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The thoughts of pure mathematics are true, not approximate or doubtful;
they may not be the most interesting or important of God’s thoughts,

but they are the only ones that we know exactly.
Hilda Hudson

“Well, in our country,” said Alice, still panting a little, “you’d generally get
to somewhere else—if you ran very fast for a long time, as we’ve been doing.”

“A slow sort of country!” said the Queen. “Now, here, you see, it takes all
the running you can do, to keep in the same place. If you want to get

somewhere else, you must run at least twice as fast as that!”
Lewis Carroll, Through the looking-glass and what Alice found there



Resumo

Esta tese investiga fenômenos críticos e estados de equilíbrio em diversos
modelos estocásticos por meio de três estudos interligados.

No primeiro capítulo, analisamos o modelo de Passeios Aleatórios Ativados
em um anel unidimensional no regime de alta densidade. Introduzimos um
procedimento de topplings que constrói incrementalmente um ambiente que
demonstra a atividade sustentada por longos períodos. Esta abordagem
fornece uma prova concisa e auto-contida da existência de uma fase lenta para
taxas de sono arbitrariamente grandes.

O segundo capítulo concentra-se em um processo de contato unidimensional
modificado com taxas de infecção distintas. Especificamente, a infecção se
espalha a uma taxa λe nos limites da região infectada e a uma taxa λi em
outros lugares. Estabelecemos a existência de uma medida invariante para
este processo quando λi = λc, λe = λc + ε onde λc denota o parâmetro crítico
para o processo de contato padrão. Além disso, demonstramos que o processo,
quando observado pela borda direita, converge fracamente para esta medida
invariante. Mostramos também que a infecção morre quase certamente ao
longo da curva crítica dentro da região atrativa do espaço de fase.

No capítulo final, exploramos distribuições quase-estacionárias (DQE) para
dois processos populacionais subcríticos em tempo contínuo: passeios
aleatórios com ramificação e processos de ramificação com genealogia.
Provamos a existência e a unicidade da DQE para esses processos, aproveitando
os aspectos espaciais de sua dinâmica.

Palavras-chave: fenômenos críticos; passeios aleatórios ativados; processo
de contato com fronteira modificada; convergência para equilíbrio; processos
populacionais; distribuições quase-estacionárias.



Abstract

This thesis investigates critical phenomena and equilibrium states in various
stochastic models through three interconnected studies.

In the first chapter, we analyze the Activated Random Walk model on a
one-dimensional ring in the high-density regime. We introduce a toppling
procedure that incrementally constructs an environment demonstrating the
sustained activity over extended periods. This approach provides a concise
and self-contained proof of the existence of a slow phase for arbitrarily large
sleep rates.

The second chapter focuses on a modified unidimensional contact process
with varying infection rates. Specifically, infection spreads at rate λe at the
boundaries of the infected region and at rate λi elsewhere. We establish the
existence of an invariant measure for this process when λi = λc, λe = λc + ε
where λc denotes the critical parameter for the standard contact process.
Furthermore, we demonstrate that the process, when observed from the right
edge, converges weakly to this invariant measure. We also show that infection
dies almost surely along the critical curve within the attractive region of the
phase space.

In the final chapter, we explore quasi-stationary distributions (QSDs) for
two subcritical population processes in continuous time: branching random
walks and branching processes with genealogy. We prove the existence and
uniqueness of QSDs for these processes by leveraging spatial aspects of their
dynamics.

Keywords: critical phenomena; activated random walks; modified boundary
contact process; convergence to equilibrium; populational processes; quasi-
stationary distributions.
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Introduction

The study of interacting particle systems is a cornerstone of modern statistical
mechanics and probability theory, offering profound insights into the behavior
of complex systems. These systems, characterized by the interactions among
numerous individual components, exhibit emergent behaviors that can often
be counterintuitive. Over the past several decades, a diverse array of models
has been developed to explore different facets of these systems, leading to a
rich and interdisciplinary body of research. Prominent models, such as the
voter model, the Ising model, the contact process, and the frog model, have
been pivotal in advancing our understanding of a range of phenomena, from
social dynamics and opinion formation to physical phase transitions and critical
phenomena.

Interacting particle systems have a wide range of applications across various
fields, reflecting their fundamental role in understanding complex phenomena.
In statistical physics, they model critical phenomena and phase transitions,
such as in the Ising model for ferromagnetism or the contact process for disease
spread. Biology benefits from these models to study population dynamics,
including the spread of infectious diseases and the dynamics of ecosystems,
where models like the frog model or branching processes provide insights into
survival and extinction patterns. In epidemiology, interacting particle systems
help simulate the spread of diseases, allowing researchers to explore how
infections propagate through populations and evaluate the impact of public
health interventions. Social sciences use these models to understand opinion
formation, rumor spreading, and network dynamics, providing a framework to
analyze how individuals influence each other in social networks. Additionally,
in computer science, interacting particle systems contribute to algorithms for
distributed computing and optimization problems, where they model resource
allocation and system performance. These diverse applications illustrate the
versatility and importance of interacting particle systems in both theoretical
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and practical contexts.

This thesis aims to address some questions related to phase transitions and
convergence to equilibrium in interacting particle systems. By examining
these systems under varying conditions and constraints, we seek to deepen
our understanding of their underlying principles and behaviors.

Phase Transition in Activated Random Walks

Activated Random Walks (ARWs) represent a fascinating extension of
traditional random walk models by incorporating activation-inactivation
mechanisms. In the ARW framework, there are two types of particles in a
lattice. Active particles perform independent continuous-time random walks at
rate 1 and each active particle becomes sleeping at rate λ, and remain sleeping
until an active particle reaches the site where the sleeping particle is. Sleeping
particles do not move. This added layer of complexity introduces a wealth of
dynamical behavior and allows for the exploration of novel phenomena, such
as phase transitions and criticality, within the context of random walks.

A particularly intriguing aspect of the ARW model is its connection to
the concept of self-organized criticality. Self-organized criticality, introduced
in [BTW87], describes systems that naturally evolve into a critical state
without requiring fine-tuning of external parameters. In these systems,
criticality arises spontaneously due to the interactions among the system’s
components. Besides Activated Random Walks, other models that exhibits
self-organized criticality are the Manna Sandpile Model [Man91] and its
Abelian variant, the Stochastic Sandpile Model [Dha90].

The existence of self-organized criticality is closely related to the occurrence
of phase transitions in models with explicit parameters. For ARWs, this phase
transition manifests in the fixed-energy model. In this conservative model,
particles are neither created nor destroyed, and the key parameter of interest
is the density of particles. The fixed-energy model can be studied on both
infinite lattices and finite torii. In Chapter 1, we provide a self-contained
proof of the existence of a phase transition in the fixed-energy model on a one-
dimensional ring. In this case, the system will reach an absorbing configuration
if, and only if the number of particles is less than or equal to N . We prove
that in the ARW model in the onedimensional torus ZN , for every sleeping
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rate the time for absorption is exponential in N if the number of particles is
close enough to N (but smaller than N) (Theorem 1.1). These results, which
have been published in [LRT24], contribute to the broader understanding of
phase transitions in stochastic systems.

Convergence to Equilibrium in the Modified
Boundary Contact Process

The contact process is a foundational model in the study of interacting systems,
shedding light on essential behaviors in population dynamics, such as the
spread of infections, rumors, and social behaviors. Originally proposed by
Harris in 1974 [Har74], this model features a population where individuals
can be in one of two states: infected or healthy. Infected individuals can
transmit the infection to their healthy neighbors, while they recover at a
certain rate. This interaction framework mirrors the complexity of real-world
epidemic dynamics and social contagion phenomena. Understanding how such
systems evolve towards stable distributions, or invariant measures, is crucial
for grasping their long-term behavior.

Several modifications to the classical contact process have been introduced
to explore different aspects of its dynamics. One notable variation, discussed
in [DS00], involves distinct infection rates for the boundary and the interior
of the infected region. The phase space of this boundary-modified model
was initially explored in [DS00] and further examined in [AR23], which also
established convergence of the process seen from the edge to an equilibrium
state within the attractive region of the phase space. In Chapter 2, we
build on these findings by extending the results of convergence to equilibrium
to the non-attractive region (Theorem 2.2) and refining the phase space
characterization. Specifically, we demonstrate that infection almost surely dies
out in the attractive segment of the critical curve (Theorem 2.5).

Quasi-Equilibrium in Population Processes

Quasi-stationary distributions (QSDs) are fundamental to understanding
population processes, offering deep insights into the long-term dynamics of
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systems that face eventual extinction. A QSD is a distribution that is invariant
for the process conditioned that extinction has not yet occurred. QSDs
are particularly significant in scenarios where populations experience random
fluctuations and face the possibility of extinction, such as in biological models,
epidemiological studies, and ecological systems.

In various subcritical population models, whether discrete-time or continuous-
time Markov chains, the concept of a quasi-stationary distribution provides
a refined understanding of the system’s behavior before extinction. Unlike
stationary distributions, which describe the long-term behavior of a process
that continues indefinitely, QSDs focus on the behavior conditioned on survival.
They offer insights into how the population is distributed across different
states given that it has not yet faced extinction. For example, QSDs play
a role in describing scaling limits for subcritical contact processes [DR17] and
can also represent the limit of the distribution observed from the edge of a
process [AEGR15].

The behavior of quasi-stationary distributions (QSDs) can differ significantly
across various models. For example, in subcritical branching processes,
multiple QSDs exist, each representing a combination of the minimal QSD
(the one with the highest absorption rate) and a QSD specific to the pure-
death process [Cav78]. In contrast, subcritical contact processes possess a
unique QSD [AGR20]. This difference may be attributed to the geometric
aspects inherent in the contact process that are absent in branching processes.
In Chapter 3, we investigate two variants of classical branching processes that
incorporate geometric elements: the branching process with genalogy, that
gives information about the genealogical relationships of the individuals, and
the branching random walks, that adds information about the spatial location
of the individuals. We then prove existence and uniqueness of quasi-stationary
distribution for those two processes (Theorems 3.3 and 3.4). This chapter
provides new insights into the intricate interplay between geometry and quasi-
stationarity in population processes. This chapter was done in collaboration
with Pablo Groisman.
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Part I

Phase transition in finite
systems
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Chapter 1

Slow phase for the fixed energy
ARW

Activated Random Walk (ARW) is an Abelian model of interacting particles
that can be described as follows. Particles are distributed on a transitive
graph. There are two types of particles, active and sleeping particles.
Active particles perform independent continuous-time random walks at rate
1, and fall asleep at rate λ. Sleeping particles do not move, and continue
to sleep until an active particle reaches the same site, and then become
active again. See [Rol20] for an introduction and main results. Recent
progress in the model has been made, including bounds for the critical
density in the infinite lattice [AFG24, ARS22, FG22, Hu22, Tag23], and of
related models [HHRR22, PR21], separation cuttoff for the total variation
distance to equilibrium [BS22], bounds on the mixing time of the driven-
dissipative model [LL21], scaling limits [CR21], necessary conditions for
supercriticality [For24], bounds for the spread of the particles [LS21] and a
prove of the universality conjecture [HJJ24].

In this work, we will focus on ARWs on the unidimensional ring ZN := Z/NZ.
We suppose a deterministic initial configuration with ζN particles. As the ring
ZN is finite, it is immediate that the system will eventually be absorbed in a
configuration with only sleeping particles (i.e., will stabilize) if, and only if,
ζ ≤ 1. Thus, we are interested in how much time time the system will take to
stabilize. Our main result is the following theorem, which has been published
in [LRT24].

Theorem 1.1. Let J be the total number of jumps the particles do until the
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Figure 1.1: Phase diagram for the unidimensional ring

initial configuration is stabilized. For every 0 < λ < +∞, there are constants
δ, δ′ > 0, depending on λ, such that, if ζ is close enough to 1,

P(J ≥ eδN) ≥ 1 − e−δ′N ,

for every N sufficiently large.

As the existence of a polynomial phase (i.e., a fast phase) for small densities
was already proven in [RS12, BGHR19], the above result shows that there is a
phase transition on the ring ZN . Thus, we have the phase diagram as showed
in Figure 1.1.

While this result was being prepared, two papers came out. In [AFG24],
Theorem 1.1 is proved for the d-dimensional torus, d ≥ 2, using auxiliary
results and arguments of [FG22]. Their proof uses a hierarchical argument.
Fixed a “dormitory” set where the particles will eventually stabilize, the model
is reduced to a model of density 1 in the dormitory, which is then divided in
a series of growing “clusters”. Stabilization of each of those clusters will affect
the configuration in the other clusters, leading to a long stabilization time with
high probability, even after summing over all the possible dormitory sets. A
modification of this argument shows that the result is still true in the one-
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dimensional case. In [HJJ24] it is shown that the critical density on ZN and
in an infinite version of ARW in Z are the same. Their proof is based on the
cyclical argument of [BGHR19], using a “percolation in layers” approach to
show that, in every cycle, there will remain a fraction of active particles that
will be sufficient to wake up the sleeping particles.

Our proof uses a different approach which is self-contained and shorter. The
main strategy is to build a “carpet” where active particles can perform
long excursions. Unlike [HRR23], we do not assume a convenient initial
configuration, instead our carpet is built on the fly while the system dynamics
develop. We then divide the ring in large blocks, and prove that with
high probability the system reaches certain configurations having many active
particles in a certain region of the ring. In contrast to [BGHR19], which
handles the low λ regime, at the end of each cycle we are left with inconvenient
configurations connecting the source and sink regions, and need to make do
with them.

This chapter is structured as follows. In Section 1.1 we give a formal description
of the ARW model. In Section 1.2 we describe a dynamic procedure to move
particles on the ring according to the ARW rules. This procedure will conserve
a series of properties of the configuration, as proved in Section 1.3. Theorem 1.1
is proved in Section 1.4, using the cycle argument. In Sections 1.5 to 1.7 some
auxiliaries results and lemmas are proved.

1.1 Description of the Model

In this section we give a more formal description of the model. The
configuration space will be {0, s, 1, 2, . . . }ZN , where s is a symbol used to denote
one sleeping particle. We define s + 1 = 2.

