (e.g., TREC); (iv) multi-label (e.g., Reuters2);

Note that, even considering this topic classification category subdivision, in our work we

consider representative datasets of each subclass.

Another recent work [98] consists of a summary of more than 40 popular datasets

widely used for text classification. In that work, the datasets are divided into five cat-

egories. The first one is associated with Sentiment Analysis containing six datasets (of

which five are used in our work). Next, there are three classes associated with topic clas-

sification, being News Classification (12), topic labeling (11), and question answering (8).

Finally, a class associated with natural language inference (NLI) contains seven datasets.

NLI is used to determine whether the meaning of one text can be inferred from another, a

task involving pairs of sentences. NLI is outside of the scope of our work which focuses on

multi-class and single-label tasks for textual documents. Thus, this last class of datasets

is the only one not covered by our work.

In sum, these surveys confirm that sentiment analysis and topic classification are

the two most important tasks in the field. Regarding representativeness, considering both

works, 15 datasets among the 19 we used in our experimentation are discussed in at least

one of the surveys mentioned above.

As detailed in Table 3.1, we can observe diversity in many aspects of these datasets,

in terms of size, dimensionality (i.e., number of terms), the number of classes, density

(the average number of words per document) and class distribution. These datasets have

1See Appendix A for further information about the datasets
2In our case, we adopted the single-label version of the Reuters dataset.
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different levels of skewness, ranging from completely balanced (20NG) to completely un-

balanced, such as the case of Reuters90, where the minority class has only 2 documents.

Class Distribution
Task Dataset Size Dim. # Classes Minor Median Mean Major Density Skewness

T
o
p
ic

DBLP 38,128 28,131 10 1,414 3,590 3,812 9,746 141 Imbalanced
Books 33,594 46,382 8 1,226 4,534 4,199 4,934 269 Imbalanced
ACM 24,897 48,867 11 63 2,041 2,263 6,562 65 Imbalanced
20NG 18,846 97,401 20 628 984 942 999 96 Balanced
OHSUMED 18,302 31,951 23 56 592 795 2,876 154 Imbalanced
Reuters90 13,327 27,302 90 2 29 148 3,964 171 Extremely Imbalanced
WOS-11967 11,967 25,567 33 262 371 362 449 195 Balanced
WebKB 8,199 23,047 7 137 926 1,171 3,705 209 Imbalanced
TREC 5,952 3,032 6 95 1,148 992 1,344 10 Imbalanced
WOS-5736 5,736 18,031 11 380 426 521 750 201 Balanced

S
en
ti
m
en

t

SST1 11,855 9,015 5 1,510 2,242 2,371 3,140 19 Balanced
pang movie 10,662 17,290 2 5,331 5,331 5,331 5,331 21 Balanced
Movie Review 10,662 9,070 2 5,331 5,331 5,331 5,331 21 Balanced
vader movie 10,568 16,827 2 5,242 5,284 5,284 5,326 19 Balanced
MPQA 10,606 2,643 2 3,312 5,303 5,303 7,294 3 Imbalanced
Subj 10,000 10,151 2 5,000 5,000 5,000 5,000 24 Balanced
SST2 9,613 7,866 2 4,650 4,806 4,806 4,963 19 Balanced
yelp reviews 5,000 23,631 2 2,500 2,500 2,500 2,500 132 Balanced
vader nyt 4,946 12,004 2 2,204 2,473 2,473 2,742 18 Balanced

Table 3.1: Datasets Statistics

3.1.2 Data Representation and Preprocessing

We have several options to use as (vectorial) representation input for the IS meth-

ods, which include TF-IDF weighting-scheme-based representation, static embeddings

(Word2vec, GloVe, fastText), and contextual embeddings (resulting from a zero-shot or

fine-tuning model).

For several reasons, summarized below, and given the scope of this dissertation,

we have chosen to use the TF-IDF weighting-scheme-based representation.3 First of all,

TF-IDF is a straightforward, easy-to-understand, efficient, and popular representation in

the ATC realm.

Second, according to [31], the use of static embeddings such as FastText[68],

FisherVector[77]; and PTE[129] leads to significant effectiveness losses when compared to

standard TFIDF+SVM in several of the datasets we use in our study. Furthermore, ex-

ploring static embeddings can incur significant increases in computational cost – between

1.5x and 31.1x slower than the traditional TFIDF representation. Therefore TF-IDF is a

better choice regarding a trade-off effectiveness-cost.

Fine-Tuned Contextual embeddings (e.g. BERT-based) could be a choice as they

leverage most state-of-the-art models in many natural language processing tasks. How-

ever, despite the potential benefits in terms of effectiveness [151], in the context of IS,

fine-tuning before applying the IS methods for selection would be unfeasible given the

3For a detailed explanation about the alternatives for the IS Input representation, please see Ap-
pendix C.
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usual costs of this step, which could be even higher than the selection itself. In other

words, fine-tuning to select and train again does not make much sense.

Finally, a less complex and computationally less expensive option for using contex-

tual embeddings along with IS would to exploit just the pre-trained models without any

tuning (aka, zero-shot approach). In Appendix C, we evaluate this option coming to the

conclusion that using pre-trained zero-shot embeddings without further investigations is

either inefficient or ineffective or both. Overall, this exercise (see the details in the Ap-

pendix) revealed that using contextual embeddings along with IS methods is not trivial

and will require further research considering the current state-of-the-art of both fields.

In sum, considering all aforementioned reasons, the TF-IDF representation is used

as input to all IS methods and for MetaFeatures generation. As a pre-processing step,

before creating the TFIDF matrix, we adopted the following steps: i. we removed stop-

words using the standard list from the scikit-learn library [107] (version 0.23.2); and ii.

we only kept features that appear in at least two documents.

In this chapter, we also consider MetaFeatures[16] for the sake of representation

combined with the SVM classifier. Strategies based on MetaFeatures (MFs) extract

information from other more basic features (such as TFIDF) aiming at improving the

feature space based on the main assumption that close documents tend to belong to the

same class [97]. Indeed, these strategies work by enriching the input/representation space

and are combined as metaclassifiers’ input. The MFs we exploit here are the most ef-

fective ones according to [15]. We adopt the combined similarity scores (cosine and l2)

between a document and each category centroid as meta-features that exploit global in-

formation, and the similarity between a document and its neighbors from each category

as meta-features that exploit local information. Such meta-features evaluate the propor-

tion of correctly classified (using the SVM classifier) neighbors of a target document and

the discrepancy between the classification of a target document and its neighbors. Our

implementation4 of the MF approach was obtained from the authors of the original work.

Finally, as mentioned before, our study also considers end-to-end neural networks

(E2E). Thus, the input considered is a raw document representation (original text) for

the classification methods based on deep learning (BERT, XLNet, RoBERTA, GPT-2,

DistilBERT, AlBERT, and BART). As illustrated in Figure 3.1, we first split the dataset

into k train-test subsets employing the stratified k-fold cross-validation methodology [67].

The experiments in the smaller datasets were executed using k=10-fold partition, while for

the larger ones, we adopt 5 folds due to the cost of the procedure. Subsequently, for each

fold, we construct the TFIDF5 matrix representation of the documents for the IS stage.

After selecting the documents, the ATC models undergo method-dependent preprocessing

and receive the respective raw documents as input (and not the TFIDF representation).

4Available in https://gitlab.com/waashk/extended-pipeline
5The IDF is calculated based on the training only preventing any information lacking.

https://gitlab.com/waashk/extended-pipeline
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Figure 3.1: Data Representation and Preprocessing Procedure

3.1.3 Text Classification Methods

We consider the same approaches used in [34]. In that work, the authors performed

a thorough and rigorous comparative study of the cost-effectiveness of neural and non-

neural approaches and representations for automatic text classification (ATC), including

(i) classic approaches for data representation with traditional classifiers such as TFIDF

weighting with SVM; (ii) the combination of representations based on Metafeatures with

an SVM classifier; and (iii) end-to-end neural network approaches such as Convolutional

NNs, Long Short Term Memory NNs (LSTM), Graph Convolutional Networks (GCN) as

well as more recent approaches such as BERT and XLNet. As aforementioned, in addition

to studying the behavior of IS techniques, our objective in this work is to extend the re-

sults presented in [34], adding recent classification approaches proposed in the literature,

most notably those based on Transformer architectures: RoBERTa, GPT, DistilBERT,

ALBERT, and BART. As far as we know, evaluating traditional and recent IS strategies in

the context of automatic text classification, mainly the Transformer-based architectures,

is a major novelty of our work as well as one of its main contributions.

Method-Specific Parameter Tuning: All parameters for the non-neural methods

were defined with grid-search, using cross-validation in the training set and we report the

effectiveness of the algorithms in the test partition. For MetaFeatures (MFs), we exper-

imented with different neighborhood sizes (parameter k), varying from 10 to 50 (with

linear increments of 5), to choose the one with the highest effectiveness in the validation

set. We used the LIBLINEAR [48] implementation of the SVM method to generate

both TFIDF-based and MetaFeatures (MF) based classifiers. LIBLINEAR is still one of

the best SVM implementations for text classifiers, capable of handling high dimensions

(TFIDF) and low dimensions (MF). The SVM regularization parameter was chosen from

eleven values from 2−5 to 215 using the validation sets.
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For Neural Network methods, it is impossible to use grid-search with cross-validation

for all the hyperparameters, given the large number that must be tuned. Therefore, to

define the best hyperparameters, we adopt the approach used in [34] and follow, as a gen-

eral rule, the suggestions of the authors. Furthermore, since the max len and batch size

hyperparameters directly impact issues of efficiency and effectiveness, we perform a Grid-

Search on these specified values. Table 3.2 contains the definition of fixed parameters and

the values considered in GridSearch for the hyperparameters max len and batch size.

methods parameters

BERT initial learning rate: 5e-5
XLNet batch size: [16,32]

RoBERTa max len: [150,256]
GPT2 patience: 5

DistilBERT max epochs: 20
AlBERT weight decay rate: 0.01
BART max grad norm: 1.0

Table 3.2: Parameters Tunning of the Transformers Neural Networks

As the literature [14, 32] suggests, we did not perform any pre-processing for classi-

fiers based on neural network embeddings. The authors of [14] argue that simple tokeniza-

tion works as well or even better than complex preprocessing methods. Furthermore, in

preliminary tests, we noticed that these neural networks achieved similar or worse results

when pre-processing methods were applied. Also, following the literature [34, 10], we

perform the fine-tuning with all trainable layers (without any ”frozen“ layer). Instead, to

port all neural networks based on embeddings to the text classification task, we include

a fully connected layer (with a size equal to the number of classes of each dataset) at the

end of each network, thus enabling the direct application in the text classification task.

3.1.4 IS Methods.

We consider in this chapter a set of 13 IS methods described in Section 2.4, namely:

Condensed Nearest Neighbor (CNN); Edited Nearest Neighbor (ENN); Iterative Case

Filtering (ICF); Instance Based 3 (IB3); Decremental Reduction Optimization Proce-

dure (Drop3); Local Set-based Smoother (LSSm); Local Set Border Selector (LSBo);

Local Density-based Instance Selection (LDIS); Central Density-based Instance Selection

(CDIS); eXtended Local Density-based Instance Selection (XLDIS); Prototype Selection

based on Dense Spatial Partitions (PSDSP); Enhanced Global Density-based Instance

Selection (EGDIS); and Curious Instance Selection (CIS).
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Method-Specific Parameter Tuning: All parameters for the IS methods were de-

fined with grid-search, using cross-validation in the training set during an initial empirical

experiments round. Table 3.3 shows the range of parameter values for each IS method we

evaluate. The best parameter in each range is marked in bold.

method parameters

CNN
n neighbors: [1, 3, 5, 10]LSSm

LSBo

ENN

n neighbors: [1, 3, 5, 10]

Drop3
LDIS
CDIS
XLDIS
EGDIS

IB3
Confidence Acceptance: 0.9
Confidence Dropping: 0.7

PSDSP
n neighbors: [1, 3, 5, 10]

p: [0.05, 0.1, 0.2]

CIS

iterations: 100 ∗ |kcluster|
learner: Decision Tree

initial error: 0.5
discount factor: 0.01

epsilon: 0.9 to 0.1 (step decay)
learning rate: 0.09 to 0.01 (step decay)

Table 3.3: Parameters of the IS methods

3.1.5 Evaluation Metrics and Experimental Protocol

We evaluated the IS methods concerning the capacity to reduce the training set,

classification effectiveness, and training time. Experiments were executed on an Intel

superscript registered Core i7-5820K with 6-Core and 12-Threads, running at 3.30GHz,

64Gb RAM, and a GeForce GTX TITAN X (12GB) and Ubuntu 19.04.

According with [79], reduction mean (Equation 3.1) is described as:

R =

∑k
i=0

|Ti|−|Si|
|Ti|

k
(3.1)

where T is the original training set, S is the solution set containing the instances selected

by the IS method being evaluated, and k is the number of folds adopted in our experiments

(10 folds).
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We assessed classification effectiveness with Macro Averaged F1 (MacroF1) [127].

MacroF1 measures the classification effectiveness for each class, averaging them. In or-

der to compute the F1 measure, the system-made decisions on the test set concerning a

specific category must be divided into three groups: True Positives (TP ), False Positives

(FP ), and False Negatives (FN), respectively. The terms positive and negative refer to

the classifier’s prediction, and the terms true and false refer to whether that prediction

corresponds to the external judgment. The measure is described as:

F1 =
2TP

2TP + FP + FN
(3.2)

The experiments were executed using a 10-fold cross-validation procedure. To

compare the average results on our cross-validation experiments, we assess the statistical

significance employing the paired t-test with 95% confidence, which is strongly recom-

mended over signed-rank tests for hypothesis testing on mean effectiveness and arguably

robust to potential violations of the normality assumption in this context [133, 65]. To

account for multiple tests, we adopt the Bonferroni correction [64].

We summarize our results by performing a fractional ranking analysis to sort the

best IS methods and ATC algorithms. In fractional rank, items that compare equally re-

ceive the same ranking number, which is the mean of what they would have under ordinal

rankings. For instance, the sorted ranking scores: 1, 2.5, 2.5, and 4, are obtained when

comparing four methods with the second and third being statistically tied. The two meth-

ods with equal rankings (2.5) indicate that there is no significant statistical difference be-

tween them. In our scenario, we rank each method for each dataset based on the MacroF1.

We also assess the cost of each method in terms of the model construction time,

aiming at analyzing the cost-effectiveness trade-offs for all methods. The metric is the

overall time in seconds (average of 10 folds). The Speedup (Equation 3.3) is measured as

follows:

S =
Two

Tw

(3.3)

where Two is the complete execution time without the IS phase, and Tw is the complete

model construction time using the IS method.
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3.2 Preliminary Question: What is the best (most

effective) classification method/ representation

for each of the considered datasets?

In [34], we presented a study of several classifiers and representations. Since the

publication of [34], other ATC approaches have emerged or demonstrated to be highly

effective for the task. As we propose to answer the RQ1 based on a tripod that considers

effectiveness as one of the base pillars, we believe that a precise and up-to-date response

to this preliminary question is necessary. Therefore, we decided to re-establish the SOTA

in each dataset so that the results are as strong as possible and do not weaken this pillar.

Indeed, the SOTA in the ATC area changes very quickly, as the results we obtain

when answering this preliminary question demonstrate, the best methods for each dataset

are not the same ones pointed out in the aforementioned recent comparative study in the

area [34]. Last, and more importantly, as also shown in [34], the results from the literature

are difficult to compare due to inconsistencies in experimental procedures and a lack of

statistical rigor when reporting results. By revisiting the question using rigorous and

uniform experimental and statistical procedures across all datasets, we establish a strong

foundation for the present study.

Thus, our first contribution in this Ph.D dissertation is complementary to [34], con-

sidering new datasets, classifiers, and representations. More specifically, we considered 15

new datasets and included, in addition to the results of the best methods found in that

work (TFIDF+SVM, MF+SVM, BERT, and XLNet), five new end-to-end Transformer-

Based classifiers (described in Appendix B) considered to be the state-of-the-art in several

tasks, namely: RoBERTa, GPT2, DistilBERT, AlBERT, and BART. Besides greatly ex-

tending [34], this analysis aims to support the application of IS methods in the best

possible scenario (top-best-ATC-method) for each of these datasets. The results of all

these evaluations are shown in Table 3.4.



3.2. Preliminary Question: What is the best (most effective) classification method/
representation for each of the considered datasets? 52

Task Dataset RoBERTa BART XLNET BERT DistilBert Albert MF+SVM GPT2 TFIDF
T
o
p
ic

DBLP 81.4(0.5) • 81.1(0.5) • 81.4(0.6) • 81.7(0.5) • 81.0(0.6) • 77.3(1.0) 80.5(0.7) 78.9(0.8) 79.3(0.7)

Books 87.2(0.6) 86.9(0.5) 87.3(0.4) 89.5(0.2) ▲ 87.5(0.5) 84.6(0.8) 88.3(0.3) 85.4(0.7) 84.1(0.4)

ACM 70.3(1.4) • 70.8(0.7) • 69.9(0.9) • 71.8(1.0) • 70.1(1.0) • 66.2(1.9) 70.3(1.0) • 67.6(1.2) 68.0(0.7)

20NG 86.8(0.7) 87.4(0.9) 87.4(0.8) 85.4(0.5) 86.7(0.6) 76.9(1.2) 90.7(0.6) ▲ 82.3(0.9) 89.1(0.7)

OHSUMED 77.8(1.2) • 77.6(0.7) • 77.6(1.0) • 76.4(1.2) • 76.2(0.7) • 66.1(4.8) 71.8(1.0) 74.5(0.8) 71.2(1.1)

Reuters90 41.9(2.2) 42.2(2.1) 41.3(2.6) 40.2(2.8) 40.7(2.5) 41.0(2.6) 48.4(2.6) ▲ 37.2(2.3) 31.9(3.2)

WOS-11967 86.8(0.4) • 86.9(0.8) • 87.0(0.7) • 85.5(0.7) 86.0(0.7) • 76.8(1.1) 82.0(0.9) 81.5(0.9) 84.5(0.6)

WebKB 83.0(2.0) • 83.0(1.7) • 81.9(2.5) • 83.2(2.1) • 82.3(2.1) • 80.3(1.4) • 71.6(2.4) 79.0(1.9) 72.9(2.1)

TREC 95.5(0.5) • 95.5(0.8) • 94.3(1.1) • 87.6(1.4) 95.5(1.1) • 93.5(1.4) • 67.4(1.5) 92.0(1.0) 68.3(2.0)

WOS-5736 90.5(0.9) • 89.6(1.7) • 90.2(0.9) • 89.7(1.3) • 89.2(0.9) • 86.7(1.3) 87.2(0.8) 83.8(0.5) 90.4(0.7) •

S
en
ti
m
en

t

SST1 53.8(1.3) • 52.8(1.0) • 51.4(1.7) • 51.6(1.2) • 48.9(1.1) 49.2(1.2) 28.2(0.7) 45.4(1.1) 29.6(0.8)

pang movie 89.0(0.4) • 88.1(0.5) • 88.2(0.6) • 87.4(0.4) 85.2(0.6) 82.9(4.2) • 33.4(0.1) 81.7(0.8) 77.0(1.0)

MR 89.0(0.7) • 88.2(0.6) • 86.4(3.3) • 87.7(0.5) • 85.2(1.1) 84.9(1.2) 33.5(0.2) 81.6(0.8) 75.8(0.9)

vader movie 91.3(0.5) • 90.4(0.6) • 90.5(0.4) • 88.2(0.7) 86.6(0.7) 85.4(1.6) 33.6(0.1) 85.0(0.5) 78.0(0.9)

MPQA 90.2(0.8) • 90.1(0.7) • 88.6(0.5) 89.1(0.7) • 88.5(0.6) 87.9(0.6) 76.9(0.6) 86.5(0.6) 78.3(0.7)

Subj 96.9(0.4) • 96.8(0.4) • 96.1(0.5) • 97.0(0.3) • 96.0(0.4) • 95.5(0.7) 90.0(0.7) 94.6(0.4) 89.1(0.6)

SST2 93.2(0.6) • 92.8(0.5) • 92.1(0.4) 91.5(0.6) 89.6(0.5) 88.6(2.1) 79.2(0.8) 86.9(0.6) 79.0(0.7)

yelp reviews 97.9(0.4) • 97.5(0.4) • 97.3(0.4) • 95.6(0.6) 95.6(0.6) 93.9(0.9) 33.5(0.2) 93.5(0.7) 94.7(0.8)

vader nyt 85.3(0.6) • 85.5(0.8) • 82.7(1.1) 80.7(0.9) 79.9(1.2) 76.9(1.8) 37.8(0.9) 74.9(1.8) 64.5(1.8)

Table 3.4: Results regarding the evaluation metric MacroF1. Legend: (a) ▲: the clas-
sification approach is superior to all others; (b) •: the classification approach presents
the highest result in terms of absolute values, but there are statistical ties with other
approaches; (c) •: the classification approach is statistical equivalent to the best ap-
proach (marked with •) in dataset (line) considered.

We define as the best approach (by dataset), the one whose result of the metric

(MacroF1) was the highest among all (in terms of absolute values). Therefore, an approach

is considered the best for a dataset if it belongs to one of the following three cases: (i)

its absolute value and the result are statistically superior to all other approaches ▲ (e.g.,

MF+SVM for two datasets: 20NG and Reuters90); (ii) it’s absolute value is superior but

statistically equivalent to other approaches • (e.g., BERT in the WebKB dataset); and

(iii) its confidence interval is the smallest in case of a tie in the highest absolute value

with other approaches (e.g., RoBERTa and BART in the TREC dataset).

We observe that the results presented in Table 3.4 are consistent with those pre-

sented in previous works [34] for the evaluated classifiers (SVM, MF, BERT, and XLNet).

For instance, here as in [34], the best classification approach for 20NG and Reuters90

is MF+SVM. This may be explained by the fact that MetaFeatures are based on in-

tra and inter-class distances and, as such, they produce enriched semantic information

that is not directly captured by Transformer-based methods. This benefits datasets with

more classes. Indeed, Reuters90 has the largest number of classes while the 4th largest is

20NG. MetaFeatures also performed relatively well in the WOS-11967 (2nd largest) and

OHSUMED (3rd largest) datasets.

We observe, also, the insertion of the BART model in our analyses produced a

new state-of-the-art benchmark result for ACM and WebKB datasets, with gains ranging

from 0.37 to 4.41 percentage points when comparing with previous results of [34], where
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the best approaches for these datasets were MF+SVM and XLNet, respectively.

Our extended comparative investigation reveals that considering statistical ties, in

17 datasets, the best classifiers6 (out of nineteen) are constituted by a Transformer-based

method, more specifically: RoBERTa (10), BERT (5), BART (1) and XLNet (1). Thus, we

can note that among the methods considered in this work, primarily deep learning-based

methods (transformers) are among the best in several domains. Considering only the

sentiment datasets, the RoBERTa model obtained the best result in 78% of the datasets.

Regarding the behavior of RoBERTa, the authors of the method demonstrated in [85]

that, in fact, the increase in the amount of BERT training data and the increase in the

training batch (main proposals of ROBERTa), were able to optimize the effectiveness of

the proposed method, mainly in for sentiment datasets. Recent work [1] also demonstrates

that RoBERTa (and derivatives of this model) are considered state-of-the-art in several

sentiment analysis tasks, such as product reviews (yelp reviews and amazon reviews), and

movie reviews (IMDB and SST).

Following, BERT was the best in five datasets (four topics and one sentiment: We-

bKB, ACM, Books, DBLP vader nyt). Furthermore, considering only topic classification,

we note that the best results, in terms of the number of datasets, are obtained by the

BERT approach. Among the non-Transformers, MF+SVM obtained the best (unique)

result in two datasets (20NG and Reuters90), which shows that it still is a very competi-

tive method, especially for topic classification. Finally, BART and XLNet were better in

only one dataset each (WOS-11967 and vader nyt, respectively). In short, in Table 3.5

we provide complete, comparable, and statistically tested results summarizing the best

classification method for each of the datasets studied here.

Task Method Dataset

Sentiment
RoBERTa

SST1

pang movie

MR

vader movie

MPQA

SST2

yelp reviews

BERT Subj

BART vader nyt

Task Method Dataset

Topic

BERT

DBLP

Books

ACM

WebKB

RoBERTa

OHSUMED

TREC

WOS-5736

MetaFeatures + SVM
20NG

Reuters90

XLNet WOS-11967

Table 3.5: Best ATC Approach by Dataset

It is worth explain the reasons for some differences regarding BERT´s results when
compared to those obtained in [34]: (1) the BERT implementation used in [34] was in

6Number of times an approach was marked as ▲ or •.
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MXNet [26] architecture. Certain approximations made to optimize MXNet caused harm

in the result achieved by this method. Here, we adopted an implementation in Py-

Torch [66]; (2) over the years, we have performed a more extensive search for BERT

hyper-parameters, arriving at a configuration that benefited it in terms of effectiveness.

In summary, both the dataset and the partitions (train-val-test) remain the same, but we

now have a better implementation and configuration of the BERT algorithm.

Following, we present the results of each analyzed aspect of the tripod (reduction-

effectiveness-efficiency) incrementally. First, we show the reduction potential (Table 3.6),

then the effect of the reduction in effectiveness (Table 3.7 and Table 3.8), and finally, the

effect in terms of efficiency (Table 3.9). We incrementally present the results to analyze

each component of the tripod both in isolation and in conjunction.

3.3 Experimental Results - Analyses

In this section, we present the results of applying traditional IS methods in the

context of Automatic Text Classification considering the set of the first raised research

question (RQ1): What is the impact of applying traditional IS methods in the ATC con-

text regarding the posed constraints? In order to conduct a thorough evaluation of each

constraint, we have divided this RQ into three incremental sub-questions (RQ1.1–RQ1.3).

3.3.1 RQ1.1. Are there IS methods capable of reducing the

training set while keeping classifier effectiveness for each

investigated scenario?

We now enter the main focus of this work – the study of IS methods applied to

ATC. In theory, IS methods should remove noisy and/or redundant instances as they

aim to select the most representative instances and reduce the total time while trying to

improve effectiveness. Some works have studied the behavior of IS mainly applied to tab-

ular and low-dimensional data. The study of IS in the context of ATC introduces several

challenges such as: (i) high dimensionality and sparseness; (ii) larger datasets (usually

much larger than those explored in previous studies), (iii) noise and ambiguity in the text

of the documents. In this context, a question that naturally arises is: “Are the results

achieved by the IS methods in the previously studied contexts of tabular data extendable
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to ATC?”. We delve into this question next.

Departing from the premise that the construction time of a machine learning model

is intrinsically associated with the amount of training data, we analyze the impact of ap-

plying IS approaches in terms of training set reduction and effectiveness. The reduction

can be briefly described as the ability of a method to remove instances from the training

set. Several works deal with the selection of important features to represent a model. In

this work, we are focused on the selection of important instances. In practice, we can

think of reduction as removing rows from a TFIDF representation matrix or removing

documents from a textual dataset. Note that reducing the training set and maintain-

ing effectiveness are conflicting goals. In Table 3.6, we present the results regarding the

average reduction rate (Fold Average of a 10-Fold CV procedure) achieved by each selec-

tion method. A green color scale for each line (dataset), accompanied by the respective

value, is shown in the Table. The darker a cell, the larger the reduction achieved by the

corresponding method in the respective dataset.

task dataset CNN ENN ICF IB3 Drop3 LSSm LSBo LDIS CDIS XLDIS PSDSP EGDIS CIS Average

To
pi
c

DBLP 52.4% 24.6% 83.5% 40.0% 80.2% 17.4% 72.8% 85.6% 90.3% 87.8% 90.0% 62.0% 82.0% 66.8%
Books 32.1% 24.9% 67.3% 15.0% 73.4% 8.8% 63.7% 85.1% 88.2% 87.5% 90.0% 62.0% 80.0% 59.8%
ACM 47.1% 30.9% 78.3% 56.0% 75.8% 19.0% 67.7% 84.0% 88.0% 88.4% 90.0% 55.0% 46.0% 63.6%
20NG 27.9% 76.1% 82.8% 5.0% 84.3% 0.5% 23.2% 94.3% 94.1% 95.1% 90.0% 68.0% 50.0% 60.9%

OHSUMED 45.5% 31.8% 78.8% 53.0% 75.7% 21.9% 69.8% 88.3% 90.1% 89.8% 90.0% 57.0% 80.0% 67.1%
Reuters90 50.7% 38.0% 86.9% 1.0% 84.7% 28.4% 76.9% 90.1% 88.6% 92.1% 90.0% 54.0% 67.0% 65.3%
WOS-11967 45.4% 31.8% 78.7% 54.0% 76.7% 22.1% 68.4% 91.7% 91.3% 92.5% 90.0% 57.0% 77.0% 67.4%
WebKB 42.9% 33.4% 77.8% 52.0% 78.9% 24.1% 71.1% 88.7% 90.1% 90.7% 90.0% 53.0% 57.0% 65.4%
TREC 31.3% 61.4% 71.9% 41.0% 85.0% 18.4% 37.8% 88.8% 88.4% 97.0% 90.0% 39.0% 22.0% 59.4%

WOS-5736 50.4% 28.2% 79.8% 59.0% 77.5% 20.1% 70.9% 90.1% 90.9% 91.4% 90.0% 62.0% 69.0% 67.6%

Se
nt
im
en
t

SST1 18.9% 74.7% 92.5% 31.0% 98.7% 5.7% 7.7% 99.3% 99.1% 99.8% 90.0% 20.0% 60.0% 61.3%
pang_movie 46.8% 29.8% 72.2% 66.0% 73.0% 18.8% 63.5% 80.1% 94.4% 83.4% 90.0% 63.0% 77.0% 66.0%

MR 46.7% 49.5% 80.7% 67.0% 99.2% 3.3% 48.8% 99.0% 99.3% 99.1% 90.0% 63.0% 58.0% 69.5%
vader_movie 47.2% 28.9% 71.8% 67.0% 73.2% 18.2% 63.3% 79.7% 94.4% 83.1% 90.0% 63.0% 75.0% 65.8%

MPQA 64.2% 21.4% 42.4% 48.0% 88.1% 11.2% 55.3% 54.0% 58.6% 83.0% 90.0% 45.0% 19.0% 52.3%
Subj 50.8% 23.6% 71.2% 73.0% 74.6% 21.1% 71.2% 91.4% 95.6% 92.5% 90.0% 73.0% 51.0% 67.6%
SST2 48.4% 50.4% 83.8% 68.0% 98.3% 1.9% 5.8% 99.2% 98.8% 99.6% 90.0% 64.0% 55.0% 66.4%

yelp_reviews 58.6% 18.7% 76.2% 69.0% 80.3% 11.1% 65.3% 93.9% 95.8% 95.0% 90.0% 77.0% 60.0% 68.5%
vader_nyt 39.8% 39.4% 72.4% 60.0% 69.2% 24.8% 64.6% 80.8% 90.9% 84.0% 90.0% 56.0% 58.0% 63.8%
Average 44.6% 37.8% 76.3% 48.7% 81.4% 15.6% 56.2% 87.6% 90.9% 91.1% 90.0% 57.5% 60.2%

Table 3.6: Percentage of reduction of the training set size.

