
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-graduação em Matemática

José Gustavo Coelho

Diophantine equations over finite fields
and applications

Belo Horizonte
2024

JOSÉ GUSTAVO COELHO

Diophantine equations over finite fields
and applications

Tese de doutorado apresentada como parte dos requisitos
para obtenção do título de Doutor pelo Departamento
de Matemática do Instituto de Ciências Exatas da
Universidade Federal de Minas Gerais.

Orientador : Fabio Enrique Brochero Martínez

BELO HORIZONTE

AGOSTO DE 2024

2024, José Gustavo Coelho.
Todos os direitos reservados

 Coelho, José Gustavo.

C672d Diophantine equations over finite Fields and applications
 [recurso eletrônico] / José Gustavo Coelho. – 2024
 1 recurso online (74 f. il.) : pdf.

 Orientador: Fabio Enrique Brochero Martínez.

 Tese (doutorado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de
 Matemática.
 Referências: f. 63-65.

 1. Matemática - Teses. 2. Corpos finitos (Álgebra) - Teses.
 3. Equações diofantinas – Teses. I. Brochero Martínez, Fabio
 Enrique. III. Universidade Federal de Minas Gerais, Instituto
 de Ciências Exatas, Departamento de Matemática. IV. Título.

CDU 51(043)

Ficha catalográfica elaborada pela bibliotecária Irénquer Vismeg Lucas Cruz
CRB 6/819 - Universidade Federal de Minas Gerais - ICEx

UNIVERSIDADE FEDERAL DE MINAS GERAIS

DEPARTAMENTO DE MATEMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

FOLHA DE APROVAÇÃO

Diophantine equations over finite fields and applications

JOSÉ GUSTAVO COELHO

Tese defendida e aprovada pela banca examinadora constituída por:

Prof. Fabio Enrique Brochero Martínez
Orientador - UFMG

Prof. Alonso Sepúlveda Castellanos
UFU

Prof. José Alves Oliveira
UFLA

Prof. Osnel Broche Cristo
UFLA

Prof. Victor Gonzalo Lopez Neumann
UFU

Belo Horizonte, 02 de agosto de 2024.

Documento assinado eletronicamente por Fabio Enrique Brochero Mar�nez, Professor do
Magistério Superior, em 20/08/2024, às 12:27, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

SEI/UFMG - 3472724 - Folha de Aprovação https://sei.ufmg.br/sei/controlador.php?acao=documen...

1 of 2 20/08/2024, 18:56

Documento assinado eletronicamente por Alonso Sepúlveda Castellanos, Usuário Externo, em
20/08/2024, às 16:41, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto
nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por José Alves Oliveira, Usuário Externo, em 20/08/2024,
às 17:34, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543,
de 13 de novembro de 2020.

Documento assinado eletronicamente por Osnel Broche Cristo, Usuário Externo, em 20/08/2024,
às 18:08, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543,
de 13 de novembro de 2020.

Documento assinado eletronicamente por Victor Gonzalo Lopez Neumann, Usuário Externo, em
20/08/2024, às 18:13, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto
nº 10.543, de 13 de novembro de 2020.

A auten�cidade deste documento pode ser conferida no site h�ps://sei.ufmg.br/sei/
controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0, informando o
código verificador 3472724 e o código CRC 2F3700EA.

Referência: Processo nº 23072.246274/2024-81 SEI nº 3472724

SEI/UFMG - 3472724 - Folha de Aprovação https://sei.ufmg.br/sei/controlador.php?acao=documen...

2 of 2 20/08/2024, 18:56

Resumo

A primeira parte desta tese foca-se em contar o número de soluções de equações diofanti-

nas sobre corpos finitos para famílias que estão intimamente relacionadas com equações

diagonais, apresentando resultados significativos nesta área. A segunda parte da tese

está centrada na contagem de palavras-código de baixo peso em códigos cíclicos, apresen-

tando alguns resultados novos. O capítulo introdutório estabelece as bases, introduzindo

conceitos fundamentais que servem de fundamento para os capítulos subsequentes.

O Capítulo 2 estuda polinômios completamente triangulares, caracterizados por

expressões da forma

f (x1, . . . , xn)= a1xd1,1
1 +a2xd1,2

1 xd2,2
2 +·· ·+anxd1,n

1 · · ·xdn,n
n −b,

onde ai ∈ F∗q e b ∈ Fq, com di, j > 0 para todo 1 ≤ i ≤ j ≤ n. Para esses polinômios, são

derivadas fórmulas explícitas para a contagem do número de soluções sob condições

aritméticas que os relacionam com polinômios diagonais de graus 1 e 2.

O Capítulo 3 desloca o foco para polinômios completos, definidos como

f (x1, . . . , xn)= a1xd1,1
1 · · ·xd1,n

n +·· ·+asxds,1
1 · · ·xds,n

n −b,

onde ai ∈ F∗q e b ∈ Fq, com di, j > 0 para 1< i, j < n. Este capítulo investiga a contagem de

soluções para esses polinômios quando eles estão relacionados a polinômios diagonais da

forma

g(x1, . . . , xs)= a1xd
1 +·· ·+asxd

s −b,

onde n ≥ s, e os expoentes e coeficientes estão sujeitos a certas condições aritméticas.

Finalmente, no Capítulo 4, apresentamos vários resultados sobre palavras-código

de peso 2 e 3 em códigos cíclicos, junto com um teorema que relaciona a contagem de

soluções de sistemas de equações diagonais sobre corpos finitos com característica 2 à

distribuição de peso dos códigos cíclicos binários correspondentes.

O Capítulo 2 baseia-se no conteúdo do nosso artigo publicado [1], enquanto os capítu-

los 3 e 4 apresentam o conteúdo dos artigos [2, 3] que ainda não foram publicados. No

anexo, apresentamos comandos do SageMath usados para criar e verificar os exemplos

que são discutidos ao longo da tese.

Palavras-chave: corpos finitos; equações diofantinas; equações sobre corpos finitos; códi-

gos cíclicos; distribuição de pesos; palavras de peso baixo

Abstract

The first part of this thesis focuses on counting the number of solutions to Diophantine

equations over finite fields for families that are closely related to diagonal equations,

presenting significant results in this area. The second part of the thesis is centered

on counting low-weight codewords in cyclic codes, presenting some novel results. The

introductory chapter lays the groundwork by introducing fundamental concepts that

serve as the basis for the subsequent chapters.

Chapter 2 studies fully triangular polynomials, characterized by expressions of the

form

f (x1, . . . , xn)= a1xd1,1
1 +a2xd1,2

1 xd2,2
2 +·· ·+anxd1,n

1 · · ·xdn,n
n −b,

where ai ∈ F∗q and b ∈ Fq, with di, j > 0 for all 1≤ i ≤ j ≤ n. For these polynomials, explicit

formulas for counting the number of solutions are derived under arithmetic conditions

that relate them to diagonal polynomials of degrees 1 and 2.

Chapter 3 shifts the focus to full polynomials, defined as

f (x1, . . . , xn)= a1xd1,1
1 · · ·xd1,n

n +·· ·+asxds,1
1 · · ·xds,n

n −b,

where ai ∈ F∗q and b ∈ Fq, with di, j > 0 for 1 < i, j < n. This chapter investigates the

solution count for these polynomials when they are related to diagonal polynomials of

the form

g(x1, . . . , xs)= a1xd
1 +·· ·+asxd

s −b,

where n ≥ s, and the exponents and coefficients are subject to certain arithmetic condi-

tions.

Lastly, in Chapter 4 we produce many results concerning weight 2 and 3 codewords in

cyclic codes, along with a theorem linking the solution count of systems of diagonal equa-

tions over finite fields with characteristic 2 to the weight distribution of corresponding

binary cyclic codes.

Chapter 2 is based on the contents of our published paper [1], while chapters 3 and

4 present the contents of articles [2, 3] that are yet to be published. In the annex, we

present SageMath commands used to create and verify the examples that are discussed

throughout the thesis.

Keywords: finite fields; diophantine equations; equations over finite fields; cyclic codes;

weight distribution; low-weight codewords.

SUMMARY

Page

1 Introduction 8
1.1 Characters . 10

1.2 Gaussian sums . 13

1.3 Linear and quadratic polynomials . 17

1.4 Linear codes . 18

1.5 Cyclic codes . 19

1.6 Parity check matrices . 20

2 Triangular Polynomials 22
2.1 Triangular polynomials . 23

2.2 Roots with non-zero coordinates for diagonal polynomials 27

2.3 Main results . 30

3 Full polynomials 35
3.1 Diagonal polynomials and pure sums . 35

3.2 Main results . 41

4 Low weight codewords 43
4.1 General results . 43

4.2 Codewords with weight 3 . 45

4.3 Low weight codewords in binary cyclic codes 50

4.4 An application . 54

Bibliography 63

Annex 65

C
H

A
P

T
E

R

1
INTRODUCTION

"E agora, José?"
— Carlos Drummond de Andrade

Finding the number of solutions of equations over a fixed finite field is an ongoing

question, which has seen considerable study. That is essentially the study of diophantine

equations over finite fields, but this change from defining it over the integers to over finite

fields made necessary the use of resourceful and distinct number theoretic methods.

Let Fq be a finite field with q = pm elements, where p is a prime and m a positive

integer. Good results were obtained in the study of diagonal equations over a fixed finite

field, i.e., equations of the form

a1xd1
1 +a2xd2

2 +·· ·+asxds
s = b,

where ai ∈ F∗q, di ∈Z>0 for all 1≤ i ≤ s and b ∈ Fq. In particular, the case where di = 1 for

all 1≤ i ≤ s is trivial, and the case where di ∈ {1, 2} for all 1≤ i ≤ s has been determined

(see Chapter 10 of [12]). Other authors have studied the number of solutions of diagonal

equations when the monomials produce pure Gauss sums [19], which is an arithmetic

condition for which a character-based approach is straightforward. Some cases of this

property being used to count the solutions of diagonal polynomials can be seen in [18].

Other authors have studied the number of solutions of specific equations that are

related to diagonal equations. For instance, Carlitz [9] and Baoulina [8] studied equations

9

of the form

(1.1) a1xd1
1 +a2xd2

2 +·· ·+asxds
s = bx1 · · ·xs,

where d j ∈Z>0, a j ∈ F∗q for all 1≤ j ≤ n and b ∈ F∗q. Another studied family of equations

are the Markoff-Hurwitz’s equations, i.e, those of the form

(1.2) xm1
1 + xm2

2 +·· ·+ xmn
n = bxt1

1 xt2
2 . . . xtn

n .

where m j, t j > 0 for all j = 1, . . . ,n and b ∈ F∗q. The equation in the case m1 = m2 = ·· · = mn

and t1 = ·· · = tn = 1 defines a hypersurface known as Calabi-Yau’s hypersurface which

has been intensively studied by some authors (see [10, 11]). Other results about the

number of solutions for the general equation (1.2) can be found in the literature; for

instance, the number of solutions over Fq was calculated by Carlitz in the case where

gcd(m
∑n

i=1 ti/mi −m, q−1)= 1 and m = m1m2 · · ·mn. The case when gcd(m
∑n

i=1 ti/mi −
m, q−1) > 1 was considered by Cao, Jiang and Gao [4, 6] assuming some arithmetic

conditions.

These cases are mostly sparse, as most of the terms have only one variable. In the

other extreme are the full equations that have every variable in every term, except

possibly for a constant term. Cao, Wen, and Wang [7] have determined the number of

solutions for full equations of the form

a1xd1,1
1 · · ·xd1,n

n +·· ·+asxds,1
1 · · ·xds,n

n = 0,

where di, j > 0, i.e., all exponents are positive, assuming that the matrix (di, j)i, j is row-

equivalent to a diagonal matrix D, when the elements in the diagonal of D are only 1’s

and 2’s.

The first part of this thesis refers to two works of the author: the first one referring

to the paper where the number of roots of polynomials of the form

f (x1, . . . , xn)= a1xd1,1
1 +a2xd2,1

1 xd2,2
2 +·· ·+ xdn,1

1 · · ·xdn,n
n ,

when the polynomials are related to linear or quadratic diagonal polynomials [1]. The

second work on this line of research is about determining the number of solutions of

equations of the form

a1xd1,1
1 · · ·xd1,n

n +·· ·+asxds,1
1 · · ·xds,n

n −b, ai ∈ F∗q, b ∈ Fq,

where all exponents are positive, and the matrix (di, j)i, j is row-equivalent to a sparse

matrix and the exponents satisfy an arithmetic condition [2].

10

The second part of this text refers to the work of the author on how to determine

low-weight cyclic codewords and the proof of a recursive relation between the weight

distribution of binary cyclic codes and the number of solutions of related systems of

equations [3].

1.1 Characters

Let (G,∗) be an abelian group. A character of G is an homomorphism from G to the

multiplicative group of complex numbers, that is, a mapping η : G → C∗ such that

η(g1 ∗ g2) = η(g1)η(g2) for all g1, g2 ∈ G. For any character η we define its conjugate

character as η̄(x)= η(x), where the bar denotes complex conjugation.

Along the text, let p be a prime number, q = pm a power of p, and consider the

finite field Fq. For any positive integer d we define ζd = exp
(2πI

d
)
, a fixed primitive d−th

complex root of unity, where I is the imaginary unit.

In a finite field we can consider either the additive group itself or the multiplicative

group F∗q. Characters over the additive group are called additive characters, and any

additive character ϕ satisfies

ϕ(g1 + g2)=ϕ(g1)ϕ(g2), for all g1, g2 ∈ Fq.

Let

Tr : Fq → Fp

x 7→ xp + xp2 +·· ·+ xpm−1
,

be the trace function from Fq to Fp. It is a classic result (see Theorem 5.7 in [15]) that all

additive characters of Fq can be written as

ψa(x) := ζaTr(x)
p ,

where a ∈ Fq. We remark that the trivial additive character ϕ0(x) is simply defined as

ϕ0(c)= 1 for all c ∈ Fq, and we will denote it as ψ0. The character ϕ1(x) is defined as the

canonical additive character of Fq, and we will denote it as ψ.

Now, let us consider the multiplicative group F∗q. Characters on this group are called

multiplicative characters. Since F∗q is a cyclic group, it has a primitive generator γ. The

multiplicative characters are defined as

(1.3) χ j(γk) := ζ jk
q−1,

11

with 0≤ j ≤ q−2.

It is a classic result that the group of multiplicative characters is cyclic with order

q−1. Any multiplicative character η can be extended to an homomorphism from Fq

to C while keeping the multiplicative property by defining η(0) = 0. So from now on,

we will implicitly define multiplicative characters as maps from Fq to C. The trivial

multiplicative character is

η1(c) :=
1, if c ̸= 0,

0, if c = 0.

The general definition for multiplicative characters in (1.3) won’t be used in the text,

as we find it more useful to fix multiplicative characters for each d | (q−1), since doing

so makes calculations clearer. First, let us introduce the discrete logarithm over a finite

field, which will be used from here on.

Definition 1.1. Let γ ∈ Fq be a primitive element. For c ∈ F∗q, we define the discrete
logarithm of c in relation to γ as

logγ(c) :=min{n ∈Z≥0 : γn = c},

i.e., the smallest non-negative integer n such that γn equals c.

We will denote logγ as log when there is no ambiguity. For each positive integer d that

divides q−1 we fix a primitive d-th complex root of unity ζd and define a multiplicative

character ηd : F∗q →C with order d as

ηd(x)= ζlog(x)
d .

This definition does not apply to d = 1, which we define as the trivial multiplicative

character η1 where η1(x) = 1 for all x ∈ F∗q. This will be the notation for multiplicative

characters we will use going forward. We will also denote by ω(x) the multiplicative

character

(1.4) ω(x)= ζlog(x)
q−1 ,

which is a generator for the group of multiplicative characters. The following lemma will

be useful.

Lemma 1.2. Let x ∈ Fq, then

d−1∑
j=0

η
j
d(x)=

d, if ηd(x)= 1,

0, otherwise.

12

Proof. If ηd(x)= 1, the expression is simply adding 1 to itself d times, which equals d.

If ηd(x) ̸= 1, it is a geometric sum that evaluates to 0. ■

Similarly, the following theorem about character sums is important:

Theorem 1.3. (Orthogonality relation.) If χ is a nontrivial character of a finite abelian
group (G,+), then ∑

g∈G
χ(g)= 0.

Proof. See Theorem 5.4 in [15]. ■

The orthogonality relation can be used with additive or multiplicative characters.

The following corollary explicitly enumerates the forms it can be stated.

Corollary 1.4. Let η and ϕ be respectively a multiplicative character and an additive
character over Fq. Then,

∑
c∈F∗q

η(c)=
0, if η ̸= η1,

q−1, if η= η1,

and ∑
c∈Fq

ϕ(c)=
0, if ϕ ̸=ψ0,

q, if ϕ=ψ0.

Proof. Follows directly from Theorem 1.3. ■

A consequence of this result is that we can use character sums to construct an

indicator function. It can be done with either additive characters or multiplicative

characters, but sums with additive characters have nicer properties and are the ones

used in general.

Corollary 1.5. Let ϕ be a nontrivial additive character over Fq. Then

1
q

∑
c∈Fq

ϕ(cx)=
1, if x = 0,

0, if x ̸= 0.

