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Resumo 

Os sistemas de segurança crítica consistem em dispositivos que devem 

funcionar sem falhas, caso contrário, poderão resultar em mortes, danos materiais 

significativos ou danos ao meio ambiente. Veículos Aéreos Não Tripulados (VANTs) 

são exemplos de tais sistemas e seu subsistema mais crítico é o sistema de controle 

de voo. Tendo em vista a sua implementação, existe uma demanda por uma 

arquitetura embarcada capaz de executar algoritmos de controle de alto custo 

computacional. Assim, esta dissertação propõem uma arquitetura que utiliza uma 

plataforma de desenvolvimento composta por uma GPU de propósito geral ao mesmo 

tempo buscando garantir a dependabilidade e o atendimento a requisitos de tempo 

real necessários para a sua operação. Inicialmente, os requisitos da arquitetura foram 

coletados a partir de um estudo sobre normas de segurança de hardware e software 

para aviação comercial, conjuntamente com a realização de entrevistas com 

pesquisadores envolvidos no projeto de um VANT. A partir dos requisitos obtidos, uma 

arquitetura de hardware de dois níveis foi definida composta por um hardware de alto 

desempenho e um hardware de baixo desempenho, cuja especificação foi guiada 

segundo os requisitos de comunicação com a instrumentação. O hardware de baixo 

desempenho utiliza o sistema operacional FreeRTOS e o hardware de alto 

desempenho, o Ubuntu 18.04. Além disso, tendo em vista o objetivo de agilizar o 

desenvolvimento, utilizou-se o framework de aplicações robóticas ROS 2 na 

plataforma de alto desempenho. Com o objetivo de aumentar a confiabilidade da 

arquitetura, três estratégias foram adotadas: i) implementação de uma lei de controle 

simples no hardware de baixo desempenho caso haja falha do hardware de alto 

desempenho; ii) implementação da estratégia de tolerância a falhas denominada “hot 

standby” na camada de baixo nível, eliminando um ponto singular de falha; e iii) a 

utilização de bits redundantes para aumentar a confiabilidade de comunicação entre 

o hardware de baixo desempenho e o hardware de alto desempenho. Por fim, 

realizamos uma simulação usando injeção de falhas em um ambiente de simulação 

via Hardware-in-the-loop para analizar: i) funcionamento correto do sistema de 

controle de voo sem falhas de hardware; ii) comportamento do sistema de controle de 



 
 

voo perante a falhas do hardware de alto desempenho; e iii) comportamento do 

sistema de controle de voo perante a falhas do hardware de baixo desempenho. 

Palavras-chave: VANT; Sistemas Embarcados; Sistema de segurança crítica. 

 



 
 

Abstract 

Safety-critical systems consist of devices that must operate without failures, 

otherwise, it may result in death, significant property damage or environmental 

damage. Unmanned Aerial Vehicles (UAVs) are examples of such systems and their 

most critical subsystem is the flight controller. In view of its implementation, there is a 

demand for an embedded architecture capable of executing high computational cost 

control algorithms. Thus, this dissertation proposes an architecture that uses a 

development platform composed by a general purpose GPU while seeking to 

guarantee the dependability and the real-time requirements necessary for its 

operation. Initially, the architecture requirements were collected from a study of 

commercial aviation hardware and software safety standards, together with interviews 

with researchers involved in the design of a UAV. Based on the requirements obtained, 

a two-level hardware architecture was defined, consisting of a high performance 

hardware and a low performance hardware, which was specified according to the 

instrumentation communication requirements. The low performance hardware uses 

FreeRTOS and the high performance hardware, Ubuntu 18.04. In addition, in order to 

speed up the development, the ROS 2 was used on the high-performance platform. In 

order to increase the dependability of the architecture, three strategies were adopted: 

i) implementation of a simple control law on low performance hardware in case of high 

performance hardware failure; ii) implementation of the fault tolerance strategy called 

hot standby in the low level layer, eliminating a single point of failure; and iii) use of 

redundant bits to increase communication reliability between low performance 

hardware and high performance hardware. Finally, we perform a simulation using fault 

injection in a hardwarein-the-loop simulation environment to analyze: i) flight control 

system’s operation without hardware failure; ii) flight control system’s behavior against 

high performance hardware failures; and iii) flight control system’s behavior against 

low performance hardware failures. 

Key-words: UAV; Embedded System; Safety-Critical System. 
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1 Introduction 

The daily life of modern society is totally dependent on small programmable 

electronic systems that are commonly unknown to its users. As can be seen in Figure 

1, they are present at cars, airplanes, toys, hospitals, markets, among others. They 

ensure our commodity, safety, leisure, food and supply. They are named embedded 

systems and consist in devices which perform specific functions (Barr, 1998). For being 

highly specialized, an embedded system is optimized in relation of energy, code size, 

execution time, weight and dimensions. 

According Oyetoke, 2015, “About 98% of all microprocessors being 

manufactured are used in embedded systems”. Besides, its market size in Europe is 

expected to exceed USD 258.72 billion by 2023, according to a study conducted in 

20161 . Figure 2 shows the growth projection suggested by the study. 

There is an important class of embedded systems that must work without any 

errors, otherwise it may result in loss of life, significant property damage or 

environmental damage (Knight, 2002). They are called safety-critical systems. Safety-

critical applications demand deterministic behavior during its operation. In order to deal 

with them, two important features must be explored: the dependability and the temporal 

determinism. 

An example of safety-critical system is the fuel control system used in modern 

cars. As its name suggests, its purpose is just to control the injection of fuel in the 

engine (Wang Sujing et al., 2008) and if it fails, it can generate automotive accidents, 

leading to injuries and deaths. Ford Motor Co. recalled an estimated 1.28 million 2012-

2018 Ford Focus compact cars in 2018 because of a fuel system problem2. 

 
1 Embedded System Market Size By Application (Automotive, Industrial, Consumer Electronics, 

Telecommunication, Healthcare, Military and Aerospace), By Product (Software, Hardware) Industry 
Outlook Report, Regional Analysis, Application Development Potential, Price Trends, Competitive 
Market Share and Forecast, 2016 – 2023. URL: https://www.gminsights.com/industry-
analysis/embedded-system-market. Accessed: 2019-10-07 

2 Ford Recalls 1.2M Focus Cars for Fuel System Defect. URL: https://www.automotive-
fleet.com/317645/ford-recalls-1-2m-focus-cars-for-fuel-system-defect, Accessed: 2019-10-07 
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Figure 1: Embedded system’s applications.  

 

Source: https://fxdfronteira.blogspot.com 
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Medical devices are also safety-critical systems. According Alemzadeh et al. 

(2013), “Medical devices are often subject to a nonnegligible number of failures with 

potentially catastrophic impacts on patients. Between 2006 and 2011, 5,294 recalls 

and 1,154,451 adverse events were reported to the US Food and Drug Administration”. 

An example of medical device is a defibrillator, an important equipment used to restore 

or beat the heart by applying electrical pulses (Dhurjaty & Atre, 2016), and if it fails, it 

can generate defective pulse generators that promptly induces deaths.  

Other examples are aerospace applications. In case of commercial aircrafts, 

dozens of passengers can die if there is some human failure or some serious failure in 

any of the airplane’s safety-critical subsystems. To illustrate, in October 20183 and 

March 20194 two units of Boeing 737 Max crashed and 346 people were killed. Another 

aerospace application that recently has begun to be a concern, is the use of Unmanned 

Aerial Vehicles (UAVs) in civil airspace. They can injure or kill people on the ground or 

crash with commercial aircrafts leading to serious accidents. 

 
3 Boeing’s 737 Max grounded for longer after new flaw discovered, URL: 

https://www.dw.com/en/boeings-737-max-grounded-for-longer-after-new-flaw-discovered/a-49369628, 
Accessed: 2019-10-07 

4 Ethiopian Airlines plane crashes shortly after takeoff , URL: https://www.dw.com/en/ethiopian-
airlines-plane-crashes-shortly-after-takeoff/a-47841392, Accessed: 2019-10-07 
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Figure 2: Embedded System’s industry trend. 

 

Source: Global Market Insights 

1.1 Study case System 

In the case of commercial airplanes and UAVs, one of the most important safety-

critical systems is the flight control system. Basically, it is a subsystem that interfaces 

with sensors and actuators; and for each sample time, it executes a feedback control 

law to update the commands of actuator. Figure 3 illustrates its structure. 
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Figure 3: Main idea of embedded system architecture. 

 

Source: The author 

 

In the context of commercial airplanes, they are normally composed of three 

flight control functions, Fly-By-Wire (FBW), Autopilot/Flight Director System (AFDS) 

and Flight Management System (FMS). These functions are interconnected and may 

be described as three nested control loops, each one with their own distinct purpose. 

They are shown in Figure 4. The FBW is a function that controls the attitude of the 

aircraft. The AFDS controls the speed, height, and heading. Finally, the FMS performs 

the navigation or mission function, ensuring that the position aircraft will reach multiple 

way-points that composes the aircraft route (Hitt, 2006). However, this organization is 

not a general rule for every aircraft, UAVs can have, for example, just one control loop 

instead of these three flight loops. 

In view of the challenge to design an architecture for a flight control system, this 

work proposes an embedded system for use by a VTOL UAV called ProVANT 4.0, 

which is shown in Figure 5 , where a flight control system will be implemented. It is a 

tilt-rotor UAV prototype that has been designed in ProVANT. ProVANT is a collaborative 

research project composed by researchers from the Universidade Federal de Santa 

Catarina, the Universidade Federal de Minas Gerais and the Universidad de Sevilla. 
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Figure 4: Interaction between FBW, AFDS, FMS and instrumentation. 

 

Source: The author 

 

Tilt-rotor UAV is a convertible aircraft which has two propellers and mechanisms 

responsible for tilting them, located at the ends of fixed wings. The tilt-rotor UAV has 

two modes of flight, helicopter and cruise, which requires little space for landing and 

takeoff and acquires elevated speeds. The tilt-rotor UAV, in relation to quadrotors, has 

a gain in autonomy and, in comparison to airplanes, a gain of mobility in small spaces. 

ProVANT 4.0 (del Pino, 2016) has been designed for Search and Rescue 

operations and, therefore, it must reach the emergency sites within a short time, flying 

in spaces with a small free area and acting in any environment, whether open or 

closed. It has reduced dimensions suitable for transporting in a vehicle of rapid 

intervention and it must carry an automatic defibrillator. Besides, it will use commercial 

batteries and electric propulsion, which are adapted to the use of renewable resources 

(da Silva, 2017). Besides, it has a container of 17cm long, 20cm wide and 7cm high 

for on-board systems. 

 



26 
 

Figure 5: ProVANT 4.0 conceptual design. 

 

Source: MACRO research group 

 

It shall perform the following missions: 

• Complete two vertical take-off and landing maneuvers. One at the starting 

point and one at the focus of the emergency, having to travel between them a distance 

of 20 km to go and another 20 km to return. It must carry a payload of about 3 kg. 

• Vertical take-off from the outpost, capacity for a one-hour reconnaissance 

flight and return to the starting point. The device must carry at least one thermal and 

visual camera. 

1.2 Related Works 

This section presents some current literature review about multi-core embedded 

systems architectures on safety-critical applications, fault-tolerance techniques applied 

on embedded systems, and small UAV’s onboard architectures. 
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1.2.1 Embedded Systems architectures on safety-critical applications 

Nowadays, there is an effort for the adoption of hardwares to host multiple 

safety-critical functions with mixed-critical levels on a common computing platforms, 

reducing the number of hardware scattered in the application. Besides, mainly due to 

the emerging artificial intelligence, high performance platforms have also been 

demanded for implementation of high computational cost algorithms (Saidi et al., 

2015). 

Integrated modular avionics (IMA), for aerospace domain, and Advanced Driver 

Assistance Systems (ADAS), for automotive domain, are some of the main target 

applications for this trend. GE Aviation has already developed IMA architectures for 

Boeing 787 Dreamliner, Boeing C-130 combat aircraft, and Boeing KC-767 Tanker 

(Watkins & Walter, 2007). However, the use of multi-core hardware still generate some 

reluctance for its use in critical applications, for example, flight control systems (Gaska 

et al., 2015). 

