

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

Arthur Viana Lara

Design of an Embedded System Architecture for a Safety-Critical System

Belo Horizonte

2019

Arthur Viana Lara

DESIGN OF AN EMBEDDED SYSTEM ARCHITECTURE FOR A SAFETY-

CRITICAL SYSTEM

Thesis submitted to the Graduate Program

in Electrical Engineering of Escola de

Engenharia at the Universidade Federal de

Minas Gerais, in partial fulfillment of the

requirements for the degree of Master in

Electrical Engineering.

Advisors: Guilherme Vianna Raffo, Janier

Arias Garcia and Leandro Buss Becker

Belo Horizonte

2019

 Lara, Arthur Viana.
L318d Design of an embedded system architecture for a safety-critical system
 [recurso eletrônico] / Arthur Viana Lara. - 2019.
 1 recurso online (130 f. : il., color.) : pdf.

 Orientador: Guilherme Vianna Raffo.

 Coorientadores: Janier Arias Garcia, Leandro Buss Becker.

 Dissertação (mestrado) - Universidade Federal de Minas Gerais,
 Escola de Engenharia.

 Apêndices: f. 100-130.

 Bibliografia: f. 94-99.
 Exigências do sistema: Adobe Acrobat Reader.

 1. Engenharia elétrica - Teses. 2. Veículo Aéreo Não Tripulado -
Teses. 3. Sistemas embutidos de computador - Teses. 4. Sistemas de
segurança - Teses. I. Raffo, Guilherme Vianna. II. Arias García, Janier. III.
Becker, Leandro Buss. III. Universidade Federal de Minas Gerais. Escola
de Engenharia. IV. Título.

 CDU: 621.3(043)

 Ficha catalográfica elaborada pela Bibliotecária Roseli Alves de Oliveira CRB/6 2121
 Biblioteca Prof. Mário Werneck, Escola de Engenharia da UFMG

Acknowledgements

No one knows how complicated it has been these years of work. Many changes

and many days of poor mental and physical health, but I did it. First, I have to thank

God, because without him nothing would be possible.

I cannot express enough thanks to my advisors for their continued support even

through a Skype remote call. I thank Professor Guilherme Vianna Raffo for all these

years of guidance and friendship. Today, I do not see the same one just as a teacher,

but also as a friend for life.

My completion of this project could not have been accomplished without the

support of colleagues from the ProVANT and my job. I express my immense thanks to

my great friend Paulo Tujal who welcomed me in the company with open arms and had

the patience to pass on his knowledge and experience gained over several years,

especially in the area of Safety Instrumented Systems.

Lastly, I thank my family for all these years of concern and care. If they did not

exist I would not be able to finish this work. Ismael, Deborah and Diogo, you are

essential in my life. Thank you!

Resumo

Os sistemas de segurança crítica consistem em dispositivos que devem

funcionar sem falhas, caso contrário, poderão resultar em mortes, danos materiais

significativos ou danos ao meio ambiente. Veículos Aéreos Não Tripulados (VANTs)

são exemplos de tais sistemas e seu subsistema mais crítico é o sistema de controle

de voo. Tendo em vista a sua implementação, existe uma demanda por uma

arquitetura embarcada capaz de executar algoritmos de controle de alto custo

computacional. Assim, esta dissertação propõem uma arquitetura que utiliza uma

plataforma de desenvolvimento composta por uma GPU de propósito geral ao mesmo

tempo buscando garantir a dependabilidade e o atendimento a requisitos de tempo

real necessários para a sua operação. Inicialmente, os requisitos da arquitetura foram

coletados a partir de um estudo sobre normas de segurança de hardware e software

para aviação comercial, conjuntamente com a realização de entrevistas com

pesquisadores envolvidos no projeto de um VANT. A partir dos requisitos obtidos, uma

arquitetura de hardware de dois níveis foi definida composta por um hardware de alto

desempenho e um hardware de baixo desempenho, cuja especificação foi guiada

segundo os requisitos de comunicação com a instrumentação. O hardware de baixo

desempenho utiliza o sistema operacional FreeRTOS e o hardware de alto

desempenho, o Ubuntu 18.04. Além disso, tendo em vista o objetivo de agilizar o

desenvolvimento, utilizou-se o framework de aplicações robóticas ROS 2 na

plataforma de alto desempenho. Com o objetivo de aumentar a confiabilidade da

arquitetura, três estratégias foram adotadas: i) implementação de uma lei de controle

simples no hardware de baixo desempenho caso haja falha do hardware de alto

desempenho; ii) implementação da estratégia de tolerância a falhas denominada “hot

standby” na camada de baixo nível, eliminando um ponto singular de falha; e iii) a

utilização de bits redundantes para aumentar a confiabilidade de comunicação entre

o hardware de baixo desempenho e o hardware de alto desempenho. Por fim,

realizamos uma simulação usando injeção de falhas em um ambiente de simulação

via Hardware-in-the-loop para analizar: i) funcionamento correto do sistema de

controle de voo sem falhas de hardware; ii) comportamento do sistema de controle de

voo perante a falhas do hardware de alto desempenho; e iii) comportamento do

sistema de controle de voo perante a falhas do hardware de baixo desempenho.

Palavras-chave: VANT; Sistemas Embarcados; Sistema de segurança crítica.

Abstract

Safety-critical systems consist of devices that must operate without failures,

otherwise, it may result in death, significant property damage or environmental

damage. Unmanned Aerial Vehicles (UAVs) are examples of such systems and their

most critical subsystem is the flight controller. In view of its implementation, there is a

demand for an embedded architecture capable of executing high computational cost

control algorithms. Thus, this dissertation proposes an architecture that uses a

development platform composed by a general purpose GPU while seeking to

guarantee the dependability and the real-time requirements necessary for its

operation. Initially, the architecture requirements were collected from a study of

commercial aviation hardware and software safety standards, together with interviews

with researchers involved in the design of a UAV. Based on the requirements obtained,

a two-level hardware architecture was defined, consisting of a high performance

hardware and a low performance hardware, which was specified according to the

instrumentation communication requirements. The low performance hardware uses

FreeRTOS and the high performance hardware, Ubuntu 18.04. In addition, in order to

speed up the development, the ROS 2 was used on the high-performance platform. In

order to increase the dependability of the architecture, three strategies were adopted:

i) implementation of a simple control law on low performance hardware in case of high

performance hardware failure; ii) implementation of the fault tolerance strategy called

hot standby in the low level layer, eliminating a single point of failure; and iii) use of

redundant bits to increase communication reliability between low performance

hardware and high performance hardware. Finally, we perform a simulation using fault

injection in a hardwarein-the-loop simulation environment to analyze: i) flight control

system’s operation without hardware failure; ii) flight control system’s behavior against

high performance hardware failures; and iii) flight control system’s behavior against

low performance hardware failures.

Key-words: UAV; Embedded System; Safety-Critical System.

List of figures

Figure 1: Embedded system’s applications. 21

Figure 2: Embedded System’s industry trend. 23

Figure 3: Main idea of embedded system architecture. 24

Figure 4: Interaction between FBW, AFDS, FMS and instrumentation. 25

Figure 5: ProVANT 4.0 conceptual design. 26

Figure 6: ProVANT 1.0. 32

Figure 7: Software Architecture 32

Figure 8: ProVANT 2.0. 33

Figure 9: ProVANT 2.1. 34

Figure 10: ProVANT 3.0. 35

Figure 11: Kind of faults. 40

Figure 12: Triple Modular Redundancy. 43

Figure 13: Standyby Redundancy. 44

Figure 14: Self-Purging Redundancy. 45

Figure 15: Navio 2. 55

Figure 16: ADIS16480. 56

Figure 17: 3DR Pixhawk Airspeed Sensor Kit. 57

Figure 18:MB2530 IRXL-MaxSonar-CS3. 57

Figure 19: UBLOX NEO-M8T. 58

Figure 20: Hitec D145SW Digital HV devices. 59

Figure 21: AXI 5345/14 HD 3D Extreme V2 59

Figure 22: OrangeRx R1020X. 60

Figure 23: Jetson TX2. 61

Figure 24: Nucleo-f767zi 63

Figure 25: Hardware architecture. 64

Figure 26: New control task of LLH’s processors. 67

Figure 27: LLH’s Groundstation task. 68

Figure 28: LLH’s Radio task. 69

Figure 29: HLH’s Control task. 70

Figure 30: Description of LLH’s software architecture. 71

Figure 31: Description of HLH’s software architecture. 72

Figure 32: Prototype built. 74

Figure 33: Hardware-in-the-loop environment. 75

Figure 34: High level protocol’s package. 77

Figure 35: Communication data flow between server and client. 78

Figure 36: Server’s software architecture. 79

Figure 37: Logic of server software. 80

Figure 38: Reference coordinate systems 82

Figure 39: Behavior of Z-axis position in the simulation. 84

Figure 40: Behavior of Y-axis position in the simulation. 84

Figure 41: Behavior of X-axis position in the simulation. 85

Figure 42: Highlight the moment occurred LLH’s failures. 85

Figure 43: Highlight the moment occurred HLH’s failure. 86

Figure 44: Behavior of the task’s response time. 87

Figure 45: Histogram of the task’s response time. 88

Figure 46: Histogram of the time required to run the HLH’s control law. 89

Figure 47: Project organization. 110

Figure 48: provant_lib folder’s organization 111

Figure 49: How to compile the project 112

Figure 50: Startup Settings 113

Figure 51: ROS workspace organization 115

Figure 52: src folder content 116

Figure 53: controller folder content 117

Figure 54: controller’s src folder content 118

Figure 55: controller’s include folder content 118

Figure 56: Headers of memeber_function.cpp 119

Figure 57: Declaration of execute() method 119

Figure 58: Content of the code implemented in the execute method 120

Figure 61: Example of peripheral pin as high impedance mode 124

Figure 62: UART’s connection 125

Figure 63: Source: The Author 126

Figure 64: I2C’s connection. 127

Figure 65: Schematic of the prototype. 128

List of tables

Table 1 Design assurance levels (DALs). 53

Table 2: Requirements of ProVANT embedded system architecture to be met. 53

Table 3: System physical parameters. 82

Table 4: Hardware specification 122

Table 5: Connection between hardwares 123

List of Algorithms

Algorithm 1: Fletcher’s checksum algorith 46

Acronyms

ABFT Algorithm-Based Fault-Tolerance

AFDS Autopilot/Flight Director System

API Application Programming Interface

CAD Computer Aided Design

CAN Controller Area Network

CMSIS Arm’s Cortex Microcontroller Software Interface Standard

COTS Commercial Off-The-Shelf

CPHA Clock phase

CPOL Clock polarity

CPU Central Process Unit

CSS Chip Select Slave

DAL Design Assurance Level

DLQR Discrete Linear Quadratic Regulator

DWC Duplication With Comparison

ESC Electronic Speed Controller

ECC Error-Correcting Code

FBW Fly-By-Wire

FIFO First-In First-Out

FMEA Failure mode and effects analysis

FMS Flight Management System

FTA Fault Tree Analysis

FPGA Field Programmable Gate Array

GPS Global Position System

GPU Graphics Processing Unit

HAL Hardware Abstraction Layer

HILS Hardware-In-The-Loop Simulation

HLH High Level Hardware

IMU Inertial Measurement Unit

I2C Inter-Integrated Circuit Bus

LLH Low Level Hardware

MOSI Master Data Output, Slave Data Input

MISO Master Data Input, Slave Data Output

NMR N-Modular Redundancy

OS Operating System

PLC Programmable Logic Controller

PWM Pulse Width Modulation

ROS Robot Operating System

RTAI Real-Time Application Interface

RTK Real Time Kinematic

RTOS Real-Time Operating System

SCLK Serial Clock

SDA Serial Data SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

UAV Unmanned Aerial Vehicles

USART Universal Synchronous Asynchronous Receiver/Transmitter

USB Universal Serial Bus

USD United States Dolar

VTOL Vertical Takeoff and Landing

Notation

General Notation

a Italic lower case letters denote scalars

a Boldface italic lower case letters denote vectors

A Boldface italic upper case letters denote matrices

Model notation

mn Mass of the n-body

r1 First reference

r2 Second reference

ξ Position of the main body with respect to the inertial frame

φ Roll angle

θ Pitch angle

ψ Yaw angle

αR Inclination of the right propeller with respect to the main body of

the aircraft

αL Inclination of the left propeller with respect to the main body of the

aircraft

𝒅𝑨𝒊
𝑽 Displacement vector from B to Ai , expressed in B

𝒅𝑪𝒊
𝑨𝒊 Displacement vector from Ai to Ci , expressed in Ai

β Fixed inclination angle of the thrusters towards the aircraft’s

geometric center

q Generalized coordinates

R Relative weights of input usage to tune a DLQR controller.

Q Relative weights of state deviation to tune a DLQR controller.

𝑓𝑒𝑞
𝑅 Magnitude of the thrust generated by the right propeller when the

UAV is in equilibrium point

𝑓𝑒𝑞
𝐿 Magnitude of the thrust generated by the left propeller when the

UAV is in equilibrium point

τ𝑒𝑞
𝑅 Magnitude of the torque generated by the right servomotor when

the UAV is in equilibrium point

τ𝑒𝑞
𝐿 Magnitude of the torque generated by the left servomotor when

the UAV is in equilibrium point

Contents

1 Introduction .. 20

1.1 Study case System ... 23

1.2 Related Works .. 26

1.2.1 Embedded Systems architectures on safety-critical applications 27

1.2.2 Fault-tolerant techniques applied on embedded systems 28

1.2.3 Small UAV’s onboard architecture .. 29

1.3 ProVANT’s embedded system history .. 30

1.4 Justification and Objective .. 35

1.5 Structure of work .. 36

2 Background ... 38

2.1 Dependability .. 38

2.1.1 Impairments .. 39

2.1.2 Attributes .. 39

2.1.3 Means .. 41

2.2 Real-Time Systems .. 46

2.2.1 FreeRTOS .. 47

2.3 Robot Operating System .. 47

2.3.1 Concepts .. 48

2.3.2 Versions ... 50

2.4 Final remarks .. 51

3 Embedded system architecture ... 52

3.1 Requirements ... 52

3.2 Design Process .. 53

3.2.1 Instrumentation ... 54

3.2.2 Embedded hardwares .. 60

3.2.3 Hardware Architecture .. 63

3.2.4 Software Architecture ... 66

3.3 Final Remarks .. 72

4 Experimental results ... 73

4.1 Prototype .. 73

4.2 Hardware-in-the-loop simulation for the UAV embedded system 74

4.2.1 Communication .. 76

4.2.2 Simulator settings .. 78

4.3 Numerical experiments ... 80

4.4 Results ... 83

5 Conclusions ... 89

5.1 Future Work .. 90

Bibliography .. 92

Appendices ... 98

20

1 Introduction

The daily life of modern society is totally dependent on small programmable

electronic systems that are commonly unknown to its users. As can be seen in Figure

1, they are present at cars, airplanes, toys, hospitals, markets, among others. They

ensure our commodity, safety, leisure, food and supply. They are named embedded

systems and consist in devices which perform specific functions (Barr, 1998). For being

highly specialized, an embedded system is optimized in relation of energy, code size,

execution time, weight and dimensions.

