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Resumo 

 

 

Nanoestruturas são objetos físicos com grande razão superfície/volume, com uma ou 

mais dimensões na escala nanométrica. Um importante exemplo dessas estruturas são os 

materiais bidimensionais, como o Grafeno, Bi2Te3, CeO2, etc. Com uma amostra de Óxido de 

Cério em substrato de HOPG obtida por deposição por laser pulsado (PLD) é possível 

observar nanoestruturas. Através de técnicas que utilizam o Microscópio de Tunelamento 

por Varredura (STM) em determinadas tensões é possível obter imagens das respectivas 

nanoestruturas a uma específica condição de densidade de estados local.  Isso nos permite 

estudar os fenômenos eletrônicos do material e suas interações com o substrato. 

 Através do uso de técnicas de filtragem e processamento de imagem, tais como 

Wavelets e Transformadas de Fourier, é possível melhorar significativamente a qualidade de 

imagens de nanoestruturas, permitindo que um estudo mais aprofundado das 

características de superfície seja realizado. Essa melhoria é crucial já que pode ser utilizada 

para aumentar o contraste de respostas eletrônicas/magnéticas/eletrostáticas em imagens 

de STM e AFM (Microscópio de Força Atômica). 

 Nesse trabalho utilizamos técnicas de processamento de sinal baseadas em wavelets 

para aumentar contraste eletrônico em nanoestruturas de óxido de cério observadas 

utilizando STM, assim como uma análise do tratamento realizado. Um script desenvolvido 

usando MATLAB, que trata automaticamente um grande número de imagens de STM e AFM 

usando decomposição por Wavelet, será discutido e analizado. Especial destaque é dado à 

melhoria de contraste nas imagens. 

 

 

 

 

 

Palavras-chave: wavelet, microscopia/espectroscopia de tunelamento, processamento de 

dados, processamento de imagens, nanoestruturas, CeO2, propriedades eletrônicas. 



 

Abstract 

 

 

Nanostructures are physical objects with a large surface/volume ratio, with one 

or more dimensions in the nanometer scale. An important example of these structures is the 

bidimensional materials, such as Graphene, Cerium Oxide, etc. Using a cerium oxide sample 

in HOPG substrate, obtained by pulsating laser deposition (PLD), it is possible to observe 

nanostructures. Using Scanning Tunneling Microscope (STM) techniques at selected bias we 

are able to obtain images of these nanostructures at a specific local density of state 

condition. This allows us to study the electronic phenomena and interactions with the 

substrate. 

Through the use of image processing and filtering techniques, such as Wavelet 

and Fourier transforms, it is possible to significantly improve the quality of the images 

obtained, allowing a deeper study of surface features to be done. This improvement is 

crucial since it may be used to enhance the contrast of electronic/magnetic/electrostatic 

response in STM and Atomic Force Microscope (AFM) images. 

In this work I will depict processed images of cerium oxide nanostructures using 

STM, as well as an analysis of the treatment performed. A script developed using MATLAB, 

automatically treating a large number of STM and AFM images using Wavelet 

decomposition, will be discussed and analyzed. Particular emphasis is given to 

improvements on image quality and contrast. 

 

 

 

 

 

 

 

Keywords: wavelet, scanning tunneling microscopy/spectroscopy, data processing, image 

processing, nanostructures, CeO2, electronic properties. 
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1. INTRODUCTION 

 

The development of quantum mechanics allowed the discovery of the wave-particle 

dualism, and one of the most exciting consequences of this idea is the tunneling effect. This 

effect occurs when a particle, generally an electron, passes through a potential barrier with 

higher energy than its own. This effect led to the invention of the Scanning Tunneling 

Microscope (STM) by H. Rohrer and G. Binnig in 1981 [30], an equipment that originated 

some of the most important experimental techniques on surface science.  

 The STM consists of a conductive and atomically sharp tip (usually made of Tungsten 

or Platinum Iridium alloy) which is set to approach a sample using a fine feedback system 

monitored by electronics capable of measuring a few pico-amperes. By slowly approaching 

the conductive tip of the surface under an applied bias one expects that an electric current 

will appear before physical contact is attained. Such a potential difference causes a leveling 

of the fermi energy level of the tip in relation to the sample at their closest point, allowing 

the tunneling current to flow. Such current value decays exponentially for increasing tip-

surface distances, providing an extremely sensitive current setpoint that is used to monitor 

the distance between the tip and the sample [31, 32]. 

STM is, by these characteristics, a powerful tool to study and characterize the 

surfaces of different material classes such as 2D materials [1, 33, 34], topological insulators 

[35, 36], metals [34, 37] and semiconductors [1, 38]. With such a sensitive dependence on 

distance it is possible to infer and reconstruct with precision the topography of a sample 

down to its atomistic arrangement. In addition to microscopy, it is possible to study the local 

electronic structure of a given surface by using a technique known as Scanning Tunneling 

Spectroscopy (STS). STS allows one to retrieve direct information on how the local density of 

electronic states (LDOS) varies spatially as a function of the electron energy. 

 On the other hand, STM sensitivity is often a drawback since it is subjected to various 

sources of noise that can affect the quality and accuracy of both microscopy and 

spectroscopy measurements. Some of the most common types of noise are electronic noise, 

thermal noise, mechanical vibrations that may arise from the STM setup as well as from 
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external sources. To minimize these issues a number of precautions concerning STM 

installation and operation are set, including isolated electric grounding, vibration active and 

passive damping systems and precise temperature control [31, 32, 39, 34]. Nevertheless, 

whenever noise reduction in a given setup becomes limited, STM images can still be treated 

through signal processing methods [41].  

Post-processing data treatment techniques involve filtering procedures applied to 

raw data in order to reduce noise while preserving desired information [42]. A key concept 

for noise reduction is the suppression of undesired frequencies of the STM current signal. 

However, those frequencies are usually invisible in the spatial domain where topographical 

or electronic information from an image is commonly represented. It therefore becomes 

mandatory to transit between the spatial domain and the frequency domain. This latter is 

understood through the representation of an image in terms of its frequency components. 

Such a representation often has explicit relations that are not observed straightforward in 

the spatial domain, such as periodic dependance or a specific type of noise at a defined 

frequency present in the whole image. To transit between the spatial and the frequency 

domain Fourier Transform became a very common tool. The Fourier Transform applied to a 

signal will decompose it in terms of periodic functions such as sines and cosines that are not 

spatially limited. Since STM signals are usually discrete datasets, the Fast Fourier Transform 

(FFT) is a standard tool in the area. Another important method related to frequency 

decomposition and much less explored in this field is the Wavelet Decomposition. 

Wavelets are localized wave-like functions with finite extent and average value of 

zero [2, 3]. The wavelet decomposition consists in breaking up a signal into shifted and 

scaled versions of the original wavelet function. Therefore, the original signal is written as a 

function of these shifted and scaled wavelets, chosen among some known functions to 

perform the decomposition process [4, 5]. This approach carries some advantages when 

compared to Fourier Transform, such as conservation of the temporal information and the 

large variety of functions to choose in order to adapt better to a particular signal. Since 

Wavelets are localized functions, Wavelet Decomposition is a promising method to reduce 

or suppress non-periodic noise [10, 11, 12]. This process also can additionally isolate and 

remove undesired frequencies such as white noise and other non-regular artifacts.  
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Due to the reasons discussed above, STM images are suitable candidates to use 

Wavelet Decomposition in order to reduce noise and extract information from the LDOS.  In 

order to study this application, a sample of Cerium Oxide on Highly Ordered Pyrolytic 

Graphite (HOPG) was chosen. The Cerium Oxide is deposited through pulsed laser deposition 

(PLD) and form triangular shaped nanostructures. 

Cerium Oxide is a suitable choice since there is a weak contrast between the 

nanostructures and the HOPG substrate. Another interesting contrast observed is related to 

images at different tensions. This contrast is of fundamental importance since it possibly 

originates from electronic/magnetic/electrostatic responses. In order to enhance these weak 

contrasts, it is possible to use Wavelet based methods of noise reduction.  

We study here how the Wavelet Decomposition can be used to reduce noise in 

different STM images. Several different wavelets were used in the decomposition and the 

best result (Symlet4) was chosen through trial and error. Automatic threshold values were 

determined for the images used. In order to provide an easy visualization of the method, a 

considerable part of the analysis in this work was made in two-dimensional profiles 

extracted from various STM images. Thus, the difference between images before and after 

the processing were evidenced. We use the MATLAB software to develop a code to 

implement these transforms. The code developed is capable of automatically processing a 

large number of STM images, with user-defined parameters such as wavelet used, level of 

decomposition and type of threshold detection (among others).  The code is available in 

Appendix A. 
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2. SCANNING TUNNELING MICROSCOPY 

 

Scanning Tunneling Microscopy (STM) is a probe-based imaging technique used to 

achieve high resolution images down to atomic scale. It has proven alongside few decades to 

be a powerful tool to understand the surface of different metallic or semiconductor 

compounds from distinct material classes such as 2D materials, topological insulators, 

transition metal dichalcogenides (TMDs), etc. STM has played a crucial role in surface 

science being used to characterize numerous emergent materials since its invention [1, 33-

37, 43], becoming concomitantly a rare example of direct use of a quantum mechanical 

process - the Tunneling Effect - in a practical real-world application. The following sections 

provide a concise review of its most important characteristics and current use.   

  

 

2.1 History 

 

 The Scanning Tunneling Microscope (see Fig. 2.1.1) was invented in 1981 by Gerd 

Binnig and Heinrich Rohrer (see Fig. 2.1.2) while they were working at IBM Zurich Research 

Laboratory [30]. The first experiment carried out with this method involved imaging the 

surface of a crystal of gold [44].  

 

Fig 2.1.1 – The first Scanning Tunneling Microscope at the Deutsches Museum. Photo taken 

by J. Brew. 
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 At the time STM was the pioneer technique among a new group of microscopy 

techniques called Scanning Probe Microscopy (SPM), that consist basically of monitoring 

how a tip probe interacts with a sample surface. In contrast to usual microscopy, SPM 

obtains information not by “seeing” (or using waves) but by “touching” the surface 

(physically interacting). The images obtained are inferences of the surface response 

obtained by very sensitive interactions between the probe and the material. This new 

approach of imaging allowed the study of materials on much smaller scales than before. The 

STM marked the history of physics given that, for the first time, humans could not only see, 

but also manipulate objects as small as individual atoms. The invention granted the Nobel 

Prize in Physics in 1986 and is regarded as the instrument that opened the door to 

nanotechnology with applications that span over a wide range of fields.  

 

 

Fig. 2.1.2 – Gerd Binnig (left) and Heinrich Rohrer (right), inventors of the STM. Photo taken 

from the Nobel Foundation archive. 

  

 

2.2 The Tunneling Effect 

 

 The Quantum Tunneling phenomenon takes place when a particle passes through a 

potential barrier despite having less energy than the barrier itself. It is a counterintuitive 

result, indeed, as there is no classical analogue and results in a classically forbidden 
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outcome.  The effect arises as a consequence of wave properties that are intrinsic to small 

particles such as electrons. 