These hardware platforms can reduce the power consumption, the length and 

weight. Consequently, it can also reduce the operational costs. However, there are 

many challenges to be solved. According to Saidi et al. (2015), “the main reasons are: 

a) shared resources imposes a strong timing correlation between concurrently running 

components in the same chip; and b) standard commercial off-the-shelf (COTS) 

multicore components are optimized to improve the average case performance and 

not the worst case”. 

Given these issues, there are research projects that focus on developing 

solutions that meet the requirements for safety-critical systems. An example is the 

Hercules H2020 Project5, which aims to implement the first industrial-grade framework 

to provide real-time guarantees on top of cutting-edge heterogeneous COTS platforms 

for embedded domains. Other examples are parMERASA, CERTAINTY, P-

SOCRATES and EMC 2. 

 
5 http://hercules2020.eu/, accessed 24/11/2017 
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1.2.2 Fault-tolerant techniques applied on embedded systems 

The dependability is one of the open problems of adopting multi-core platforms. 

Thus, in order to increase it, fault-tolerant architecture can be adopted. An important 

fault-tolerant strategy is the Dynamic Reconfiguration. Through detection and 

replacement of defective components, it increases the availability and reliability of 

solutions. In this direction, Mozafari & Meyer (2015) present an approach for employing 

hot spares in multi-core processors. Besides, Rahme & Xu (2017) also apply this 

concept for multiple software spare components to a cloud computing applications. 

For safety-critical applications, Dynamic Reconfiguration becomes essential to 

implement fail-operational safety architectures. Designers aim to switch the system 

operation from normal mode to emergency mode when a fault occurs. In this direction, 

Sari & Reuss (2018) discuss about fail-operational safety architectures for ADAS. 

Moreover, Vivekanandan et al. (2016) propose a fail-operational safety architecture, 

composed by two heterogeneous hardware and software platforms with distinct 

reliability and performance characteristics, for a UAV’s onboard hardware; however, 

they do not present any reliability data to support their assumptions and justify the use 

of this architecture in real-life.  

Triple Modular Redundancy (TMR) is another fault-tolerant strategy. It masks 

faults through a voter mechanism. Kahe (2018) proposes an architecture composed 

by five modules, each one with three multi-core ARM processors in parallel using TMR 

strategy, obtaining evaluation results that meet aerospace requirements. Janson et al. 

(2018) also adopt this strategy for a fault-tolerant software architecture without a 

synchronization mechanism. TMR can also be adopted in FPGA design. Thus, 

LaMeres et al. (2015) use it to design a dependable space aplication. 

An extension of TMR, when considering N redundant components plus a voter, 

is called N-Modular Redundancy (NMR). There is a trend towards its adoption for multi-

core applications; however, it increases the energy consumption of the platform, 

becoming a limiting factor for embedded systems. To solve this issue, Salehi et al. 

(2016) propose a two-phase NMR with block-partitioned scheduling and pseudo-
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dynamic slack management in order to achieve minimized energy consumption and 

ensure the deadline requirements. 

For GPU-based and FPGA-based applications, there are some recent works 

that discuss how to deal with faults caused by radiation. Pilla et al. (2014) 

experimentally demonstrate that the Error-Correction Code (ECC) does not ensure 

enough reliability as required. Then, they propose an Algorithm-Based Fault-Tolerance 

(ABFT) technique that provided smaller failure rates and small overhead than ECC. 

However, d. Santos et al. (2017) demonstrated that the ECC is more efficient than the 

ABFT from the point of view of Silent Data Corruption rate. 

Besides, Oliveira et al. (2014) propose Duplication With Comparison (DWC) 

strategies and suggest that DWC strategies can be more effective than ECC when the 

input data are duplicated. 

For GPU domain, ECC, ABFT and DWC are methods that deals with faults in 

memory, registers and logic, but not with faults in the schedulers. Thus, Milluzzi et al. 

(2017) propose to use TMR with persistent threads to solve this issue; however, as a 

drawback, this strategy limits the hardware performance and creates an overhead that 

may be unacceptable depending on the target application. 

1.2.3 Small UAV’s onboard architecture 

According Chao et al. (2010), an autopilot is a system used to guide the UAV 

without assistance of human operators. There are several autopilots available on 

market and, in this direction, Zhaolin Yang et al. (2016) present a survey of existing 

autopilots and compares some of them. 

However, due to the lack of information and support for custom implementation 

of its own algorithms, there are several works that design their own autopilots. In this 

research line, Ellingson & McLain (2017) propose a fixed wing autopilot code for 

educational and research purposes built on ROS to speed up and facilitate the 

implementation of control, estimation and path planning algorithms. 
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Czerniejewski et al. (2018) port a UAV’s autopilot, called Paparazzi UAV, to the 

Real-Time Specification for Java, which ensures the meeting of the real-time 

requirements based on the specification given by the developer, allowing them to focus 

only on the algorithm development. 

Besides, Meier et al. (2015) provide a novel middleware and programming 

environment, used by an autopilot. From the Nutt X OS, they create a software layer 

called Object Request Broker in order to abstract the communication between threads 

and to provide connective with other platforms through ROS. 

By and large, as noticed in these works, the majority of autopilots available are 

built around a centralized set of microprocessors. However, going in another direction, 

Louali et al. (2017) propose a distributive architecture for an autopilot through the use 

of Controller Area Network (CAN) data bus. It was designed for a fixed wing UAV and 

tested through a hardware-in-the-loop simulation. 

1.3 ProVANT’s embedded system history 

Since the ProVANT was created, it has already designed 5 versions: ProVANT 

1.0, ProVANT 2.0, ProVANT 2.1, ProVANT 3.0 and ProVANT 4.0. The ProVANT 1.0, 

shown in Figure 6, is the first prototype and it only has the ability to conduct flight in 

helicopter mode. Its development was a craft project, since, it did not use any CAD 

software to help its design. In addition, several mechanical filters were allocated with 

the focus of the attenuation of the structure’s vibration, avoiding interferences in the 

measurement of the Inertial Measurement. There is a video on internet that shows it in 

testing phase6. 

The ProVANT 1.0 has two microprocessors in its architecture: the 

STM32F4DISCOVERY board that interfaces with the instrumentation, and the 

beaglebone board that executes computationally expensive control laws. Besides, 

according to Donadel et al. (2015), ProVANT 1.0 uses the following instrumentation: 

 
6 https://www.youtube.com/watch?v=f94fbhJjzuo 
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• 2x brushless motors AXI 2814/20 GOLD LINE 

• 2x servomotors Dynamixel RX-24F 

• 1x 9-DOF inertial measurement system (IMU) GY-85 

• 2x electronic speed controller (ESC) Mikrokopter BL-Ctrl 2.0 

• 1x Ultrasonic ranging module HC-SR04 

• 1x 2.4 GHz 6 channels radio receiver hobbyking HK-TR6A 

• 1x 4-cell LIPO battery (16.8V) Turnigy nanotech 3000mah 

• 1x voltage regulator 16.8V/5V 

• 1x voltage regulator 16.8V/12V 

The ProVANT 1.0 embedded a software architecture in the 

STM32F4DISCOVERY with the principles of organization presented in Lakos (1996). 

For this, it was implemented a vertical hierarchical structure of the elements of one 

level in relation to those of a higher level. Following a verticalization concept, the 

project elements are organized as show in Figure 7. The application level is composed 

by modules that implement the UAV functions, for example, the control law, navigation, 

and communication with the instrumentation. The middleware layer is composed by 

public or private libraries, an Operating System, a State Machine, and the Hardware 

Abstraction Layer (HAL). It uses FreeRTOS as operating system. Lastly, the Core is 

composed by CMSIS, a vendor-independent hardware abstraction layer for Arm Cortex 

microcontrollers. 
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Figure 6: ProVANT 1.0. 

 

Source: MACRO research group 

 

The beaglebone’s software is not structured as the STM32F4DISCOVERY. It 

uses an Ubuntu 14.04.3 LTS and its application is composed by three threads, each 

one responsible for one different function: communication with STM32F4DISCOVERY, 

Controller and Data processing. 

Figure 7: Software Architecture 
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Source: The author 

 

The next version was the ProVANT 2.0, that is shown in Figure 8. This version 

was designed with Solidworks aiming to build it with 3D printer. Its embedded system 

architecture was similar with the ProVANT 1.0; however, instead of the adoption of the 

beaglebone board, it uses a Raspberry PI 2 board. A while later, it was designed the 

ProVANT 2.1, that is shown in Figure 9. Although it uses the same embedded system 

that was chosen for ProVANT 2.0, it has differences in the mechanical design. 

Figure 8: ProVANT 2.0. 
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Source: MACRO research group 

 

Figure 9: ProVANT 2.1. 

 

Source: MACRO research group 

 

The ProVANT 3.0 is shown in Figure 10. In this version, it was already known 

that the Beaglebone and Raspberry PI are unsuitable for running high costly 

computational control algorithms in short sampling periods. ProVANT are designing 

algorithms of estimation that approximately runs in 500 milliseconds and control laws 

that approximately runs in 8 seconds in the Simulink Environment Simulation. 

However, in the UAV’s on board system, these algorithms must be executed at times 

in order of 10 milliseconds. In this context, Miranda (2017) presents a multi-core 

software approach developed to improve the time performance of predictive control 

strategies. DE0-Nano-SoC Kit/Atlas-SoC was used with Debian Jessie 8.5 as 

operating system, and from the use of Open Multi-Processing API, a control algorithm 

was implemented with some parallelized regions, decreasing its execution time. This 

work does not used the FPGA present on the platform. 
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Figure 10: ProVANT 3.0. 

 

Source: MACRO research group 

 

Unlike the solution adopted by Miranda (2017), there are some studies that 

apply FPGAs or GPUs in order to solve this problem. Both alternatives are potentials 

solutions for using in ProVANT 4.0. This work aims to use the the second option, due 

to the fast deployment of the solution. The platform chosen is a Jetson TX2 

development kit that suggests to be a better solution than Beaglebone and Raspberry 

PI platforms for execution of high cost control algorithms due to the 64 bits Quad ARM 

Cortex-A57 processor, the 64 bits Dual NVidia Denver processor and the GPU of 1,3 

GHz with Pascal architecture of 256 kernels, when compared with the AM3358 

processor of Beaglebone and with the BCM2836 quad core Cortex A7 processor of 

Raspberry PI 2. 

1.4 Justification and Objective 

As could be noted before, there is a movement to replace the federative 

embedded architecture, composed by several specialized mono-cores platforms, with 

only one multi-core platform in safety-critical applications. This strategy supports 

greater computational power for executing high cost computational algorithms in short 
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periods. However, dependability is one of the main problems for providing certification 

to these platforms, due to the existence of a large quantity of shared resources 

between the cores. Since there is not a container to avoid the influence of faults of a 

given application to other applications, faults becomes more dangerous than the same 

ones in federative embedded architecture. In order to deal with this issue, fault-tolerant 

techniques can be applied to ensure the safety operation of the platform. In the 

autopilot design domain, only Vivekanandan et al. (2016) propose some fault tolerance 

technique to ensure the safety of a UAV operation, while the other ones concern with 

the performance and scalability of the applications. However, the assumptions about 

the “high assurance platform”, considering that it is reliable enough to provide the 

safety demanded for UAV operation are not consistent. Besides, only Czerniejewski et 

al. (2018) make a more depth concern about the ensuring real-time features; however, 

in no time they make any offline validation method, as required for hard real-time 

applications. From these gaps described, this thesis proposes a safety-critical 

embedded system architecture using a Jetson TX2 development kit for a VTOL UAV 

autopilot. 

To reach this goal, some specific objectives are defined: 

• Design a hardware-in-the-loop simulation environment for testing the 

embedded system to be embedded in VTOL UAV’s prototypes; 

• Design a hardware and software architecture based on the requirements 

collected throughout the work; 

• Create a prototype of the hardware and software architecture designed 

previously. 

• Test the prototype’s resilience from injection faults in a hardware-in-the-loop 

simulation. 

1.5 Structure of work 

This thesis is organized as follows: 
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• Chapter 2 provides some background. It introduces key concepts about real-

time systems, dependability and tools used in this work to understanding the guidelines 

used to design the hardware and software architecture. 

• Chapter 3 describes the design process of the embedded system architecture. 

Two steps are shown: gathering requirements and design the architecture. 

