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Resumo

Nesse trabalho estudamos a estabilidade da familia de operadores L, = A—aS, a € R, em
produtos warpeds de um intervalo infinito da reta real por uma ou mais variedades com-
pactas, onde A é o operador de Laplace-Beltrami e S é a curvatura escalar da variedade
resultante. Na segunda parte deste trabalho, estudamos esses operadores em superficies

minimas em R3, abordando alguns resultados relacionados aos operadores Lj.

Palavras-chave: estabilidade; produto warped; superficie minima.



Abstract

In this work we studied the stability of the family of operators L, = A —aS, a € R, in
warped products of an infinite interval of the real line by one or more compact manifolds,
where A is the Laplace-Beltrami operator and S is the scalar curvature of the resulting
manifold. In the second part of this work, we study these operators on minimal surfaces

in R?, addressing some results related to the L, operators.

Keywords: stability; warped product; minimal surface.
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Chapter 1

Introduction

Let M™ be a complete Riemannian manifold of dimension n > 2, consider the operator
A — q, where A is the rough Laplacian of M and ¢ : M — R is a smooth function.
D. Fischer-Colbrie and R. Schoen [FS80| did a study about this type of operator and
concluded that the existence of a positive function f on M satisfying Af — qf = 0 is
equivalent to the condition that the first eigenvalue of A —q under the Dirichlet boundary

condition is positive in each limited domain of M.

We say that an operator L = A — q is stable if L satisfies

/ —fLf >0 (1.1)

for all f € C(M). L is said to be unstable when L is not stable. The inequality (1.1) is

equivalent to

/M VI +af*>0 (1.2)

for all f € C°(M). Using arguments of approximation in H' norm, the space of test
functions for (1.2) can be replaced by the space C%' (M) of Lipschitz functions of compact
support in M.

Let D C M be a bounded domain. According to the theory of elliptical equations, the
operator A — ¢ acting on functions with Dirichlet boundary conditions of D has a discrete

spectrum )\gD) < )\gD) < /\gD) < ... of eigenvalues. The usual characterization of the first
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eigenvalue of A —q on D is

A§D>=mf{/D|Vf|2+qf2; fec=(M), supprD,/Df2:1}.

We can conclude that an operator L. = A —q is stable if and only if the first eigenvalue

of L is positive on each bounded domain under the Dirichlet boundary condition.

Let S be the scalar curvature of M. We can consider the family of operators L, =
A —aS, a € R. For some values of a, there are interesting geometric properties and

results, for example:
(i) When a = 0, we have the usual Laplace operator.

(ii)) When a = % n > 3, the operator L, is related to the Yamabe operator Y of M

A(n—1)’
by the relationship Y = %La. In particular, if the first eigenvalue of L, is negative, there
is a metric in M conformal to the original metric of M that has constant positive scalar
curvature. If the first eigenvalue is zero, then the metric will have constant nonnegative

scalar curvature [LM23|.

(iii) When a = i, the operator L, appears in Perelman’s work on three dimensional Ricci

flow with surgery [Per02; Per03].

(iv) When @ = 3, n > 3 and the first eigenvalue of L, is negative (resp. nonpositive),
there is an isometric immersion of M in a manifold N of positive (resp. nonnegative)
scalar curvature such that M becomes a two-sided stable minimal hypersurface. More
precisely, N is diffeomorphic to M x S' and L, is the Jacobi operator, referring to the

formula for the second variation of the area of M |[LM23|.

(v) When a = 1, the operator L, becomes the Jacobi operator of the second variation of

the area of a minimal hypersurface of a flat space.

(vi) It follows from the definition that, if the first eigenvalue of L, is negative (resp.
nonpositive) for all a > 0, the scalar curvature of M is positive (resp. nonnegative).
Similarly, if the first eigenvalue of L, is negative (resp. nonnegative) for all a < 0, the

scalar curvature of M is negative (resp. nonpositive).

The main goal of this work is to study the stability of the operator L, in certain types

of Riemannian manifolds M, as well as some properties obtained at M from the results
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to be addressed. As a convention, we say that a Riemannian manifold M is a-stable if

the operator L, is stable.

1.1 Casen=2

The case n = 2 is a special case of the general case, as the scalar curvature is twice the
sectional curvature, which is simply the Gaussian curvature. Hence, the sectional and

scalar curvatures are equivalent objects.

1.1.1 Preliminaries results for case n = 2

When dim(M) = 2, the family of operators becomes L, = A — 2aK, where K denotes
the Gaussian curvature of M. A special case studied by Kawai in [Kaw88| is when M has

nonnegative Gaussian curvature. He proved:

Theorem [Kawai 1984| Let M be an oriented complete noncompact bidimensional Rie-
mannian manifold of nonpositive Gaussian curvature K, where K is not identically zero.
Suppose that a > %, then there is a function f of compact support that satisfies the in-
equality
/ IVF? + 20K f* < 0.
M

In particular, if M has nonpositive Gaussian curvature and is a-stable for some a > %,
then M is flat, that is, its Gaussian curvature is identically zero. Furthermore, under the
condition K < 0, is trivial in that M is a-stable for all a < 0. With that, if the Gaussian
curvature of M is nonpositive, we have an "interval of stability," being it (—oo, 0] and an
"interval of instability," being it (%, o0). Thus, there is an interval of uncertainty regarding
the stability of L, for a two-dimensional manifold of nonpositive Gaussian curvature, being
it (0, %] In fact, the flat plane is a-stable for all @ > 0; the minimal two-dimensional
catenoid in R3 is a-unstable for all @ > 0 and the hyperbolic plane is a-stable for a < %
and a-unstable for a > %, because the hyperbolic space has Gaussian curvature equal to

—1 and its first eigenvalue of the Laplacian is —i. Still in dimension two, let 0 < a < % be

a real number, the general idea is that, for a manifold M of negative Gaussian curvature
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to be a-stable, it is necessary that M has a certain volume growth of geodesic balls. This
growth would be of increasing order in values of a. For example, the plane with the metric
dr? + r*(log(r + €))?df* has negative Gaussian curvature, it is a-unstable for all a > 0
and the geodesic balls of radio R have area in order of R?log(R). The hyperbolic plane
is 1-stable and the geodesic balls of radios R have area 2m(cosh®(R) — 1). Bérard and
Castillon [BC14| found the following pattern:

Theorem [Bérard-Castillon 2010| Let (M, g) be a complete noncompact Riemannian sur-
face and let W be a locally integrable function on M, with W+ integrable. Assume that
the operator A + aK + W is nonnegative on M and that

(i) a € (i,oo), or

(i) a = 1, and (M, g) has subexponential volume growth, or

2+4a
1—4a"

(iii) a € (0, 1), and (M, g) has kq-subpolynomial volume growth, with k, =
Then:

(A) The surface (M,g) has finite topology and at most quadratic volume growth. In
particular, (M, g) is conformally equivalent to a closed Riemannian surface with finitely

many points removed.

(B) The function W is integrable on (M, g), and

0 < 2max(M) +/ 4%
M

(C) If 2max(M)+[,, W = 0, then (M, g) has subquadratic volume growth, and aK+W = 0

a.e. on the surface M.

This theorem guarantee that if & > 1 and (M?, g) has an (« + 1) polynomial volume
growth of the area, that is, there exists 0 < C; < (5 < oo such that C] < ‘iﬁ# < Oy
for all R > 0, then M cannot be (-stable for all f > oé—_al. On the other hand, there
are examples of %L-stable manifolds satisfying |Bg| = O(R*"!), as exemplified in work

[BC14] by the same author and in Proposition 3.4.1. Another important work to be

mentioned regarding these operators is that of Espinar and Rosenberg in [ER11].

Suppose that M is a complete bi-dimensional Riemannian manifold with nonpositive
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Gaussian curvature. To check whether M is a-stable, as mentioned in [Kaw88|, we only
need to check if the universal cover of M is a-stable. Hence, we assume that M is
diffeomorphic to R?. In this case, the metric ds? of M can be written as ds® = dr? +

p(r,0)%d6? using polar coordinates centered at any given point.

1.1.2  Application: a-stability of minimal surfaces on R?

For a given minimal surface M of R3, the Jacobi operator associated with the second
variation of area is L = A — 2K, corresponding to L; in our family of operators L,. A
minimal surface is said to be stable when L is a stable operator. For an operator L on
a Riemannian manifold M, we define the Index of M as the dimension of the greatest
subspace of C'°(M) such that L is negatively defined on this subspace, where the index
of an operator can be co. Hence L is stable if and only if Index(L) = 0 and L has finite
index if and only if there exist a compact subset K of M such that L is stable on M \ K.
Naturally for a minimal surface M in R? we define the index of M, denoted by Index(M),
as being Index(L) on M. Many results regarding the index of a minimal surface in R? are

known, including the following;:

The flat plane has zero index and is characterized by this. [FS80], [CP79] and
[Pog81].

The catenoid and the minimal Enneper surface have index one |[Fis85];

e The Costa-Hoffman-Meeks surface family of genus g > 1 has index 2g + 3 [Nay92;
Mor09];

The Jorge-Meeks surface with r ends has index 2r — 3 [MR06; Nay90a].

(1.3)

Naturally, we define the a-Indezx of a minimal surface M of R? as the Index of L, on
M. This is one of our objectives of this study, which is covered in Chapter 4. Barbosa

and do Carmo [BC76| state the following:
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Theorem [Barbosa-do Carmo 1976] Let M be a minimal surface and g be the Gauss map
of M. If the area of the spherical image g(D) C S? of a domain D C M is smaller than
27, then D 1s stable.

For a € [0, 00), let z, is the number in the interval (—1, 1) with the following property:

the spherical cap
S*H(~1,24) = {(z,9,2) ER:2? + > + 22 =1,-1 < 2 < z,}

has 2a as the first eigenvalue of the Laplacian. In particular, z; = 0 and zy = 1. The area
of the spherical caps S?(—1, 2,) is 27(z, + 1). As we will see, the area of the Gauss map
of the minimal surface being smaller than the area of the spherical cap S?(—1, z,) in R?

guarantees a-stability. we have:

Proposition 4.2.2: Let M be a minimal surface such that the area of the image of Gauss

map is less than 2m(z, + 1), then M is a-stable.

Another objective of our study is to show that, given a complete minimal surface with fi-
nite total curvature, the operator L, has exactly one negative eigenvalue for all sufficiently

small a.

Theorem 4.2.1: Let M be a complete non flat minimal surface of finite total curvature,
then
lim Index,(M) = 1.

a—0t

The Theorem 4.2.1 shows us that for every minimal surface M of finite total curvature
in R3, there is a sufficiently small @ > 0 such that Index,(M) = 1. From the work of
W. Meeks, J. Pérez and A. Ros [MPRO06|, the universal covering of a doubly periodic
Scherk minimal surface is a-stable for some a > 0, which shows that the hypothesis of M
having finite total curvature is necessary to guarantee lim, ,o+ Index,(M) = 1. By the
same work, the doubly periodic Scherk minimal surface is a-unstable for all a > 0. In

particular, its a-index is co.

A question that arises is: for a given a > 0, it is possible to determine the geometric
or topological characteristics necessary or sufficient for a minimal surface M of finite total
curvature such that, with them, M can or cannot have a-index one. Another way of

thinking would be that: given a complete minimal surface M of finite total curvature
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with some previously defined geometric or topological characteristics, it is possible to
obtain a > 0 in which the a-index of M is necessarily one or a > 0 such that the a-index
of M cannot be one. For a > 1, there is no complete minimal surface M of finite total
curvature such that Index,(M) = 1, because if M is a non flat complete minimal surface,
zero is an eigenvalue of the operator L; = A — 2K of multiplicity at least three (see
[Nay93|). In particular, if @ > 1, either M is a plane or Index,(M) > 4. For a = 1,
by Lopez and Ros [LR89|, the catenoid and the minimal Enneper surface are the only

complete minimal surfaces in R?® with index one. By Example 4.2.1, the Jorge-Meeks

r+l

minimal surface of r ends has a-index one for all a < T

Therefore, the number of ends
would be a possible topological characteristic for M to characterize a value for a related
to it. Another topological characteristic that can be considered naturally is the genus of

M. We conjecture:

Conjecture 1.1.1. Let M be a complete minimal surface in R? of genus g and r ends.
Given a > 0, suppose Index,(M) = 1, then there exists C' > 0 and D > 0 such that

g<Cat'andr <Da '
Another result that we conjecture is similar to that of O. Chodosh and D. Maximo in
[CM16]:

Theorem |Chodosh-Maximo 2014] Suppose that M — R? is an immersed complete two-

sided minimal surface of genus g and with r ends. Then

Index(M) > =(g+r) — 1.

[GVIN )

We conjecture a similar result for a-indexes:

Conjecture 1.1.2. Let M be a complete minimal surface of finite total curvature in R3

of genus g and r ends and a > 0, then there exist positive constants J and K such that
Indez,(M) > (Jg + Kr)a.

Remark 1.1.1. Fischer-Colbrie in [Fis85] demonstrated that a minimal surface in R?
having a finite index (usual a-index for a = 1) is equivalent to having a finite total curva-
ture. For the a-index, she implicitly demonstrated that this property is valid for all a > %,

but the previously mentioned examples of minimal surfaces in R3 a-stable for a > 0 are
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indicated by Proposition 4.2.1, which have infinite total curvature. This shows that the

finite index property be equivalent the finite total curvature is not valid for all a > 0.

Remark 1.1.2. The Conjecture 1.1.2 with the Chodosh-Mdzimo Theorem would imply
an interesting property in the set of minimal surfaces of finite total curvature: Let C' > 0

be an integer, there exists a > 0 such that for all minimal surface M C R3 such that

Index, (M) < C, we have Index,(M) = 1.

1.2 Case n > 3 with warped-product metric

A natural question is whether the results of the previous section hold true for higher
dimensions. Answering this question, it is not possible to obtain a general result that
generalizes these in dimension two. In this work, we show that some of these results can
be generalized to a specific class of Riemannian manifolds, namely to warped products of
an infinite interval of the line (]0,00) or (—o0,00) = R) by one (single warped product
case) or more (multiple warped-product case) compact manifolds. Below we define each

of these terms, which are discussed in Chapter 2.

Definition 2.0.1. Let (B™,¢g1) and (F™,g2) be Riemannian manifolds, and p : B — R
be a smooth function. We define the warped product of B and F with the warping
function p, denoted by B x, F' as the product manifold B x F' with the metric g defined
by

9=01+ 09

Definition 2.2.1 Let (B, go), (F1, 1), .-, (Fk, gr) be manifolds and p; : B — R*, 1 <
J < k smooth functions, we can define the manifold M = B X, Fy X, Fy X --- X, F as

being the manifold B X Fy x --- X F}, with the metric g defined by

9=go+pigi+ -+ Pig.

We study the stability of the operator L, = A —aS when M is described as a warped
product related to the order of growth of the warping functions. We study for a given
growth rate of the warping function, for which the values of a L, is stable and for which

it is unstable. Many results regarding the instability of L,, as we will see, reduce to
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analyze the instability of an end E of M, because the growth rate of the warping function
determines whether M can or cannot be a-stable. We will also expand these results to

include cases involving multiple warped products.

1.2.1 Single warped products

First, we present a result that determines an stability interval of n-dimensional warped

products.

Theorem 3.1.1 Let M"™ = I x, F"! be a warped product manifold with n > 3, I C R
and F' a compact manifold with nonnegative scalar curvature, then M is a-stable for

n—

4(n712)A — S is nonnegative on

0<a< 4(7:;21). Consequently, the Yamabe operator Y =

M, being positive definite if S(F') > 0.

The next theorems states that for certain values of @ and under certain conditions of
the warping function, in some cases, we can guarantee that a (single) warped product is
a-stable or a-unstable. The following theorem resembles the Kawai’s Theorem [Kaw88].

More details are provided in Subsection 3.1.1.

Theorem 3.1.2 Let M = [0,00) X, F' be a warped product without boundary such that
p satisfies p’(r) > 0 and lim, . p'(r) = co. Then the end of M (and therefore, M) is
a-unstable for all a > %' If F' has nonpositive total scalar curvature S(F) = fF Sk the

hypothesis lim, . p'(r) = 0o can be removed.

Theorem 3.1.3 Let M =1 x, I be a smooth warped product such that there exists Ry
such that one of the following two situations occurs:

(1) p"(r) > 0 for all r > Ry and lim,_, p'(r) = 0.

(i1) p"(r) >0 for all v < Ry and lim,_,_, p'(r) = —oc.

Then the corresponding end of M in (i) or (ii) (and therefore, M) is a-unstable for all
a > %'

Theorem 3.1.4 Let M = I x,S"! be a warped product such that p satisfies |p'(r)] < C.

Then M is a-stable for all 0 < a < %.
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In the case n = 2, we saw in Section 1.1 that if in M Cf < Jﬁﬂ < (5, then M is

a-unstable for all a > ag_;y In view of the penultimate paragraph of Subsection 1.1.1,

the condition Cf < I‘%B;fll < (5 can be exchanged, in the case of warped products, as
Cir® < p(r) < Cor®, where p is the warping function. As we will see, in a higher dimension

and for warped products, this result follows with the hypothesis Cir* < p(r) < Cor®,

(na—a—1)2

Ta(n—1)(na—3)" Thus obtain

a > 1, where we will conclude that M is a-unstable for all a >

an "interval of instability" (%, oo) The case covered in the following theorem

associates the polynomial growth of p with an "instability interval".

Theorem 3.1.5 Suppose o > 1 and M = I x, F with a metric of the form g = dr* +
p(r)?gr. Suppose that there exist positive constants Cy and Cy such that Cir® < p(r) <

(na—a—1)2

Cor® for all r > 1, then M is a-unstable for all a > Ta(nD(a—3)"

The value %@)1) in Theorem 3.1.5 is the best possible because the warped prod-

uct M = [0,00) x, S" ! when p(r) = r is %—stable (see Proposition 3.4.1). If

p has a-subpolynomial grown, there is a similar version of the Bérard-Castillon Theorem:

Theorem 3.1.6 Let M = I x,F be a warped product, where F' is a compact manifold and
p(r) = r*&(r), where a > 1 and £ satisfies £(r) — 0 when v — oco. Suppose that € is a
non-increasing function and satisfies ré(r)1'(r) > —(a—1) for allr large. Also suppose
that M is a-stable for a = M((T:—m. Then p has linear growth, that is, p(r) < Cr for

some C' > 0. In particular, M has a polynomial volume growth on order of R", that us,

for each p € M, Vol(Br(p)) < C1R" for some Cy > 0.

Consider the application
n—2 n-—1
h:(1,00) — (4(71—1)7 ym )
(n¢ —¢—1)?
A¢(n —1)(n¢ —2)°

(—

Using elementary analysis tools, it is possible to show that h is an increasing function,

. n—2 . n—1
Imh(Q) ==y ad Hmh()=—5

Therefore, there is a continuous and monotonous relationship between the degree of poly-

nomial growth of p and the maximum possible value of a for which M can be a-stable.

The next theorem is an improved version of the Theorem 3.1.2 for when we assume
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that p has a polynomial growth.

Theorem 3.1.7 Let M = I x, F' be a warped product, where F' is a compact manifold of

dimension at least two and p(r) = r*&(r), where a and & satisfy

a = inf {fy; lim p(r)r =7 = O} :
r—00

Suppose that M is a-stable for some a > ’2—;1. Then there exist a positive constant C such

that
R

lilléninf(log R)_l/ rp(r)~2dr > C.

1

Furthermore, if S(F) < 0, then o < In particular, M has (1 + §)-subpolynomial

n—2-
volume growth, that is,

lim r~3F2)Vol(B.(p)) = 0

T—00

for allp e M.

The following theorem shows what can happen if the function £ as in the previous

theorem has large variation.

Theorem 3.1.8 Let M = I x, F, where p(r) = r*{(r), where o > 1 and & satisfy (5.6)
with the additional condition Cy < &(r) < Cy for all r > 0 for some constants Cy,Cy > 0.

Suppose that

) logT
lim — =0,
T—o0 fRo 7"5(7")*25’(7')2d7"
where Ry 1s a fived positive number. Then M is a-unstable for all a > ﬁ.

In Theorem 3.1.5 we assumed that o > 1. The following results exemplify what can
happen if a = 1, serving as an object of comparison with the previous result in which the

assumption o > 1 was required.

Theorem 3.1.9 Let M =1 x,S"! be a warped product, where I = R or I = [0, 00).
Suppose that Cir < p(r) < Cor ¥r > 1 for the positive constants Cy,Cq. If C7 > 1, then

. n—2
(the ends of) M is a-unstable for all a > Py rror

Theorem 3.1.10 Let M =1 x,S"! be a warped product, where [ =R or I = [0, 00]).
Suppose that Cir < p(r) < Cor ¥r > 1 for the positive constants Cy,Cy. If Cy < 1, then

(the ends of ) M is a-unstable for all a < W_iaf)‘



21

Thus, based on these results, we obtain the following diagram, relating the a-stability
of a smooth manifold M = I x,S"! with the possible growth characteristics of the p

function:

General case

=N ]
3
|
o

I=[0,00), M smooth, p"(r) > 0 and ]'Lm pr)=o00 o

n=2 a-1
in-1) 4n
I=[0,00) or I =R, M smooth and |¢'(r)| < C Vr @ @
0 (C2+1)(n-2)
4C*(n—1)
I=[0,00) or I =R, Cyr* < p(r) < Cor®* ¥r > lL,a > 1 ° o—eo
0 n—2 (na—a—1)?
4(n—1) da(n—1)(na—2)
pr) =r¢(r), wherea > 1,0 < Cy < €(r) < Cy for allr
and limpg o TE e v 0 = 5 2
4n—1)
I=[0,00) or I=R, Cir < p(r) < Cor ¥r > 1, Py o °
where Cy > 1 0 n—2 n-2
i(n—1) 4n-1)(1-C%)
I=1[0,00) or I =R, Cir < p(r) < Cor ¥r > 1, = & *
where C; < 1 n—2 0 n-2_
Wm-n1-GJ) im—1)

. a-stable
B . unstable

[ | can be a-stable or a-unstable

1.2.2 Multiple warped products

For multiple warped products, we have the following results.