 A simple description can be drawn defining a square potential energy barrier, with 

potential energy: 

 

𝑈(𝑥) = {
0,     𝑥 < −𝑎

 𝑈0 ,   − 𝑎 < 𝑥 < 𝑎
0,       𝑥 > 𝑎

        . (1) 

 

Suppose then a particle beam that impinges the barrier with energy E, lower than the 

barrier’s height U0. The region between -a and a is then classically forbidden to a corpuscular 

particle. However, a quantum particle described by a wavefunction  will be represented by 

eigenvalue equations given by [45]: 

 

𝑑2Ψ𝐸(𝑥)

𝑑𝑥2  =  𝑞2Ψ𝐸(𝑥), |𝑥| < 𝑎

  
𝑑2Ψ𝐸(𝑥)

𝑑𝑥2  =  −𝑘2Ψ𝐸(𝑥), |𝑥| > 𝑎
        . (2) 

 

Where ΨE is the energy eigenstate wave function and k and q are, respectively: 

 

𝑘 =  √
2𝑚𝐸

ℏ2

𝑞 =  √
2𝑚(𝑈0− 𝐸)

ℏ2

        . (3) 

   

In equation 3 ℏ is the reduced Planck constant and m is the mass of the particle. Assuming 

that the particles are coming from the left, the general solutions to the problem assume the 

form: 

 

Ψ𝐸(𝑥) = {
𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 , 𝑥 < −𝑎

𝐶𝑒𝑞𝑥 + 𝐷𝑒−𝑞𝑥 ,         − 𝑎 < 𝑥 < 𝑎

𝐹𝑒𝑖𝑘𝑥,                            𝑥 > 𝑎

          . (4) 
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 This general solution provides an insight about the physical behavior of this particle 

in the forbidden region, where the function is either growing exponentially or decaying 

exponentially. In equation (4), the terms A, C and F represent beams of particles coming 

from the left, before the barrier, inside the barrier and after the barrier, respectively. The 

terms B and D represent beams of particles coming from the right, before the barrier and 

inside the barrier. The terms coming from the right represent the part of the incident beam 

that is reflected, and as in our system there is nothing to reflect the beam after the barrier, 

the sixth term (Ge-ikx) was suppressed. To proceed the mathematical description, it is 

necessary to impose and apply boundary conditions to the solution, that must be 

continuous. Therefore: 

𝑑Ψ(𝑥)

𝑑𝑥
|

𝑥=−𝑎
:  𝑖𝑘𝐴𝑒−𝑖𝑘𝑎 − 𝑖𝑘𝐵𝑒𝑖𝑘𝑎  =  𝑞𝐶𝑒−𝑞𝑎 − 𝑞𝐷𝑒𝑞𝑎       ,                             (6) 

Ψ(𝑎):  𝐶𝑒𝑞𝑎 + 𝐷𝑒−𝑞𝑎  =  𝐹𝑒𝑖𝑘𝑎      , (7) 

𝑑Ψ(𝑥)

𝑑𝑥
|

𝑥=𝑎
:  𝑞𝐶𝑒𝑞𝑎 − 𝑞𝐷𝑒−𝑞𝑎  =  𝑖𝑘𝐹𝑒𝑖𝑘𝑎        . (8) 

 

Solving equation (7) and equation (8) for C and D in terms of F and replacing the solution 

into the equations (5) and (6) provides a way to eliminate C and D. After such solution step it 

is possible to solve equations (5) and (6) to obtain the ratios B/A and F/A. As F is the 

transmitted wave and A is the incident wave, the ratio F/A is the information necessary to 

obtain the transmission probability T: 

 

𝑇 =  
|𝐹|2

|𝐴|2
 =  

1

1 +
(𝑘2+𝑞2)2

4𝑘2𝑞2 𝑠𝑖𝑛ℎ2(2𝑎𝑞)
        . (9) 

 

 

 

This is the probability for an incident particle, with less energy than the barrier’s height, to 

pass through a barrier and emerge on the other side. This result is of tremendous 

importance, firstly because it indicates that in some cases the particle will in fact emerge 

Ψ(−𝑎):  𝐴𝑒−𝑖𝑘𝑎 + 𝐵𝑒𝑖𝑘𝑎  =  𝐶𝑒−𝑞𝑎 + 𝐷𝑒𝑞𝑎      , (5) 
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after the barrier. Secondly because the classical result for this phenomenon would lead to 

zero. The behavior of a wave function at the barrier is represented in Fig. 2.2.1. In this figure 

the width of the barrier is 2a, since it goes from -a to a. We can infer by equation (9) that as 

the barrier’s depth increases, the transmission probability decreases.  

 

Fig. 2.2.1 – Wave function (real part) of a particle tunneling through a barrier. Figure taken 
from reference [45]. 

 

This effect is exactly what happens in the STM tip-sample system. The electrons in 

the tip will penetrate a potential barrier (air or vacuum) and will arrive at the sample or vice 

versa. 

  

Fig. 2.2.2 – Schematic representation of the STM and the potential energy diagram. Figure 
taken from reference [45]. 
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We can see in the Fig. 2.2.2 that the distance between the tip and the sample is 

related to the width of the potential barrier, therefore the transmission probability increases 

as the tip-sample distance decreases.  

  

2.3 The Scanning Tunneling Microscope 

 

 Although the quantum tunneling phenomenon has been vastly studied before, it was 

not before the STM that this effect has been implemented in technology. Prior to discussing 

the key components present in Fig.2.3.1, it is important to state that the potential barrier 

between the tip and the sample in a STM can be either air or vacuum. Therefore, we can say 

that there are two major types of STM, the Air-STM and Ultra High Vacuum-STM (UHV-STM). 

 

 

Fig. 2.3.1 – A detailed layout of the Scanning Tunneling Microscope. Figure taken from 
reference [31] 

 

The first essential element for STM measurements is the probe tip. It needs to be 

conductive and atomically thin. The tip is usually made out of Tungsten (used in Vacuum 

conditions) or a Platinum-Iridium alloy (used in both vacuum and air condition). These are 

commonly used materials mainly due to their electrical conductivity, mechanical strength 

and smooth density of states. The Platinum-Iridium alloy is often chosen in Air-STM on 

account of its highly resistance to oxidation in air. Since there is reduced oxidation in 

vacuum, a tungsten tip is a better choice for UHV-STM, being only necessary to deoxidize the 
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tip by chemical or physical methods prior to its use in the vacuum environment. One of the 

most important reasons for the tungsten tip choice in vacuum is that it can be mechanically 

sharpened to a very fine point due to metallic grain cleavage, making it suitable for high-

resolution imaging. 

The probe tip is attached to a piezo-drive, a calibrated stage made of piezoelectric 

materials. Piezoelectric materials are characterized by their ability to generate electric 

charge in response to applied mechanical stress or vice-versa. This property allows the 

creation of devices that convert electrical charges in mechanical movements, called 

piezoelectric transducers. These transducers will expand or contract upon an applied 

voltage, resulting in controlled motion with picometric resolution (usually tens of pm). 

Equipped with these transducers in three directions, the STM is able to scan surfaces with 

extreme precision. 

Finally, a feedback system based on a very sensitive amperemeter is mandatory. 

Since tunneling currents are usually in the range of nA to pA, it is necessary to monitor the 

tip-surface current with specially designed electric amplifiers that will dynamically control 

the height of the tip with respect to the studied surface. Images are usually carried out by 

setting a fixed bias and monitoring a current setpoint.  

 In order to start a measurement or image acquisition the tip is set to approach the 

sample slowly, until it reaches a distance of less than a nanometer. At this extremely short 

distance, the wavefunctions of electrons of the tip and the sample are overlapped.  A bias 

voltage applied between sample and tip induces the flow of electrons, generating the 

tunneling current. Without the bias voltage, no current would appear as the fermi level of 

both tip and sample would be equal. To supply this system with electrons it is necessary to 

ground either the tip or the sample. By convention, the tip is usually grounded. If the tip is 

grounded, the bias voltage applied will be positive and applied to the sample. This will raise 

the fermi energy level of the tip in relation to the sample and allow the electrons of the tip 

to tunnel to unoccupied states in the sample. The tunneling current generated is in sub-

nanoampere range. 
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Fig. 2.3.2 – Schematic view of the fermi energy level of the tip and sample upon different 
bias voltage. Figure taken from reference [46]. 

 

 

 STMs can operate in two distinct modes, constant current mode and constant height 

mode. In constant current mode, the tunneling current remains constant throughout the 

entire measurement. To ensure this, the z-axis piezo-drive adjusts its distance from the 

sample constantly. Since the tunneling current is extremely sensitive, even atomic size 

variations result in current change, therefore the tip can really follow the surface physical 

profile of the material. The information obtained changing the distance between the tip and 

sample is used to reconstruct the topography. In constant height mode, a fixed height is 

established, and the tip scans the surface measuring the fluctuations in current resulting 

from alterations in the sample’s topography while the tip position is maintained fixed in the 

z-axis. The relation between the tunneling current and the tip-sample distance is known, and 

as before it is possible to reconstruct the topography. In both cases, a fine feedback system 

is used to precisely control the tip-sample distance. The feedback system works by setting a 

target value of current. This value is being continuously monitored and if it exceeds or falls 

below a predetermined threshold, the tip will either approach or retract from the sample. 

For example, in constant current mode, if the topography of the sample suddenly rises, the 

distance between the tip and the sample will shorten and the tunneling current will 

consequently increase. The feedback system quickly fixes it by withdrawing the tip and by 

this the current remains constant. Since STM measures currents, it is sensitive to local 

electronic variations in addition to topography variations. Therefore, it is fundamental to 

understand that the reconstructed image is a convolution of the topography of the sample 

and its local density of states (LDOS). 
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 Another important component worth mentioning is the vibration isolation. The STM 

needs to be isolated from its surroundings to be able to achieve atomic resolution, given 

that the tip-sample distance to achieve tunneling is sub nanometer, any vibration that affect 

the system may cause the tip to hit the sample. To avoid this, it is common to use isolated 

electric grounding, vibration active and passive damping systems as well as placing the STM 

in a solid block isolated from the rest of the building.  

 

2.4 Bardeen Theory 

 

 To gain a deeper insight into the functioning of the STM it is convenient to delve 

deeper in tunneling theories to study how the tunneling current responds. To accomplish 

this, we employ the Bardeen theory of tunneling, which will give us a more elaborate view 

about the absolute value of the tunneling current. 

 To begin, it is convenient to assume that the STM tip and sample are separated so 

that their electronic structure does not interact with each other. Therefore, we can consider 

their electronic structures separately. For the STM tip we have then [31, 47]: 

  

𝑖ℏ
𝜕Ψ

𝜕𝑡
 =  [

−ℏ

2𝑚

𝜕2

𝜕𝑧2
+ 𝑈𝑇] Ψ        . (10) 

 

Where UT is the potential function of the tip. Ψ depends on both time and spatial 

coordinates. The stationary states are [31, 47]: 

 

Ψ =  𝜓𝜇𝑒
−𝑖𝐸𝜇𝑡

ℏ
⁄

        . (11) 

 

The wavefunction and energy eigenvalues of the tip satisfies [31, 47]: 

 

[
−ℏ

2𝑚

𝜕2

𝜕𝑧2
+ 𝑈𝑇] 𝜓𝜇  =  𝐸𝜇𝜓𝜇        . (12) 
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All above apply to the wavefunction and energy eigenvalues of the sample as well, where Us 

is its potential function, thus similar equations can be written to the sample. It is convenient 

to define a region z0 in which the potential energy of the tip is zero, i.e., if 𝑧 > 𝑧0 then 𝑈𝑠 =

0. This physically means that we consider that the potential energy of the sample only 

achieves relevant values near the sample surface, while it remains zero from the potential 

barrier beyond. 

The wavefunction amplitude for both tip and sample decay exponentially in the 

vacuum barrier between them (as seen in equation (4)). However, as the tip approaches the 

sample, one gets closer to the onset of the tunneling regime and the tunneling current 

eventually starts to flow. This current is sensitive to both tip and sample potential, thus we 

represent this new state by [31, 47]: 

 

iℏ
𝜕Ψ

𝜕𝑡
= [

−ℏ

2𝑚

𝜕2

𝜕𝑧2 + 𝑈𝑠 + 𝑈𝑇] Ψ        . (13) 

 

In the presence of the combination of both potentials, from the tip and from the sample, the 

state 𝜓𝜇, previously described by equation (12), has now the probability of transferring an 

electron to the states of the sample. Therefore, we represent it as [31, 47]:  

 

Ψ = 𝜓𝜈
𝑠𝑒

−𝑖𝐸𝜈
𝑠𝑡

ℏ
⁄

+ ∑ 𝑐𝜇(𝑡)𝜓𝜈
𝑇𝑒

−𝑖𝐸𝜇
𝑇𝑡

ℏ
⁄

∞

𝜇=1

        . (14) 

 

Where 𝜓𝜈
𝑠 and 𝜓𝜈

𝑇  are, respectively, the wavefunctions of the sample and the tip. The term 

𝑐𝜇(𝑡) is a coefficient to be determined, related to the temporal dependency of the potential 

function of the tip. We assume firstly that 𝑐𝜇(0)  =  0. One additional fundamental 

assumption of Bardeen's tunneling theory is that 𝜓𝜈
𝑠 and 𝜓𝜈

𝑇 are approximately orthogonal, 

i.e.: 

 

∫ 𝜓𝜈
𝑠 ∗ 𝜓𝜈

𝑇𝑑3𝑟 ≅  0        . (15) 

  

We can now combine equation (14) and equation (13) to obtain [31, 47]: 
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𝑖ℏ ∑
𝑑𝑐𝜇(𝑡)

𝑑𝑡

∞

𝜇=1

𝜓𝜇
𝑇𝑒

−𝑖𝐸𝜇
𝑇𝑡

ℏ
⁄

= 𝑈𝑇𝜓𝜈
𝑠𝑒

−𝑖𝐸𝜈
𝑠𝑡

ℏ
⁄

+ 𝑈𝑠 ∑ 𝑐𝜆(𝑡)𝜓𝜆
𝑇𝑒

−𝑖𝐸𝜆
𝑇𝑡

ℏ
⁄

∞

𝜆=1

        . (16) 

 

We neglect the second term on the right side since it is a second order infinitesimal quantity. 