According Oyetoke, 2015, “About 98% of all microprocessors being

manufactured are used in embedded systems”. Besides, its market size in Europe is

expected to exceed USD 258.72 billion by 2023, according to a study conducted in

20161 . Figure 2 shows the growth projection suggested by the study.

There is an important class of embedded systems that must work without any

errors, otherwise it may result in loss of life, significant property damage or

environmental damage (Knight, 2002). They are called safety-critical systems. Safety-

critical applications demand deterministic behavior during its operation. In order to deal

with them, two important features must be explored: the dependability and the temporal

determinism.

An example of safety-critical system is the fuel control system used in modern

cars. As its name suggests, its purpose is just to control the injection of fuel in the

engine (Wang Sujing et al., 2008) and if it fails, it can generate automotive accidents,

leading to injuries and deaths. Ford Motor Co. recalled an estimated 1.28 million 2012-

2018 Ford Focus compact cars in 2018 because of a fuel system problem2.

1 Embedded System Market Size By Application (Automotive, Industrial, Consumer Electronics,

Telecommunication, Healthcare, Military and Aerospace), By Product (Software, Hardware) Industry
Outlook Report, Regional Analysis, Application Development Potential, Price Trends, Competitive
Market Share and Forecast, 2016 – 2023. URL: https://www.gminsights.com/industry-
analysis/embedded-system-market. Accessed: 2019-10-07

2 Ford Recalls 1.2M Focus Cars for Fuel System Defect. URL: https://www.automotive-
fleet.com/317645/ford-recalls-1-2m-focus-cars-for-fuel-system-defect, Accessed: 2019-10-07

21

Figure 1: Embedded system’s applications.

Source: https://fxdfronteira.blogspot.com

22

Medical devices are also safety-critical systems. According Alemzadeh et al.

(2013), “Medical devices are often subject to a nonnegligible number of failures with

potentially catastrophic impacts on patients. Between 2006 and 2011, 5,294 recalls

and 1,154,451 adverse events were reported to the US Food and Drug Administration”.

An example of medical device is a defibrillator, an important equipment used to restore

or beat the heart by applying electrical pulses (Dhurjaty & Atre, 2016), and if it fails, it

can generate defective pulse generators that promptly induces deaths.

Other examples are aerospace applications. In case of commercial aircrafts,

dozens of passengers can die if there is some human failure or some serious failure in

any of the airplane’s safety-critical subsystems. To illustrate, in October 20183 and

March 20194 two units of Boeing 737 Max crashed and 346 people were killed. Another

aerospace application that recently has begun to be a concern, is the use of Unmanned

Aerial Vehicles (UAVs) in civil airspace. They can injure or kill people on the ground or

crash with commercial aircrafts leading to serious accidents.

3 Boeing’s 737 Max grounded for longer after new flaw discovered, URL:

https://www.dw.com/en/boeings-737-max-grounded-for-longer-after-new-flaw-discovered/a-49369628,
Accessed: 2019-10-07

4 Ethiopian Airlines plane crashes shortly after takeoff , URL: https://www.dw.com/en/ethiopian-
airlines-plane-crashes-shortly-after-takeoff/a-47841392, Accessed: 2019-10-07

23

Figure 2: Embedded System’s industry trend.

Source: Global Market Insights

1.1 Study case System

In the case of commercial airplanes and UAVs, one of the most important safety-

critical systems is the flight control system. Basically, it is a subsystem that interfaces

with sensors and actuators; and for each sample time, it executes a feedback control

law to update the commands of actuator. Figure 3 illustrates its structure.

24

Figure 3: Main idea of embedded system architecture.

Source: The author

In the context of commercial airplanes, they are normally composed of three

flight control functions, Fly-By-Wire (FBW), Autopilot/Flight Director System (AFDS)

and Flight Management System (FMS). These functions are interconnected and may

be described as three nested control loops, each one with their own distinct purpose.

They are shown in Figure 4. The FBW is a function that controls the attitude of the

aircraft. The AFDS controls the speed, height, and heading. Finally, the FMS performs

the navigation or mission function, ensuring that the position aircraft will reach multiple

way-points that composes the aircraft route (Hitt, 2006). However, this organization is

not a general rule for every aircraft, UAVs can have, for example, just one control loop

instead of these three flight loops.

In view of the challenge to design an architecture for a flight control system, this

work proposes an embedded system for use by a VTOL UAV called ProVANT 4.0,

which is shown in Figure 5 , where a flight control system will be implemented. It is a

tilt-rotor UAV prototype that has been designed in ProVANT. ProVANT is a collaborative

research project composed by researchers from the Universidade Federal de Santa

Catarina, the Universidade Federal de Minas Gerais and the Universidad de Sevilla.

25

Figure 4: Interaction between FBW, AFDS, FMS and instrumentation.

Source: The author

Tilt-rotor UAV is a convertible aircraft which has two propellers and mechanisms

responsible for tilting them, located at the ends of fixed wings. The tilt-rotor UAV has

two modes of flight, helicopter and cruise, which requires little space for landing and

takeoff and acquires elevated speeds. The tilt-rotor UAV, in relation to quadrotors, has

a gain in autonomy and, in comparison to airplanes, a gain of mobility in small spaces.

ProVANT 4.0 (del Pino, 2016) has been designed for Search and Rescue

operations and, therefore, it must reach the emergency sites within a short time, flying

in spaces with a small free area and acting in any environment, whether open or

closed. It has reduced dimensions suitable for transporting in a vehicle of rapid

intervention and it must carry an automatic defibrillator. Besides, it will use commercial

batteries and electric propulsion, which are adapted to the use of renewable resources

(da Silva, 2017). Besides, it has a container of 17cm long, 20cm wide and 7cm high

for on-board systems.

26

Figure 5: ProVANT 4.0 conceptual design.

Source: MACRO research group

It shall perform the following missions:

• Complete two vertical take-off and landing maneuvers. One at the starting

point and one at the focus of the emergency, having to travel between them a distance

of 20 km to go and another 20 km to return. It must carry a payload of about 3 kg.

• Vertical take-off from the outpost, capacity for a one-hour reconnaissance

flight and return to the starting point. The device must carry at least one thermal and

visual camera.

1.2 Related Works

This section presents some current literature review about multi-core embedded

systems architectures on safety-critical applications, fault-tolerance techniques applied

on embedded systems, and small UAV’s onboard architectures.

27

1.2.1 Embedded Systems architectures on safety-critical applications

Nowadays, there is an effort for the adoption of hardwares to host multiple

safety-critical functions with mixed-critical levels on a common computing platforms,

reducing the number of hardware scattered in the application. Besides, mainly due to

the emerging artificial intelligence, high performance platforms have also been

demanded for implementation of high computational cost algorithms (Saidi et al.,

2015).

Integrated modular avionics (IMA), for aerospace domain, and Advanced Driver

Assistance Systems (ADAS), for automotive domain, are some of the main target

applications for this trend. GE Aviation has already developed IMA architectures for

Boeing 787 Dreamliner, Boeing C-130 combat aircraft, and Boeing KC-767 Tanker

(Watkins & Walter, 2007). However, the use of multi-core hardware still generate some

reluctance for its use in critical applications, for example, flight control systems (Gaska

et al., 2015).

These hardware platforms can reduce the power consumption, the length and

weight. Consequently, it can also reduce the operational costs. However, there are

many challenges to be solved. According to Saidi et al. (2015), “the main reasons are:

a) shared resources imposes a strong timing correlation between concurrently running

components in the same chip; and b) standard commercial off-the-shelf (COTS)

multicore components are optimized to improve the average case performance and

not the worst case”.

Given these issues, there are research projects that focus on developing

solutions that meet the requirements for safety-critical systems. An example is the

Hercules H2020 Project5, which aims to implement the first industrial-grade framework

to provide real-time guarantees on top of cutting-edge heterogeneous COTS platforms

for embedded domains. Other examples are parMERASA, CERTAINTY, P-

SOCRATES and EMC 2.

5 http://hercules2020.eu/, accessed 24/11/2017

28

1.2.2 Fault-tolerant techniques applied on embedded systems

The dependability is one of the open problems of adopting multi-core platforms.

Thus, in order to increase it, fault-tolerant architecture can be adopted. An important

fault-tolerant strategy is the Dynamic Reconfiguration. Through detection and

replacement of defective components, it increases the availability and reliability of

solutions. In this direction, Mozafari & Meyer (2015) present an approach for employing

hot spares in multi-core processors. Besides, Rahme & Xu (2017) also apply this

concept for multiple software spare components to a cloud computing applications.

For safety-critical applications, Dynamic Reconfiguration becomes essential to

implement fail-operational safety architectures. Designers aim to switch the system

operation from normal mode to emergency mode when a fault occurs. In this direction,

Sari & Reuss (2018) discuss about fail-operational safety architectures for ADAS.

Moreover, Vivekanandan et al. (2016) propose a fail-operational safety architecture,

composed by two heterogeneous hardware and software platforms with distinct

reliability and performance characteristics, for a UAV’s onboard hardware; however,

they do not present any reliability data to support their assumptions and justify the use

of this architecture in real-life.

Triple Modular Redundancy (TMR) is another fault-tolerant strategy. It masks

faults through a voter mechanism. Kahe (2018) proposes an architecture composed

by five modules, each one with three multi-core ARM processors in parallel using TMR

strategy, obtaining evaluation results that meet aerospace requirements. Janson et al.

(2018) also adopt this strategy for a fault-tolerant software architecture without a

synchronization mechanism. TMR can also be adopted in FPGA design. Thus,

LaMeres et al. (2015) use it to design a dependable space aplication.

An extension of TMR, when considering N redundant components plus a voter,

is called N-Modular Redundancy (NMR). There is a trend towards its adoption for multi-

core applications; however, it increases the energy consumption of the platform,

becoming a limiting factor for embedded systems. To solve this issue, Salehi et al.

(2016) propose a two-phase NMR with block-partitioned scheduling and pseudo-

29

dynamic slack management in order to achieve minimized energy consumption and

ensure the deadline requirements.

For GPU-based and FPGA-based applications, there are some recent works

that discuss how to deal with faults caused by radiation. Pilla et al. (2014)

experimentally demonstrate that the Error-Correction Code (ECC) does not ensure

enough reliability as required. Then, they propose an Algorithm-Based Fault-Tolerance

(ABFT) technique that provided smaller failure rates and small overhead than ECC.

However, d. Santos et al. (2017) demonstrated that the ECC is more efficient than the

ABFT from the point of view of Silent Data Corruption rate.

Besides, Oliveira et al. (2014) propose Duplication With Comparison (DWC)

strategies and suggest that DWC strategies can be more effective than ECC when the

input data are duplicated.

For GPU domain, ECC, ABFT and DWC are methods that deals with faults in

memory, registers and logic, but not with faults in the schedulers. Thus, Milluzzi et al.

(2017) propose to use TMR with persistent threads to solve this issue; however, as a

drawback, this strategy limits the hardware performance and creates an overhead that

may be unacceptable depending on the target application.

1.2.3 Small UAV’s onboard architecture

According Chao et al. (2010), an autopilot is a system used to guide the UAV

without assistance of human operators. There are several autopilots available on

market and, in this direction, Zhaolin Yang et al. (2016) present a survey of existing

autopilots and compares some of them.

However, due to the lack of information and support for custom implementation

of its own algorithms, there are several works that design their own autopilots. In this

research line, Ellingson & McLain (2017) propose a fixed wing autopilot code for

educational and research purposes built on ROS to speed up and facilitate the

implementation of control, estimation and path planning algorithms.

30

Czerniejewski et al. (2018) port a UAV’s autopilot, called Paparazzi UAV, to the

Real-Time Specification for Java, which ensures the meeting of the real-time

requirements based on the specification given by the developer, allowing them to focus

only on the algorithm development.

Besides, Meier et al. (2015) provide a novel middleware and programming

environment, used by an autopilot. From the Nutt X OS, they create a software layer

called Object Request Broker in order to abstract the communication between threads

and to provide connective with other platforms through ROS.

By and large, as noticed in these works, the majority of autopilots available are

built around a centralized set of microprocessors. However, going in another direction,

Louali et al. (2017) propose a distributive architecture for an autopilot through the use

of Controller Area Network (CAN) data bus. It was designed for a fixed wing UAV and

tested through a hardware-in-the-loop simulation.

1.3 ProVANT’s embedded system history

Since the ProVANT was created, it has already designed 5 versions: ProVANT

1.0, ProVANT 2.0, ProVANT 2.1, ProVANT 3.0 and ProVANT 4.0. The ProVANT 1.0,

shown in Figure 6, is the first prototype and it only has the ability to conduct flight in

helicopter mode. Its development was a craft project, since, it did not use any CAD

software to help its design. In addition, several mechanical filters were allocated with

the focus of the attenuation of the structure’s vibration, avoiding interferences in the

measurement of the Inertial Measurement. There is a video on internet that shows it in

testing phase6.

The ProVANT 1.0 has two microprocessors in its architecture: the

STM32F4DISCOVERY board that interfaces with the instrumentation, and the

beaglebone board that executes computationally expensive control laws. Besides,

according to Donadel et al. (2015), ProVANT 1.0 uses the following instrumentation:

6 https://www.youtube.com/watch?v=f94fbhJjzuo

31

• 2x brushless motors AXI 2814/20 GOLD LINE

• 2x servomotors Dynamixel RX-24F

• 1x 9-DOF inertial measurement system (IMU) GY-85

• 2x electronic speed controller (ESC) Mikrokopter BL-Ctrl 2.0

• 1x Ultrasonic ranging module HC-SR04

• 1x 2.4 GHz 6 channels radio receiver hobbyking HK-TR6A

• 1x 4-cell LIPO battery (16.8V) Turnigy nanotech 3000mah

• 1x voltage regulator 16.8V/5V

• 1x voltage regulator 16.8V/12V

The ProVANT 1.0 embedded a software architecture in the

STM32F4DISCOVERY with the principles of organization presented in Lakos (1996).

