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ABSTRACT 
 
The primary focus of this research is to examine Discourse Markers (DMs) in 
spontaneous spoken interactions. DMs are lexemes or small expressions that 
underwent pragmaticalization. They do not participate in constructing the meaning, 
being directed at managing spoken interactions. Proposed DM functions vary greatly 
depending on goals and analytical methods, with most studies taking the lexicon as a 
departing point. However, the same DM function can be accomplished through various 
lexemes. This research takes a different approach. The formal criterion is the prosodic 
form, which is deemed more stable and revealing regarding the functionalities of DMs. 
Thus, the objective is to comprehend the factors contributing to expressing DMs’ 
functions and understand how their prosodic form can predict their respective 
functions. The theoretical framework utilized for this investigation is the Language into 
Act Theory (L-AcT – Cavalcante, 2020; Cresti, 2000; Moneglia & Raso, 2014). The L-AcT 
views DMs as a special type of Information Unit (IU), which are conveyed by prosodic 
units and have distributional constraints. Based on previous studies (Cresti, 2000; Raso, 
2014; Raso & Vieira, 2016; Raso & Ferrari, 2020), a reviewed DM framework is proposed: 
the Allocutive (social cohesion); the Conative (pointing to an illocutionary solution); the 
Expressive (enacting non-illocutionary surprise); the Highlighter (highlighting); and the 
Incipit (opening a TU or a turn). Statistical and experimental evidence supporting the 
proposal is presented. An IU sample containing DM candidates was extracted from the 
C-ORAL-BRASIL I corpus (Raso & Mello, 2012).  The data were categorized into the five 
proposed classes. 30 prosodic-acoustic descriptors were estimated, including 
intonational shape, syllable lengthening, and relative intensity. Different classification 
models were trained and evaluated on a cross-validation set. The best classification 
model achieved an accuracy score of 78% for these five categories. The more relevant 
features for distinguishing each class from others are described. The results show that 
despite the large variability of contexts, speakers, and speaking styles, achieving a 
reasonable classification through the prosodic form is possible. Additionally, an 
experiment evaluated participants' ability to recognize DM classes occurring in the 
initial position based on prosodic cues. 25 utterances containing three different DM 
functions (ALL, CNT, and INP) and seven different lexemes were selected. A trained 
speaker reproduced instances in a sound-processed room, and the original DMs were 
manipulated to match the prototypical forms of all functional targets. The stimuli were 
presented to 120 participants, whose task was to identify the function. Results show 
that all controlled factors were relevant: the original context, the prosodic form, and 
the lexicon. However, the prosodic form is less variable and less submitted to the 
sentence’s interpretation to cue functionality. 
 
Keywords: Natural Language processing; Information Structure; Discourse Markers; 
Pragmatics; Prosody. 
  



 

 

 

SUMÁRIO 
 
O foco principal desta pesquisa é examinar Marcadores de Discurso (MDs) em 
interações de fala espontânea. DMs são lexemas ou expressões que passaram por 
pragmaticalização. Eles não participam da construção do significado, sendo 
direcionados ao gerenciamento das interações faladas. As funções propostas variam 
muito dependendo dos objetivos e do método analítico, e a maioria dos estudos toma 
o léxico como ponto de partida. Contudo, uma mesma função pode ser realizada 
através de vários lexemas. Esta pesquisa adota uma abordagem diferente. O critério 
formal é a forma prosódica, considerada mais estável e reveladora no que diz respeito 
às funcionalidades dos DMs. O objetivo é compreender os fatores que contribuem para 
a veiculação dos DMs e como a forma prosódica pode ser utilizada para prever as 
respectivas funções. O referencial teórico utilizado é a Language into Act (L-AcT – 
Cavalcante, 2020; Cresti, 2000; Moneglia & Raso, 2014). A L-AcT vê os DMs como um 
tipo especial de Unidade Informacional (UI), que é veiculada por unidades prosódicas 
e possui restrições distribucionais. Com base em estudos anteriores (Cresti, 2000; Raso, 
2014; Raso & Vieira, 2016; Raso & Ferrari, 2020), propõe-se um quadro de MDs revisto: 
o Alocutivo (coesão social); o Conativo (apontando para uma solução ilocucionária); o 
Expressivo (representando surpresa não ilocucionária); o Marcador (destaque); e o 
Incipitário (abrir uma TU ou um turno). São apresentadas evidências estatísticas e 
experimentais que apoiam a proposta. Uma amostra de UIs contendo candidatos a DM 
foi extraída do C-ORAL-BRASIL I (Raso & Mello, 2012). Os dados foram categorizados 
nas cinco classes propostas. Foram estimados 30 descritores prosódico-acústicos, 
incluindo forma entoacional, alongamento silábico e intensidade relativa. Diferentes 
modelos de classificação foram treinados e avaliados em validação cruzada. O melhor 
modelo de classificação obteve uma acurácia de 78%. Os resultados mostram que, 
apesar da grande variabilidade de contextos, falantes e estilos de elocução, é possível 
conseguir uma classificação razoável por meio da forma prosódica. Além disso, foi 
realizado um experimento para avaliar a capacidade dos participantes de reconhecer 
classes de DM que ocorrem na posição inicial com base apenas em pistas prosódicas. 
Foram selecionados 25 enunciados contendo três funções diferentes (ALL, CNT e INP) 
e sete lexemas diferentes. As instâncias foram registradas em um ambiente controlado 
e os originais foram manipulados para corresponder às formas prototípicas de outros 
DMs alvo. Os estímulos foram apresentados a 120 participantes. Os resultados 
mostram que todos os fatores controlados desempenham um papel relevante: o 
contexto original, a forma prosódica e o léxico. No entanto, apenas a forma prosódica 
é menos variável. 
 
Palavras-chave: Processamento automático da linguagem; Estrutura Informacional; 
Marcadores Discursivos; Pragmática; Prosódia. 
  



 

 

 

RÉSUMÉ 
 
L'objectif principal de cette recherche est d'examiner les marqueurs discursifs (MD) 
dans les interactions vocales spontanées. Les MDs sont des lexèmes ou des expressions 
qui ont subi une pragmaticalisation. Ils ne participent pas à la construction du sens, 
étant orientés vers la gestion des interactions parlées. Les fonctions proposées varient 
beaucoup selon les objectifs et la méthode d'analyse, et la plupart des études prennent 
le lexique comme point de départ. Cependant, une même fonction peut être réalisée à 
travers plusieurs lexèmes. Cette recherche adopte une approche différente. Le critère 
formel est la forme prosodique, considérée comme plus stable et révélatrice au regard 
des fonctionnalités des MDs. L'objectif est de comprendre les facteurs qui contribuent 
à la transmission des MDs et comment la forme prosodique peut être utilisée pour 
prédire leurs fonctions respectives. Le cadre théorique utilisé est Language into Act 
Theory (L-AcT – Cavalcante, 2020 ; Cresti, 2000 ; Moneglia & Raso, 2014). La L-AcT 
considère les MDs comme un type particulier d'unité informationnelle (UI), 
correspondant à des unités prosodiques et soumise à des restrictions de distribution. 
Sur la base d'études antérieures (Cresti, 2000 ; Raso, 2014 ; Raso & Vieira, 2016 ; Raso 
& Ferrari, 2020), un cadre descriptif révisé des MDs est proposé avec les fonctions 
suivantes : Allocutive (cohésion sociale) ; Conative (indiquant une solution illocutoire) ; 
Expressive (surprise non illocutoire) ; Marquage (surligne); et Incipit (ouverture d'une 
TU ou d'un tour de parole). Des preuves statistiques et expérimentales soutenant la 
proposition sont présentées. Un échantillon d'UIs contenant des candidats MDs a été 
extrait du corpus C-ORAL-BRASIL I (Raso & Mello, 2012). Les données ont été classées 
selon les cinq classes fonctionnelles proposées. 30 descripteurs acoustico-prosodiques 
ont été estimés, incluant la forme intonative, l'allongement syllabique et l'intensité 
relative. Différents modèles de classification ont été entraînés et évalués en validation 
croisée. Le meilleur modèle de classification atteint une précision de 78 % pour cinq 
classes. Ces résultats montrent que, malgré la grande variabilité des contextes, des 
locuteurs et des styles d'énoncé, il est possible de parvenir à une classification 
fonctionnelle raisonnable grâce à la forme prosodique des MDs. Enfin, une évaluation 
perceptive étudie la capacité des participants à identifier les classes de MDs qui se 
produisent en position initiale, uniquement sur la base d'indices prosodiques. 25 
énoncés contenant trois fonctions différentes (ALL, CNT et INP) et sept lexèmes 
différents ont été sélectionnés. Ces exemples ont été reproduits en chambre sourde 
par un locuteur expérimenté et ces originaux manipulés pour porter les formes 
prototypiques des fonctions cibles. Ces stimuli ont été présentés à 120 participants. Les 
résultats montrent que tous les facteurs contrôlés jouent un rôle significatif : le 
contexte original, la forme prosodique et le lexique. Seule la forme prosodique indique, 
de manière moins variable e soumise à l’interprétation des phrases la fonction visée. 
 
Mots-clés : Traitement automatique du langage ; Structure informationnelle ; 
Marqueurs discursifs ; Pragmatiques ; Prosodie.  
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1 INTRODUCTION 

The main goal of this research is to study Discourse Markers (DMs) in spontaneous 

speech corpora. In the literature, the starting point of the study of DMs is usually the 

lexicon; one may choose, for instance, the lexeme LIKE and, based on syntactic, 

distributional, or contextual criteria, and study the functions that this item can assume. 

This procedure entails crucial problems to which I will return during this exposition. For 

now, it is enough to say that lexicon-based models have not allowed, to my knowledge, 

a framework that clearly defines, explains, and allows for the prediction of DMs’ 

functions. The answer to this problem will be anchored on the prosody of Discourse 

Markers. To this aim, I will explain the importance of the prosodic parsing for speech 

and how discourse is organized by the theory underpinning this research, the Language 

into Act Theory (L-AcT – Cavalcante, 2020; Cresti, 2000; Moneglia & Raso, 2014). We will 

discuss how DMs can be defined in a way that allows their prediction and how one can 

discriminate their functions based on their prosodic forms (Cresti, 2000; Frosali, 2008; 

Raso et al., 2022; Raso & Vieira, 2016). I will review previous works on the theoretical 

functions and forms of DMs and present a proposal containing five DM macro-

functions. The foundations of a model aimed at explaining the mapping of prosodic 

forms onto the proposed DM theoretical functions will be outlined, along with 

exploring the extent to which this mapping is possible. Additionally, the validation of 

the proposal from statistical and experimental standpoints will be addressed. 

A varied range of pitch, loudness, and speech rhythm acoustic correlates were 

estimated to model DMs. A frequent issue during data analysis concerns estimating 

and tracking the fundamental frequency (f0), the correlate of voice pitch. This is 

especially true when dealing with spontaneous speech data. Recorded out of 

acoustically isolated and controlled settings, the speech signal can be rapidly degraded 

by the presence of reverberation, air-conditioners, fans, car engine noises, or other 

such phenomena. This may lead to Pitch Detection Algorithms (PDAs) inaccurately 

estimating f0 values. Over the past 30 years, several methods and algorithms have been 
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proposed to cope with such problems. Each method displays different sensitivities to 

the diverse conditions degrading the speech signal. Another problem is that speech 

data recorded in uncontrolled settings may require researchers to manually revise f0 

data and adjust various parameters provided by PDA algorithms. Since each recording 

setting exhibits different acoustic conditions, it can be assumed that each audio file will 

need different parametrization to achieve the most realistic f0 estimation and tracking. 

Ensuring the reproducibility of the work would require keeping track of all 

modifications made to f0 data and all parametrizations applied to each audio file 

analyzed. To streamline this potentially burdensome, time-consuming, and error-prone 

task, the proposed solution enhances f0 tracking by comparing the output of multiple 

PDA algorithms with a voicing decision model. 

Another important aspect of this work concerns validating the proposed DM 

functions from a perceptual standpoint. For instance, the corpus-based approach 

presented by Lee et al. (2020), who extracted a large set of DMs from different corpora 

and classified them according to their functions, allowed the authors to observe 

correlations between the functions of DMs and their prosodic characteristics, across 

two languages (English and French) and several speech styles. Meanwhile, the 

perceptual validation of the importance of prosodic cues to the various functions of 

DMs are still rare in the literature: the work proposed in Didirková et al. (2019) being an 

important step for the validation of such relationships in French. In this research, a 

methodology for the validation of the relationship between DM functions and prosodic 

forms is proposed. 

 

1.1 ORGANIZATION OF THIS WORK 

Besides this introduction, this work is comprised of eight other chapters. The first two 

chapters are dedicated to the theoretical issues related to this research. The second 

chapter will review the theoretical foundations underpinning this research. I will show 

how one can segment the speech flow and how the L-AcT offers a framework 
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accounting for its organization. In the third chapter, I discuss defining and recognizing 

Discourse Markers in speech. I present the most recent proposal for the DM theoretical 

functions, their prosodic forms, and distributional constraints. Chapter 4 is dedicated 

to the methodological aspects of my work. In the fourth chapter, I present the 

spontaneous speech corpus from which DM instances were extracted. I also give 

further details on the methods I will use to extract and model the prosodic-acoustic 

parameters of the DMs. Chapter 5 is dedicated to the methodological endeavor of 

improving fundamental frequency estimation and tracking. I show how a model was 

trained to classify voiced/unvoiced regions and how f0 estimations obtained from 

various PDAs produced an f0 path. Chapters 6 and 7 are dedicated, respectively, to the 

presentation of the descriptive statistics and an exploratory data analysis of the DM 

instances found in the sample utilized in this work. Finally, in chapter 8, I outline the 

perceptual experiments designed to assess the degree of recognizability of DMs by 

means of their prosodic forms, and I present the results and issues of the experiments. 

 

1.2 SUMMARY OF THE RESEARCH GOALS 

The general objectives of this research can be summed up as it follows. The first 

objective is to present a new proposal for the L-AcT’s DM framework based on the 

prosodic form and to provide statistical and experimental evidence thereto. Another 

goal is to enhance f0 estimations and tracking for audio files recorded in natural 

settings. The specific research goals are: 

 

(a) Review and deepen the classification of Discourse Markers and other short 

information units of L-AcT’s DM framework; 

(b) Implement a solution for the choice and tracking of f0 candidates based on 

available PDAs and couple it with a voicing decision model; 
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(c) Train and evaluate a supervised model to assess the degree to which a sta-

tistical model strictly based on prosodic information can classify DM obser-

vations into the proposed DM functions; 

(d) Run perceptual experiments aimed at evaluating the extent to which partic-

ipants can discriminate and identify DM functions (by means of strictly pro-

sodic manipulations). 
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2 THEORETICAL FRAMEWORK 

2.1 INTRODUCTION 

The theoretical framework underpinning this research is the Language into Act Theory 

(henceforth L-AcT – Cavalcante, 2020; Cresti, 2000; Moneglia & Raso, 2014). The L-AcT 

intends to be a corpus-driven theory, and its framework extends the Speech Act Theory 

(Austin, 1962). The theory’s central tenets result from years of systematic observation 

and study of spontaneous speech corpora. These tenets are centered around the idea 

that to speak is to act in the world and that prosody plays a crucial role in conveying 

the functions of speech units. This chapter will present the theory’s main principles and 

concepts. We begin with the importance of segmenting speech and establishing a 

reference unit of analysis. Then, we move on to some implications of speech 

segmentation. This is a precondition for defining what a Discourse Marker is. Its 

definition will be presented further ahead, but its ultimate goal is to allow the 

identification and prediction of the phenomenon. Firstly, we will present the reference 

units for analyzing the speech data according to the L-AcT. Then, we show L-AcT’s proposal 

for the organization of speech – the Information Structure. Only after these steps we will 

be able to propose our definition of DM. Audio files used as examples of this and the 

ensuing chapters can be downloaded from <SHARED_MATERIALS_THESIS>1 

 

2.2 WHY AND HOW TO SEGMENT THE SPEECH 

In this research, we are studying Discourse Markers based on data from spontaneous 

speech corpus. The first methodological question is how the speech can be segmented 

and what our primary reference unit is. Depending on the goal of any analysis, the 

speech may be segmented at different levels, in types of units of various sizes, each 

 
1 https://1drv.ms/f/s!Ar5G4HnYDsd9goeGYdFY_6CL9ZID9hg?e=wWZKvQ 

https://1drv.ms/f/s!Ar5G4HnYDsd9goeGYdFY_6CL9ZID9hg?e=wWZKvQ
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helping to understand the relations at different linguistic levels (Izre’El et al., 2020) For 

instance, we can segment the speech into phones, syllables, words (whose definition is 

highly dependent on our approach – Blanche-Benveniste, 1997), or other higher-level 

linguistic entities (intonation units, utterances, turns, to name a few). The present 

research is inserted in a theoretical framework whose main objective is to explain how 

the same lexical content can be organized (or packaged) in different ways so that 

speakers achieve their communicative goals in spontaneous speech interactions (Raso 

& Cavalcante, 2022). Therefore, by reference unit, we mean the smallest communicative 

unit of speech. The explanations and exemplifications that follow try, thus, to highlight 

the importance of segmenting speech and establishing the basic units of reference 

from which our analyses will be carried out. 

To show the importance of the subject, we can resort to one of the examples - 

and the discussion - presented in Izre’el et al. (2020). But before delving into it, we must 

introduce L-AcT’s central reference unit, in other words, the smaller communicative unit 

of speech. This unit is the terminated unit (TU): 

 

Terminated unit 

The minimal speech chunk that displays both pragmatic and prosodic autonomy.  

 

The pragmatic autonomy means that the TU must convey at least one speech act (like 

an assertion, a calling, an invitation, an order, a question, or a warning, among many 

other possibilities). The prosodic autonomy means the speech chunk is perceived as 

complete, as concluded by a prosodic sign of terminality (a terminal boundary). This 

definition entails many consequences. For now, it is important to say that the TU is 

formed by at least one prosodic unit that conveys an illocution. 

 With this definition, we can analyze some linguistic relations within a string of 

words ripped off from its structure (syntactic or semantic). Izre’El et al. (2020) propose 

the following sequence: people give John the book I promised him. This is not a natural 

example extracted from the corpora used for this research. Still, it helps, in the first 
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moment, understand some implications of the prosodic segmentation of speech. We 

will present examples extracted from the corpus further ahead. Here, we will adapt the 

original rationale and assume only one kind of boundary, the one requested by the TU 

– the terminal boundary2. We will mark this boundary with “//,” the same symbol 

adopted by the corpora used in this research3. We will assume the following 

arrangements of TUs (but others are possible): 

 

Example 1 

(a) people give John the book I promised him // 

(b) people // give John the book I promised him // 

(c) people // give John the book // I promised him // 

(d) people give John the book // I promised him // 

 

As can be observed, different segmentations result in different numbers of TUs – or, as 

in the case of (b) and (d), the same number but made up of different words. The 

segmentation is insufficient to impose an illocutionary value for each unit, but rather 

how many there are. The segmentation limits the potential illocutions we may have 

and, as such, constitutes a first step towards the interpretation of the sequences.  

Only after segmenting the speech and assigning an illocution to the TU, we can 

make morphosyntactic considerations. But before moving on to morphosyntax, let's 

say something about the illocutions that may be present in each TU. We can take, for 

the sake of simplification, the segmentation proposed for (a), (b), and (c) and suppose 

the following illocutionary values: 

 
2 Different proposals for the prosodic segmentation can be found in the literature. What is certain is that any kind 

of segmentation will imply the presence of a boundary, “either perceived or theoretically proposed and correlated 

to other kinds of phenomena” (Izre’El et al., 2020). As pointed out by Izre’El et al. (2020), two different perspectives 

can arise from the study of segmentation. The first one is focused on the units formed by boundaries – the prosodic 

units – and the functions they may carry. The second one is focused on the study of the acoustic cues that are 

associated with a boundary (Raso et al., 2020a, 2020b; Teixeira & Malvessi Mittmann, 2018). 

3 The corpora of the C-ORAL family. We will give further detail on them in Chapter 4.1. C-ORAL corpus 
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Example 2 

(a) people give John the book I promised him (Assertion) // 

(b) people (Calling) // give John the book I promised him (Order) // 

(c) people (Calling) // give John the book (Expression of surprise) // I promised him (Confirmation 

request) // 

 

In (a), we have a single illocution, an assertion. In (b), we can have a calling followed by 

an order. In (c), we can have a calling followed by two confirmation requests, which 

could be paraphrased as “people! You really mean I should give John the book!? Did I 

promise him that?”.  

We can observe that establishing a TU will have many implications at the 

morphosyntactic level. One straightforward consequence is that morphosyntactic 

relations will have their primary domains of analysis within the prosodic unit, which in 

this case corresponds to the TU. Depending on how a sequence of words is segmented, 

the domain in which these words are related changes, and therefore, the relations 

change. For instance, in (a), people is the syntactic subject that gives John (the syntactic 

indirect object) the book (the syntactic direct object). The same is not true for (b) and 

(c). Here, the lexical item is used, on its own, to perform the illocutions of calling. 

However, a TU may also display an internal organization. Words can be grouped 

into prosodic units that will, in principle, accomplish a communicative function. The 

prosodic units within a TU will be signaled by a non-terminal boundary. This kind of 

boundary is marked through a simple slash (“/”). We can take as an example the word 

sequence “in outer space research activities have been canceled”. We will assume the 

following arrangements of prosodic units (but others are possible): 

 

Example 3 

(a) in outer space / research activities have been canceled// 

(b) in outer space research / activities have been cancelled // 
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As we can see, different boundary positions entail different local morphosyntactic 

relations and, therefore, different meanings. In (a) research specifies the subject 

activities, whereas in (b) it is adjunct specified by outer space. The segmentation, both 

with terminal and non-terminal boundaries, establishes the domain of relationship 

among words. Thus, speech cannot be analyzed unless it has been segmented first. 

 

2.3 THE TERMINATED UNIT: UTTERANCE OR STANZA 

So far, we have said that the TU must have at least one illocution and a terminal 

boundary. However, the TU may take on two forms: the utterance, when it is formed by 

a single pattern, or the stanza, when it is formed by more than one pattern (Cresti, 

2010a). A pattern is made up of one illocutionary core unit and other optional units 

around it. When two or more patterns are juxtaposed (i.e., separated by non-terminal 

boundaries that convey continuation), we have a stanza. We will explore the concept 

of pattern a bit more in the next section. 

 

2.4 THE PATTERN 

A pattern may be of two kinds: simple or compound. A simple pattern is formed by a 

unique prosodic unit. This unit will necessarily be the one that carries the illocution. To 

illustrate the concept, we will show some examples extracted from the AE minicorpus 

(Cavalcante et al., 2018)4. This minicorpus comprises texts sampled from the Santa 

 
4 The examples shown in this chapter were extracted from the C-ORAL family corpora (see Chapter 4.1. C-ORAL 

corpus for further detail). They are identified by their ranking in the files attached to this work (Audio 1) and a 

code (afamcv01_174) that identifies their source file. The first letter in the code stands for the language of the 

minicorpus (a = American English, b = Brazilian Portuguese, f = French, I = Italian, p = European Portuguese, and s 

= European Spanish), the following three stands for the domain of interaction (fam = family/private, pub = public), 

and the final two letters represents the type of interaction (mn = monologue, dl = dialogue, cv = conversation). 

The number after the underscore indicates the rank of the TU inside the source text file. The transcription of each 

TU is introduced by a three-letter code identifying the speaker (KEN) and followed by the indication of the ranking. 
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Barbara Corpus of Spoken American English (SBCSAE – du Bois et al., 2000-2005) and 

was annotated in accordance with the methodological criteria adopted by the C-ORAL 

family corpora. The example below illustrates a simple pattern: 

 

Audio file 1 - afamcv01_174 

Simple pattern 

KEN: [174] what kind of enzymes (Open question) // 

LEN: [175] mainly digestive (Answer) // 

 

In the example above, we have two TUs. Each one is formed by a simple pattern and 

performs one illocution. However, as previously discussed, the lexical content of a TU 

can be structured in more than one prosodic unit. The TU will, in this case, be performed 

through a compound pattern. The example below displays a TU whose pattern is formed 

by three prosodic units: 

 

Audio file 2 - afamcv01_174 

Compound pattern 

FRE: [28] I put down on the card / you know / no cases (Assertion) // 

 

Here, the compound pattern is formed by the prosodic unit carrying the illocution (an 

assertion) and by two other units. The sole mandatory unit is, thus, the last one. The 

two other units are optional. This means that the first two units can be disposed of 

without prejudice for the performance of the illocution. Moreover, if this TU were 

performed without one or both of the two non-terminal boundaries, its meaning would 

sensibly change. For instance, if there was no non-terminal boundary between card and 

you know, you know would have to be interpreted as a specifier of card. By hearing the 

corresponding audio, we clearly notice that this was not the speaker’s intention. The 

speaker structured the pattern this way with a communicative goal in mind. 

Thus, to sum up, the pattern is an assemblage of one or more prosodic units, 
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one of which will necessarily carry the illocution (the illocutionary unit). Other optional 

non-illocutionary prosodic units can be added to the pattern. Optional units can occur 

both before, after, and, in some cases, even within the illocutionary unit, and the pattern 

can achieve a relatively complex structure. The non-illocutionary units will be 

functionally and subordinated to the illocutionary unit.  

But often we can observe two or more patterns juxtaposed by a non-terminal 

boundary. They are, in such cases, subpatterns of the same TU. This TU is the stanza. 

Subpatterns can be assembled using the same constraints that apply to patterns. Each 

subpattern will thus have a core illocutionary unit, which can be complemented with 

other optional units. 

 

Audio file 3 - afamcv01_174  

Subpatterns 

FRA: [176] I mean / I waited (Assertion) / and waited (Assertion) / and waited (Assertion) / and 

waited (Assertion) / and everyone had given up (Assertion) // 

 

In the stanza above, the pattern is formed by five subpatterns. Using curly brackets, we 

can identify the beginning and end of each one: 

 

Audio file 4 - afamcv01_174 

Subpatterns 

FRA: [176] { I mean / I waited (Assertion) / } { and waited (Assertion) / } { and waited (Assertion) 

/ } { and waited (Assertion) / } { and everyone had given up (Assertion) // } 

 

This stanza features a repetition of the same illocution with almost the same lexical 

content. We can easily observe how the illocutions are not performed in a sequence of 

TUs but rather in a unique TU whose patterns are linked by non-terminal boundaries. 

Only the first subpattern is complex. The illocution is performed by its second prosodic 

unit. The following four subpatterns are simple. The example below illustrates another 
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stanza. Curly brackets once again delimit beginnings and ends of subpatterns, and 

illocutionary units are shown in bold: 

 

Audio file 5 - afamcv01_174 

Complex pattern 

KIR: [81] { a potential for bringing over diseases / is obviously there / } { so / the thought was / 

okay / let 's get some eggs / } { Sea World San Diego / has Gentus / } { and / apparently / just not 

enough eggs to share // } 

 

This stanza features four subpatterns. In this case, all of them are complex, i.e., formed 

by the illocutionary unit plus other optional units. In the next section, we will explain 

the relationship between the prosodic and the information patterning in accordance 

with the L-AcT. 

 

2.5 THE RELATIONSHIP BETWEEN THE PROSODIC AND INFORMATION PATTERNING 

The L-AcT (Cavalcante, 2020; Cresti, 2000; Cresti & Moneglia, 2010; Moneglia & Raso, 2014) 

puts forth that the prosodic unit is the formal vehicle that conveys the function of the 

information unit (IU), i.e., a unit of the Information Structure (IS). The IS is a general 

term that includes concepts aiming to explain how the information is packaged (or 

organized) in the speech flow. L-AcT’s approach to the IS assumes that speakers have 

at their disposal a limited inventory of IUs. The choice of an informational function is 

not constrained by the context (as in Krifka & Musan (2012), but by what communicative 

value the speaker wants to give to a unit. Of course, the context has influence in the 

speaker’s decision, but not in a deterministic way. This vision attributes to IS a strong 

linguistic status, since there are formal cues to recognize what the speaker wants to do, 

no matter the context. It is the speaker who decides, in the same context, what s/he 

wants to convey. 

One of L-AcT’s main principles is that there is a tendential isomorphism between 

the prosodic units and the IUs. Prosodic and information units are viewed as two 



45 

 

dimensions of the same object. The L-AcT recognizes that prosody signals the 

boundaries of a pattern, segmenting it internally into interdependent units to which 

informational functions are associated. An IU will thus correspond in principle to each 

prosodic unit. The cases in which this tenet does not hold true will be explained at the 

end of this chapter. Besides, the specific informational function of each prosodic unit 

is marked by a specific prosodic form, as will be seen later. 

Based on the observation of spontaneous speech corpora, a number of 

functions of IUs were identified and described. L-AcT’s IS framework distinguishes two 

kinds of IUs: textual and dialogic units. Textual units are responsible for building up the 

text (the semantic and syntactic content) of the utterance. The dialogic units are, on 

the other hand, devoted to regulating the communicative exchange itself. The dialogic 

units correspond to what other frameworks call Discourse Markers (DMs). Unless 

otherwise specified, we will use DM and dialogic unit interchangeably. And since this 

is the very object of this research, we will introduce L-AcT’s proposal for DMs in greater 

depth in a dedicated chapter. Here, I will focus on briefly presenting the textual IUs. 

 

2.6 THE UNITS OF THE INFORMATION STRUCTURE ACCORDING TO THE L-ACT 

L-AcT’s IS framework identifies six main textual IUs: the Comment (COM), the Topic 

(TOP), the Appendix of Comment (APC), the Appendix of Topic (APT), the Parenthetic 

(PAR), and the Locutive Introducer (INT). The analysis of IUs is based on functional, 

prosodic and distributional criteria. This brings us to another important principle 

assumed by the theory: the form-function pairing. According to the L-AcT, IUs have 

dedicated prosodic forms. A prosodic form is a set of prosodic parameters consistently 

associated with the conveyance of pragmatic functions of the same kind (Firenzuoli, 

2003). Prosodic forms are typically described in terms of variations of fundamental 

frequency (f0), direction of f0 movement, f0 movement alignment, mean syllabic 

duration (articulation rate), and intensity. A prosodic form with which a prosodic unit is 

performed, guides, at the foreground, the conveyance of an information function. 
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Besides, each IU will have distributional constraints or preferences with respect to the 

illocutionary unit. In the following subsections, we present the descriptions of each 

textual IU. At the end, a summary table containing tags, functions, and main references 

is also provided. 

 

2.6.1 The Comment (COM) 

The Comment (COM) is defined as the unit that conveys the illocution (Cresti, 2000, 

2020; Raso & Rocha, 2016; B. Rocha, 2016; B. Rocha & Raso, 2016). This definition has three 

implications. The first one is that the COM is the sole necessary and sufficient unit for 

the performance of a TU. In other words, if a pattern is simple, the prosodic unit present 

will necessarily correspond to a COM. The second implication is that, in COM’s case, 

the prosodic criterion leads to different prosodic forms. Here, COM’s prosodic form 

varies not in accordance with an information value per se but depending on the type 

of illocution carried by COM. Lastly, COM’s distribution is free. Within a pattern, COM 

is the central reference unit with respect to which other IU’s distributional constraints 

are described. The example below shows three examples of COM5 realized in dedicated 

prosodic units and filled with the same lexeme (love). Each COM (bold face) carries a 

different type of illocution conveyed through different prosodic realizations: 

 

Audio file 6 – afamdl02_183-187 – COM 

DAR: [183] do what you want with the time you have // [184] learn / give / whatever // 

PAM: [185] love // 

%ill: directive (proposal) 

DAR: [186] love // 

%ill: expressive (doubt) 

PAM: [187] love // 

 
5 In the C-ORAL family corpora, IUs are annotated through a three-letter tag inside equal signs (=TAG=) that follows 

the boundary signs enclosing the referenced unit. The illocutionary value of COM is not annotated in the corpora, 

but it is here indicated following the annotation rules of the corpora (%ill: illocutionary value). 
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%ill: representative (conclusion) 

 

COM’s prosodic forms are described in terms of variations within a prosodic 

prominence called functional nucleus. This portion of the unit does not necessarily 

correspond to the whole syllabic extension of COM. The functional nucleus by itself is 

deemed to carry the prosodic characteristics responsible for signaling the illocutionary 

function. The functional nucleus is usually comprised of one or two syllables. The 

nucleus can be preceded by a preparation and/or followed by a coda, both of which 

do not carry information function but host the rest of the semantic content of the unit. 

Sometimes, the functional nucleus can be separated into two semi-nuclei; in this case, 

if necessary, a linking portion – also without information function – will lie between the 

two discontinuous parts of the same nucleus. More will be said about COM and its 

forms when we talk about the illocution. The figure below shows f0 (blue line), intensity 

(red line) and the duration (the x-axis) of the three illocutions in Audio 4: 

 

Figure 1 - Prosodic form of illocutions in Audio 4 
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We can see and hear that the three different illocutions have different are vehiculated 

by different prosodic forms, notwithstanding other aspects, discussed in the next 

section, also being important. 

 

2.6.1.1 Pragmatic and cognitive parameters 

COM is the unit responsible for carrying the prosodic form that will signal the illocution. 

The prosodic form will vary in accordance with what kind of illocution the speaker 

intends to perform. The documentation of illocutions poses a strenuous challenge, with 

completion remaining an ongoing endeavor. A central question arises: which criteria 

should guide the classification of linguistic actions within the global context? The L-

AcT advocates for the identification of pragmatic-cognitive parameters as descriptors 

of illocutions. It is imperative to recognize that an illocution cannot be exclusively 

defined by a particular prosodic form; rather, the form serves as a conveyance 

mechanism for a deeper conceptual content that still requires elucidation. The L-AcT 

proposes that the foundation for defining illocutions should rest upon the pragmatic-

cognitive parameters – see, for instance, Moneglia (2011), as well as works by Raso & 

Rocha (2016), Rocha (2016a), and Rocha & Raso (2016). The pragmatic-cognitive 

perspective posits that certain illocutions possess inherent clarity, making formal 

differentiation unnecessary; examples include directives illocutions like orders and 

instructions. Conversely, for illocutions with closely aligned parameters, such as 

assertions and questions occurring in analogous contexts, the employment of formal 

prosodic distinctions becomes imperative. 

The description of the pragmatic and cognitive parameters that allows the 

identification of an illocution plays a central role in the methodology utilized within L-

AcT’s research groups. It is important to mention that such descriptions must take into 

account the smallest possible number of pragmatic and cognitive parameters so as to 

avoid unnecessary overspecification (Rocha, 2016b). Furthermore, the choice of 

parameters and respective specifications must be carried out experimentally (see 
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Rocha, 2016; Raso & Rocha, 2016a; Raso and Rocha, 2016b, for an empiric 

methodology on the identification of illocutions). A number of at least five parameters 

have been observed to be relevant to the distinction of illocutions cross-linguistically 

(Moneglia, 2011; Rocha, 2016; Raso & Rocha, 2016; Cresti & Fujimura, 2018; Cresti & 

Moneglia, 2018). They are listed in Table 1: 

 

Table 1 - Pragmatic and cognitive parameters 

Type of 

Parameter 
Parameter 

Communication 

Channel 

Attentional horizon 

Focus 

Context 

Reference object 

Proxemics 

Space relations between participants and their movements 

Gesticulation 

Gaze 

Social 
Speaker's roles and conditions 

Addressee’s roles and conditions 

Speaker activity 

Intentional values 

Speaker's commitment to the truth 

Speaker's affective involvement 

Expected 

effects 

Conventionally expected effects on the addressee 

Conventionally expected effects in the context 

Fulfillment time 

Benefit 

(Adapted from Cresti, 2020) 

 

For instance, many illocutions cannot be performed when the communication channel 

is not open, such as in the case of questions, confirmation request, and presentations. 

The need to perform such illocutions when the communication channel is closed may 
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elicit the performance of a patterned illocution where the first illocution will be a call 

aimed at opening the channel. I talk about the patterned illocutions in the following 

subsection. 

 

2.6.1.2 Patterned illocutions 

I said before that each pattern contains one COM together with other optional IUs. 

However, the pattern may sometimes present more than one illocutionary unit. When 

this is the case, the illocutionary units are called Multiple Comments (CMM).  CMMs 

form a chain of two or more illocutionary units targeting a unified rhetorical effect. 

They thus seem to result from a single planification by the speaker. Chains of CMM are 

signaled by strongly conventionalized prosodic patterns, constituting a patterned 

illocution conventionalized in order to achieve a holistic rhetorical effect (Panunzi & 

Gregori, 2012; Panunzi & Mittmann, 2014). Although each CMM performs its own 

illocution, the illocutionary pattern must be interpreted as a whole. Chains of CMM 

form one unique nuclear pattern around which other optional non-illocutionary IUs 

can be added. Typical compositional illocutionary patterns are lists, comparisons, and 

requests of confirmation. 

 

Audio file 7 - afamdl01_111 – CMMs forming a compositional illocutionary pattern  

BER: do I get it /=CMM= or not //=CMM= 

%ill: Request of confirmation 

 

2.6.1.3 Stanzas 

As aforementioned, a stanza (Cresti, 2010b) is a type of TU formed by patterns 

juxtaposed by non-terminal boundaries. In a stanza, the illocutionary unit of each 

pattern enclosed by non-terminal boundaries is annotated as a Bound Comment (COB). 

The illocutionary unit of the last pattern (the one enclosed by a terminal boundary) is 

annotated as a regular COM. Instead of having a unified rhetorical effect, COBs – and 

stanzas – are rather the product of the speaker’s flow of thought. They tend to occur 
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longer turns, when the actional activation is lower, like in monologic speech. In these 

situations, it is the semantic content that takes on the central role, leading to a 

weakened sequence of illocutions typically of the same class, such as in the example 

below, in which the illocutionary units pertain to the assertive class: 

 

Audio 6 – afammn03_124 – COBs forming a stanza 

ALA: [124] so I 'm driving up to the house /=COB= and there 's a car in front of me /=COB= and 

the guy is just like sitting there /=COB= in the middle of the road /=COB= and he 's not moving 

/=COB= and you know / I wanna park the car //=COM= 

 

2.6.2 The Topic (TOP) 

Functionally, the Topic (TOP) provides a domain of identification (individual, spatial, 

temporal, etc.) for the interpretation of the illocution conveyed by COM. If not 

preceded by a TOP, COM must be interpreted in accordance with a domain given in 

the context. TOP allows for the detachment from the context (Hockett, 1958). 

Prosodically, TOP is also characterized by the presence of a functional nucleus, which 

carries the function. TOP’s functional nucleus can take on three forms (Cavalcante, 2020; 

Firenzuoli & Signorini, 2003; Raso et al., 2016; Raso & Cavalcante, 2021; Cavalcante, Raso, 

Barbosa, to appear). Type 1 is characterized by a rising-falling fundamental frequency 

(f0) movement in the last stressed and post-stressed syllables. The following examples 

were adapted from Cavalcante (2020): 

 

Audio file 8 – afamdl01_067 – TOP – Type 1  

[67] once I get my experience /=TOP= I’ll be up there too / in the top-four salesmen 

//  
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Figure 2 - Type 1 TOP 

 

Type 2 is marked only by a rising fundamental frequency (f0) movement in the last 

stressed and post-stressed syllables. 

 

Audio file 9 - afamdl01_080 – TOP – Type 2 

XXX: [80] but in a sense /=TOP= I need a [/1] some type of steady income // 
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 Figure 3 - Type 2 TOP  

 

Type 3 has two semi-nuclei – often discontinuous: the first semi-nucleus displays high 

to extra-high f0 values, and the second semi-nucleus has lower f0 values. When they 

are discontinuous, the two semi-nuclei are separated by functionally inactive syllables 

called linking portions. The linking portion corresponds to what to the preparation of 

the other two types of TOP. 

 

Audio file 10 - afamcv04_138 – TOP – Type 3 

XXX: [138] when Mary tells me to get a sleep over the weekend /=TOP= you know I need to get 

sleep over the weekend // 
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Figure 4 - Type 3 TOP 

 

All three types feature syllable lengthening and higher intensity in the nuclei. Types 1 

and 2 display the most prominent lengthening. Distributionally, TOP always occurs 

before COM. 

 

2.6.3 The Appendix of Comment (APC) 

Functionally, the Appendix of Comment (APC) integrates COM with textual content that 

usually corresponds to information already available in the context. Although 

integrating COM, the APC does not contribute to the performance of the illocution. If 

APC is cut off, the pragmatic autonomy of COM remains unchanged. Prosodically, the 

APC is characterized by a flat or falling f0 movement without a functional nucleus 

(Cavalcante, 2020; Moneglia & Raso, 2014). Distributionally, it occurs always after COM. 

The example below brings an example of APC in utterance 25. We provide some 

context before to make it possible to see how the referent all places is already given in 
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stanza 236: 

 

Audio file 11 - afamcv01_025 – APC 

KEN: [23]  but the whole town /=TOP= still has the old Mexican plaza /=COB= and the Mexican 

governor / general's house /=TOP= was right there /=COB= and / <and the church /=TOP= and 

that kind of thing is> / you know / right in the center of Sonoma //=COM= 

JOA: [24] and that 's like the main street /=COM= you know // 

JOA: [25]  Sonoma /=COM= of all places //=APC= 

 

Figure 5 - APC 

 

2.6.4 The Appendix of Topic (APT) 

Analogue to the APC, the Appendix of Topic (APT) is functionally characterized by 

providing TOP with textual content integration. Differently from APC, this integration 

 
6 Overlapping speech is transcribed within angle brackets (<speech>). IUs that were not introduced yet do not 

receive annotation in this example.  
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is not contextually given information; it rather supplements the domain of application 

of the illocutionary force identified by TOP. Its prosodic form seems, on the other hand, 

to be a bit more complex than that of the APC. Sometimes, it reproduces the f0 

contours of TOP in a smaller range and without a functional nucleus; sometimes, APT 

has a falling f0 movement (Cavalcante, 2020). Distributionally, APT always occur after 

the TOP. 

 

Audio file 12 – afamdl02_053 – APT  

PAM: [53] the things I know most /=TOP= about life and death /=APT= come from 

[/1]=SCA=7 from /=SCA= my grandmother //=COM= 

 

 

Figure 6 - APT 

 

 
7 Unit to be introduced in 2.6.7. 
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2.6.5 The Parenthetic (PAR) 

The Parenthetic (PAR) has a metalinguistic function. It delivers a commentary on the 

content of its hosting pattern (Tucci, 2004a, 2009). PARs are frequently used as a 

modalizing mechanisms, expressing the speaker’s point of view on the content of the 

pattern. Prosodically, PAR is characterized by an overall flat and low f0 profile, typically 

higher articulation rate, and low intensity with respect to the neighboring IUs (Tucci, 

2004b). It is frequently followed or preceded by silent pauses. Distributionally, it can 

occur in any position – even within another textual IU – except for the beginning of the 

pattern. The example below illustrates a PAR that is embedded in the first COB8: 

 

Audio file 13 – afammn05_010 – PAR 

COR: [10] <and then like>  [/3] =EMP= and then they 'll like /=INT= take these /=SCA= butt plugs 

/=COB= or whatever you wanna call 'em /=PAR= and they 'll shove it up their anus /=COB= and 

/=AUX= they have to walk around with it //=COM= 

 

 
8 IUs interrupted by another intervening IU and then resumed are signaled with the prefix “i-” before the tag of its 

interrupted chunk. 



58 

 

 

Figure 7 - PAR 

 

2.6.6 The Locutive Introducer (INT) 

Functionally, the Locutive Introducer signals that the illocution that follows has 

pragmatic coordinates (individual, temporal, and spatial) distinct from those of the 

unfolding TU. Most frequently, it is used to introduce meta-illocutions such as reported 

speech, but it can also signal illocutions containing spoken thoughts, lists, emblematic 

exemplifications, to name a few possibilities. It can also introduce lists of PARs. 

Prosodically, it is characterized by a falling f0 profile at the end of the unit, a higher 

articulation rate and pronounced phonetic reduction (Maia Rocha & Raso, 2011; Maia 

Rocha, 2011; Toledo, 2024). Besides, it tends to feature a sharp prosodic contrast with 

respect to the introduced IU. Distributionally, it always occurs before the introduced 

IU. The example below illustrates INT introducing a reported speech9: 

 
9 IUs part of reported speech are annotated through the suffix “_r” after its tag. 
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Audio file 14 - afamdl03_106 – INT 

ANE: 106]  and I ate the other one /=COB= then half of the other one /=COB= it was like /=INT= 

whoa //=COM= 

 

 

Figure 8 - INT 

 

2.6.7 Scanning Units (SCA) 

We said that there is a tendential isomorphism between the prosodic unit and the IU. 

This principle is flouted in some cases. Sometimes, an IU can be realized by means of 

more than one prosodic unit. This may be caused by different reasons. Most frequently, 

this is due to dysfluencies or caused by articulatory reasons (the content of an IU may 

be too big to be articulated in one single prosodic unit). Less often, splitting the IU into 

multiple prosodic units is made for rhetorical purposes. In such cases, the prosodic 
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units coming before the last prosodic unit of the IU receives the annotation of Scanning 

Units (SCA). The prosodic form that carries the information function will be always at 

the last prosodic unit of the IU. 

