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Convolutional neural networks 
in the qualitative improvement 
of sweet potato roots
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The objective was to verify whether convolutional neural networks can help sweet potato phenotyping 
for qualitative traits. We evaluated 16 families of sweet potato half-sibs in a randomized block design 
with four replications. We obtained the images at the plant level and used the ExpImage package 
of the R software to reduce the resolution and individualize one root per image. We grouped them 
according to their classifications regarding shape, peel color, and damage caused by insects. 600 roots 
of each class were destined for training the networks, while the rest was used to verify the quality of 
the fit. We used the python language on the Google Colab platform and the Keras library, considering 
the VGG-16, Inception-v3, ResNet-50, InceptionResNetV2, and EfficientNetB3 architectures. The 
InceptionResNetV2 architecture stood out with high accuracy in classifying individuals according to 
shape, insect damage, and peel color. Image analysis associated with deep learning may help develop 
applications used by rural producers and improve sweet potatoes, reducing subjectivity, labor, time, 
and financial resources in phenotyping.

Sweet potato (Ipomoea batatas (L.) LAM) is among the most consumed vegetables in Brazil because it is a rich 
source of carbohydrates, fiber, vitamins, minerals, and antioxidants and because of its low glycemic content1. In 
addition to multiple uses such as bioethanol production2, sweet potato is a vegetable that plays a relevant role in 
supplying raw materials for human and animal food3,4.

The main challenge for commercializing this vegetable is associated with its market value since it is strongly 
dependent on the qualitative characteristics of the roots, such as the shape5. Hence, consumers prefer products 
that have adequate commercial standards and good appearance. Thus, although deformed products have the same 
nutritional value as commercial roots, they are often discarded by consumers5, becoming a source of food waste.

It is necessary to invest in information and new technologies associated with the genetic improvement of 
vegetables for commercial purposes to increase products’ productivity and quality and minimize the losses of 
the rural producer1. However, in selecting the best genotypes, it is necessary to evaluate many quantitative and 
qualitative characteristics, which is an expensive and subjective process making the analysis difficult for the 
breeder6. In this sense, the adoption of new technologies associated with the phenotyping process represents an 
advance, and among the possibilities, we have image analysis connected to computational intelligence.

Using strategies that allow the acquisition and analysis of data from agricultural environments can help 
optimize current practices, promoting increased productivity, better quality control processes, and flexibility in 
agricultural management7. Moreover, these new technologies aimed to improve the accuracy and speed of phe-
notypic measurements have been the subject of intense research in recent years8, such as in the development of 
phenotyping platforms9, automated high-efficiency phenotyping systems10, and characterization of phenotypes 
in sweet potato using images5. We may use convolutional neural networks (CNNs) to automate the interpreta-
tion of these images.

Convolutional neural networks (CNNs) have become popular for object detection because they can classify 
objects and extract image descriptors11. Furthermore, they can achieve high performances for different clas-
sification and detection problems, achieving faster inference time and higher detection rates than traditional 
computer vision methods12. Thus, the association of images to convolutional neural networks has already been 
used for the automatic quantification of ears of wheat in the field13 and for the classification of the milling frac-
tion of lentils and peas14.
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In genetic improvement, the convolutional neural network has already been approached to predict phenotypes 
from genotypes15.Thus, using images associated with deep learning neural networks can be an alternative for 
efficiently classifying roots into commercial and non-commercial. Hence, the objective was to verify if convolu-
tional neural networks can help phenotyping sweet potatoes for qualitative traits.

Material and methods
Declaration research involving plants.  All methods were performed in accordance with relevant guide-
lines and regulations. The methodology used does not involve the use of human tests. The methodology was 
tested on images of sweet potato roots obtained by the authors themselves. Sweet potato is an easily propagated 
species and is not on the endangered species list.

Installation and evaluation of the experiment.  We carried out the experiment at UFMG Agrarian Sci-
ences Institute—Montes Claros-MG Campus (ICA/UFMG) (coordinates: 16°40′58.16″ S and 43°50′20.15″ W) 
where 16 sweet potato families were evaluated in haplic cambisol under irrigation conditions [BELGARD (F2), 
CAMBRAIA (F4), LICURI (F5), UFVJM40 (F6), UFVJM01 (F7), ARRUBA (F8), UFVJM05 (F10), UFVJM15 
(F13), UFVJM56 (F16), UFVJM31 (F20), UFVJM37 (F22), UFVJM54 (F24), UFVJM25 (F26), UFVJM29 (F27), 
TCARRO02 (F29), UFVJM09 (F25)].