To each site x on ZN is associated a stack of instructions ξx := (ξx
k )k∈N sampled

independently over x and k accordingly to the following distribution

ξx
k =


tx,x+1 with probability 1

2(1+λ) ;
tx,x−1 with probability 1

2(1+λ) ;
tx,s with probability λ

1+λ
,
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where each one of the above transition acts on a configuration η ∈
{0, s, 1, 2, . . . }ZN in the following way

[tx,yη](z) =


η(z) + 1 if z = y;
η(z) − 1 if z = x

η(z) otherwise,

and

[tx,sη](z) =

s, if z = x and η(x) = 1;
η(z), otherwise.

We also introduce the odometer field h = (h(x); x ∈ ZN), which count the
number of instructions that have been utilized at each site site. The initial
value of the odometer is h ≡ 0.

A site x is called stable in a configuration η if η(x) = 0 or s, and unstable
otherwise. A configuration η is stable if every x is stable in η. The operation
of toppling a site x, denoted by Φx, is defined by

Ψx(η, h) = (txh(x)+1, h + δx).

In other words, to topple a site is to update the configuration by making a
particle at site x to obey the first instruction at site x which have note been
used. The toppling of a site x is legal if x is unstable.

A legal sequence of topplings is a k-tuple α = (x1, x2, . . . , xk) of sites where x1

is unstable, x2 is unstable after x1 is toppled, x3 is unstable after x1 and x2

are toppled, etc. The odometer of x in α, denoted by mα(x) is the number of
times the site x appears in α. A legal sequence α stabilizes η if after we topple
all the sites of α we obtain a stable configuration.

The Abelian property of the ARW [Rol20, Lemma 2.4] states that if α and
β are two legal sequences of topplings that stabilize a configuration η, then
mα = mβ. In other words, the order in which legal topplings are performed
does not affect the final configuration obtained.

For a configuration η, we define the odometer of η to be mη = mα, with α

a legal sequence of topplings that stabilize η. By the Abelian property, this
definition does not depend on our choice of α.
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1.2 The toppling procedure

In this section, we will describe a sequence of topplings in the ring ZN . In
Section 1.4, we will use this procedure as the main step of an iterative procedure
to stabilize the configuration on the closed ring.

1.2.1 Preliminary steps

Without loss of generality, we can assume that the initial configuration has
at most one particle per site. Otherwise, because ζ < 1, we can a.s. topple
sites with more than one particle until there are no sites with more than one
particle.

Let a ∈ 2N be fixed, its value will be determined later, and let K := a2. For
simplicity, we assume N = (n + 2)K for some even integer n. The ring ZN

will be identified with the interval {−K/2, −K/2 + 1, . . . , N − K/2 − 1} in the
obvious way. For 0 ≤ i ≤ n + 1, we call the set [iK − K/2, iK + K/2) the
block i.

During the procedure, we will label each particle as a free or a carpet particle.
Free particles will be further subdivided into frozen or thawed. At the
beginning, we declare all particles at sites iK, i = 0, 1, . . . , n + 1, to be free
and thawed, and all the other ones to be carpet particles.

We choose one free thawed particle (if there is one) to be the hot particle. The
criterion for picking the hot particle will be described later.

There are some special sites, called holes, which will be “moved” during
the procedure. At the beginning, we define the holes to be at sites iK for
i = 0, 1, . . . , n + 1.

A defect or defective site is a site that is not a hole and has no particle. When
an active particle reaches a defect, we say that the defect is fixed. In this case,
the site stops being defective.

With the assumptions and definitions above, the initial configuration η will
satisfy the following properties, which will be preserved by the toppling
procedure that will be described below.

(P1) Each block i has exactly one hole, which is located at some site in
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[iK, iK + a].

(P2) Every site contains a carpet particle, except for the holes and defective
sites.

(P3) If there are defective sites in [iK − K/2, iK + K/2), the hole is at iK.

(P4) Carpet particles between the hole and iK + a are active.

(P5) Free particles are always active.

(P6) All free particles are at sites iK or iK + a, except, possibly, the hot
particle.

(P7) There is at most one frozen free particle per block.

(P8) There is a frozen free particle in block i if and only if the hole is at
position iK + a. In this case, the frozen free particle in this block is at
position iK + a.

(P9) The hot particle is free and thawed.

These properties hold for the initial configuration either by the definitions
given on the beginning of this section or vacuously.
Remark 1.2. Properties (P1), (P4), (P5), (P6), (P7), (P8) and (P9) have
identical counterparts in [HRR23]. If we assume the configuration has no
defects, (P3) is vacuously true and (P2) becomes the same as in [HRR23].

1.2.2 Attempted emission

We will describe in this section a procedure for an attempted emission. An
attempted emission can end either in a successful emission or in a failure.

Suppose we choose the hot particle at block i. A successful emission (or just
emission) occurs when one of the following conditions happen:

• when the hot particle reaches (i + 1)K (resp. (i − 1)K + a) and there
are no defects in block i + 1 (resp. i − 1);

• when the hot particle reaches a vacant site in block i + 1 (resp. i − 1)
and there are defects in block i + 1 (resp. i − 1). We remember that, by
(P2), vacant sites are either holes or defects.
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In either case, block i is called the emitting block and block i + 1 (resp i − 1)
the receiving block. When an emission occurs, we say that the hot particle is
emitted.

Let us describe the procedure for an attempted emission. First, we will choose
the hot particle using the following criterion. At the beginning of an attempted
emission, pick the smaller i, 1 ≤ i ≤ n, such that there are no defects and there
is at least one thawed free particle in block i. If there is no such i, we declare the
procedure finished. After i is chosen, we pick one of the free thawed particles
of block i to be the hot particle. Note that these free thawed particles must
be in iK or iK + a by (P6). If there is a free thawed particle at iK, we choose
the hot particle at iK; else, we choose the hot particle at iK + a.

By (P5) and (P9) we can always topple the site which contains the hot particle.
We will only topple the site where the hot particle is.

We have the following cases.

• There is no frozen particle at site iK + a

Topple the site where the hot particle is until it is is emitted or reaches
the hole in [iK, iK+a]. If it is emitted, we declare the attempted emission
to be finished.
If the hot particle reaches the hole and sleeps, we turn it into a carpet
particle, move the hole to the site immediately to the right, turn the
carpet particle in the new location of the hole into a free particle, and
choose this particle to be hot ((P4) ensures that the new hot particle
is active). If the hole reaches iK + a, we stop the attempted emission
and declare the free particle at iK + a as frozen. If this happens, we say
that the attempted emission ends in a failure and, if possible a new hot
particle is chosen in the way described above.

If the particle leaves the hole, there are two sub-cases:

– the particle is emitted. In this case, we finish the attempted
emission.

– the particle makes an excursion and returns to the hole. In this case,
we move the hole to the leftmost site visited by the hot particle in
this excursion, turn the hot particle into a carpet one, and turn the
particle at the new position of the hole into a free one. (Note that,
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if the hot particle made an excursion to the right of the hole, the
leftmost site visited is the hole itself.)

• There is a frozen free particle at iK + a:

In this case, by the combination of (P2), (P3) and (P8), there are no
defects on [iK − K/2, iK + K/2), and all sites in [iK, iK + a) have a
carpet particle.

We topple the site where the hot particle is until it is emitted.

If the particle visits every site in [iK, iK + a] before being emitted, we
move the hole to iK, turn the frozen particle at iK + a into a carpet
particle and turn the carpet particle at iK into a free particle. This
finishes the attempted emission.

Note that, by (P8) those two cases are the only possibilities.

See Figure 1.2 to an example of a piece of the ring after some attempted
emissions have been made.

1.3 Properties preserved

In this section, we prove that the properties (P1)-(P9) of a configuration are
preserved by the procedure described in Section 1.2.

Proposition 1.3. At the end of each attempted emission, each one of
properties (P1)-(P9) is preserved.

Proof. This follows from the following reasons:

(P1) We never move the hole outside [iK, iK + a], and every time we
move the hole to a new location, the old location ceases to be a hole.
Thus, there is only one hole at each block.

(P2) This happens because sites that are either defects or holes only
cease to be defects and holes if a particle reaches them and is turned into
a carpet particle; and with exception of the hole, we only topple sites
with at least two particles.
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(P3) We only move the hole after all defects in [iK − K/2, iK + K/2)
are fixed, because the block which the hot particle is chosen from has no
defects.

(P4) If a particle fixes a defect, we relabel it as a carpet one and it
remains active. If a particle sleeps, we move the hole to the right. We
only move the hole to the left if all the particles between its new location
and iK + a are active.

(P5) Every time a free particle sleeps, we relabel it as a carpet particle.

(P6) We only move the hot particle, and every time the hot particle fixes
a defect or sleeps, we relabel the hot particle as a carpet one. We only
stop to move the hot particle when it is emitted or frozen. Thus, every
time we choose a new hot particle, the old one is either relabeled as a
carpet particle (if it fixed a defect), is frozen (at iK +a) or reached block
i − 1 or i + 1.

(P7) If there is a frozen free particle at the block where the hot particle
is chosen, the hot particle is always emitted or fixes a defect. In either
case, we do not freeze any other particle.

(P8) This is because a particle is frozen if and only if the hole reaches
iK +a, and is turned from frozen to thawed when the hole leaves iK +a.

(P9) We choose a free and thawed particle to be hot. When a hot particle
is relabeled as a carpet one or declared frozen, a new hot particle is
chosen.

1.4 Alternating modes

We will now prove Theorem 1.1. To do so, we apply cyclically the procedure of
Section 1.2 in two modes, A and B. At each mode, blocks 0 and n+1 are called
sinks and blocks n/2 and n/2 + 1 are called sources. We apply the procedure
of Section 1.2 until there are no possible choices for the hot particle outside
the sink region. When this happens, we declare the mode to be ended. At the
end of each mode we change the enumeration of the blocks in a way such that
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Figure 1.3: The two modes for the application of the dynamical procedure.
At the end of each mode, the blocks are relabeled in a way that the source
mode of each mode corresponds to the sink region of the next mode and
vice-versa.

the sinks of mode A are the sources of mode B and vice-versa (see Figure 1.3).
The idea behind of the proof of Theorem 1.1 is to show that, in each mode,
if we start with many particles in the source, we can apply the procedure of
Section 1.2 until there are many particles in the sink with high probability.
Then, we will reverse the roles of the source of the sink and we can apply the
procedure again. Thus, we conclude that, with high probability, we will repeat
the procedure many times until the system is stabilized.

We remember that n + 2 = N/K is the number of blocks.

Let D be the number of defects at the end of a mode. We will define the
following Condition and use it in the proof of Theorem 1.1.

Condition 1.4. There are at least 7
8n + D free particles of which at most 5

8n

are frozen.

Proposition 1.5. There is c > 0 depending on λ such that, if at the beginning
of a mode Condition 1.4 is satisfied, then at the beginning of the next mode
Condition 1.4 will also be satisfied with probability at least 1 − e−cn, for all n

sufficiently large.

We will prove Proposition 1.5 at the end of this section. Now we are ready to
prove Theorem 1.1.
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Proof of Theorem 1.1. We take 1 − 1
4K

< ζ < 1. Therefore, at the initial
configuration there are at most n/4 defects, and at least 3n/4 blocks with one
free particle. Thus, there will be at least one block without defects and with
one free thawed particle, and we can start the toppling procedure.

We will call a mode successful if Condition 1.4 is met at the end of the mode.
We first note that, if a mode is successful, at least one jump is made, because
there will be at least one block in the beginning of the mode with no defects
and a free particle.

Using Proposition 1.5,

P(J ≥ eδN) ≥ P(The first eδN modes are successful)
≥ (1 − e−cN/K)eδN ≥ 1 − e(δ−c/K)N .

The theorem follows if we take δ < c/K and δ′ = c/K − δ.

The following proposition states an important conservation law.

Proposition 1.6. The number of free particles minus the number of defects
is conserved during the procedure.

Proof. There are two situations where a free particle is turned into a carpet
one or vice versa. First, when a free particle fixes a defect. In this case, both
the number of free particles and of defects decrease by one, so the difference
is conserved. Second, when a free particle sleeps and it is turned into a carpet
particle, the carpet particle immediately to its right is turned into a free one,
and both numbers are conserved. This proves the proposition.

Let En be the set of blocks that realize at least one successful emission during
a mode, F (En) be the number of frozen particles in En and F (ZN) the total
number of frozen particles in the ring ZN .

To prove Proposition 1.5 we will make use of the following statements.

Proposition 1.7. There exists a constant c depending on λ such that, if
Condition 1.4 is satisfied then P(F (En) ≥ n

8 ) ≤ e−cn for all n sufficiently
large.
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Proposition 1.8. There exists a constant c > 0, depending on λ such
that, if at the beginning of the mode all the holes are at positions iK, then
P(F (ZN) ≥ n

8 ) ≤ e−cn for all n sufficiently large.

Proof of Proposition 1.5. As the number of free particles minus the number of
defects is conserved by Proposition 1.6, at the end of the mode there are still
7
8n + D free particles.

In the first mode all the holes are at positions iK, 0 ≤ i ≤ n + 1, hence by
Proposition 1.8, the probability of having at most n/8 frozen particles in total
at the ring is at least 1 − e−cn. In this event, Condition 1.4 is met.

Now, let us show that, on the event {F (En) ≤ n/8}, Condition 1.4 is met at
the end of the mode.

We first argue that in this event, there will be free particles inside the sink
region. From the second mode onward, all free thawed particles begin the mode
in the source region. Therefore, En is a connected set surrounding the source
region, and frozen particles outside En must be in the two blocks adjacent to
En.

If {F (En) ≤ n/8} happens, at the end of the mode, there are at most 2 new
frozen particles outside En and 5n/8 particles that were frozen at the beginning
of the mode. Since 5n/8 + n/8 + 2 < 7n/8 (if n > 16), and the three options
listed earlier are the only places where free frozen particles may be; there must
have been free particles that are not frozen by the end of the mode, and this
can only be achieved if free particles are emitted to the sink region.

Therefore, we conclude that, in fact, En must contain the source region and be
adjacent to the sink region, and since En is a connected collection of blocks,
the number of blocks in the complement of the union of En and the sink region
is at most n/2. In particular, by (P7), there are at most n/2 frozen particles
outside En, hence at most 5n/8 frozen particles in total.