• Chapter 4 presents the experimentation used to validate the proposed 

architecture. For this porpose, it is designed a Hardware-in-the-loop simulation 

environment to simulate the system operation in presence of faults. 

• Chapter 5 summarizes the contributions and results presented in this 

dissertation, and suggests possible future research lines. 
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2 Background 

This chapter aims to describe important concepts used in the present 

dissertation. First of all, some concepts related to dependability are presented. After, it 

is introduced the concepts about real-time systems. In the end, the Robot Operating 

System is presented. 

2.1 Dependability 

The term system is used in several areas of science and engineering, which 

consists of “an entity that interacts with other entities, i.e., other systems, including 

hardware, software, humans and physical world with its natural phenomena” (Avizienis 

et al., 2004). However, for this thesis, we use this term in the context of computing and 

communication systems. Such systems are artificial elements designed with 

determined functions, services, and structure. Service is the information or behavior 

demanded by the users. Function is the internal behavior of a system adopted, in other 

words, its implementation. Lastly, structure defines how the interaction between its 

subsystems is performed. 

In order to express the ability of a system to deliver its intended level of service 

to its user, the concept of dependability is used. This concept is described by three 

features: impairments, attributes and means. Impairments express the threats to 

dependability. Attributes measure its features. Means consist of techniques used to 

ensure the meeting of required attributes given the existence of threats during the 

system’s life cycle. 
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2.1.1 Impairments 

Service failure is a inability of the system providing a service. For example, a 

service failure of an oven can be an inability of generating enough fire, and a service 

failure of a program can be a incorrect computation from given inputs. For 

simplification, from now on, we will just refer to the term failure. 

Another important concept is the error, which consists of the deviation of the 

results due to a failure to the correct output. In the context of the previous examples, it 

is the difference between the expected fire and the weak fire generated, and the 

difference between the output of the program and the expected output. 

Lastly, the causes of errors are called faults. For an oven, a cause of the weak 

fire can be the lack of gas, while the fault of a program can be an addition of an incorrect 

command in the source code during its development phase. In general, faults can be 

classified into eight different sets that are shown in Figure 11 (Avizienis et al., 2004). 

Note the direct causality relation of these three concepts, but the inverse is not 

always true. For example, there may be situations where a system would have faults, 

but they would remain dormant without generating errors and, therefore, also without 

failures. For example, an unknown bug of software. 

2.1.2 Attributes 

In order to translate the main requirements for a given dependable system, there 

are three attributes: reliability, availability, and safety. They represent a given system 

behavior related to the existence of faults and according to the application, each one 

has a different importance. Reliability, R(t), of a system at time, t is the probability that 

it operates without a failure in the interval [0, t], given that the system was performing 

correctly at time 0 (Dubrova, 2013). It is a time-dependent metric and measures how 

much time is expected to a system to operate without problems. Examples of a 

dependable system, that the reliability is meaningful, are medical devices. 
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Availability, A(t), of a system at time t is the probability that it is functioning 

correctly at the instant of time t (Dubrova, 2013). It expresses the fraction of period that 

the system is in the operational state. An example of a system that requires availability 

is an Automatic Teller Machine. It is an application where faults are tolerable, but the 

time for repairing them must be very short. 

Lastly, safety, S(t), of a system at time t is the probability that it either performs 

its function correctly or discontinues its operation in a fail-safe manner in the interval 

[0, t], given that the system was operating correctly at time 0 (Dubrova, 2013). There 

is a concern with the absence of catastrophic consequences. An example is a nuclear 

power plant control system. 

Figure 11: Kind of faults. 

 

Source: Avizienis et al. (2004) 
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2.1.3 Means 

Means are the ways used to deal with faults in order to provide the dependable 

attributes required for a given system. In general, there are four ways: fault prevention, 

fault removal, fault forecasting and fault tolerance. This thesis interests in means to be 

applied during design phase of an embedded system, then fault removal and fault 

forecasting is out of the scope of this thesis. 

Fault-prevention techniques are the first efforts of an embedded system design 

to deal with faults. These techniques are applied during the specification and design in 

order to avoid developer-client communication problems and to abstract the system 

complexity. In this phase, it can be used mature and formally verified components, 

standards (for example IEC 61508), formal methods (for example Z methods and 

model checking), well-established engineering practices and risk assessment 

techniques, as FMEA (Failure mode and effects analysis) and FTA (Fault tree analysis). 

in order to identify potential faults (Lala & Harper, 1994). 

Fault-tolerant techniques ensures successful operation of a system even if faults 

occur using redundancy. They are classified according to the type of redundancy in 

four classes of groups: hardware, software, information and time (Dubrova, 2013). 

Each one has its advantages and disadvantages, and for each project the designer 

chooses the best alternatives that solve the problem. In general, all solutions found in 

the literature use a restricted set of strategies or the hybrid of them. According to Hitt 

(2006), there are three categories of hardware fault-tolerant architectures: masking, 

reconfiguration, and hybrid. They are based on the premise that hardware failures 

occur randomly, caused at most by wear-outs and environmental interference. 

Moreover, software fault-tolerant techniques are more complex due to the greater 

software complexity over the hardware. They consist in programming errors. Normally, 

diversity is adopted in order to avoid common-mode faults. It can use software versions 

from different programmers, different programming languages, different compilers and 

so on. Temporal fault-tolerant techniques explore the possibility of repeating the 

execution of a given algorithm more than twice different times in order to avoid damage 

by transient failures. Lastly, information fault-tolerant techniques consist in powerful 

techniques which helps us to avoid unwanted information changes during data storage 



42 
 

or transmission. Some examples are parity, Hamming code, and Cyclic Redundancy 

Check. 

Particularly, in this work we intend to use the mature and formally verified 

components from commercial off-the-shelf (COTS) elements. Thus, given this fact, the 

present thesis concerns in adding fault-tolerant techniques from the standpoint of the 

hardware and communication failures in order to design a dependable solution. 

Hardware Redundancy 

Hardware redundancy consists in put multiple hardwares in parallel in order to 

tolerate hardware faults. Hardware faults can be permanent, transient and intermittent. 

Permanent faults are events that remain active until some corrective actions are 

performed, for example, chip burning. Transient faults are events that happen 

periodically, mainly due to environmental events such as alpha particles, atmospheric 

neutrons, electrostatic discharge, electrical power drops, and overheating. Lastly, 

intermittent faults are due to implementation flaws, ageing, wear-out, and unexpected 

operating conditions (Dubrova, 2013). 

In general, there are three kinds of techniques to add hardware redundancy in 

a system: fault-masking, reconfiguration, and hybrid configuration. These techniques 

consider that most of the time, faults happen independently and randomly. Besides, 

there are the common-mode faults that is not in the scope of this definition. In order to 

tolerate them, the designer usually chooses different hardware technologies from 

different manufacturers to create redundancies. 

Fault masking is a technique to tolerate faults without detecting them. It consists 

in an architecture that has multiple hardwares operating in parallel, an synchronization 

mechanism to ensure algorithms run on all hardwares at the same time, and a voter 

mechanism that, from the outputs of them, can infer the correct value according to the 

common response of the majority. Fault masking technique is usually applied on high-

reliability applications in which short downtime are unacceptable and can interfere with 

system dynamics, for example, flight control systems. 
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The most famous architecture is the Triple Modular Redundancy that is shown 

in Figure 12. It consists of three hardware in parallel. However, a more general 

architecture is called n-modular redundancy, and as its name suggests, its architecture 

use any number of parallel hardware plus a voting mechanism. 

Figure 12: Triple Modular Redundancy. 

 

Source: The author 

However, the number of redundancies does not consist of an arbitrary choice of 

designer. According to Lamport et al. (1982), it is proved that a solution must have 

3n+1 redundant hardwares to cope with n failed hardwares. 

Regarding the reconfiguration technique, it reconfigures the whole solution from 

a detection mechanism of fault to remove the influence of faults in the system, ensuring 

the return of the system to an operational state. This technique is usually applied for 

an application that needs high availability. 

Standby Redundancy is the most famous reconfiguration technique. It consists 

of an architecture of n parallel modules and n fault-detectors, but just one of them is in 

operation, while the others are spare components. Such a solution can tolerate n–1 

module faults. Its architecture is shown in Figure 13. 

According to the implementation of a spare, there are two kinds of standby 

redundancy: hot standby and cold standby. The former consists of an implementation 

that has a shorter time of reconfiguration than the latter due to the spare has already 

power on, but at the same time it is likely to have failures, different of the cold standby 

that due to the spare be power off, it will not be influenced by any external environment 

stimulus. 
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Figure 13: Standyby Redundancy. 

 

Source: The author 

An example of a fault detector used in this architecture is the watchdog timer. It 

consists of an electronic device that is used in order to detect software problems and 

reset the processor if any happens (Murphy & Barr, 2001). Another kind of fault 

detector, that is applied in PLCs, checks if the main processor is alive, sending an 

information to the hardware and waits for answers. 

Lastly, hybrid redundancies combine the advantages of fault-masking and 

reconfiguration techniques. Fault-masking avoids instantaneous effects of fault, while 

reconfiguration immediately acts on the system by repairing the failed module with a 

spare. Since these solutions are very robust, it is well used in safety-critical systems 

An example of hybrid architecture is that Self-Purging Redundancy. In this 

architecture, a voter mechanism decides the correct output and then it is compared 

with the result of each module. The module, whose result is different of the correct 

value, is removed from the structure and is replaced by a spare. 
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Figure 14: Self-Purging Redundancy. 

 

Source: The author 

Information redundancy 

By a paradox of the “Two Generals” Gmytrasiewicz & Durfee (1992), it is known 

that no one can guarantee state consistency of two entities in a communication that 

happens in an unreliable channel. However, we can improve the communication 

reliability using  several strategies, for example, using the re-submission of information. 

Another strategy consists in the insertion of redundant bits computed before the 

transmission and their recomputation after the information has reached its destination. 

If the bits are the same, we have high confidence that the transmission is correct. 

Otherwise, we have detected an error. 

There are several algorithms used to compute redundant bits. In this work, the 

Fletcher’s checksum (Fletcher, 1982) algorithm is used. This algorithm detects multiple 

errors, swapping of data blocks, and insertion of random numbers, using lower 

computational effort compared to other coding techniques. Its logic is described in 

Algorithm 1. 
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Algorithm 1: Fletcher’s checksum algorithm 

 

2.2 Real-Time Systems 

A real-time system consists of a computer system that must answer a stimulus 

correctly and before a given time constraint, otherwise undesirable consequences may 

occur (Stankovic, 1988). The most important feature of this system is the required 

temporal determinism and, according to the consequence of its failure, it can be 

classified into two type of systems: hard real-time and soft real-time. The former can 

generate injuries, deaths and patrimonial/environmental damage, while the latter can 

generate at most loss of performance of the application. One example of real-time is 

the flight guidance system of Apollo 11, which was a priority-interrupt system capable 

of handling several jobs at once time.7 

Safety-critical systems are considered hard real-time systems because of their 

criticality, and time constraints could have similar importance to the dependability 

requirements. The design process of these systems demands not only correct and 

deterministic operation, but also a previous offline validation (Liu, 2000). 

According to Walls (2012), there are four ways to implement a real-time 

systems: a simple processing loop, a background processing loop with interrupt 

service routines, a multitasking system using a scheduler, and a multitasking system 

using a Real-Time Operating System (RTOS). The first and second alternatives are 

suitable for simple applications. When the application becomes complex with several 

 
7 https://history.nasa.gov/computers/Ch2-6.html, Accessed: 2019-10-07 
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tasks and there is a great risk undesirable consequences, the third and fourth 

alternatives should be used. Task is a set of commands that implements its behavior 

in the context of CPU-based systems. The fourth one is more appropriate than the third 

one when the application demands some services like multiple task priorities and 

mailbox communication. For this work, it is used the FreeRTOS.8 

2.2.1 FreeRTOS 

FreeRTOS is a free kernel that is suitable for embedded real-time applications. 

It can be used with microcontrollers or small microprocessors. FreeRTOS was 

originally developed by Richard Barry in 2003 and was later developed and maintained 

by Richard’s company, Real Time Engineers Ltd. FreeRTOS was a runaway success, 

and in 2017 Real Time Engineers Ltd. passed stewardship of the FreeRTOS project to 

Amazon Web Services.9 

It uses the C language, schedules the processor with preemption for tasks with 

different priorities and uses the round robin scheduler with time slicing for tasks with 

the same priority. As process synchronization mechanism, it uses mutexes with priority 

inheritance, recursive mutexes, binary and counting semaphores. Lastly, it also uses 

streams, message buffers and queues for the task communication. 