Proof. Follows directly from Corollary 1.4. ■

13

This type of sum can be used as an indicator function for expressions over Fq. For

instance, if f (x) is a function in Fq[x] then a ∈ Fq is a root of f (x) if and only if

1
q

∑
c∈Fq

ψ(c f (a))= 1.

Let Fq[x1, . . . , xn] be the polynomial ring over Fq with n variables. For each D =
(d1, . . . ,dn) ∈Zn

≥0 we will use the notation X D = xd1
1 · · ·xdn

n . For a polynomial f ∈ Fq[x1, . . . , xn]

of the form

(1.5) f (x1, . . . , xn)=
s∑

j=1
a j X D j ,

where D j = (d1 j, . . . ,dn j) ∈Zn
≥0 and a j ̸= 0 for all j = 1, . . . , s, we define N(f) as the number

of roots of f (x1, . . . , xn) over Fn
q and N∗(f) as the number of roots over (F∗q)n, i.e., roots

without any coordinate equal to zero.

Corollary 1.5 allows us to use character sums as indicator functions to count the

number of roots of a polynomial: let f be a polynomial of the form (1.5), the number of

solutions over (F∗q)n is

N∗(f)= ∑
x1,...,xn∈F∗q

1
q

∑
c∈Fq

ψ(c f (x1, . . . , xn))

= 1
q

∑
c∈Fq

∑
x1,...,xn∈F∗q

ψ(c f (x1, . . . , xn)).
(1.6)

1.2 Gaussian sums

Let η be a multiplicative character over F∗q. We define the Gauss sum of η as

(1.7) G(η)= ∑
c∈F∗q

ψ(c)η(c).

The following inversion lemma involving Gauss sums will be useful.

Lemma 1.6. For all a ∈ F∗q the Gauss sums satisfy the interpolation relation

ψ(a)=
q−2∑
v=0

G(ωv)
q−1

ω(a−1)v.

Proof. See [6, Pages 278-279]. ■

There are some multiplicative characters for which the Gauss sum is known. The

following definition will be useful.

14

Definition 1.7. Let q = pm be a prime power. An integer d ≥ 3 such that d | (q−1) is
(p, r)-admissible if r is the least positive integer satisfying d | (pr +1).

Lemma 1.8. Let d ≥ 3 be a (p, r)-admissible integer. Then,

G(η j
d)=

q1/2(−1) jh+h+1 if 2 | d and 2 ∤ (pr +1)/d,

q1/2(−1)h+1 if 2 ∤ d or 2 | (pr +1)/d.

where h = m/(2r).

Proof. See [19, Theorem 1]. ■

We will show how Gaussian sums are useful in order to calculate the number of

solutions of equations over finite fields. For each equation∑
i

ai X D i =∑
j

b j X D j ,

we define its corresponding polynomial f (X) ∈ Fq[x1, . . . , xn] as

f (X)=∑
i

ai X D i −∑
j

b j X D j .

This turns the problem of finding the number of solutions of an equation into a problem

of finding the number of roots of a polynomial. Hence we will exclusively use polynomial

notation going forward.

Let f be a polynomial of the form (1.5). We define its degree matrix as D f =
(DT

1 , · · · ,DT
s) and the augmented degree matrix of f as D̃ f = (D̃1

T , . . . , D̃T
s), where D̃ j =

(1,D j).

Let ω be a generator of the multiplicative characters group as seen in (1.4), i.e.,

F̂∗q = {ωk : k = 0,1, . . . , q−2}. The following result allows us to express N∗(f) in terms of

the augmented degree matrix and multiplicative characters:

Lemma 1.9. Let f be a polynomial of the form (1.5), then

N∗(f)= (q−1)n

q
+ (q−1)n+1−s

q

∑ s∏
j=1

G(ωv j)ω(a−1
j)v j ,

where the sum is taken over all vectors v = (v1, . . . ,vs) with 0 ≤ vi ≤ q−2 for i = 1, . . . , s
such that D̃ f vT ≡ 0 (mod q−1).

15

Proof. The proof can be seen in [4, Lemma 2.5], but we will repeat it here because this

result is very important. Since f is of the form (1.5), from (1.6) we have

qN∗(f)= ∑
x0∈Fq, x1,...,xn∈F∗q

ψ(a j X D̃ j)

= (q−1)n + ∑
x0,x1,...,xn∈F∗q

m∏
j=1

ψ(a j X D̃ j).

Using Lemma 1.6 to rewrite the additive character sum as a sum of Gauss sums we

obtain:

qN∗(f)= (q−1)n + ∑
x0,x1,...,xn∈F∗q

s∏
j=1

q−2∑
v j

G(ωv j)
q−1

ω(a−1
j)v jω(X−D̃ j)v j

= (q−1)n +
q−2∑
v1=0

· · ·
q−2∑
vs

(
s∏

j=1

G(ωv j)
q−1

ω(a−1
j)v j

)
· ∑

x0,x1,...,xn∈F∗q
ω(X−v1D̃1−···−vmD̃m).

The sum ∑
x0,x1,...,xn∈F∗q

ω(X−v1D̃1−···−vmD̃m)

can be rewritten as

(1.8)
∑

x0∈F∗q
ω(x−v1−···−vm

0)
∑

x1∈F∗q
ω(x−v1d1,1−···−vmdm,1

1) · · · ∑
xn∈F∗q

ω(x−v1d1,n−···−vmdm,n
n),

where di, j for 1≤ i ≤ m are the elements in the augmented degree matrix D̃ f . We notice

that if all exponents in (1.8) are multiples of q−1, then Corollary 1.4 implies that the

expression (1.8) will evaluate to (q−1)n+1. Likewise, if any of the exponents inside of the

sums is not divisible by q−1, then this entire expression vanishes. Thus,

qN∗(f)= (q−1)n + (q−1)n+1−m ∑ m∏
j=1

G(ωv j)ω(a−1
j)v j ,

where the sum is restricted only to the values of v1, . . . ,vm such that every exponent is a

multiple of q−1, i.e., v1D̃1 +·· ·+vmD̃m ≡ 0 (mod q−1).

■

To explain the utility of this result, we will introduce some important definitions.

16

Definition 1.10. Two polynomials f = ∑s
j=1 a j X D

j and g = ∑s
j=1 a j X

D′
j are said to be

∗-equivalent if they have the same coefficient vector (a1, . . . ,as) and the congruences
D̃ f vT ≡ 0 (mod q−1) and D̃gvT ≡ 0 (mod q−1) have the same set of solutions.

The reason why Lemma 1.9 is useful is that if f and g are ∗-equivalent polynomials,

then N∗(f)= N∗(g). That is, they have the same number of roots with all coordinates in

F∗q, which we will call ∗-roots. This is because each coefficient a j, 1≤ j ≤ m will be the

same and the sum in Lemma 1.9 will be over the same number of set of vectors, so the

expression is the same.

For the purpose of proving ∗-equivalence, it is easy to check if the coefficient vectors of

two polynomials are equal, but it is more difficult to check if two linear systems D̃ f vT = 0

and D̃gvT = 0 have the same set of solutions.

It can be verified that two matrices D and E with coefficients in Zq−1 such that

DvT ≡ 0 (mod q−1) and EvT ≡ 0 (mod q−1) have the same set of solutions if there is

an invertible matrix M over Zq−1 such that MD = E, and in this case, we say that D and

E are row-equivalent.

Hence, if two polynomials f and g have the same coefficient vector and there is an

invertible matrix M over Zq−1 such that MD̃ f = D̃g, then f and g are ∗-equivalent. This

is a sufficient condition. Row-equivalence between D and E over Zq−1 is not strictly

necessary for DvT ≡ 0 (mod q−1) and EvT ≡ 0 (mod q−1) to have the same solution set.

In particular, the elementary row operations can be represented by multiplying

invertible matrices, so if we can apply elementary operations on the matrix D̃ f to obtain

D̃g, then the linear systems have the same solutions. This is a sufficient criterion to

prove ∗-equivalency. In particular, the elementary row operations are

(i) swapping two rows;

(ii) adding a multiple of a row to another;

(iii) multiplying a row by an element in Z∗
q−1;

which can be represented by multiplying invertible matrices, so if we can apply these

operations in D̃ f to obtain D̃g, the congruence systems have the same solutions.

We remark that even though N∗(f)= N∗(g) for two ∗-equivalent polynomials f and

g, that does not mean they have the same set of ∗-roots. For instance, the polynomials

f (x, y) = x2 y3 + xy2 and g(x, y) = xy+ x3 y2 in F5[x, y] are ∗-equivalent, but it can be

verified that (2,2) is a root of f but not a root of g.

17

We also remark that two polynomials being ∗-equivalent does not mean that they

have the same number of roots in Fn
q. For instance, the polynomials f (x, y, z)= 11x13 +

5x21 y19 +12x2 y3z17 and g(x, y, z) = 11x+5y+12z are ∗-equivalent in F31[x, y, z], thus

N∗(f)= 870= N∗(g). However, it can be verified that N(f)= 1861 ̸= 961= N(g).

1.3 Linear and quadratic polynomials

Let us consider a linear polynomial over Fq given by

(1.9) g(x1, . . . , xn)= a1x1 +·· ·+anxn −b,

where a1, . . . ,an ∈ F∗q and b ∈ Fq.

Lemma 1.11. For a linear polynomial g of the form (1.9), the number of roots of g satisfies

(1.10) N(g)= qn−1,

and

(1.11) N∗(g)=


(q−1)n

q − (−1)n

q , if b ̸= 0,
(q−1)n

q − (−1)n

q + (−1)n, if b = 0.
.

Proof. For N(g), see [12, Theorem 10.0.2]. The proof is given for Fp, but the case over

Fq is similar. The value of N∗(g) is obtained using the inclusion–exclusion principle,

applying the value formula for N(g). ■

A quadratic diagonal polynomial is a diagonal polynomial where every term has

degree 2, except for a possible constant term.

(1.12) g(x1, . . . , xn)= a1x2
1 +·· ·+anx2

n −b,

where a1, . . . ,an ∈ F∗q and b ∈ Fq. The following result about quadratic forms is classic.

Theorem 1.12. Let Fq be a finite field, where q is odd, and g a polynomial as in (1.12).
The number of roots of g(x1, . . . , xn) in Fn

q is

(1.13) N(g)=



qn−1 −η2((−1)n/2a1 · · ·an)q(n−2)/2, if n even and b ̸= 0,

qn−1 +η2((−1)(n−1)/2ba1 · · ·an)q(n−1)/2, if n odd and b ̸= 0,

qn−1 +η2((−1)n/2a1 · · ·an)(qn/2 − q(n−2)/2), if n even and b = 0,

qn−1, if n odd and b = 0,

where η2 is the quadratic multiplicative character in Fq.

18

Proof. See Theorem 10.5.1 in [12]. ■

We notice that this result implies that the number of roots only depends on the values

of η(a j) for 1≤ j ≤ n and η(b).

1.4 Linear codes

The typical use of codes is to introduce redundancy on a message that will be transferred

through a noisy channel that can corrupt individual bits of information. Typically the

messages are divided into codewords of fixed length and multiplied by the generator

matrix to be transformed into vectors of greater length. The introduced redundancy

allows some algorithm proper to the type of code to extract the original message even if

a few bits of it are corrupted. The minimum distance is a very important parameter, as it

is the minimum degree of "separation" between codewords in the code, and the greater it

is the more errors can be corrected. In this text we will talk about linear codes, i.e., codes

that are vector subspaces.

Let F be a field, a linear code of length n is a vector subspace of Fn. For a given

codeword c̄ = (c0, . . . , cn−1) ∈ Fn, we define the weight of c̄ as

w(c̄)= #{0≤ i ≤ n−1 : ci ̸= 0},

i.e., the number of coordinates in the codeword that are different from 0. The weight distri-

bution of a code with length n is the sequence of non-negative integers A0, A1, A2, . . . , An

where Aw is the number of codewords in the code with weight equal to w. We remark

that in a linear code the zero codeword is always present, so A0 = 1.

Let us consider a finite field Fq and C ⊂ Fn
q a linear code. The parameters of the

linear code are the tuple of integers (n,k,d) where k is the dimension of C over Fq and

d represents the minimum distance of C, that is defined as the lowest possible weight

for a non-zero codeword in the code. We remark that the minimum weight is the lowest

positive integer d such that Ad > 0.

Let B = {c̄1, . . . , c̄k} be a basis of C and consider the matrix G where the rows are the

vectors c̄i = (ci,1, . . . , ci,n), i = 1, . . . ,k, that is,

G =


c̄1
...

c̄k

=


c1,1 c1,2 . . . c1,n

...
...

...

ck,1 ck,2 . . . ck,n

 .

19

The matrix G is called the generator matrix of C associated with the basis B. This matrix

defines a bijection from Fk
q to C by matrix multiplication, i.e., every codeword in C can be

represented uniquely as

(v1, . . . ,vk)G = v1 c̄1 +·· ·+vk c̄k,

for (v1, . . . ,vk) ∈ Fk
q.

While the generator matrix allows for encoding, it is not very efficient for determining

if a codeword c̄ is part of the code, as that would require checking if the system v̄G = c̄
has any solution. For that, we will need to introduce the concept of a parity check matrix.

For a linear code C of length n, we define its dual code as

C⊥ = {v̄ ∈ Fn
q : c̄ · v̄ = 0,∀c̄ ∈ C},

where · denotes the vector dot product. It is well known (see Theorem 1.5.7 in [21]) that

C⊥ is a vector subspace of Fn
q, that dimC⊥ = n−k, and v̄ ∈ C⊥ if and only if Gv̄T = 0. The

following result is important:

Lemma 1.13. Let C be a linear code, and suppose H is a generator matrix of C⊥. Then
c̄ ∈ C if and only if Hc̄T = 0.

Proof. This is a consequence of Theorem 1.2.1 in [21]. ■

The generator matrix of C⊥ is called parity check matrix and allows us to characterize

elements in a code G through a straighforward matrix multiplication.

1.5 Cyclic codes

A linear code C ⊂ Fn
q is called a cyclic code if for every c̄ = (c0, . . . , cn−1) in C the shifted

vector (cn−1, c0, . . . , cn−2) is also in C. Let Fq[x] be the polynomial ring with coefficients in

Fq and let us define the quotient ring Rn = Fq[x]/(xn −1). The bijection

T(c̄) := [c(x)]= [c0 + c1x+·· ·+ cn−1xn−1]

assigns to each codeword in C a class of polynomial in Rn. Since 1, [x], . . . , [xn−1] is a basis

for Rn as a vector space over Fq, this is an isomorphism between Fn
q and Rn. The action of

shifting the code one coordinate to the right is translated in Rn as a multiplication of the

representative polynomial by x. The following lemma then provides another structure

for cyclic codes.

20

Lemma 1.14. Let V be a vector subspace of Rn. Then, V is an ideal of the ring Rn if and
only if V is invariant under multiplication by [x].

Proof. See the proof of Theorem 4.2.1 in [21]. ■

Thus, a subspace C of Fn
q is a cyclic code if and only if T(C) is an ideal in Rn. To

characterize a cyclic code as an ideal, we use the following lemma:

Lemma 1.15. Every ideal of Fq[x]/p(x), where p(x) is a polynomial, is of the form I =
([f (x)]), where f (x) is a divisor of p(x).

Proof. This follows from Corollary 4.2.2 in [21]. ■

Thus, every cyclic code is isomorphic to an ideal in Rn generated by some divisor g(x)

of xn −1. This g(x) is called the generator polynomial. Therefore, a codeword c(x) is in

the code generated by g(x) if and only if it is divisible by g(x).

This condition is easier to check using the parity check polynomial

h(x)= xn −1
g(x)

.

It has the important property that a codeword c(x) ∈ Rn is in the code generated by g(x)

if and only if [h(x)] · [c(x)]= [0], since that would imply g(x) divides it.

For a codeword c̄ such that T(c̄)= [c0+ c1x+·· ·+ cn−1xn−1], we will denote the class

representative c(x)= c0 + c1x+·· ·+ cn−1xn−1 as the polynomial form of c̄.

1.6 Parity check matrices

Let m be a positive integer, q = pm and let us consider the cyclic codes over Fp with

length n = pm −1. Let γ be a primitive element of Fq and let us define ga(x) as the

minimal polynomial over Fp[x] of γa for 0≤ a ≤ q−2. As ga(x) is a minimal polynomial

its other roots are conjugates of γa in the field extension Fq/Fp, i.e., the set {γb : b ≡ p ja
(mod q−1)} where the exponents of γ are in the same p−cyclotomic class of a.

For integers t1, . . . , ts representing different p-cyclotomic classes, let us define the

code Ct1,...,ts as the code generated by the polynomial g(x)= gt1(x)gt2(x) · · · gts(x).

21

Theorem 1.16. Let Ct1,...,ts be a cyclic code of length n and c̄ be a codeword with polyno-
mial form c(x). Let us define the matrix

(1.14) H :=


1 γt1 γ2t1 · · · γ(n−1)t1

...
...

...
1 γts γ2ts · · · γ(n−1)ts

 .

The following are equivalent:

(i) c̄ is in Ct1,...,ts .