We obtain then: 

 

𝑖ℏ
𝑑𝑐𝜇(𝑡)

𝑑𝑡
 =  ∫ 𝜓𝜈

𝑠  𝑈𝑇

 

𝑧>𝑧0

𝜓𝜇
𝑇 ∗ 𝑒

−𝑖(𝐸𝜈
𝑠−𝐸𝜇

𝑇)𝑡
ℏ

⁄
𝑑𝟑𝒓        . (17) 

 

 

If we define a tunneling matrix element as the follow [31, 47] 

 

𝑀𝜈𝜇 ≡ ∫ 𝜓𝜈
𝑠  𝑈𝑇

 

𝑧>𝑧0

𝜓𝜇
𝑇 ∗ 𝑑𝟑𝒓        , (18) 

 

it is possible to obtain an explicit expression of the tunneling current. First by simply 

integrating equation (17), obtaining [31, 47]: 

 

𝑐𝜇(𝑡)  =  𝑀𝜈𝜇

𝑒
−𝑖(𝐸𝜈

𝑠−𝐸𝜇
𝑇)𝑡

ℏ
⁄

− 1

(𝐸𝜈
𝑠 − 𝐸𝜇

𝑇)
        . (19) 

 

The probability of finding the 𝜇-th state of the sample, starting with the  𝜈-th state of the tip, 

i.e., the probability of an electron to populate the state 𝜓𝜇
𝑇  is [31, 47]: 

 

𝑝𝜈𝜇(𝑡) ≡ |𝑐𝜇(𝑡)|
2

 =  |𝑀𝜈𝜇|
2 4𝑠𝑖𝑛2[(𝐸𝜈

𝑠 − 𝐸𝜇
𝑇)𝑡 2ℏ]⁄

(𝐸𝜈
𝑠 − 𝐸𝜇

𝑇)2
        . (20) 

 

This probability is maximum when 𝐸ν
𝑠 = 𝐸μ

𝑇, in other words, the tunneling current depends 

on how many states near the energy value of a state in the tip into which the sample can 

effectively tunnel. 
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 One important concept to introduce is the density of states. The density of states is 

the number of available quantum states per energy range in a system and we will refer to it 

as ρ(𝐸). This concept will be further discussed along the next chapter of this dissertation. 

Using the follow mathematical identity: 

 

∫
𝑠𝑖𝑛2𝑎𝑢

𝜋𝑎𝑢2

∞

−∞

 𝑑𝑢 = 1        . (21) 

 

the probability of tip states that the sample can tunnel into is [31, 47]: 

 

𝑝𝜈𝜇(𝑡) =
2𝜋

ℏ
|𝑀𝜈𝜇|

2
ρ𝑠

 (𝐸ν
𝑠)𝑡        . (22) 

 

We limit our study to the case where  𝐸ν
𝑠 = 𝐸μ

𝑇. This condition is known as the condition of 

elastic tunneling [31]. This means that a state in the tip can only tunnel into states in the 

sample if both states are in the same energy. The number of available states in the tip is 

defined by its density of states and by the bias voltage V. Finally, the tunneling current is 

[31,47]: 

 

𝐼 =
2𝜋𝑒2

ℏ
|𝑀𝜈𝜇|

2
𝜌𝑠

 (𝐸𝜈
𝑠)𝜌𝑡

 (𝐸𝜇
𝑇)𝑉         . (23) 

 

where e is the elementary charge. Ultimately, we obtained the tunneling current in function 

of the density of states of both sample and tip, bias voltage and tunneling matrix element. 

This result is remarkable since it shows the importance of density of states to the tunneling 

current and consequently to the STM. 

 Last but not for least, it is worth mentioning the qualitative relation between the 

tunneling current and the tip-sample distance. This result comes from considering the 

density of states of the sample, at the Fermi edge [32]: 

  

𝐼 ∝ 𝑉𝑏𝜌𝑠
 (𝐸 

𝑠)𝑒−2√2𝑚(𝑈0−𝐸)𝑧 ℏ⁄         . (24) 
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Remembering that 𝑈0 is the height of the potential barrier, it is possible to see that the 

tunneling current decays exponentially with the tip-sample distance, as well as being linearly 

dependent on the density of states of the sample. 

 

 

2.5 Scanning Tunneling Spectroscopy 

 

 Scanning Tunneling Spectroscopy (STS) is a complementary operation mode with 

respect to the imaging method, using the current-bias relation to infer local electronic 

properties at atomic scales, such as energy levels, density of states and local atomic 

interactions. The spectroscopic aspect of the STS involves measuring the tunneling current 

as a function of the bias voltage, i.e., while STM normally focus on topographic maps, STS 

focus on the tunneling conductance (defined as 𝐼 𝑉 ⁄ ) [46]. 

 After the microscope enters the tunneling regime at a given bias in a given 

nanometric region, the bias voltage can be varied in a previously determined range to study 

how the tunneling current responds to the voltage. This primary electronic response is 

commonly used to classify materials as metals, semi-metals, semiconductors or insulators [1, 

46, 47]. A remarkable characteristic of such methodology is that the STS is able to address 

the local density of states (LDOS) rather than the average density of states, since it relies on 

an atomically thin tip. The density of states refers to the density of available electronic states 

in a material, providing information about the energy distribution of electrons. In this 

particular case LDOS refers to the density of states at a very specific location within a 

material, usually limited laterally by a few nanometers [46]. Finally, since there is no physical 

contact between tip and sample, there is no need to consider Schottky barriers between the 

systems (absence of tip/sample contact interface). 

 The relation between the current and the LDOS can be shown in a simplified 

approach. We consider that the electrons on the tip and on the sample follow the Fermi-

Dirac distribution (𝑓(𝐸)  =  1 + 𝑒𝑥𝑝[(𝐸 − 𝐸𝑓)/𝑘𝑏𝑇]−1) [31]. The tunneling current can be 

evaluated by summing over all relevant states, and if 𝑘𝑏𝑇 is smaller than the energy 

resolution required in the measurement, Fermi distribution can be understood as a step 

function. The tunneling current is then given by [31]: 



  25 

 

𝐼 =
4𝜋𝑒  

ℏ
∫ 𝜌𝑠

 (𝐸𝜈
𝑠 − 𝑒𝑉 + 𝜀)𝜌𝑡

 (𝐸𝜇
𝑇 + 𝜀)

𝑒𝑉

0

|𝑀𝜈𝜇|
2

𝑑𝜀        . (25) 

 

An assumption made by Bardeen is that the tunneling matrix elements do not change much 

in the interval of interest, thus [31]: 

 

𝐼 ∝ ∫ 𝜌𝑠
 (𝐸𝜈

𝑠 − 𝑒𝑉 + 𝜀)𝜌𝑡
 (𝐸𝜇

𝑇 + 𝜀)
𝑒𝑉

0

𝑑𝜀        . (26) 

 

Finally, the derivative of the current is: 

 

𝑑𝐼

𝑑𝑉
∝ 𝜌𝑠

 (𝐸𝜈
𝑠 − 𝑒𝑉)𝜌𝑡

 (𝐸𝜇
𝑇)        . (27) 

 

Equation (27) shows the normalized differential tunneling conductance, which is commonly 

used since its dependency on the density of states is simple and direct.  The density of states 

of both tip and sample contributes equally to determine the tunneling current. With such 

results one can infer if there are local electronic variations at the surface and study changes 

in LDOS with respect to local chemical (clustering) or topographic (step edges, defects) 

fluctuations. 

 

 

 

 



  26 

 

3. SIGNAL PROCESSING TECHNIQUES 

In data processing and science in general a signal is any set of information that varies 

over time or space and can be measured. In summary, a signal can be seen as a function 

which describes a set of information about something. A data set of tunneling current 

measurements varying in function of the bias voltage is a signal, for example. In this case, 

the value of tunneling current depends only on the bias voltage, I=f(V), therefore our 

function is a one-dimensional signal. There are countless examples of common one-

dimensional signals, where the most important example in our scope is the topographic 

profile of a sample. This information can be extracted from an STM image (height in function 

of position in the x-axis). 

Another good example of a signal is an image. An image consists in a matrix of values 

(pixels), each pixel storing a number related to brightness or intensity and located at a 

defined position in space (i.e., brightness varying spatially). However, to form a single image, 

we need to plot brightness information as a function of two position coordinates, Im=f(x,y),  

indicating that an image is a two-dimensional function.  

Signals can be categorized into two main types, continuous signals and discrete 

signals. As the nomenclature suggests, continuous signals vary continuously over a range of 

time or space, i.e., a function describing this signal has continuous domain and range. 

Discrete signals, on the other hand, consist in a discrete set of values, defined at specific 

points in time (sampling), i.e., a function with discrete time (or space) domain. A third and 

more recent type of signal, which has become common over the past decades and the most 

used type, is the digital signal, when the function has discrete time/space domain and 

intensity range. Due to the requirements to represent information in a computer, digital 

signals are much more common than continuous or discrete signals in signal processing. A 

landscape seen by a human eye is a good example of a continuous signal. However, if a 

photograph of the landscape is taken and transferred to a computer, the landscape will now 

be represented by pixels (discrete space domain), in which a discrete value of brightness will 

be assigned to each pixel (discrete intensity range). The landscape, now as a digital image, 
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will then be considered a digital signal. These signals are often obtained by sampling 

continuous signals at regular intervals, known as digitalization process (as mentioned above 

in the landscape example).  Usually, a discrete dataset in both domain and range are enough 

to represent satisfactorily physical phenomena. STM data, for example, is represented 

through the use of digital signals [42]. 

Signals are, therefore, a primary and indispensable form of visualizing information. 

Nevertheless, the information may not be fully explicit. In the vast majority of the time, it 

will be necessary to extract meaningful information from data obtained in an experiment or 

measurement. For this demand, the signal processing area has quickly developed in the last 

decades, profiting of the increasing availability of computational resources. Signal 

processing’s makes use of several techniques to improve data quality such as filtering, 

compression, amplification, noise removal, sharpening, etc. These tools have several 

important applications. For example, compression can be used to reduce the amount of 

storage required by a security camera, filtering and noise removal can be used to improve 

the camera’s contrast quality. Signal processing plays a crucial role in various fields, including 

audio and video processing, image and speech recognition, biomedicine, experimental 

physics and others. 

  

Fig. 3.1 – Two different representations of the same information. Figure adapted 

from reference [42] 

 

One of the main gains in signal processing is the ability to extract and reorganize 

information. This ability is important given that the manner in which information is 

presented can be the determining factor in whether or not the reader comprehends it. In 
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Fig. 3.1, the image of a girl is represented in two distinct ways: in a conventional grayscale 

image and in a three-dimensional brightness map. In the photo on the left one can instantly 

interpret the image. However, in the photo on the right, comprehension is significantly 

impaired due to the manner in which the information was presented. 

In terms of visualization, signals are commonly represented in three primary 

domains: the spatial domain, the frequency domain and the time domain. Each domain 

captures different aspects of the signal’s characteristics. Spatial domain contains represents 

the spatial distribution of data. In the time domain, variations occur over time, representing 

how the data changes as time passes. In the frequency domain, information changes with 

frequency, revealing different components present in the data with intrinsic connection with 

either time or spatial domain. An STM image is an example for representation in spatial 

domain, as it represents height in terms of position. The light spectrum of a star is an 

interesting example for frequency domain representation, since it shows how intensity 

depends on the frequency of the light captured. Finally, an Electro-cardiogram is 

represented in time domain, given that it maps the heartbeat over time. 