By Proposition 1.7, P(F (En) < n/8) ≥ 1 − e−cn, and Proposition 1.5 is
proven.



30

1.5 Upper bound for the number of frozen
particles

In this section, the analysis is restricted to the dynamics of a single mode. In
Subsection 1.5.1 we will define some concepts that will be used in the proof of
Proposition 1.7, In Subsection 1.5.2 we state a single-block estimate and use
it to prove Proposition 1.7.

1.5.1 σ-algebras and flow of particles

To each site y ∈ [iK − K/2, iK + K/2), i = 0, i, . . . , n + 1 we associate three
independent copies of the stack of instructions, ξy, ξy,L and ξy,R. Each time
one of those sites is toppled we use the first unused instruction in ξy,L if the
hot particle is chosen at {(i − 1)K, (i − 1)K + a}, the first unused instruction
in ξy if the hot particle is chosen at {iK, iK +a} or the first unused instruction
in ξy,R if the hot particle is chosen at {(i + 1)K, (i + 1)K + a}. Thus, each site
y in block i has a stack associated to the block i − 1 (except for i = 0), one
stack associated to block i and one stack associated to block i − 1 (except for
i = n + 1).

We define the following σ-algebras

Fi = σ({ξy, ξy,R, ξy,L : y ∈ (−K/2, iK − K/2)}
∪ {ξy,L, ξy : y ∈ [iK − K/2, iK + K/2)}
∪ {ξy,L : y ∈ [iK + K/2, (i + 1)K + K/2)}).

In words, Fi comprises information about stacks associated with blocks
0, 1, . . . , i.

Let η be the configuration of the ring at the beginning of a mode, and, for
0 ≤ k ≤ n, define ηk to be the restriction of η to blocks 0, 1, . . . , k. Let d′ be the
number of defects in ηk. We define, for (m, d) ∈ {0} × {0, 1, . . . , d′} ∪N× {d′},
η′

k(m, d) in the following way: first, we use the toppling procedure of Section 1.2
restricted to blocks 0, 1, . . . k. After this is done, we define η′

k(m, d) as the
resulting configuration after block k receives m + d particles from block k + 1
(d particles for defective sites, m − 1 particles arrive necessarily at kK + a and
1 particle may arrive either at kK if kK is vacant and there are defects in
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emitted to the left

fixing defects

attempted emissions
Block i− 1 Block i

Li

Di

Mi

emitted to the right

Ri−1

Di−1

Mi−1

Figure 1.4: Pictorical representation of the mass-balance equation

(kK − K/2, kK) or at kK + a if not.)

Let 1 ≤ i ≤ k ≤ n, and m and d integers for which η′
k(m, d) is well-defined. We

run the procedure described on Section 1.2 on η′
k(m, d) and define the following

random functions:

• Lk
i (m, d) is the number of particles that are emitted from block i to block

i − 1;

• Rk
i (m, d) is the number of particles emitted from block i to block i + 1;

• Dk
i (m, d) is the number of particles that reached vacant sites in block i

from block i + 1 and will not be available for attempted emissions;

• Sk
i (m, d) is the number of particles frozen in block i after the procedure

is finished.

By (P7), Sk
i (m, d) can only be 0 or 1.

We also define Mk
i as the number of particles emitted from block i to block i−1

that will be available for attempted emissions in block i − 1.

For the sake of simplicity, we may also write Li, Ri, Di, Mi and Si instead of
Li

i, Ri
i, Di

i, M i
i and Si

i .

A particle that is emitted i to block i − 1 can only fix a defect in block i − 1,
reach the vacant hole or wait at iK + a to be used in an attempted emission.
Therefore, we can state the following mass-balance equation

Lk
i (Mk

i , Dk
i ) = Mk

i−1 + Dk
i−1. (1.9)

The following proposition gives a relation between those random functions.
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Proposition 1.10. For every 1 ≤ i ≤ n,

Si(Mi, Di) = Sn
i (0, 0),

Li(Mi, Di) = Ln
i (0, 0),

Ri(Mi, Di) = Rn
i (0, 0),

Di
i(Mi, Di) = Dn

i (0, 0).

Proof. For i = n, the result is immediate. Fix some i ∈ {1, . . . , n − 1}.
Whenever possible, the procedure described on Section 1.2 chooses the hot
particle in blocks 1, 2, . . . , i − 1, and when this choice is possible, it depends
only on the configuration in blocks 1, 2, . . . , i − 1. When the choice in those
blocks is not possible, the procedure either stops or waits for a particle to come
to block i from block i + 1. This particle will either fix a defect in block i,
reach the vacant hole at iK or wait at iK + a until it is chosen to be the hot
particle. By the way the procedure was designed, these particles will have the
least priority to be chosen as the hot particle, and will not affect the dynamics
in the first i blocks until they are chosen to be hot.

The only other way that attempted emissions in block i + 1 can affect the
outcome on blocks 1 to i is by using instructions on stacks of instructions in
sites between iK + a and (i + 1)K, but this is fixed by using multiple i.i.d.
stacks of instructions in those sites.

1.5.2 Bounding the exponential expectation

To prove Proposition 1.7, we will use the following one-block estimate, to be
proved in Section 1.6.

Proposition 1.11. (i) For any initial configuration η0 satisfying Properties
(P1) - (P9),

sup
ℓ≥0,d≥0

E

 ∞∑
m=0

e48Si(m,d)1{Li(m,d)=ℓ}1{Li(m,d)+Ri(m,d)≥1}

∣∣∣∣ Fi−1

 ≤ e4.

almost surely, where the sum runs over all m for which η′
i(m, d) is defined.

(ii) For any initial configuration η0 satisfying Properties (P1) - (P9) and
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with holes only at positions iK, 1 ≤ i ≤ n,

sup
ℓ≥0,d≥0

E

 ∞∑
m=0

e48Si(m,d)1{Li(m,d)=ℓ}

∣∣∣∣ Fi−1

 ≤ e4,

almost surely, where the sum runs over all m for which η′
i(m, d) is defined.

Proof of Proposition 1.7. Denote, for simplicity, Gi
m,d as the event {(Ri +

Li)(m, d) ≥ 1}.

We will first show that

E[e48F (En)] ≤ (n + 1)4ne4n.

By definition, F (En) is the number of particles that are frozen on the collection
of blocks that perform at least one emission. Also, at the beginning of the
procedure there are at most n free particles (one at each block), and the
number of free particles never increases.

Since ζ > 1−1/4K, we can bound the number of defects by n. Therefore, using
the definition of Si, Proposition 1.10 and the mass-balance equation (1.9):

E[e48F (En)] =

E

 ∑
m0,...,mn
d0,...,dn

n∏
i=1

e48Si(mi,di)1{Mn
i =mi}1{Dn

i =di}1{Li(mi,di)=mi−1+di−1}1Gi
mi,di



≤
∑

d0,...dn
d0+···+dn≤n

E

 n∑
m0=0

∑
m1,...,mn

n∏
i=1

e48Si(mi)1{Li(mi)=mi−1+di−1}1Gi
mi,di

.

The number of non-negative integer solutions of the inequality d0 + d1 + · · · +
dn ≤ n is bounded above by 4n. Thus,

E[e48F (En)] ≤ 4n · sup
{d0,...,dn}

E

 n∑
m0=0

∑
m1,...,mn

n∏
i=1

e48Si(mi)1{Li(mi)=mi−1+di−1}1Gi
mi,di

.

We will show by induction that, for every non-negative integer r ≤ n, and
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every possible choice of d0, . . . dn,

E

 n∑
m0=0

∑
m1,...,mr

r∏
i=1

e48Si(mi,di) 1{Li(mi)=mi−1+di−1}1Gi
mi,di

 ≤ (n + 1)e4r.

Indeed, for r = 0 the expectation above is bounded by n + 1, and the
base case of induction is finished. Suppose the inequality is valid for every
integer between 0 and r − 1. By conditioning on Fr−1 and using item (i) of
Proposition 1.11,

E

 n∑
m0=0

· · ·
∑
mr

r∏
i=1

e48Si(mi,di)1{Li(mi)=mi−1+di−1}1Gi
mi,di


≤ E

∑
m0

∑
m1

· · ·
∑

mr−1

r−1∏
i=1

e48Si(mi,di)1{Li(mi,di)=mi−1+di−1}1Gi
mi,di


· sup

ℓ≥0,d≥0
E

∑
mr

e48Sr(mr,d)1{Lr(mr,d)=ℓ}1Gr
mr,dr

| Fr−1


≤ e4E

 n∑
m0

· · ·
∑

mr−1

r−1∏
i=1

e48Si(mi,di)1{Li(mi,di)=mi−1}1Gi
mi,di


≤ (n + 1)e4e4(r−1) = (n + 1)e4r,

Therefore,
E[e48F (En)] ≤ (n + 1)4ne4n.

To conclude the bound, we note that, by Markov’s inequality,

P(F (En) ≥ n/8) ≤ e−6nEe48F(En)

≤ e−6n · (n + 1)4ne4n

≤ e−cn

for a constant c > 0 chosen properly and n sufficiently large.

Proof of Proposition 1.8. The proof of this proposition is completely analogous
to the proof of Proposition 1.7. First, we note that
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E[e48F (ZN )] = E

 ∑
m0,...,mn
d0,...,dn

n∏
i=1

e48Si(mi,di)1{Mn
i =mi}1{Dn

i =di}1{Li(mi,di)=mi−1+di−1}



≤
∑

d1,...dn
d1+···+dn≤n

E

 n∑
m0=0

∑
m1,...,mn

n∏
i=1

e48Si(mi)1{Li(mi)=mi−1+di−1}



≤ 4n · sup
{d1,...,dn}

·E

 n∑
m0=0

∑
m1,...,mn

n∏
i=1

e48Si(mi)1{Li(mi)=mi−1+di−1}

.

Since, in the first mode, all holes are at positions iK, item (ii) of Proposition
1.11 can be used to prove by induction that, for every r ≤ n,

E

 n∑
m0=0

∑
m1,...,mr

r∏
i=1

e48Si(mi,di) 1{Li(mi)=mi−1+di−1}1Gi
mi,di

 ≤ (n + 1)e4r,

and Markov’s inequality is used as in the proof of Proposition 1.7.

1.6 One-block estimate

This section is devoted to proving Proposition 1.11.

We will begin by proving item (i). Let i be fixed. We will consider two cases.
First, we will analyze the case where there are defects in [iK −K/2, iK +K/2)
after we stabilize η′

i(m, d) using the procedure described in Section 1.2. The
only value of m compatible to the definition of η′

k(m, d) in this case is m = 0,
and, by Properties (P3) and (P8), Si(0, d) = 0. It follows that

sup
ℓ≥0,d≥0

E

 ∞∑
m=0

e48Si(m,d)1{Li(m,d)=ℓ}1Gi
m,d

| Fi−1


= sup

ℓ≥0,d≥0
E[e48Si(0,d)1{Li(0,d)=ℓ}1Gi

0,d
| Fi−1] ≤ 1.

We now analyze the remaining case, i.e., when there are no defects in
[iK −K/2, (i+1)K/2) after we stabilize η′

i(m, d) using the procedure described
in Section 1.2. Thus, we need only to analyze the case where d = 0.
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We will use from now on a slight abuse of notation and denote by Li(j), Si(j)
and 1Gi

j
the values of the quantities Li, Si and 1Gi after j attempted emissions

in block i.

For each particle added at iK+a, at least one attempted emission will be made.
In other words, for each m there is at least one corresponding j. Therefore,

∞∑
m=0

e48Si(m,d)1{Li(m,d)=ℓ}1Gi
m,d

≤
∞∑

j=0
e48Si(j)1{Li(j)=ℓ}1Gi

j
.

and it is sufficient to bound

sup
ℓ≥0

E

 ∞∑
j=0

e48Si(j)1{Li(j)=ℓ}1Gi
j

| Fi−1

 (1.12)

For simplicity, as i is fixed, we will write S, R, L and G instead of Si, Ri, Li

and Gi.

We will denote by Gj the σ-field generated by the information revealed up to
the j-th attempted emission plus the information contained in Fi.

Definition 1.13. The process (H(j))j∈N, taking values in {0, 1, . . . , a}, is
defined as H(j) = v if the hole is at position iK + v after the j-th attempted
emission.

It is immediate that H(j) is Gj-measurable.

For brevity we will define P̃[·] := P[· | Fi−1] and Ẽ[·] := E[· | Fi−1].

To prove Proposition 1.11 we will make use of the following lemmas.

Lemma 1.14. If K is big enough, then, for every j ≥ 1,

P̃[H(j) > a/2 | Gj−1]1{H(j−1)∈[0,a/2]∪{a}} ≤ e−150. (1.15)

and
P̃(a/2 < H(j) < a | Gj−1) < e−150. (1.16)

Remark 1.17. The previous lemma is trivially true for j = 0 if the initial
configuration has H(0) = 0.