2.3 Robot Operating System 

ROS is a framework that provides libraries and tools to speed up the development of 

robotic systems. It provides facilities for the implementation of communication between 

processes and between different computers. It is also an open source code project and 

as a large user community, providing a significant collection of algorithms and drives.10 

 
8 https://www.freertos.org, Accessed: 2019-10-07 
9 https://www.freertos.org/RTOS.html 
10 http://wiki.ros.org/pt 
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2.3.1 Concepts 

Package: 

The unit of the ROS organization is called Package. A Package can contain 

some source code, software libraries with tested algorithms, ready-to-use algorithms, 

a set of configuration files, and files describing the constitution of messages and 

services used by nodes. A Package allows easy reuse of libraries and executables. It 

is made up of a directory whose name is the same as the Package and consists of at 

least two files: CMakeLists.txt and package.xml. 

CMakeLists.txt: 

CMakeLists.txt is a file whose contents are input to CMake. It is a system that 

automatically builds executable files, speeding up the software design. Despite the 

difficulty with programming in Linux environment with CMake commands, its use 

facilitates the learning of ROS beginners and facilitates the development of large 

projects. 

Package.xml: 

Package.xml is a file whose function is to describe the Package that owns it. 

This file defines properties such as the Package name, the version of the existing code 

in the Package, its authors and maintainers. It also spells out all dependencies, 

allowing the usability of other Packages. 
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Node: 

Node is a name given to the process that performs some computation and is 

created and executed on top of ROS. ROS combines nodes through a graph, 

facilitating communication between them. There are three ways to perform 

communication: via remote procedure call (RPC), via topic media flow, and lastly 

through parameter server. The goal of building applications using node concepts is to 

avoid the monolithic implementation of robots by decreasing complexity and increasing 

the reusability of source code. 

Publisher-receiver communication model: 

The publisher-receiver communication model is the most widely used form of 

information transmission between nodes in ROS. Publishers is the name given to 

nodes whose function is to send information to nodes whose function is to receive 

information. This is an abstraction of TCP/IP communication via sockets that ensures 

packet delivery and sequencing regardless of the route taken by the information flow. 

However, thanks to the ROS API, the developer does not need to perform low level 

configurations such as defining communication ports. He just uses the API and 

indicates where the information should flow. This model allows a node to be both a 

publisher and subscriber, and a publisher may send to multiple recipients through the 

same communication channel, or through different channels. In addition, the same idea 

is also true of recipients. The channels of communication in question are called Topics 

and each Topic only receives one type of information. These types of information are 

called messages, which in turn are defined in header files through data structures, 

similar to what is used in structural programming languages. 
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Client-Server communication model: 

The Client-Server communication model, performed through remote procedure 

calls, is a different way of interaction between nodes. It allows us to request services 

from other nodes via a single communication channel and let the former know of the 

success or otherwise of their request. This is a communication model widely used in 

information systems, especially in internet applications. Similarly to messages, 

services are described in archives. However, it is divided into two parts, the necessary 

information that the customer must choose as the communication entry and the 

information returned by the service. The latter is often a boolean value, reporting 

success or failure of the service requested. 

2.3.2 Versions 

There are two versions of ROS: the standard ROS and ROS 2. The standard 

ROS was created to provide a development environment for the Willow Garage PR2 

robot and has the following features: 

• Environment created for a single robot; 

• Workstation-class computational resources on board; 

• No support for real-time requirements (or any real-time requirements would be 

met in a special-purpose manner); 

• It demands excellent network connectivity (either wired or close-proximity 

high- bandwidth wireless); 

• Environment created for applications in research, mostly academia; 

However, along the development of robotic systems, the researchers and 

developers began to explore the development of other types of applications that have 

more restrictive requirements. To meet the requirements of these new applications, it 

was proposed to design the ROS 2, that has the following features 

• Teams of multiple robots. 
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• Small embedded platforms. 

• Support real-time control directly in ROS, including inter-process and inter-

machine communication (assuming appropriate operating system and/or hardware 

support). 

• Behave as well as is possible when network connectivity degrades due to loss 

and/or delay, from poor-quality WiFi to ground-to-space communication links. 

2.4 Final remarks 

This chapter introduced some concepts of the most important requirements in a 

safety-critical system design: dependability and real-time systems. They are necessary 

to ensure the correct and safe operation. Besides, the concepts of masking, standby, 

and hybrid hardware architecture were described. Fletcher’s checksum was described 

and it has the purpose of improving the reliability of a communication process. In the 

end, ROS was presented. 

These concepts are essential for understanding the subsequent chapters. The 

next chapter will describe the whole system design process. Then, in the Chapter 4, 

some tests will be performed to analize the operation, the dependability and the real-

time features of the solution proposed in the Chapter 3. 
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3 Embedded system architecture 

This work proposes a safe embedded system architecture for a safety-critical 

system and, as a case study, it is applied for a flight control system of a UAV. First of 

all, this chapter defines the requirements of the UAV’s flight control system. Then, the 

hardware and software architecture to meet these requirements is proposed and, in 

the end, the prototype is presented. 

3.1 Requirements 

Requirements elicitation is an important step in a project. It guides the main 

decisions that must be made to meet all the demands related to a project. The designer 

must interview the people involved in the project and research the regulations and 

standards related to the system to be designed. 

Regarding the aim of dealing with a UAV’s flight control system, some aviation 

safety standard were consulted. DO-178C and DO-254 are international commercial 

aviation standards that provide the best practices for design an on-board system with 

an acceptable level of confidence to comply with the airworthiness requirements. They 

distinguish five levels of safety requirements called Design Assurance Levels (DALs), 

as shown in Table 1, that are classified according to the consequence in case of a 

failure of the system, where A is the most stringent and E is the least. (Fulton & 

Vandermolen, 2017). A market research has revealed the supply of DAL B certified 

UAV’s autopilot11. Indeed, a failure of a UAV can cause at most some injuries or even 

some fatalities of people on the ground. Thus, we can consider as requirement of the 

project a target failure rate of 107 chance of hour failure/flight hour. 

 
11https://www.embention.com/news/autopilot-uav-certification/ 
   https://www.embention.com/projects/eko-custom-control-system/ 
   https://www.embention.com/news/autopilot-uav-certification/ 
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Table 1 Design assurance levels (DALs). 

 

 

The interview was conducted with some of the main researchers involved in 

ProVANT project. It was interviewed 6 PhD and Masters students, and 13 general 

questions to extract their demands were made. These questions and answers can be 

found in Appendix A. 

 

Table 2: Requirements of ProVANT embedded system architecture to be met. 

 

3.2 Design Process 

During a normal cycle of project, after the collection of requirements, the 

architecture of a system is designed. In the first step, the whole system is described 
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without much detail in terms of schematics, diagrams and layouts of the project. In view 

of this context, the instrumentation required by the ProVANT 4.0 is described. Next, 

the hardware architecture is proposed. Lastly, the whole software architecture used in 

this work is presented. 

3.2.1 Instrumentation 

As demanded by the requirements, the ProVANT 4.0 must operate manually or 

automatically and must communicate with a ground station (Req. 2 and Req. 3). In 

order to meet them, its flight control system should be composed by an Inertial 

Measurement Unit (IMU), an air data sensor, a radar altimeter, a Global Position 

System (GPS), servo motors, brushless motors, Electronic Speed Controllers (ESCs), 

Radios, and a power system manager. 

IMUs are devices that infer the motion in a non-earth referenced frame. Inertial 

sensors combine gyroscopes, accelerometers, and sometimes magnetic sensors, 

depending on the device model. Accelerometer measures the linear acceleration, 

gyroscope measures the angular velocity, and the magnetic sensor identifies the 

Earth’s magnetic field to establish the direction of magnetic north. ProVANT 4.0 will 

use redundant IMUs for providing fault-tolerance features: two of them are provided by 

Navio2, and the third one is the IMU ADIS16480. 

Navio2, that is shown in Figure 15, is an instrument board created to be used 

with the Raspberry PI 3. It is composed for 14x PWM channels, 2x IMU chips, 1x 

barometer and 1x GPS. The IMUs included in it are: MPU9250 and LSM9DSI. The 

former communicates by SPI with until 1 MHz and provides data of 3-Axis gyroscope, 

3-Axis accelerometer and 3-Axis magnetometer. The latter communicates by SPI with 

until 10 MHz and provides data of 3-Axis gyroscope, the 3-Axis accelerometer and 3-

Axis magnetometer. 
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Figure 15: Navio 2. 

 

Source: Emlid 

 

The IMU ADIS16480, that is shown in Figure 16, features a 3-Axis gyroscope, 

a 3-Axis accelerometer, 3-Axis magnetometer, pressure sensor, and an Extended 

Kalman Filter for dynamic orientation sensing. Its outputs are stable quaternions, Euler 

angles, and rotation matrix in the local navigation frame. As protocol of communication, 

it uses SPI with until 15 MHZ. 
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Figure 16: ADIS16480. 

 

Source: Analog Devices 

 

Air data system senses the wind flow through which the aircraft is flying, 

measuring the dynamic pressure, static pressure and temperature. From these data, 

it can infer the barometric altitude, the airspeed, the vertical speed, the Mach value, 

the air temperature, the true airspeed, and the angle of attack. The Navio2 provides a 

barometer, MS5611, which gives one float of static pressure and communicates by 

I2C. Besides, the IMU ADIS16480 also supply one float of static pressure. Lastly, the 

pitot tube 3DR Pixhawk Airspeed Sensor Kit is considered that, from I2C 

communication protocol, provides the dynamic pressure resulted by the air movement. 

It is presented in Figure 17.  
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Figure 17: 3DR Pixhawk Airspeed Sensor Kit. 

 

Source: Gaba Hobby Center. 

 

The sonar uses sonic transmissions to reflect off a surface immediately below 

the aircraft. The sonar provides an absolute distance above the surface. This contrasts 

with the air data system, where the altitude allows to generate a warming that the 

aircraft is close to the ground and needs to take corrective action. ProVANT 4.0 uses 

an MB2530 IRXL-MaxSonar-CS3 that communicates by PWM, RS232 or analog 

voltage, which is shown in Figure 18. 

 

Figure 18:MB2530 IRXL-MaxSonar-CS3. 

 

Source: Max Botix 

GPS is a satellite radio navigation system that provides a highly accurate 

position and a highly velocity to an unlimited number of properly equipped users spread 
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all over the world. It provides a worldwide common grid reference system based on the 

Earth-fixed coordinate system. ProVANT 4.0 uses redundant GPS, one that is mounted 

in Navio2, a UBLOX NEO-M8N which provides the latitude, the longitude, the height, 

and communicate by SPI with until 5.5 MHz. Besides, a UBLOX NEO-M8T, as shown 

in Figure 19, is part of the GPS RTK module. This module provides a high accuracy 

latitude, longitude, height, and communicates by USB (Grigulo & Becker, 2018). 

 

Figure 19: UBLOX NEO-M8T. 

 

Source: GNSS OEM 

 

ProVANT 4.0 uses two fast servomotor to tilt the propellers. They are composed 

by FLAT MAXON MOTOR BRUSHLESS EC 45 flat Ø42.8 mm of 50 Watt (shown in 

Figure 3.6), MAXON CONTROLLER ESCON 36/3 EC, and MAXON Sensor Encoder 

MILE, 512 CPT. The encoder communicates by RS422 and the controller by PWM. 

Moreover, four slow servomotor command the control surfaces of the UAV. They are 

Hitec D145SW Digital HV devices (see Figure 20), and each one communicates by 

PWM through the the Navio2 shield. 
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Figure 20: Hitec D145SW Digital HV devices. 

 

Source: Modelflight RC 

 

Brushless DC motors are synchronous electric motors powered by a hardware 

called Electronic Speed Controller (ESC), that is an electronic circuit in charge of, from 

DC power, controlling and regulating the motor speed. It may also provide reversing of 

the motor and dynamic braking depending on the model. In ProVANT 4.0, AXI 5345/14 

HD 3D Extreme V2 brushless motors rotates the propeller (see Figure 21) and two 

Mezon 160 ESC command them. These ESCs communicate by PWM. 