(Theorem 3.2.1) Let M = I x,, Fy X,, --- X,, F}, be a multiple warped product, with
each F; compact with nonnegative scalar curvature. Suppose that for any 1 < i,5 < k

and 7 € I, pi(r)pi(r) > 0, then M is a-stable for all 0 < a < minj<;<p{%—}.

(Theorem 3.2.2) Let M =R x,, Fy X,, -+ X, Fy be a multiple warped product, n; the
dimension of F; and n = n; + --- + ng. Suppose that, for each p;, there exists Ry such

that one of the following two situations occur for:

(i) p/(r) > 0 for all > Ry and lim,_,, p}(r) = oc;

(ii) pf(r) > 0 for all 7 < Ry and lim,_,_, p}(r) = —oo.
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Then the corresponding end of M (and therefore, M) is a-unstable for all @ > %=1,

1.2.3 Applications: a-stability of minimal hypersurfaces on Eu-

clidean spaces

There are three typical examples of minimal hypersurfaces in Euclidean spaces that can

be written as a warped product.

The first is any affine hyperplane H C R™"!, which geometrically is the warped prod-
uct R x, S" ! where p(r) = r, having the topology of R", being stable as a minimal
hypersurface of R™*! and, more than it, has the property of minimizing the area for any
variation of compact support. When n < 5, the affine hyperplane is the only minimal
hypersurface which is the graph of a smooth function f: R" — R (the problem of deter-
mining whether the graph of a function of R" is a minimal hypersurface on R*™! is known
as the Bernstein problem. For more details, see [Ber17]|, [Alm66]| and [Cho21]). According

to our notation, because H is a flat manifold, it is a-stable for all a € R.

The second example is the minimal cones in R"*!, characterized as being a warped
product [0,00) X, F', where p(r) = r and F' is a minimal submanifold of S”. A partic-
ular case is the Simons cones, introduced by J. Simons on [Sim68|, and also worked by
E. Bombieri, E. De Giorgi, and E. Giusti on [BDG69|. They are characterized as the
singular hypersurface of R*™: z} + .-+ 4+ 22, = 22, + .-+ + x3,. These cones can be

written as the warped product [0, 00) X, (\%S”*l X \%S”*1>, where p(r) = r and is a

(2m—3)2
8(m—1)

minimal hypersurface of R?*™, more precisely, these cones are -stable according to

(2n—3)2
8(n—1)

our definition of a-stability. Note that > 1, if n > 4. In particular, a Simons cone

is a minimal stable hypersurface of R?" if and only if 2n > 8. In Subsection 3.3.1, we show

that if C' = [0,00) x, F is a n-dimensional cone in R"™, where F = S§' x S}"""!is a

(n—2)?
4(n—1)

minimal hypersurface of S, then C' is -stable. In particular, it follows the previous

statements about Simons cones, where n = 2m — 1. Furthermore, the next proposition

(n—2)?

D) is the best

shows that when the dimension n is at least seven, the value for a =

possible value for the existence of a cone a-stable in R"!.

Theorem 3.3.1 An a-stable minimal cone C™ of R"*, with a > max {1, %}, 15 flat.
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Simons in [Sim68] has shown that a minimal stable cone C" C R™*! is flat if n < 6. The

Theorem 3.3.1 and the previous examples of the Simons cone shows that, for n > 7, the

(n—2)
4(n—1)

in R**! can be a-stable.

value

is the greatest possible value for a such that a n-dimensional minimal cone

The third example is the n-dimensional catenoid in R"*!. In dimension two, the
catenoid can be parameterized by x = ccosh(v/c)cosu, y = ccosh(v/c)sin(u), z = v,
where ¢ # 0, v € R and y € [0,27) and is characterized by being a minimal surface in R?
of revolution (different from plane) and index one (see [TZ09|), which can be written as a
warped product R x,S'. In higher dimensions, the catenoid is a minimal hypersurface of
R™*! that inherits certain properties from the two-dimensional catenoid. For example, it
is diffeomorphic to the cylinder R x S"~! and has index one. Perhaps the main difference
for dimension two is that in higher dimensions, the catenoid is limited in one of the
directions of R™!. The n-dimensional catenoid is “=2-stable (see [TZ09]). For more

details, see Subsection 3.3.2.

1.3 Structure of the thesis

This thesis is organized into four chapters. The first is the introductory chapter. Chapter 2
provides a brief introduction to the theory of warped products, where we will discuss the
metric, the Levi-Civita connection and find formulas for the sectional and scalar curvatures
in terms of the manifolds involved in the warped product and the warping function. The
Chapter 3 is divided into three sections, the main subject of which is the stability of L,
operators in warped products. The Section 3.1 addresses the results related to a simple
warped product of a line interval by a compact Riemannian manifold. The Section 3.2
addresses the results related to a multiple warped product of a line interval by a certain
number of compact Riemannian manifolds. The Section 3.3 addresses the hypercones and
catenoid, which are examples of warped-product minimal hypersurfaces in R"*!. The
Section 3.4 deals with the proof of the theorems in Section 3.1 and Section 3.2. Finally,
in Chapter 4, we discuss the operators L, on minimal surfaces of R3 that have finite total

curvature.
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Chapter 2

Warped products, an introduction

Let B and F' be manifolds. A natural way to construct a manifold from B and F is by
the Cartesian product B x F. If B and F' are equipped with Riemannian metrics gg and
gr, the product metric is the metric g given by g(x,y) = gp(x) + gr(y) , where z € B and
y € . The product metric is just one example (the most natural) of a metric that we can
define in B x F'. Another way to build metrics in B x F' is from the combination ogg+ pgr,
where 0 : F — R* and p : B — R* are positive smooth functions. In particular, the
product metric is the metric obtained when the functions ¢ and p are constant and equal
to one. When we require that only p : B — R be the constant function equal to one,
as we will see, we will have the class of warped products of B by F. Bishop and O’Neill
introduced the notion of warped product in 1964 [BOG69].

Definition 2.0.1. Let (B™,g1) and (F",g2) be Riemannian manifolds, and p : B — R
be a smooth function. We define the warped product of B and F with the warping
function p, denoted by B x, F' as the product manifold B x F' with the metric g defined
by

9=01+ P9

For a warped product B x, F, B is called the base of the warped product and F is
called the fiber. Being w1 : B x ' — B and my : B x F' — F' the natural projections, the
leaves B x {q} and the fibers {p} x F are submanifolds of B x, F.. Vectors tangent to

leaves are called horizontal vectors and those tangent to fibers are called vertical vectors.
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For p € B and g € F, denoted by H the orthogonal projection of T(, (5B x F') onto its
horizontal subspace T{, 4 (B % {q}) and by V the orthogonal projection onto its vertical
subspace T(, o ({p} x F). If v € T,B, p € B and ¢q € F, we define the lift of v to (p,q)
as the unique vector v in T(, o ({p} x F') such that (m).(v) = v. For a given X € X(B),
the lift of X to M is the vector field X such that X, is the lift of X, to (p,q). The set
of the horizontal lifts is denoted by £(B). Similarly, we define the set of vertical lifts by
L(F).

2.1 Connection and curvature in warped products

Being M = B x, F', we denote the metric of M by (-, ), the Levi-Civita connection of
M by V, the Levi-Civita connection of B by V5, the Levi-Civita connection of F by
V¥, the curvature tensor of B by Rp and the curvature tensor of F' by Rp. The next
proposition addresses the relationship between the curvature tensor of M = B x, I and
the curvature tensors of the base B and fiber F'. It can be seen that the Lie bracket
satisfies for X1, X, € £(B) and Y1,Ys € L(F): [X1,X,] = [X1, Xy], [Y1,Y5] = [V1, V)]

and [Xb?l] = 0.

In our calculations, we will consider the function p extended on all manifold M, so

that p is constant on the fibers.

Proposition 2.1.1. For X, Xy € L(B), Y1,Y> € L(F), we have:
(i) Vx,Xo € L(B) is the lift of V& X5 on M;

(ii) Vx,Y1 = Vy X, = 25y

(iii) (Vy,Y2)* = 0(V1,Y2) = — 9220y,

(w) (Vy,Y2)" € L(F) is the lift of V{, Yz on M;

Proof. By Koszul formula, for all XY, 7 € (M):

2<VXY7 Z> = X<Y7 Z> +Y<X7 Z> - Z<X’Y> - <[X7Y]7Z> - <[X’ Z]7Y> - <[Y7 Z]7X>;
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(i) Using Koszul formula with [X,Y7] = [ X5, Yi] = 0, we obtain
2(Vx, X2, Y1) = (Y1, [ X0, X)) — Y1 (X0, Xs).

Since (Xj, X5) is constant on the fibers, we have Y7(X;, X5) = 0. Since [X;, X5] is a
horizontal field, we have (Y7, [X1, Xs]) = 0. Therefore, (Vx, X5, Y1) =0 for all Y € L(F),
it shows that Vy, X5 is horizontal. Furthermore, for all ¢ € F, n{ : B x {¢} — B is an
isometry, it implies that Vx, Xy € £(B) is the lift of Vf}ng to M.

(ii) First, Vx, Y1 = Vy, X because [ X, Y)| = 0. Using Koszul formula, we have
(Vx, Y1, Xp) = Y1(Xy, Xo) — ([X1, Xp], Y1) = 0.
Therefore, Vi, Y; is a vertical field. Still using the Koszul formula,
2(Vx, Y1, Y2) = X1 (Y1, Y2) — ([V1, Ya], Xi) = X1 (Y7, Vo).

Since (Y1, Y2)(p.q) = p*(p)(Y1,Y2) F, we have

2V, Y1, Va) = Xi(p2 0 m) (Y, Ya)w = 20(Vp, X} (¥s, V) = 2@% Ya)
for all vertical field Y5. Therefore, Vy,Y; = <Vp_F;X1>Y1‘
(iii) By derivative of product and property (ii), we have
(Vi Y2, Xi) = —=(Vy X1, Y2) = —@Qﬁ,%)-
Being {ey, ..., ¢} an orthonormal frame on B and {éy, ..., ¢} our lifting, we have
RIRTTIIE SRS o R AL,
i—1 i=1

(iv) Since Y7,Y5 is tangent to fibers, Vy,Y5 is the fiber covariant derivative applied to

restrictions of Y; and Y5 in that fiber.
[ |

Remark 2.1.1. [t follows of Proposition 2.1.1 that the geodesics of B will be preserved,
in the sense that if v : I — B is a geodesic of B, then v, : I — B x, F' given by
() = (v(t),y), y € F, is a geodesic in B X, F.
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Proposition 2.1.2. Let M = B x, F' be a warped product of two Riemannian manifolds

and R be the curvature tensor of M. If X1, Xo, X3 € L(B) and Y1,Y2,Ys € L(F), then:
(i) R(X1, Xo) X3 = Rp(Xy, Xo) X3,
(i) R(X1,Y1) X, = wyl

(i) R(X1,X2)Y1 = R(Y1,Y2) X = 0;

(iv) R(X1,Y1)Yz = =827 vp;

(v) R(Y1,Y2)Ys = Rp(Y1,Ya)Ys + 2L (Y1, ¥3) Vs — (Y2, Ya) V1),

02
Where V is the connection of M and D?p is the Hessian of p in B.

Proof. Using the relations of Proposition 2.1.1, we have:
(i)
R(Xl, XQ)Xg = VXIVX2X3 — VXQVXlXB - V[Xl,XQ}X?)
- le V§2X3 - VX2V)B}1)(3 - V[B;(LXﬂX?’
= V])%l V§2X3 - V§2V§1X3 - V[B;(th]X?’

— RB(X17 XQ)X3

R(X1,Y1) X2 =Vx, Vy, Xo — Vv, Vx, Xo — Vix, 111 X2
X X
:le <<Vp; 2>}/1) _ <Vp7 le 2)}/1

p

_x, (M) vy (V0. Xo) (V. X0) (VX V)
p p p p
_p(Vx,Vp, Xo) + p(Vp, Vi, Xa) — (Vp, X5)(Vp, X1>Y1
02
4 <Vp7 X2>§VP7X1>Y1 . <VX1X2,VP>}/1
P P
_(VxVp Xa)y,
p
2

:D IO<X17X2)Y1.

p
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(iii) Since D?p is symmetric,

R(X1, X2)Y1 =Vx, VX, Y1 =V, Vx, Y1 — Vix, x,)V1

p

X X
:Xl (<VP, X2>) }/1 + <vp> X2> <Vp7 1>)/1 _X2 ((Vp, 1>) le
p p p p
(Vp, X1) (Vp, Xs) (Vp, [X1, Xa])
- Y1 — Y1
p p p
_p(Vx,Vp, Xo) + p(Vp, Vi, Xo) — (Vp, X5)(Vp, X1>Y1
2
i p<VX2vp’ X1> —i—p(Vp, VX2‘le> _ <Vp7 X1><Vp, X2>Y'1
2
o <vp7 [X17X2]>}/1
P
<Vp7 V)(1)(2> — <Vp7 VX2AX'1> — (Vp, [X17X2]>

— Yy
p

=0
and

R(V1,Y2)X1 =Vy; Vi, X1 — Via Vi, X1 — Vi v X
=Vy, (MpXﬁYz) — Vy, (@Yl) - w[yl,yﬂ
_PVn Vi, Xa) 4 (Ve Vi Xy p{Vn Ve X0) + (Ve Vi X0)
p? p?
(Vy Y2 = Vi Y1 — [¥3, V7))

Y,

Vp, X
+< P 1>

=0,

because (Vp,Y;) =0 and (Vy,Vp, X;) = <@Y;,X1> =0.



(iv)
R(X17 }/1>}/2 :VleYl}/Q - VYleli/'Q - V[Xl,Yl]S/Q

Y1, Y; X X
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:<}/i71/é><2vp7 X1>Vp_ <VX1K7}6>VP_ <K7VX1}6>VP
p p p
Y1, Y- X X
_ < 17 2>VX1VP+ <vp7 1>v YVQ <vp? 1>VY1y'2
Y1, Y X X1)(Y, Y5
:< 1s 2><2V;07 1>Vp—<v'0’ 1>2< 1 2>Vp
1%
p o p
Y1, Y:
_ < 1 2>VX1V
P
(v)
R(Y1,Y5)Ys =Vy, Vy, Y5 — Vy, Vv, Y5 — Viy, 1,1 Y5
Y5, Y-
=V V3 Ys = Vi, Vi Ys = Vi, 1) ¥s = Vi (< - 3>Vp)
Y1, Y- Y1, Y5, Y;
+VY2 (( lap 3>Vp) + <[ 1, p2]7 3>Vp
Y:, VE Y. Y,, VLY.
:RF<}/1’Yv2)}/})_< 1 Yo 3>Vp+< 2 Y1 3>vp
Y,, Y- Y5 Y- Y,, Y-
_ (UnYy, 3>:< 2, Vy, 3>Vp (Ys, 3>VY1V
n (Vy, 1, 73) J/; <Y17VY2Y3>VP+ <Y1;)Y3>VY2V <[Y1’Y2]’Y3>Vp
Yi, (Vy, Ys)* Ys, (Vy, Ys)* Vv, Y1,Y-
:RF<}/17}/2)}/3+<1( Yo 3) >Vp_<2< Y1 3) >Vp+< Yo 11 3>vp
B <VY1Y2,Y3>W_ (Y2, Y3) (Vp, Vp>Y1 L N, ¥5) (Vp, Vp>Y2
P p P P p
Y, Y5, Y:
+ <[ 1, 2]7 3>Vp
Y5, Y3) (Vp, V Y1,Y3) (Vp, V

IVPI2

=Rp(Y1,Y2)Ys + (Y1, Y3)Ys — (Y2, Y5)V1).

As consequence of Proposition 2.1.1 and 2.1.2, the sectional curvature has the relations:

Corollary 2.1.1. Let M = B x, I' be a warped product of two Riemannian manifolds,
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K the sectional curvature of M, Kpg the sectional curvature of B and Kg the sectional

curvature of F', then, for Xy, Xy € L(B) and Y1,Ys € L(F):

(1) K(X1,Xs2) = Kp(X1, Xs);

(VXI Vp,X1> .
plX12 7

(1) K(X1,Y1) = —

(i) K (Y, ) = e032) _ 1548

Proof. We have:

(i)
(R(X1, X2) X5, X1) (Rp(X1,X2)Xs, Xy)

0 %) = R = (X X7 IGPIRGE = (K, Kp)p ol )

(i)

vy |?
KXy — SEOLYOYL X PRV Ve X)) (VY X)),
VUV X - (X, )2 [ Xa Y3 ? plXal?
(i)

YY1, Ya)?
 (Rr(M, Y2)Ys, Y1) [Vpl? (Y1,Y3)? — [Y1]?]Y2]?
A MEYelE - (L Ya)E) 0 IPIY:? - (V1 YR)?
_Kr(,Ya) Vol
G P

Corollary 2.1.2. Let M = B X, F' be a warped product of two Riemannian manifolds,
denote by S the scalar curvature of M, Sp the scalar curvature of B, Sg the scalar

curvature of F and AP the Laplace operator in B, then

ABP Sr

Vp|?
S:SB—QT—’—F—TL(TL—D%.

p

2.2 Multiple warped product

The concept of warped product can be inductively defined for a product of a finite number

of manifolds. In this case, we will have a base and several manifolds representing the fibers.
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Definition 2.2.1. Let (B, go), (F1,01), ..., (Fk, gr) be manifolds and p; : B — R*, 1 <

J < k smooth functions, we can define the manifold M = B X, Fy X, Fy x - -

being the manifold B X Fy X --- X F}, with the metric g defined by

g9=go+pigi+ -+ pigr-

Proposition 2.2.1. For X1, Xy € L(B), Y\, Yy € L(F;), we have:

(i) Vx,Xo € L(B) is the lift of VZ X5 on M;

(ii) Vx,Y{ = Vy; X, = Ty,

(i) (Vi Y3)" = (Y], ¥5) = ~550Vp;

(iv) (VyliY;)TFi € L(F;) is the lift of Vg)Y; on M.

(v) VyiY] =0 if i # 1.

X i as

Proof. The proof of (i), (ii), (iii) and (iv) are similar to those of Proposition 2.1.1. (v) is

a direct consequence of Koszul formula, where all the terms are null.

Then the curvature tensor satisfies:

Proposition 2.2.2. Let X, Xy, X3 € L(B) and Y{, Y3, Yy € L(F;), 1 <i <k, then:

(i) R(X;, X2)X3 = Rp(X1, X2)Xs;
(ii) R(X1,Y{)X, = 2oy

p

(iii) R(X1, X2)Y{ = 0;

(iv) R(Xy, Y)Y} = =LV (Vf) (is zero if i # 1);

(v) ROV, Y1) X, = 0;
(vi) ROYE, Y)Y! = 0 if i £ 1;

(vii) ROYY,Y!)Yg = (V] V) Vel yl if i o4 0

| 2

(viii) R(Y{, Y5)Yi = Re,(V{, Y3 Y3 + SE((V, Y5 — (Y, Y)HYi);

(ir) RO, Y)Y =0 if i 14 j # .
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Proof. (i), (ii), (iii), (iv) and (viii) are similar to the proofs of Proposition 2.1.2. Let us

analyze each of the other items using the Proposition 2.2.1.

(v)

R(Y{,Y) X1 =VyiVyi X1 = VyaVyi X1 = Viyi v X3

v, ((VP; X1>Yll> Yy, <<VP1,X1>YZ)

)

(vi) It is a direct consequence of item (v) in Proposition 2.2.1.
(vii)
ROVE VY~V 0y = TV - Vg

== VYIlVYfY;
Yy, Y

%

<Yf, YZ)
_ (v YS) (Voi, V)
Pi Pl

Vyl V

Y.

(ix) It is a consequence of item (v) in Proposition 2.2.1.

As consequence of Proposition 2.2.2, for Xy, Xy, € L(B), Y], Y] € L(F}), Y], Y] € L(F),

we have

(1) K(X1,Xy) = Kp(X1, Xo);

.. : (Vx,Vpi.X1)
(11) K(XbYl) - _ETplPl?

KFZ(Y117Y2Z) _ |VP'L|2.
p? p?

(i) K(Y7,Y5) =

(iv) K(Y7, YY) = —{0eee g £ |

and
~ S, S APy ¢ Vpil? (Vpi, Vp;)
S = Syt 3 A% - IV 5 (9600
im1 Pi i=1 pi i=1 Pi i PiPj
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where n; is the dimension of Fj.

To see more about warped products and their properties or applications, see [Chel7|.