Lemma 1.18. For every j ≥ 0, if K is big enough then the following bound
holds almost surely:

P̃(L(j + 2) > L(j) | Gj) ≥ 1
5 .
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For every integer ℓ ≥ 0, denote by τℓ the first j for which L(j) = ℓ, with
τ−1 := −1. We have that τℓ+1 > τℓ, because every attempted emission will
result in at most one particle emitted to the left. We can rewrite (1.12) to
obtain

E|

 ∞∑
j=τℓ−1+1

e48S(j)1{L(j)=ℓ}1Gj
| Fi−1


≤

∞∑
j=τℓ−1+1

Ẽ[1{L(j)=ℓ}1{S(j)=0} + e481{L(j)=ℓ}1Gj
1{S(j)=1}]

≤ Ẽ[τℓ+1 − τℓ] +
∞∑

k=1
Ẽ[e481{L(τℓ−1+k)=ℓ}1Gτℓ−1+k

1{S(τℓ−1+k)=1}]. (1.19)

Using Lemma 1.18, we get

Ẽ[τℓ+1 − τℓ] =
∞∑

r=0
P̃(τℓ+1 − τℓ > r) ≤

∞∑
r=0

(4
5

)⌊r/2⌋
< 10. (1.20)

We split the sum in (1.19) at k0 := 250. By Lemma 1.18 and our choice of k0,
we have that

∞∑
k=k0

Ẽ[e481{L(τℓ−1+k)=ℓ}1Gτℓ−1+k
1{S(τℓ−1+k)=1}]

≤
∞∑

k=k0

e48P̃(L(τℓ−1 + k) = ℓ) ≤
+∞∑

k=k0

e48
(4

5

)⌊k/2⌋
< 1. (1.21)

We will now prove that, for every ℓ ≥ 0 and 1 ≤ k ≤ k0,

Ẽ[1{L(τℓ−1+k)=ℓ}1Gτℓ−1+k
1{S(τℓ−1+k)=1}] <

1
k0e48 . (1.22)

Let us analyze first the case ℓ ≥ 1. In this case, obviously 1Gτℓ−1
= 1. First,

we consider k = 1. Note that if S(τℓ−1 + 1) = 1 and L(τℓ−1 + 1) = ℓ, then the
(τℓ−1 + 1)-th attempted emission is successful and H(τℓ−1) = a. Using (1.15),
after conditioning on Gℓ−1,

Ẽ[1{L(τℓ−1+1)=ℓ}1{S(τℓ−1+1)=1}]
≤ Ẽ[1{L(τℓ−1+1)=ℓ}1{H(τℓ−1+1)=a}1{H(τℓ−1)=a}]

< e−150 <
1

k0e48 ,
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where the last inequality comes from our choice of k0.

Still assuming ℓ ≥ 1, for 2 ≤ k ≤ k0, we have that

P̃(S(τℓ−1 + k) = 0) ≥ Ẽ[E[1{H(τℓ−1+k)∈[0,a/2]}] | Gτℓ−1+k−1]
≥ Ẽ[(1 − e−150)1{H(τℓ−1+k−1)∈[0,a/2]}]
= (1 − e−150)Ẽ[E[1{H(τℓ−1+k−1)∈[0,a/2]} | Gτℓ−1+k−2]]

≥ (1 − e−150)2 > 1 − 1
k0e48 ,

where in the second line we used (1.14) and in the last line we used (1.16).

This concludes the case ℓ ≥ 1. Now let us analyze the case ℓ = 0. We remember
that we defined τ−1 = −1. When k = 1, 1G0 = 0 trivially and (1.22) is valid.
For ℓ = 0 and k = 2, if the first attempted emission was not successful, then
1G1 = 0. The only way the first attempt is successful, S(1) = 1 and L(1) = 0
occurs if S(0) = 1. By (1.15), the probability of S(0) = 1 and S(1) = 1 is less
than e−150. Either way, we conclude that (1.22) holds when k = 1.

For ℓ = 0 and 2 < k ≤ k0 we use (1.15) and (1.16) in the same way as before
to conclude that

P̃(S(k) = 0) ≥ (1 − e−150)(1 − e−150) > 1 − 1
k0e48 .

This proves (1.22) and, therefore,

k0∑
k=1

Ẽ[e481{L(τℓ−1+k)=ℓ}1Gτℓ−1+k
1{S(τℓ−1+k)=1}] < 1. (1.23)

Combining (1.20), (1.21) and (1.23), we get

sup
ℓ≥0

E

 ∞∑
j=0

e48Si(j)1{Li(j)=ℓ}1Gi
j

| Fi−1

 < 10 + 1 + 1 < e4 (1.24)

and the proof of case (i) Proposition 1.11 is complete.

The proof of (ii) for ℓ ≥ 1 is almost identical to the proof of (i). In the
case ℓ = 0, we cannot use Lemma 1.14 directly. But, since by hypothesis the
initial configuration has holes only at iK, we can use Remark 1.17 instead of
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Lemma 1.14 to show that, for 1 ≤ k ≤ k0,

Ẽ[1{L(τℓ−1+k)=ℓ}1{S(τℓ−1+k)=1}] <
1

k0e48

and proceed as in (i).

1.7 Estimating the hole drift

This section is devoted to prove Lemmas 1.14 and 1.18.

Let Z be a random variable measuring the maximum distance reached by a
simple symmetric random walk before it returns to the origin, i.e., the law of
Z is given by P(Z = z) = 1

z(z+1) for every positive integer z.

For each v ∈ N, v ≤ a, define

Yv =


+1, with probability λ

1+λ
;

0, with probability 1/2
1+λ

;
− min(Z, v), with probability 1/2

1+λ
.

We will use a modification of the variables Yv to obtain stochastic bounds for
the hole drift when there is no emission. The probability of occurrence of an
emission to the left (or to the right) is bounded above by

δ := 1
K(1 + λ) .

Define

Ỹv =



+1, with probability λ
1+λ

;
0, with probability 1/2

1+λ
+ δ;

−k, with probability 1/2
1+λ

1
k(k+1) for k = 1, 2, . . . , v − 1;

−v with probability 1/2
1+λ

− δ −∑v−1
k=1

1/2
1+λ

1
k(k+1) .

Those random variables dominate stochastically the change of the position of
the hole, when it is at iK + v, conditioned to the event that no emission is
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made and there are no defects inside the block.

Lemma 1.25. If a is large enough and v ≥ a/3,

E[Yv],E[Ỹv] ≤ −40.

Proof. Note that

E[Yv] ≤ λ

λ + 1 − 1
2(λ + 1)

a/3∑
k=1

1
k(k + 1) · k

≤ λ

λ + 1 − log(a/3) − log 2
2(λ + 1) ,

and
E[Ỹv] = E[Yv] + vδ.

The lemma follows if we take a greater than 6 exp(120(λ + 1)).

Lemma 1.26. Let (Ỹ (i)
a/3)i∈N be a sequence of i.i.d. random variables with

common distribution Ỹa/3. Then, there is a constant α > 0 such that

P

a/6∑
i=1

Ỹ
(i)

a/3 ≥ −a/6
 ≤ e−αa

and

P

a/2∑
i=1

Ỹ
(i)

a/3 ≥ −2a/3
 ≤ e−αa

Proof. We will use the following Chernoff bound. Let (Y i)+∞
i=1 be a sequence

of bounded i.i.d. random variables with expectation ν. Fix b > 0. For every
γ > 0 such that γb is an integer with ν < −γ−1, there is a constant α′ > 0
such that

P

 γb∑
i=0

Y i > −b

 ≤ e−α′γb.

By Lemma 1.25, E[Ỹa/3] < −40. We can then take b = −a/6 and γ = 1 to
obtain the first inequality of the lemma, and b = −2a/3, γ = 3/4 to obtain
the second one.

We call a step of the toppling procedure when the hot particle starts in the
hole and either
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(i) falls asleep;

(ii) is emitted; or

(iii) leaves the hole and returns to it.

Let Tj be the number of steps taken by the procedure between the (j − 1)-st
and the j-th attempted emissions.

Lemma 1.27. For all v ∈ ZN ∩ [0, a],

P(Tj > a3 | H(j − 1) = v) <
1
a

,

and, if v < a/2,

P(Tj < a/2 | H(j − 1) = v) <
1
2a

.

Proof. First we note that if the hot particle is at the hole, the probability
that the next instruction will be a jump instruction is 1

λ+1 . Therefore, the
probability of an emission is at least 1

(λ+1)(3K/2+a) .

The first inequality comes then from the fact that

(
1 − 1

(λ + 1)(3K/2 + a)

)a3

<
1
a

,

if a is big enough.

If v < a/2, then the first a/2 steps of an attempted emission cannot end with
a failure. If Tj < a/2, then the jth attempted emission ended in an successful
emission. The probability of occurrence of an emission is at most 1

(λ+1)K , then
an union bound gives that the probability of an emission occurring in the first
a/2 steps is at most

(a/2) 1
(λ + 1)K ≤ a

2K
= 1

2a

and the second inequality of the lemma follows.

Proof of Lemma 1.14. We begin by proving (1.15). As Gj−1 contains no
information after the (j − 1)-st attempted emission, it is sufficient to prove
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that, for every v ∈ ([0, a/2] ∪ {a}) ∩ ZN ,

P(H(j) > a/2 | H(j − 1) = v) <
4
a

< e−150.

We split in three cases.

• v = a. In this case, by (P8) every site in the block has a carpet particle,
and the hot particle is performing a simple random walk. If the hot
particle visits every site in [0, a] before being emitted, the hole is reset
to position 0. The probability of this occurring is at least

K/2 − a

K/2 = 1 − 2
a

as desired.

• v ≤ a/3. By Lemma 1.27, it is immediate that

P̃({H(j) > a/2} ∩ {Tj ≥ a3} | H(j − 1) = v) <
1
a

.

If {H(j) > a/2}∩{Tj < a3} occurs, one of the first a3 times the hole is at
a/3 it moves to a/2 before returning to the left of a/3. This probability
is bounded above by the probability that the sum of a/6 independent
copies of Ỹa/3 is at least 0. Using Lemma 1.26,

P̃({H(j) > a/2} ∩ {Tj > a3} | H(j − 1) = v) <
1
a

.

The case follows by an union bound.

• a/3 < v ≤ a/2. A failure cannot occur in the first a/2 − 1 steps. The
probability that an emission occurs and Tj < a/2 is bounded above by
1/4a by Lemma 1.27. If an emission does not occur in the first a/2 − 1
steps and the hole is always at the right of a/3, the movement of the hole
is stochastically dominated by Ỹa/3. Thus the probability of Tj < a/2
and the hole be always at the right of a/3 is bounded above by the
probability that the sum of a/6 copies of Ỹa/3 is at least −a/6, and this
probability is at most e−αa by Lemma 1.26. Once the hole is at or at the



43

left of a/3 we proceed as in the previous case. Hence, we get

P̃({H(j) > a/2} ∩ {Tj < a/2} | H(j − 1) = v) <
1
a

,

and

P̃({H(j) > a/2} ∩ {a/2 ≤ Tj < a3} | H(j − 1) = v) <
1
a

.

By Lemma 1.27,

P̃({H(j) > a/2} ∩ {Tj > a3} | H(j − 1) = v) <
1
a

,

and we conclude by an union bound.

This finishes the proof of (1.15).

It remains to prove (1.16). Again, it is sufficient to condition on H(j − 1).
If H(j − 1) ∈ [0, a/2] ∪ {a}, we can use (1.15) to bound the probability of
H(j) ∈ (a/2, a). So let us suppose H(j − 1) ∈ (a/2, a). Since when a failure
occurs we have H(j) = a, we only need to consider the case of an emission.
The probability that an emission occurs in the first a/2 steps is bounded above
by 1

2a
by the same argument used in the proof of Lemma 1.27. The probability

that a emission does not occur and the hole is never in [0, a/3] in the first a/2
steps is at most e−αa by Lemma 1.26. Once the hole reaches [0, a/3] we can use
Lemma 1.26 again as in the proof of (1.15) to conclude that the probability the
hole reaches (a/2, a) is at most e−αa. An union bound finishes the proof.

Proof of Lemma 1.18. We notice that if an attempted emission ends in a
failure, the next hot particle will be emitted. Thus, for each two attempted
emissions, at least one will be successful. The situation where is a emission to
the left is least likely is when the hot particle is chosen at iK +a and there is a
defect in (i−1)K−K/2+1. The probability of this emission occurs to the left is
at least the probability that a random walk starting at iK+a reaches iK−3K/2
before it reaches (i+1)K, i.e., at least ((i+1)K/2)−(iK+a)

((i+1)K/2)−(iK−3K/2+1) = 1
4 − 1√

K
≥ 1

5 .
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Part II

Equilibrium and
quasi-equilibrium in interacting

particle systems
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Chapter 2

Convergence to equilibrium for
the critical contact process with
modified border

The Harris contact process is a widely studied model for the spread of
infections. Each site of Z (that we may think as an individual in a population)
may be infected or healthy. Infected individuals become healthy at rate 1
and at rate 2λ, λ > 0, it chooses a neighbor at random to try to infect. If
this neighbor is healthy, it becomes infected. We will assume that the reader
is familiar with the basic concepts and results about the contact process as
shown in [Gri81] or [Lig05, Chapter VI].

The contact process exhibits a critical behavior: if the infection rate λ is
too small, infection tends to die out; if it is big, infection tends to persist
forever. In other words, suppose that at time t = 0 there is only one infected
individual at the origin. There is a critical value λc such that, if λ < λc then
the infection will eventually disappear a.s. (i.e., all individuals will be healthy);
and if λ > λc, there is a positive probability that there will be always infected
individuals. At criticality (λ = λc), the infection will die out a.s. as shown in
[BG90].

In [Dur84], Durrett proved of existence of an invariant measure for the critical
and supercritical classical contact process seen from the right edge, that is, the
contact process translated in such a way that its rightmost infected particle
is at the origin. Galves and Presutti proved convergence of the supercritical
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process contact seen from the edge to the invariant measure [GP87] and this
result was extended to the critical case in [CDS91]. Nonexistence of a invariant
measure for the subcritical process was proved in [Sch87] in the discrete time
case, and in [ASS90] for the continuous time case. However, when conditioned
on non-extinction, subcritical contact processes converge to a distribution
supported on infinite sets (see [AEGR15] and Chapter 3 of this thesis).

Many modifications of the basic contact process have been proposed. One
of them, described in [DS00], is the contact process with modified border. In
this process, infections to the right of the rightmost site and to the left of the
leftmost site occur at rate λe and infections at other sites occur at rate λi.

Given a measure µ on the power set of Z, we denote by ξµ = (ξµ
t )t≥0 to be a

contact process with parameters (λi, λe) and initial condition sampled from µ

and denote by Ψξµ the process ξµ as seen from the right edge. For a subset A

of Z we write ξA and ΨξA for ξδA and ΨξδA respectively.

We denote by θ(λi, λe) the probability that this process survives forever when
at time 0 there is only one infected particle.

In the case of the modified border contact process, the following result was
first proved in [AR23].

Theorem 2.1. Suppose λe ≤ λi and θ(λi, λe) > 0 or λe = λi = λc. There is
a measure µ such that for every initial condition A ⊆ Z with |A| = +∞ and
sup A < +∞), ΨξA

t → µ weakly. Moreover, Ψξµ
t ∼ µ̃ for every t ≥ 0.