 

Figure 21: AXI 5345/14 HD 3D Extreme V2 

 

Source: Modelmotors 
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As radio for telemetry, it will be used a OrangeRx R1020X (see Figure 22), which 

communicates by PPM. Lastly, the energy management system was designed by da 

Silva (2017) and communicates by UART. 

 

Figure 22: OrangeRx R1020X. 

 

Source: Hobbyking. 

 

A table with more details of the instrumentation and embedded systems used in 

ProVANT 4.0 can be found in Appendix D. 

3.2.2 Embedded hardwares 

In order to execute high cost algorithms using GPU’s resources, the Jetson TX2 

development toolkit (see Figure 23, is chosen. It is a platform designed specially for 

running artificial intelligence algorithms. Jetson TX2 is composed by a Tegra X2, which 

is a system-on-ship with a 64 bits Quad ARM Cortex-A57 processor, a 64 bits Dual 

Nvidia Denver processor, and a GPU of 1,3 GHz (Req. 1) with Pascal architecture of 

256 kernels. 
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Figure 23: Jetson TX2. 

 

Source:  Amazon 

 

Moreover, it has 8 GB of RAM and 32GB eMMC storage capacity. As integration 

feature, it possesses: 

- 1x HDMI 2.0; 

- 1x 802.11a/bg/n/ac 2x2 867Mbps WiFi; 

- 1x Bluetooth 4.1; 

- 1x USB3 + 1x USB2; 

- 1x 10/100/1000 BASE-T Ethernet; 

- 12 lanes MIPI CSI 2.0, 2.5 Gb/sec per lane; 

- PCIe gen 2.0, 1x4 + 1x1 or 2x1 + 1x2; 

- 1x SATA; 

- 1x SDcard; 

- 1x dual CAN bus; 

- 2x UART; 

- 1x SPI; 

- 3x I2C; 
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However, Jetson TX2 does not provide the necessary UART, SPI, and I2C 

interfaces demanded by the ProVANT 4.0 instrumentation, defined previously. In total, 

it is needed eighteen peripherals of communication. Thus, another platform is added 

with enough peripheral devices to establish communication with sensors and 

actuators, similar to the ones used in the previous UAV versions. From now on, to 

facilitate the understanding, Jetson TX2 will be called high level hardware (HLH) and 

the other one, the low level hardware (LLH). 

The chosen LLH is a Nucleo-f767zi (see Figure 3.11), which is composed by 

Arm Cortex-M7 with 216 MHz, 2048 kB of Flash memory, and 512 kB of RAM. As 

integration feature, it possesses: 

- 4x USARTs; 

- 4x UARTs; 

- 6x SPIs; 

- 4x I2C 

- 3x CAN 

- 1x USB 2.0, 

- 1x Ethernet 

- 4x PWM 

By using both hardwares, a two-layer architecture is proposed, where the Jetson 

TX2 is responsible to execute algorithms and the Nucleo board to interface the 

instrumentation. By and large, for each sample time, the instrumentation data are read 

by LLH and after sent to the HLH in order to execute the control law. After the control 

law is computed, the control signals are transmitted to LLH that commands the 

actuators. 
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Figure 24: Nucleo-f767zi 

 

Source: Amazon 

3.2.3 Hardware Architecture 

The whole architecture proposed by this work is shown in Figure 25. The Jetson 

TX2 communicates with Nucleo boards from a UART channel. Besides, the most of 

sensors communicate with LLH, while only the GPS RTK and the high accuracy IMU 

ADIS16480 communicate directly with HLH in order to decrease the latency of the 

communication between HLH and LLH. During the work, the communication process 

proved to be a system bottleneck. 

Aiming to increase the reliability of the communication channel between Jetson 

TX2 and Nucleo boards, and to detect of unwanted information changes during data 

transmission between LLH and HLH, a Fletcher’s checksum was implemented. If any 

frame arrives at the destination with error, the receiver will render the same. 
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Figure 25: Hardware architecture. 

 

 

Source: The author 

 

Next, it is proposed an implementation in the LHL of a fail-operational control 

law, similar to Vivekanandan et al. (2016), in order to make the architecture be fault 

tolerant related to HLH faults. However, Vivekanandan et al. (2016) assumes that the 
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LLH is reliable enough to ensure safe operation of UAVs without any reliability data or 

experience. As the platforms chosen also has not detailed reliability information 

available by the manufacturers, two Nucleo boards are put in parallel, using the hot 

standby strategy and improving the solution proposed by Vivekanandan et al. (2016). 

These strategies are justified since a UAV is a safety-critical application, which 

are essential to concern with dependability. However, in this thesis, we only deals with 

the HLH and LLH failures. Thus, it is not in the scope of this work to deal with 

instrumentation faults and the communication faults with ground station/radio 

controller, which are being dealt by other works of ProVANT’s project. 

As no detailed reliability information is available by the manufacturers, we collect 

some failures modes and faults for a general embedded system. 

A) Software Failure Modes: 

- Buffer overflow; 

- Dangling pointers; 

- Resource leaks; 

- Race conditions; 

- Semantic design; 

B) Software Faults: 

- Deadlock; 

- Resource starvation; 

- Too small memory; 

- Bugs; 

C) Hardware Failure Modes: 

- Electrical failure; 

- Mechanical failure; 

- Temperature effects; 

- Material failure; 
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D) Hardware Faults: 

- Radiation; 

- Hostile environments; 

- Aging; 

- Choosing the wrong dimensions; 

- Manufacturing/assembly process deficiencies; 

- Energy loss. 

This work is dealing with permanent software and hardware faults in both 

platforms, for example, aging, communication failure, deadlock, energy loss and crash. 

3.2.4 Software Architecture 

Logic description 

 

Aiming to allow remote and automatic operation, the LLH have three tasks, each 

one with different priorities: Controller task, Radio task, and Groundstation task. The 

first one has the biggest priority and the last one, the smallest priority. Controller task 

is responsible for the communication with sensors, actuators and HLH, besides the 

execution of a fail-operational control law in case of HLH failure. Radio task 

communicates with radio, allowing remote operation of the UAV. Lastly, Groundstation 

task communicates with an external computer, passing data such as internal system 

information or obeyig commands. 

The Controller task is periodic with period of 10 ms. Its logic is resumed by 

Figure 26. Note that this system has two modes of working: main LLH mode and 

backup LLH mode. Initially, the device checks which mode is configured. By default, 

every device are set up as a backup LLH mode. But as soon as the first LLH device is 

executed, it will not find any other LLH and it immediately turns to the main LLH mode. 
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Next, the second LLH will find the main LLH working and it will remain in the backup 

LLH mode.  

 

Figure 26: New control task of LLH’s processors. 

 

Source: The Author. 
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In the main board mode, LLH reads the sensors and sends the obtained data to 

HLH. Next, it sends a flag for the backup LLH and waits for output data from the HLH. 

If no data arrives in two sample times, it stores the information that the HLH is in failure 

mode and takes control of the UAV, running a simple control law. Otherwise, LLH 

obtains the output of HLH and commands the actuators with this data. 

In the backup mode, LLH only waits for the flag sent by the main LLH. If no data 

arrives for three sample times, it will change its mode for main LLH mode and resets 

the other board. 

The Groundstation task is periodic with the period of 500ms. The task checks if 

there is some data sent from ground station and, if it arrives, it answers. The logic of 

this task is shown in Figure 27. 

 

Figure 27: LLH’s Groundstation task. 

 

Source: The Author 

 

The Radio task is also periodic with the period of 100ms. The task only checks 

if there is some data sent from a radio. For example, if the received command is to 
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switch the control law between remote/automatic, it changes a global variable to switch 

the operating mode. The logic of this task is shown inFigure 28. 

Figure 28: LLH’s Radio task. 

 

Source: The Author 

 

The logic of HLH is summarized in Figure 29. The HLH waits for LLH data to run 

the control law, and in parallel it has two periodic routines for reading data from an IMU 

and a GPS. After the execution of the control law, it sent the output to the LLH. 
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Figure 29: HLH’s Control task. 

 

Source: The Author 

 

Physical description 

 

The LLH software is implemented using C language, and its architecture is 

designed in a vertical hierarchical structure of the elements of one level in relation to 

those of a higher level. The proposed architecture is shown in Figure 30. The software 

interacts with peripherals through peripheral driver supplied by the STM32CubeMX. It 

is a graphical tool that allows an easy configuration of STM32 microcontrollers and 

supplies a project with peripherals drives ready for use. 

FreeRTOS at version 10 is the RTOS adopted because ProVANT research 

group members are already familiar with it. Besides, it is not a proprietary software 

(Req. 4) and it is also already available fully configured by STM32CubeMX. 
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The HLH architecture is structured as depicted in Figure 31. The platform uses 

Ubuntu 18.04 since it is the standard operating system provided by the manufacturer, 

and ROS 2, since it provides tools for speeding up the development of future 

applications and is especially designed for embedded applications, unlike of the ROS 

Standard (Req. 4). 

The HLH’s drivers are available by default with the operating system, and the 

services of reading sensors and communicating with the communication channel must 

be implemented by the designer using the available drivers. At the moment, the HLH 

only executes the control task. This task has been developed using the C++ language. 

The control law must be implemented inside class method, whose interface has 

already used in a simulation software of ProVANT project (Lara et al., 2017), providing 

development integration between both tools. Its implementation is explained in the 

Appendix C. 

Figure 30: Description of LLH’s software architecture. 

 

Source: The Author 
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Figure 31: Description of HLH’s software architecture. 

 

Source: The Author 

3.3 Final Remarks 

This chapter describe the design process of the hardware and software 

architecture to be applied in ProVANT 4.0. First, requirements were collected to guide 

the design process,which consisted of a survey by international standards and 

interviews with researchers involved in the ProVANT project. After, it was proposed an 

embedded system architecture for ProVANT 4.0. Lastly, it was shown the prototype 

built from the proposed architecture. The next chapter will describe the experimental 

results obtained with the prototype. The dependable and real-time features will be 

analyzed. 
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4 Experimental results 

This chapter describes the experiments performed with the prototype presented 

in Chapter 3. In the first section, the HIL simulation environment is presented, which 

was developed to validate the proposed solution. After, a simulation is performed in 

order to test the flight of the UAV without faults, to test the flight with faults in the HLH, 

and with faults in the main LLH. From the experiments two characteristics are 

analyzed: the hard real-time capabilities and the dependability. 

4.1 Prototype 

Based on the architecture described in Chapter 3, a prototype was built to 

analyze the communication between the three hardwares. It is shown in theFigure 32. 

The schematic of the prototype is found on Appendix D. 
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Figure 32: Prototype built. 

 

Source: The Author. 

4.2 Hardware-in-the-loop simulation for the UAV embedded system 

A simulation is any study where many aspects of a phenomenon are translated 

into mathematical models and executed in computer programs to mimic the outcomes 

that happen in the natural world. In the context of control systems, simulation is a 

process that conducts experiments with computational or mathematical models of a 

system in order to test the efficiency of a control strategy. 

However, rather than testing the control algorithm purely in a simulation 

environment, such as Matlab/Simulink, there is a specific kind of simulation that 

provides a way of testing of hardware and software performance, besides the integrity 

of embedded systems, it is called the hardware-in-the-loop simulation (HILS). Thus, in 
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order to validate the embedded system proposed in this thesis, a HILS for the UAV 

embedded system is designed as shown in Figure 33. While a UAV dynamic model is 

being simulated on a desktop, the embedded system runs in parallel controlling the 

simulation model. 

 

Figure 33: Hardware-in-the-loop environment. 

 

Source: The Author. 

 

There are some approaches in the literature that look into the small UAV control 

design using HILS. Gans et al. (2005) developed a HILS environment for airplane UAV 
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control tests. This work uses virtual reality software to produce real-world scenarios 

and a wind tunnel for aerodynamic simulation of the aerial vehicle. Trilaksono et al. 

(2011) designed a HILS for visual target tracking of an octorotor UAV with onboard 

computer vision. In Cheon et al. (2016), a HILS platform was designed for verifying the 

image-based object tracking method used in a UAV, composed by image processing, 

scene generation, and flight control modules. 