In some situations, the speaker may replan her speech program, potentially 

leading to an SCA and the retraction of some words. A retraction occurs when the 

speaker makes minor adjustments to the initial program by withdrawing some words. 

 

 Audio file 15 – afammn06_010 - Scanning Unit with retraction  

JIM: [10] and /=AUX= the way it 's marketed /=COB= and the way we 're [/2]=SCA= we develop 

needs for it //=COM= 

 

In the example above, the content we’re is withdrawn in favor of we develop. The sign 

[/2] indicates both the occurrence of a non-terminal boundary and the retraction of 

two words before. Notice that the IU here is not abandoned but rather split into two 

prosodic units; a portion of the SCA unit – and the way – is not retracted. The IU is 

realized through two prosodic units: SCA and COM. 

 

2.6.8 Empty, time-taking, interrupted, and unclassified prosodic units 

Sometimes, the speaker retracts the content of an entire prosodic unit. This may be 

caused by the need to restart the speech planning. The fully retracted prosodic unit is 

annotated as an empty prosodic unit (EMP).  

 

Audio file 16 – apubmn01_285 – Empty prosodic unit 

AMY: [285] are they [/2]=EMP= I mean /=AUX= are they being hesitant about it //=COM= 

 

This case is not to be confounded with a meaningful repetition, which can occur in 

speech (Cavalcante, 2020). In meaningful repetitions, the information function is 

identifiable through a clearly realized prosodic form and its rhetorical effect. In the 
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example above, the empty prosodic unit seems driven by a speech dysfluency. Speech 

dysfluencies are non-pathological hesitations that lead to phenomena such as 

repetitions, repairs, and filled pauses (time-taking vocalizations). Such dysfluencies are 

frequent even in fluent speech, and can create prosodic units without an information 

function. 

The sound used in filled pauses (time-taking vocalization) may vary across 

languages. The corpora of the C-ORAL family signal these vocalizations with the 

generic sign &he. When it specifically carries one such vocalization, the prosodic unit 

receives the annotation TMT (Time-taking). The example below illustrates one such 

filled pause: 

 

Audio file 17 – apubdl02_10 – Time-taking prosodic unit 

LAR: [10] &he /=TMT= I do n't know //=COM= 

 

Sometimes, speakers may also stop their speech program by beginning a new TU or 

by abandoning the turn – for instance, when they are interrupted by another 

participant. When this is the case, the boundary created is annotated with a + sign. 

And, if, for any reason, the information unit cannot be recognized, the IU receives the 

tag Unclassified IU (UNC). This may be the case when the IU is interrupted, such as in 

Audio file 13, or when the speech chunk is perceived as an IU, but its content and 

communicative value cannot be recognized due to overlapping, background noises, 

and muffled or whispered speech. Audio file 14 illustrates the latter case. Here, the xxx 

sign marks that one word was not recognized during the corpus transcription task10. 

 

Audio file 18 - afamcv02_174 - Unclassified unit 

 
10 The other signs used in the transcription of the C-ORAL family corpora will be dealt with when we present the 

corpora used for this work. 



62 

 

BET: [174] no /=COB= I +=UNC= 

  

Audio file 19 – apubdl02_098 - Unclassified unit 

LAR: [98] <xxx> +=UNC 

 

2.7 SUMMARY TABLES 

Table 2 below presents a summary of the textual IUs proposed by the L-AcT, as well as 

their tags, functions, and main references: 

 

Table 2 - Synthetic table of the textual IUs assumed by the L-AcT, their functions and 

main references 

IU TAG FUNCTION REFERENCES 

Comment COM 

Conveys the illocution. It is the 

necessary and sufficient unit for 

the realization of the terminated 

unit 

(Cresti, 2000; 2020; 

Moneglia & Raso, 

2014; Raso & Rocha, 

2016a; 2016b; Rocha, 

2016) 

Multiple 

Comment 
CMM 

Patterned illocutions that produce 

a conventionalized rhetoric effect; 

it is built upon a single illocutionary 

pattern 

(Panunzi & Gregori, 

2012) 

Topic TOP 

Identifies the domain of 

identification – spatial, temporal, 

individual – for the interpretation 

of the illocutionary force carried by 

COM 

(Firenzuoli & 

Signorini, 2003; 

Signorini, 2005; 

Mittmann, 2012; 

Rocha, 2012; 

Cavalcante, 2016; 

Raso et al., 2017 

Cavalcante, 2020; 

Raso & Cavalcante, 



63 

 

IU TAG FUNCTION REFERENCES 

2021) 

Bound 

Comment 
COB 

The illocutionary unit of a 

sequence of subpatterns 

juxtaposed by non-terminal 

boundaries. It forms a stanza. 

(Cresti, 2010) 

Appendix 

of 

Comment 

APC 

Adds textual content to a COM 

unit, often corresponding to given 

information 

 (Moneglia & Raso, 

2014; Cavalcante, 

2020) 

Appendix 

of Topic 
APT Adds textual content to a TOP unit 

 (Moneglia & Raso, 

2014; Cavalcante, 

2020) 

Parenthetic PAR 

Delivers a metalinguistic 

commentary on the content of the 

TU. 

(Tucci, 2004, 2009) 

Locutive 

Introducer 
INT 

Signals that the following IU must 

be interpreted according to 

pragmatic coordinates other than 

those of the unfolding terminated 

unit 

(Maia Rocha, 2010; 

Maia Rocha & Raso, 

2011; Toledo, to 

appear) 

 

Table 3, on its turn, presents a summary of tags and uses given to other prosodic units 

that either do not bear an informational value or that could have their value identified: 

 

Table 3 - Synthetic table of tags given to other prosodic units 

UNIT TAG USE 

Scanned 

Unit 
SCA 

Identifies cases in which the IU is realized through more 

than one prosodic unit. The first prosodic units of the IU will 

be annotated through SCA. Only the last prosodic unit will 

receive the tag of the corresponding IU. 
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Empty Unit EMP 

Identifies units that the speaker intends to withdraw. 

Mainly (but not only) used for repairs and repetitions that 

do not purport a rhetorical effect. 

Time-taking 

Unit 
TMT 

Identifies prosodic units created by filled pauses (time-

taking vocalizations) 

Unclassified 

Units 
UNC 

Identifies prosodic units that for some reason (overlapping 

speech, background noise, muffled or whispered voice) 

could not have their informational value recognized. 

 

In the next chapter, I will focus on deepening the L-AcT proposal for Dialogical Units. I will 

explain why this proposal accounts for Discourse Markers better than other approaches 

that depart from the lexicon, context and/or syntactic structure.  
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3 REVISION AND DEEPENING OF THE PROPOSAL FOR DMS 

The main goal of this chapter is to propose a revised framework for interactional 

Discourse Markers (DM). A substantial body of literature about DMs has been produced 

since the 1980s. However, it is still necessary to define what a DM is. More specifically, 

we lack a satisfactory response to two important questions. First, how can one 

determine whether a small expression or lexical item function as a DM? Secondly, how 

can one determine a lexical item's precise function once one has determined that it 

behaves like a DM? One major issue that biases the studies on DMs is that the lexicon 

is typically the starting point, with rare and partial exceptions. In the attempt to respond 

to the first question, it is contended that the prosodic cues, not the lexical filler, are the 

means by which DMs can be identified. Next, I will tackle the second question and 

demonstrate how corpus analysis enables us to determine five prosodic forms for five 

distinct DM functions. Before doing that, I will (a) briefly review the literature on DMs 

and (b) comment some defining features as per the literature. 

 

3.1 BRIEF OVERVIEW 

Discourse Markers have been on the agenda of various branches of linguistic studies 

and allied fields for as long as since the early 1980s. One important milestone on their 

study is Schiffrin (1987), but it is not until the mid-1990s that Discourse Markers began 

to come to its own (Brinton, 2010) with research focusing on English (Jucker, 1997; 

Traugott, 1995) but also on other languages such as  Catalan (Cuenca & Marín, 2012), 

Chinese (Biq, 1990), Croatian (Dedaić, 2005), Danish (Emmertsen & Heinemann, 2010), 

Dutch (Mazeland & Huiskes, 2001), Estonian (Keevallik & Vint, 2012), Finnish (Hakulinen, 

1998), French (Cadiot et al., 1985), German (Abraham, 1991), Hebrew (Maschler, 1997), 

Hungarian (Dér & Markó, 2010), Icelandic (Hilmisdóttir, 2011), Indonesian (Rofiq, 2018), 

Italian (Bazzanella, 1990), and Latin (Kroon, 1997). These bulk of research has explored 

the cognitive, expressive, social, and textual aspects of Discourse Markers. With a few 
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exceptions, the literature identifies the scope of the research departing from lexical 

items or small expressions presenting some syntactic characteristics. DMs are seldom 

defined, and, not rarely, the category encompasses a large number of other 

phenomena that, in our view, could be better accounted for as yet other phenomena. 

I will come back to this point further ahead. 

 Discourse Markers have been studied from different perspectives by different 

groups of scholars. The definition of DMs seems to be related to research interests and 

theoretical frameworks supporting the study. Schiffrin's (1987) initial work defined DM 

as "sequentially dependent elements which bracket units of talk" and proposed that 

they can be considered as a set of linguistic expressions comprising members of word 

classes as varied as conjunctions, interjections, and adverbs. Fraser (1999) defines DMs 

as a class of lexical expressions drawn primarily from the syntactic classes of 

conjunctions, adverbs, and prepositional phrases. Maschler's approach views all DMs 

as metalinguistic units, emphasizing this characteristic as their basic defining feature. 

Heine et al. (2019) view DMs as invariable expressions that are syntactically 

independent from their environment, typically set off prosodically from the rest of the 

utterance, and their function is to relate an utterance to discourse situation.  

We can see that what has been studied as Discourse Markers can comprise a 

varied number of phenomena. DMs can have interactional, 

metalinguistic/metacomment, and textual cohesive macro-functions. It can even work 

as frame-shifting device. In the next section, I comment on some of the formal features 

and characteristics of DMs typically found in the literature. 

 

3.2 SOME FEATURES OF DMS 

The literature points to some formal features and characteristics that help define, 

identify and predict Discourse Markers (DMs). Some characteristics pointed out by the 

literature, according to Raso et al. (2022) and Raso & Ferrari (2020) are: 
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(a) DMs are lexical items or small expressions that do not combine on the semantic 

and syntactic level with the rest of the utterance. This means that they are not 

properly a part of the propositional content and are, therefore, non-composi-

tional items; 

(b) The lexical items or small expressions functioning as DMs lose (at least partially) 

their semantic meaning and acquire a pragmatic function; 

(c) DMs are polyfunctional; this statement may be use in two different senses: in 

the first one, it means that one DM occurrence may have one or more functions 

at the same time; in the second one, it means that a lexical item or small expres-

sion may take on different functions in different occurrences depending on the 

context; 

(d) A varied range of DM functions is found in the literature. By way of example, we 

can mention functions concerned with linguistic modality, illocution, conative 

function, turn-taking devices, and politeness, metalinguistic, and that is not an 

exhaustive list. 

 

I would like to address these characteristics so as to evaluate to what extent they are 

adherent to L-AcT’s framework. Arguments are presented in the order in which these 

characteristics are set out above. 

 

3.2.1 Non-compositionality 

First of all, we agree with (a) that DMs are non-compositional items both from semantic 

and syntactic standpoints. They do not combine with the propositional content of the 

utterance. The first question we should be concerned by is, thus, (a) how the non-

compositionality is signaled in speech and (b) what features allows the addressees to 

understand the differences between the pairs of realizations of the three examples that 

follow: 
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Compositionality – Example 111 

(a) God save the queen! 

and  

(b) God, save the queen! (Where God is an exclamation and the rest of the utterance performs 

an order) 

 

In the first case, GOD is the subject of the sentence, and it is in a relation of 

compositionality with the text of the utterance. In the second example, GOD could be 

replaced by very different lexical items used as, for instance, exclamations or 

imprecations (Raso et al., 2022). In any case, we need formal criteria of non-syntactic 

nature to ascertain which interpretation to follow since, here, there is nothing neither 

in lexicon nor in syntax that say that we may have a boundary between GOD and SAVE. 

 

Compositionality – Example 2 

(a) Tipo meu deus. 

Like my god. 

(b) Tipo, meu deus! 

Like, oh my god! 

 

TIPO (type) is canonically a noun in Portuguese and not a comparative connective such 

as LIKE. In example (a), it is used as a grammatical item: como meu deus (like my god), a 

non-canonical use that is frequently observed in spontaneous speech. Here, the item 

is syntactically and semantically compositional with rest of the utterance. In example 

(b), TIPO can be used with an interactional function. The same logic can be applied to 

small expressions like I mean: 

 

Compositionality – Example 3 

(a) I mean I’m not going. 

 
11 Example adapted from Raso & Ferrari (2020). 
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(b) I mean, I’m not going. 

 

In (a), a compositional use may lead to the paraphrase “by what I said I meant that I’m 

not going”, while in (b) the speaker may just want to draw the interlocutor’s attention. 

 These examples were brought up to show that the lexical item (or the small 

expression) and the syntactic structure are far from enough to mark the loss of 

compositionality. To say with certainty that the compositionality is broken, we must 

take into account, firstly, the prosodic segmentation. In the data analyzed in this 

research, the interruption of compositionality is marked by a prosodic non-terminal 

boundary. We can now move to the second item of the list of DM properties. 

 

3.2.2 Desemantization 

Discourse Markers, in the sense that interests this research, are lexical items or small 

expressions that lose their semantic value. I want to show how an analysis that 

considers the prosodic form can help us evaluate the semantic emptiness. The first 

condition is that the lexeme or small expression be isolated in a prosodic unit (i.e., that 

it be set off from the rest of utterance by a non-terminal boundary). This gives a first 

clue that the unit may be non-compositional. This discussion may be a bit longer, but 

it helps us respond to the last two points of our list – especially when I talk about DM 

functions. 

For this discussion, it may be useful to take some examples of the same lexical 

item occurring in different contexts, either in prosodic isolation or not. I will resort to 

an item that may occur in many different informational contexts: ASSIM (like this). This 

item can be used with its full semantic value but also with interactional functions. This 

causes the lexeme to occur in units of widely varying informational values. Such a 

feature is desirable if we aim to show how the same lexeme can take on different 

functions depending on its prosodic realization. For the sake of space, I will not 

illustrate all the different functions ASSIM can assume but rather three different contexts 

it can occur in. A more detailed list of functions ASSIM can take on and the pragmatic 
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implications can be found in Raso & Santos (2020). The examples are taken from the C-

ORAL-BRASIL I corpus (Raso & Mello, 2012). 

The first context is the nucleus – or part of the nucleus – of the illocutionary unit 

(that is, the nucleus of COM). In this context, ASSIM can be paraphrased with its full 

semantic meaning (like this): 

 

ASSIM in illocutionary nucleus of COM 

Audio file 20 - bfamcv04_191-196 

*BRU: [191] cê pode fazer assim // 

*BRU: [192] que isso é <similar> //  

*HEL: [193] <tá> // 

*HEL: [194] e assim //  

*BRU: [195] não // 

*BRU: [196] assim // 

 

*BRU: [191] you can do it this way // 

*BRU: [192] ‘cause this is <similar> //  

*HEL: [193] <ok> // 

*HEL: [194] and this way //  

*BRU: [195] no // 

*BRU: [196] this way // 

 

The three instances of ASSIM are replaceable by “in this way / like this” and are sufficient 

for the illocution to be conveyed. ASSIM can also occur in a dedicated non-illocutionary 

IU. The informational functions assumed in this case can be both textual, or 

interactional. First, I show one textual function. The following example illustrates an 

utterance in which ASSIM assumes the semantic function of modalization: 

 

ASSIM in a dedicated unit with a textual function 

Audio file 21 - bpubcv03_123 

FER: [123] pra gente nũ ter uma tradução <bem> / &he / chula / assim / bem ao pé da letra 



71 

 

horrorosa / aí fica <complicado> // 

 

FER: [123] so that we don’t end up with a translation very / &he / pimp / let’s say so / very literal 

and poor / this gets <complicated> // 

 

In this example, ASSIM can be paraphrased by “let's say so” with the intention of 

attenuating “pimp”. It thus assumes a function compatible with that of a modalizing 

Parenthetical (PAR), i.e., a textual IU.  

 In addition to textual functions, ASSIM can take on interactional functions typical 

of DMs in the sense of this research. The following example shows a case where ASSIM 

no longer turns to the text of the utterance but to the interaction itself: 

 

ASSIM in dedicated unit with interactional function 

Audio file 22 - bpubdl05_254 

GET: [254] então / é uma abelha que / assim / também tem um futuro como polinizador / né // 

GET: [254] so / this is a bee that / you know / also has a future as a pollinator / huh // 

 

I will talk about the specific function of this realization later on. But it can be said that 

the attitude with which the assertion is enacted does not leave much place for 

interpretations such as “like this,” or “let's say so” in the same approximative way it is 

used in the Parenthetical. Here, the speaker seems to use this unit to draw the 

addressee’s attention to a conclusion, i.e., to the point they were trying to reach to. I 

do not dive into the prosodic differences of the examples given, but their coherence 

with information functions is pointed out in Raso & Santos (2020). 

By showing these examples, I tried to show how the same lexical item can 

assume different informational values depending on the prosodic realization; one of 

the basic assumptions of the L-AcT is that each IU is correlated with a prosodic form 

that guides, at the forefront, the interpretation of its informational value. The point of 

these examples is to show that the prosodic segmentation is not enough, 

notwithstanding its importance. Together with distributional constraints and the 
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prosodic segmentation, the prosodic realization of a specific content will serve as a 

formal criterion enabling us to analyze and discriminate between illocutions and DMs. 

The examples given in this section will now help us respond to the poly-functionality 

of DMs. 

 

3.2.3 Poly-functionality of DMs 

Our view agrees with the statement that the same lexical item or small expression can 

take on different functions. However, the same does not hold true for the statement 

saying that a concrete item (an occurrence/token) can bear more than one function at 

the same time. At least not if we mean function of the same level. 

 As explained in Chapter 2, the L-AcT put forth the hypothesis according to which 

there is an isomorphic relationship between the prosodic unit and the Information 

Structure (with the exceptions explained therein). Furthermore, different information 

functions seem to be correlated with specific prosodic realizations. The relationship 

established by the different informational functions is of paradigmatic nature. When a 

unit is TOP, it cannot be COM at the same time. As a matter of fact, one can observe 

some prosodic variation among different realizations of the same function. But this 

variation seems related to different attitudes – as defined in Mello & Raso, (2011) and 

Raso & Rocha (2016) –, to emotions, as well as to many other sociolinguistic variables. A 

prosodic form will convey a unique interactional function. For analytical purposes, 

when there is doubt between two functions, we can also resort to distributional 

constraints. 

 

3.2.4 Functions of DMs 

Thus far, I have explained why prosody must be given a primary role on the study of 

DMs. Now I would like to deal with some of the functions described in the literature. I 

begin with the most obvious. DMs should not be confused with illocutions; not in the 

sense that DMs are dealt with in this research. Illocutions are textual units that build 

the semantic content of the utterance; illocutions carry the speech act being enacted 
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by the terminated sequence. DMs are not semantically compositional with the text of 

the utterance. 

A second function mentioned in the literature is related to the notion of 

modality. Assuming the sense given by Bally (1950), i.e., that the modality marks the 

position taken by the speaker with respect to the expressed content, we have to admit 

that there is a semantically compositional relationship between modal operators and 

the propositional content of the utterance. By attributing modal functions to DMs, we 

call into question the premise that there is no compositionality between the DM and 

the utterance. If the unit is compositional (and thus build the text of the pattern), it is 

not a DM in the sense dealt with in this research. This could be sufficient to say that 

DMs do not take on modal functions, especially when we consider that DMs are also 

desemanticized. 

 

3.2.5 Summary of the section 

The L-AcT offers analytical criteria whereby one can isolate DMs from other kinds of 

units; these principles are of prosodic and informational nature. The prosodic 

segmentation gives a first cue about the non-compositionality of a unit. The prosodic 

form works as the formal principle that, at the forefront, enables the distinction of 

different types of informational functions. As a matter of fact, lexical and syntactic 

formal features do not allow for the identification of DMs. The lexicon can take on any 

function depending on the concrete realization. The lexicon is also variable over time 

and space, whereas prosody is more stable. We do not deny that many factors and 

aspects play a role in assigning subfunctions to DMs within context. What is argued is 

that prosody plays a leading/mapping role in this assignment. The prosodic form works 

as a primary branching mechanism that, together with other aspects, leads to a specific, 

contextualized subfunction. The prosodic form is stable, while the lexicon can vary 

greatly. The sub-function can be determined by the lexicon, through the interaction of 

the lexical item with prosody and with the context in which the DM is produced. In the 

subsections to follow, I present our last proposal for the macro-functions of 
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interactional DMs. As much as possible, I try to match the functions indicated in the 

literature with the functions offered by our proposal, showing how that macro-function 

and prosodic form are coherent with proposed subfunctions. 

 

3.3 L-ACT’S DISCOURSE MARKERS FRAMEWORK HISTORY 

This concise presentation offers a historical overview of the examination of DMs within 

the Language into Act Theory (L-AcT) research framework. The latest proposal 

identifies and addresses various issues in the preceding descriptions. 

The initial proposal, put forth by Cresti (2000), introduced four DMs (Dialogic 

Units in L-AcT’s terminology): Incipit (INP), Conative (CNT), Allocutive (ALL), and Phatic 

(PHA). According to Cresti's proposition, the INP's function involves initiating the turn 

or utterance while expressing affective contrast with the preceding utterance. It 

consistently occurs at the outset of an utterance or at the beginning of the sub-pattern 

of a stanza. Prosodically, INP displays high f0 with respect to illocution. Cresti (2000) 

observed three f0 profiles: rising, falling, and rising-falling, without addressing the 

reason for the apparent variability in conveying the same function. 

CNT, described by Cresti (2000), aims to persuade the addressee to undertake 

or cease a specific action. Its distribution is unrestricted. Prosodically, CNT features a 

falling f0 profile, short duration, and elevated intensity, though not as high as those 

observed in INP. 

ALL serves the purpose of establishing social cohesion among conversation 

participants or clarifying the utterance’s addressee. Typically filled with titles, epithets, 

and proper names, ALL exhibits a free distribution according to Cresti's proposal. 

As per Cresti's initial proposal, PHA aims to keep the communication channel 

open. Despite being noted for its short duration and low intensity, Cresti did not assign 

a specific f0 profile to this unit. Additionally, PHA is suggested to have a free 

distribution, contributing to challenges addressed later in this work. 

Finally, EXP, according to Cresti’s proposal, expresses emotional support for the 



75 

 

illocution and exhibits a distributionally free nature. Prosodically, EXP displays mean 

intensity and duration, with an f0 profile described by the author as modulated, 

allowing for one or more f0 movements. 

Raso (2014) attempted an initial systematization of Cresti’s (2000) framework by 

comparing DM samples from the Italian and Brazilian Portuguese C-ORAL corpora. 

Recognizing the need for a refined prosodic description, Raso (2014) laid the 

groundwork for subsequent works. Raso & Vieira (2016) addressed apparent variations 

in INP’s f0 contours and partly elucidated the prosodic distinction between CNT and 

ALL. Gobbo (2019) introduced a supervised classification model focusing on parameters 

derived from prosodic-acoustic measurements for the three most clearly defined 

functions: INP, CNT, and ALL. His model achieves a 0.86 goodness of fit (as measured 

by the accuracy score) with eight prosodic parameters. Raso et al. (2022) further delved 

into L-AcT’s DM framework, establishing methodological foundations for this research. 

The subsequent section presents our most recent proposal. At this point, I would like 

to reflect on the problems to be tackled: 

 

a) What is the function of the PHA? Keeping the channel open can be attributed 

to many things, starting with TMT. What would be the prosodic correlates of 

PHA? 

b) What does emotional support mean in EXP? It does not have a defined form 

either. 

c) How can the formal variability of INP be explained? 

 

With unexplained variable forms (EXP, PHA and INP) it would not be possible to 

guarantee that the prosodic form is the formal vehicle of the function. 

 

3.4 THE MOST RECENT PROPOSAL FOR DMS 

This proposal encompasses five Discourse Marker (DM) units. The two most clearly 
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defined units from prior research (CNT, and ALL) have been kept unchanged from Raso 

& Vieira (2016) and Raso & Ferrari (2020), as their descriptions were considered 

satisfactory due to the coherent mapping between prosodic form and assigned 

functions. Functionally, we have redefined EXP and assigned a specific prosodic form 

to it. The Phatic Unit was excluded. According to Cresti (2000), PHA's function is to 

maintain an open communication channel. However, this function can be accomplished 

by various other devices, such as filled pauses or Scanned Units. PHA lacked a distinct 

function, its prosodic form was somewhat unspecified, and its distribution did not 

contribute significantly to disambiguation. Furthermore, in first moment we 

hypothesized a new form tentatively called FLAT. Then, we observed that the FLAT and 

INP shared a distinctive common trait: both exhibit a clear flat contour over the stressed 

syllable. But INP had a high f0 profile and FLAT a low f0 profile. This variation can be 

better accounted for as function of the absence or presence of an attitude of contrast 

with respect to what was said before. Thus, the description of INP presented in Raso & 

Vieira (2016) was also received but with modifications. One new unit has been 

introduced and is presented subsequently. 

In the revision process leading to this proposal, three key steps were undertaken: 

 

a) a reassessment of prosodic boundaries annotation; 

b) an exploration of regularities in prosodic forms; 

c) an examination of these regularities in the context of previously identified and 

newly proposed interactional functions. 

 

The ensuing section outlines the five DM functions. A comprehensive summary table, 

featuring functions, forms, distribution, and frequency of each DM, is provided at the 

conclusion of this proposal. 
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3.4.1 The Incipit (INP) 

In the preceding subsection, attention was directed towards the diverse f0 profiles 

described by Cresti (2000) for the INP unit. As elucidated by Raso & Vieira (2016), INP 

can exhibit a remarkably wide f0 range within an exceptionally brief duration. Its 

prosodic form is characterized by a flat f0 profile over the stressed vowel, accompanied 

by very high intensity level—exceeding the mean value of COM in both instances.  

There are two types of INP. The first one is the high INP, which marks a contrast 

with respect to what was said before. This type is characterized by a high flat f0 profile 

over the stressed vowel. When the stressed vowel is preceded by voiced segmental 

material, a rising f0 movement is observed before reaching the higher value of the 

stressed vowel. Similarly, when the stressed vowel is followed by voiced material, the 

profile assumes a falling f0 movement after the stressed vowel. In instances where both 

rising and falling movements are present, the highest f0 level is at the stressed vowel. 

It is worth noting the perceptible tenseness on the stressed vowel of INP, although this 

aspect remains outside the scope of evaluation in the current work. The following 

examples illustrates these characteristics: 

 

Example of a high INP 

Audio bfamdl02_197 

*BAL: não /=INP= mas é porque eu tô pensando assim //  

            no / but it is because I’m thinking this way // 
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Figure 9 - Form of high INP 

 

 

The figure 9 above shows how the form of the INP is affected by an initial voiced 

consonant that causes a rising movement until the vowel of the diphthong, which 

sharply falls in the semivowel. 

 Another type of INP is the one that does not mark a contrast to previous content 

(flat INP). It has intensity and duration similar to the contrastive INP. But the flat profile 

is low with respect to COM, as in the example and Figure 10 below: 

 

Example of a flat INP 

 Audio file 23 - bfammn05_102 

*JUN: ah /=FLAT= Nossa /=EXP= aquea máquina é lixo demais //=COM= 

   oh /=FLAT= Holy / that camera is complete trash // 
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Figure 10 - Form of flat INP 

 

 

3.4.2 The Conative (CNT) 

CNT is distinguished by a falling f0 movement, often accompanied by a high f0 

variation rate. However, the variation rate may be influenced by attitudinal factors. This 

fall is not as pronounced as the movement seen in INP outside the stress and is lower 

than the mean f0 of COM. In contrast to ALL, where the f0 movement falls from the 

unit’s onset, the CNT's falling movement aligns with the stressed vowel. Raso & Ferrari 

(2020) noted that a slightly rising f0 movement (a preparation) can be observed in the 

presence of voiced segmental material before the stressed vowel. This preparation is 

more noticeable when the stressed syllable is not initial, but it may also be discerned 

when there is sufficient voiced material before the stressed vowel. Raso & Ferrari (2020) 

proposed a more precise functional definition of CNT, indicating its role in signaling 

the illocutionary resolution of the utterance. 

 

Example of CNT 

 Audio file 24 – btelpv06_094 

*LUR: não / adorou / Lelena //=CNT=  

        no / he liked it / Lelena // 
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Figure 11 - Form of CNT 

 

 

We can observe in Figure 11 the alignment of the falling f0 movement with the stressed 

syllable and the rising movement over the pre-stressed syllable. 

 

3.4.3 The Allocutive (ALL) 

Cresti (2000) proposed the occurrence of ALL in any position. However, upon closer 

examination of this unit's behavior, Raso & Ferrari (2020) observed that it does not 

manifest at the beginning of a pattern and tends to favor the final position. Although 

very few instances were identified in medial positions, these occurrences provided 

valuable insights into the f0 profile of ALL. Irrespective of the stress structure of the 

lexical item, the f0 profile of ALL falls along the unit’s onset and then flattens. ALL 

exhibits lower intensity levels than other units and some segmental lengthening. 

Whereas the portions under the falling f0 movement are phonetically well articulated, 

segments of the flat portion often undergo phonetic reduction, and their intensity may 
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be so low that f0 estimation becomes challenging. 

 

Example of ALL 

 Audio file 25 – btelpv06_003 

*LUR: oi / tudo bom / Lelena //=ALL=    

           hello / everything OK / Lelena // 

  

Figure 12 - Form of ALL 

 

 

3.4.4 The Expressive (EXP) 

EXP is, according to previous works, utilized to express emotional support for the 

illocution, highlighting its distributional freedom and the potential inclusion of multiple 

f0 movements in its prosodic form. However, certain issues arise from this 

characterization. The definition of providing emotional support to the illocution is 

overly vague, and furthermore, a distinct prosodic form has not been assigned to the 
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unit. 

We maintain that there is a specific DM that we still call EXP, but that we describe 

in a clearly different way. EXP is employed to convey surprise but is enacted in a manner 

that prevents it from being interpreted as an illocution. It manifests a rising f0 

movement until the stressed vowel, which may briefly fall in the presence of segmental 

material after. There is a marked lengthening on the stressed syllable with respect to 

the mean syllabic duration of COM. The intensity of EXP is comparable to that of COM 

or slightly lower. This unit consistently appears at the beginning of the pattern. 

 

Example of EXP 

 Audio file 26 – bfammn05_102 

*TON: Nossa /=EXP= ea deixou no uteí pra mim /=COM= hein sô //=CNT= 

       Holy /=EXP= she left it in the UCI for me / you saw // 

 

Figure 13 - Form of EXP 

 

 

3.4.5 The Highligher (HGL/EVD) 

The Highlighter was provisionally labeled as EVD (Evidenciador in BP). It directs the 
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addressee's attention to the preceding statement, often performed with a focus. 

HGL/EVD is typically produced with a slightly rising f0 movement and significantly 

lower intensity than the COM. The duration is considerably shorter than that of COM. 

The slope of the rising movement can range from nearly flat to distinctly rising, 

contingent on the speaker's attitude. 

 

Example of EVD 

 Audio file 27 - bfamdl01_201 

*REN: tá cheio mesmo /=COM= viu //=EVD= 

            it’s really crowded /=COM= huh //=EVD= 

 

Figure 14 - Form of EVD 

 

 

3.4.6 Summary table 

The table provided below offers a summary of the functions, fundamental f0 

movements, intensity levels, durations, and distributions of Discourse Markers (DMs) 

in relation to the illocutionary unit. Dashed lines represent non-mandatory f0 

movements. Additionally, the intensity and duration levels are indicative trends that 
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require a more refined statistical description. The dataset's token count for each 

identified function is also included. 

 

Table 4 - DM summary table 

UNIT FUNCTION 
BASIC F0 

MOVEMENT 
INTENSITY DURATION DISTRIBUTION 

INP 
Begin the 
uterance 

  

Higher than 
COM 

Much 
shorter than 

COM 

 Beginning of the 
patern 

CNT 
Point to an 
illocu�onary 
solu�on 

  
Lower than 

COM 
Shorter than 

COM 
Free 

ALL 
Establish social 
cohesion 

  
Lower than 

COM 
Shorter than 

COM 
Middle or at the 

end of the patern  

EXP 

Convey 
surprise in a 
non-
illocu�onary 
way 

  
Paired to 

COM 

 Paired to or 
longer than 

COM 

 Beginning of the 
patern 

EVD 
Highlight what 
was said 

  
Lower than 

COM 
Shorter than 

COM  
Middle or at the 

end of the patern  

 

The ensuing section will delve into the materials and methods employed in this 

research, encompassing a description of the corpora utilized, the methodologies 

applied to model prosodic form. 
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4 MATERIALS AND METHODS 

This chapter details the materials and methods employed to substantiate the recent 

proposal presented in Chapter 3. This chapter is centered on the prosodic-acoustic 

features utilized for modeling the prosodic forms of Discourse Markers (DMs), 

specifically delving into three distinct feature groups: intensity, speech rate, and 

fundamental frequency (f0). Firstly, I delineate the corpus used for this work, specifying 

its characteristics. Then, I give the details of how the DM sample was obtained and 

annotated. I also present the procedures utilized for the standardization of prosodic 

features. Finally, I present the prosodic features used for the DM description and the 

classification task. All scripts and notebooks used in this research are available at 

https://github.com/saulo-smendes/discourse_markers_scripts. Other materials, both 

for the statistical and experimental analyses, are available at 

<SHARED_MATERIALS_THESIS> or via the QR code below: 

 

 
 

https://github.com/saulo-smendes/discourse_markers_scripts
https://1drv.ms/f/s!Ar5G4HnYDsd9goeGYdFY_6CL9ZID9hg?e=jXIUv8
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4.1 C-ORAL CORPUS 

4.1.1 Core characteristics 

The analysis of the prosodic forms of DM was based on a sample extracted from the 

spontaneous speech corpus C-ORAL-BRASIL I (Raso & Mello, 2012), a corpus 

representing spontaneous spoken Brazilian Portuguese, especially from the diatopy of 

Minas Gerais. The C-ORAL-BRASIL was structured to be comparable to the corpora of 

the C-ORAL-ROM family (Cresti & Moneglia, 2005), representing French, Italian, Spanish 

and European Portuguese. For this work, the most important feature of the corpus is 

its annotation with prosodic information (Cresti & Moneglia, 1997). The corpus is 

annotated with terminal boundaries, delimiting utterances and stanzas (terminated 

sequences), and non-terminal boundaries, delimiting prosodic units. 

Another important feature of the corpus is that it recorded spontaneous speech 

in natural and wide diaphasic contexts, i.e., situational variation, unlike controlled 

situations, in which linguistic behaviors are highly predictable (Raso & Mello, 2014). 

Situational variation generally entails actional variation, i.e., variation in the linguistic 

actions being performed (illocutions). Variation in linguistic actions is, in turn, a decisive 

factor in recording a greater number of speech structures, as variation at the level of 

the Information Structure  (Raso & Mello, 2014). With more varied structures, one can 

observe more contexts where the same lexeme can occur with different informational 

values, which is crucial for studying DMs. 

In general, the corpora of the C-ORAL family are provided with special features 

enabling multilevel research. All corpora are comprised of: a) audio files, textual files, 

text-to-speech alignment files supported by the software WinPitch (Martin, 2015); b) 

metadata; c) lexical and morphosyntactically tagged textual files12; d) frequency lists, 

measurements of the corpora, and statistical data of participants. 

The textual format of the C-ORAL corpora followed the CHAT Transcription 

 
12 Particularly, the C-ORAL-BRASIL corpora were tagged with the parser PALAVRAS (Bick, 2012). 
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Format (MacWhinney, 2000) adapted for segmentation (Moneglia and Cresti, 1997). The 

format encompasses two levels. On the first level, headers contain the metadata of the 

recorded event, such as participants’ socioeconomic background, topic, situation, and 

place of the recording session, as well as information on the audio file, such as word 

count, length, and acoustic quality classification. The second level contains the 

transcriptions of speech, paralinguistic and nonlinguistic events, and the segmentation. 

The text can be organized by turn or terminated sequence, which we introduce in the 

next subsection. 

To enable the study of the informational structuring of speech, the corpora of 

some of the project's languages have also been equipped with informationally 

annotated minicorpora, following the architecture of the matrix corpora (see Martínez 

et al., 2018; Panunzi & Gregori, 2012; Panunzi & Mittmann, 2014). In addition, the project 

also has other linguistic resources, already compiled or being compiled, such as for 

example, the American English minicorpus (Cavalcante & Ramos, 2016, with texts 

extracted from the Santa Barbara Corpus of Spoken American English - SBCSAE, Du 

Bois et al., 2000), C-ORAL-ANGOLA (see B. Rocha et al., 2019, for details of the progress 

of the compilation) and C-ORAL-ESQ (Ferrari et al., in preparation). 

 

4.1.2 Organization of the C-ORAL-BRASIL corpus 

The C-ORAL-BRASIL corpus was organized into four sub-corpora. These sub-corpora 

are: 

 

I. Subcorpus of Informal Speech in a Natural Context 

II. Subcorpus of Formal Speech in Natural Context 

III. Media Subcorpus 

IV. Subcorpus of telephone calls 

 

In addition, the work of compiling and publishing the corpus was divided into two 
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stages. The first stage was completed with the publication of the Informal Speech in 

Natural Context subcorpus, C-ORAL-BRASIL I, in 2012 (Raso & Mello, 2012). Covering 

the Formal Speech in Natural Context, Media, and Telephone Calls subcorpora, the 

second stage, C-ORAL-BRASIL II, has already completed its compilation and validation 

work, and its results will soon be published (Raso, Mello & Ferrari, in preparation). Only 

the C-ORAL-BRASIL I was sampled for this study since it has already been published 

and is available for research. 

The texts in C-ORAL-BRASIL I were divided into two social contexts: 

family/private and public (Raso, 2012a). The texts were organized by interactional 

typology. The monologues included texts in which speech is predominantly monologic, 

i.e., carried out mostly by just one participant. In dialogues, the interactions are more 

evenly distributed between two participants. Finally, in conversations, three or more 

participants interact. The architecture of the C-ORAL-BRASIL subcorpora are presented 

in Table 5 and Table 6 below: 

 

Table 5 - Informal subcorpus (C-ORAL-BRASIL I) 

Linguage 

register 
Social context 

Structure of the 

communication event 

Number 

of 

words 

Number of 

files 

Informal 

Family/private 
Monologues / dialogues / 

conversations 
159,364 105 

Public 
Monologues / dialogues / 

conversations 
48,766 34 

1. Informal in Natural Context (Subtotal) 208,130 139 

 

Table 6 - Subcorpora and domains of use of the C-ORAL-BRASIL II 
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Language 

register 
Subcorpus Domain of use 

Number 

of 

words 

Number 

of files 

Formal 
Natural 

Context 

Business 10,851 4 

Conference 17,320 9 

Law 16,107 9 

Political debate 15,707 12 

Political speech 16,047 15 

Preaching 12,826 9 

Profession explanation 16,247 8 

Teaching 16,291 8 

Subtotals (Natural Context) 139,647 74 

Formal Media 

Documentary 23,530 29 

Extra 24,728 16 

Interview 15,506 9 

Meteorology 232 1 

News 6,096 9 

Scientific Press 13,233 12 

Sport 12,234 7 

Talk show 44,088 18 

Subtotals (Media) 121,396 101 

Informal Telephone 
Private conversations 25,533 50 

Public conversations 5,755 29 

Subtotals (Telephonic corpus) 31,308 79 

Totals (CORAL-BRASIL II) 292,351 254 

 

Together, the C-ORAL-BRASIL I and the C-ORAL-BRASIL II make up a total of 393 files 

and 500,481 words, thus being a medium-sized spontaneous speech corpus. With 
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respect to the time period represented, the vast majority of recording sessions were 

carried out between 2009 and 2017. 

 

4.1.3 Segmentation 

4.1.3.1 Annotation scheme 

Texts were prosodically parsed into terminated sequences, signaled by a terminal 

boundary transcribed with a double-slash sign (//), and non-terminal prosodic units 

marked by a non-terminal boundary transcribed with a single-slash sign (/). 

 

Example of segmentation  

Audio file 28 - bnatte03_093-094 

*ALA: [93] como é que ele vai saber lá / qual foi a parte do texto <que tinha> + 

*GER: [94] <eu te falei> / ele tem / internamente aqui / alguns tipos de [/3] 

como posso dizer pra vocês / certos parâmetros / que ele vai tirar / do texto // 

 

*ALA: [93] how was it supposed to recognize / which part of the text <was to be> 

+ 

*GER: [94] <I told you> / it has / internally here / some kinds of [/3] how can I 

put that to you / certain parameters / that will be drawn / from the text // 

 

In the example above, the speech stream between the beginning of the speaker’s turn 

and the terminal boundary sign forms a terminated sequence. However, the speaker’s 

whole turn may be formed by multiple terminated sequences, as in the example below, 

where digits in square brackets signal the beginning of another terminated sequence. 

Texts are aligned to speech on the terminated sequence level. 

 

Example of segmentation  

Audio file 29 - bnatbu02_001-002 
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 *NEU: [1] aqui o' // [2] eu tenho ele com braço de vinte-e-cinco / e tenho e' 

com braço de quinze // 

 

*NEU: [1] take a look // [2] I have the twenty-five [width sofa] arm option / and I 

have the fifteen option // 

 

The segmentation also signals retractions accompanied by non-terminal boundaries. 

Broadly, retractions are the withdrawal of a part of the text often triggered by changes 

in the speaker’s initial speech program or by mistakes. They are also frequently used 

as a time-taking device in which case a word may be repeatedly uttered. In case 

retractions trigger a non-terminal boundary, the boundary sign is followed by a digit 

that indicates the number of words retracted. This sign is embedded in square brackets. 

In the first example, the retraction of alguns tipos de (some kinds of) is signaled by [/3]. 

Speech may also be interrupted before getting to a point where a terminal or 

non-terminal boundary would be properly or completely signaled. This occurs when 

speakers abandon their program either by starting another turn or as a consequence 

of having their turn taken by another participant. Interruptions are indicated by a plus 

sign (+), as shown in the first example. 

 

4.1.3.2 Validation of the segmentation 

The segmentation underwent a specific validation, which is out of the scope of this 

work. The methods and results are further detailed in Mello et al. (2012). It is nonetheless 

important to present them here. The prosodic boundary annotation was validated by 

measuring the reliability of the inter-annotator agreement on the annotation of 

prosodic boundaries. Two validations were carried out, one before the bulk of texts 

were prosodically parsed and another after compilation, just before the corpus final 

revision. These tasks aimed not only at standardizing the annotation beforehand but 

also at ensuring its quality at the last compilation step. 

The degree of agreement was evaluated by the Fleiss’ kappa statistic (Fleiss, 
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1971), which assesses the reliability of agreement between more than two raters in 

assigning categorical classes. The degrees of agreement that should be met were 

established during the planning phase of the corpus. It was established that the kappa 

values of at least 0.8 (almost perfect agreement) for terminal boundaries and 0.6 

(substantial agreement) for non-terminal boundaries should be met. 

The assessment of the degree of agreement was done as follows. Each annotator 

received texts (audio plus transcripts without prosodic boundary signs) to be annotated 

within the following three days. The task encompassed texts of mostly monologic and 

dialogic interactions. Each word boundary was a candidate for receiving the boundary 

sign. If there was no boundary, the blank space should not be changed. If annotators 

perceive a boundary, they should indicate it by adding the proper sign for a non-

terminal or terminal boundary. Because they are special cases, retraction and 

interruption signs were left aside. For instance, retractions may trigger (but not always) 

non-terminal boundaries. 

Three different agreement rates were calculated. The overall agreement was 

obtained by adding all possible positions (i.e., all word boundaries) and considering 

the agreement on the absence of a boundary, the presence of a non-terminal 

boundary, or the presence of a terminal boundary. In its turn, the partial agreement 

was aimed at putting in evidence how salient a boundary of any kind was. To calculate 

it, all positions were considered, as in the overall agreement, but this time, no 

distinction between the two boundary types was made. Finally, in a more conservative 

approach, the realistic agreement was calculated by tallying only the positions where 

at least one boundary of any kind was marked, thus eliminating the effect that word 

boundaries without perceived prosodic boundaries would have over the statistic. 

After the agreement rates were calculated, the divergences were discussed in 

each group. After each session, another annotation task was repeated until the kappa 

values of 0.8 (terminal) and 0.6 (non-terminal) for the overall agreement were reached. 