Each of these representations’ explicit different characteristics of the original signal, 

being possible to choose the representation that best fits each case. There are tools that 

allow us to transit between different domains and one of the most fundamentals signal 

processing technique is the Fourier Transform (FT). FT is responsible for carrying out the 

transition from time or spatial domains to frequency representation. 

 

3.1 Fourier Transform 

 

The Fourier transform ℱ is a mathematical process that converts a function, 

commonly time-dependent, into a frequency-dependent function. It is an integral (or 

summation) responsible for transposing discrete or continuous functions from the time 

domain to the frequency domain. It can be additionally understood as a linear operator that 

acts on a function resulting in another function, as shown below: 

 

ℱ{𝑓(𝑡)} = 𝐹(𝜉)        . (28) 
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Where 𝜉 is a frequency in Hertz.  The continuous Fourier transform ℱ is given by [42]: 

 

ℱ{𝑓(𝑡)} = 𝐹(𝜉) = ∫ 𝑓(𝑡)𝑒−2𝜋𝑖𝜉𝑡𝑑𝑡

∞

−∞

        , (29) 

 

and the inverse Fourier transform ℱ−1 can be written as [42]: 

 

ℱ−1{𝐹(𝜉)} = 𝑓(𝑡) = ∫ 𝐹(𝜉)𝑒2𝜋𝑖𝜉𝑡𝑑𝜉

∞

−∞

        . (30) 

 

In order to obtain a meaningful result from this operation, the function 𝑓(𝑡) needs to satisfy 

two main conditions. The first one is that the integral of 𝑓(𝑡) over the entire domain must 

be less than infinite, i.e., ∫ |𝑓(𝑡)|𝑑𝑡
∞

−∞
< ∞. The second one is that 𝑓(𝑡) may have only a 

finite number of discontinuities in any finite interval. To better understand the meaning of 

these equations, it is convenient to express equation (30) as a Riemannian sum, as follow: 

 

𝑓(𝑡) ≐ (. . . + 𝐹(𝜉0)𝑒2𝜋𝑖𝜉0𝑡 +  𝐹(𝜉1)𝑒2𝜋𝑖𝜉1𝑡+. . . )Δ𝜉        . (31) 

 

Where Δ𝜉 = 𝜉𝑘+1 − 𝜉𝑘 for all k. Equation (31) demonstrates that it is possible to break down 

any function into a weighted combination of various complex exponentials. We remember 

from Euler’s formula that: 

 

𝑒𝑖𝑥 = 𝑐𝑜𝑠(𝑥) + 𝑖 𝑠𝑖𝑛(𝑥)        . (32) 

 

Therefore, it is possible to decompose exponentials into sines and cosines. Consequently, 

decompose a function in terms of complex exponentials is equivalent to decompose this 

same function into sines and cosines components. This decomposition begins with a 

frequency  𝜉0 and other frequencies are obtained multiplying 𝜉0 by natural numbers. It may 

be noted that this representation consists in a Real and an Imaginary part, since the 
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coefficients 𝜉𝑘 are often complex numbers, given both magnitude and phase of the wave. 

Because of that, we must procced with caution while dealing with the function 𝐹(𝜉) 

(frequency-dependency). Some common formulas to extract information from the frequency 

domain are [42]: 

 

𝐹(𝜉) = 𝑅𝑒(𝐹(𝜉)) + 𝑖 𝐼𝑚(𝐹(𝜉))        , (33) 

 

|𝐹(𝜉)| = √𝑅𝑒(𝐹2(𝜉)) + 𝐼𝑚(𝐹2(𝜉))        , (34) 

 

𝜙(𝜉) = 𝑎𝑟𝑐𝑡𝑎𝑛(𝐼𝑚(𝐹(𝜉)) 𝑅𝑒(𝐹(𝜉))⁄ )        . (35) 

 

Where 𝑅𝑒(𝐹(𝜉)) denotes the real part of the complex function, 𝐼𝑚(𝐹(𝜉)) denotes the 

imaginary part. The equations (33), (34) and (35) are used respectively to obtain the complex 

spectrum, amplitude spectrum and phase spectrum for a given function.  

 The Fourier Transform is also subject to the uncertainty principle, which states that is 

impossible to have a signal which is arbitrarily narrow in both time and frequency domains 

[42], i.e., ‘signal duration’ * ‘Frequency bandwidth’ ≥ 
1

𝜋
.  

In summary, the Fourier transform will provide weighted contributions of each 

frequency to form the original function, considering all frequency range. An example of 

some common functions and their respective Fourier transform can be seen in Fig. 3.1.1.  

 

 

Fig. 3.1.1 – One-dimensional Fourier transform of different sinusoidal functions. Figure 
adapted from reference [42]. 



3.1.1 Discrete Fourier Transform  31 

 

Studying the frequency domain of a function may evidence important information 

such as the existence of periodic relations, which can be crucial to solve a problem. A 

common application related to Fourier transform, while studying the frequency domain, is 

the implementation of filters [50]. In image processing, Fourier transforms has a wide spread 

use such as image compression, image analysis, image reconstruction, among others. 

Besides the many possible uses for this technique, it is worth mentioning the analysis of STM 

[49] and AFM [48] images. The Fourier transform is therefore one of the most fundamental 

techniques in the field of signal processing. 

Equation (29) is a continuous representation for a Fourier transform. However, it 

is not straightforward to use it to study a digital signal. As computers deal with discrete 

signals, it becomes necessary to get around it and use an adapted version of this linear 

operator called discrete Fourier transform. 

 

3.1.1 Discrete Fourier Transform  

 

The Discrete Fourier transform (DFT) is given by a summation with the form 

 

𝐹(𝑘) =
1

𝑁
∑ 𝑓(𝑛)𝑒(−2𝜋𝑖

𝑛𝑘

𝑁
)

𝑁−1

𝑛=0

        , (36) 

 

and its inverse  

 

𝑓(𝑛) =
1

𝑁
∑ 𝐹(𝑘)𝑒(2𝜋𝑖

𝑛𝑘

𝑁
)

𝑁−1

𝑛=0

        . (37) 

 

Where the spectrum F(k) is periodically extended with period N. This alternate version of the 

Fourier transform can be used to analyze digital signals in a computer and is usually 

implemented by most of data analysis softwares. However, it is important to mention that 

besides the technique implementation through computer, the processing time must be 
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taken into account. This issue led to the development of an alternative algorithm known as 

Fast Fourier Transform (FFT). The FFT quickly became very popular, becoming one of the 

most used methods to implement Fourier transform. 

To further illustrate this discussion, suppose a function 𝑓(𝑡) = 𝑠𝑖𝑛(2𝜋𝜈1𝑡) +

𝑠𝑖𝑛(2𝜋𝜈2𝑡). This is easily created using MATLAB. The function 𝑓(𝑡) is a wave composed by 

two pure frequencies 𝜈1 and 𝜈2. If we use FFT in function 𝑓(𝑡) it is expected to find clear 

peaks at the two main frequencies that make up the signal. It is possible to observe the 

exactly expected result in Fig.3.1.2 for 𝜈1 = 2Hz and 𝜈2 = 1𝐻𝑧.  

 

 

Fig. 3.1.2 – The graph of the function 𝑓(𝑡) = 𝑠𝑖𝑛(2𝜋𝜈1𝑡) + 𝑠𝑖𝑛(2𝜋𝜈2𝑡) with 𝜈1 = 2Hz and 
𝜈2 = 1𝐻𝑧 in blue. The graph in red is the Fast Fourier Transform of function 𝑓(𝑡). This figure 
was using MATLAB. 

 

It is important to mention that this is a reversible process. After transitioning to the 

frequency domain one can apply the inverse transform to return to the original function. 

With this characteristic it is possible to make use of a technique that acts on specific 

frequencies such as a mask or a filter, and then return to the original signal.  

 Another important consideration is that the paragraphs above refer to the one-

dimensional Fourier transform. The two-dimensional Fourier transform is simply a 
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generalization of the one-dimensional case. However, a very interesting result is obtained 

from the interpretation of the two-dimensional case. For the one-dimensional case the only 

independent variable is the time t. For the two-dimensional case the initial function depends 

on two variables. In signal processing, these variables are usually x and y, representing a 

pixel position on a plane. The variables associated with the resultant transform are referred 

to as spatial frequencies, which serve as the spatial counterparts to the familiar frequencies 

associated with time. Thus, it is possible to use it to study images. 

Although very efficient, Fourier transform fails in some details. Inspite of its 

excellence for the exploration of global properties of a signal (frequency spectrum), it lacks 

phase specificity, meaning that the information of specific time values for the onset of each 

frequency is suppressed. The lost temporal information can be retrieved applying the 

inverse Fourier transform and returning to the temporal/spatial spectrum, however, time 

and frequency information cannot be held simultaneously. This happens mostly because 

Fourier transform decomposes functions in terms of non-localized waves such as sines and 

cosines. Using a similar technique supported by another class of waves, time-localized, solve 

this issue.  

 

 

3.2 Wavelets 

 

Wavelets were independently developed through history in different fields of 

science, such as signal processing, mathematics and physics, among others. However, the 

first mention of the term “wavelet” is credit to the Hungarian mathematician Alfréd Haar, 

presented in his thesis in 1909. The fundamental “Haar” wavelet was then named in his 

honor [2]. 

Wavelet transform appear as an alternative to Fourier transform, built to handle its 

limitations. Wavelets are a class of wave-like functions with finite extent and average value 

of zero. The finite time span is understood by initial and final amplitudes equal zero, 

meaning that these functions have well-defined beginning and end. This is a fundamental 

characteristic which differentiates wavelets from other periodic common functions such as 

sines or cosines.  Finite extent means that the function is well localized in space.  Due to the 
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wave nature and its property of locality, wavelets can be thought of as “brief oscillations”. 

Differently than sines or cosines, wavelets are able to provide localization in space at a 

certain level, although it is not possible to obtain its full localization due to the uncertainty 

principle [2, 3, 42].  

Wavelets are a class of functions, comprising an ensemble with hundreds of different 

functions. Two of the most common wavelets are Haar wavelet and Morlet wavelet, which 

are shown in Fig. 3.2.1 and Fig. 3.2.2. 

 

 

Fig. 3.2.1 – The Haar wavelet, one of the first wavelet functions. Figure generated using 

MATLAB. 
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 Fig. 3.2.2 – The Morlet wavelet, a very common wavelet function. Figure generated using 

MATLAB. 

 

As a class of functions, there are two requirements that wavelets need to fulfill: 

admissibility and regularity. Admissibility requires that a wavelet presents a band-pass 

spectrum, i.e., the wavelet must be oscillatory. Regularity states that the wavelet must be 

smooth and concentrated in both time and frequency domains [42]. 

Similarly to Fourier transforms, that express a function as a collection of sines and 

cosines, one can express a function in terms of wavelets. The process is known as Wavelet 

Transform. 

 

3.2.1 Wavelet Transform 

 

The Wavelet transform consists basically in analyzing an incoming signal in terms of 

shifted and scaled versions of a basis function. This basis function will be one of the different 

types of available Wavelet functions, and will be referred as mother wavelet Ψ(𝑡). The 

shifted and scaled versions of the mother wavelet are parametrized by the variables s and τ. 

These altered versions will be represented as [4, 42]: 

 

Ψ𝑠,τ(𝑡) =
1

√𝑠
Ψ (

𝑡 − τ

𝑠
)       . (38) 

 

Note that the wavelet function Ψ is not specified, since the user is free to choose 

which wavelet to use. The factor 1 √𝑠⁄  normalizes function amplitude across different 

scales. The variable s is responsible for scaling the mother wavelet, while the variable τ 

works translating the basis function along time or space. The scale property determines the 

extent of stretching or compression applied to a wavelet. A fundamental relation that needs 

to be mentioned is that the spatial (or temporal) scale, which in this case is connected to the 

frequency of the wavelet. The most compressed versions of the mother wavelet are usually 

able to extract the higher frequencies of the original function [4, 42]. Intuitively, the most 

stretched versions of the mother wavelet will then extract low-frequency information from 
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the signal. The visual consequence to the wavelet of varying this parameter is shown in Fig. 

3.2.3, in the upper panels. 

The parameter τ is responsible for situating the mother wavelet, usually in time. In 

other words, this variable’s function is used to shift the original wavelet to the left or to the 

right. This is the property mentioned previously that mainly set apart wavelets from 

common sinusoidal functions. Their location is fundamental since wavelets are finite. This 

will make possible to study not just “which” frequencies are present in the signal, but also 

their distribution through time or space. The visual consequence of varying this parameter 

for a single wavelet of is shown in Fig. 3.2.3, in the lower panels. 