For both domains (topics and sentiment), we notice that the methods XLDIS,

CDIS, PSDSP, and LDIS have the highest reduction rates: on average 91.1%, 90.9%,

90.0% and 87.6%, respectively. The highest reduction rate is for XLDIS applied to SST1

(99.8%), while LSBo obtained the lowest reduction rate in this dataset. Thus, considering

only the reduction criterion, these four algorithms stand out.

However, as we shall see, their negative impact on effectiveness is significant. Ac-

cording to the green scale, the lowest reduction rates are obtained by LSSM (on average

15.6%) followed by ENN (36.8%) and CNN (44.6%). In terms of datasets, the lowest

reduction rates were obtained by LSSm on 20NG (0.5%), followed by the IB3 on the

Reuters90 (1.0%) and 20NG (5.0%) and the LSBo applied on the SST2 (5.8%) and SST1

(7.7%). In addition, note that considering the global reduction rate (64.5%), the LSSm
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approach has no above-average reduction rate in any dataset.

Based on these results, it is noticeable that all methods can reduce the training set

to some extent – some more, others less. However, manipulations of the training set may

have some profound impact (positive or negative) on the effectiveness of the classification

models [31, 35, 37]. Table 3.7 answers the question what is the impact on the reduction

on effectiveness? for each of the IS considered methods.

Considering the application of the IS methods to the best classification approach

in each dataset (see Table 3.5), Table 3.7 presents the impact on MacroF1 regarding three

situations: (1) the application of the IS methods produce statistically equivalent results

to the classifier trained without any selection (NoSel) –represented in bold and with a

green background; (2) the IS methods produce effectiveness losses that are under 5% when

compared to NoSel – represented with an orange background. (3) the application of the

IS method produced losses higher than 5% in effectiveness – represented in red.

In Table 3.7, instead of considering a simple statistical (“tie (win) vs. loss”) binary

scenario, we choose to include a third scenario for analysis, which includes an “acceptable

loss”. This acceptable loss corresponds to a scenario in which a potential reduction in

training set size would compensate for the loss in effectiveness. For the sake of simplic-

ity, here we considered a general, arbitrary rate of 5% of loss, which could be different

for each scenario and situation. This 5% rate serves well our analysis purposes. As far

as we know, there is no scientific methodology to calculate an acceptable loss. Indeed

this may be completely dependent on the task and application. Thus, our choice for the

5% thresholds was based on a general assumption that, in practice, a loss of more than

5% would certainly hurt effectiveness, but a loss smaller than 5% could be acceptable in

practice, given the benefits obtained from the use of IS methods in terms of reduction

and efficiency. We leave for future work to determine a more suitable way to define a

dataset-specific acceptable loss rate. Results with an orange background in Table 3.7

correspond to this scenario of “acceptable” loss at most 5%.

We start our analysis of results, shown in Table 3.7, by noting that none of the

IS methods produced effectiveness improvements. In fact, NoSel was always the method

with the highest absolute MacroF1 value on all datasets. This clearly shows that the

tested IS methods did not reduce noise for the ATC task, at least in the tested textual

datasets. In fact, despite the potential for noise removal motivation, selection methods

were not able to improve the effectiveness of the text classification models. Even though

these datasets being manually annotated, and they are traditional benchmarks scrutinized

by the research community over the years, this does not mean that they are noise-free

because human annotation is error-prone.
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dataset NoSel CNN ENN ICF IB3 Drop3 LSSm LSBo LDIS CDIS XLDIS PSDSP EGDIS CIS

T
o
p
ic

DBLP 81.7(0.5) 79.1(0.8) 80.5(0.6) 77.6(0.8) 79.5(0.5) 78.4(0.6) 81.1(0.8) 79.1(0.6) 75.1(0.7) 75.6(0.6) 74.8(0.9) 60.6(0.5) 76.6(0.8) 74.0(1.3)

Books 89.5(0.2) 85.9(1.5) 86.1(0.4) 84.1(0.5) 72.4(0.4) 84.3(0.5) 88.8(0.5) 84.0(0.5) 73.9(1.9) 72.8(2.3) 72.4(2.3) 79.7(0.5) 84.1(0.6) 80.3(0.5)

ACM 71.8(1.0) 67.3(0.8) 67.2(1.9) 64.3(1.5) 66.6(0.6) 64.2(2.0) 69.6(1.3) 63.8(1.5) 62.8(1.3) 61.4(1.9) 60.6(2.2) 57.6(1.1) 65.7(1.1) 68.5(1.0)

20NG 90.7(0.6) 87.7(1.5) 68.3(0.7) 68.9(1.0) 85.8(0.8) 79.2(2.3) 90.7(0.5) 90.7(0.6) 59.2(1.2) 60.7(1.3) 58.7(1.4) 89.0(0.6) 89.1(0.6) 89.5(0.7)

OHSUMED 77.8(1.2) 73.3(0.4) 72.3(0.8) 67.8(0.9) 71.2(2.0) 68.3(1.2) 73.8(0.5) 68.8(1.2) 61.9(1.5) 62.4(1.3) 60.5(1.1) 58.5(1.3) 67.6(3.3) 61.2(2.0)

Reuters90 48.4(2.6) 46.9(2.5) 33.1(2.1) 32.1(2.1) 48.1(2.4) 34.8(2.7) 38.1(1.7) 36.5(2.2) 33.5(1.4) 34.4(1.4) 33.1(1.2) 34.7(2.3) 45.3(2.5) 22.5(6.8)

WOS-11967 87.0(0.7) 85.0(1.2) 85.1(0.5) 81.8(2.1) 84.7(0.8) 83.5(0.8) 86.4(0.9) 84.9(0.6) 79.1(0.8) 80.5(0.9) 77.2(1.9) 81.0(1.1) 84.3(0.9) 61.2(2.0)

WebKB 83.2(2.1) 81.9(1.6) 76.7(1.8) 73.2(2.3) 80.8(1.8) 74.3(1.3) 80.6(1.8) 76.2(2.1) 61.6(2.8) 68.6(2.1) 60.1(2.9) 68.9(2.3) 80.5(1.4) 80.5(1.9)

TREC 95.5(0.5) 94.0(1.0) 89.2(1.1) 88.9(1.5) 93.8(1.3) 87.2(2.5) 95.0(0.7) 95.0(1.1) 85.3(1.3) 87.2(1.7) 77.8(2.7) 88.8(1.4) 92.5(3.2) 92.4(0.4)

WOS-5736 90.5(0.9) 89.2(0.7) 87.4(1.0) 84.9(0.9) 88.4(1.0) 85.5(1.1) 88.0(1.1) 86.5(1.4) 81.8(0.8) 83.7(0.8) 81.3(1.7) 82.2(0.8) 88.4(1.3) 55.4(9.9)

S
en
ti
m
en

t

SST1 53.8(1.3) 48.0(1.4) 15.9(1.1) 21.0(1.2) 53.3(1.0) 32.0(1.4) 53.4(0.9) 53.2(0.9) 13.7(4.4) 26.1(4.3) 18.9(1.4) 48.9(1.1) 53.4(1.0) 52.2(0.9)

pang movie 89.0(0.4) 88.2(0.8) 88.6(0.4) 87.6(0.6) 87.1(0.6) 87.6(0.4) 88.5(0.5) 88.0(0.6) 86.9(0.7) 84.9(1.1) 86.6(0.7) 85.6(0.9) 86.8(0.8) 86.9(0.5)

MR 89.0(0.7) 63.6(15.4) 37.3(1.9) 45.2(3.6) 87.3(0.8) 33.6(0.3) 89.0(0.6) 39.3(12.3) 40.6(9.9) 48.5(13.7) 33.9(1.1) 86.4(0.4) 86.5(1.0) 88.0(0.6)

vader movie 91.3(0.5) 90.9(0.5) 90.6(0.5) 89.9(0.6) 91.3(0.7) 89.8(0.8) 90.8(0.7) 90.5(0.4) 89.2(0.6) 76.3(16.1) 89.0(0.8) 88.4(0.6) 89.9(0.6) 89.1(0.8)

MPQA 90.2(0.8) 87.0(1.8) 84.8(0.9) 85.9(0.5) 88.7(0.7) 86.6(1.6) 90.0(0.7) 89.9(0.6) 89.1(0.6) 89.0(0.8) 88.0(0.5) 88.6(0.8) 87.9(0.6) 90.0(0.7)

Subj 97.0(0.3) 96.4(0.5) 95.9(0.4) 95.1(0.5) 95.7(0.6) 95.1(0.4) 95.4(0.7) 95.6(0.5) 41.9(13.7) 58.1(12.3) 44.5(14.2) 95.1(0.2) 96.2(0.4) 96.7(0.4)

SST2 93.2(0.6) 60.7(11.7) 49.0(3.0) 61.0(4.7) 92.0(0.8) 39.6(5.0) 92.9(0.5) 93.0(0.7) 60.4(17.2) 72.6(15.2) 53.9(13.5) 90.2(1.0) 91.7(0.7) 92.0(0.8)

yelp reviews 97.9(0.4) 97.2(0.3) 97.2(0.5) 97.2(0.4) 97.0(0.5) 96.9(0.4) 97.7(0.3) 97.4(0.3) 94.7(1.1) 95.8(0.6) 94.7(1.0) 96.8(0.6) 96.8(0.9) 97.3(0.4)

vader nyt 85.5(0.8) 83.8(1.1) 83.4(1.3) 82.8(1.3) 83.6(0.7) 82.6(0.9) 83.9(0.9) 83.6(1.2) 83.2(1.4) 81.5(1.1) 82.2(1.1) 81.0(1.0) 83.2(1.0) 84.0(0.9)

Table 3.7: MacroF1 results. We present, for each dataset (row), the MacroF1 results of the application of IS approaches (columns)
considering the best classification method for each dataset (Table 3.5). Cells with value in bold and with green background are statistically
equivalent to the classification method without instance selection - NoSel. Furthermore, for each dataset, we present in the cells with
orange background color the results with effectiveness up to 5% worse than the method without selection (NoSel) respectively.
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Indeed, previous work has investigated the reasons for errors in automatic classifi-

cation and found that noise is one of them [94]. For example, the ACM dataset comprises

articles associated with the classification in the ACM taxonomy, as indicated by the au-

thor himself. Therefore, it is susceptible to the inherent noise of human labeling. Note

that, despite the author being the person who knows the most about the proposed work,

he may not know well the ACM taxonomy, which is complex and large [114]. Therefore,

the taxonomy indicated by the author does not necessarily reflect the best class to assign

to a document.

Another example is the Movie Review (MR) dataset. This dataset comprises movie

reviews with users’ associated sentiments on online platforms. Note that this context has

considerable subjectivity, as it is based on users’ tastes and preferences. In [88], the

authors show, through a thorough analysis using Topic Modeling and Sentiment Analysis

techniques, that the sentiment indicated in terms of the number of stars associated with

movie reviews can often be noisy and not reflect the content of the comment made by the

user. In addition, one may usually find negative and positive aspects of the movie in the

same assessment, which confuses the classifier.

We will further investigate this issue in the future by analyzing the level of noise

present in each dataset and how this relates to the current results.

We also observe in Table 3.7 that LSSm is the method that has more statistical ties

– 16 times (different datasets) – compared to the classification using the complete training

set. Evaluating the results on the topic datasets, LSSm can maintain effectiveness in 8

out of 10 cases. The result is even better when we consider the sentiment datasets, on

which LSSm is equivalent to NoSel in 8 out of 9 datasets. The CNN method can also

obtain statistically equivalent results in 13 of the 19 datasets. More specifically, CNN

achieves equivalent results in more than half of the topics and on 7 out of 9 sentiment

datasets. LSBo in turn obtains statistically equivalent results in 9 of the 19 datasets –

it achieves statistically equivalent results in 2 topic datasets and, like CNN, in 7 of 9

sentiment datasets. Following, the IB3 method can obtain statistically equivalent results

in 8 of the 19 datasets (four ties in both, sentiment and topic tasks). CIS method in

turn obtains statistically equivalent results in 7 of the 19 datasets, however, it achieves

statistically equivalent results in only one topic and 6 of 9 sentiment datasets.

For both topic and sentiment domains, XLDIS, PSDSP, LDIS, ICF, and CDIS did

not perform well, being only able to tie with NoSel in a maximum of 4 different datasets.

More specifically, when considering topic classification, none of those approaches could

achieve NoSel results. Among the above methods, XLDIS can be considered the worst in

terms of effectiveness, as this approach does not achieve equivalent results in any dataset.

In general, we have between 0 to 10 methods (out of 13) in each dataset that are statis-

tically equivalent to NoSel - OHSUMED and yelp reviews, respectively.

Let´s now consider scenario 2 – the IS methods produce effectiveness losses under
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5% compared to NoSel — represented with an orange background. We can note that LSSm

remains the best method for maintaining effectiveness, being equivalent in 17 of the 19

datasets. Only in two datasets (Reuters90 and OHSUMED - topic classification task),

LSSm had significant losses. Moreover, considering sentiment, LSSM achieves excellent

results – equivalent in all 9 datasets. The CNN and LSBo methods follow, respectively,

with 15 and 13 equivalent datasets. CNN achieves equivalent results in 8 out of 10 topic

datasets and maintains the results in 7 out of 9 sentiment datasets. LSBo, in turn, achieves

equivalent results in 5 topic datasets and 8 out of 9 sentiment datasets. Following, the

IB3 and EGDIS methods can obtain equivalent results in, respectively, 15 and 14 of the 19

datasets. IB3 achieves equivalent results in 6 out of 10 topic datasets and maintains the

results in all sentiment datasets. On the other hand, EGDIS achieves equivalent results

in just one dataset less than IB3 considering the topic results and, also, maintains the

results in all sentiment datasets.

When considering this “acceptable” loss of 5%, the XLDIS, PSDSP, LDIS, ICF,

and CDIS have a significant improvement, reaching 30 ties altogether – previously, there

were only 12. Note however that these results are achieved mostly for the sentiment

datasets. Finally, we note that XLDIS maintains its behavior, being the worst method re-

garding effectiveness (only 5 ties). Besides, note that when we consider the LDIS, CDIS,

XLDIS, and PSDSP, we must always be careful to consider an eventual loss of 5% or

more, since, in 16 out of 36 outputs, there were losses in terms of effectiveness or some

instability for these methods, captured by a high confidence interval.

Besides, these four methods are based on measuring density and/or partitions in

the hyperplane of the feature space. In this case, the more separable the elements that

compose the classes of a dataset, the more effective the selection of instances that will

be considered. Therefore, our main hypothesis is that due to the tabular nature of these

datasets (in terms of both the number of instances and features), they can be considered

more separable problems than the ones usually found in the context of ATC.

To corroborate our hypothesis, we mention an analysis [17] in which the authors

demonstrate that these IS algorithms achieved satisfactory results when applied to less

complex tasks (i.e., structured data). ATC, however, deals with more complex datasets

with high sparsity and high dimensionality. One commonly mentioned issue is the ”Curse

of dimensionality”, where the space is so ample that the instances are equivalently far

away from each other. This type of phenomenon naturally disturbs the concepts of density

and the feature hyperplane partition.

The experimental results tend to corroborate our hypothesis. We can see some

cases (8 out of 36) where these methods perform well (e.g. yelp reviews), especially

when considering the sentiment analysis task. Considering the MPQA dataset, for in-

stance, three of the four approaches achieved statistically equivalent results. Note that

this dataset has the lowest dimensionality among those tested in our work. As a sec-
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ond example, Yelp reviews has a relatively high density (average number of terms per

document), which directly benefited the result achieved by PSDSP (based on hyperplane

partitions).In general, when we consider topic classification, regardless of the specific ap-

plication, it is possible to observe that only CNN and LSSm satisfy the effectiveness

requirement. On the other hand, for the sentiment domain, we can stratify this result.

For user reviews, movie and product reviews (pang movie, vader movie, yelp reviews), if

a 5% loss is allowed, all algorithms perform well.
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DBLP 1.5 3.5 3.5 7.5 5.5 7.5 1.5 5.5 11.0 11.0 11.0 14.0 11.0 11.0

Books 1.5 3.5 3.5 7.5 12.5 5.5 1.5 5.5 12.5 12.5 12.5 9.5 7.5 9.5

ACM 1.5 5.0 5.0 8.5 8.5 11.5 1.5 5.0 11.5 11.5 11.5 14.0 5.0 5.0

20NG 2.5 2.5 10.5 10.5 8.0 9.0 2.5 2.5 13.0 13.0 13.0 6.0 6.0 6.0

OHSUMED 1.0 3.5 3.5 8.0 6.5 8.0 3.5 3.5 11.5 11.5 11.5 14.0 6.5 11.5

Reuters90 2.0 2.0 11.5 11.5 2.0 6.5 6.5 6.5 11.5 11.5 11.5 6.5 4.0 11.5

WOS-11967 2.0 2.0 6.0 11.0 6.0 6.0 2.0 6.0 11.0 11.0 11.0 11.0 6.0 14.0

WebKB 3.5 3.5 8.0 8.0 3.5 10.0 3.5 8.0 12.0 12.0 14.0 12.0 3.5 3.5

TREC 3.5 3.5 11.5 8.0 3.5 8.0 3.5 3.5 11.5 11.5 14.0 11.5 3.5 8.0

WOS-5736 3.0 3.0 7.0 7.0 3.0 10.0 3.0 7.0 13.0 10.0 10.0 13.0 3.0 13.0

Average 2.2 3.2 7.0 8.8 5.9 8.2 2.9 5.3 11.9 11.6 12.0 11.2 5.6 9.3
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SST1 3.5 7.5 14.0 12.0 3.5 9.5 3.5 3.5 12.0 9.5 12.0 7.5 3.5 3.5

pang movie 3.5 3.5 3.5 3.5 10.5 10.5 3.5 3.5 10.5 10.5 10.5 10.5 10.5 10.5

MR 2.5 2.5 12.5 9.0 5.0 12.5 2.5 9.0 12.5 9.0 12.5 5.0 5.0 2.5

vader movie 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 12.5 5.5 12.5 12.5 5.5 12.5

MPQA 5.0 5.0 12.0 12.0 5.0 12.0 5.0 5.0 5.0 5.0 12.0 5.0 12.0 5.0

Subj 2.0 2.0 7.0 7.0 7.0 7.0 7.0 7.0 13.0 13.0 13.0 11.0 7.0 2.0

SST2 3.0 10.5 13.0 10.5 7.5 13.0 3.0 3.0 3.0 3.0 13.0 7.5 7.5 7.5

yelp reviews 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 11.0 11.0 11.0 6.0 6.0 6.0

vader nyt 4.0 4.0 11.0 4.0 11.0 11.0 4.0 4.0 4.0 11.0 11.0 11.0 11.0 4.0

Average 3.9 5.2 9.4 7.7 6.8 9.7 4.4 5.2 9.3 8.6 11.9 8.4 7.6 5.9

Overall Aggr. Ranking 3.0 4.1 8.1 8.3 6.3 8.9 3.6 5.2 10.6 10.2 12.0 9.9 6.5 7.7

Table 3.8: Instance Selection MacroF1 - Fractorial Ranking Results.

To better summarize the effectiveness results, we rank the best IS techniques by

ordering each IS approach in each dataset considering the MacroF1 metric. The Frac-

tional Ranking method was used to compare multiple methods applied to each dataset.

In practice, the method works as follows: for each fold of each dataset, the best method

is ranked; the best - rank in rank 1, the second-best - rank 2, and so on. In case of a

statistical tie between methods, we assign the average of their respective rankings to each

method. For instance, two methods tied in the first place get both rank 1.5. The result

is shown in the table 3.8. As a “rule of thumb”, the best-ranked method in each dataset

should be NoSel, along with potential ties.

As expected, in Table 3.8 the NoSel aggregated ranking is the overall best – 3.0

on average for all datasets (top-ranking). We note that few IS strategies approximate the

NoSel results. Overall, the three strategies that come closest to NoSel are LSSm (Aggr.

Ranking - 3.6), CNN (4.1), and LSBo (5.2). In fact, in several datasets, these IS strategies

achieve results very close to NoSel, which is evidenced by the several ranking ties in the
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first place. For instance, in 20NG and TREC, the three best selection methods (according

to the Aggr. Ranking) are tied with NoSel.

Briefly summarizing, both experiments indicate an affirmative answer for RQ1 –

there are selection methods capable of reducing the training set while maintaining effec-

tiveness in general.

3.3.2 RQ1.2. What is the impact of applying IS strategies on

the text classification models’ total construction time?

Intuitively, there is an expectation that the selection of the most representative

instances of the training set will lead to a reduction in model construction time. We ver-

ified, by answering RQ1, that the IS methods were not able to improve the effectiveness

of the models. However, there is a subset of IS methods with the potential to reduce

the training set while maintaining the effectiveness (RQ1), more specifically: LSSm,

CNN, and LSBO. However, introducing an IS step in the pre-construction phase of the

model may be costly, thus causing overhead in terms of time. Using the IS method can

be even more expensive than building the model with all the data if the IS step is not

cheap enough. Note that each strategy impacts application time, as we consider the total

cost – preprocessing + IS application + training time to build the model. Therefore,

for the use of IS methods to be attractive, they must provide, at a minimum, efficiency

improvements. Thus, in the subsequent analysis, we assess how much it costs to reduce

the total time of the training set in terms of model construction. In Table 3.9, we show,

for each dataset, the total application speedup (NoSel Time / IS approach Time) of each

IS approach with its respective (best) classifier (see Table 3.5). For each dataset (line),

we have a color scale, where the greener, the higher speedup, and the redder, the higher

the computational cost (average execution time) compared to NoSel.

The algorithms on the right side of the table – LDIS, CDIS, XLDIS, and PSDSP

– are the most efficient in terms of speedup. They were also the ones that reduced the

training set the most. However, despite the attractive cost and reduction rate, these al-

gorithms were, considering an acceptable loss of 5%, able to maintain effectiveness in a

maximum of 31.5% of cases (24 of 76 cells). Considering only the statistically equivalent

results to NoSel, the overall result is even worse – 11.8% (9 of 76 cells).

Next, we concentrate our efficiency analysis on the best IS approaches according

to the fractional ranking presented for (RQ1): LSSm, CNN, and LSBO. As seen in Ta-

ble 3.7, LSSm achieved good results in terms of effectiveness, but it could not produce

large training set reductions. Consequently, as we can visually grasp, LSSm is the most
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Table 3.9: SpeedUp on Total Application Cost of the Instance Selection Methods applied
to the best ATC approach in each dataset.

costly method (predominantly light green with several red cells). Its low reduction rate,

added to its high computational cost, makes the process as a whole unfeasible. There

are no gains in effectiveness and its application in the pipeline worsens the overall exe-

cution time. The average speed-up for this approach is 1.05 (varying between 0.78 and

2.11). Even though LSSm was able to produce equivalent results to NoSel in 16 out of

19 datasets (Table 3.7), according to Table 3.9, it produced only 11-time improvements.

If we consider only the results in which LSSm statistically ties with NoSel, there are time

improvements in only 8 datasets. If we consider an acceptable loss of 5% in effectiveness,

nine datasets have a time improvement (one more). In sum, in roughly half of the cases,

the incorporation of LSSm into the process takes longer than NoSel.

In the case of LSBo, although it has nine statistical ties in effectiveness with

NoSel (7 less than LSSm), this method has an average speedup of 1.75 – higher than

LSSm’s. The method meets both requirements (effectiveness and efficiency) in six datasets

but worsens the time in 3 others (20NG, SST1, SST2), being better than LSSm in six

datasets (TREC, pang movie, vader movie, yelp reviews, vader nyt, and MPQA). If we

consider an acceptable loss of 5% in effectiveness, the method can fulfill both constraints

in 10 datasets. In this sense, based on the number of times LSBo and LSSm meet all

requirements, LSBO can be considered better than LSSm.

The traditional CNN method was able to achieve total time improvements in 12

of the 13 datasets where it is also statistically equivalent to NoSel regarding effectiveness

– the only case that does not improve in time is 20NG. As seen earlier in Table 3.6, CNN

has an average reduction rate of 44.6%, which positively impacts in terms of time. This

method has an average speedup of 1.48, better than LSSm in this regard and slightly
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worse than LSBo. If we consider an acceptable loss of 5% in effectiveness (achieved by

this method in 15 out of 19 datasets), CNN can improve time in 14 of these 15 datasets,

a very good result.

Figure 3.2: CNN, LSBo, and LSSm selection time (in seconds)

As a final analysis, we present in Figure 3.2 the selection generation step time

(in seconds) for LSSm, LSBo, and CNN in each dataset. We note that, regardless of

the domain (topic or sentiment), the most expensive method, i.e., the one that generally

takes the longest to generate the selection set, is LSBo. LSSm assumes the middle position

between LSBo and CNN for sentiment datasets and is, in general, the fastest method in

the topic datasets. Finally, CNN is usually at the bottom edge of the figure, mainly for

sentiment datasets while in the topic datasets it is mostly the runner-up.

In sum, given all analyzed results and overall tradeoff analyses, we consider CNN

the best IS method evaluated in this Chapter. CNN can maintain effectiveness (or pro-

duce minimal losses), reduce the training set, and improve efficiency in several datasets.

Note, however, that this result is still far from ideal, as CNN can fulfill all requirements in

only 63% of the cases. This leaves plenty of room for the development of new IS methods

specially designed for meeting all requirements in the context of ATC.

Additional Observations. In terms of effectiveness (MacroF1), we ranked the

IS methods considering a general result (Aggr. Ranking) and also separating the topic and

sentiment domains using Fractional Ranking methods (Table 3.8). Therefore, regardless of

the sub-task, we observe the superiority of CNN, LSBo, and LSSm for sentiment analysis.
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3.3.3 RQ1.3. How do IS approaches behave when applied to

neural classification methods (especially Transformers)?

While answering the preliminary question (Section 3.2), we observed that deep

learning classification methods reached the best results in 17 of the 19 considered datasets.

Next, we investigate an issue related to the impact of fine-tuning on these methods since

training data is mostly used in such architectures to fine-tune a general, pre-trained model

to the characteristics of a given dataset/task.

3.3.3.1 Is the Fine-Tuning step really necessary for Automatic Text

Classification?

IS methods reduce time because they reduce the number of documents for training.

Accordingly, training set reduction can potentially reduce the time of the fine-tuning step

(aka knowledge transfer), the most costly step for most deep learning methods. On the

other hand, there is a growing area called Zero-Shot [13] learning, where deep learning

approaches are used in an unsupervised way (without the use of fine-tuning) for a pos-

sible association of document embeddings to semantic classes. Therefore, the question

naturally arises: “What is the impact of fine-tuning? Is it really necessary for achieving

high effectiveness?”.

There have been reports in several application fields [28, 140] in which Zero-Shot

is useful and does not imply on effectiveness losses. On the other hand, while conducting

our comparative investigation we observed that Zero-Shot learning is not very effective

for the ATC. Table 3.10 has resulted from the application of a Zero-Shot learning7 using

RoBERTa’s with the previously used datasets.

Note that the application of the RoBERTa model with fine-tuning has a significant

impact on effectiveness. Compared to the ZeroShot model, fine-tuning leads to average

gains of 900%, ranging from 121% to 3141% in MacroF1. Therefore, fine-tuning is essential

in terms of effectiveness. On the other hand, the ZeroShot model has a significant impact

on the model application time (Table 3.11), as there is an additional domain transfer step.

The fine-tuned model can take between 4.5x to 105x longer when compared to the Ze-

roShot model. In short, it is clear that, although costly, fine-tuning is extremely important

to the context of ATC. Therefore, IS methods can potentially benefit a lot from the reduc-

7Code: https://shorturl.at/aipu3

https://shorturl.at/aipu3
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Dataset
ZeroShot

RoBERTa

RoBERTa

with

finetunning

MacroF1

Gains(%)
Dataset

ZeroShot

RoBERTa

RoBERTa

with

finetunning

MacroF1

Gains(%)

WebKB 10.91(0.9) 83.0(2.0) 660.77% pang movie 33.39(0.1) 89.0(0.4) 166.55%

20NG 3.46(0.1) 86.8(0.7) 2408.67% vader movie 33.48(0.3) 91.3(0.5) 172.70%

ACM 11.90(0.1) 70.3(1.4) 490.76% yelp reviews 33.54(0.4) 97.9(0.4) 191.89%

Reuters90 3.5(0.2) 41.9(2.2) 1097.14% vader nyt 27.84(0.3) 85.3(0.6) 206.39%

OHSUMED 2.4(0.4) 77.8(1.2) 3141.67% MR 33.67(0.2) 89.0(0.7) 164.33%

WOS-5736 3.11(0.7) 90.5(0.9) 2809.97% SST1 4.51(0.2) 53.8(1.3) 1092.90%

WOS-11967 11.47(1.1) 86.8(0.4) 656.76% SST2 35.46(0.2) 93.2(0.6) 162.83%

Books 8.22(0.5) 87.2(0.6) 960.83% Subj 43.81(1.3) 96.9(0.4) 121.18%

DBLP 6.63(0.4) 81.4(0.5) 1127.75% MPQA 15.0(0.1) 90.2(0.8) 501.33%

TREC 8.89(10.7) 95.5(0.5) 974.24%

Table 3.10: ZeroShot Analysis – MacroF1 Metric

Dataset
ZeroShot

RoBERTa

RoBERTa

with

finetunning

Time

Inc.
Dataset

ZeroShot

RoBERTa

RoBERTa

with

finetunning

Time

Inc.