We obtained the sweet potato half-sibs by collecting seeds from the germplasm bank comprised of elite acces-
sions brought from the Federal University of the Jequitinhonha and Mucuri Valleys(UFVJM) and cultivated at 
ICA/UFMG. The seeds were collected daily between April and October 2018 and stored in a refrigerator at 4 °C. 
Subsequently, the seeds were subjected to mechanical scarification with sandpaper to break dormancy (tegumen-
tary impermeability) and planted in 72-cell polystyrene trays with a commercial substrate. The trays were kept 
in a greenhouse and irrigated daily for two months when the seedlings were ready to be planted.

Planting was carried out in rows in a randomized blocks design (RBD) with 16 families (different progenies) 
and four replications, with rows spaced 1 m apart and spacing between plants of 0.4 m. Once we made the 
evaluations at the plant level, we used a larger spacing to facilitate identifying each plant and facilitate the har-
vest. We carried out fertilization and cultural treatments as recommended for the crop in the New Horticulture 
Manual16. We used 180 kg ha−1 of phosphorus and 30 kg ha−1 of nitrogen. Thirty days after planting the seedlings, 
we applied top dressing with 30 kg ha−1 of nitrogen. Potassium fertilization was not necessary according to the 
chemical analysis of the soil.

At first, we applied sprinkler irrigation every day to keep the soil with good moisture content. After the critical 
period of crop establishment (2 months after transplanting), we used irrigation twice a week.

Manual harvesting was performed 165 days after planting, carrying out analyses at the plant level when we 
removed excess soil from the roots to obtain images. We analyzed the variables shape, skin color, and damage 
caused by insects. The evaluations were carried out according to the descriptors and scoring scales recommended 
by the International Board for Plant Genetic Resources (IBPGR), elaborated by Ref.17 (Table 1).

Concerning shape, we classified the roots as commercial and non-commercial, with those with a more fusi-
form shape being considered commercial. Regarding skin color, we divided the roots into light-colored (white, 
cream, yellow, and orange) and dark-colored (pink, red, purple-red, and dark purple). As for the damage caused 
by insects, we classified the roots according to the presence and absence of damage.

Image generation and processing.  We generated images in a “studio” made of MDF (Medium Density 
Fiberboard) with dimensions of 0.50 × 1.00 m at the bottom and 1.0 m high (Fig. 1). We used a Canon Pow-
erShotSX400 IS digital camera under artificial lighting with a fluorescent lamp. The camera was attached to a 
support to standardize image generation so that we could get all images from the same height (70 cm) and angle 
(90°). We placed the roots in front of a black background and spaced them apart without overlapping.

We used the ExpImage package of the R software to reduce the resolution and individualize one root per 
image (Fig. 2). We grouped these images according to their classifications regarding format (commercial and 
non-commercial), skin color (light and dark), and insect attack (damaged and undamaged).

We visually classified the images of sweet potato roots considering the variables of root skin color (light and 
dark), shape (commercial and non-commercial), and damage caused by insects (damaged and undamaged) 
(Table 2). We divided the original images for each variable into the ones destined for adjustment of recurrent 
correlation neural networks (RCNNs) and to evaluate goodness of fit (Test). Thus, we set 600 roots of each clas-
sification to train the networks, while the remainder was used to verify the goodness of the fit (Table 2).

We replicated each of the images with four different rotations (45°, 135°, 225°, and 315°) to expand the train-
ing dataset. Thus, for each classification, there were 3,000 images in training (600 + 4 × 600). We used the python 
language on the Google Colab platform for training the networks and the Keras library, considering the VGG-16, 

Table 1.   Score scale related to shape, predominant skin color, and damage caused by insects for half-sib 
progenies of sweet potato (Ipomoea batatas (L.) Lam). Source: Adapted from Ref.17.