For this, it was implemented a vertical hierarchical structure of the elements of one

level in relation to those of a higher level. Following a verticalization concept, the

project elements are organized as show in Figure 7. The application level is composed

by modules that implement the UAV functions, for example, the control law, navigation,

and communication with the instrumentation. The middleware layer is composed by

public or private libraries, an Operating System, a State Machine, and the Hardware

Abstraction Layer (HAL). It uses FreeRTOS as operating system. Lastly, the Core is

composed by CMSIS, a vendor-independent hardware abstraction layer for Arm Cortex

microcontrollers.

32

Figure 6: ProVANT 1.0.

Source: MACRO research group

The beaglebone’s software is not structured as the STM32F4DISCOVERY. It

uses an Ubuntu 14.04.3 LTS and its application is composed by three threads, each

one responsible for one different function: communication with STM32F4DISCOVERY,

Controller and Data processing.

Figure 7: Software Architecture

33

Source: The author

The next version was the ProVANT 2.0, that is shown in Figure 8. This version

was designed with Solidworks aiming to build it with 3D printer. Its embedded system

architecture was similar with the ProVANT 1.0; however, instead of the adoption of the

beaglebone board, it uses a Raspberry PI 2 board. A while later, it was designed the

ProVANT 2.1, that is shown in Figure 9. Although it uses the same embedded system

that was chosen for ProVANT 2.0, it has differences in the mechanical design.

Figure 8: ProVANT 2.0.

34

Source: MACRO research group

Figure 9: ProVANT 2.1.

Source: MACRO research group

The ProVANT 3.0 is shown in Figure 10. In this version, it was already known

that the Beaglebone and Raspberry PI are unsuitable for running high costly

computational control algorithms in short sampling periods. ProVANT are designing

algorithms of estimation that approximately runs in 500 milliseconds and control laws

that approximately runs in 8 seconds in the Simulink Environment Simulation.

However, in the UAV’s on board system, these algorithms must be executed at times

in order of 10 milliseconds. In this context, Miranda (2017) presents a multi-core

software approach developed to improve the time performance of predictive control

strategies. DE0-Nano-SoC Kit/Atlas-SoC was used with Debian Jessie 8.5 as

operating system, and from the use of Open Multi-Processing API, a control algorithm

was implemented with some parallelized regions, decreasing its execution time. This

work does not used the FPGA present on the platform.

35

Figure 10: ProVANT 3.0.

Source: MACRO research group

Unlike the solution adopted by Miranda (2017), there are some studies that

apply FPGAs or GPUs in order to solve this problem. Both alternatives are potentials

solutions for using in ProVANT 4.0. This work aims to use the the second option, due

to the fast deployment of the solution. The platform chosen is a Jetson TX2

development kit that suggests to be a better solution than Beaglebone and Raspberry

PI platforms for execution of high cost control algorithms due to the 64 bits Quad ARM

Cortex-A57 processor, the 64 bits Dual NVidia Denver processor and the GPU of 1,3

GHz with Pascal architecture of 256 kernels, when compared with the AM3358

processor of Beaglebone and with the BCM2836 quad core Cortex A7 processor of

Raspberry PI 2.

1.4 Justification and Objective

As could be noted before, there is a movement to replace the federative

embedded architecture, composed by several specialized mono-cores platforms, with

only one multi-core platform in safety-critical applications. This strategy supports

greater computational power for executing high cost computational algorithms in short

36

periods. However, dependability is one of the main problems for providing certification

to these platforms, due to the existence of a large quantity of shared resources

between the cores. Since there is not a container to avoid the influence of faults of a

given application to other applications, faults becomes more dangerous than the same

ones in federative embedded architecture. In order to deal with this issue, fault-tolerant

techniques can be applied to ensure the safety operation of the platform. In the

autopilot design domain, only Vivekanandan et al. (2016) propose some fault tolerance

technique to ensure the safety of a UAV operation, while the other ones concern with

the performance and scalability of the applications. However, the assumptions about

the “high assurance platform”, considering that it is reliable enough to provide the

safety demanded for UAV operation are not consistent. Besides, only Czerniejewski et

al. (2018) make a more depth concern about the ensuring real-time features; however,

in no time they make any offline validation method, as required for hard real-time

applications. From these gaps described, this thesis proposes a safety-critical

embedded system architecture using a Jetson TX2 development kit for a VTOL UAV

autopilot.

To reach this goal, some specific objectives are defined:

• Design a hardware-in-the-loop simulation environment for testing the

embedded system to be embedded in VTOL UAV’s prototypes;

• Design a hardware and software architecture based on the requirements

collected throughout the work;

• Create a prototype of the hardware and software architecture designed

previously.

• Test the prototype’s resilience from injection faults in a hardware-in-the-loop

simulation.

1.5 Structure of work

This thesis is organized as follows:

37

• Chapter 2 provides some background. It introduces key concepts about real-

time systems, dependability and tools used in this work to understanding the guidelines

used to design the hardware and software architecture.

• Chapter 3 describes the design process of the embedded system architecture.

Two steps are shown: gathering requirements and design the architecture.

• Chapter 4 presents the experimentation used to validate the proposed

architecture. For this porpose, it is designed a Hardware-in-the-loop simulation

environment to simulate the system operation in presence of faults.

• Chapter 5 summarizes the contributions and results presented in this

dissertation, and suggests possible future research lines.

38

2 Background

This chapter aims to describe important concepts used in the present

dissertation. First of all, some concepts related to dependability are presented. After, it

is introduced the concepts about real-time systems. In the end, the Robot Operating

System is presented.

2.1 Dependability

The term system is used in several areas of science and engineering, which

consists of “an entity that interacts with other entities, i.e., other systems, including

hardware, software, humans and physical world with its natural phenomena” (Avizienis

et al., 2004). However, for this thesis, we use this term in the context of computing and

communication systems. Such systems are artificial elements designed with

determined functions, services, and structure. Service is the information or behavior

demanded by the users. Function is the internal behavior of a system adopted, in other

words, its implementation. Lastly, structure defines how the interaction between its

subsystems is performed.

In order to express the ability of a system to deliver its intended level of service

to its user, the concept of dependability is used. This concept is described by three

features: impairments, attributes and means. Impairments express the threats to

dependability. Attributes measure its features. Means consist of techniques used to

ensure the meeting of required attributes given the existence of threats during the

system’s life cycle.

39

2.1.1 Impairments

Service failure is a inability of the system providing a service. For example, a

service failure of an oven can be an inability of generating enough fire, and a service

failure of a program can be a incorrect computation from given inputs. For

simplification, from now on, we will just refer to the term failure.

Another important concept is the error, which consists of the deviation of the

results due to a failure to the correct output. In the context of the previous examples, it

is the difference between the expected fire and the weak fire generated, and the

difference between the output of the program and the expected output.

Lastly, the causes of errors are called faults. For an oven, a cause of the weak

fire can be the lack of gas, while the fault of a program can be an addition of an incorrect

command in the source code during its development phase. In general, faults can be

classified into eight different sets that are shown in Figure 11 (Avizienis et al., 2004).

Note the direct causality relation of these three concepts, but the inverse is not

always true. For example, there may be situations where a system would have faults,

but they would remain dormant without generating errors and, therefore, also without

failures. For example, an unknown bug of software.

2.1.2 Attributes

In order to translate the main requirements for a given dependable system, there

are three attributes: reliability, availability, and safety. They represent a given system

behavior related to the existence of faults and according to the application, each one

has a different importance. Reliability, R(t), of a system at time, t is the probability that

it operates without a failure in the interval [0, t], given that the system was performing

correctly at time 0 (Dubrova, 2013). It is a time-dependent metric and measures how

much time is expected to a system to operate without problems. Examples of a

dependable system, that the reliability is meaningful, are medical devices.

40

Availability, A(t), of a system at time t is the probability that it is functioning

correctly at the instant of time t (Dubrova, 2013). It expresses the fraction of period that

the system is in the operational state. An example of a system that requires availability

is an Automatic Teller Machine. It is an application where faults are tolerable, but the

time for repairing them must be very short.

Lastly, safety, S(t), of a system at time t is the probability that it either performs

its function correctly or discontinues its operation in a fail-safe manner in the interval

[0, t], given that the system was operating correctly at time 0 (Dubrova, 2013). There

is a concern with the absence of catastrophic consequences. An example is a nuclear

power plant control system.

Figure 11: Kind of faults.

Source: Avizienis et al. (2004)

41

2.1.3 Means

Means are the ways used to deal with faults in order to provide the dependable

attributes required for a given system. In general, there are four ways: fault prevention,

fault removal, fault forecasting and fault tolerance. This thesis interests in means to be

applied during design phase of an embedded system, then fault removal and fault

forecasting is out of the scope of this thesis.

Fault-prevention techniques are the first efforts of an embedded system design

to deal with faults. These techniques are applied during the specification and design in

order to avoid developer-client communication problems and to abstract the system

complexity. In this phase, it can be used mature and formally verified components,

standards (for example IEC 61508), formal methods (for example Z methods and

model checking), well-established engineering practices and risk assessment

techniques, as FMEA (Failure mode and effects analysis) and FTA (Fault tree analysis).

in order to identify potential faults (Lala & Harper, 1994).

Fault-tolerant techniques ensures successful operation of a system even if faults

occur using redundancy. They are classified according to the type of redundancy in

four classes of groups: hardware, software, information and time (Dubrova, 2013).

Each one has its advantages and disadvantages, and for each project the designer

chooses the best alternatives that solve the problem. In general, all solutions found in

the literature use a restricted set of strategies or the hybrid of them. According to Hitt

(2006), there are three categories of hardware fault-tolerant architectures: masking,

reconfiguration, and hybrid. They are based on the premise that hardware failures

occur randomly, caused at most by wear-outs and environmental interference.

Moreover, software fault-tolerant techniques are more complex due to the greater

software complexity over the hardware. They consist in programming errors. Normally,

diversity is adopted in order to avoid common-mode faults. It can use software versions

from different programmers, different programming languages, different compilers and

so on. Temporal fault-tolerant techniques explore the possibility of repeating the

execution of a given algorithm more than twice different times in order to avoid damage

by transient failures. Lastly, information fault-tolerant techniques consist in powerful

techniques which helps us to avoid unwanted information changes during data storage

42

or transmission. Some examples are parity, Hamming code, and Cyclic Redundancy

Check.

Particularly, in this work we intend to use the mature and formally verified

components from commercial off-the-shelf (COTS) elements. Thus, given this fact, the

present thesis concerns in adding fault-tolerant techniques from the standpoint of the

hardware and communication failures in order to design a dependable solution.

Hardware Redundancy

Hardware redundancy consists in put multiple hardwares in parallel in order to

tolerate hardware faults. Hardware faults can be permanent, transient and intermittent.

Permanent faults are events that remain active until some corrective actions are

performed, for example, chip burning. Transient faults are events that happen

periodically, mainly due to environmental events such as alpha particles, atmospheric

neutrons, electrostatic discharge, electrical power drops, and overheating. Lastly,

intermittent faults are due to implementation flaws, ageing, wear-out, and unexpected

operating conditions (Dubrova, 2013).

In general, there are three kinds of techniques to add hardware redundancy in

a system: fault-masking, reconfiguration, and hybrid configuration. These techniques

consider that most of the time, faults happen independently and randomly. Besides,

there are the common-mode faults that is not in the scope of this definition. In order to

tolerate them, the designer usually chooses different hardware technologies from

different manufacturers to create redundancies.

Fault masking is a technique to tolerate faults without detecting them. It consists

in an architecture that has multiple hardwares operating in parallel, an synchronization

mechanism to ensure algorithms run on all hardwares at the same time, and a voter

mechanism that, from the outputs of them, can infer the correct value according to the

common response of the majority. Fault masking technique is usually applied on high-

reliability applications in which short downtime are unacceptable and can interfere with

system dynamics, for example, flight control systems.

43

The most famous architecture is the Triple Modular Redundancy that is shown

in Figure 12. It consists of three hardware in parallel. However, a more general

architecture is called n-modular redundancy, and as its name suggests, its architecture

use any number of parallel hardware plus a voting mechanism.

Figure 12: Triple Modular Redundancy.

Source: The author

However, the number of redundancies does not consist of an arbitrary choice of

designer. According to Lamport et al. (1982), it is proved that a solution must have

3n+1 redundant hardwares to cope with n failed hardwares.

Regarding the reconfiguration technique, it reconfigures the whole solution from

a detection mechanism of fault to remove the influence of faults in the system, ensuring

the return of the system to an operational state. This technique is usually applied for

an application that needs high availability.

Standby Redundancy is the most famous reconfiguration technique. It consists

of an architecture of n parallel modules and n fault-detectors, but just one of them is in

operation, while the others are spare components. Such a solution can tolerate n–1

module faults. Its architecture is shown in Figure 13.

According to the implementation of a spare, there are two kinds of standby

redundancy: hot standby and cold standby. The former consists of an implementation

that has a shorter time of reconfiguration than the latter due to the spare has already

power on, but at the same time it is likely to have failures, different of the cold standby

that due to the spare be power off, it will not be influenced by any external environment

stimulus.

44

Figure 13: Standyby Redundancy.

Source: The author

An example of a fault detector used in this architecture is the watchdog timer. It

consists of an electronic device that is used in order to detect software problems and

reset the processor if any happens (Murphy & Barr, 2001). Another kind of fault

detector, that is applied in PLCs, checks if the main processor is alive, sending an

information to the hardware and waits for answers.

Lastly, hybrid redundancies combine the advantages of fault-masking and

reconfiguration techniques. Fault-masking avoids instantaneous effects of fault, while

reconfiguration immediately acts on the system by repairing the failed module with a

spare. Since these solutions are very robust, it is well used in safety-critical systems

An example of hybrid architecture is that Self-Purging Redundancy. In this

architecture, a voter mechanism decides the correct output and then it is compared

with the result of each module. The module, whose result is different of the correct

value, is removed from the structure and is replaced by a spare.

45

Figure 14: Self-Purging Redundancy.

Source: The author

Information redundancy

By a paradox of the “Two Generals” Gmytrasiewicz & Durfee (1992), it is known

that no one can guarantee state consistency of two entities in a communication that

happens in an unreliable channel. However, we can improve the communication

reliability using several strategies, for example, using the re-submission of information.