It is noteworthy that both groups always displayed good agreement rates for terminal 

boundaries and that, as pointed out by Moneglia et al. (2010) and Mello et al. (2012), 
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experience and practice played a crucial role in the recognition of boundaries. The 

results of the partial agreement showed that annotators had no problem distinguishing 

between the absence and presence of boundaries (kappa values always higher than 

0.84 for the best-performing group and 0.75 for the least-performing group). 

Divergence was recorded mostly for the distinction between non-terminal and terminal 

boundaries. 

The kappa values for the realistic agreement were met in the validation done 

after the first compilation phase, just before the corpus underwent its final revisions. 

The kappa values achieved by the group in charge of revising the segmentation are 

shown in the table below. They show that, even with the most conservative approach, 

prosodic annotators achieved  

 

Table 7 - Kappa values for the realistic agreement rate before segmentation validation 

Type of agreement Total Dialogues Monologues 

Realistic agreement 0.65 0.66 0.63 

 (substantial agreement) (substantial 

agreement) 

(substantial 

agreement) 

Terminal 

boundaries 

0.81 0.80 0.80 

 (almost perfect 

agreement) 

(almost perfect 

agreement) 

(almost perfect 

agreement) 

Non-terminal  0.62 0.65 0.59 

boundaries (substantial agreement) (substantial 

agreement) 

(moderate agreement) 

(Adapted from Mello et al., 2012: 165) 

 

This procedure was maintained in the compilation of the C-ORAL-BRASIL II by having 

the most experimented and best-performing prosodic annotators on the upper-level 

tasks. To be responsible for the segmentation revision, a group of annotators must 
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have achieved an overall agreement rate of 0.80 (for terminal boundaries) and 0.60 (for 

non-terminal boundaries), as measured by Fleiss’ kappa values. 

 Considering the important consequences of prosodic parsing over syntax and 

information structure, the Laboratory for Empirical and Experimental Linguistic Studies 

(LEEL/UFMG) in partnership with the Phonetics Laboratory of the Campinas University 

has been carrying out research aimed at identifying the acoustico-phonetic features 

guiding the production and perception of boundaries and at developing models for 

their automatic detection on spontaneous speech (for further information see: Barbosa 

and Raso, 2018; Raso, Teixeira, and Barbosa, 2020; Teixeira, Barbosa, and Raso, 2018). 

The studies have examined a large number of acoustic measurements extracted from 

a time window positioned around prosodic boundaries of the same type marked by at 

least 50% of annotators. These measurements encompass speech rate and rhythm, 

standardized segment duration, fundamental frequency (f0), intensity, and silent 

pauses. Although it is still ongoing work, the results obtained to date are promising. 

To this point, the accuracy of the best models is at 0.74 for terminal boundaries and 

0.66 for non-terminal boundaries in a cross-validation set. These models show that 

silent pause and f0 features are the most important elements contributing to terminal 

boundaries detection and, on the other hand, that duration plus pause features 

contribute to the best-performing non-terminal boundary model. Studying the role 

played by pauses is presently an issue of major concern since they have also been 

shown to be a confounding element in the distinction between non-terminal and 

terminal boundaries. 

 

4.1.4 Text transcription 

The transcription of the textual content followed an orthographic-based norm coupled 

with a set of special criteria (Raso & Mello, 2009, 2012). The orthographic norm enables 

texts to be easily understood and handled by users. It also enables text to be 

automatically processed without dealing with an uncountable number of variant forms 

unknown beforehand, such as partial or full phonetic-based transcriptions. However, 
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many characteristics of spontaneous speech cannot be overlooked. The set of special 

criteria aimed, thus, at documenting possible grammaticalization and lexicalization 

processes ongoing in the language. Without this documentation, many phenomena 

deserving further investigation would be lost, or their study would be more complex. 

The set also established the transcription signs for several other non-linguistic and 

paralinguistic phenomena of pragmatic interest. The transcription criteria are available 

in Appendix A (11). 

 

4.1.5 Morphosyntactic parsing 

The C-ORAL-BRASIL corpus also contains morphosyntactic annotation files. These files 

present the syntactic functions of each word, as well as their respective morphological 

classification. These elements allow advanced searches on observable syntactic 

patterns in speech. The annotation was done using the PALAVRAS morphosyntactic 

annotator (Bick et al., 2012). 

 

4.1.6 Minicorpus 

To conduct research on Information Structure according to the L-AcT, identifying 

prosodic units is a preliminary step. However, annotating these units is a laborious task 

that requires a considerable amount of time and collaboration from trained individuals. 

Corpora like those of the C-ORAL family can hardly receive a full informational 

annotation. For instance, the informal part of the C-ORAL-BRASIL corpus alone 

contains nearly 62,000 prosodic units (Cavalcante, 2020). To address this issue, scaled-

down versions of these corpora have been created, which correspond to the 

minicorpora referred to at the beginning of this chapter. The minicorpora of the C-

ORAL family maintain the same architecture than the matrix corpora from which they 

derive. The BP minicorpus comes from the C-ORAL-BRASIL I corpus, and it is composed 

of an equivalent proportion of monologues, dialogues, and conversations. The 

minicorpora are also somewhat balanced in terms of the distribution of their texts 

according to sociological context (family/private and public). Besides the BP 
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minicorpus, informationally annotated minicorpora are also available for Italian (Cresti 

et al., 2022), American English (Cavalcante & Ramos, 2016), and Spanish (Martínez & 

Somacarrera, 2018). 

 

4.1.7 Availability 

The C-ORAL-BRASIL I (both the matrix corpus and the minicorpus) is fully available for 

download at <www.c-oral-brasil.org>. In addition, the minicorpora can be consulted 

through the Database for Corpora Multimedia platform (DB-CoM, available at 

<http://www.c-oral-brasil.org/db-com>) and the Database for Information Patterning 

Interlinguistic Comparison, the DB-IPIC (<http://www.lablita.it/app/dbipic/>). 

 

4.2 DM SAMPLING 

A total of 1025 tokens were annotated as a type of Dialogic Unit (Discourse Marker) in 

the BP Minicorpus. This sample was revised in Gobbo (2019), resulting in the following 

distribution across the pragmatic functions that were attributed to them: 

 

Table 8 - DM tokens in the BP minicorpus (Gobbo, 2019) 

Discourse 

Marker13 DCT ALL CNT INP AUX Total 

BP minicorpus 173 63 84 40 665 1025 

Not analyzed 173 12 15 4 261 465 

Analyzed 0 51 69 36 404 560 

 

According to Gobbo (2019), many observations had to be discarded because it was 

impossible to apply the acoustic extraction procedures or because the tokens were 

 
13 DCT: Discourse Connector; ALL: Allocutive; CNT: Conative; INP: Incipit; AUX: tag is used to label information units 

that probably are Discourse Markers but whose functions have not been identified. 
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unreliable. The main motives leading to discard a unit were: (i) overlapping speech or 

too much background noise; (ii) token could not properly be segmented; (iii) f0 curve 

could not be adjusted acceptably; (iv) utterance as a whole was unreliable; or (vi) 

absence of reference unit (see 4.4.1. Reference for the standardization of prosodic-

acoustic parameters).  

During his research, Gobbo’s model (2019) accounted for the three DM 

functions accurately labeled in the BP minicorpus. However, the author points out that 

some data were deliberately not discarded rigorously to preserve a sufficient quantity 

of observations for data analysis. Gobbo’s (2019) sample was further revised here. This 

revision aimed to check audio quality issues and the existence of prosodic boundaries 

(see Santos & Raso, 2022, for some biases in speech segmentation) and establish a 

proper categorization of tokens under the AUX label. The results of this revision are 

shown below Table 9. 

 

Table 9 - Discarded tokens by criterion 

Discard criterion Number of tokens 

Absence of boundary 160 

Overlapping speech 1 

Other quality issues 17 

Other reasons 10 

Illocutionary 64 

Total 252 

 

From Gobbo’s (2019) work, a total of 252 tokens were discarded for the reasons given 

in the table above. The remaining 308 tokens were distributed across the following DM 

functions, as presented in Table 10. 
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Table 10 - DM distribution in the revised sample 

Position/DM ALL CNT DCT EVD EXP INP Total 

Initial 0 68 6 0 24 41 139 

Medial 9 9 2 5 2 5 32 

Final 30 34 2 71 0 0 137 

Total 39 111 10 76 26 46 308 

 

Considering the quantity of data and its clear imbalance across functions and positions, 

which might negatively affect a classification task's results, new DM candidates were 

searched in the texts of the matrix C-ORAL-BRASIL I corpus that was not used in the 

BP mini corpus. The selection criteria were prosodic isolation, position (initial or final), 

and lexical recurrence. For instance, proper names were identified within each file and 

queried for the search of potential ALL and CNT candidates. Analogously, Nossa/No’ 

(holy) tokens in prosodic isolation and initial position were sought as EXP candidates. 

This procedure was automatically done thanks to Python scripts that read the corpus 

XML files and extracted the audio based on regular expressions. The resulting queries 

were subjected to the same revision procedures applied to Gobbo’s sample. 123 new 

tokens were added to the sample after the new sampling. Table 11 displays the final 

DM distribution across the five functions. Notice that the 10 DCT tokens were excluded, 

since analyzing cohesive DM is out of the scope of this research. 

 

Table 11 - Final sample used for the classification task 

Position/DM ALL CNT EVD EXP INP Total 

Initial 0 73 0 69 71 213 

Medial 9 9 5 2 5 30 

Final 60 57 71 0 0 188 

Total 69 139 76 71 76 431 

 

Table 12 displays the frequency of lexemes/small expressions by DM class. We see that 

many lexemes and small expressions can take on different DM functions. 
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Table 12 - Lexical frequency by DM class 

  DM FUNCTION 

TEXT ALL CNT EVD EXP INP TOTAL 

proper_name 50 28 0 0 0 78 

né 0 0 60 0 1 61 

Nossa 0 1 0 39 8 48 

No' 0 0 0 16 7 23 

não 0 9 0 1 13 23 

ah 0 6 0 8 8 22 

uai 0 14 0 0 4 18 

o' 0 10 0 0 5 15 

gente 0 1 0 0 7 8 

sô 0 8 0 0 0 8 

ô 0 6 0 0 2 8 

bom 0 4 0 0 2 6 

cara 4 2 0 0 0 6 

minha filha 6 0 0 0 0 6 

viu 0 0 6 0 0 6 

é 0 1 0 0 5 6 

aqui o' 0 4 0 0 0 4 

hein 0 0 4 0 0 4 

ué 0 4 0 0 0 4 

ahn 0 3 0 0 0 3 

então 0 1 0 0 2 3 

gente 2 0 0 1 0 3 

porque 0 1 0 0 2 3 

pô 0 2 0 0 1 3 

sabe 0 0 3 0 0 3 

tá 0 2 1 0 0 3 

ah não 0 0 0 0 2 2 

ai 0 1 0 1 0 2 
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  DM FUNCTION 

TEXT ALL CNT EVD EXP INP TOTAL 

aí 0 1 0 0 1 2 

bicho 1 1 0 0 0 2 

eh 0 1 0 0 1 2 

meu filho 1 1 0 0 0 2 

oh 0 0 0 1 1 2 

olha 0 0 0 0 2 2 

olha p' cê ver 0 2 0 0 0 2 

pera aí 0 1 0 0 1 2 

sim/assim 0 2 0 0 0 2 

tá vendo 0 2 0 0 0 2 

velho 1 1 0 0 0 2 

é não 0 1 0 0 1 2 

agora 0 1 0 0 0 1 

ah bom 0 1 0 0 0 1 

aqui 0 1 0 0 0 1 

bem 0 1 0 0 0 1 

boba 1 0 0 0 0 1 

cê sabe 0 1 0 0 0 1 

cê vê 0 1 0 0 0 1 

enfim 0 1 0 0 0 1 

entendeu 0 0 1 0 0 1 

então o'  0 1 0 0 0 1 

hhh tá 0 1 0 0 0 1 

mas 0 0 0 0 1 1 

mas assim 0 1 0 0 0 1 

mãe 1 0 0 0 0 1 

não não 0 0 0 0 1 1 

né minha filha 1 0 0 0 0 1 

o' Bruno 0 0 0 0 1 1 

o' Rena 0 1 0 0 0 1 

ocê o' 0 1 0 0 0 1 
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  DM FUNCTION 

TEXT ALL CNT EVD EXP INP TOTAL 

pois é 0 1 0 0 0 1 

pô Mailton 0 0 0 0 1 1 

que 0 1 0 0 0 1 

quer dizer 0 1 0 0 0 1 

quer ver 0 1 0 0 0 1 

se bem 0 0 0 1 0 1 

uhn 0 0 0 1 0 1 

viu Carlão 0 1 0 0 0 1 

viu Zé hhh 0 1 0 0 0 1 

TOTAL 68 139 75 69 80 431 

 

Figure 15 shows that the lexical fillers follow the same distribution languages generally 

follow: the Zipfian distribution. A few lexemes or small expressions have high 

frequency, and the vast majority are underrepresented. This illustrates how the lexical 

filling of Discourse Markers can be rather variable. 

 

Figure 15 - Distribution of lexemes/small expressions 

 
 

However, some DM classes seem to be more flexible whereas other have more 

constraints with respect to the lexical content. The DM classes that display the most 
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variability in terms of lexical filling are CNT and INP. On the other hand, the most 

constrained class is EVD. Finally, Gobbo (2019) has shown that approximately 80% of 

the DMs are adjacent to their illocutionary unit, and 20% are one or more information 

units distant from COM. 

 

4.3 DATA PROCESSING AND ANNOTATION 

4.3.1 Data preparation 

A Python script (the C-ORAL_searcher) was used to generate a list of utterances from 

the corpus xml files. The script extracted the portions corresponding to each utterance 

from the original audio files by using the start and end time information. 300 

milliseconds before and after the given times were added. When audios were recorded 

in stereo, only the channel matching the utterance's speaker was extracted for analysis; 

the other channel was discarded. A Praat script created a TextGrid file (a Praat object 

used for segmentation and annotation) for each file using the utterance table. Five tiers 

made up the structure of the TextGrids (see Figure 17 - Illustration of an annotated 

file): (1) the transcription of the whole utterance; (2) the syllabic annotation; (3) the 

delimitation of the stressed vowel; (4) the transcriptions delimited by Information Unit; 

and (5) the tag of the Information Unit. All tiers were boundary tiers. At this point, 

boundaries were not yet aligned with respective events. 

 

4.3.2 Data annotation 

The annotation of syllabic units followed the criteria recommended in the literature for 

identifying phonetic boundaries. The oscillogram and the broadband spectrogram of 

the acoustic signal were simultaneously examined as a guide for the segmentation 

(Machač & Skarnitzl, 2009; Turk et al., 2006). 

The use of ASCII characters for the phonetic transcription facilitated annotation 

and ensured compatibility with the normalized duration estimation method (Barbosa, 

2013), detailed in the next section. A broad phonetic transcription, devoid of distinct 
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representations for allophones, was employed, with Figure 16 illustrating the notation 

used and its equivalence in IPA symbols. 

The inherent spontaneity and diverse environmental conditions of recordings 

generated spectrographic images more contaminated than those acquired from 

controlled environments with acoustic protection and muffling. This led to an increased 

reliance on listening to the audio files. The characteristics of utterances displaying low 

intensity, high articulation rate, and reduced phonetic realization exacerbate these 

difficulties and may result in inaccuracies. 
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Figure 16 - Correspondence between IPA and ASCII characters14 

 

 
14 For further details on the correspondence between IPA and ASCII characters, see the documentation available 

at: https://github.com/pabarbosa/prosody-

scripts/blob/master/ProsodyDescriptorExtractor/Documents/IPAASCIICorrespondanceTable_BP.pdf 

 

https://github.com/pabarbosa/prosody-scripts/blob/master/ProsodyDescriptorExtractor/Documents/IPAASCIICorrespondanceTable_BP.pdf
https://github.com/pabarbosa/prosody-scripts/blob/master/ProsodyDescriptorExtractor/Documents/IPAASCIICorrespondanceTable_BP.pdf
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The same challenges rendered the application of automatic segmentation procedures 

(forced alignment) exceedingly complex for the analyzed recordings. To be compatible 

with the transcription scheme used for the duration standardization procedure, the 

Alinha-PB phonetic aligner (Kruse & Barbosa, 2021) was tested for the task. However, 

satisfactory results would require more entries to the system’s exception dictionary. 

This is because the Mineiro dialect is particularly keen on final droppings and 

coarticulation, anticipation, and sandhi phenomena. The Figure 17 below illustrates an 

annotated file: 

 

Figure 17 - Illustration of an annotated file 

 
 

The information contained in TextGrid objects was collected using the Python Praat 

wrapper Parselmouth package (Jadoul et al., 2018) and used to select data points of 

interest, which were later used to calculate the measurements described in section 4.4. 

Prosodic-acoustic parameters estimation). 
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4.4 STANDARDIZATION OF MEASURES 

4.4.1 Reference for the standardization of prosodic-acoustic parameters 

Prosody conveys information beyond the parsing of speech and the Information 

Structure. It can give cues on the attitude and speakers’ emotional state or their sex, 

age, vocal tract characteristics, and even health conditions (Mello & Raso, 2011). This 

introduces variation unrelated to the linguistic functions targeted here, the Information 

Structure. 

 For this reason, it is important to adopt a procedure that inhibits non-linguistic 

variation as much as possible in extracting acoustic measurements. We can envisage 

three ways of doing this. The first would be to standardize the parameters by the mean 

and standard deviation of all the utterances of a given speaker. As well as making data 

processing computationally more expensive, this procedure may prove to be 

insufficient. Depending on their intentions, the speaker changes their average speech 

rate, intensity, and average pitch from one utterance to the next. Another procedure 

would be to standardize the parameters based on the averages and standard deviation 

of only the utterance in which the Discourse Marker is inserted. However, the IS pattern 

may vary in large proportions from one utterance to another. Some utterances are 

quite complex, and others simpler. Furthermore, in the case of the stanza units, the 

variation of different speech acts and adjacent structures can also be added to the basic 

measures for standardization. 

A procedure proposed by Raso (2014) and already successfully tested in 

subsequent work (Raso & Vieira, 2016; Gobbo, 2019) is to take as a reference the 

illocutionary unit of the pattern to which the DM is linked. This procedure is 

advantageous because the variation in a pattern’s IS is related to this unit. The 

Comment (COM) is the central node that conveys the speaker's actional intention and 

links the adjacent informational units that supplement the speaker's communicative 

intention. Moreover, it is the sole IU that occurs in every terminated sequence. For 

future work, it could be interesting to test how the adoption of other heuristics may 



107 

 

influence the final scores of the classification model with respect to a baseline model 

that takes as input non-standardized measurements. In the present work, we observed 

that adopting COM as a measure for standardization can help improve the accuracy of 

a five-class classification model by up to 30 percentage points15. 

Some terminated sequences may present more than one COM unit, such as in 

the cases of stanzas or patterned illocutions. In the case of stanzas, we considered only 

the illocutionary unit in whose pattern the DM was. When the pattern had patterned 

illocutions, a chain of Multiple Comments (CMM), all the CMMs of the chain were 

considered. 

 

4.4.2 Standardization of prosodic-acoustic parameters 

For the normalization of the prosodic-acoustic parameters, Raso & Vieira (2026) and 

Gobbo (2019) utilized a proportional difference of the measurements from the DM with 

respect to the reference (COM), as shown by the formula below: 

 

Figure 18 - Proportional difference 

𝑀𝑀𝐷𝐷𝐷𝐷
𝑑𝑑 =

 |𝑀𝑀𝐷𝐷𝐷𝐷
𝑎𝑎 | −  |𝑀𝑀𝑅𝑅𝑅𝑅

𝑎𝑎 |
 |𝑀𝑀𝑅𝑅𝑅𝑅

𝑎𝑎  |
 

 

Where: 

𝑀𝑀𝐷𝐷𝐷𝐷
𝑑𝑑  is the value of the proportional difference between the DM and the Reference 

Unit; 

𝑀𝑀𝐷𝐷𝐷𝐷
𝑎𝑎  is the absolute value of the DM; and 

𝑀𝑀𝑅𝑅𝑅𝑅
𝑎𝑎  is the absolute value of the Reference Unit. 

 

This procedure was applied to the consolidated values (statistics) of the entire DM and 

 
15 Comparing two classifications models: one trained with non-standardized features and another with 

standardized features. 
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Reference Units. For each audio file (containing one utterance), I estimated the raw 

prosodic measurements with a 5ms sampling rate. Then, based on the annotation files 

and the temporal information of the target DMs and reference units’ boundaries, I set 

off time points of interest and obtained consolidated measurements. For this reason, I 

applied the normalization procedure frame-wise, before consolidating the 

measurements. Unlike previous work (Gobbo, 2019), Standard Score (Z-scores) 

normalization procedure was adopted. Each sampled time point was transformed into 

z-scores considering each utterance's mean and standard deviation previously 

computed for the Reference Units (COM/COB/CMM annotated as such in the 

TextGrids). The z-score is obtained by the following formula: 

 

𝑓𝑓(𝑡𝑡) =  
𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑅𝑅𝑅𝑅
𝜎𝜎𝑅𝑅𝑅𝑅

 

 

Where: 

𝑓𝑓(𝑡𝑡) is the function for transforming each time point in z-scores; 

𝑥𝑥𝑡𝑡 is the estimated measure of each time point; 

𝜇𝜇𝑅𝑅𝑅𝑅 is the mean of the estimated measure for the Reference Unit’s interval; and 

𝜎𝜎𝑅𝑅𝑅𝑅 is the standard deviation of the estimated measure for the Reference Unit’s interval. 

 

This procedure was applied to all estimates before deriving the prosodic descriptors of 

intensity, duration, and fundamental frequency outlined in the next section. 

 

4.5 PROSODIC-ACOUSTIC PARAMETERS ESTIMATION 

The estimation of prosodic features outlined in this section mostly followed the ones 

proposed in Gobbo (2019). I added parameters of f0 curves and some parameters of 

intensity (spectral emphasis and intensity in voiced regions) and made some changes 

concerning how features were calculated. In total, 30 features were derived from the 

standardized measurements. They are organized as follows: 
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a) features of intensity; 

b) features of duration; 

c) features of f0; 

d) features of f0 variation; 

e) features of alignment with the DM’s stressed vowel; 

f) features of f0 curve. 

 

The extraction of estimations for each time point was automated through Python and 

Praat scripts and then processed through a Python script for target intervals. 

 

4.5.1 Features of intensity 

Intensity features were extracted using a Praat wrapper Python package from intensity 

objects. We derived six features of intensity: 

 

a) Mean intensity of the DM; 

b) Intensity standard deviation of the DM; 

c) Maximum intensity of the DM; 

d) Minimum intensity of the DM; 

e) Mean intensity on the DM’s stressed vowel16; 

f) Mean spectral emphasis on the DM’s stressed vowel17; 

 

Spectral emphasis was calculated as in Traunmüller & Eriksson (2000), considering values 

for the stressed vowel. 

 

 
16 Considering only voiced regions of the audio file. 

17 Considering only voiced regions of the audio file. 
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4.5.2 Features of duration 

Duration features were: 

 

a) Mean Z-scores of the DM’s syllabic duration; 

b) Z-scores of the DM’s stressed syllable; 

c) DM’s raw duration; 

 

The estimation of z-scores for the phonetic syllables followed Barbosa (2013) using a 

Praat script implemented by Gobbo (2019). The data was then consolidated with a 

Python script. We did not consider the standardized duration of the DM unit proposed 

by Gobbo (2019) since it correlates with the mean standardized duration and since that 

feature is irrelevant in Gobbo’s three-class model. 

Modeling the relationship between perceived rhythm and articulation rate is 

also non-trivial. This is due to phoneme-specific intrinsic and co-intrinsic durations. 

Several procedures are available to normalize the raw duration of segments in similar 

contexts (Campbell & Isard, 1991). This statistical approach allows an efficient estimation 

of segmental lengthening, expressed as the deviation from the expected duration of a 

phoneme with a set of properties. Relying on this approach, Barbosa (2007) developed 

a model of speech rhythm that estimates the lengthening of syllable or syllable-like 

units (the so-called Vowel-to-Vowel unit – or VV unit) at the segmental level. 

This algorithm considers in-context expected mean durations and standard 

deviations and serially applies two techniques for normalizing raw duration: a z-score 

transformation and a 5-point moving average filtering procedure. The z-scores are 

calculated according to the equation 2 below: 

 

 Equation 1 – Z-scores 

𝑧𝑧 =
(𝑥𝑥 –  𝜇𝜇)
𝜎𝜎
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where z, the z-score for a given segment, is calculated by subtracting µ, the mean 

expected value of this segment, from x, the raw duration value, then dividing by σ, the 

standard deviation of the expected value. Each zi z-score value is then smoothed by 

the moving average filter. The closer to zi, the larger the weight applied to neighboring 

z-scores (eq. 3). 

 

Equation 2 – Z-smoothen-i 

𝑧𝑧𝑖𝑖 =
1 ⋅ 𝑧𝑧𝑖𝑖−2 + 3 · 𝑧𝑧𝑖𝑖−1 + 5 · 𝑧𝑧𝑖𝑖+3 + 3 · 𝑧𝑧𝑖𝑖+1 + 1 · 𝑧𝑧𝑖𝑖+2

13
 

 

This model was implemented into a semi-automatic tool available to the research 

community, that outputs measures of rhythm from segmented speech (Barbosa, 2013). 

 

4.5.3 Features of fundamental frequency (f0) 

The processing of f0 data points was the object of a special procedure described in a 

dedicated chapter. All measurements involving f0 data points were calculated from 

pre-processed f0 estimations. The purpose of this procedure was to avoid manual 

intervention for the f0 estimation and tracking, as was done in Gobbo (2019). The 

features of f0 are: 

 

a) Mean fundamental frequency (f0) of the DM; 

b) Standard deviation of f0 of the DM; 

c) Maximum f0 estimation of the DM; 

d) Minimum f0 estimation of the DM; 

 

4.5.4 Features of f0 variation 

The measures of f0 variation were: 
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a) F0 slope over the DM from the beginning to the ending points; 

b) F0 slope over the DM’s stressed vowel; 

c) F0 range over the DM; 

d) F0 slope before the central point of the stressed vowel; 

e) F0 slope after the central point of the stressed vowel; 

 

F0 slope measures were calculated using the linear coefficient outputted by the polyfit 

function of the Numpy Python package (Harris et al., 2020). F0 points were separated 

by region of interest: the complete DM (a); the stressed vowel (b); the values before 

the central point of the stressed vowel (whose boundaries were annotated in a special 

tier on Praat); the values after the central point of the stressed vowel. The F0 range 

within the DM was calculated as the difference between the maximum and minimum 

f0 estimations over the DM. 

A difference with respect to Gobbo (2019) is that the slopes were not calculated 

by taking the f0 estimates for initial and ending times but by fitting the regression line 

to all the points available for the respective intervals. This has the advantage that 

potentially deviant points at the boundaries of regions of interest will not have a 

relevant impact on the computation (note that micro-prosodic effects are likely to be 

observed at segmental boundaries).  

 

4.5.5 Alignment features  

The alignment features were: 

 

a) Ratio of maximum intensity; 

b) Ratio of minimum intensity; 

c) Ratio of maximum f0; 

d) Ratio of minimum f0; 
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e) Ratio of maximum intensity with respect to the central point of the stressed 

vowel; 

f) Ratio of minimum intensity with respect to the central point of the stressed 

vowel; 

g) Ratio of maximum f0 with respect to the central point of the stressed vowel; 

h) Ratio of minimum f0 with respect to the central point of the stressed vowel. 

 

From (a) to (d), the ratios were calculated as the difference between the timing of the 

critical point (max or min of f0 and intensity) and the timing of the initial point of the 

DM, divided by the duration of the DM. These features aimed to show the proportion, 

from 0 to 1, at which these critical points were realized. 

 From (e) to (h), the ratios were calculated as the difference between the critical 

point's time and the vowel’s starting point, divided by the duration of the stressed 

vowel. Unlike the previous measurements, these measurements can take on values 

inferior to 0 or superior to 1. Values between 0 and 1 indicate that the critical point 

occurred within the stressed vowel. If they equal 0, the critical point happens at the 

beginning of the stressed vowel, and if they equal 1, exactly at the end of the stressed 

vowel. Values inferior to 0 indicate critical points before the stressed vowel, and values 

superior to 1 refer to critical points after the stressed vowel. 

 

4.5.6 Features of f0 curves 

A vector of 30 f0 data points was estimated for each DM using linear interpolation 

(through the interp1D function in Python) to run a curve-fitting algorithm with a 

normalized temporal vector (see Xu, 2013). The procedure to obtain the curve 

coefficients is further described in section 7.2. Curve fitting). The number of 30 points 

was chosen by dividing 300ms (approximately the average duration of a Discourse 

Marker) in 10ms steps. Further details on the curve fitting are given in section 7.2. 
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5 EXTRACTING ROBUST F0 CURVES 

5.1 MOTIVATION 

Estimating the fundamental frequency (f0) has historically been challenging in audio 

signal processing. While numerous context- and condition-specific approaches have 

been developed and have been successful in their particular uses, creating context- 

and condition-free f0 estimators is a rather bold task (Gerhard, 2003; Raso et al., 2022). 

For example, an all-purpose PDA (musical note and speech detection) without Viterbi 

smoothing, like YIN (de Cheveigné & Kawahara, 2002), may perform less efficiently when 

applied for speech analysis; a noise-resilient PDA (BaNa - Ba et al., 2012; Yang et al., 2014) 

may fail to properly devoice zones of the audio affected by reverberation phenomena, 

since this algorithm tend to overestimate the number of voiced frames in clean 

conditions. As a result, while there are many f0 estimators available today, very few (if 

any) of them will be able to cover and solve, at the same time, all or the majority of the 

problems affecting the f0 signal. 

The correct estimation and tracking18 of f0 values become an even greater 

problem when we deal with spontaneous speech data. Recorded out of acoustically 

isolated and controlled settings, the signal of spontaneous speech can be rapidly 

degraded by non-modal phonation (Gerratt & Kreiman, 2001) and the additive noise it 

may generate (D’Alessandro, 2006), other analog phenomena, and for technical 

reasons19. Non-modal phonations raise significant difficulties regarding evaluating a 

frequency (i.e., a regular phenomenon), whose definition is problematic when vocal 

 
18 By f0 estimation, we mean the estimation of alternative f0 values within a unique timeframe (each f0 candidate 

value); tracking stands for the extraction of continuous f0 trajectories (considering all timeframes) from the 

underlying sources (possible f0 candidates at each timeframe). 

19 Saturation, low sampling rate and low bandwidth, lossy audio compression. 
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folds vibration mechanisms are not regular. 

 Several methods and algorithms have been proposed to estimate formant 

values and to determine, at each timeframe, what the most probable f0 candidates are.  

Each of these PDAs is sensitive to different phenomena degrading the speech signal. 

For instance, some of them can identify the best candidates even in very noisy 

conditions, while others may not return any estimation. Of course, solving all these 

problems is a fiendishly difficult task, which, by no means, we imply to undertake. All 

the same, we do want to put to good use the strengths of available PDA algorithms to 

have better f0 estimations and tracking in a natural setting. 

Another problem is that speech data recorded in non-controlled settings 

requires the researcher to tweak many parameters offered by PDA algorithms. Since 

each recording setting displays different acoustic conditions, each audio might need 

different parametrization to produce the most realistic f0 estimation and tracking. By 

way of example, linguists who have dealt with spontaneous speech can easily relate to 

the fact that each audio may need a different voicing threshold value to display the 

most adequate voicing decision as perceived for the segmental material.  This solution 

will likely replace the file-by-file parametrization required to obtain appropriate f0 

estimations, tracking, and adequate voicing decision. 

 

5.2 PITCH DETECTION ALGORITHMS 

Most PDA algorithms can be classified into four broad categories: (a) time-domain 

methods, which are based on the temporal dynamics of the signal; (b) frequency-

domain methods; (c), hybrid methods, which put together time- and frequency-domain 

approaches; and (d) statistical frequency-domain methods. Except for statistical 

methods (for instance, approaches based on neural networks), these approaches have 

in common the fact that they (a) pre-process the signal by filtering or splitting it into 

frames, (b) search for values most likely to be f0 candidates, and (c) track the most 

probable f0 trajectory or impose transitional constraints so as to output estimations 
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and tracking that display a continuity – since in each timeframe we have several 

competing f0 candidates whose strengths will not necessarily be in a continuous curve. 

 In this section, we give a rather elementary overview of how some of these 

algorithms work. Several premises and mathematical explanations are deliberately 

skipped since they would entail a much more profound and complex research. For 

more in-depth and comprehensive accounts of the main algorithms, implementations, 

criticisms, and performances, we refer the reader to Gerhard (2003), Ferro & Tamburini 

(2019), Sukhostat & Imamverdiyev (2015), Jouvet & Laprie (2017), and Bechtold (2021), as 

well as to each PDA’s main references, which provide, besides implementation 

detailing, benchmarking on competing PDAs’ performances. 

One of the simplest approaches to estimating f0 is that of zero-crossing 

algorithms. It consists basically in measuring the timing between the signal’s zero-

crossing points and calculate the frequency by dividing the number of complete 

periods per unit of time (complete periods per second). But this approach is not reliable 

when the signal displays complicated waveforms which are composed of multiple sine 

waves with differing periods, and, especially in noisy data – which is the case of speech 

data. 

 More complex methods search for matches by comparing portions of the signal 

with other portions that have been offset by a trial period. This is how auto-correlation 

algorithms like AMDF (average magnitude difference function), ASMDF (average 

squared mean difference function), and others functions work. For signals with high 

periodicity, these algorithms can produce estimations that are quite accurate. However, 

the most basic implementations struggle with noisy data and are often prone to octave 

and fifth jumps. Time-domain approaches frequently build upon these methods. But 

to overcome the above-mentioned difficulties, they come with smoothening 

procedures and movement constraints to make their estimations and tracking more in 

line with how humans would judge the pitch. 

On the other hand, the periodogram is used by frequency-domain methods to 

translate the signal into a rough estimate of the frequency spectrum. The Fast-Fourier 
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Transform (FFT), the crucial component of the periodogram method, makes such 

approaches suitable for many tasks. Nonetheless, the algorithms build upon this 

approach demands more processing capacity as the necessary precision levels grow. 

Well-known frequency-domain algorithms include the harmonic product spectrum, 

cepstral analysis, maximum likelihood, and the detection of peaks produced by 

harmonic series. 

As mentioned, some algorithms put together temporal and frequency-based 

approaches. These algorithms are based upon a combination of time-domain 

processing using an autocorrelation function like the normalized cross-correlation 

function and frequency-domain processing based on spectral information in order to 

identify f0 candidates. Having f0 candidates from both time and frequency domains, 

the algorithm may use a dynamic programming algorithm or other movement 

constraints to output a final f0 tracking. 

Recently, PDA algorithms that use statistical approaches to do part of the 

estimation or the tracking tasks have been put forward. By way of example, Ferro & 

Tamburini (2019) proposes a Neural Smoother intended to improve the performances 

of other PDA algorithms. This smoother is intended to be an additional layer of 

postprocessing, as the author acknowledges that most PDA algorithms are 

accompanied by some Viterbi-like smoothening procedure or movement constraint 

after f0 estimation. The authors point that postprocessing procedures are often 

insufficient to produce a reliable f0 contour throughout whole utterances. The 

proposed postprocessing smoother acts by leveraging a Long Short-Term Memories 

Neural Network, a particular kind of recurrent neural network, used to correct f0 

detection errors outputted by state-of-the-art Pitch Detection Algorithms. One 

criticism to such approach is that, even if a good-performance model is found, it does 

not allow for the understanding of how the problem is solved (black-box model). As 

pointed by Gerhardt (2003), the algorithmic information ends up stored in the model’s 

weights/parameters, hindering the comprehension of what is going on under the hood. 

Especially in models based on deep, complex architectures, the mapping between the 
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variables passed on to the model and its final weights becomes rather opaque. 

 As an initial step, an inclusive approach is adopted, where multiple Pitch 

Detection Algorithm (PDA) algorithms, spanning time-, frequency-, and mixed 

domains, are employed. This approach, described as a hit-on-everything-that-walks 

strategy, aims to generate f0 estimations that are more independent of context and 

conditions. The outputs from these diverse algorithms are then compared to determine 

the most plausible estimation. Utilizing a dynamic programming approach, the best f0 

tracking is established, incorporating additional penalizing and rewarding factors. 

Subsequently, a Neural Network (NN) model is applied to derive a context-

independent, frame-by-frame voicing decision. 

Given the significant computational cost associated with employing numerous 

algorithms, a crucial aspect of this work involves eliminating redundant information, 

particularly from more intricate algorithms. In the forthcoming sections, the algorithms 

employed thus far are enumerated, and a comprehensive explanation of the Voicing 

Decision model is provided. 

 

5.3 VOICING DECISION MODEL  

5.3.1 Introduction 

Studying prosodic changes in spontaneous speech is increasingly important –  

especially when the target concerns pragmatic variations linked to sociolinguistic 

factors, real-life interactions, and spoken expressivity (see, e.g., Drager, 2015; Émond et 

al., 2013; Meer & Fuchs, 2022). A main problem with spontaneous speech is linked to the 

frequently poor recording quality, as well as the presence of reverberation and various 

background noises (e.g., street noise, ambient noise in busy places, background voices 

or music). 

Obtaining reliable f0 profiles is a task that can be split into three subtasks: f0 
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values estimation, f0 tracking, and Voicing Decision (VD)20. As previously said, to 

accomplish these tasks, many pitch detection algorithms (PDA) are available today with 

good performances. However, most PDAs do not behave well in noisy situations. A 

rapid degradation of performances may be observed when different kinds of noise are 

added to clean speech (Émond et al., 2013; Jouvet & Laprie, 2017). Jouvet & Laprie (2017) 

also noticed that the type of error (estimation or voicing decision) varies according to 

the type of noise. 

Some PDAs were specifically developed to be robust to noise (e.g., Gonzalez & 

Brookes, 2014; Yang et al., 2014). However, some still fail or were not designed to tackle 

the Voicing Decision task specifically. For instance, Yang et al. (2014) presents a good 

performance for f0 estimation in noise, but the voicing decision (VD) task is left aside. 

  As pointed out by Jouvet & Laprie (2017), the VD task is one of the main sources 

of errors when PDAs are assessed in noisy conditions. This task has recently received 

some attention as a stand-alone object (see e.g., Batra et al., 2022, for clean audio, and 

Pradeep et al., 2019, for white noise). This section shows that the VD accuracy of available 

PDAs is differently affected by the type of noise added. Some PDAs perform better on 

clean data but do not yield good results on noisy data; others were specially developed 

to be robust to noisy data but underperform on clean data. To solve this issue, a CNN-

based classification model was trained. Its aim is to outperform the VD accuracy of 

tested PDAs on both clean and noisy data. The specificity of the system is that it was 

trained on a much more varied range of types and levels of realistic noises than those 

of previous studies. 

Some phenomena differ in controlled and natural conditions (see, e.g., de Ruiter, 

2015; Meer & Fuchs, 2022) and spontaneous speech (broadcast media or field 

recordings). These phenomena need to be well understood in order to adequately 

process spoken communication in various settings (Wagner et al., 2015). For this reason, 

 
20 Note that the voicing or voiced/unvoiced decision here is not the same task as Voice Activity Detection (VAD) 

(e.g., Lavechin et al., 2020) that targets longer-term detection of speech, may it be voiced or not. 
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the VD accuracy of the assessed PDAs and the proposed system on a corpus of 

spontaneous speech recorded in natural settings are also evaluated. 

  The methods section presents (a) the corpora used and how they were 

augmented with different types and levels of noises, (b) the set of features used to train 

the proposed model, and (c) the models' architecture. In the results section, the 

evolution of VD errors for a set of existing PDAs and the proposed model are evaluated 

to compare their performances in various types of noise and signal-to-noise ratio (SNR) 

levels and on real spontaneous (and noisy) datasets. 

 

5.3.2 Methods 

5.3.2.1 Corpora 

Three speech databases were used (KeelePitchDB, CSTR, and C-ORAL-BRASIL-I); two of 

them provide clean speech with electroglottogram signal to allow for accurate F0 

measurements, and one is a sample of a spontaneous speech corpus that was only 

used for evaluation. The C-ORAL-BRASIL corpus (Raso & Mello, 2012) is a large database 

of spontaneous speech containing recordings of dozens of Brazilian Portuguese 

speakers in various styles, situations, and places. Details on the corpora can be found 

in Table 1. The two clean corpora were augmented by adding various types of noise to 

the original recordings at different signal-to-noise ratios (SNR). From the C-ORAL 

complete corpus, a sample was selected for a study on Discourse Markers. From there, 

62 audio files that feature many natural background noises were picked to serve as 

unseen data collected in natural settings. To establish their voicing ground truth, audio 

files were manually revised at frame level by two experienced annotators whose inter-

annotator agreement degree was assessed as almost perfect - Cohen’s Kappa (Cohen, 

1968): 0.8; agreement rate: 0.91. 

 

Table 13 - Speech corpora: name, language (Lang: English or Brazilian Portuguese, BP), 

number of speakers (Spk: Fe- male/Male), total duration (Dur, in minutes), proportion 
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used for training and testing (Tr/Te, if applicable), and reference (Ref) 

Name Lang Spk Dur Tr/Te Ref 

KeelePitchDB English 5/5 5 80/20 (Plante et al., 1995) 

CSTR English 1/1 5 80/20 (Bagshaw et al., 1993) 

C-ORAL-BRASIL BP 11/14 3.7 –/100 (Raso & Mello, 2012) 

 

The two clean corpora were augmented by adding various types of noise at different 

signal-to-noise ratios (SNR) to the original recordings. From the C-ORAL complete 

corpus, a sample was selected for a study on Discourse Markers (Gobbo, 2019). From 

there, 62 audio files that feature a large amount of natural background noises were 

picked to serve as unseen data collected in natural settings. 

The dataset used for training and testing was produced by augmenting the two 

clean corpora (KeelePitchDB and CSTR in Table 13). Eight different noises were applied 

to each original sound (extracted from the RSG-1021 and QUT-NOISE-TIMIT22) and two 

room-impulse-answers (extracted from the C4DM Room Impulse Answer23 database) 

to introduce reverberation at different SNRs. These particular noise types were chosen 

for two reasons: (a) they frequently occur in recordings made in a natural setting, and 

(b) they degrade f0 estimation and VD on different levels. Details on the noises are 

given in  

 

Table 14. The nine targeted SNRs were 20, 15, 10, 5, 0, -5, -10, -15, -20dB. Before 

the processing, all sounds were down sampled to 16kHz. 

 

 
21 http://www.steeneken.nl/7-noise-data-base/ 

22 https://github.com/qutsaivt/QUT-NOISE 

23 http://www.isophonics.org/content/room-impulse-answer-data-set 
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Table 14 - Types of noise and source 

Name Type Origin Dur Ref 

Classroom RIR C4DM – (Stewart & Sandler, 2010) 

Large room RIR C4DM – (Stewart & Sandler, 2010) 

Babbling (F) noise RSG-10 3’1” 
(Steeneken & Varga, 1993; 

Varga & Steeneken, 1993) 

Babbling (M) noise RSG-10 3’55” 
(Steeneken & Varga, 1993; 

Varga & Steeneken, 1993) 

CAFE-CAFE-1 noise QUT 42’ (Dean et al., 2010, 2015) 

CAR-

WINDOWNB-1 
noise QUT 44’ (Dean et al., 2010, 2015) 

STREET-CITY-1 noise QUT 32’ (Dean et al., 2010, 2015) 

Air Cond. noise Lab 4’ * 

Ventilator noise Lab 4’ * 

Electr. noise Lab 4’ * 

 

The noise augmentation was performed using Praat scripts (Boersma & Weenink, 2022).  

Each original sound was adjusted to a default, arbitrary mean (over the complete file) 

intensity level of 70dB (approx. -21 dBFS), and each noise to a mean intensity level 

corresponding to one of the targeted SNR (i.e., at a level of 65 dB to reach a mean SNR 

of 5 dB).  The two sounds were then mixed. For each original sound, an extract of equal 

duration as the target sound was extracted from a random part of the noise file and 

used for the nine SNR values of this given noise. For the reverberation, a convolution 

between the original sound and the RIR was performed; next, the produced signal was 

mixed with the original sound using a similar process as for the noise, at a given SNR - 

the mean level of the convoluted sound being adjusted to obtain the desired SNR (the 

extra length was cut before mixing it). In this process, the original dataset was 

augmented by a factor of 90. 

From this augmented dataset, about 20% was pseudo-randomly selected for 

testing.  Two speakers (one female and one male out of 10 speakers) were randomly 

selected from the KeelPitchDB (which contains only one file per speaker), and 20% of 
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the files of each of the two speakers from the CSTR database. Then, these original files, 

and all those obtained through the noise augmentation process, were grouped to be 

used as a test set, while the remaining were used for training. This way, 20% of the 

speakers of the KeelPitchDB were not seen by the models, and neither were the 

sentences of CSTR (having only two speakers in this last corpus, it is impossible to 

separate one from the training set). The C-ORAL-BRASIL subset, recorded in noisy 

conditions and thus not augmented, was used as unseen data for the final evaluation. 