(ii) c(γt j)= 0 for 1≤ j ≤ s.

(iii) Hc̄T = 0.

Proof. Since the code is generated by g(x)= gt1(x) · · · gts(x), a codeword is in the code if

and only if it is divisible by g(x) in polynomial form. But a polynomial is divisible by g(x)

if and only if it has γt1 , . . . ,γts as roots.

The condition g1(γt j)= 0 can be rewritten as[
1 γt j γ2t j . . . γ(n−1)t j

]
c̄T = 0.

Hence, a codeword c̄ is in the code if and only if Hc̄T = 0.

■

We notice that the matrix H in (1.14) is not a parity check matrix for the code, since

the entries are in Fq instead of Fp. However, it can be converted into a parity check matrix

by fixing a base for Fq over Fp, turning each row into m rows where each coordinate in

the i-th row is the coefficient of the corresponding element of the original row on the i-th
basis element, and then excluding rows until the matrix is linearly independent. Hence,

we will also refer to such a matrix as the parity check matrix.

C
H

A
P

T
E

R

2
TRIANGULAR POLYNOMIALS

As mentioned in the introduction, many authors have studied various techniques to

count the number of solutions of equations over finite fields. In particular, Cao, Wen, and

Wang [7] have determined the number of solutions in Fn
q for equations of the form

a1xd1,1
1 · · ·xd1,n

n +·· ·+anxdn,1
1 · · ·xdn,n

n = 0,

where di, j > 0, i.e., all exponents are positive, assuming that the matrix (di, j)i, j is row

equivalent to a diagonal matrix D, with the diagonal elements of D being only 1’s and

2’s.

In this chapter we will determine the number of solutions of equations

a1xd1,1
1 +a2xd1,2

1 xd2,2
2 +·· ·+anxd1,n

1 · · ·xdn,n
n = b,

where di, j > 0 for all 1 ≤ i ≤ j ≤ n and the exponents di, j satisfy certain arithmetical

conditions. We show sufficient conditions for the equation to have the same number

of solutions in (F∗q)n as a simpler equation. Specifically, we consider the case when the

equations are ∗-equivalent. Then, we use this equivalence to calculate the total number

of solutions. The content of this chapter is part of the paper [1], written by the author of

this thesis.

23

2.1 Triangular polynomials

Let f be a polynomial in Fq[x1, . . . , xn], and let us define fk ∈ Fq[x1, . . . , xk] as

fk(x1, . . . , xk)= f (x1, . . . , xk,0, . . . ,0).

We say that f and g are totally ∗-equivalent if fk is ∗-equivalent to gk for all 1≤ k ≤ n.

In general, it is not true that f being ∗-equivalent to g implies that fk is ∗-equivalent to

gk for all k.

Let us introduce a class of polynomials for which a sufficient criterion for total ∗-

equivalence can be determined. We say that f ∈ Fq[x1, . . . , xn] is a triangular polynomial

if it is of the form

(2.1) f (x1, . . . , xn)=
n∑

i=1
a j X D j −b; a1, . . . ,an ∈ F∗q, b ∈ Fq,

where D j = (d1, j, . . . ,d j, j,0, . . . ,0), d j, j > 0 for all 1 ≤ j ≤ n. If we additionally have that

di, j > 0 for all 1≤ i ≤ j ≤ n, we refer to this polynomial as a fully triangular polynomial.

Lemma 2.1. Let f , g ∈ Fq[x1, . . . , xn] be two ∗-equivalent triangular polynomials, and
suppose there is an invertible (n+1)× (n+1) matrix M over Zq−1 such that MD̃ f = D̃g.
For each integer 0≤ k ≤ n, let us denote Mk as the submatrix obtained from M by selecting
the first k+1 rows and columns. If Mk is invertible, then fk and gk are also ∗-equivalent.

Proof. Since f and g are triangular polynomials, we can partition their degree matrices

and the matrix M into blocks

D̃ f =
[

D̃ fk D1

0 D2

]
, D̃g =

[
D̃gk E1

0 E2

]
, M =

[
Mk N1

N2 N3

]
,

such that D̃gk and D̃ fk are (k+1)×k blocks, Mk is a (k+1)× (k+1) block and the blocks

D1,D2,E1,E2, N1, N2, N3 have appropriate dimensions. From the ∗-equivalency between

f and g, we know that [
D̃gk E1

0 E2

]
= D̃g = MD̃ f

=
[

Mk N1

N2 N3

][
D̃ fk D1

0 D2

]

=
[

MkD̃ fk MkD1 +N1D2

N2D̃ fk N2D1 +N3D2

]
,

where considering the equality of the upper left block gives us MkD̃ fk = D̃gk , implying

that fk and gk are ∗-equivalent because Mk is invertible. ■

24

Hence, if f and g are two ∗-equivalent triangular polynomials, with MD̃ f = D̃g

and the submatrices Mk are invertible for every 1 ≤ k ≤ n−1, then f and g are to-

tally ∗-equivalent. We now present a specific set of operations that always result in

transformation matrices satisfying these conditions.

Lemma 2.2. Let f ∈ Fq[x1, . . . , xn] be a triangular polynomial. Let us denote by r1, . . . , rn+1

the rows in D̃ f and consider the following invertible row operations:

(i) r i ← c · r i, 2≤ i ≤ n+1, c ∈Z∗
q−1.

(ii) r j ← r j + c · r i, 2≤ j < i, c ∈Zq−1.

Any ∗-equivalency obtained using only these row operations is totally ∗-equivalent.

Proof. Any matrix M obtained from those operations is of the form

(2.2) M =



1 0 0 · · · 0 0

0 m1,1 m1,2 · · · m1,n−1 m1,n

0 0 m2,2 · · · m2,n−1 m2,n
...

...
...

...

0 0 0 · · · mn−1,n−1 mn−1,n

0 0 0 · · · 0 mn,n


,

where, mi, j ∈Zq−1 and the elements on the diagonal are invertible. For every 1≤ k < n−1,

the determinant of Mk is
∏k

i=1 mi,i, which is invertible over Zq−1. Thus, every Mk is

invertible, making the ∗-equivalency total.

■

Although one might believe that all complete equivalences between triangular ma-

trices can be attained using those two operations, this assumption is not correct. For

instance, let f = x1 + x3
1x5

2, g = x2
1 + x4

1x2 ∈ F7[x1, x2]. These are totally ∗-equivalent poly-

nomials, i.e., MD̃ f = D̃g where M is the invertible matrix

M =


1 0 0

1 1 0

0 0 5

 ,

but from a straightforward calculation it can be proved that there is no invertible upper

triangular matrix N that satisfies ND̃ f = D̃g. The following result tells us when a

triangular polynomial is totally ∗-equivalent to a diagonal polynomial using the two

operations given in Lemma 2.2.

25

Theorem 2.3. Let f be a triangular polynomial of the form (2.1), and let

g(x1, . . . , xn)= a1xe1
1 +·· ·+anxen

n −b,

be a diagonal polynomial where e1, . . . , en ∈Z>0. Then f is totally ∗-equivalent to g if the
following two conditions are true:

(i) for all 1≤ j ≤ n there is a m j, j ∈Z∗
q−1 such that d j, j = m j, j e j,

(ii) for all 1≤ i < j ≤ n we have gcd(d j, j, q−1) | di, j.

Proof. The augmented degree matrices of f and g are

D̃ f =



1 1 1 · · · 1 1 1
d1,1 d1,2 d1,3 · · · d1,n−1 d1,n 0

0 d2,2 d2,3 · · · d2,n−1 d2,n 0
0 0 d3,3 · · · d3,n−1 d3,n 0
...

...
...

. . .
...

...
...

0 0 0 · · · dn−1,n−1 dn−1,n 0
0 0 0 · · · 0 dn,n 0


, D̃g =



1 1 1 · · · 1 1 1
e1 0 0 · · · 0 0 0
0 e2 0 · · · 0 0 0
0 0 e3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · en−1 0 0
0 0 0 · · · 0 en 0


,

where the last columns are present only if b ̸= 0.

Let us suppose that conditions (i) and (ii) are true. Since (i) implies that there is an

element m j, j ∈Z∗
q−1 such that d j, j = m j, j e j, condition (ii) becomes gcd(e jm j, j, q−1) | di, j.

As gcd(m j, j, q−1)= 1, that implies condition (ii) is equivalent to (e j, q−1) | di, j, which is

in turn equivalent to the existence of mi, j ∈Zq−1 such that di, j = mi, j e j over Zq−1. We

can then use these values of mi, j to construct an invertible matrix M of the form (2.2),

such that when we multiply M by D̃g it gives us:

MD̃g =



1 1 1 · · · 1 1 1

m1,1e1 m1,2e2 m1,3e3 · · · m1,n−1en−1 m1,nen 0

0 m2,2e2 m2,3e3 · · · m2,n−1en−1 m2,nen 0

0 0 m3,3e3 · · · m3,n−1en−1 m3,nen 0
...

...
...

...
...

0 0 0 · · · mn−1,n−1en−1 mn−1,nen 0

0 0 0 · · · 0 mn,nen 0


,

that is equal to D̃ f . ■

For the specific cases where the diagonal polynomials are linear or quadratic this

criterion is simpler.

26

Corollary 2.4. Let f be a triangular polynomial of the form (2.1), and let

g(x1, . . . , xn)= a1xe
1 +·· ·+anxe

n −b,

be a diagonal polynomial, where e ∈Z>0.

a) If e = 1 and gcd(d j, j, q−1)= 1 for all 1≤ j ≤ n, then f is totally ∗-equivalent to g.

b) If e = 2, q is odd, and there exists an m j, j ∈ Z∗
q−1 such that d j, j = 2m j, j for all

1≤ j ≤ n and that 2 | di, j for all 1≤ i < j ≤ n, then f is totally ∗-equivalent to g.

Proof. The statements in each item imply the conditions given in Theorem 2.3. In fact,

a) If gcd(d j, j, q−1) = 1, then condition (ii) is always verified and d j, j is invertible,

verifying condition (i).

b) The statement that there is an invertible m j, j in Zq−1 such that d j, j = 2m j, j for all

1≤ j ≤ n is, in this case, equivalent to condition (i). Since m j, j is invertible, we have

gcd(m j, j, q−1)= 1, which implies that gcd(2, q−1)= gcd(2m j, j, q−1)= gcd(d j, j, q−1).

Considering q odd, we have gcd(2, q − 1) = 2, and the statement 2 | di, j for all

1≤ i < j ≤ n is equivalent to condition (ii).

■

Let f be a fully triangular polynomial. For any root (c1, c2, . . . , cn) of f , if c j = 0 and

j is the smallest index that satisfies this condition, then f (c1, . . . , c j−1,0, c′j+1, . . . , c′n)= 0

for any c′j+1, . . . , c′n ∈ Fq. This is due to the fact that the terms involving the variables

x j+1, . . . , xn vanish, thereby not impacting the value of the polynomial. Thus, by adding

over the indices of the first coordinates that are equal to 0 among the roots, we derive

the following identity:

(2.3) N(f)=
N∗(f)+∑n−1

k=1 N∗(fk)qn−k−1, if b ̸= 0,

qn−1 +N∗(f)+∑n−1
k=1 N∗(fk)qn−k−1, if b = 0.

Now, let f be totally ∗-equivalent to a polynomial g. From Lemma 1.9, we have that

N∗(fk)= N∗(gk) for all 1≤ k ≤ n. Thus,

(2.4) N(f)=
N∗(g)+∑n−1

k=1 N∗(gk)qn−k−1, if b ̸= 0,

qn−1 +N∗(g)+∑n−1
k=1 N∗(gk)qn−k−1, if b = 0.

27

Therefore, if we know that f is totally ∗-equivalent to a polynomial g, and N∗(gk) is

known for any k, we can substitute these values into (2.4) to compute N(f).

For instance, let us consider the polynomials f , g ∈ F10007[x, y] given by f (x, y, z) =
x1001+x2001 y3001+x4001 y5001z6001+7001 and g(x, y, z)= x+y+z+7001. By straightforward

calculation, we can verify that f is totally ∗-equivalent to g, so

N(f)= N∗(x+ y+ z+7001)+N∗(x+ y+7001)+ qN∗(x+7001)

= 100110031+10005+10007 ·1
= 100130043.

2.2 Roots with non-zero coordinates for diagonal
polynomials

The number of solutions N∗(gk) when g is a linear polynomial of the form (1.9) is as seen

in Lemma 1.11, so the case where f is totally ∗-equivalent to a linear polynomial can be

solved using this result and (2.4).

For the case when f is totally ∗-equivalent to a quadratic diagonal polynomial g of

the form (1.12) , we will need a way to compute the number of roots of gk, 1≤ k ≤ n in

(F∗q)k. We remark that Theorem 1.12 allows us to calculate N(gk) for any k. We will need

the following definitions and results in order to calculate N∗(gk) for any k.

Definition 2.5. Let η2 be the quadratic character in Fq. For a coefficient vector (a1,a2, . . . ,an)
∈ (F∗q)n let us define the following functions:

r(k)= #{1≤ j ≤ k : η(a j)= 1}, s(k)= #{1≤ j ≤ k : η(a j)=−1}, 1≤ k ≤ n.

For simplicity, let us denote r = r(n), s = s(n).

Let us partition the set of roots of gk into classes A i, j, fixing the numbers i and j
of non-zero coordinates of the roots whose corresponding coefficients are squares and

non-squares, respectively. For any root in A i, j, let {u1, . . . ,ui+ j} be the indices of the i+ j
non-zero coordinates. Then, the non-zero coordinates, arranged in the same order, form a

root in (F∗q)i+ j of the polynomial

gu1,...,ui+ j = au1 x2
u1

+·· ·+aui+ j x
2
ui+ j

−b.

Let gu′
1,...,u′

i+ j
be any other polynomial of the same form with the same numbers i

and j of square and non-square coefficients. It is easy to construct a bijection between

28

the roots of gu1,...,ui+ j and gu′
1,...,u′

i+ j
in Fi+ j

q , and also in (F∗q)i+ j. Thus, N(gu1,...,ui+ j) and

N∗(gu1,...,ui+ j) depend only on i and j. Since the number of roots is the only information

that matters to us, we will denote any such polynomial simply by g i, j and the quantities

as N(g i, j) and N∗(g i, j). Thus, the number of roots in each class A i, j is
(r(k)

i
)(s(k)

j
)
N∗(g i, j),

and the total number of roots of gk is

(2.5) N(gr(k),s(k))= N(gk)= ∑
0≤i≤r(k)
0≤ j≤s(k)

(
r(k)

i

)(
s(k)

j

)
N∗(g i, j).

We remark that the meaning of N∗(g0,0;0,0), which appears in a summand in the

above expression, is not obvious. It is 1 when b = 0 and 0 when b = 1. Similarly,

N∗(gr(k),s(k); r(k), s(k)) is simply N∗(gk).

The following Binomial Inversion Lemma will allow us to obtain an expression for

N∗(gk) in terms of N(g i, j).

Lemma 2.6. Let G be an abelian group and f :Z≥0 →G a function. Define F by F(r)=∑r
i=0

(r
i
)
f (i), then f can be expressed in terms of F as

f (r)=
r∑

i=0
(−1)r+i

(
r
i

)
F(i).

Proof. See Section 5.3 in [14]. ■

Using Lemma 2.6 twice in (2.5), it follows that

(2.6) N∗(gr(k),s(k))= N∗(gk)=
r(k)∑
i=0

s(k)∑
j=0

(−1)r(k)+s(k)+i+ j

(
r(k)

i

)(
s(k)

j

)
N(g i, j).

From Theorem 1.12, and the fact that η(−1)= (−1)(q−1)/2, we obtain that

(2.7) N(g i, j)=



qi+ j−1 − (−1) j(−1)(q−1)(i+ j)/4q(i+ j−2)/2, if i+ j even and b ̸= 0,

qi+ j−1 + (−1) j(−1)(q−1)(i+ j−1)/4η(b)q(i+ j−1)/2, if i+ j odd and b ̸= 0,

qi+ j−1 + (−1) j(−1)(q−1)(i+ j)/4(q(i+ j)/2 − q(i+ j−2)/2), if i+ j even and b = 0,

qi+ j−1, if i+ j odd and b = 0.

By expressing N∗(gk) in terms of N(g i, j), we can use (2.7) to obtain an explicit value for

N∗(gk), which can then be used in (2.4) to determine N(f).

29

Theorem 2.7. Let Fq be a finite field where q is an odd prime power, g a quadratic
diagonal polynomial as in (1.12), and r(k), s(k) be as in Definition 2.5. We fix a complex
number θ such that θ2 = q(−1)(q−1)/2, and we define the complex constants

ζ1 = θ−1, ζ2 =−θ−1.

We have that

a) if b ̸= 0, then

N∗(gk)= (q−1)k

q
− 1

2q
(ζr(k)

1 ζs(k)
2 +ζr(k)

2 ζs(k)
1)

+ η(b)
2θ

(ζr(k)
1 ζs(k)

2 −ζr(k)
2 ζs(k)

1).
(2.8)

b) if b = 0, then

N∗(gk)= (q−1)k

q
− q−1

2q
(ζr(k)

1 ζs(k)
2 +ζr(k)

2 ζs(k)
1).(2.9)

Proof. Firstly, we remark that both constants ζ1 and ζ2 are related to the values of

geometric sums. For any positive integer u, we have

ζu
1 = (−1)u

u∑
i=0

(
u
i

)
(−θ)i, ζu

2 = (−1)u
u∑

i=0

(
u
i

)
θi.