Another strategy consists in the insertion of redundant bits computed before the

transmission and their recomputation after the information has reached its destination.

If the bits are the same, we have high confidence that the transmission is correct.

Otherwise, we have detected an error.

There are several algorithms used to compute redundant bits. In this work, the

Fletcher’s checksum (Fletcher, 1982) algorithm is used. This algorithm detects multiple

errors, swapping of data blocks, and insertion of random numbers, using lower

computational effort compared to other coding techniques. Its logic is described in

Algorithm 1.

46

Algorithm 1: Fletcher’s checksum algorithm

2.2 Real-Time Systems

A real-time system consists of a computer system that must answer a stimulus

correctly and before a given time constraint, otherwise undesirable consequences may

occur (Stankovic, 1988). The most important feature of this system is the required

temporal determinism and, according to the consequence of its failure, it can be

classified into two type of systems: hard real-time and soft real-time. The former can

generate injuries, deaths and patrimonial/environmental damage, while the latter can

generate at most loss of performance of the application. One example of real-time is

the flight guidance system of Apollo 11, which was a priority-interrupt system capable

of handling several jobs at once time.7

Safety-critical systems are considered hard real-time systems because of their

criticality, and time constraints could have similar importance to the dependability

requirements. The design process of these systems demands not only correct and

deterministic operation, but also a previous offline validation (Liu, 2000).

According to Walls (2012), there are four ways to implement a real-time

systems: a simple processing loop, a background processing loop with interrupt

service routines, a multitasking system using a scheduler, and a multitasking system

using a Real-Time Operating System (RTOS). The first and second alternatives are

suitable for simple applications. When the application becomes complex with several

7 https://history.nasa.gov/computers/Ch2-6.html, Accessed: 2019-10-07

47

tasks and there is a great risk undesirable consequences, the third and fourth

alternatives should be used. Task is a set of commands that implements its behavior

in the context of CPU-based systems. The fourth one is more appropriate than the third

one when the application demands some services like multiple task priorities and

mailbox communication. For this work, it is used the FreeRTOS.8

2.2.1 FreeRTOS

FreeRTOS is a free kernel that is suitable for embedded real-time applications.

It can be used with microcontrollers or small microprocessors. FreeRTOS was

originally developed by Richard Barry in 2003 and was later developed and maintained

by Richard’s company, Real Time Engineers Ltd. FreeRTOS was a runaway success,

and in 2017 Real Time Engineers Ltd. passed stewardship of the FreeRTOS project to

Amazon Web Services.9

It uses the C language, schedules the processor with preemption for tasks with

different priorities and uses the round robin scheduler with time slicing for tasks with

the same priority. As process synchronization mechanism, it uses mutexes with priority

inheritance, recursive mutexes, binary and counting semaphores. Lastly, it also uses

streams, message buffers and queues for the task communication.

2.3 Robot Operating System

ROS is a framework that provides libraries and tools to speed up the development of

robotic systems. It provides facilities for the implementation of communication between

processes and between different computers. It is also an open source code project and

as a large user community, providing a significant collection of algorithms and drives.10

8 https://www.freertos.org, Accessed: 2019-10-07
9 https://www.freertos.org/RTOS.html
10 http://wiki.ros.org/pt

48

2.3.1 Concepts

Package:

The unit of the ROS organization is called Package. A Package can contain

some source code, software libraries with tested algorithms, ready-to-use algorithms,

a set of configuration files, and files describing the constitution of messages and

services used by nodes. A Package allows easy reuse of libraries and executables. It

is made up of a directory whose name is the same as the Package and consists of at

least two files: CMakeLists.txt and package.xml.

CMakeLists.txt:

CMakeLists.txt is a file whose contents are input to CMake. It is a system that

automatically builds executable files, speeding up the software design. Despite the

difficulty with programming in Linux environment with CMake commands, its use

facilitates the learning of ROS beginners and facilitates the development of large

projects.

Package.xml:

Package.xml is a file whose function is to describe the Package that owns it.

This file defines properties such as the Package name, the version of the existing code

in the Package, its authors and maintainers. It also spells out all dependencies,

allowing the usability of other Packages.

49

Node:

Node is a name given to the process that performs some computation and is

created and executed on top of ROS. ROS combines nodes through a graph,

facilitating communication between them. There are three ways to perform

communication: via remote procedure call (RPC), via topic media flow, and lastly

through parameter server. The goal of building applications using node concepts is to

avoid the monolithic implementation of robots by decreasing complexity and increasing

the reusability of source code.

Publisher-receiver communication model:

The publisher-receiver communication model is the most widely used form of

information transmission between nodes in ROS. Publishers is the name given to

nodes whose function is to send information to nodes whose function is to receive

information. This is an abstraction of TCP/IP communication via sockets that ensures

packet delivery and sequencing regardless of the route taken by the information flow.

However, thanks to the ROS API, the developer does not need to perform low level

configurations such as defining communication ports. He just uses the API and

indicates where the information should flow. This model allows a node to be both a

publisher and subscriber, and a publisher may send to multiple recipients through the

same communication channel, or through different channels. In addition, the same idea

is also true of recipients. The channels of communication in question are called Topics

and each Topic only receives one type of information. These types of information are

called messages, which in turn are defined in header files through data structures,

similar to what is used in structural programming languages.

50

Client-Server communication model:

The Client-Server communication model, performed through remote procedure

calls, is a different way of interaction between nodes. It allows us to request services

from other nodes via a single communication channel and let the former know of the

success or otherwise of their request. This is a communication model widely used in

information systems, especially in internet applications. Similarly to messages,

services are described in archives. However, it is divided into two parts, the necessary

information that the customer must choose as the communication entry and the

information returned by the service. The latter is often a boolean value, reporting

success or failure of the service requested.

2.3.2 Versions

There are two versions of ROS: the standard ROS and ROS 2. The standard

ROS was created to provide a development environment for the Willow Garage PR2

robot and has the following features:

• Environment created for a single robot;

• Workstation-class computational resources on board;

• No support for real-time requirements (or any real-time requirements would be

met in a special-purpose manner);

• It demands excellent network connectivity (either wired or close-proximity

high- bandwidth wireless);

• Environment created for applications in research, mostly academia;

However, along the development of robotic systems, the researchers and

developers began to explore the development of other types of applications that have

more restrictive requirements. To meet the requirements of these new applications, it

was proposed to design the ROS 2, that has the following features

• Teams of multiple robots.

51

• Small embedded platforms.

• Support real-time control directly in ROS, including inter-process and inter-

machine communication (assuming appropriate operating system and/or hardware

support).

• Behave as well as is possible when network connectivity degrades due to loss

and/or delay, from poor-quality WiFi to ground-to-space communication links.

2.4 Final remarks

This chapter introduced some concepts of the most important requirements in a

safety-critical system design: dependability and real-time systems. They are necessary

to ensure the correct and safe operation. Besides, the concepts of masking, standby,

and hybrid hardware architecture were described. Fletcher’s checksum was described

and it has the purpose of improving the reliability of a communication process. In the

end, ROS was presented.

These concepts are essential for understanding the subsequent chapters. The

next chapter will describe the whole system design process. Then, in the Chapter 4,

some tests will be performed to analize the operation, the dependability and the real-

time features of the solution proposed in the Chapter 3.

52

3 Embedded system architecture

This work proposes a safe embedded system architecture for a safety-critical

system and, as a case study, it is applied for a flight control system of a UAV. First of

all, this chapter defines the requirements of the UAV’s flight control system. Then, the

hardware and software architecture to meet these requirements is proposed and, in

the end, the prototype is presented.

3.1 Requirements

Requirements elicitation is an important step in a project. It guides the main

decisions that must be made to meet all the demands related to a project. The designer

must interview the people involved in the project and research the regulations and

standards related to the system to be designed.

Regarding the aim of dealing with a UAV’s flight control system, some aviation

safety standard were consulted. DO-178C and DO-254 are international commercial

aviation standards that provide the best practices for design an on-board system with

an acceptable level of confidence to comply with the airworthiness requirements. They

distinguish five levels of safety requirements called Design Assurance Levels (DALs),

as shown in Table 1, that are classified according to the consequence in case of a

failure of the system, where A is the most stringent and E is the least. (Fulton &

Vandermolen, 2017). A market research has revealed the supply of DAL B certified

UAV’s autopilot11. Indeed, a failure of a UAV can cause at most some injuries or even

some fatalities of people on the ground. Thus, we can consider as requirement of the

project a target failure rate of 107 chance of hour failure/flight hour.

11https://www.embention.com/news/autopilot-uav-certification/
 https://www.embention.com/projects/eko-custom-control-system/
 https://www.embention.com/news/autopilot-uav-certification/

53

Table 1 Design assurance levels (DALs).

The interview was conducted with some of the main researchers involved in

ProVANT project. It was interviewed 6 PhD and Masters students, and 13 general

questions to extract their demands were made. These questions and answers can be

found in Appendix A.

Table 2: Requirements of ProVANT embedded system architecture to be met.

3.2 Design Process

During a normal cycle of project, after the collection of requirements, the

architecture of a system is designed. In the first step, the whole system is described

54

without much detail in terms of schematics, diagrams and layouts of the project. In view

of this context, the instrumentation required by the ProVANT 4.0 is described. Next,

the hardware architecture is proposed. Lastly, the whole software architecture used in

this work is presented.

3.2.1 Instrumentation

As demanded by the requirements, the ProVANT 4.0 must operate manually or

automatically and must communicate with a ground station (Req. 2 and Req. 3). In

order to meet them, its flight control system should be composed by an Inertial

Measurement Unit (IMU), an air data sensor, a radar altimeter, a Global Position

System (GPS), servo motors, brushless motors, Electronic Speed Controllers (ESCs),

Radios, and a power system manager.

IMUs are devices that infer the motion in a non-earth referenced frame. Inertial

sensors combine gyroscopes, accelerometers, and sometimes magnetic sensors,

depending on the device model. Accelerometer measures the linear acceleration,

gyroscope measures the angular velocity, and the magnetic sensor identifies the

Earth’s magnetic field to establish the direction of magnetic north. ProVANT 4.0 will

use redundant IMUs for providing fault-tolerance features: two of them are provided by

Navio2, and the third one is the IMU ADIS16480.

Navio2, that is shown in Figure 15, is an instrument board created to be used

with the Raspberry PI 3. It is composed for 14x PWM channels, 2x IMU chips, 1x

barometer and 1x GPS. The IMUs included in it are: MPU9250 and LSM9DSI. The

former communicates by SPI with until 1 MHz and provides data of 3-Axis gyroscope,

3-Axis accelerometer and 3-Axis magnetometer. The latter communicates by SPI with

until 10 MHz and provides data of 3-Axis gyroscope, the 3-Axis accelerometer and 3-

Axis magnetometer.

55

Figure 15: Navio 2.

Source: Emlid

The IMU ADIS16480, that is shown in Figure 16, features a 3-Axis gyroscope,

a 3-Axis accelerometer, 3-Axis magnetometer, pressure sensor, and an Extended

Kalman Filter for dynamic orientation sensing. Its outputs are stable quaternions, Euler

angles, and rotation matrix in the local navigation frame. As protocol of communication,

it uses SPI with until 15 MHZ.

56

Figure 16: ADIS16480.

Source: Analog Devices

Air data system senses the wind flow through which the aircraft is flying,

measuring the dynamic pressure, static pressure and temperature. From these data,

it can infer the barometric altitude, the airspeed, the vertical speed, the Mach value,

the air temperature, the true airspeed, and the angle of attack. The Navio2 provides a

barometer, MS5611, which gives one float of static pressure and communicates by

I2C. Besides, the IMU ADIS16480 also supply one float of static pressure. Lastly, the

pitot tube 3DR Pixhawk Airspeed Sensor Kit is considered that, from I2C

communication protocol, provides the dynamic pressure resulted by the air movement.

It is presented in Figure 17.

57

Figure 17: 3DR Pixhawk Airspeed Sensor Kit.

Source: Gaba Hobby Center.

The sonar uses sonic transmissions to reflect off a surface immediately below

the aircraft. The sonar provides an absolute distance above the surface. This contrasts

with the air data system, where the altitude allows to generate a warming that the

aircraft is close to the ground and needs to take corrective action. ProVANT 4.0 uses

an MB2530 IRXL-MaxSonar-CS3 that communicates by PWM, RS232 or analog

voltage, which is shown in Figure 18.

Figure 18:MB2530 IRXL-MaxSonar-CS3.

Source: Max Botix

GPS is a satellite radio navigation system that provides a highly accurate

position and a highly velocity to an unlimited number of properly equipped users spread

58

all over the world. It provides a worldwide common grid reference system based on the

Earth-fixed coordinate system. ProVANT 4.0 uses redundant GPS, one that is mounted

in Navio2, a UBLOX NEO-M8N which provides the latitude, the longitude, the height,

and communicate by SPI with until 5.5 MHz. Besides, a UBLOX NEO-M8T, as shown

in Figure 19, is part of the GPS RTK module. This module provides a high accuracy

latitude, longitude, height, and communicates by USB (Grigulo & Becker, 2018).

Figure 19: UBLOX NEO-M8T.

Source: GNSS OEM

ProVANT 4.0 uses two fast servomotor to tilt the propellers. They are composed

by FLAT MAXON MOTOR BRUSHLESS EC 45 flat Ø42.8 mm of 50 Watt (shown in

Figure 3.6), MAXON CONTROLLER ESCON 36/3 EC, and MAXON Sensor Encoder

MILE, 512 CPT. The encoder communicates by RS422 and the controller by PWM.

Moreover, four slow servomotor command the control surfaces of the UAV. They are

Hitec D145SW Digital HV devices (see Figure 20), and each one communicates by

PWM through the the Navio2 shield.

59

Figure 20: Hitec D145SW Digital HV devices.

Source: Modelflight RC

Brushless DC motors are synchronous electric motors powered by a hardware

called Electronic Speed Controller (ESC), that is an electronic circuit in charge of, from

DC power, controlling and regulating the motor speed. It may also provide reversing of

the motor and dynamic braking depending on the model. In ProVANT 4.0, AXI 5345/14

HD 3D Extreme V2 brushless motors rotates the propeller (see Figure 21) and two

Mezon 160 ESC command them. These ESCs communicate by PWM.

Figure 21: AXI 5345/14 HD 3D Extreme V2

Source: Modelmotors

60

As radio for telemetry, it will be used a OrangeRx R1020X (see Figure 22), which

communicates by PPM. Lastly, the energy management system was designed by da

Silva (2017) and communicates by UART.