 

5.3.2.2 F0 estimation and voicing decision 

The estimation of f0 benefits from a large inventory of existing PDAs. Most PDAs can 

be classified into three broad categories with respect to f0 estimation: (a) time-domain 

methods (TD), which are based on the temporal dynamics of the signal; (b) frequency-

domain methods (FD); and (c) hybrid methods, which put together time- and 

frequency-domain approaches. Besides, PDAs may deploy techniques to improve f0 

tracking (such as smoothing and the Viterbi algorithm - VA) and reach a voicing 

decision. A set of 14 PDAs were chosen for their availability and the variety of their 

approach to f0 estimation and voicing decisions. Table 15 details the PDA used in this 

study. Each PDA was used to estimate the f0 from the waveforms of the augmented 

corpus. F0 outputs may greatly vary depending on the f0 range passed on to PDA 

algorithms. 

 

Table 15 - List of the PDA tested in this study, with general characteristics 

PDA Type References 

Praat AC    TD (Boersma & Weenink, 2022) 

Praat SHS FD 

(Boersma & Weenink, 2022; Hermes, 

1988) 

Praat CC TD+VA (Boersma & Weenink, 2022) 

RAPT TD+VA (Talkin et al., 1995) 

YIN TD (de Cheveigné & Kawahara, 2002) 
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PDA Type References 

Legacy STRAIGHT FD+TD (Kawahara et al., 2005) 

SWIPE    FD (Camacho & Harris, 2008) 

SWIPEP FD (Camacho & Harris, 2008) 

YAAPT FD+TD+VA (Zahorian & Hu, 2008) 

openSMILE AC TD+VA (Eyben et al., 2013) 

BaNa FD+TD+V (Yang et al., 2014) 

PEFAC FD+VA (Gonzalez & Brookes, 2014) 

pYIN  TD+VA (Mauch & Dixon, 2014) 

SRH (COVAREP)    FD (Degottex et al., 2014) 

 

 

Although some approaches rely on default ranges (see, e.g., Vaysse et al., 2022), we 

selected a broad range (75 to 1000 Hz)24. Given the nature of the data, f0 peaks as high 

as 850Hz were observed in the C-ORAL-BRASIL subset. Other default parameters were 

not changed. Among the tested PDAs, some algorithms produce f0 estimations for 

each frame, plus a voicing probability, while others only output f0 estimates for voiced 

frames (i.e., after explicitly having a voiced/unvoiced decision). When a voicing 

probability was available, different probability thresholds were tested to maximize their 

accuracy score with respect to the ground truth. To that effect, I used a search space 

of seven probability levels distributed between the second and third observed 

probability quartiles. 

 

5.3.2.3 Additional features 

Acoustic features were extracted from the speech signals to train the VD model. The 

first set was the f0 values (and VD decision) estimated by the 14 PDA systems. We also 

estimated the intensity and the Cepstral Peak Prominence using Praat (Boersma & 

 
24 The simpler implementation of de Cheveigné & Kawahara (2002) used here, does not allow for a maximum 

range value. 
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Weenink, 2022), the  Harmonics-to-Noise Ratio using the PAPD algorithm (Sturmel, 

2011), the spectral emphasis following (Traunmüller & Eriksson, 2000), and 20 MFCCs 

using the librosa package (McFee et al., 2015) for Python. Outputs of all features were 

resampled at a 10ms step. 

 

5.3.3 Models 

Prior to adopting a specific modeling technique, we tested several baseline models by 

using a subset of our data on an 80/20 split. The results (accuracy and f1 scores) are 

shown in Table 16: 

 

Table 16 - Performance of tested models 

Model Accuracy F1-score 

Stochastic Gradient Descent 69 69 

LogReg 69 73 

LDA   69 73 

GaussianNB   70 73 

RandomForest    72 75 

RNN LSTM   84 86 

FNN  85 87 

RNN GRU   85 87 

RNN BiLSTM   85 87 

CNN   85 88 

 

The obtained accuracies led us toward the use of a CNN model. Although RNN models 

exhibit similar results, the CNN model has two advantages: (a) it can account for 

neighboring timeframes (like the RNN models), which is desirable since providing 

context may improve the model (Hinton et al., 2012), and (b) CNN architectures offer 

similar results with more efficiency. Furthermore, it yielded higher accuracy and f1-

score. The CNN model is configured as follows: 



126 

 

 

 (A) Conv2D: Filters: 32; Kernel size: 3x3; ReLU. 

 (B) Conv2D: Filters: 64; Kernel size: 3x3; ReLU. 

 (C) MaxPooling2D: Pool size: 2x2; followed by Dropout 01 and a Flatten layer. 

 (D) Dense: Units(s): 32; ReLU; followed by Dropout 02. 

 (E) Dense: Unit(s): 1; Sigmoid activation function. 

A Label Smoothing is applied to the output. 

An Early stopping callback was set to monitor validation loss value with patience 

of 5 increasing values. 

 

Figure 19 displays the corresponding layers of the model: 

 

Figure 19 - Flowchart of the VD CNN model architecture 

 
 

To find the best parameters for the model, a Hyperband search (Li et al., 2017) was used. 

The search spaces, as well as the chosen parameters, are shown in the last column of 

Table 17. 
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Table 17 - Hyperparameters, search spaces and selected parameter for the VD decision 

CNN model 

Hyperparameter Search Space Sel. par. 

Batch size 16, 32, 64, 128, 256 64 

Optimizer Adam, RMSprop, Adadelta Adam 

Optimizer LR 0.0001, 0.001, 0.01 0.0001 

Droupout 01 0.0, 0.2, 0.4, 0.6, 0.8 0.2 

Droupout 02 0.0, 0.2, 0.4, 0.6, 0.8 0.5 

Label Smoothing 0.0, 0.1, 0.2 0.1 

 

A 5-fold cross-validation was conducted to evaluate the performance of our best 

model by splitting the dataset into five equal parts. For each iteration, the model was 

trained on four folds and evaluated on the remaining fold. The process was repeated 

for each different held-out fold for evaluation. To avoid data leaking, speakers and files 

were not shared between train/test splits. Our model achieved an average accuracy of 

88.21% over the five iterations, with a standard deviation of 0.61. This result indicates 

that the model is consistent in its performance across different parts of the dataset. 

 

5.3.4 Results 

This section presents two sets of results: one linked to the degradations of the VD (by 

PDAs and the selected models) on controlled additions of noises, evaluated on the test 

set of the augmented corpus, and another is their output on the C-ORAL-BRASIL 

subset, which offers a naturally occurring set of noisy speech. BaNa (Yang et al., 2014), 

YIN (de Cheveigné & Kawahara, 2002), and RAPT (Talkin, 2005) are excluded from the 

comparison since they target f0 estimation but not VD.  

The quality measurement used here is the Accuracy calculated as the ratio of 

true voiced and unvoiced frames to the total number of frames; this is the inverse of 

the Voicing Detection Error used by (Jouvet & Laprie, 2017). Results are shown in Table 

18: 
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Table 18 - Global Accuracy (Glob. acc.) observed on the test set for each PDA and 

Model: mean (standard deviation), all SNR and noise type mixed; Accuracy of these 

systems on the Clean part of the test set only (Clean Ac.); Accuracy estimated on the 

Unseen data 

PDA/Model 
Global accuracy Clean accuracy Unseen accuracy 

Mean Std. Mean Std. Mean Std. 

Praat AC 0.72 (0.17) 0.93 (0.03) 0.84 (0.10) 

Praat CC 0.71 (0.17) 0.94 (0.02) 0.83 (0.10) 

Praat SHS 0.62 (0.12) 0.81 (0.04) 0.69 (0.12) 

Straight 0.66 (0.17) 0.91 (0.04) 0.74 (0.16) 

Swipe 0.75 (0.15) 0.94 (0.03) 0.83 (0.09) 

Swipep 0.75 (0.15) 0.94 (0.03) 0.83 (0.08) 

YAAPT 0.73 (0.18) 0.94 (0.03) 0.85 (0.08) 

openSMILE 0.74 (0.15) 0.92 (0.04) 0.76 (0.16) 

PEFAC 0.80 (0.11) 0.90 (0.03) 0.86 (0.05) 

pYIN 0.68 (0.14) 0.87 (0.06) 0.66 (0.19) 

SRH 0.76 (0.13) 0.91 (0.03) 0.73 (0.22) 

Model all 0.88 (0.11) 0.96 (0.02) 0.88 (0.06) 

Model f0 0.85 (0.12) 0.96 (0.03) 0.88 (0.05) 

Model MFCC 0.85 (0.12) 0.95 (0.02) 0.77 (0.12) 

 

 

5.3.4.1 Effect of noises at different SNR 

 

Figure 20 presents the expected degradation of performances, in terms of Accuracy, 

observed on the test set with increased SNR for all PDAs and for the three models --- 

according to the type of noises considered. Most PDAs are robust to light levels of 

noise, but performances generally drop between SNR +15 and +10 dB. The Praat AC 

system, which has among the best performances on clean speech (see the Clean Acc. 

column of Table 18), is relatively sensitive to noise: its performances rapidly degrade 

on noisy signals (at about +10dB SNR). Conversely, the PEFAC model has remarkably 
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robust performances in noise (being the best PDA tested here at SNRs below 10dB), 

but has lower performances on clean speech. These different performances of available 

PDAs support our approach to build a system that could be accurate on any signal, 

clean or noisy. 

 

Figure 20 - Effect of SNR (all noises mixed) on the accuracy of the VD by the 11 PDAs 

and the three models. 

 
 

Comparing the curves of the three models in Figure 20, one can observe the complete 

model outperforms the others --- with mean accuracy above 0.9 at SNR = 0dB, which 

is a remarkable performance: there is, thus, some synergy between the proposed 

features. The model based on f0 only comes close to the full one in "clean" situations 
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(because the PDAs already did a great job), while the MFCC features have more 

importance in the most adverse situations. 

 

5.3.4.2 Effect of noise type 

Figure 21 presents the slope of Accuracy with SNR for a sub-selection of PDAs (among 

those best performing globally for this task) and for the three models, according to the 

type of noises considered. 

Noises have been grouped according to their characteristics: RIR includes the 

two reverberations, babbling the two babble noises, Social regroups Café and Street 

(that have non-stationary characteristics), and Vent. includes Ventilator and Air 

conditioning.  Comparing the results on the different noise types in Figure 21, one can 

observe large differences: it is important to propose systems trained in noise conditions 

adequate to real recording situations. While reverberation, which is an adverse 

condition for most PDAs, is well-supported by our models, the two more difficult 

situations seem to be related to babbling and social noises (let's note the best model 

is still close to 0.9 at SNR = 0dB – but performances fall afterward). 

 

Figure 21 - Accuracy per SNR level and noise type (plots), for our three models (all, f0, 
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MFCC) and the tested PDAs 

 
 

The other noises (on the lower row of Figure 21, which have some stationary 

characteristics, but may introduce periodic noise, are also detrimental to many PDA, 

even at the lightest noise levels --- but they are also well dealt for by our proposed 

models.  

 

5.3.4.3 Evaluation with the spontaneous speech corpus 

The evaluation of unseen data was performed on a spontaneous corpus that features 

some files with notable noise. The column Unseen Accuracy of Table 18 gives the mean 
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performances of the PDA and of the models on this dataset. Compared with 

performances on clean data, it shows a significant degradation of performances for all 

systems. This comparative degradation from a clean dataset to a noisy one shows the 

proposed model still provides the best performances, and a relatively reduced 

degradation (-8 p.p.), but the PEFAC system shows its strength in such a situation, 

having comparable scores, and the smallest degradation (having relatively low scores 

on clean data). 

 

5.3.5 Conclusion 

We evaluated the VD task of 11 PDA systems using ten realistic noise conditions 

controlled in nine SNR levels on two reference databases. We also evaluated these 

PDAs and the proposed system on a corpus of spontaneous speech recorded in natural 

settings. The proposed system introduces a quality increment of 2% on clean data 

(reaching an accuracy of 0.96) and 8% on global accuracy (clean + noisy data) 

compared to the best-performing PDA. 

This section showed how the Voicing Decision task, essential to obtain reliable 

f0, suffers from a diverse range of noises: how SNR degrades performances, depending 

on the noise type. Starting from the capabilities of existing PDA algorithms, it is 

proposed a CNN-based model targeting the specific task of voicing decision, not a 

complete pitch detection algorithm; the model is more robust to noise than the 

compared PDAs for all types and noise levels evaluated. In the next section, another 

important aspect for obtaining reliable f0 curves, the f0 tracking, is tackled. 

 

5.4 DYNAMIC PROGRAMMING ALGORITHM 

For each timeframe of an audio signal, multiple f0 estimations are available. Before 

anything, specifying that the output measurements have timeframes of 5ms each is 

useful. Each timeframe has one estimated value per PDA algorithm, i.e., 14 f0 estimated 

values per timeframe. A dynamic programming algorithm was implemented based on 
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Weenink (2022), Talkin et al. (1995), and Bartošek (2011). The following explanation is also 

broadly based on and adapted from these authors, but some changes to their original 

implementation have been made. PDAs often produce very deviant estimations (high 

standard deviation) and sometimes very coherent estimations (small standard 

deviation). The deviant estimations often occur in zones with high noise levels, creaky 

voices, or where no f0 should be perceived. Coherent estimations occur where the 

signal is clearer and f0 can be more easily estimated. 

 We deal with each PDA estimation for each timeframe as if it is an f0 candidate, 

since only one estimation will be picked up at the end of this procedure. We must now 

decide what the best candidate is. For this decision, we will make three assumptions. 

The first assumption is that each algorithm will make its best bet, i.e., it will send out its 

most likely f0 estimation for each timeframe, considering its strongest candidates and 

other post-treatment procedures. Observing the timeframes where f0 estimations are 

highly coherent, we are led to think that the real-world f0 value must be most likely 

situated where most PDAs agree. In other words, the closer to the median value (always 

for the same timeframe), the more likely an estimation is. We use this as a heuristic for 

all timeframes, even if they display deviant estimations. This is our first assumption: the 

real-world value is close to where most algorithms agree. At first sight, this may look 

problematic, but very deviant timeframes will likely have their estimations zeroed when 

we apply our voicing decision model. We will talk about this later. For now, we will be 

focused on f0 tracking. So, to sum up, for each timeframe, the closer to the median a 

PDA estimated value is, the stronger it will be. The second assumption is that each 

algorithm has a different sensitivity to different phenomena (resilience to noise, for 

instance) and that their fortes should be reflected in the final strength of their bets. For 

now, suffice it to say that we still need to empirically find the reward and penalty factors 

to be globally applied to the costs of each PDA’s estimation. That said, we can now 

show the within-frame cost function that accounts for the fact that the more distant 

from the median a PDA estimation is, the more costly its estimation will be. This cost 

function is based on Bartošek (2011). The equations below give the probability of a(x) 
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for each PDA’s f0 estimation for timeframe t (f0k) with respect to the median value of 

f0 estimations of all PDA algorithms (Medt) in the same timeframe: 

 

Equation 3 – Semitone cents between two frequencies 

𝑥𝑥 = 1200 �𝑙𝑙𝑙𝑙𝑙𝑙2 �
𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡
𝑓𝑓0𝑘𝑘

�� 

 

Equation 4 – Within-frame probability 

𝑎𝑎(𝑥𝑥) =
1

𝑒𝑒0.0012𝑥𝑥 

 

The cost function within the frame constitutes only a partial solution, as its validity is 

confined to the consideration of each timeframe in isolation. Notwithstanding certain 

specific cases, the vocal folds produce vibrations characterized by varying frequencies, 

whether increasing, remaining constant, or decreasing continuously. Consequently, 

real-world fundamental frequency (f0) values exhibit context-dependent behaviors. In 

cases deemed exceptional, it is assumed that the majority or nearly all of the Pitch 

Detection Algorithm (PDA) estimations will likely indicate abrupt changes – marking 

the third and final assumption. 

Selecting the strongest f0 estimation (i.e., the one closest to the median) at a 

local level (within each timeframe) does not consistently yield the genuine global f0 

contour in the real world – the contour formed when considering the estimated values 

across all timeframes. Indeed, opting for the strongest local values may result in a 

highly discontinuous global f0 contour. At this point, a heuristic to determine which f0 

estimation to choose when their strengths are equal needs to be addressed. 

To address these issues, a function that incorporates the costs associated with 

transitioning from one f0 estimation to the next is required. The objective is to ensure 

a smooth f0 contour without it being entirely flat. This is achieved by discouraging 

substantial f0 changes between timeframes, constituting the between-frames cost. The 
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between-frame cost function is formulated below, resembling the within-frame cost 

function, with the distinction that the starting point for determining the transition 

probability a(x) is not the median value in timeframe t, but rather an f0 estimation in 

timeframe t and an f0 estimation in timeframe t+1: 

 

 Equation 5 – Semitone cents between two frequencies 

𝑥𝑥 = 1200 �𝑙𝑙𝑙𝑙𝑙𝑙2 �
𝑓𝑓0𝑡𝑡
𝑓𝑓0𝑡𝑡+1

�� 

 

Equation 6 – Between-frames probability  

𝑎𝑎(𝑥𝑥) =
1

𝑒𝑒0.0012𝑥𝑥 

 

Moreover, transition costs do not come into play for candidates with equal frequencies; 

costs are only incurred when there is a change in frequency. 

There is also a consideration for introducing a penalizing factor to restrict 

changes from one PDA to another. The objective is to preserve an algorithm's 

estimations to the greatest extent possible. The intention is not to simply flatten the 

global fundamental frequency (f0) contour by consistently selecting the next f0 point 

with the least steep inclination from one frame to the next, without considering which 

Pitch Detection Algorithm (PDA) produced it. Stability is sought to a considerable 

extent, aiming to maintain contours. This factor is designed to, to some degree, 

safeguard the contours generated by a particular algorithm. 

With that being said, the optimal f0 tracking is the track that incurs the minimum 

global cost, accounting for within-frame costs, between-frame costs, and penalties and 

rewards applied to PDAs. Numerous algorithms are available for finding optimal, least 

costly tracks – or, succinctly, a path. A path in this context refers to a sequence 

connecting f0 candidates in successive timeframes. The start point may be chosen as 

the f0 candidate displaying the maximum agreement with the median value in the first 
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frame, and the end can occur at any candidate in the last frame. The figure below 

illustrates two paths over eight consecutive timeframes, presenting estimations from 

five PDA algorithms for each timeframe. 

 

Figure 22 - F0 trellis 

 
 

This figure depicts a trellis, where each path corresponds to a possible global f0 contour 

assignment. Having m PDAs’ estimations by timeframe and n timeframes, we arrive at 

a total mn possible paths – time complexity O(mn). Even with a relatively small number 

of PDAs and audio of short duration, the number of possible paths to walk through is 

very high from a computational standpoint. To manage this task, an algorithm that 

narrows down the number of steps to be performed by taking on a few assumptions is 

needed. The Viterbi algorithm (Viterbi, 1967) is a dynamic programming algorithm 

widely used both for estimating the Maximum a Posteriori Probability estimate of the 

most likely sequence of hidden states (Hidden Markov Models) and for finding the 

optimal path through a chain of nodes/events having a cost function. It is also widely 

used in computational linguistics applications like speech recognition, speech 

synthesis, diarization, and keyword spotting. It can cut the exponential time complexity 

https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Speech_synthesis
https://en.wikipedia.org/wiki/Speech_synthesis
https://en.wikipedia.org/wiki/Diarization
https://en.wikipedia.org/wiki/Keyword_spotting
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from O(mn) to O(n*m2). For that 600-ms audio, the number of operations is greatly 

reduced, and the total time to obtain a result is less than 1 ms. 

The underlying assumption is that the most likely path from the first time point 

up to a given time point t must depend only on the f0 estimations of timeframe t and 

the most likely sequence of f0 points that led to that state at timeframe t−1. Put simply, 

the algorithm only takes into account neighboring frames. The probabilities or costs 

are evaluated locally, and there is no explicit dependence on timeframes with more 

than one timeframe behind. It follows that the calculation must be executed 

sequentially, the path going always in the same sense of time – from left to right, in a 

spatial representation. 

The Viterbi algorithm operates on the state machine assumption. That is, at any 

time point, the f0 point being modelled is chosen from a finite number of states. Each 

state is given by a PDA’s f0 estimation and its within-frame and between-frame costs. 

Multiple chains of states (paths) lead to a certain state, but only (or at least) one of 

them is the most likely path to that state because it entails the least costly path, also 

known as the winning path or the Viterbi path. The algorithm does not keep track of all 

possible paths and costs associated with leading to a certain state, as a complete 

solution would do. It will examine all local transitions leading to a state (from state s-1 

to s) and keep the most likely one. The index of the most probable, least costly state is 

stored, and the next timeframe will be evaluated. This is a key assumption of the Viterbi 

algorithm. A second key assumption is that a transition from a state to the next one 

entails transition probabilities or transition costs. The transition costs are computed 

from within-frame and between frame costs. The last assumption is that a cumulative 

cost can be achieved by summing the state-to-state transition costs. The algorithm 

stores the cumulative costs in each state. Then, it goes forward and combines the 

cumulative costs of all possible previous states with the local transition costs. The 

algorithm evaluates the combinations of local costs and accumulated costs and pick 

up the least costly transition. All other paths are discarded. When the end of the trellis 

is reached, we will have the lowest accumulated cost (the maximum accumulated 
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probability), the chosen f0 estimation at each frame and the chosen PDA index frame 

by frame. 

 

5.5 OUTPUT 

5.5.1 Viterbi Algorithm 

Figure 23 exhibits the f0 estimations of six PDA algorithms for the audio file 

bfamcv03_202. For the sake of exemplification, only six algorithms that outputs 

continuous estimations are used here. The estimations of each PDA are color-coded: 

 

Figure 23 - Raw F0 estimations of six different PDAs for audio file bfamcv03_202 

 
 

It is noteworthy that even in the reliable voiced zone (approximately between 500 and 

1250ms), some algorithms produce octave and fifth jumps – see Praat AC and PEFAC. 

After the data are passed through the VA algorithm, we end up with the winning (or 

Viterbi) path shown in Figure 24 - Viterbi Path. In this figure, there is only one choice 

by frame. The chosen algorithm for each frame is color-coded (right upper legend box). 
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Figure 24 - Viterbi Path for audio file bfamcv03_202 

 
 

Unduly voiced frames can now be devoiced with the Voicing Decision model. 

 

5.5.2 Voicing Decision Model 

Figure 25 displays the predictions of the CNN Voicing Decision model. For visualization 

purposes, unvoiced time points are zeroed. Unvoiced frames are color-coded in red on 

the x-axis and voiced frames in blue. F0 estimations are coded in blue and green. Green 

points represent the f0 estimations passed through the VA algorithm, and blue points 

represent the ground truth (unseen data) used to evaluate the VD model. Here, the y-

axis scale is changed to make the contour clearer. 

 

Figure 25 - Predictions of the best voicing decision model for audio file bfamcv03_202 
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As can be observed, there are only two small zones of misassigned voicing decision 

around 500ms (0.50s), and the model performs well even in voiced zones where PDAs’ 

estimations are more coherent, like in the unvoiced zone between 1000 and 1250ms 

(check against Figure 23). 

 

5.6 ALGORITHMS USED FOR THE ESTIMATION F0 PARAMETERS 

Only six PDA algorithms were effectively used to estimate f0 through the VA plus VD 

model solution. They are BaNa (Yang et al., 2014), Praat AC (Boersma, 1993), Pefac 

(Gonzalez & Brookes, 2014), Straight (Kawahara et al., 2005), Swipep (Camacho, 2007), and 

YAAPT (Kasi, 2002). They were chosen because they yield the best results for the VD 

modeling task, thus minimizing VDE, and because they represent a good subset of 

different types of PDAs, with different robustness. After VA plus VD processing, f0 

features were calculated in accordance with Section 4.4. Prosodic-acoustic parameters 

estimation). 

 In the next chapter, descriptive statistics and an exploratory data analysis are 

presented. 

  



141 

 

6 DESCRIPTIVE AND INFERENTIAL STATISTICS OF THE 

DISCOURSE MARKERS 

This chapter presents the descriptive statistics of the prosodic-acoustic features 

employed for the classification model (Chapter 7) and an Exploratory Data Analysis 

(EDA – Tukey, 1977). The EDA is applied to summarize the primary characteristics of the 

descriptors within a dataset. Utilizing data visualization techniques such as boxplots, 

histograms, and scatterplots, EDA aims to provide insights into hypotheses, qualitative 

analyses, and potential errors (outliers). The primary objective is to visually examine 

what is revealed about the set of descriptors, including means, medians, distributions, 

skewness, variance, and covariance. The 30 features listed in Chapter 4 are described, 

each accompanied by the following summary information: 

 

a) Arithmetic mean; 

b) Standard deviation; 

c) Median; 

d) Trimmed mean; 

e) Minimum value; 

f) Maximum value; 

g) Range; 

h) Asymmetry; 

i) Kurtosis. 

 

The distribution of each feature is illustrated through boxplots for each Discourse 

Marker function. A Kruskal-Wallis non-parametric test was applied to compare 

differences between pairs of Discourse Markers for each feature. A significance level of 

0.05 was employed. A table displaying significant differences between pairs of DM 

categories for each feature is presented after the boxplot. Interactions between 
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features within each group are visualized through pairplots that incorporate the 

feature's histogram (on the diagonal) and Pearson’s correlation coefficients (PCC) 

between pairs of features.  

All statistical summaries, analyses, and plots were generated using Python 

(Matplotlib, Seaborn, and Scipy Stats). 

 

6.1 FEATURES OF INTENSITY 

The set of intensity features encompasses mean intensity (mean_intensity_dm), 

standard deviation of intensity (std_intensity_dm), maximum intensity 

(max_intensity_dm), minimum intensity (min_intensity_dm), mean intensity on the 

stressed vowel (mean_intensity_stressed_dm), and spectral emphasis on the stressed 

vowel (mean_se_stressed_dm). These features were individually estimated and 

normalised for each Discourse Marker (DM) instance relative to its node COM. 

In Figure 26 below, the distribution of each feature is presented by DM function, 

color-coded to match the hues used in the tables of summary statistics. The boxplots 

include a notch; non-overlapping notches suggest evidence (at a 95% confidence level) 

of significantly different medians when comparing boxplots of different DM functions, 

assuming normal distributions in the compared classes. A Kruskal-Wallis test, 

summarized shortly after the boxplots, provides a more reliable assessment. 

The DM functions tend to follow the order INP > EXP > CNT > EVD > ALL for 

their mean intensity. This aligns with previous observations by Raso & Vieira (2016) and 

Gobbo (2019), considering their assessed classes, where the intensity order was INP > 

CNT > ALL. However, when considering only the stressed vowels (for both mean 

intensity and spectral emphasis), a different class emerges at the top: EXP > INP > 

CNT > EVD > ALL. 

Gobbo’s model identified intensity features as crucial for distinguishing ALL, 

CNT, and INP. In his sample, ALL consistently occupied the final position relative to the 

COM, CNT could be in any position, and INP was consistently in the initial position. 
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There is a noticeable trend for intensity in DM functions in the initial position to be 

higher than in the final position. This trend aligns with the natural expectation that near 

terminal boundaries, segments are elongated, and f0 and intensity decrease. Despite 

this tendency, a notable contrast can still be observed in the final position between 

classes with generally higher intensity (CNT and EVD) and ALL, the latter displaying the 

lowest intensity among all classes. 
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Figure 26 - Distribution of features of intensity by class of DM 

 
 

The table presented below provides a summary of the Kruskal-Wallis tests conducted 

on pairs of Discourse Markers classes. An initial observation based solely on mean 
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intensity might suggest distinct distributions across all DM functions. However, upon 

closer examination, it becomes apparent that the differences between EXP and INP and 

ALL and EVD do not reach statistical significance when exclusively considering the 

stressed vowel. Focusing on measures of the stressed vowel may offer a more reliable 

indicator of the volume perceived by interlocutors, as it partially mitigates variations 

introduced by surrounding segments (given that intensity in consonantal segments 

tends to exhibit greater variability than in vowels). Nonetheless, intrinsic vowel intensity 

contributes some variation to the system. The absence of a significant difference 

between EXP and INP appears to be further supported by spectral emphasis. 

 

Table 19 - Significative differences between pairs of DMs by feature of intensity 

DM PAIR 
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M
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 (s
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ll
bl

) 
CNT EXP ✓ ✗ ✓ ✗ ✓ ✓ 

CNT ALL ✓ ✗ ✓ ✓ ✓ ✗ 

CNT INP ✓ ✗ ✓ ✓ ✓ ✓ 

CNT EVD ✓ ✓ ✓ ✗ ✓ ✓ 

EXP ALL ✓ ✗ ✓ ✓ ✓ ✓ 

EXP INP ✓ ✓ ✗ ✓ ✗ ✗ 

EXP EVD ✓ ✓ ✓ ✗ ✓ ✓ 

ALL INP ✓ ✓ ✓ ✓ ✓ ✓ 

ALL EVD ✓ ✓ ✗ ✓ ✗ ✓ 

INP EVD ✓ ✓ ✓ ✓ ✓ ✓ 

(✓ = siginificative difference; ✗ = non-significative difference) 
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Table 20 - Statistical summary of the features of intensity 
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e 

DM
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M
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M
ea

n 
In
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ity
 (D

M
) ALL -1.038 1.073 -0.799 -0.950 -4.708 0.876 5.584 -0.984 3.953 

CNT 0.008 1.074 0.048 0.052 -3.542 2.531 6.073 -0.528 3.493 

EVD -0.367 0.558 -0.397 -0.372 -1.612 1.180 2.792 0.136 2.457 

EXP 0.333 0.718 0.405 0.374 -1.829 1.468 3.297 -0.601 3.039 

INP 0.708 0.796 0.724 0.690 -2.264 3.326 5.590 0.037 5.905 

  

SD
T 
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ity

 (D
M

) ALL 0.780 0.443 0.684 0.716 0.106 2.425 2.319 1.949 7.511 

CNT 0.706 0.445 0.614 0.652 0.100 2.468 2.368 1.364 5.120 

EVD 0.406 0.251 0.348 0.382 0.073 1.091 1.018 0.868 3.113 

EXP 0.727 0.349 0.769 0.718 0.141 1.545 1.404 0.172 2.474 

INP 0.611 0.457 0.531 0.556 0.031 3.221 3.191 2.855 15.565 

  

M
ax
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ity

 (D
M

) ALL 0.147 0.878 0.191 0.154 -1.868 2.646 4.514 0.033 2.811 

CNT 0.932 0.920 0.899 0.903 -1.607 4.366 5.972 0.385 3.780 

EVD 0.174 0.689 0.197 0.168 -1.414 1.699 3.113 0.050 2.536 

EXP 1.260 0.721 1.331 1.297 -0.766 3.081 3.847 -0.476 3.823 

INP 1.399 0.709 1.298 1.341 -0.230 4.257 4.487 1.271 6.370 
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M

) ALL -2.495 1.556 -2.225 -2.305 -7.816 0.380 8.196 -1.471 5.481 

CNT -1.379 1.503 -1.223 -1.285 -6.558 1.619 8.177 -0.736 3.621 

EVD -1.243 0.692 -1.229 -1.229 -2.715 0.111 2.826 -0.109 2.229 

EXP -1.064 0.997 -1.105 -0.995 -4.100 0.563 4.663 -0.632 3.242 

INP -0.601 1.514 -0.199 -0.444 -8.982 1.878 10.859 -2.606 14.115 
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) ALL -0.427 1.018 -0.303 -0.377 -2.610 1.555 4.166 -0.438 2.560 

CNT 0.427 0.955 0.467 0.434 -2.481 2.689 5.170 -0.180 3.036 

EVD -0.211 0.598 -0.167 -0.208 -1.626 1.193 2.819 -0.074 2.454 

EXP 0.878 0.742 1.011 0.941 -1.499 2.433 3.931 -0.963 4.183 
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INP 1.075 0.635 1.022 1.030 -0.447 3.801 4.248 1.249 7.079 
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) ALL 0.255 0.965 0.347 0.272 -1.928 2.428 4.356 -0.157 2.609 

CNT 0.634 1.690 0.427 0.494 -1.492 17.330 18.822 7.090 69.790 

EVD -0.330 0.578 -0.394 -0.352 -1.887 1.102 2.989 0.241 3.292 

EXP 0.946 0.897 1.010 0.971 -1.329 2.995 4.323 -0.326 3.109 

INP 0.845 0.952 0.804 0.827 -1.614 5.702 7.315 1.319 10.423 
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Figure 27 - Correlation between features of intensity 

 
 

The pairplot in figure 25 shows that there is a high collinearity between the mean 

intensity of the whole DM and that of the stressed vowel. The collinearity is weaker 

when these two features are compared with the spectral emphasis on the stressed 

vowel. 
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6.2 FEATURES OF DURATION 

In Figure 28 below, the distribution of duration features is depicted, including the mean 

standardized duration of syllables (zsil_mean) following Barbosa (2013) and the 

duration of the entire Discourse Marker (DM) relative to COM (dm_duration). Notably, 

two levels of differences are observable: firstly, in the case of ALL and EXP, which exhibit 

longer durations and tend to have a mean comparable to COM (median around 0); 

secondly, for CNT, EVD, and INP, which tend to be shorter than ALL and EXP, as well as 

COM. 

 

Figure 28 - Distribution of the features of duration 

 
The described tendency is confirmed by the Kruskal-Wallis test, shown below, except 

for the pair INP-EVD, whose distributions are also significantly different. 
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Table 21 - Significant differences between pairs of DMs by features of duration 

DM PAIR 
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CNT EXP ✓ ✓ 

CNT ALL ✓ ✓ 

CNT INP ✗ ✓ 

CNT EVD ✗ ✗ 

EXP ALL ✗ ✓ 

EXP INP ✓ ✓ 

EXP EVD ✗ ✓ 

ALL INP ✓ ✓ 

ALL EVD ✗ ✓ 

INP EVD ✓ ✓ 

 

Table 22 - Statistical summary of the features of duration 

Fe
at

ur
e 

DM
 

M
ea

n 

St
an

da
rd

 D
ev

ia
tio

n 

M
ed

ia
n 

Tr
im

m
ed

 M
ea

n 

M
in

im
um

 

M
ax

im
um

 

Ra
ng

e 

Sk
ew

ne
ss

 

Ku
rt

os
is

 

Ar
tic

ul
at

io
n 

ra
te

 (D
M

 

z-
sc

or
es

) 

ALL 0.486 2.297 0.274 0.261 -3.124 6.996 10.120 0.917 3.586 

CNT -0.335 2.492 -0.725 -0.559 -4.826 6.674 11.500 0.840 3.302 

EVD -0.017 2.173 -0.552 -0.227 -3.157 5.927 9.084 0.879 2.928 

EXP 0.171 1.608 0.036 0.016 -2.415 6.586 9.001 1.382 6.138 

INP -1.210 1.576 -1.076 -1.138 -5.436 2.472 7.908 -0.425 3.396 
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ALL 0.297 0.105 0.274 0.290 0.119 0.614 0.494 0.891 3.447 

CNT 0.196 0.098 0.176 0.185 0.060 0.455 0.395 0.947 3.047 

EVD 0.171 0.057 0.153 0.166 0.088 0.344 0.256 0.844 2.975 

EXP 0.221 0.066 0.225 0.220 0.107 0.387 0.280 0.122 2.312 
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INP 0.149 0.059 0.147 0.146 0.041 0.344 0.303 0.591 3.230 

 

 

Figure 29 - Correlation between features of duration 

 
 

6.3 FEATURES OF FUNDAMENTAL FREQUENCY (F0) 

In Figure 30 below, the distribution of fundamental frequency features is presented. 

Again, two levels of relevant differences are shown: firstly, for ALL, which exhibits lower 
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fundamental frequency (f0), lower max f0, and lower min f0; and secondly, for CNT, 

EXP, EVD, and INP, which tend to have a mean f0 approximately at the same level as 

COM. 

An observation regarding INP is relevant here. In previous studies, INP was 

perceived to have the highest mean f0 level among all DM functions. In the current 

proposal, instances with functional similarity and a similar f0 form were added to the 

INP class, specifically those starting the utterance with a flat f0 profile. The height of 

the tone can vary, with INP displaying a low to medium flat tone or a high flat tone 

based on the speaker’s attitude. The inclusion of instances with lower flat tones in the 

class is reflected in the mean f0 levels of INP. Nevertheless, it remains the DM function 

with the highest central tendency of mean f0. However, this difference does not appear 

significant when comparing INP and EXP for mean f0 and max f0. 

Another relevant aspect of the data is the observation that INP exhibits the least 

spread when considering the standard deviation of f0 points (also, the lowest mean 

STD in Table 9). This indicates that this DM function has the flattest f0 contour, as 

expected. 
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Figure 30 - Distribution of the features of f0 

 
 

Figure 31 - Significant differences between pairs of DMs by features of f0 

DM PAIR 

M
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n 
f0

 

ST
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f0
 

M
ax

 f0
 

M
in

 f0
 

CNT EXP ✗ ✗ ✗ ✗ 

CNT ALL ✓ ✓ ✓ ✓ 

CNT INP ✓ ✓ ✗ ✓ 

CNT EVD ✗ ✓ ✗ ✗ 

EXP ALL ✓ ✗ ✓ ✓ 
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DM PAIR 
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EXP INP ✗ ✓ ✗ ✓ 

EXP EVD ✗ ✓ ✓ ✗ 

ALL INP ✓ ✓ ✓ ✓ 

ALL EVD ✓ ✓ ✓ ✓ 

INP EVD ✓ ✓ ✗ ✓ 

 

Table 23 - Statistical summary of the features of f0 
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ALL -2.185 2.486 -1.513 -1.796 -13.516 1.196 14.712 -2.747 12.190 

CNT -0.351 1.102 -0.307 -0.320 -4.548 2.973 7.521 -0.388 4.663 

EVD -0.266 1.218 -0.391 -0.274 -4.780 3.180 7.960 -0.154 5.262 

EXP -0.155 0.732 -0.019 -0.144 -1.845 1.937 3.782 -0.064 2.974 

INP 0.114 1.409 0.041 0.054 -3.950 6.379 10.329 1.084 7.778 

  

ST
D 

f0
 

ALL 1.128 1.201 0.755 0.892 0.058 5.017 4.959 1.855 5.642 

CNT 0.689 0.618 0.496 0.578 0.022 3.145 3.122 1.987 7.036 

EVD 0.512 0.496 0.312 0.423 0.038 2.295 2.257 1.687 5.332 

EXP 0.800 0.719 0.599 0.682 0.107 3.566 3.459 1.839 6.529 

INP 0.343 0.415 0.192 0.255 0.019 2.117 2.098 2.434 9.327 

  

M
ax

 f0
 

ALL 0.102 3.661 -0.375 -0.296 -10.754 17.375 28.129 2.252 12.873 

CNT 0.733 1.555 0.487 0.562 -2.054 7.442 9.497 1.566 6.811 

EVD 0.324 1.053 0.101 0.248 -1.770 3.735 5.505 0.882 3.857 

EXP 1.048 1.775 0.663 0.751 -1.227 10.396 11.623 3.092 14.645 

INP 0.762 1.635 0.542 0.573 -1.777 6.878 8.655 1.502 6.058 

  

M
in

 

f0
 ALL -4.045 3.627 -2.947 -3.421 -16.998 -0.298 16.699 -2.055 7.199 
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CNT -1.600 2.119 -1.232 -1.349 -18.027 1.835 19.862 -3.992 28.677 

EVD -1.444 2.146 -1.061 -1.246 -7.888 2.951 10.839 -0.980 4.032 

EXP -1.834 2.152 -1.253 -1.462 -11.775 0.467 12.241 -2.409 9.678 

INP -0.607 1.615 -0.435 -0.543 -5.556 5.474 11.030 -0.108 5.774 

 

Figure 32 below shows that there are significant correlations between mean f0, on the 

one hand, and maximum and minimum f0 levels on the other. 
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Figure 32 - Correlation between features of f0 

 
 

6.4 FEATURES OF F0 VARIATION 

The features of f0 variation were specifically crafted to capture the general movements 

of fundamental frequency (f0) with respect to the stressed vowel (Gobbo, 2019). The 

features include the regression line on the entire Discourse Marker instances 

(pitch_slope_dm), on the stressed vowel (pitch_slope_stressed), the f0 range (max – min: 

pitch_range_dm), f0 slope before the mid-point of the stressed vowel 

(pitch_slope_before_stressed_dm), and f0 slope after the mid-point of the stressed 
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vowel (pitch_slope_after_stressed_dm). While another approach involves fitting a 

polynomial curve to the data and utilizing the polynomial’s coefficients as descriptors, 

it may not effectively capture the flat f0 profiles typically found in instances of the INP 

class. Therefore, we retained the features proposed by Gobbo (2019) for the sake of 

comparability and as a robust descriptor of the tendencies observed along the stressed 

vowels. 

A strong correlation is observed between the movements on the entire DM and 

those on its stressed vowel. Consequently, our focus will primarily be on the stressed 

vowel. The qualitative analysis proposed that the ALL and CNT DMs would exhibit 

negative slopes along the stressed vowels (falling f0 movements), EXP and EVD positive 

slopes (rising f0 movements), and INP the flattest movements (f0 slope ≈ 0). These 

expectations can be confirmed in the boxplots. In terms of the absolute values of f0 

slope, the ascending order from the flattest to the steepest is: INP < EVD < EXP < ALL 

< CNT (this order is confirmed in the summary statistics table). 

Another noteworthy tendency is observed in the EVD class. Despite being 

perceptually characterized by a distinctive rising movement, the class exhibits the 

second flattest f0 movement over the stressed vowel. Most EVD instances occur in the 

final position of terminated sequences; a region correlated with falling f0 profiles 

conveying terminal boundaries. Here, we hypothesize that a sustained, almost flat 

movement is sufficient to mark the EVD function. The contrast is not with a flat 

movement but rather with a baseline falling movement. 
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Figure 33 - Distribution of features of f0 variation 
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Table 24 - Significant differences between pairs of DMs by features of f0 variation 

DM PAIR 
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CNT EXP ✓ ✓ ✗ ✓ ✓ 

CNT ALL ✗ ✗ ✓ ✓ ✓ 

CNT INP ✓ ✓ ✓ ✓ ✓ 

CNT EVD ✓ ✓ ✓ ✓ ✓ 

EXP ALL ✓ ✓ ✗ ✓ ✗ 

EXP INP ✓ ✓ ✓ ✓ ✗ 

EXP EVD ✗ ✓ ✓ ✗ ✓ 

ALL INP ✓ ✓ ✓ ✓ ✓ 

ALL EVD ✓ ✓ ✓ ✓ ✓ 

INP EVD ✓ ✓ ✓ ✓ ✓ 

 

Table 25 - Summary statistics of the features of f0 variation 
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F0
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ALL -6.927 19.525 -5.190 -7.215 -62.620 115.202 177.822 3.250 24.611 

CNT -8.122 15.756 -6.824 -7.173 -115.554 52.008 167.562 -2.432 19.880 

EVD 6.428 7.499 4.543 5.860 -14.752 28.682 43.433 0.641 3.856 

EXP 5.355 9.853 3.603 4.920 -19.906 36.860 56.767 0.645 4.771 

INP 3.007 12.782 1.013 1.470 -19.112 94.178 113.289 4.909 34.120 
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) ALL -9.680 24.336 -6.554 -9.301 -120.815 115.202 236.017 0.541 17.465 

CNT -13.158 19.359 -9.767 -10.992 -152.867 27.052 179.920 -4.309 29.264 

EVD 4.703 6.759 4.547 4.454 -21.536 24.666 46.201 -0.074 6.522 

EXP 8.047 7.141 6.676 8.007 -13.172 26.962 40.134 0.008 3.648 
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INP 2.589 13.047 0.645 0.657 -15.662 94.178 109.839 4.853 32.271 

  

F0
 ra
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ALL 4.146 4.682 2.458 3.223 0.182 24.540 24.357 2.439 9.276 

CNT 2.333 2.329 1.607 1.914 0.071 15.973 15.902 2.503 11.581 

EVD 1.767 1.883 0.952 1.409 0.143 8.907 8.764 1.815 5.769 

EXP 2.881 2.818 2.062 2.404 0.258 13.659 13.401 1.905 6.640 

INP 1.369 2.082 0.556 0.879 0.063 11.649 11.586 3.003 12.411 
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 ALL -10.514 42.157 -6.445 -7.258 -304.342 124.572 428.913 -4.707 37.409 

CNT -4.295 22.816 -2.596 -3.128 -135.790 65.403 201.193 -1.972 13.451 

EVD 8.386 12.998 5.649 7.551 -34.210 68.198 102.408 1.172 9.051 

EXP 13.350 21.151 7.253 9.356 -20.559 120.635 141.194 3.293 14.786 

INP 5.459 16.670 1.631 3.400 -30.133 115.431 145.565 4.042 26.066 
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ALL -9.084 28.264 -2.654 -6.170 -150.455 106.521 256.976 -1.427 15.139 

CNT -9.525 19.513 -7.529 -9.211 -101.661 140.791 242.452 2.624 31.006 

EVD 0.819 12.107 0.890 1.257 -42.434 57.426 99.860 -0.122 12.312 

EXP -4.961 15.189 -1.602 -2.901 -60.742 28.384 89.126 -2.051 8.524 

INP 0.667 19.745 -0.329 -1.035 -45.402 130.677 176.079 4.139 27.036 
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Figure 34 - Correlation between features of f0 variation 

 
 

6.5 FEATURES OF ALIGNMENT 

The alignment features were designed to capture the alignment tendencies of the 

maximum and minimum points of f0 and intensity within the DM instance, with respect 

to the central point of the stressed vowel. The boxplots in the first and third rows of 

Figure 35 shows the position within the DM instance where the maximum and 

minimum points of intensity and f0 are achieved. Values closer to 0 indicates that the 
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time point of interest is closer to the beginning of the DM instance whereas values 

closer to 1 indicates that the time point of interest is closer to the end. The boxplots in 

the second and fourth rows show how the timepoints of interest are displaced with 

respect to the central point of the stressed vowels. Values closer to 0 indicate that the 

timepoint of interest is aligned with the center of the stressed vowel. Values different 

than 0 indicate a displacement with respect to the stressed vowel central point. The 

higher the absolute value is, the larger the displacement. Negative values indicate that 

the timepoint of interest occurs before the central point of the stressed vowel and 

positive values that it occurs after the central point of the stressed vowel. 