We will now establish the proof for the case where b ̸= 0 and the analogous case can

be reasoned in a similar fashion. Since b ̸= 0, (2.7) reduces to

N(g i, j)=
qi+ j−1 − (−1) j(−1)(q−1)(i+ j)/4q(i+ j−2)/2, if i+ j even,

qi+ j−1 + (−1) j(−1)(q−1)(i+ j−1)/4η(b)q(i+ j−1)/2, if i+ j odd,

which can be rewritten as

N(g i, j)=qi+ j−1 + (1+ (−1)i+ j)
2

(
−(−1) j(−1)(q−1)(i+ j)/4q(i+ j−2)/2

)
+ (1− (−1)i+ j)

2

(
(−1) j(−1)(q−1)(i+ j−1)/4η(b)q(i+ j−1)/2

)
.

This can be used in (2.6) to obtain an equation with a right-hand side that can be parti-

tioned into geometric sums, yielding our result through a straightforward computation.

■

30

2.3 Main results

In this section we will present the main results published by us in the paper [1]. We are

going to determine the number of roots of fully triangular polynomials in some cases,

starting with the simplest case, when it is totally ∗-equivalent to a linear polynomial. The

following theorem has also been obtained by Cao and Sun as a special case of Corollary

3.2 in [16].

Theorem 2.8. Let f be a fully triangular polynomial as in (2.1) that is totally ∗-equivalent
to a linear polynomial g of the form (1.9). Then,

N(f)=


qn−(−1)n

q+1 , if b ̸= 0,
2qn+(−1)n(q−1)

q+1 , if b = 0.

Proof. We will only show the case where b ̸= 0, because the other is analogous. In

this case, (1.11) from Lemma 1.11 tells us N∗(gk) = (q−1)k

q − (−1)k

q , and (2.4) implies

N(f)= N∗(g)+∑n−1
k=1 N∗(gk)qn−k−1. Therefore,

N(f)= (q−1)n

q
− (−1)n

q
+

n−1∑
k=1

qn−k−1
[

(q−1)k

q
− (−1)k

q

]
= (q−1)n

q
− (−1)n

q
+ qn−2

[
n−1∑
k=1

(
q−1

q

)k
−

(−1
q

)k
]

= qn − (−1)n

q+1
.

■

We remark that notably, the number of roots in Fn
q of the fully triangular polynomial

f is not equal to the number of roots of the linear polynomial g, which is equal to qn−1.

We also remark that diagonal polynomials are triangular but not fully triangular, thus

any result that requires f to be fully triangular cannot be used on diagonal polynomials.

Notice that the coefficient vector of the fully triangular polynomial does not affect

the number of roots of fully triangular polynomials ∗-equivalent to linear polynomials,

yielding the following result:

Corollary 2.9. Let f and h be two fully triangular polynomials with n variables of the
form (2.1), such that the constant terms are zero in both of them or non-zero in both of
them. If f and h are totally ∗-equivalent to linear polynomials they have the same number
of roots.

31

Proof. Even when f and h have different coefficients, Theorem 2.8 implies that the

number of roots depends only on the number of variables and if the constant term is zero

or not. ■

In the following result, we consider the cases when the fully triangular polynomial is

totally ∗-equivalent to a quadratic diagonal polynomial.

Theorem 2.10. Let Fq be a finite field where q is an odd prime power and let f be a
fully triangular polynomial of the form (2.1). Suppose that f is totally ∗-equivalent to a
quadratic diagonal polynomial g of the form (1.12). Let θ,ζ1,ζ2 be the constants defined
in Theorem 2.7. We have that

a) if b ̸= 0, then

N(f)=qn−2(q−1)− 1
2q

· (ζr
1ζ

s
2 +ζr

2ζ
s
1)+ η(b)

2θ
· (ζr

1ζ
s
2 −ζr

2ζ
s
1)

+
n−1∑
k=1

qn−k−1
(
− 1

2q
· (ζr(k)

1 ζs(k)
2 +ζr(k)

2 ζs(k)
1)+ η(b)

2θ
· (ζr(k)

1 ζs(k)
2 −ζr(k)

2 ζs(k)
1)

)
;

b) if b = 0, then

N(f)=qn−1 + qn−2(q−1)+
(

q−1
2q

)
(ζr

1ζ
s
2 +ζr

2ζ
s
1)

+
(

q−1
2

)n−1∑
k=1

qn−k−2(ζr(k)
1 ζs(k)

2 +ζr(k)
2 ζs(k)

1).

Proof. We will only show the proof in the case where b ̸= 0, because the other case is

analogous. In this case, (2.8) in Theorem 2.7 implies

N∗(gk)= (q−1)k

q
− 1

2q
(ζr(k)

1 ζs(k)
2 +ζr(k)

2 ζs(k)
1)

+ η(b)
2θ

(ζr(k)
1 ζs(k)

2 −ζr(k)
2 ζs(k)

1),

and from (2.4) we have N(f)= N∗(g)+∑n−1
k=1 N∗(gk)qn−k−1. Therefore,

N(f)= (q−1)n

q
− 1

2q
· (ζr

1ζ
s
2 +ζr

2ζ
s
1)+ η(b)

2θ
· (ζr

1ζ
s
2 −ζr

2ζ
s
1)

+
n−1∑
k=1

qn−k−1
(

(q−1)k

q
− 1

2q
· (ζr(k)

1 ζs(k)
2 +ζr(k)

2 ζs(k)
1)+ η(b)

2θ
· (ζr(k)

1 ζs(k)
2 −ζr(k)

2 ζs(k)
1)

)
,

which simplifies to obtain the desired result. ■

Notice that the specific values in the coefficient vector (a1,a2, . . . ,an,−b) do not

matter. In fact, to determine the number of roots, it is sufficient to determine which of

the coefficients a j ’s and b are squares or not. Thus, we have the following result:

32

Corollary 2.11. Let Fq be a finite field where q is an odd prime power. Let f and
h be two fully triangular polynomials with n variables of the form (2.1) with coeffi-
cient vectors (a1,a2, . . . ,an,−b) and (c1, c2, . . . , cn,−d) respectively. Let us suppose that
η(a1)= η(c1), . . . ,η(an)= η(cn), η(b)= η(d). If f and h are totally ∗-equivalent to quadratic
diagonal polynomials, they have the same number of roots.

Proof. The values of r(k) and s(k) for 1 ≤ k ≤ n will be the same for both polynomials.

Hence from Theorem 2.10 they both have the same number of roots in Fn
q. ■

Then, for every choice of coefficients in the coefficient vector we have fixed values for

r(k), s(k) for 1≤ k ≤ n. We can substitute these values into Theorem 1.12 to find a closed

expression for the number of roots. We will do this for two specific cases.

Corollary 2.12. Let Fq be a finite field where q is an odd prime power, and let f be a
fully triangular polynomial of the form (2.1) such that the coefficients a1, . . . ,an are either
all squares, or are all non squares in Fq. Let us suppose that f is totally ∗-equivalent to a
quadratic diagonal polynomial g of the form (1.12). We have that

a) if b ̸= 0, then

N(f)=qn−2(q−1)− 1
2q

·
(
ζn+1

1 − (q−1)ζn
1 −ζ1qn−1

ζ1 − q
+ ζn+1

2 − (q−1)ζn
2 −ζ2qn−1

ζ2 − q

)

+ εη(b)
2θ

·
(
ζn+1

1 − (q−1)ζn
1 −ζ1qn−1

ζ1 − q
− ζn+1

2 − (q−1)ζn
2 −ζ2qn−1

ζ2 − q

)
;

where

ε=
1, if a1, . . . ,an are squares,

−1, if a1, . . . ,an are non squares.

b) if b = 0, then

N(f)=2qn−1 − qn−2

+ q−1
2q

(
ζn+1

1 − (q−1)ζn
1 −ζ1qn−1

ζ1 − q
+ ζn+1

2 − (q−1)ζn
2 −ζ2qn−1

ζ2 − q

)
,

in both cases.

Proof. In the case when a1, . . . ,an are squares, we have r(k) = k, s(k) = 0 for 1 ≤ k ≤ n.

Substituting into the expressions in Theorem 2.10 and computing the geometric sums

yields the result.

33

For the case when none of the coefficients a1, . . . ,an is a square, we can multiply f by

a nonsquare coefficient a to obtain a polynomial with exactly the same roots, but whose

coefficients aa1, . . . ,aan are squares, and the constant term ab is such that η(ab)=−η(b).

Thus, in the case when b = 0, the number of roots is exactly the same as the all squares

case, and in the case b ̸= 0, the expression is essentially the same with a couple of signs

changed. ■

Let us conclude this chapter with some examples. Consider the finite field F9 and the

fully triangular polynomial

f (x)= x2 + x2 y2 + x2 y6z2

over F9[x, y, z]. This polynomial is totally ∗-equivalents to the polynomial

g(x)= x2 + y2 + z2,

where all coefficients are squares, since all coefficients are the same and
1 1 1

2 2 2

0 2 6

0 0 2

=


1 0 0 0

0 1 1 1

0 0 1 3

0 0 0 1




1 1 1

2 0 0

0 2 0

0 0 2

 .

Under these parameters, we can compute the values of ζ1 and ζ2:

ζ1 = 2, ζ2 =−4.

Then we can use the second formula in Corollary 2.12 to compute N(f):

N(f)= 2 ·92 −91 + 9−1
2 ·9

(
24 − (9−1)23 −2 ·92

2−9
+ (−4)4 − (9−1)(−4)3 − (−4)92

−4−9

)
= 129.

According to the same corollary, a polynomial of the same form where the coefficients are

nonsquares will also have 129 roots. An example of that is

f (x)= 2x2 +2x2 y2 +2x2 y6z2.

Let us consider the polynomial

f (x, y)= x2 +2x2 y2

34

in F5[x, y]. It is totally ∗-equivalent to the quadratic diagonal polynomial

g(x, y)= x2 +2y2

since the coefficient vector (1,2) is the same and
1 1

2 2

0 2

=


1 0 0

0 1 1

0 0 1




1 1

2 0

0 2

 .

Under these parameters, we can compute the values of ζ1, ζ2 and r(k), s(k) for k ∈ {0,1}:

ζ1 =
p

5 −1, ζ2 =−
p

5 −1, r(1)= r(2)= s(2)= 1, s(1)= 0.

Then we can use the second formula in Theorem 2.10 to compute N(f):

N(f)=51 +50(5−1)+
(
5−1
2 ·5

)
((
p

5 −1)1(−
p

5 −1)1 + (−
p

5 −1)1(
p

5 −1)1)

+
(
5−1

2

)
5−1((

p
5 −1)1(−

p
5 −1)0 + (−

p
5 −1)1(

p
5 −1)0)

=5.

35

C
H

A
P

T
E

R

3
FULL POLYNOMIALS

In the previous chapter, we discussed the number of solutions of fully triangular polyno-

mials related to diagonal polynomials.

In this chapter, we will present the content of a paper that we have submitted and is

yet to be published [2]. In it we discuss the number of solutions of polynomials where

the augmented degree matrix is full, i.e., every term in the polynomial, with the possible

exception of a constant term, has every value with positive exponent.

To do so, we will assume ∗-equivalency to diagonal polynomials where the exponents

guarantee pure Gauss sums. We will start by determining the number of roots over F∗q of

those polynomials.

3.1 Diagonal polynomials and pure sums

Lemma 3.1. Let g be a diagonal polynomial of the form

g(X)= a1xd1
1 +·· ·+asxds

1 −b,

where a1, . . . ,as ∈ F∗q and b ∈ Fq. Then

(3.1) N∗(g)= (q−1)s

q
+ 1

q

∑
c∈F∗q

ψ̄(cb)
s∏

i=1
S(cai,di),

where S(u,d) :=∑
x∈F∗q ψ

(
uxd)

.

36

Proof. The expression in (1.6) simplifies to

N∗(g)= 1
q

∑
c∈Fq

∑
x1,...,xs∈F∗q

ψ

(
c

(
−b+

s∑
i=1

aix
di
i

))

= (q−1)s

q
+ 1

q

∑
c∈F∗q

ψ̄(cb)
n∏

i=1

∑
x∈F∗q

ψ
(
caixdi

)
.

■

Lemma 3.1 implies that being able to compute S(ca j,d j) for 1 ≤ j ≤ s would assist

us in counting the number of ∗-roots of a diagonal polynomial. The following result

addresses that when the exponents are (p, r j)-admissible for suitable positive integers

r j.

Lemma 3.2. Let u be an element in F∗q, d ≥ 3 a (p, r)-admissible positive integer and
h = m/(2r). If p is odd, we have

S(u,d)=
−1− (−1)h(d−1)q1/2, if ηd(u)= (−1)h(pr+1)/d,

−1+ (−1)hq1/2, otherwise.

And if p = 2,

S(u,d)=
−1− (−1)h(d−1)q1/2, if ηd(u)= 1,

−1+ (−1)hq1/2, otherwise.

Proof. We use the Lemma 1.2 to rewrite the sum:

S(u,d)= ∑
x∈F∗q

ψ
(
uxd

)
= ∑

y∈F∗q
ψ(uy)

d−1∑
j=0

η
j
d(y)

= ∑
y∈F∗q

ψ(uy)
d−1∑
j=0

η
j
d(y) ·η j

d(u)η̄d
j(u)

=
d−1∑
j=0

η̄d
j(u)

∑
y∈F∗q

ψ(uy)η j
d(uy)

=
d−1∑
j=0

η̄d
j(u)

∑
y∈F∗q

ψ(y)η j
d(y)

=−1+
d−1∑
j=1

η̄d
j(u)G(η j

d).

37

Our assumption that d is (p, r)-admissible guarantees that the Gauss sums are pure.

Let us define

(3.2) ∆(d, j)=
(−1) jh, if 2 | d and 2 ∤ (pr +1)/d,

1, if 2 ∤ d or 2 | (pr +1)/d.

Using Lemma 1.8 and Equation (3.2) we obtain

S(u,d)=−1+
d−1∑
j=0

η̄d
j(u)(−1)h+1q1/2∆(d, j)

=−1+ (−1)h+1q1/2T(u,d),

(3.3)

where T(u,d)=∑d−1
j=1 η̄d

j(u)∆(d, j).
If 2 | d and 2 ∤ (pr +1)/d, then ∆(d, j)= (−1) jh. Thus,

(3.4) T(u,d)=
d−1∑
j=1

((−1)hη̄d(u)) j =
d−1 if ηd(u)= (−1)h,

−1 if ηd(u) ̸= (−1)h.

Similarly, if 2 ∤ d or 2 | (pr +1)/d then ∆(d, j)= 1, in which case

(3.5) T(u,d)=
d−1∑
j=1

(η̄d(u)) j =
d−1 if ηd(u)= 1,

−1 if ηd(u) ̸= 1.

We claim that combining the cases (3.4) and (3.5) we get

(3.6) T(u,d)=
d−1 if ηd(u)= (−1)h(pr+1)/d,

−1 if ηd(u) ̸= (−1)h(pr+1)/d,

when p is odd. To prove this claim we just need to show that

(−1)h(pr+1)/d =
(−1)h if 2 | d and 2 ∤ (pr +1)/d,

1 if 2 ∤ d or 2 | (pr +1)/d.

For the first case, we notice that the condition 2 ∤ (pr +1)/d implies (−1)h(pr+1)/d = (−1)h.

Analogously if 2 | (pr +1) then (−1)h(pr+1)/d = 1. The condition 2 ∤ d on the second case

also implies (−1)h(pr+1)/d = 1 since p being odd implies 2 | pr +1 in that case. This proves

claim (3.6), which when applied to (3.3) gives us the desired formula for S(u,d).

If p = 2, since d | pr +1 we must have 2 ∤ d. Thus T(u,d) is as given in (3.5), which

when applied to (3.3) gives us the desired result.

■

38

For convenience, let us introduce the following definitions.

Definition 3.3. Let d ≥ 3 be a (p, r)-admissible integer and h = m/(2r). We define the
functions A and B as

A(d)=−1− (−1)h(d−1)q1/2,

B(d)=−1+ (−1)hq1/2.

We remark that since q is fixed and r and h are defined in terms of d, only d is

necessary to compute these values.

Applying Lemma 3.2 to Equation (3.1) will help us to compute the number of ∗-roots

for diagonal polynomials satisfying that special condition. From now on, let us consider

a diagonal polynomial g ∈ Fq[x1, . . . , xs] of the form

(3.7) g(X)= a1xd
1 +·· ·+asxd

s −b,

where ηd(a1)= ·· · = ηd(as) for some integer d ≥ 3 that is a (p, r)-admissible integer for a

suitable positive integer r.

Theorem 3.4. Let g ∈ Fq[x1, . . . , xs] be a polynomial of the form (3.7) where b = 0. Then

N∗(g)= 1
q

(
(q−1)s + q−1

d
A(d)s + (q−1)(d−1)

d
B(d)s

)
.