The HILS used in this thesis is an improvement of the ProVANT Simulator (Lara 

et al. (2017), Lara et al. (2018)). ProVANT Simulator is a simulation environment based 

on 3D CAD (Computer Aided Design), the Gazebo Simulator and ROS, with the 

purpose of validation and implementation of control strategies, being a previous stage 

of flight testing. 

4.2.1 Communication 

To perform the communication between the general purpose computer and the 

embedded system, it has been chosen the UART protocol in the embedded system 

side and the USB protocol in the general purpose computer side. Thus, to make the 

translation of these serial protocols, two FT232RL converters are used: one is 

responsable for sensors and actuators data transfer, and the other for reference data 

transfer. 

The serial communication uses a baud rate of 921600 bps in order to provide 

fast communication with a worthless time lag. Besides, this application uses a two layer 

communication protocol. The low level layer tackles data corruption and the 

entanglement of packages by sending the data with redundant information to solve 

these problems by using the Fletcher’s Checksum, and the high level protocol handles 

the flow of communication by implementing a client/server protocol. 

The high level protocol consists in a client/server communication where the 

embedded system is the client of the application and asks to the general purpose 

computer for services identified through their ID and some information, if necessary, 
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as showed in Figure 34. The following services are provided: i) Simulation start; ii) 

Reading of sensors data; iii) Transmission of data to actuators. 

 

Figure 34: High level protocol’s package. 

 

Source: The Author. 

 

The data flow in the communication process works as depicted in Figure 35. 

First of all, the client starts the application, sending a message with ID 1 without waiting 

for any response. From this moment, a periodic cycle of requesting sensor data and 

sending actuator commands is started. In the sensor data request, the client sends a 

message with ID 2 and waits for a server’s answer, which consists of one float array of 

16 elements. However, when it sends actuator commands, it uses a message with ID 

3 plus our float numbers corresponding to the control signals provided by the control 

law. As a client/server protocol, this periodic cycle is set on the client-side, while the 

server just waits for requests. 
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Figure 35: Communication data flow between server and client. 

 

Source: The Author. 

4.2.2 Simulator settings 

The general purpose computer uses the linux distribution Ubuntu 18.04 LTS 

(Long Term Support) as operating system. Besides, the Gazebo Simulator is employed 

to simulate the dynamic behavior of the Tilt-rotor-UAV. 

The simulation step of Gazebo simulator was adjusted for 4 ms, which is the 

period when the simulator obtains the data of control signals and computes the actual 

states of the system. The simulation step influences the accuracy and execution time 

of the simulation, the shorter the period, the greater the computational effort. This 

configuration was chosen because it is accurate enough for flight simulation and fast 

enough to perform it in real time. 
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In addition, the Gazebo Simulator is configured with real-time_factor setting 

equals to 1, making the simulator tries to keep the simulation in real time according to 

the system clock. 

In order to interact with the simulation environment, either by acquiring data and 

applying control signals, or by changing simulation configurations, it was created a 

dynamic library called Plugin to be responsible for getting requests from the serial 

communication. The Boost12 ASIO API (Application Program Interface) is used, which 

is a cross-platform C++ library for networking and low-level I/O programming, while the 

Boost Thread API is used for creating and managing threads. 

Plugin works as shown in Figure 37, which is composed for one thread that 

waits for external requests and one callback that is called in every simulation step. For 

each type of request, specific reaction occurs and the verification process is performed 

in the following sequence: 1) start simulation, 2) send actuator data to the simulator, 

and 3) obtain sensor data. 

 

Figure 36: Server’s software architecture. 

 

Source: The Author 

 
12 http://www.boost.org 
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Source: The Author. 

 

Figure 37: Logic of server software. 

 

Source: The Author. 

 

 

4.3 Numerical experiments 

Numerical experiments were performed to conduct the proof of concept of the 

architecture rather than to analyze the performance of the proposed solution, while 

executing high computational cost control algorithms. In these experiments, both HLH 

and LLH embedded systems were configured with a Discrete Linear Quadratic 

Regulator (DLQR) control technique proposed by Rego & Raffo (2016) without integral 

terms. Besides, the implementation of the control law in the HLH does not use the 

GPU, since the purpose of this experiment is only to validate the proposed architecture. 
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The control design was based on the physical model presented in Cardoso et al. 

(2019). In this experiment the ProVANT 4.0 (see Figure 4.7) model must keep in a 

reference position that changes periodically in two set-points: r1 = [0, 0, 2]T ; and r2 = 

[0, 0, 2.2]T . 

The kinematic description of the system is performed according to Figure 38, 

where ξ ≜ [x, y, z]T corresponds to the position of the main body with respect to the 

inertial frame; φ, θ and ψ describe the orientation of the main body with respect to the 

inertial frame through the Z-Y-X convention on local axes; αR and αL describe the 

inclination of the propellers with respect to the main body of the aircraft. The vectors 

𝒅𝑨𝒊
𝑩  and 𝒅𝑪𝒊

𝑨𝒊, with i ∈ {1, 2, 3}, and the angle of inclination β correspond to design 

parameters of the aircraft. Table 3 presents the physical parameters of the UAV model 

used to tune the DLQR controller. 

The control strategy is based on the linearization and discretization of the 

system state equations, obtained through the Euler-Lagrange formulation, around the 

reference using sampling time of 10 ms. The generalized coordinates are q = (x, y, z, 

φ, θ, ψ, αR, αL) and this information is read from the simulator with their derivatives. 

The parameters used for control design are 

 

 

with 𝑓𝑒𝑞
𝑅  = 37.3 N, 𝑓𝑒𝑞

𝐿  = 37.3 N, τ𝑒𝑞
𝑅  = 0 N.m, τ𝑒𝑞

𝐿 = 0 N.m. 

The proposed architecture was validated with the HIL simulation environment 

described before, using the designed DLQR control law and considering fault 

injection. In the following experiments, a energy loss is induced on the boards and 

represents any of the permanent faults described on Chapter 3. 
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Table 3: System physical parameters. 

 

 

 

Figure 38: Reference coordinate systems 

 

Source:  Cardoso et al. (2019)
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4.4 Results 

Figures Figure 39, Figure 40, Figure 41 illustrate the results of position in X, Y 

and Z axis of the ProVANT 4.0 obtained with the HILS. The variable Mode expresses 

the situation of the embedded system in a given instant. 

• Mode 0: represents the embedded system in full operation; 

• Mode 2: represents a communication failure between HLH and LLH (such a 

failure  was not caused by an injection fault); 

• Mode 3: represents the embedded system with HLH in permanent fault. 

Unfortunately, the embedded system was in the failure mode 2 very often. The 

information from the HLH arrived corrupted to the LLH, but the Fletcher’s code did not 

detect them. This is acceptable because the system under test is a prototype, the 

presence of poor wire contact was inevitable and the Fletcher’s code like any fault 

tolerance technique is not 100% effective. This failure was detected using a 

comparison with the output computed in the LLH’s control law. Moreover, the transfer 

behavior from Mode 2 to Mode 0 was not performed by any automatic feature. This 

transfer has been done manually, as we were investigating at that moment the 

reliability of the entire system with all components working perfectly. 

At t=29.7 s and t=30.1 s, a fault was injected in the LLH main processor. In 

Figure 42 this issue is highlighted. The system does not change its mode because the 

UAV was still under control by HLH. The UAV lost the control for some period because 

the hot standby strategy needed this period to switch the hardware. Quickly, the UAV 

stabilized again as expected. 

Lastly, at 35.9 s, a fault was injected in the HLH and the embedded system get 

in Mode 3 as expected. In Figure 43, this part of the simulation was zoomed. At this 

time, the LLH immediately takes the UAV flight control. 
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Figure 39: Behavior of Z-axis position in the simulation. 

 

Source: The Author 

 

Figure 40: Behavior of Y-axis position in the simulation. 

 

Source: The Author 
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Figure 41: Behavior of X-axis position in the simulation. 

 

Source: The Author 

 

Figure 42: Highlight the moment occurred LLH’s failures. 
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Source: The Author 

 

Figure 43: Highlight the moment occurred HLH’s failure. 

 

Source: The Author 

 

The system proved to be robust to the injected faults during the simulation, 

demonstrating the success of the techniques adopted, increasing the system’s 

dependability. However, nothing can be said about the meeting of the Requirement 6. 

The first reason is that we could not have the access of reliability data of all platforms 

used in this work. Another reason is that, as the target failure rate is about 10−7 chance 

of hour failure/flight hour, it will take several hours of operation to make any conclusions 

given the small probability required. Lastly, a prototype more resistant to bad contact 

failures is needed to be built. 

To analyze and validate the proposed solution related to the real-time 

requirement, the response time of the Controller thread should be obtained and, after, 

an offline validation must be done. Figure 44 shows the response time behavior 

throughout the simulation, and Figure 45 presents an histogram of the samples 
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collected when the embedded system is in Mode 0, since it is the Mode when the 

longest system response time is achieved. 

 

Figure 44: Behavior of the task’s response time. 

 

Source: The Author 
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Figure 45: Histogram of the task’s response time. 

 

Source: The Author 

 

As can been seen in the histogram, there is random behavior on the samples 

during the simulation. This behavior occurs due to we are collecting data on the side 

of the simulator that is running on a non-real time operating system in a multi-core 

processor. Despite of this behavior, the worst case response time value was 6,4 ms, 

which is demanding 64% of the sampling time. 

From part of the data collected in the HLH, the controller took about 0.65 ms to 

run each instance of the control law, as shown in Figure 46. Therefore, we can 

conclude that the solution is poorly optimized regarding the communication latency 

between its components, demonstrating a demand for reducing this bottleneck. 

Despite this bottleneck, 36% of the capacity is still available for Radio and 

Groundstation Threads and, as they have much longer deadline compared to the 

Controller thread, this solution in the HIL has potential to be validated. In addition, it 

still must be evaluated the response time of other threads in order to ensure the 

meeting of Requirement 7. 
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Figure 46: Histogram of the time required to run the HLH’s control law. 

 

Source: The Author 

 

5 Conclusions 

This work proposed a safety-critical embedded system architecture to be 

applied in the flight control system of a VTOL-UAV. It uses a Jetson TX2 development 

kit, in view of growing demand for high computational cost algorithms. Different from 

current work related to the autopilot design, this thesis deals with the autopilot as a 

safety-critical system. 

During the design of the solution, some researchers involved into the project of 

the UAV was interviewed. From the interviews, some functional and nonfunctional 

requirements were collected. Besides, in order to guide the dependability analysis, 

some aviation safety standards were consulted and, from a research on market, the 

dependability required for a UAV operation was inferred. 
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Consequently, during design phase a new hardware and software architecture 

was proposed. As the Jetson TX2 development kit does not have enough peripheral 

devices to communicate with all instrumentation required, an additional hardware, a 

Nucleo-F767zi board, was selected to do this interface. Their operating systems and 

software architectures were also defined. The Jetson TX2 development kit uses 

Ubuntu 18.04 and ROS, and Nucleo-F767zi board uses FreeRTOS with version 10. 

In addition, some changes have been made to increase the dependability of the 

solution. Hardware redundancy and information redundancy techniques were used. 

They are an improvement of the architecture suggested by Vivekanandan et al. (2016). 

In order to increase the safety of the proposed architecture, we used a hot standby 

technique. This improvement makes sense because LLH was a critical point of failure 

and the most important hardware of the architecture. 

In order to test the solution, a Hardware-in-the-loop simulation environment was 

designed in order to inject faults during the simulation. Then, experiments showed that 

the UAV remained operational despite the occurrence of faults, and the fault-tolerant 

strategies worked as expected. Therefore, it can be conclude that the solution could 

meet most of its requirements. 

5.1 Future Work 

Some future works of this project are: 

• Make a comparison with other architectures. 

• Investigate the adoption of RedHawk Linux. 

• Perform a study of the communication latency between all components 

and the instrumentation specified. 

• Obtain the hardware reliability data for numerical pre-validation of the 

architecture proposed; 

• Obtain instrumentation reliability data and use them in the dependability 

analysis of the whole system;  
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• Search for a high performance hardware with sufficient communication 

peripherals, or develop a custom embedded hardware; 

• Test other fault tolerance strategies, for example, the Self-Purging 

Redundancy Architecture and GPU’s hardening techniques.  