 

Fig. 3.2.3 – Wavelets exhibits different layouts when scaled and shifted. In the upper panels, 

the original wavelet is positioned in the middle, flanked by its "stretched" and "squished" 

versions. In the lower panels, the original wavelet remains at the center, while its shifted 

versions are displayed. The wavelet used in this example is the Symlet4. The figure was 

made using MATLAB. 

 

 Qualitatively, the main idea of the wavelet transform is to analyze “how much” of a 

mother wavelet is in an incoming signal for a particular scale and location. This is done 

through the use of convolution. Convolution is a mathematical procedure performed on two 

functions to generate a third function. It describes the transformation of one function's 

shape influenced by the other. It is defined by: 
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(𝑓 ∗ 𝑔) ∶= ∫ 𝑓(𝜏)𝑔
∞

−∞

(𝑡 − 𝜏)𝑑𝜏      . (39) 

 

The concept of convolution can be understood as an operation that returns the correlation 

between two functions. In other words, “how much” of function g is in f. This is exactly what 

is needed to proceed with wavelet analysis, justifying the use of this operation. 

 One of the first advantages of using wavelet decomposition arises already in the first 

steps. It is necessary to choose the mother wavelet that will be used in the process.  There 

are hundreds if not thousands of wavelets to choose [2, 4, 42]. Since the whole operation is 

done convoluting the mother wavelet and the original signal, the similarity between them is 

an essential detail to be considered. The more similar the mother wavelet is to the signal, 

better the result of the decomposition is expected to be. This leaves the choice of wavelet 

free in order to match a signal. 

 After the choice is made, the wavelet of a particular shape and value of s is 

convoluted with the original signal while its location 𝜏 varies. This will return a coefficient:  

 

𝑐(𝑠, 𝜏) = ∫ 𝑓(𝑡)
 

𝑅

Ψ𝑠,τ(𝑡)𝑑𝑡,     𝑠 𝜖 𝑅+ − {0},     τ 𝜖 𝑅      . (40) 

 

The process will be repeated for different values of scale, generating a set of coefficients. 

This coefficient 𝑐(𝑠, 𝜏) is known as the wavelet coefficient, and their quantity depends on 

the level of decomposition. Note that they depend on both scaling and shift parameters, 

consequently, the wavelet transform of a one-dimensional signal is a two-dimensional 

coefficient. In the following sections the usage of wavelet to analyze images will be depicted. 

Although possible (and very useful), it is a complex mathematical task since the wavelet 

transform of a two-dimensional signal (an image) generates a four-dimensional coefficient 

which is extremely complex to visualize. Gladly this problem is attenuated by one of the 

properties previously mentioned, regularity.  This requirement secures fast amplitude 

decrease with decreasing scale [4, 42]. 

Another crucial property that makes wavelet transform as well as Fourier transform 

useful is the reversibility. Without the ability to return from the frequency domain, these 

transformations would not be nearly as powerful as they are. It is possible to transit to the 
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frequency domain, extract meaningful data and return to the original signal. To synthetize 

the original signal from the wavelet coefficient one proceeds as follows [42]: 

 

𝑓(𝑡) = ∫  
 

𝑅+

∫ 𝑐(𝑠, 𝜏)
 

𝑅

Ψ𝑠,τ(𝑡)𝑑𝑠 𝑑𝜏,      . (41) 

 

 Just like in Fourier transform, wavelet transform can be implemented in continuous 

and discrete methods. The continuous wavelet transform employs every possible wavelet 

across a spectrum of scales and locations. This would result in an infinite number of scaled 

versions of the mother wavelet, convoluted with the original signal at infinite different 

locations, which is impossible to digitally compute. The discrete wavelet transform in other 

hand uses a finite set of scaled mother wavelets convoluted at finite number of locations. 

This comparison is analogous to the discussion carried out on continuous and discrete 

Fourier transform. As computers deal with discrete signals it is much more convenient to use 

the discrete wavelet transform in the scenario of digital signal processing. 

 

3.2.2 Discrete Wavelet Transform 

 

 The discrete wavelet transform works as follows. A one-dimensional discrete signal is 

the input, that will be decomposed into wavelet coefficients. The first decomposition 

generates two level 1 coefficients, approximate coefficients cA1 and detail coefficients cD1. 

To obtain these coefficients the original vector is convoluted with a low-pass filter and with a 

high-pass filter, followed by dyadic decimation. Dyadic decimation or down-sampling, in 

signal processing, refers to the process of reducing the number of samples in a signal by 

removing some of the samples while retaining the essential information. This process keeps 

only the even elements in the vector. These filters are essentially the altered versions of the 

mother wavelet. The low-pass filter originates the approximation coefficient cA1 and the 

high-pass filter originates the detail coefficients cD1. This process is done recursively to 

obtain the approximation and detailed coefficients at next levels [42]. A diagram of the 

procedure can be seen in Fig. 3.2.4. 
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Fig. 3.2.4 – Qualitative illustration of discrete wavelet transform of a signal s at level three. 

Figure taken from reference [42]. 

 

 The discrete wavelet transform is then capable of evince tenuous but relevant details 

of digital signals. However, just decomposing a signal in its wavelet terms achieves no 

significant result at all. The decomposition shows trait that other techniques can take 

advantage of. Together with thresholding, for example, the wavelet transform can be used 

to extract unwanted noise from a variety of signals [10-12]. Through threshold, some values 

of the details coefficients that are related to common noise are suppressed. Since these 

details are small, their suppression barely affects the main features of the signal [2]. That is, 

in a simplified and qualitative manner, how wavelet denoising works. This subject will be 

further explained in the following subchapter. 

The term thresholding refers to a common technique in signal processing used to 

separate relevant information from noise or unwanted components. It consists basically of 

setting a threshold and classifying the data based on whether their values are above or 

below that threshold. There are different thresholding types depending on what is done to 

the classified data. Usually, their value will be set to be zero if below the threshold, and 

remain unaltered if above. This is the most common thresholding process, known as hard 

thresholding. Nevertheless, the determination a threshold value is not trivial. There are 

several different thresholding methods in signal processing. It is worth mentioning that 

there are automatic thresholding determination methods, that obtain threshold values in 

function of the input signal. One of these methods is the fixed-form threshold, that is 

proportional to √𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ(𝑥)), being x any data vector.   
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As signal processing is necessary for almost all areas that carry out studies with 

measurements and data, it is expected to observe the use of wavelet transform for a wide 

range of fields. Applications range from medical electrocardiograms [6] to FBI fingerprint 

storage [8]. Together with thresholding, wavelet decomposition excels in roles such as 

compressing, sharpening, enhancing and denoising images [5, 7, 9-12]. This led, for example, 

to the usage of this technique in tomography [26] and to denoise ultrasound [10] images.  

Wavelets also have remarkable roles in SPM image processing [22, 23]. In the last 

decades wavelets have been vastly used in pair with AFM. Among a plethora of usages, 

some worth mentioning are the analysis of thin film images, development of a fast-imaging 

method with self-tuning scanning frequency, the study of force-extension curves and 

denoising [13-19, 25, 27, 28].  

 Wavelets are also used in lesser extent to few STM applications. One of the various 

details that the frequency domain make explicit are the edges of an image. This happens 

because the pixel intensity value changes drastically in the edge, corresponding to a very 

high spatial frequency at that location. Taking advantage of this, wavelet decomposition was 

used to track atoms in STM-made movies [20]. Wavelets were also used to segmentate STM 

images [21] and remove artifacts and noise through sparse coding [29]. 

 

3.2.3 Practical Implementation 

 

 As already mentioned, the implementation of the discrete wavelet transform is done 

using MATLAB. MATLAB is a programming platform that consists in a matrix-based language. 

This platform was chosen because, in addition to being able to process data, it is also 

possible to develop complex algorithms. These algorithms can not only automate 

procedures to large datasets, but also be used to implement specific data treatments tools 

that are not feasible in other common data processing tools. Additionally, STM data is 

usually stored in matrix format, favoring the use of MATLAB. 

 The practical procedure of wavelet denoising is, in a simplified manner, divided in 

three parts. Decomposing the original signal in wavelet terms, determining the threshold 

values and setting to zero values below the module of the threshold for the detail wavelet 

coefficients. Suppose a file in a xy format with two columns, one for positions and the other 
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for height. This signal is stored in a matrix variable in MATLAB. The discrete wavelet 

decomposition is made through the command “wavedec”. This command receives the initial 

signal s, the level of the decomposition and the name of the desired mother wavelet as 

input. As output the command returns the detailed and approximation coefficients, 

respectively d1 and a1. As a first example, an x-ray diffractogram is used and decomposed in 

Fig. 3.2.5 at level one wavelet coefficients. The initial signal s is decomposed in the 

approximation coefficient a1 and detail coefficient d1 using the wavelet Symlet4. 

 

 

Fig. 3.2.5 – The discrete wavelet transform of an arbitrary x-ray diffractogram at level one 

decomposition. 

 

In a deeper decomposition, the next step is to decompose the approximation 

coefficient a1 into a second level detail and approximation coefficient, d2 and a2, for the 

level two decomposition. The process continues analogously for further levels, as show in 
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Fig. 3.2.4. It is important to note that the decomposition level and the mother wavelet can 

be easily chosen and switched to observe different results. This facility is very useful for 

choosing the best mother wavelet and best level of the decomposition through trial and 

error. 

For the denoise operation one of the thresholding determining functions is used. For 

example, the function “wthrmngr” in MATLAB is used with inputs of the determining 

function and the wavelet coefficients. The output returns the estimated values of threshold 

for the specific signal. The ease of carrying out this process is remarkable since the user can 

try different methods to discover which one better suit his/her problem. 

For the last part, the detail coefficient will have values that are below the threshold 

set to zero (for the case of hard threshold). The last function used is “cmddenoise”, which 

receives as input the original signal, the mother wavelet, the level of the decomposition, the 

estimated threshold value and the type of threshold done (soft, hard, etc). The output is the 

denoised signal.  In MATLAB, besides the automatic threshold estimation, the value can be 

changed manually. The threshold value is represented by the blue dashed line in Fig. 3.2.6., 

and it can be dragged up and down. 

Therefore, these three functions (“wavedec”, “wthrmngr” and “cmddenoise”) are 

used to perform a satisfactory wavelet decomposition and denoising in a one-dimensional 

signal. The two-dimensional case is obtained analogously, with analogous MATLAB 

functions.   

The result of the denoising process will be omitted, since only an explanatory 

example is provided in this section and the level one denoising does not significantly 

changes the result. In the selected diffractogram most of the noise in a signal is found in the 

further levels of detail wavelet coefficients. 

Now equipped with STM and signal processing theory, it is possible to depict and discuss the 

results obtained during the study of discrete wavelet transform to denoise and enhance 

spectroscopic contrast in STM images of Cerium Oxide.  
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Fig 3.2.6 – Application of the threshold procedure. The blue dashed line represents the 

threshold value estimated. All values below the module of the threshold will be set do zero 

in the detail coefficient vector data. 
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4. RESULTS 

Before going to the results, it is important to discuss about the electronic properties 

of the sample, as well as the growth method. 

 

4.1 Cerium Oxide Properties 

 

 The intrinsic reduced energetic cost for reduction or oxidation of cerium oxide (CeO2) 

allows the use of this compound to control the release or absorption of oxygen depending 

on the environment that surrounds it. For this reason, CeO2 is conventionally used for 

combustible or toxic gas sensors and as a catalyst for oxidation reactions of CO and CH4. The 

crystalline orientation of the exposed facets and the morphology of ceria nanoparticles (NPs) 

affect their catalytic and sensing capacity, so NPs with different shapes such as nanorods, 

nanocubes, planar clusters, among others, have been synthesized to improve the efficiency 

of the catalyst [51]. Doping possibilities have also been shown as an interesting route for the 

generation of active defects such as oxygen vacancies, which play an important role in the 

ionic conductivity of this material. Such property is desirable for use as a solid electrolyte in 

fuel cells, as can be seen, e.g., in reference [52]. In addition, the selected dopants can also be 

selected among redox species, which provides an improvement in the catalytic activity [53]. 