2.3 Warped products of an interval of R

Suppose M = I x,, Iy X,, -+ %X, F}, where I C R, the scalar curvature of M is given by
k k

Sk, RN (vh)* it}
SM:Z Z—ZZnif—Zni(ni—l)—Q—Zn-n- :

//
7
1'% . .
-1 Pi P Pi i#j PiPj

In this section, we will suppose that Fi,..., F) are compacts manifolds, in order to
make sense of taking test functions for the operator L, = A — aS in M that depend
only on r in M, the theme of Chapter 3 of this work. The definition of warped products
makes sense if the base manifold B has boundary. If B has boundary and each warping
function is positive, the resulting manifold also has boundary. If we allow that the warping
functions can be zero in the base, that is, each p; is nonnegative, the points p in B such
that p;(p) = 0 can make their leaves a set of singular points, in the sense that the metric
degenerates. It would be complex to analyze these situations for B in general. In this

section, we briefly analyze when B is an interval on the line using some examples.
Example 2.3.1. Let M =R x,, F} X,, -+ X, Fg be a multiple warped product, then:
(i) If p; > 0 for allTr € R and i = 1,...,k, then M is a smooth manifold.
(11) If we only demand p; > 0, the values r such that p;(r) = 0 for some 1 < i < k have
degenerated lives.

Analyses (i) and (ii) of Example 2.3.1 also work if we change R for each other open
interval of R, with the contrast that the resulting manifold M will not be complete.
Example 2.3.2. Suppose that M = [0,00) X, S"*, with p(r) > 0 for all r >0, p(r) =0

and p'(0) = 1. Then M is a smooth manifold.

In the case of Example 2.3.2, M becomes diffeomorphic to R™ and the natural iden-

tification ® : R® — M given by ®(r,z) = (r,z), x € S*7!, is the exponential application
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around the point » = 0 in M. If we set M = [0,00) X, F, where F' is a compact Rie-
mannian manifold different from the round sphere, then the leaf » = 0 is a singular point
of M. If we only demand p(r) > 0 for all r, then M is a differentiable manifold with a
boundary. If we consider M under all conditions of Example 2.3.2, except p'(0) = 1, then
M will be topologically R™, but the leaf » = 0 would still be singular.

Example 2.3.3. A cone is a warped product M = I x, F, where I = [0,00), p(0) =0

and F compact. The only regular cone is the hyperplane.

Example 2.3.4. If [ = [a,b] CR and M = [a,b] x, F is smooth without boundary, then
p(a) = p(b) =0, F is a round sphere and M s topologically a sphere.

Example 2.3.5. The sphere S>"* can be written as a double-warped product, where it
[O, g} Xy S Xy S”,

where p1(r) = cos(r) and po(r) = sin(r). A point (r,q1,q2) in this degenerate coordinate
system corresponds to the point (cos(r)qy,sin(r)q) € S*t1 C R*™2 where ¢, and qo
are identified by their respective coordinates in R"*1. The leaf r is isometric to the torus

(cosr)S™ x (sinr)S™, and when r =0 orr =

NI

, the leaf r becomes an S™.
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Chapter 3

Operator A — aS on Warped Products

When we make a warped product of two smooth manifolds with a positive warping func-
tion p, the resulting manifold is necessarily a smooth manifold. If we require p to be
nonnegative, the points in the base such that p vanishes represent a degenerate fiber, in
the sense that becomes one point. The Examples 2.3.4 and 2.3.5 in the previous chapter
shows that the resulting manifold of a warped product of a closed interval of R with a

manifold F' can result in a smooth manifold.

Consider an elliptic operator of the form L = A —¢q on a warped product M = I x, F,
where A is the Laplace-Beltrami operator of M, ¢ : M — R is a smooth function, I
is a closed interval of R (which we can essentially reduce to three cases: R, [0,00) and
[0,1]), F'is a compact manifold and p is a nonnegative warping function. Unless otherwise
mentioned, we will always assume that M is without boundary, which for us will be the

same as requiring that p vanishes in dI. The operator L is said to be stable if

| —rzr=o0
M
for all f € C°(U), where U is the set of regular points of M, that is, the largest subset

of M which is a manifold. In particular, if V = {r € I; p(r) > 0}, then V x, F' C U. The

previous inequality is equivalent to

/ VAR +af? 2 0
M

for all f € C°(U). Similarly, this analysis extends to multiple warped products, where

each warping function in the multiple warped product must satisfy the same properties
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that the function p mentioned above.

3.1 Case M =1 x,F, I' compact

First, consider an (n — 1)-dimensional compact manifold F' with n > 3 and M =1 x, F,

such that the metric of M is expressed in the form

g=dr’+ p(r)QgF,

where p is a positive real function in the interior of I. We have M compact if and only if
I is a finite closed interval. M there will be no boundary if p is zero at the endpoints of
1. M will be complete and noncompact if and only if 7 is an unbounded interval. Up to
a linear variable change in I, there are two types of closed and unbounded intervals in R:

[0,00) and R itself.

Consider the case in which I = [0,00) and p > 0 in (0,00). Under this condition,
M has one end, M is a manifold with boundary if p(0) > 0 and M is smooth without
boundary if and only if p(0) = 0, F' is a round sphere of radius R and p'(0) = %, R > 0.
In the case I = R, M will have two ends and will be smooth if and only if p is positive
everywhere. In all the cases, the volume element of M is p(r)" 'drdA, where dA is the

area element of S~ 1.

We studied the stability of the operator L = A — aS on M and sometimes at an
end of M. We say that L is stable on an end E of M if the operator L restricted to a
representative of E of the form ((R, 00) X, F, g) (or ((—oo, —R) X F, g)) for all R sufficiently
large is stable. If E is not stable, we say that E is unstable. It is obvious that an end F
be unstable implies that M is unstable.

For this type of warped product, the scalar curvature can be written as

S0 e
S = i~ =) (250 + -0 )

For f of compact support in M, only dependent on r and support contained in the

interval [b, ¢|, we have:
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(i) if I =R ,then f(b) = f(c) = 0;

(ii) if I = [0,00) and b # 0, then f(b) = 0. If b = 0, we only guarantee f(c) = 0, but if
we demand M without boundary, then p(b) = p(0) = 0.

Hence, in the case M without boundary and f of compact support, we have

p(O)"2f(b) = p(c)"*f(c) = 0.
Therefore, we have:

/M_fLaf:/JVI|Vf|2+CLSf2
//{\Vf|2+a[ (n—1) (p@(ﬁg 2)P'<:))j)+p%2}f2}d,4dr.

First, let us look at a result that will make our calculations of whether M is or is not

stable. We will use principally to prove stability in a warped product of an interval with

round spheres and an interval with compact manifolds of null scalar curvature.

Proposition 3.1.1. Let M" =1 x, F™! be a warped product, with n > 3. Suppose that

F has constant scalar curvature and

SR

for all f dependent only on I, that is, for all f constants on the fibers. Then M 1is a-stable.

Proof. If f is a function of compact support in M, then 7 (supp(f)) has compact support
in I. If f depends only on I, by (3.1), we have

/I{ff +a [—(n— 1) <2’:((:)) + (n — 2)[;((:))22) + A(i()f()ry} f2}d7’ >0, (3.2)

where S(F) is the total scalar curvature of F' and A(F) is the area of F. Let f be any

function of compact support on M, using Fubini’s theorem and the fact that |V f|? > f2,
can be obtained by (3.1):

/M fLof
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- /F/bc{|w|2+a [—(n— 1) (29”(” + (n—z)p'(Tf) + SF((Q] f(r,q)2}drdA

p(r) p(r) p(r)
R RO B = P

where [b, c] = m (supp(f)). Since f,.(r,q) and f(r,q) depend only of f on r in each leaf

I x {q} and % is constant on F', the last expression is equal to

/F/b {fr(r, 0’ +a [—(n —1) (2/:/((7"7“)) +(n— 2)’:((:;;) + A(k;()i()m} f(r, q)2} drdA,

that is nonnegative because (3.2).

The Proposition 3.1.1 shows that, with the hypothesis that F' has constant scalar
curvature, we simply take real functions f as a test function (that is, dependent only on

the first coordinate) to demonstrate whether M is stable.

Continuing the calculation in (3.1), we have, for f of compact support dependent only

[ =tras =AE) [ 2ot tar =2t =) [ o)t
0=2) [ G0 e+ aSE) [ pley
=A(P) [ f2ptr) - aln = )= DAE) [ FPolr P
+dan = DAF) [ F0)pr 21 dr 4 aS(E) [ o),

where A(F) is the area of F' and S(F) is the total scalar curvature of F. Therefore
1 ¢ c
—/ —fLaf :/ frp(r)"~tdr +a(n —1)(n — 2)/ P (r)2p(r)"=2 f2dr+

+ 4a(n — 1) /bc o (r)p(r)" 2 f frdr + ai%?i /bc p(r)" 3 f2dr.

From equation (3.3), we can find an interval on the line for which the operator L, is
always stable in any warped product of form I x, F', whenever F' has nonnegative total

scalar curvature.

Theorem 3.1.1. Let M™ = I x, F"' be a warped product manifold without boundary,

where n > 3, I C R and F' a compact manifold with nonnegative scalar curvature, then



39

M s a-stable for 0 < a < 4(’;—__21). Consequently, the Yamabe operator Y = ﬁA — S is

nonnegative on M, being positive if (1) S(F') > 0 or (ii) I is unbounded.

Proof. By (3.1) taking f : M — R of compact support and m(Suppf) C [b, ], using
Fubini’s theorem, integration by parts, that Sy > 0 and the fact

o)™ (1) = p()"2 () =0,
we obtain:
[ =rtag= [ 1952 [ fatn= -2 [ orotrrnarar
+a(n — 1) /b o2 () £ 0) fo (s q)er + /b ) i€£§3 dr] dA
> [ sttt atn= -2 [ o002 s

+atn=1) [ ol 2001 )| aa

(3.4)

Using the AM-GM inequality, we have, for each q € F:

da(n— 1) / (P20 (1) £ (., 9) o (s )

n—3

— —da(n - 1) / L @)p(r) T plr) " (1) fr, )

< [ Btralptry s aan =1 [ o020
Then
/ Loy dr + da?(n — 1) / ) () )
b . b
+da(n—1) / o(r)Y"20 (1) (r, @) o (r, q)dr > 0.

So to conclude the proof, we just need to show that

a(n —1)(n —2) > 4a*(n — 1)?

<=a>0 and n—2>4a(n—1)
n—2
4(n—1)

<—=a>0 and a <
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This ensures the a-stability of M for all a € [0, ﬁ] Taking a = 4(’;—__21), then the Yamabe

operator Y is nonnegative. If S(F) > 0, then the existence of the term [, i(Fr()qQ) dr in the
calculation (3.4) implies the positively of Y. If I is unbounded and S(F) = 0, which
in our hypotheses means that the scalar curvature of F' is identically zero, suppose that

f € C°(M) satisfies
- [ =0
M

then the equality in (3.5) occurs, it implies

n—1 n—2 n—3

/bc [fr(n Q)p(T>T + 5 p(’f’)Tp,O“)f(r7 q) dr=20

for all ¢ € F', this implies

n—2 14 n—2

5 p(r)=p'(r)f(r,q) = log(f(r,q)) = — 5 log(p(r)) + C(q)

= f(r,q) = C(g)p(r)" "=,

fr(Ta Q) =

that has compact support if and only if C(q) = 0 for all ¢ € F, that is, if and only if
f=o.

We study the a-stability based on the order of growth of p.

3.1.1 a-stability results from the growth of p

Kawai [Kaw88| showed that if a complete two-dimensional manifold has nonpositive Gaus-
sian curvature and is a-stable for a > %, then the manifold is flat. A natural way to find a
similar result for higher-dimensional complete manifold M is if there exists ag such that
L, = A — aS is a-unstable for all a > ag, where S is its scalar curvature, assuming,
for example, S < 0. In fact the answer is no. For each a > 0, there are examples of
warped product metrics of negative scalar curvature, which, according to our definition,
is a-stable (see Example 3.1.2). In this section, we will analyze special cases when the
manifold M in question is a warped product, which is possible because we can calculate
the scalar curvature in a relatively simple way from the coefficients of the metric and the

warping function.
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In dimension two, the curvature of M = I x,C, where C is a closed curve, being
negative is equivalent to having positive the function p”. In a higher dimension, this, as
we will see, is a sufficient but not necessary condition and the following theorem generalizes

this result by taking as a hypothesis the condition that p” is a positive function.

Let M = [0,00) x, F, where p(0) = 0 (M without boundary) and p” is a positive
function, there are two possibilities for p’: p' limited (with lim, ., p'(r) = C for some

C' > 0) or lim,_,, p'(r) = 0o. First, we have the following theorem.

Theorem 3.1.2. Let M = [0,00) x, F' be a warped product without boundary such that
p satisfies p”(r) > 0 and lim,_, p'(r) = co. Then, the end of M (and therefore, M)
s a-unstable for all a > 71—;1. If F' has nonpositive total scalar curvature, the hypothesis

lim, o p'(1) = 00 can be removed.

Under the conditions of Theorem 3.1.2, if M is smooth, then the scalar curvature
is a negative function, because M smooth implies that there exists R > 0 such that
F = RS" p(0) = % and, with the hypothesis p”(r) > 0, the expression of Sy becomes
negative. Therefore, the Theorem 3.1.2, in a certain way, generalizes Kawai’s result

|[Kaw88| in manifolds M under the conditions of this theorem.

In Theorem 3.1.2, the base of the warped product M is I = [0, 00). Note that p"(r) >
0, together with (i) lim, . p'(r) = oo or (ii) S(F') < 0, guarantees the negativity of S on
the end £/ of M. When M is of the form R x, F', we only need to adapt the Theorem 3.1.2,

obtaining a similar result:

Theorem 3.1.3. Let M = R x, I’ be a warped product such that there exists Ry such

that one of the following occurs:

(1) p"(r) > 0 for all r > Ry and lim,_, p'(r) = 0.

(ii) p"(r) >0 for all v < Ry and lim,_,_, p'(r) = —oc.

Then the corresponding end of M in (i) or (ii) (and therefore, M) is a-unstable for all

n—1
a > I

Note that, in the case where Sp = C > 0, the Theorem 3.1.1 implies that the warped

product M = I x, F'is a-stable for all 0 < a < ﬁ, where I = [0,00) or R. On the
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other hand, the Theorem 3.1.2 and Theorem 3.1.3 obtain sufficient conditions in M to

characterize M as %—unstable.

As examples that fit the hypotheses of Theorem 3.1.1 and Theorem 3.1.2, we have
the warped product M = [0, 00) X, F' with the warping function given by p(r) = r® with
a > 1. Similarly, the warped product R x, F' with warping function p(r) = rlel for o > 1
satisfies the hypothesis of Theorem 3.1.1 and Theorem 3.1.3.

Another important example is that when F = S"! and p(r) = sinh(r). We have

(n—1)*
1

M = H", whose first eigenvalue for the Laplacian is — and the scalar curvature is

—n(n — 1), which implies that H" is “=t-stable.

The next theorem addresses the case when we have F = S" ! of constant scalar

curvature equal to (n — 1)(n — 2) and lim, . p/(r) = C'.

Theorem 3.1.4. Let M = I x,S™ ! be a warped product such that p satisfies |p'(r)] < C.

Then M is a-stable for all 0 < a < %.

Remark 3.1.1. Note that, in Theorem 3.1.4, for C' large,

(C*4+1)(n—=2)  n-2
4C%(n—1)  4(n—1)

and the interval of the result of Theorem 3.1.4 is approximately the interval of a in The-

(C?+1)(n—2)

0Ty " © when C' — 0. It shows that the

orem 3.1.1. Furthermore, for n > 3,
hypothesis lim,_,, p'(r) = 0o in Theorem 3.1.2 cannot be dropped. In the case M smooth,
where F'=S""! and C > 1 (is necessary that p'(0) = 1), for C close to one,

(C*+1)(n—=2)  n-2 >n—1
4C%(n—1) ~ 2(n—1)" 4n’

in which it is possible to have a smooth manifold M with negative curvature and is a-stable

for some a > ’2—_1.
n

Remark 3.1.2. Taking M = [0,00) x,S" ' with p(r) = C(r+1)—(C—1)log(r+1)—C,
we have p(0) = 0 and p/(0) = 1, then M is smooth. Furthermore, p/(r) = C — % - C
when v — oo and p'(r) = ﬁ > 0 for all v, then M satisfies all the hypotheses of

Theorem 3.1.4 and and build an example for the conclusion obtained in the Remark 3.1.1.

Consider the warped product M = I x,F such that Sp > 0, Sy < 0 and, furthermore,

satisfies the hypotheses of theorem 3.1.2 or of Theorem 3.1.3. Looking from now on
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only the case of Theorem 3.1.2 and Theorem 3.1.3, when Sr > 0 and p’ is unbounded.

Using Theorem 3.1.1 and the negativity of S we have an "interval of stability," being
n—2
» 4(n—1)

( n—2 n—1
i(n—1)" 4n

] and an "interval of instability," being it (%=1, 00). For a in the interval

1t C—OO 4n ?

| and M under these conditions, the stability of L, in M is unknown. In the

following theorems, we will study the cases where p has a growth of polynomial order,

n—2 n—1
4(n—1)7 4n

focusing on the values of @ in the interval ( ] to obtain a relationship between
a-stability and the "degree" of a polynomial which has a growth comparable to the growth

of p.

First, we assume that p has a polynomial growth greater than the Fuclidean, that
is, there exists 1 < ¢ < oo such that lim, o p(r)r=¢ = 0 and lim, ,,, p(r)r~! = +oo.
Here, assuming M = I x, F' with I = [0,00) or [ = R, we are analyzing the end of A
corresponding to the positive end of the real line R. The analysis of the negative end of R,
when I = R, is analogous, taking the application p defined by p(r) = p(—r) and analyzing
p on the positive end of R. Under these conditions, there exists a smooth nonnegative

real function £ : M — R and a real number o > 1 such that for » > 1,

p(r) = r*¢(r), where @ = inf {7; TILI?() p(r)r=7 = O} . (3.6)

Many situations in relation to £ can occur, among these, we can have lim, . &(r) = o0
(exemplified by £(r) = log(r? + 2)*, k > 0), we can have lim, ., £(r) = 0 (exemplified
by £(r) = log(r? + 2)*, k < 0) and the case where there exist positive constants C; and
Cy such that C; < £(r) < Cy as when ¢ is constant. If lim, , £(r) = oo, we have
lim, o &(r)r~" = 0 for all v > 0 and if lim,_,, £(r) = 0, we have lim, o {(r)r? = oo
for all v > 0. Being f of compact support only dependent on r, assume that the support
of f is of form [b,¢] x F, with b,c # 0. Being p(r) = r*¢(r), we have, for r # 0,
§(r) = ar" 1€ (r) + 7€ (r) and

p(r)? = a®r272E(r)? + 2ar® 71 (r)E (1) + 12 (r)2.
Then (3.3) becomes
ﬁ /M —fLaf = /bc fArmeeg(r)"tdr + aa’(n — 1)(n — 2) /bc pre—a=2g (=l 2,
+2aa(n —1)(n = 2) / PO () 2 () fodr
b
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+aln=1)n=2) [ e 0
+ dac(n — 1) /C presele(p) £y
b

+aln = 1) [ ) e fr

S(F) ¢ na—3a n—3 r2
A(F)/b r E(r)" 2 f2dr.

(3.7)

+a

The expression (3.7) can be written in other way as
i [t = [ ey oo = =) [ e P
+2aa(n —1)(n — 2) / premaTle (P2 () fdr
b
+aln-1(n-2) [ e (g ()2 2y
b
/ 7Anozfoszé-(r)nfldeT,
b

no—oa—1

aaatn [

n—1

/b Tnaalg(r>n2£/(7,)f2drj|
/b rna—a—lg(r)n—2§/(7,)f2dr

S [y < [y e

2 2

@ crnaf?)a r n—3 2 r
cagq [ ey

= /C fArre=ag(r)"tdr — aa(n — 1)(na — 2) /C premo2e(p)n 2 dr

b b

— 2aan(n — 1)/ prememle(p)n 2 () fRdr
b
~aln =10 = 2) [ ) R
b
— 2a(n — 1)/ P (r) 2" (r) f2dr
b
S(F)

‘ na—3a n—3 £2
+a—A(F)/b r E(r)" 7 f2dr.

(3.8)

The next two theorems relate a-instability to the order of the degree of the polynomial

which has growth comparable to the growth of p.
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Theorem 3.1.5. Suppose o« > 1 and M = I x, F' with a metric of the form g =
dr? + p(r)2gr, with a and p under the conditions (3.6). Suppose that there exist positive
constants Cy and Cy such that C1r* < p(r) < Cor® for all r > 1. Then the corresponding

(na—a—1)2

end (and therefore M ) is a-unstable for all a > Taln Do D"

Remark 3.1.3. No hypotheses about o, p”, the curvature of F and the curvature of M
in Theorem 3.1.5.

Remark 3.1.4. In Theorem 3.1.5 the constant % is the best possible in the fol-
lowing sense: there exists an example of M, satisfying all the hypotheses of Theorem 3.1.5,

which is %—stable One ezample is M = [0,00) %, S* where p(r) = Z5r*. For

more details, see Proposition 3.4.1 in Section 3.4.

_(na—a-1)>

The next theorem characterizes a warped product as Ta(n—D)(na=2) )(m 5

™ ) -unstable, occurring
when p has a a-subpolynomial growth, that is, lim, . p(r)r=® = 0. It is very similar to

the Bérard-Castilon Theorem in dimension n = 2.