Starting with intensity alignment, the maximum intensity tends to be reached 

shortly after the midpoint of the DM across all classes except for ALL, where the 

maximum intensity occurs at the DM's beginning. Note that this intensity alignment 

does not necessarily correlate with other features. For example, the EVD class tends to 

attain its highest intensity point well before the central point of the stressed vowel. 

Nevertheless, the peak of the f0 tends to occur at the end of the unit (compare EVD 

distributions and medians in the left boxplots of the second and third rows). 

Conversely, concerning minimum intensity, the tendency is reversed: for all DM 

functions except ALL, the minimum intensity tends to occur at the beginning of the 

DM. 

In terms of f0, the observed distributions in the boxplots correspond to the 

described curves for each DM function. ALL and CNT display the maximum point at the 

beginning and the minimum point tending towards the end of the units, indicating a 

falling f0 movement. In contrast, EVD and EXP have the minimum f0 point at the 

beginning and the maximum point tending towards the end of the unit. INP, however, 

does not exhibit a clear tendency in this regard. Despite this, the maximum f0 aligns 

distinctly with the central point of the stressed vowel. 
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Figure 35 - Distribution of the features of alignment 

 
 

Table 26 shows the significant differences between pairs of DM functions for the 

alignment features. The ratios of maximum and minimum f0 (inside the DM), and 
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maximum f0 with respect to the central point of the stressed vowel are distinctive 

across DM functions. This tendency is not so clear when we analyze the coefficients of 

f0 curves alone, as is shown in the next subsection. Therefore, although these features 

are reflected in the f0 curves, keeping and testing them in the final classification tasks 

seems good. 

 

Table 26 - Significant differences between pairs of DMs by features of alignment 
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CNT EXP ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ 

CNT ALL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

CNT INP ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 

CNT EVD ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ 

EXP ALL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

EXP INP ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ 

EXP EVD ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ 

ALL INP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

ALL EVD ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ 

INP EVD ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

Table 27 - Summary statistics of the features of alignment 
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   ALL 0.290 0.237 0.266 0.270 0.001 0.882 0.882 0.548 2.600 

CNT 0.515 0.248 0.501 0.520 0.001 0.999 0.998 -0.134 2.324 
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EVD 0.521 0.279 0.576 0.536 0.001 0.966 0.966 -0.453 2.095 

EXP 0.567 0.212 0.545 0.568 0.010 0.997 0.987 -0.054 2.790 

INP 0.622 0.217 0.626 0.628 0.051 0.996 0.945 -0.276 2.731 
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ALL 0.683 0.323 0.780 0.716 0.006 0.999 0.993 -0.856 2.258 

CNT 0.439 0.419 0.272 0.425 0.001 1.000 0.999 0.317 1.320 

EVD 0.509 0.435 0.310 0.511 0.002 0.999 0.997 0.096 1.138 

EXP 0.445 0.434 0.228 0.434 0.001 1.000 0.999 0.139 1.131 

INP 0.275 0.403 0.033 0.218 0.001 0.999 0.998 1.085 2.220 

  

Ra
tio

 m
ax

 in
te

ns
ity

 

(w
rt

 st
re

ss
ed

 v
ow

el
) ALL -16.033 15.593 -12.619 -13.585 -114.826 -2.067 112.759 -4.123 25.020 

CNT -5.098 11.190 -2.339 -3.344 -90.631 7.179 97.810 -4.240 28.489 

EVD -29.681 33.757 -18.893 -23.542 -203.281 0.364 203.645 -2.935 13.224 

EXP -0.848 7.891 0.636 0.537 -45.952 7.955 53.907 -4.092 21.017 

INP -0.352 12.712 1.415 1.193 -103.241 13.228 116.469 -6.957 55.267 

  

Ra
tio

 m
ax

 in
te

ns
ity

 

(w
rt

 st
re

ss
ed

 v
ow

el
) ALL -12.471 15.314 -10.180 -10.242 -107.155 3.129 110.284 -3.857 22.907 

CNT -5.915 11.261 -4.573 -4.458 -86.301 14.029 100.331 -3.741 23.590 

EVD -29.780 34.213 -20.830 -23.908 -208.517 1.832 210.350 -3.007 14.080 

EXP -2.022 8.729 -2.244 -0.681 -41.100 7.400 48.500 -2.881 12.909 

INP -4.748 12.016 -4.214 -3.711 -95.863 11.517 107.380 -5.604 42.707 
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ALL 0.192 0.288 0.020 0.139 0.000 0.989 0.989 1.523 4.029 

CNT 0.255 0.245 0.186 0.223 0.000 0.968 0.968 1.012 3.319 

EVD 0.724 0.273 0.797 0.769 0.004 0.997 0.993 -1.344 3.957 

EXP 0.700 0.202 0.701 0.712 0.010 0.999 0.989 -0.592 3.526 

INP 0.504 0.323 0.476 0.503 0.005 0.997 0.993 0.030 1.581 
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  ALL 0.582 0.305 0.641 0.601 0.005 0.989 0.984 -0.598 2.131 

CNT 0.692 0.334 0.842 0.731 0.004 1.000 0.996 -0.874 2.212 



166 

 

Fe
at

ur
e 

DM
 

M
ea

n 

St
an

da
rd

 D
ev

ia
tio

n 

M
ed

ia
n 

Tr
im

m
ed

 M
ea

n 

M
in

im
um

 

M
ax

im
um

 

Ra
ng

e 

Sk
ew

ne
ss

 

Ku
rt

os
is

 

EVD 0.189 0.264 0.072 0.128 0.000 0.994 0.994 2.113 6.503 

EXP 0.317 0.385 0.085 0.279 0.001 0.999 0.998 0.809 1.854 

INP 0.388 0.391 0.204 0.362 0.001 0.996 0.996 0.468 1.494 
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ALL -17.141 15.406 -14.585 -15.157 -117.383 0.882 118.265 -4.331 27.642 

CNT -7.846 10.592 -5.170 -6.134 -92.796 4.945 97.742 -4.749 33.736 

EVD -27.831 33.454 -17.276 -21.951 -203.063 2.410 205.473 -2.960 13.652 

EXP 0.269 7.745 2.104 1.821 -40.962 6.882 47.844 -3.882 18.568 

INP -1.709 11.793 -0.957 -0.365 -94.018 14.165 108.184 -6.253 48.405 
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ALL -13.255 16.078 -10.008 -10.752 -116.653 1.424 118.077 -4.287 26.511 

CNT -3.519 11.876 -1.360 -1.805 -86.301 14.029 100.331 -3.450 21.004 

EVD -33.084 34.937 -22.704 -27.169 -209.608 2.042 211.650 -2.825 12.654 

EXP -3.261 9.052 -2.562 -1.795 -47.893 6.294 54.187 -3.105 14.505 

INP -3.049 13.232 -2.682 -1.812 -102.626 15.224 117.850 -5.491 41.399 
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Figure 36 - Correlation between features of alignment 

 
 

6.6 FEATURES OF FITTED CURVES 

A cubic polynomial function was chosen to fit the f0 curves. The cubic function was 

selected because it was a good compromise between data fitting and accuracy scores. 

Furthermore, higher degree polynomials diminish the Mean Square Error (MSE - metric 

used to evaluate the goodness of fitting) but create unnecessary details, which are 
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probably not perceived by the interlocutor. This choice is further motivated in the next 

chapter. 

 

Equation 7 - Polynomial coefficients of the cubic function 

𝑓𝑓0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐0. 𝑥𝑥3 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1. 𝑥𝑥2 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2. 𝑥𝑥 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 

 

The cubic polynomial has four coefficients. They are encoded, as in Equation 7 - 

Polynomial coefficients, as coef_0 (1st coefficient), coef_1 (2nd coefficient), coef_2 (3rd 

coefficient), and coef_3 (4th coefficient). Figure 37 shows the distribution of the 

coefficients of f0 curve. Emphasis will be placed on the significant differences between 

pairs of DMs by coefficient. 
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Figure 37 - Distribution of features of f0 curve 

 
Table 28 shows the pairs of DMs and whether the difference between the distribution 

of coefficients is significant. For all groups of features analyzed so far, at least one 

feature always exhibited a significant difference between a pair. Here, there is a special 

situation. The pairs CNT-INP and EXP-EVD do not display any significantly different 

coefficients. This could be expected for EXP and EVD, which are characterized by a 

rising f0 movement until the stressed vowel; this movement is potentially followed by 

a falling movement when segmental material is present. Other features, such as 
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intensity, duration, and position, are good candidates to observe a possible difference. 

For the CNT-INP pair, the analysis is a little bit more convoluted. Most importantly, as 

we show, the fitted curves for these two DM functions result in different forms. A 

possible explanation can be drawn by looking at the boxplots of the four coefficients 

of both CNT and INP. First, the central tendencies are always very similar for all four 

coefficients. Second, although INP has a narrower spread, its data is always within the 

limits of CNT’s coefficient distributions. 

 

Table 28 - Significant differences between pairs of DMs by f0 curve coefficients 

DM PAIR 
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CNT EXP ✓ ✓ ✗ ✓ 

CNT ALL ✗ ✗ ✓ ✓ 

CNT INP ✗ ✗ ✗ ✗ 

CNT EVD ✓ ✓ ✗ ✓ 

EXP ALL ✓ ✗ ✓ ✗ 

EXP INP ✓ ✓ ✗ ✓ 

EXP EVD ✗ ✗ ✗ ✗ 

ALL INP ✗ ✗ ✓ ✓ 

ALL EVD ✓ ✗ ✓ ✗ 

INP EVD ✓ ✓ ✗ ✓ 

 

Figure 38 displays the fitted curves by DM function using a cubic polynomial function. 

The curves were fitted, always taking 30 f0 samples regularly spaced along all the DM 

instances. 
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Figure 38 - Fitted curves by DM function using a cubic function 

 
 

The fitted curves are very much in line with initial expectations. They are a good 

representation of the prototypical curves described in the qualitative analysis. ALL (blue 

curve) displays a falling f0 movement from the beginning of the DM, even when there 

is segmental material before the stressed vowel. Furthermore, ALL curves confirm the 

observation that this DM function exhibits the lowest f0 mean compared to the 

illocutionary unit (COM). The CNT (orange) curve is characterized by the steepest f0 

falling movement along the stressed vowel. This can be seen from time points 5 to 25. 

However, if CNT has segmental material before the stressed vowel, it is expected to 

have a rising preparatory movement, making its falling movement more prominent. 

This can be observed in the data, and the preparation is reflected in the fitted curve 

from time 0 to 5. From a perceptual standpoint, both the preparation and the different 

levels of mean f0 participate in distinguishing between the two DM functions, which 

may occur in the same position. EVD (green line) and EXP (red line) have similar 

movements and f0 levels. However, these two DM functions do not occur in the same 

position. Moreover, EXP’s rising movement is typically steeper than EVD, which most 

frequently occurs in the final position. Finally, INP displays the flattest of the forms, as 
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expected. Looking only at the fitted curves of CNT and INP, one can see they are quite 

distinct. All the same, many INP instances with marked attitude display a rising 

movement (when there is voiced segmental material) followed by a flat profile 

(necessary movement) at the stressed vowel and finished by a falling f0 movement 

(when there is voiced segmental material after the stressed vowel). In such cases, the 

fitted curve can prove rather insufficient for the distinction, especially considering that, 

here, the effect of duration is neutralized by the 30-point interpolation. For the 

distinction of this pair, good candidates are f0 slopes on the stressed vowel and mean 

standardized duration. 

 Table 29 shows the summary of statistics, and Figure 39 exhibits the correlation 

between the coefficients of the fitted curves. 

 

Table 29 - Statistics summary of the features of f0 curve 
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ALL 0.0002 0.0011 0.000 0.000 -0.002 0.006 0.008 2.260 13.745 

CNT 0.0002 0.0006 0.000 0.000 -0.002 0.003 0.005 1.063 7.891 

EVD -0.0001 0.0004 0.000 0.000 -0.002 0.001 0.003 -1.187 8.106 

EXP -0.0001 0.0003 0.000 0.000 -0.001 0.001 0.002 1.077 5.535 

INP 0.0000 0.0005 0.000 0.000 -0.002 0.001 0.004 -1.285 11.266 
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 ALL -0.006 0.041 0.000 -0.004 -0.207 0.105 0.312 -1.614 10.555 

CNT -0.009 0.027 -0.004 -0.007 -0.128 0.106 0.234 -1.006 9.351 

EVD 0.005 0.019 0.001 0.003 -0.052 0.085 0.137 1.377 9.141 

EXP 0.000 0.015 0.003 0.002 -0.061 0.025 0.086 -1.671 6.352 

INP -0.003 0.024 -0.001 -0.003 -0.091 0.114 0.205 1.208 12.679 
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ie  ALL -0.039 0.384 -0.077 -0.069 -1.007 1.440 2.447 1.318 7.632 

CNT 0.090 0.330 0.024 0.062 -1.056 1.660 2.716 1.321 8.717 
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EVD -0.006 0.253 0.017 0.016 -1.204 0.568 1.772 -1.876 9.789 

EXP 0.113 0.227 0.020 0.074 -0.214 0.941 1.156 1.885 6.245 

INP 0.055 0.348 0.025 0.057 -1.419 1.746 3.164 0.000 14.017 
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ALL -1.364 2.125 -1.080 -1.192 -11.012 2.413 13.424 -1.558 7.947 

CNT -0.130 1.423 -0.111 -0.195 -4.383 4.758 9.141 0.427 3.797 

EVD -0.638 1.501 -0.882 -0.684 -6.640 4.521 11.162 -0.079 7.185 

EXP -1.168 1.265 -0.992 -1.005 -6.720 0.525 7.244 -1.815 7.582 

INP -0.134 1.923 -0.157 -0.241 -9.064 5.892 14.956 -0.259 9.327 
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Figure 39 - Correlation between coefficients of the fitted curves 

 
 

*** 

 

In the next chapter, I will present the different classification models trained and what 

are the most relevant features for the tasks. 

 

 

  



175 

 

 

7 CLASSIFICATION MODELS 

This section presents the models trained to classify the five DM classes from the 

prosodic parameters extracted from the corpus. The objective is to show how 

handcrafted features specifically designed to represent purely prosodic-acoustic 

features can correctly classify our five DM functions. Before diving into the results of 

the classification models, the curve fitting procedure is explained. We deal with this 

problem in this chapter because it specifically considered two factors: the goodness of 

fit of the curves (as measured by MSE) and the performance of a classification model, 

taking only the parameters of the best-fitting polynomial coefficients as input. 

Secondly, the criteria used to evaluate the performances of the classification models 

are set out. As a starting point, a good model must perform better than a baseline 

model for a 5-class classification task. The goal is to show that high performance can 

be met only by using the prosodic features. Then, I move on to comparing different 

classification techniques. Based on the best-performing technique, I will fine-tune the 

model and check the most important descriptors (features) for an overall classification 

model and each DM class against the others. 

 

7.1 CRITERIA FOR ASSESSING DIFFERENT CLASSIFICATION MODELS 

Evaluating a good performance in a classification task depends on several factors. This 

may include the nature of the data, the task's difficulty, the number of observations 

available, and the application's specific requirements. However, some general 

guidelines can be drawn from the problem at hand. 

I am dealing with a 5-class classification task. The dataset is imbalanced. The 

CNT function is the majority class and represents as much as 32% of the whole dataset. 

Gries (2021) recommends that the model should attain a n accuracy score exceeding 

the percentage of the majority class (so that its performance is not considered chance). 
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A commonly used benchmark compares the model's accuracy to the baseline 

accuracy (for the problem at hand, 32% accuracy score). If the model performs 

significantly better than the baseline, the model is learning valuable patterns from the 

data. What is considered good can vary depending on the context. 

The accuracy score is, of course, one of many metrics to be considered. This is 

especially true when one is dealing with imbalanced data. Other metrics may come in 

handy if initial and final CNTs are put in the same class (as I motivatedly do). Precision, 

recall, F1-score, and the confusion matrix help understand the model's performances. 

All the same, most of the time, the accuracy score is used as the metric whose best 

performance is to be pursued. 

 

7.2 F0 CURVE FITTING 

Fitting polynomial functions to each observation entails a relevant trade-off. On the 

one hand, one may increase the degree of the polynomial function and get a lower 

Mean Squared Error (MSE). On the other hand, one adds details to the curve that are 

irrelevant to human perception and the model (see the MOMEL stylization process, for 

example – Hirst & Espesser, 1993). The goal here is not to assess how the curve fitting 

may adapt to human perception but to find a good compromise between the goodness 

of fit (how the curves fit the data as measured by the MSE) and the qualitative 

descriptions for each DM class. As said in the previous chapter, the regression line over 

the stressed vowel may carry a good deal of information about the DM class. However, 

a fitted curve can also say something about the general f0 level of the DM instance, 

where its peaks and valleys occur, and what movements seem to happen throughout 

the entire DM instance. The fitted curve parameters can ideally bring about distinctive 

patterns of DM classes outside the stressed vowel. To illustrate this, we can take, as an 

example, CNT and ALL instances with a pre-stressed syllable. In this region, where CNT 

is expected to exhibit a preparatory rising movement, ALL will display a falling 

movement followed by a flat profile. Also, CNT is expected to have a higher f0 level, 
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while ALL will show a lower f0 level. These patterns are not captured by f0 slopes on 

the stressed syllable, but the parameters of a polynomial function may ideally account 

for them. 

 As previously mentioned, I am interested in the f0 curve of the complete DM 

unit. The normalized f0 points used for the estimations of parameters involving f0 

measurements took into consideration only time points that our Voicing Decision 

model (VD model) classified as voiced. Utilizing only the voiced points is a good 

heuristic if one wants to avoid potentially deviant estimations that can be caused by 

fricative sounds, plosive, and sound transition regions. Even if the Viterbi Algorithm 

was used to smoothen f0 estimations, there might be cases (in the estimation of whole 

utterances) where all the PDA algorithms may have outputted highly deviant (and 

erroneous) f0 estimations. However, I have an important consideration to make 

concerning voicing in speech. 

 There are two main reasons segmental material is to be produced voiced and 

unvoiced – which are valid, at least for this research’s target language, Brazilian 

Portuguese. The first one is phonological. In BP (as well as in most languages), voicing 

is a distinctive trait that allows the language to increase its phoneme inventory. Voicing 

is thus primarily relevant for the distinction on the morphological and lexical levels. The 

second one has a broader communicative function. In some types of voice qualities, 

voicing can be almost absent, such as in voiceless or whispered speech, for which the 

vocal folds are not actively mobilized (e.g., Laver, 1980). However, I consider that for 

carrying the pragmatic functions under analysis (that of the DM functions), the more 

complete the f0 curve is, the better. Of course, there is the possibility that specific voice 

qualities might be correlated with some DM functions. However, this aspect needs to 

be further investigated, and it is left out of the scope of this research. 

 That being said, I needed to close the gaps between voiced and unvoiced 

segments. Three possible paths were envisaged. The first one filled in the gaps with the 

averages between the edges of the voiced and unvoiced regions. However, this would 
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result in straight curves, which would be especially problematic when unvoiced 

segments occurred in regions with falling and rising profiles (Mixdorff & Niebuhr, 2013). 

A second possibility would be to use some imputation technique. I used the SoftImpute 

from the fancyimpute (Rubinsteyn & Feldman, 2016) package for Python and Sci-Kit 

Learn (Pedregosa et al., 2011) Iterative Imputer to test this possibility. The SoftImpute 

technique completes a matrix through iterative soft thresholding of Singular Value 

Decompositions (SVD). This algorithm was inspired by the softImpute R package, which 

is based on Spectral Regularization Algorithms for Learning Large Incomplete Matrices 

(Hastie et al., 2014). In turn, the Iterative Imputer utilizes round-robin linear regression 

that models features with missing values as a function of other features. In both cases, 

the data matrix is split by class (typically with similar shapes), each timeframe is 

assumed to be a feature and missing points are imputed as a function of the other data 

in the matrix. The more variation the data presents, the more the imputed values will 

be negatively affected. Figure 40 and Figure 41 show the results of these imputers for 

two different audio files: 

 

Figure 40 - SofImpute (left) and Iterative Imputer (right) results for file bfamcv07_114 
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Figure 41 - SofImpute (left) and Iterative Imputer (right) results for file bfamcv22_127 
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As we can observe, SoftImpute and IterativeImputer work reasonably well for file 

bfamcv22_127. Here, a simpler polynomial function would easily sweep the noise away, 

leaving the features of the curve that are relevant for the work. Nonetheless, both 

imputers create inadmissible noise for the first DM instance (bfamcv07_114 in Figure 

40, right). The polynomial curve would certainly be leveled upwards to account for the 

noise created, at least with SofImpute. There is a plethora of imputing methods 

available. Testing their adequacy to the data would require a good deal of work and 

ground truth f0 estimations on a 5-class DM dataset especially labelled for this 

purpose.  Since I do not dispose of such data, another heuristic was adopted. 

 Many PDA algorithms output f0 estimations for all sampled timepoints. Instead 

of returning missing values for timepoints that were judged unvoiced, these algorithms 

do their “best estimations” and output both an f0 value and a voicing probability. The 

voicing probability thresholding is not done by the algorithm. It is up to the user to 

find out what the best threshold is. This can be highly problematic if the user does not 

have a ground truth voicing decision with respect to which they could minimize the 

error. But for the purposes of this work, it can be a good idea to have the estimations 
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of these continuous algorithms through the Viterbi Algorithm such that their estimates 

result in a continuous curve. Of course, this does not safeguard us against some level 

of error (especially where all PDA are wrong), but this heuristic can result in curves 

closer to the reality. At this point, one could argue that (a) simply passing the existing 

f0 points to the curve fitting algorithm or that (b) doing a simple linear interpolation 

between the points of gapping regions would be safer than using any imputation 

technique or the heuristic adopted. To (a), I can respond that the curve fitting algorithm 

used does not accept missing values. The data would need imputation before fitting 

anyway and discarding observations with no missing values would potentially result in 

an empty matrix. To (b), there is the problem that nothing could guarantee beforehand 

that there would be voiced points on both borders of regions with missing values. This 

would rule out the linear interpolation. For instance, in Figure 41, if all f0 estimations 

after timepoint 15 were missing, no reasonable interpolation would be possible. 

The six PDAs whose estimations were available for all timepoints were 

employed. They are namely PEFAC (Gonzalez & Brookes, 2014), RAPT (Talkin & Kleijn, 

1995), SWIPE (Camacho, 2007), SWIPEP (Camacho, 2007), SRH (Degottex et al., 2014), and 

YIN (de Cheveigné & Kawahara, 2002). Their output was interpolated for 30 equally 

spaced timepoints. This was done for two reasons: one, because the curve-fitting 

algorithm always needs the same number of points; and two, because it neutralizes the 

curve's durational differences. Figure 42 shows the result of this procedure for file 

bfamcv07_114, which presented more issues when imputation methods were applied: 
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Figure 42 - F0 curve of six selected PDAs smoothed by Viterbi Algorithm 

 

 

With the continuous data, a curve-fitting algorithm was used to test six potential 

polynomial functions, ranging from the linear (two coefficients/parameters) to the 

sextic function (with 7 coefficients/parameters). Furthermore, six different classification 

models were trained, taking only the fitted curves' parameters as input. These models 

aimed to assess to what degree a model based solely on f0 curve features can correctly 

predict the five DM classes. The models were evaluated on a stratified 5-fold cross-

validation set. Only one classification technique was used, the Linear Discriminant 

Analysis, which exhibited some of the best accuracy scores for the tasks carried out in 

this chapter, as shown further ahead. Furthermore, the number of observations in each 

class was balanced. This was done because the CNT class has almost double the size of 

other classes that tend to occur in fixed positions (CNT can occur in initial and final 

positions). Table 30 shows the mean MSE value, the standard deviation of MSE values, 

and the mean accuracy score of the 5-fold cross-validation task: 
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Table 30 - Classification performance based on f0 curve coefficients 

Poly 

function 

Mean 

MSE 

STD 

MSE 

Mean 

Accuracy 

score 

Linear 0.67 2.65 0.48 

Quadratic 0.48 1.98 0.51 

Cubic 0.38 1.54 0.51 

Quartic 0.29 1.04 0.50 

Quintic 0.22 0.77 0.52 

Sextic 0.18 0.64 0.50 

 

Performance above 0.5 is achieved using all polynomial function coefficients of 2 or 

more degrees. The quadratic function would already exhibit satisfactory results. 

However, one of the goals of this work is to find the prototypical curves of each DM 

class. By inspecting the results of the fitted curves against the actual f0 data, we can 

see that the quadratic function (Figure 43) will oversimplify the data when we compare 

it against the cubic function (Figure 44). Figure 45 displays the fitted curve for the 

quartic function. 

 

Figure 43 - Fitted curve vs original data of the quadratic function (Audio file 
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bfamcv11_2) 

 

Figure 44 - Fitted curve vs original data of the cubic function (Audio file bfamcv11_2) 
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Figure 45 - Fitted curve vs original data of the quartic function (Audio file bfamcv11_2) 

 

In the examples above, the quartic function fits the original curve much better. 

However, if we check the accuracy score of the model that uses its parameters, we can 

observe that the quartic function leads to the second worst results among the tested 

functions. To avoid creating more parameters and, at the same time, oversimplifying 

the data, it was decided to use the coefficients of the cubic function. 

 To create a visualization of the prototypical curves, the data was split into the 

five DM classes and the curves were fitted to the resulting matrices using the cubic 

function. Figure 46 shows the resulting curves. 
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Figure 46 - Prototypical f0 curves of each DM class using the cubic function 

 

 

We can now look at the confusion matrix resulting from the LDA classification model 

taking as input only the coefficients of the cubic function in Figure 47. Note that this 

model has no information about the position of DM instances. 
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Figure 47 - Confusion matrix for an LDA model using coefficients of the cubic function 

 

As we can see, the best-performing class is ALL. As already mentioned in the previous 

chapter, this class has, in general, the most distinctive curve in terms of form and level. 

It starts to fall from the beginning, and it has the lowest f0 level of all forms. If we 

consider only f0 level, we can see that CNT, EXP and EVD have almost the same level. 

This can be checked on the descriptive statistics of mean f0 in Table 23 in the previous 

chapter. However, CNT has the most distinctive form, and this is reflected in the 

classification accuracy score of this class, which is the second best performing.  In third 

place, we have the EVD class. This class is generally not mixed with others but INP. This 

is because INP can have a slightly rising f0 curve, just as EVD. The DM's position and 

other parameters will play a crucial role in class distinction here. The distinction of EXP 

and INP on the base of f0 curves also represent a crucial problem. INP has a flat profile 

on the stressed vowel but when it has voiced segmental material before, it may display 

a rising profile. This will be translated into a curve similar to EXP. Many EXP and INP 

instances can thus be easily confounded when taken in isolation and without phonemic 
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information. In the next section, I put the f0 curve parameters together with the other 

features to analyze the performance of different baseline models. 

 

7.3 CHOOSING A CLASSIFICATION TECHNIQUE 

The last section dealt with models that only took into account f0 features. From here, I 

begin by selecting a classification technique using all prosodic features. The baseline 

classifiers presented here will serve for the selection of a technique that will be used in 

the next steps of this work. At this point, the models are trained using the whole 

dataset. As a reminder, the dataset presents some imbalancedness, especially for the 

CNT class, which has as much as double the observations as the other classes (but can 

be found in two positions). The amount of data of the other classes ranges between 68 

and 80 observations (see Table 18). 

 

Table 31 - Number of observations and proportions per DM class 

Class Observations Proportion 

ALL 68 0.16 

CNT 139 0.32 

EVD 75 0.17 

EXP 69 0.16 

INP 80 0.19 

 

For training the models, a simple stratified train/evaluation split with the ratio 

(0.75/0.25) was adopted. Since the number of observations is limited, training was done 

on the whole train subset. 12 classification techniques were evaluated: Linear 

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), K-Nearest 

Neighbors (KNN), Naïve Bayes (NBC), Random Forest (RFC), Gradient Boosting (GBC), 

Bagging (BAG), AdaBoost (ADA), Decision Tree (DTC), Support Vector Machine (SVC), 

Logistic Regression (LGC), and Multi-layer Perceptron (MLP). A basic description of 
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these algorithms, as well as their pros and cons are summarized below, based on Géron 

(2022) and on the documentation of Scikit-Learn (Pedregosa et al., 2011): 

 

LDA and QDA. Both methods try to find a combination of features that 

characterizes or separate two or more classes. LDA uses a linear whereas QDA 

uses a quadratic decision surface. Due to their intrinsic multiclass nature, quickly 

computed closed-form solutions, shown practical effectiveness, and lack of 

tuning hyperparameters, both approaches can be very effective and easy to 

handle. 

KNN. The K-Nearest Neighbors algorithm stores train data in vectors and then 

compares new data to stored data based on a selected metric – typically the 

Euclidean distance. KNN is simple to implement and handles multi-class tasks 

well with enough representative observations. On the other hand, its 

hyperparameter tuning can be more complicated (need to find k best value and 

best comparison metric), and computation is costly (it does not handle large 

datasets with too many features well). 

NBC. The Naïve Bayes is a simple algorithm that can effectively handle large 

datasets. It works especially well for text classification tasks like sentiment 

analysis and spam filtering. Naïve Bayes simplifies computation and reduces 

overfitting by assuming that characteristics are conditionally independent of the 

classes. For this reason, the algorithm performs effectively even with a small 

amount of training data. Because Naïve Bayes is resistant to irrelevant features, 

it is appropriate for high-dimensional data25. Naïve Bayes assumes that features 

are independent, which is not the case in most real-case circumstances. In cases 

where the independence assumption is broken, this may result in less-than-ideal 

 
25 High-dimensional data are defined as data in which the number of features (parameters) is close to or larger 

than the number of observations. 
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performances. Also, it may not capture intricate feature interactions. Compared 

to more complex algorithms, this may reduce accuracy, particularly when 

working with highly correlated features. For Naïve Bayes to accurately estimate 

the class probabilities, adequate training data must be available.  

RFC. Random Forest is an ensemble learning technique26 that combines several 

decision trees to provide predictions. It is appropriate for various classification 

tasks due to its strong accuracy and resilience against overfitting. Random 

Forest can handle numerical and categorical features without requiring a lot of 

data preprocessing. Additionally, it has good handling power for outliers and 

missing values. By offering feature importance measures, Random Forest helps 

users comprehend the relative significance of various aspects throughout the 

classification process. This can help with feature selection and prediction 

interpretation. On the other hand, this algorithm can be computationally costly, 

particularly when working with big datasets or an ensemble of several trees. 

Training and evaluation times could go up a lot. Predictions can be biased as a 

result of its tendency to favor the majority class, and RFC may not work well for 

imbalanced data. When compared to individual decision trees, Random Forest 

can be challenging to interpret since its ensemble nature makes it difficult to 

comprehend the underlying decision-making process. 

GBC. Using a series of weak learners27, usually decision trees, the Gradient Boost 

Classifier is an ensemble learning algorithm that generally exhibits a powerful 

predictive capacity. It has a reputation for being very accurate and capable of 

handling complicated datasets. Gradient Boosting is flexible for handling a 

variety of data types (numerical and categorical features). Due to its ability to 

 
26 A technique that creates an ensemble of submodels and/or multiple subsets of the data under the hood. The 

base estimators can vary depending on the algorithm. Random Forest, for instance, always use Decision Trees. 
27 Win ensemble learning, weak learners are submodels that perform better than random guesses, whereas strong 

learners exhibit good accuracy scores. 
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give minority classes greater weights, it also performs well on datasets that are 

imbalanced. By offering feature importance metrics, gradient boosting enables 

users to comprehend the relative significance of several characteristics 

throughout the classification process. This can help with model interpretation 

and feature selection. Gradient boosting can be costly and time-consuming in 

terms of computation, particularly when working with big datasets or a lot of 

weak learners. To avoid overfitting and attain peak performance, 

hyperparameters like learning rate and tree depth must be optimized. Because 

gradient boosting can easily pick up noise and outliers, it may not work well on 

noisy or sparse datasets. In these situations, data pretreatment and feature 

selection are essential to enhancing performance. 

BAG. The Bagging Classifier is also an ensemble learning technique that 

generates predictions by combining several base estimators (models). Different 

from Random Forest, the base estimator must be chosen by the user. By 

lowering variance and overfitting, it helps raise the model's overall stability and 

accuracy. Bagging can handle both numerical and categorical features. 

Additionally, it has good handling power for outliers and missing values. Large 

datasets can benefit from bagging because it is parallelizable and 

computationally efficient. Also, it can offer class probability estimates, enabling 

more complex predictions. Bagging does not work well with imbalanced 

datasets, and its predictions are biased due to its tendency to favor the majority 

class. Individual base classifiers are easier to understand than bagged data. The 

algorithm's ensemble nature makes it difficult to comprehend the underlying 

decision-making process. High-dimensional data might not be good candidates 

for bagging. It may result in overfitting and in increased computational 

complexity. 

ADA. AdaBoost Classifier is another ensemble technique that joins several weak 

learners, usually decision trees, to produce a powerful predictive model. The 
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base estimator must also be tweaked by the user. It is reputed for being very 

accurate and capable of handling complicated datasets. AdaBoost is especially 

good at managing imbalanced datasets because it lets the model concentrate 

on the minority class. It can handle both numerical and categorical features. It 

also offers feature importance measurements, making interpretation easier. 

AdaBoost is susceptible to noisy data and outliers, which could result in 

overfitting. This technique can be costly and time-consuming in terms of 

computation, particularly when working with big datasets or a large number of 

weak learners. If the weak learners are overly complex or prone to overfitting, 

AdaBoost could not work effectively. Selecting suitable weak learners and fine-

tuning hyperparameters are crucial in avoiding overfitting and attaining peak 

efficiency. 

DTC. The Decision Tree Classifier is an easy-to-interpret technique that 

efficiently manages numerical and categorical features. It is appropriate for 

complicated datasets because it can manage non-linear interactions between 

features and the target variable. Decision trees do not need a lot of data 

preprocessing to handle outliers and missing values. Overfitting is a common 

problem with decision trees, particularly when the tree grows too intricate or 

deep. Small changes in the data may cause decision trees to react differently, 

resulting in various tree architectures and possibly different predictions. Due to 

their propensity to favor the majority class and inability to reliably anticipate the 

minority class, decision trees may not perform well on imbalanced data. 

SVC. Support Vector Machines is a technique that maximizes the margin 

between classes to identify the ideal hyperplane for dividing the data. SVM 

works well when there are more features than observations (high-dimensional 

data). By utilizing kernel functions, it may also manage non-linear interactions 

between features. Some of SVM's drawbacks include its sensitivity to the 

selection of the kernel function and hyperparameters. Computational costs may 



193 

 

also be high, particularly for huge datasets. 

LRC. Logistic Regression is an algorithm for binary classification problems. It 

uses a logistic function to model the relationship between the features and the 

probability of pertaining to a specific class. Logistic Regression excels in 

handling huge datasets. The findings are also interpretable because the 

coefficients may be utilized to comprehend how each feature affects the 

estimated probability. On the other hand, the algorithm assumes a linear 

relationship between the target log-odds and the features. If the relation is non-

linear, it might not function well. Moreover, it is susceptible to outliers when 

there is multicollinearity among features. These problems can be lessened with 

regularization techniques like L1 or L2 regularization. 

MLP. A simple Feed-forward Neural Network Classifier consisting of at least 

input, hidden, and output layers that process data in a forward direction. It can 

model complex non-linear relationships and is widely used in image and speech 

recognition applications. However, it requires a large amount of data to train 

effectively and can be prone to overfitting without proper regularization. 

 

SVM and Logistic regression models are classifiers specialized in binomial 

classifications. In the Sci-kit learn package, if these models receive multiclass data, they 

adopt a One-Vs-Rest classification strategy by default. This strategy is characterized by 

building multiple models that make binomial classifications sequentially. 

Table 32, below, exhibits the classification report of each classifier. The 

classification report contains metrics of precision, recall, f1-score, micro-accuracy/f1-

score, macro-accuracy/f1-score, and average accuracy/f1-score. These metrics are 

presented below: 
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Equation 8 - Precision 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 

Where, 

TP is the number of True Positives; and 

FP is the number of False Positives. 

 

Recall measures, of all CNT in the dataset, how many of them the model predicted as 

CNT.  

 

Equation 9 - Recall 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 

Where, 

TP is the number of True Positives; and 

FN is the number of False Negatives. 

The f1-score is the harmonic mean of precision and recall, calculated as 

 

Equation 10 - F1-score 

F1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
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In multi-class classification, f1-scores are calculated for each class in a One-vs-Rest 

(OvR) approach instead of a single overall f1-score, as for binary classification. The 

micro-accuracy and the micro f1-score are the proportions of correctly classified 

observations out of all observations. The accuracy score is simply the number of correct 

predictions divided by the number of observations of each class in the support (number 

of evaluated instances). The number is the same for the global accuracy and the f1-

score, presented in the merged line. In their turn, the macro averages are the arithmetic 

mean either of the accuracy score or the f1-score. Finally, the weighted averages are 

calculated by taking the means of all classes weighted by each class’s support. The 

focus is on the global accuracies (accuracy in the merged lines). 

 

Table 32 - Classification report of different classifiers 

MODEL / 

TECHNIQUE 
CLASS PRECISION RECALL 

F1-

SCORE 
SUPPORT 

LD
A 

ALL 0.86 0.71 0.77 17 

CNT 0.79 0.63 0.70 35 

EVD 0.70 0.84 0.76 19 

EXP 0.62 0.76 0.68 17 

INP 0.59 0.65 0.62 20 

accuracy 0.70 

macro avg 0.71 0.72 0.71 108 

weighted avg 0.72 0.70 0.70 108 

Q
D

A 

ALL 0.53 0.53 0.53 17 

CNT 0.43 0.46 0.44 35 

EVD 0.86 0.63 0.73 19 

EXP 0.56 0.53 0.55 17 

INP 0.46 0.55 0.50 20 

accuracy 0.53 

macro avg 0.57 0.54 0.55 108 

weighted avg 0.55 0.53 0.53 108 
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MODEL / 

TECHNIQUE 
CLASS PRECISION RECALL 

F1-

SCORE 
SUPPORT 

KN
N

 

ALL 0.67 0.59 0.63 17 

CNT 0.70 0.66 0.68 35 

EVD 0.65 0.68 0.67 19 

EXP 0.48 0.65 0.55 17 

INP 0.59 0.50 0.54 20 

accuracy 0.62 

macro avg 0.62 0.62 0.61 108 

weighted avg 0.63 0.62 0.62 108 

N
BC

 

ALL 0.56 0.29 0.38 17 

CNT 0.52 0.46 0.48 35 

EVD 0.68 0.79 0.73 19 

EXP 0.50 0.71 0.59 17 

INP 0.45 0.50 0.48 20 

accuracy 0.54 

macro avg 0.54 0.55 0.53 108 

weighted avg 0.54 0.54 0.53 108 

RF
C 

ALL 0.83 0.59 0.69 17 

CNT 0.67 0.83 0.74 35 

EVD 0.75 0.79 0.77 19 

EXP 0.47 0.53 0.50 17 

INP 0.50 0.35 0.41 20 

accuracy 0.65 

macro avg 0.65 0.62 0.62 108 

weighted avg 0.65 0.65 0.64 108 

G
BC

 

ALL 0.92 0.71 0.80 17 

CNT 0.69 0.83 0.75 35 

EVD 0.72 0.68 0.70 19 

EXP 0.53 0.59 0.56 17 

INP 0.50 0.40 0.44 20 

accuracy 0.67 

macro avg 0.67 0.64 0.65 108 
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MODEL / 

TECHNIQUE 
CLASS PRECISION RECALL 

F1-

SCORE 
SUPPORT 

weighted avg 0.67 0.67 0.66 108 

BA
G

 
ALL 0.91 0.59 0.71 17 

CNT 0.74 0.83 0.78 35 

EVD 0.81 0.89 0.85 19 

EXP 0.61 0.82 0.70 17 

INP 0.64 0.45 0.53 20 

accuracy 0.73 

macro avg 0.74 0.72 0.72 108 

weighted avg 0.74 0.73 0.72 108 

AD
A 

ALL 0.00 0.00 0.00 17 

CNT 0.64 0.80 0.71 35 

EVD 0.67 0.95 0.78 19 

EXP 0.47 0.88 0.61 17 

INP 0.40 0.10 0.16 20 

accuracy 0.58 

macro avg 0.43 0.55 0.45 108 

weighted avg 0.47 0.58 0.49 108 

D
TC

 

ALL 0.65 0.65 0.65 17 

CNT 0.74 0.66 0.70 35 

EVD 0.74 0.74 0.74 19 

EXP 0.62 0.76 0.68 17 

INP 0.45 0.45 0.45 20 

accuracy 0.65 

macro avg 0.64 0.65 0.64 108 

weighted avg 0.65 0.65 0.65 108 

SV
C 

ALL 0.88 0.41 0.56 17 

CNT 0.68 0.77 0.72 35 

EVD 0.60 0.63 0.62 19 

EXP 0.47 0.47 0.47 17 

INP 0.43 0.50 0.47 20 

accuracy 0.59 
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MODEL / 

TECHNIQUE 
CLASS PRECISION RECALL 

F1-

SCORE 
SUPPORT 

macro avg 0.61 0.56 0.57 108 

weighted avg 0.62 0.59 0.59 108 
LG

C 
ALL 0.83 0.59 0.69 17 

CNT 0.74 0.74 0.74 35 

EVD 0.70 0.74 0.72 19 

EXP 0.50 0.53 0.51 17 

INP 0.52 0.60 0.56 20 

accuracy 0.66 

macro avg 0.66 0.64 0.64 108 

weighted avg 0.67 0.66 0.66 108 

M
LP

 

ALL 0.90 0.53 0.67 17 

CNT 0.72 0.74 0.73 35 

EVD 0.76 0.84 0.80 19 

EXP 0.50 0.53 0.51 17 

INP 0.52 0.60 0.56 20 

accuracy 0.67 

macro avg 0.68 0.65 0.65 108 

weighted avg 0.69 0.67 0.67 108 

 

The models exhibiting the best overall performances are in descending order the 

Bagging classifier (0.73), the LDA model (0.70) and the MLP model (0.67), as measured 

by the micro-averaged f1-score. Because it is easier to hyperparameter tune while 

showing good results, the LDA model was selected for the next steps of this work: 

balancing the data, conducting a feature selection, and training and evaluating an 

overall model with more robust evaluation techniques (stratified k-fold and Leave-One-

Out cross-validation sets). 
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7.4 FEATURE SELECTION WITH LEAPS AND BOUNDS 

Feature selection is the deployment of algorithms to reduce the dimensionality of data 

and improve model performance. There are many reasons why a feature selection 

algorithm can be used. They can make the model simpler and faster to run. They may 

improve performance by removing irrelevant features and thus making the data more 

compatible with the modelling technique. They can be used to avoid the curse of 

dimensionality28. More importantly for this research, feature selection can be used to 

show which of them are more mobilized to predict target classes, thus helping 

understand the model. 

To carry out this task, the Leaps and Bounds algorithm (Furnival & Wilson, 1974, 

implemented in R by Lumley & Miller, 2004) was used. This algorithm was used in Gobbo 

(2019) for a 3-class classification model with good results. The primary purpose of the 

Leaps and Bounds algorithm is to explore subsets of features so as to identify the best 

combination for building a regression model. The algorithm is particularly useful when 

the number of potential features is high, thus making computationally expensive or 

impractical to test all possible combinations. 30 features would result in 230 different 

models to be evaluated, which is not a reasonable solution. 