• After going through a robust manufacturing process, thoroughly validate 

the solution for several hours in order to evaluate if the required 

dependability level is reached. 
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Appendix A: Interviews 

This appendix describes all the information obtained in the first round of a series 

of interviews conducted with members of the PROVANT project in order to ascertain 

the key characteristics desired for the ProVANT 4.0. This text is part of the development 

of the master’s thesis of the present author and aims to organize the hardware and 

software requirements necessary to meet the expectations of the interviewees. In all, 

we interviewed 6 Ph.D. or Master’s students, each responsible for a different research 

topic involving ProVANT 4.0. In addition, 12 general questions were asked. The 

following sections describe the answers to each question. 

A.1 Questions and Answers 

A.1.1 Give a brief description of your work and how it will depend on the 

hardware and software architecture of UAV 4.0.? 

Interviewee 1: “I work with robust nonlinear fault-tolerant control and fault 

detection and isolation strategies based on set-theoretic methods, with application to 

the UAV case. Such strategies are computationally costly, involving the online solution 

of nonlinear optimization problems with several constraints. Hardware/software 

supporting parallelization is very important. Reliable memory management and 

constant sampling time (input and output) are also required. Time delays (in 

communication and other things) should be minimal.” 

Interviewee 2: “ My work is to develop linear and nonlinear robust controllers 

to provide path tracking and cope with the tilt-rotor UAV 4.0 entire flight envelope. The 

controllers must be embedded on the aircraft. Therefore, the hardware must provide 

the best performance as possible, in sense of execution speed. Besides ensure that 
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commands sent to the actuators will be executed and data from the experiment will be 

saved for analysis. ” 

Interviewee 3: “ My work is about some formulations of MPC, such as economic 

MPC, robust MPC, and stochastic MPC, as well as, the integration between them. ” 

Interviewee 4: “ Applying verification techniques in the UAV design process. 

For this purpose, we are using Model Checking, and static and automatic method, 

complemented with Runtime Verification (RV), a dynamic method. In order to apply 

RV, we depend on the software system, because this technique will check the current 

execution against the desired properties that generates a monitor which is 

instrumented into the code. The hardware will be used in a HIL simulation to test and 

validate the work. ” 

Interviewee 5: “ I work with Model Predictive Controllers, which are a optimal 

control approach to control systems. Solving the optimal control problem to control a 

tilt-rotor is very demanding computationally, so the hardware should allow 

parallelization throw a GPU, a multi-core processor, or a FPGA. As far as the software 

architecture is concerned, the control algorithm is quite complex, so I will need to 

program with object oriented programming in C++ (more computationally efficient than 

java and alternatives) and a way to control the timing to send the input in the correct 

sample times. ” 

Interviewee 6: “ My work focuses in experiment and validation of localization 

methods for wireless sensor networks, the main idea is to localize the sensors using 

only beacon messages and RSSI from WiFi ESP8266 radios. The mobile node, which 

is the one provided with a low cost GNSS RTK system, broadcast its position while 

traversing a WSN, the beacons transmitted are stored in the nodes on the field and, 

with a post processed algorithm, it is able to estimate its own position without the need 

of a GNSS embedded in the static sensor itself. For a more specific application, such 

as in agriculture or monitoring of remote areas (islands, volcanoes and harsh 

environments), it is required an UAV capable of covering big areas, so the UAV 4.0 

would be great for the application of a future work in this topic. ” 
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A.1.2 What are the basic behaviors and required functionalities of the ProVANT 

4.0? 

Interviewee 1: “The ProVANT 4.0 should be able to perform teleoperated 

flights, and autonomous hover and forward flights (tracking a desired trajectory). Load 

transportation tasks must be also taken into account (load suspended by a cable in 

hover flight, but retracted in forward flights). ” 

Interviewee 2: “Besides the common features, it must provide an environment 

to make easy implementation of controllers (Similar to the ProVANT simulator) and a 

way to "debug" and test the controllers before performing real tests. Furthermore, the 

wire connections must ensure that "bad contacts" will not happen during flight.” 

Interviewee 3: “Its basics abilities are performing hover and forward flights with 

or without suspended load. Moreover, it should be able to perform tasks within 

kilometers range using global positioning systems and vision systems to deal with 

environment peculiarities.” 

Interviewee 4: “The UAV will automatically measure wind speed and display 

the speed on the ground station. The ground station will automatically estimate the 

time to return, taking into account the wind and display this information to the operator. 

The ground station will automatically warn the operator if the fuel/battery is not 

sufficient to return.” 

Interviewee 5: “It is need a way to read sensors, send input to actuators and 

send/receive data via radio for telemetry.” 

Interviewee 6: “RTK GNSS for waypoint or autonomous navigation, 

communication with sensor nodes and telemetry. VTOL capability.” 

A.1.3 What is the hardware performance needed to your work be carried out? 

Interviewee 1: “The control and state estimation strategies involved are very 

computationally demanding. They require the online solution of nonlinear optimization 
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problems with several constraints, and the execution of several nonlinear state 

estimators in parallel.” 

Interviewee 2: “The sensors must report correct measurements, with minimum 

noise as possible. The actuators must perform the commands correctly. The 

controller’s loop time must be smaller than 10 milliseconds.” 

Interviewee 3: “It needs to have high computational power since most of the 

controllers of my work are costly. It would be important to have the possibility of doing 

GPU coding.” 

Interviewee 4: “We need a high performance of the hardware because we 

intend to use a HIL Simulation to test and validate our work to raise the level of reliability 

in the system.” 

Interviewee 5: ‘I don’t have a way to specify exact required performance yet, 

but as I answered in question 2, the algorithm is very computationally expensive. The 

communication should also being able to send all estimated states and controls in a 

sample time, either via radio, or via serial communication.” 

Interviewee 6: “For the RTK algorithm: any system capable of running LINUX 

OS with at least 500Mhz processor and 100MB of free memory will be OK. For the 

sensor nodes: ESP8266 radio + cpu modules.” 

A.1.4 How many and which algorithms need to be executed and stored 

simultaneously in the main memory during the UAV 4.0 operation? 

Interviewee 1: “A control algorithm based on solving a constrained nonlinear 

optimization problem (a nonlinear MPC, for instance), a fault diagnostic algorithm 

(probably also based on optimization), and a bank of nonlinear set-based state 

estimators running in parallel (the number of state estimators varies from one case to 

another).” 

Interviewee 2: “It is not possible to define the exact number of algorithms. But, 

it is necessary to execute the controller, the filtering algorithm (To improve 
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measurements), the algorithm that detects error and instability (to execute some action 

during instability and system’s fault). Besides save data for analysis.” 

Interviewee 3: “Basically, two threads need to be made, one for the controller 

itself and the other for obstacle detection. However, through the course of my work, 

maybe it will be necessary to run some parts of the controllers in parallel or even in an 

embedded system.” 

Interviewee 4: “Control algorithms and algorithms that interface with the UAV 

subsystems.” 

Interviewee 5: “The algorithm involves a data processor for LIDAR raw output, 

which includes 3 computational geometry algorithms(small and not demanding) and a 

processing part to convert this data to structured constraints. It also involves a 

optimization part, which includes a NLP solver(IPOPT like) a HP-adaptive 

pseudospectral transcription algorithm.” 

Interviewee 6: “Algorithms: RTK algorithm, waypoint navigation algorithm, 

wireless sensor communication” 

A.1.5 How would be an ideal interface of Hardware/Software for your work to be 

done? 

Interviewee 1: “The hardware/software interface should be as reliable as 

possible, regarding memory management, task scheduling, multi-core processing, and 

sensor/actuator data management (send and receive data to/from sensors and 

actuators)” 

Interviewee 2: “An interface similar to the ProVANT simulator.” 

Interviewee 3: “Simple, with a clear and well-described framework. Moreover, 

it should be modular in a sense that all of the users’ efforts can be directed to their own 

work without having to worry about how the whole Hardware/Software works.” 

Interviewee 4: “I have not yet identified an ideal interface for my work.” 
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Interviewee 5: “One that reads my mind and program the embedded hardware 

by itself” 

Interviewee 6: “Any Linux OS Single Board Computer with, at least, three 

UARTs. WiFi ESP8266 radios as sensor nodes and Autopilot for waypoint navigation 

(GNSS)” 

A.1.6 What would be a good way to test and debug your work? 

Interviewee 1: “The best way do debug these strategies is to be able to simulate 

sensor and actuator failures online. By this way, the fault-tolerant control and fault 

detection and isolation strategies can be effectively tested, anticipating all the faulty 

situations for which these strategies are specially designed, prior to the occurrence of 

real component malfunctions.” 

Interviewee 2: “Using "Hardware in the loop" with a possibility to print partial 

results in some interface.” 

Interviewee 3: “It would be interesting to have some interface allowing to see 

some selected signals in a graphic fashion. Also, to have some methods to export 

those signals.” 

Interviewee 4: “A good way to test my work is using HIL Simulation.” 

Interviewee 5: “Any way that from my PC and program embedded hardware 

through a USB or other convenient way.” 

Interviewee 6: “Test: practical tests in laboratory and on the field. Debug: log 

files and debug messages in real time of operation.” 



104 
 

A.1.7 How would you like to obtain flight data? 

Interviewee 1: “Flight data should be stored in the embedded system (I don?t 

know exactly how, maybe a flash memory), or sent to the ground station. The desired 

trajectory, performed trajectory (all the system states), control signals, sensor 

measurement (and frequency), input and output data of state estimators, and also the 

output from the fault diagnoser should be stored.” 

Interviewee 2: “During a flight, some data should be sent from the UAV to a 

ground station. Moreover, after the flight, it must provide the possibility to download the 

whole data from the UAV’s memory.” 

Interviewee 3: “Graphically, in a ground station for example, and in output files 

that can be imported easily to others software.” 

Interviewee 4: “In a web page, where we can obtain flight data wherever we 

are.” 

Interviewee 5: “Getting Telemetry data, using a compiler debugger, memory 

analyzer software, a runtime analyzer and using a profiler can be very helpful.” 

Interviewee 6: “Long Range telemetry link between UAV and PC/tablet.” 

A.1.8 What input and output data are required to your application run properly? 

Interviewee 1: “The fault-tolerant control strategies require information on the 

control signals, sensor measurement (and frequency), and desired trajectory (all 

desired states).” 

Interviewee 2: “Input: attitude (In Euler angles), position (x,y, and z, w.r.t. an 

inertial ground station), servomotors’ angle and angle of deflection of aerodynamic 

surfaces. Output: Servomotors’ torque, thrusters’ voltage and aerodynamic surfaces 

angle of deflection.” 
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Interviewee 3: “All states (orientation, position, servomotors’ angles, load’s 

angles), control input (thrusts, torques, control surfaces angles), vision sensing 

(camera information), and battery-related variables (current, tension, etc).” 

Interviewee 4: “A input is all of data that control algorithm will need to run. The 

output is the event trace that this algorithm generates.” 

Interviewee 5: “No preference, though, telemetry is usually sent through some 

radio device, as xBee for example.” 

Interviewee 6: “input: GNSS rover (UAV) raw data, GNSS BASE station raw 

data (NTRIP or local), IMU measurements. Output: RTK GNSS solution to UAV 

autopilot, position from RTK to sensor nodes, telemetry messages.” 

A.1.9 What about the frequency of these data? 

Interviewee 1: “Output data should be sent in the lowest actuator frequency (12 

ms), and input data should be received in multiples of it (in the case of sensor 

measurement with lower frequency, i.e., it can be 12 ms, 24 ms, 36 ms, etc).” 

Interviewee 2: “The only constraint of frequency in the sample time. The 

smallest sample time is probably the necessary to control the actuators, probably 

around 10-20 ms.” 

Interviewee 3: “Around 85 Hz or bigger (12 ms or less).” 

Interviewee 4: “It depends on the period of the threads.” 

Interviewee 5: “No preference, though, telemetry is usually sent through some 

radio device, as xBee for example.” 

Interviewee 6: 

“GNSS rover (UAV) raw data: 5Hz; GNSS BASE station raw data (NTRIP or 

local): 1Hz; RTK GNSS solution to UAV autopilot:5Hz; position from RTK to sensor 

nodes: 5Hz; telemetry messages: 57600bps” 
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A.1.10 For a proper documentation, what should be included in the software and 

hardware manual? 