Figure 22: OrangeRx R1020X.

Source: Hobbyking.

A table with more details of the instrumentation and embedded systems used in

ProVANT 4.0 can be found in Appendix D.

3.2.2 Embedded hardwares

In order to execute high cost algorithms using GPU’s resources, the Jetson TX2

development toolkit (see Figure 23, is chosen. It is a platform designed specially for

running artificial intelligence algorithms. Jetson TX2 is composed by a Tegra X2, which

is a system-on-ship with a 64 bits Quad ARM Cortex-A57 processor, a 64 bits Dual

Nvidia Denver processor, and a GPU of 1,3 GHz (Req. 1) with Pascal architecture of

256 kernels.

61

Figure 23: Jetson TX2.

Source: Amazon

Moreover, it has 8 GB of RAM and 32GB eMMC storage capacity. As integration

feature, it possesses:

- 1x HDMI 2.0;

- 1x 802.11a/bg/n/ac 2x2 867Mbps WiFi;

- 1x Bluetooth 4.1;

- 1x USB3 + 1x USB2;

- 1x 10/100/1000 BASE-T Ethernet;

- 12 lanes MIPI CSI 2.0, 2.5 Gb/sec per lane;

- PCIe gen 2.0, 1x4 + 1x1 or 2x1 + 1x2;

- 1x SATA;

- 1x SDcard;

- 1x dual CAN bus;

- 2x UART;

- 1x SPI;

- 3x I2C;

62

However, Jetson TX2 does not provide the necessary UART, SPI, and I2C

interfaces demanded by the ProVANT 4.0 instrumentation, defined previously. In total,

it is needed eighteen peripherals of communication. Thus, another platform is added

with enough peripheral devices to establish communication with sensors and

actuators, similar to the ones used in the previous UAV versions. From now on, to

facilitate the understanding, Jetson TX2 will be called high level hardware (HLH) and

the other one, the low level hardware (LLH).

The chosen LLH is a Nucleo-f767zi (see Figure 3.11), which is composed by

Arm Cortex-M7 with 216 MHz, 2048 kB of Flash memory, and 512 kB of RAM. As

integration feature, it possesses:

- 4x USARTs;

- 4x UARTs;

- 6x SPIs;

- 4x I2C

- 3x CAN

- 1x USB 2.0,

- 1x Ethernet

- 4x PWM

By using both hardwares, a two-layer architecture is proposed, where the Jetson

TX2 is responsible to execute algorithms and the Nucleo board to interface the

instrumentation. By and large, for each sample time, the instrumentation data are read

by LLH and after sent to the HLH in order to execute the control law. After the control

law is computed, the control signals are transmitted to LLH that commands the

actuators.

63

Figure 24: Nucleo-f767zi

Source: Amazon

3.2.3 Hardware Architecture

The whole architecture proposed by this work is shown in Figure 25. The Jetson

TX2 communicates with Nucleo boards from a UART channel. Besides, the most of

sensors communicate with LLH, while only the GPS RTK and the high accuracy IMU

ADIS16480 communicate directly with HLH in order to decrease the latency of the

communication between HLH and LLH. During the work, the communication process

proved to be a system bottleneck.

Aiming to increase the reliability of the communication channel between Jetson

TX2 and Nucleo boards, and to detect of unwanted information changes during data

transmission between LLH and HLH, a Fletcher’s checksum was implemented. If any

frame arrives at the destination with error, the receiver will render the same.

64

Figure 25: Hardware architecture.

Source: The author

Next, it is proposed an implementation in the LHL of a fail-operational control

law, similar to Vivekanandan et al. (2016), in order to make the architecture be fault

tolerant related to HLH faults. However, Vivekanandan et al. (2016) assumes that the

65

LLH is reliable enough to ensure safe operation of UAVs without any reliability data or

experience. As the platforms chosen also has not detailed reliability information

available by the manufacturers, two Nucleo boards are put in parallel, using the hot

standby strategy and improving the solution proposed by Vivekanandan et al. (2016).

These strategies are justified since a UAV is a safety-critical application, which

are essential to concern with dependability. However, in this thesis, we only deals with

the HLH and LLH failures. Thus, it is not in the scope of this work to deal with

instrumentation faults and the communication faults with ground station/radio

controller, which are being dealt by other works of ProVANT’s project.

As no detailed reliability information is available by the manufacturers, we collect

some failures modes and faults for a general embedded system.

A) Software Failure Modes:

- Buffer overflow;

- Dangling pointers;

- Resource leaks;

- Race conditions;

- Semantic design;

B) Software Faults:

- Deadlock;

- Resource starvation;

- Too small memory;

- Bugs;

C) Hardware Failure Modes:

- Electrical failure;

- Mechanical failure;

- Temperature effects;

- Material failure;

66

D) Hardware Faults:

- Radiation;

- Hostile environments;

- Aging;

- Choosing the wrong dimensions;

- Manufacturing/assembly process deficiencies;

- Energy loss.

This work is dealing with permanent software and hardware faults in both

platforms, for example, aging, communication failure, deadlock, energy loss and crash.

3.2.4 Software Architecture

Logic description

Aiming to allow remote and automatic operation, the LLH have three tasks, each

one with different priorities: Controller task, Radio task, and Groundstation task. The

first one has the biggest priority and the last one, the smallest priority. Controller task

is responsible for the communication with sensors, actuators and HLH, besides the

execution of a fail-operational control law in case of HLH failure. Radio task

communicates with radio, allowing remote operation of the UAV. Lastly, Groundstation

task communicates with an external computer, passing data such as internal system

information or obeyig commands.

The Controller task is periodic with period of 10 ms. Its logic is resumed by

Figure 26. Note that this system has two modes of working: main LLH mode and

backup LLH mode. Initially, the device checks which mode is configured. By default,

every device are set up as a backup LLH mode. But as soon as the first LLH device is

executed, it will not find any other LLH and it immediately turns to the main LLH mode.

67

Next, the second LLH will find the main LLH working and it will remain in the backup

LLH mode.

Figure 26: New control task of LLH’s processors.

Source: The Author.

68

In the main board mode, LLH reads the sensors and sends the obtained data to

HLH. Next, it sends a flag for the backup LLH and waits for output data from the HLH.

If no data arrives in two sample times, it stores the information that the HLH is in failure

mode and takes control of the UAV, running a simple control law. Otherwise, LLH

obtains the output of HLH and commands the actuators with this data.

In the backup mode, LLH only waits for the flag sent by the main LLH. If no data

arrives for three sample times, it will change its mode for main LLH mode and resets

the other board.

The Groundstation task is periodic with the period of 500ms. The task checks if

there is some data sent from ground station and, if it arrives, it answers. The logic of

this task is shown in Figure 27.

Figure 27: LLH’s Groundstation task.

Source: The Author

The Radio task is also periodic with the period of 100ms. The task only checks

if there is some data sent from a radio. For example, if the received command is to

69

switch the control law between remote/automatic, it changes a global variable to switch

the operating mode. The logic of this task is shown inFigure 28.

Figure 28: LLH’s Radio task.

Source: The Author

The logic of HLH is summarized in Figure 29. The HLH waits for LLH data to run

the control law, and in parallel it has two periodic routines for reading data from an IMU

and a GPS. After the execution of the control law, it sent the output to the LLH.

70

Figure 29: HLH’s Control task.

Source: The Author

Physical description

The LLH software is implemented using C language, and its architecture is

designed in a vertical hierarchical structure of the elements of one level in relation to

those of a higher level. The proposed architecture is shown in Figure 30. The software

interacts with peripherals through peripheral driver supplied by the STM32CubeMX. It

is a graphical tool that allows an easy configuration of STM32 microcontrollers and

supplies a project with peripherals drives ready for use.

FreeRTOS at version 10 is the RTOS adopted because ProVANT research

group members are already familiar with it. Besides, it is not a proprietary software

(Req. 4) and it is also already available fully configured by STM32CubeMX.

71

The HLH architecture is structured as depicted in Figure 31. The platform uses

Ubuntu 18.04 since it is the standard operating system provided by the manufacturer,

and ROS 2, since it provides tools for speeding up the development of future

applications and is especially designed for embedded applications, unlike of the ROS

Standard (Req. 4).

The HLH’s drivers are available by default with the operating system, and the

services of reading sensors and communicating with the communication channel must

be implemented by the designer using the available drivers. At the moment, the HLH

only executes the control task. This task has been developed using the C++ language.

The control law must be implemented inside class method, whose interface has

already used in a simulation software of ProVANT project (Lara et al., 2017), providing

development integration between both tools. Its implementation is explained in the

Appendix C.

Figure 30: Description of LLH’s software architecture.

Source: The Author

72

Figure 31: Description of HLH’s software architecture.

Source: The Author

3.3 Final Remarks

This chapter describe the design process of the hardware and software

architecture to be applied in ProVANT 4.0. First, requirements were collected to guide

the design process,which consisted of a survey by international standards and

interviews with researchers involved in the ProVANT project. After, it was proposed an

embedded system architecture for ProVANT 4.0. Lastly, it was shown the prototype

built from the proposed architecture. The next chapter will describe the experimental

results obtained with the prototype. The dependable and real-time features will be

analyzed.

73

4 Experimental results

This chapter describes the experiments performed with the prototype presented

in Chapter 3. In the first section, the HIL simulation environment is presented, which

was developed to validate the proposed solution. After, a simulation is performed in

order to test the flight of the UAV without faults, to test the flight with faults in the HLH,

and with faults in the main LLH. From the experiments two characteristics are

analyzed: the hard real-time capabilities and the dependability.

4.1 Prototype

Based on the architecture described in Chapter 3, a prototype was built to

analyze the communication between the three hardwares. It is shown in theFigure 32.

The schematic of the prototype is found on Appendix D.

74

Figure 32: Prototype built.

Source: The Author.

4.2 Hardware-in-the-loop simulation for the UAV embedded system

A simulation is any study where many aspects of a phenomenon are translated

into mathematical models and executed in computer programs to mimic the outcomes

that happen in the natural world. In the context of control systems, simulation is a

process that conducts experiments with computational or mathematical models of a

system in order to test the efficiency of a control strategy.

However, rather than testing the control algorithm purely in a simulation

environment, such as Matlab/Simulink, there is a specific kind of simulation that

provides a way of testing of hardware and software performance, besides the integrity

of embedded systems, it is called the hardware-in-the-loop simulation (HILS). Thus, in

75

order to validate the embedded system proposed in this thesis, a HILS for the UAV

embedded system is designed as shown in Figure 33. While a UAV dynamic model is

being simulated on a desktop, the embedded system runs in parallel controlling the

simulation model.

Figure 33: Hardware-in-the-loop environment.

Source: The Author.

There are some approaches in the literature that look into the small UAV control

design using HILS. Gans et al. (2005) developed a HILS environment for airplane UAV

76

control tests. This work uses virtual reality software to produce real-world scenarios

and a wind tunnel for aerodynamic simulation of the aerial vehicle. Trilaksono et al.

(2011) designed a HILS for visual target tracking of an octorotor UAV with onboard

computer vision. In Cheon et al. (2016), a HILS platform was designed for verifying the

image-based object tracking method used in a UAV, composed by image processing,

scene generation, and flight control modules.

The HILS used in this thesis is an improvement of the ProVANT Simulator (Lara

et al. (2017), Lara et al. (2018)). ProVANT Simulator is a simulation environment based

on 3D CAD (Computer Aided Design), the Gazebo Simulator and ROS, with the

purpose of validation and implementation of control strategies, being a previous stage

of flight testing.

4.2.1 Communication

To perform the communication between the general purpose computer and the

embedded system, it has been chosen the UART protocol in the embedded system

side and the USB protocol in the general purpose computer side. Thus, to make the

translation of these serial protocols, two FT232RL converters are used: one is

responsable for sensors and actuators data transfer, and the other for reference data

transfer.

The serial communication uses a baud rate of 921600 bps in order to provide

fast communication with a worthless time lag. Besides, this application uses a two layer

communication protocol. The low level layer tackles data corruption and the

entanglement of packages by sending the data with redundant information to solve

these problems by using the Fletcher’s Checksum, and the high level protocol handles

the flow of communication by implementing a client/server protocol.

The high level protocol consists in a client/server communication where the

embedded system is the client of the application and asks to the general purpose

computer for services identified through their ID and some information, if necessary,

77

as showed in Figure 34. The following services are provided: i) Simulation start; ii)

Reading of sensors data; iii) Transmission of data to actuators.

Figure 34: High level protocol’s package.

Source: The Author.

The data flow in the communication process works as depicted in Figure 35.

First of all, the client starts the application, sending a message with ID 1 without waiting

for any response. From this moment, a periodic cycle of requesting sensor data and

sending actuator commands is started. In the sensor data request, the client sends a

message with ID 2 and waits for a server’s answer, which consists of one float array of

16 elements. However, when it sends actuator commands, it uses a message with ID

3 plus our float numbers corresponding to the control signals provided by the control

law. As a client/server protocol, this periodic cycle is set on the client-side, while the

server just waits for requests.

78

Figure 35: Communication data flow between server and client.

Source: The Author.

4.2.2 Simulator settings

The general purpose computer uses the linux distribution Ubuntu 18.04 LTS

(Long Term Support) as operating system. Besides, the Gazebo Simulator is employed

to simulate the dynamic behavior of the Tilt-rotor-UAV.

The simulation step of Gazebo simulator was adjusted for 4 ms, which is the

period when the simulator obtains the data of control signals and computes the actual

states of the system. The simulation step influences the accuracy and execution time

of the simulation, the shorter the period, the greater the computational effort. This

configuration was chosen because it is accurate enough for flight simulation and fast

enough to perform it in real time.

79

In addition, the Gazebo Simulator is configured with real-time_factor setting

equals to 1, making the simulator tries to keep the simulation in real time according to

the system clock.

In order to interact with the simulation environment, either by acquiring data and

applying control signals, or by changing simulation configurations, it was created a

dynamic library called Plugin to be responsible for getting requests from the serial

communication. The Boost12 ASIO API (Application Program Interface) is used, which

is a cross-platform C++ library for networking and low-level I/O programming, while the

Boost Thread API is used for creating and managing threads.

Plugin works as shown in Figure 37, which is composed for one thread that

waits for external requests and one callback that is called in every simulation step. For

each type of request, specific reaction occurs and the verification process is performed

in the following sequence: 1) start simulation, 2) send actuator data to the simulator,

and 3) obtain sensor data.