Descriptor Scores

Shape 1- round; 2- round elliptic; 3- elliptic; 4- ovate; 5- obovate; 6- oblong; 7- long oblong; 8-long elliptic; 9- irregu-
lar (Adapted)

Predominant skin color 1- white; 2- cream; 3- yellow; 4- orange; 5- brownish orange 6- pink; 7- red; 8- purple-red; 9- dark purple

Damage caused by insects 0- absent; 1- present
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Inception-v3, ResNet-50, InceptionResNetV2, and EfficientNetB3 architectures. We considered the maximum 
of 100 iterations and early stopping with a tolerance of 5 iterations.

We constructed confusion matrices to evaluate the adjustments of the convolutional networks, with the clas-
sifications predicted by the different network architectures as a function of the visual classifications. We used the 
metrics Recall (Eq. (1)), Accuracy (Eq. (2)), Precision (Eq. (3)), F-Measure (Eq. (4)), and Specificity (Eq. (5)) 
to assess the network efficiency18. Where: TP refers to true positives, FN to false negatives, FP to false positives, 
and TN to true negatives.

Figure 1.   Image generation: (A) “Studio” for image generation; (B) Artificial lighting with a fluorescent lamp; 
(C) Image generated in the studio.  Source: Authors (2022).

Figure 2.   Steps for individualizing one root per image in the phenotyping of sweet potato roots by 
computational image analysis.  Source: Authors (2022).
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Results
For each architecture, it was possible to observe different epochs required for training (Table 3). For shape, 
damage caused by insects, and skin color, the architectures Inception-v3 and InceptionResNetV2 presented the 
lowest classification times and the lowest number of epochs (Table 3). However, for all analyzed variables, there 
was a higher rate of true positive (TP) ratings for the InceptionResNetV2 architecture. On the other hand, the 
EfficientNetB3 architecture was the one that presented the lowest efficiency for detecting shape and damage 

(1)Recall =
TP

TP + FN

(2)Accuracy =
TP + TN

TP + TN + FP + TN

(3)Precision =
TP

TP + FP

(4)F −measure =
2 ∗ Precision ∗ Recall

Precision+ Recall

(5)Specificity =
TN

FP + TN

Table 2.   Number of images of sweet potato roots used for phenotyping color, shape, and insect damage 
(originals) and the number of images destined for the adjustment of RCNNs (Trainig) and evaluation of the 
goodness of fit (Test). Source: Authors (2022).

Classes Originals Training Test

Color

 Light 1160 600 560

 Dark 1198 600 598

Shape

 Commercial 1244 600 644

 Non-commercial 744 600 144

Insect attack

 Damaged 744 600 144

 Undamaged 1614 600 1014

Table 3.   Number of epochs, training time, and classifications performed by different architectures of RCNNs 
for sweet potato roots regarding shape, damage caused by insects, and skin color. UFMG (2022). TP true 
positives, FN false negatives, FP false positives, TN true negatives. Source: Authors (2022).

Var Architecture Epochs Time TP FN FP TN

Shape

VGG-16 70 0:29:58.5 517 127 132 382

Inception-v3 25 0:12:00.3 543 101 158 356

ResNet-50 76 0:31:48.1 526 118 160 354

InceptionResNetV2 17 0:17:59.3 630 14 20 494

EfficientNetB3 100 1:05:30.8 567 77 138 376

Damage caused by insects

VGG-16 95 0:36:46.8 97 46 299 715

Inception-v3 18 0:07:47.7 111 32 99 915

ResNet-50 24 0:28:16.3 73 70 251 763

InceptionResNetV2 11 0:06:27.7 140 3 38 976

EfficientNetB3 100 0:45:22.6 87 56 262 752

Skin color

VGG-16 80 0:34:56.5 464 96 70 528

Inception-v3 31 0:15:07.8 455 105 184 414

ResNet-50 98 1:20:17.9 481 79 98 500

InceptionResNetV2 32 0:34:53.3 540 20 2 596

EfficientNetB3 98 1:06:43.3 505 55 54 544
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caused by insects in the sweet potato roots, demanding a higher number of epochs and, consequently, a longer 
time for classification (Table 3). While for skin color, the ResNet-50 architecture showed lower efficiency.