Interviewee 1: “Every technical detail regarding the project of the software and 

hardware architecture should be documented. A hard requirement is that the next 

developer should be able to continue the work only by reading the manual (despite 

basic technical and theoretical knowledge required, of course. However, these should 

be briefly explained, or referenced to another material for the ProVANT reader).” 

Interviewee 2: “Everything must be detailed, using the most number of figures as 

possible. Each step of the code must be commented.” 

Interviewee 3: “The whole hardware and software framework description and a brief 

explanation about the methods (or functions in case of procedural languages) as well 

as its interfaces. Moreover, a simple getting start tutorial for users that don’t need to 

get detailed knowledge of the application.” 

Interviewee 4: “Functional and non-functional requirements. high and low level 

features of each components.” 

Interviewee 5: “Hardware and software architecture description, API descriptions, how 

the software and hardware is intended to be used, a high level description on how to 

program the hardware.” 

Interviewee 6: “Software: Commented code, manual for developers, manual for user 

guide; Hardware: Manual for assemble parts (with mechanical parts catalog)” 

A.1.11 If a UAV get into unrecoverable failure mode, what kind of 

countermeasures should be done? 
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Interviewee 1: “In the worst case, the system should be able to switch to a 

control strategy capable of perform safe vertical landing. An alert signal should be sent 

to the ground station.” 

Interviewee 2: “The system must switch the implemented controller to a 

nonlinear one that drives the UAV to land somewhere. The "backup" controller must 

control just the UAV’s altitude and attitude, being as simple as possible.” 

Interviewee 3: “It should have a redundancy controller running during all flight 

and able to safely put the vehicle on hover and then land in a safe place. If the vehicle 

gets in failure mode, this controller must be activated.” 

Interviewee 4: “The UAV should enter safe mode and use its resources to 

identify the area where it is flying to take the possible measures, from emergency 

landing to turning off the engines if there are no risks in its environment.” 

Interviewee 5: “Some sort of safe landing, if possible. "Unrecoverable failure 

mode" is very general, it is hard to say what this really means.” 

Interviewee 6: “Turn on failsafe mode in order to taking it back to home position 

and take control of the drone; if not possible land where it is; Instantly power off if 

reachable; if not reachable try to find it through the telemetry GNSS messages (on the 

map).” 

A.1.12 Which ones of the UAV 4.0 failures do you consider tolerable? 

Interviewee 1: “Sensor failures (wrong measurement, lack of measurement), 

unusual communication delays, actuator failures (loss of potency), and maybe the 

complete loss of a propeller (in this case, I think it is reasonable to not require trajectory 

tracking anymore, but only stabilization. Maybe still trajectory tracking if in forward flight 

mode, due to the aerodynamic surfaces).” 

Interviewee 2: “fault from data sent from the UAV to the ground station.” 

Interviewee 3: “Lost of the control surfaces (it could still perform hover) and lost 

of some sensor information (as long as it still possible to estimate them).” 
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Interviewee 4: “Data latency and loss (not much time) Delay receiving 

commands.” 

Interviewee 5: “Occasional faults on sensors can be tolerated, if not frequent.” 

Interviewee 6: “Loss of signal with RC; Low battery; Magnet sensor error; GPS 

error; Engine failure.”
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Appendix B: Nucleo boards’s firmware 

B.1 IDE 

Several IDE (Integrated Development Environment) can be used to design code 

for a STM microcontroller. For this work it was used the System Workbench for STM32 

and free IDE available in https://www.openstm32.org/. This is an IDE based on Eclipse 

and to download it, a register is required. For a complete manual of these application 

access https://www.eclipse.org/documentation/ and choose the manual according to 

the eclipses version of the IDE downloaded. 

B.2 StmCubeMX 

According to STMicroelectronics13, “STMCubeMX is a graphical tool that allows 

an easy configuration of STM32 microcontrollers and microprocessors through a step-

by-step process.”. One can download it, using the link 

https://www.st.com/en/development-tools/stm32cubemx.html. A complete manual can 

be found in the same link of the download.This software set the project up even with 

code required for use of FreeRTOS in the application 

B.3 Project Setup 

The source code of the LHL project can be found in the github repository 

https://github.com/Guiraffo/provant-software. The Code available is set up just for HIL 

 
13 www.st.com 
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simulation. In order to implement codes for communication with instrumentation, the 

respective driver settings required must be configured with the StmCubeMX. 

The project has the following organization: 

 

Figure 47: Project organization. 

 

Source: The Author 

 

With the exception of the provant_lib folder, all organization is defined with default by 

StmCubeMX. The content of each folder is: 

• Driver: Hardware Abstraction Layer and CMSIS code; 

• Inc: Some headers related to the main function and some features related to 

interruption, timers and system definition; 
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• Middlewares: FreRTOS source code; 

• Src: Implementation of the main function and some features related to 

interruption, timers and system definition; 

• provant_lib: folder with custom code designed by the application, for example 

the implementation of the simple control laws used to provide fault tolerance for HLH 

failures; 

• Debug: Files generated by the compilation in debug mode; 

• Release: Files generated by the compilation in release mode. 

This provant_lib folder has the following organization: 

Figure 48: provant_lib folder’s organization 

 

Source: The Author 

 

 

• Controllers folder with implementation of control laws; 

• HIL&Jetson protocol is the place where the source code of communication 

protocol used with the HIL and the Jetson; 

• Instrumentation is the place where the custom code to be design in order to 

communicate with the sensors and actuators. 

• pv_typedefs.h is a file with some definition of structures used to the input and 

output data. It is reused from the previous work on ProVANT 1.0 and ProVANT 2.0 

development. 
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B.4 Compilation and upload 

 

For the first compilation and upload of a project, after it is created, click with the 

of right button on the project name, go to “Debug As” and then, click with the left button 

on “Ac6 STM32 C/C++ Application”. 

From now on the compilation and upload are performed. Click with left button 

on icon demonstrated in Figure 49. 

 

Figure 49: How to compile the project 

 

Source: The Author. 

 

 

Before uploading the code, verify if the field “set the breakpoint at” in the Startup 

of the Debug Configuration Window is unchecked, as shown in Figure 50. If it is 

checked, uncheck it. 
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Figure 50: Startup Settings 

 

Source: The Author 

 

 

The upload of the code for both Nucleo Boards must be one at a time. After the 

process upload the code for both boards, reset them at the same time with the RESET 

button in the board. The first board that you release the button will be the main board 

and the last, the backup board.
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Appendix C: Jetson’s software 

C.1 Installation of Ubuntu 18.04 and ROS 2 

Jetson TX2 is a platform that has already an ubuntu 16.04 installed by default. 

But, in order to install the last version (Crystal) of ROS 2 until the date of this thesis, it 

is needed to install Ubuntu 18.04. For this, the designer should download the Nvidia 

SDK manager and run it. 

Official updated information on how to download and use the Nvidia SDK 

manager can be found in the following site https://docs.nvidia.com/sdk-

manager/index.html and a video about how to install Ubuntu 18.04 is at the following 

link https://www.youtube.com/watch?time_continue=134&v=s1QDsa6SzuQ. 

Besides, in order to install ROS 2, do the step by step of 

https://index.ros.org/doc/ros2/Installation/Crystal/Linux-Install-Binary/ in the Jetson 

TX2 after Ubuntu 18.04 be installed. 

Lastly, create the workspace of ROS 2 in order to design new ROS packages. 

The step by step is in https://index.ros.org/doc/ros2/Tutorials/Colcon-Tutorial/ 

We make for these work a workspace named ros2_example_ws, but any name 

can be chosen. After it is well created the workspace will appear as the Figure 51. 
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Figure 51: ROS workspace organization 

 

Source: The Author 

C.2 Project Setup 

Clone the source code of the project in the github’s repository 

https://github.com/Guiraffo/provant-software. The result will be as the Figure 52. 
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Figure 52: src folder content 

 

Source: The Author 
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Figure 53: controller folder content 

 

Source: The Author 

 

The src folder is where cpp files can be found. They are the implementation of 

the structure of control that are shown in Figure 54. Frame.cpp consists the structure 

of the unit of data that is sent each time by the communication between LHL and HLH. 

protocol.cpp consists on the implementation of the communication protocol. serial.cpp 

consists on the abstraction of the drivers command by the protocol.cpp. Lastly, 

member_function.cpp is the implementation of the controller. 

The include folder is where the headers files can be found. They are shown in 

Figure 55. They are the interface of the implementation that was described before. One 

important header file is the LQ4.hpp and it has an example control law. For each control 

law designed, another header that must be included in the project. 
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Figure 54: controller’s src folder content 

 

Source: The Author 

 

Figure 55: controller’s include folder content 

 

Source: The Author 
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C.3 Including new control law 

 

As it was already said, for each control law a library must be included in the 

project. This header file consists in a class similar the one implemented in ProVANT 

Simulator. However, some configuration must be done in order to use this new control 

law. For more details of the ProVANT Simulator, read its user manual14. 

First of all, it must be included in the member_function.cpp the new control law 

as it is shown in Figure 56. 

 

Figure 56: Headers of memeber_function.cpp 

  

Source: The Author 

 

Next, it must be changed the parameters of the execution method created to 

run in the ProVANT Simulator, as illustrated in Figure 57. 

 

Figure 57: Declaration of execute() method 

 

Source: The Author 

 

Lastly, change the type of instance and the number and configuration of its 

parameters 

 
14 https://github.com/Guiraffo/ProVANT-Simulator/blob/master/doc/Manual.pdf 
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in the member_function.cpp, according with the data sent by the LHL according 

to shown in Figure 58. 

 

Figure 58: Content of the code implemented in the execute method 

 

Source: The Author 
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C.4 Compilation and running 

 

For computation of the project, execute in the terminal the following command 

wih the terminal in the workspace folder: 

colcon build 

For running the controller, execute the following commands: 

sudo su 

echo 1 > /sys/devices/system/cpu/cpu1/online 

echo 1 > /sys/devices/system/cpu/cpu2/online 

cd /usr/bin/ 

jetson_clocks 

exit 

setserial /dev/ttyTHS2 low_latency 

ros2 run controller timer_member_function
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Appendix D: Detailed electronic design 

This appendix describe some details about the hardware architecture. First, it 

gives a table with all suggested hardware specifications. Next, it defines how the 

hardware will be connected in low level designed according to peripherals of LLH and 

HLH. Lastly, as there are two LLH in this architecture, it is discussed how to use 

Multiple master/client configuration on serial bus described before. 

D.1 Hardware specification 

Table 4: Hardware specification 

 

Source: The Author 
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D.2 Connection between hardwares 

Table 5: Connection between hardwares 

 

Source: The Author 

 

D.3 Multiple master/client configuration on a serial bus 

UART, SPI and I2C are protocols that by default must have only one component 

that asks for services for the rest of components. Particularly, UART is a protocol of 

communication that allows communication of only two components. However, I2C and 

SPI have one component that can communicated with several others. 

Nonetheless, the proposed solution demands two components for asking 

services instead of only one. As consequence of this demand, some different 

configurations should be done during the development of this work. Usually, the pins 
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that write data are configured in low impedance and the pins that reads data are 

configured in high impedance, but we should avoid the connection of two pins in low 

impedance on the same bus. To solve this problem, we configure the main board as 

required by default and made a different configuration for the backup board, making all 

pins that can write data in high impedance. This configuration is exemplified in Figure 

59, that present an example for UART and is located in the file named 

“stm32f7xx_hal_msp.c” inside the “src” folder. 

Thus, after the detection of main LLH failure, the backup LLH resets the main 

board and change the configuration of the write data pins for low impedance as 

performed by default. This change of configuration is made in “main.cpp” file inside the 

“controller” thread. 

Figure 59: Example of peripheral pin as high impedance mode 

 

Source: The Author 

 

From now on, the connection between instrumentation and LLHs is done by 

default. It is shown in FiguresFigure 60,  Figure 61 and Figure 62. 
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Figure 60: UART’s connection 

 

Source: The Author 
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Figure 61: Source: The Author 

 

Source: The Author 
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Figure 62: I2C’s connection. 

 

Source: The Author 
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D.4 Schematic of the prototype built in this work 

Figure 63: Schematic of the prototype. 

 
Source: The Author 

 

 