Figure 36: Server’s software architecture.

Source: The Author

12 http://www.boost.org

80

Source: The Author.

Figure 37: Logic of server software.

Source: The Author.

4.3 Numerical experiments

Numerical experiments were performed to conduct the proof of concept of the

architecture rather than to analyze the performance of the proposed solution, while

executing high computational cost control algorithms. In these experiments, both HLH

and LLH embedded systems were configured with a Discrete Linear Quadratic

Regulator (DLQR) control technique proposed by Rego & Raffo (2016) without integral

terms. Besides, the implementation of the control law in the HLH does not use the

GPU, since the purpose of this experiment is only to validate the proposed architecture.

81

The control design was based on the physical model presented in Cardoso et al.

(2019). In this experiment the ProVANT 4.0 (see Figure 4.7) model must keep in a

reference position that changes periodically in two set-points: r1 = [0, 0, 2]T ; and r2 =

[0, 0, 2.2]T .

The kinematic description of the system is performed according to Figure 38,

where ξ ≜ [x, y, z]T corresponds to the position of the main body with respect to the

inertial frame; φ, θ and ψ describe the orientation of the main body with respect to the

inertial frame through the Z-Y-X convention on local axes; αR and αL describe the

inclination of the propellers with respect to the main body of the aircraft. The vectors

𝒅𝑨𝒊
𝑩 and 𝒅𝑪𝒊

𝑨𝒊, with i ∈ {1, 2, 3}, and the angle of inclination β correspond to design

parameters of the aircraft. Table 3 presents the physical parameters of the UAV model

used to tune the DLQR controller.

The control strategy is based on the linearization and discretization of the

system state equations, obtained through the Euler-Lagrange formulation, around the

reference using sampling time of 10 ms. The generalized coordinates are q = (x, y, z,

φ, θ, ψ, αR, αL) and this information is read from the simulator with their derivatives.

The parameters used for control design are

with 𝑓𝑒𝑞
𝑅 = 37.3 N, 𝑓𝑒𝑞

𝐿 = 37.3 N, τ𝑒𝑞
𝑅 = 0 N.m, τ𝑒𝑞

𝐿 = 0 N.m.

The proposed architecture was validated with the HIL simulation environment

described before, using the designed DLQR control law and considering fault

injection. In the following experiments, a energy loss is induced on the boards and

represents any of the permanent faults described on Chapter 3.

82

Table 3: System physical parameters.

Figure 38: Reference coordinate systems

Source: Cardoso et al. (2019)

83

4.4 Results

Figures Figure 39, Figure 40, Figure 41 illustrate the results of position in X, Y

and Z axis of the ProVANT 4.0 obtained with the HILS. The variable Mode expresses

the situation of the embedded system in a given instant.

• Mode 0: represents the embedded system in full operation;

• Mode 2: represents a communication failure between HLH and LLH (such a

failure was not caused by an injection fault);

• Mode 3: represents the embedded system with HLH in permanent fault.

Unfortunately, the embedded system was in the failure mode 2 very often. The

information from the HLH arrived corrupted to the LLH, but the Fletcher’s code did not

detect them. This is acceptable because the system under test is a prototype, the

presence of poor wire contact was inevitable and the Fletcher’s code like any fault

tolerance technique is not 100% effective. This failure was detected using a

comparison with the output computed in the LLH’s control law. Moreover, the transfer

behavior from Mode 2 to Mode 0 was not performed by any automatic feature. This

transfer has been done manually, as we were investigating at that moment the

reliability of the entire system with all components working perfectly.

At t=29.7 s and t=30.1 s, a fault was injected in the LLH main processor. In

Figure 42 this issue is highlighted. The system does not change its mode because the

UAV was still under control by HLH. The UAV lost the control for some period because

the hot standby strategy needed this period to switch the hardware. Quickly, the UAV

stabilized again as expected.

Lastly, at 35.9 s, a fault was injected in the HLH and the embedded system get

in Mode 3 as expected. In Figure 43, this part of the simulation was zoomed. At this

time, the LLH immediately takes the UAV flight control.

84

Figure 39: Behavior of Z-axis position in the simulation.

Source: The Author

Figure 40: Behavior of Y-axis position in the simulation.

Source: The Author

85

Figure 41: Behavior of X-axis position in the simulation.

Source: The Author

Figure 42: Highlight the moment occurred LLH’s failures.

86

Source: The Author

Figure 43: Highlight the moment occurred HLH’s failure.

Source: The Author

The system proved to be robust to the injected faults during the simulation,

demonstrating the success of the techniques adopted, increasing the system’s

dependability. However, nothing can be said about the meeting of the Requirement 6.

The first reason is that we could not have the access of reliability data of all platforms

used in this work. Another reason is that, as the target failure rate is about 10−7 chance

of hour failure/flight hour, it will take several hours of operation to make any conclusions

given the small probability required. Lastly, a prototype more resistant to bad contact

failures is needed to be built.

To analyze and validate the proposed solution related to the real-time

requirement, the response time of the Controller thread should be obtained and, after,

an offline validation must be done. Figure 44 shows the response time behavior

throughout the simulation, and Figure 45 presents an histogram of the samples

87

collected when the embedded system is in Mode 0, since it is the Mode when the

longest system response time is achieved.

Figure 44: Behavior of the task’s response time.

Source: The Author

88

Figure 45: Histogram of the task’s response time.

Source: The Author

As can been seen in the histogram, there is random behavior on the samples

during the simulation. This behavior occurs due to we are collecting data on the side

of the simulator that is running on a non-real time operating system in a multi-core

processor. Despite of this behavior, the worst case response time value was 6,4 ms,

which is demanding 64% of the sampling time.

From part of the data collected in the HLH, the controller took about 0.65 ms to

run each instance of the control law, as shown in Figure 46. Therefore, we can

conclude that the solution is poorly optimized regarding the communication latency

between its components, demonstrating a demand for reducing this bottleneck.

Despite this bottleneck, 36% of the capacity is still available for Radio and

Groundstation Threads and, as they have much longer deadline compared to the

Controller thread, this solution in the HIL has potential to be validated. In addition, it

still must be evaluated the response time of other threads in order to ensure the

meeting of Requirement 7.

89

Figure 46: Histogram of the time required to run the HLH’s control law.

Source: The Author

5 Conclusions

This work proposed a safety-critical embedded system architecture to be

applied in the flight control system of a VTOL-UAV. It uses a Jetson TX2 development

kit, in view of growing demand for high computational cost algorithms. Different from

current work related to the autopilot design, this thesis deals with the autopilot as a

safety-critical system.

During the design of the solution, some researchers involved into the project of

the UAV was interviewed. From the interviews, some functional and nonfunctional

requirements were collected. Besides, in order to guide the dependability analysis,

some aviation safety standards were consulted and, from a research on market, the

dependability required for a UAV operation was inferred.

90

Consequently, during design phase a new hardware and software architecture

was proposed. As the Jetson TX2 development kit does not have enough peripheral

devices to communicate with all instrumentation required, an additional hardware, a

Nucleo-F767zi board, was selected to do this interface. Their operating systems and

software architectures were also defined. The Jetson TX2 development kit uses

Ubuntu 18.04 and ROS, and Nucleo-F767zi board uses FreeRTOS with version 10.

In addition, some changes have been made to increase the dependability of the

solution. Hardware redundancy and information redundancy techniques were used.

They are an improvement of the architecture suggested by Vivekanandan et al. (2016).

In order to increase the safety of the proposed architecture, we used a hot standby

technique. This improvement makes sense because LLH was a critical point of failure

and the most important hardware of the architecture.

In order to test the solution, a Hardware-in-the-loop simulation environment was

designed in order to inject faults during the simulation. Then, experiments showed that

the UAV remained operational despite the occurrence of faults, and the fault-tolerant

strategies worked as expected. Therefore, it can be conclude that the solution could

meet most of its requirements.

5.1 Future Work

Some future works of this project are:

• Make a comparison with other architectures.

• Investigate the adoption of RedHawk Linux.

• Perform a study of the communication latency between all components

and the instrumentation specified.

• Obtain the hardware reliability data for numerical pre-validation of the

architecture proposed;

• Obtain instrumentation reliability data and use them in the dependability

analysis of the whole system;

91

• Search for a high performance hardware with sufficient communication

peripherals, or develop a custom embedded hardware;

• Test other fault tolerance strategies, for example, the Self-Purging

Redundancy Architecture and GPU’s hardening techniques.

• After going through a robust manufacturing process, thoroughly validate

the solution for several hours in order to evaluate if the required

dependability level is reached.

92

Bibliography

Abbott, D. (2011). Linux for embedded and real-time applications. Elsevier.

Alemzadeh, H., Iyer, R. K., Kalbarczyk, Z., & Raman, J. (2013). Analysis of safety-

critical computer failures in medical devices. IEEE Security Privacy, 11(4), 14–

26.

Arm, J., Bradac, Z., & Kaczmarczyk, V. (2016). Real-time capabilities of linux rtai. IFAC-

PapersOnLine, 49(25), 401–406.

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and

taxonomy of dependable and secure computing. IEEE Trans. Dependable

Secur. Comput.,1(1), 11–33.

Barr, M. (1998). Programming Embedded Systems in C and C++. Sebastopol, CA,

USA: O’Reilly & Associates, Inc., 1st edition.

Burns, A., Hayes, N., & Richardson, M. (1995). Generating feasible cyclic schedules.

Control Engineering Practice, 3(2), 151–162.

Cardoso, D. N., Esteban, S., & Raffo, G. V. (2019). A nonlinear w∞ controller of a tilt-

rotor uav for trajectory tracking. In 2019 18th European Control Conference

(ECC) (pp. 928–934).

Chao, H., Cao, Y., & Chen, Y. (2010). Autopilots for small unmanned aerial vehicles: A

survey. International Journal of Control, Automation and Systems, 8(1), 36–44.

Cheon, S., Ha, S., & Moon, T. (2016). Hardware-the-loop simulation platform for image-

based object tracking method using small UAV. Digital Avionics Systems

Conference, IEEE/AIAA 35th.

Czerniejewski, A., Dantu, K., & Ziarek, L. (2018). juav: A real-time java uav autopilot.

In 2018 Second IEEE International Conference on Robotic Computing (IRC)

(pp. 258–261).

93

d. Santos, F. F., Draghetti, L., Weigel, L., Carro, L., Navaux, P., & Rech, P. (2017).

Evaluation and mitigation of soft-errors in neural network-based object detection

in three gpu architectures. In 2017 47th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks Workshops (DSN-W) (pp.

169–176).

da Silva, G. M. (2017). Sistema de gerenciamento de energia fotovoltaica aplicado a

um veículo aéreo não-tripulado.

del Pino, J. C. (2016). Diseño y Desarrollo Preliminar de una Plataforma UAV Tilt-Rotor

para Misionesde Búsqueda y Rescate.(Proyecto EMERGENTIA).

Dhurjaty, S. & Atre, A. (2016). A hand-cranked, affordable defibrillator for resource-poor

settings. In 2016 IEEE Global Humanitarian Technology Conference (GHTC)

(pp. 542–546).

Donadel, R. et al. (2015). Modeling and control of a tiltrotor unmanned aerial vehicle

for path tracking.

Dubrova, E. (2013). Fault-Tolerant Design. Springer Publishing Company,

Incorporated.

Ellingson, G. & McLain, T. (2017). Rosplane: Fixed-wing autopilot for education and

research. In 2017 International Conference on Unmanned Aircraft Systems

(ICUAS) (pp. 1503–1507).

Fletcher, J. (1982). An arithmetic checksum for serial transmissions. IEEE Transactions

on Communications, 30(1), 247–252.

Frenzel, L. E. (2015). Handbook of serial communications interfaces: a comprehensive

compendium of serial digital input/output (I/O) standards. Newnes.

Fulton, R. & Vandermolen, R. (2017). Airborne Electronic Hardware Design Assurance:

A Practitioner’s Guide to RTCA/DO-254. CRC Press.

Gans, N., Dixon, W., Lind, R., & Kurdila, A. (2005). A hardware-in the-loop simulation

platform for vision-based control of unmanned air vehicles. Mechatronics.

Gaska, T., Watkin, C., & Chen, Y. (2015). Integrated modular avionics - past, present,

and future. IEEE Aerospace and Electronic Systems Magazine, 30(9), 12–23.

94

Gmytrasiewicz, P. J. & Durfee, E. H. (1992). Decision-theoretic recursive modeling and

the coordinated attack problem. In Proceedings of the First International

Conference on Artificial Intelligence Planning Systems (pp. 88–95). San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Grigulo, J. & Becker, L. B. (2018). Experimenting sensor nodes localization in wsn with

uav acting as mobile agent. In 2018 IEEE 23rd International Conference on

Emerging Technologies and Factory Automation (ETFA), volume 1 (pp. 808–

815).

Hitt, E. F. (2006). Avionics Development and Implementation, Chapter 5: Fault Tolerant

Avionics. CRC Press, 1st edition.

Janson, K., Treudler, C. J., Hollstein, T., Raik, J., Jenihhin, M., & Fey, G. (2018).

Software-level tmr approach for on-board data processing in space applications.

In 2018 IEEE 21st International Symposium on Design and Diagnostics of

Electronic Circuits Systems (DDECS) (pp. 147–152).

Kahe, G. (2018). Triple-triple redundant reliable onboard computer based on multicore

microcontrollers. International Journal of Reliability, Risk and Safety: Theory and

Application, 1(1), 7–15.

Kato, S. & Yamasaki, N. (2009). Semi-partitioned fixed-priority scheduling on multi-

processors. In 2009 15th IEEE Real-Time and Embedded Technology and

Applications Symposium (pp. 23–32).

Knight, J. C. (2002). Safety critical systems: challenges and directions. In Proceedings

of the 24th International Conference on Software Engineering. ICSE 2002 (pp.

547–550).

Lakos, J. (1996). Large-scale C++ Software Design. Redwood City, CA, USA: Addison

Wesley Longman Publishing Co., Inc.

Lala, J. H. & Harper, R. E. (1994). Architectural principles for safety-critical real-time

applications. Proceedings of the IEEE, 82(1), 25–40.

LaMeres, B. J., Harkness, S., Handley, M., Moholt, P., Julien, C., Kaiser, T., Klumpar,

D., Mashburn, K., Springer, L., & Crum, G. A. (2015). Radsat-radiation tolerant

smallsat computer system.