Proof. From (3.1), we have

N∗(g)= (q−1)s

q
+ 1

q

∑
c∈F∗q

n∏
i=1

S(cai,d).

Let us suppose p is odd and (−1)h(pr+1)/d = 1 so that the condition we need to check to

determine the value of S(cai,d) is whether ηd(cai) equals 1. Since ηd(a1)= ·· · = ηd(as),

for each c ∈ F∗q the value of ηd(cai) is the same for every 1≤ i ≤ s, which gives us

∑
c∈F∗q

s∏
i=1

S(cai,d)= ∑
c∈F∗q

(S(ca1,d))s .

As we have seen in Lemma 3.2 the value of S(ca1,d) will be A(d) if ca1 is a d-th power,

and B(d) if it is not. Hence,∑
c∈F∗q

(S(ca1,d))s = q−1
d

A(d)s + (q−1)(d−1)
d

B(d)s,

which yields the result when applied in (3.1). Other cases are analogous.

■

39

For instance, the diagonal polynomial g(x, y) = x4 + y4 over F81 is such that the

exponent d = 4 is (3,2)-admissible, so we can compute A(4) = −28, B(4) = 8 and use

Theorem 3.4 to conclude the number of ∗-roots is

N∗(g)= 1
81

(
802 +20(−28)2 +60(8)2)

= 320.

Theorem 3.5. Let g ∈ Fq[x1, . . . , xs] be a polynomial of the form (3.7) where b ̸= 0. Then

N∗(g)=


1
q

(
(q−1)s −B(d)s + A(d)(A(d)s−B(d)s)

d

)
if ηd(a1/b)= 1,

1
q

(
(q−1)s −B(d)s + B(d)(A(d)s−B(d)s)

d

)
if ηd(a1/b) ̸= 1.

Proof. In the equation (3.1), we have

N∗(g)= (q−1)s

q
+ 1

q

∑
c∈F∗q

ψ̄(cb)
s∏

i=1
S(cai,d).

Since ηd(a1)= ·· · = ηd(as) implies S(ca1,d)= ·· · = S(cas,d), we can write

N∗(g)= (q−1)s

q
+ 1

q

∑
c∈F∗q

ψ̄(cb)S(ca1,d)s

= (q−1)s

q
+ 1

q

∑
c∈F∗q

ψ̄(cba−1
1)S(c,d)s.

(3.8)

Let us assume that p is odd and (−1)h(pr+1)/d = 1. In this case, S(c,d)= A(d) if c is a

d-th power and B(d) otherwise. Since F∗q = {γk : 1≤ k ≤ q−1}, we can separate the sum∑
c∈F∗q ψ̄(cba−1

1)S(c,d)s according to whether c is a d-th power of some element of F∗q:

∑
c∈F∗q

ψ̄(cba−1
1)S(c,d)s =

(q−1)/d∑
l=1

ψ̄(γldba−1
1)A(d)s +

 ∑
c∈F∗q

ψ̄(cba−1
1)−

(q−1)/d∑
l=1

ψ̄(γldba−1
1)

B(d)s

=−B(d)s + (
A(d)s −B(d)s) · (q−1)/d∑

l=1
ψ̄(γldba−1

1)

=−B(d)s + (A(d)s −B(d)s)
d

· ∑
x∈F∗q

ψ̄(ba−1
1 xd)

=−B(d)s + (A(d)s −B(d)s)
d

· ∑
x∈F∗q

ψ(−ba−1
1 xd),

40

where the sum
∑

x∈F∗q ψ(−ba−1
1 xd) is S(−b/a1,d), which is A(d) if ηd(−b/a1) = 1 and

B(d) otherwise. Since −1 = γ(q−1)/2 we have ηd(−1) = 1 if d | (q − 1)/2. Since 2r | m,

(q−1)/(pr +1)=∑m/r−1
j=0 pr j is even. Then, since d | pr +1 we have that d | (q−1)/2; hence

the condition ηd(−b/a1)= 1 is equivalent to ηd(a1/b)= 1. Therefore,

(3.9) N∗(g)=


1
q

(
(q−1)s −B(d)s + A(d)(A(d)s−B(d)s)

d

)
if ηd(a1/b)= 1,

1
q

(
(q−1)s −B(d)s + B(d)(A(d)s−B(d)s)

d

)
if ηd(a1/b) ̸= 1.

The case where p = 2 is analogous to this case. Lastly, let us assume p is odd
and (−1)h(pr+1)/d = −1. The argument is analogous until (3.8). Then S(c,d) = A(d) if
ηd(c,d)=−1 and S(c,d)= B(d) otherwise, i.e., S(γk,d)= A(d) if and only if k = ld+d/2,
for 1≤ l ≤ (q−1)/d. Thus, the sum

∑
c∈F∗q ψ̄(cba−1

1)S(c,d)s can be written as

∑
c∈F∗q

ψ̄(cba−1
1)S(c,d)s =

(q−1)/d∑
l=1

ψ̄(γld+d/2ba−1
1)A(d)s +

 ∑
c∈F∗q

ψ̄(cba−1
1)−

(q−1)/d∑
l=1

ψ̄(γld+d/2ba−1
1)

B(d)s

=−B(d)s + (
A(d)s −B(d)s

) · (q−1)/d∑
l=1

ψ̄(γld+d/2ba−1
1)

=−B(d)s +
(
A(d)s −B(d)s

)
d

· ∑
x∈F∗q

ψ̄(ba−1
1 γd/2xd)

=−B(d)s +
(
A(d)s −B(d)s

)
d

· ∑
x∈F∗q

ψ(−ba−1
1 γd/2xd),

where the internal sum
∑

x∈F∗q ψ(−ba−1
1 γd/2xd) is S(−ba−1

1 γd/2,d), which is A(d) if

ηd(−ba−1
1 γd/2)=−ηd(−b/a1)=−1

and B(d) otherwise. Hence, the number of solutions is again as seen in (3.9).

■

For instance, let us consider the polynomial g(x, y, z)= x4+ y4+ z4−1 ∈ F81[x, y, z]. It

satisfies the condition η4(a1/b)= η4(1)= 1, thus we use the first formula. Since A(4)=−28

and B(4)= 8, we have

N∗(g)= 1
81

(
803 −83 −7((−28)3 −83)

)
= 8256.

As another example, let us consider the diagonal polynomial g(x, y)= γx17 +γ18 y17 −
1 ∈ F256[x, y], where γ is a primitive element of F256 that is not a 17-th power of any other

element. The exponent d = 17 is (2,4)-admissible, and since η17(a1/b)= η17(γ) ̸= 1, we use

the second formula. Since A(17)= 255 and B(17)=−17 over this field we get

N∗(g)= 1
256

(
2552 − (−17)2 + (−17)

17
((255)2 − (−17)2)

)
= 0.

41

3.2 Main results

Let us define full polynomials as polynomials of the form

(3.10) f (X)= a1xd1,1
1 xd2,1

2 · · ·xdn,1
n +·· ·+anxd1,n

1 xd2,1
2 · · ·xdn,n

n −b,

where every exponent di, j in the degree matrix is greater than zero.

The number of solutions with at least one variable equal to zero is easy to compute:

since every term has every variable, if at least one of them is zero then every non-constant

term vanishes. Thus when requiring at least one of the coordinates to be 0, the number

of roots is 0 if b ̸= 0 and qn − (q−1)n if b = 0. Hence if we suppose that a polynomial of

the form (3.10) is ∗-equivalent to a polynomial g(X) for which the number of ∗-roots is

known, then we can calculate N(f) as

(3.11) N(f)=
N∗(g), if b ̸= 0;

qn − (q−1)n +N∗(g), if b = 0.

Theorem 3.6. Let f be a full polynomial of the form (3.10) in Fq[x1, . . . , xn] that is ∗-
equivalent to a diagonal polynomial g of the form (3.7) with s variables, where n ≥ s, d ≥ 3
is (p, r)-admissible for some positive integer r such that 2r | m, and ηd(a1)= ·· · = ηd(as).
Then

N(f)=


qn − (q−1)n + (q−1)n−s

q

(
(q−1)s + q−1

d A(d)s + (q−1)(d−1)
d B(d)s

)
if b = 0,

(q−1)n−s

q

(
(q−1)s −B(d)s + A(d)(A(d)s−B(d)s)

d

)
if b ̸= 0 and ηd(a1/b)= 1,

(q−1)n−s

q

(
(q−1)s −B(d)s + B(d)(A(d)s−B(d)s)

d

)
if b ̸= 0 and ηd(a1/b) ̸= 1,

where A(d) and B(d) are as stated in Definition 3.3.

Proof. Here g(x1, . . . , xs) is seen as a polynomial in Fq[x1, . . . , xn], so there are n− s free

variables that can assume any value without changing the value of the polynomial. Thus

N∗
s (g) is (q−1)n−s times the values obtained from Theorems 3.4 and 3.5. Substituting

these into (3.11) yields the result. ■

Let us conclude with some examples. Let us fix p = 2, m = 4 and d = 5 such that

q = 16, d is (2,2)-admissible and count the total number of roots of the polynomial

f (x, y, z) = x6 y2z+ xy7z11 ∈ Fq[x, y, z], which is ∗-equivalent to g(x, y, z) = x5 + y5, since

we have the following row-equivalence between the matrices D̃ f and D̃g:
1 1

6 1

2 7

1 11

=


1 0 0 0

1 1 0 0

2 0 1 0

1 0 2 1




1 1

5 0

0 5

0 0

 .

42

The total number of variables is n = 3 and the diagonal polynomial g can be considered

as a polynomial on only s = 2 variables. We compute A(5)= 15 and B(5)=−5. Since the

constant term is 0, we can apply the first formula in Theorem 3.6 to obtain

N(f)= 163 − (15)3 + 15
16

(
152 + 15

5
152 + 15 ·4

5
(−5)2

)
= 1846.

As another example, let us fix p = 3, m = 6 and d = 7, q = 729, γ a primitive element

of Fq that is not a 7-th power of any other element. We will count the total number

of roots of the polynomial f (x, y) = x14 y7 +2x21 y21 −γ ∈ Fq[x, y], which is ∗-equivalent

to g(x, y) = x7 + y7 −γ since they have the same coefficient vector and D̃ f and D̃g are

row-equivalent: 
1 1 1

14 21 0

7 21 0

=


1 0 0

0 2 3

0 1 3




1 1 1

7 0 0

0 7 0

 .

The number of variables is the same for both polynomials, n = s = 2. Since 7 is (3,3)−admissible

and, we compute A(7) = 161 and B(7) =−28. Since the η7(a1/b) = η7(γ) ̸= 1, we use the

third formula in Theorem 3.6 to obtain

N(f)= 7280

729

(
7282 − (−28)2 + (−28)(1612 − (−28)2)

7

)
= 588.

43

C
H

A
P

T
E

R

4
LOW WEIGHT CODEWORDS

In this chapter, we will present the content of a paper that we have submitted and is yet

to be published [3].

Generally, when talking about weight distributions of a code, the problem is to

determine the entire weight distribution. This is a difficult problem where the methods

differ depending on the cyclic code, but typically require the cyclic code to have few

possible weights for its codewords. Many examples of this can be found in [26] and [27].

However, some works take a different approach. Instead of trying to determine the

entire weight distribution, another idea is to determine the number of codewords with

specific small weights. There are some benefits to this: the code having many possible

weights typically does not introduce great difficulties, and it can be used to determine the

minimum weight of a code without computing the entire weight distribution. Examples

of this approach can be seen in [20] and [23].

This chapter will expand on the studies of low-weight codewords in cyclic codes.

4.1 General results

Some of the results we will present don’t require the cyclic code to be binary, while others

only apply to binary codes. Let us start with the results that also apply to cyclic codes

that are non-binary.

The first question we can ask ourselves about codes over Fp of the form Ct1,...,ts with

44

length n = pm −1 is if there are codewords with weight 2 and to determine the number

of codewords with weight 2, i.e., A2. The following theorem provides a sufficient and

necessary condition and determines A2.

Theorem 4.1. Let us consider q = pm to be a prime power. The code Ct1,...,ts of length
n = q−1 has a minimum distance of 2 if and only if the greatest common divisor

D(t1, . . . , ts) := gcd(q−1, t1(p−1), t2 − t1, t3 − t1, . . . , ts − t1)

is greater than 1. In that case, the number of codewords with weight 2 is given by

A2 = (p−1)(q−1)(σ0(D(t1, . . . , ts))−1)
2

,

where σ0(D(t1, . . . , ts)) is the number of divisors of D(t1, . . . , ts).
If p = 2 the expression for D(t1, . . . , ts) simplifies to gcd(q−1, t1, . . . , ts).

Proof. A codeword of weight 2 is a vector of length n = q−1 over Fp such that only two

coordinates are non-zero. We can use some shifts to make one of the indices the first

index and multiply by the inverse of the constant in the coordinate to make it a one.

Thus, the code has a codeword with weight 2 if and only if it has a codeword of the form

c(i,α)= 1+αxi

where 1≤ i ≤ q−2 and α ∈ F∗p. Now, multiplying the vector form of this codeword by the

matrix H given in (1.14), we get the system
1+αγit1 = 0,
...

1+αγits = 0,

which is equivalent to

(4.1)

γit1 = ·· · = γits ,

γit1 ∈ F∗p.

The first equation in (4.1) is equivalent to

(4.2) i(tk − t1)≡ 0 (mod q−1)

for k = 2, . . . , s. For each 2≤ k ≤ s, (4.2) has at least one solution if and only if gcd(tk−t1, q−
1)> 1, and the indices for which this is true are the multiples of (q−1)/gcd(tk − t1, q−1).

45

The second equation in (4.1) is satisfied if and only if gcd(t1(p−1), q−1)> 1, which

is always true, with the possible exception of when p = 2. The values of i for which this

condition is satisfied are the multiples of (q−1)/gcd(t1(p−1), q−1). Thus all the conditions

in (4.1) are satisfied if and only if D(t1, . . . , ts)= gcd(q−1, t1(p−1), t2−t1, t3−t1, . . . , ts−t1)>
1, and the indices i that satisfy the system are the multiples of (q−1)/D(t1, . . . , ts) smaller

than q − 1, and each one of those will give us a word of the form c(i,α). There are

σ0(D(t−1, . . . , ts))−1 such multiples. We can then generate every word with weight 2

in the code doing n = q−1 shifts and multiplying by the p−1 elements in F∗p. This will

produce each codeword twice, thus A2 = (p−1)(q−1)(σ0(D(t1,...,ts))−1)
2 .

■

For instance, let p = 2, q = 23 and consider the binary cyclic code C1,5 of length n = 7

over Fq. Since D(1,5)= 1, this code has no codewords with weight 2.

For a case where the minimum distance is 2, let p = 3, q = 32 and consider the cyclic

code C1,5 of length n = 8 over Fq. We have

D(1,5)= gcd(9−1,1(3−1),5−1)= 2,

thus A2 = 8. The codewords with weight 2 in this code are (1,0,0,0,1,0,0,0), its shifts

and their multiples.

4.2 Codewords with weight 3

We will now introduce a sufficient condition for a cyclic code of the form Ct1,...,ts to have a

minimum distance of 3. Note that it is not a necessary condition, so it is not an exhaustive

characterization of all cyclic codes with a minimum distance of 3.

Let us denote by Kg(t) the p-cyclotomic coset of t (mod pg −1), i.e.,

Kg(t)= {tpk (mod pg −1) : k = 0, . . . , g−1}.

We say that an integer 0 ≤ i ≤ q−2 belongs to Kg(t) if there is an integer 0 ≤ j ≤ g−1

such that ip j ≡ t (mod pg −1).

Theorem 4.2. Let t1, . . . , ts be integers that are not in the same p-cyclotomic coset p
(mod pm−1), but are in the same p-cyclotomic coset Kg(t) where t ̸≡ 0 (mod pg−1) and g
is a fixed divisor of m. Then the cyclic code Ct1,...,ts has a minimum distance d ≤ 3.

46

Moreover, the number A3 of codewords with weight 3 for Ct1,...,ts satisfies the following
bound:

A3 ≥ (p−1)(q−1)(pg −2)/6.

Proof. A proof for the case when the code is binary can be seen in [20, Theorem 1,

Theorem 3]. We will prove that the code has a minimum distance d ≤ 3 by constructing

codewords of weight 3 and demonstrating they are in the code.

Let β = γu, where u = (q−1)/(pg −1). It is a primitive element of Fpg , and since β

generates F∗pg , for each 1≤ a ≤ pg −2 there is an integer 1≤ b ≤ pg −2 such that

1+βa +βb = 0.

Let us define

(4.3) c(x)= 1+ xuat−1 + xubt−1
,

where the inverse t−1 is calculated in the ring Zpg−1. To check if c(x) is a codeword in

Ct1,...,ts , according to Lemma 1.16 we need to verify if γt j are roots of the polynomial

c(x) for 1 ≤ j ≤ s. Since t j ∈ Kg(t), there are non-negative integers k1 and k2 such that

t j = k1(pg −1)+ pk2 t. Thus,

c(γt j)= 1+γut jat−1 +γut jbt−1

= 1+βt jat−1 +βt jbt−1

= 1+βpk2 tat−1 +βpk2 tbt−1

= 1+βpk2 a +βpk2 b

= (1+βa +βb)pk2

= 0.