Theorem 3.1.6. Let M =1 x, F' be a warped product, where F' is a compact manifold
and p(r) = r*¢(r), where o > 1 and £ satisfies (r) — 0 when r — oco. Suppose that £ is a
non-increasing function and satisfies r&(r) 72 (r) > —(a—1) for all v large. Also suppose
that M 1is a-stable for a = Lm(&o‘__l—m. Then p has linear growth, that is, p(r) < Cr for

some C' > 0. In particular, M has a polynomial volume growth on order of R", that is,

for each p € M, Vol(Bgr(p)) < C1R" for some Cy > 0.
Remark 3.1.5. Note that on Theorem 3.1.6, we are not requiring that & and « satisfy

the condition (3.6).

The Theorems 3.1.5 and 3.1.6 determine an instability interval relative to the exponent

« related to the growth of p. We can observe that

2
h: (—,oo) — R
n

(na —a —1)?2

—
“ da(n — 1) (na — 2)
is decreasing in (2, 1], increasing in [1, 00), satisfies h(1) = ﬁ and limg o0 h(r) = %L

The next theorem characterize a warped product M™ = I x, F"~! with polynomial

volume growth, that is, such that p has a polynomial growth and is a-stable for a > Z—;l
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Theorem 3.1.7. Let M = I x, F' be a warped product, where F' is a compact manifold
of dimension at least two and p(r) = r*&(r), where o and & satisfy (5.6). Suppose that

M s a-stable for some a > 72—‘;. Then there exist a positive constant C' such that

R
lim inf(log R)_l/ rp(r)~2dr > C.
R—o0 1

Furthermore, if S(F) < 0, then o < In particular, M has (1 + %)-subpolynomial

n—2"
volume growth, that is,

lim r~3*2)Vol(B,(p)) = 0

T—00

forallp e M.

The next theorem shows what can happen if the function £ in (3.6) has a large varia-

tion.

Theorem 3.1.8. Let M =1 x, F', where p(r) = r*{(r), where a > 1 and & satisfy (5.6)
with the additional condition Cy < &(r) < Cy for allr > 0 for some constants Cy, Cy > 0.

Suppose that
logT

Tlim T a2
S [T e ()2 (r)Pdr
n—2

where Ry 1s a fived positive number. Then M is a-unstable for all a > 1)

Y

Example 3.1.1. Let £ : R — R defined by {(r) = 2 + cos(e”). It is possible to show that
the application

R
R+— ré(r) 2 (r) dr
Ry

has a exponential increasing grown. Note that 1 < &(r) < 3 for all r € R. Therefore, £
satisfies the hypothesis of Theorem 3.1.8.

Inspired on the Theorems 3.1.5, 3.1.6, 3.1.7 and 3.1.8, we conjecture:

Conjecture 3.1.1. Let M = I x, F, where p(r) = r*&(r), where o > 1 and £ satisfy
(3.6). Suppose that, for all v > 0, lim, . £(r)r7 = oo and lim,_,o {(r)r~" = 0. Then

(na—a—1)2

M is a-unstable for all a > a3

Furthermore, if lim, o, {(r) = 0, then M is

a-unstable.

Under these conditions, £ becomes, for values large of r, a positive function, which

neither increases fast to oo nor decreases fast to zero, in the sense that it increases and
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decreases more slowly than any polynomial function r — 7, v > 0. The natural examples
are logarithmic functions. In the case where I = R in Conjecture 3.1.1, it is enough that
the end corresponding to the positive direction of M satisfies their hypotheses, where by
a simple change the variable of r, we guarantee an analogous result if we take the end

corresponding to the negative direction of R.

We can study the a = 1 case separately from the others. This case includes the case
corresponding to Theorem 3.1.4. In this case, the scalar curvature of M can be strictly
positive or strictly negative. For example, if M is of the singular type and F = S,
taking p(r) = cr, we have § > 0if ¢ < 1, § < 0 if ¢ > 1 and the case ¢ = 1 gives us
exactly the n-dimensional Euclidean space. The crucial difference is that the last term of
(3.8) is relevant in relation to the other terms, which does not occur if a > 1. Here, we

present two cases related to the case of Theorem 3.1.5 in two different theorems.

Theorem 3.1.9. Let M = I x,S" ! be a warped product, with I = R or I = [0,00).
Suppose that Cir < p(r) < Cor ¥r > 1 for some positive constants C1,Cy. If C; > 1,

then (the corresponding end of ) M is a-unstable for all a > #_120’2)'
n— -4

Theorem 3.1.10. Let M = I x,S™ ! be a warped product, with I =R or I = [0, c0]).
Suppose that Cir < p(r) < Cor ¥r > 1 for some positive constants Cy,Cy. If Cy < 1,

then (the corresponding end of ) M is a-unstable for all a < ch_z).
n— —La

Remark 3.1.6. The condition Cir < p(r) < Cor ¥r > 1 in Theorem 3.1.9 and in

Theorem 3.1.10 can be dropped by Cir < p(r) < Cor for r sufficiently large. This can
. n—2 : n—2

"improve" the constants Py} Yewwere of Theorem 3.1.9 (respectively, Py Yewrere of The-

orem 3.1.10), because the Theorems 3.1.9 and 3.1.10 with this modified hypothesis could

cause the new value of Cy to increase (respectively, Cy to decrease), causing the increasing

of the interval (; n—2

W’OO) (respectively, (—oo, —"=2 ). In the proof in the
n— -

T 4(n-1)(1-C5 )
next section, we only need Cir < p(r) < Cor for r sufficiently large, proving the instabil-
ity of the end. In the case I = R, we can analyze the end of M relative to the negative

direction of R changing p by p = po A, being A the application determined by A(x) = —zx.

Example 3.1.2. Let M = [0,00] X, S"~! with p(r) = Cr is a (geometric) cone, singular

in the origin v = 0. The operator L becomes A — “("*”(g;;’“*c?). Note that S > 0 if

C<1,S=0ifC=1and S<0if C > 1. Suppose f dependent only on r, then (3.7)
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described as (3.8) becomes:

1F) /M —fL.f =C"! /bc 2 dr + a(n —1)(n — 2)(1 — C?)C™3 /c .

b

where b and ¢ are such that 7 (suppf) C [b,c]. By Cauchy-Schwartz inequality, we have:

C 2 C
/ S Ry = — —— / "2 f fdr
b n—2

_ 2/ L

n—2

9 c 1 c 1
< (/ r”_lffdr) (/ r”_?’fgdr) )
n—2 b b

Then
C 4 C
r"_3f2dr < —/ r”_lffdr.
/b (n—2)2 J,

Therefore,
Cn—l ‘ 2 n—ld -1 -9 1_02 On—3 ‘ n—3 2d
[ s atn = -2 - e [
18:
(1) > (( 1 2 C*+ a(n 1)(n—2)(1—02)> C’”_g/cr”_3f2d7’, if C <1, and

b

da(n —1)(1 - C?)
n—2

(2) > (02 + > C”‘3/ fAr=tdr, if C > 1.
b

Using the Proposition 3.1.1, we conclude that M is a-stable, if:

n—2
C<1 and GZW,

C>1 and a§4(n—17)1(;1—072)

3.2 C&SGM:RXplFl Xp2F2 ng-"kaFk

The expression of the scalar curvature in M is

S = ZSF

k >

23 nin
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where n; is the dimension of F;, i = 1,2, ... k. In this section we always assume that each

n; > 2. The element of volume of M is expressed by

k
AV = (H pi(r)ni> dVi,dVp, . .. dVe, dr.

We remember that we are working only with the cases in which each F; is a compact
manifold. Thus, we always assume that each F; is compact. So we can continue using, as
test functions, functions that only depend on r. Therefore, if f € C°(M) is a function
that is only dependent on r with support in the real line contained in the interval [b, c|,

then
/ fL.f = / VI + aSy?
M M

S AR U5 o5 YiEEh ST C T

=1 Z

—azk:ni(ni—l)/ (Hp] ) pi(r)2 f2dr

J#i

—QaZn,n]/ pi(r) 1 p ”j_1<H o(r ) pi(r)f dr]

<] 1AlA]

+a25 JTvels, / <Hpj(r)”j) 1

i#] JF

- (H vOzm)) | (H pmm) ar




where S(F;
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+2aZni(ni - 1)/ (H pi(r ) )2 f2dr

J#i

+2a2nmj/ pi(r)™ pi ()" pi(4) 0 () ( 11 Pz(r)"l> frdr

J#i I#4,1#£]

+4a2nz / pilr)"~ (Hp] ) r)f frdr

JFi

—azk:ni(n,-—l)/ (Hp] ) )2 f2dr

JF#i

_Qaanj /bc pi(r)™i! ( H ou(r ) pi(r )f2d7“]

i<j iAlF#]
k c
+a >y S(F) [[Vol(F)) /b P (H pj(r)”j> fdr
i=1 i#j i

| (H m(rw) dr

—l—az ni(n; — 1) /c (H p;(r ) )2 f2dr

JF#i

20y min, / pilr)" ™ py ()™ i ( I1 ~tr )ﬂdr

l#i,l#£]

+4aan / ()™~ (H p;(r ) ffrdr]

JFi

—l—aZS ) [TVolr; / o <Hpj(r)"f> frdr,

J#
(3.9)

;) denotes the total scalar curvature of F;. Thus, we have:

Theorem 3.2.1. Let M = I X, F| X, -+ X, F}, be a multiple warped product, where each

F; is compact and with nonnegative scalar curvature. Suppose that for any 1 < i,5 < k

and r € I, pj(r)pi(r) > 0. Then M is a-stable for all 0 < a < min;<;<p{%"}.

This theorem generalizes the Theorem 3.1.1. The following examples discuss the re-
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sults of Theorem 3.2.1.

Example 3.2.1. One of the simplest examples of a multiple warped product satisfying the
hypotheses of the Theorem 3.2.1 is when p1 = ....pr = p and the warped product can be
written "in evidence"” as a simple warped product given by M =1 X, (Fy x --- x F},), thus
obtaining a "stability interval” greater than that of the conclusion of the theorem, being it

[0, 22], where n = ny + -+ + ny.

Example 3.2.2. Consider the warped product given by M = [0,00) X, Fy X ,, F5 where Fy
and Fy are n-dimensional Riemannian manifolds with scalar curvature identically null,
pi(r) =1 for all v > 1, po(r) = r=% for all v > 1, p1(0) = po(0) = 0, where each p;
is defined in (0,1) so as to become a smooth function. Then, in the submanifold of M
formed by the fibers r > 1 we have S = —2nr=2 and L, = A + 2anr~2. Taking f of

compact support only dependent on r and such that suppf C [b,c| C [1,00), we have

/ —fLaof = Vol(F)Vol(F) /C(fr2 — 2anr~2 f*)dr.
M b

Taking b =1, c = 2R and

0 if 0<r <1,
r—1 if 1<r<2;
flr)= \%r% if 2<r <R,

R3r++2R: if R<r<2R;

0 if m> 2R,

c R 1
2 ~2 42 _ [ |
/b (f7—2anr==f%)dr) —C’+/2 (87“ anr ) dr

2R 1
+ / {51{_1 —anR™ ' (—r + 2R)2} dr
R

J/

then

o(1)

1
<C; + (§ — an) log R.

Therefore, if a > #, M will be a-unstable, because we can choose R so large as desired.
Note that %= > tn. This example shows the importance of the hypothesis pi(r)p/(r) > 0
in Theorem 3.2.1.



52

Example 3.2.3. Let M = R x,, F\ x,, --- X, Fy, be a multiple warped product, where
each F; is a copy of an n-dimensional compact manifold F' with a metric g of null total
scalar curvature and volume one, p;(r) =1 for 1 <i <k—1 and pr(r) =r*, a > 1. The
expression of (3.9) reduces to
/ —fLf = / fAredr 4 an(n — 1)a? / P2 f2dr + 4ana/ ref f.dr.  (3.10)
M b b b

Take as a test function the function f defined by

0 if r <0,;
r if0<r<I1
f(r)= fr(r)= P if 1 <r <R;
— Ry + 2R3 if R<r <2R;
\ 0 if r > 2R.
Then
2 R
/—fLaf:C—f— ( 5 ) +an(n — 1)a” + 2ana(l — na) / rdr
M 1
2R 2R 1+na l1—na
+ R_l_”a/ r"“dr +an(n — 1)a2/ "2 (—RT T2 r4+2R 2 )3dr
R \R >y
o() o)
2R 1 1+na 1+na 1—na
+4ana/ —r"* " R™ 2 (=R 2 r+2R 2 )dr,
R
o(1)

where C' is a constant relative to the integration of (3.10) in the interval [0,1]. Then M

is a-unstable, if

1—na\’ (1 —na)?
—1)a® +2 1— <0<=a> :
( 5 ) + an(n — 1)a” 4+ 2ana(l — na) a Tna(no +o—2)
Therefore, M 1is a-unstable for a > %. Since
(I-na)*  n-—1
o-ldna(na+a—2)  4n

we can find an example of manifold M, under the conditions of the Theorem 3.2.1, which

is a-unstable for each a > min1<i<k{"i;1}.
- T

Example 3.2.4. Suppose that M = R x, F', where F™ is a compact manifold of constant

scalar curvature equal to —So and p(r) = 1. Then M is exactly the standard product
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R x F', Syy = =5y and for f only dependent on r and of compact support contained in
b, c]:
/ CfLf = Vol(F)/ (F2 — aSyf2)dr.
M b

Taking the sequence of functions fn given by

(

0 if r] > N+ 1;
r+N+1 if —N—-1<r<N;

—r+N+1 if N<r<N+1,;

1 if |r] < N.

If a > 0, then, for N large, it is easy to see that fM —fLof < 0. Therefore, M is a-
unstable. This example shows the importance of the nonnegativity of the scalar curvature

of F.
The following theorem is a similar for the Theorem 3.1.3, for the multiple warped
product case.

Theorem 3.2.2. Let M = R x, F\ x,, -+ X, F}, be a multiple warped product, n; the
dimension of F; and n = ny +---+ng. Suppose that for each p;, there exists Ry such that

one of the following two situations occurs for:
(i) p!(r) >0 for all r > Ry and lim,_,, p;(r) = oo;
(i1) p!'(r) >0 for all < Ry and lim,_,_, pi(r) = —oc.

Then the corresponding end of M (and therefore, M ) is a-unstable for all a > ﬁ.

3.3 Applications: minimal immersions on R"

In this section, we present examples of minimal submanifolds in Euclidean space in the

form of warped products.
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3.3.1 Cones

C™ is said to be a cone if C' can be written as a warped product [0,00) x, F"~!, with

p(r) =r. In a cone, there is a vertex, corresponding to the leaf r = 0. We have

Sp—(n—1)(n—2)

2

S =

r

and the expression of a-stability becomes

Vol(F) {/bc 2" dr —a(n —1)(n — 2) /bc r”_3f2d7’] + a/CSFT”_3f2 >0. (3.11)

Suppose that F'= S}! X --- X S}* is a product of k round spheres, with ny +--- +n; =
n —k+ 1. Then F is a minimal submanifold of S* € R"*!, from the natural inclusion,

if and only if r; = | /-7 (see [Net14], Proposition 2.6). It is a known fact that, under

these conditions, the singular cone C' = [0, 00) x, F', where p(r) = r, is a minimal cone in

R™*! invariant under dilatation. The scalar curvature of F is

stzn—n_’““ni(ni—l)=Z(n—k+1)(ni—1>:(n—k+1>(n_zk+1).

i=1 i i=1

Since F' has constant scalar curvature, to analyze if C' is a-stable, we only need to analyze
the set of test functions f only dependent on r (see Proposition 3.1.1). Suppose f is
dependent only on r, then the expression of the a-stability of C' (3.11) becomes:

b

k c
[ [vousy )] { / ke —a(n — k4 1)(n — k) / I B 18
=1

—i—a(n—k—l—l)(n—%—i—l)/ ke 1f2dr] >0
b

<:>/ frr = dr —a(n—k+1) (k— 1)/b R f2dr > 0. (3.12)

Integrating by parts and using the Cauchy-Schwartz inequality, we have

C 2 C
/ PR 2 = — —/ "R f fodr
b n—=kJy
9 c i c i
S (/ T’nklf2d7"> (/ fTankJrld,r)
n — k b b

c _ 2 c
— / fTQ,r,n—k—l-ld,r Z (7’L 7 k) / Tn_k_ldeT.
b b
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Then the expression (3.12) is positive, if

(n—k)?
(n—k+1)(k—1)

(n—k)?
1

—a(n—k+1)(k—1)20<:>a§4

whenever k > 1.

a-stability of minimal hypercones

Let us consider the special case where k = 2 in the above situation. Under this condition,

F becomes a minimal hypersurface of S” and

Sp=(n—1)(n—3).

Therefore, C' = [0,00) x, F, p(r) = r, is a n-dimensional minimal cone of R"!, its scalar

curvature 1s
~ Sp—(n—1)(n—-2) n—1

S

72 72

and C is 3?7;2)12) -stable.

The next proposition shows that this value of a is the highest possible positive value

of a such that an n-dimensional cone can be a-stable, when n > 7.

Theorem 3.3.1. An a-stable minimal cone C™ of R™!, with a > max {1, %}, 1s flat.

Before proving this result, we need of a result.

Proposition 3.3.1. (Simons [Sim68]) Suppose that M — R™ is a minimal immersion.

Then, the second fundamental for A satisfies

1
SAAP + Al = [V AP
on M.

For a demonstration, see ([Cho21|, Proposition 8.13). It implies

[AIAJA] + [A]* = [VA] — [V]A]% (3.13)
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Proof of Theorem 3.3.1. Let Ap be the second fundamental form of the immersion
F — S"™ and A be the second fundamental form of the immersion C' — R™*!. The cone

C' can be seen as the set

C=rF={rz,x € F,r > 0}.

Let re € C, r > 0, x € F, by a direct calculus, A(0r,-) = 0 and for X,Y € T,F,
A(X,Y)=r"1Ap(X,Y). By Proposition 2.1.1,

(VarA)(X7 Y) ZVaT(A()Q Y)) - A(VarX, Y) - A(X, Vary)
=—1r?Ap(X,Y)
= —rTAX,Y),

where V is the Levi-Civita connection of C. We can then consider A = r~'Ar and
VorA = —r~1A. Being {e1,...,e, 1} an orthonormal frame of F and e, = dr such that
{e1,...,e,} on a given point p = (r, z) is geodesic and diagonalizing A, then

n

VAP = " [(VeA) (e en))?

i,5,k=1

and

n

IVIAIP = (V]A]e;)?

=1

— Z <V (Z A(ej,ek)2> ,ei>
= A7 > Alej en)’[es(Alej, en))]?

= |A]? Z Alej,e;)[ei(Alej, e5))])
= |A]? Z Alej, €)*[(Ve, A) (e, ;)]
< |A|_22 <Z A(€j7€j)2> (Z[(VeiA)(ejaej)P)

= Y [VeAles, e

,j=1
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Hence

|VA’2 - |V|AH2 2> 22 Z [(Ve, A)(ej, €k)]2
i=1 1<j<k<n

n n—1

>23" S (Ve ey, )

i=1 j=1

By Codazzi equation, (V.,A)(e;, e,) = (Ve,A)(e;, €j). Therefore,

n n—1

VAP = [VIA|? > 2) ) (Ve A)(ei ¢)))?

=1 j5=1

= 2r 2| A%
It and (3.13) imply

|AJA|A] + |A]* > 2r72| AP

For ¢ € C=(C'\ {0}), multiplying the inequality above by |A|" <" ¢? and integrating on

C, we have
/|A| 2y </|A| FPAA| A

1+3a 1
‘A’ + 2__‘A’ a ‘V’AH2—2’A|“(P<V<P7V|A‘>'
a

143a 2

(3.14)

Substituting |A|a27+alg0 on a-stability inequality (recall that |A]> = —S on minimal hyper-

surfaces of R™), we have:

1+3a atl
o [ 14 < [ v
C
a+1 l—a
()
C a

a—l—l

at
PIVIAI + A

|Al+p(V|A], Vo)
(3.15)

Multiplying (3.14) by a and adding to (3.15), we find

2
/|A| a T_2Q02</ (a+1> —
2a

—2a>+a+1
+—

A= 2V |A| 2

A+ @(V|A|, Vi) + | A"

—3a—1)(a—1 l-a
=/C( e =1y 2 pwapp

4a2
—2a —1 —1
| (“20-1)(a

AR G(VIAL V) + A2 Vel (3.16)
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Take ¢ = ¢(r) only dependent of 7. Since |A| = r7!|Ap|, then
Vo =¢'(ro,, (VIA,Ve)=—r72¢/(r)|Ap| and |VIA|* >r~*|Ap[".

Hence (3.16) with the hypothesis a > 1 implies

a+1 _3a+1 3(12 —2a—1 3a+1 a+1
/IAF| aw_/c—— |Ap| "o ¢?