When λe ≤ λi, the process is attractive. This means that if we add more
particles to the initial configuration, it helps the infection to survive (see [Lig05,
Chapter III] for a formal definition). This is a direct consequence of the
construction of the process given in Section 2.1. In contrast, when λi < λe,
the process is non-attractive. The tools and results available for the study of
non-attractive processes are far more limited than the ones for the attractive
case.

In this work, we extend Theorem 2.1 to the non-attractive case where λe =
λc + ε, λi = λc.

Theorem 2.2. Suppose λe = λc + ε and λi = λc. There is a measure µ̃ such
that for every initial condition A ⊆ Z with |A| = +∞ and sup A < +∞),
ΨξA

t → µ̃ weakly. Moreover, Ψξµ̃
t ∼ µ for every t ≥ 0.
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Let Rξµ̃
t be the position of the right edge of the configuration ξµ̃

t , that is,
Rξµ̃

t = sup ξµ̃
t . Theorem 2.2 implies that Rξµ̃

t has stationary increments. By
Birkhoff’s Ergodic Theorem, n−1Rξµ̃

n converges to a.s. to a random variable
V . We can extend this convergence along the naturals to convergence along al
t by noting that, if we ignore all deaths, the increments of the right edge will
be distributed like a Poisson process N of parameter λe. Thus,

P
(

max
n≤t≤n+1

(Rξµ̃
t − Rξµ̃

n) ≥ εn
)

≤ P(N ≥ εn),

P
(

max
n−1≤t≤n

(Rξµ̃
n − Rξµ̃

t ) ≥ εn
)

≤ P(N ≥ εn)

and then apply the Borel-Cantelli lemma. Thus, we have the following
corollary.

Corollary 2.3. There is a random variable V with E[V ] = E[Rξµ̃
1 ] such that

Rξµ̃
t

t
a.s.−−→ V.

Remark 2.4. It still an open problem to prove that the above random variable
is degenerate, i.e., to prove existence of speed of the edge process.

The technique used in [AR23] to prove invariance of the limiting distribution
does not translate immediately to the critical case. Theorem 2.2 is proved with
arguments similar to [CDS91, Theorem 1], using the fact that, the infections
starting at two different infinite initial conditions will tend to agree on finite
dimensional cylinder sets.

The characteristics of the phase diagram of the contact process with modified
border begun to be investigated in [DS00]. Andjel and Rolla [AR23] established
almost entirely the characteristics of the phase diagram, but left open the
question of survival of the process in the critical line of the attractive region.
We solve this question with the following result.

Theorem 2.5. Define

λe
∗(λi) = inf{λe : θ(λi, λe) > 0}.

Then, if λi > λc, θ(λi, λe
∗(λi)) = 0.

By [AR23, Theorems 4 and 5], we have that λe
∗(λi) < λi when λi > λc. As

the process is attractive if λi ≥ λe, the proof of Theorem 2.5 follows the steps
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λi

λe

λc

λc

1

Survives

Dies

Figure 2.1: Phase space for the contact process with modified borde

of the proof of the analogous result for the usual critical contact process of
[BG90].

With Theorem 2.5, the phase space of the contact process with modified border
is fully characterized, as seen in Figure 2.1.

This chapter is structured as follows. Section 2.1 is dedicated to the
construction of the contact process with modified border. Theorem 2.2 is
proved in Section 2.2 and Theorem 2.5 is proved in Section 2.3.

2.1 Description of the model

A configuration is a subset of Z. The set of all configurations is denoted Σ,
i.e., Σ is the power set of Z, which we will identify with {0, 1}Z. We take the
product topology in Σ, and thus Σ is compact. For A ⊆ Z, let RA = sup A

and LA = inf A. We define the right shift operator T : Σ → Σ such that
TA = A + 1 := {x + 1 : x ∈ A}.

Let Σ⊖ be the set of semi-infinite configurations to the left, i.e., Σ⊖ = {A ∈
Σ : |A| = +∞, RA < +∞}, and Σ⊙ = {A ∈ Σ⊖ : RA = 0}. We also define
the operator Ψ in Σ⊖ as ΨA = T −RAA.

We use an enlarged version of the usual construction of the contact process to
couple processes with different parameters. We do this in the following way.
For each x in Z we sample a Poisson point process (PPP) ωx with intensity 1.
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We say there is a recovery mark at (x, t) if t ∈ ωx. We sample also a collection
of PPPs ωx,x±1 ⊆ (0, +∞)×(0, +∞) with intensity 1 and say that the oriented
edge from (x, t) to (x±1, t) is λ-open if ωx,x±1∩({t}×[0, λ)) ̸= ∅. We denote by
P the probability measure on Z× [0, +∞) induced by those Poisson processes.

Take A ⊆ Z finite. We construct the contact process with modified border ηA
s,t

as a càdlàg process on Σ with parameters (λi, λe) as follows. Define ηA
s,s = A.

Let B be the state of the process at time t−. Given x ∈ B, at time t, if there is
a recovery mark at (x, t) the process jumps from B to B \ {x}; and if x = LB

and the edge from (x, t) to (x − 1, t) is λe-open or x ̸= LB and the edge from
(x, t) to (x−1, t) is λi-open, the process jumps from B to B∪{x−1}. Similarly,
f x = RB and the edge from (x, t) to (x + 1, t) is λe-open or x ̸= RB and
the edge from (x, t) to (x + 1, t) is λi-open, the process jumps at time t from
B to B ∪ {x + 1}. For A infinite we define ηA

s,t by taking a limit of ηAn
s,t with

An finite, An ↗ A. If s = 0, we can write ηA
t for ηA

0,t. If A = Z−, the set
of non-positive integers, we write η−

t for ηA
t . We denote Pλi,λe the law of the

contact process with parameters (λi, λe). The subscripts may be dropped if
the parameters are clear from context.

A function f : Σ → R is said to be increasing if f(A) ≤ f(B) for every A ⊆ B.
When ξ and η are random elements of Σ, we say that ξ stochastically dominates
η, and denote it by ξ ≽ η if E[f(ξ)] ≥ E[f(η)] for every bounded increasing
function f .

A path is a cadlag function γ : [t0, t1] → Z whose jumps are of length 1. A
path γ defined in [t0, t1] is said to be (λi, λe)-active for a configuration A if
γs ∈ ηA

t0,s for all s ∈ [t0, t1] and for every point of discontinuity u of γ there is
a λi or λe- open edge from γu− to γu .

2.2 Convergence to invariant measure

This section is devoted to the proof of Theorem 2.2.

Proof of Theorem 2.2. By compactness of Σ, there is a sequence (tk)k

converging to infinity, such that ΨξA
tk

converges weakly to a measure µ̃. It
remains to prove that µ̃ does not depend on the initial condition A and that
convergence holds for every t, and not just along that subsequence. Those are
consequences of the following proposition.
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Proposition 2.6. For every A and B in Σ⊙ and every finite dimensional
cylinder set C,

|P(ΨξA
t ∈ C) − P(ΨξB

t ∈ C)| → 0,

uniformly over A and B.

To prove that convergence holds not just along the subsequence tk, but for
every t, we note that for every A ∈ Σ⊙, denoting by µt−tk

the law of the
process at time t − tk,

|µ̃(C) − P(ΨξA
t ∈ C)| ≤ |µ̃(C) − P(ΨξA

tk
∈ C)| + |P(ΨξA

tk
∈ C) − P(ΨξA

t ∈ C)|
= |µ̃(C) − P(ΨξA

tk
∈ C)|

+
∣∣∣∣∫ [P(ΨξA

tk
∈ C) − P(ΨξB

tk
∈ C)]dµt−tk

(B)
∣∣∣∣ .

Using convergence of ΨξA
t to µ̃ along the subsequence (tk)k and uniform

convergence given by Proposition 2.6, we conclude that, in fact, ΨξA
t converges

weakly to µ̃.

It remains to show that the limiting measure does not depend on the initial
condition. Indeed, if ΨξA

t → µ̃ and ΨξB
t → ν̃, then by Proposition 2.6 µ̃ and

ν̃ must agree on finite dimensional cylinders, implying µ̃ = ν̃.

To prove invariance of µ̃, we make use of the following proposition.

Proposition 2.7. The measure µ̃ satisfies µ̃(Σ⊙) = 1.

For every fixed t ≥ 0 and every continuous and bounded f : Σ → R the
functional Stf given by A 7→ E[f(ΨξA

t )] is continuous at every A ∈ Σ⊙. Then,
by weak convergence of ΨξA

t to µ̃. This means that (ξµ̃
t )t is a Feller process

on Σ⊙, and by Proposition 2.7 and [Lig05, Proposition I.1.8], it follows that
ξµ̃

t ∼ µ̃ for all t > 0.

The proof of Proposition 2.6 is a reformulation of the argument of [CDS91]
with some modifications. The main difference arises from the fact that, in
the classical contact process, we can couple the processes ξ0

t and ξ−
t such that

ξ0
t ∩ [−L, 0] = ξ−

t ∩ [−L, 0] if t is large enough, for all L > 0. This is no longer
true in our case, but this issue can be easily solved if we consider a process
with infection λc + ε only at the right border and λc everywhere else. This
process also survives (see the first Remark after Theorem 5 of [AR23]).
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Proof of Proposition 2.6. Take (ζt)t to be a contact process that has
parameters λc + ε on the right edge and λc everywhere else. That means
that infections occurs from Rζt toRζt + 1 at rate λc + ε, from Rζt to Rζt − 1
with rate λi and occurs from every other infected site (including Lζt) with rate
λi.

Define a sequence of stopping times (τn)n ≥ 0 by τ0 := 0 and τk := inf{t >

τk−1 : |ζ0
τk−1,t| = 0}. Take A ∈ Σ⊙. We will define the process ζ̃A

t for
t ∈ [τk−1, τk) as

ζ̃A
t = ζΨη

τk−1,t + Rη,

with η = ζ̃A
τk−1

. By translation invariance of the construction of the contact
process described in Section 2.1, Ψζ̃A has the same distribution of of ΨζA.
Define also N(t) = ∑∞

k=1 1{τk≤t}.

Let L < +∞ fixed, κ ∈ Σ⊙ and consider the cylinder C = {D ∈ Σ⊙ :
D ∩ [−L, 0] = κ ∩ [−L, 0]}. We note that every cylinder may be represented
in this form for some L and κ.

For every A, B ∈ Σ⊙,

|P(ΨξA
t ∈ C) − P(ΨξB

t ∈ C)| = |P(Ψζ̃A
t ∈ C) − P(Ψζ̃B

t ∈ C)|
≤ P(Ψζ̃A

t ∩ [−L, 0] ̸= Ψζ̃B
t ∩ [−L, 0]).

By the coupling above, the last probability is no larger than

P(|ζ0
τN(t),t| ≤ L).

As P(|ζ0
s | ≤ L | τ0 > s) → 0 as s → +∞ and by [AR23, Theorem 5] there

is a positive probability that ζ0
t ̸= ∅ for all t. Hence, t − τN(t) → +∞ almost

surely, so
|P(ΨξA

t ∈ C) − P(ΨξB
t ∈ C)| → 0.

The proof of Proposition 2.7 is based on [CDS91], that uses some results
of [ASS90]. However, in the non-attractive regime, there is no deterministic
velocity of the right edge, and the argument of [ASS90] is modified by coupling
the non-attractive process to an attractive one.
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Proof of Proposition 2.7. We take ξ−
t as a modified border contact process

with parameters (λc, λc + ε) and ζ−
t a classical contact process with parameter

λc. Denote by µ̃t the law of ξ−
t . Let i, j be two fixed natural numbers and

define
Ai,j = {B ∈ Σ⊙ : |B ∩ [−i, 0]| < j}.

For every k ∈ N, the random increment Rξk+1 − Rξk is stochastically
dominated by a Poisson random variable of parameter λc + ε, thus,

E[Rξ−
k+1 − Rξ−

k ]+ ≤ λc + ε. (2.8)

When a translated version of Ai,j occurs at time s, and at least j death events
and no birth events occur on [Rξ−

t − i, Rξ−
t ], then the right edge goes to the

left by at least i sites. Hence,

E[Rξ−
k+1 − Rξ−

k ]− ≥ ip(j)µ̃k(Ai,j), (2.9)

where p(j) is a positive constant depending only on j. Multiplying (2.9), by
−1 and summing with (2.8),

E[Rξ−
k+1 − Rξ−

k ] ≤ (λc + ε) − ip(j)µ̃k(Ai,j). (2.10)

The processes (ξ−
t )t and (ζ−

t )t can be coupled in an obvious way such that

Rζ−
t ≤ Rξ−

t .

Combining this with (2.10), we obtain

1
n

n−1∑
k=0

[E[Rζ−
k+1 − Rζ−

k ] = E[Rζ−
n ]

n

≤ E[Rξ−
n ]

n

= 1
n

n−1∑
k=0

E[Rξ−
k+1 − Rξ−

k ]

≤ (λc + ε) − ip(j) 1
n

n−1∑
k=0

µ̃k(Ai,j). (2.11)
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Rearranging the terms,

1
n

n−1∑
k=0

µ̃k(Ai,j) ≤ λc + ε

ip(j) − 1
ip(j)n

n−1∑
k=0

[E[Rζ−
k+1 − Rζ−

k ] (2.12)

By Proposition 2.6,
lim

n

1
n

n∑
k=0

µ̃k(Ai,j) = µ̃(Ai,j) (2.13)

and by [Lig05, Theorem 2.19],

lim
n

1
n

n∑
k=0

[E[Rζ−
k+1 − Rζ−

k ] = α(λc), (2.14)

and it is a classical result that α(λc) = 0 (see [Gri81, Section 7]).

Therefore, taking the limit as n goes to infinity in (2.12) and using (2.13)
and (2.14),

µ̃(Ai,j) ≤ λc + ε

ip(j) . (2.15)

Taking the limit when i goes to infinity in (2.15), we obtain

µ̃ (A ∈ Σ : |A| < j) = 0,

and thus µ̃(Σ⊙) = 1.

2.3 Non-survival at criticality

In this section, we prove Theorem 2.5. The proof follows the same steps of the
one for the critical contact process in [BG90]. We give the main steps here for
completeness.