WebKB 32.6 602.5 18.5x pang movie 13.9 681.3 49.2x

20NG 253.3 2781.8 11.0x vader movie 13.2 675.4 51.4x

ACM 67.9 3050.3 44.9x yelp reviews 7.2 760.7 105.2x

Reuters90 477.6 2156.9 4.5x vader nyt 6.2 332.0 53.2x

OHSUMED 301.0 2780.1 9.2x MR 12.4 672.4 54.1x

WOS-5736 48.7 820.2 16.8x SST1 18.2 809.6 44.4x

WOS-11967 273.8 1759.6 6.4x SST2 12.2 619.9 50.7x

Books 242.8 4412.5 18.2x Subj 12.8 708.5 55.4x

DBLP 187.6 4988.1 26.6x MPQA 12.9 676.6 52.6x

TREC 9.4 463.5 49.3x

Table 3.11: ZeroShot Analysis – Time (seconds) and SpeedUp

tion that IS methods may induce in the training sets used to fine-tune the NN methods.

As a result, we demonstrate fine-tuning classification is essential to achieve bet-

ter results. One of the motivations for our work was that several authors claim that

deep learning models need large amounts of data in the fine-tuning stage to properly

learn [103, 76, 46]. As IS methods have shown to be beneficial in several situations, we

want to further investigate this issue, focusing on Transformer Architectures that have

produced top-notch ATC results in the literature.

3.3.3.2 Does the Fine-tuning phase of DL models need a lot of data as

generally accredited in the literature or is a “right and carefully

selected” training set enough for producing high effectiveness?

We have found at least one work that shows that it is possible to fine-tune a large

NN model with fewer data in the image domain. In [27] the authors introduce the Sim-
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CLRv2 method that performs, as an intermediate step, a fine-tuning with a small fraction

of data that has class labels (few labeled examples). However, the image domain differs

from the textual one in important ways, including the very high dimensionality of tex-

tual vocabularies, the variability in the number of features that a set of documents may

contain, and the impact that noisy and ambiguous words may have on effectiveness. As

evidence of such differences, convolutional methods (CNNs) brought numerous advances

to the state-of-the-art in the image domain, but the same advances were not observed in

textual applications [149, 71]. However, the success of that particular work in reducing

the training set for NN training motivates a deeper study on the potential impact of IS

methods in the fine-tuning phase of modern Transformer architectures for ATC.

We have previously applied the IS methods to the best ATC algorithms for each

specific dataset. That is, the focus was on the IS algorithms. In this Section, we invert

the perspective and focus on Transformer architectures that present the overall best ef-

fectiveness across most datasets, applying the best IS methods (CNN, LSSm, and LSBo)

to those Transformer architectures. As before, we analyze the results in terms of the

previously described tripod constraints.

Task dataset TFIDF MF+SVM BERT XLNet RoBERTa GPT2 DistilBert AlBERT BART

T
o
p
ic

DBLP 7.5 6.0 3.0 3.0 3.0 7.5 3.0 9.0 3.0

Books 9.0 2.0 1.0 4.5 4.5 7.5 4.5 7.5 4.5

ACM 8.0 3.5 3.5 3.5 3.5 8.0 3.5 8.0 3.5

20NG 2.5 1.0 7.0 2.5 5.0 8.0 5.0 9.0 5.0

OHSUMED 8.5 8.5 3.0 3.0 3.0 6.5 3.0 6.5 3.0

Reuters90 9.0 1.0 4.5 4.5 4.5 8.0 4.5 4.5 4.5

WOS-11967 6.0 7.5 5.0 2.5 2.5 7.5 2.5 9.0 2.5

WebKB 8.5 8.5 3.5 3.5 3.5 7.0 3.5 3.5 3.5

TREC 8.5 8.5 7.0 3.0 3.0 6.0 3.0 3.0 3.0

WOS-5736 3.5 7.5 3.5 3.5 3.5 9.0 3.5 7.5 3.5

S
en
ti
m
en

t

SST1 8.5 8.5 2.5 2.5 2.5 7.0 5.5 5.5 2.5

pang movie 9.0 8.0 5.0 2.5 2.5 7.0 6.0 2.5 2.5

MR 8.0 9.0 2.5 2.5 2.5 7.0 5.5 5.5 2.5

vader movie 8.0 7.0 4.0 2.0 2.0 6.0 6.0 6.0 2.0

MPQA 9.0 8.0 2.0 5.0 2.0 7.0 5.0 5.0 2.0

Subj 9.0 8.0 3.0 3.0 3.0 7.0 3.0 6.0 3.0

SST2 8.5 8.5 4.0 4.0 1.5 7.0 6.0 4.0 1.5

yelp reviews 5.5 9.0 5.5 2.0 2.0 8.0 5.5 5.5 2.0

vader nyt 8.0 9.0 4.5 3.0 1.5 6.5 4.5 6.5 1.5

Overall Aggr. Ranking 7.6 6.8 3.9 3.2 2.9 7.2 4.4 6.0 2.9

Table 3.12: Classification Approaches - MacroF1 Fractorial Ranking Results.

To determine the best overall Transformer methods across all datasets, we generate

the MacroF1 Fractional Ranking analysis for the classification approaches. The results

presented in Table 3.12 show that, in terms of effectiveness, the classification approaches

that, on average, produce the best MacroF1 results are: RoBERTa (Aggr. Ranking 2.9),

BART (2.9) and XLNet (3.2). Note that, when looking at results presented previously

in Table 3.4, these three classifiers are exactly the ones that have the highest number of

statistical ties when compared to the best approach in each dataset.
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RoBERTa

NoSel CNN LSSm LSBo

task Dataset MacF1 MacF1 Reduction SpeedUp MacF1 Reduction SpeedUp MacF1 Reduction SpeedUp

T
o
p
ic

DBLP 81.4(0.5) ▲ 79.0(0.5) 52.4% 1.17x 80.8(0.7) 17.4% 0.87x 78.6(0.9) 72.8% 1.23x

Books 87.2(0.6) • 83.4(1.7) 32.1% 1.05x 86.5(0.6) • 8.8% 0.88x 81.5(0.7) 63.7% 1.22x

ACM 70.3(1.4) ▲ 65.4(1.4) 47.1% 1.48x 68.0(1.3) 19.0% 1.00x 63.4(1.6) 67.7% 1.37x

20NG 86.8(0.7) • 81.6(1.1) 27.9% 1.13x 86.9(0.5) • 0.5% 0.87x 85.6(0.6) 23.2% 1.00x

OHSUMED 77.8(1.2) ▲ 73.3(0.4) 45.5% 1.49x 73.8(0.5) 21.9% 1.06x 68.8(1.2) 69.8% 1.89x

Reuters90 41.9(2.2) • 41.7(3.1) • 50.7% 1.46x 41.3(2.1) • 28.4% 1.37x 41.3(2.1) • 76.9% 1.30x

WOS-11967 86.8(0.4) • 85.6(0.7) 45.4% 1.37x 86.5(0.6) • 22.1% 0.99x 85.2(0.8) 68.4% 1.89x

WebKB 83.0(2.0) ▲ 79.8(1.4) 42.9% 1.10x 78.9(2.1) 24.1% 1.02x 72.5(2.7) 71.1% 1.82x

TREC 95.5(0.5) • 94.0(1.0) • 31.3% 1.30x 95.0(0.7) • 18.4% 1.12x 95.0(1.1) • 37.8% 1.24x

WOS-5736 90.5(0.9) • 89.2(0.7) • 50.4% 1.54x 88.0(1.1) • 20.1% 1.09x 86.5(1.4) 70.9% 2.30x

S
en
ti
m
en

t

SST1 53.8(1.3) • 48.0(1.4) 18.9% 1.22x 53.4(0.9) • 5.7% 0.95x 53.2(0.9) • 7.7% 0.84x

pang movie 89.0(0.4) • 88.2(0.8) • 46.8% 1.49x 88.5(0.5) • 18.8% 1.05x 88.0(0.6) • 63.5% 1.57x

MR 89.0(0.7) • 63.6(15.4) • 46.7% 1.19x 89.0(0.6) • 3.3% 0.92x 39.3(12.3) 48.8% 1.09x

vader movie 91.3(0.5) • 90.9(0.5) • 47.2% 1.59x 90.8(0.7) • 18.1% 1.09x 90.5(0.4) • 63.3% 1.54x

MPQA 90.2(0.8) • 87.0(1.8) • 64.2% 2.18x 90.0(0.7) • 11.2% 0.86x 89.9(0.6) • 55.3% 1.33x

Subj 96.9(0.4) • 96.1(0.8) • 50.8% 1.79x 95.1(0.5) 21.1% 1.07x 95.3(0.4) 71.2% 1.98x

SST2 93.2(0.6) • 60.7(11.7) 48.4% 1.46x 92.9(0.5) • 1.9% 0.87x 93.0(0.7) • 5.8% 0.81x

yelp reviews 97.9(0.4) • 97.2(0.3) • 58.6% 2.09x 97.7(0.3) • 11.1% 1.15x 97.4(0.3) • 65.3% 2.30x

vader nyt 85.3(0.6) • 84.9(1.1) • 39.8% 1.44x 84.8(1.2) • 24.9% 1.24x 83.6(1.3) 64.6% 1.86x

Table 3.13: Effectiveness, reduction and speedup Analysis. We present for each dataset (row) the MacroF1 results of the application
of CNN, LSSm and LSBo IS approaches (columns) considering the RoBERTa classifier. Cells with value in bold and with a green
background are statistically equivalent to the MacroF1 columns with the higher value (marked as •or ▲). Furthermore, for each dataset, we
present in the cells with orange background color the results with effectiveness up to 5% worse than the higher MacF1 column, respectively.
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BART

NoSel CNN LSSm LSBo

task Dataset MacF1 MacF1 Reduction SpeedUp MacF1 Reduction SpeedUp MacF1 Reduction SpeedUp

T
o
p
ic

DBLP 81.1(0.5) • 78.7(0.7) 52.4% 1.20x 80.6(0.6) • 17.4% 0.96x 78.5(0.7) 72.8% 1.33x

Books 86.9(0.5) • 82.4(1.7) 32.1% 1.02x 86.0(0.4) • 8.8% 0.78x 80.7(0.7) 63.7% 0.96x

ACM 70.8(0.7) ▲ 66.2(1.5) 47.1% 1.48x 68.7(1.5) 19.0% 0.96x 63.7(1.1) 67.7% 1.51x

20NG 87.4(0.9) • 82.2(1.5) 27.9% 1.25x 87.1(0.9) • 0.5% 0.95x 86.3(0.9) 23.2% 1.08x

OHSUMED 77.6(0.7) ▲ 73.5(1.1) 45.5% 1.46x 74.9(0.8) 21.9% 1.10x 70.2(1.1) 69.8% 1.89x

Reuters90 42.2(2.1) • 42.2(2.0) • 50.7% 1.47x 42.3(2.5) • 28.4% 1.45x 42.3(2.5) • 76.9% 1.38x

WOS-11967 86.9(0.8) • 85.6(0.6) 45.4% 1.31x 86.5(0.9) • 22.1% 0.87x 84.9(0.6) 68.4% 1.96x

WebKB 83.0(1.7) ▲ 80.3(1.6) 42.9% 1.36x 80.1(1.8) 24.1% 1.17x 75.4(1.8) 71.1% 2.08x

TREC 95.5(0.8) • 93.6(1.3) 31.3% 1.41x 94.5(1.1) • 18.4% 1.10x 94.3(1.0) • 37.8% 1.33x

WOS-5736 89.6(1.7) • 88.7(1.4) • 50.4% 1.69x 87.6(1.0) • 20.1% 0.83x 85.8(1.2) 70.9% 2.56x

S
en
ti
m
en

t

SST1 52.8(1.0) • 46.2(1.5) 18.9% 1.13x 52.6(1.0) • 5.7% 0.86x 52.3(0.7) • 7.7% 0.80x

pang movie 88.1(0.5) • 87.3(0.6) • 46.8% 1.58x 88.0(0.6) • 18.8% 1.06x 87.3(0.6) • 63.5% 1.73x

MR 88.2(0.6) • 67.5(13.4) 46.7% 1.74x 88.3(0.4) • 3.3% 0.96x 39.0(12.1) 48.8% 1.09x

vader movie 90.4(0.6) • 89.7(0.5) • 47.2% 1.57x 89.8(0.6) • 18.1% 1.06x 89.1(0.4) 63.3% 1.62x

MPQA 90.1(0.7) • 87.5(1.5) 64.2% 2.53x 90.2(0.7) • 11.2% 0.96x 90.0(0.7) • 55.3% 1.56x

Subj 96.8(0.4) • 96.3(0.4) • 50.8% 2.28x 95.6(0.5) 21.1% 1.47x 95.7(0.6) 71.2% 2.66x

SST2 92.8(0.5) • 71.1(5.2) 48.4% 1.69x 92.4(0.5) • 1.9% 0.89x 92.7(0.5) • 5.8% 0.86x

yelp reviews 97.5(0.4) • 97.3(0.3) • 58.6% 2.48x 97.2(0.4) • 11.1% 1.25x 97.5(0.3) • 65.3% 2.26x

vader nyt 85.5(0.8) • 83.8(1.1) • 39.8% 1.50x 83.9(0.9) • 24.9% 1.19x 83.6(1.2) • 64.6% 2.09x

Table 3.14: Effectiveness, reduction and speedup Analysis. We present for each dataset (row) the MacroF1 results of the application of
CNN, LSSm and LSBo IS approaches (columns) considering the BART classifier. Cells with value in bold and with a green background
are statistically equivalent to the MacroF1 columns with the higher value (marked as •or ▲). Furthermore, for each dataset, we present
in the cells with orange background color the results with effectiveness up to 5% worse than the higher MacF1 column, respectively.
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XLNet

NoSel CNN LSSm LSBo

task Dataset MacF1 MacF1 Reduction SpeedUp MacF1 Reduction SpeedUp MacF1 Reduction SpeedUp

T
o
p
ic

DBLP 81.4(0.6) • 78.9(0.6) 52.4% 1.47x 81.1(0.6) • 17.4% 1.09x 79.1(0.6) 72.8% 1.73x

Books 87.3(0.4) • 83.4(1.4) 32.1% 1.15x 87.0(0.5) • 8.8% 0.88x 80.8(0.6) 63.7% 1.44x

ACM 69.9(0.9) ▲ 64.2(2.1) 47.1% 1.65x 67.5(1.5) 19.0% 0.97x 62.2(1.1) 67.7% 1.82x

20NG 87.4(0.8) • 82.1(1.2) 27.9% 1.14x 88.0(0.5) • 0.5% 0.94x 86.6(0.5) 23.2% 1.11x

OHSUMED 77.6(1.0) ▲ 70.9(5.9) 45.5% 1.62x 75.3(0.8) 21.9% 1.08x 70.5(0.8) 69.8% 2.14x

Reuters90 41.3(2.6) • 41.4(3.6) • 50.7% 1.19x 41.0(1.6) • 28.4% 0.69x 41.0(1.6) • 76.9% 0.67x

WOS-11967 87.0(0.7) • 85.0(1.2) • 45.4% 1.38x 86.4(0.9) • 22.1% 1.06x 84.9(0.6) 68.4% 2.20x

WebKB 81.9(2.5) • 76.5(4.9) • 42.9% 1.38x 78.5(1.6) 24.1% 1.21x 73.4(2.2) 71.1% 2.56x

TREC 94.3(1.1) • 92.4(1.1) 31.3% 1.87x 94.2(1.3) • 18.4% 1.65x 93.6(1.6) • 37.8% 2.02x

WOS-5736 90.2(0.9) ▲ 87.6(1.0) 50.4% 1.86x 87.4(0.7) 20.1% 1.08x 86.5(1.1) 70.9% 2.89x

S
en
ti
m
en

t

SST1 51.4(1.7) • 42.5(8.7) • 18.9% 1.55x 47.4(9.9) • 5.7% 1.44x 47.4(9.9) • 7.7% 0.91x

pang movie 88.2(0.6) • 87.5(0.8) • 46.8% 1.83x 88.3(0.6) • 18.8% 1.34x 87.8(0.4) • 63.5% 2.20x

MR 86.4(3.3) • 56.7(16.1) 46.7% 2.00x 88.2(1.0) • 3.3% 1.29x 38.9(12.3) 48.8% 1.72x

vader movie 90.5(0.4) • 90.4(0.8) • 47.2% 1.93x 90.9(0.8) • 18.1% 1.35x 90.1(0.5) • 63.3% 2.10x

MPQA 88.6(0.5) • 83.7(1.6) 64.2% 1.86x 88.1(0.4) • 11.2% 0.94x 87.7(0.7) • 55.3% 1.52x

Subj 96.1(0.5) • 95.8(0.9) • 50.8% 2.76x 95.3(0.3) 21.1% 1.67x 95.4(0.5) • 71.2% 3.24x

SST2 92.1(0.4) • 64.8(9.3) 48.4% 1.99x 92.6(0.5) • 1.9% 1.10x 92.8(0.6) • 5.8% 1.11x

yelp reviews 97.3(0.4) • 97.0(0.3) • 58.6% 1.81x 97.2(0.4) • 11.1% 1.12x 97.3(0.4) • 65.3% 2.28x

vader nyt 82.7(1.1) • 82.0(1.8) • 39.8% 1.46x 82.8(1.6) • 24.9% 1.29x 82.4(1.9) • 64.6% 2.34x

Table 3.15: Effectiveness, reduction and speedup Analysis. We present for each dataset (row) the MacroF1 results of the application of
CNN, LSSm and LSBo IS approaches (columns) considering the XLnet classifier. Cells with value in bold and with a green background
are statistically equivalent to the MacroF1 columns with the higher value (marked as •or ▲). Furthermore, for each dataset, we present
in the cells with orange background color the results with effectiveness up to 5% worse than the higher MacF1 column, respectively.
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Based on these results, we now proceed to analyze the results of the applica-

tion of the three best IS approaches (CNN, LSSm, and LSBo) to these three classifiers

(RoBERTa, BART, and XLNet) in terms of the tripod (effectiveness, reduction, and ef-

ficiency). Tables 3.13, 3.14 and 3.15 below, present the respective results. As expected

we can observe that the IS methods obtained fewer statistical ties than in the previous

analysis when we considered the best classifier per dataset. Considering the 5% loss, CNN

varies between 12 (BART) and 14 (RoBERTa) equivalent results. LSSm gets equivalent

scores in 18 (RoBERTa) and 19 cases (BART and XLNET) while LSBo ranges between

13 (BART) and 14 (RoBERTa and XLNet) ties. Our results also indicate that BART

and XLNet are more resilient to reductions with LSSm, obtaining no losses greater than

5% in all datasets. In sum, regardless of the classifier, LSSm obtains good effectiveness

scores, though accompanied by high costs in efficiency. Furthermore, as in the analysis

considering the best classifier per dataset, we observed that CNN obtains the best tradeoff

considering the tripod effectiveness-reduction-efficiency.

An interesting phenomenon that has not been observed in the previous analysis

is a small increase in the MacroF1 absolute value of a few cases after the IS reduction,

although with no statistical significance. This includes, for instance; (i) RoBERTa with

LSSm on 20NG, (ii) BART with both LSSm and LSBo in Reuters90, and (iii) XLNET with

LSSm in 20NG and five other sentiment datasets. As these effectiveness improvements

come together with gains in terms of reduction and time speedup, especially in Reuters90

(BART) and in the sentiment datasets for XLNet, we hypothesize that the use of IS

methods in Transformers-based Text Classifiers may reduce some noise level or at least

reduce overfitting. We will investigate this further in the future. Also, other interesting

results for the specific classifiers include:

• RoBERTa: There are 32 cases (out 57) in which the use of IS methods can maintain

statistically equivalent results in terms of MacroF1 when compared with NoSel and

with speedup gains in 23 out of these 32 cases; If we consider an acceptable loss of

5%, this changes to 43 speedup gains on 46 effectiveness equivalent to NoSel results.

• BART: LSSm and LSBo methods were able to tie with NoSel in terms of MacroF1

in 23 cases. In 12 out of these 23 cases, there were speedup gains. If we consider an

acceptable 5% loss, this result improves to 32 ties and 18 speedup gains. The aver-

age total speedup of LSSm – the best IS method for BART in terms of effectiveness

– was 1.05x (total time), with a maximum of 1.47x.

• XLNet was the classifier that most benefited from the application of IS approaches,

considering that in 6 of the 19 datasets, the use of one of the selection methods was

able to produce higher absolute MacroF1 than NoSel. Note also that in 5 of the 6

results with improved effectiveness, the application of IS methods also achieved a
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significant speedup, up to 2.28x. The use of LSSm with XLNet also produced no

losses in effectiveness higher than 5% with several speedups.

Note that the analyzed results consider the application of the IS methods to the

best classifiers. However, one question remains: “Could it be the case that IS improves the

results of other methods, perhaps to the point that they can achieve even better results

than the ones of the best classifiers?”

A way to answer this question is by performing exhaustive experimentation consid-

ering all possible combinations between IS methods and classifiers, and extremely costly

procedures. However, considering all results presented in Tables 3.13, 3.14 and 3.15, we

can see very similar behaviors, which may indicate a tendency for stability. Thus, is an

indication that the results may not change much (or at least not improve) if we experiment

with weaker classifiers and weaker IS methods.

3.3.4 Additional Reduction vs. Efficiency Analysis

The graphs in Figure 3.3 present a linear regression analysis of the correlation be-

tween the reduction and speedup results obtained by applying CNN, LSSm, and LSBo to

the input of ROBERTA, BART, and XLNet. Note that, for each reduction rate in the X-

axis obtained on each dataset, we have three associated speedups – one for each classifier.

Accordingly, we have 57 points in each graph: 19 datasets times 3 classifiers. The x-axis

shows the training set reduction rates and the achieved speedups are shown on the y-axis.

The exact values for reduction and speedup can be found in the tables 3.13, 3.14, and 3.15.

Finally, we have two versions of the graph for each IS method corresponding to two scenar-

ios: one (a) that considers the time to run the IS method in the total time for building the

model as in the previous analysis, and another (b) that does not consider this time. The

goal of version (b) is to better evaluate the relationship between speedup and reduction

for the Transformers in a scenario in which the cost of running the IS method is nonex-

istent (zero). In other words, this version captures the direct relation between reduction

and speedup for the Transformers without including any extra time imposed by the IS.

Independently of the scenario ((a) or (b)), we notice that all the lines have sublinear

behavior and with a large variance across classifiers. The selected training percentages do

not reflect linearly in the time of application of the classification model. Concentrating

on the scenario that considers the IS time in the model construction (a), we see, for

example, that when applying CNN with a reduction of approximately 50%, the speedup

is between 1.19x to 2.76x (XLNet on Reuters90 and Subj datasets, respectively). For

the application of the LSBo with a rate of 70% and 75%, the speedups are between 1.33x
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(a) Considering IS method running time (b) Only construction model time

Figure 3.3: Reduction vs SpeedUp Analysis

(BART on DBLP) to 3.24x (XLNet on Subj). In sum, our results indicate that the

speedups can assume an extensive range of reduction rate values.

Indeed, in some cases in scenario (a), the application of the IS methods may lead

to even longer classification times than the model without selection (speedup < 1.0x).

This behavior is more likely to occur when selection rates are low, for example, in the

LSSm method. This occurs due to the overhead caused by using the selection method –

in practice, we spend some time generating the selection of instances for the later stage of

training the model, but the low reduction rate leads to a time to build the model close to

no selection meaning that the additional selection time is not compensated for by model

building reduction. Finally, particularly for the Transformers large reduction rates do

not guarantee high speedups in the total model construction time. Note, for example,
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the application of the LSBo method with a reduction of approximately 65% and 75%. In

both cases, the speedup achieved was less than 1.0x, which indicates that the total time

was higher than the model without selection (NoSel).

Finally, when we compared scenarios (a) and (b) we see that there is a slight im-

provement in the speedup in all cases, especially for LBSo IS method, with a considerable

improvement. The higher improvements for LSBo in scenario (b) are due to its good

speedup-reduction tradeoff, the second best among all the analyzed IS methods (losing

only to CNN), and its higher cost when compared to CNN. If LSSo cost for the time

to construct the model is removed, LSBo becomes very competitive when compared to

CNN –look at the similarities of the graphs of these two IS methods. This analysis also

motivates the construction of cheaper IS methods.

3.3.5 Additional Analysis: Impact of IS on the class

distribution

We present in figure 3.4 the impact of applying the three best IS methods in terms

of class distribution considering five datasets. On the x-axis, we represent the classes, and

on the y-axis the number of instances. The blue bar represents the number of instances

without selection (NoSel), and the green bar represents the number of instances after

applying the IS method. Also, we have inserted the lines only to help visualize the results.

We concentrate our analysis on the best IS approaches according to the fractional

ranking presented for RQ1 (Section 3.3.1): LSSm (Fig. 3.4 - Column 1), CNN (Fig. 3.4

- Column 2), and LSBo (Fig. 3.4 - Column 3). We have chosen these five datasets for

three main reasons: (i) they are good representatives of the set of nineteen datasets we

use; (ii) they summarize well the behavior of the three IS methods; (iii) they have a low

number of classes, which helps a lot the visualization.

To start, note that the LSSm IS algorithm maintains the distribution in all cases

when comparing distributions with and without the application of the selection method. It

is possible to observe in the Figure that the LSSm method prioritizes the minority classes

– as seen in the datasets (DBLP, Books, WebKB, and TREC) – where the distributions

(with and without selection) are closer. In addition, among the three best IS methods

considered in this work, LSSm is the method with the lowest reduction, which is evidenced

in the figures. This performance in reduction helps maintain the original distribution.

This behavior also helps effectiveness since LSSm was statistically equivalent in 16 of the

19 results presented.
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Figure 3.4: The impact of Instance Selection on the class distribution

Now considering CNN, it is possible to observe in the SST-1 there was an abrupt

reduction in minority classes. The main consequence of changing the distribution, in this

case, is significant losses in terms of effectiveness (Table 7). For the other cases, it is

possible to observe that CNN maintains the distribution in general, but not in all cases.
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Such behavior, i.e., some deviation of the original distribution, can be observed in the

CNN application to the Books and DBLP datasets (especially classes 3 to 5 in this last

one). Finally, LSBo has the highest reduction rate among the top 3 IS methods (56.2%).

Notably, in the cases of DBLP and Books, LSBo tends to reduce more than LSSm, while

keeping a smoother class distribution than CNN. Furthermore, we can see that it tends to

remove (proportionately) more instances of majority classes. This behavior can be seen

in classes 1 and 9 of the Books and DBLP datasets.

3.4 Summary

We applied several IS methods to the input data of the best classifiers in each

context. Answering RQ1, our evaluation of the tripod constraints (reduction - efficiency

- effectiveness), we showed that, in some datasets, specific selection methods can reduce

the training set without loss of effectiveness and with efficiency improvements. However,

our experiments revealed that no IS method that can respect all restrictions in

all cases. Also, in some situations, the application of the IS methods can incur additional

overheads in the time to construct the model. Our results present a partial answer to the

posed question regarding the need for large training sets for performing fine-tuning. In

some cases, it is possible to use IS methods to reduce the training set, without loss of effec-

tiveness and efficiency gains – meaning that we do not always need a lot of data. Therefore,

these findings neither totally support nor completely refute our posed hypothesis that tra-

ditional IS methods are capable of simultaneously respecting all posed restrictions.

C
N
N

(P): Best overall method, achieving the best trade-off on the tripod Reduction-Effectiveness-Efficiency
(C): Limited effectiveness when applied to the largest datasets
(R): Medium-to-small topic-related data or sentiment analysis tasks

L
S
S
m (P): Achieved the best overall Effectiveness

(C): Lowest overall Efficiency when considering the three best IS approaches
(R): General tasks that cannot deal with effectiveness losses

L
S
B
o (P): Considering the three best IS methods in terms of effectiveness, achieved the best reduction rate

(C): Limited results considering effectiveness when applied to the topic-related tasks
(R): Sentiment analysis tasks that need performance and scalability

E
G
D
IS (P): Considering the IS methods in this list, achieved the best reduction rate and speed up trade-off

(C): Limited results considering effectiveness when applied to the medium-to-large topic-related task
(R): Tasks that need performance and scalability and may afford some (up to 5%) effectiveness losses

C
IS

(P): Good effectiveness results in sentiment analysis tasks
(C): Lowest overall Efficiency
(R): Not recommended for large NLP tasks due to high associated computational cost

IB
3

(P): 4th best IS method considering effectiveness
(C): Limited results considering effectiveness when applied to large topic-related tasks
(R): Medium-to-small topic-related data or sentiment tasks that can deal with a limited effectiveness loss

Table 3.16: Instance Selection Pros (P), Cons (C) and Recommendations (R).
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In Table 3.16, we provide pros (P), cons(C) and recommendations (R) for the

six best IS methods according to the Fractional Ranking (Table 3.8) applied to the ATC

context. The remaining seven methods were ineffective in the ATC context – according

to Table 3.7, they produce statistically worse results in 116 out of 133 (7 methods x 19

datasets). Particularly our focus is on NLP tasks, especially ATC ones.