4a?
2a2 —a—1 at+l _ 2a+1 at+1
AR g AR 2,
Since dVg = r"~1dVpdr, the last inequality is equivalent to:
/ ‘AF| a+1 /OO _8@3 + 3@2 2_ 20/ - 1rna7;1a71 ¢2+2a2 —Qa — 171110,730,71 ()0()0/_1_7«”&73&71 ()0/2‘
0 4a a
If [ |Ap|“c =0, then |Ap| = 0 and |A| = 0, therefore, C is flat. Thus, suppose that C
is non flat, then
0 8013 + 30/2 - 2a - 1 na—4aa— 20/2 - CL - 1 na—s3a— na—2a—
OS/ - 1oz Pt T T T oy e T Y (3.17)
0 a a

By an argument of approximation, we can take ¢ € C%(C) defined by:

"

0 if 0<r<g3;
2r if % <r<l;
©(r) = pr(r) = P if1<r<R
—RTESSTr £2RTT i R<r < 2R;
k 0 if > 2R.

The integral (3.17) on the interval [0, 1] is a constant independent of R. The integral on

the interval [1, R] becomes

r~tdr

/R —8a3—3a2+2a+1+2a2—a—1—na+3a+1+(na—3a—1)2
1 4a? a 2a 4a?

_ —8a® —3a®>+2a+1 N —4na® + 12a® + 4a? + 2na? — 6a% — 2a + 2na — 6a — 2
4a2 4a2

n2a?® + 9a% + 1 — 6na? — 2na + 6a
+ log R
4a?
—4na® + 4a® + n2a® — 4na® + 4a?
= log R

42
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n2
= (—na—l—a—i—z—n—i-l) log R.

Hence, the integral of the expression (3.17) on interval [1, R] will be negative and a multiple
of log R, if
2 -9 2 -9 2
—na+a+%—n+1<0<:>a(1—n)<—%<:>a>%.
Let us check that the value of expression (3.17) on the interval [R,2R] is constant and

independent of R. Note that:

2R 2R
na—4a—1 —na+a+1 na—2a—1 na—3a—1 na—4a—1
/ r e @(r)dr=R / (7’ o —A4Rr T« 4R*r™ ) dr = Cy;
R R

2R na—3a—1 —na+a+1 2R na—2a—1 na—3a—1
/ r o o) (r)dr=R" « / (—7“T +2Rr ) dr = Cy;
R R

2R —2a—1 —natatl 2R —2a-1
/ r e @ (r)?dr=R" / r— o dr = Cs,
R R

where C, Cy and C3 are independent of R. Hence, the expression of (3.17) on the interval

[R,2R)] is constant and independent of R.

(n—2)2 .
i(n-1)° if

Therefore, for R large, ¢ negatives (3.17) and C' cannot be a-stable for a >

C' is non flat.

3.3.2 Minimal catenoid

In R? the catenoid

(u,v) — (ccosh(v/c) cosu, ccosh(v/c) sinu, v)
is such that is the union of two graphs of radial functions defined on the plane (z,y) minus
the disk of radius ¢ centered on the origin and these two functions are additively opposite.

With this in mind, let us find a nonnegative radial function ¢ : R™ \ By, (0) — R, where

sp > 0 is a real number such that its graph: = — (z, ¢(z)) satisfies

Vo B
v (——1 n |V(b|2> =0, (3.18)
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where is the equation of the minimal graph. Consider R™ \ B, (0) as the warped product
[s0,00) x¢ S*~!, where £(s) = s. Let {e1,...e,-1} be a local orthonormal frame of S"!,

using that V,,ds = L¢; (see Proposition 2.1.1, item (ii)), we have

V( Vo ):m( ¢(s) )
V1+ (Vo 1+¢’( )2

\/W Z elas; 61
A GO ¢'(s)2)% — (L4 ¢'(s)) 2 ¢/(5)°¢"(s)

L+ ¢/(s)”
_ (=) | )1+ (5))2 = (1+ F(5)°) " 26(5)°¢" (5)
IO T+ 0 '
Therefore, (3.18) is equivalent to
#5168 (s)

—1 4/ /1
(TL - 1>S §b (S) + ¢ (8) - 1+ ¢/(8)2
Because the idea is to generalize the properties of the two-dimensional catenoid, our

problem becomes

(

(n—1)s71¢'(s) + ¢"(s) = (1 + ¢/(5)*)71¢/(5)?¢"(s) = 0
{ B(s0) =0 (3.19)

\hmr—war ¢'(s) = 0.

Let us do the change of variable u = ¢'(s)™2 + 1, then

u=29/(5)d(@))s = ~2(u—~ D3], = ¢ = —5(u—1) b

Substituting in (3.19), we obtain

(n—1)s (u—1)"2 —

Integrating and applying the exponential application on both sides of the last equality,
we obtain u = Cys*™~ Y where Cy > 0. Since u = (¢')~%2 + 1, we find

1

/ _
V)= T
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Then

s dt
8) = Cl + / .
so \V/ C’Ot2(n—l) —1

2(n—1)

By the initial conditions, we have C; = 0 and Co =5 , therefore,

/; \/562(”—1)t2(n—1) -1

is the solution to the problem (3.19). The graph of ¢ represents half of the catenoid. The

catenoid becomes the union of the graphs of functions ¢ and —¢.

We wish to write the catenoid as Rx ,S"~!. Under the previous conditions, the catenoid
metric is (1+¢?)ds?*+ s%ggn-1. We must find the variable r such that dr? = (1+¢/(s)?)ds?,

which is equivalent to
dr —n+1 gn— 1

1 S
=+ e%)r = = .
\/80—2(“—1)32(71—1) -1

Because r = 0 when s = s, we have, for r > 0:
—n+1 n—1
th T dt
r= / ) (3.20)
\/ (n=1)y2(n-1) _ 1

Using the symmetry of the catenoid relative to the hyperplane x,,; = 0, then p(r) =

p(—r) = s for all » > 0, where s satisfies (3.20).

We can find p explicitly when n = 2, in this case, we have

—1
Sy tdt

r= / -0 = s2 — s,
/—_2t2

plr) = /2 + 53

When n > 3, the solution ¢ of (3.19) is limited by a real positive number T". Therefore,

since s = y/r? + s3, then

the catenoid is completely contained in the set

{z=(21, ., 2n1); =T < @1 < T} CR™

n

According to [TZ09], the catenoid is %—stable. Since the catenoid has two ends, it is
a-unstable for all @ > (%1)? (see [YS76|, [CSZ97| and an adaptation of Theorem 8.7
in [Cho21|). Therefore, the catenoid is a-stable for all a < “=2 and a-unstable for all

a> (=1)2



62

3.4 Proofs of the theorems

3.4.1 Theorems of Section 2.1

We start by proving the Theorem 3.1.2.

Proof of Theorem 3.1.2. First, since M is without boundary, p(0) = 0 and by hypothe-

sis p”(r) > 0 for all r, we have rp'(r) > p(r) for r > 0, because for r = 0 the equality holds

and the application r — rp/(r) — p(r) has as derivative the application r — rp”(r) > 0.
—1, 1

Therefore, rp(r)='p'(r) > 1 for all » > 0. Furthermore, the application r — rp(r)~"' is

decreasing because its derivative is

= p(r) = rp(r) 0 (r) = p(r) (1 —rp(r) o' (r)) < 0.

Rewriting (3.3) we have, for f = f(r) of compact support contained in [b, c|:

1 R ne1 1 — C/r2 Y3 2
TF)/M_fLaf:/b frp(r)"dr +a(n — 1)( 2)/ p'(r)"p(r)" = fd
S(E) [°

. b (3.21)
wdaln=1) [ J0r = r+ G [ ooy
Take

( 0 if 0>%

2p(r) 2 DQ 7 ar — p(r) 2 VQE if § <7 < Q;

f(r) = for(r) = p(?")_%("_l)r%, if Q<r<R;

Clp(r)~2"Vrs — p(T) 72 DT2) if R<r <T;
\ 0 if r>T,

where T is such that p(T') = 2p(R) and C' is such that becomes f a continuous function.
Assume Q is large such that rp(r)~p/(r) > 1 for all r > Q. We fix Q, then the integration
of the expression (3.21) in the interval [%, Q] is fixed. In the interval [@, R] it becomes,

using that f, = —1(n — 1)p(r) "2 =D=1p/ (r)r2 + %p(r)_%("_l)r_%:

R R

R
2007 [yt = 1) [ e [ tar
R RO
a(n —1)(n — rp(r) =20 (r)2dr + 4a(n — —Z(n— Dro(r)"20 (r\2dr
+a(n —1)( 2)/@ p(r)=p (r)"dr + 4a( 1)/@ 5 (n = 1rp(r) =2 (r)
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R R
+4a(n — 1)/@ %p(r)_lp’(r)dr—i-ajif?;/cg rp(r)~2dr

= }l(n —(n—-1- 4an)/Q ro(r)2p (r)*dr + (2@ — %) (n — 1)/@ p(r) 1o (r)dr
Y S(E) [
+ZL/Q r—dr + am/cz rp(r)~=dr.
(3.22)

Since p/(r) — oo when r — oo, the last term of (3.22) is arbitrary small comparing to
fg rp(r)=2p/ (r)2dr if we choose @ large. Since rp(r)~'p'(r) > 1, we have p(r)~1p/(r) > 1,
implying rp(r)=2p'(r)> > p(r)~p'(r) > £. We wish to show that (3.22) is negative and
upper limited by a negative constant C times f; rp(r)~2p/(r)2dr. We have (2a — 3)(n —

2n—3
8(n—1)

2n—3
8(n—1)’

then this statement is true for ”4—;1 <a<

1)+ 3 < 0if and only if a <

taking Cy = 1(n — 1)(n — 1 — 4an). For a > 82(2:‘;’), we only have to show that

i(n—l)(n—1—4an)+(2a—%) (n—1)+i<07

that is equivalent to

(n—1) (—(n —2)a+ % - %) < —%. (3.23)

Since n > 3, the left-hand side of the previous inequality decreases as a function of a. At

a= 82(2:% the left-hand side of (3.23) becomes

1

n
8 8

4 8(n—1) 4

( 1)(n (2n —3)(n—2) 3) 2n? —2n —2n*+ T —6—6n+6
n— - =

Hence, it follows from the decreasing property that the inequality (3.23) holds for all

a > 8%2:‘;’). Note that qu; rp(r)~2p/(r)2dr — oo when R — 0o, because rp(r)~2p'(r)? > %

for » > Q. Let us now analyze the expression of f in (3.21) in the interval [R,T]. We

have

]. 1 1 1 1 1
fr=—5n- Dp(r) 2"V (r)rz + §p(7’)*§(”*1)r*§.

Then the expression of f in (3.21) in interval [R,T] is C? times the expression

10 =17 [ o) 2w = 5= [ o) ey [

R R R



+a(n—1)("—2)/R Tp(r)‘Qp’(T)QdT—%(n—1)(%—2)/)(T)‘5(”‘1)T5/ p(r)"> p/(r)Pradr

T T

+a(n—1)(n — 2)p(T)_”+1T/ p(r)" 30 (r)dr — 2a(n — 1)2/ rp(r)=2p (r)*dr

R

T T
+2a(n — 1)2p(T) 2"~V T2 / rzp(r)T o (r)2dr + 2a(n — 1) / p(r) " (r)dr
R R

—2a(n — 1)p(T)~2"-I73 /R rIp(r) T (r)dr + G/Slig /R rp(r)~2dr.

(3.24)

Being p(T') = 2p(R), by the mean value theorem and using that p”(r) > 0 and

rp(r)~Hp'(r) > 1 <= rp/(r) > p(r)

for all » > @, there exists ¢ € (R,2R) such that
p(2R) — p(R) = Rp'(c) > Rp'(R) > p(R) = p(2R) > 2p(R).

Hence R < T < 2R. The relation p(7') = 2p(R) with R < T' < 2R implies that all the
terms of (3.24) are upper limited by a multiple of

[ roteyooyar

R

because all the expressions are limited by a constant times [ g rp(r)~2p'(r)*dr. We observe

the expression [ g rp(r)=2p'(r)%dr, as a consequence of integration by parts and using that

p(T) = 2p(R), rp(r)~! is decreasing and p”(r) > 0 for r > @, we have

oty rar = [ oo i+ [ o) )=o) o0
< log(p(T)) — og(p(R)) + Bp(R) (s (T) — p/(R)) — Tp(T)~p/(T)
+Ro(R)"p/(R)
=log 2+ 2Rp(T)~'p'(T) — Tp(T)~*p'(T)

<log2+Tp(T)"'p/(T).

(3.25)
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Now, our objective is to show that the expression of the stability operator in [@, R| can
be arbitrarily larger than the expression of the stability operator in [R,T] for R and
T appropriated. Let g(r) = p(r)~'p/(r). We assert that for all C' > 0, there exists V

sufficiently large such that

/QV rg(r)’dr > CVg(V). (3.26)

For this, suppose that fc‘g/ rg(r)?dr < CVg(V) for some constant C and for all V' > Q, let
h(V) = fc‘g/ rg(r)?dr, then

pV) 1
h(V)2 = C2V

hV) < C(VH (V)2 = h(V)? < C2VH (V) =

Integrating the last inequality from ) to V', we obtain

MQ)™ — (V)™ > Zp(logV ~ Tog Q).

This is a contradiction because we saw that h(V) = [ C‘; rp(r)~2p'(r)%dr tends to infinity
when V' tends to infinity, the left-hand side of the last inequality is upper limited by
h(Q)~! and the right-hand side tends to infinity when V' tends to infinity.

That said, combining (3.25) and (3.26), there is an increasing and unbounded sequence

{11, T, ...} such that

o) )
lim —= = 00,
= [ o) 2 (P

where R; is such that p(T;) = 2p(R;). It implies

S5 vp(r) 2/ (r 2
lim =00

i [ rp(r)2p(r)2dr

Therefore, the expression of the stability operator in [Q, R;] is arbitrarily larger than
the expression of the stability operator in [R;, T;] when J increases to infinity. It finishes

the proof.

Note that if F" has nonpositive total scalar curvature, the last term of (3.22) and (3.24)
will be negative and can be disregarded in the respective calculus of instability and we do

not need of p/'(r) — oo when r — oo.
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Proof of Theorem 3.1.3: Suppose that (i) occurs. The proof is similar to Theorem 3.1.2,

with some modifications. We affirm that it continues to be valid that rp'(r) > p(r) for r

sufficiently large (larger than Ry). To verify this, because (rp'(r) — p(r)) = rp"(r) > 0,

it follows that 7rp'(r) — p(r) increases and we only have to prove that the inequality

rp'(r) > p(r) holds for one value of r. Suppose that rp'(r) < p(r) for all » > Ry, then for
r > Ro:

% (1)

o) S o(r)

+ lg{p{) ~ o) < e R—Tog B

b\
—~
=
N—
A
—
i)

<log R — log Ry

—p(R) < CR,

where C' is a constant, expressed in terms of Ry. It is a contradiction, because

p(r) < CR = liminf p/(r) < C

r—00

and, by hypothesis, lim, .., p/(r) = oo. Therefore, for r large, rp(r)~'p'(r) > 1 and

everything else follows in a manner analogous to the proof of Theorem 3.1.2. The proof

of (ii) follows from (i) taking the analysis of p defined by p(r) = p(—r).
|

Proof of Theorem 3.1.4. Using the Proposition 3.1.1, we only have to prove that for r
of compact support only dependent on r and b, ¢ such that m (suppf) C [b, c]:

[ 2ottt atn = 1) =2) [ (00 + Doty

+aln=1) [ 0ol e 20

= [ ooyt saatn =) [ 500 hrdcn= 12 [ g
i =17 [ Py P+ aln = 1) =2) [ (P 1) e 20
= [ ptr)F + 20l = D (0)plr) T

+ /b c (—4a(n —1)p'(r)* + (n = 2)(p'(r)* + 1)) a(n — Dp(r)" > f*dr > 0.
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Because the first term of the least inequality is nonnegative, the inequality holds if

(p'(r)* + 1)(n —2)

—aln = NP0+ (0 =) + 1) 2 0= 0 <7 Jer

1+4+r

r

M is a-stable for all 0 < a < %.

Since the application r is decreasing and p/(r) < C for all r > 0, we conclude that

Proof of Theorem 3.1.5. Taking p(r) = r*{(r), then C; < &(r) < Cy for r > 1. Let
R > 0 be large and the family fr s of functions defined by:

0 if 0<r< mT_lR;
QR ™5 - RUFT)gR) 0D i E<r <R
f(r) = frp(r) = P g () 2aln1) if R<r<RP
(—2R~ meERE, SR_mﬁ_zaﬁ_ﬁ)5(7")*2“(”*1) if R <r<3RF

0 it >8R

Let us analyze the value of the expression obtained in (3.7) in each one of the intervals

[, R], [R, R?], [R®, 3RP] separately.

For interval [£, R], we will only define the value of (3.7) by Kg. Let us now analyze the

expression (3.7) in the interval [R, R?]. In this interval, we have:

_na—a-—1

(i) f(r) =r &)t

- - 1 noa—o
(i) f, =~ T ()0 —2a(n —

_L‘Hg(r)—Za(n—l)—lgl (,r.) :
(na—a—1)°

—na+a—1 —4a(n—1)
A= sty

(i) 12 =
+2a(n — 1)(na — a — 1)r~natag(p)—taln==1¢/(;)

—|—46L2 (n _ 1)2Tfna+a+1£(,r,)f4a(n71)72§/<7ﬂ)2;

noe—o — 1

5 T_na+af<T)_4a(n_1) . 2a<n . l)T_nCH-a—Hf(T)_4a(n_1)_15/(7‘).

(IV) ffr: -

Substituting the expression of f = fr s in (3.7) in the interval [R, R?] and using (i), (ii),

(iii) and (iv), we obtain
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RSB RP
(e = [ o) Vi 20l 1) o 1) [ 601001

R R
RB RE
+4a2(n — 1)2/ 7f(r)(174a)(n—1)*2£l(10)2dr + a&Q(n _ 1)(7”L _ 2)/ rflf(r)(llea)(nfl)dr
R R
RP
+2aa(n _ 1)(n _ 2) g( ) (1—4a)(n—1)— 15 (T’)d?“
R
R
+CL(TL — 1)(TL — 2) / ,rf(r)(1_4a)(n_1)_2€,(7“)2d’r‘
R
RB
—2aa(n —1)(na —a — 1) / rflg(r)(lf%)(nfl)dr
R

RB
—8a*a(n — 1)? §(r)(1*4“)("71)*1§’(r)d7‘
R

RB
—2a(n —1)(naa —a —1) ; £(r) At m==Le (1) gy

RB
—8(12(71 . 1)2/ 7’5(7’)(1_4a)(n_1)_25/(’r)2d7’

R

S F Rﬁ —Zak (l n
—HLAEF;/R 2 Hé(r)(l da)(n—1)-2 4.

- (W — aa(n—1)(na — 2)) / R

+2ac(n — 1)[(1 — 4a)(n — 1) — 1] ’ §(r) 11T () dr

+a(n B 1)[(1 _ 4(1)(71 _ 1) _ 1]/R T§<T)(174a)(n71)72§/(r)2d7,
RSB

_'_ajE?;/R r—2a+1§( )(1 4a)(n—1) 2dT

(3.27)
Note that, since a > ﬁ,

n—2

ST

(1—4da)in—1)—-1< (1—

n —

(1 —4a)(n — 1) — 1 is negative. By hypothesis, a > M(Zf:l—%, therefore, the first and

third terms of (3.27) are negatives. The fourth term of (3.27) is significantly small when
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R is large because —2a+1 < —1, implying that this term is less than %R%M — 0

when R — co. The second term of (3.27) is equal to
2aa[(1 —4a)(n — 1) — 1]
1—4a

(g(Rﬁ)(l—éla)(n—l) . S(R)(l—éla)(n—l))’
if a £ }L, and equal to

2aa[(1 — 4a)(n — 1) — 1][log(§(R?)) — log(£(R))],

; 1
1fa—4.

In both cases, it is limited because in [R, R?], C; < &(r) < C. Since there exists Cs > 0
such that &(r)(1—40 =1 > C; for all r € [R, R?], where we can take

Cg _ min{c£1—4a)(n—1)7 C,él—4a)(n—1)}7

then s
R
/ rLe(r) 110D g > Cy(8 — 1) log R

R
can be so large as we want. Therefore, the expression in (3.7) in the interval [R, R”] can

be so (negatively) large as we want, based on the choice of .

Because of the previous conclusion, on interval [R?, %RB}, we only have to prove that

the expression (3.7) in this interval is upper limited for a constant that is independent of

£. We have

_naf—af—B
2

— =2 r+3R )ﬁ(r)_%("_l),

then

_ —naf-af+p —2a(n—1) —1 ¢/

fr(r,) = —2R = &(r) —2a(n — 1) f&(r) & (r).