 In the same direction, the synthesis of this oxide associated with others systems such 

as metallic materials, nano-scaled carbon forms, among others, modifies its interaction with 

the environment, improving its chemical sensitivity and/or catalytic properties [50, 54, 55]. 

On the other hand, graphene sheets have been successfully used for anchoring metallic 

oxide NPs aiming the stabilization of their morphology as well as tuning their redox 

properties and enhancing conductive (electrical) properties of ceria [56, 57]. These different 

studies have shown the relevance of the surface of CeO2, as well as its interactions when 

associated to other materials. Therefore, it is evident that a two-dimensional configuration 

could significantly improve both aspects. Despite the promising results presented in the 

literature in relation to the catalytic and chemical sensitivity of the CeO2-nanocarbon 

system, so far there is no study aimed at understanding in more detail the mechanisms of 
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interaction and alternatives for its improvement and manufacture in a more controlled 

manner. 

 A detailed study of the growth parameters of ultrafine nanostructures of ceria (pure 

and doper) on graphene, to tune ceria properties such as shape, crystallographic orientation, 

concentration of vacancies and prevalence of Ce3+, analyzing its consequences on electric 

conductivity characteristics is still missing. In order to improve these properties, materials 

used as CeO2 dopants must produce defects in the ceria structure, such as oxygen vacancies 

and Ce3+, which will increase the ionic and electronic conductivity, respectively. Such 

conditions will allow the use of the CeO2/graphene system both for catalytic applications 

and as a sensor for gases such as CO and NO2 [58, 59]. 

  

4.1.1 Ultrafine CeO2 growth in HOPG substrate 

  

 The Pulsating Laser Deposition (PLD) technique allows a broad range of applications 

on growth of films using different classes of materials with the advantage of keeping the 

stoichiometry of the used targets. This allows a simple route for deposition of complex films 

[60, 61]. The method basically consists on the evaporation of a target material that is 

deposited through the surface heating produced by a pulsed high energy laser. The 

evaporated material is ejected as a plasma that moves along a plume-shaped path directed 

towards the desired substrates, later forming thin films. Parameters such as laser 

wavelength, substrate temperature, pulse frequency, oxygen partial pressure during 

deposition, fluence, target distance and deposition time can be tuned to modify the 

stoichiometry, morphology, orientation and crystalline quality of the deposited films.  

 

 

Fig. 4.1.1 – PLD Reactor. a) External part of the reactor. In the red text can be read 

“Loadlock” and “Main Chamber”. b) Main chamber interior. In the red text can be read 
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“Substrate” and “Plume”. The photographs were provided by Diego Lopes, a collaborator 

responsible for sample growth at UFABC. 

 

 The reactor used for the growth of ultrafine ceria films studied in this chapter was 

developed by the Dutch company TSST (Fig. 4.1.1) and consists of a pulsed laser with a 

wavelength of 248 nanometers, a deposition camera with carousel for five different targets 

and a gas entrance for deposition in an oxygen-controlled environment. Both the exchange 

of targets and the loading of samples is carried out through a load lock chamber located on 

the side of the main camera, allowing to maintain a constant high vacuum in the main 

(growth) chamber (Figure 4.1.1).  

Initial deposition tests were performed on graphene and HOPG substrates 

simultaneously, in order to verify morphological differences of the grown nanostructures as 

a function of the surface energy of the sp2 carbon substrate. 

Cerium Oxide has the fluorite structure (space group Fm3m). It is a face-centered 

cubic (FCC) structure that is common for compounds with the formula AB2, where the A ions 

occupy the eight tetrahedral interstitial sites whereas B ions occupy the regular face-

centered cubic sites. The main structure of CeO2 is shown in Fig. 4.1.2. 

 

     

Fig. 4.1.2 – Schematic representation of the cubic fluorite structure of Cerium Oxide. Figure 

taken from reference [66]. 
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 It is known in literature that CeO2 has a lattice parameter of 0.54 nanometers [63]. To 

characterize and validate the sample, measurements were conducted at a nanometric scale 

using the STM. The images obtained are of fundamental importance, since the ability to 

visualize the atomic structure allows the experimental verification of the lattice parameter 

of CeO2, as well as a confirmation of its structure and observation of its orientation. The 

atomic structure of CeO2 obtained can be seen in Fig. 4.1.3. 

 

 

Fig. 4.1.3 – Atomic resolved STM image of CeO2 in HOPG substrate. The scale bar is 1 

nanometer. 

 

 A height profile was extracted from the results of Fig. 4.1.3 along the direction [110]. 

As expected, due to the oscillating pattern, the profile was similar to a sinusoidal graph, with 

the peaks corresponding to the white dots in Fig. 4.1.3. To achieve a reliable experimental 

estimation of the lattice parameter, the average difference between multiple peaks was 

taken into consideration. The error was determined by calculating the average width at 3/4 

height across multiple peaks. The (110) interplanar distance obtained (0.45 ± 0.09)𝑛𝑚 



4. RESULTS  48 

agrees with the observed in literature (0.38 nm) within the error bar. The CeO2 orientation 

seen in Fig. 4.1.3 is expected, as seen in reference [65]. 

Another relevant CeO2 characteristic is its characteristic band structure. From the 

theoretical calculations it is possible to obtain an estimation of the band gap, intrinsically 

related to its density of states (DOS). This allows a comparison of STS measurements with 

the predicted band gap, providing an additional confirmation of the sample’s stoichiometry 

and structure. From Fig. 4.1.4 it is possible to observe CeO2 has an indirect gap of 

approximately 1.86 electron-volt [64].  

 

 

 Fig 4.1.4 - CeO2 band structure and Density of states. Figure taken from Materials Project 

website. 

 

 Several STS measurements were carried out at the exposed HOPG substrate and the 

grown CeO2 clusters and nanoparticles. The results are shown in Fig. 4.1.5. The methodology 

for acquiring the STS curves involved capturing a high-quality STM image in the border of the 

substrate and CeO2 interface. Subsequently, multiple STS curves were collected from both 

surface terminations. The average of the curves is calculated to yield a more accurate 

representation, eliminating possible surface artifacts. As anticipated for HOPG, the substrate 

exhibits a semimetal curve, while STS measurements in CeO2 depicts a semiconductor curve 

with an estimated energy gap of approximately 1.87 electron-volts. 
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Fig. 4.1.5 – STS measurements in HOPG (left panel) and CeO2 (right panel). 

 

4.2 Calibration Method 

 The main goal of this work revolves around using wavelet transform to de-noise STM 

images at distinct applied bias, providing reliable datasets in which spectroscopic 

information can be qualitatively disentangled from sample topography. For this to be done 

correctly and efficiently it is convenient to validate the method testing it with different 

parameters and in different image datasets. It is also mandatory to define procedures to 

evaluate the results after de-noise is carried out. To make sure the method is functional to 

SPM images (including AFM data), an analysis in four main steps is suggested here. The first 

step consists in analyzing visually the image before and after de-noises, eliminating coarse 

results right away. After that, in the second step, topographic profiles are extracted from 

pre-processing images and post-processing images. These profiles answer important 

questions such as if the process keeps the height and volume under the curve of primary 

peaks, if the method strongly smooths smaller peaks or grain borders, etc. The third step is 

to obtain a Fourier Transform of the two profiles to observe what happened in the 

frequency domain before and after the application of the method. Last but not least, a 

residual image obtained by subtracting the original image and the treated image is 

generated. The residue indicates the amount of original information suppressed from the 

image. In order to explain all these steps, we use two test images, one from STM and one 

from AFM. Such method calibration will be depicted in this section. 
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 The test images are shown in Fig. 4.2.1. The first image (Fig. 4.2.1 a) is an AFM 

measurement of Bi2Te3 sample in HOPG substrate. The second image (Fig. 4.2.1 b) is a STM 

measurement of bilayer graphene in silicon substrate. These images were obtained from the 

STM and AFM software, exported as a xyz file. Such file type is easily handled by MATLAB, 

that fully access the three columns (2 for plane positions and the third for height), making 

possible to reconstruct the image through the use of the command “mat2gray”. The process 

outlined here performs the de-noise procedure in both images with several different mother 

wavelets, in various decomposition levels. This initial stage indicates the most suitable 

wavelets to use in SPM images. The choosing method consists of trial and error, but with 

good candidates suggested by reference [10]. Some of the mother wavelet tested are Haar, 

Daubechies, Symlet, Biorthogonal and Discrete Meyer. It is relevant to state that the 

wavelets mentioned are in reality families of numerous functions.  

 

 

Fig. 4.2.1 – a) AFM image taken from a Bi2Te3 sample. The lateral scalebar is 1µm and the 

height ranges from 0 to 30nm. b) STM image taken from a bilayer graphene sample. The 

lateral scalebar is 100nm and the height ranges approximately from -0.1nm to 2nm. A 

vertical profile is extracted along the yellow dotted line in both images.   

 

 The majority of the wavelets tested resulted in identical images before and after the 

denoising processing, meaning that no relevant gain was obtained using the method. In the 

other cases, the processing method caused the processed image to become distorted, i.e., 
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relevant data was being incorrectly suppressed from the original image. For this extreme 

cases it is easy to determine which mother wavelets should not be used for this specific 

study, just by looking at the processed images. It is expected to obtain a cleaner image, with 

less artifacts in the background. To exemplify this, a discarded parametrization can be seen 

in Fig. 4.2.2, where the image become pixelated and distorted. 

 

 

Fig 4.2.2 – A discarded processed version of the Fig. 4.2.1. 

 

The first step of the calibration method is completed then just by elimination of two 

types of results, the strongly modified ones, and the fully unmodified ones. That 

classification led to the good candidates, in our case some different wavelets from Symlet 

family and from Biorthogonal family. Although we have tried to de-noise using distinct 

functions, the Symlet wavelet was expected to be among the best choices, since it has been 

used in similar works [10]. The Symlet family consists of infinite modified versions of 

Daubechies wavelets, that starts with one and grow, with small modifications. Symlets from 

two to eight have been tested showing small difference for small number and virtually no 

difference for greater numbers. The best mother wavelet for the two test images was the 

Symlet4 wavelet (Fig. 4.2.3), once again chosen by testing different functions and observing 

which function had the best result, i.e., trial and error. We believe the Symlet4 showed the 

best results due to the similarity of its form compared to most common form of noise in 
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topographic profiles in SPM. This similarity is related to better results due to the intrinsic 

convolution-dependency of this method, which has been already discussed in the previous 

chapter. Using this function as a mother wavelet allows then to effectively extract undesired 

noise. 

 

    

Fig. 4.2.3 – The Symlet 4. This wavelet was chosen as the main mother wavelet in this work 

through the method of trial and error. 

 

 An additional parameter that deserves particular investigation in initial tests with the 

method is the level of decomposition. This parameter is intrinsically related to the threshold 

value, which determines how much of the detail coefficient will be suppressed. Despite that, 

as the threshold value used in this work was determined automatically for each input image, 

it is convenient to assume the threshold as constant and focus the discussion in the 

decomposition level. Low decomposition levels lead to few or zero changes between the 

pre-processing and post-processing image. This means that with a few-level decomposition 

the relevant noise of SPM images remains untouched, requiring further levels of 

decomposition. As the level of decomposition increases to 4-5, it is possible to extract noise 

satisfactorily. However, as the level of decomposition increases beyond level 6, the result 

becomes artificial. This happens since at higher levels more detail coefficients are extract 

from the data and relevant features end up being inadequately suppressed. For the majority 

of tests, a level of decomposition between 4 and 5 has proved to be sufficient for our 

purpose. Fig. 4.2.4 is an example of a visually satisfactory denoising process for the first step. 
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This result was obtained using suitable parameters as discussed above. It is shown that the 

right image in Fig. 4.2.4 has reduced static noise and smoother profiles, characterizing noise 

reduction but with reduced loss of information in edge details. 

 

Fig. 4.2.4 – Visual result of the wavelet denoising processing a STM image of a bilayer 

graphene sample. The left image is before the treatment and the right image is after the 

treatment. The decomposition was performed using Symlet4 at level 5, with soft 

thresholding. 

 

After choosing a mother wavelet and a reference value for the decomposition level 

parameter, it is necessary to evaluate the denoise result in depth. To better visualize the 

difference between the pre-processed image and the post-processed image we extracted a 

vertical profile from both images, indicated by the yellow dotted lines in both panels of Fig. 