Hence, Ct1,...,ts has at least this codeword with weight 3. We have pg −2 pairs (a,b) that

generate codewords of this form. However, notice that (a,b) and (b,a) generate the same

codeword, thus there are (pg −2)/2 codewords of this form. By counting the codewords

obtained from shifts and multiplications by constants of these codewords, we obtain the

lower bound for A3. ■

For instance, consider p = 5, m = 2, g = 1, and t1, t2 = 2, 5. The constants 1 and 9 are

not in the same 5-cyclotomic class mod 24, but are in the same 5-cyclotomic class mod 4,

47

i.e., they are both in K1(1). We will use this to construct a codeword with weight 3. We

have u = (25−1)/(5−1)= 6 and can verify that β= γ6 satisfies the equation

1+β+β5,

thus c(x)= 1+ x6 + x30 is a codeword with weight 3 in C2,5.

We will now introduce a class of cyclic codes for which there is an interesting criterion

for the existence of weight 3 codewords.

Let us consider binary cyclic codes C1,t of length n = q−1 = 2m −1 and generator

polynomial g(x) = g1(x)gt(x). From Theorem 4.1 we know that this code can’t have

codewords with weight 2. Hence the next step in determining the existence of low weight

codewords is to determine if the minimum distance is 3. The parity check matrix for this

polynomial is

(4.4) H =
[

1 γ1 γ2 · · · γ(n−1)

1 γt γ2t · · · γ(n−1)t

]
,

Since the code is cyclic a codeword can be shifted so the coordinates with ones are 0, i, j
where 0< i < j ≤ q−2. Multiplying this codeword by H, we have that the codeword is in

the code if and only if 1+γi +γ j = 0,

1+γit +γ jt = 0.

Since the indices run through 1 to q−2, there are indices i, j that construct a weight 3

codeword if and only if there is a solution (x, y) with x, y ∈ Fq \{0,1} to the system1+ x+ y= 0,

1+ xt + yt = 0.

We can isolate y = x+1 and substitute it into the second equation to obtain that the

condition is that the polynomial

Ut(x) := 1+ xt + (1+ x)t

should have a root in Fq \{0,1}.

Theorem 4.3. Let C1,t be the binary cyclic code with minimal polynomial g(x)= g1(x)

gt(x), and let us suppose that the irreducible factors of

Ut(x)= 1+ xt + (1+ x)t

48

are x, (x+1), f1(x), . . . , f l(x). Then the code has a codeword with weight 3 if and only if at
least one of the irreducible factors f1, . . . , f l has a root in Fq.

Specifically, if m j := deg f j(x) for 1≤ j ≤ l, then

i) If m j ∤ m for all 1≤ j ≤ l then the code has no codewords with weight 3.

ii) If m j | m for some 1≤ j ≤ l then the code has codewords with weight 3.

Proof. The roots of Ut(x) in Fq \ {0,1}, if they exist, must come from the irreducible

factors different from x and x+1. The roots of an irreducible polynomial in F2[x] must be

in the extension of degree equal to the degree of the polynomial. Thus, if m j = deg f j(x),

the roots are in Fq if and only if F2m j ⊆ Fq, which happens if and only if m j | m. Thus,

if no irreducible polynomial is such that the degree of the polynomial divides m, then

there are no codewords with weight 3 in the code C1,t. Similarly, if deg f j(x) | m for some

1≤ j ≤ l then the code has a codeword with weight 3. ■

For instance, no matter what is the positive integer m such that q = 2m, the code C1,3

with length n = q−1 must have minimum distance greater than 3, since U3(x)= x2+ x
only has 0 and 1 as roots.

Corollary 4.4. Let C1,t be the binary cyclic code with minimal polynomial g(x)= g1(x)

gt(x). Then C1,t has minimum distance equal to 3 if and only if

gcd(Ut(x), xq + x) ̸= x(x+1).

Proof. The factors x, x+1 are present both in Ut(x) and xq + x. Any irreducible factor in

Ut(x) has degree dividing m if and only if its roots are in Fq, which happens if and only if

it divides xq + x. It is straightforward to verify that x2 + x divides both Ut(x) and xq + x,

and that the multiplicity on Ut(x) is 1. Thus there are other irreducible factors if and

only if gcd(Ut(x), xq + x) ̸= x(x+1). ■

The factoring of polynomials over finite fields is also a challenging problem, with few

cases where it can be done without exhaustive search. The following corollary is a case

where the minimum distance of 3 can be easily verified.

Corollary 4.5. Let m = pe1
1 · · · pes

s be the decomposition of m into prime factors. If t < pi+3

for all 1≤ i ≤ s, the code C1,t has minimum distance d > 3.

49

Proof. Let us suppose that the irreducible factors of

Ut(x)= 1+ xt + (1+ x)t

are x, (x+1), f1(x), . . . , f l(x), and denote m j = deg f j for all 1≤ j ≤ l. Theorem 4.3 tells us

that the code has minimum distance 3 if and only if m j | m for at least one 1 ≤ j ≤ l.
This can only happen if at least one of the primes pi divides m j. Since the degree of

Ut(x)/(x(x+1)) is t−3, the condition that pi > t−3 for every 1 ≤ i ≤ s implies that pi

is greater than m j for every 1 ≤ j ≤ l, since t−3 ≥ m j. This implies no prime factor of

m divides any of the degrees of the irreducible factors and thus no degree divides m.

Therefore, there are no codewords with weight 3. ■

For instance, let q = 231 and t = 33. Since t < 31+3= 34, Corollary 4.5 implies that there

are no codewords with weight 3 in the code.

We remark that Corollary 4.5 is a generalization of a similar result where m is a

prime number, which can be seen in [20, Proposition 3].

Thus the number of codewords of weight 3 in this polynomial is related to the number

of roots of the irreducible polynomials in F2[x]. But how can we count the number of

codewords of weight 3 from the number of solutions in Fq \ {0,1} of Ut(x)? As we have

seen, each root β= γi has another corresponding root β′ = γ j such that the codeword

c(x; i, j)= 1+ xi + x j

is in the code. Notice that we can swap β and β′ and still obtain the same codeword, so

the number of codewords of the form c(x; i, j) in the code is half the number of roots of

Ut(x)/(x(x+1)) in Fq. Then all codewords of weight 3 can be obtained by shifting these

codewords n = q−1 times. However, doing this will count every codeword three times, so

the total number of codewords of weight 3 is given by the following corollary:

Corollary 4.6. The number of codewords with weight 3 in C1,t is

A3 = q−1
6

· (deg(gcd(Ut(x), xq + x))−2
)
.

Proof. According to Corollary 4.4, every root of Ut(x) that is in Fq is in gcd(Ut(x), xq + x).

By the discussion above we know that the total number of codewords is (q−1)/6 times

the total number of roots excluding 0 and 1. ■

For instance, let q = 24, t = 7 and consider the binary cyclic code C1,t over Fq, with

primitive element γ that satisfies γ4 + x+1 = 0. Since gcd(U7(x), x16 + x) = x4 + x, the

50

Corollary (4.6) implies the code C1,7 of length n = 15 has

A3 = 16−1
6

· (4−2)= 5

codewords with weight 3. In fact, the roots of U7(x) in Fq \ {0,1} are γ5 and γ10, which

correspond to the codeword

(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0),

and the codewords obtained by shifting it, totaling 5 such codewords.

4.3 Low weight codewords in binary cyclic codes

Let q = 2m, γ be a primitive element of Fq, and Ct1,...,ts be the code of length n = q−1

generated by the polynomial g(x) = gt1(x)gt2(x) · · · gts(x) as defined previously and let

A0, A1, A2, . . . , An be its weight distribution. We will show how to relate Aw to Nw, the

number of solutions in (Fq)w of the system:

(4.5)


xt1

1 +·· ·+ xt1
w = 0,

...

xts
1 +·· ·+ xts

w = 0.

In polynomial notation, codewords with weight w are of the form

c(i1, . . . , iw) := xi1 +·· ·+ xiw ,

where 0 ≤ i1 < i2 < ·· · < iw ≤ q−2 are the ordered indices. Multiplying any of these

codewords by the parity check matrix (1.16), we conclude that the codeword is in Ct1,...,ts

if and only if 
γi1t1 +·· ·+γiw t1 = 0,
...

γi1ts +·· ·+γiw ts = 0.

Since γ is a primitive element and the indices run from 0 to q−2, each γi j corresponds

to a x j ∈ F∗q. Thus, Aw is the number of solutions over F∗q of the system (4.5), where

the indices are ordered by their discrete logarithms, i.e, logγ x1 < logγ x2 < ·· · < logγ xw.

We remark that these solutions have no repetition of variables, unlike Nw, where the

solutions can include zeros, be unordered, and may have repetitions.

51

We will introduce notation for orderings and repetitions within tuples. A tuple with

elements in Fq is said to be ordered if its coordinates are arranged in ascending order

according to the discrete logarithm with respect to γ, with 0 ∈ Fq placed in the first

position if present. Ordered tuples with integer elements are ordered in the usual

ascending order. A subtuple of an ordered tuple is a tuple formed by selecting a subset of

the elements from the original tuple while preserving their relative order. For instance,

(2,4) is a subtuple of (1,2,3,4).

We denote the sum of coordinates in a tuple v as |v|, and the number of coordinates

as #v. We call a tuple w-sum if the sum of its coordinates is w. For instance, for v =
(2,2,4,4,4,8) we have |v| = 24 and #v = 6.

Let v = (v1, . . . ,vw) be a tuple, and let k denote the number of distinct values appearing

in its coordinates. The partition P(v) is defined as the ordered integer tuple P(v) =
(a1, . . . ,ak), where each ai ∈Z>0 represents the number of repetitions of one of the distinct

values. For instance, the partition for the tuple v = (4,3,5,4,3,0,4) is P(v) = (1,1,2,3),

since 0 and 5 appear once each, 3 repeats twice and 4 repeats three times.

We will also refer to ordered tuples with positive integer coordinates as partitions,

since they can be obtained as partitions of other tuples. For a partition tuple v, we define

ε(v) and θ(v) as the subtuples of v consisting only of the even and odd coordinates in v,

respectively.

For a positive integer w, its assembly S(w) is defined as the set of all ordered positive

w-sum partitions, i.e.,

S(w)=
{

(v1, . . . ,vk) : 1≤ v1 ≤ ·· · ≤ vk ≤ n;
k∑

i=1
vi = w

}
.

For instance, S(4)= {(1,1,1,1), (1,1,2), (1,3), (2,2), (4)}.

For a tuple v = (a1, . . . ,ak) with sum |v| = w, we define its factorial as v! = a1! · · ·ak!,

and its binomial as (
w
v

)
:=

(
w

a1,a2, . . . ,ak

)
= w!

a1!a2! · · ·ak!
.

We can now state our main result. The following theorem relates the weight distribu-

tion of a cyclic code to the number of solutions of a system of diagonal equations.

Theorem 4.7. Consider the binary cyclic code Ct1,...,ts of length n = q−1 with generator
polynomial g(x) = gt1(x) · · · gts(x). Let A0, A1, A2, . . . be the weight distribution of the
code and, for any non-negative integer w, let Nw be defined as in (4.5). The following

52

relationship between Nw and the weight distribution of Ct1,...,ts holds:

(4.6) Nw = ∑
v∈S(w)

(A#θ(v) + A#θ(v)−1)
#θ(v)!

P(θ(v))!
·
(
q−#θ(v)

#ε(v)

)
#ε(v)!

P(ε(v))!
·
(
w
v

)
.

Proof. Let Nw be the set of solutions to (4.5) over Fq, with no restrictions. We will first

divide this set into the union of subsets Nw(v), where each subset contains solutions that

are tuples of length n with a partition tuple equal to v, for each partition v with sum

n. We will show how to relate the values of Nw(v) to the weight distributions Ak where

k ≤ w.

Let us fix a particular partition v ∈ S(w) and generate every solution that has this

partition. We will determine what values can be put into the coordinates to form a

solution, how many repetitions they have, and in how many ways they can be arranged.

Let θ(v) and ε(v) be the ordered subtuples containing the odd and even values in v,

respectively. The values with even repetition vanish in (4.5), while the values with odd

repetition reduce to only one summand in (4.5) and thus must be solutions to

(4.7)


yt1

1 +·· ·+ yt1
#θ(v) = 0,

...

yts
1 +·· ·+ yts

#θ(v) = 0,

with the added restriction that they must be distinct. There are then two possibilities:

if one of the values is 0, the remaining #θ(v)−1 values correspond to codewords with

weight #θ(v)−1, giving us A#θ(v)−1 choices; if none of the values is 0, then there are

A#θ(v) choices for the values. Thus, the total number of ordered tuples of values that are

solutions to (4.7) is (A#θ(v)−1+A#θ(v)). Next, we need to choose how many repetitions each

value has. We can select one of the odd repetition values in #θ(v) for each ordered tuple

of values with odd repetition, which can be done in #θ(v)!/P(θ(v))! ways.

The values with even repetition vanish in (4.5) so for any choice of values with odd

repetition the only restriction is that we cannot choose values that have already been

chosen. Thus, we have (
q−#θ(v)

#ε(v)

)
tuples of values with even repetition. Similarly to the values with odd repetition, the

number of repetitions of the values with even repetition can be chosen #ε(v)!/P(ε(v))!

ways.

Finally, to form a solution tuple (x1, . . . , xw) of (4.5), we just need to distribute these

coordinates according to the partition, which can be done
(w

v
)

ways.

53

The total number of solutions with the partition v is then obtained multiplying every

independent choice, giving us

Nw(v)= (A#θ(v) + A#θ(v)−1)
#θ(v)!

P(θ(v))!
·
(
q−#θ(v)

#ε(v)

)
#ε(v)!

P(ε(v))!
·
(
w
v

)
.

Summing it over every w-sum partition gives us the value expression (4.6). ■

In the next section we will see some applications of this result.

For instance, a BCH code of designed distance δ is a cyclic code with generator

polynomial g(x)= lcm(gb(x), gb+1(x), . . . , gb+δ−2(x)) where b is a positive integer. A classic

result about such BCH codes is that their minimum distance d is greater or equal to δ

[21, Theorem 5.1.1].

Let b and δ be parameters for a binary BCH code, 0< w < d an odd integer and Nw

be the number of solutions of the system

xb
1 +·· ·+ xb

w = 0,

xb+1
1 +·· ·+ xb+1

w = 0,
...

xb+δ−2
1 +·· ·+ xb+δ−2

w = 0.

Since #θ(v)< w for every partition and Au = 0 for 0< u < d, the term (A#θ(v) + A#θ(v)−1)

will vanish whenever #θ(v) ∉ {0,1}, significantly reducing the number of terms in (4.6).

When w is odd, there are no partitions of w without odd repetitions, so every summand

that does not vanish must have #θ(v)= 1, further reducing the number of terms. In this

case, every summand will be of the form(
q−1
#ε(v)

)
#ε(v)!

P(ε(v))!
·
(
w
v

)
.

An example of a binary BCH code is the code with length n = 15, designed distance

δ= 5, and generator polynomial g(x)= lcm(g1(x), g2(x), g3(x), g4(x))= g1(x)g3(x). Using

the general example in this instance we will determine the number N3 of solutions to

the system 

x1 + x2 + x3 = 0,

x2
1 + x2

2 + x2
3 = 0,

x3
1 + x3

2 + x3
3 = 0,

x4
1 + x4

2 + x4
3 = 0.

54

The partition S(3)= {(1,1,1), (1,2), (3)} is such that the only tuples that have #θ(v)= 1 are

(1,2) and (3), giving us only two terms we will need to sum.

N3 =
(
15
1

)
1!
1!

·
(

3
1,2

)
+

(
15
0

)(
3
3

)
=46.

In the next section, we will demonstrate an application where we determine the

number of codewords with weights 3, 4, and 5 in a cyclic code.

4.4 An application

We will first introduce an example where the number of solutions of a system of diagonal

equations of the form (4.5) can be computed.

Let r be a positive integer and m = 2r. Let q = 2m, such that q1/2 = 2r, and let us

define t = q1/2 +1. This choice of t is significant later as it is such that the norm function

N : F2m → F2r is defined as

N(x)= x(2m−1)/(2r−1) = xt.

For this code, Nw is the number of solutions (x1, . . . , xw) over Fq of the system

(4.8)

x1 + x2 +·· ·+ xw = 0,

xt
1 + xt

2 +·· ·+ xt
w = 0.

As seen in Theorem 4.7, this value is related to the number of codewords with weight w
in the code.

Let us denote trace functions as

Tra|b : F2a → F2b

x →
a/b−1∑

i=0
x2bi

,

and

ψ1 := (−1)Trr|1(x)

be the canonical additive character from F2r to C and ψ=ψ1 ◦Trm|r(x) be the canonical

additive character from Fq to C. For α,β ∈ Fq let us define the sum

(4.9) S(α,β)= ∑
x∈Fq

ψ(αx+βxt).

Let C1,t be the cyclic code of length n = q−1 and generator g(x)= g1(x)gt(x).