The Leaps and Bounds algorithm works by making leaps (Forward Selection). It 

starts with an empty set of predictor features. At each step, it adds the features that 

results in the highest improvement in model fit until a predetermined stopping 

criterion is reached. The algorithm continues this procedure until the stopping criterion 

is met. Then, the algorithm bounds (Backward Elimination). It starts with the full set of 

predictor features. At each step, it removes the feature that has the least impact on the 

model fit and continues until the stopping criterion is met. The Leaps and Bounds 

algorithm allow for an efficient exploration of the feature space, providing a good 

 
28 Increasing the number of features in a problem entails exponentially increasing the number of observations for 

the model to be reliable (Bellman et al., 1957).   
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compromise between the forward selection and backward elimination methods. The 

subset of features that yields the best fit according to a specified criterion (e.g., 

adjusted R-squared, AIC, BIC) is then picked as the final model. While the Leaps and 

Bounds algorithm was proposed in the context of linear regression, similar concepts 

and principles can be extended to other regression techniques. This is the case with 

the Linear Discriminant Analysis (LDA). In R, the leaps package provides a function 

called regsubsets() that implements the leaps and bounds feature selection method. 

The same procedure followed in Gobbo (2019) was adopted here. However, I 

evaluate the models on an overall 5-class and a One-Vs-Rest approach. The selection 

criteria for models of different sizes was the Mean Square Error (MSE) in prediction, as 

given by Mallow’s Cp statistic (Mallows, 1973; 2000). In statistics, Mallows's Cp is used 

to evaluate the fit of regression models. It is applied in the context of feature selection, 

where many features are available for predicting some outcome. Smaller Cp values, 

typically between 0 and 1, indicate that the model is relatively precise. 

The script used for this purpose was implemented by Gobbo (2019). It uses the 

regsubset() function from the leaps package. This function finds the best models for 

each number of parameters. The function was set to use all features available and 431 

DM instances and search for a maximum of 60 best combinations chosen from all 

possible subsets of features. This resulted in 1679 combinations. The number 60 was 

arbitrarily chosen as large enough without excessive computational cost. This number 

was tested by Gobbo (2019) with meaningful results. 

 

7.4.1 Global model 

I begin with the global model (for the 5 DM classes). Figure 48 below shows Cp values 

for the 60 best combinations of features as a function of the number of parameters for 

all the combinations chosen by Leaps and Bounds: 
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Figure 48 - Estimation of MSE (Cp) for the 60 best combinations of features 

 

The lowest Cp value suggests a number of 15 features for the best model. The number 

of times each feature was selected in the 1679 models was calculated. Figure 49 shows 

the results. We can observe that the 15 most selected parameter were, in descending 

order: 

 

1. the alignment f0 peak inside the DM instance 

2. mean relative intensity in the stressed vowel 

3. relative DM duration, 

4. f0 slope in the stressed vowel 

5. 3rd f0 curve coefficient 

6. alignment of f0 valley inside the DM instance 

7. the 2nd f0 curve coefficient 

8. f0 slope in the whole DM instance 

9. Alignment of max intensity with respect to the stressed vowel 

10. Alignment of min intensity with respect to the stressed vowel 

11. Standardized duration of the stressed syllable 

12. 1st coefficient of the f0 curve 

13. Alignment of min f0 inside the DM instance 

14. 4th coefficient of the f0 curve 
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15. Alignment of min intensity inside the DM instance 

 

Figure 49 - Number of times each feature was selected among best combinations (%) 

 

Each of the 1679 selected feature combinations was modeled using the LDA function 

from the Mass R package (Venables & Ripley, 2010). The LDA works by finding the linear 

combinations of features that best separate the classes. It maximizes the ratio of the 

between-class variance to the within-class variance to reduce data dimensionality while 

keeping class differences. LDA models take on two main assumptions. The first one is 

that the data within each class has a Gaussian distribution. The second one is that the 

classes have the same covariance matrix. As shown in the previous chapter, these 

assumptions should not be met for our data, given that not all feature distributions are 

normal. However, LDA is known for exhibiting good performance results even when 

these assumptions are unmet. As a matter of fact, these assumptions are seldom met 

in the wild. Figure 50 shows the results of the best models for each number of features: 
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Figure 50 - Overall accuracy and max accuracy score as a function of number of 

features 

 

 

The first observation is that, at this stage, the accuracy score is measuring not the 

models’ generalization capability but the goodness of fitness, i.e., how well the models 

fit the data. This means that each model was trained on the whole dataset and tested 

on the whole dataset. Models with more robust generalization power, using stratified 

k-fold and Leave-One-Out cross-validation sets, are evaluated further ahead.  

Some observations are noteworthy. First of all, the overall model’s goodness of 

fit starts to stabilize (around 0.7 accuracy score) approximately from 13 n features on. 

This is in line with Mallow’s Cp stat results, which indicated an optimal number of 

features around 15 (See Figure 48). However, the number of features needed for each 

class in the overall model vary a lot. The CNT class needs only two features. The INP 

class achieves a good fit with approximately three features. To achieve almost 0.88, the 

EXP needs only five features. The EVD class needs around 8 features to stabilize, and 

the ALL class needs around 7 features. The overall model needing 15, it is most likely 
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that the features mobilized by each class are not always the same. This is checked in 

the following subsections. 

 Figure 51 below shows the LDA plot of the model using the 15 most selected 

features. An LDA plot is typically used to show the separation between classes in a four-

dimensional space visually. Each axis corresponds to one of the four discriminant 

functions, which are linear combinations of the original features. The plot shows how 

well the classes are distinguished based on these linear combinations. It helps identify 

patterns and relationships in the data and showcase the effectiveness of LDA model in 

reducing dimensionality while preserving class-related information. Here, each class is 

shown with its label and a different color. We can see, for instance, that the least 

separated classes are overall EXP and INP. The most separable class, on the other hand, 

is ALL, a result that is in line with the results of the LDA model that took as input only 

the f0 curve coefficients. 

 



205 

 

Figure 51 - LDA plot for 15 features 

 

Table 33 displays the coefficients of the LDA. They stand for the weights assigned to 

input features projections onto the discriminant axes. The bigger the absolute value, 

the larger the effect on class separation. The sign of the coefficient (positive/negative) 

indicates the directionality of the feature's influence on class separation in the linear 

combination defined by the LDA. At the bottom of the table, the proportions of trace 

are also presented for each Linear Disciminant (LD). They refer to the eigenvalues of 

the covariance matrix, which represents the amount of variance explained by each LD. 

 

Table 33 - Coefficients of discriminative functions 

Feature LD1 LD2 LD3 LD4 

coef_1 2.642 1.003 1.768 0.720 

coef_2 1.828 -0.074 0.370 -0.807 

ratio_min_f0_stressed_dm 1.138 0.821 0.830 2.422 
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Feature LD1 LD2 LD3 LD4 

coef_0 1.084 0.912 1.259 1.391 

ratio_max_f0_dm 0.775 0.628 0.457 -1.078 

zsil_stressed_syl 0.665 -2.722 0.687 1.374 

mean_intensity_stressed_dm 0.599 0.075 0.298 0.428 

pitch_slope_stressed_dm 0.403 0.373 0.950 0.048 

coef_3 0.371 -0.070 -0.484 -0.250 

mean_pitch_dm 0.303 0.320 -0.404 -0.189 

ratio_max_intensity_dm 0.256 -0.137 -0.157 0.079 

ratio_min_intensity_dm 0.203 0.021 0.017 1.061 

mean_intensity_dm 0.069 -0.248 -0.072 0.341 

pitch_slope_after_stressed_dm 0.010 0.036 -0.248 0.109 

ratio_max_f0_stressed_dm -0.006 -1.970 -1.237 4.276 

std_intensity_dm -0.058 -0.650 0.144 -0.579 

mean_se_stressed_dm -0.067 -0.293 0.150 -0.179 

std_pitch_dm -0.108 -0.127 0.257 -1.027 

max_pitch_dm -0.183 -0.108 0.344 0.652 

max_intensity_dm -0.247 0.004 -0.171 0.104 

min_intensity_dm -0.249 -0.559 0.273 -0.887 

min_pitch_dm -0.293 -0.460 0.205 -0.635 

ratio_max_intensity_stressed_dm -0.362 0.124 0.757 -1.127 

ratio_min_f0_dm -0.390 -0.359 -0.481 -0.839 

zsil_mean -0.412 2.810 -0.986 -1.746 

pitch_slope_dm -0.468 -0.229 -0.752 0.153 

ratio_min_intensity_stressed_dm -0.581 0.255 0.156 -5.430 

dm_duration -0.667 -0.071 0.739 -0.095 

  

PROPORTION OF TRACE 0.464 0.328 0.150 0.058 

 

Together, LD1 and LD2 accounts for the 77% of the variance between classes. The 14 

features with the most impact over each LD are indicated in red. For LD1, f0 curve 

coefficients, as well as relative duration and alignment of min intensity with respect to 

the stressed vowel play the most relevant roles. For LD2, mean syllabic duration and 
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syllabic duration of the stressed syllable have the biggest impact. LD3 also has a non-

negligeable impact on separating classes. The most relevant features are curve 

coefficients and alignment of max f0 with respect to the stressed syllable. 

 Finally, Table 34 and Table 35 display, respectively, the confusion matrix and 

performance metrics by class for the 15-feature overall model. It is possible to see that 

the most separable classes are ALL and EVD, and the least EXP and INP. 

 

Table 34 - Confusion matrix - Overall model 

 
Observation Ratio 

ALL CNT EVD EXP INP ALL CNT EVD EXP INP 

ALL 

Tr
ue

 la
be

l 

53 14 0 0 0 0.791 0.209 0.000 0.000 0.000 

CNT 8 101 9 5 21 0.056 0.701 0.063 0.035 0.146 

EVD 4 4 58 6 3 0.053 0.053 0.773 0.080 0.040 

EXP 3 8 5 47 15 0.038 0.103 0.064 0.603 0.192 

INP 0 12 3 11 41 0.000 0.179 0.045 0.164 0.612 

 Prediction 

 

Table 35 - Performance metrics by class for the overall model 

METRIC ALL CNT EVD EXP INP 

Sensitivity 0.78 0.73 0.77 0.68 0.51 

Specificity 0.96 0.85 0.95 0.91 0.93 

Pos Pred Value 0.79 0.70 0.77 0.60 0.61 

Neg Pred Value 0.96 0.87 0.95 0.94 0.89 

Prevalence 0.16 0.32 0.17 0.16 0.19 

Detection Rate 0.12 0.23 0.13 0.11 0.10 

Detection Prevalence 0.16 0.33 0.17 0.18 0.16 

Balanced Accuracy 0.87 0.79 0.86 0.80 0.72 

 

7.4.2 ALL Against OTHERS 

In this and the following subsections, I tested the same feature selection procedure 
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with models trained to classify only two classes: a target class (here, ALL) and the label 

OTHER. To do that, all the observations from the target class were selected, and the 

other labels were labeled as OTHER. This caused the classes to be highly imbalanced. I 

first tried to balance the data by selecting the same number of observations of OTHERS 

and the target DM class. This has proved better in terms of goodness of fit, but the 

resulting models were way too dependent on the observations randomly picked from 

the whole dataset. Setting different seeds might result in different features being 

selected as the most important. Moreover, the balanced subset would not reflect the 

decision-making process of the overall 5-class model. To remedy the imbalancedness, 

the best models were selected not by their global accuracy score but by the f1-score, 

which is a robust metric for imbalanced data. The goal was to find what features are 

more frequently used by the model when one class is checked against the others, as 

well as the optimal number of features. They are probably the best candidates to 

distinguish the target class from the others. This is useful, especially considering that 

the number of features necessary to achieve the best fit differs from class to class, as 

seen in Figure 49. In addition to the LDA models, a Decision Tree (DT) model (R rpart 

package - Therneau et al., 2015) was run using the same features selected by the LDA 

feature selection evaluation. The respective DT plot was also generated. A DT plot is a 

visual representation of the decision-making process of a model, making it useful for 

feature selection by highlighting the features that contribute significantly to the 

model's performance. The Cp statistic, the most selected features, and the DT plot are 

provided for each one-vs-others model. 

 The Cp statistic indicates the number of features that will achieve the best fit for 

the ALL-vs-OTHERS model, which should be around 13. This is shown in Figure 52. The 

features selected most frequently are, in their turn, shown in Figure 53. 
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Figure 52 - Cp statistic (ALL vs OTHERS) 
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Figure 53 - Most selected features (ALL vs OTHERS) 

 

 

The model with the best f1-score fit only needs exactly 13 features. They are namely: 

 

a) Min intensity; 

b) Mean intensity in the stressed vowel; 

c) F0 slope in the whole DM instance; 

d) F0 range; 

e) F0 slope 

f) Alignment of max intensity; 

g) Alignment of max f0; 

h) Alignment of max f0 with respect to the stressed vowel; 

i) Mean syllabic duration; 

j) Relative duration; 
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k) Second, third, and fourth f0 curve coefficients; 

 

Notice that the best model will not necessarily have the optimal number of features 

indicated by the Cp statistic. It is also noteworthy that ALL selects almost all f0 curve 

coefficients. This was foreseeable since this is the DM class with the most distinctive 

curve, as seen in part 7.2. Curve fitting: ALL achieved the best classification scores based 

solely on the f0 curve. The model also selects intensity, duration, and f0 slope 

parameters as important predictors. ALL is the unit with the highest mean intensity; it 

is longer than EVD and CNT (which also occur in final positions), and it has a negative 

slope in pre-stressed syllables (when they exist). The DT plot in Figure 54 allows the 

visualization of the most important parts of the decision-making process. 
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Figure 54 - Decision Tree plot (ALL vs OTHERS) 

 

Here, max f0 should be aligned as closest as possible to the initial boundary - f0 curve 

falling right from the start of the DM instance. DM duration is also important since ALL 

is longer than CNT and EVD. This is followed by the min intensity feature and the third 

f0 curve coefficient (coef_2). ALL exhibits the lowest intensity levels and the most 

distinctive f0 curve, as seen in Table 20. Table 36 displays the fit of the ALL-vs-OTHERS 

models. 
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Table 36 - Model fit (ALL vs OTHERS) 

Metric LDA DTC 

Accuracy 0.93 0.93 

Avg accuracy 0.85 0.83 

F1-score 0.78 0.75 

 

 

7.4.3 CNT against OTHERS 

Figure 55 and Figure 56 display the Cp statistic and the most selected features 

considering all evaluated CNT-vs-OTHERS models. 

 

Figure 55 - Cp statistic (CNT vs OTHERS) 
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Figure 56 - Most selected features (CNT vs OTHERS) 

 

 

The Cp statistic indicates that the optimal number of features should be around 15. 

The best accuracy is however obtained with 21 features. They are namely: 

 

a) Mean f0; 

b) Min f0;  

c) Intensity standard deviation; 

d) Min intensity; 

e) Mean intensity in the stressed vowel; 

f) Mean spectral emphasis; 

g) F0 slope on the DM instance; 
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h) F0 slope in the stressed vowel; 

i) F0 slope before the stressed vowel; 

j) F0 slope after the stressed vowel; 

k) Alignment of max intensity; 

l) Alignment of min intensity; 

m) Alignment of min intensity with respect to the stressed vowel; 

n) Alignment of max f0; 

o) Alignment of min f0; 

p) Alignment of min f0 with respect to the stressed vowel; 

q) Mean syllabic duration; 

r) Relative duration; 

s) Third, second and fourth f0 curve coefficients; 

 

The importance of these features can be observed in Figure 57. Here, a distinctive 

feature is the f0 slope in the stressed syllable. Indeed, CNT proved to have the highest 

f0 slope. While other units are characterized by rising and flat f0 movements, only ALL 

and CNT have sharply falling movements within the stressed vowel. The difference 

between these two units seems to be in the mean f0 level. As aforementioned, ALL has 

the lowest f0 level. This is not reflected in the DT plot, but the parameters of intensity 

alignment may play an important role in the distinction between these two units. 
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Figure 57 - Decision Tree plot (CNT vs OTHERS) 

 

Table 37 below shows the fit of the best ALL-vs-OTHERS models. 

 

Table 37 - Model fit (CNT vs OTHERS) 

Metric LDA DTC 

Accuracy 0.84 0.88 

Avg 

accuracy 
0.8 0.86 

F1-score 0.73 0.82 
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7.4.4 EVD against OTHERS 

Figure 58 and Figure 59 presents the Cp statistic and the most selected features by all 

EVD-vs-OTHERS models: 

 

Figure 58 - Cp statistic (EVD vs OTHERS) 
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Figure 59 - Most selected features (EVD vs OTHERS) 

 

 

The Cp statistic suggests that the best fit should be around 13 features. However, the 

best LDA model selects 21 features. They are namely: 

 

a) Mean f0; 

b) F0 standard deviation;  

c) Max f0; 

d) Min f0; 

e) Intensity standard deviation;  

f) Max intensity; 

g) Min intensity; 

h) Spectral emphasis in the stressed vowel; 

i) F0 slope in the stressed vowel; 
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j) F0 slope before the stressed vowel; 

k) F0 slope after the stressed vowel; 

l) Alignment of min intensity with respect to the stressed vowel; 

m) Alignment of max f0; 

n) Alignment of min f0; 

o) Alignment of max f0 with respect to the stressed vowel; 

p) Alignment of min f0 with respect to the stressed vowel; 

q) Mean syllabic duration; 

r) Relative duration; 

s) Second, third and fourth f0 curve coefficients; 

 

Against CNT and ALL, which also occur in the final position, EVD presents a rising f0 

curve, with alignment of min and max f0 respectively at the beginning and at the end 

of the DM instance. Furthermore, these alignments tend to occur closer to the 

boundaries (opposite of CNT). The mean f0 level is also important to distinguish EVD 

from ALL. The former has a higher level, and the latter has the lowest f0 level. Figure 

60 allows us to see that the parameters of alignment as well as the parameters of f0 

slope in the stressed vowel play the most important role in the classification of EVD 

against other DM classes: 
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Figure 60 - Decision Tree plot (EVD vs OTHERS) 

 

Table 38 exhibits the fits of the best EVD-vs-OTHERS models: 

 

Table 38 - Model fit (EVD vs OTHERS) 

Metric LDA DTC 

Accuracy 0.93 0.94 

Avg 

accuracy 
0.85 0.91 

F1-score 0.79 0.84 
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7.4.5 EXP against OTHERS 

Figure 61 and Figure 62 show the Cp statistic and the most selected features for the 

EXP-vs-OTHERS models. 

 

Figure 61 - Cp statistic (EXP vs OTHERS) 
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Figure 62 - Most selected features (EXP vs OTHERS) 

 

 

The Cp statistic indicates that the optimal number should be met with 12 features. 

Again, the Cp value does not reach a value between 0 and 1. The best fit is also achieved 

with an exceptionally high number of features: 

 

a) F0 standard-deviation; 

b) Max f0; 

c) Intensity standard-deviation; 

d) Max intensity; 

e) Min intensity; 

f) Mean intensity in the stressed vowel; 

g) Spectral emphasis in the stressed vowel; 

h) F0 slope; 
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i) F0 slope in the stressed vowel; 

j) F0 range; 

k) F0 slope after the stressed vowel; 

l) Alignment of min intensity; 

m) Alignment of max intensity with respect to the stressed vowel; 

n) Alignment of min intensity with respect to the stressed vowel; 

o) Alignment of max f0; 

p) Alignment of min f0; 

q) Alignment of max f0 with respect to the stressed vowel; 

r) Relative duration; 

s) First, second, third and fourth f0 curve coefficients. 

 

The DT plot (Figure 63) helps explain what seem to be the most important features. 

Here, the first and most important one is the alignment of max f0 with respect to the 

stressed vowel. Values greater than 0 indicate that the max f0 point occurs after the 

central point of the stressed vowel, which is precisely what should happen with a unit 

that displays a rising f0 movement. The relative duration also plays an important role. 

As seen in the previous chapter, EXP tends to be the longest DM class. Furthermore, f0 

slope in the stressed vowel reflects EXP’s rising movement. This is also one of the most 

important features. 
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Figure 63 - Decision Tree plot (EXP vs OTHERS) 

 

Table 39 shows the fit of the best EXP-vs-OTHERS models: 

 

Table 39 - Model fit (EXP vs OTHERS) 

Metric LDA DTC 

Accuracy 0.9 0.94 

Avg 0.77 0.89 
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Metric LDA DTC 

accuracy 

F1-score 0.66 0.82 

 

 

7.4.6 INP against OTHERS 

Finally, Figure 64 and Figure 65 shows the Cp statistic and the most selected features 

of the INP-vs-OTHERS models. The Cp statistic reaches a value between 0 and 1 around 

14 parameters: 

 

Figure 64 - Cp statistic (INP vs OTHERS) 

 

 



226 

 

Figure 65 - Most selected features (INP vs OTHERS) 

 

The LDA model with the best fit also selects many features (16). However, this model’s 

performance is equivalent to random guessing. Its f1-score is 0.5, as shown in Table 40. 

On the other hand, the DT model using the selected features displays an f1-score of 

0.73. The most important features of this model are shown in Figure 66. Here, some 

combinations of features seem to be important. First, higher levels of mean intensity 

with a shorter f0 range in the stressed vowel combine with an f0 slope in the stressed 

vowel that should not surpass -1.5. Second, short relative duration combines with an 

f0 slope in the stressed vowel that should be greater than 3.7. The alignment of min f0 

also seems to play an important role in the distinction. Interestingly, INP displays the 

most variability in terms of the f0 curve. It tends to display the flattest f0 movement in 

the stressed vowel, but it can be accompanied by rising and falling movements 

depending on the segments present before and after the stressed vowels. Since other 

DM classes in the same position can exhibit similar movements, the task of classifying 
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INP based on f0 shape can become more complicated. 

 

Figure 66 - Decision Tree (INP vs OTHERS) 

 

Table 40 shows the fit for the best INP-vs-OTHERS models. 

 

Table 40 - Model fit (INP vs OTHERS) 

Metric LDA DTC 

Accuracy 0.86 0.9 
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Metric LDA DTC 

Avg accuracy 0.67 0.82 

F1-score 0.5 0.73 

 

 

7.4.7 Global model with Select K Best  

Gobbo (2019) observed that as few as 9 features could be used to achieve a good 

model fit. The author’s classification model took as input three DM classes, ALL, CNT, 

and INP, making up a total of 156 observations. In this dataset, INP always occurred in 

final position, CNT mostly in initial and final position, and ALL always in final position.  

The selected parameters were intensity, minimum intensity, alignment of min intensity, 

mean f0, alignment of maximum f0, f0 slope in the stressed syllable, number of syllables 

and raw duration. The accuracy score (goodness of fit) reached 84.6%. The best model 

seems to be a bit more intricate and convolute in our data. At some point, all features 

were selected by one of the models. I tried another feature selection approach using a 

different evaluation strategy to double-check the results shown in the previous 

subsections. The SelectKBest algorithm from Scikit-Learn (Pedregosa et al., 2011) 

removes all but the k features with the highest scores based on a specified statistical 

test or scoring function. Here, the F-statistic was used (f_classif method in Scikit-Learn). 

A stratified 10-fold cross-validation set was used to evaluate the best models. The 

average accuracy scores and f1-score were calculated from each fold. The results are 

shown in Figure 67: 

 

Figure 67 - F1-score and accuracy score as a function of number of features resulting 
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from the SelectKBest algorithm using a stratified 10-fold cross-validation set 

 

 

The results are quite consistent with the Leaps and Bounds approach. Increasing the 

number of features improves the model’s performance. However, this improvement is 

much less noticeable from k=4 onwards. Two other observations seem to be confirmed. 

The most easily classifiable DM class is ALL. Assessed against the others, INP is less 

than chance. 

 

7.5 OTHER MODELS 

Three main modelling issues remain to this point. As mentioned before, the dataset 

used is imbalanced (1). This may cause some bias in results since the models presented 

so far may have a bias toward voting for the majority class (the CNT). Moreover, most 

of the models presented were not evaluated in a cross-validation set (2). This strategy 

has a number of advantages over classical evaluation strategies. It helps reduce bias by 

repeatedly training and evaluating the model on different subsets of the data. It can 

better predict how the model will perform in the wild since it will be repeatedly tested 

on unseen data. It helps detect and prevent overfitting, thus ensuring that the model 
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is not learning unnecessary and way too many detailed patterns of the training data 

but is effectively learning useful patterns that generalize well to new, unseen data. 

Finally, only non-finetuned, simpler classification techniques have been used thus far 

(3). 

 To address (1), two techniques aimed at rebalancing the data were employed: 

undersampling and oversampling. For undersampling, many techniques are available, 

the simplest being a random selection that takes the size of majority classes down the 

size of the minority class. However, random undersampling can cause the loss of 

important information, especially when intra-class data presents high variance. For this 

reason, a NearMiss approach from the imblearn package (Lemaître et al., 2017) was 

preferred. NearMiss is also available in a large number of flavors. Here, the NearMiss-

1 approach was chosen. NearMiss-1 focuses on reducing the number of observations 

of majority classes by picking samples that are close to the decision boundary of the 

minority class. It is thus focused on “hard-to-learn” observations, i.e., the observations 

of the majority class closer to the minority class. This is interesting because some DM 

classes, such as INP vs CNT, have hard-to-draw decision boundaries. For the 

oversampling, SMOTE (Synthetic Minority Over-sampling Technique) from the 

imblearn package was used. SMOTE generates synthetic observations of the minority 

class interpolating existing minority class observations. 

 To address (2), a stratified k-fold cross-validation approach (Pedregosa et al., 

2011) was used. This cross-validation technique splits the dataset into k folds while 

keeping the same class distribution in each fold. The model is trained k times, with each 

fold as the test set once and the remaining folds as the training set. The final accuracy 

score is the average across all folds. This technique provides a more robust evaluation 

of the model's generalization capability. 
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Figure 68 - Visual representation of Stratified k-fold Cross-validation29 

 

 

Finally, to address (3), four classifiers (LDA, Decision Tree, Logistic Regression, 

and K-Nearest Neighbors) were fine-tuned.  The best performing classifier was then 

used as a base estimator for a Bagging Model, which was further fine-tuned. The best 

bagging model was additionally evaluated on a Leave-One-Out Cross-Validation 

(LOOCV) set (from Scikit-learn, Pedregosa et al., 2011). LOOCV involves training a model 

k times, where k corresponds to the number of observations in the dataset. In each 

iteration, one observation is set apart to be used as the “test set”, and the model is 

trained on the remaining observations. The final accuracy score is the average of the 

scores of these k evaluations. This technique provides a thorough assessment of the 

model’s generalization capability with minimal bias. This technique was not used for 

the grid search on models’ hyperparameters because it would entail a very high 

computational cost. 

 
29 Code available at < https://scikit-

learn.org/stable/auto_examples/model_selection/plot_cv_indices.html#sphx-glr-auto-examples-model-

selection-plot-cv-indices-py> 
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The search spaces for the grid search of model’s best hyperparameters are not 

further described in this section, since they involve heuristics commonly used in 

Machine Learning approaches. These parameters, as well as the pipelines for this part 

of the work, are provided in a notebook. The results of the described methods are 

summarized in Table 41 below: 

 

Table 41 - Results table for Bagging Models with balanced data 

Sampling Support 
Best base 

estimator 

BE's 

accuracy 

Bagging 

model's 

accuracy 

LOOCV 

accuracy 

Undersampling 68 LDA 0.71 0.71 0.68 

Oversampling 139 
Logistic 

Regression 
0.76 0.76 0.78 

 

It is possible to say that the overall accuracy scores for this 5-DM-class classification 

task are somewhere between 68% and 78%, two issues considered. Firstly, that the data 

was undersampled with a more conservative approach, which may have caused some 

performance loss. Secondly, that oversampling with synthetic data is far from ideal. A 

general downside of the approach is that synthetic observations are created without 

taking into consideration observations from the majority class. This may potentially 

result in ambiguous observations when decision boundaries are fuzzy – strong overlap 

between classes (SMOTE, 2011). 

 Figure 69 and Figure 70, respectively for under- and oversampling, display the 

confusion matrices for the best bagging models considering the LOOCV approach: 

Figure 69 - Confusion Matrix - LOOCV - Undersampling 
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Figure 70 - Confusion Matrix - LOOCV - Oversampling 

 

 

The most easily recognizable classes change from previous results. Before, INP was the 
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most difficult and ALL the easiest DM class to classify. The EVD (Highlighter) is the most 

easily classified here, whereas CNT is often confounded with ALL and INP. 
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8 PERCEPTUAL EXPERIMENTS 

8.1 INTRODUCTION 

Chapter 7. (CLASSIFICATION MODELS) showed how and to what degree prosodic 

features can be used for distinguishing the functional nature of DMs within 

spontaneously produced speech utterances. This chapter presents a perceptual 

approach to evaluate the perceived differences across the functions of DMs in Brazilian 

Portuguese. It is based on the principles of the Language into Act theory (Cresti, 2000), 

which assumes that the prosodic form has a main role in implementing the DMs’ 

pragmatic functions. Section 3.4. The most recent proposal for DMs presented five 

different DM classes, each implemented by prototypical prosodic contours. The 

prosodic implementation of these functions is also linked to other parameters, such as 

their position regarding the illocutionary unit (initial, medial, or final). Four functions 

(CNT, EXP, and INP) can occur at the beginning of the terminated sequence, but two 

of them, ALL and EVD, strongly prefer the final position in Brazilian Portuguese. 

This chapter is a first step towards understanding how prosody can carry DM 

functions from a perceptive standpoint; the evaluation tasks presented in this chapter 

are restricted to the three functions that appear before the illocutionary unit: Incipit 

(INP), Conative (CNT), and Expressive (EXP). INP signals the speaker’s intention to begin 

an utterance; EXP conveys non-illocutionary surprise; and CNT, which is distributionally 

free, indicates the illocutionary solution of the utterance. The goal is to evaluate the 

relevance of prosodic characteristics to implementing and perceiving these three 

functional categories. Another goal is to understand what other factors can contribute 

to or thwart the prosodic classification of DM functions. Two tasks are reported in this 

chapter. The first followed a discrimination paradigm with a restricted number of lexical 

fillers, and the second followed an identification paradigm with seven different lexical 

fillers. 

The following sections present the selection of DMs, their prosodic modification 
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by a speech resynthesis procedure, and the implementation of the perceptual 

evaluations, using the paradigms mentioned, to evaluate the ability of participants to 

match the prototypical prosodic forms to a definition of each of these three functions. 

 

8.2 DATASET OF THE DISCRIMINATION TASK 

Three utterances were selected from the C-ORAL-BRASIL corpus (Raso & Mello, 2012) 

to present an illocution immediately preceded by a DM, the latter conveying one of 

the three targeted functions (CNT, EXP, INP). The original versions of these utterances 

were used for resynthesis and presentation to participants. This choice (keeping the 

original audio content) led to more restrictive data selection criteria. Among the criteria 

used to select the utterances were: 

 

a) The quality of the audio: the C-ORAL corpus contains spontaneous data that 

may have adverse recording conditions; this could impair the quality of prosodic 

modifications; thus, these stimuli were rejected. 

b) A lexical unit used as DM may have several functions, but not necessarily all the 

three targeted here, so only lexemes compatible with the three functions were 

selected. 

c) Some lexemes may also generate functional confusion to the listeners due to 

heavier semantic load; for this reason, the potential lexical items had to be re-

stricted to lexemes as light as possible from a semantic standpoint. 

d) For similar reasons, the illocution following the selected DM must have a value 

adequate to the three functions. 

 

The difficulty in finding examples fulfilling all these conditions explains the restricted 

set of examples used here; other instances were found, but their quality, as well as a 

preference to keep the experimental task as short as possible (here about 15 minutes), 

led us to keep only three utterances. These three utterances (produced by three 
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different adult speakers, one male, for the INP, and two females, all speakers from the 

Minas Gerais variety of Brazilian Portuguese) were the following (with the DM enclosed 

in squared brackets): 

 

a) CNT: “[ah], não acaba não” (“[ah], it’s not over”)  

b) EXP: “[ah], primeiro a letra” (“[ah], first the letter”) 

c) INP: “[gente], é so um professor falando” (“[guys], it’s just a professor talking”) 

 

8.3 DATASET OF THE IDENTIFICATION TASK 

In the identification task, we also wanted to evaluate the effect of the lexical content of 

the DM. Thus, a more varied number of lexical fillers were selected from the C-ORAL-

BRASIL corpus. Here, the quality of the audio was not an issue, because the examples 

were reproduced by one native speaker of BP in a controlled setting. The main 

restriction for this selection was that each lexeme should occur in all targeted functions 

within the corpus. Furthermore, preference was given to utterances that carried more 

neutral, assertive illocutionary units, so to avoid this uncontrolled factor having an 

effect linked with the specific speech act performed. The seven different lexemes 

chosen were: ah (oh), é (yeah), gente (guys), não (no), oh (oh/look), porra (fuck), uai 

(typically regarded as a mark of surprise/disbelief). Three examples per lexeme were 

selected, each one carrying a target function. The exceptions were ah and uai. For the 

former, six examples were chosen (two per DM function). This is because a total of 8x3 

utterances were required to complete the Latin square experimental design (see latter). 

However, only seven different lexemes were founded fulfilling the three targeted 

functions. For uai, one additional CNT was selected to be used as a training stimulus. 

Each example was manipulated and resynthesized to resemble as much as possible the 

prototypical forms of the target functions. The original examples were:  
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Table 42 - Examples used in the identification task 

LEXEME FILE 
ORIGINAL 

FUNCTION 
TEXT 

AH bfamdl04_132 CNT 
ah / mas é claro // 

Oh / but that’s obvious // 

AH bpubdl01_119 CNT 
ah / não acaba não // 

oh / it doesn't end // 

AH bfamcv04_263 EXP 
ah / primeiro a letra // 

oh / first the letter // 

AH bfamdl05_267 EXP 
ah / ele vai colocar corrimão // 

oh / he's going to install handrails // 

AH bfamdl01_241 INP 
ah / vão levar esse mesmo // 

oh / let's take this one // 

AH bfamdl01_260 INP 
ah / mas esse é ruim // 

oh / but that's a bad one // 

É/EH bpubdl02_215 CNT 

é / eu trouxe o oito e o nove // 

yeah / I brought the eight and the nine 

// 

É/EH bpubdl02_054 EXP 
é / mas é mesmo // 

yeah / but that's right // 

É/EH bfamdl01_096 INP 
é / hoje cê tá faminta // 

yeah / you’re starving today // 

GENTE bfamdl26_67 CNT 
gente / é muito bonitinho // 

guys / so cute // 

GENTE bfamdl03_35 EXP 
gente / eu te falei // 

gosh / I told you // 

GENTE bfamcv26_262 INP 
gente / é só um professor falando  // 

guys / it's just a professor talking // 

NÃO bpubmn01_093 CNT 

não / a diretora muito boa  // 

no / the principal is a very nice person 

// 

NÃO bfamcv05_87 EXP 
não / vai sô // 

no / go man // 
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LEXEME FILE 
ORIGINAL 

FUNCTION 
TEXT 

NÃO bfamcv02_141 INP 
não / mas ea tá é brincando // 

no / but she's just kidding // 

OH/O' bfamdl22_090 CNT 

o' / tem um dinheiro preso aqui no 

banco // 

look / you have a balance stuck here 

at the bank // 

OH/O' bpubdl02_145 EXP 
oh / o bondade sua // 

oh / how kind of you // 

OH/O' bpubdl11_292 INP 
o' / ajudar ele ajuda // 

look / he does help // 

PORRA/PÔ bfamcv32_212 CNT 
pô / só três minutos // 

fuck / just three minutes // 

PORRA/PÔ bfamdl20_188 EXP 
pô / o cara tá famoso // 

fuck / the guy got famous // 

PORRA/PÔ bfamdl17_132 INP 
pô / garçom underground  // 

fuck / underground waiter // 

UAI/UÉ bfamdl21_047 CNT 
uai / tem que ter isso aqui também // 

oh / there has to be that here too // 

UAI/UÉ bfamdl28_078 CNT 
uai / vamo ver // 

well / we'll see // 

UAI/UÉ bfamdl33_105 EXP 
uai / cê já pôs o trem pra fritar // 

oh / you're already frying this thing // 

UAI/UÉ bfamcv11_041 INP 
uai / ele conversa demais da conta // 

oh / he just talks too much // 

 

 

8.4 RESYNTHESIS 

The utterances were extracted from the original recordings and edited in the following 

way. For the discrimination task, a noise reduction algorithm available in Praat (Boersma 

& Weenink, 2022) was applied to the signal to remove some stationary background 
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noises (cars passing in the street, notably). The illocutionary part of the utterance was 

then edited to keep only the targeted part; in that case, the final part of the illocution 

was also modified to sound like a terminated assertion (final pitch and intensity fall). 

This was not done for the audio files used in the identification task, since their 

reproductions were recorded in a controlled environment and the illocutionary units 

were realized with terminal boundaries. 

For both tasks, the prosodic characteristics of the DM units were then modified 

to correspond to the prototypical description of the three targeted functions. These 

modifications were done by using Praat’s “Manipulate” function, that allows varying 

speech fundamental frequency (F0) and duration using the TD-PSOLA algorithm 

(Moulines & Charpentier, 1990), and then by modifying the sound intensity, using Praat 

IntensityTier objects. Figure 71 shows the spectrograms, with overlaid f0 (red dots, in 

Hz) and intensity (green line, in dB) contours resulting of the modification process for 

the three prosodic functions (CNT, EXP, INP, from top to bottom) on the DM “gente” 

and the utterance “é so um professor falando”. The end of the DM is marked with a 

blue vertical line. 
 

Figure 71 - Example of manipulations of the three utterances used in the discrimination 
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task – Red points represent f0 tracking and the green curve represents intensity levels 

 
 

The targeted prosodic characteristics linked to each function may be described in the 

following way (see sections 3.4. The most recent proposal for DMs and 7.2. Curve 

fitting). CNT displays a falling f0 movement from the stressed vowel after a slightly 

rising movement, if there is pre-stress material; it has a much lower intensity and a 

shorter segmental duration than the illocution’s mean. EXP presents a rising f0 

movement until the end of the stressed vowel, then a flat or slightly falling f0 

movement, if there is post-stress material; its segmental duration and intensity levels 

are below that of the illocution mean but above that of CNT. The INP has a flat f0, with 

a very short duration and higher intensity than the illocution. The original and modified 

versions of the DMs are presented in Figure 71 for the complete utterance “gente / é 

só um professor falando” (the visible desynchronization of the illocutionary part comes 

from the different durations of the three version of the “gente” DM). The DMs resulting 

from this process of prosodic stylization to elicit the prototypical prosodic 

characteristics of the CNT, EXP and INP functions are presented in (without the 
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associated illocutions), so as to make the prosodic similarities within a function more 

visible. 

 

Figure 72 - Manipulated DMs of the discrimination task 

 
 

The original DMs were each modified in three versions, leading to the stimuli that have 

a given lexical and segmental origin (the original DM in its illocutionary context), and 

three prosodic variants, that correspond to the three functions (CNT, EXP, INP). The 

exact prosodic characteristics of a DM for a given function may obviously vary with the 

speaker and the illocution characteristics (low or high vocal effort, for example, but the 

prototypical prosodic characteristics are those described above. This process resulted 

in nine stimuli for the discrimination task and 78 stimuli for the identification task. 

 Finally, for the identification task, the stimuli were also presented in their written 

form without any audio. The goal was to evaluate potential biases carried by the 

lexemes (without the prosodic realization). 
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8.5 PARTICIPANTS 

Participants were recruited via social media to pass the perceptual experiments. All 

were adults, L1 speakers of BP. The tests were anonymous, and participants were asked 

to have the tests via a web interface. They were instructed to wear headphones, and an 

informed consent form was displayed, which they had to accept before starting. They 

should first answer three demographic questions (age, gender, and if their first 

language was BP) before initiating the experiments. Some participants connected to 

the interface but stopped the process before actually having the test (just answering 

the demographic questions); they were not included in the analyses. Table 43 and Table 

44 show the summary of participants for the discrimination and the identification test, 

respectively: 

 

Table 43 - Summary of participants of the discrimination test 

Discrimination test 

  Total participants Mean age Std age 

Female  53 28  13 

Male  32  33  12.1 

Total/Avg  85  29.9  12.8 

 

Table 44 - Summary of participants of the identification test 

Identification test 

  Total participants Mean age Std age 

Female 68 27.7 13.6 

Male 52 27.8 9.9 

Total/Avg 120 27.8 12.1 

 

8.6 DISCRIMINATION AND IDENTIFICATION PARADIGMS 

The interfaces for the perceptual experiments were developed using the web-based 
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“PsyToolkit” application (Stoet, 2010, 2017). It has been shown that online psychological 

evaluations do reach results similar to those of in-lab testing for a number of classical 

psychological evaluations (Kochari, 2019; Sasaki & Yamada, 2019). Therefore, the web-

based interface was here preferred as it simplifies greatly recruiting participants with 

more varied profiles.  

 

8.6.1 Discrimination task 

The stimuli were presented in pairs: for the three versions of a DM from the same 

utterance, three pairs were made (CNT-EXP, CNT-INP, EXP-INP). For the three 

utterances, this leads to nine pairs of stimuli. For each pair presentation, participants 

had to judge which of the two prosodic contours of the DM best fit a given definition, 

in an AB discrimination protocol. The definitions that correspond to the three tested 

functions were the following (where “DM” was replaced by either “GENTE” or “AH”, 

according to the tested lexeme): 

 

CNT: "Se você quisesse passar uma ideia de conclusão em função do que foi dito 

antes, qual das duas realizações de DM você escolheria?" (“To convey an idea of 

conclusion based on what was said before, which of the two performances of 

DM would you choose?”) 

 

EXP: "Se você quisesse manifestar que ficou surpreendido com o que foi dito antes, 

qual das duas realizações de DM você escolheria?" (“To express that you were 

surprised by what was said before, which of the two performances of DM would 

you choose?”) 

 

INP: "Se você quisesse apenas começar a frase, qual das duas realizações de DM 

você escolheria?" (“If you just wanted to start the sentence, which of the two 

performances of DM would you choose?”) 
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Each pair was presented twice, with alternatively one of the two definitions 

corresponding in turn to one of the two prosodic versions of the pair, leading to 18 

presentations (of pairs plus definition) for each judge. For each of the 18 presentations, 

the pairs were presented in the AB or BA order, randomly. 

During the test, for each pair presentation, a participant was first presented with 

the two complete utterances and the target definition, and could freely listen to the 

performances A and B; the utterance was transcribed orthographically. Then, the 

participant switched to a screen were only the two versions (A and B) of a DM pair 

could be freely listened to (without the illocution). A third screen then presented the 

two complete utterances (i.e., the DM plus the illocution, in the two versions A and B) 

only once, one after the other, with a 500ms pause between them. After this final 

listening, participants had to select the DM that best fit the definition, clicking on the 

A or B button (the attribution of the two sentences to the A or B slots was done 

randomly). The next pair was then presented, following the same three-step procedure. 

Test completion took about 15 minutes. 

 

8.6.2 Identification task 

In the discrimination task, participants were presented the description of a DM function 

and had to decide which one of two prosodic realizations best match the function. In 

the identification task, on the other hand, participants were presented a stimulus and 

had to decide (respond) what function that prosodic realization best corresponds to. 

The stimuli were presented with the prosodic characteristics of one of the DMs 

modified in three versions. The prosodic forms will be referred to as Descending, 

Ascending, Flat – for short D/A/F. These references are preferred to CNT/EXP/INP, 

because using the functions’ labels would introduce a confusion between acoustic form 

and function. Additionally, to the three audio forms (D/A/F), a Written (W) presentation 

modality was proposed. 

During the test, for each stimulus, a participant was first presented with the 

audios of the DM and of the complete utterance. They could freely listen to the DM 
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and the utterance, but they had to listened to both before being given the possibility 

to choose a function. When an audio was presented, participants were not given an 

orthographic transcription. This was done only for the written presentations in which 

case no audio was given. For written stimuli, participants were presented the DM and 

the illocutionary unit separated by a comma, in the form “uai, vamo ver” (well, let’s see). 

After hearing the audios or having some time to read the written stimulus, participants 

were presented three boxes containing the description of the functions with the 

following content: 

 

• Anunciar uma conclusão (Announce a conclusion – which should be 

matched with Descending/CNT – function coded as CON) 

• Manifestar uma surpresa (Show surprise – which should be matched with 

Ascending/EXP – function coded as SUR) 

• Apenas começar a frase (Simply start the phrase – which should be 

matched with Flat/INP – function coded as STA) 

 

The selection was forced-choice. Each participant was presented 24 stimuli from the 

Latin square plus four stimuli with “uai, vamo ver” as a training start. Each group of the 

Latin square contained one version of the manipulated DMs for each lexeme. The 

stimuli were based on 24 utterances, each composed of a MD and their COM part. The 

DMs were based on seven (plus one more “ah”) different lexeme - ah (presented twice), 

eh, gente, não, oh, pô, uai, each being presented with three functions (CNT, EXP, INP), 

making up the 24 (8*3) stimuli, plus four training stimuli per participant. The next 

stimulus was then presented, following the same procedure. Test completion took 

about 10 minutes. The first stimuli used for training were not taken into account in the 

analysis. To sum up: 
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a) The listeners were distributed in four groups, following a Latin square distribu-

tion, so each group was presented one of the 24 utterances once – with one 

modality Ascending (A), Descending (D), Flat (F) or Written (W); 

b) Each group was presented with a given utterance with a different modality; 

c) Each group saw all 24 utterances, and were presented with the same number of 

stimuli with a given modality, and to all the 7 lexemes. 