4.2.1. The profile is preferably extracted in a vertical line if the horizontal line is the fast axis 

in the STM and AFM, which often results in scanning artifacts along horizontal lines. Both 

profiles are then placed side by side in order to allow visual analysis.  

 

 The extraction is carried out with MATLAB commands. Since the input 

(measurement) file provides access to each pixel in the figure. The extraction is usually 

performed simply by making an array with all pixels along a vertical line. It is also possible to 

read subsequent vertical lines and make an averaged profile using a limited range of 

horizontally distributed data. This process is performed before and after the denoise 
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procedure, generating two profiles for each image, one representing the pre-processing 

image and the other one representing the post-processing image. These profiles are shown 

in Fig. 4.2.5 and Fig. 4.2.6 for the Bi2Te3 sample profile and the bilayer graphene sample 

profile, respectively. In both cases, the blue line depicts the profile prior to denoising, while 

the red line represents the profile after denoising.  

 

 

Fig. 4.2.5 – Topographic profile of Bi2Te3 on HOPG, extracted from the AFM image in Fig. 

4.2.1. The profile was extracted along the yellow dotted line. 

 

 

Fig. 4.2.6 – Topographic profile of bilayer graphene on silicon, extract from the STM image in 

Fig. 4.2.1. The profile was extracted along the yellow dotted line. 

 

 The visual analysis of the first profiles in Fig. 4.2.5 shows that the main shape of the 

profile remains unchanged. The most relevant peaks and valleys show little or no 

deformation, while the height and depth also remains virtually unaltered. The appearance of 

small peaks near the border of big peaks (in the vicinity of position 2.8µm in Fig. 4.2.5) is 

noted, which indicates that this method may introduce information near borders.  This 

occurs due to the intrinsic tendency of wavelet transform denoise to smooth regions near 

steep borders. Some modification extent was already expected since no signal processing 

technique is perfect and this issue can be easily solved by applying the method to delimitate 
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regions of interest instead of processing the whole image. However, such changes are 

considered of minimum relevance for the scope of this work, and will not be addressed 

unless physical properties are modified. The low-amplitude aleatory oscillating pattern 

observed in the baseline of the figure prior to the procedure is attenuated. This pattern is 

commonly associated with multiple types of noise, either electronic, thermal (small 

variations in local temperature) or due to air convection. The overall profile clearly smooths 

after denoise when compared to its original version. This is a direct and unambiguous 

indication of noise removal. 

 In Fig. 4.2.6 it is possible to observe essentially the same effect discussed above. 

However, the difference between the profiles is substantial. This happens because the 

bilayer graphene image is, in general, a much noisier figure. This can be observed in Fig. 

4.2.6 blue line, where the profile baseline exhibits very pronounced aleatory oscillations. 

This is expected since STM is carried out with a low current amplifier and a piezo scanner 

with a maximum 500nm scan range, rendering it much more sensitive technique compared 

to AFM. Therefore, STM images are more susceptible to larger noise contributions. The 

results in Fig. 4.2.6 are very interesting. The main peaks and valley are virtually unchanged, 

but with a significant difference in the base line of the profile. This difference is exactly what 

is observed in Fig. 4.2.4, where the static noise form in the background is largely suppressed 

over the whole profile. This strongly indicates that the method is relevant to denoise SPM 

images. However, it is observed that a possible double peak has been merged into one larger 

peak (around 33nm x-axis position). Therefore, it is important to state that the method has 

its limitations, given the appearance of incorrect data in small details and some degree of 

loss of relevant information near edges. 

 The profile visual analysis shows that the method is interesting for AFM images, and 

very promising for noise reduction in STM images. This concludes the second step of the 

four-step proposed to validate it. 

 Despite the choice of using wavelets, Fourier Transform is still a very powerful tool 

for frequency analysis in signal processing, so it is used to further evaluate the process. The 

third step consist in analyze the frequency spectrum of both profiles. It is expected to 

observe a suppression of all frequencies presented in the image, indicating a white noise 

(aleatory noise) removal. For this purpose, it is mandatory to use the Fourier Transform 
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discussed before (chapter 3) to transit from the spatial representation to the spatial-

frequency representation. This is done simple by using the FFT command in MATLAB (Fast 

Fourier Transform algorithm). FFT is performed in the vector that stores the height 

information of the profile, i.e. the y-vector. However, the x vector (spatial variation along the 

line the profile was measured) needs to be re-scaled before FFT plotting to obtain the 

frequency histogram. The maximum possible frequency that can be observed is between 

two consecutive pixels, and the minimum frequency is between the first and the last pixel. 

After sampling the x-vector and plotting it with the y-vector we obtain the frequency 

histogram for both profiles, before and after the processing (Fig. 4.2.7). 

 

Fig. 4.2.7 – Frequency histogram obtained by FFT of the Bi2Te3 profile before (blue) and after 

(red) the denoising procedure. There is a horizontal line plotted in zero for reference. 
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Fig 4.2.8 – Frequency histogram obtained by FFT of the bilayer graphene profile before 

(blue) and after (red) the denoising procedure. There is a horizontal line plotted in minus 10 

for reference. 

 

In figures 4.2.7 and 4.2.8 it is possible to observe a considerable reduction in the 

intensity for the whole spectra, which is associated with white noise removal. It is also noted 

a decrease in high frequencies, that possibly indicates the desired baseline noise reduction, 

and also the collateral edge smoothening. It is very interesting to notice a peak in a specific 

frequency in the blue profile in Fig. 4.2.7 around 110Hz. This reveals a concentration of data 

measured with a specific sampling frequency, which can be associated with a particular 

source of noise signal at a defined frequency in the image. The wavelet method was able to 

automatically extract that peak of frequency, without the use of common Fourier Transform 

tools in which one must select frequency peaks manually, as shown in the red profile in Fig. 

4.2.7. Since there is minimum loss of relevant information after the treatment, it is safe to 

assume the peak is related to the presence of noise. Another indication of the successfulness 

of the method is the attenuation of the oscillating format, clearly observed in Fig. 4.2.8. This 

figure also exhibits a decrease in all frequencies, implying once again the white noise 

reduction. However, it is also observed the appearance of high frequency peaks around 

300Hz in Fig. 4.2.7, that can possibly be related to the frequencies required to describe 

borders, as discussed previously (Fig. 4.2.5, approximately at 2.8µm). Nevertheless, the 
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results of the frequency analysis are consistent with expectations, presenting features that 

agree with those observed in previous steps. It is interesting to point out that the frequency 

histograms agree not only with the convenient part of the results, but also agrees with the 

issues observed in the previous steps. 

For the last part of the wavelet procedure validation, a residual image of Fig. 4.2.4 is 

retrieved in MATLAB simply by subtracting the right and left image. The residue is of 

fundamental importance, as it is strictly related to the information removed from the image 

during the denoising process. Only the STM graphene bilayer image will be depicted in this 

last step since the noise reduction was more evident when compared to the AFM image. 

Figure 4.2.9 shows the residual image side by side with the original image.  

The general information depicted in this residual image is that most of the 

information extracted from the original image is random, which indicates its relation to 

background noise. This is expected since the third step indicated a considerable remove of 

white noise of the image. Overall, the residual image also indicates a good result in the 

method. However, it is possible to observe in Fig. 4.2.9 that in fact there was some loss of 

information. This is indicated by the white circles drawn in the residual image, where there is 

a non-aleatory distribution (concentration) of information. Compared to the original image 

in the right, it becomes evident that this concentration is related to the presence of the 

nanostructures. Nevertheless, such reduced information loss from the method is acceptable 

when compared to the overall data quality gain observed in the previous steps. 
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Fig. 4.2.9 – Residual image of Fig. 4.2.4 (left) and original image of bilayer graphene (right). 

 

 This concludes the four-step analysis, which is considered to be sufficient to validate 

the method, understanding and discussing its strengths and weaknesses. All steps indicate 

the method is reliable and can be used to improve the quality of SPM images, with emphasis 

on STM images. The improvement is crucial since it can be used to enhance weak contrast in 

the original image, evidencing physical relations that went unnoticed. Hence, supported by 

the method and aware of its reliability, we are able to proceed and apply it in Cerium Oxide 

STM measurements.  

 

4.3 Image Series and Discussion 

 The main series of measures in this work are the CeO2 thin films deposited in HOPG. 

In addition to Fig. 4.1.3 and Fig. 4.1.5, a set of the best measurements of CeO2 at different 

applied bias (for the same current threshold) is depicted in Fig. 4.3.1. These images were 

generated in MATLAB using the xyz format file exported from the original measures in the 

STM software. While in the search for suitable images to utilize this method, we seek for 

samples with weak sample-substrate contrast, a situation that would render the contrast 

improvement more relevant. CeO2 is exactly one of these samples, with weak contrast. 

Another desired feature, observed in CeO2 sample, is that the image changes over tension 

variation. This is observed mainly because the STM image does not return a pure height 

response, as discussed in previous chapters. The measurement is a convolution between 

height and electronic states, therefore, changing the applied voltage in the system makes it 

sensitive to specific electronic properties of the sample, consequently generating different 

images. 
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 Fig. 4.3.1 – Series of CeO2 nanostructures STM measurements in different applied bias. 

Respectively, 1V, 1.5V and 2V for the first row and 2.5V, 3V and 3.5V for the second row. All 

images share the same side length (54nmx54nm) and the scalebar is 20nm. 

 

 As the voltage increases, it is possible to observe a region disappearing and 

reappearing in the nanostructure. This can be clearer observed in Fig. 4.3.2 and points out to 

the existence of relevant electronic interactions around 2.5V. The main idea is not to 

propose the reason behind this phenomenon, but to state that the wavelet transform, 

together with denoising, can be used to enhance the weak contrast observed between the 

images in Fig. 4.3.2. In this case, the difference can be seen without further processing. 

However, there may be cases with other classes of samples in which such features would 

only be visible after image treatment with denoising. 
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Fig 4.3.2 – STM measurements of CeO2 at respectively 2V, 2.5V and 3V. The white ellipses 

indicate a region of electronic contrast between different voltages. 

 

To analyze the results of purely the wavelet denoise, the images at 1V and 3V were chosen 

to carry out the process. Color scale was added to them through the usage of Gwyddion SPM 

analysis software [41]. In addition to the color scale, the images were treated by standard 

SPM community methods such as leveling the data, aligning rows, correcting horizontal scars 

and removing height displacement background. After these steps wavelet noise reduction 

was applied. The wavelet denoise used Symlet4 as a mother wavelet, at level 5 

decomposition, with soft adaptative thresholding. The results are depicted in Fig. 4.3.3. The 

wavelet transform denoising was performed separately, i.e., all four images in Fig. 4.3.3 have 

been treated in Gwyddion as described above, but only the two images in the right column 

were processed using wavelet denoising method. Fig. 4.3.3 is then similar to Fig. 4.2.4, 

allowing one to see the results of a pure wavelet denoising. 
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Fig 4.3.3 – Results on wavelet denoising. a) CeO2 STM image at 3V bias without wavelet 

denoising. b) CeO2 STM image at 3V bias with wavelet denoising. c) CeO2 STM image at 1V 

bias without wavelet denoising. d) CeO2 STM image at 1V bias with wavelet denoising.  The 

scalebar is 20nm. 

 

 To better visualize the effects of the wavelet treatment performed, topographic 

profiles are extracted from Fig. 4.3.4, as in the method calibration chapter. It is possible to 

observe similar results compared to the method calibration data, indicating that the process 

was effective. The oscillating pattern is attenuated as expected, while the main peaks keep 

their form.  
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Fig. 4.3.4 – Three topographic vertical profiles extracted randomly from Fig. 4.3.3 depicting 

the results after the denoising.  

 

To study the difference of processing the images with wavelets, in respect to the 

voltage contrast, the 2.5V bias image from Fig. 4.3.1 was also used. Vertical and horizontal 
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profiles were extracted along the black dotted line, indicated in Fig. 4.3.2. The position of 

these profiles is crucial, as they are placed to extract information from the region where the 

contrast between distinct voltages is observed. From Fig. 4.3.5 it is already possible to 

observe that the contrast seems to be easier to visualize in profiles.  
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Fig. 4.3.5 – STM images of CeO2 at different tensions (left) and plot of vertical and horizontal 

topographic profiles along the dotted lines (right). The profiles were extracted from the lines 

indicated in Fig. 4.3.2. 