95

Lamport, L., Shostak, R., & Pease, M. (1982). The byzantine generals problem. ACM

Trans. Program. Lang. Syst., 4(3), 382–401.

Lara, A. V., Nascimento, I. B., Arias-Garcia, J., Becker, L. B., & Raffo, G. V. (2018).

Hardware-in-the-loop simulation environment for testing of tilt-rotor uav’s control

strategies. XXII Congresso Brasileiro de Automática.

Lara, A. V., Rego, B. S., Raffo, G. V., & Arias-Garcia, J. (2017). Desenvolvimento de

um ambiente de simulação de vants tilt-rotor para testes de estratégias de

controle. Proc. of the XII Simpósio Brasileiro de Automação Inteligente, (pp.

2135–2141).

Liu, C. L. & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a

hard-real-time environment. J. ACM, 20(1), 46–61.

Liu, J. W. S. W. (2000). Real-Time Systems. Upper Saddle River, NJ, USA: Prentice

Hall PTR, 1st edition.

Louali, R., Gacem, H., Elouardi, A., & Bouaziz, S. (2017). Implementation of an uav

guidance, navigation and control system based on the can data bus: Validation

using a hardware in the loop simulation. In 2017 IEEE International Conference

on Advanced Intelligent Mechatronics (AIM) (pp. 1418–1423).

Meier, L., Honegger, D., & Pollefeys, M. (2015). Px4: A node-based multithreaded open

source robotics framework for deeply embedded platforms. In 2015 IEEE

International Conference on Robotics and Automation (ICRA) (pp. 6235–6240).

Milluzzi, A., George, A., & George, A. (2017). Exploration of tmr fault masking with

persistent threads on tegra gpu socs. In 2017 IEEE Aerospace Conference (pp.

1–7).

Miranda, G. M. T. (2017). Multi-core model predictive control strategy for a tilt-rotor uav

in system-in-the-loop simulation.

Mozafari, S. H. & Meyer, B. H. (2015). Hot spare components for performance-cost

improvement in multi-core simt. In 2015 IEEE International Symposium on

Defect and

Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) (pp. 53–59).

96

Murphy, N. & Barr, M. (2001). Watchdog timers. Embedded Systems Programming,

14(11),

79–80.

Nemati, F. (2010). Partitioned scheduling of real-time tasks on multi-core platforms.

Oliveira, D. A. G., Rech, P., Quinn, H. M., Fairbanks, T. D., Monroe, L., Michalak, S. E.,

Anderson-Cook, C., Navaux, P. O. A., & Carro, L. (2014). Modern gpus radiation

sensitivity evaluation and mitigation through duplication with comparison. IEEE

Transactions on Nuclear Science, 61(6), 3115–3122.

Oyetoke, O. (2015). Embedded systems engineering, the future of our technology

world; a look into the design of optimized energy metering devices. International

Journal of Recent Engineering Science (IJRES).

Pilla, L. L., Rech, P., Silvestri, F., Frost, C., Navaux, P. O. A., Reorda, M. S., & Carro,

L. (2014). Software-based hardening strategies for neutron sensitive fft

algorithms on gpus. IEEE Transactions on Nuclear Science, 61(4), 1874–1880.

Rahme, J. & Xu, H. (2017). Dependable and reliable cloud-based systems using

multiple software spare components. In 2017 IEEE SmartWorld, Ubiquitous

Intelligence Computing, Advanced Trusted Computed, Scalable Computing

Communications, Cloud Big Data Computing, Internet of People and Smart City

Innovation (Smart- World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1–8).

Rego, B. S. & Raffo, G. V. (2016). Path tracking control based on guaranteed state

estimation for a Tilt-rotor UAV. XXI Congresso Brasileiro de Automática.

Saidi, S., Ernst, R., Uhrig, S., Theiling, H., & de Dinechin, B. D. (2015). The shift to

multicores in real-time and safety-critical systems. In Proceedings of the 10th

International Conference on Hardware/Software Codesign and System

Synthesis, CODES ’15 (pp. 220–229). Piscataway, NJ, USA: IEEE Press.

Salehi, M., Ejlali, A., & Al-Hashimi, B. M. (2016). Two-phase low-energy n-modular

redundancy for hard real-time multi-core systems. IEEE Transactions on

Parallel and Distributed Systems, 27(5), 1497–1510.

Sari, B. & Reuss, H.-C. (2018). Fail-Operational Safety Architecture for ADAS Systems

Considering Domain ECUs. Technical report, SAE Technical Paper.

97

Stankovic, J. A. (1988). Misconceptions about real-time computing: a serious problem

for next-generation systems. Computer, 21(10), 10–19.

Trilaksono, B. R., Triadhitama, R., Adiprawita, W., & Wibowo, A. (2011). Hardware-in-

the-loop simulation for visual target tracking of octorotor UAV. Aircraft

Engineering and Aerospace Technology: An International Journal.

Vivekanandan, P., Garcia, G., Yun, H., & Keshmiri, S. (2016). A simplex architecture

for intelligent and safe unmanned aerial vehicles. In 2016 IEEE 22nd

International Conference on Embedded and Real-Time Computing Systems

and Applications (RTCSA) (pp. 69–75).

Walls, C. (2012). Embedded software: the works. Elsevier.

Wang Sujing, Wang Lide, Shen Ping, Liu Biao, & Nie Xiaobo (2008). Research on

electronically controlled fuel injection system. In 2008 IEEE Vehicle Power and

Propulsion Conference (pp. 1–5).

Watkins, C. B. & Walter, R. (2007). Transitioning from federated avionics architectures

to integrated modular avionics. In 2007 IEEE/AIAA 26th Digital Avionics

Systems Conference (pp. 2.A.1–1–2.A.1–10).

Zhaolin Yang, Feng Lin, & Chen, B. M. (2016). Survey of autopilot for multi-rotor

unmanned aerial vehicles. In IECON 2016 - 42nd Annual Conference of the

IEEE Industrial Electronics Society (pp. 6122–6127).

98

Appendix A: Interviews

This appendix describes all the information obtained in the first round of a series

of interviews conducted with members of the PROVANT project in order to ascertain

the key characteristics desired for the ProVANT 4.0. This text is part of the development

of the master’s thesis of the present author and aims to organize the hardware and

software requirements necessary to meet the expectations of the interviewees. In all,

we interviewed 6 Ph.D. or Master’s students, each responsible for a different research

topic involving ProVANT 4.0. In addition, 12 general questions were asked. The

following sections describe the answers to each question.

A.1 Questions and Answers

A.1.1 Give a brief description of your work and how it will depend on the

hardware and software architecture of UAV 4.0.?

Interviewee 1: “I work with robust nonlinear fault-tolerant control and fault

detection and isolation strategies based on set-theoretic methods, with application to

the UAV case. Such strategies are computationally costly, involving the online solution

of nonlinear optimization problems with several constraints. Hardware/software

supporting parallelization is very important. Reliable memory management and

constant sampling time (input and output) are also required. Time delays (in

communication and other things) should be minimal.”

Interviewee 2: “ My work is to develop linear and nonlinear robust controllers

to provide path tracking and cope with the tilt-rotor UAV 4.0 entire flight envelope. The

controllers must be embedded on the aircraft. Therefore, the hardware must provide

the best performance as possible, in sense of execution speed. Besides ensure that

99

commands sent to the actuators will be executed and data from the experiment will be

saved for analysis. ”

Interviewee 3: “ My work is about some formulations of MPC, such as economic

MPC, robust MPC, and stochastic MPC, as well as, the integration between them. ”

Interviewee 4: “ Applying verification techniques in the UAV design process.

For this purpose, we are using Model Checking, and static and automatic method,

complemented with Runtime Verification (RV), a dynamic method. In order to apply

RV, we depend on the software system, because this technique will check the current

execution against the desired properties that generates a monitor which is

instrumented into the code. The hardware will be used in a HIL simulation to test and

validate the work. ”

Interviewee 5: “ I work with Model Predictive Controllers, which are a optimal

control approach to control systems. Solving the optimal control problem to control a

tilt-rotor is very demanding computationally, so the hardware should allow

parallelization throw a GPU, a multi-core processor, or a FPGA. As far as the software

architecture is concerned, the control algorithm is quite complex, so I will need to

program with object oriented programming in C++ (more computationally efficient than

java and alternatives) and a way to control the timing to send the input in the correct

sample times. ”

Interviewee 6: “ My work focuses in experiment and validation of localization

methods for wireless sensor networks, the main idea is to localize the sensors using

only beacon messages and RSSI from WiFi ESP8266 radios. The mobile node, which

is the one provided with a low cost GNSS RTK system, broadcast its position while

traversing a WSN, the beacons transmitted are stored in the nodes on the field and,

with a post processed algorithm, it is able to estimate its own position without the need

of a GNSS embedded in the static sensor itself. For a more specific application, such

as in agriculture or monitoring of remote areas (islands, volcanoes and harsh

environments), it is required an UAV capable of covering big areas, so the UAV 4.0

would be great for the application of a future work in this topic. ”

100

A.1.2 What are the basic behaviors and required functionalities of the ProVANT

4.0?

Interviewee 1: “The ProVANT 4.0 should be able to perform teleoperated

flights, and autonomous hover and forward flights (tracking a desired trajectory). Load

transportation tasks must be also taken into account (load suspended by a cable in

hover flight, but retracted in forward flights). ”

Interviewee 2: “Besides the common features, it must provide an environment

to make easy implementation of controllers (Similar to the ProVANT simulator) and a

way to "debug" and test the controllers before performing real tests. Furthermore, the

wire connections must ensure that "bad contacts" will not happen during flight.”

Interviewee 3: “Its basics abilities are performing hover and forward flights with

or without suspended load. Moreover, it should be able to perform tasks within

kilometers range using global positioning systems and vision systems to deal with

environment peculiarities.”

Interviewee 4: “The UAV will automatically measure wind speed and display

the speed on the ground station. The ground station will automatically estimate the

time to return, taking into account the wind and display this information to the operator.

The ground station will automatically warn the operator if the fuel/battery is not

sufficient to return.”

Interviewee 5: “It is need a way to read sensors, send input to actuators and

send/receive data via radio for telemetry.”

Interviewee 6: “RTK GNSS for waypoint or autonomous navigation,

communication with sensor nodes and telemetry. VTOL capability.”

A.1.3 What is the hardware performance needed to your work be carried out?

Interviewee 1: “The control and state estimation strategies involved are very

computationally demanding. They require the online solution of nonlinear optimization

101

problems with several constraints, and the execution of several nonlinear state

estimators in parallel.”

Interviewee 2: “The sensors must report correct measurements, with minimum

noise as possible. The actuators must perform the commands correctly. The

controller’s loop time must be smaller than 10 milliseconds.”

Interviewee 3: “It needs to have high computational power since most of the

controllers of my work are costly. It would be important to have the possibility of doing

GPU coding.”

Interviewee 4: “We need a high performance of the hardware because we

intend to use a HIL Simulation to test and validate our work to raise the level of reliability

in the system.”

Interviewee 5: ‘I don’t have a way to specify exact required performance yet,

but as I answered in question 2, the algorithm is very computationally expensive. The

communication should also being able to send all estimated states and controls in a

sample time, either via radio, or via serial communication.”

Interviewee 6: “For the RTK algorithm: any system capable of running LINUX

OS with at least 500Mhz processor and 100MB of free memory will be OK. For the

sensor nodes: ESP8266 radio + cpu modules.”

A.1.4 How many and which algorithms need to be executed and stored

simultaneously in the main memory during the UAV 4.0 operation?

Interviewee 1: “A control algorithm based on solving a constrained nonlinear

optimization problem (a nonlinear MPC, for instance), a fault diagnostic algorithm

(probably also based on optimization), and a bank of nonlinear set-based state

estimators running in parallel (the number of state estimators varies from one case to

another).”

Interviewee 2: “It is not possible to define the exact number of algorithms. But,

it is necessary to execute the controller, the filtering algorithm (To improve

102

measurements), the algorithm that detects error and instability (to execute some action

during instability and system’s fault). Besides save data for analysis.”

Interviewee 3: “Basically, two threads need to be made, one for the controller

itself and the other for obstacle detection. However, through the course of my work,

maybe it will be necessary to run some parts of the controllers in parallel or even in an

embedded system.”

Interviewee 4: “Control algorithms and algorithms that interface with the UAV

subsystems.”

Interviewee 5: “The algorithm involves a data processor for LIDAR raw output,

which includes 3 computational geometry algorithms(small and not demanding) and a

processing part to convert this data to structured constraints. It also involves a

optimization part, which includes a NLP solver(IPOPT like) a HP-adaptive

pseudospectral transcription algorithm.”

Interviewee 6: “Algorithms: RTK algorithm, waypoint navigation algorithm,

wireless sensor communication”

A.1.5 How would be an ideal interface of Hardware/Software for your work to be

done?

Interviewee 1: “The hardware/software interface should be as reliable as

possible, regarding memory management, task scheduling, multi-core processing, and

sensor/actuator data management (send and receive data to/from sensors and

actuators)”

Interviewee 2: “An interface similar to the ProVANT simulator.”

Interviewee 3: “Simple, with a clear and well-described framework. Moreover,

it should be modular in a sense that all of the users’ efforts can be directed to their own

work without having to worry about how the whole Hardware/Software works.”

Interviewee 4: “I have not yet identified an ideal interface for my work.”

103

Interviewee 5: “One that reads my mind and program the embedded hardware

by itself”

Interviewee 6: “Any Linux OS Single Board Computer with, at least, three

UARTs. WiFi ESP8266 radios as sensor nodes and Autopilot for waypoint navigation

(GNSS)”

A.1.6 What would be a good way to test and debug your work?

Interviewee 1: “The best way do debug these strategies is to be able to simulate

sensor and actuator failures online. By this way, the fault-tolerant control and fault

detection and isolation strategies can be effectively tested, anticipating all the faulty

situations for which these strategies are specially designed, prior to the occurrence of

real component malfunctions.”

Interviewee 2: “Using "Hardware in the loop" with a possibility to print partial

results in some interface.”

Interviewee 3: “It would be interesting to have some interface allowing to see

some selected signals in a graphic fashion. Also, to have some methods to export

those signals.”

Interviewee 4: “A good way to test my work is using HIL Simulation.”

Interviewee 5: “Any way that from my PC and program embedded hardware

through a USB or other convenient way.”

Interviewee 6: “Test: practical tests in laboratory and on the field. Debug: log

files and debug messages in real time of operation.”

104

A.1.7 How would you like to obtain flight data?