Our results motivate further investigations on exploiting IS methods in the ATC

context, especially regarding new transformers. Our study concerning RQ1 also opens

space for designing new, more efficient, effective, and scalable IS methods for the current

ATC and the big data scenarios in general. To help close this gap, in the next chapter, we

introduce the E2SC framework, which is a new two-step framework that satisfies all the

constraints of the tripod and can be used in real-world situations, even with datasets con-

taining thousands of instances, with a special focus on transformer-based architectures.
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Chapter 4

An Effective, Efficient, and Scalable

Confidence-Based Instance Selection

Framework for Transformer-Based

Text Classification

In the previous chapter, we found that certain IS methods can reduce the training

set size in some datasets without sacrificing effectiveness and even improving efficiency.

However, our experiments showed that no one method was able to meet all restrictions in

all cases. Additionally, in some scenarios, using these methods increased the time it takes

to construct the model, which corresponds to a gap in the literature on methods capable

of respecting the posed restriction simultaneously.

To help close this gap, the main contribution of this chapter is the proposal of

E2SC – Effective, Efficient, and Scalable Confidence-based Instance Selection – a novel

two-step framework1 aimed at large datasets with a special focus on transformer-based

architectures, our first redundancy-oriented IS solution. E2SC is a technique that satisfies

the tripod´s constraints and is applicable in real-world scenarios, including datasets with

thousands of instances. E2SC´s overall structure can be seen in Figure 4.1.

Figure 4.1: The proposed E2SC Framework.

1To guarantee the reproducibility of our solution, all the code, the documentation of how to run it
and datasets are available on: https://github.com/waashk/e2sc-is/

https://github.com/waashk/e2sc-is/
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E2SC´s first step – Figure 4.1(a) – aims to assign a probability to each instance

being removed from the training set (α parameters). We adopt an exact KNN model

solution2 to estimate the probability of removing instances, as it is considered a cali-

brated3[110] and computationally cheap (fast) model [21]. Our first hypothesis (H1)

is that high confidence (if the model is calibrated to the correct class, known in training)

positively correlates with redundancy for the sake of building a classification model. Ac-

cordingly, we keep the hard-to-classify instances (probably located in the decision border

regions), weighted by confidence, for the next step, in which we partially remove only the

easy ones.

As the second step of our method – Figure 4.1(b) – we propose to estimate a

near-optimal reduction rate (β parameter) that does not degrade the deep model’s ef-

fectiveness by employing a validation set and a weak but fast classifier. Our second

hypothesis (H2) is that we can estimate the effectiveness behavior of a robust model

(deep learning) through the analysis and variation of selection rates in a weaker model.

For this, again, we explore KNN. More specifically, we introduce an iterative method that

statistically compares, using the validation set, the KNN model’s effectiveness without

any data reduction against the model with iterative data reduction rates. In this way,

we can estimate a reduction rate that does not affect the KNN model’s effectiveness.

Last, considering the output of these two steps together (Figure 4.1(c)), β% instances are

randomly sampled, weighted by the α distribution, to be removed from the training set.

4.1 The Proposed Framework: E2SC

Given a set of instances X = {x1, x2, ..., xM} , the proposed E2SC framework

consists of two main steps. The first step (Figure 4.1 (a)) aims at estimating a distri-

bution α(x) assigning a probability of xi being removed from the training set, due to

redundancy or lack of informativeness for the sake of constructing a classification model.

The second step (Figure 4.1 (b)) estimates the β parameter, defined as the near-optimal

dataset-specific reduction rate of training instances that does not degrade the model’s

effectiveness. Considering the output of these two steps together (Figure 4.1(c), β% in-

stances are randomly sampled, weighted by the α distribution, to be removed from the

training set. As the main objective of the IS methods is to reduce the computational cost

2We depart from the premise that the exact KNN model solution is a reasonable proxy for redundancy.
We test and confirm this premise in Sections 4.1.2.1.

3A calibrated classifier is one whose probability class predictions correlate well with the classifier´s ac-
curacy, e.g., for those instances predicted with 80% of confidence the classifiers is correct in the prediction
is roughly 80% of the cases.
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of the most expensive training step, the proposed approach has the following pre-defined

constraints: (i.) the estimated function fα must be calibrated and computationally cheap

(fast) to learn; and (ii.) the beta parameter optimization must be computationally inex-

pensive to compute and a reasonable estimation of the ideal reduction rate – the one that

removes the maximum of instances without degrading the deep model’s effectiveness.

As long as both prerequisites are maintained, the E2SC steps´ can be adapted

or configured to accommodate different requirements posed by distinct text classification

scenarios, given that it can still achieve the reduction, effectiveness and efficiency goals.

We present next a first instantiation for both steps of E2SC.

4.1.1 Fitting α Parameters

E2SC first step assigns a probability to each instance being removed from the

training set (α(x)). The first hypothesis (H1) of E2SC is that high classification con-

fidence (considering a (weak) calibrated model) positively correlates with redundancy for

the sake of building a (strong) classification model. A requirement for this hypothesis

is that the chosen weak method for this step must be calibrated (i). In the first E2SC

instantiation, we adopt as f the brute-force (exact search) k-nearest neighbor (KNN)

model to estimate the probability of removing instances. In Section 4.1.1.1, we partially

verify H1 by demonstrating that KNN is a calibrated model. The correlation of confidence

with redundancy for model construction will be indirectly captured in the experiments

in Section 4.3.1 that aim to answer our RQs. As we shall see, our experiments demon-

strate that removing high-confidence predicted instances with KNN does not negatively

affect the effectiveness of the Transformer model. Finally, as the main objective of IS

is to reduce the total application cost, in Section 4.1.1.1, we demonstrate that KNN is

computationally inexpensive for our purposes.

For now, we focus on how we fit the α parameters. The proposed method starts

by estimating the α parameters of a probability distribution over a set of distinct classes

Y = {y1, ..., yc, ..., yC} given an encoded instance x, as P (Y = yc|x) ∼ fα(x).

The output of f is probabilities p1, ..., pc, ..., pC of each class in Y , where pc cor-

responds to the degrees of confidence that f predicted for each class yc. For the KNN

model, the probability pc of an instance x is given by the ratio between the number of

nearest neighbors belonging to class c and the total number of evaluated neighbors (k).

The predicted class is ŷ = argmaxc∈{1,..,C} fα(x).

The α estimation starts partitioning the instances set into p-folds, containing train-

ing and validation splits. The method fits the parameters fα(x)
i in each fold i using the
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training split and applies the adjusted function to predict the text’s class in the validation

split, generating PR(x)
i. At the end of this step, all instances have been assigned to the yc

class with degrees of confidence pc. In addition, these training and validation partitions

are saved, enabling to perform, in the next stage of E2SC (Section 4.1.2), the iterative

statistical comparison correctly, considering the same validation sets.

Thus, considering H1, correctly-predicted instances with higher degrees of confi-

dence can be removed under the assumption that they can be considered redundant for

the strong model learning phase. On the other hand, we define the misclassified instances

as hard to classify, being kept in the training set, as

PR(x) =

P (y = ŷ|x) ŷ == y

0 otherwise
, and y is x´s real class.

Next, the α(x) parameters are obtained by normalizing PR(x). Consequently, α

can be considered a probability distribution as its sum is up to 1.0. We keep in the train-

ing set all the hard-to-classify instances, and, based on the next β parameter optimization

(reduction rate), we will partially remove only the easy instances.

4.1.1.1 Hypothesis and Requirement Verification.

The weak model to be adopted by ES2C-IS has to be: (i) calibrated; (ii) effi-

cient, since the main objective of IS is to reduce the total application cost of a robust

Transformer-based approach; and (iii) effective, enabling good confidence estimates. Next,

we will compare the adopted KNN model to some candidate weak classifiers, including

SVM, Random Forest (RF), Naive Bayes (NB), and Nearest Centroid (NC)4.

H1. Verification Is KNN a calibrated model? If the class prediction probabilities

outputted by a classifier have a high correlation with the frequency with which the clas-

sifier correctly predicts the instances belonging to that probability range, this classifier is

said to be calibrated [110]. For example, in instances predicted with 80% confidence, a

calibrated classifier is correct in roughly 80% of the cases. As our proposed framework

removes instances based on prediction confidence, it is of paramount importance that the

adopted classifier be calibrated. We present in Figure 4.2, for the KNN classifier and three

datasets used in our experiments (see Section 3.1.1), the distribution between prediction

probability ranges (x-axis) and hit-ratio (i.e., correct predictions) (y-axis). It is possible

to observe that the KNN fulfills the premise of being a calibrated classifier for all cases.

Results with other datasets not shown for space reasons are similar.

4For those classifiers, we adopted the same procedures and hyperparameters as in [41].
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Figure 4.2: Number of instances assigned to each specific range (blue) and the number of
correct-predicted instances (green).

To confirm this result, we also analyze the behavior of the weak classifiers using

the Brier Score (BS) [11], a scoring rule applied to measure the accuracy of probabilistic

predictions, thus, a proper metric to estimate the model calibration. According to [11],

this metric is defined as

BS =
1

n

n∑
i=1

C∑
c=1

(P (Y = yc|xi)− oci)
2

where oci is a binary indicator setted to 1 if yc is xi’ real class, 0 otherwise. BS ranges from

0 to 2 – the closer to zero, the better, achieving more calibrated probability estimations.

The obtained BS scores for each candidate weak classifier were: KNN=0.4, SVM=0.7,

RF=0.5, NB=0.5, and NC=0.8. Based on these, KNN is the most calibrated classifier

among the considered (weak) ones.

Requirement Verification. Is KNN an efficient model?

As mentioned earlier, the weak model to be adopted by our framework has to be:

(i) calibrated; (ii) efficient, since the main objective of IS is to reduce the total application

cost of a robust Transformer-based approach; and (iii) effective, enabling good confidence

estimates. Achieving these three (potentially conflicting) requirements at the same time

is hard, so we hope to choose the classifier with the best tradeoff among them. Table 4.1

presents weak classifier candidates applied to some of the datasets we used in our exper-

iments5, with their respective results regarding the two remaining aspects: effectiveness

and total time.

SVM and RF are the most effective classifiers but have the highest cost (which

is consistent with previous works in the literature [31]). When compared to KNN, these

strategies are between 19x to 163x slower. Although NB and NC are notably faster than

KNN (between 2x and 127x), they have the lowest effectiveness. In the end, KNN is the

classifier with the best tradeoff effectiveness-efficiency.
5Results with other datasets not shown for space reasons are similar.
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KNN SVM RF NB NC
dataset Macro-F1 Time (s) Macro-F1 Time (s) Macro-F1 Time (s) Macro-F1 Time (s) Macro-F1 Time (s)
Books 81.1(0.5) 157.01 84.1(0.4) 5098.1 74.4(0.5) 3830.8 73.3(0.6) 1.86 62.7(0.7) 1.23
20NG 80.4(0.5) 54.46 89.1(0.7) 2114.8 85.9(0.5) 4615.4 77.4(0.5) 3.44 68.3(0.8) 1.44
ACM 61.3(1.4) 73.86 68.0(0.7) 1434.2 61.7(1.2) 4753.8 40.7(0.8) 3.38 50.5(1.6) 1.11
Twitter 51.2(3.9) 3.04 63.4(1.8) 107.45 38.8(0.6) 497.3 31.4(0.7) 0.40 46.1(1.0) 1.08

Table 4.1: Effectiveness and Efficiency of Weak-Classifiers.

4.1.2 Optimizing the β Parameter

At the end of the first step, all instances have been assigned with an α(x) value.

The second step aims at finding the optimal β value, defined as the proportion of in-

stances to remove without degrading the fα(x) model effectiveness. Our second hy-

pothesis (H2) is that we can estimate the effectiveness of a transformer-based model

(robust model) through the behavior of the KNN (weak) model by analyzing its selection

rate variation.This hypothesis is experimentally verified below (Section 4.1.2.1).

For now, we focus on how we estimate the β parameter. We start by defining β

with an initial value β(0) and simulate the removal of the corresponding proportion from

the training set on each fold weighted by α(x). We then re-estimate fα(x
(β)) on the short-

est training split and measure its effectiveness on the validation split. We then leverage

a statistical test (t-test) to compare the effectiveness of fα(x) and fα(x
(β)). If they are

equivalent, we increment β as follows: β(i+1) = β(i) + δ. Otherwise, we have already

reached the optimal value equal to β(i). We repeat this process while the model trained

with a fraction of instances remains statistically equivalent to the model trained with the

complete instances set. Given that the idea is to iterate as long as it is equivalent, the

chosen fα(x) model must be efficient and reliable to result in an effective cost reduction

of the fine-tuning of a robust model.

4.1.2.1 H2 Verification. Can we estimate the effectiveness behavior of a

robust model through the behavior of the KNN model?

We verify whether KNN can be used as a weak classifier for this purpose. For this,

we generated the correlation between the effectiveness (Macro-F1) of the best classifier
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(Transformer) per dataset (Table 4.4) and the effectiveness of KNN. Details of the exper-

imental setup are given in Section 4.2. This result is shown in Figure 4.3. It is possible

to visually grasp a very high correlation between KNN and the best Transformer models.

The Person’s correlation coefficient between the KNN and the best model per dataset is

r = 0.84.
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Figure 4.3: Correlation between KNN and Transformers models.

4.1.3 Time Complexity

E2SC complexity is related to the KNN (O(N2), where N is the number of in-

stances). In step 1, KNN is applied p times, where p is the number of training-validation

partitions. Since p is constant and p << N , it is asymptotically dominated by N . In step

2, we run the KNN iteratively to achieve the reduction optimization. Considering both

steps, the KNN is applied at most p× (1
δ
) times6. In practice, p

δ
is also << N . Therefore,

E2SC complexity is O(N2)).

4.1.4 Model Novelty and Main Contributions

Similarly to IB3 [2], which also belongs to the hybrid category (Section 2.3), E2SC

chooses the instances that do not negatively affect the model construction if removed,

based on whether an auxiliary model classifies them correctly or not. Differently from

6As defined in Section 4.4, in our experiments, we fixed the maximum value for p
δ ratio as 100, but

it is usually much smaller than this in practice.
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IB3, E2SC does not remove the misclassified instances but instead assigns them as hard-

to-classify, diminishing their probability of removal from the training for a second stage.

In fact, for each correctly-predicted instance, our proposal assigns the probability to be

removed proportionally to the KNN confidence prediction. Besides, we propose a near-

optimal reduction rate through iterative processes or heuristic-based methods to avoid

negatively impacting the deep model’s effectiveness. E2SC achieves higher effectiveness

at a lower cost (total time) than the current SOTA, as our experiments shall demonstrate.

4.2 Experimental Setup

The experimental setup employed in this chapter closely resembles the one utilized

in the previous chapter (Sec 3.1). Thus, we will present it concisely yet comprehensively,

emphasizing the incremental and particular modifications implemented in this chapter.

Datasets In addition to the datasets present in Table 3.1, we included the topic clas-

sification Twitter [4] dataset, in order to study the IS methods’ behavior in a naturally-

noisier dataset. Also, to demonstrate the flexibility and scalability of E2SC in big data

scenarios, we included in our experimentation three new specific datasets with thousands

of documents (ranging from 127K to 860K) and different levels of skewness. Table 4.2

shows their statistics.

Dataset Size Dim. # Classes Density Skewness

Twitter 6,997 8,135 6 28 Imbalanced
AGNews 127,600 39,837 4 37 Balanced
Yelp 2013 335,018 62,964 6 152 Imbalanced
MEDLINE 860,424 125,981 7 77 Extremely Imbalanced

Table 4.2: New Datasets Statistics

Data Representation and Preprocessing The TFIDF representation is input to

all IS methods, including our proposed method. Before creating the TFIDF matrix, we

removed stopwords and kept features appearing in at least two documents. We normal-

ized the TF-IDF product result using the L2-norm. In practice, we first construct the

TFIDF matrix representation of the documents for the IS stage, and then, we use the

corresponding raw document chosen as input for the Transformers classifiers.
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Text Classification Methods As mentioned before, our objective in this Chapter is

to study and compare our proposed method behavior against the SOTA IS techniques

in the context of the recently proposed classification approaches, most notably Trans-

former architectures. Indeed, our ATC comparative investigation conducted in the

previous Chapter (Section 3.2) revealed that considering statistical ties the best classi-

fiers were constituted by a Transformer-based method in almost all cases (specifically in

17 out of 19 datasets). In this way, in the next sections, we will consider the best six

transformers-based ATC methods from the obtained results, namely: BERT [44],

RoBERTa [85], DistilBERT [118], BART [78], AlBERT [73], and XLNet [144].

Given a large number of hyperparameters to be tuned, performing a grid search

with cross-validation is not feasible for all of them. As a result, to determine the optimum

hyperparameter, we applied the same methodology from the previous Chapter. Therefore,

we fixed the initial learning rate as 5e− 5, the max number of epochs as 20, and 5 epochs

as patience. Finally, we perform a grid search on max len (150 and 256) and batch size

(16 and 32) since these specified values directly impact efficiency and effectiveness.

dataset RoBERTa BERT BART XLNet DistilBERT AlBERT

To
pi

c

DBLP 81.4(0.5) 81.7(0.5) 81.1(0.5) 81.4(0.6) 81.0(0.6) 77.3(1.0)
Books 87.2(0.6) 89.5(0.2) 86.9(0.5) 87.3(0.4) 87.5(0.5) 84.6(0.8)
ACM 70.3(1.4) 71.8(1.0) 70.8(0.7) 69.9(0.9) 70.1(1.0) 66.2(1.9)
20NG 86.8(0.7) 85.4(0.5) 87.4(0.9) 87.4(0.8) 86.7(0.6) 76.9(1.2)
OHSUMED 77.8(1.2) 76.4(1.2) 77.6(0.7) 77.6(1.0) 76.2(0.7) 66.1(4.8)
Reuters90 41.9(2.2) 40.2(2.8) 42.2(2.1) 41.3(2.6) 40.7(2.5) 41.0(2.6)
WOS-11967 86.8(0.4) 85.5(0.7) 86.9(0.8) 87.0(0.7) 86.0(0.7) 76.8(1.1)
WebKB 83.0(2.0) 83.2(2.1) 83.0(1.7) 81.9(2.5) 82.3(2.1) 80.3(1.4)
Twitter 78.4(1.8) 64.5(1.9) 79.0(2.1) 76.4(2.1) 74.4(2.2) 64.8(2.1)
TREC 95.5(0.5) 87.6(1.4) 95.5(0.8) 94.3(1.1) 95.5(1.1) 93.5(1.4)
WOS-5736 90.5(0.9) 89.7(1.3) 89.6(1.7) 90.2(0.9) 89.2(0.9) 86.7(1.3)

Se
nt

im
en

t

SST1 53.8(1.3) 51.6(1.2) 52.8(1.0) 51.4(1.7) 48.9(1.1) 49.2(1.2)
pang_movie 89.0(0.4) 87.4(0.4) 88.1(0.5) 88.2(0.6) 85.2(0.6) 82.9(4.2)
Movie Review 89.0(0.7) 87.7(0.5) 88.2(0.6) 86.4(3.3) 85.2(1.1) 84.9(1.2)
vader_movie 91.3(0.5) 88.2(0.7) 90.4(0.6) 90.5(0.4) 86.6(0.7) 85.4(1.6)
MPQA 90.2(0.8) 89.1(0.7) 90.1(0.7) 88.6(0.5) 88.5(0.6) 87.9(0.6)
Subj 96.9(0.4) 97.0(0.3) 96.8(0.4) 96.1(0.5) 96.0(0.4) 95.5(0.7)
SST2 93.2(0.6) 91.5(0.6) 92.8(0.5) 92.1(0.4) 89.6(0.5) 88.6(2.1)
yelp_reviews 97.9(0.4) 95.6(0.6) 97.5(0.4) 97.3(0.4) 95.6(0.6) 93.9(0.9)

La
rg

e AGNews 94.2(0.2) 93.9(0.2) 93.9(0.2) 94.0(0.1) 94.0(0.1) 90.7(0.4)
Yelp_2013 64.4(0.6) 63.6(0.4) 63.8(0.5) 63.0(0.5) 62.3(0.2) 57.2(0.7)
MEDLINE 81.8(0.6) 75.8(0.8) 82.2(0.2) 60.3(0.5) 82.1(0.5) 72.3(3.6)

Table 4.3: Best ATC Approach by Dataset. Results regarding the evaluation metric
MacroF1.

We aim to apply the IS methods in the best possible scenario (top-best-ATC-

method) for each of the 22 considered datasets. As same as before, we define as the best

approach (by dataset), the one with the highest effectiveness (MacroF1) among all. We

comprehensively and scientifically soundly compared all the aforementioned transformers-
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based approaches. This result can be seen in Table 4.3, where the green background

corresponds to the best ATC method for each respective dataset. The summary of results

of the best approaches by dataset is shown in Table 4.4.

Task Method Datasets

Topic

RoBERTa OHSUMED TREC WOS-5736 AGNews

BERT DBLP Books ACM WebKB

BART Reuters90 Twitter MEDLINE

XLNet 20NG WOS-11967

Sentiment
RoBERTa

SST1 pang movie MR vader movie

MPQA SST2 yelp reviews Yelp 2013

BERT Subj

Table 4.4: Summary:Best ATC Approach by Dataset

Instance Selection Methods In this chapter, we consider as baselines the best six

instance selection methods from the previous chapter (described in Table 3.16), namely:

Condensed Nearest Neighbor (CNN); Instance Based 3 (IB3); Local Set-based Smoother

(LSSm); Local Set Border Selector (LSBo); Enhanced Global Density-based Instance Se-

lection (EGDIS); and Curious Instance Selection (CIS). All parameters for the Instance

Selection methods were defined with grid-search, using cross-validation in the training

set. Table 3.3 shows the range of parameter values for each IS method we evaluate. The

best parameter in each range is marked in bold.

Metrics and Experimental Protocol As same as before, all experiments were exe-

cuted on an Intel Core i7-5820K with 6-Core and 12-Threads, running at 3.30GHz, 64Gb

RAM, and a GeForce GTX TITAN X (12GB) and Ubuntu 19.04. We evaluated the clas-

sification effectiveness using Macro Averaged F1 (MacroF1)[127] due to skewness in the

datasets. We employed the paired t-test with a 95% confidence level to compare the av-

erage outcomes from our cross-validation experiments. Finally, we applied the Bonferroni

correction [64] to account for multiple tests. We consider reduction mean by defined as

R =
∑k

i=0
|Ti|−|Si|

|Ti|
k

, where T is the original training set, and S is the solution set containing

the selected instances by the IS method being evaluated. Last, in order to analyze the

cost-effectiveness tradeoff, we also evaluate each method’s cost in terms of the total time

required to build the model. The Speedup is calculated as S = Two

Tw
, where Tw is the total

time spent on model construction using the IS approach, and Two is the total time spent

on execution without the IS phase.
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4.3 Experimental Results - Analyses

In this section, we present the results of applying traditional IS methods and our

first proposed framework in the context of ATC regarding the RQ2: Can a novel instance

selection method focused on redundancy removal overcome the limitations of existing IS

methods to achieve the tripod restrictions in the ATC scenario?

4.3.1 Is E2SC capable of reducing the training set while

keeping classifier effectiveness for each investigated

scenario (dataset)?

In these experiments, we consider the premise that the construction time of a

deep-learning model is fundamentally related to the amount of training data [36]. In

Table 4.5, we present the results regarding the average reduction rate achieved by each

selection method. The darker a cell, the larger the reduction achieved by the correspond-

ing method in the respective dataset.

task dataset E2SC CNN LSSm LSBo EGDIS CIS IB3

To
pi
c

DBLP 45.0% 52.4% 17.4% 72.8% 62.0% 82.0% 40.0%
Books 14.0% 32.1% 8.8% 63.7% 62.0% 80.0% 15.0%
ACM 20.0% 47.1% 19.0% 67.7% 55.0% 46.0% 56.0%
20NG 21.0% 27.9% 0.5% 23.2% 68.0% 50.0% 5.0%

OHSUMED 20.0% 45.5% 21.9% 69.8% 57.0% 80.0% 53.0%
Reuters90 35.0% 50.7% 28.4% 76.9% 54.0% 67.0% 1.0%
WOS-11967 50.0% 45.4% 22.1% 68.4% 57.0% 77.0% 54.0%
WebKB 42.0% 42.9% 24.1% 71.1% 53.0% 57.0% 52.0%
Twitter 35.0% 51.0% 18.0% 70.0% 59.0% 77.0% 60.0%
TREC 11.0% 31.3% 18.4% 37.8% 39.0% 22.0% 41.0%

WOS-5736 50.0% 50.4% 20.1% 70.9% 62.0% 69.0% 59.0%

Se
nt
im
en
t

SST1 10.0% 18.9% 5.7% 7.7% 20.0% 60.0% 31.0%
pang_movie 10.0% 46.8% 18.8% 63.5% 63.0% 77.0% 66.0%

MR 10.0% 46.7% 3.3% 48.8% 63.0% 58.0% 67.0%
vader_movie 15.0% 47.2% 18.2% 63.3% 63.0% 75.0% 67.0%

MPQA 31.0% 64.2% 11.2% 55.3% 45.0% 19.0% 48.0%
Subj 18.0% 50.8% 21.1% 71.2% 73.0% 51.0% 73.0%
SST2 15.0% 48.4% 1.9% 5.8% 64.0% 55.0% 68.0%

yelp_reviews 60.0% 58.6% 11.1% 65.3% 77.0% 60.0% 69.0%
Average 26.9% 45.2% 15.3% 56.5% 57.7% 61.2% 48.7%

Table 4.5: Percentage of reduction of the training set size.
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According to the green scale, CIS, EGDIS, LSBo, and IB3 have the highest re-

duction rates: on average, 61.2%, 57.7%, 56.5%, and, 48.7%, respectively. The highest

reduction rate is for CIS applied to DBLP (82.0%). The lowest reduction rates are ob-

tained by LSSM (on average 15.3%) followed by E2SC (26.9%). Thus, considering only

the reduction criterion, the first four algorithms stand out. However, the impact on the

effectiveness is what, in fact, matters. As we shall see, there is a significant negative

impact of the most expressive reductions on effectiveness. In any case, these results show

that all strategies can reduce the training set size.

The application of the IS methods to the best classifiers in each dataset (Table 4.4)

is seen in Table 4.6. The NoSel column corresponds to the results with no training set

reduction. We observe in Table 4.6 that E2SC is the method that has more statistical

ties – 18 datasets (out of 19) – compared to the classification using the complete training

set: 10 (out of 11) topic datasets and all sentiment ones. The second best IS approach is

LSSm according to this criterion, which was able to maintain the effectiveness levels in 16

cases, followed by CNN – statistically equivalent results in 11 of 19 datasets. Last, CIS,

EGDIS, and LSBo (methods with the highest reduction rates) did not perform well, being

only able to tie with NoSel in a maximum of 9 different datasets. This demonstrates that

excessive reduction is usually detrimental to the Transformer´s effectiveness.

dataset NoSel E2SC CNN LSSm LSBo EGDIS CIS IB3

T
o
p
ic

DBLP 81.7(0.5) 79.9(0.6) 79.1(0.8) 81.1(0.8) 79.1(0.6) 76.6(0.8) 74.0(1.3) 79.5(0.5)

Books 89.5(0.2) 89.0(0.3) 85.9(1.5) 88.8(0.5) 84.0(0.5) 84.1(0.6) 80.3(0.5) 72.4(0.4)

ACM 71.8(1.0) 70.3(1.4) 67.3(0.8) 69.6(1.3) 63.8(1.5) 65.7(1.1) 68.5(1.0) 66.6(0.6)

20NG 87.4(0.8) 86.3(0.7) 82.1(1.2) 88.0(0.5) 86.6(0.5) 79.6(0.4) 81.4(0.9) 82.0(0.4)

OHSUMED 77.8(1.2) 76.1(1.3) 73.3(0.4) 73.8(0.5) 68.8(1.2) 67.6(3.3) 61.2(2.0) 71.2(2.0)

Reuters90 42.2(2.1) 41.8(2.1) 42.2(2.0) 41.2(2.1) 39.8(2.0) 42.4(2.6) 24.1(7.1) 42.3(2.0)

WOS-11967 87.0(0.7) 85.1(0.7) 85.0(1.2) 86.4(0.9) 84.9(0.6) 84.3(0.9) 66.1(4.4) 84.7(0.8)

WebKB 83.2(2.1) 80.9(1.5) 81.9(1.6) 80.6(1.8) 76.2(2.1) 80.5(1.4) 80.5(1.9) 80.8(1.8)

Twitter 79.0(2.1) 77.6(2.1) 77.0(2.3) 75.3(1.9) 75.9(1.6) 76.8(2.2) 73.4(1.6) 76.9(1.9)

TREC 95.5(0.5) 95.3(1.3) 94.0(1.0) 95.0(0.7) 95.0(1.1) 92.5(3.2) 92.4(0.4) 93.8(1.3)

WOS-5736 90.5(0.9) 89.0(1.0) 89.2(0.7) 88.0(1.1) 86.5(1.4) 88.4(1.3) 55.4(9.9) 88.4(1.0)

S
en
ti
m
en

t

SST1 53.8(1.3) 52.8(0.7) 48.0(1.4) 53.4(0.9) 53.2(0.9) 53.4(1.0) 52.2(0.9) 53.3(1.0)

pang movie 89.0(0.4) 88.5(0.6) 88.2(0.8) 88.5(0.5) 88.0(0.6) 86.8(0.8) 86.9(0.5) 87.1(0.6)

MR 89.0(0.7) 88.6(0.5) 63.6(15.4) 89.0(0.6) 39.3(12.3) 86.5(1.0) 88.0(0.6) 87.3(0.8)

vader movie 91.3(0.5) 91.1(0.7) 90.9(0.5) 90.8(0.7) 90.5(0.4) 89.9(0.6) 89.1(0.8) 91.3(0.7)

MPQA 90.2(0.8) 89.2(0.9) 87.0(1.8) 90.0(0.7) 89.9(0.6) 87.9(0.6) 90.0(0.7) 88.7(0.7)

Subj 97.0(0.3) 96.8(0.3) 96.4(0.5) 95.4(0.7) 95.6(0.5) 96.2(0.4) 96.7(0.4) 96.2(0.5)

SST2 93.2(0.6) 93.1(0.4) 60.7(11.7) 92.9(0.5) 93.0(0.7) 91.7(0.7) 92.0(0.8) 92.0(0.8)

yelp reviews 97.9(0.4) 97.1(0.4) 97.2(0.3) 97.7(0.3) 97.4(0.3) 96.8(0.9) 97.3(0.4) 97.0(0.5)

Table 4.6: Macro-F1 - IS approaches (columns) in each dataset (rows) considering the best
classifier (Table 3.5). Cells in bold and green background are statistically equivalent to no
instance selection (NoSel).