Substituting in (3.7) and using that there is a constant Cy > 0 such that £(r) < Cy for

all > R, we obtain that the expression (3.7) in interval [R”, %Rﬁ], when 8 — oo, is:

R36 3RS
4anaﬁ+a,87,8 / ,rnafaé-(r)(lf4a)(nfl)dr +4a2<n . 1)2 / 7nnozfozJ¢'2€(7,,)7’L73£/(,r)Qd?a
N RS RB
o

3
3R

+afn = R-E [T e pe(ri-ae D1 ar
R

3
3R

+4aa’(n — 1)(n — 2)R"PFeb=H / r"""o‘f(r)(l"l“)(”’l)dr
RSB

N J/

o(1)
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3 RB
—12a0%(n — 1)(n — 2)R-"F+eS /2 pra—a—le () 1=ta)(n=1) g
RS
o)
3R
+ 9@042(71 i 1)(n . Q)R—naﬂ+aﬂ+6 / T’na_a_2§(’l“)(1_4a)(n_1)d7’
RS
o(n)
3R
+26LO¢(’I’L . 1)(7’L o 2) / T’na_a_ljdf(?“)n_Qg,(T)dT
RS
3R
baln =10 =2) [7 e ) P
RS

3 RB
naf—o 2

— 8aa(n — 1)}?% / Tna—a—1§<r)(1_2a)(n_1)fdr
R

B

N J/

o(1)

SRP
—8a’a(n — 1)? / prem ol f2¢ (P2 (P drr
RS
soapss 2R
—8a(n _ 1)R—% / Tna_afé.(T)(I_Qa)(n_l)_lé',(r)dT
R

B

1 o
_86L2(7’L . 1)2 /Rﬂ Tna—af2§(r)n—3§/(r>2dr _i_\ajgii /Rﬁ Tna—Saé&(T)n—?;deT

J/

o(1)

<Cota(n-1(-2-4m-1) [ P (P

N - 2 | no
<0
3R
+2aa(n —1)(n — 2 —4a(n — 1)) / prem o2 ()2 (v dr
RS

It remains to be shown that the last term is limited by a constant independent of 3. If

a # }1, we have:

e
[ e petr e i —arresess |
R

B RSB

— 12Reftal /

R[‘I
3 3
2R

+ QR noftaits /
RSB

T,nafaflgoa)(174a)(n71)7lgl(7ﬁ)dr
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AR—naf+ap—p

na—a+1 (1—4a)(n—1) %Rﬁ
(I —4a)(n — 1) ) e

ne
—(na—a+1) / r"“‘af(r)(1_4a)("_1)dr]

RB

19 R—nab+ap

. na—o (1—4a)(n—1) %Rﬁ
(I —4a)(n — 1) [7" ) e

B

s
—(na _ CY) / Tna—a—lé-(r)(1—4a)(n—l)dT]
R

gR-noB+af+s s

TU 41

3
[rnaalg(,r,)(léla)(nl) ‘12%5

RB

e
—(na —a —1) / r”O‘O‘QS(T)(l“)(”l)dr] :

Using that C7 < £(r) < (Cy, we can conclude that the last expression is limited by a

constant independent of 5. This ends the proof for the case a # 411' Ifa= }p we have

T T
/ T”O‘_O‘_lfQS(T)"_2§'(r)dr — 4R—naﬁ+a,3—,3 Tna_a+1§(T)_1f/(7“)dT
RA R

»

3R
—12R"nabtas P (r)H (r)dr
RB

i
+9R—naﬁ+aﬁ+ﬁ / Tna—a—lg(r)—lgl(r)dr
R

B

BRB

= 4 [ log(€()) 13

3
3R’

—(na—a+1) /RB . 1og(§(r))dr]

3
_12R—naﬂ+aﬁ [rna—a 10g(§(7“)) |12%§’8

B

—(na — a) /1: pro-o-l log(f(r))dr]

3 RB
L QR-naBtap+s [rm—“‘l log(£(r)) |24
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1
——(nﬁk——cx——]jl/; P19=0=2 0 (¢(1))dr |

B

As in the previous case, the limitation C; < &£(r) < Cy ensures that the expression is

limited by a constant independent of 5. This completes the proof.
(na—a—1)2

In the next proposition, we show that the constant Ta(n—1)(0=3) which lowers the

constant a is the best possible in the general case of Theorem 3.1.5.

Proposition 3.4.1. Let n > 2 and M be the n-dimensional plane with the metric dr? +

(na—a—1)2

p(r)2gsn-1, when p(r) = ==r%, with a > 1, then L is a-stable for all a < TalnTD (a3

a+1

Proof. Note that, for all real function f of compact support:

0 2 0
/ Tna_a_2f2d’l“ — _ / T’na_a_lff/dT
0 no—a—1 )

2 > na—a—2 na—a .,
= r 2 froz fldr
0

no—oa—1
9 00 00 %
S— (/ Tnaa2f2d7”> (/ rnaa(f/>2d7,) )
no—aoa—1\J, 0

[e's) 4 00
noa—a—2 2d < / na—ao [ g/ Qd )
|t < e [

By Proposition 3.1.1, we can reduce the space of test functions to the space of smooth

NI

Therefore

compact support functions that depend only on r. Suppose f is dependent only on r,

substituting in (3.8) (note that, in this case, {(r) = —=), we have

+1

(a+1”1A /fo /f2madr_aa(n_1)<a_2)/ ey

+a(n —1)(n —2)(a+ 1)2/0 S 2 gy

2(Qﬁlglif—amn—nma—m>AMWWﬂ4ﬂm,

(na—a—1)2

the last term is nonnegative for all a < T D)ma"3)"
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Proof of Theorem 3.1.6. Since £(r) — 0 when r — oo and 7&(r) ¢/ (r) > —(a — 1),
we have

a—1

r

(r) € (r) = -
— /1r§(5)1§’(s)ds > —(a—1) /j s tds
— log(&(r)) —log(§(1)) > —(a —1)logr

- 6(7“) Z Cl’f’l_a,
where C; = £(1)7%. In order to prove by contradiction, let us suppose that

limsup £(r)r* ! = oo.

700

E@)yre ) =& + (@ =DEr)r* ™ > —(a = Dr 1 E(r)r™ + (a = DE(r)r*? = 0,
the application r — £(r)r®~! is nondecreasing and we can assume that

lim &(r)r* ! = oco.

r—o0
Take as a test function
( 0 if 0<r< %;
2R ™5 r — R™F)ER) 2D if B <y <R
f(r) = frp(r-) = P g ()2 () if R<r<RP
(—2R‘Mr + SR_%)&T)_%(”_I) if RP<r<32RF
\ 0 if r> %RB.

As in the proof of the previous theorem, let us analyze the value of the expression obtained

in (3.7) in each of the intervals: [£ R], [R, R?], [R® and 2R”] separately.

On interval [£, R], we will only define the value of (3.7) on interval [£, R] by Kp. Let

us now analyze the expression (3.7) in the interval [R, R?]. In this interval, we have

_na—a-—1

i) fr)=r £(r)"zD;

(i) f, = _W_TCHTW§<T)§(711) _ %(n I G T
(na —a —1)2

P () g (= 1) — = 1)) ()

(it} f2 = -

4



74

_‘_i (n - 1)2T_na+a+15(7“)_n_lf/(T)2;

no—oa—1

(iv) 1, = =" g () )y () ),

Substituting the expression of f = fr s in (3.7) in the interval [R, R?] and using (i), (ii),

(iii) and (iv), we obtain

(na—a—1)° / rldr + %(n ~Dna—a—1) [ &) )dr

4 R R
RP RA
—l—i(n — 1)2/R r&(r) 2 (r)?dr + aa®(n —1)(n — 2)/R r~tdr
RP RB
+2aca(n —1)(n — 2) ; )L (r)dr + a(n — 1)(n — 2) /R r&(r) 2 (r) dr
—2ac(n —1)(na —a —1) /R r~tdr — 2aa(n — 1)? ; E(r)r (r)dr
—2a(n — 1)(na — a — 1) ; ()1 (r)dr — 2a(n — 1)2/R r&(r) 2 (r)dr
RSB
+aj§§; /R P20t Le(r) 2 dr
(na —a —1)32 R 4
= (f —aa(n —1)(na — 2)) /R rdr
—l—%(n — 1) (na — a — 4daan + 4a — 1) ; E(r) 1 (r)dr
RSB

+(n—1) (;ln —an — i) /R r&(r) 72 (r)dr
—i—aié?i /R P2t (r) 2 dr. (3.28)

By hypothesis, a > (na—a—1)? 7 then the first term of (3.28) is nonpositive. Let us show

4a(n—1)(na—2

that the second term of (3.28) increases arbitrarily more than the fourth term of (3.28)

(in module), if we choose R and (8 appropriately. Note that

R
§

i (r)~'¢ (r)dr = log(£(R”)) — log(£(r)) — o0
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when R — oo, because £(r) — 0 when r — oco. If
/ r 20t (1) "2 dr < oo,
R
there is nothing to do. Suppose that
/ r 20t (1) 2 dr = oo,
R
then for all § > 0,

liminf &(r)r*™170 = 0,

rT—00

because otherwise,

liminf &(r)r*' 7% = C > 0,

T—00

where C' can be oo. It implies

lim Sup§<r)72r72a+2+25 _ C*Z.

T—00

Then for R sufficiently large,

o0

/ r_2a+1§(r)_2dr :/ T_1_25f(7’)_27“_2a+2+25 S (0—2 + 1)/ T—1—25 < 0.

R R R

It is a contradiction. Hence, there exists a sequence {R;, R, ... } such that

7O‘+1+o¢;1 _a-—1 Q—l

= {(R) < R, * = log(&(Ry)) < —

E(Ri) <R ’ log R;

)

for all positive integer i. Therefore, it is possible to choose § large and appropriately such

that
RB

E(r)7Y¢ (r)dr < Cylog(R?) = C1Blog R
R

for some negative constant C; (we can choose 3 such that R® € {R1, Ry, ...}, where {R;}

is the sequence defined above and C] a little bigger than —"‘T_l) On the other hand,

RP RB
/ 7’_20‘+1§(7‘)_2dr:/ (E(r)2r 202 Ly,

R

-1

Since we are assuming that lim, . £(r)r®~! = oo, taking R large, then

RB
/ r 2t (r) 2 dr < Blog R.
R

It shows that the fourth term of (3.28) is arbitrarily less than the second term of (3.28)

(in module). Intending to compare the second and the third term, we have

/ rE(r) 2/ (r)2dr < —(a—1) [ £(r) e (),

R R
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then the combination between the second and the third term of (3.28) is less than

RB
(r)=1¢'(r)dr
R
times the constant
1 1 1
§(n— (na —a—4aan+4a—1) — (a —1)(n — 1) (z_ln_(m_Z)
1
:Z(n—1)(na—a—4aan+8a+n—4an—3). (3.29)

Substituting a = m(&oi_l—m on (3.29), we have

l(n— 1) na?(n —1)(na — 2) B a?(n —1)(na — 2) _an(na—a— 1)
4 an —1)(na —2) an—1)(na—2) a(n—1)(na—2)

2na—a =1 na(n—1)(na=2) n(ma—a-1)>°

an—1)(na—=2)  an—-1)na-2) an-—1)(na—2)

_3a(n—1)(na —2)

a(n —1)(na —2)
_ 1 303 91202 — n2a® 4 2na? — n2a® 4 Ina’ 3_ 902 — n3aS 3
—m(na —2n“a” —n“a” +2na” —nta” +2na” +na” —2a° —na” —na” —no

+2n2a2 +2n2a? — 2na? + 2n%a? + 202 + 2 — dna® — dna + da +na? — 2nla

—n2a?+2na—nda®—na?—n+2n*a?+2n’a—2na—3n’a’+6na+3na’—6a)

nao—20—-n+2 (n—2)(a-1)
4dalna —2)  da(na —2)

> 0;

because a > 1 and n > 3. Therefore, the combination of the second and the third term

of (3.28) is less than
(n—2)(a—1) [
da(na —2)  Jp

g(r) 1€ (r)dr.
Since the first term of (3.28) is zero and the fourth term is irrelevant to the second term

for R large, then, for R sufficiently large, the expression (3.28) is less than

(n—2)(a-1) (% (n—2)(a—1)

Satna—2) [, S0 =Sy loa(E(RY) — €(R)).

Using that lim, . &(r) = 0, we conclude that (3.28) can be (negatively) so large as we
want, taking g large.
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Based on the previous conclusion, on interval [R?, %RB], we only have to prove that

the substitution of (3.7) by f is limited and independent of 5. We have

naf—af+8 naf—af—p

flr) = (=2R™5 4 3R () 20,

then
_naB—aB+p _1 n— 1 _
o = 2R () AN (1) () ).

Substituting in (3.7), we obtain when § — oc:

R3# 1 3o
4ana5+a67,6’ / rre—a g, —|——(TI, . 1)2 / rnafaf2£(r>nf3§/(7,)2dr
o RB . 4 RB

o)

3 RB
+2(n— YR / pre=e f¢ ()2 (n=D=1e (1) dy
R

B

3 RB
2
+ 4aa2(n - 1)(7}, — Q)R*na6+a575 / PRe=a g
o)
3RS
— 12aa2(n —1)(n— Q)R—naﬁJraB / pna—a=1g.
N RP .
o(1)
SRS
+ 9aa2(n —1)(n— Q)R—na6+aﬁ+ﬁ / pra—a=24,
RSB
o(1)
3RO
$2aa(n=1)n=2) [T )
RB
SRS
baln =10 =2) [ e ) P
RSB

3 RB
RB

N J/

-
o)

3

3R’

—2aa(n — 1)2/ prem oL g2 (P2 (r) drr
R

B

s
_8a(n B 1)R_ naﬁ*QaﬁJrﬁ / Tna—afé-(,r,)%(n—l)—lg/(r)dr
R

B
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3 RB 3 RB
—2a(n - 1)2 /RZR Tna_af2§(7’)n_3f/(7’)2dr + aié?; /R:R Tna—3a£<r)n—3f2dr

J/

o(1)

i
/ Tnafaf2£(r)n73€/<r>2dr

<C+(n-1) (in—an—i) .

3 pp
—2aa(n — 1) /RZR premoT L2 ()2 (r)dr

3
3R’

+(2-8a)(n—1)R~ "= / e fe () 2D (1), (3.30)
R

B

We must show that all these terms is upper limited by a constant independent of 5. We

can note that, on the interval [R®, 3 RA],

_naf—af—B
2

0< f(r)<R E(ry2 0y,

Furthermore, —(a + 1) < r&(r)~1¢(r) < 0. Hence,

3
3R’

()" ree e ar

na—a—1 %Rﬁ
(o — 1)2/ r~tdr
R

B

3 RB
0 S /2R Tna_af2§(7’)n_3§/(7’)2d7” S/
R

B RB

[N
=y
=)

%Rﬁ 1 %RB noa—o—
0> RS /R pre=a=l e () 3D () e > /R (L) L) ) dr

B B

It shows that (3.30) is upper limited by a constant independent of 8 and shows that M

(na—a—1)2

is a-unstable for a = Ta(n D (a—3)"



Therefore, r +— £(r)r*=t < C' for some C' > 0 and

p(r) =r*(r) < Cr.

|
Proof of Theorem 3.1.7 Let us remember (3.6), that

a = inf{~; TILIEO p(r)r~7 =0}
and £(r) = p(r)r—®. We affirm that

lim sup w = 0.

rsoo  loOgT
To verify this, let
1
€ = lim sup 22E).
r—oo  logr

79

(3.31)

If C' > 0, then there exists an unlimited sequence {R;, Ry, ...} such that

log(§(R:))
log;}%i 2

C c
>— = ¢R;) >R VieN

It contradicts the characterization of « in (3.31), because it would imply

c C
oty s

lim sup p(r)r~©+%) = limsup &(r)r

7—00 7—00 1—00

> limsup £(R;) R,

On the other hand, if C' < 0, there exists Ry such that for all r > R,

—loi(é(:)) < % — £(r) <re.

©[Q

It also contradicts the characterization of « in (3.31), because it would imply

lim p(r)r~ @) = lim &(r)r=©
7—00 T—00 T—00

< lim r

Note that o + € < a, contracting the characterization of o in (3.31). Therefore, fixed R,

we can choose [ appropriately large such that

TR e(r)e (r)ar

Blog®R)

(3.32)

Our test function will be the same of the proof of Theorem 3.1.6, that is

(

0
(2R~ r — R % )g(R) "2 (Y
F(r) = frp(r,) = q =22t e ()~

nafB—aB+p8

0

(2R 55 4 3R () 2

if
if
if
if
if



80

Our strategy will be similar to that of the proofs of the previous theorems. We will use
the expression (3.7) again. Fixed R, let K be the value of the expression (3.7) on interval
[0, R], then Kp is a constant. Let us analyze the expression (3.7) on the interval [R, R”].
The expression is the same of (3.28), that is

_ (M — ao(n — 1)(na - 2)) /RB rdr

R

1 e
+§(n —1)(noo — a — 4daan + 4a — 1) f(T)_lf/(T)dr
R

/ " ey e s

R

+n—1) Gn—an— i)

SE) [ saig (2
+aA(F)/R P2t (r) 2 dr. (3.33)

the relation (3.32) implies that the second term of (3.33) can be arbitrarily small than
the first term of (3.33) from an appropriate choice for § large. Since a > %’ the third
term of (3.33) is nonpositive and the fourth term is equal to
S(F) /Rﬂ .
a——= rp(r)=<dr.
A(F) Jr
Suppose that

RB
lim rp(r)~2dr =0,

T—00 R

then this term is irrelevant in relation to the first, hence, the expression (3.33) can be

negatively so large as we want.

3

It remains to show that the expression (3.7) in the interval [R?, 2 R?] is upper bounded

by a constant independent of 3. The expression, by (3.30), is upper limited by

1
Ct(n-1) (}ln Can— i) [ e et par
R

B

S(E) [27 sy e
+aA(F) /RB r 3 §<T) 3f2d7"

§RP
—2ac(n — 1)/ premoT L2 ()2 (r)dr
RB
§R
+(2-8a)(n—1)R~ "= / e fe ()2 (D=1 (1) gy, (3.34)
R

B
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where C' is a constant independent of 5. Our objective is to show that (3.34) increases
arbitrary less than log R. Since a > ’2—;1, we have in —an — i < 0. Let D and H be

negative fixed constants such that

1 1
D+H=(n-1) <Zn—an—1>,

E = —2aa(n—1) and J = (2 — 8a)(n — 1). Since

: na—a—2 n—1 2
(VoD 160 €0 - 5T ) 20,

we have

2

Dre=e f2E(r)" 3¢ (r)? 4+ Erme o 2 (r)" 2 (r) + ET”O‘_O‘_Qf2§(T‘)n_1 <0 (335

4D
and since
(Vo ey se) - L) s,
2vV—H o
we have
na—a p2 n—3 ¢/ 2 —naB-af-f La0—a Ln—1)—1¢s J2 —naB—af—PB, noa—a
Hr ()¢ (r)y*+JR 2 7 f&(r)2 f(r)—l—ER r <0

(3.36)

Integrating (3.35) and (3.36) from R’ to 2R” ans addicting this two inequalities, we have
that the expression (3.34) is upper limited by
E2 %RB J2 %RB
- = na—a—2 £2 n—ld o _R—naﬁ—aﬁ—ﬁ / na—a g
1D . r f€(r) "= 1F . r T,

which is upper limited by a constant because f(r) < RS

§(r) 2" on [R?, §R7].
Therefore, the combination of the first, third and fourth term of (3.34) is upper limited

¢(r)~2=V on [R?, 3 RP], we have that

naf—af+p8
? 2

by a constant. Using that f(r) < R~
1w 1w
/ preTSeL (P f2dr < D rp(r)~2dr
RS RSB
for a determined constant D, where by our previous assumption, the right-hand side of
the inequality grows arbitrarily less than logr. Therefore, under this conditions, M can

not be a-stable for a > %. Therefore,

7—00

R
lim sup(log R)_l/ rp(r)2dr > C
1
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for some C > 0.

If S(F) <0, the fourth term of (3.33) and the second term of (3.34) is nonpositive

and, assuming that o > %, to M be a-stable, we must to have

(na —a —1)?
4

(na—a—-12 n-1
= 1 ™ a(n—1)(na—2) >0

= n(n’a® +a® + 1 — 2na® — 2na + 2a) — (na® — 2a)(n®* —2n+1) > 0

—aa(n—1)(na—2) >0

— —2an—+2a+n>0

— a <

n
2n —2’
Therefore, lim, _, p(r)r_%ni—2 = 0. It finishes the proof.

Remark 3.4.1. In the case n = 2, where F' has dimension one, we have % =1 and

na —2 =0 when a = 1. The conclusion will be that the volume growth of M satisfies
lim r~27°Vol(B,(p)) = 0,

R—o0

for alld >0 and p € M.

Proof of Theorem 3.1.8. Take as test function the same of the proof of Theorem 3.1.5,

that is,
(
0 if 0<r< mT_lR;
(2R~ r — R"F)E(R) " 2e(n—D) if &<r<R;
f(r) = frp(r) = T’na}aﬂf(r)_%("_l) if R<r<R?

(—2R_ naB;anLBT + 3R_%)§(T)_2a(n_l) if R,B S r S §Rﬁ,

0 if r>32R°

\

Then the expression (3.7) on interval [R, R”] is, by (3.27),

(@ﬂ:%:ii—aMn—DW&—@)LﬁiAﬂﬂWMMAWT

RB
+2aa(n — 1)[(1 —4a)(n — 1) — 1] ; §(r)(1_4“)(”_1)_1§/(r)dr
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+aln = DI~ da)n— 1) = 1] [ rg(r) 0002 oy
R

+a% L r72a+1§(r)(174a)(n71)72dr
— (M —aa(n —1)(na — 2)) 03/1% rdr
+2aa(n — D[(1 —4a)(n —1) — 1]C, ; E(r)rE (r)dr
+a(n — D[(1 —4a)(n—1) — 1]05/R r&(r)2¢ (r)dr

RB
—i—aii?i C6/R r2et (3.37)

where C3, Cy, C5 and Cy are positive constants, that are dependent of C;, Cs and a. Note
that in (3.37), the first term is arbitrary less than the third term, the second and the
fourth term are limited. Therefore, if (1 —4a)(n —1)—1< 0 < a > ﬁ, (3.37) is
negative and, in module, so arbitrary large as we want. On the expression (3.7) on the

interval [RP, %Rﬁ}, the argument is the same of in the proof of Theorem 3.1.5, where we

can conclude that the expression (3.7) on the interval [R”, %Rﬂ] is upper limited by a

constant. Therefore, L, for a > "’2) is unstable. It finishes the proof.