 

 The next step is to compare, in combined visualization, two profiles at different 

voltages. For this, the vertical profiles of the 1V bias and the 2V bias image are plotted 

together (see Fig.4.3.6). The 1V profile is shifted to equalize the height of the substrate, and 

the contrast in the nanostructure is greatly evidenced. This is done relying on the fact that 

HOPG is a very stable substrate, with little reaction to bias variation in the used range if 

compared to CeO2.  
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Fig. 4.3.6 – Comparison between the vertical profiles of the 1V bias and the 2.5V bias image. 

The vertical profiles were extracted respectively in the delimited vertical lines in the STM 

image at the top of the figure. 



4. RESULTS  67 

 

Different than expected, the contrast is more pronounced in the rest of the 

nanostructure rather in the region of interest (white ellipses). However, there is still relevant 

information in the region of interest. The same is observed between 1V profile and 3V 

profile, depicted in Fig. 4.3.7. Again, the 1V profile is shifted to equate the height of the 

substrate. Nevertheless, there is more contrast in the region of interest for Fig. 4.3.7. A 

better form to visualize the difference of contrast between the nanostructure and the 

substrate region is to subtract one profile from another. The resulting function would be 

approximately zero for the substrate region, and non-zero for the nanostructure region.  
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Fig. 4.3.7 – Comparison between the vertical profiles of the 1V bias and the 3V bias image. 

The profiles were extracted respectively in the delimited horizontal lines in the STM images 

at the top of the figure.  
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Fig. 4.3.8 – Contrast between 1V profile and 2V profile with wavelet (top) and without 

wavelet (bottom). 

 

Doing so, we obtain Fig. 4.3.8. It is possible to see the expected result, values 

oscillating between zero for the substrate region, and non-zero values for the nanostructure 

region. This clearly indicates that there is little to no contrast between two different tensions 



4. RESULTS  70 

in the substrate region. At the same time, Fig. 4.3.8 also indicates a significative contrast in 

the region of the CeO² nanostructure. 

The wavelet denoising method is then used to accentuate weak spectroscopic 

contrast. This becomes clear when we compare Fig. 4.3.8 (top) with Fig. 4.3.8 (bottom). It is 

possible to observe the contrast line dropping to zero slightly faster for the process 

performed without the wavelet denoising. Another important observation is the signal 

oscillates less for the wavelet treated image. This strongly suggests that it is possible to 

obtain a higher and clear spectroscopic signal by processing the data through the use of 

wavelets. 

Since line profiles show a clear gain in data quality using wavelet one can proceed to 

two-dimensional data treatment and subsequent processes in order to provide improved 

data visualization. Figure 4.3.9 shows differences of STM data from normalized images 

measured in distinct applied bias. In this case the STM data is leveled at the HOPG substrate 

regions (such as in figures 4.3.6 and 4.3.7) and evidences regions in which the relative 

number of available electronic states has increased from the lower to the higher bias.  
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Fig. 4.3.9 – Differences of wavelet-processed STM images, leveled at the substrate region 

(shown in black). The upper panel shows the relative electronic state filling that takes place 

between 2.5V and 1V, with a concentration of color-enhanced regions around the CeO2 

nanostructure (possibly due to the presence of edge states). The middle panel shown a 

similar electronic contrast map, between 3V and 1V, where a more homogeneous filling is 
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observed. Finally, the lower panel shows the contrast map built between 3V and 2.5V, 

indicating that electronic states at the center/upper region of the nanostructure may be 

bulk-like and are filled in this bias interval. 

 

The upper panel, where 2.5V – 1V data is shown, clearly exhibits enhanced colored 

contours around the CeO2 nanostructure. Indicating that edge states are filled between 1 V 

and 2.5 V. These states may be related to vacancies, defects and impurities that are only 

mildly present at the nanostructure center. A similar contrast map built between 3V and 1V 

STM data shows a more homogeneous color distribution as one moves along the 

nanostructure area, showing that homogeneous spatial state filling takes place within the 3V 

bias range.  A complementary contrast map (lower panel of fig. 4.3.9) extracted from 3V - 

2.5V datasets clearly shows more prominent colored zones at the center/upper part of the 

nanostructure indicating that electronic states filled in the 2.5V – 3V range may belong to 

bulk bands of CeO2 structure. 

Finally, in order to understand the gain obtained by analyzing wavelet-treated 

datasets with electronic contrast, figure 4.3.10 shows the residual noise extracted from the 

subtraction of 1V STM maps with and without wavelet process. One observes that most of 

the noise is concentrated within the nanostructure area, showing that the dataset 

stabilization is more pronounced inside the CeO2 nanostructure, as initially desired. 
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Fig. 4.3.10 – Map of extracted STM noise using wavelet method, obtained from the 

difference of 1V maps generated with and without wavelet processing. The result indicates a 

more pronounced noise suppression inside the nanostructure. 
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5. CONCLUSIONS AND PERSPECTIVES 

In this work, we gathered evidence that strongly indicates the use of wavelet 

transforms as a good technique to enhance weak spectroscopic contrast in Scanning 

Tunneling Microscope images. The treatment relies mainly in noise reduction through the 

use of thresholding. To detect the values of threshold, an automatic image-dependent 

method (fixed-form threshold) was utilized. A mother-wavelet (Symlet4, chosen through 

trial and error) is used to evince different frequencies that compose the original STM image, 

allowing us to filter unwanted frequencies. This process results in a cleaner image, with less 

random oscillations between the adjacent pixels.  

To test and calibrate the method, we proposed a four-step evaluation using two 

distinct images. The four-steps consist of, visual analysis, topographic profile extraction and 

analysis, Fourier Transform analysis and residual map analysis. This method was used to 

study the results of the wavelet denoise using the two test images. Each step revealed 

advantages of the method, as well as some minor concerns related to data processing 

techniques in general. The advantages revealed in the steps are a good indication that the 

method is indeed reliable for the utilization we propose. 

The method was then used to process STM images of a Cerium Oxide nanostructure 

in different tensions. We have successfully show that by suppressing this noise, it is possible 

to obtain a higher and cleaner contrast when subtracting two STM images with different 

tensions. This is of extreme importance since these results indicates that the technique may 

be useful to extract more electronic information from the so commonly used STM. 

The discoveries of this work have been condensed in a MATLAB code. The code 

allows the user load a common output file for the STM software (.csv), construct a visual 

matrix to see the image, perform the wavelet noise reduction and see the results. The user 

can also change the parameters of the process to better adapt to each individual study. The 

MATLAB code is available in the Appendix - A. 
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Appendices



 

APPENDIX A – MATLAB code 

 

%% 
%Primera parte: Lê o arquivo CSV, separa em 3 colunas (x,y,z), organiza os 
%dados no formato de uma matriz imagem/visual e armazena essa matriz na 
%posição 1 de uma célula. 
 
clc; 
close all; 
clear; 
num_imagens = 1;                                                            
%Número de imagens utilizadas 
for a = 1:1:num_imagens 
    filename = ['n' num2str(a,'%02d') '.csv'];                              %Nome 
da série de arquivos 
    A = readmatrix(filename);                                               %Lê o 
arquivo csv 
    for i = 1:1:length(A) 
        eixox(i) = A(i,1); 
        eixoy(i) = A(i,2);                                                  
%Separa o arquivo csv em x y e z 
        z(i) = A(i,3); 
    end 
    tam = sqrt(length(z)); 
    contador=1; 
    for cy=1:tam 
        for cx=1:tam 
            zfinal(((tam+1)-cy),cx) = z(contador);                          
%Transforma o arquivo csv em uma matriz visual 
            contador = contador + 1; 
        end 
    end 
    cel{num_imagens} = zfinal;                                              
%Armazena a matriz em uma célula 
    I = mat2gray(zfinal);                                                   
%Transforma a matriz em uma imagem em escala cinza 
    imwrite(I, ['testewavelet' num2str(a,'%02d') '.png'], 'png');           %Gera 
uma imagem .tif a partir dos dados 
    m1 = imread(['testewavelet' num2str(a,'%02d') '.png']);                 
%Armazena a imagem na variável m1 
    figure(1)                                                               %Gera 
figura(1) com a imagem gerada usando dados do arquivo 1 
    imshow(m1); 
    [dm1,a2,a3] = func_denoise_dw2d(m1);                                    
%Realiza a redução de ruído usando wavelet  
    figure(2)                                                               %Gera 
a figura(2) com a imagem após o tratamento 
    imshow(dm1); 
    r = round(1 + (tam-1) .* rand(1,1)); 
    for n=1:1:(length(m1)) 
        perfilverticalpreproc(n) = m1(40,n);                                  
    end 
    for n=1:1:(length(m1)) 
        perfilhorizontalpreproc(n) = m1(n,206); 
    end                                                                     
%Extração de perfis verticais e horizontais antes e depois do tratamento  
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    for n=1:1:(length(m1)) 
        perfilverticalposproc(n) = dm1(40,n); 
    end 
    for n=1:1:(length(m1)) 
        perfilhorizontalposproc(n) = dm1(n,206); 
    end 
    figure(3)                                                               %Gera 
figura(3) comparando perfis antes e depois do processamento 
    subplot(2,1,1), plot(perfilhorizontalpreproc,'b'); 
    subplot(2,1,2), plot(perfilhorizontalposproc,'r'); 
    sub = dm1 - m1;                                                         
%Subtrai a imagem antes e depois pra observarmos o resíduo  
    figure(4) 
    imshow((mat2gray(sub))) 
end 
%%  
%Segunda parte: É realizada uma análise do resultado usando Transformada de 
%Fourier (Fast Fourier Transform) 
eixoreal = linspace(0,max(z),512);                                          %É 
criado um vetor para manter real a escala do eixo x, deve ser alterado 
figure(1)                                                                   
%Figura(1) mostra os perfis antes e depois do processamento 
subplot(3,1,1), plot(eixoreal,perfilhorizontalpreproc,'b'),xlabel('m'); 
subplot(3,1,2), plot(eixoreal,perfilhorizontalposproc,'r'),xlabel('m'); 
subplot(3,1,3), plot(eixoreal,perfilhorizontalpreproc,'b'),xlabel('m') 
hold on 
plot(eixoreal,perfilhorizontalposproc,'r'), legend('Pre-processing','Post-
processing'); 
fs = 640;                                                                   
%Frequência de amostragem 
t = 0:1/fs:10-1/fs;                                                         %10 
second span time vector 
fftSIG = fft(perfilhorizontalpreproc); 
fftsigfinal = fft(perfilhorizontalposproc); 
n = length(perfilhorizontalpreproc);                                        
%number of samples 
f = (0:n-1)*(fs/n);                                                         
%frequency range 
power = abs(fftSIG).^2/n;                                                   %power 
of the DFT 
power2= abs(fftsigfinal).^2/n; 
y0 = fftshift(fftSIG);                                                      %shift 
y values 
y1 = fftshift(fftsigfinal); 
f0 = (-n/2:n/2-1)*(fs/n);                                                   %0-
centered frequency range 
power0 = abs(y0).^2/n;                                                      %0-
centered power 
power3 = abs(y1).^2/n; 
figure(3)                                                                   
%Figura(3) mostra FFT em escala do perfil antes e depois do processamento 
subplot(2,1,1), plot(f0,log(power0)) 
xlabel('Frequency(Hz)') 
ylabel('Log(Power)') 
subplot(2,1,2), plot(f0,log(power3),'r') 
xlabel('Frequency(Hz)') 
ylabel('Log(Power)') 
%% 
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function [XDEN,cfsDEN,dimCFS] = func_denoise_dw2d(X)                        
%Função de redução de ruído através de decomposição em wavelet 
wname = 'sym4';                                                             %Tipo 
de wavelet usado 
level = 4;                                                                  %Level 
de decomposição wavelet 
[C,S]= wavedec2(X,level,wname);                                                
%Decomposição wavelet 
thr = wthrmngr('dw2ddenoLVL','sqtwolog',C,S,'one');                         
%Determinação de threshold 
sorh = 's';                                                                 
%Escolha de soft ou hard thresholding 
roundFLAG = true; 
[coefs,sizes] = wavedec2(X,level,wname); 
[XDEN,cfsDEN,dimCFS] = wdencmp('lvd',coefs,sizes, ... 
    wname,level,thr,sorh); 
if roundFLAG , XDEN = round(XDEN); end 
if isequal(class(X),'uint8') , XDEN = uint8(XDEN); end 
end 
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