55

Theorem 4.8. Let C1,t as defined above we have

Nw = 1
q2

∑
α,β∈Fq

(
S(α,β)

)w .

Proof. Corollary 1.5 allows us to use character sums over ψ as indicator functions. For

each vector (x1, . . . , xw) we have that(
1
q

∑
α∈Fq

ψ(α(
n∑

i=1
xi))

)(
1
q

∑
β∈Fq

ψ(β(
w∑

i=1
xt

i))

)
=

1 if it is a solution to system (4.8),

0 otherwise.

Thus,

Nw = ∑
x1∈Fq

· · · ∑
xw∈Fq

(
1
q

∑
α∈Fq

ψ(α(
w∑

i=1
xi)

)(
1
q

∑
β∈Fq

ψ(β(
w∑

i=1
xt

i))

)
,

which can be rewritten as

(4.10) Nw = 1
q2

∑
α,β∈Fq

(
ψ(αx+βxt)

)w .

■

Hence being able to compute the distribution of values of S(α,β) should be enough to

compute Nw. Let us define the l-dimensional Kloosterman sum over F2r with u ∈ F∗2r as

kl(u)= ∑
x1,...,xl∈F∗2r

ψ(x1 +·· ·+ xl +ux−1
1 · · ·x−1

l).

The following result links exponential character sums to this kind of sum.

Lemma 4.9. Let q = 2ar, t = (q−1)/(2r −1) , and α ∈ F∗q, β ̸= 0 and a > 1. Then∑
x∈F∗q

ψ(αx2r−1)= (−1)a−1(2r −1)ka−1(N(α)).

Proof. See Theorem 3 in [22]. ■

Theorem 4.10. Let q = 22r, t = (q−1)/(2r −1) , and α,β ∈ Fq. Then

(4.11)
∑

x∈Fq

ψ(αxt +βx)=



q if β= 0 and Tr(α)= 0,

−q1/2 if β= 0 and Tr(α) ̸= 0.

0 if β ̸= 0 and Tr(α)= 0,

q1/2ψ1(−Tr(α)−1βt) if β ̸= 0 and Tr(α) ̸= 0,

Giving S(α,β) the frequency distribution in Table 4.1.

56

Proof. Let us suppose β= 0. In this case,

S(α,0)= ∑
x∈Fq

ψ(αxt)

= 1+ ∑
x∈F∗q

ψ(αxt)

= 1+ (2r +1)
∑

y∈F∗2r

ψ(αy)

= 1+ (2r +1)
∑

y∈F∗2r

ψ1(yTrm|r(α))

=
1+ (2r +1)(2r −1) if Trm|r(α)= 0,

1+ (2r +1)(−1) otherwise.

=
q if Trr|1(α)= 0,

−q1/2 otherwise.

(4.12)

Since Trr|1 : Fq → F2r is uniform, then Trr|1(α)= 0 for 2r values of α and Trr|1(α) ̸= 0

for the other q−2r of them.

Now let us suppose β ̸= 0. Denote the canonical additive character from F2r to C as

ψ1, and let γ be a primitive element of F∗q. Then we can rewrite

S(α,β)= ∑
x∈Fq

ψ(αxt +βx)

= 1+
q−2∑
k=0

ψ(αγkt +βγk).

Using euclidean division we can rewrite the indices as k = i+ j(2r−1) where 0≤ i ≤ 2r−2

and 0≤ j ≤ 2r. We obtain

S(α,β)= 1+
2r−2∑
i=0

2r∑
j=0

ψ(αγi(2r+1)γ j(2r+1)(2r−1) +βγiγ j(2r−1))

= 1+
2r−2∑
i=0

ψ(αγi(2r+1))
2r∑
j=0

ψ(βγiγ j(2r−1))

= 1+
2r−2∑
i=0

ψ(αγi(2r+1)) · 1
2r −1

∑
x∈F∗q

ψ(βγix2r−1).

Lemma 4.9 implies that
∑

x∈F∗q ψ(βγix2r−1) =−(2r −1) · k1(N(βγi)), thus we can rewrite

57

S(α,β) as

S(α,β)= 1−
2r−2∑
i=0

ψ(αγi(2r+1))
∑

y∈F∗2r

ψ1(y+N(βγi)y−1)

= 1−
2r−2∑
i=0

ψ(αγit)
∑

y∈F∗2r

ψ1(y+βtγit y−1)

= 1− ∑
x∈F∗2r

ψ(αx)
∑

y∈F∗2r

ψ1(y+βtxy−1)

= 1− ∑
x∈F∗2r

ψ1(xTrm|r(α))
∑

y∈F∗2r

ψ1(y+βtxy−1)

= 1+ ∑
y∈F∗2r

ψ1(y)− ∑
x∈F2r

∑
y∈F∗2r

ψ1(xTrm|r(α)+ y+βtxy−1)

=− ∑
y∈F∗2r

ψ1(y)
∑

x∈F2r

ψ1(x(Trm|r(α)+βt y−1))

Now we have two possibilities. If Trm|r(α)= 0, then
∑

x∈F2r ψ1(xβt y−1)= 0 for every y ∈ F∗2r .

Thus for β ̸= 0 and Trm|r(α)= 0 we have

(4.13) S(α,β)= 0,

with frequency q3/2 − q1/2.

If Trm|r(α) ̸= 0, then

∑
x∈F2r

ψ1(x(Trm|r(α)+βt y−1))=
q1/2 if y=−Trm|r(α)−1βt

0 otherwise.

Hence, in this case we have

S(α,β)=−q1/2ψ1(−Trm|r(α)−1βt).(4.14)

Combining (4.12), (4.13) and (4.14) we obtain (4.11). To compute the explicit values and

frequencies of the case where Trm|r(α) ̸= 0 and β ̸= 0, we rewrite (4.14) as:

−q1/2ψ1(−Trm|r(α)−1βt)=
−q1/2, if Trr|1(−Trm|r(α)−1βt)= 0,

q1/2, if Trr|1(−Trm|r(α)−1βt)= 1.

We have that Trm|r : Fq → F2r maps the values such that Trm|r(α) ̸= 0 uniformly into F∗2r ,

while N : Fq → F2r maps the values β ̸= 0 uniformly into F∗2r . Thus as α and β run through,

58

S(α,β) Frequency
0 q3/2 − q1/2

−q1/2 q2+q
2 − q3/2

q1/2 q2−q
2

q q1/2

Table 4.1: Frequency distribution of S(α,β) when q = 22r and t = 2r +1

−Trm|r(α)−1βt evaluates to every value in F∗2r with (q−2r)(q−1)/(2r −1) = q3/2 − q1/2

repetitions. Trr|1 maps 2r−1−1 values in F∗2r to 0 and 2r−1 values to 1. Multiplying this by

the repetitions, we have the following frequencies for values of S(α,β) when Trm|r(α) ̸= 0

and β ̸= 0.

(4.15) S(α,β)=
−q1/2, (q3/2 − q1/2)(q1/2

2 −1) times,

q1/2, (q3/2 − q1/2) q1/2

2 times.

We add up all the values and frequencies for each case to obtain the complete Table 4.1.

■

Theorem 4.11. Under the same assumptions as Theorem 4.10, we have

(4.16) Nw =
qw−3/2 + q(w−1)/2 − q(w−2)/2, if w is odd,

qw−3/2 + qw/2 − q(w−1)/2, if w is even.

Proof. We will use the values and frequencies in Table 4.1 to compute Nw.

Nw = 1
q2

∑
α,β∈Fq

S(α,β)w

= 1
q2

 0n · (q3/2 − q1/2)+ (−q1/2)w ·
(

q2+q
2 − q3/2

)
+(q1/2)w ·

(
q2−q

2

)
+ (qn) · q1/2


= 1

q2

 (−1)w
(

qw/2+2+qw/2+1

2 − q(w+3)/2
)

+ qw/2+2−qw/2+1

2 + qw+1/2


= (−1)w

(
qw/2 + qw/2−1

2
− q(w−1)/2

)
+ qw/2 − qw/2−1

2
+ qw−3/2

=
qw−3/2 + q(w−1)/2 − q(w−2)/2, if w is odd,

qw−3/2 + qw/2 − q(w)/2, if w is even.

59

■

Corollary 4.12. Let C1,t be as described previously. Then

A3 = q3/2 −2q− q1/2 +2
6

;

A4 = q5/2 −2q2 −5q3/2 +10q+4q1/2 −8
24

;

A5 = q7/2 −15q5/2 +16q2 +54q3/2 −80q−40q1/2 +64
120

;

Proof. It can be verified that A0 = 1, A1 = 0. Theorem 4.1 implies that A2 = 0, and by

our convention A−1 = 0. We will use Theorem 4.7 for the recursive relation. For w = 3 we

have

P(3)= {(1,1,1), (1,2), (3)},

and thus,

N3 = (A3 + A2)
3!
3!

(
q−3

0

)
0!
0!

(
3

1,1,1

)

+ (A1 + A0)
1!
1!

(
q−1

1

)
1!
1!

(
3

1,2

)

+ (A1 + A0)
1!
1!

(
q
0

)
0!
0!

(
3
3

)
=3!A3 +3(q−1)+1.

As such,

A3 = N3 −3(q−1)−1
3!

.

Thus the value of N3 is tied to the value of A3. According to Theorem 4.11, for this

particular code C1,t we have

N3 = q3/2 + q− q1/2,

and thus

A3 = q3/2 −2q− q1/2 +2
6

.

For w = 4, we have

P(4)= {(1,1,1,1), (1,1,2), (1,3), (2,2), (4)},

60

hence,

N4 = (A4 + A3)
4!
4!

(
4

1,1,1,1

)

+ (A2 + A1)
2!
2!

(
q−2

1

)
1!
1!

(
4

1,1,2

)

+ (A2 + A1)
2!

1!1!

(
4

1,3

)

+
(
q
2

)
2!
2!

(
4

2,2

)

+
(
q
1

)
1!
1!

(
4
4

)
=4!(A4 + A3)+3q(q−1)+ q,

and thus

A4 = N4 −3q(q−1)− q
4!

− A3.

According to Theorem 4.11, we have

N4 = q5/2 + q2 − q3/2,

which can be substituted in the previous expression to obtain

A4 = q5/2 −2q2 −5q3/2 +10q+4q1/2 −8
24

.

For w = 5, we have

P(4)= {(1,1,1,1,1), (1,1,1,2), (1,1,3), (1,4)(1,2,2), (2,3), (4)},

61

hence,

N5 = (A5 + A4)
5!
5!

(
5

1,1,1,1,1

)

+ (A3 + A2)
3!
3!

(
q−3

1

)
1!
1!

(
5

1,1,1,2

)

+ (A3 + A2)
3!

1!2!

(
5

1,1,3

)

+ (A1 + A0)
1!
1!

(
q−1

1

)
1!
1!

(
5

1,4

)

+ (A1 + A0)
1!
1!

(
q−1

2

)
2!
2!

(
5

1,2,2

)

+ (A1 + A0)
1!
1!

(
q−1

1

)
1!
1!

(
5

2,3

)

+ (A1 + A0)
1!
1!

(
5
5

)
=5!(A5 + A4)+60(q−3)A3 +60A3 +5(q−1)+15(q−1)(q−2)+10(q−1)+1

=5!(A5 + A4)+60(q−2)A3 +15(q−1)2 +1.

Thus,

A5 = N5 −60(q−2)A3 −15(q−1)2 −1
120

− A4.

By Theorem 4.11 we have

N5 = q7/2 + q3 − q5/2,

which can be substituted in the previous expression to obtain

A5 = q7/2 −15q5/2 +16q2 +54q3/2 −80q−40q1/2 +64
120

.

■

We remark that the code C1,t is the dual of the code with parity check polynomial

g1(x)gt(x), which is a Hamming code. The weight distribution of this dual code was

determined in [25], and a summary can be found in Theorem 4.1 and Table 2 of [26].

Using these distributions we can also use the MacWilliams equations (see section 7.1 in

[21]) to determine the weight distribution of C1,t. We remark that using MacWilliams

equations is also computationally intensive, since the equations are recursive and become

more complicated as w grows.

62

Let us conclude this chapter with some examples. Let q = 24 = 16, and t = 22 +1= 5,

and let us consider the binary cyclic code C1,5 with length n = 15. This is a code with

minimum distance d = 3, and the weight distribution of the code is, using the formulas

in Theorem 4.12,

A3 = 5, A4 = 15, A5 = 60.

For another example, let

q = 28 = 1024, t = 24 +1= 17,

and consider the binary cyclic code C1,17 with length n = 1023. We have A2 = 0, and

according to Theorem 4.12, we have

A3 = 5115, A4 = 1304325, A5 = 282290712.

BIBLIOGRAPHY 63

BIBLIOGRAPHY

[1] José G. Coelho, F. E. Brochero Martínez. Counting roots of fully triangular poly-
nomials over finite fields. Finite Fields and Their Applications, vol. 94, 102345,

2024.

[2] José G. Coelho. Solutions of full equations related to diagonal equations.
https://arxiv.org/abs/2403.13133, 2024.

[3] José G. Coelho and F. E. Brochero Martínez. Low-weight codewords in cyclic codes.
https://arxiv.org/abs/2407.18398, 2024.

[4] Kun Jiang, Wei Gao, Wei Cao. Counting solutions to generalized Markoff-Hurwitz-type
equations in finite fields. Finite Fields and Their Applications, vol. 62, February

2020.

[5] Sun, Q. On the Formula of the number of solutions of some equations over a finite
field. Chinese Annals of Mathematics Series A 18, pgs. 403-408, 1997.

[6] Wei Cao. On generalized Markoff-Hurwitz-type Equations over finite fields. Acta

Applicandae Mathematicae, vol. 112, pgs. 275â=C“281, 2010.

[7] Ruyun Wang, Binbin Wen, Wei Cao. Degree matrices and enumeration of rational
points of some hypersurfaces over finite fields. Journal of Number Theory, vol. 177,

pgs. 91-99, 2017.

[8] Ioulia Baoulina. On the number of solutions of the equation a1xm1
1 + ...+ anxmn

n =
bx1...xn in a finite field. Acta Applicandae Mathematicae, vol. 85, pgs. 35-39,

2005.

[9] Leonard Carlitz. Certain special equations in a finite field. Monatshefte fÃ¼r Mathe-

matik, vol. 58, pgs. 5-12, 1954.

[10] Lei Fu, Danqing Wan. Mirror congruence for rational points on Calabi-Yau varieties.
Asian Journal of Mathematics, vol. 10, pgs. 1-10, 2006.

64

[11] Antonio Rojas-Leon, Daqing Wan. Moment zeta functions for toric Calabi-Yau hyper-
surfaces. Communications in Number Theory and Physics, vol. 1, pgs. 539â=C“578,

2007.

[12] Bruce C. Berndt, Ronald J. Evans, Kenneth S. Williams. Gauss and Jacobi Sums.
Monographies et Ã‰tudes de la Société Mathématique du Canada, (1998).

[13] Henri Cohen. Number Theory Volume I: Tools and Diophantine Equations. Graduate

Texts in Mathematics, Vol. 239. Springer, (2007).

[14] Ronald Graham, Donald Knuth, Oren Patashnik. Concrete Mathematics. 2nd ed.,

Addison-Wesley, (1994).

[15] Rudolf Lidl, Harald Niederreiter. Finite Fields. Encyclopedia of Mathematics and

its Applications, Cambridge University Press, 2nd ed., (1997).

[16] Wei Cao, Qi Sun. On a class of equations with special degrees over finite fields. Acta

Arithmetica 130.2, 2007.

[17] Ruyun Wang, Binbin Wen, Wei Cao. Degree matrices and enumeration of rational
points of some hypersurfaces over finite fields. Journal of Number Theory, Volume

177, pgs. 91-99, 2017.

[18] José Alves Oliveira, On diagonal equations over finite fields. Finite Fields and Their

Applications, vol. 76, 101927, 2021.

[19] Ronald J. Evans. Pure Gauss sums over finite fields. Mathematika, vol. 28(2), pgs.

239-248, 1981.

[20] P. Charpin, A. Tietavainen, Z. Zinoviev. On binary cyclic codes with minimum
distance d = 3. Probl. Peredachi Inf, vol. 33(4), pgs. 287-296, 1997.

[21] Huffman WC, Pless V. Fundamentals of Error-Correcting Codes. Cambridge Univer-

sity Press, (2003).

[22] Marko Moisio. On the number of rational points on some families of Fermat curves
over finite fields. Finite Fields and Their Applications, vol. 13(3), pgs. 546-562,

2007.

[23] Marko Moisio, Kalle Hanto. Kloosterman sum identities and low-weight codewords
in a cyclic code with two zeros. Finite Fields and Their Applications, vol. 13, pgs.

922â=C“935, 2007.

65

[24] Charpin, Pascale. Open problems on cyclic codes. Course notes,

https://api.semanticscholar.org/CorpusID:116345960, 2009.

[25] K. Tadao. Weight distributions of bose-chaudhuri-hocquenghem codes. Coordinated

Science Laboratory Report no. R-317, 1966.