4(n—1

Proof of Theorem 3.1.9. When o = 1, we have na —3a = nao —a—2 = n—3. Redoing
all calculations and steps in the proof of Theorem 3.1.5, in the analysis in the interval
[R, R?] taking a = 1, the expression (3.27) becomes, for a # 1

RB

"2 (02— dan — 1) /R P IE(r) A4 gy
el e s D =g rysin) gy )
+a(n — 1)[(1 —4a)(n — 1) — 1] /RRB r&(r) A== (12
+a(n—1)(n—2) /R " () it 2g,. (3.39)

It is easy to see that, just as in the case @ > 1 (case of Theorem 3.1.5), the part of

integration in the interval [R?, %Rﬂ ] in is limited by a constant that independent of 53, the
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only difference is that the last term that is o(1) becomes a term O(1) (see the proof of
Theorem 3.1.5). Returning to the analysis in the interval [R, R?], under the hypothesis
0 < Cy <(r) < Cy < oo, we only have to prove that the expression in (3.38) is negative

and large in module for 5 large. In (3.38), we have four terms; the second is limited

because C < £(r) < Cy(r) and the third is nonpositive for all a > 4(’;’_21). Then, we
only have to prove that the combination of the first and fourth terms is negative and, in

module, so large as we want. We have:

RP RB
/ 7'_1§<7")(1_4a)(n_1)_2d7’ < 01—2/ 7"_15(7”)(1_4(1)(”_1)617',

R R
then
-9 R8
n 1 (n—2—4a(n—1)) / 7“_15(7“)(1_4“)(”_1)d7’
R
R
+a(n —1)(n —2) / r ()T =2 gy
R

< (@ +a(n —1)(n —2)(—=1+ 012)> /RRﬁ role(r) A= gy

Since a > W’fc_% and C7 > 1, the last term above is negative. When 5 — oo, the
- Y1

integral f;ﬁ r~1E(r) =41y tends to co. It ends the proof for a # ;11. When a = %,
(3.27) becomes

T 2>/ Ty
n—1)(n— R

—|—< 1)4( 2) /R _lf(r)_er

<2 - 1DE)(B - Dlog R — "L (log(€(R?)) — log(€(R)).

in which will be negative and large in module, if =1+ (n — 1)C;2 <0< Cy > (n—1)a.

In this conditions,

n—2 _ n=2 1 1
4n-1)(1-C%) 4n-1)1-—2 ’

Hence, the same conclusions follow for a = i.
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Proof of Theorem 3.1.10.: Similarly to the proof of the previous theorem, we have

that
RP RA
/ F1g(r) 1100120, > (2 / () 00D g
R R
and
) RP
n 1 (n—2—4a(n —1)) / 7“_15(7“)(1_4“)("_1)d7’
R
RAB
+a(n —1)(n — 2) / rrE(r) =D =2 gy
R

R

< ((n;2>2022+a(n— 1)(n—2)(1—C§)) /RB rolg(r)Imta=l)=2 gy

n—2
4(n—1)(1-C5 ?)

the integral f}fﬁ r=1¢(r) =11y tends to co. It ends the proof.

Since a < and Cy < 1, the the last term above is negative. When 5 — oo,

3.4.2 Theorems of Section 2.2

Proof ofTheorem 3.2.1. First let us proof that

/M fLaf >0

for all f dependent only on I and 0 < a < minlgigk{ﬁi—;}. Leta>0and A;: I - R,0<

i < ke defined by Ag(r) = (TTE, pi() ) fr and Ai(r) = 2amipi(r) " [T 05() % (1) S
For 1 < ¢ <k, we have

(Ap+ Ay + - + Ap)? f2<sz >+4a22npz )i (HPJ )z (r)*f?

J#i

+4a22nmjpi(r)"’ )t ( H pu(r ) (r)p(r r)f?

1<j l#1,l#]

k
+4a Z nipi(r)" (H p;(r ) r)ffr

JF#i
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Using (3.9) and the fact that S has nonnegative scalar curvature, we have

(E[Vol(ﬂ)) _I/M—fLaf = /bc (i&)iﬂr

=0

+Z(ani(ni —-1)— 4a2nf)/ (H p;(r ) pi(r)? f2dr

i=1 b J#i

+> (20—4a”)n;n; /bcpz‘(r)n ) ( I ~(r ) (r)p(r) f2dr

1<j I#£1,1#]

+a Z S(F, H Vol(F. / pi(r)" 2 (H pj(r)”J) fAdr.

i#] J#i

(3.39)

The expression (3.39) is a sum of four terms, where the first and fourth are nonnegative
(the fourth because the hypothesis of the scalar curvature of each F; is nonnegative).

Regarding the second term, note that if 0 < a < Zi—:, then
4an; < n; — 1 = 4a’n? < an;(n; — 1),

because 0 < a < minj<;<j ”4’—;1 Hence, the second term of (3.39) is nonnegative. Fur-
thermore, under these conditions, 0 < a < i, 2a — 4a* > 0 and the third term of (3.39) is

also nonnegative. This completes the proof for f only dependent on I.

Consider an arbitrary f € C°. Let dV(r) be the volume element of the fiber r,
then dV (r) = I, pi(r)"dVs, ...dVs,. Denote ¢ € Fy x --- x Fx by ¢ = (q1,...qx)
where ¢; € F;. Using Fubini’s theorem, our strategy is to integrate f in each leaf and
to conclude the result proving that the value of the integral of f in each leaf is non-
negative. Hence, we just need to prove this. Based on the previous case, let A‘?( ) =
2amipi(1) " 1, p3(1) F A1) () for 1< i < g and AY(r) = fo(r,0) Ty 03(r) %, we
have, integrating and using (3.9) on the leaf I x {¢}:

c k
- = 2 ()
/Ix{q} fLaf /b |vf|("#1) (H pz(T) ) dr

“+a Z nl(nl — 1) / (H pj ) P; f(?”, q)QdT

JF
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+2a2nmj /bC pi(r)"iflpj(r)nrlp;(j)p;(r) ( H Pl(r)”l> f(r,q)%dr

14,15

1T pj(?")’”) pi(r) f(r,q) fr(r, q)dr

k (&
o mlm =) [ e (Hpm )pmf(r i
=1 J#i
+2a2nm]/ pi(r)" i (r) T pl( ( H pu(r > f(r,q)%dr
<y I#4,1#£]
+4aZm | ntor (Hp] ) ). ()
J#i

By a calculus similar to the case when f is dependent only on I (using the expressions

Al(r)), the last expression is nonnegative for all @ < min;<;<,{"%— } It finishes the proof.

Proof of Theorem 3.2.2. Similar to the problem, the solution is also similar to the
solution of Theorem 3.1.2 and Theorem 3.1.3, but some important details need to be
addressed. The conditions (i) and (ii) are equivalent by a change of variables on each

pi- We only have to prove (i). Suppose that (i) holds for all i for a given R,. Being
p(r) = pr(r)™ ... pr(r)™, then p/(r) = 320 nip(r)ps(r)~'pi(r) and

Zm n; — 1)pi(r <Hm )%(T)”Znim(?“)”l (Hﬂy )

J#i J#

—l-Qanjpi(r)"i 1o "j_1< H pu(r ) PJ( r).

1<J l#i,l#£]

Substituting on (3.9), then, for b > Ry and f such that m(suppf) C [b, c|:

/M_fLaf — <ﬁVol(Fi)> {/bcffp(r)dr
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ol o )]

+4a/bcp’(r)ffrdr}+ai8 (Hvoz )/ (F)ps(r) =2 f2dr

i#]

_ (f[ Vd(E)) { [ o a [ g ia [ gt sar
[ ()]

k
+aZS (HVol )/ (r)pi(r) 2 f2dr

i#]

- (H w(m)) { [ 2oty 20 [yt
/anp r)pi(r) ol ( )f2dr}
—I—a;S (HVOZ )/ (r)ps(r) "2 f2dr

i#j

(Hv()z >{/f2 dr+2a/ '(r) f frdr

+a/chnip’<T)pi( r)f dr—a/ anp r)pi(r) 2 pi(r)? f2dr
+2a/ anp 7)pi(r )ffrdr}
+a§5 (H Vol(F )/ ) pi(r) =2 f2dr.

JF#i

= (f[ Vol(ﬂ)) {[ soyirsaa [ porpnar

+a/b p(r) o (r) fPdr — /Zmp r)pi(r 2’)fdr}
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+a) S(F) (HVOZ )/ p(r)pi(r) =2 f*dr, (3.40)

J#
where in the last equality we use that p(r)~!p/(r) = Zle nipi(r)~1pi(r). Take as a test
function the function f defined by

0 if r< %;
20(r)"2Q 3 — p(r)72Q7 if € <r<Q;
f=Tonrlr)= p(r)"zrs it Q<r<BR;
C(p(r)y~2ri — p(T)"2Tz) if R<r<T;

L 0 it r>T,

where % > Ry, R is larger than @, T is such that p(T") = 2p(R) and C is defined such
that f becomes a continuous function. Substituting in (3.40) integrating on the interval

(@, R], we have

k R

—i—az S(F;) (H Vol(Fj)> / rpi(r)2dr. (3.41)
i Q

Using that p(r)~p/(r) = 325 nipi(r) = pi(r) and using the QM-AM inequality, then

p(r) 2 (r)? = (anp,(r i ( ) < nz:mpz i (
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Using (3.41), we obtain

+aZS(E) (Hm@-)) /Q rpi(r) " 2dr.

i#j

Note that since p/(r)? — oo when r — oo, then the last term of the right-hand side of the

inequality above is arbitrary lesser than fg rp(r)~2p'(r)?dr when r — oo. Let us prove

that for @ large and a > the expression above is less than a negative constant

4(n7:»1)’
times fg rp(r)~2p/ (r)%dr. Because rp;(r)'pl(r) > 1 for all r > Ry and 1 < i < k, then

. k
p(r)7 (1) = D mapn(r) i) > Y ome =
i=1 =

r

that is, rp(r)~'p/(r) > n. Note that

1 [e 1
—/ rldr + <2a - —)
4 Jg 2

Q
and
1 49 1 <0 < 2n—1
— +2a— = “—a .
4n 2~ - 8n
This implies that for ﬁ <a < 2;’;1 and @ large, (3.41) is lesser than a negative
constant (§ —a — 2) times fgI; rp(r)~2p'(r)*dr. To obtain the same conclusion for 221 <
a < }L, we note that 2a — % <0,
1/R -1 (1 a>/R —2 17 N2
- rdr+ |- —a—— rp(r)==p'(r)"dr
1 1 a 5 2 70 \2
< (W—i_i_ _ﬁ)/Q rp(r)=<p' (r)dr
and
= + = <0<+==a> w41
—+-—a—— a
4n? 4 n An? 4 4n
Because % > 42514171 for n > 3, the above conclusion regarding a extends to 4(7;1—“) <

a< }1. For a > %,We have
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< 1+2a 1+1 a
— \ 4n?2 n on 4 @ n

and

1 +2a 1+1 a<0 >n—1
—_—t — — — 4+ - —a - — = a )
4n? n o2n 4 n 4n

Since i > ’2—_1 the conclusion follows. It shows that (3.41) is less than a negative constant

times fgrp( “2p/(r)%dr for all a > 1.

Let us now analyze the expression of f in (3.40) on the interval [R,T]. We have
fr= C(—%p(r)’%p’(r)fr% +%p(7")’%7"’%). Then the expression of f in (3.40) on the interval
[R,T] is

c? (]i VOZ(F,.)> E /R ()20 () — % /R L o) () + i /R o

~2a [ rple) 200420 [ ) )+ 2a0(0) AT [ rhet) Ao ar

R R

—ap(T / (anpl Pl )p(r)dr]

k

—l—aZS( (H Vol(F. > / p(r)ps(r) 2 f2dr.
=1 j#i

Using that, on [R,T] f(r,")*> < C?p(r)~'r, fR rpi(r)~2dr — 0 when R — oo, p(T) =

2p(R) = T < 2R (it is analogous to in the proof of Theorem 3.1.2), then the last

term grows in a order lesser than the rest and R < T < 2R. It is easy to see that all
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terms in expression above is upper limited by a multiple of [ g rp(r)=2p'(r)%dr, then all of
expression is limited by a constant times it. Note that p” is a positive function because
is a product of positive functions with positive first fist and second derivative (note that
(gh)” = ¢"h + 2¢'h + gh”, and the conclusion follows by induction). From the calculus
made at the end of the proof of Theorem 3.1.2, we have that

[ ot s < og2+ To(T) " (T)

and there exists a sequence (R;,T;), with p(1}) = 2p(R;) such that

S vplr) 2 (r)dr
lim =00

i [ rp(r)2p(r)2dr

Therefore, the expression of the stability operator in [Q, R;] is arbitrarily larger than
the expression of the stability operator in [R;,T;] when J increases to infinity. It finishes

the proof.
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Chapter 4

a-Index of Minimal Surfaces

In this chapter we will analyze the operator from the previous chapter on minimal surfaces
in R3. Let M be a complete minimal surface in R?, denote the Laplacian in M by A and
the Gaussian curvature in M by K. The operator L, = A — as becomes A — 2aK,
acting on C°(M), where a € R. D. Fischer-Colbrie and R. Schoen [FS80] observed that,
given ¢ € C*°(M), the existence of a positive function f in M satisfying Af —qf =0 is
equivalent to the condition that the first eigenvalue of A — ¢ is positive in each bounded
domain of M. This fact has many interesting applications for minimal immersion and
constant mean curvature, especially when the immersion occurs in a three-dimensional
manifold of identically zero Gaussian curvature (in particular, on R3), where the Jacobi
operator related to the second variation of the area becomes L = A — 2K. When M is
and has finite total curvature, Osserman |Oss13| shows that M is conformally equivalent
to a compact surface % with finitely many points removed, each one corresponding to an

end of M.

Let M be a minimal surface in R?, we define Index,(M) as the number of negative
eigenvalues (counted with multiplicities) of L,. It can also be defined as the maximal
subspace of H'(M) such that L, is negative definite. Being G : M — R? a local Gauss
map of M, then |dG|* = —2K and L, = A + a|dG|?. Fischer-Colbrie |Fis85] proved that
for the usual Jacobi operator L = L; = A — 2K in a minimal surface M in R3, the index
only depends of the Gauss map in the conformal class of M and coincides with the index

of the operator L in the compactification > of M. With a similar proof, this result also
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holds for L, by a similar reasoning. More precisely:

Proposition 4.0.1. Let M be a complete minimal surface in R® with metric ds®> and L,
~2
be the corresponding operator defined above. Let ds = pds® be another metric on M,

where u is a positive function on M and L, is the operator L, in the metric d~52, then
Indexy,(M) = Index; (M).

Corollary 4.0.1. Let ds* = p|dz|* be the metric of M, ¥ be its compactification and
nldz|* be a smooth metric on X, where u and i are positive functions obtained from a

local parameterization of M and Y, respectively. Then

Index,(M) = Index; (X).

With the objective of studying a-index of minimal surfaces of finite total curvature,
we consider a compact Riemann surface ¥ and G : ¥ — S? as a nonconstant holomorphic
map, where S? is the unit sphere in R3 endowed with the complex structure induced by
the stereographic projection from the north pole. This is inspired by the fact that the
Gauss normal map G : M — S? of a minimal surface is, in a sense, a holomorphic map
such that |dG|? = —2K. Fix a conformal metric ds® in ¥ and consider the operator

L, = A + a|dG|*, with quadratic form associated

Qulf,f) = / VI - aldGPf,

where f € C°°(X). We note that by the invariance of L*norm of one-forms in conformal

class in dimension two, (), is independent of the particular choice of the metric on X.

In a similar way to the work of Shin Nayatani in [Nay93|, we now consider on ¥ the
metric dsf, induced by G of S?. Thus ds?, = 3|dG|*ds*. This metric is singular at the
ramifications points of GG, that is, at the points where dG = 0. By the choice of the metric,
we have Lg, = AY + 2a, where A% is the Laplacian with respect to the metric dsZ,. Let

MA@ be an eigenvalue of Lg,,, the corresponding eigenspace is

VHG) = {u € H'(2); Qu(u,v) = A(“)/EuvdAG Yo € Hl(Z)} :

where dAg = %|dG|2dA is the area element of the metric ds%. It follows from the regularity
of the eigenfunctions that V\(G) C C*°(X). For u # 0, we define

a _ Qa(u7u)
R (u) = m
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The k-th eigenvalue (counted with multiplicity) )\,(ga)(G) is characterized as:

A(G) = inf sup{R%(u);u € V,u # 0} (4.1)
VeGy
where G}, is the set of all k-dimensional subspaces of H'(X). Index,(X), as we can see,

will coincide with the number of negative eigenvalues of L ,.

In this chapter we will also analyze cases in which M is not complete, or "pieces" of
complete minimal surfaces. First, we performed a quantitative analysis of the Laplacian

in some spherical domains.

4.1 First eigenvalue of Laplacian in spherical domains

Let a > 0 be a real positive number, we wish to find numbers z; < z, such that 2a is
the first eigenvalue of Laplacian in the set S?(zq,22) = {(7,9,2) € $%;2; < 2z < 2z} in
Dirichlet boundary conditions. We have that, on spherical domains of the form S?(zy, 29),
the eigenvalues of the Laplacian are nonnegatives and is zero if and only if the domain is
S? = S§%(—1,1). Because the first eigenspace is simple and by the symmetry of S(21, 2),

an eigenfunction associated to the first eigenvalue, being it 2a, is of form f = f(z).

If A and A® denote the Laplacians of R? and S?, respectively, the relation between

these two Laplacians is

Af=A%f+2(Vf,N)+ D*f(N,N),

where N is the unity normal vector field in S? pointing outside the unitary ball and D?f
is the quadratic Hessian form of f in R3. Assuming Af = —2af, f = f(2) dependent
only on z and using the relationship (Vf)* = zf’, the last equation is equivalent to the
ODE:

(1—22)f" —2z2f 4+ 2af = 0. (4.2)
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4.1.1 Numerical quantities
Assume that the solution of (4.2) has Taylor series centered at 0 in the form
=D w",
n=0

substituting in (4.2), we have:

Zan (n—1)z Zan (n—1)z" —QZnanz —{—QaZan =

= apio(n +2)(n+ 1)2" — Z azn(n —1)z" —2 Z na,z" + 2a Z a,z" =0
n=0 n=0 n=0 n=0

= Z[(n +2)(n+ 1)ansa + (—n(n — 1) — 2n + 2a)a,)2" = 0.

The last equality implies
n?+n—2a
G,
(n+2)(n+1)

(4.3)

Apy2 =

Therefore, the function f is completely determined by ag and a;. Since lim,, ., aZZQ =1,

is easy to see that f(z) exists for all z € (—1,1). In particular:

(i) When ag = 0, f is an odd function. If m > 0 is an odd number and we take

a4 = m(ﬂ;rl)

degree m and f(1) is defined in all S?. Furthermore, f(—1) = —f(1) (this values can be

, we have a,,,o = 0. Thus, ap = 0 for k& > m, the series is a polynomial of

+00), which implies that the polynomial f has a largest zero in (—1,1). Suppose that
2o is the largest root of f less than one, we have that S?(zy, 1) is such that the signal of
f does not change. Therefore, is a domain such that the first eigenvalue of Laplacian is
2a = m(m + 1). This implies that we can take a spherical domain such that the first
eigenvalue of the Laplacian is so large as we want (this is consistent with the fact that
smaller domain implies a larger first eigenvalue of Laplacian). The intuitive relationship
is the fact that in plane domains there are no nonzero eigenvalues for Laplacian and very

small spherical cap is approximately a flat domain.

(ii) Even in the case ay = 0, assuming that a < 1, we have a,, = 0 for n even and for

n odd, by (4.3):

n®+n—2a n 2a
Qnp, = Apn = - Qp,
2T n+2)(n+1) n+2 (n+2)(n+1)




97

and, considering without loss of generality a; > 0 (if no, multiply f by —1):

- n 2 n—1
an - ap = .
2 n+2 (m+2)(n+1) n+1

Therefore, a, > —<a; for n odd. It implies that f(1) = oo and f is positive in (0,1).
Therefore, 2a is not an eigenvalue of a domain in a half-sphere. Therefore, in the case

a < 1, necessarily ag # 0.

Still in the case f = f(2), fixing ap = f(0) and a; = f'(0), by the above formula, as =

—aag, as = (—ta+%)ag, ag = (—ta+2a® — Lyag; az = (1 — Yar, a5 = (2 — La+ )y,

ar = (3 — 2La+ 7ta?® —

7 7 210 315 630)a1’ etc.

Let us exemplify the case a = 1. We have

n—1
(pio = a
n—+2 n+ 1 n
it implies a,, = 0 for n > 3 odd and a,, = —22, for n even. Therefore,

f(z) =

Note that the natural logarithmic function satisfies:

log(1 — z) Z % and log(l+z2) = Z(—l)”+1%7
n=1 n=1

for all —1 < z < 1. Therefore,

f(z) = ap + a1z — agz(log(1 + 2) — log(1 — 2)).