Proof of Theorem 2.5. Let η be a process with parameters (λi, λe), λi > λe.
We will prove that, if Pλi,λe(η0

t ̸= ∅ for all t > 0) > 0, then there is δ > 0 such
that, for every λ̃e, λ̃i with max{λi − λ̃i, λe − λ̃e} < δ, Pλ̃i,λ̃e

(η0
t ̸= ∅ for all t >

0) > 0. This is sufficient to prove the theorem.

Lemma 2.16. Suppose that Pλi,λe(η0
t ̸= ∅ for all t) > 0. Then, for every

ε > 0 there are R, L ∈ N, S > 0 and δ > 0 such that for every λ̃e, λ̃i

with max{λi − λ̃i, λe − λ̃e} < δ, with Pλ̃i,λ̃e
-probability at least 1 − ε there
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exists (x0, t0) ∈ [L, 2L] × [S, 2S] such that [−R, R] × {0} is connected inside
[−L, 3L] × [0, 2S] to every point in [−R + x0, R + x0] × {t0}.

We defer the proof of Lemma 2.16 to the end of this section.

The next step of the proof, as in [BG90], is to restart the process from
the infected copy of [−R, R]. In contrast to what happens to the usual
contact process, the contact process with modified border is not local, i.e.,
the probability of the spreading of the infection depends on the whole
configuration. But, we can take δ sufficiently small such that λ̃i > λ̃e,
so the process is still attractive and existence of infected particles outside
[−R+x0, R+x0]×{t0} at time t0 can only increase the probability of infection.
Thus, Lemma 2.16 can be iterated using the strong Markov property to obtain
the following lemma.

Lemma 2.17. Suppose that λi > λe, Pλi,λe(η0
t ̸= ∅ for all t) > 0 and R, L, S as

in Lemma 2.19. Then, for every ε > 0, k ∈ N, x ∈ [−2L, 2L] and t ∈ [0, 2S],
for every λ̃e, λ̃i with max{λi − λ̃i, λe − λ̃e} < δ, with Pλ̃i,λ̃e

-probability at least
(1 − ε)2k there exists (x0, t0) ∈ [L, 2L] × [S, 2S] such that [−x + R, x + R] × {t}
is connected to every point in [−R + x0, R + x0] × {t0} by paths lying entirely
inside the region

k=1⋃
j=0

[−3L + jL, 4L + jL] × [2jS, 4S + 2jS].

Proof. We begin by proving that, with Pλ̃i,λ̃e
-probability at least (1 − ε)2,

for every x ∈ [−2L, 2L] and t ∈ [0, 2S] the interval [x − R, x + R] × {t} is
connected to [y −R, r+R]×{s}, for some (y, s) ∈ [−L, 3L]× [2S, 4S], and this
connection is made through paths in the box [−3L, 4L] × [0, 4S]. This step is
necessary to ensure when applying the Lemma 2.16 repeatedly, small deviations
of the “target” point do not accumulate and cause the desired infected disk
to be centered outside the “target” region. Then, after the first application of
Lemma 2.16 the direction of the path of infection is “corrected” if necessary.

There are five cases to consider, depending on the region of [−2L, 2L] × [0, 2S]
in which the starting point (x, t). The cases are pictured in Figure 2.2. In each
case, the starting point is in the black region, and Lemma 2.16 (and symmetry)
gives that with Pλ̃i,λ̃e

-probability at least 1 − ε every point in the black region
is connected to some point in the gray region py paths lying entirely in the
region enclosed by dashed lines. In cases (iii) to (v), the infected copy of
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0 2L−2L

0

2S

4S

0 2L−2L

0

2S

4S

(i) (ii)

4S

2S

−2L 0 2L

0

(iii)

0

2S

4S

−2L 0 2L

(iv)

0

2S

4S

−2L 0 2L

(v)

Figure 2.2: The cases that can occur when applying Lemma 2.16. At each
case, the starting point is in the black area, and Lemma 2.16 ensures that
the starting point is connected to some interval centered in the gray area.
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[−R, R] given by Lemma 2.16 may be centered outside [−L, 3L] × [2S, 4S]. If
this happens, we take the center of the earliest in time of those copies and
apply case (i) or (ii) again as necessary.

In any case, we conclude that any infected copy of [−R, R] centered [−2L, 2L]×
[0, 2S] is connected to some infected copy of [−R, R] centered in the box
[−L, 3L] × [2S, 4S] with Pλ̃i,λ̃e

-probability at least (1 − ε)2. Applying the
strong Markov property k times we conclude the proof of the lemma.

Fixing k ∈ N, define the regions

V ± =
{

(x, t) ∈ Z × R : 0 ≤ t ≤ (2k + 2)S, 5L ± L

2S
t ≤ x ≤ 5L ± L

5S
t
}

,

and, for x ∈ [−2L, 2L] and t ∈ [0, 2S] the event

G±(x, t) =


[−R + x, R + x] × {t} is connected inside V ± to every point in
[−R + y, R + y] × {s} for some y ∈ [(±k − 2)L, (±k + 2)L]
and s ∈ [2KS, 2(k + 1)S].


Fix ε̃ > 0 (to be fixed later), k > 10 and ε such that (1 − ε)2k > 1 − ε̃.
By Lemma 2.17, for such ε and k, there are R, L, S, T, δ such that, for all
(x, t) ∈ [−2L, 2L] × [0, 2S], for every (λ̃i, λ̃e) in the open ball of center (λi, λe)
and radius δ, Pλ̃i,λ̃e

(G±(x, t)) > 1 − ε̃. By a classic argument of 1-dependent
site percolation (see [BG90, Lemma 21] for a detailed construction), if ε̃ is
small enough, we have that

Pλ̃i,λ̃e
(η0

t ̸= ∅ for all t > 0) > 0

and the proof is finished.

We prove now Lemma 2.16. The idea is to show existence of many infected
paths to points in the top and the sides of a large space-time box, in a way
that at least one of those points will result in an infected copy of the interval.

Proof of Lemma 2.16. We say that a point (x, 0) is connected to +∞ by
(λi, λe)-active open paths if, for every t > 0 there is y ∈ Z such that (x, 0)
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is connected to (y, t) by (λi, λe)-active open paths for the initial configuration
{x}.

By ergodicity of the measure P, if the probability of survival is positive, there
are an infinite number of x ∈ Z such that (x, 0) connected to +∞ by (λi, λe)-
active open paths, P-a.s.. Then, a disk centered [−R, R] at the origin with
diameter big enough will, with high probability, contain at least one of those
points. By attractiveness, the probability that a contact process with initial
condition [−R, R] survives it grater than the probability that a contact process
with initial condition y ∈ [−R, R] survives. The, we can conclude that, for
every ε > 0, there is R > 0 such that

P(η[−R,R]
t ̸= ∅ for all t ≥ 0) > 1 − 1

2ε4. (2.18)

For l ∈ N and t > 0, define N+
T (l, t) (resp. N−

T (l, t)) the number of points in
[−l, 0)× t (resp. [0, l]× t) which are joined to [−R, R]×0 inside (−l, l)× (0, t).
Define

NT (l, t) = N+
T (l, t) + NT (l, t)

to be the total number of points in the top of the space-time box [−l, l] × [0, t]
which are joined to [−R, R] × 0 inside the box. Analogously, we will establish
a notation for the points infected in the sides of the space-time box. Choose
h ∈ (0, (1 + 2λe)−1), l ∈ N, t > 0 and define N+

S (l, t) (resp. N−
S (l, t)) as the

maximal subset of {l}× [0, t] (resp {−l})× [0, t] such that every two points are
at L∞-distance of at least h; and [−R, R]×{0} is connected inside [−l, l]×[0, t]
to every point of the set.

We then define
NS(l, t) = N−

S (l, t) + N+
S (l, t)

and
N(l, t) = NT (l, t) + NS(l, t). (2.19)

Take a to be the minimum of

• the probability that the origin is connected inside [−R, R]×[0, h] to every
point of [−R, R] × {h} by (λi, λe)-active open paths for the origin;

• the probability that the origin is connected inside [0, 2R]× [0, h] to every
point of [0, 2R] × {h} by (λi, λe)-active open paths for the origin.
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We then select M big enough so that in M independent Bernoulli trials of
parameter a, the probability of at least one success is at least 1 − ε; and then
pick N such that, in a collection of any given N points in Z, M of them will
be at distance at least 3R + 1 apart.

Let (ζt)t be a contact process with parameter (λi, λi). By [DS00, Proposition
1], the probability of survival of ζ is greater than or equal to the probability of
survival of ζ. This observation, together with the attractiveness of the process
and the arguments of the proof of [BG90, Lemma 7] show that there are L ∈ N
and T > 0 such that

Pλi,λe(N±
T (L, T ) ≥ N) ≥ 1 − ε (2.20)

and
Pλi,λe(N±

S (L, T ) ≥ M) ≥ 1 − ε. (2.21)

By (2.21), with probability at least 1 − ε there are at least M infected points
at distance at least h apart in {L} × [0, T ]. By the way M was chosen, with
probability at least 1−ε one of those points (say, (x, t)) is connected by (λi, λe)
active paths in [x+R, x+2R]×[t, t+h] to every point in [x+R, x+2R]×{t+h}.
Define τ to be the first time such that 0 is connected by active paths in
[−L, L + 2R] × [0, t] to every point in [−L + 2R, L + 2R] × {t}. Then, we
have that that the probability that τ is finite is at least (1 − ε)2.

By the strong Markov property and Equation (2.20), conditioned on τ < +∞,
with probability at least 1−ε, [L, L+2R]×{τ} is connected to at least N points
in [L+R, 2L+R]×{T +τ} by active paths lying inside [L+R, 2L+R]×[τ, T +τ ].

By the way N was chosen, at least M of those N points are at least a distance
of 3R + 1 apart. We divide those M points in two sets:

• points (z, τ + T ) with z ≤ 2L. To each those points we associate the
cylinder [z − 2R, z] × [T + τ, T + τ + h];

• points (z, τ + T ) with z > 2L. To each those points we associate the
cylinder [z − R, z + R] × [T + τ, T + τ + h].

All of those cylinders are disjoint. Using this fact and the definition of M ,
with probability at least 1 − ε one of those M points, that we will call x0, is
joined inside its associated cylinder to every point on the top of the cylinder.
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When this happens, there is a (λi, λe)-active path from [−R, R] × {0} to
[−R + x0] × {2(T + h)} lying entirely inside [−L, 3L] × [0, 2(T + h)] with
probability at least 1 − 4ε. Taking S = T + h, we conclude that there
exists (x0, t0) ∈ [L, 2L] × [S, 2S] such that the origin is connected inside
[−L, 3L]×[0, 2S] to every point in [−R+x0, R+x0]×{t0} with Pλi,λe-probability
at least 1−ε. Since this event depends only on the configuration inside a finite
space-time box, we can find δ > 0 such that the open ball B of radius δ and
center (λi, λe) is contained in the region {(λi, λe), : λi > λe ≥ 0} where the
process is attractive, and the event still happens with Pλ̃i,λ̃e

-probability at least
1 − ε for every (λ̃i, λ̃e) ∈ B.
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Chapter 3

Quasi-stationary distributions
for subcritical population
processes

Subcritical populational processes in general may not admit stationary
distributions, but many of them have a quasi-stationary distribution (QSD),
that is, a distribution that is invariant when conditioned on survival. In
contrast to what generally happens for stationary distributions, QSDs may
not be unique, even under irreducibility conditions. The characteristics of the
process that may prevent it from possessing multiple QSDs are not entirely
clear. A survey on the principal results about QSDs may be found on [MV12].

Formally, let (ξt)t be a Markov process on Λ0 := Λ ∪ {∅}, with Λ a countable
set and ∅ an absorbing state that is reached a.s.. In all this chapter, if µ is
a measure on Λ, we denote by Pµ the law of the Markov process with initial
condition sampled from µ, and for i ∈ Λ, we write Pi instead of Pδi .

A measure ν on Λ is a quasi-stationary distribution of the process (ξt)t if

Pν(ξt ∈ · | ξt ̸= ∅) = ν(·),

for all t > 0.

The pioneer of the studies of quasi-stationary distributions is A. M. Yaglom.
In [Yag47], he proved that, for a subcritical discrete-time branching process



61

with finite variance (Xn)n≥0, the limit

lim
n

Pj(Xn ∈ · | Xn ̸= 0) := ν(·)

does not depend on j ∈ {1, 2, , . . . }. Moreover, ν is a QSD on N for the
branching process.

Seneta and Vere-Jones proved in [SVJ66] that there is a one-parameter family
of QSDs for the subcritical branching process. Although presented for the
discrete setting, the proof is the same for the continuous case [Cav78, Section
5]. Later, Cavender [Cav78] and Van Doorn [VD91] characterized the QSDs
of general birth-and-death continuous time processes, proving that the family
of [SVJ66] are the only QSDs for the subcritical branching process.

In contrast, uniqueness of QSD can be proved using some assumptions
on the rate the process comes down from infinity (i.e., when the process,
starting from an infinite configuration, reaches a finite configuration in a finite
time) [BAJ24, CCL+09]. Although the subcritical contact process decays at
the same rate as the branching process, it admits only one QSD, as shown
in [AGR20]. Possible reasons for this difference may be because contact
process, unlike the branching process, has a geometrical aspect. Thus, we may
ask if it is the case that when adding geometrical structure to the branching
process we recover the uniqueness property.

One way to do this is the branching process with genealogy, where we add
information about the relationships between individuals. The state space is
Σ0, the set of finite rooted trees. Individuals are represented by vertices of the
tree. The alive individuals are the leaves of the tree. Each individual, after
a lifetime exponentially distributed, gives birth to a random (possibly zero)
number of children and dies. The numbers of children of each individual are
i.i.d. integrable random variables. Those children are attached to the tree by
connecting them to their parent. To avoid unlimited growth of the tree, we
delete the vertices and edges that are unnecessary to determine the genealogical
relationship of the alive individuals. Thus, at each time t, we are able to We
denote this process by (ζt)t. See Section 3.1 for a more precise description.