The efficacy of the convolutional neural network architectures in classifying the sweet potato roots according 
to the shape considered ideal, the damage caused by insects, and the root skin color, was evaluated using scores 
of precision, recall, F-measure (F1), accuracy, and specificity (Table 4). The InceptionResNetV2 architecture was 
the one that obtained the best precision, accuracy, and specificity for all analyzed variables. This architecture 
enabled accuracy close to 78.7% to classify damage caused by insects. This metric was superior to the accuracy 
obtained by other architectures for the same variable. Concerning the other architectures, all evaluation metrics 
were below 91% for the three analyzed variables.

In Fig. 3, to visualize the classification of roots randomly selected from the test samples by Inception-
ResNetV2, it was possible to note the accuracy of the network in classifying commercial individuals in terms of 
shape, damage caused by insects, and skin color. Inadequate individuals (red boxes) are those with an irregular 
shape, damaged by insects, and dark in color.

Thus, for the studied population, classification and, consequently, phenotyping of sweet potato roots in 
terms of shape, damage caused by insects, and skin color, can be performed efficiently and in a shorter response 
time with the architecture InceptionResNetV2. However, it is worth mentioning that only two classes (adequate 
and inadequate) are relevant for the initial phase of genetic improvement. We must detail these classes in later 
improvement steps.

Discussion
Convolutional neural networks (CNNs) are a trend in image information processing due to their adaptability and 
efficiency in object detection7. The learning process of networks occurs through an iterative process of adjust-
ments applied to the synaptic weights (training) when the neural network reaches a generalized solution for a 
given problem19. However, the greater the number of iterations used in training, the greater the memorization 
of data by the networks tends to be, resulting in the non-general character of the system (overfitting). Thus, 
the fitting process, the heavy computational load, the high tendency of overfitting and the empirical nature of 
model establishment are the main limitations associated with deep CNNs20. Thus, defining an optimal number 
of iterations for the analyzed datasets is essential. That can be done by using a strategy called early stopping. 
For each type of architecture and for each variable used, it was possible to observe different epochs, where the 
Inception-v3 and InceptionResNetV2 architectures presented the lowest number of epochs and, consequently, 
the lowest classification times (Table 3). That indicates the reliability and efficiency of the method, in addition 
to saving time in obtaining results21. On the other hand, the EfficientNetB3 and ResNet-50 architectures were 
the ones that presented the lowest efficiency in the classification of the studied dataset and also had the highest 
number of epochs and the longest time to obtain the results.

Selecting the architecture that enables analysis more efficiently allows us to qualify features in large datasets 
with little labor force. That can help breeders evaluate the interaction genotype x environment more effectively, 
leading to the identification of potential new cultivars in a shorter period of time5. Thus, the higher the true 
positive rate identified by each architecture for the variables root shape, damage caused by insects, and skin 
color, the greater the precision and, consequently, the recall, accuracy, and F-Meansure. That is corroborated 
in the present study by the InceptionResNetV2 architecture since we obtained better precision, accuracy, and 
specificity for all analyzed variables, with the precision for this network higher than 91% for the variable shape 
and skin color and greater than 78% for damage caused by insects (Table 4). By using sweet potato images to 
train a neural network classifier for sweet potato root shape, Ref.5 obtained lower precision than those in the 

Table 4.   Evaluators of the goodness of fit for RCNNS with different architectures in classifying sweet potato 
roots according to shape, damage caused by insects, and skin color. UFMG (2022). Source: Authors (2022).

Var Architecture Precision Recall F1 Accuracy Specificity

Shape

VGG-16 0.797 0.803 0.800 0.776 0.743

Inception-v3 0.775 0.843 0.807 0.776 0.693

ResNet-50 0.767 0.817 0.791 0.760 0.689

InceptionResNetV2 0.969 0.978 0.974 0.971 0.961

EfficientNetB3 0.804 0.880 0.841 0.814 0.732

Damage by insects

VGG-16 0.245 0.678 0.360 0.702 0.705

Inception-v3 0.529 0.776 0.629 0.887 0.902

ResNet-50 0.225 0.510 0.313 0.723 0.752

InceptionResNetV2 0.787 0.979 0.872 0.965 0.963

EfficientNetB3 0.249 0.608 0.354 0.725 0.742

Skin color

VGG-16 0.869 0.829 0.848 0.857 0.883

Inception-v3 0.712 0.813 0.759 0.750 0.692

ResNet-50 0.831 0.859 0.845 0.847 0.836

InceptionResNetV2 0.996 0.964 0.980 0.981 0.997

EfficientNetB3 0.903 0.902 0.903 0.906 0.910
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present study. This difference in accuracy may be associated with the classes used by each researcher to consider 
an ideally-shaped root. This high accuracy of the architectures used in root classification can further improve 
the decision-making process in agricultural practices7.