This family of functions is determined by ag and a;. By the homogeneity of (4.2), if
ag # 0, we can fix ap > 0 to obtain a family of lineament independent solutions of (4.2),
which is null in two circles in S?, contained in horizontal planes. Thus, the circle of S?
z = 0 is contained in the domain of S? between these two planes, which is a spherical
segment (which naturally becomes a domain whose first Laplacian eigenvalue is 2) that f
is positive in it. When we vary a; to oo those domains tend to the northern hemisphere of
S? minus the north pole and when we vary a; to —oo those domains tend to the southern

hemisphere without the south pole.
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4.1.2 First eigenvalue of Laplacian on spherical caps

It is known that, among all spherical domains with the same first eigenvalue of Laplacian,
the spherical cap has the smaller area (see [Pee57|, pg 19). We denote by z, the number

€ (—1,1) with the following property: the spherical cap S?(—1, z,) has 2a as the first
eigenvalue of the Laplacian. Note that if a cap has A as an eigenfunction of the Laplacian,
the complementary cap has A as an eigenfunction of the Laplacian. One way to verify if an
eigenvalue of the Laplacian in a spherical domain is the first is verify if the corresponding
eigenspace is of functions that does not change the signal. As example, we have z; = 0,

Za — —1 when @ — 0o and 2y = 1. The area of the spherical cap S*(—1, z) is 27(z + 1).

Therefore, it is convenient to find the Taylor expansion of a solution f of (4.2) around
—1. Taking z = w — 1, we can consider the Taylor series on the variable w around zero.

First, (4.2) becomes

(1—(w—12)f"—2w—1)f +2af =0

= (—w*+2uw)f" —2(w —1)f +2af = 0.
Being f(w) = >~ a,w", the expression above becomes
(w?® — 2w) Zn n—Da,w"? —2(w — 1)Znanwn_1 +2a2anw" =0
n=0 n=0 n=0

_ — i n(n—1)a,w"+2 i n(n—1)a,w" ' -2 i na,w"+2 i na,w" 42a i a,w"
n=0 n=0 n=0

n=0

l
M = i

n(n — 1)a,w" + 2 Z(n + Dna,w™ — 2 Z na,w" + 2 Z(n + Dayw"”
n=0 n=0 n=0

i
[e=)

+2a2anw" =
n=0
:>Z n +n—2a)an+2(n—|—1) an+1}yn:0~
n=0

Therefore,
n?+n—2a
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and f where completely determined by ag. Backing to variable z, we found the Taylor

series of f around —1:

f(2) =) an(z+1)"

2, is the smallest value of z in (—1,1) such that f(z) = 0. By homogeneity, we always

assume ag = f(—1) = 1. As known values, we have z; = 0 and 2y = 1.

Example 4.1.1. (z3) To find z3, we have a = 3 and

n?+n—6
pi1 = —————= 0y
T o+ 1)2
15 easy to see that a, =0 for alln >3, ag=1, a; = =3, as = % and

f(z):1—3(z+1)+;(z+1)2:222—%.

The smallest root of 32 — 1 is —\/g. Therefore, z5 = —\/g and S? (—1, —ﬁ) has 6
as the first eigenvalue of the Laplacian. Note that S? (—\/g, \/g) and S? <\/g, 1) also

have 6 as the first eigenvalue of Laplacian, because f is null on the boundary and does

not change the signal in those domains.

Example 4.1.2. (z5) To find zs, we have a =6 and

_n+n—12
An+1 = 2<n+ 1)2 (079
is easy to see that a, =0 for alln >4, ag =1, a1 = =6, ap = 2, a3 = -3 and
15 5 5 3
FE@=1-6(z+1)+(z+1)° = (e +1)" = —22"+ Oz

The roots of—gz?’ — %z are —\/g,O and \/g Therefore, z4 = —\/g and S? (—1, —\/§>

has 12 as the first eigenvalue of the Laplacian. Note that we determine four domains that
have 12 as the first eigenvalue of the Laplacian: S* (—1, —\/g) ,S? (—\/g, 0> ,S? <0, %)
and S? <\/§ , 1) .

Example 4.1.3. In general, if a = %k:(k + 1) for some natural number k, then

_nP4n—k(k+1)
Ap+1 = 2<TL + 1)2 G,
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and a, = 0 for alln > k+ 1, therefore, f will be a polynomial of degree k. By induction,
we deduce that all roots of that polynomial are distinct and are in the interval (—1,1),
where we can find k + 1 domains such that have k(k + 1) as the first eigenvalue of the

Laplacian.

So far, we have analyzed eigenfunctions of the Laplacian only in domains of S? that
depend only on the z coordinate, that is, such that is invariant under horizontal rotations.
But we can perform this entire analysis for functions that depend only on the x coordinate
or the y coordinate in R® where, in these cases, the corresponding domains of S? will
be symmetric with respect to the z axis (of the form S?(z1,x;)) and y axis (of the form
S2(y1,2)), respectively. Considering that all the solutions found before, we can find, from
a linear combinations of functions that satisfy the condition that they depend only on one
of the coordinates, many functions that satisfy Af = —2af, defined on S? minus a finite
number of points (let us remember that the solutions obtained by Taylor series around
zero only dependent on z were well defined throughout S? with the possible exception of
the north and south poles). We also find a vast number of domains of S? that have 2a
as the first eigenvalue of the Laplacian, where it is sufficient for such a domain to have
as its boundary a set in which one of these obtained functions vanishes identically and so
that do not change of signal in its interior. If the domain is such that one of this obtained
functions vanishes identically in the boundary, but without the requirement of do not
change the signal in interior, we have that 2a will be an eigenvalue, but not necessarily

the first.

4.2 Results about a-index of minimal surfaces

First a result that characterize the plane as the unique minimal surface in R? with finite

total curvature and a stable for all ¢ > 0.

Proposition 4.2.1. Let M be a complete minimal surface in R3 with finite total curvature

and a > 0, then or ¥ is a plane or Index,(M) > 1.

Proof. By [Ossl3|, M having finite total curvature implies M conformal to a compact

Riemann’s surface ¥ punctured at a finite number of points {p1, ..., pn}. Let ¢; : D1(0) C
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R? — X, i=1,...,m, be a conformal parameterization of a neighborhood of p; in ¥ with

©i(0) =p;. Let 0 < e <1 and ¢. : D;(0) — R defined by

1 if |z|>e
o) § = 2—% if &2 <|z|<e;
0 if |x] < &2

The family ¢. satisfies . — 1 and |V¢.| — 0 in L*(D1(0)) when e — 0. Let ¢, =
p-0p; ' : ¥ — R, for each i and ¢, extend 9); . to X defining 1; . = 1 for all ¢ € X\ ¢;(D;(0)),
then v;. — 1 in L*(X) when ¢ — 0 and by conformal invariance of the norm L? of one

forms in dimension two, |V*t;.| — 0 in L?(X) when ¢ — 0. Define 9. = H?/Jiﬁ, let
i=1

n: Y\ {p1, .., pm} — M a conformal diffeomorphism, then ¥ o n~! : M — R is such
that ¢, o=t — 1 pointwise and |V (). o n™1)| — 0 in L*(M), then:

lim [ |[V(¢.on ™)?+2aK (. on™ ') = Qa/ K.
e=0 Jas M

Since for a complete minimal surface M, or M is a plane or M has negative total curvature,
then when M is not a plane, there exist f = 1. o n~! for ¢ sufficiently small such that

Q.(f, f) < 0. Therefore, in this case, Index,(M) > 1.

4.2.1 a-stability based on the size of the spherical image

We thus have a theorem related to the main theorem in [BC76]:

Proposition 4.2.2. Let M be a minimal surface such that the area of the image of Gauss

normal map is less than 27(z, + 1), where z, as above, then M is a-stable.

Proof: Assume that M is connected (because the property of, if M is unstable, then some
connected component is unstable) and is a minimal surface a-unstable with image of Gauss
map G less than 27(z, — 1), then M is not a part of a plane and there exists a compact
set C' C M of smooth boundary such that there exist a function f : C' — R, positive in
int(C) and null in 9C such that L,f = —Af for some A\ < 0 (under these conditions, A is
the first eigenvalue of L, in C'). Then AM f = 24K f — Af on C. Under these conditions,
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f € C5°(C). The Gauss map is a holomorphic map from M to S?, in particular, since
G is not a constant function, then G is an open function, 9[G(C)] C G(AC) and the
ramifications points are isolated. In particular, the pre-images of a fixed point of S? by G
are isolated points. Let us prove that L, = A5 + 2a is unstable in G (C) C S? building
an appropriated test function. Let ¢ : G(C') — R be defined as follows: if ¢ € G(C) and
{p1,...,px} = G~Y(q), then g(q) = S2F_, 7, f(pi), where r,, is the ramification index of
p; by G (in particular, if p; is a regular point, r,, = 1). Since 0|G(C)] C G(9C), then
G~1(OG(C)) c 9C and g(q) = 0 for all ¢ € 9[G(C)], therefore, g = 0 on I[G(C)]. We
will verify the following property of g:

(i) g is smooth almost everywhere and

/ —gAS2g — 2ag” < 0,
D

where D C {q € G(C); g is smooth on ¢} is an open domain.

Let g be a regular value of G in interior of G(C') such that G71(q) = {p1, ..., pr} C int(C),
then there exists a neighborhood V' C int(G(C')) of ¢ such that each connected component
of (G|¢)~1(V) is diffeomorphic to V' by G. We will call this components Uy, ..., Uy, such
that p; € U;, G; : U; — V those diffeomorphisms, where G; = G in U; and ¢g; .= f o Gi_l.
Using the relationship A¢ = —KAS | we have

A ) (g) = —2af(q) + > f(a).

(6% 0)(Gula)) = 7 (] 0 G (Gilg) = =

Since |detJ(G)| = —K on minimal surfaces, we have:

/ —giASQgZ» —2ag} = / —2aK f* + \f? 4 2aK f* = / M2 <0;
1% U, ,

Uz
/ —giAg; — 2agig; = / —g:(A%g; — 2ag;)

v \%
= /U (foG;'oGy)(—2aK [+ \f +2aKf)

J

:/ )\f(foGi_loGj) < 0;
Uj

Therefore, since g = g1 + -+ g in V:

k
2 2
/ —gA¥ g — 2a¢® = Z / —giA% g; — 2ag;g; < 0
v v

1,j=1
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Therefore,
/ —gAg — 2ag* < 0. (4.4)
v
This property occurs in sufficiently small neighborhood V' of regular values ¢ of G such

that its pre-images are interior points of C. Note that using Sard’s theorem and the fact

that G is an open function, G(9C) has null measure in G(C) and the set
W ={q € G(C);G*(¢q) C int(C) and g is smooth in ¢}
has full measure in G(C). It shows (i).

(ii) g is locally Lipschitz in
X =G((C)\R,

where R is the set of ramification values of G|¢.

Note that since the branch points of GG are isolated, we can assume that G has no branch
values in G(0C'), doing a small modification on C, if necessary, in order to keep L, =
A — 2aK unstable, still have a smooth boundary, the first eigenvalue is negative and
has an eigenfunction f associated with the first eigenvalue. If ¢ € Y is such that ¢ &
G(0C), g is Lipschitz in a neighborhood of g because ¢ is smooth in ¢. we will analyse
when ¢ € G(9C), where by the form that we define C, ¢ is a regular value of G. Let
(Gl = {p1,---pr,715- -,y = G7Hq) N C, where p; € int(C) and r; € OC. Let V
be a small neighborhood of ¢ such that

(G|El)(v):Ulu"'UUkU}/iU...U)/Z,

where p; € U;, r; € Y;, each U; and Y] is diffeomorphic to V' by G and each U, is a subset

of int(G(C)). We note that, for y € V|
k I

g(y) =Y @)+ > f(z),

i=1 j=1
where {z1,... 25, 21,..., 2} = (G|gY)(y) and f(2) is defined as f(z), if z € C, and 0,
if z ¢ C. Note that f|y, : U; — R is continuous and Lipschitz, with Lipschitz constant
M; = max{|df,|,p € U;} and, since f = 0in 0C, f'lyj . Y; — Ris continuous and Lipschitz,
with Lipschitz constant N; = max{|df,|,p € Y; N C}. Since det(J(G™')) = —+%, we have

that ¢ is Lipschitz in a neighborhood of y, with Lipschitz constant

k l
1

i=1 j=1
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It shows that g is locally Lipschitz in X.
(iii) ¢ is continuous.

By (ii), g is continuous on X, that is, in the set of regular values of G in G(C). If ¢ is not
a regular value, there exists p; € G~1(q) that is an isolated critical point of G and there

exists a neighborhood U; of p; such that

G = Glupgpy Ui\ {m} — U\ {q}

is an 7,,-to-one function, where r,, is the ramification index of p;. Since g;(p1) = 7, f(q),
then g1 (p) = rp, f(p1) is continuous in p by an argument of limit. Using this at all points
in the pre-image of ¢ by GG, we conclude that g is continuous in the ramification values of

G. Hence g is continuous.

Since f is limited, g is also limited. Let 0 < ¢ <1 and ¢ = ¢. : R, — R defined by

p(r) =492 -ler jf 2<p<e

If N is a bidimensional manifold and ¢ € N, the family of functions ¢, . : N — R defined
by ¢q:(p) = ¢:(d(p,q)) is called logarithmic cutoff functions, they have the properties

lim._, ¢4 = 1 pointwise and lim._,q [, [V¢g.|* = 0.

Returning to our problem, being ¢y, ..., g the ramification values of G' in G(C') and

¢qe defined as above for N = G(C'), define
g-: G(C) — R

k
q— 9(a) [ [ da.e-
i=1

Then g. — ¢ pointwise, g = g. except in small balls of radios ¢ centered in ramifications

values of G in G(C') and ¢, is Lipschitz. Calling ¢. = H§:1 Gg,.e, then:
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/ Vg.]> — 2ag2 = — 0-9A(¢.9) + 2a9°¢?
G(0) G(0O)
= - ¢69(¢€Ag + 2<v¢67 vQ) + 9A¢E) + 2ag2¢§

G(C)

—— [ 2gAg+ 2042 - /
G(C) G(

1
o) 2

1
= [ agrgrrgas [ ]
G(©) G() 2

=— G29Ag + 209797 + / 9*IVo.|®.
G(C) G(C)

(V§2,Vg*) + ¢° 0. Ao

92A¢§ - 92¢6A¢a

The first term is negative because (4.4) and the second term is close to zero when ¢ is
small. Thus, we can find a test function that guarantees that the operator A + 2a is
unstable in G(C'). This is a contradiction, because G(C') has a smaller area than the

spherical cap with 2a as the first eigenvalue of the Laplacian.

4.2.2 a-index of complete minimal surface with finite total cur-

vature

We now address the a-index of complete minimal surfaces with finite total curvature. The
usual index of some minimal surfaces in R? (which corresponds to our 1-index) is known,

as shown in (1.3).

If M is the catenoid or the Enneper surface, then the Gauss normal map of M extends
to a holomorphic application G : S* — S? that is bijective. Therefore, by Corollary 3.0.2,
the index of L, on M is the index of A — 2a on S?. It is known that the eigenvalues of
the Laplacian in S? are of the form n(n + 1) with a multiplicity 2n + 1. That said, by a
simple calculus, the a-index of the catenoid and the minimal Enneper surface are k? if k

is the natural number such that 1k(k —1) < a < $k(k + 1), given according to the table:
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a a-index
0<a<l 1
l<a<3 4
3<a<6 9
6 <a<10 16
10<a<1b 25

Other examples of minimal surface conformal to S? with a finite number of punctures
are the Jorge-Meeks family of minimal surfaces, where the Gauss map extends to G :
C — S?, where C is the Riemann’s sphere. Therefore, if IT : S> — C is the stereographic
projection relative to the north pole and g = Il o G, then g(z) = 2". When n = 1, we
obtain the catenoid. The Jorge-Meeks surface with Gauss map related to this relation
with the application g(z) = 2" has n+1 ends. Let us call the n-ended Jorge-Meeks surface
By M,,. According to [Nay90al, on S?, the eigenvalue problem

Au = —\|dG|*u (4.5)

has eigenvalues of the form

/i Wp+2 ifi—pn+
Y (3 + 1) . with multiplicity { b (4.6)
2n \n op+1 ifi=pn,

where p,q € N, g < n—1. Therefore, if we want to find the a-Index of M,,, we have to find
the number of negative eigenvalues of L, = Au+a|dG|*u, which will be reduced to having
how many eigenvalues ); (counted with multiplicity) of (4.5) are less than a. For example,
for a =1, we have 3-(£+1) < 1 =i < n, for i = 0 we have the pair (p, q) = (0,0) and for
i=1,...,n—1, we have the pair (p, q) = (0,4). Hence, Index,(M,) = 1+2(n—1) = 2n—1,

which is the index usual of the Jorge-Meeks surfaces.

The next results are only adaptations of results in Section 3 of [Nay93]. Assume
that G : ¥ — S? is a nonconstant holomorphic map. Let us define the set of conformal

diffeomorphisms formed by the elements A;, 0 < t < oo, of S? given by ITo Ao IT"}(w) =
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tw, w € C = CU {oo}.

Let Gy = A; o G. If g is the meromorphic map associated with G, that is, g =110 G,
then we have Il o G; = tg.

As the correspondence t — G, is continuous with respect to the usual topology C*, it

is possible to show, using (4.1), that \z(G,) is also continuous in ¢.

Let P(G) = myp1 + -+ - + m,p, be the polar divisor of g, where p;,;i = 1,...,v are
distinct. Note that my + --- + m, = d, where d is the degree of the application G.

For eachi = 1,...,v, we define the holomorphic map G; : C; — S? given by HOéi(z) =
2™ where C; is a copy of C. Let Y be the disjoint union of the C;’s, i = 1,...,v, and
G : ¥ — S? be the holomorphic map defined by G(z) = G;(z), if z € C;.

Proposition 4.2.3. Let Gy : X — 2, t € (0,00) and G : & — S? be as before , then for
k=12

im A (G,) = AY(G).

t—0

For a proof, see [Nay93|.

Remark 4.2.1. Let G* : ¥ — S? be the holomorphic map defined by Il o G* = %. It is
easy to see that G* = PG, where

1 0 O
P=10 -1 0
0 0 -1

As P € O(3), we have ds?. = ds? and therefore, the eigenvalues of L+, coincide with
those of Lg . In particular, Index,(G*) = Index,(G) and Nul,(G*) = Nul,(G), where

Nul,(G) = #{ eigenspace dimension of eigenvalue zero}.
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This observation allows us to conclude the same result of Proposition 4.2.3 when

t — oo instead of ¢ — 0.

By (4.6) we conclude that Index,(G;) =1 Va < ”;T*Ql In particular, we have proved:

Corollary 4.2.1. Let G : ¥ — S? be a holomorphic nonconstant map of degree d and
Gi=AoG,t € (0,00). Let v be the number of distinct poles of g =110 G. Fized a > 0,
then for all sufficiently small t, Index,(Gy) > v.

Example 4.2.1. : For the Jorge-Meeks family of minimal surfaces with the usual Gauss
map G : C — S? satisfying Il o G(z) = 2", we have, for a < % fized, Index,(G;) = 1.
If we apply a rotation T such that oo becomes a reqular value of T o G, for t sufficiently
small, Index,((T' oG);) =r—1. For this, we can find (i) a minimal surface of finite total
curvature and an a-index so large as we wish and (ii) a surface with number of ends so

large as we wish and an a-index equal to one for all a sufficiently small.

Finally, by the Proposition 4.2.1 we have Index,(M) > 1 for all complete minimal
surfaces M with finite total curvature and a > 0. The next theorem shows that, for values

of a positive and close to zero, Index,(M) = 1.

Theorem 4.2.1. Let M be a complete non flat minimal surface of finite total curvature,
then
lim Index,(M) = 1.

a—07t

Proof. Let ¥ be the Riemann’s surface which is the compactification of M. Consider the

operator A — aldG|? on ¥.. We have to show that

lim Index,(G) = 1.

a—0+
Since M is non flat, M is not a plane, it implies that G is nonconstant and for all
a, Index,(G) > 1. Note that Q.(f,f) < 0, if f is constant. Let 0 = Ay < A <
Ay < ... be the eigenvalues of Laplacian in . Suppose that there exists a sequence
{a1,as, ...} such that each a; > 0, lim; ,oa; = 0 and Index,,(G) > 2, then there exist two
sequences of functions { fi1, fi12, fi3,... } and { fa1, f22, f23. .. } such that || fi ;|| r2(x) = 1,
Qu,(fijs fij) <0,i=1,2, j € Nand

/E frsfas = 0.
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For i = 1,2, we have lim;_,oc Qq,(fi;, fi;) = 0, because |dG| is limited and
02> lim Qq,(fij, fiy) = lim / IV fisl" = aildG*£7; =2 —a;vol(%)[dG] poe(z) — 0
o o0 b))

when ¢ — oco. Furthermore, this argument guarantees us lim;_, |V f; ;| = 0, then

0= lim / IVfi|?=— hm/fi,jAfi,j
5 j—oo [

j—00
for i = 1,2. Hence, for j large, {f1;, f2,;} generate, in C*(X), a subspace of dimension

two in C*°(X) such that the Laplacian in a function g in this subspace satisfies

- / 98g < Mllglles,
>

which is a contradiction because the characterization of A; in (4.1).
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