The projection (π(ζt))t of the branching process with genealogy onto N0, with
π(ζt) being the number of leaves of ζt, is the usual branching process on N0 with
the same offspring distribution of the branching process with genealogy. We
note that if we start with a measure on Σ0, evolve it by t time units according
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Figure 3.1: Relationships between measures

with the dynamics of the branching process with genealogy and then project
it onto N0, we obtain the same measure as if we start with a measure in Σ0,
project it onto N0 and then evolve it by t time units using the dynamics of a
branching process. In other words, the diagram of Figure 3.1 is commutative.
This implies that, when the offspring distribution’s mean is less than one,
since the subcritical branching process has no non-trivial invariant measure,
the same is true for the branching process with genealogy.

Define Σ := Σ0 \{∅}, the set of non-empty finite rooted trees. Coming back to
Figure 3.1 and noting that π−1{0} = {∅} we see that we can project a measure
on Σ onto N, then evolve for t time units according with the dynamics of a
branching process and condition on non-absorption, or we can start with a
measure on Σ, evolve for t time units using the dynamics of the branching
process with genealogy, condition on non-absorption, and then project onto N,
and these two give the same result. Therefore, QSDs on Σ give QSDs on N
with the same absorption rate.

Assuming some condition on the moments of the offspring distribution,
the branching process with genealogy admits at least one QSD. This is a
consequence of the following proposition.

Proposition 3.1. Let (ξt)t be an irreducible continuous-time Markov chain
on a countable state-space Λ0 := Λ ∪ {∅} absorbed at ∅ a.s.. Suppose that
there is a projection π : Λ0 → N0 such that (π(ξt))t is a branching process
with offspring distribution Z satisfying EesZ < +∞ for some s > 0, and
P(Z = 0) + P(Z = 1) < 1. Suppose also that π−1{0} = {∅} and that there is
1 ∈ Λ such that π−1{1} = {1}. Then there is a QSD ν of (ξt)t on Λ such that,
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for every ξ0, ξ ∈ Σ,

lim
t→+∞

Pξ0(ξt = ξ | ξt ̸= ∅) = ν(ξ). (3.2)

A QSD that satisfies the limit (3.2) is called a Yaglom limit.

Contrary to what happens with the projection onto N, we prove that the
Yaglom limit is the unique QSD for the branching process with genealogy.
This is one of the two main new contributions of this chapter.

Theorem 3.3. Let (ζt)t be a branching process with genealogy with offspring
distribution Z satisfying E[Z] < 1, P(Z = 0) + P(Z = 1) < 1 and EsZ < +∞
for some s > 0. Assume also that Σ is an irreducible class of (ζt)t. Then (ζt)t

has a unique quasi-stationary distribution ν on Σ.

The main idea behind the proof of Theorem 3.3 is to show that the geometrical
aspects of the process prevent the existence of more than one QSD. To be more
precise, we prove that, conditioned on non-absorption at time t, the number of
branchings goes to infinity. Once this is done, we investigate the descendants
of the first leave at time t = 0 that have descendants alive at time t. Either
this set of descendants is the entire tree at time t (and thus is distributed
approximately as the Yaglom limit), or the tree at time t has to be very
“large”, contradicting the fact that the distribution is quasi-stationary.

Another way to include a geometrical aspect to the branching process is the
branching random walk. A branching random walk is a stochastic process that
includes characteristics of both branching processes and random walks. Define
∆d := {η ∈ NZd

0 : η(x) ̸= 0 only for a finite number of x ∈ Zd}. We describe
the branching random walk as a process on ∆d

0 in the following way. A finite
number of particles is distributed on the lattice Zd. Let λ > 0 be a parameter.
When there is a particle X at site x, this particle chooses, at rate λ, one of
its neighbors y uniformly at random and give birth to a new particle Y in
y. The particle Y is called a child of particle X. A particle in Zd waits an
exponential time with rate 1 independently of all toher particles and then dies.
We define ηA

t as the configuration at time t starting with the configuration A

at time 0. The superscript may be omitted when the initial configuration is
clear from context. There is a huge literature about branching random walks.
Some introductory references may be found in [Sch99, Shi15].

The process as described above does not admit a QSD. Conditioned on survival
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on time t, the configuration ηA
t is, in general, very far from the location of the

initial configuration A. Therefore, we work with the branching random walk
modulo translations. Take the equivalence relationship on NZd

0 in which η ∼ η′ if
η′ is a translation of η. Denote by ⟨η⟩ the equivalence class of η. The branching
random walk modulo translations is the process (⟨ηt⟩)t on ∆d

∼ := ∆d/ ∼.

We note that the projection of this process on N0 is a branching process with
offspring distribution supported on {0, 2} and the critical parameter is λ = 1.
Thus, by Proposition 3.1, there it exists at least one QSD ν ′ in ∆d

∼ for the
branching random walk when λ < 1.

The branching random walk can be seen as a contact process with
multiplicities, i.e., a contact process where it is possible to infect again a site
which is already infected. Similarly to what happens to the branching process
with genealogy, its geometrical aspects impede the existence of multiple QSDs.
This is our second main contribution in this chapter.

Theorem 3.4. If λ < 1, there is only one QSD, ν ′, in ∆d
∼ for the branching

random walk modulo translations.

The proof of Theorem 3.4 relies on techniques similar to those of Theorem 3.3.
We look for an individual at time s = 0 that has alive descendants at time
s = t. Either this set of descendants are the only individuals alive at time t,
and has a distribution close to the Yaglom limit, or there are another individual
at time s = 0 with alive descendants at time t. But the sets of descendants of
those two individuals are in general very distant from each other at time t, and
thus the population at time t would be spread over a very large set. Again,
this would be incompatible with the concept of a QSD.

To prove that conditioned on survival, the number of births in the branching
process with genealogy and the branching random walk will be very large, and
thus conclude the impossibility of existence of multiple QSDs, we will need the
following proposition.

Proposition 3.5. Let (Xt)t be a subcritical branching process with offspring
distribution satisfying the same hypothesis as in Proposition 3.1. Define, for
k ∈ N and t > 0,

GX
t (k) =

There are 0 < t1 < · · · < t2k < t :
Xt1 = 1, Xt2 = 2, . . . , Xt2k−1 = 1, Xt2k

= 2

 .
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Then, for every k ∈ N,

lim
t→+∞

P1(GX
t (k) | Xt ̸= 0) = 1.

The use of state 2 in the above proposition is not essential. In fact, 2 could be
replaced with any integer greater than 1. The important consequence is that
Proposition 3.5 implies that the number of branching events on a subcritical
branching process will exceed any predetermined number, when conditioned
on survival. The proof of Proposition 3.5 will be presented at Section 3.5.

The remaining of this chapter is organized as follows. In Section 3.1 we give a
formal description of the branching process with genealogy. Theorems 3.3
and 3.4 are proved using the arguments outlined above in Sections 3.2
and 3.3 respectively. Proposition 3.1 is proved using classical results about
α-positiveness of submarkovian kernels in Section 3.4. Finally, in Section 3.5
we prove that conditioned on survival, there are many branching events by
approximating the branching process by a process that is conditioned on not
dying for a long time.

3.1 The branching process with genealogy

In this section, we formally define the branching process with genealogy. A
classical construction of the branching process with family trees can be found
e.g. on [Har02, Chapter VI].

Let Σ be the set of non-empty finite rooted trees, and Σ0 = Σ ∪ {∅}. We
consider two trees to be equivalent if there is a graph isomorphism that maps
one onto the other preserving the root. So, Σ is a countable space.

A vertex x is a descendant of a vertex y or, equivalently, y is an ancestor of
x if there is an oriented path from y to x, the positive direction being away
from the root. By convention, we say that every vertex x is an ancestor and a
descendant of itself.

The diameter of a tree ζ is the length of the greatest (non-oriented) path of
the tree, and is denoted by diam(ζ). We denote by 1 as the tree with only one
vertex.

We construct the branching process with genealogy (ζt)t as a Markov process
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R

R

x x

Figure 3.2: Two examples of pruning. The dashed piece of the tree is deleted
when vertex x dies.

on Σ0. The dynamics of the process is the following. Vertices can be either alive
or dead. All the leaves are alive and the other vertices are dead. Each alive
vertex x carries an exponential clock that rings with rate 1 independently of
each other. When the clock of vertex x rings, we sample a independent copy
Zx of a non-negative integer-valued random variable Z, called the offspring
distribution. Then, a number Zx of vertices is added to the tree, each one of
them connected to vertex x. When this happens, we say that the vertex x

gave birth, or that a branching event occurred, and the state of x is changed
from alive to dead.

Every time a vertex dies, we prune the tree. That means we remove from
the tree all the vertices that are unnecessary to determine the affinity between
every pair of alive vertices. To be more precise, suppose that the Poisson clock
of vertex x rings at time t. If x gives birth to at least one child, we do nothing.
If x gives birth to zero children and die, we prune the tree. Call R the most
recent common ancestor to all alive leaves at time t (except for x). That is,
all alive vertices at time t descend from R and R is the farthest vertex from
the root with this property. There are two possible cases:

(i) R is the root. In this case, we delete all the ancestors of x which do not
have other alive descendants at time t.

(ii) R is not the root. In this case, we delete all the vertices which are not
descendants of R, and declare R as the new root.

Both cases are pictured in Figure 3.2.

If ν is a measure on Σ, we denote by Pν the law of this process with initial
condition distributed as ν. We write PA for PδA .
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3.2 The QSD for the branching process with
genealogy

In this section we prove Theorem 3.3.

Proof of Theorem 3.3. Fix t > 0. We define the event

Ot = {There is only one leaf at ζ0 with alive descendants at time t}

Define for every leaf Y of ζ0, DY
t as the subtree of ζt induced by the descendants

of Y . That is, DY
t is the graph whose vertices are the descendants of Y that

are in ζt and the edges of ζt connecting those vertices.

Let ν∗ be a QSD in Σ of (ζt)t. For every ζ ∈ Σ,

ν∗(ζ) = Pν∗(ζt = ζ | ζt ̸= ∅)
=Pν∗(ζt = ζ | Ot)Pν∗(Ot | ζt ̸= ∅)

+ Pν∗(ζt = ζ | Oc
t ∩ {ζt ̸= ∅})Pν∗(Oc

t | ζt ̸= ∅). (3.6)

Conditioning on Ot, the distribution of ζt is the distribution of a branching
process with genealogy with initial configuration being a tree with a single leaf
(which we denote by 1) conditioned on {ζt ̸= ∅}. Then,

Pν∗(ζt = ζ | Ot) = P1(ζt = ζ | ζt ̸= ∅) → ν(ζ), (3.7)

where the last limit comes from Proposition 3.1.

On the event {ζt ̸= ∅}, there is at least one leaf at time 0 with alive descendants
at time t. Choose uniformly at random a leaf X at time 0 which has an alive
descendant at time t. Conditioned on {ζt ̸= ∅}, DX

t has the distribution of
a branching process with genealogy starting from 1 conditioned on survival
up to time t. Thus, remembering that π(DX

t ) is the number of leaves of DX
t ,

conditioned on {ζν
t ̸= ∅}, the distribution of the projection π(DX

t )t is the one
of a branching process with initial state 1 conditioned on survival up to time
t. Moreover, if G

π(DX
t )

t (k) ∩ Oc
t ∩ {ζt ̸= ∅} occurs, then ζt has diameter at

least k. Indeed, when there are t′, t′′ such that π(DX
t′ ) = 1 and π(DX

t′′) = 2
there is some t ∈ (t′, t′′] when an edge is added to ζt . Then, when k of those
transitions occur, at least k edges have been added. On Oc

t ∩ {ζt ̸= ∅}, there
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are individuals alive at time t which are not descendants of X . By the rules
to prune the tree, this implies that X and those k added edges are still on
ζt (they are necessary to establish the genealogical relationship between the
individuals that are descendants of X and those who are not).

By Proposition 3.5, for every ε > 0 there is t big enough such that
P1(Gπ(DX

t )
t (k)) > 1 − ε. Using this fact and the comments of the previous

paragraph, we conclude that, for every t big enough, P(diam(ζt) ≥ k; Oc
t | ζt ̸=

∅) > 1 − ε. Then, for t big enough we have that

Pν∗(Oc
t | ζt ̸= ∅) = Pν∗({diam(ζt) ≥ k} ∩ Oc

t | ζt ̸= ∅)
+ Pν∗({diam(ζt) < k} ∩ Oc

t | ζt ̸= ∅)
≤ Pν∗(diam(ζt) ≥ k | ζt ̸= ∅) + ε

= ν∗{ζ : diam ζ ≥ k} + ε.

Letting k → +∞ and ε → 0, we get

lim
t→+∞

Pν∗(Oc
t | ζt ̸= ∅) = 0. (3.8)

Taking the limit in t in (3.6) and using (3.7) and (3.8), we have that
ν(ζ) = ν∗(ζ).

3.3 Uniqueness of QSD for branching random
walks

In this section, we prove uniqueness of the quasi-stationary distribution for the
branching random walk. To do this, we argue that, if there are at time 0 two
individuals with alive descendants at time t, the set of descendants of those
two individuals are likely very far from each other, contradicting the fact that
the diameter of a QSD distributed configuration cannot grow without bounds.

Proof of Theorem 3.4. We remember that ∆d is the subset of NZd

0 with only
a finite number of sites with more than zero particles, ∼ the relation of
equivalence on ∆d with η ∼ η′ if η is a translation of η′ and ∆d

∼ is the quotient
of ∆d by ∼. Usually, notations with ∼ refers to objects and events in the
quotient space ∆d

∼.
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Zd

t

X Y

Figure 3.3: If there are two particles at time 0 with alive descendants at time
t, there are particles very far from each other at time t

For a configuration η ∈ ∆d, define diam(η) = diam({x ∈ Zd : η(x) ≥ 1}). This
is constant in each equivalence class, then we can define diam(⟨η⟩) := diam(η).

A particle Y is said to be a descendant of a particle X if there are particles
X = X0, X1, . . . , Xk = Y such that Xj is a child of Xj−1 for 1 ≤ j ≤ k. By
convention, we always say that a particle is a descendant of itself. Denote, for
each t > 0, as Õt the event in which there is exactly one individual at time
0 with alive descendants at time t. Define, for a particle X, DX

t to be the
restriction of the process η to the descendants of particle X at time t; that is,
DX

t (x) is the number of particles at time t on site x that are descendants of
X.