The different responses obtained by the tested architectures are directly associated with the construction of 
CNN’s, and may vary according to size, precision, number of parameters, depth and time per inference22. In this 
case, the InceptionResNetV2 architecture benefits from the other tested architectures due to the integration of 
two well-known deep convnets, Inception and ResNet, which contribute positively to the more accurate result 
in this study. This also suggests that features extracted from different convnets are complementary and improve 
the model classification efficiency23. The results showed that deeper networks (e.g. InceptionResNetV2) are more 
efficient in separating the input space into more detailed regions, due to its deeper architecture, which contributes 
to a better detection of the studied classes.

We saw in Fig. 3 the efficacy of classifying sweet potato roots by computational analysis using the Incep-
tionResNetV2 architecture. For this purpose, bounding boxes were applied, which allowed a demonstration of 
data categorization. Through this approach, the neural network can classify sweet potato roots for each ana-
lyzed characteristic. The high efficiency obtained by the developed system can also be justified by the absence 
of overlapping objects, allowing greater accuracy in identification24. In addition, another factor that may have 
influenced the metrics is the sharpness of root coloring since defective areas may have a different color pattern 
from the rest of the root, improving classification accuracy and providing new information about root quality5. 
Thus, the easier the distinction of the image RGB matrix in terms of its objects and parts, the greater the chance 
of success in detecting the evaluated classes25.

We can infer from the results that the developed system efficiently classifies sweet potato roots, making 
the interpretation process faster, more accurate, and less subjective. That is one of the main differentials of the 
technique developed since most of the research investigating size and shape characteristics of horticultural 
crops is carried out on a laboratory scale, not adapted to large-scale production26,27. Therefore, the developed 
system has great potential to be adapted and used to collect and analyze data by small-scale producers and on 

Figure 3.   Classification of randomly selected roots in the samples from test images by RCNN 
InceptionResNetV2 for classifying sweet potato roots in terms of shape, damage caused by insects, and skin 
color. UFMG (2022).  Source: Authors (2022).
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large commercial scales. That helps not only in the phenotyping process of the crop but also in separating roots 
considered commercial or not. For genetic improvement, the quantification of roots belonging to each class may 
be used as a selection criterion, either individually or simultaneously, adding relevant information for better 
genetic progress of the crop.

Thus, this approach makes it possible to quantify the loss due to shape deformation and damage caused by 
insects. However, a prime challenge in implementing this method is the computational power required to process 
hundreds of thousands of roots, which requires expensive computers. One way to mitigate this challenge is to use 
cloud servers5. In addition, the developed methodology opens the way to investigate other horticultural crops, 
indicating the possibility of developing treadmill equipment with cameras for high-scale phenotyping, either 
for commercial purposes or for genetic improvement.

Conclusions
The InceptionResNetV2 architecture performed better in classifying individuals according to shape, damage 
caused by insects, and skin color, obtaining high estimates for the parameters used to assess the goodness of fit.

Image analysis associated with deep learning may improve the quality of sweet potato roots, reducing analysis 
subjectivity and the time of phenotyping the culture.

We believe that the efficiency of the methodologies used can provide valuable information and tools to 
researchers, substantially contributing to the future development of applications and devices for the classification 
of sweet potato roots, in order to help rural producers, traders and breeders. However, studies must be deepened 
in order to incorporate libraries or cloud servers for root classification.

Data availability
The data that support the findings of this study will be made available by the authors upon prior request. Data 
can be requested from the authors Ana Clara Gonçalves Fernandes (anaclaragoncalvesfernandes@gmail.com) 
and Alcinei Mistico Azevedo (alcineimistico@hotmail.com).
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