 

8.7 ANALYSIS OF THE DISCRIMINATION TASK RESULTS 

The findings presented in this section were first published in Raso et al. (to appear). 

The A or B answer to each pair was expressed as a “Match” if the selected DM’s prosodic 

characteristics actually matched the proposed definition (or as a “Miss” if not). There 

were therefore six types of pairs plus definition: in the following notation, the first DM 

of a pair (marked in bold) also corresponds to the presented definition (i.e., the 

boldface function corresponds to the presented definition, a “Match” answer is thus 

equal to this boldface function). A listener was presented with the following set of Pairs: 

(CNT-EXP), (CNT-INP), (EXP-CNT), (EXP-INP), (INP-CNT), (INP-EXP). These six pairs of 

stimuli were presented through three lexical Contexts: the three sentences (the DM + 

illocution) – thus, 18 presentations to each participant. Each Pair was presented 

(randomly) in a given Order (AB or BA). 

 

8.7.1 Binomial generalized model 

These three factors, the presented Pair, the lexical Context, and the presentation Order, 

were used as fixed factors in a binomial generalized linear model to explain the 

variation in the proportion of (Match, Miss) answers (dependent variable) by the 85 

participants.  

  Following Crawley (2012), a maximal model was fit (using the glm() function of 

the R software, R Core Team, 2022), with the dependent variable (proportion of Match 

answers) explained by the three fixed factors plus all their double and triple 
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interactions. This maximal model was then submitted to a simplification process, 

removing iteratively the higher order interactions, when this did not lead to a 

significant loss of explanatory power in the model. The simplification steps are 

summarized in Table 45, which presents the model simplification process (output of R’s 

step() function), with the interactions or factors tested at each step, and the progressive 

reduction of the AIC criterion. The last row contains the minimal adequate model. The 

minimal adequate model contains only the Pair factor, that explains variations in the 

proportion of (Match, Miss) answers. 

 

Table 45 - summary of the model simplification process (output of R’s step() function) 

 Resid. df Resid. deviance Df Deviance Pr(>Chi) 

Start:      Model: (Match, Miss) ~ Pair * Context * Order 

<none> 0 0    

- Pair: Context:Order 10 6.921 -10 -6.921 0.7329 

Step 2:   Model: (Match, Miss) ~ (Pair + Context + Order)^2 

<none> 10 6.921    

- Pair: Context 20 21.038 -10 -14.117 0.1677 

- Context:Order 12 11.303 -2 -4.382 0.1118 

- Pair:Order 15 15.600 -5 -8.679 0.1226 

Step 3:  Model: (Match, Miss) ~ (Pair + Context) * Order 

<none> 20 21.038    

- Context:Order 22 25.638 -2 -4.600 0.1003 

- Pair:Order 25 30.112 -5 -9.074 0.1062 

Step 4:  Model: (Match, Miss) ~ Pair + Context + Order + Pair:Order 

<none> 22 25.638    

- Pair:Order 27 34.532 -5 -8.894 0.1134 

- Context 24 31.409 -2 -5.771 0.0558 

Step 5:  Model: (Match, Miss) ~ Pair + Context + Order 

<none> 27 34.532    

- Order 28 34.567 -1 -0.035 0.8510 
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- Context 29 39.763 -2 -5.231 0.0731 

- Pair 32 133.034 -5 -98.503 < 2.2e-16 

Step 6:  Model: (Match, Miss) ~ Pair + Context 

<none> 28 34.567    

- Context 30 39.811 -2 -5.244 0.0727 

- Pair 33 133.047 -5 -98.480 < 2.2e-16 

Step 7:  Model: (Match, Miss) ~ Pair 

<none> 30 39.811    

- Pair 35 138.019 -5 -98.209 < 2.2e-16 

 

The binomial regression, detailed above, showed that only the type of Pair had 

a significant effect on the proportion of (Match, Miss) answers, the other two 

independent variables (the lexical Context and the presentation Order, were dropped 

during the simplification phase). The model summary is proposed in Table 46, 

presenting the values of the binomial model’s coefficients; the (CNT-EXP) level of the 

Pair factor was used for intercept.  

 

Table 46 - Output of the minimal adequate model, presenting the values of the 

binomial model’s coefficients; the (CNT-EXP) level of the Pair factor was used for 

intercept. Uncertainty intervals (profile-likelihood) and p-values (two-tailed) computed 

using a Wald z-distribution approximation 

Parameter Log-Odds SE 95% CI z p 

(Intercept) 0.80 0.14 [ 0.54,  1.07] 5.91 < .001 

Pair (CNT-INP) -0.47 0.19 [-0.83, -0.10] -2.51  0.012  

Pair (EXP-CNT) 0.88 0.22 [ 0.46,  1.32] 4.02  < .001 

Pair (EXP-INP)  1.33 0.24 [ 0.86,  1.83] 5.45  < .001 

Pair (INP-CNT) -0.19  0.19 [-0.57,  0.17] -1.03  0.301  

Pair (INP-EXP)  -3.04e-16  0.19 [-0.38,  0.38] -1.59e-15  > .999 
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8.7.2 Proportion of Match by Pair 

Figure 73 shows the proportion of Match predicted by the model for the six types of 

Pair + definition (Order not having a significant effect, the first part of each pair 

indicates the proposed definition). Four Pairs, (CNT-EXP), (CNT-INP), (INP-CNT), and 

(INP-EXP), reached a comparable level of discrimination (from 60 to 70%), that do not 

show significant differences between themselves (see Table 46 - Output of the minimal 

adequate model, presenting the values of the binomial model’s coefficients; the (CNT-

EXP) level of the Pair factor was used for intercept. Uncertainty intervals (profile-

likelihood) and p-values (two-tailed) computed using a Wald z-distribution 

approximation); conversely, the (EXP-CNT) and (EXP-INP) Pairs showed a significant rise 

of Match answers compared to all the other Pairs (above 80% of Match). 

Figure 73 - Proportion of Match answers fitted by the binomial regression as a function 

of the type of Pair 

 
 

8.8 ANALYSIS OF THE IDENTIFICATION TASK 

Participants answered which of the three proposed function they thought best fit each 
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stimulus. This categorical answer (CON/SUR/STA) is used as a dependent variable to a 

multinomial regression (fit using the multinom() function of R’s “nnet” library; Venables 

& Ripley, 2010) – thus we observed the variation in the proportion of each category 

(CON/SUR/STA) in the participants’ answer according to the following independent 

variables: 

 

a) The presentation Modality (four levels: D/A/F/W) 

b) The Lexeme used for the DM (seven levels: ah/eh/gente/não/oh/po/uai) 

c) The functional Class of the DM in the utterance (three levels: CNT/EXP/INP) 

 

8.8.1 Multinomial model 

The model is expressed with the following formula, following Gries (2021) and using 

R’s syntax: 

 

Answer ~ 1 + Modality * Lexeme * Class 

 

The model with three parameters was fitted to the proportion of answers observed in 

each possible function (Conclusion, Surprise, Start). The simplification of the model was 

tested, but removing the three-way interaction did lead to a significant loss in the 

model – which was thus kept. Table 47 presents the likelihood ratio tests of the 

Multinomial Models comparing the complete model to a model without the triple 

interaction: 

 

Table 47 - Multinomial models - Complete model vs Model without triple factor 

interaction 

Answer: AnswerID             

Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi) 

1 1 + (MODALITY + DM + CLASS)^2 11396 10221.815         

2 1 +  MODALITY * DM * CLASS 11324 9963.957 1 vs 2 72 257.8577 0 
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The model's output is presented in Table 48 and through a series of figures that 

represent the mean tendencies estimated from the model for each of the factors and 

their interactions. The reference levels are – for Modality (W), for Lexeme (ah), for Class 

(CNT). The full model explains about 40% of the total variance (R2 = 0.414). 
 

Table 48 - Multinomial model's output - Identification task 

  Estimate Std. Error z-values P-values 

(Intercept):SUR -0.7674999 2.37E-01 -3.23E+00 1.22E-03 

(Intercept):STA -0.4420649 2.14E-01 -2.07E+00 3.85E-02 

MODALITY.D:SUR 0.17313417 3.24E-01 5.35E-01 5.93E-01 

MODALITY.D:STA 0.29348805 2.88E-01 1.02E+00 3.08E-01 

MODALITY.A:SUR 1.0863096 3.32E-01 3.27E+00 1.07E-03 

MODALITY.A:STA 0.76055551 3.16E-01 2.41E+00 1.60E-02 

MODALITY.F:SUR -0.8412311 4.54E-01 -1.85E+00 6.40E-02 

MODALITY.F:STA 0.70430108 3.00E-01 2.35E+00 1.88E-02 

LEXEME.eh:SUR -12.1391 3.23E-01 -3.76E+01 0.00E+00 

LEXEME.eh:STA 0.441934 3.59E-01 1.23E+00 2.18E-01 

LEXEME.gente:SUR 1.54170112 4.22E-01 3.65E+00 2.60E-04 

LEXEME.gente:STA 1.48437303 3.98E-01 3.73E+00 1.92E-04 

LEXEME.não:SUR -1.352839 4.93E-01 -2.74E+00 6.06E-03 

LEXEME.não:STA -0.9852789 3.86E-01 -2.55E+00 1.07E-02 

LEXEME.oh:SUR 2.78205109 5.83E-01 4.77E+00 1.81E-06 

LEXEME.oh:STA 1.94588392 5.93E-01 3.28E+00 1.02E-03 

LEXEME.pô:SUR 1.79678677 4.38E-01 4.10E+00 4.12E-05 

LEXEME.pô:STA 0.44177576 4.96E-01 8.91E-01 3.73E-01 

LEXEME.uai:SUR 1.13459906 3.88E-01 2.93E+00 3.43E-03 

LEXEME.uai:STA 0.72900894 3.78E-01 1.93E+00 5.37E-02 

CLASS.EXP:SUR 0.55645749 3.31E-01 1.68E+00 9.27E-02 

CLASS.EXP:STA 0.86372361 2.92E-01 2.96E+00 3.06E-03 

CLASS.INP:SUR -1.024674 3.92E-01 -2.61E+00 8.93E-03 

CLASS.INP:STA -0.2509021 2.95E-01 -8.49E-01 3.96E-01 



253 

 

  Estimate Std. Error z-values P-values 

MOD.D:LEX.eh:SUR -7.0236511 3.89E-01 -1.81E+01 7.86E-73 

MOD.D:LEX.eh:STA -0.9293943 5.01E-01 -1.85E+00 6.37E-02 

MOD.A:LEX.eh:SUR 10.6674262 3.23E-01 3.31E+01 8.12E-240 

MOD.A:LEX.eh:STA -1.5078001 5.15E-01 -2.93E+00 3.39E-03 

MOD.F:LEX.eh:SUR -4.6879704 3.92E-01 -1.20E+01 5.58E-33 

MOD.F:LEX.eh:STA -0.7039616 4.78E-01 -1.47E+00 1.41E-01 

MOD.D:LEX.gente:SUR -1.5343611 6.18E-01 -2.48E+00 1.31E-02 

MOD.D:LEX.gente:STA -1.2302136 5.49E-01 -2.24E+00 2.50E-02 

MOD.A:LEX.gente:SUR -0.9049054 6.09E-01 -1.49E+00 1.37E-01 

MOD.A:LEX.gente:STA -1.3319495 6.12E-01 -2.18E+00 2.96E-02 

MOD.F:LEX.gente:SUR 0.22182027 6.95E-01 3.19E-01 7.50E-01 

MOD.F:LEX.gente:STA -0.4935599 5.57E-01 -8.87E-01 3.75E-01 

MOD.D:LEX.não:SUR -0.6551678 7.48E-01 -8.76E-01 3.81E-01 

MOD.D:LEX.não:STA -0.2158763 5.26E-01 -4.11E-01 6.81E-01 

MOD.A:LEX.não:SUR -0.98064 7.62E-01 -1.29E+00 1.98E-01 

MOD.A:LEX.não:STA -0.0951623 5.55E-01 -1.72E-01 8.64E-01 

MOD.F:LEX.não:SUR 1.08982671 8.25E-01 1.32E+00 1.87E-01 

MOD.F:LEX.não:STA 0.55595015 5.26E-01 1.06E+00 2.91E-01 

MOD.D:LEX.oh:SUR -3.1997803 7.47E-01 -4.28E+00 1.86E-05 

MOD.D:LEX.oh:STA -1.2505036 6.78E-01 -1.84E+00 6.53E-02 

MOD.A:LEX.oh:SUR -1.9375649 7.24E-01 -2.67E+00 7.48E-03 

MOD.A:LEX.oh:STA -1.1663417 7.34E-01 -1.59E+00 1.12E-01 

MOD.F:LEX.oh:SUR -0.991607 8.20E-01 -1.21E+00 2.27E-01 

MOD.F:LEX.oh:STA -1.2525982 7.31E-01 -1.71E+00 8.64E-02 

MOD.D:LEX.pô:SUR 1.93313219 8.73E-01 2.21E+00 2.68E-02 

MOD.D:LEX.pô:STA 0.40037483 1.02E+00 3.94E-01 6.94E-01 

MOD.A:LEX.pô:SUR 1.38122055 8.73E-01 1.58E+00 1.13E-01 

MOD.A:LEX.pô:STA -12.460575 3.37E-01 -3.70E+01 4.38E-300 

MOD.F:LEX.pô:SUR 16.2529971 4.26E-01 3.82E+01 0.00E+00 

MOD.F:LEX.pô:STA 14.31567 4.26E-01 3.36E+01 4.47E-248 

MOD.D:LEX.uai:SUR 1.81030513 6.87E-01 2.63E+00 8.44E-03 

MOD.D:LEX.uai:STA -1.2745262 9.64E-01 -1.32E+00 1.86E-01 



254 

 

  Estimate Std. Error z-values P-values 

MOD.A:LEX.uai:SUR 12.7595235 3.96E-01 3.22E+01 1.92E-227 

MOD.A:LEX.uai:STA 11.1293792 3.96E-01 2.81E+01 1.55E-173 

MOD.F:LEX.uai:SUR 3.87489255 9.04E-01 4.29E+00 1.80E-05 

MOD.F:LEX.uai:STA 0.10665185 9.24E-01 1.15E-01 9.08E-01 

MOD.D:CLA.EXP:SUR -1.0973622 4.81E-01 -2.28E+00 2.26E-02 

MOD.D:CLA.EXP:STA -0.9119158 4.02E-01 -2.27E+00 2.34E-02 

MOD.A:CLA.EXP:SUR -0.5120142 4.65E-01 -1.10E+00 2.71E-01 

MOD.A:CLA.EXP:STA -1.5567355 4.65E-01 -3.35E+00 8.04E-04 

MOD.F:CLA.EXP:SUR 0.86941925 5.93E-01 1.47E+00 1.42E-01 

MOD.F:CLA.EXP:STA 0.02645984 4.29E-01 6.17E-02 9.51E-01 

MOD.D:CLA.INP:SUR -1.2715235 6.83E-01 -1.86E+00 6.25E-02 

MOD.D:CLA.INP:STA -0.6989976 4.24E-01 -1.65E+00 9.95E-02 

MOD.A:CLA.INP:SUR -0.4728121 5.12E-01 -9.24E-01 3.56E-01 

MOD.A:CLA.INP:STA -1.5335674 4.58E-01 -3.35E+00 8.10E-04 

MOD.F:CLA.INP:SUR -0.644471 7.50E-01 -8.59E-01 3.90E-01 

MOD.F:CLA.INP:STA -1.2737015 4.17E-01 -3.05E+00 2.28E-03 

LEX.eh:CLA.EXP:SUR 10.6156875 4.33E-01 2.45E+01 5.68E-133 

LEX.eh:CLA.EXP:STA -1.9051096 5.30E-01 -3.59E+00 3.27E-04 

LEX.gente:CLA.EXP:SUR -1.1080397 5.86E-01 -1.89E+00 5.88E-02 

LEX.gente:CLA.EXP:STA -2.1941125 5.86E-01 -3.74E+00 1.82E-04 

LEX.não:CLA.EXP:SUR 0.53364226 6.57E-01 8.12E-01 4.17E-01 

LEX.não:CLA.EXP:STA 0.69675237 5.05E-01 1.38E+00 1.68E-01 

LEX.oh:CLA.EXP:SUR -1.3666603 7.08E-01 -1.93E+00 5.35E-02 

LEX.oh:CLA.EXP:STA -2.2132325 7.38E-01 -3.00E+00 2.73E-03 

LEX.pô:CLA.EXP:SUR -0.4220729 6.14E-01 -6.88E-01 4.92E-01 

LEX.pô:CLA.EXP:STA -0.863144 6.96E-01 -1.24E+00 2.15E-01 

LEX.uai:CLA.EXP:SUR 1.27364951 6.94E-01 1.84E+00 6.64E-02 

LEX.uai:CLA.EXP:STA -0.4571967 7.46E-01 -6.12E-01 5.40E-01 

LEX.eh:CLA.INP:SUR 12.405187 4.21E-01 2.95E+01 4.93E-191 

LEX.eh:CLA.INP:STA -1.2750308 5.41E-01 -2.36E+00 1.84E-02 

LEX.gente:CLA.INP:SUR 1.80830946 6.53E-01 2.77E+00 5.64E-03 

LEX.gente:CLA.INP:STA -1.079613 7.01E-01 -1.54E+00 1.24E-01 
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  Estimate Std. Error z-values P-values 

LEX.não:CLA.INP:SUR 1.12968809 7.90E-01 1.43E+00 1.53E-01 

LEX.não:CLA.INP:STA 0.76173036 5.54E-01 1.37E+00 1.69E-01 

LEX.oh:CLA.INP:SUR -1.7624074 7.47E-01 -2.36E+00 1.84E-02 

LEX.oh:CLA.INP:STA -0.9842286 6.79E-01 -1.45E+00 1.47E-01 

LEX.pô:CLA.INP:SUR 0.74309379 6.09E-01 1.22E+00 2.23E-01 

LEX.pô:CLA.INP:STA -0.153651 6.53E-01 -2.35E-01 8.14E-01 

LEX.uai:CLA.INP:SUR -0.1309569 6.27E-01 -2.09E-01 8.35E-01 

LEX.uai:CLA.INP:STA -0.1318734 5.29E-01 -2.49E-01 8.03E-01 

MOD.D:LEX.eh:CLA.EXP:SUR -7.8919199 1.88E-06 -4.21E+06 0.00E+00 

MOD.D:LEX.eh:CLA.EXP:STA 0.57456579 7.65E-01 7.51E-01 4.52E-01 

MOD.A:LEX.eh:CLA.EXP:SUR -11.404081 5.92E-01 -1.93E+01 9.55E-83 

MOD.A:LEX.eh:CLA.EXP:STA 2.91485386 7.46E-01 3.90E+00 9.42E-05 

MOD.F:LEX.eh:CLA.EXP:SUR -10.471388 1.96E-06 -5.34E+06 0.00E+00 

MOD.F:LEX.eh:CLA.EXP:STA 0.50372351 7.24E-01 6.95E-01 4.87E-01 

MOD.D:LEX.gente:CLA.EXP:SUR 2.10211678 8.69E-01 2.42E+00 1.56E-02 

MOD.D:LEX.gente:CLA.EXP:STA 2.4551159 7.96E-01 3.08E+00 2.05E-03 

MOD.A:LEX.gente:CLA.EXP:SUR 1.49343504 8.45E-01 1.77E+00 7.72E-02 

MOD.A:LEX.gente:CLA.EXP:STA 3.00298292 8.90E-01 3.37E+00 7.42E-04 

MOD.F:LEX.gente:CLA.EXP:SUR -0.6396237 9.08E-01 -7.05E-01 4.81E-01 

MOD.F:LEX.gente:CLA.EXP:STA -0.028942 7.94E-01 -3.65E-02 9.71E-01 

MOD.D:LEX.não:CLA.EXP:SUR 0.90528762 1.06E+00 8.56E-01 3.92E-01 

MOD.D:LEX.não:CLA.EXP:STA 0.7011499 7.16E-01 9.79E-01 3.28E-01 

MOD.A:LEX.não:CLA.EXP:SUR -1.1285794 1.17E+00 -9.67E-01 3.33E-01 

MOD.A:LEX.não:CLA.EXP:STA 0.67812176 7.56E-01 8.97E-01 3.69E-01 

MOD.F:LEX.não:CLA.EXP:SUR -0.4929838 1.03E+00 -4.77E-01 6.33E-01 

MOD.F:LEX.não:CLA.EXP:STA -1.265535 7.18E-01 -1.76E+00 7.80E-02 

MOD.D:LEX.oh:CLA.EXP:SUR 4.71144041 1.04E+00 4.52E+00 6.11E-06 

MOD.D:LEX.oh:CLA.EXP:STA 4.11241159 9.83E-01 4.18E+00 2.88E-05 

MOD.A:LEX.oh:CLA.EXP:SUR 2.17353243 1.01E+00 2.15E+00 3.16E-02 

MOD.A:LEX.oh:CLA.EXP:STA 3.06116893 1.06E+00 2.88E+00 3.99E-03 

MOD.F:LEX.oh:CLA.EXP:SUR -0.2416419 1.05E+00 -2.31E-01 8.17E-01 

MOD.F:LEX.oh:CLA.EXP:STA 1.21415742 9.50E-01 1.28E+00 2.01E-01 
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  Estimate Std. Error z-values P-values 

MOD.D:LEX.pô:CLA.EXP:SUR -2.6244963 1.07E+00 -2.46E+00 1.38E-02 

MOD.D:LEX.pô:CLA.EXP:STA 0.59243144 1.18E+00 5.03E-01 6.15E-01 

MOD.A:LEX.pô:CLA.EXP:SUR -1.5937316 1.06E+00 -1.51E+00 1.32E-01 

MOD.A:LEX.pô:CLA.EXP:STA 13.7256775 5.22E-01 2.63E+01 3.33E-152 

MOD.F:LEX.pô:CLA.EXP:SUR -18.543526 6.38E-01 -2.91E+01 1.27E-185 

MOD.F:LEX.pô:CLA.EXP:STA -15.45223 6.15E-01 -2.51E+01 1.67E-139 

MOD.D:LEX.uai:CLA.EXP:SUR 13.4801762 5.23E-01 2.58E+01 1.84E-146 

MOD.D:LEX.uai:CLA.EXP:STA 16.7643823 5.23E-01 3.21E+01 2.15E-225 

MOD.A:LEX.uai:CLA.EXP:SUR 0.18688439 4.77E-01 3.92E-01 6.95E-01 

MOD.A:LEX.uai:CLA.EXP:STA 1.91870389 4.77E-01 4.02E+00 5.79E-05 

MOD.F:LEX.uai:CLA.EXP:SUR 9.17556343 4.57E-01 2.01E+01 1.01E-89 

MOD.F:LEX.uai:CLA.EXP:STA 12.1357541 4.57E-01 2.66E+01 1.77E-155 

MOD.D:LEX.eh:CLA.INP:SUR 8.16678486 3.89E-01 2.10E+01 8.44E-98 

MOD.D:LEX.eh:CLA.INP:STA 1.9672228 7.41E-01 2.66E+00 7.90E-03 

MOD.A:LEX.eh:CLA.INP:SUR -9.2693381 5.30E-01 -1.75E+01 1.53E-68 

MOD.A:LEX.eh:CLA.INP:STA 2.82574832 8.52E-01 3.32E+00 9.10E-04 

MOD.F:LEX.eh:CLA.INP:SUR 6.67041614 3.92E-01 1.70E+01 5.71E-65 

MOD.F:LEX.eh:CLA.INP:STA 2.10638951 7.36E-01 2.86E+00 4.22E-03 

MOD.D:LEX.gente:CLA.INP:SUR 1.27534787 9.98E-01 1.28E+00 2.01E-01 

MOD.D:LEX.gente:CLA.INP:STA 2.36576577 8.84E-01 2.68E+00 7.44E-03 

MOD.A:LEX.gente:CLA.INP:SUR 2.2603486 1.09E+00 2.07E+00 3.81E-02 

MOD.A:LEX.gente:CLA.INP:STA 2.39246756 1.33E+00 1.79E+00 7.27E-02 

MOD.F:LEX.gente:CLA.INP:SUR 0.49364038 1.07E+00 4.63E-01 6.43E-01 

MOD.F:LEX.gente:CLA.INP:STA 1.82062744 9.21E-01 1.98E+00 4.81E-02 

MOD.D:LEX.não:CLA.INP:SUR 2.99579988 1.15E+00 2.60E+00 9.29E-03 

MOD.D:LEX.não:CLA.INP:STA 0.91900142 7.75E-01 1.19E+00 2.35E-01 

MOD.A:LEX.não:CLA.INP:SUR 0.30365954 1.10E+00 2.77E-01 7.82E-01 

MOD.A:LEX.não:CLA.INP:STA 0.55247188 7.92E-01 6.98E-01 4.85E-01 

MOD.F:LEX.não:CLA.INP:SUR 1.78264142 1.19E+00 1.50E+00 1.34E-01 

MOD.F:LEX.não:CLA.INP:STA 0.7868999 7.42E-01 1.06E+00 2.89E-01 

MOD.D:LEX.oh:CLA.INP:SUR 2.36285205 1.25E+00 1.88E+00 5.97E-02 

MOD.D:LEX.oh:CLA.INP:STA 0.75833397 8.49E-01 8.93E-01 3.72E-01 
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  Estimate Std. Error z-values P-values 

MOD.A:LEX.oh:CLA.INP:SUR 2.45269488 9.59E-01 2.56E+00 1.05E-02 

MOD.A:LEX.oh:CLA.INP:STA 1.9217158 9.18E-01 2.09E+00 3.64E-02 

MOD.F:LEX.oh:CLA.INP:SUR 1.64143282 1.16E+00 1.41E+00 1.58E-01 

MOD.F:LEX.oh:CLA.INP:STA 1.61801819 8.66E-01 1.87E+00 6.18E-02 

MOD.D:LEX.pô:CLA.INP:SUR -2.275693 1.15E+00 -1.99E+00 4.70E-02 

MOD.D:LEX.pô:CLA.INP:STA 0.47879523 1.16E+00 4.14E-01 6.79E-01 

MOD.A:LEX.pô:CLA.INP:SUR -1.2955056 1.07E+00 -1.21E+00 2.27E-01 

MOD.A:LEX.pô:CLA.INP:STA 13.3504141 5.42E-01 2.46E+01 4.21E-134 

MOD.F:LEX.pô:CLA.INP:SUR -15.515113 7.40E-01 -2.10E+01 1.18E-97 

MOD.F:LEX.pô:CLA.INP:STA -12.178482 5.98E-01 -2.04E+01 3.91E-92 

MOD.D:LEX.uai:CLA.INP:SUR -1.3093373 1.07E+00 -1.23E+00 2.19E-01 

MOD.D:LEX.uai:CLA.INP:STA 1.64248924 1.09E+00 1.51E+00 1.32E-01 

MOD.A:LEX.uai:CLA.INP:SUR -11.619451 5.31E-01 -2.19E+01 2.50E-106 

MOD.A:LEX.uai:CLA.INP:STA -10.394189 5.09E-01 -2.04E+01 1.44E-92 

MOD.F:LEX.uai:CLA.INP:SUR -3.2100308 1.23E+00 -2.60E+00 9.20E-03 

MOD.F:LEX.uai:CLA.INP:STA -0.3572834 1.07E+00 -3.33E-01 7.39E-01 

 

In the following subsections, the proportion of the three possible answers (Conclusion: 

CON; Surprise: SUR; Start: STA) are presented for the main effects of each factor and 

for their double and triple interactions. 

 

8.8.2 Effect of the presentation Modality 

Figure 74 shows the proportion of answers for each function (CON, SUR, STA) as a 

function of the presentation Modality – one of the three prosodic forms (D/A/F) or the 

written presentation (w). Our initial expectations were that the Descending (D) form 

would favor the Conclusion answer (CON); the Ascending (A) form would favor the 

Surprise (SUR) answer; the flat (F) would favor the Start (STA) answer. For the written 

(W) modality, we did not expect any particular result but it gives an idea of the bias 

linked to the lexical level; since here the effect of all utterance and lexemes is averaged, 

and because this effect is counterbalanced by construction, it shall give answers close 
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to chance (1/3). In the figures, the grey dashed line stands for the proportion 

representing chance answer. 

 

Figure 74 - Proportion of the (CON, SUR, STA) answers  

for each level of the stimuli’s presentation Modality  

 
 

The first thing observable is that the W modality does not relevantly favor a functional 

interpretation. Answers are distributed around chance, but we can see that SUR is the 

least favored interpretation on the basis of the written presentations. On the other 

hand, by looking at the three modalities, we can see that the SUR interpretation is 

strongly impacted by prosody (being selected over 60% of the times for the Ascending 

contours, and not for the two other contours), and that this impact happens in 

accordance with initial expectations: A favors SUR. Also in line with initial expectations 
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are the answers for the flat form stimuli: F favors STA. In its turn, the Descending form 

(D) disfavors SUR, but contrary to our expectations, the most favored interpretation 

was STA but not CON – albeit D does not disfavor CON, as the F presentation does. 

Overall, we can say that (a) the interpretation of SUR seems to be the most directly 

dependent of prosody form both because it is disfavored by the written modality and 

because only one prosodic form favors its interpretation; and (b) that both D and F 

favors STA, with F the form most clearly linked to STA. However, we need to factor the 

lexeme in to check how prosody and the lexicon affected the functional interpretations. 

Before doing that, we check how the lexicon alone conditions the functional 

interpretation. 

 

 

8.8.3 The lexeme 

Figure 75 exhibits the proportion of answers as a function of the Lexeme. It was 

expected that if prosody only were in play, it would supersede the effect of the lexicon. 

Since factors are blocked, this would be translated into proportion of answers near the 

chance dashed line. However, we have some clear tendencies in the opposite direction.  

 

Figure 75 - Proportion of the (CON, SUR, STA) answers for each level of Lexeme used 
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for the stimuli 

 
 

Firstly, the lexemes pô and uai clearly disfavor the functional interpretations of start 

and conclusion, while favoring surprise. On the other hand, não and eh disfavor SUR, 

favors CON, and are neutral to STA. Although showing some variation, gente, oh and 

ah seem to influence less the functional answer. 

 

8.8.4 The functional CLASS attributed to the original stimuli 

Figure 76 shows the proportion of answers as a function of the functional class 

originally assigned to each utterance selected to create the stimuli. As a reminder, each 

original utterance (DM plus illocution) was manipulated into three prosodic versions. 

An original CNT plus illocution would thus result in three DM, each with one function 
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(CNT, EXP, and INT) plus the illocution. In this example, the original DM class was CNT. 

Expected results would, thus, show a random distribution across classes, if prosody only 

were playing a role in the functional attribution by participants. A result based on the 

original functional category would be shown by a strong match between the pairs CNT-

CON, EXP-SUR, and INP-STA. This is not what happens. However, original CNTs and 

EXP seems to favor STA whereas INP favors CON answer. 

 

Figure 76 - Proportion of the (CON, SUR, STA) answer for each level of the functional 

Class of the stimuli 

 
 

I will now present the results of the interactions between these three factors. 
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8.8.5 Interaction between presentation modality and lexeme 

Figure 77 exhibits the interaction between the presentation modality (written or 

manipulated prosodic forms) and the lexeme. 

 

Figure 77 - Interaction between modality and lexeme 

 
 

For the written modality, there is a tendency for the lexemes pô, uai, gente to favor the 

SUR answer. The lexemes ah, não and eh, on the other hand, disfavor SUR and favors 

CON. Generally, the STA answer is not linked to any lexeme; only pô seem to disfavor 

STA to some extent. 

 The descending (D) form will affect negatively SUR answers in all lexemes but in 

pô and, especially, uai. Comparing W and D modalities, the SUR answers in surplus for 
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the D presentations for uai seems to come mostly from the CON answers observed in 

the W modality, while STA levels do not change. As a matter of fact, no matter what 

prosodic form uai takes on, it will tendentially be interpreted as a surprise. For the other 

Lexemes in the D modality, ah, não and eh favor the CON answers, whereas only oh will 

favor STA. 

 The ascending (A) form strongly affects the lexemes pô, uai, gente, and oh 

towards a SUR answers. Although this prosodic form is perceptually salient, the lexemes 

não and eh with A contours received a majority of CON answers. The STA answers are 

mostly disfavored for lexemes pô, uai, and gente. 

 Interestingly, the flat (F) form does especially favor, compared to other 

conditions, a STA answer for a given Lexeme. This is line with our expectations, but may 

be reinterpreted here as a double effect of prosody and Lexeme: the function of 

prosodic changes is primarily interpreted by participants under the bias of their 

semantic interpretation of the Lexeme. In the case of Flat prosodic form, only uai favors 

SUR and eh favors CON. Besides, flat pô and uai never elicit CON answers, and flat eh 

never elicit SUR answer: some interpretations of prosodic forms seem to be limited by 

the Lexeme. 

 

8.8.6 Interaction between modality and DM class 

Figure 78 shows the proportion of answers as function of the original Class and the 

Modality (W/D/A/F). Expected results would higher proportions for pairs Descending-

CON, Ascending-SUR, and Flat-STA, whatever the original Class of the utterance; this 

would indicate that the original class does not bias interpretation of the prosodic form. 

Original CNT utterances with A prosody bias answers toward more SUR answers 

and F prosody bias towards STA answers – disfavoring the two other answers. In the 

case of D prosody, the CON answers are favored, while the SUR is disfavored but the 

STA answer are not disfavored. This is mostly in line with our expectations; let’s note 

for this Class, the SUR answers are disfavored in the written presentations. 

Original EXP utterances will favor the STA answer both with the Descending and 
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the Flat forms. Only SUR is favored when we have the Ascending form. Here, the written 

modality does not elicit any particular functional interpretation (proportion around 1/3 

for all functions). The CON answer is disfavored in all prosodic form. Here, it is possible 

to see that there seems to be an incompatibility between the illocutions typically 

introduced by CNT and EXP, since manipulating CNTs into EXPs did not pose any 

particular problem. 

 

Figure 78 - Proportion of the (CON, SUR, STA) answers for each level of the 

presentation Modality of the stimuli for each functional Class 

 
 

The original utterances with the INP Class favored the CON answer for written 

presentation with two of the three prosodic modalities (D and F) but not the Ascending 

modality – in that case, the prosody favors the SUR answers. So, it seems these 

illocutions favor a conclusive interpretation. 

 

8.8.7 Interaction between lexeme and DM class 

Figure 79 shows the effect on the proportion of answers of the interaction between the 

original DM Class and the Lexeme (averaging the effect of the presentation Modality). 



265 

 

Considering that neither the context/illocution nor the lexeme influence functional 

answer would result in random distribution of answers, which is not the case. 

 Utterances classified originally as CNT favor SUR answers for the lexemes pô and 

uai, while não and eh favor the CON interpretation. Gente, oh, and ah present a more 

balanced distribution, although STA is favored. In original EXP utterances, pô, gente, 

and ah display similar distributions, whereas SUR is favored by the lexeme uai and 

disfavored by the lexemes não and eh, this last lexeme leaning towards CON once 

again. Original INP utterances do not strongly affect pô and uai. On the other hand, 

gente favors the SUR answer while ah, não, and eh favors the CON interpretation. 

Figure 79 - Proportion of the (CON, SUR, STA) answers for  
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each level Lexeme and functional Class 

 
 

8.8.8 Triple interaction between MODALITY * LEXEME * CLASS 

Figure 80 exhibits the triple interaction between presentation modality, original 

functional class, and lexeme. The surprise (SUR) answer is favored in most cases by the 
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Ascending form and by the lexemes pô, uai, and gente. This answer is especially 

disfavored by the lexemes não and eh, and when the original utterance carried a CNT 

or an EXP. On the other extreme, the conclusive (CON) answer is favored by the lexemes 

ah, não, and eh, in almost combination of Modalities and original Class. However, the 

descending form (D), expected for CNT, tends the reinforce the CON answer in such 

lexemes, while the Flat form tends to reinforce the STA answer, often on par with CON 

on those lexemes. The STA answer, expected for utterance with Class INP, is favored by 

the lexeme oh and by descending and flat prosodic forms, especially with original CNT 

and EXP utterances. 

 

Figure 80 - Proportion of the (CON, SUR, STA) answers for each level of Lexeme, 

functional Class, and Presentation Modality 
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8.9 DISCUSSION OF RESULTS 

The results of the discrimination test support the hypothesis of the importance of the 

prosodic realization in the functional interpretation of DMs in dialogic interactions. This 

first experiment was, however, more limited in terms of lexeme and utterances. It also 

showed that a discrimination paradigm allows the participants to better focus on 

prosodic form than a discrimination protocol, that favors more holistic interpretations 

of a given stimulus.  A reduced set of three utterances and two lexemes (“ah”, “gente”) 

were tested. Albeit no effect of lexical Context was observed, more studies on a 

potential role of the other linguistic levels were required. Another limitation was linked 

with the INP definition, that is not fully comparable to the two others definitions, being 

simpler. As shown during the preceding chapter, the INP function is also frequently 

observed with another prototypical contour (similarly flat and short, but with a much 

higher F0), which marks an attitude of contrast with what was said. However, this first 

perceptual validation has its strengths. First because it is based on fully spontaneous 

occurrences of DMs, a feature rarely observed in the perceptual evaluation of prosody, 

and that avoid the construction of artificial, unaccounted linguistic structures – and 

carries the original performance of a speakers in its complexity. Moreover, the prosodic 

characteristics of the DM part in the stimuli were derived from the theoretical 

description of the DMs’ functions – thus no stimulus was exempt of quality bias linked 

to the resynthesis process, and all the DM carried an equivalent prosodic meaning, 

potentially removing features linked to affective or idiosyncratic characteristics of the 

original recordings. The paradigm used for this first evaluation was based on AB pair 

discriminations. This approach was preferred as the task was thought to be potentially 

complex, and pair comparisons allow an enhanced perception of subtle differences. 

The results, which clearly support the ability of listeners to select a prosodic form 

consistently for an association with a functional category, pleaded for validating the 

relationship of prosodic shape and functional definition using an identification task. A 

drawback of pair comparison is the rapid inflation in the number of presentations, each 
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individual stimuli being paired with all the others: this strongly limits the ability to test 

many variations across factors, something an identification paradigm is better 

designed for. 

 Considering the limitations of the first test, a more complete evaluation for the 

same functions was conducted. This time, an identification paradigm was adopted, and 

a more complete set of lexemes was used. All examples were attested in the C-ORAL-

BRASIL-I corpus, each one carrying, after modification, the three prosodic forms 

associated with the functional roles. Instead of two, a total of seven lexemes were 

tested (which is the maximal number of lexemes attested for these three functions in 

the corpus available). It seems that many factors are likely to have an effect and 

contribute to the final interpretation of DMs’ functional roles: the prosody of the DM, 

the lexeme, the type of illocution, and the context. This last factor is absent of the 

stimuli presented, and so participants may tend to reconstruct one so to semantically 

interpret the proposed utterances. 
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9 CONCLUSION 

Discourse Markers were defined in this work as information units with interactional 

functions. As such, DMs are vehiculated through prosodic units, they have specific 

macro-functions that are conveyed by (or associated with) a prosodic form, and they 

have distributional preferences. DMs are not compositional with respect to the hosting 

pattern. Instead, they are aimed at regulating interactional aspects of the discourse. 

They may promote social cohesion (ALL), draw the addressee’s attention to an 

illocutionary solution (CNT), express surprise without illocutionary force (EXP), highlight 

a previous content (EVD/HGL), or simply begin the utterance (INP). Each proposed 

function can be filled with a varied range of lexemes or small expressions, as shown in 

Table 12 - Lexical frequency by DM class. The lexicon has been shown to be variable 

whereas the prosodic form can account for the recognition of the proposed functions 

with good performance in a classification task. It has also been shown that, overall, 

prosody has positive effects on the recognition of DM functions. Nonetheless, the 

lexicon has been also shown to play an important role in the interpretation of DMs’ 

role. 

A classification model was presented together with the most relevant features 

for the distinction of each DM class against the others. It is possible to say that the 

classification model presents a good performance (accuracy scores varying between 

68% and 78% for five classes). This model does not present the same accuracy level as 

those presented in Gobbo (2019) – around 80%. However, the current proposal (and 

respective model) is more complex: the task was carried out not with three but five DM 

classes. Moreover, the current model accounts for previously unclassified observations 

that were left out either because they were ambiguous or did not fit any existing class. 

Finally, the model was evaluated with more robust techniques, and its performance 

may reflect more reliably what happens in the wild. Another interesting observation 

concerns the features most frequently chosen by the one-vs-others models. In most 

cases, features involving fundamental frequency were important. Exceptions are the 
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ALL class, which selects duration, and INP, which selects intensity and duration. 

Alignment features also proved to be relevant for the distinctions. 

 An interesting approach for a more comprehensible model could be to have 

feature-dedicated models. An ensemble could be built that congregates models, each 

dedicated to a Discourse Markers facet. For instance, a model could vote based 

exclusively on the prosodic features. Another one could be in charge of aspects related 

to the distribution of the DM within the pattern. Not only a categorical feature 

indicating position (initial/medial/final) could prove useful, but also more fine-grained 

features could be tested that reflect the relative distance of the DM with respect to the 

illocutionary unit (both in relative time unit and of the number of information units), as 

well as neighboring information units. Another model could be responsible for judging 

the class based on the DM’s lexical filling. This could be achieved using sentence 

embeddings (sentence transformers – Reimers & Gurevych, 2020) as input. This would 

prevent, for instance, first names (frequently used in CNT and INP) from being dealt 

with as very divergent categories, like a simple categorical encoding of the DM’s text. 

Furthermore, some important conclusions can be drawn from the perceptual 

tests. Firstly, some lexemes received strong associations with some functions. These 

associations seem to be favored or disfavored by prosody (and by the illocution). For 

example, não (no) has a conclusive function, but the perception of this Lexeme as 

conclusive becomes more salient when the prosodic form is descending and less salient 

when ascending. But the near categorical attribution of functionality by the test 

participants to some lexemes (e.g., uai or eh) shall not be overstated: first it may vary a 

lot according to the contextual interpretation of the lexeme (no lexeme has a fixed 

interpretation from the written form, across all utterances), and second – if participants 

rely on the basic meaning of lexemes, the corpus observations shown these lexemes 

are used in a variety of contexts. It may be that the participants struggle with the 

desemanticized nature of DM in this case. More works will be required to offer 

experimental protocols able to cope with this limitation (an association protocol, as in 
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Shochi et al., 2020, may prove interesting). However, the lexicon offers a large set of 

possibilities, especially since proper names can be used as DMs in CNT and ALL. 

Moreover, the lexicon is pluri-functional; the meaning of lexemes is highly dependent 

on the context. This makes a functional classification from lexicon complicated. 

Furthermore, the lexicon is very variable diastrically, diaphasically and diachronically, 

making a classification even more complicated. Secondly, both the type of illocution 

and its semantic content have been shown to have an effect on the global 

interpretation of the utterance. Of course, what was asked was the interpretation of the 

DM, which is embedded in the utterance, but the whole structure is producing a global 

meaning. It is reasonable to think that the DM functional role is holistically interpreted 

within the utterance. Therefore, if the illocution carries (or is interpreted30 as) an 

illocutionary surprise, a conclusion, or something else, that affects the participant’s 

interpretation of the DM. However, the function of the DM is, to a large extent, 

independent of the illocution. It seems sensible to think that the illocution imposes 

some combinatorial constraint on the DM, but there must be a degree of freedom. In 

addition, there are also many illocution categories (most of which are still in need of 

deeper descriptions), and this factor cannot be controlled for. What was taken into 

account was a simplified original DM class factor (that should sum up all the natural 

characteristics of the original utterance). 

This research identified five prosodic forms that seem functionally coherent and 

sufficient to cover all the functions of the DMs. Prosody can vary diastratically and 

diaphasically (perhaps diachronically too) based on attitudinal parameters: higher or 

lower intensity, f0 range, articulation rate can undoubtedly depend on the 

demographic characteristics of participants (gender, age, socio-cultural level, and 

others) and on the situation (people adjust their attitude depending on the 

 
30 Let’s note that in the case of the stimuli used for this experiment, their interactional interpretation is really 

difficult without having access to the history of the dialogues they were excised from. And, as shown by the results 

of the factor Class, presented in its written Modality, the participants did attribute some functions to the sentences 

that were not in line with the original categories. 
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communicative situation). But the prosodic form (movement and alignment, first and 

foremost) remains, to a great extent, constant. This constancy is exactly what allowed 

for the good classification scores obtained. 