In sum, both experiments indicate an partial affirmative answer for RQ2 – E2SC

is capable of reducing the training set while maintaining effectiveness in the vast majority

of the cases, achieving the best reduction-effectiveness tradeoff among all methods.
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4.3.2 What is the impact of applying E2SC in the text

classification models’ total construction time?

Selecting only the most representative instances should, intuitively, reduce model

construction time. By answering the previous question, we demonstrated that E2SC re-

duced the training set while maintaining effectiveness. However, adding an IS extra step

during the model’s pre-construction may cause some time overhead. Indeed, applying an

IS method, in some cases, may end up costing even more than building the model with

all the data, if the IS step is not cheap enough.

task dataset E2SC CNN LSSm LSBo EGDIS CIS IB3

To
pi
c

DBLP 1.26 1.10 0.83 1.11 1.83 0.10 0.68
Books 1.02 1.04 0.80 1.09 1.91 0.25 0.61
ACM 1.11 1.44 0.94 1.35 1.94 0.46 1.12
20NG 1.17 1.35 1.04 1.21 2.49 1.15 0.83

OHSUMED 1.25 1.49 1.06 1.89 1.58 0.39 1.38
Reuters90 1.35 1.62 1.22 2.49 1.93 0.96 0.82
WOS-11967 1.56 1.38 1.06 2.20 2.11 0.87 1.56
WebKB 1.52 1.39 1.09 2.36 1.63 0.75 1.37
Twitter 1.27 1.67 0.98 1.89 1.93 0.45 1.66
TREC 1.07 1.30 1.12 1.24 1.31 0.21 1.23

WOS-5736 1.58 1.54 1.09 2.30 2.08 1.33 1.78

Se
nt
im
en
t

SST1 1.09 1.22 0.95 0.84 1.21 0.21 0.89
pang_movie 1.02 1.49 1.05 1.57 2.13 0.53 1.55

MR 1.03 1.19 0.92 1.09 2.03 0.28 1.53
vader_movie 1.06 1.59 1.09 1.54 2.12 0.53 0.89

MPQA 1.19 2.18 0.86 1.33 1.60 0.07 0.85
Subj 1.14 1.63 1.07 1.72 2.90 0.52 1.87
SST2 1.06 1.46 0.87 0.81 2.21 0.31 1.80

yelp_reviews 2.04 2.09 1.15 2.30 3.13 1.45 2.84
Average 1.25 1.48 1.01 1.60 2.00 0.57 1.33

Table 4.7: SpeedUp on Total Application Cost of the IS Methods applied to the best ATC
approach in each dataset.

We consider the total cost as: preprocessing + IS application + training time

to build the model. As such, each IS strategy impacts the application time differently.

Therefore, for IS methods to be attractive, they must provide efficiency improvements. In

Table 4.7, we assess the impact of reducing the training set and if applying IS does com-

pensate in the end for model building. In other words, we compare the Speedups (Sec. 4.2)

of each IS approach using the respective (best) classifier for each dataset. We have a color

scale for each dataset (row): the greener, the higher speedup; the redder, the higher the

computational cost (average execution time) compared to NoSel.
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As seen in Table 4.6, E2SC achieved excellent effectiveness results and produced

attractive training set reductions (on average 26.9%). As we can visually grasp, E2SC

also achieved satisfactory overall speedup improvements (predominantly light green). The

average speed-up for our proposed approach is 1.25 (varying between 1.02 and 2.04),

producing time improvements in all scenarios.

CNN has an average speedup of 1.48 – higher than E2SC. However, considering

all tripod requirements simultaneously (effectiveness-reduction-efficiency), CNN achieved

satisfactory results in just 11 datasets. LSSm is the second most costly method (pre-

dominantly light green with several red cells). Its low reduction rate, added to its high

computational cost, makes the process as a whole not justifiable, given its effectiveness

losses. The average speed-up for this approach is 1.01. The effectiveness losses of EGDIS

(11 datasets), LSBo (10), and IB3 (11) also make them poor choices, despite the good

speedups. Overall, E2SC achieved the best tradeoff among all methods, considering all

the tripod requirements.

4.3.3 How flexible is the E2SC framework to adjust to

different scalability application/task requirements?

Traditional IS strategies do not scale for the big data scenario [36], i.e.,

datasets with more than 100K instances [150]. In this section, we investigate whether

our solution can overcome this barrier and, if not, whether E2SC is flexible enough to

be adapted to deal with the challenges posed by the task. In other words, we want to

demonstrate that proposal’s steps can be modified to accommodate different requirements

posed by distinct scenarios, mainly those associated with big data.

4.3.3.1 E2SC Framework Instantiation.

Preliminary experiments confirmed that the previously proposed solution did not

scale to the new scenarios due to (i) time and (ii) memory consumption restrictions. Time

consumption (i) is related to the cost of the iterative near-optimum reduction rate search

process. For instance, considering AGNews only, our first instantiation took to select the

instances approximately the same time to train the best Transformer with the complete

training (no selection). In others words, applying IS would not be viable. The memory



4.3. Experimental Results - Analyses 91

consumption problem (ii) is related to the adoption of the exact KNN solution in the first

step of the framework. For instance, according to estimations, considering the largest

dataset present in this work (MEDLINE 860K), finding the exact KNN solution would

require approximately 2TB of RAM. Thus, to enable the application of our framework in

large datasets, we propose two main modifications to our framework.

Modification 1 (M1): Heuristic-Based β Parameter

The first problem is the time spent selecting the instances when a large amount of

labeled data is available. Although KNN is relatively computationally cheap, iterating it

several times to obtain the optimal beta value can be expensive in large collections – e.g.,

CIS baseline is based on a weak model (KMeans), but its cost is notoriously high due to

a large number of iterations over its weak learner.

Therefore, we propose to modify E2SC´s second step, optimizing the parameter β

using some heuristics based on the statistical properties of the input dataset. The heuris-

tics comprise two rules. First, we extract two properties of each dataset: document density

and a binary feature indicating whether the document class distribution is balanced or

not. These heuristics are based on general observations and lessons learned

from the experimental results obtained with the small-to-medium datasets.

First, we observed that: (1) in general, high skewness is detrimental to effectiveness and

confidence estimates [43], meaning that we should be more conservative in the reductions

for these cases, especially not to harm the smaller classes, whose instances may have lower

confidence. We observed that the obtained reduction rate by the automatic iteration in

these imbalanced datasets (9 out of 19) was, on average, 28.1%. We consider 25% a conser-

vative approach based on the mean of the results for these datasets (28.1% for imbalanced

and 26.9% for all datasets) and the median (31% for this subset and 20% for all datasets).

Second, in balanced datasets, another issue that may affect the effectiveness and

induce low confidence in some instances is the lack of data, usually materialized as short

documents in the textual datasets. Indeed, we observed that in datasets with less than

100 words per document (low density) – 7 (out of 19), our iterative approach achieved

low reductions (between 10% to 21%). In the remaining three balanced and high-density

datasets, our approach was able to reduce the data, on average, by half (53%). Based on

such empirical evidence, we propose the following rules, which are computed very fast:

Rule 1: if the documents class distribution is imbalanced or extremely imbalanced, then

reduce by 25%.
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Rule 2: if the documents class distribution is balanced and the average density is low

(less than 100), the fixed reduction is 25%. Otherwise, the reduction is 50%.

Modification 2 (M2): Approximated α Parameters

To further scale the application of KNN within our framework, we propose to ex-

ploit an approximate KNN solution, more specifically, a strategy that searches for nearest

neighbors through the fast approximate nearest neighbor search: HNSW[93], a logarith-

mic complexity solution, implemented in the nmslib python package (version 2.1.1). The

main question is whether this solution produces (i) good classification results and (ii)

good probability estimates.

Macro-F1 Time (s)
Exact Approximate Exact Approximate

To
pi

c DBLP 77.09(0.69) 76.64(0.66) 44.66 8.12
Reuters90 31.45(2.10) 30.83(2.15) 8.73 1.29
WOS-11967 72.68(0.84) 72.38(1.07) 6.01 2.82

Se
nt

. pang_movie 73.29(1.08) 72.75(1.42) 3.81 0.95
vader_movie 74.32(0.93) 73.45(1.34) 3.67 0.95
yelp_reviews 83.65(1.41) 82.76(1.33) 1.20 0.96

Table 4.8: Comparison Exact vs. Approximate KNN

Table 4.8 shows the results of experiments comparing the Macro-F1 using the exact

and the approximate KNN (both adopting k = 10). In all cases (results are similar in all

datasets, not shown due to space constraints), both solutions are statistically equivalent

in MacroF1. On the other hand, the approximate solution is between 1.25x to 6.75x faster

than the exact one. The second issue, i.e., whether the probabilities estimates are good

enough for our goals, will we be assessed indirectly in the experiments described next.

4.3.3.2 Second Instantiation Complexity

Considering M2, the complexity of the first step is reduced to O(log(N)). Further-

more, adopting M1, the second step becomes constant (O(1)). Therefore, considering both

modifications, we achieve a logarithmic solution (O(log(N))), feasible for large datasets.
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AGNews

NoSel
E2SC#2

β=20% β=25% β=35% β=50% β=65% β=75% β=80% β=85%
Macro-F1 94.2(0.2) 94.0(0.2) 93.9(0.2) 93.7(0.2) 93.2(0.1) 92.6(0.2) 91.3(0.4) 89.6(0.2) 86.6(0.8)
speedUp - 1.627x 1.708x 2.047x 2.502x 3.610x 4.761x 6.011x 7.476x

yelp_2013

NoSel
E2SC#2

β=20% β=25% β=30% β=35% β=40%
Macro-F1 64.4(0.6) 64.2(0.4) 63.8(0.4) 63.3(0.1) 63.0(0.5) 62.4(0.6)
speedUp - 1.285x 1.301x 1.445x 1.551x 1.595x

MEDLINE

NoSel
E2SC#2

β=20% β=25% β=35% β=50% β=65%
Macro-F1 82.2(0.2) 81.7(0.3) 81.6(0.3) 81.2(0.6) 80.2(0.5) 77.9(0.7)
speedUp - 1.452x 1.548x 1.781x 2.033x 3.304x

Table 4.9: Reduction-Effectiveness-Speedup Results for E2SC in Large Datasets Scenarios

4.3.3.3 Experimental Results

As in the previous experiments, the E2SC was applied to the best classification

approach in each dataset (see Table 4.4)). In Table 4.9, we present the reduction, effec-

tiveness and speedup results. We also present the β reduction rate variation. As before,

the NoSel column corresponds to the results with no training set reduction, and bold val-

ues with green cells correspond to statistically equivalent results to the classifier trained

without any selection (NoSel). In Table 4.9, in addition to considering a binary scenario

(“statistical tie - (win) vs. loss”), we included a third scenario for analysis, which includes

an “acceptable loss”, corresponding to a scenario in which a potential reduction in train-

ing set size would compensate for the loss in effectiveness. For the sake of simplicity, here

we considered a general, arbitrary rate of 5% of loss, which could be different for each

dataset and situation [36].

Applying the proposed heuristics rules (Step 2), note that for the 3 datasets, the

suggested removal rate is fixed in 25%. For this reduction rate, the second proposed

instantiation – E2SC#2 – obtained results statistically equivalent to NoSel in all cases

while producing speedups ranging from 1.301x (yelp 2013) up to 1.708x (AGNews).

Note that our method has a fixed beta based on the proposed heuristic (25%), but

we evaluate other reduction ratios for the sake of analysis. This analysis demonstrates

that the proposed Heuristic-Based β Parameter, despite effective, can be considered some-

what conservative since there is room for further reductions in some datasets without any

effectiveness losses, e.g., yelp 2013 and MEDLINE, to up to 40% and 35% respectively,

with further speedups. In AGNews, our heuristics induced the maximum reduction pos-
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sible without any loss. In the future, we will investigate efficient ways to improve our

heuristics toward achieving such potential.

Last, also for the sake of analysis, in the scenario of effectiveness losses under 5%

compared to NoSel – orange background – E2SC#2 could increase its reduction rate

further (up to 80% – AGNews), producing even larger speedups - 3.3x (MEDLINE) and

6.0x (AGNews).

In sum, the results demonstrate the flexibility of our proposal by modifying its

steps to accommodate different requirements in a big data scenario, solidifying its prac-

tical applicability.

4.3.3.4 Enhanced Results in Small-to-Medium datasets

We analyze the behavior of E2SC#2 in the smaller datasets, further demonstrat-

ing the flexibility of our solution. In Table 4.10, we present the results regarding our two

proposed instantiations of the E2SC framework, concerning: (i) the average reduction

rate; (ii) Transformer effectiveness (Macro-F1); and (iii) SpeedUps.

As Table 4.10 demonstrates, this second instantiation has an average reduction rate

slightly higher than the previous one (28.9%). We also observe that E2SC#2 is statisti-

cally equivalent in all datasets compared to the classification using the complete training

set. As we can visually grasp, E2SC#2 also achieved satisfactory overall speedup im-

provements (darker green than the first instantiation). The average E2SC#2 speedup

is higher – 1.37 – producing time improvements in all scenarios. This last result demon-

strates that the proposed modifications were able to enhance the results in the small-to-

medium datasets, considering all constraints.

Indeed, some specific cases are interesting to pinpoint. In both DBLP and Twit-

ter, although the reductions produced by E2SC#2 were smaller compared to the first

instantiation, the speedups were almost the same due to compensations in the overall time

produced by the modifications in the IS phase. Moreover, in Reuters90, WOS-11967, and

WOS-5736, there were speedup gains despite smaller or equivalent training set reductions,

also caused by compensations in time produced by a faster strategy in the IS phase. In

these cases, the reductions in time of the IS step obtained with E2SC#2 were enough

to accelerate the speedups, even in the face of smaller reductions.

In sum, both experiments indicate an affirmative answer for RQ2: E2SC is flexi-

ble to adjust to different application requirements, being able to, in all cases, reduce the

training set and maintain effectiveness, while providing efficiency improvements.



4.4. Summary 95

Reduction Effectiveness (Macro-F1) SpeedUp
task dataset E2SC E2SC#2 NoSel E2SC E2SC#2 E2SC E2SC#2

To
pi

c
DBLP 45.0% 25.0% 81.7(0.5) 79.9(0.6) 80.7(0.6) 1.26 1.25
Books 14.0% 25.0% 89.5(0.2) 89.0(0.3) 88.8(0.5) 1.02 1.29
ACM 20.0% 25.0% 71.8(1.0) 70.3(1.4) 70.2(1.0) 1.11 1.29
20NG 21.0% 25.0% 87.4(0.8) 86.3(0.7) 86.2(0.8) 1.17 1.30

OHSUMED 20.0% 25.0% 77.8(1.2) 76.1(1.3) 75.8(1.5) 1.25 1.34
Reuters90 35.0% 25.0% 42.2(2.1) 41.8(2.1) 43.3(2.6) 1.35 1.43

WOS-11967 50.0% 50.0% 87.0(0.7) 85.1(0.7) 85.0(0.7) 1.56 1.96
WebKB 42.0% 25.0% 83.2(2.1) 80.9(1.5) 82.6(2.3) 1.52 1.33
Twitter 35.0% 25.0% 79.0(2.1) 77.6(2.1) 78.4(2.1) 1.27 1.28
TREC 11.0% 25.0% 95.5(0.5) 95.3(1.3) 94.9(1.2) 1.07 1.18

WOS-5736 50.0% 50.0% 90.5(0.9) 89.0(1.0) 89.2(0.8) 1.58 1.88

Se
nt

im
en

t

SST1 10.0% 25.0% 53.8(1.3) 52.8(0.7) 52.4(1.3) 1.09 1.29
pang_movie 10.0% 25.0% 89.0(0.4) 88.5(0.6) 88.5(0.6) 1.02 1.26

MR 10.0% 25.0% 89.0(0.7) 88.6(0.5) 88.3(0.7) 1.03 1.21
vader_movie 15.0% 25.0% 91.3(0.5) 91.1(0.7) 90.8(0.6) 1.06 1.25

MPQA 31.0% 25.0% 90.2(0.8) 89.2(0.9) 89.4(1.0) 1.19 1.03
Subj 18.0% 25.0% 97.0(0.3) 96.8(0.3) 96.8(0.3) 1.14 1.24
SST2 15.0% 25.0% 93.2(0.6) 93.1(0.4) 92.9(0.6) 1.06 1.20

yelp_reviews 60.0% 50.0% 97.9(0.4) 97.1(0.4) 97.2(0.4) 2.04 1.98
Average 26.9% 28.9% 83.53 82.55 82.71 1.25 1.37

Table 4.10: Tripod Results in Small-to-Medium datasets

4.4 Summary

In this chapter, we proposed E2SC, a novel redundancy-oriented two-step In-

stance Selection framework aimed at large datasets with a special focus on transformer-

based architectures. E2SC brings innovation to the IS field in terms of (i) the exploitation

of calibrated weak classifiers (exact and approximate) to estimate the probability of utility

of an instance in the training phase of a Transformer and (ii) the introduction of iterative

processes and heuristics, learned from an extensive experimental evaluation of IS alterna-

tives, to estimate the ideal reduction rates. Our experiments demonstrated that E2SC can

achieve the best results in terms of effectiveness, reduction, and speedup when compared

to the current state-of-the-art in the field. Indeed, In our extensive experimental evalu-

ation with 22 datasets, comparing against six SOTA IS baselines and six Transformers

classifiers, our final solution managed to reduce the training sets by almost 30% on average

while maintaining the same levels of effectiveness in all datasets, with speedup improve-

ments of up to 70%. E2SC was also flexible to be adapted to scale to large datasets, which

is hard with the baselines. Our results are interesting from both perspectives, theoretical

(e.g., Transformers can indeed be trained with fewer data without losing effectiveness)

and practical, allowing for savings in energy, budgets, and carbon emissions.
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Chapter 5

An Extended Noise-Oriented and

Redundancy-Aware Instance

Selection Framework for

Transformer-Based Automatic Text

Classification

In the comparative experiments of Chapter 4, E2SC achieved the best tripod (effec-

tiveness, efficiency, and reduction) results among all the above alternatives. However, as

mentioned, E2SC focuses solely on the removal of redundant instances, leaving other

aspects, such as noise, that may help to further reduce training, untouched. Indeed, as

we shall see, in a simulated scenario designed to evaluate the capability of the IS baseline

methods and our previous solution to remove noise, none of the IS solutions satisfactorily

performed the task. This motivated us to demonstrate the feasibility of proposing a novel

extended IS framework capable of removing simultaneously redundant and noisy instances

from the training set (RQ3). Next, we will introduce an extended solution to the limita-

tions mentioned earlier. We start by briefly highlighting some open issues from the original

solution, proceeding to present our extended bi-objective instance selection solution and

how the proposed enhancements (modifications and extensions) address such issues.

5.1 Motivation and Reasoning

Crowdsourcing [125] and soft labeling [116] annotation methodologies are popular

solutions for acquiring large amounts of labeled data with reduced costs. These approaches

may lead to poor-quality annotations, resulting in noisier data scenarios when compared

to manually curated data by domain experts, in which instances in the training set are
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assigned to the wrong classes.Indeed, Martins et al. [94] performed a study case evaluating

the influence of challenging and noise instances in review domains. The main finding was

that users (whether regular individuals or experts) make mistakes in manually classifying

complex instances between 56% and 64% of the time. That being true, noise instances

can potentially constitute a significant portion of available data in these contexts. Noisy

training instances not only have the potential to reduce the effectiveness of the model by

introducing misleading patterns, but they may also negatively impact efficiency by requir-

ing additional processing time to extract and incorporate these patterns into the model.

Indeed, preliminary experiments where we artificially inserted noise in the datasets

by randomly substituting ground-truth labels with different ones produced significant

degradations on the models’ effectiveness (up to 4.2% of effectiveness decrease) when 10%

of the training become noisy. See Appendix F for more details.

That said, in our previous chapters, we were unable to find cases where effective-

ness was improved by the IS methods. Though the datasets we experimented with are

well-known benchmarks and very scrutinized by the ATC community, some of them may

still contain some level of noise, if not by wrongly assigned labels, perhaps due to out-

liers. This counter-intuitive phenomenon requires further analysis. As redundancy and

noise are orthogonal phenomena, the original redundancy-oriented approach was limited

in its noise removal capability. In order to show light in this respect, we carry out an

experiment to analyze the noise reduction capability of the IS approaches considered in

this work, including E2SC.

5.1.1 Noise removal Capability Experiment

In this experiment, we artificially inserted noise in the datasets by randomly switch-

ing the ground-truth label of a fixed percentage of documents (5%)1 , simulating a prefixed

and controlled addition of artificial noise in terms of incorrect labels to the datasets [47].

The main idea of this experiment is to verify the capacity of each IS method in terms of

percentual (and absolute) noise removal. The obtained results are presented in Table 5.1.

According to the results, only two methods – LSSm and LSBo – could satisfactorily

perform noise reduction, regardless of the task (topic classification or sentiment analysis).

More specifically, both approaches achieved an average noise reduction rate between 53%

to 61%, i.e., they were capable of removing the percentage of inserted noise from the

dataset the respective percentages of instances wrongly labeled by our artificial switching

process. The methods were specifically designed with noise removal purposes as they

1We have experimented with the following levels of inserted noise: 2.5%, 5%, and 10%. We report
5% only for the sake of conciseness.



5.1. Motivation and Reasoning 98

dataset # Inst. #Noise E2SC CNN LSSm LSBo EGDIS IB3
DBLP 34315 1702 1.47% (25) 3.11% (53) 82.43% (1403) 84.25% (1434) 2.47% (42) 9.46% (161)
Books 30234 1502 0.6% (9) 2.46% (37) 32.29% (485) 34.22% (514) 1.93% (29) 7.66% (115)
ACM 22402 1110 2.97% (32) 4.23% (47) 78.92% (876) 81.35% (903) 3.96% (44) 11.98% (133)
20NG 16954 836 0.36% (3) 3.83% (32) 42.11% (352) 42.11% (352) 0.24% (2) 2.51% (21)

OHSUMED 16471 810 2.1% (17) 2.35% (19) 83.46% (676) 85.06% (689) 2.72% (22) 4.81% (39)
Reuters90 11977 560 0.36% (2) 1.07% (6) 81.25% (455) 81.96% (459) 0.89% (5) 8.75% (49)

WOS-11967 10770 520 0.77% (4) 0.00% (0) 84.04% (437) 84.04% (437) 0.77% (4) 0.96% (5)
WebKB 7376 348 4.89% (17) 9.48% (33) 58.05% (202) 69.83% (243) 14.37% (50) 22.70% (79)
Twitter 6297 246 3.66% (9) 8.13% (20) 78.05% (192) 80.89% (199) 6.50% (16) 26.42% (65)
TREC 5356 258 13.18% (34) 14.34% (37) 45.74% (118) 47.29% (122) 5.81% (15) 24.03% (62)

WOS-5736 5162 252 1.98% (4) 1.59% (4) 85.71% (216) 86.51% (218) 0.79% (2) 4.76% (12)
SST1 10669 522 24.14% (126) 15.71% (82) 7.09% (37) 7.66% (40) 13.41% (70) 26.25% (137)

pang_movie 9594 478 7.53% (35) 23.22% (111) 48.95% (234) 65.48% (313) 26.78% (128) 51.05% (244)
MR 9595 478 5.65% (27) 35.15% (168) 5.65% (27) 52.93% (253) 28.87% (138) 56.69% (271)

vader_movie 9510 470 7.87% (36) 25.11% (118) 46.17% (217) 59.79% (281) 28.94% (136) 54.89% (258)
MPQA 9545 298 6.71% (19) 23.83% (71) 55.03% (164) 58.39% (174) 17.45% (52) 57.72% (172)
Subj 9000 450 4.67% (21) 17.11% (77) 42.44% (191) 54.22% (244) 20.44% (92) 56.44% (254)
SST2 8651 418 7.66% (32) 40.43% (169) 8.85% (37) 10.05% (42) 33.97% (142) 54.31% (227)

yelp_reviews 4500 224 7.59% (17) 13.84% (31) 58.48% (131) 64.73% (145) 23.66% (53) 50.89% (114)
Average 5.48% 12.89% 53.93% 60.6% 12.3% 28.0%

Table 5.1: Artificial Noise Removal Capability Experiment. We present the number of
training instances (# Inst.), the number of randomly switched labels (# Noise), the
reduction achieved by each approach (Reduction), and the respective noise reduction
(Noise Reduction) in percentile and absolute terms.

are based on the concept of local sets and tend to remove “harmful” instances from the

training set (See definition in Sec. 2.4). Consequently, instances considered noisy with

estimated “harmfulness” score greater than “usefulness” score are removed from the train-

ing set.The other methods – CNN, EGDIS, and IB3 – achieved marginal results – between

12.3%-28% of noise removal capability – mainly when applied to the sentiment datasets.

Finally, as expected, the original E2SC framework was not able to satisfactorily

remove noise, except in a very specific case where the noise removal rate followed the gen-

eral removal rate (SST1). One important factor to mention is that, on average,

89.8% (varying between 74.1% and 99.1%) of the artificially introduced noisy

instances were incorrectly predicted by E2SC´s weak classifier. In other words,

these instances had a removal probability assigned equal to zero. This provides additional

evidence that noisy instances are highly likely to be considered “hard to classify” and be

kept in the training set selected by our specific solution, which also explains the low noise

removal capability of E2SC2. Moreover, E2SC’s weak-classifier (KNN) predicts around

30% of the instances as “hard to classify”. This sets up an upper limit on the method’s

reduction capability to around 70% – a reminder that “hard-to-classify” instances are

never removed from the dataset (See more in Appendix E).

In sum, there is an opportunity for further instance removal within the E2SC

framework by further exploiting the non-redundant, but potentially noisy, set of hard-to-

classify training instances. We exploit this opportunity in the next Section.

2Some removal is still expected as a few of the switched instances may be redundant.
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5.2 Bi-objective Instance Selection Framework

Figure 5.1: Bi-objective Instance Selection Framework

The main contribution of this chapter is the proposal of an extended bi-objective

instance selection (biO-IS) framework built upon our first one aimed at removing both

redundant and noisy instances simultaneously. As depicted in Figure 5.1, our extended

framework encompasses three main components: a weak classifier, a redundancy-based

approach, and an entropy-based approach. In Figure 5.1 (in blue), we depart from our

original solution proposed in Chapter 4 considering the Logistic Regression as the cali-

brated weak classifier instead of KNN, as in our original work. An in-depth comparative

analysis of several possibilities of the weak classifiers (Section 5.4.1), including Decision

Tree (DT), Logistic Regression (LR), XGBoost, LightGBM (LGBM), and Linear SVM,

demonstrated LR as the best option in terms of a trade-off effectiveness-calibration-cost.

To address the second objective of noise removal (the lower part of Figure 5.1 – in

purple), we propose a new step based on the entropy and a novel iterative process to esti-

mate near-optimum reduction rates. Considering the instances wrongly predicted by the

weak classifier, the main objective is to assign a probability to each of them being removed

from the training set based on the probability of the instance being noise. For this, we

propose using the entropy function as a proxy to determine the reduction behavior caused

by these instances for the sake of training an ATC model. The intuition behind this new

step is that when the prediction provided by the calibrated weak classifier is incorrect,

the entropy of the posterior probabilities negatively correlates with the confidence of the

classifier. This means that low entropy occurs when the classifier assigns an instance with

absolute certainty to a wrong class, while high entropy occurs when the classifier is un-

certain among several classes. Therefore, we consider the chance of a noisy instance being

removed by the inverse of the entropy of the prediction, so when an incorrect prediction

is accompanied by low entropy, it is more likely to be removed, and, otherwise, it is more

likely to be kept. Accordingly, the proposed biO-IS framework provides a comprehensive

solution to address both redundancy and noise removal simultaneously.
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5.2.1 Redundancy-based approach

The original3 E2SC framework4 consists of two steps. Step 1 involves estimat-

ing a distribution, known as α(x) (alpha), which assigns to each training instance x a

probability of being removed from the training set. It is worth noticing this probability

distribution is specifically focused on removing redundancy for the sake of construct-

ing a classification model. Step 2 involves estimating the beta parameter, defined as the

near-optimal dataset-specific reduction rate of training instances that does not degrade

the model’s effectiveness.

As the main objective of IS is to reduce the cost of applying a strong classification

model through smart selection of a reduced data set, both steps of the framework must nec-

essarily be computationally inexpensive. Moreover, the alpha probability needs to be reli-

able in terms of modeling the redundancy behavior of the instances. Finally, the beta pa-

rameter should maximize the trade-off of (high) reduction vs (maintenance) effectiveness.