[26] Cunsheng Ding, Chunlei Li, Nian Li, Zhengchun Zhou. Three-weight cyclic codes
and their weight distributions. Discrete Mathematics, vol. 339(2), pgs. 415-427,

2016.

[27] Hai Q. Dinh, Chengju Li, Qin Yue. Recent progress on weight distributions of cyclic
codes over finite fields. J. Algebra Comb. Discrete Appl., vol. 2(1), pgs. 39-63, 2015.

ANNEX

In this annex, we present SageMath commands used to test and create examples of

the formulas and results discussed. We began by defining functions to count roots of a

polynomial or system of polynomials using the brute force approach.

from itertools import product

'''
This function counts the number of roots of a given polynomial.

Inputs:

- polynomial: The polynomial whose roots are to be counted.

- poly_ring: The polynomial ring in which the polynomial is defined.

- star: A boolean indicating whether to count over (F_q^*)^n instead of F_q^n.

- show: A boolean indicating whether to print the points that are roots.

Output: the number of roots of the polynomial.

'''
def count_points(polynomial, poly_ring, star=False, show=False):

variables = poly_ring.gens()

n = len(poly_ring.gens())

base_field = poly_ring.base_ring()

elements_in_coordinates = list(base_field)

if star:

elements_in_coordinates = elements_in_coordinates[1:]

values_in_domain = product(elements_in_coordinates, repeat=n)

count = 0

for value in values_in_domain:

if polynomial(value) == 0:

count += 1

if show:

print(value)

return count

Example usage:

q = 5

R.<x,y> = PolynomialRing(GF(q))

f = x^2*y^3 + x*y^2

print(count_points(f, R, star=True, show=True))

67

'''
Inputs:

- polynomials: A list of polynomials.

- poly_ring: The polynomial ring in which the polynomials are defined.

- star: A boolean indicating whether to count over (F_q^*)^n instead of F_q^n.

- show: A boolean indicating whether to print the points that are roots.

Output: the number of roots that vanish in all the polynomials.

'''

def count_common_roots(polynomials, poly_ring, star=False, show=False):

variables = poly_ring.gens()

n = len(variables)

base_field = poly_ring.base_ring()

elements_in_coordinates = list(base_field)

if star:

elements_in_coordinates = elements_in_coordinates[1:]

values_in_domain = product(elements_in_coordinates, repeat=n)

count = 0

for value in values_in_domain:

if all(poly(value) == 0 for poly in polynomials):

count += 1

if show:

print(value)

return count

Example usage:

q = 5

R.<x,y> = PolynomialRing(GF(q))

f = x^2*y^3 + x*y^2

g = x*y + x^3*y^2

print(count_common_roots([f, g], R, star=True, show=True))

For each of the formulas in Chapter 2, we tested the examples by creating functions

that implemented the formulas.

'''
This function counts the number of roots over GF(q)^n for a fully triangular polynomial

of the form

f(x_1, ..., x_n) = a_1 x_1^(d_{1,1}) + ... + a_n x_1^(d_{1,n}) x_2^(d_{2,n})... x_n^(d_{n,n}),

with coefficients in GF(q), that is *-equivalent to a linear diagonal polynomial of the form

g(x_1, ..., x_n) = a_1 x_1 + ... + a_n x_n.

Inputs:

- q: The number of elements in the field GF(q).

- n: The number of variables in the polynomial.

Output:

- The number of roots over GF(q)^n.

'''

68

def roots_linear_b_zero(q, n):

return (2*q^n + (-1)^n*(q - 1))/(q + 1)

'''
This function counts the number of roots over (GF(q)^*)^n for a fully triangular polynomial

of the form

f(x_1, ..., x_n) = a_1 x_1^(d_{1,1}) + ... + a_n x_1^(d_{1,n}) x_2^(d_{2,n})... x_n^(d_{n,n}),

with coefficients in GF(q), that is *-equivalent to a linear diagonal polynomial of the form

g(x_1, ..., x_n) = a_1 x_1 + ... + a_n x_n.

Inputs:

- q: The number of elements in the field GF(q).

- n: The number of variables in the polynomial.

Output:

- The number of roots over (GF(q)^*)^n.

'''
def roots_linear_star_b_zero(q, n):

return ((q - 1)^n)/q - ((-1)^n)/q + (-1)^n

Example usage:

q = 7**2

R.<x_1, x_2, x_3> = PolynomialRing(GF(q))

f = x_1^5 + x_1^3 * x_2^1 + x_1^3 * x_2^3 * x_3^5

print(count_points(f, R))

print(roots_linear_b_zero(q, 3))

print(count_points(f, R, star=True))

print(roots_linear_star_b_zero(q, 3))

'''
This function counts the number of roots over GF(q)^n for a fully triangular polynomial

of the form

f(x_1, ..., x_n) = a_1 x_1^(d_{1,1}) + ... + a_n x_1^(d_{1,n}) x_2^(d_{2,n})... x_n^(d_{n,n}) - b,

with coefficients in GF(q), that is *-equivalent to a linear diagonal polynomial of the form

g(x_1, ..., x_n) = a_1 x_1 + ... + a_n x_n - b.

Inputs:

- q: The number of elements in the field GF(q).

- n: The number of variables in the polynomial.

Output:

- The number of roots over GF(q)^n.

'''
def roots_linear_with_b(q, n):

total = (q^n - (-1)^n)/(q + 1)

return total

'''
This function counts the number of roots over (GF(q)^*)^n for a fully triangular polynomial

of the form

f(x_1, ..., x_n) = a_1 x_1^(d_{1,1}) + ... + a_n x_1^(d_{1,n}) x_2^(d_{2,n})... x_n^(d_{n,n}) - b,

with coefficients in GF(q), that is *-equivalent to a linear diagonal polynomial of the form

g(x_1, ..., x_n) = a_1 x_1 + ... + a_n x_n - b.

69

Inputs:

- q: The number of elements in the field GF(q).

- n: The number of variables in the polynomial.

Output:

- The number of roots over (GF(q)^*)^n.

'''
def roots_linear_star_with_b(q, n):

return ((q - 1)^n)/q - ((-1)^n)/q

'''
This function returns the multiplicative character of order 2 over the base field GF(q).

Inputs:

- number: The element of the base field GF(q) to evaluate.

- base_field: The field GF(q) in which the number resides.

Output:

- The value of the multiplicative character at the given number.

'''
def eta(number, base_field):

generator = base_field.multiplicative_generator()

exponent = base_field(number).log(generator)

result = exp(2*pi*I*exponent/2)

return result

'''
This function returns the constants zeta_1 and zeta_2 over the input field GF(q),

which are used to count solutions when there is *-equivalence to a quadratic diagonal polynomial.

Inputs:

- base_field: The field GF(q) for which the constants are computed.

Output:

- A tuple (zeta_1, zeta_2) representing the constants used in solution counting.

'''
def get_zeta_constants(base_field):

q = base_field.order()

zeta_1 = (eta(-1, base_field)*q)^(1/2) - 1

zeta_2 = -(eta(-1, base_field)*q)^(1/2) - 1

return zeta_1, zeta_2

'''
The following two functions take the coefficient vector (a_1, ..., a_n) and

return how many of these coefficients are squares or non-squares over the base field GF(q).

Inputs (for both functions):

- coeff_vector: A list of coefficients (a_1, ..., a_n) over GF(q).

70

- base_field: The field GF(q) in which the coefficients reside.

Outputs:

- The number of square or non-square elements in the coefficient vector.

'''
def r(coeff_vector, base_field): # how many squares?

k = len(coeff_vector)

r = 0

for i in range(k):

if 1 == eta(coeff_vector[i], base_field):

r += 1

return r

def s(coeff_vector, base_field): # how many non-squares?

k = len(coeff_vector)

return k - r(coeff_vector, base_field)

'''
This function counts the number of roots over (GF(q)^*)^n for a fully triangular polynomial

of the form

f(x_1, ..., x_n) = a_1 x_1^(d_{1,1}) + ... + a_n x_1^(d_{1,n}) x_2^(d_{2,n})... x_n^(d_{n,n}),

with coefficients in GF(q), that is *-equivalent to a quadratic diagonal polynomial of the form

g(x_1, ..., x_n) = a_1 x_1^2 + ... + a_n x_n^2.

Inputs:

- coeff_vector: A list of coefficients (a_1, ..., a_n) for the polynomial f.

- R: The polynomial ring R = GF(q)[x_1, ..., x_n] where the polynomial f is defined.

Output:

- The number of roots over (GF(q)^*)^n.

'''
def roots_quadratic_star_b_zero(coeff_vector, R):

base_field = R.base_ring()

n = len(coeff_vector)

rn = r(coeff_vector, base_field)

q = base_field.order()

sn = n - rn

zeta_1, zeta_2 = get_zeta_constants(base_field)

total = ((q - 1)^(rn+sn))/q + ((q-1)/(2*q)) * (zeta_1^rn*zeta_2^sn + zeta_2^rn*zeta_1^sn)

return numerical_approx(total)

'''
This function counts the number of roots over GF(q)^n for a fully triangular polynomial

of the form

f(x_1, ..., x_n) = a_1 x_1^(d_{1,1}) + ... + a_n x_1^(d_{1,n}) x_2^(d_{2,n})... x_n^(d_{n,n}),

with coefficients in GF(q), that is *-equivalent to a quadratic diagonal polynomial of the form

g(x_1, ..., x_n) = a_1 x_1^2 + ... + a_n x_n^2.

Inputs:

- coeff_vector: A list of coefficients (a_1, ..., a_n) for the polynomial f.

71

- R: The polynomial ring R = GF(q)[x_1, ..., x_n] where the polynomial f is defined.

Output:

- The number of roots over GF(q)^n.

'''
def roots_quadratic_b_zero(coeff_vector, R):

base_field = R.base_ring()

q = base_field.order()

n = len(coeff_vector)

zeta_1, zeta_2 = get_zeta_constants(base_field)

total = q**(n-1) + roots_quadratic_star_b_zero(

coeff_vector, R

)

for k in range(1, n):

N_k = roots_quadratic_star_b_zero(

coeff_vector[:k], R

)

total += N_k * (q**(n - k - 1))

return numerical_approx(total)

Example usage:

print(roots_quadratic_star_b_zero((1,R(2)), R))

print(count_points(f, R, star=True))

print(roots_quadratic_b_zero((1, R(2)), R))

print(count_points(f, R))

'''
This function takes as input q, a list of coefficients

(a_1, ..., a_n), and a constant b of a fully triangular

polynomial of the form

f(x_1, ..., x_n) = a_1 x_1^(d_{1,1}) + ... + a_n x_1^(d_{1,n}) x_2^(d_{2,n})... x_n^(d_{n,n}) - b,

with coefficients in GF(q), that is *-equivalent to a

quadratic diagonal polynomial of the form

g(x_1, ..., x_n) = a_1 x_1^2 + ... + a_n x_n^2 - b.

It returns the number of roots over (GF(q)^*)^n of f.

Inputs:

- coeff_vector: A list of coefficients (a_1, ..., a_n) for the polynomial f.

- b: The constant term subtracted from the polynomial.

- R: The polynomial ring R = GF(q)[x_1, ..., x_n] where the polynomial f is defined.

Output:

- The number of roots over (GF(q)^*)^n.

'''
def roots_quadratic_star_with_b(coeff_vector, b, R):

base_field = R.base_ring()

n = len(coeff_vector)

rn = r(coeff_vector, base_field)

q = base_field.order()

72

sn = n - rn

zeta_1, zeta_2 = get_zeta_constants(base_field)

total = ((q - 1) ^ n) / q

total += -(1 / (2 * q)) * (

zeta_1 ^ rn * zeta_2 ^ sn + zeta_2 ^ rn * zeta_1 ^ sn

)

total += (

eta(b, base_field) /

(2 * (q * eta(R(-1), base_field)) ^ (1 / 2))

) * (

zeta_1 ^ rn * zeta_2 ^ sn - zeta_2 ^ rn * zeta_1 ^ sn

)

return numerical_approx(total)

'''
This function takes as input q, a list of coefficients

(a_1, ..., a_n), and a constant b of a fully triangular

polynomial of the form

f(x_1, ..., x_n) = a_1 x_1^(d_{1,1}) + ... + a_n x_1^(d_{1,n}) x_2^(d_{2,n})... x_n^(d_{n,n}) - b,

with coefficients in GF(q), that is *-equivalent to a

quadratic diagonal polynomial of the form

g(x_1, ..., x_n) = a_1 x_1^2 + ... + a_n x_n^2 - b.

It returns the number of roots over GF(q)^n of f.

Inputs:

- coeff_vector: A list of coefficients (a_1, ..., a_n) for the polynomial f.

- b: The constant term subtracted from the polynomial.

- R: The polynomial ring R = GF(q)[x_1, ..., x_n] where the polynomial f is defined.

Output:

- The number of roots over GF(q)^n.

'''
def roots_quadratic_with_b(coeff_vector, b, R):

base_field = R.base_ring()

q = base_field.order()

n = len(coeff_vector)

zeta_1, zeta_2 = get_zeta_constants(base_field)

total = roots_quadratic_star_with_b(

coeff_vector, b, R

)

for k in range(1, n):

N_k = roots_quadratic_star_with_b(

coeff_vector[:k], b, R

)

total += N_k * (q ** (n - k - 1))

return numerical_approx(total)

73

Example usage:

f = x_1^2 + x_1^4 * x_2^2 + x_1^4 * x_2^2 * x_3^2 - R(1)

print(roots_quadratic_star_with_b((1, 1, 1), 1, R))

print(count_points(f, R, star=True))

print(roots_quadratic_with_b((1, 1, 1), 1, R))

print(count_points(f, R))

In Chapter 3, we presented a formula with three cases for the number of solutions of

full polynomials that satisfy certain conditions. We implemented it as a single function.

'''
Computes the number of roots of a full polynomial of the form

f(x_1, ..., x_n) = a_1 x_1^{d_{1,1}}x_2^{d_{2,1}}... x_n^{d_{n, 1}}

+ ... + a_n x_1^{d_{1,n}}x_2^{d_{2,1}}... x_n^{d_{n, n}} - b,

which is *-equivalent to a diagonal polynomial with s variables of the form:

g(x_1, ..., x_n) = a_1 x_1^d + ... + a_s x_s^d - b,

where n >= s, and d >= 3 is (p, r)-admissible for some positive integer r such that 2r | m,

and eta_{d}(a_1) = cdots = eta_{d}(a_s).

Inputs:

- a_1: Coefficient in the polynomial.

- b: Constant term in the polynomial.

- base_field: The finite field GF(q) where the coefficients are defined.

- n: Number of variables in the polynomial.

- s: Number of variables in the diagonal polynomial.

- d: Parameter related to the degree of the polynomial.

Outputs:

- The number of roots over GF(q)^n of the polynomial.

'''
def roots_full_poly(a_1, b, base_field, n, s, d):

q = base_field.cardinality()

p = base_field.characteristic()

m = base_field.degree()

r = 1

while not (p**r + 1) % d == 0:

r += 1

h = m / (2 * r)

A_d = -1 - (-1)**h * (d - 1) * q**0.5

B_d = -1 + (-1)**h * q**0.5

def eta_d(number):

generator = base_field.multiplicative_generator()

exponent = base_field(number).log(generator)

return exp(2*pi*I*exponent/d)

term_1 = q**n - (q - 1)**n

term_2 = (q - 1)**(n - s) / q

if b == 0:

74

return term_1 + term_2 * (

(q - 1)**s + ((q - 1) / d) * A_d**s

+ ((q - 1) * (d - 1) / d) * B_d**s

)

eta_value = eta_d(a_1/b)

if eta_value == 1:

return term_2 * (

(q - 1)**s - B_d**s

+ (A_d * (A_d**s - B_d**s)) / d

)

return term_2 * (

(q - 1)**s - B_d**s

+ (B_d * (A_d**s - B_d**s)) / d

)

Example usage:

q = 16

print(roots_full_poly(1, 0, GF(q), 3, 2, 5))

Lastly, in Chapter 4 we did not use many computational resources to compute the

examples. The examples that required it were obtained by using default SageMath

commands for cyclic codes and manually examining the generator matrices and parity

check matrices. When possible we also checked the minimum distance; however the

default SageMath command takes forever to evaluate when the parameters are large.

Here we present some sample commands.

Cc = codes.CyclicCode(length=15, field=GF(2), D=[1,7])

print(Cc.parity_check_matrix())

print("") # to make sure the matrices do not stack on the output

print(Cc.generator_matrix())

the following line takes some time to evaluate

and becomes unusable for codes where the parameters

q or n are large

print(Cc.minimum_distance())

this length is enough to make my personal computer cry

Cc = codes.CyclicCode(length=63, field=GF(2), D=[1,7])

print(Cc.minimum_distance())

	Introduction
	Characters
	Gaussian sums
	Linear and quadratic polynomials
	Linear codes
	Cyclic codes
	Parity check matrices

	Triangular Polynomials
	Triangular polynomials
	Roots with non-zero coordinates for diagonal polynomials
	Main results

	Full polynomials
	Diagonal polynomials and pure sums
	Main results

	Low weight codewords
	General results
	Codewords with weight 3
	Low weight codewords in binary cyclic codes
	An application

	Bibliography
	Annex