Based on these considerations, the provisional conclusion drawn from the 

experiments is that to categorize DMs, given that many factors influence their 

interpretation, one should start with the less variable factor –the prosodic form, 

knowing that other factors can modify the basic interpretation of the form and can 

even modify it a lot. One should not, advisably, start with the factors that vary the most, 

such as the lexicon, attitudes, or types of illocutions. These are all factors with important 

degrees of variation that do not allow for an initial organization. If we, by way of 

example, start with the lexicon, we will come to the conclusion that the same lexeme 

can accomplish essentially different functions and that the same function can be 

accomplished by entirely different lexemes, say, a proper name and a verb. 

As it was argued, the prosodically-based proposed DMs are macro-functions 

that can take on more specific subfunctions depending on the context. However, the 

subfunctions are coherent with the macro-functions. For instance, CNT is thought to 

point to the illocutionary solution, i.e., to point to the intention of the speaker. If the 

speaker says something, then interrupts themselves to introduce a new planification, 

this repair can be introduced by a CNT (if pointing to a conclusion) or by an INP, if the 

speaker wants, for instance, mark a strong contrast with the interrupted ideation. 

Finally, the design of the experiments showed some limitations: the wording of 

the questions, the nature of the data, the definition of the possible categories used to 

answer are notably complex and may not allow a smooth understanding by some 

participants. Naïve speakers are not taught during schooling to identify prosody or 

DMs the same way they are taught to interpret a lexeme like uai as an interjection that 

can express surprise. Here, the written bias, inherited from the educational system, may 

have played a significant role in our results. Reflection is therefore necessary to help 

design other experiments that takes into account the issues observed for metalinguistic 

tasks presented to naïve participants. A possible idea is to present only natural 
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examples, without manipulations and decontextualizations, and ask participants to 

identify the function. 
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11 APPENDIX A - TRANSCRIPTION CRITERIA 

 

In the following subsections, we present the corpus transcription criteria. This section 

is based, as a whole, on Mello and Raso (2009) and Mello et al. (2012). We start with 

some rules applicable to text transcribed in accordance with the standard spelling form 

[§A.1]. Although this is to some extent self-explaining, it needed some standardization. 

We then pass to non-linguistic criteria ([§A.2] through [§A.10]). From [§A.11] to [§A.13], 

introduce the criteria for linguistically less conventionalized phenomena. From [§A.14] 

on, we present the criteria concerned with the core linguistic phenomena, following, 

when possible, the order phonetics/phonology > morphology > syntax > lexicon. 

Phenomena are provided with examples from the corpora and respective 

translations. We tried to keep translations as close as possible to originals, from a 

structural standpoint, to facilitate the comprehension of phenomena. Thus, translations 

sometimes should not be taken literally. The audio files presented in this work are 

available at <SHARED_MATERIALS_THESIS>. 

Before delving into them, we want to call the reader’s attention to an issue. Each 

section represents a criterion according to which transcription errors were tallied. Some 

criteria encompass subcriteria. In a perfect scenario, the sections would have been 

broken down until each phenomenon was completely homogeneous. However, this 

would lead to a much more complex work, which we decided not to undertake at this 

moment. 

 

 

1. Standard spelling form  

The Brazilian Portuguese (BP) standard norm was observed in all cases where a special 

criterion lacked. Words are transcribed following the BP standard spelling form as 

pronounced, i.e., without the inclusion or exclusion of items. The standard spelling form 

https://1drv.ms/f/s!Ar5G4HnYDsd9goeGYdFY_6CL9ZID9hg?e=jXIUv8
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followed the Orthographic Form of 1943. The Houaiss Dictionary of the Portuguese 

Language (Houaiss, 2nd Edition, April 2007) was chosen to be the reference for spelling 

forms in as much as it was the most complete Portuguese dictionary to that date. The 

following mistakes were tallied in this criterion. 

 

1.1 Misspelling 

It accounts for general misspelled form of all tokens for which there is no special 

criterion. 

 

1.2 Words unintendingly spelled in accordance with the new spelling form (Orthographic 

Agreement of 1990), like: 

 

a) lingüiça (sausage) instead of linguiça; 

b)  freqüência (frequency) instead of frequência; 

c) jibóia (boa) instead of jiboia; 

d) mini-projeto (mini project) instead of miniprojeto; 

e) mão-de-obra (manpower) instead of mão de obra; 

f) microondas (microwave) instead of micro-ondas; 

 

1.3 Capitalization or syllable division 

Except for titles and proper nouns, words should never be capitalized, even at the 

beginning of the terminated sequence. Syllable division is not used unless the word is 

scanned and separated by a prosodic boundary sign. Such occurrences are commented 

on the metadata. 

 

1.4 Pronunciation mistakes 

If the speaker incorrectly pronounces a word and correct herself subsequently, the 

mistake is transcribed as pronounced. If the speaker, on the other hand, mistakes the 



288 

 

pronunciation without repairing it, the standard spelling form is transcribed and 

commented on the metadata.  

 

1.5 Alphabet letter names 

Alphabet letters are transcribed orthographically. If, say, letter j is referred to in the 

audio, it is transcribed as letra jota (letter jay). 

 

2. Word misunderstanding 

Misunderstood words, word deletion, and word insertion are set off from the main 

standard spelling form criterion and tallied separately.  

 

Word misunderstanding [bmedrp01_1_057] 

*GIU: [57] a gente quer / por exemplo / o lance do devedê do Metropolitan // 

*GIU: [57] we want / for instance / the DVD thing of the Metropolitan // 

 

In the example below, the transcription displays do (of the), whereas what is actually 

pronounced is no (at the). 

 

3. Word deletion 

Word deletion accounts for words that, although present in the audios, are not 

transcribed. The example below presents a transcription where the word aí (then) is not 

transcribed. 

 

Word deletion [btelpv31_099] 

*JES: [99] <&a [/1] aí eu> tava pertinho / (aí) eu aproveitei e fui lá // 

*JES: [99] <&th [/1] then I> was around / (then) I took the occasion and went 

there // 
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Any deleted word, notwithstanding the concurrent applicability of other special criteria, 

is counted in this type of error. 

 

4. Word insertion 

Word insertion comprises words transcribed despite not being present in the audio, 

such as eu (I) in the example below. 

 

Word insertion [bnatpd10_019] 

*ARN: [19] <não> / eu tô [/2] eu nũ tô vendo não / mas eu tô percebendo // 

*ARN: [19] <no> / I’m [/2] I can’t see it / but I can notice // 

 

5. Unintelligible speech and anonymization 

Words and speech chunks heard but not understood by transcribers receives a special 

sign. If just one word was not identified, it is transcribed with the symbol xxx. 

 

Unintelligible word [bnatpd07_068] 

*COA: [68] essa tréplica dela acaba xxx // 

*COA: [68] her rejoinder ends up xxx // 

 

When more than one word is not identified, the speech chunk is transcribed with yyyy 

(second example below). 

 

Unintelligible speech chunk [bnatbu03_392] 

*DBC: [399]  cê entendeu / yyyy / ah / tem que ficar não sei o que parado na 

conta / pode aplicar // 

*DBC: [399] did you get it / yyyy / say / anything must remain in the account for 

some time / you can invest it // 
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In some cases, the audio is beeped so as to preserve participants’ anonymity and/or 

privacy. Anonymized speech chunks are transcribed with the symbol yyy. The example 

below displays the anonymized number of a legal proceeding. The fact that the 

participant lives with HIV is the main reason why the proceeding was brought by. 

 

Anonymization [bnatpd07_068] 

*ANI: [1] audiência de instrução e julgamento / do processo número yyy / yyy 

/ yyy / yyy / yyy // 

*ANI: [1] evidentiary and judgment hearing / case number yyy / yyy / yyy / yyy 

/ yyy // 

 

6. Paralinguistic and non-linguistic elements  

Cough, gasps, groans, laughs, moans, sighs, throat-clear, as well as other non-linguistic 

sounds produced or referred to by participants are transcribed with the symbol hhh. 

 

Paralinguistic sound [bteplv22_050] 

*MOI: [50] hhh cê é doido hhh // 

*MOI: [50] hhh you’re mad hhh // 

 

Paralinguistic and non-linguistic elements are not set off from the ongoing speech 

stream with prosodic boundary signs unless they are really prosodically parsed and 

bear communicative value at the same time, such as non-natural, ostensive coughs, 

laughs and even surprise or astonishment sounds. The example below has a 

paralinguistic sound that emulates surprise used as an answer to a rather banal fact. 

 

Paralinguistic sound prosodically parsed [bteplv27_010-012] 

*GRA: [10] ah / foi bom / mãe / cê acredita que só fui eu e &um [/1] mais uma 
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menina // 

*LUZ: [11] hhh // [12] por quê // 

*GRA: [10] oh / it was good / mom / do you believe that only me and &an [/1] 

another girl showed up // 

*LUZ: [11] hhh // [12] why // 

 

Due to their high frequency and degree of conventionalization, two paralinguistic 

sounds have their own sign. The first one is the dental click sound used to mark 

annoyance, which is transcribed with nts: 

 

Click sound [bnatla05_230] 

*AGN: [231] como é que é / nts / &he / &sa [/1] Sagrada Família // 

*AGN: [231] how is that / nts / &he / &sa [/1] Sagrada Família // 

 

Likewise, the whistle-like sound generally used to get someone’s attention or to shush 

someone is transcribed with psiu (loosely translatable as psst or shh). 

 

Psiu sound [bmedts01_1_266] 

*MRC: [264] vai fazer aquilo de verdade // [265]  &el [/1] ele nũ + [266]  psiu // 

[267]  tô brincando hhh // 

*MRC: [264] you’re gonna do that for real // [265]  &he [/1] he doesn’t + [266]  

psiu // [267]  I’m kidding hhh // 

 

7. Retraction 

As explained in [§2.3], retractions are frequently accompanied by non-terminal 

prosodic boundaries. When this is the case, the boundary sign receives the additional 

annotation of how many words are retracted by the speaker. One additional aspect of 

this annotation that needs to be heeded is that the number of words canceled out must 
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be distributed among boundary signs whenever the retraction scope goes back beyond 

one prosodic unit (speech chunk between two boundaries): 

 

Wrong annotation of retraction [bmedts07_175] 

*JOS: [175] mas o que &diz / já que você <nũ> [/8] <o que que cê tava> 

<falando> // 

*JOS: [175] but what did you &say / since you’re <not> [/8] <what were you> 

<talking about> // 

 

Correct annotation of retraction [bmedts07_175] 

*JOS: [175] mas o que &diz [/4] já que você <nũ> [/4] <o que que cê tava> 

<falando> // 

*JOS: [175] but what did you &say [/4] since you’re <not> [/4] <what were you> 

<talking about> // 

 

Since validating the corpus segmentation was out of the scope of this work, just the 

number of retracted words and their distribution were validated. 

 

8. Numerals 

Numerals are transcribed in accordance with the standard spelling form, and the Arabic 

numeral symbols (numerical digits) are left for the mark-up and annotation scheme. 

The transcription followed some particularities. 

 

8.1 Hyphenation 

For the sake of comparability with other C-ORAL corpora, numerals, either cardinals or 

ordinals, are hyphenated and counted as a unique word. 

 

Ordinals [bmedsp02_305] 
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*AND: [305]  a distância do Vasco pro décimo-sexto / era de quatro / e nũ é / 

de seis / né // 

*AND: [305] Vasco’s distance to the sixteenth classified / was four / and not / six 

/ huh // 

 

8.2 Non-hyphenation of approximators/estimators 

Non-numeric expressions used to approximate or estimate a number, such as e pouco 

(something) or e sei lá (and whatever), are not hyphenated together. 

 

Approximation/estimation of numbers [bnatbu03_392] 

*DBC: [392]  é cento-e-quarenta e poucos / cento-e-trinta e poucos / nũ sei // 

*DBC: [392]  it’s one-hundred-forty something / one-hundred-thirty something 

/ I don’t know // 

 

8.3 Non-hyphenation of decimals and thousands separators 

When they are pronounced, decimal and thousands separators are not hyphenated 

together with numerals. 

 

Separators [bnatpd01_014] 

*NEW: [14]  só no mês de março / quarenta-e-um vírgula nove // 

*NEW: [14] only on march / forty-one comma nine // 

 

8.4 Hyphenation of fractional numerals 

Only the part forming a regular cardinal numeral is hyphenated. The table below 

displays some examples: 

 

Examples of fractional numerals 

Numeral 
Portuguese 

standard norm 
Corpus convention Translation 
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 1 1 2�   Um e meio um e meio One and a half 

21 1
2�   Vinte e um e meio vinte-e-um e meio Twenty-two and a half 

3
4�  Três quartos Três quartos Three thirds 

 21
40�  

Vinte e um 

quadragésimos 

Vinte-e-um 

quadragésimos 
Twenty-one fortieths 

21
41�  

Vinte e um 

quarenta e um avos 

Vinte-e-um quarenta-

e-um avos 
Twenty-one forty-firsts 

 

The fractions of hours follow, thus, this rule. 

 

Fractional numerals [btelpb13_005] 

*SAN: [5] bom / então / olha só // [6] minha cliente das cinco e meia acabou de 

desmarcar / cê quer vim cinco e meia // 

*SAN: [5] well / so / look // [6] my half-past-five costumer just called to cancel / 

do you wanna come at half past five // 

 

8.5 Numerals spelled digit by digit 

Numerical codes or numerals recombined for simplification were transcribed as 

pronounced. If digit by digit, no hyphenation is used. If a recombination, just the 

recombined numerals are hyphenated. 

 

Numerals spelled digit by digit [btelpv38_032-033] 

*ALE: [32] pode falar / Marcelo // 

*MAR: [33] nove nove dois / 

 

*ALE: [32] say it / Marcelo // 

*MAR: [33] nine nine two / 

 

8.6 Numerals separated by prosodic boundaries 

When one numeral is separated by a prosodic boundary, just the separated parts are 
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hyphenated. 

 

Compound number divided into two prosodic units [bnatbu04_036] 

*GER: [36] vinte-mil / <e-quatrocentos / o> valor // 

*GER: [36] twenty-thousand / <four-hundred / the> value // 

 

9. Hesitations and interrupted words 

9.1 Hesitations 

Hesitation are transcribed as &he no matter the vowel quality the sound is produced 

with. They are transcribed as many times as they are effectively produced and 

separated by a boundary sign just in case they are prosodically parsed. 

 

Hesitation [bmedts06_026] 

*CAR: [26] &he / &he / a pesquisa pega / meninos / e meninas / <né> // 

*CAR: [26] &he / &he / the research considers / boys / and girls / <huh> //  

 

9.2 Cases of hesitations that needed to be heeded 

Transcribers received instruction to pay close attention to the forms eh (interjection) 

and é (it is or yes), whose sounds can be confounded with that of hesitations. To decide 

which form should be employed, transcribers could both use prosodic cues and check 

the adequacy of replacing the symbol by yes (since é is frequently used to convey 

agreement) or by a different interjection, as a commutation test. It was agreed that, 

whenever the sound could convey agreement, the form é would take preference. 

 

Hesitation [btelpb16_007-008] 

*KEN: [7] deixa eu te falar // [8] &he / a Cléo já voltou // 

*CLA: [9] já sim // 

*KEN: [7] let me ask you // [8] &he / did Cléo come back // 
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*CLA: [9] she did // 

 

Agreement [bmedts01_02_069-071] 

*SUE: [69] <isso / é verdade> hhh // 

*FAT: [70] é // 

*SUE: [69] <is that / true> hhh // 

*FAT: [70] yes // 

 

Interjection [bmedts04_278] 

*ANG: [278] <eh> / que coisa <boa> // 

*ANG: [278] <ahh> / what a good thing // 

 

9.3 Interrupted words 

Interrupted words are also signaled by the ampersand symbol & so as to enable their 

identification and exclusion from word counts. Although sometimes the full word can 

be identified with the help of context, only the pronounced part is transcribed. 

 

Interrupted word [bmedts06_026] 

*FRE: [117] <tá> // [118] cê acha que cê volta / antes das oito / lá do [/1] do 

[/1] do Del Rey // 

*MAR: [119] &vol [/1] claro / meu filho // 

 

*FRE: [117] <okay> // [118] you think you come back / before eight / from [/1] 

from [/1] from the Del Rey // 

*MAR: [119] &vol (I come, as a resumptive answer conveying agreement) [/1] sure 

/ son // 
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10. Acronyms 

In BP, acronyms are usually pronounced in two fashions. When the letters forming the 

acronym match a possible syllabic combination of the language, the acronym is 

pronounced as a regular word. Otherwise, each letter is spelled out to form a word. The 

transcription of acronyms followed, thus, this twofold criterion and has some 

peculiarities. 

 

10.1 Word acronyms 

Acronyms of the former type were simply transcribed in uppercase letters as they are 

usually written. In the example below, CEMIG stands for the Companhia Energética de 

Minas Gerais (Energy Company of Minas Gerais). 

 

Regular acronym [bnatla01_164] 

*CLA: [164] vocês prestaram pra CEMIG / e pra Receita Federal // 

*CLA: [164] you guys worked for CEMIG / and for the Federal Revenue // 

 

10.2 Acronyms spelled letter by letter 

Acronyms of the latter type received a special convention. Each letter should be 

transcribed orthographically as it is pronounced and put together in lowercase. Most 

Portuguese letter names receive an accent mark in written language, such as pê for p. 

Since they are also spelled as a unique word, acronyms of this type respect the 

accentuation rules of regular Portuguese words. This system, which is out of the scope 

of this work, provides rules mainly for proparoxytone and oxytone words, the latter 

encompassing most acronyms of this type.  For instance, the correct transcription of 

PDV (which stands for Plano de Demissão Voluntária, in English, Volunteer Dismissal 

Program) is pedevê because the accent falls on the last syllable, and not pêdêvê. 

 

Spelled-out acronym [bnatla01_184] 



298 

 

*EDU: [186] que a &P [/2] a / Protex diz que tava usando o ceenepejota da 

Confederal // 

*EDU: [186] that &P [/2] (the) / Protex claims they were using the ceenepejota of 

Confederal // 

 

In the example above, cenepejota stands for Cadastro Nacional de Pessoas Jurídicas 

(National Register of Legal Entities) and it is formed by assembling cê (c) + ene (n) + 

pê (p) + jota (jay). In this case, the accent falls on jo and there is no need for an accent 

mark according to the accentuation rules of Portuguese, whose words are paroxytone 

by standard. 

 

10.3 Mixed acronyms 

Some acronyms may be pronounced in a mixed fashion or be accompanied by 

numerals. One such case is MPEG-4. The first letter is spelled out (eme for M) and the 

remaining part is pronounced like a regular word (pegue for PEG). In this case, the 

acronym is transcribed as pronounced, thus emepegue, in lowercase and in a unique 

word. Numerals, in their turn, are transcribed separately following their own criteria 

[§A.6]. MPEG4 is, thus, transcribed as emepegue quatro. If there were, say, an MPEG21, 

it would be transcribed as emepegue vinte-e-um. 

 Two final observations on this criterion. The first one is that acronyms that have 

become full words – taking on inflections and being regularly written with lowercase 

letters – are transcribed as regular words. Thus, radar (radar) is not uppercased and 

óvni (UFO) receives an accent mark. Finally, OK, which is spelled out in accordance with 

the original English letter names, is adapted as oquei. 

 

11. Foreign words 

Foreign words and foreign proper nouns are transcribed in accordance with their 

original spelling forms. 
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Foreign word [bmedrp09_2_007] 

*JUL: [7] a primeira barreira foi tecnológica // [8] muitos taxistas não sabiam nem 

atender uma ligação num smartphone // 

*JUL: [7] the first was a technological barrier // [8] many taxi drivers could barely 

answer a call using a smartphone // 

 

Minor phonological adaptations on the pronunciation of foreign words, like the 

paragoge of [i] at consonantal syllable codas, are not transcribed unless the detail is 

referred to by speakers. On the other hand, if the word is clearly pronounced 

incorrectly, it is transcribed with the wrong spelling. In such cases, transcribers must 

provide this information on the metadata. 

 

Foreign word incorrectly pronounced [bfamdl04_047] 

*SIL: [47] como se a gente tivesse num Big Brogher // 

*SIL: [47] as if we were on Big Brogher // 

 

Loanwords that have already undergone phonological and orthographic adaptations 

to enter the Portuguese lexicon, such as clip>clipe, stress>estresse, and 

portfolio/portafoglio>portfólio, are transcribed in accordance with the Portuguese 

spelling form unless they are pronounced as in their original languages. In this case, 

the original spelling form is used. 

 

12. Onomatopoeias 

Many onomatopoeias are already conventionalized, either formally or by the use, and 

the transcription tended to follow these conventions. They follow, anyway, the 

pronunciation. For instance, the onomatopoeia of knocking a door can be transcribed 

either as toc toc or toque toque, the latter preferred when there is the paragoge of [i] 
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after [k], the most frequent case. 

 

Onomatopoeia [bmedsp02_132-135] 

*PAU: [132] eu esqueci // [133] como é que é // 

*AND: [134] pum / pum // 

*PAU: [135] ah // [136] isso // 

 

*PAU: [132] I forgot // [133] how it is // 

*AND: [134] poom / poom // 

*PAU: [135] oh // [136] that’s it // 

 

In some situations, it may happen that one of the participants is reading out a text for 

the others. Readers may sometimes use the sound nanananã so as to signal that some 

part of the text is skipped for not being of interest. It is transcribed like this no matter 

how many times the syllable na is repeated. 

 

Skipped text sound [bpucv02_154] 

*OSV: [154] em vistoria realizada no dia quatorze do sete nanananã / no 

endereço acima mencionado / constatamos uma residência / que dista + 

 

*OSV: [154] in an inspection carried out on the fourteenth day of the seventh 

nanananã / at the above-mentioned address / we found a residence / that is + 

 

13. Interjections and exclamations 

The interjections ah, eh, ih, oh, uh and exclamations oi (hi), olá (hello), alô (hello) are 

transcribed in accordance with the standard spelling form. The vocative exclamation 

frequently used in PB is transcribed as ô, which is similar to the old, poetic English 

vocative form O but rather frequent in BP spontaneous speech. The distinction between 
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this and other forms may present some difficulty, which is addressed in [§A.13.1].  

Likewise, a set of aspired and glottalized sounds used for multiple purposes received 

special conventions [§A.13.2] and require attention. Exclamations of religious genesis 

also received special transcription rules [§A.13.3]. Finally, plural marks were respected 

when they are pronounced [§A.13.4]. 

 

13.1 Distinction between oh, ô, and o’ 

The vocative exclamation frequently precedes names of persons being addressed. Its 

quality may vary depending on the diatopy and context but it is always transcribed as 

ô. The distinction between ô (vocative), oh (interjection), and o’ (reduced form of the 

verb to see [§A.23]) may sometimes be difficult. Transcribers were, thus, instructed to 

replace it by another interjection (such as ah) and by the full form of o’, olha (look), to 

check which one was more suitable for the context. 

 

Vocative exclamation [btelpv38_016-018] 

*MAR: [16] ô Alex // [17]  <enquanto> eu procuro aqui / 

*ALE: [18] <oi> // 

 

*MAR: [16] Alex // [17] <while> I’m searching here / 

*ALE: [18] <what> // 

 

13.2 Aspired and glottalized sounds 

 Some exclamations are often employed to express agreement, disagreement, irony, 

doubt, as well as to show that the discourse is being followed and understood. These 

exclamations, namely hum, ham, uhn, and ahn, are transcribed in accordance with their 

pronunciation. To decide between them, transcribers should check the consonantal 

sound (aspired or glottalized) and the vowel quality. Aspired sounds are transcribed 

either as hum or ham, and glottalized sounds as uhn or ahn. The use at context may 

also help to distinguish between them. Hum hum and ham ham are frequently used to 
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show agreement or that the hearer is following the discourse. Some examples help 

clarify the distinctions. 

 

hum hum used to agree [btelpv03_042-044] 

*BRU: [41] <entendeu> // [42]  <o instrutor> é [/1] é meu conhecido / a gente 

combinou assim // 

*GAB: [43] ah sim // [44] hum hum // 

 

*BRU: [41] <you got it> // [42] <the instructor> is [/1] he’s an acquaintance of 

mine / we agreed this way // 

*GAB: [43] oh okay // [44] hum hum // 

 

On the other hand, uhn uhn and ahn ahn are frequently used to express disagreement. 

 

uhn uhn used to disagree [btelpb04_029-030] 

*RON: [29] então nũ vai ser a quantidade de vias mais um não // 

*JON: [30] uhn uhn // 

*RON: [29] so it won’t be as many copies as [promissory] notes plus one // 

*JON: [30] uhn uhn // 

 

Isolated, hum, ham, uhn and ahn may be used to express doubt, comprehension, irony, 

and to show that the hearer is following the discourse or some instructions, depending 

on the prosodic realization. 

 

Ahn used to express doubt [btelpv05_024-027] 

*REN: [24] cê almoçou &f + 

*TER: [25] ahn // 

*REN: [26] cê foi almoçar fora // 

*TER: [27] fomos almoçar fora / menino // 
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*REN: [24] you went out to &l + 

*TER: [25] ahn // 

*REN: [26] you went out to lunch // 

*TER: [27] we went out to lunch / girl // 

 

12.3 Exclamations of religious genesis 

Exclamations of religious genesis – like Nossa Senhora (Our Lady), Virgem Maria (Virgin 

Mary), Ave Maria (Hail Mary), or Jesus – are rather frequent in BP and, thus, received 

special conventions. Firstly, they are always capitalized. Some full forms often take on 

reduced forms and should be transcribed as such. Nossa Senhora (Our Lady) may 

become Nossa, No’, Nu’, and even a form redeveloped to reinforce perplexity, Nusga. 

Virgem Maria (Virgin Mary) may be transcribed as Vixe’ or Vix’, depending on whether 

the final vowel is realized. And Ave Maria (Hail Mary) may be reduced to just Ave or 

Aff’. 

 

12.4 Plural mark 

Although invariable according to the traditional grammar, interjections and 

exclamations may occasionally take on the plural form in speech. Therefore, it was 

conventionalized that both should receive the plural mark (-s) when it was pronounced. 

Olá (hello) may, thus, become olás, oi (hi) → ois, and ô (o vocative) → ôs. 

 

14. Rhotacism 

As aforementioned, phenomena of phonetic-phonologic nature were left out of the 

transcription criteria. The exception is rhotacism. As Mello et al. (2012) point out, this 

phenomenon is rather common and perceptually salient in PB, especially in lower 

diastratic varieties. It may happen at consonantal clusters like /bl/, /kl/, /fl, /gl/, /pl/, 

/tl/, /vl/, the /l/ shifting to /R/. It may also happen at the syllable coda, such as, for 
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instance, in vol.tou > vor.tou (it came back). Although it does not necessarily imply 

lexicalization or grammaticalization processes, rhotacism is respected in the 

transcription. Thus, if, say, atlético (athletic) is pronounced as a[tɾ]ético, it is transcribed 

atrético. 

 

Rhotacism in stop cluster [bfamcv11_106] 

*TIT: [106] esses remédio que eu tenho costume de tomar não me comprica 

(complica) // 

*TIT: [106] these medicines I usually take don’t do me harm // 

 

Rhotacism in syllable coda [bfammn14_100] 

*ANT: [100] aí nós tava chegando aqui no arto (alto) aqui descendo // 

*ANT: [100] so we were arriving on the heights going down here // 

 

15. Number agreement in verbs 

There is a well-known tendency in BP for subject pronouns to be cliticized and retained 

by the verb and for plural verb forms to become less used. The inflection used by 

speakers is respected in the transcription.  

 

Non-standard first-person plural [bnatps11_049] 

*PED: [160] <se ele fosse> morrer / nós nũ ia (nós íamos) botar o Sarney de vice 

// 

*PED: [160] <if he were going> to die / we wouldn’t have Sarney as vice [-

president] // 

 

Non-standard second-person plural [bnatps11_049] 

*CAR: [49]  cês pode (cês podem) ver que estamos ali / 

*CAR: [49]  you can see us there / 
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Non-standard third-person plural [btelpb04_069] 

*JON: [69] es <vai (vão) imprimir> só o recibim com a promissória embaixo // 

*JON: [69] they <will print> just the receipt and promissory note below // 

 

Reduced plural forms, like foro (they went), are transcribed in accordance with the 

standard spelling form, in this case, foram. 

 

16. Number agreement in nouns and adjectives 

Another tendency is for nouns and adjectives to lose the plural morph, which is retained 

only by the article. The absence of plural morph is also respected in the transcription. 

 

Non-standard noun plural [btelpb04_069] 

*ROB: [21] sai mais barato / ajudar os argentino (argentinos) a resolver o 

problema do default / 

*ROB: [21] it pays off / helping the Argentinians to solve the default problem / 

 

Non-standard noun and adjective plurals [bmedpr08_2_059] 

*ENA: [59] que é as barca antiga // 

*ENA: [59] which are the old boats // 

 

17. First-person plural verbal variant forms 

 

The first-person plural verbal inflection may be marked by a reduced form. The 

transcription follows the pronunciation. Transcribers should, thus, observe two aspects 

of the form: the thematic vowel (underlined in the examples below) and the realization 

of the final /s/. For instance, the form -amos may be replaced either by -amo or -emo. 

Likewise, -emos > -emo, -imos > -imo. 
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First-person plural verbal variant form [bmedts02_151-152] 

*PED: [151] aí nós fizemos as Diretas Já / ganhamo (ganhamos) // [152] aí 

fizemo (fizemos) a eleição // 

*PED: [151] so we led the Diretas Já / we won (ganhamos) // [152] and we hold 

the elections // 

 

18. Variant forms of the verb estar (to be) 

The verb estar (to be) may lose its first syllable es- virtually in any form and must be 

transcribed accordingly. 

 

Variant form of estar (to be) [btelpv33_126] 

*DON: [126] eles tavam (estavam) brigando / coitada // 

*DON: [126] they were having an argument / the poor thing // 

 

Although inflections follow, in general, the standard norm, two forms received minor 

modifications. Firstly, the apheresis of estou31 (I am) is transcribed as tô (instead of tou) 

so as to follow the use in informal written BP.  Secondly, the apheresis of esteja32 (be) 

is transcribed either as teje or teja, depending on the pronunciation. 

 

19. Variant forms of the verb ir (to go) 

The present tense indicative first-person singular standard form of the verb ir (to go) 

is vamos (we go). This form is frequently used with a cohortative function, similar to the 

use of let’s in English, and is oftentimes reduced to vamo or vão. The reduced forms 

 
31 Present tense indicative first-person singular form. 

32 Form of the present tense subjunctive first- and third-person singular and of the imperative first-, second- and 

third-person singular. 
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are respected in the transcription. 

 

Variant forms of verb ir (to go) [bmedsp03_159] 

*DEN: [159] nós vão (vamos) trocar umas idéia // 

*DEN: [159] we’re gonna bounce some ideas off each other // 

 

The form vão is also shared with the indicative third-person plural form. 

 

20. Variant forms of the verb vir (to come) 

Portuguese infinitive verbal forms are marked by a final /r/, which is frequently lost in 

speech. The infinitive form of the verb vir (to come) may additionally be nasalized, 

coinciding with the form vim (I came). This variation is transcribed in accordance with 

the pronunciation. 

 

Variant forms of verb vir (to come) [btelpb28_009] 

*SAN: [9] então pode vim (vir) // 

*SAN: [9] so you may come // 

 

21. Variant forms of the verb ter (to have) 

The present tense indicative first-person singular form of the verb ter (to have), tenho 

(I have), takes on a reduced variant form, tem, especially in the phrase eu tem que (I 

have to). This form is shared with the third-person ela tem que (she has to). 

 

Variant form of the verb ter (to have) [bpubdl02_238] 

*JAN: [238] depois eu tem que comprar uma // 

*JAN: [238] later on I have to buy one // 
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22. Variant forms of the verb poder (can) 

The present tense indicative first-person singular form of the verb poder (can/may), 

pode (I can / I may) frequently takes on a reduced form po’, which is transcribed 

following the pronunciation. 

 

Variant form of the verb poder (to have) [bnatpr09_143] 

*ANT: [143]  po' (pode) ficar tranqüilo // 

*ANT: [143] you can rest assured // 

 

23. Variant forms of the verb olhar (to look) 

The imperative second-person singular form of the verb olhar (to look), olha (look), 

also take on two apocopated forms. The form may be transcribed either as a’ or o’ 

depending on the quality of the vowel pronounced. 

 

Variant form of the verb olhar (to look) [bmedin01_2_092] 

*JMM: [92] a' lá // 

*JMM: [92] look over there // 

 

Variant form of the verb olhar (to look) [bnatla02_077] 

*JOS: [77]  tá pra cá o' (olha) // 

*JOS: [77] it’s over here look // 

 

24. Variant forms of the verb tomar (to take) 

The imperative second-person singular form of the verb tomar (to take), toma (take), 

also has an apocopated form, transcribed as tó. 

 

Variant form of the verb tomar (to take) [bfamdl33_157] 
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*HER: tó / vai guardando / isso aí // 

*HER: take it / keep putting away / that // 

 

25. Contraction of prepositions and articles 

25.1 Standard norm contractions 

The Portuguese standard spelling form provides for the contraction of a few 

prepositions and articles. For instance: 

 

a (to) + articles 

ao, à, aos, às 

 

de (of/from) + articles 

do, da, dos, das, dum, duma, duns, dumas 

 

em (in/on/at) + articles 

no, na, nos, nas, num, numa, nuns, numas 

 

por/per (by/for) + articles 

pelo, pela, pelos, pelas 

 

25.2 Special additional contractions 

The transcription follows the pronunciation, allowing for contractions not covered by 

the standard norm. Some frequent non-standard contractions are: 

 

com (with) + articles 

co, ca, cos, cas, cum, cuma, cuns, cumas  

 

para (for/to) + articles 
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pra, pro, pras, pros, prum, pruma, pruns, prumas 

 

The text below brings an example of a non-standard contraction recorded in formal 

context. 

 

Non-standard contraction of preposition and article [bmednw06_085] 

*CAR: [85] nós estamos vivendo um momento / &he / aonde / né / a / população 

fala cos (com + os) parlamentares / os parlamentares trazem ao relator as suas 

sugestões / e / é natural que nesse momento aconteçam ajustes // 

 

*CAR: [85] we’re living a moment / &he / in which / huh / the / population speak 

with (the) representatives / representatives bring suggestions to rapporteurs / 

and / it’s natural to have some adjustments in these moments // 

 

25.3 Additional variant forms of prepositions and their contractions 

Two prepositions also received variant forms. Para (for/to) may be reduced to pa or p’. 

Like the others, this form may contract with the articles. 

 

pa/p’ (for/to) + articles 

po, pos, pa, pas, pum, puns, puma, pumas 

 

The preposition em (in/on/at) may also take on the form ni. The contractions of this 

form with the articles results in forms already covered by the standard norm. 

 

Non-standard form of em (in/on/at) [bmedex13_51] 

*MAR: [51] e aí / o primeiro tempo foi muito ruim / foi / &he / ruim ni todos os 

aspectos / né // 

*MAR: [51] so / the first half went pretty badly / it was / &he / bad in all aspects 

/ right // 
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26. Contraction of prepositions and other words 

26.1 Standard norm contractions 

 

The BP standard norm also provides for the contraction of some prepositions with 

other words, like pronouns, demonstratives, and some adverbs. Without being 

exhaustive, we present the most frequent: 

 

a (to) + aquele/aquela (that) 

àquele, àquela, àqueles, àquelas 

 

de (of/from) + ele/ela (he/she) 

dele, dela, deles, delas 

 

de (of/from) + aqui (here) / ali (there) 

daqui, dali 

 

em (in/on/at) + esse/essa (this) 

nesse, nessa, nesses, nessas 

 

em + outro/outra (other) 

noutro, noutra, noutros, noutras 

 

26.2 Special contractions 

Some contractions not covered by the standard norm are allowed by the corpus 

transcription rules so as to adapt to the pronunciation. For this, a reduced form of the 

preposition followed by apostrophe is used. The reduced forms are c’ (com), d’ (de), n’ 

(em), p’ (para), pr’ (para). They are, all the same, separated by a space from the words 
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they contract with.  

 

Non-standard contraction of preposition and subject pronoun [btelpb29_069] 

*BRU: [69] então nũ precisa d' eu (de eu) preocupar não // 

*BRU: [69] so there’s no need for me to worry // 

 

Non-standard contraction of preposition and demonstrative pronoun 

[bnatla03_123] 

*ALE: [123] você mora p' aquela (para aquela) <região> // 

*ALE: [123] you live over that <region> // 

 

The ways contractions with the above-mentioned prepositions can happen are not 

provided for beforehand. This is an open-list criterion that allows for as many 

combinations as found in the corpus. 

 

26.3 Contractions with non-standard variant forms of pronouns and demonstratives 

The subsections to follow introduce non-standard variant forms for second- [§A.27] 

and third-person pronouns [§A.28], as well as for reduced demonstratives [§A.29]. The 

way these forms contract with prepositions depends on which rule ([§A.26.1] or 

[§A.26.2]) applies to the contraction of their standard variant form. 

Suppose the contraction of the preposition de (of/from) and the reduced 

demonstrative variant form aques (those) [§A.29]. Its standard form is aqueles (those). 

There is, indeed, a contraction provided for by the standard norm, which is daqueles. 

In this case, the contraction of the non-standard form follows [§A.26.1]. 

  

 Contraction following [§A.26.1] [btelpv29_156] 

*SEB: [115] tem um fusquinha verde / na porta da loja aqui / um fusquinha 

daques antiguim mesmo / verdim / original // 

*SEB: [115] there’s a green Beetle (car) / in front of the store’s doorway / one of 
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those very old Beetles / all green / original // 

 

Now suppose we have the contraction of the preposition com (with) and the second-

person singular non-standard variant form ocê (you). This contraction follows [§A.26.2] 

since the contraction of com + você (the standard form) is not covered by the standard 

norm. 

 

Contraction following [§A.26.2] [btelpb29_039] 

*BRU: [39] a Aline conversou c' ocê (com ocê) sobre o lanche que vai ter que ter 

todo dia // 

*BRU: [39] did Aline talk to you about the snack supposed to be served the whole 

period // 

 

27. Second-person pronoun variant forms 

The second-person pronoun você (you) can also be transcribed with its reduced forms. 

They are, namely, ocê/ocês and cê/cês (you/you all). 

 

Non-standard second-person pronoun variant form [bnatbu03_275] 

*DBC: [275] cê entendeu // 

*DBC: [275] you got it // 

 

Non-standard contraction of preposition and non-standard second-person 

pronoun [bnatbu02_233] 

*NEU: [236] pr' ocê ver // 

*NEU: [236] who would’ve thought of that (lit. for you to see) // 

 

28. Third-person pronoun variant forms 

The third-person pronouns received additional reduced forms, as shown in the table 
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below. 

 

Standard and reduced forms of the third-person subject pronoun 

Standard 

form 

Reduced 

form 
Translation 

ele e’ he 

ela ea she 

eles es plural masculine 

elas eas plural feminine 

 

The reduced forms may also contract with preposition as provided for by [§A.26.3]. The 

standard norm covers the contraction of the standard form with two prepositions: de 

(of/from), and em (in/on/at). The possible contractions of these prepositions with the 

reduced forms are, thus: 

 

Possible standard contractions with reduced third-person pronouns 

Reduced forms With de With em 

e’ de’ ne’ 

ea dea nea 

es des nes 

eas deas neas 

 

Otherwise, the contraction follows the open-list criterion provided for by the special 

criteria. 

 

Non-standard contraction of preposition with a reduced third-person pronoun 

[bfamdl25_207] 

LIA: [207] pr' ea tratar // 

LIA: [207] for her to be treated // 
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29. Reduced demonstratives 

Distal demonstrative forms may be transcribed with a series of reduced forms, as 

shown in the table below. 

 

Full and reduced distal demonstrative forms 

Full form 
Reduced 

form 
Translation 

aquele aque’ 
Sing. masculine distal demonstrative 

(that) 

aquela aquea Sing. feminine distal demonstrative (that) 

aqueles aques 
Plural masculine distal demonstrative 

(that) 

aquelas aqueas 
Plural feminine distal p demonstrative 

(that) 

 

The contraction of prepositions and reduced demonstratives follows the same rule in 

[§A.26.3]. The standard norm covering the contractions a (to), de (of), em (in/on/at), the 

possible forms are: 

 

Possible standard contractions with reduced demonstratives 

Reduced 

form 
With a With de With em 

aquele àque’ daque’ naque’ 

aquela àquea daquea naquea 

aqueles àques daques naques 

aquelas àqueas daqueas naqueas 

 

Otherwise, the contraction follows the open-list criterion. 
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Non-standard contraction of preposition and distal demonstrative pronoun 

[bfamdl20_042] 

*OSM: [42] nũ conta nada p' aque' (para aquele) cara não / 

*OSM: [42] don’t tell it to that guy at all / 

 

Non-standard contraction of preposition and distal demonstrative pronoun 

[bfammn14_104] 

*ANT: [104] c' aqueas batidim pesada de’ // 

*ANT: [104] with that heavy walking of him // 

 

30. Diminutive variant forms 

 

Two reduced forms, -im (sing.) and -ins (plural), are added to the standard diminutive 

paradigm (-inho/-inha/-inhos/-inhas). 

 

Diminutive form [btelpv44_007] 

*SIL: [7] tomou banhozim agora aí // 

*SIL: [7] you just took a shower now // 

 

31. Pseudo-cleft constructions 

31.1 Pseudo-cleft interrogative constructions 

 

In BP, speakers seem to be losing awareness of the presence of the copula verb in cleft 

interrogative constructions like que é que (what is that), por que é que (why is that), and 

onde é que (where is that). Pseudo-cleft constructions, where the copula is clearly 

missing, such as que que (what that), por que que (why that), onde que (where that) are 
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respected in the transcription. 

 

Pseudo-cleft interrogative construction [bnatla04_039] 

*ESC: [39] e como que cê ficou sabendo disso // 

*ESC: [39] and how (is) that you came to know this // 

 

32.2 Other pseudo-cleft constructions 

Other pseudo-cleft constructions may also lack the copula and are transcribed as 

pronounced.  

 

Other cleft constructions [bpubcv09_377] 

*MAR: [377] ela que apanha // 

*MAR: [377] she (is the one) who gets beaten // 

 

The standard cleft construction for the example above is é ela que apanha or ela é que 

apanha. 

 

32. Aphaeretic forms 

Since aphaeresis may indicate a lexicalization process, aphaeretic forms are transcribed 

as pronounced. Their occurrences are enlisted on the metadata and inputted to the 

morphosyntactic parser. Some examples are listed below: 

 

 brigado < obrigado (thanks) 

cabou < acabou (it’s finished / it’s over) 

fessor < professor (professor) 

xá < deixa (let/leave) 

tendi < entendi (I got it) 
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33. Negation 

The reduced form of the negation particle não (not/no) is transcribed as nũ – not to be 

confounded with num, contraction of em (in) + um (a). A frequent pattern found in the 

corpus is the double-negation like in the example below. 

 

Negation [bnatpr09_079] 

*ANT: [79] mas nũ tá não // 

*ANT: [79] but it is not // 

 

The contraction of the negation particle with é (present tense indicative first-person 

singular variant forms of the verb to be) is transcribed as n’ é (it is not). The example 

below exhibits a double negation with a contracted form, and a double negation 

combined with the negative pronoun nada (nothing). 

 

Double negation and contracted form [bnatpr09_079] 

*MAR: [40] é / n' é barato não / viu // [41] nũ achei / nada barato não // 

*MAR: [40] yeah / it isn’t cheap / huh // [41] I didn’t find it / cheap at all // 

 

34. Variant forms of senhor/senhora (Mister/Sir – Mrs./Madam) 

The honorifics senhor (Mister/Sir) and senhora (Mrs./Madam) take on some variant 

forms, which are respected in the transcription. The following forms are possible: 

 

Variant forms of senhor/senhora 

 Alternative 

forms 

Correspondent standard 

form 

sior 
senhor 

(Mr./Sir) 
seu 

sô 
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siora 
senhora 

(Mrs./Madam) 
sio’ 

sá 

 

Below, we give two examples in context. 

 

Variant form of senhora (formal second-person pronoun) – bnatla04_059 

*HIL: [59]  quando eu cheguei do serviço / minha menor virou pra mim e falou 

/ mãe / a / Gabriela falou assim p' siora dar uma olhada no computador / 

*HIL: [59] when I got home from work / my youngest daughter was like / mom / 

(the) / Gabriela asked you to check the computer / 

 

Variant form of senhor (Mr.) – bnatps11_005 

*CAR: [5] sô Geraldo / e a família dele toda // 

*CAR: [5] Mr Geraldo / and his whole family // 

 

35. Intensifier maior/mó 

The reduced form of the intensifier maior (bigger/very/a lot), mó, is respected in the 

transcription. 

 

Intensifier variant form [bmedex03_207] 

*MAR: [207] tá aqui dando mó força aqui pra gente // 

*MAR: [207] he’s here helping us a lot // 
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