In the previous chapter, we presented two instantiations of the proposed framework

(E2SC#1 and E2SC#2). According to the results presented in Section 4.3.3.4, despite

simpler, the best E2SC instantiation in terms of effectiveness, efficiency, and reduction was

the second one. Therefore, this second instantiation will be the basis of our new proposal.

5.2.2 Entropy-based approach

In this section, we present our proposal endeavored on noise removal. Analogous

to the original framework, our extension consists of two main modules. The first module

calculates the probability that a document being removed from the training set, specifi-

cally endeavored to removing noise, which is represented by the gamma scores (Γ). The

second module determines the reduction rate, represented by the theta scores (θ). To

improve the selection process, we propose to use the posterior probabilities obtained from

the weak classifier for both modules. This approach optimizes the framework’s execution

and results in a more efficient instance selection phase, compared to our previous proposal,

as we shall see.

3Represented in the upper portion of Figure 5.1 (in blue).
4We call it a framework because it allows different and diverse instantiations, as we shall see.
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5.2.2.1 Learning Gamma (Γ) Scores

Considering the instances wrongly predicted by the weak classifier, the goal is to

assign a probability to each of them being removed from the training set (Γ) based on the

belief of the instance being noise. For this, we propose using the entropy function as a

proxy to determine the reduction behavior for hard-to-classify instances. Our hypothesis

is that hard-to-classify instances with low entropy of the posteriori class distribution can

be considered noise for the purpose of building a classification model.

In more detail, given that an instance was wrongly predicted, a low entropy is evi-

dence of high levels of confidence of the weak classifier towards the wrong prediction (thus,

likely noise). On the other hand, a high entropy indicates that the weak classifier was not

confident when making the prediction, suggesting some “confusion” and that the instance

may be useful, especially if it falls near the decision boundary. Those instances may be use-

ful, for instance, to better define decision boundaries. The entropy of the posterior proba-

bility distribution of the prediction for hard-to-classify instances provides complementary

information with regard to confidence on the prediction for the sake of instance removal.

More formally, the proposed extension starts by analyzing the posterior probabil-

ity over a set of distinct classes given an encoded instance. We denote this set of classes

as Y = {y1, ..., yc, ..., yC}, and the a posteriori probability distribution as P (Y = yc|x))
estimated by the weak classifier g. The output of g is a set of probabilities p1, ..., pc, ..., pC ,

where pc corresponds to the degree of confidence that g predicts for each class yc. For each

instance x, we calculate the value of ŷ = argmaxc∈{1,..,C} g(x). If the predicted class ŷ is

different from the actual class of x, we assign the value Γ(x) = log(n)−Entropy(P (Y |x)) 5

, where Entropy(Y |x) = −
∑

c∈C P (Y = yc|x) · log(P (Y = yc|x)). After we have assigned
the value Γ(x) to all instances, we normalize it by the sum of the vector. As a result, the

final Γ vector can be treated as a probability distribution since its sum is up to 1.0.

Consider the following binary classification example in Figure 5.2: suppose that x1

belongs to the positive class (green triangle) and x2 belongs to the negative class (red ball).

The weak classifier incorrectly classified x1 and x2 into the respective classes. Specifically,

x1 has posterior probabilities of (0.0, 1.0), resulting in an entropy of 0.0 (low entropy).

This indicates that the weak classifier was highly confident when wrongly predicting x1,

and therefore it should have a high probability of being removed (Γ(x) = 1.0−0.0 = 1.0)6.

Note that x1 is in the middle of a “cluster” of red balls; this is a strong “spatial” indication

that x1 was either mislabeled or is an outlier - a triangle that “looks like” a circle.

On the other hand, for x2, the posterior class distribution would be (0.5, 0.5),

resulting in the maximum entropy score. This means that the weak classifier was not

5The highest entropy score occurs in the uniform distribution: −
∑n

i
1
n log( 1n ) = −

∑n
i

1
n (log(1) −

log(n)) = − 1
n

∑n
i − log(n) = 1

nn log(n) = log(n).
6At this point, Γ(x) is not normalized yet.
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Figure 5.2: Entropy Visual Example

confident when wrongly predicting x2, and thus it should have a low probability of being

removed (Γ(x) = 1.0 − 1.0 = 0.0)6. Notice that x2 is the frontier of the two classes and

keeping it in the training may help to better define the class boundaries7.

5.2.2.2 Learning Tetha (θ) Score

At the end of the previous step, all instances have been assigned with an Γ(x) value,

which corresponds to the probability of being kept in the training set. In the context of the

original E2SC framework, we have previously demonstrated that there is a strong corre-

lation between the behavior of strong (transformer-based) and weak calibrated classifiers.

Thus, similarly to the E2SC´s beta definition step, this step in biO-IS aims at determining

the optimal value of θ, representing the proportion of incorrectly predicted instances to

be eliminated without compromising the effectiveness of the weak-classifier model.

To this end, we propose a simple yet effective method for defining the value of θ.

As the number of incorrectly classified instances, when considering a weak classifier is, on

average, smaller than the set of correctly predicted instances (See more in Appendix E),

our approach involves initially simulating, based on the Γ distribution learned in the pre-

vious step, an aggressive reduction of 50% in the number of “hard-to-classify” instances.

We then test two possibilities: (i) removing the instances leads to a degradation in the

model’s performance, or (ii) the model’s effectiveness is maintained after the removal. If

the model’s performance degrades, we iteratively decrease the reduction rate by a fixed

amount (-∆Γ) until the model performance is not statistically significantly similar to the

model trained without data selection. Otherwise, at the beginning, if the model’s effec-

tiveness is maintained, we iteratively increase (+∆Γ) the reduction rate until we observe a

model degradation, returning then to the previous iteration’s reduction rate. In practice,

7For instance, in maximum-margin methods such as SVM x2 would certainly be a support vector.
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starting by removing this percentage rate reduces the number of iterations performed by

our proposed approach since, on average, the final θ is around 40%-60% in 90% of the cases.

Finally, combining the two previous steps, we sample θ percent instances from the

training set, taking into account the gamma distribution, to be removed.

5.3 Experimental Setup

The experimental setup employed in this chapter closely resembles the one utilized in the

previous chapters (Sec 3.1 and Sec 4.2). Thus, we will present it concisely yet compre-

hensively, emphasizing the particular modifications implemented in this chapter.

Datasets, Data Representation, and Preprocessing To evaluate the IS methods,

we adopted the 22 real-world datasets that were previously discussed in the previous

chapters (Table 3.1 and Table 4.2), collected from various sources in two broad ATC

tasks [80]: i) topic classification; and ii) sentiment analysis. The TFIDF representation

is input to all IS methods, including our proposed method. Before creating the TFIDF

matrix, we removed stopwords and kept features appearing in at least two documents.

We normalized the TF-IDF product result using the L2-norm. In practice, as illustrated

in Figure 3.1, we first split the dataset employing the Stratified K-Fold cross-validation

methodology – the smaller datasets were executed using k=10-fold partition, while for

the larger ones, we adopted 5 folds due to the cost of the procedure –, then we construct

the TFIDF matrix representation of the documents for the IS stage, and then, we use the

corresponding raw document chosen as input for the Transformers classifiers.

Text Classification Methods As mentioned, our goal is to study and compare our

proposed method against the SOTA IS techniques in the context of Transformers ar-

chitectures – notably the SOTA in classification in several domains8 [58, 40]. Unlike our

previous Chapter, where we selected the best Transformer for each dataset and ran all

experiments with a different Transformer. We here employed a more manageable ap-

proach. We define a single “averaged” best transformer-based classifier to apply to all

datasets based on characteristics such as cross-dataset consistency and reliability in the

classification step. Besides reducing the complexity of an already complicated experi-

mental procedure, it also isolates the classifier factor from the analyses of the results.

In Section 5.4.2, we compare the effectiveness among the latest version of the following

Transformers9 – RoBERTa, BERT, DistilBERT, BART, AlBERT, and XLNet) –

applied to all tested datasets.

8LLMs such as GPT and LLama are built on top of Transformer architectures.
9We adopted the same hyperparameterization presented in Section 4.2.
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Instance Selection Methods In this chapter, we consider as baselines the best seven

instance selection methods from Chapter 3 (described in Table 3.16), namely: Con-

densed Nearest Neighbor (CNN); Instance Based 3 (IB3); Local Set-based Smoother

(LSSm); Local Set Border Selector (LSBo); Enhanced Global Density-based Instance

Selection (EGDIS); Curious Instance Selection (CIS); and Effective, Efficient, and Scal-

able Confidence-Based IS framework (E2SC) – our proposal in the previous Chapter. All

parameters for the IS methods were defined with grid-search, using cross-validation in

the training set. Table 5.2 shows the range of parameter values for each IS method we

evaluate. The best parameter in each range is marked in bold.

method parameters method parameters
CNN

n_neighbors: [1, 3, 5, 10]
EGDIS n_neighbors: [1, 3, 5, 10]

LSSm

CIS

iterations: 100*|k_cluster|
LSBo learner: Decision Tree

E2SC weak-classifier: LR
beta: heuristic-based

initial error: 0.5
discount factor: 0.01

biO-IS

weak-classifier: LR epsilon: 0.9 to 0.1 (step decay)
beta: heuristic-based lr: 0.09 to 0.01 (step decay)
Δ𝜃 : 0.1

IB3 Confidence Acceptance: 0.9
Confidence Dropping: 0.7* 𝜃:  pre-fixed for large datasets at 50%

Table 5.2: Parameters of the IS methods.

Metrics and Experimental Protocol In addition to the metrics presented in Sec-

tion 4.2 – Macro-F1 for measuring effectiveness, Bonferroni correction to assess statistical

significance, speedup for measuring efficiency, and reduction – we included a summariza-

tion visual concept, in which we summarize our results through an Axial Plot, where we

analyze the three imposed restrictions (reduction, effectiveness, and efficiency) simulta-

neously. More specifically, we normalize the values resulting from each of these metrics

(dividing by the respective highest value) and visually summarize the obtained results.

5.4 Experimental Results

In this section, we present the results of applying traditional IS methods and our

second proposed framework in the context of ATC regarding the RQ3: Is it possible

to extend the previous proposal to not only remove redundancy but also remove noise,

enhancing the level of quality considering all tripod criteria?
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5.4.1 Preliminary Question 1. What is the most suitable

weak-classifier to employ within our IS solution?

As both E2SC and biO-IS depend on the definition of a reasonable alternative for

the weak classifier (the first step shown in Figure 5.1), we extend the investigation aimed

at identifying the best alternative for a weak classifier regarding several posed restrictions.

Such analysis has not been performed extensively in the previous chapter.

As discussed, our framework selects certain instances to remove based on the pre-

dicted posteriori probability of a weak classifier. Our approach seeks to estimate the

behavior of a strong classifier by tackling the behavior of a weak classifier as a proxy. To

assess the importance of each instance for the final model, the weak classifier should exhibit

certain desirable properties, such as calibration, efficiency, and effectiveness. Achieving

all three requirements simultaneously is hard, as they may be conflicting. Thus, we aim

to select the classifier with the best tradeoff.

As mentioned, we have not thoroughly evaluated and compared various possible

weak-classifiers for our IS task. Here we provide a comparison of the following options:

Decision Trees (DT), Logistic Regression (LR), XGBoost, LightGBM (LGBM), and Linear

SVM. For the sake of completeness, we also consider the set of classifiers previously tested

in the previous chapter, which includes KNN (adopted in the E2SC), Random Forest (RF),

Naive Bayes (NB), and Nearest Centroid (NC).10

Calibration We evaluate the calibration of weak classifiers by means of the Brier Score,

(BS) [11] a scoring rule applied to measure the accuracy of probabilistic predictions.

Brier [11] defines BS = 1
n

∑n
i=1

∑C
c=1(P (Y = yc|xi) − oci)

2, where oci is the one-hot

vector with 1 in the index of the true class if xi, 0 otherwise. BS ranges from 0 (best)

to 2 (worst) – the closer to zero, the better in achieving more calibrated probability

estimations. Figure 5.3 presents the averaged Brier Score obtained by applying each

weak classifier on all datasets considered in our experiments.
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Figure 5.3: Brier Score Average for each weak-classifier

10For the sake of reproducibility of these results, the weak-classifier methods’ hiperparameterization
is available in Appendix G.
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Figure 5.3 clearly indicates LR classifier tends to be the better calibrated among

the considered weak classifiers.

Efficiency and Effectiveness Trade-off Table 5.3 presents the effectiveness and total

time results of the six most calibrated classifiers according to the previous analysis applied

to five datasets used in our benchmark 11.

Logistic Regression KNN xgBoost lightGBM NB RF
dataset Macro-F1 Time (s) Macro-F1 Time (s) Macro-F1 Time (s) Macro-F1 Time (s) Macro-F1 Time (s) Macro-F1 Time (s)
Books 81.2(0.5) 3.82 76.5(0.5) 14.42 75.5(0.5) 41.18 78.8(0.4) 55.46 73.3(0.6) 1.86 75.70(0.6) 154.12
20NG 86.1(0.7) 5.10 82.8(0.4) 5.27 77.8(0.7) 74.83 81.8(0.7) 94.36 77.4(0.5) 3.44 81.64(0.6) 127.07
ACM 59.6(0.6) 1.69 58.6(2.0) 3.43 58.6(0.8) 23.35 62.5(1.5) 23.96 40.7(0.8) 3.38 60.08(0.8) 165.34
Twitter 63.1(1.1) 0.12 52.9(2.2) 0.71 52.9(1.2) 4.05 53.2(2.0) 3.93 31.4(0.7) 0.40 43.59(2.1) 7.97

Table 5.3: Effectiveness and Efficiency of Weak-Classifiers.

On average, Logistic Regression (LR) is the most effective classifier of the list, even when

compared to strong competitor approaches like XGBoost, LightGBM, and Random Forest,

while, at the same time, resulting in faster times (between 13.8x and 97.8x times faster).

LR is comparable in efficiency with respect to Naive Bayes (NB), but much more effective.

Compared to K-Nearest Neighbors (KNN), which was the original component of the E2SC

framework, LR is both more effective (up to 19%) and efficient (up to 5.9x times faster).

Impact of adopting LR instead of KNN in the original framework (E2SC) Ta-

ble 5.4 presents the impact of adopting LR instead of KNN in the original framework re-

garding the trade-off reduction vs effectiveness vs efficiency on the text classification task.

The reduction rate considering both weak classifiers on each dataset is basically the

same. This is expected since this rate is based on heuristics regarding two statistical prop-

erties of the input dataset - the skewness of the class distribution and document density, as

explained in Section 4.3.3.1, therefore, it does not depend on the weak classifier definition.

For the specific reduction rates of each dataset, see Table 4.10 - column E2SC#2.

Indeed, the experimental results indicate that the effectiveness of the removal pro-

cess is better estimated when correlated with the logistic regression confidence instead of

the KNN´s confidence. In fact, the reduction performed based on the KNN predictions

incurs effectiveness losses in two datasets – Books and OHSUMED. Removal based on

LR confidence keeps effectiveness in all datasets

Finally, LR is also more efficient in the selection phase than KNN. Consequently,

it provides a better speedup when considering the total time of application (selection +

fine-tuning). After all these analyses, it becomes clear the LR is the best choice to be

used as weak classifier within our instance Selection framework.

11Results obtained with other datasets are similar to those presented in the table.
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MacroF1 SpeedUp
task dataset E2SC (LR) E2SC (KNN) E2SC (LR) E2SC (KNN)

To
pi

c

DBLP 80.5(0.7) 80.5(0.6) 1.314 1.320
Books 86.5(0.7) 85.5(0.5) 1.362 1.354
ACM 69.3(1.6) 69.1(1.2) 1.273 1.262
20NG 85.8(0.8) 85.5(0.6) 1.295 1.344

OHSUMED 76.5(1.0) 75.8(1.5) 1.354 1.339
Reuters90 42.6(2.7) 43.1(2.7) 1.296 1.275

WOS-11967 85.5(0.9) 85.1(0.9) 2.019 2.043
WebKB 81.0(2.0) 81.0(2.2) 1.160 1.162
Twitter 77.6(2.6) 77.3(2.7) 1.352 1.298
TREC 95.1(1.1) 94.9(1.2) 1.230 1.177

WOS-5736 88.7(1.0) 89.2(0.8) 1.793 1.885

Se
nt

im
en

t

SST1 52.0(0.9) 52.4(1.3) 1.293 1.291
pang_movie 88.8(0.6) 88.5(0.6) 1.285 1.264

MR 88.8(0.5) 88.3(0.7) 1.266 1.206
vader_movie 90.9(0.6) 90.8(0.6) 1.269 1.250

MPQA 89.7(0.9) 89.4(1.0) 1.176 1.032
Subj 96.8(0.4) 96.7(0.3) 1.319 1.372
SST2 92.7(0.5) 92.9(0.6) 1.240 1.197

yelp_reviews 97.6(0.4) 97.2(0.4) 2.175 1.965

La
rg

e AGNews 93.9(0.2) 93.9(0.2) 1.754 1.708
Yelp_2013 63.7(0.2) 63.8(0.4) 1.453 1.301
MEDLINE 81.3(0.5) 81.4(0.4) 1.599 1.548
Average 1.422 1.391

Table 5.4: Impact of adopting LR instead of KNN in the original framework (E2SC) -
Effectiveness vs SpeedUp trade-off – Legend: A red background denotes a effectiveness
loss, while a green background indicates a better overall absolute speedup.

5.4.2 Preliminary Question 2. What transformer-based

classifier should we consider for our experimentation?

In Section 3.2, through a comprehensive and computationally costly set of exper-

iments, we identified, for each dataset, the most effective transformer to be adopted in

each dataset. Such strategy is not only impractical and expensive, but also introduces a

second factor to be considered besides the IS strategy itself: the interplay between the IS

strategy and the transformer.

Differently from the previous chapter, we here rather chose one single “best-on-

average” transformer-based classifier to apply to all datasets. Our choice is grounded on

two factors: consistency across all datasets and reliability in the classification step.

Table 3.4 shows the effectiveness differences among the latest version of the ana-

lyzed transformers (including, RoBERTa [85], BERT [44], DistilBERT [118], BART [78],

AlBERT [73], and XLNet [144]) in our benchmark. As we can see, the differences in

effectiveness are rather small (between 0.1-2.0 percentual points). In any case, among

the tested alternatives, RoBERTa achieves the highest absolute Macro-F1 in 12 out of

22 datasets. In the remaining cases (10 out of 22), RoBERTa performance is not sta-

tistically significantly different to the best ATC method per dataset, according to our
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t-test at confidence 95% with Bonferroni correction, with marginal differences ranging

from 0.10% to 2.09% (0.82% on average), which speaks in favor of its consistency in

terms of performance. Therefore, we chose RoBERTa as the “transformer of choice” in

the full benchmark, thus factoring out the variability introduced by choosing different

architectures and effectively isolating the contribution of the IS technique.

5.4.3 Is biO-IS capable of reducing noisy instances from the

training for each investigated scenario?

In this experiment, we again randomly switched the true label of a controled per-

centage pair of documents, simulating a fixed addition of artificial noise. As performed

before, we switched 5% of labels. The main idea of this experiment is to assess the

capability of the biO-IS method to remove the type of noise injected by mislabeling.

E2SC

biO-IS
(only entropy-based

approach)
dataset # Inst. #Noise Reduction Noise Reduction Reduction Noise Reduction
DBLP 34315 1702 25.0% 1.47% (25) 12.48% 56.35% (958)
Books 30234 1502 25.0% 0.60% (9) 12.84% 59.72% (896)
ACM 22402 1110 25.0% 2.97% (32) 15.73% 56.67% (629)
20NG 16954 836 25.0% 0.36% (3) 10.09% 63.28% (529)

OHSUMED 16471 810 25.0% 2.10% (17) 15.99% 56.05% (453)
Reuters90 11977 560 25.0% 0.36% (2) 17.73% 66.61% (372)

WOS-11967 10770 520 50.0% 0.77% (4) 14.50% 59.04% (306)
WebKB 7376 348 25.0% 4.89% (17) 18.29% 41.67% (145)
Twitter 6297 246 25.0% 3.66% (9) 13.93% 58.13% (142)
TREC 5356 258 25.0% 13.18% (34) 22.63% 46.9% (120)

WOS-5736 5162 252 50.0% 1.98% (4) 13.13% 53.18% (134)
SST1 10669 522 25.0% 24.14% (126) 34.34% 40.04% (208)

pang_movie 9594 478 25.0% 7.53% (35) 25.00% 47.62% (227)
MR 9595 478 25.0% 5.65% (27) 24.99% 47.62% (227)

vader_movie 9510 470 25.0% 7.87% (36) 25.20% 47.65% (223)
MPQA 9545 298 25.0% 6.71% (19) 32.10% 33.89% (101)
Subj 9000 450 25.0% 4.67% (21) 9.73% 62.67% (282)
SST2 8651 418 25.0% 7.66% (32) 15.33% 47.37% (197)

yelp_reviews 4500 224 50.0% 7.59% (17) 25.00% 47.63% (106)
Average 5.48% 52.21%

Table 5.5: biO-IS - artificial noise removal capability experiment. Legend: In Table,
we present the number of training instances (# Inst.), the number of randomly switched
labels (# Noise), the reduction achieved by each approach (Reduction), and the respective
noise reduction (in percentile and absolute terms).

Table 5.5 presents the results related to the overall removal rate12 and noise reduc-

tion rate for the E2SC and biO-IS approaches (our current proposal). As expected, the

12For the E2SC method, we consider the reduction rate provided by its heuristic-based method.
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original E2SC framework was not able to satisfactorily remove the artificially introduced

noise, except in a very specific case where the noise removal rate followed the general re-

moval rate (SST1). This is likely due to the high correlation between noise and redundancy

in this dataset. On average, around 90% (varying between 74% and 99%) of the artificially

introduced noisy instances were incorrectly predicted by E2SC’s weak classifier, and con-

sequently, these instances are assigned a zero probability to be removed by this method.

When considering only the entropy-based approach (noise-oriented step of our

current proposal) that focuses on the removal of non-redundant (but potentially noisy)

hard-to-classify training instances, we enhance our original solution capability for noise

removal 38.4 times on average (varying between 1.7x and 185.0x). More specifically, our

proposed entropy-based step achieved an average noise reduction rate of 52.2% – varying

between 33.9% to 66.6%. When comparing to the results presented in Section 5.1.1, we

were capable of satisfactorily removing the manually inserted noise in levels compared to

the best baselines (LSSm and LSBo regarding this capability (Table 5.1). In sum, our

proposal was able to satisfactorily remove large portions of the artificially inserted noise,

demonstrating the potential for the full biO-IS solution.

5.4.4 Is biO-IS capable of reducing the training set while

keeping classifier effectiveness for each dataset?

We present in Table 5.6 the impact on the effectiveness of the application of the

IS methods to the RoBERTa in each dataset. The NoSel column corresponds to the

results with no training set reduction. We stress that the only two IS methods capable of

handling large datasets (AGNews, Yelp 2013, and MEDLINE) are ours.

Results reveal that the only IS methods capable of maintaining the effectiveness

on all 22 datasets are our methods: biO-IS and E2SC(LR). In other words, the reduction

provided by both methods did not harm the classifier’s effectiveness.

All IS baseline methods, to a greater or lesser extent, caused losses of effectiveness

in one or more datasets. In this sense, regarding this criteria, LSSm can be considered

the best baseline, as it was able to maintain effectiveness levels in 14 cases (out of 19

in which it could be run). Following closely behind is CNN, which achieved statistically

equivalent results in 11 out of 19 datasets. CIS, EGDIS, and LSBo did not perform as

well. They were only able to tie with NoSel in a maximum of 9 different datasets. As we

discuss next this is due to their aggressive reduction rates.

We present in Table 5.7 the average reduction rates achieved by each instance

selection method (the more intense, the better). According to the green scale, CIS,
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task dataset NoSel biO-IS E2SC (LR) CNN LSSm LSBo EGDIS CIS IB3

To
pi

c

DBLP 81.4(0.5) 80.5(0.6) 80.5(0.7) 79.0(0.5) 80.8(0.7) 78.6(0.9) 74.9(2.4) 73.4(1.4) 78.7(0.5)
Books 87.2(0.6) 86.5(0.6) 86.5(0.7) 83.4(1.7) 86.5(0.6) 81.5(0.7) 81.3(0.6) 78.9(0.5) 70.6(0.5)
ACM 70.3(1.4) 69.0(1.2) 69.3(1.6) 65.4(1.4) 68.0(1.3) 63.4(1.6) 63.5(1.0) 63.7(6.6) 64.9(1.3)
20NG 86.0(0.7) 85.2(0.7) 85.8(0.8) 81.6(1.1) 86.9(0.5) 85.6(0.6) 79.3(1.0) 81.3(1.3) 81.9(0.6)

OHSUMED 77.8(1.2) 75.1(1.1) 76.5(1.0) 73.3(0.4) 73.8(0.5) 68.8(1.2) 67.6(3.3) 61.2(2.0) 71.2(2.0)
Reuters90 41.9(2.2) 40.3(2.1) 42.6(2.7) 41.7(3.1) 41.2(2.1) 39.8(2.0) 40.5(2.5) 22.7(7.9) 42.2(2.2)

WOS-11967 86.8(0.4) 85.6(0.9) 85.5(0.9) 85.6(0.7) 86.5(0.6) 85.2(0.8) 84.3(0.9) 58.8(5.3) 84.9(0.8)
WebKB 83.0(2.0) 80.6(2.1) 81.0(2.0) 79.8(1.4) 78.9(2.1) 72.5(2.7) 78.3(2.2) 78.5(1.3) 79.2(1.8)
Twitter 78.4(1.8) 76.5(1.4) 77.6(2.6) 76.3(1.8) 75.0(2.0) 71.8(2.3) 75.4(2.4) 71.1(2.6) 75.5(2.0)
TREC 95.5(0.5) 93.3(1.6) 95.1(1.1) 94.0(1.0) 95.0(0.7) 95.0(1.1) 92.5(3.2) 92.4(0.4) 93.8(1.3)

WOS-5736 90.5(0.9) 88.9(1.2) 88.7(1.0) 89.2(0.7) 88.0(1.1) 86.5(1.4) 88.4(1.3) 55.4(9.9) 88.4(1.0)

Se
nt

im
en

t

SST1 53.8(1.3) 52.8(1.1) 52.0(0.9) 48.0(1.4) 53.4(0.9) 53.2(0.9) 53.4(1.0) 52.2(0.9) 53.3(1.0)
pang_movie 89.0(0.4) 88.2(0.4) 88.8(0.6) 88.2(0.8) 88.5(0.5) 88.0(0.6) 86.8(0.8) 86.9(0.5) 87.1(0.6)

MR 89.0(0.7) 88.3(0.4) 88.8(0.5) 63.6(15.4) 89.0(0.6) 39.3(12.3) 86.5(1.0) 88.0(0.6) 87.3(0.8)
vader_movie 91.3(0.5) 90.5(0.4) 90.9(0.6) 90.9(0.5) 90.8(0.7) 90.5(0.4) 89.9(0.6) 89.1(0.8) 91.3(0.7)

MPQA 90.2(0.8) 89.0(0.7) 89.7(0.9) 87.0(1.8) 90.0(0.7) 89.9(0.6) 87.9(0.6) 90.0(0.7) 88.7(0.7)
Subj 96.9(0.4) 96.0(0.4) 96.8(0.4) 96.1(0.8) 95.1(0.5) 95.3(0.4) 96.2(0.4) 96.2(0.3) 96.1(0.5)
SST2 93.2(0.6) 92.4(0.5) 92.7(0.5) 60.7(11.7) 92.9(0.5) 93.0(0.7) 91.7(0.7) 92.0(0.8) 92.0(0.8)

yelp_reviews 97.9(0.4) 97.5(0.3) 97.6(0.4) 97.2(0.3) 97.7(0.3) 97.4(0.3) 96.8(0.9) 97.3(0.4) 97.0(0.5)

La
rg

e AGNews 94.2(0.2) 94.0(0.2) 93.9(0.2) - - - - - -
yelp_2013 64.4(0.6) 64.6(0.2) 63.7(0.2) - - - - - -
MEDLINE 81.8(0.6) 81.2(0.4) 81.3(0.5) - - - - - -

Table 5.6: Macro-F1 for different IS approaches (columns) in each dataset (rows) con-
sidering RoBERTa as the classifier. Cells in bold and green background highlight results
that are not statistically significantly different from those of NoSel.

EGDIS, LSBo, and IB3 are the algorithms with the highest reduction rates – with average

reduction rates of 61.2%, 57.7%, 56.5%, and 48.7%, respectively. The topmost reduction

rate is for CIS when applied to the DBLP dataset (82.0%). However, as we have seen,

these large reduction rates negatively impact effectiveness.

LSSM has the lowest reduction rates, averaging at 15.3%. The original E2SC

framework has around 28.4% of reduction rate on average, which, without causing losses

of effectiveness in any dataset, can be considered a very good result. We shall remind

E2SC is considered the current state-of-the-art in the field. Finally, biO-IS builds on top of

ESC-IS, achieving a remarkable 40% reduction rate with no harm at all in effectiveness.

biO-IS manages to improve on top of ESC-IS the reduction rate in all datasets, with

improvements ranging from 6% up to 128%, in yelp reviews and yelp 2013, respectively).

In all cases but one (Books), biO-IS manages to achieve reduction rates of 30% or higher.