Interviewee 1: “Flight data should be stored in the embedded system (I don?t

know exactly how, maybe a flash memory), or sent to the ground station. The desired

trajectory, performed trajectory (all the system states), control signals, sensor

measurement (and frequency), input and output data of state estimators, and also the

output from the fault diagnoser should be stored.”

Interviewee 2: “During a flight, some data should be sent from the UAV to a

ground station. Moreover, after the flight, it must provide the possibility to download the

whole data from the UAV’s memory.”

Interviewee 3: “Graphically, in a ground station for example, and in output files

that can be imported easily to others software.”

Interviewee 4: “In a web page, where we can obtain flight data wherever we

are.”

Interviewee 5: “Getting Telemetry data, using a compiler debugger, memory

analyzer software, a runtime analyzer and using a profiler can be very helpful.”

Interviewee 6: “Long Range telemetry link between UAV and PC/tablet.”

A.1.8 What input and output data are required to your application run properly?

Interviewee 1: “The fault-tolerant control strategies require information on the

control signals, sensor measurement (and frequency), and desired trajectory (all

desired states).”

Interviewee 2: “Input: attitude (In Euler angles), position (x,y, and z, w.r.t. an

inertial ground station), servomotors’ angle and angle of deflection of aerodynamic

surfaces. Output: Servomotors’ torque, thrusters’ voltage and aerodynamic surfaces

angle of deflection.”

105

Interviewee 3: “All states (orientation, position, servomotors’ angles, load’s

angles), control input (thrusts, torques, control surfaces angles), vision sensing

(camera information), and battery-related variables (current, tension, etc).”

Interviewee 4: “A input is all of data that control algorithm will need to run. The

output is the event trace that this algorithm generates.”

Interviewee 5: “No preference, though, telemetry is usually sent through some

radio device, as xBee for example.”

Interviewee 6: “input: GNSS rover (UAV) raw data, GNSS BASE station raw

data (NTRIP or local), IMU measurements. Output: RTK GNSS solution to UAV

autopilot, position from RTK to sensor nodes, telemetry messages.”

A.1.9 What about the frequency of these data?

Interviewee 1: “Output data should be sent in the lowest actuator frequency (12

ms), and input data should be received in multiples of it (in the case of sensor

measurement with lower frequency, i.e., it can be 12 ms, 24 ms, 36 ms, etc).”

Interviewee 2: “The only constraint of frequency in the sample time. The

smallest sample time is probably the necessary to control the actuators, probably

around 10-20 ms.”

Interviewee 3: “Around 85 Hz or bigger (12 ms or less).”

Interviewee 4: “It depends on the period of the threads.”

Interviewee 5: “No preference, though, telemetry is usually sent through some

radio device, as xBee for example.”

Interviewee 6:

“GNSS rover (UAV) raw data: 5Hz; GNSS BASE station raw data (NTRIP or

local): 1Hz; RTK GNSS solution to UAV autopilot:5Hz; position from RTK to sensor

nodes: 5Hz; telemetry messages: 57600bps”

106

A.1.10 For a proper documentation, what should be included in the software and

hardware manual?

Interviewee 1: “Every technical detail regarding the project of the software and

hardware architecture should be documented. A hard requirement is that the next

developer should be able to continue the work only by reading the manual (despite

basic technical and theoretical knowledge required, of course. However, these should

be briefly explained, or referenced to another material for the ProVANT reader).”

Interviewee 2: “Everything must be detailed, using the most number of figures as

possible. Each step of the code must be commented.”

Interviewee 3: “The whole hardware and software framework description and a brief

explanation about the methods (or functions in case of procedural languages) as well

as its interfaces. Moreover, a simple getting start tutorial for users that don’t need to

get detailed knowledge of the application.”

Interviewee 4: “Functional and non-functional requirements. high and low level

features of each components.”

Interviewee 5: “Hardware and software architecture description, API descriptions, how

the software and hardware is intended to be used, a high level description on how to

program the hardware.”

Interviewee 6: “Software: Commented code, manual for developers, manual for user

guide; Hardware: Manual for assemble parts (with mechanical parts catalog)”

A.1.11 If a UAV get into unrecoverable failure mode, what kind of

countermeasures should be done?

107

Interviewee 1: “In the worst case, the system should be able to switch to a

control strategy capable of perform safe vertical landing. An alert signal should be sent

to the ground station.”

Interviewee 2: “The system must switch the implemented controller to a

nonlinear one that drives the UAV to land somewhere. The "backup" controller must

control just the UAV’s altitude and attitude, being as simple as possible.”

Interviewee 3: “It should have a redundancy controller running during all flight

and able to safely put the vehicle on hover and then land in a safe place. If the vehicle

gets in failure mode, this controller must be activated.”

Interviewee 4: “The UAV should enter safe mode and use its resources to

identify the area where it is flying to take the possible measures, from emergency

landing to turning off the engines if there are no risks in its environment.”

Interviewee 5: “Some sort of safe landing, if possible. "Unrecoverable failure

mode" is very general, it is hard to say what this really means.”

Interviewee 6: “Turn on failsafe mode in order to taking it back to home position

and take control of the drone; if not possible land where it is; Instantly power off if

reachable; if not reachable try to find it through the telemetry GNSS messages (on the

map).”

A.1.12 Which ones of the UAV 4.0 failures do you consider tolerable?

Interviewee 1: “Sensor failures (wrong measurement, lack of measurement),

unusual communication delays, actuator failures (loss of potency), and maybe the

complete loss of a propeller (in this case, I think it is reasonable to not require trajectory

tracking anymore, but only stabilization. Maybe still trajectory tracking if in forward flight

mode, due to the aerodynamic surfaces).”

Interviewee 2: “fault from data sent from the UAV to the ground station.”

Interviewee 3: “Lost of the control surfaces (it could still perform hover) and lost

of some sensor information (as long as it still possible to estimate them).”

108

Interviewee 4: “Data latency and loss (not much time) Delay receiving

commands.”

Interviewee 5: “Occasional faults on sensors can be tolerated, if not frequent.”

Interviewee 6: “Loss of signal with RC; Low battery; Magnet sensor error; GPS

error; Engine failure.”

109

Appendix B: Nucleo boards’s firmware

B.1 IDE

Several IDE (Integrated Development Environment) can be used to design code

for a STM microcontroller. For this work it was used the System Workbench for STM32

and free IDE available in https://www.openstm32.org/. This is an IDE based on Eclipse

and to download it, a register is required. For a complete manual of these application

access https://www.eclipse.org/documentation/ and choose the manual according to

the eclipses version of the IDE downloaded.

B.2 StmCubeMX

According to STMicroelectronics13, “STMCubeMX is a graphical tool that allows

an easy configuration of STM32 microcontrollers and microprocessors through a step-

by-step process.”. One can download it, using the link

https://www.st.com/en/development-tools/stm32cubemx.html. A complete manual can

be found in the same link of the download.This software set the project up even with

code required for use of FreeRTOS in the application

B.3 Project Setup

The source code of the LHL project can be found in the github repository

https://github.com/Guiraffo/provant-software. The Code available is set up just for HIL

13 www.st.com

110

simulation. In order to implement codes for communication with instrumentation, the

respective driver settings required must be configured with the StmCubeMX.

The project has the following organization:

Figure 47: Project organization.

Source: The Author

With the exception of the provant_lib folder, all organization is defined with default by

StmCubeMX. The content of each folder is:

• Driver: Hardware Abstraction Layer and CMSIS code;

• Inc: Some headers related to the main function and some features related to

interruption, timers and system definition;

111

• Middlewares: FreRTOS source code;

• Src: Implementation of the main function and some features related to

interruption, timers and system definition;

• provant_lib: folder with custom code designed by the application, for example

the implementation of the simple control laws used to provide fault tolerance for HLH

failures;

• Debug: Files generated by the compilation in debug mode;

• Release: Files generated by the compilation in release mode.

This provant_lib folder has the following organization:

Figure 48: provant_lib folder’s organization

Source: The Author

• Controllers folder with implementation of control laws;

• HIL&Jetson protocol is the place where the source code of communication

protocol used with the HIL and the Jetson;

• Instrumentation is the place where the custom code to be design in order to

communicate with the sensors and actuators.

• pv_typedefs.h is a file with some definition of structures used to the input and

output data. It is reused from the previous work on ProVANT 1.0 and ProVANT 2.0

development.

112

B.4 Compilation and upload

For the first compilation and upload of a project, after it is created, click with the

of right button on the project name, go to “Debug As” and then, click with the left button

on “Ac6 STM32 C/C++ Application”.

From now on the compilation and upload are performed. Click with left button

on icon demonstrated in Figure 49.

Figure 49: How to compile the project

Source: The Author.

Before uploading the code, verify if the field “set the breakpoint at” in the Startup

of the Debug Configuration Window is unchecked, as shown in Figure 50. If it is

checked, uncheck it.

113

Figure 50: Startup Settings

Source: The Author

The upload of the code for both Nucleo Boards must be one at a time. After the

process upload the code for both boards, reset them at the same time with the RESET

button in the board. The first board that you release the button will be the main board

and the last, the backup board.

114

Appendix C: Jetson’s software

C.1 Installation of Ubuntu 18.04 and ROS 2

Jetson TX2 is a platform that has already an ubuntu 16.04 installed by default.

But, in order to install the last version (Crystal) of ROS 2 until the date of this thesis, it

is needed to install Ubuntu 18.04. For this, the designer should download the Nvidia

SDK manager and run it.

Official updated information on how to download and use the Nvidia SDK

manager can be found in the following site https://docs.nvidia.com/sdk-

manager/index.html and a video about how to install Ubuntu 18.04 is at the following

link https://www.youtube.com/watch?time_continue=134&v=s1QDsa6SzuQ.

Besides, in order to install ROS 2, do the step by step of

https://index.ros.org/doc/ros2/Installation/Crystal/Linux-Install-Binary/ in the Jetson

TX2 after Ubuntu 18.04 be installed.

Lastly, create the workspace of ROS 2 in order to design new ROS packages.

The step by step is in https://index.ros.org/doc/ros2/Tutorials/Colcon-Tutorial/

We make for these work a workspace named ros2_example_ws, but any name

can be chosen. After it is well created the workspace will appear as the Figure 51.

115

Figure 51: ROS workspace organization

Source: The Author

C.2 Project Setup

Clone the source code of the project in the github’s repository

https://github.com/Guiraffo/provant-software. The result will be as the Figure 52.

116

Figure 52: src folder content

Source: The Author

117

Figure 53: controller folder content

Source: The Author

The src folder is where cpp files can be found. They are the implementation of

the structure of control that are shown in Figure 54. Frame.cpp consists the structure

of the unit of data that is sent each time by the communication between LHL and HLH.

protocol.cpp consists on the implementation of the communication protocol. serial.cpp

consists on the abstraction of the drivers command by the protocol.cpp. Lastly,

member_function.cpp is the implementation of the controller.

The include folder is where the headers files can be found. They are shown in

Figure 55. They are the interface of the implementation that was described before. One

important header file is the LQ4.hpp and it has an example control law. For each control

law designed, another header that must be included in the project.

118

Figure 54: controller’s src folder content

Source: The Author

Figure 55: controller’s include folder content

Source: The Author

119

C.3 Including new control law

As it was already said, for each control law a library must be included in the

project. This header file consists in a class similar the one implemented in ProVANT

Simulator. However, some configuration must be done in order to use this new control

law. For more details of the ProVANT Simulator, read its user manual14.

First of all, it must be included in the member_function.cpp the new control law

as it is shown in Figure 56.

Figure 56: Headers of memeber_function.cpp

Source: The Author

Next, it must be changed the parameters of the execution method created to

run in the ProVANT Simulator, as illustrated in Figure 57.

Figure 57: Declaration of execute() method

Source: The Author

Lastly, change the type of instance and the number and configuration of its

parameters

14 https://github.com/Guiraffo/ProVANT-Simulator/blob/master/doc/Manual.pdf

120

in the member_function.cpp, according with the data sent by the LHL according

to shown in Figure 58.

Figure 58: Content of the code implemented in the execute method

Source: The Author

121

C.4 Compilation and running

For computation of the project, execute in the terminal the following command

wih the terminal in the workspace folder:

colcon build

For running the controller, execute the following commands:

sudo su

echo 1 > /sys/devices/system/cpu/cpu1/online

echo 1 > /sys/devices/system/cpu/cpu2/online

cd /usr/bin/

jetson_clocks

exit

setserial /dev/ttyTHS2 low_latency

ros2 run controller timer_member_function

122

Appendix D: Detailed electronic design

This appendix describe some details about the hardware architecture. First, it

gives a table with all suggested hardware specifications. Next, it defines how the

hardware will be connected in low level designed according to peripherals of LLH and

HLH. Lastly, as there are two LLH in this architecture, it is discussed how to use

Multiple master/client configuration on serial bus described before.

D.1 Hardware specification

Table 4: Hardware specification

Source: The Author

123

D.2 Connection between hardwares

Table 5: Connection between hardwares

Source: The Author

D.3 Multiple master/client configuration on a serial bus

UART, SPI and I2C are protocols that by default must have only one component

that asks for services for the rest of components. Particularly, UART is a protocol of

communication that allows communication of only two components. However, I2C and

SPI have one component that can communicated with several others.

Nonetheless, the proposed solution demands two components for asking

services instead of only one. As consequence of this demand, some different

configurations should be done during the development of this work. Usually, the pins

124

that write data are configured in low impedance and the pins that reads data are

configured in high impedance, but we should avoid the connection of two pins in low

impedance on the same bus. To solve this problem, we configure the main board as

required by default and made a different configuration for the backup board, making all

pins that can write data in high impedance. This configuration is exemplified in Figure

59, that present an example for UART and is located in the file named

“stm32f7xx_hal_msp.c” inside the “src” folder.

Thus, after the detection of main LLH failure, the backup LLH resets the main

board and change the configuration of the write data pins for low impedance as

performed by default. This change of configuration is made in “main.cpp” file inside the

“controller” thread.

Figure 59: Example of peripheral pin as high impedance mode

Source: The Author

From now on, the connection between instrumentation and LLHs is done by

default. It is shown in FiguresFigure 60, Figure 61 and Figure 62.

125

Figure 60: UART’s connection

Source: The Author

126

Figure 61: Source: The Author

Source: The Author

127

Figure 62: I2C’s connection.

Source: The Author

128

D.4 Schematic of the prototype built in this work

Figure 63: Schematic of the prototype.

Source: The Author