In sum, both experiments indicate an affirmative answer for RQ2 – biO-IS, along

with E2SC, are the only methods capable of significantly (by more than 28%) reducing the

training set while maintaining effectiveness in all cases. Moreover, given the improvements

of more than 40% on the reduction rate of biO-IS over E2SC, the former is clearly the

winner regarding the reduction-effectiveness tradeoff criterion.
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task dataset biO-IS E2SC (LR) CNN LSSm LSBo EGDIS CIS IB3

To
pi

c

DBLP 41.0% 25.0% 52.4% 17.4% 72.8% 62.0% 82.0% 40.0%
Books 29.0% 25.0% 32.1% 8.8% 63.7% 62.0% 80.0% 15.0%
ACM 37.0% 25.0% 47.1% 19.0% 67.7% 55.0% 46.0% 56.0%
20NG 31.0% 25.0% 27.9% 0.5% 23.2% 68.0% 50.0% 5.0%

OHSUMED 34.0% 25.0% 45.5% 21.9% 69.8% 57.0% 80.0% 53.0%
Reuters90 37.0% 25.0% 50.7% 28.4% 76.9% 54.0% 67.0% 1.0%

WOS-11967 60.0% 50.0% 45.4% 22.1% 68.4% 57.0% 77.0% 54.0%
WebKB 35.0% 25.0% 42.9% 24.1% 71.1% 53.0% 57.0% 52.0%
Twitter 39.0% 25.0% 51.0% 18.0% 70.0% 59.0% 77.0% 60.0%
TREC 39.0% 25.0% 31.3% 18.4% 37.8% 39.0% 22.0% 41.0%

WOS-5736 55.0% 50.0% 50.4% 20.1% 70.9% 62.0% 69.0% 59.0%

Se
nt

im
en

t

SST1 55.0% 25.0% 18.9% 5.7% 7.7% 20.0% 60.0% 31.0%
pang_movie 39.0% 25.0% 46.8% 18.8% 63.5% 63.0% 77.0% 66.0%

MR 35.0% 25.0% 46.7% 3.3% 48.8% 63.0% 58.0% 67.0%
vader_movie 37.0% 25.0% 47.2% 18.2% 63.3% 63.0% 75.0% 67.0%

MPQA 37.0% 25.0% 64.2% 11.2% 55.3% 45.0% 19.0% 48.0%
Subj 32.0% 25.0% 50.8% 21.1% 71.2% 73.0% 51.0% 73.0%
SST2 38.0% 25.0% 48.4% 1.9% 5.8% 64.0% 55.0% 68.0%

yelp_reviews 53.0% 50.0% 58.6% 11.1% 65.3% 77.0% 60.0% 69.0%

La
rg

e AGNews 30.8% 25.0% - - - - - -
Yelp_2013 57.2% 25.0% - - - - - -
MEDLINE 31.6% 25.0% - - - - - -
Average 40.1% 28.4% 45.2% 15.3% 56.5% 57.7% 61.2% 48.7%

Table 5.7: Percentage of reduction of the training set size. Darker cells indicate higher
reductions achieved by the corresponding IS method within the dataset.

5.4.5 What is the impact of applying biO-IS in the text

classification models’ total construction time?

Choosing only the most representative instances should naturally decrease the time

required for constructing a model. However, intuitively, including an IS extra step prior

to the model’s construction phase could potentially result in increased overhead for the

overall time. In fact, as we shall discuss, in some cases, incorporating an IS method to

reduce the training in the model construction process may require more time than building

a model with all the data if the IS step is not sufficiently efficient.

We analyze this behavior in the next experiment, in which we consider the total

cost as the sum of the time of preprocessing + IS application + training time to build

the model. In other words, for IS methods to be practical, they must also provide effi-

ciency improvements. In Table 5.8, we assess whether reducing the training set with an IS

method does pay off for the overall efficacy. To do so, we compare the speedups produced

by applying each IS approach to the respective RoBERTa classifier in each dataset. 13

According to Table 5.8, biO-IS (the best selector) can also achieve satisfactory

overall speedup improvements. Its average speed-up is 1.67 (varying between 1.31 and

2.46), producing time improvements in all scenarios. E2SC had an average speed-up of

13The average total time for model training can be seen in Appendix D
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task dataset biO-IS E2SC (LR) CNN LSSm LSBo EGDIS CIS IB3

To
pi

c

DBLP 1.77 1.31 1.17 0.87 1.23 1.94 0.11 0.74
Books 1.42 1.36 1.05 0.88 1.22 2.04 0.28 0.64
ACM 1.47 1.27 1.48 1.00 1.37 1.89 0.48 1.18
20NG 1.42 1.30 1.13 0.87 1.00 2.27 0.99 0.74

OHSUMED 1.59 1.35 1.49 1.06 1.89 1.58 0.39 1.38
Reuters90 1.58 1.30 1.46 1.02 2.08 1.81 0.82 0.75

WOS-11967 2.46 2.02 1.37 0.99 1.89 2.09 0.72 1.74
WebKB 1.34 1.16 1.10 1.02 1.82 1.49 0.51 1.19
Twitter 1.43 1.35 1.71 1.02 1.82 2.05 0.40 1.61
TREC 1.50 1.23 1.30 1.12 1.24 1.31 0.21 1.23

WOS-5736 2.00 1.79 1.54 1.09 2.30 2.08 1.33 1.78

Se
nt

im
en

t

SST1 2.05 1.29 1.22 0.95 0.84 1.21 0.21 0.89
pang_movie 1.54 1.28 1.49 1.05 1.57 2.13 0.53 1.55

MR 1.41 1.27 1.19 0.92 1.09 2.03 0.28 1.53
vader_movie 1.46 1.27 1.59 1.09 1.54 2.12 0.53 0.89

MPQA 1.31 1.18 2.18 0.86 1.33 1.60 0.07 0.85
Subj 1.32 1.32 1.79 1.07 1.98 2.97 0.39 2.30
SST2 1.42 1.24 1.46 0.87 0.81 2.21 0.31 1.80

yelp_reviews 2.31 2.17 2.09 1.15 2.30 3.13 1.45 2.84

La
rg

e AGNews 2.02 1.75 - - - - - -
yelp_2013 1.96 1.45 - - - - - -
MEDLINE 1.92 1.60 - - - - - -
Average 1.67 1.42 1.46 0.99 1.54 2.00 0.53 1.35

Table 5.8: SpeedUp on Total Application Cost of the IS Methods applied to RoBERTa in
each dataset. The greener, the higher speedup; the redder, the higher the computational
cost (average execution time) compared to NoSel.

1.42 (varying between 1.16 and 2.17). This means significant speedup gains over the

state-of-the-art method, achievable due to the extra reduction.

Only one of the strategies presents a slightly higher speedup than biO-IS, – EGDIS

with a speedup of 2.0. This method, however, EGDIS achieved satisfactory effectiveness

results in only eight datasets. Another strategy that produced a notable speedup is

CNN, with an average speedup of 1.46. As EDGIS, CNN achieved satisfactory results in

effectiveness in only 11 datasets.

5.4.6 Carbon emissions (CO2e) Considerations

Following, we discuss the emission of CO2 – an estimated measure of greenhouse

gases – converted to their equivalent amount of carbon dioxide, which is generated during

the IS phase and the classification models’ finetuning. This estimation is based on the

methodology presented in [74].

This dissertation’s performed experiments resulted in about 5600 hours of com-

putation (Section 5.3). Considering [74], we estimate that this computation resulted in

approximately 312 kg of CO2e emissions. To put this into perspective, these emissions are
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equivalent to driving a distance of 1100 miles in a passenger car or taking four flights from

Sao Paulo (Brazil) to Buenos Aires (Argentina). The significant carbon footprint of these

experiments highlights the environmental impact of extensive computational tasks often

involved in machine learning research. It emphasizes the necessity for more sustainable

proposals as biO-IS in developing novel technologies.

Considering the application of RoBERTa in each dataset with no training set re-

duction (NoSel), the resulting carbon emission amounted to 18.2 kg. On the other hand,

when we consider the application of our proposed framework (biO-IS), the resulting car-

bon emission amounted to only 9.89 kg CO2e. In other words, with emissions of less than

10 kg CO2e (54% of the total emitted), bio-IS would have been able to provide models

with equivalent effectiveness to models without the selection stage. This demonstrates the

efficacy of biO-IS not only in terms of model performance, training reduction capability,

and overall speed-up improvements but also in reducing the environmental impact, serving

as the SOTA baseline for the proposal of new IS methods aimed at reducing significantly

the cost of ATC models.

5.4.7 Visually summarizing the results

We summarize the results we have obtained considering all the tripod requirements

at once. To do so, we normalize the values resulting from each of the considered metrics

by dividing them by the respective highest value (reduction and speedup). In the case of

effectiveness, the normalized value was the number of datasets in which the IS method

reduction caused no effectiveness losses when compared to NoSel. In other words, the

reduction did not negatively affect the effectiveness of the classifier (MacroF1).

Effectiveness

Speed-upReduction

0.2
0.4

0.6
0.8

1.0

Comparing IS Methods
biO-IS
E2SC (LR)
CNN
LSSm
LSBo

Figure 5.4: Summarizing the results
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As shown in Figure 5.4, biO-IS has a balanced performance across all three metrics,

offering the best effectiveness and speed-ups while maintaining a good trade-off between

reduction and the remaining restrictions. Also E2SC excels in effectiveness but with a

reduced reduction rate and speed-up improvements. CNN shows moderate-to-low perfor-

mance in all metrics. LSSm shows an acceptable effectiveness at the expense of speed-up

and reduction. LSBo improves over LSSm regarding reduction and speedup, but it sacri-

fices the classifier’s effectiveness performance in this process.

All in all, biO-IS achieved the best tradeoff among all methods, considering all

the tripod requirements, considerably advancing the state-of-the-art in IS.

5.5 Summary

In this chapter, we took our research a step further by proposing biO-IS – an

extended bi-objective instance selection, a novel IS framework aimed at simultaneously

removing redundant and noisy instances from the training. biO-IS estimates redun-

dancy based on scalable, fast, and calibrated weak classifiers and captures noise with

the support of a new entropy-based step. We also propose a novel iterative process to

estimate near-optimum reduction rates for both steps. Our extended solution is able to

reduce the training sets by 41% on average (up to 60%) while maintaining the effective-

ness in all tested datasets, with speedup gains of 1.67 on average (up to 2.46x). No

other baseline, not even our previous SOTA solution, was capable of achieving results

with this level of quality, considering the tradeoff among training reduction, effectiveness,

and speedup. Moreover, given biO-IS’s improvements over E2SC, the former is clearly

the winner regarding the reduction-effectiveness tradeoff criterion. Therefore, answering

RQ3, we demonstrated it was possible to extend the previous proposal to not only remove

redundancy but also remove noise, enhancing the level of quality considering all tripod

criteria. Indeed, our results are interesting from both theoretical and practical perspec-

tives since we demonstrated that transformers can be effectively trained with less data,

leading to energy, budget, and carbon emission savings, which confirms our Ph.D.

dissertation hypothesis (H1).
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Chapter 6

Conclusion and Future Work

In this chapter, we present a summary of the results of this Ph.D. Dissertation and we

provide future directions to be pursued after finalizing this dissertation.

6.1 Summary of Results

In this Ph.D. Dissertation, we have surveyed the classical and most recent IS

approaches. Our analyses reveal great advances in the last years, with several state-of-

the-art methods being proposed and a limited scope of application. Most methods (more

than 90%) are applied to small tabular datasets. Applications to NLP are rare, despite

being one of the areas that could benefit the most from IS methods.

To help close this gap, we performed a thorough and rigorous comparative study of

classical and state-of-the-art IS methods applied to SOTA Automatic Text Classification

solutions. In this comparative study, we considered a tripod (reduction-effectiveness-cost)

and the respective trade-offs.

Our study was motivated by the massive increase in the cost of new ATC solutions,

including the construction of deep learning representations (embeddings) and the huge

amount of ever-increasing data available. Specifically, given the success of IS methods in

other domains for reducing the amount of training without loss of effectiveness and with

gains in efficiency, our work aimed to verify whether such potential benefits extend to the

ATC context. This comparative investigation is missing in the literature and constitutes

an original contribution of our work.

Based on experiments with over 5,000 measurements, some interesting discoveries

have emerged, including:

1. The discovery that, despite the potential of IS methods to deal with noise, this group

of methods, in general, considering the best classifier per dataset, was not able to im-

prove the effectiveness of the ATC models, with a few notable exceptions. One such

exception is XLNet, in which the use of IS methods generated small improvements
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in 6 out of 19 datasets. We hypothesize that this is due to the controlled nature

of our datasets (standard benchmarks) but this is yet to be confirmed with further

analyses. Results in “wilder” datasets such as those obtained from social network

applications where the end user is responsible for the labeling process (instead of a

specialist) may produce different results.

2. Among the 13 evaluated IS methods, three IS methods stood out – LSSm, CNN,

LSBo –, which have been able to meet all criteria of the tripod (reduction-effectiveness-

cost) in 12 out of 19 evaluated datasets – at most. The best IS method (CNN) man-

aged to significantly reduce the training sets (by 46.6% on average) while maintain-

ing the same levels of effectiveness in 12 datasets, with speedups of 1.48 on average.

3. It became clear that in the ATC context, though costly, the fine-tuning step of deep

learning networks is crucial for improving effectiveness models. In this context, IS

methods can be useful for reducing the costs of building/fine-tuning the models in

a non-negligible number of cases (161 out 190 precisely). Indeed in these cases, the

IS methods were responsible for reducing the training without incurring in loss of

effectiveness, consequently leveraging efficiency improvement. Contrary to what has

been widely reported in the literature, we find out that neural networks do not al-

ways need a large amount of data to properly work in the ATC context. Representa-

tive textual data is enough to achieve high effectiveness at lower costs in some cases.

4. As a secondary contribution, the definition of the current state-of-the-art (neural or

non-neural) in 22 textual datasets, extending the work presented in [34];

In sum, our evaluation of the tripod constraints (reduction - efficiency - effective-

ness) of several conventional IS techniques indicates that, for the most part, they can

reduce the training set size without compromising effectiveness, resulting in improved

efficiency. Specifically, when fine-tuning transformer methods, the IS techniques decrease

the required amount of data while also delivering substantial reductions in training time.

However, there are several cases where traditional approaches fail to meet the tripod re-

quirements fully. It is worth noting that our findings do not entirely support or refute

the existing literature on the IS field. Instead, they underscore the need for further re-

search into IS techniques applied to the ATC context, especially with regard to recent

transformer architectures. In any case, our investigation highlights a lot of room for

developing more efficient, effective, and scalable IS techniques in the big data scenario.

To help close this gap, we also proposed E2SC, a novel redundancy-oriented two-

step framework that satisfies all the constraints of the tripod and can be used in real-world

situations, even with large datasets containing thousands of instances, with a particular fo-

cus on transformer-based architectures. E2SC framework introduces two novel approaches

to the IS field: (i) the use of calibrated weak classifiers (both exact and approximate) to
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estimate the usefulness of data during the training phase of a transformer, and (ii) the

incorporation of iterative processes and heuristics, reported by an extensive experimental

evaluation of IS alternatives, to determine the optimal reduction rates. The experimental

results show that E2SC outperforms the current SOTA in terms of effectiveness, reduction,

and speedup. Across 22 datasets, E2SC reduced training sets by almost 30% on average

while maintaining effectiveness in all datasets, resulting in speedup improvements of up

to 70%. Additionally, E2SC could be adapted to large datasets, which is still challenging

for traditional approaches.

Considering the growing adherence to noisy means for dataset annotation (e.g.,

crowd-sourcing) in relevant scenarios, e.g., social networks where the user herself provides

the categorization, it is desired to apply IS approaches considering noise issues. However,

as seen in Section 5.1, only two traditional IS approaches could satisfactorily remove noise.

The remaining IS approaches demonstrated to be limited in terms of noise removal, in-

cluding our proposed framework (E2SC). Considering this opens space for developments,

we have proposed an extended bi-objective Instance Selection Framework (biO-IS), which

advances the SOTA in IS by considering removing both redundant and noisy instances

simultaneously. biO-IS comes as an answer to limitations of our previous work – E2SC

– which, as far as we know, was the previous SOTA in IS applied to transformer-based

ATC classifiers. Our experimental evaluation considering 22 benchmark datasets apply-

ing IS methods as input for the RoBERTa classifier revealed that when evaluating the

capability of the IS baseline methods and our previous solution to remove noise, none of

the IS solutions performed satisfactorily except for biO-IS, which managed to remove up

to 66.6% of the manually inserted noise. biO-IS significantly reduced the training sets by

40.1% on average (ranging between 29% and 60% reduction) while maintaining the same

levels of effectiveness in all considered datasets. Moreover, biO-IS consistently provided

speed-ups of 1.67x on average (up to 2.46x). No baseline method achieved results of this

quality across all posed criteria. The unique baseline method capable of maintaining ef-

fectiveness on all datasets was our previous method E2SC. biO-IS outperforms E2SC in

reduction rate (41%) and speed-ups (from 1.42x to 1.67x).

These findings have both theoretical and practical implications, confirming our

Ph.D. dissertation hypothesis (H1) by demonstrating that transformers can

be trained with fewer data without sacrificing effectiveness, leading to cost

and energy savings and, consequently, reduced carbon emissions.
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6.2 Limitations

Large Language Model Considerations Our current work is focused on the appli-

cation of instance selection methods as a pre-processing step for methods based on 1st

and 2nd generation Transformers (e.g., RoBERTa). It should be noted that conducting

the experiments presented in this dissertation required a significant amount of time and

resources – our experiments sum up around 5,600 hours of continuous computation.

Given the recent rise of state-of-the-art Large Language Models (LLMs) methods,

especially open-sourced ones such as LLama 3 [131] and Bloom [75], it is quite natural

to wonder if and how the proposed instance selection methods would/could be applied to

fine-tune these state-of-the-art LLMs for classification and other NLP-relates tasks. The

exorbitant cost of fine-tuning these LLM models – between 25-30 times more expensive

than fine-tuning 1st and 2nd generation Transformers [117] – makes the application of

IS methods very appealing in these scenarios.

However, these enormous costs imply that experiments with such huge models need

to be carefully planned to avoid wasting resources. Moreover it is not clear that these

very complex LLMs will always be better than the best Transformer in all scenarios. For

instance, RoBERTa is a remarkable sentiment classifier [36], often ranking prominently on

leaderboards that include sentiment classification, such as the GLUE benchmark1. Indeed,

results reported in this article in several sentiment datasets are above 90% of macroF1.

Even if an LLM can produce further gains of a few percent points, it is doubtful if these

gains will translate in practical improvements in real-world applications.

Further evidence that the effectiveness gains in specific tasks compensate the much

higher costs still need to be provided by the literature. In other words, a conclusive

analysis of the cost-benefit is still lacking in the literature, which is essential before we

delve into this costly endeavor. We intend to perform the aforementioned cost-benefit

analyses soon (and follow the literature for further support). If the results support that

the benefits are worth the cost, we will pursue IS with LLMs, perhaps exploiting new

computational paradigms such as Quantum Computing [50] to promote scalability.

Further Limitations Despite relevant contributions, our study has some additional

limitations, besides the issues regarding the use of LLMs discussed above. Our evaluation

targeted specifically the automatic text classification task. Although we have considered a

large set of datasets, increasing the number of dataset domains and extending our analysis

to include other Information Retrieval tasks such as searching/ranking and recommen-

dation as well as other NLP tasks, for instance, question answering and supervised topic

modeling would provide new and valuable insights for the general applicability of IS in a

broader scope.

1https://gluebenchmark.com/leaderboard/

https://gluebenchmark.com/leaderboard/
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Despite the general wisdom that the more data, the better the pre-trained model

performance, our results motivate a different, less costly approach (i.e., that the better

the selected instances, the better the models’ performance). Yet, we have not investigated

the application of IS in the pre-training stage. In particular, the study of the impact of

building a LLM from scratch using an IS framework is an interesting venue to pursue.

6.3 Future Directions

We believe that our work opens up several avenues for investigation. In particular,

the exploration of IS methods in many domains has a large potential for improving the

conduction and enabling scientific and computationally feasible experiments with large

volumes of data, especially for strategies based on deep learning, at a smaller cost and

with higher scalability.

In future works, we intend to investigate the introduction of IS techniques in the

context of AutoML solutions as a step in a pipeline of transformations as in [37, 31].

In [31], we proposed three new steps – MetaFeatures (MF), Sparsification (SPA), and IS

– into the traditional pre-processing phase of pipelines for ATC as well as a thorough and

rigorous evaluation of the trade-offs between cost and effectiveness associated with the

introduction of these new steps. Therefore, a natural future work would be to investigate

the impact of our final solution (biO-IS), as well as, new proposals regarding SPA and MF

document representation (e.g., SPLADE [53]) into AutoML pipelines for ATC, aiming to

increase their effectiveness while reducing their associated costs.

Considering the vast number of dimensions in textual datasets, assessing how Fea-

ture Selection (FS) methods interact with IS can be very interesting. Essentially, this in-

volves working with both the rows (documents) and the columns (features) of a document-

feature matrix representing textual data [108]. In this direction, we are already proposing

the study of a simple and interesting approach with large potential, which consists of ex-

ploring the fact that the document-term matrix (usually coded as TF-IDF) could be seen

by vectors of terms instead of the traditional form (vector representation document). In

other words, it would be the equivalent of transposing the matrix in question. The main

advantages of the proposal are: (i) We do not depend on training and (ii) the possibility

of using several FS approaches, already well established in the literature, adapted for IS.

Another challenging issue of the ATC task is how to reduce the costs of obtaining

labeled data to train classification models [122]. Solutions to this issue frequently involve

active learning (AL) strategies [8], which aim to select, among the often abundant set

of unlabeled data, only the most “informative” (diversified and representative) data
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instances to label. The number of instances selected in stage is typically limited to a

given budget or the maximum number of instances one can afford to label, as the cost

and complexity of labeling data are non-negligible. Considering that this scenario is fully

complementary to instance selection, it would be interesting to study how to merge these

approaches in order to take advantage of both scenarios.

Skewness in imbalanced datasets is also an issue for ATC tasks [128]. In this

scenario, one (or more) classes are underrepresented, which usually causes a bias in the

learning process towards the majority class(es). Usually, the aforementioned issue is

handled by applying undersampling solutions [99]. Despite having different objectives,

the areas of IS and undersampling are related, as both deal with techniques that aim to

select a subset of representative data. Therefore, in future works, we intend to apply the

proposed IS methods and compare them with undersampling solutions, aiming to analyze

their capability of reducing bias. This scenario consists of ongoing research by our group,

in which preliminary results can be seen in [51].

In continual learning (CL) [87], a model is trained incrementally over time on a

sequence of datasets, called learning experiences. CL methods should be stable (remember

previously learned knowledge), plastic (learn on new data), and efficient (learn quickly and

efficiently) even on long timescales and with frequent updates. Most research[30] is focused

on improving the stability of DL models. This problem becomes very challenging when

past data is unavailable due to catastrophic forgetting (CF): the model quickly forgets past

data in some settings. To prevent CF, replay-based methods fine-tune the previous model

on the current data and memory. After each learning experience, they update the memory

by adding some of the samples from the current experience. When the memory has a fixed

size, some of the previous samples are also removed. The application of IS methods to

select the most representative training data for CL experiences is a natural one.

Our results motivate investigating the behavior of IS strategies beyond ATC such

as searching, ranking, recommendation, and other NLP tasks, such as question answering

and supervised topic modeling [138, 60, 23]. More specifically, in the case of searching and

ranking, IS can be used to provide initial and potentially more relevant results by delim-

iting the most representative subset of possible answers, thus improving the overall search

experience. In the case of recommendation, more specifically review-aware recommenda-

tion systems (RARs), IS approaches may efficiently elucidate the user’s preferences by

selecting representative reviews to be considered by these approaches. Finally, in the case

of topic modeling, our final IS proposal could be used to remove simultaneous redundancy

and noise for further effective and efficient TM method application.

Another interesting research line we intend to explore involves applying our pro-

posed framework in the pre-training stage of deep learning models, particularly in scenar-

ios where labeled data is scarce or unavailable. By leveraging our approach, we aim to en-

hance the efficiency and effectiveness of pre-training (not finetuning) large-scale language
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models from scratch. This could involve developing novel techniques for unsupervised or

self-supervised learning [84], enabling the model to learn robust and generalizable repre-

sentations from vast amounts of unannotated text data. The ultimate goal is to improve

the performance and scalability of language models while reducing the computational

resources and time required for training.

Another interesting research line is enhancing few-shot (FS) [13] learning models.

Basically, for this kind of model, a few demonstrations of the task are given at inference

time as examples. These examples typically consist of a context and a desired completion.

For instance, in the context of sentiment analysis in the product domain, examples could

include: “Positive: The camera features are amazing” and “Negative: The product pre-

sented durability issues. Not recommend to anyone.”. FS approaches involve providing

K such examples of context, followed by a final example of context, with the model ex-

pected to make the inference. The primary advantage of few-shot learning is a significant

reduction in the need for task-specific data, as only a few examples of the context are

required. However, a major disadvantage is that the results obtained from this method

have generally been inferior to those from SOTA fine-tuned models. Consequently, we are

currently proposing the use of IS to enhance the effectiveness of FS approaches.

Last but not least, we intend to perform a cost-benefit analysis on LLMs (effec-

tiveness vs. cost) to potentially pursue IS for fine-tuning LLMs, also exploiting new

scalable computational paradigms such as Quantum Computing [50]. In this context, we

have preliminary results that exploit Quantum Annealing (QA) [105]. To the best of our

knowledge, there have been no prior attempts to tackle the IS problem using QA. We have

also proposed a new Quadratic Unconstrained Binary Optimization (QUBO) formulation

specific for the IS problem. In this line, in future work, we intend to experiment our

quantum-based proposal with new QUBO formulations, new transformers, and LLMs. It

would also be very interesting to understand the actual environmental impact of quantum

annealers. In fact, reducing power and emissions is crucial and there have been attempts

to analyze the emissions of several approaches in the IR field [120]. This type of analy-

sis should also be carried out for quantum annealers to understand how much they can

impact in providing greener computation.
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Appendix A

Automatic Text Classification

Datasets

Topic Classification Datasets

• DBLP [130] dataset is a set of research papers. This dataset is composed of 38, 128

papers in the computer science field. Each paper is classified into one of the fol-

lowing knowledge subareas: computer vision, computational linguistics, biomedical

engineering, software engineering, graphics, data mining, security and cryptography,

signal processing, robotics, and theory. As in [96], we had removed the venue for

preventing a lack of information about the subarea class;

• Books [139] dataset is a collection of book descriptions from the Goodreads1 web-

site, a famous book review platform. This dataset is composed of 33, 594 book

descriptions classified into the following 8 genres: children, graphic comics, para-

normal fantasy, history & biography, crime & mystery thriller, poetry, romance, and

young adult. As in [96], we used as data the title and description of each book;

• ACM-Digital Library (ACM): a subset of the ACM Digital Library with 24, 897

documents containing articles related to Computer Science. We considered only the

first level of the taxonomy adopted by ACM, composed by 11 classes.

• 20 Newsgroups (20NG) is a classical and popular dataset for experiments in

text applications of machine learning techniques. It contains 18,846 newsgroup

documents2, partitioned almost evenly across 20 different newsgroup categories.

• OHSUMED [63], the collection contains medical documents collected in 1991 re-

lated to 23 cardiovascular disease categories. The version we used has 18,302 doc-

uments, distributed very irregularly among the categories varying from 56 to 2876

documents per category;

• Reuters90 (REUT): this is a classical text dataset, composed of news articles

collected and annotated by Carnegie Group, Inc. and Reuters, Ltd. We consider

here a set of 13, 327 articles, classified into 90 categories.
1https://www.goodreads.com/
2http://qwone.com/~jason/20Newsgroups/

https://www.goodreads.com/
http://qwone.com/~jason/20Newsgroups/
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• Web Of Science [70] (WOS) is a collection of academic articles/journals. In this

work, we analyze two versions of this dataset: WOS-5736, with 5,736 documents

classified in 11 classes; WOS-11967, with 11,967 documents partitioned across 33

categories;

• 4 Universities (4UNI), a.k.a, WebKB: contains Web pages collected from Com-

puter Science departments of four universities (Cornell (867 pages), Texas (827),

Washington (1205), Wisconsin (1263) and 4,120 miscellaneous pages collected from

other universities) by the Carnegie Mellon University (CMU) text learning group3.

There is a total of 8,282 web pages, classified into 7 categories: “student”, “faculty”,

“staff”, “department”, “course”, “project” and “other”.

• TREC [81], with 5, 952 documents (i.e. questions), is a question classification

dataset in which the task is to classify a question into 6 main subject categories:

such as human, location, entity, abbreviation, description and numeric value.

Sentiment Analysis Datasets

• Stanford Sentiment Treebank (SST1)[126] is an extension of MR with fine-

grained labels ranging between very positive and very negative polarity. The SST

dataset extended the MR by adding a more curated human annotation into 5 classes.

SST2 is a binary version of SST1 where only the samples with positive and negative

labels were used (the samples with neutral labels wore removed).

• pang movie and vader movie datasets are composed of more than 10K user movie

reviews. WhileMovie review (MR)[104] dataset is a binary (positive and negative

labels) sentiment polarity composed of movie reviews4.

• vader nyt is composed of comments from the New York Times website content.

Some comments are directly related to the news they were inserted to.

• Multi-Perspective Question Answering (MPQA)[42] is an imbalanced dataset

of opinion polarity detection task. This dataset contains news documents from many

sources. Each document was classified into positive or negative classes.

• Subjectivity dataset (Subj)[83], with 10, 000 documents, is a binary classification

dataset in which the task is to classify a document (i.e. sentence) as subjective or

objective classes.

• yelp reviews 5 dataset is focused on product reviews, opinions, and comments of

business.
3http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data
4http://www.cs.cornell.edu/people/pabo/movie-review-data/
5https://www.yelp.com/dataset/challenge

http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data
http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.yelp.com/dataset/challenge
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Appendix B

Automatic Text Classification

Methods

SVM We use the SVM classifier with TFIDF and MetaFeatures (MFs), as it still is

one of the best text classifiers capable of dealing with both high and low-dimensional

representations. For the SVM implementation, we adopted the LIBSVM [24]. LIBSVM

supports sequential minimum optimization that guarantees optimal Lagrange multipliers.

The regularization parameter was chosen among eleven values from 2−5 to 215 using the

validation sets. Also, we used the following formulation for TFIDF weights: The TFIDFi

of element (term) i in the vector is given by TFi × IDFi, where TFi is the frequency of

term i in the document and IDFi = log( N
dfi
), where N is the total number of documents

and dfi is the document frequency of the i-th term. Note that the IDF is calculated using

only the training information. In addition, we normalize the TF and IDF product result

using the Euclidean norm. (a.k.a L2 normalization).

BERT 1 is an end-to-end (E2E) deep learning classifier composed of a bidirectional

Transformer encoder with 24 Transformer blocks, 1024 hidden layers, and 340M param-

eters. The model is pre-trained with a 3.3 billion word corpus including BooksCorpus2

(800 million words) and English Wikipedia (2.5 billion words). The original model runs

on 16 TPU pods for training. In short, it predicts missing words from a sentence. The

authors proposed two pre-training tasks Masked language model (MLM) – this technique

masks words with a probability of 15% and the model is trained to predict the masked

words. and (ii) Next sentence prediction (NSP) – it trains the model to predict whether

two sentences are consecutive or not. BERT uses a multi-layer bidirectional Transformer

encoder whose self-attention layer acts forward and backward. BERT redefined the state-

of-the-art for 11 natural language processing tasks.

XLNet [145] is a recent E2E deep learning classifier that has outperformed BERT

in 20 natural language tasks. BERT has the disadvantage of assuming that the pre-

dicted tokens are independent given unmasked tokens, a strong simplification in natural

language. XLNet, a generalized autoregressive pre-training model, addresses this short-

coming by using a combination of advantages of autoregressive (AR) and autoencoder

1Available in https://github.com/yaserkl/
2Available in https://googlebooks.byu.edu/

https://github.com/yaserkl/
https://googlebooks.byu.edu/
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(AE) models. In other words, the method uses a permutation language modeling ob-

jective to combine the advantages of AR and AE methods. XLNet is pre-trained with

the same parameters and word corpus as BERT. In addition, three-word corpora are

used, resulting in a 32.89B word corpus used to pre-training the model. Another notable

difference is that training was performed with 512 TPU v3 chips.

RoBERTa [85] (Robustly ooptimized BERT approach) is an E2E method that,

in short, includes the original BERT fine-tuning with more data and manipulations in-

put. More specifically, it extends the study of BERT, mainly in: i) amount of data for

pre-training; ii) mini-batch size; ii) training time; iii) size of the sequences considered; iv)

modification of the objective task in the pre-training; and v) introduction of dynamic mask

generation. The RoBERTa model was trained with an order of magnitude of data greater

than the BERT. The training was carried out on a dataset in English with approximately

160GB of text containing sequences of different domains and sizes. The training was

conducted on an architecture with 1024 32GB Nvidia V100 GPUs for approximately one

day, meaning more computing power and time than the original BERT. The study of the

Roberta model takes into account 4 objective tasks: Segment-Pair + next-sentence pre-

training (NSP), Sentence-Pair + NSP, Full-Sentences, Doc-Sentences. That is, it removes

the objective from the original BERT next-sentence pretraining objective. In addition to

training the model, the following was increased: i) the size of the mini-batches (up to 32K

sequences); ii) learning rates; and iii) the length of the sequences (up to 512). Finally,

to improve the positioning of the mask proposed by BERT, the authors introduced the

concept of Dynamic Masking to the model. The idea of dynamic masking is to place the

MASK token in different positions in the same sequence. To avoid having to re-implement

BERT, the authors duplicated each sequence 10 times ensuring that the MASK token was

in different positions.

GPT-2 [109] (Generative Pretrained Transformer 2 ) is an OpenAI model, which

advanced the state of the art in 8 NLP tasks from its GPT predecessor. The extension

of the GPT2 model was performed by normalizing the layer of each sub-block, adding a

normalization at the end of the self-attention layer, and training in more data. The GPT2

model was trained on a large 40GB textual corpus dataset called WebText. The model

trained for the next-token prediction task and the main contribution was the application of

techniques at the sub-word level (which differs from the traditional word and/or sentence

level) through the Byte Pair Encoding (BPE) algorithm. Finally, the size of the models

(i.e. number and size of each layer) varies between 117M parameters (small model) and

1.5B parameters (extra large model).

DistilBert [118] is a distilled extension of Bert, whose authors claim to preserve

97% of performance while keeping only half of the parameters to be learned. It is based

on a technique called distillation which by definition is the approximation (through the

Kulback Leiber divergence metric - KL) of a large neural network like BERT to a small
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network under the assumption that the smaller one can generalize well the results of the

larger one. The main modification was the reduction of the hidden layer size from 768

to 512, which resulted in a halving of the number of parameters to be learned by the

network. Like Roberta, this model follows the concepts of: i) training in larger batches;

ii) dynamic masking; iii) changing the objective next sentence prediction task. Finally,

the DistilBERT model was trained on 8 x 16GB V100 GPUs for approximately 3.5 days

under the same data as the original BERT.

DistilBert [118] is a distilled extension of Bert, whose authors claim to preserve

97% of performance while keeping only half of the parameters to be learned. Like Dis-

tilBert, Albert [73] (A Light BERT ) is a model that aims to better train and increase

BERT’s performance. In this case, the authors propose techniques of parameter sharing

and factorization of the embedding matrix. The parameter-sharing technique consists of

sharing weights between hidden layers of the network. Parameter sharing in the attention

layer is responsible for a reduction of approximately 70% of the model’s parameters, which

improves performance and the amount of memory needed for the model. ALBERT’s sec-

ond major contribution was the factorization of the Embedding matrix, where the authors

proposed the use of a hidden layer matrix factorization method to reduce the number of

parameters. Although it leads to a drop in model efficiency, this technique alone can

reduce about 80% of the model parameters. The target task of this model was Inter Sen-

tence Coherence Prediction, and the model was trained in a corpus containing 16 GB of

uncompressed data. Finally, the size of the models varies between 12M parameters (base

model) and 235M parameters (extra large model).

BART [78] (Bidirectional and Aauto-Regressive Transformer) like BERT, it is

a Denoising Autoencoding model. join features like bidirectional encoder (as well as

BERT) and Autoregressive (a.k.a. left-to-right) decoder (GPT2). The main idea is to

include noise in the original text through an arbitrary noise function, while also learning

to reconstruct the original text. Thus, in practice, a set of input tokens is replaced by

the mask ([MASK] token) with noise, and the task on which the model is trained is to

predict the original token for each token [MASK]. The main noise functions used are: i)

token masking: adding the token [MASK] randomly as well as BERT; ii) token deletion:

random token removal; iii) text infilling: pieces of text of variable size are replaced by

a single token [MASK]; iv) sentence permutation: randomization of sequences based on

a pre-defined period; and v) Document Rotation: after choosing a random token, the

sequence is rotated.

All E2E methods were implemented with support from the PyTorch-based trans-

formers library3. To guarantee the reproducibility and sharing of code, we make the

implementations used in this work available on GitHub4.

3Available in https://huggingface.co/transformers/
4Available in https://github.com/waashk/instanceselection/

https://huggingface.co/transformers/
https://github.com/waashk/instanceselection/
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Appendix C

Alternatives for the IS Input

Representation

There exist several options to use as (vectorial) representation input for the IS

methods, which include the TF-IDF weighting-scheme-based representation, static embed-

dings (Word2vec, GloVe, fastText), and contextual embeddings, resulting from fine-tuning

a model or using a pre-trained model without any tuning, aka, the zero-shot approach.

As previously discussed, we have decided to adopt the TF-IDF weighting-scheme-based

representation due to several factors, including simplicity, popularity, effectiveness, and

understandability. Next, we present results that strengthen this decision.

Static Embeddings A first alternative for replacing TFIDF in our experiments would

be static embeddings, such as FastText[68]. A common strategy to represent documents

with FastText is using the representation derived from averaging the respective embedding

vectors of the words present in the document. Adopting this document representation,

Cunha et al. [31] demonstrated that the deployment of classification techniques based on

static embeddings results in considerable effectiveness losses when compared to standard

TFIDF (+SVM) in several of the exploited datasets. Additionally, exploring embeddings

can considerably increase the computational costs – 1.5x and 31.1x slower than TF-IDF.

Contextual Embeddings via Model Fine-Tuning Another possibility would be

using contextual embeddings built by modern neural Transformer architectures, as they

leverage most state-of-the-art models in many natural language processing tasks through

(i) a model fine-tuning or (ii) pre-trained model without any tuning, aka, zero-shot ap-

proach. In both cases, the Transformers architecture would act as a textual Encoder that

represents the input raw text into a highly dimensional (e.g., 768-dimensions) vector space.

The first alternative (i) performs the fine-tuning process in each specific context

(dataset) to create the text encoder, which is then applied to the documents present in

each dataset to obtain the respective contextual embedding vectors. Despite the potential

benefits in terms of effectiveness [151], in the context of IS, it is unfeasible to tune before
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selecting, given the high cost of this procedure. In other words, it does not make any sense

to perform fine-tuning as a pre-processing step and, after that, select the most represen-

tative instances and finally train the (same or other strong) classification model again.

Contextual Embeddings via Zero-Shot Approach The zero-shot approach is a less

complex and computationally expensive option for contextual embeddings since we only

need to load a pre-trained model and represent each document in a vector of 768 dimen-

sions without the cost of any tuning. In this representation, we use a token included in

the model representing the sentence (in our case, the whole document), known as “CLS”.

In practice, this token corresponds to a pooling calculated with self-attention (instead of

average or max-pooling) of the vectors of the tokens present in the document [148]. We

will investigate other zero-shot contextual embedding alternatives for future work, such

as MUSE [72] and SentenceBERT [111].

Next, we present the results obtained using the BERT transformer model as a

pre-trained textual encoder in a zero-shot approach to generate the input representation

for the five best IS methods (Table 3.8). In Table C.1, we present the time increase rate

(Fold Average of a 10-Fold CV procedure) achieved by each selection method regarding

only the selection time. The time increase rate is calculated by dividing the selection time

using contextual embeddings and the selection time using TF-IDF as representation in-

put, respectively. A red color scale for each line (dataset), accompanied by the respective

value, is shown in the Table. The darker a cell, the more computationally expensive the

corresponding method is for the corresponding dataset.

As we can see, the use of contextual embeddings as IS input is more costly when

compared to the TFIDF input (dark red cells) with the IS methods: CNN, EGDIS

and CIS. In more detail, considering the contextual embedding representation, the CNN

method – considered the best method evaluated in this work in terms of the constraints’

tripod – becomes computationally much more expensive. On average, there is a time

increase of 9.8x (ranging from 1.47x – yelp reviews to 43.09x – SST1). Indeed, using

contextual embeddings with CNN to select instances becomes 1.3x to 3.0x more expensive

than training the model with all data (NoSel) in datasets such as DBLP, Books, ACM,

20NG, OHSUMED, and SST1.1

Significant increases in computational costs are also observed for EGDIS. Previ-

ously, considering TFIDF as input, this method had an average speed-up of 2x. On the

other hand, the use of contextual embedding representation made this method, on aver-

age, 25.11x more expensive (varying between 7.13x to 66.39x). Both CNN and EGDIS use

the KNN model iteratively in their approaches. With highly-dimensional, high-density

representations, as in the case of contextual embeddings, all (768) dimensions of the

1Due to space limitations, we provide an online table containing the exact times (in seconds) of the
application of all methods and analyzes presented here in the following link: https://shorturl.at/

zCLW7

https://shorturl.at/zCLW7 
https://shorturl.at/zCLW7 


145

representation must be considered during the distance calculation step, making this cal-

culation very expensive. On the other hand, the calculation of the distances with sparse

representations (such as TFIDF) considers only the non-zero dimensions, thus benefiting

from efficient data structure implementations such as inverted indexes that accelerate the

calculation enormously.

Table C.1: Selection time increase rate: Ratio between the selection time using contextual
embeddings and the selection time using TF-IDF as representation input, respectively.

Last, the CIS method was already expensive when using TFIDF as input repre-

sentation. Following this trend, the contextual representation made the selection process

even more expensive. This method uses a weak model (KMeans) to estimate the impact

of the chosen instances in each iteration. Therefore, it presents the same cost problem

mentioned above when considering iterative pairwise distance calculations applied to a

dense representation. CIS is an iterative method in which the number of iterations is de-

fined through a formula that considers the dataset’s characteristics (such as the number

of instances and features). Therefore, we were able to run only three iterations for each

dataset to estimate the time needed to run for all iterations. Since the time variation

between iterations is low in both representations, considering only three iterations, this

time estimation is reasonable. According to our estimates, it would take over 200 years

to run entirely for all datasets.

CNN, EGDIS, and CIS break the efficiency pillar of the tripod. LSSm and LSBo

strategies, on the contrary, have compatible selection times when compared to the TFIDF

input. LSSm is, on average, 11% more expensive while LSBo, becomes, on average, 20%

faster in the selection phase using zero-shot contextual representations. Both methods

are based on local sets. As such, they could be viable alternatives to use along with

zero-shot contextual embeddings. Next, we analyze the effectiveness of both IS methods

when using this representation.
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LSSm LSBo

Task dataset TFIDF Contextual TFIDF Contextual

T
o
p
ic

DBLP 81.1(0.8) ▲ 79.8(0.7) ▼ 79.1(0.6) ▲ 78.8(0.8) ▼

Books 88.8(0.5) ▲ 85.9(0.4) ▼ 84.0(0.5) • 84.5(0.4) •

ACM 69.6(1.3) • 68.5(1.1) • 63.8(1.5) • 65.3(1.3) •

20NG 90.7(0.5) ▲ 83.6(0.7) ▼ 90.7(0.6) ▲ 82.1(0.6) ▼

OHSUMED 73.8(0.5) ▲ 71.1(1.2) ▼ 68.8(1.2) ▲ 63.9(15.8) ▼

Reuters90 38.1(1.7) ▲ 36.9(1.7) ▼ 36.5(2.2) • 38.6(2.7) •

WOS-11967 86.4(0.9) ▲ 85.6(0.6) ▼ 84.9(0.6) • 85.3(0.5) •

WebKB 80.6(1.8) ▲ 78.2(1.9) ▼ 76.2(2.1) • 78.0(2.4) •

TREC 95.0(0.7) ▲ 92.8(1.3) ▼ 95.0(1.1) ▲ 92.1(1.1) ▼

WOS-5736 88.0(1.1) • 88.6(1.0) • 86.5(1.4) • 86.8(1.2) •

S
en

ti
m
en

t

SST1 53.4(0.9) • 53.0(0.9) • 53.2(0.9) • 52.2(0.7) •

pang movie 88.5(0.5) • 88.2(0.6) • 88.0(0.6) ▲ 87.4(0.6) ▼

MR 89.0(0.6) • 88.6(0.5) • 39.3(12.3) ▼ 87.6(0.5) ▲

vader movie 90.8(0.7) • 91.0(0.6) • 90.5(0.4) • 90.0(0.7) •

MPQA 90.0(0.7) ▲ 89.0(0.7) ▼ 89.9(0.6) ▲ 89.4(0.5) ▼

Subj 95.4(0.7) • 96.7(0.4) • 95.6(0.5) • 96.0(0.3) •

SST2 92.9(0.5) • 92.9(0.5) • 93.0(0.7) • 92.1(0.7) •

yelp reviews 97.7(0.3) ▲ 97.3(0.3) ▼ 97.4(0.3) • 97.4(0.5) •

vader nyt 83.9(0.9) • 83.3(0.9) • 83.6(1.2) • 83.1(0.8) •

Table C.2: Effectiveness Analysis. Statistical comparison between the TFIDF and Contextual
embeddings used as input of the LSSm and LSBo approaches and applied to the best classifier
per dataset (Table 3.5). Legend: (a) ▲: the IS method with the specific input (TFIDF or
Contextual) is statistically superior to its pair; (b) •: the IS method with the specific input
statistically equivalent to its pair; (c) ▼: the IS method with the specific input statistically
worse than its pair.

Table C.2 experiment consists of comparing the use of TFIDF and contextual em-

beddings as input for the LSSm and LSBo approaches applied to the best classifier per

dataset (Table 3.5). The experiments were executed using a 10-fold cross-validation pro-

cedure. To compare the average results on our cross-validation experiments, we assess

the statistical significance employing the paired t-test with 95% confidence, which, in this

case, is presumably resilient to any breaches of the normality assumption and is strongly

advised above signed-rank tests for hypothesis testing on mean effectiveness [133, 65].

The use of contextual embeddings applied as input to the LSSm strategy caused

statistically significant losses in 10 datasets, tying in the remaining ones. More specifically,

this method worsened the results in eight topic datasets (out of the ten analyzed) and two

sentiment datasets (MPQA and yelp reviews) and it did not improve the results in any

dataset. On a smaller scale, the LSBo also looses effectiveness – it becomes statistically

worse on six datasets, tying in 11 and improving over TFIDF only in one (the MR dataset).

In summary, directly using contextual embeddings as input for IS methods have

been demonstrated to be inefficient or ineffective. Overall, the above exercise revealed

that using contextual embeddings along with IS methods is not trivial and will require

further research considering the current SOTA of both fields.
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Appendix D

Average Total Time for model

training

In this section, we present the cost of each method in terms of the model construc-

tion time. This full training process comprises the total times for the preprocessing stages

(including the IS step) and ML training model, i.e., the time to fine-tune the transformer-

based ATC model. The metric is the overall time in seconds, average by the number of

folds: the smaller datasets were executed using k=10-fold partition, while for the larger

ones, we adopted 5 folds due to the cost of the procedure.

task dataset NoSel biO-IS E2SC (LR) CNN LSSm LSBo EGDIS CIS IB3

To
pi

c

DBLP 4,988.12 2,814.34 3,797.15 4,279.68 5,741.91 4,067.09 2,569.37 43,934.76 6,712.28
Books 4,412.46 3,108.34 3,240.60 4,184.31 5,003.93 3,630.62 2,157.75 15,527.37 6,921.55
ACM 3,050.29 2,075.06 2,396.34 2,059.48 3,043.58 2,221.29 1,612.21 6,294.58 2,589.20
20NG 2,781.84 1,952.26 2,147.62 2,451.39 3,189.84 2,795.54 1,224.83 2,810.80 3,781.91

OHSUMED 2,780.05 1,751.89 2,052.76 1,871.81 2,617.93 1,468.04 1,763.75 7,053.94 2,014.42
Reuters90 2,156.85 1,365.51 1,664.12 1,472.28 2,112.80 1,037.59 1,194.61 2,645.52 2,893.43

WOS-11967 1,759.63 715.52 871.62 1,288.53 1,778.72 930.67 841.51 2,447.60 1,012.73
WebKB 602.47 451.06 519.27 546.35 592.25 330.29 404.61 1,177.29 506.99
Twitter 513.81 358.36 380.17 299.62 502.12 282.88 251.01 1,278.21 318.17
TREC 463.49 308.39 376.77 357.78 414.21 373.32 354.68 2,191.12 375.71

WOS-5736 820.21 410.19 457.37 533.08 749.85 356.79 395.16 615.66 461.57

Se
nt

im
en

t

SST1 809.63 394.38 626.19 661.14 850.87 969.46 667.06 3,880.55 904.65
pang_movie 681.27 442.63 530.34 456.67 651.43 433.68 320.28 1,283.10 439.79

MR 672.37 478.46 531.10 562.97 734.18 614.14 331.23 2,399.94 439.26
vader_movie 675.44 463.00 532.20 424.94 621.96 437.97 317.98 1,262.84 757.01

MPQA 676.64 515.57 575.24 310.87 788.79 507.07 424.02 9,427.23 798.48
Subj 708.45 534.87 536.94 394.77 660.56 357.19 238.90 1,801.34 308.33
SST2 619.91 435.52 499.81 425.50 711.50 767.42 280.23 1,981.80 345.13

yelp_reviews 760.71 328.94 349.82 364.26 660.19 330.47 242.84 525.04 267.85

La
rg

e AGNews 18,008.45 8,902.08 10,269.45 - - - - - -
yelp_2013 37,274.03 19,016.57 25,651.86 - - - - - -
MEDLINE 122,030.00 63,660.48 76,321.75 - - - - - -

Table D.1: Average Total Time for model training.

Remarks: For this Ph.D. dissertation, considering all considered IS methods, clas-

sifiers, and variations, we run four thousand experiments using SOTA Transformers

corresponding to about 5,600 hours (233 days) of experiments.
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Appendix E

Wrongly Predicted Instances

Potential

Table E.1 presents the number (and percentage) of wrongly predicted instances by

both KNN and LR weak classifiers for each dataset of our experimental setup.

task dataset
# Training
Instances

KNN
(% error)

LR
(% error)

To
pi

c

DBLP 34315 7179 (20.9%) 6932 (20.2%)
Books 30234 6532 (21.6%) 5942 (19.7%)
ACM 22402 6247 (27.9%) 5562 (24.8%)
20NG 16954 2658 (15.7%) 2400 (14.2%)
OHSUMED 16471 4699 (28.5%) 5006 (30.4%)
Reuters90 11977 3855 (32.2%) 3659 (30.6%)
WOS-11967 10770 2736 (25.4%) 1724 (16.0%)
WebKB 7376 2497 (33.9%) 1753 (23.8%)
Twitter 6297 1561 (24.8%) 1516 (24.1%)
TREC 5356 2310 (43.1%) 1825 (34.1%)
WOS-5736 5162 1166 (22.6%) 596 (11.5%)

Se
nt

im
en

t

SST1 10669 7258 (68.0%) 6456 (60.5%)
pang_movie 9594 2605 (27.2%) 2277 (23.7%)
MR 9595 3000 (31.3%) 2383 (24.8%)
vader_movie 9510 2501 (26.3%) 2167 (22.8%)
MPQA 9545 6078 (63.7%) 1862 (19.5%)
Subj 9000 1413 (15.7%) 1031 (11.5%)
SST2 8651 2466 (28.5%) 1865 (21.6%)
yelp_reviews 4500 735 (16.3%) 307 (6.8%)

La
rg

e AGNews 102080 9851 (9.7%) 8742 (8.6%)
yelp_2013 268014 143944 (53.7%) 106594 (39.8%)
MEDLINE 688337 150832 (21.9%) 91724 (13.3%)
average - 30.0% 22.8%

Table E.1: Number of Wrongly Predicted Instances Potential (percentual error)

These results indicate that E2SC’s weak-classifier (KNN) predicts around 30% of

the instances as “hard to classify”. This sets up an upper limit on the method’s reduction

capability to around 70% – a reminder that “hard-to-classify” instances are never removed

from the dataset. When using the LR weak classifier, this number decreases to an average

of 22.8%, increasing the potential of the redundancy-based removal. Furthermore, our

experiments have also shown that a significant portion of these ”hard to classify” instances

can be removed without affecting the model’s effectiveness, further improving its training

efficiency.
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Appendix F

Impact of Noise Insertion and

Removal

This experiment is similar to the one performed in section 5.1.1, where we arti-

ficially inserted noise into the datasets. The main difference is that, in here, we also

measure the effectiveness of RoBERTa when noise is inserted and its effectiveness after

applying the entropy-based approach proposed for noise removal. The main idea of this

experiment is to measure the effectiveness of the transformer-based model when artifi-

cially introducing potentially noisy documents and subsequently removing them using

the entropy-based step of our method.

Accordingly, for each of the datasets, we randomly switched the label (real class) of

a fixed percentage pair of documents, producing a total of 5% and 10% of noisy instances

with switched labels in each dataset. The obtained results are presented in Table F.1.

Without manually
 inserted noise 5% Noise 10% Noise 

task dataset NoSel NoSel

bio-IS
(only entropy-based

 approach) NoSel

bio-IS
(only entropy-based

 approach)

To
pi

c

DBLP 81.4(0.5) 80.1(0.7) 79.9(0.9) 79.2(0.7) 79.0(0.8)
Books 87.2(0.6) 85.5(0.7) 85.3(0.6) 83.8(0.7) 84.1(0.6)
ACM 70.3(1.4) 68.2(1.5) 68.0(1.4) 68.2(1.2) 67.0(1.2)
20NG 86.0(0.7) 85.3(0.8) 85.4(0.6) 83.9(0.8) 84.4(0.9)

OHSUMED 77.8(1.2) 75.6(0.9) 74.4(1.1) 74.5(1.0) 73.3(1.0)
Reuters90 41.9(2.2) 42.1(2.3) 41.5(2.4) 42.1(2.0) 41.4(2.4)

WOS-11967 86.8(0.4) 86.2(0.7) 86.7(0.4) 85.4(0.7) 86.2(0.6)
WebKB 83.0(2.0) 80.5(1.8) 80.9(1.4) 79.5(1.6) 79.1(1.8)
Twitter 78.4(1.8) 77.7(1.8) 74.2(1.7) 75.5(2.3) 74.2(2.2)
TREC 95.5(0.5) 94.2(0.8) 93.8(0.9) 93.1(1.2) 92.5(1.3)

WOS-5736 90.5(0.9) 89.8(1.0) 89.9(0.9) 89.0(0.7) 88.8(1.0)

Se
nt

im
en

t

SST1 53.8(1.3) 52.9(1.8) 52.7(1.1) 52.7(1.1) 51.2(1.3)
pang_movie 89.0(0.4) 87.6(0.7) 87.3(0.5) 86.6(0.7) 86.5(0.6)

MR 89.0(0.7) 87.8(0.5) 87.9(0.5) 86.3(0.5) 86.7(0.6)
vader_movie 91.3(0.5) 90.3(0.5) 90.1(0.7) 89.1(0.9) 88.8(0.6)

MPQA 90.2(0.8) 89.4(0.6) 87.5(0.5) 89.0(0.5) 88.6(1.0)
Subj 96.9(0.4) 96.0(0.4) 95.7(0.6) 94.5(0.9) 94.9(0.6)
SST2 93.2(0.6) 91.6(0.7) 91.4(0.7) 90.8(0.7) 90.9(0.5)

yelp_reviews 97.9(0.4) 96.8(0.7) 97.3(0.5) 95.6(1.4) 96.7(0.5)

Table F.1: Impact of Noise Insertion and subsequent Removal.
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This experiment demonstrates that noisy (training) instances have the potential

to reduce the effectiveness of the model by introducing misleading patterns, Indeed, ac-

cording to Table F.1 results, comparing the columns NoSel (Without manually inserted

noise) and NoSel (5% and 10% Noise), it is possible to notice that manually adding noise

in the datasets slightly degraded the models (varying between 0.6% up to 3.0%; and from

1.3% to 4.2%, for 5% and 10% of manually inserted noise). Notice that the degradation in

effectiveness is smaller than the amount of noise inserted, pointing out a certain resilience

of the Transformer to the inserted noise.

On the other hand, even though our proposal was able to remove a significant

portion of these noise instances as reported in the main experiments of the article, there

was almost no impact in terms of effectiveness (neither positive nor negative).

Put together, these results provide compelling evidence that, for the sake of effec-

tiveness, transformer-based models are very resilient to both noise insertion and noise

removal. As our method does not perform data (label) correction, we hypothesize that

potential gains coming from cleaner patterns are counter-balanced by less data to learn.

Therefore, the most observable impact of removing potentially noisy instances falls on

efficiency, which demonstrated significant improvements in our main experiments when

disregarding these instances during training time.
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Appendix G

Weak-classifier algorithms’

hiperparameterization

The implementations of Logistic Regression, Linear SVM, Random Forest, Decision

Trees, Naive Bayes, and Nearest Centroid are from scikit-learn. XGBoost and lightGBM

are from the respective authors’ implementation-based packages. For KNN, we adopted

an approximated solution (HNSW [93]), which is effective, computationally cheap, and

scalable.

Table G.1 presents the hiperparameterization for each algorithm. These parame-

ters were set based on the best values according to our empirical preliminary experimen-

tation. Omitted parameters are the library’s default.

method parameters

Logistic Regression {'C': 1.0, 'penalty': 'l2', 'dual': False, 'tol': 0.0001, 'fit_intercept': True, 'intercept_scaling': 1,
 'solver': 'warn', 'max_iter': 1000, 'multi_class': 'warn', 'warm_start': False, 'n_jobs': -1}

Linear SVM {'C': 1.0, 'intercept_scaling': 1, 'fit_intercept': True, 'max_iter': 1000, 'penalty': 'l2', 
'multi_class': 'ovr',  'dual': False, 'tol': 0.001, 'class_weight': None}

Random Forest {'n_estimators': 200, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'criterion': 'gini', 
'max_features': 'auto','warm_start': False, 'oob_score': False, 'bootstrap': True}

Decision Trees {'criterion': 'gini', 'splitter': 'best',  'min_samples_split':2, 'min_samples_leaf':1, 
'min_weight_fraction_leaf':0.0, 'min_impurity_decrease':0.0, 'presort':False}

Naive Bayes {'alpha': 1.0, 'fit_prior': True, 'class_prior': None}

XGBoost {'objective': 'binary:logistic', 'eval_metric': 'logloss', 'learning_rate': 0.1, 'max_depth': 5, 
'subsample': 0.1,'tree_method': 'auto', 'n_estimators': 100}

lightGBM
{'boosting_type': 'gbdt',  'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 
'max_depth': -1, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 
'n_estimators': 100, 'num_leaves': 31, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'subsample': 1.0, 
'subsample_for_bin': 200000, 'subsample_freq': 0}

KNN {'n_neighbors': 10, 'weights': 'uniform', 'algorithm': 'auto', 'leaf_size': 30, 'metric': 'euclidean'}
Nearest Centroid {'metric': 'euclidean'} 

Table G.1: Weak-classifier algorithms’ hiperparameterization
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