We also define 0 to be the configurations with no particles.

Fix t > 0. On the event {ηt ̸= 0}, we associate to each particle X alive at t = 0
that has alive descendants at time t a particle (SX (s))s≤t, in the following way.
At each time s ≤ t we call a particle walker of X in the process (ηs)s∈[0,t]. At
time t = 0, take SX (0) = X . Suppose (SX (s))s∈[0,w] is defined, for some w ≤ t,
and define Y := SX (w). Let τ := inf{s ∈ (w, t]; Y gives birth at time s}. Call
Z the particle born from Y at time τ . We have the following cases:

• if Z has alive descendants at time t, then SX (s) = Y for w < s < τ and
SX (τ) = Z. In this case, if Y is at site x and Z is at site x ± ei, for
some 1 ≤ i ≤ d, we say that the walker jumped in direction ±ei, or just
jumped, if it is not necessary to make the direction explicit;
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• otherwise, we define SX (s) = Y , for w ≤ s ≤ τ .

In words, every time the walker Y gives birth to a new particle Z, this newborn
particle Z is called the walker if, and only if, Z has alive descendants at time
t. Otherwise, Y continues to be the walker.

The following lemma ensures that the number of jumps of the walker process
goes to infinity in probability, conditioned on survival.

Lemma 3.9. For every M ∈ N, and every η0 ∈ ∆d with only one particle,

limt→+∞ Pη0(The walker of X jumps at least M times before time t |ηt ̸= 0) = 1,

where X is the only particle alive at time t = 0.

Conditioning on occurrence of Õc
t and survival up to time t, choose uniformly

at X and Y two distinct individuals with alive descendants at time t. We have
that {ηt ̸= 0} ∩ Õc

t ⊆ {diam⟨ηt⟩ ≥ |SX (t) − SY(t)|}, for every possible choice
of X and Y .

Conditioned on {ηt ̸= 0}∩Õc
t and the jump times of (SX )s∈[0,t], the distribution

of the direction of each jump of the walker of X is independent of the direction
of the other jumps and uniform in {±e1, ±e2, . . . , ±ed}. Therefore, conditioned
on survival and on jump times, the jumps of the walker of X are those of
a simple symmetric random walk. As the process at time t conditioned of
survival is the superposition of the independent process of the descendants of
the particles alive at t = 0, the same is valid for the jumps of the walker of Y ,
which are also conditionally independent of the jumps of SX .

By Proposition 3.1, there is a QSD, ν ′, on ∆d
∼ for the BWR modulo translation

that satisfies the Yaglom limit. Let ν̃ be an arbitrary QSD on ∆d
∼ for the

branching random walk modulo translation.

Let ε > 0. Choose M ∈ N satisfying the following conditions:

• for every m ≥ M , the probability that the distance at time m between
two discrete-time independent simple symmetric random walks starting
from arbitrary positions is less than M1/4 is at most ε;

• ν̃{diam η ≥ M1/4} < ε.
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Denote by 1 the configuration on ∆d
∼ with only one particle. Conditioned on

Õt, ⟨ηt⟩ is distributed as ⟨η1
t ⟩.

On the event Õc
t ∩ {ηt ̸= 0}, the projection on on ∆d

∼ of each one of the
processes (DX

s )s∈[0,t] and (DY
s )s∈[0,t] is distributed as a branching random walk

modulo translation with initial configuration 1 conditioned on survival up to
time t. By Lemma 3.9, for all t0 big enough, conditioned on survival up to
time t0 and on Õt0 , with probability at least 1 − ε, the walkers of X and Y
both make at least M jumps before time t0 (call this event HM

t0 ). Then, for
t > t0,

Pν̃(Õc
t | ηt ̸= 0) ≤ Pν̃(HM

t0 | Õc
t ∩ {ηt ̸= 0}) + ε

≤ Pν̃(|SX (t) − SY(t)| ≥ M1/4 | Õc
t ∩ {ηt ̸= 0}) + 2ε

≤ Pν̃(diam(⟨ηt⟩) ≥ M1/4 | Õc
t ∩ {ηt ̸= 0}) + 2ε

= ν̃{diam(η) ≥ M1/4} + 2ε

≤ 3ε.

As ε is arbitrary,
lim

t→+∞
Pν̃(Õc

t | ηt ̸= 0) = 0. (3.10)

Then, for every η ∈ ∆d
∼,

ν̃(η) = Pν̃(⟨ηt⟩ = η | Õt)Pν̃(Õt | ηt ̸= 0)
+ Pν̃(⟨ηt⟩ = η | Õc

t ∩ {ηt ̸= 0})Pν̃(Õc
t | ηt ̸= 0)

= P1(⟨ηt⟩ = η | ηt ̸= 0)Pν̃(Õt | ηt ̸= 0)
+ Pν̃(⟨ηt⟩ = η | Õc

t ∩ {ηt ̸= 0})Pν̃(Õc
t | ηt ̸= 0).

Taking the limit in t, using (3.10) and the fact that ν ′ is a Yaglom limit, we
obtain ν̃ = ν ′.

Proof of Lemma 3.9. Let ε > 0. Choose M1 such that, for every n ≥ M1 the
probability of at least n successes in 3n Bernoulli trials with parameter 1/2
exceeds 1 − ε/2, and let M2 = max{3M, 3M1}.

By Proposition 3.5, there is t0 > 0 such that conditioned on survival at time
t0, the process (DX

t )t goes from a state with only one particle to a state with
two particles at least M2 times.
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The above choice of t0 implies that, conditioned on survival up to time t0,
the probability that there are at least M2 times when the walker gives birth
to a particle exceeds 1 − ε/2. That is, conditioned on {η1 ̸= 0}, the event
{There are 0 < t1 < · · · < tM2 < t : SX (t−

i ) gives birth at time ti, 1 ≤ i ≤
M2} is at least 1 − ε/2. Indeed, every time the configuration has only one
particle this particle must be the walker; and if at a given time the configuration
has more than one particle, this means that there must have been a birth
involving the walker at some earlier time.

Suppose the walker Z of X gives birth at a time t1 < t0 to a particle W . By the
branching property, the processes (DZ

s )s≥t1
and (DW

s )s≥t1
(i.e., the processes of

the descendants of Z and W), conditioned on {ηt0 ̸= ∅} are equally distributed
branching random walks. As Z is the walker, we know that at least one of
those processes is alive at time t0, and by symmetry, conditioning on σ(DX

s )s≤t1

and that the walker at time t1 is Z, the probability that DW
t ̸= ∅ is at least

1/2. Thus, each time a walker gives birth, the conditional probability that the
walker makes a jump is at least 1/2.

By the way t0 was chosen, there is more than M2 times the walker gives birth
until time t0 with probability at least 1 − ε/2 (conditioned on survival). Also
conditioning on survival, by the arguments of the previous paragraph and the
choice of M1, there is a probability at least 1 − ε/2 that at least M of those
birth events results on a jump of the walker, and the lemma is proved.

3.4 α-positiveness and the Yaglom limit

In this section we prove Proposition 3.1. In all this section, (ξt)t is an
irreducible Markov chain on Λ0 := Λ ∪ {∅} with ∅ an an absorbing state
reached a.s. and Λ a countable set.

Let Pt be the sub-Markovian kernel associated with the restriction of the
process ζ to Λ. That is, for i, j ∈ Λ, Pt(i, j) = P(ξi

t = j). Then, by [Kin63,
Theorem 1], for every i, j ∈ Λ the limit

α := lim
t→+∞

− log Pt(i, j)
t

exists and does not depend on the choice of i and j. Furthermore, α > 0.
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We say that the semi-group (Pt)t (or, equivalently, the process (ξt)t) is α-
recurrent if ∫ +∞

0
eαtPt(i, i) d t > 0

for some (and thus, for all) i ∈ Λ, and α-positive if

lim sup
t→+∞

eαtPt(i, i) > 0,

holds for some (equivalently, for all) i ∈ Λ.

We need the following result.

Theorem 3.11 ([Kin63, Theorem 4]). If (Pt)t is α-recurrent, then there are
positive vectors ν = (νi)i∈Λ and h = (hi)i∈Λ, unique up to a multiplicative
constant, such that, for all t ≥ 0,

Pth = e−αth; νPt = e−αtν. (3.12)

The kernel (Pt)t≥0 is α-positive if, and only if, νh < +∞. In this case, for all
i, j in Λ,

lim
t→+∞

eαtPt(i, j) = hiνj

νh
. (3.13)

If, in addition, the left-eigenvector ν is summable, existence of the Yaglom
limit follow from classical arguments [SVJ66]. To prove summability of ν,
we make use of a discrete process. Let (Xn)n be a discrete-time, irreducible
and aperiodic Markov chain on Λ0, absorbed a.s. at ∅, with transition
matrix P (·, ·). Analogously to the continuous-time case have that, for
i, j ∈ Λ, limn(Pn(i, j))−1/n = R > 1, and we say that (Xn)n is R-positive
if lim sup RnPn(i, j) > 0.

Define, for i ∈ Λ, τ i := inf{n ∈ N : X i
n = ∅}, with X i

k being the chain (Xn)n

starting from state i.

We make use of the following theorem.

Theorem 3.14 ([FKM96, Theorem 1]). Suppose there exists a subset Λ′ ⊆ Λ,
a configuration A′ ∈ Λ′, ρ < R−1 and constants M, ε > 0 such that

(H1) For all A ∈ Λ′ and n ≥ 0, P(τA > n; XA
1 , . . . , XA

n /∈ Λ′) ≤ Mρn;

(H2) For all A ∈ Λ′ and n ≥ 0, P(τA > n) ≤ MP(τA′
> n);
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(H3) For all A ∈ Λ′, P(XA
n = A′ for some n ≤ M) ≥ ε.

Then P is R-positive and its left eigenvector is summable.

To see the hypothesis (H1)-(H3) hold for the subcritical branching process, we
use the following lemma.

Lemma 3.15. Let (Xt)t be a subcritical branching process as in
Proposition 3.1. Then, for every ρ > 0 there are positive constants K and
M such that

P(Xj
1 > K, . . . , Xj

n > K) ≤ Mρn

Proof. As there is s > 0 such that EesZ < +∞ then, by [NSS04, Theorem 2.1],
EesX1 < +∞. Therefore, for all q > 0, E[(X1

1 )q] < +∞. With this observation,
the proof of the lemma is similar to the proof of [AEGR15, Proposition 3.2].

Given ρ > 0, there is q such that [E(X1
1 )]q < ρ (because (Xk)k∈N is subcritical).

By the branching property, Xj
t have the same distribution as the sum of j

independent copies of X1
t , each one of them we denote by X̃(i). Using the Law

of Large Numbers of Lq,

Xj
1

j
= 1

j

j∑
i=1

X̃
(i)
1

Lq

−→ E[X1
1 ].

Therefore, there are positive C and K such that

E
[

(X1
1 )q

jq

]
≤ C

for j ≤ K and

E
[

(X1
1 )q

jq

]
≤ ρ

if j > K. Then, for any 1 ≤ j ≤ K,

P(Xj
1 > K, Xj

2 > K, . . . , Xj
n > K) ≤ 1

Kq
E
[
(Xj

n)q1{Xj
1>K,Xj

2>K,...,Xj
n>K}

]
= jq

Kq
E
[

(Xj
1)q

(Xj
0)q

. . .
(Xj

n−1)q

(Xj
n−2)q

(Xj
n)

(Xj
n−1)q

1{Xj
1>K,Xj

2>K,...,Xj
n>K}

]

= jq

Kq
E
{
E
[

(Xj
1)q

(Xj
0)q

. . .
(Xj

n−1)q

(Xj
n−2)q

(Xj
n)

(Xj
n−1)q

1{Xj
1>K,...,Xj

n>K}

∣∣∣∣∣ X1, . . . , Xn−1

]}

≤ E
[

(Xj
1)q

(Xj
0)q

. . .
(Xj

n−1)q

(Xj
n−2)q

1{Xj
1>K,...,Xj

n−1>K}

]
· sup

ℓ>K
E
[

(Xj
n)q

(Xj
n−1)q

∣∣∣∣∣ Xj
n−1 = ℓ

]
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≤ ρ · E
[

(Xj
1)q

(Xj
0)q

. . .
(Xj

n−1)q

(Xj
n−2)q

1{Xj
1>K,Xj

2>K,...,Xj
n−1>K}

]
.

By induction, we obtain

P(Xj
1 > K, Xj

2 > K, . . . , Xj
n > K) ≤ ρn−1 · E

[
(Xj

1)q

(Xj
0)q

1{Xj
1>K}

]

≤ ρn−1 · sup
ℓ≤K

E
[

(Xℓ
1)q

(Xℓ
0)q

]
≤ Cρn−1.

The lemma follows taking M = C
ρ
.

Proof of Proposition 3.1. Define (Xk)k := π(ξk)k. Note that (Xk)k is a discrete
chain with decay rate R := eα. Let K1 := min{k ≥ 1 : P(Z > k) > 0}.
Fix some ρ < R−1. Let M and K given by Lemma 3.15, and define
K2 = max{K, K1}. Hypothesis (H1) is satisfied if we take Λ′ = {1, 2, . . . , K2}.

We take A′ = K1, and using the branching property, we have that, for
1 ≤ j ≤ K2, P(τ j > n) ≤ ⌈ j

K1
⌉P(τK1 > n), and thus (H2) is satisfied.

As P(Xj
1 = K1) ≥ (1 − e−1)je−K1 [P(Z = 0)]j−1P(Z = K1) ≥ (1 −

e−1)K2e−K1 [P(Z = 0)K2−1]P(Z = K1) > 0, (H3) is also satisfied. We conclude
that (Xk)k is R-positive with summable left-eigenvector.

Since π−1{1} = {1}, (ξk)k is R-positive with left eigenvector ν, therefore
the continuous-time chain (ξt)t is α-positive with the same eigenvectors.
Summability of ν follows directly from summability of the eigenvector of the
projection (Xk)k

Thus, (ξk)k is R-positive with summable left eigenvector ν, therefore the
continuous-time chain (ξt)t is α-positive with the same eigenvectors. Existence
of the Yaglom limit then follows from the same arguments of [AEGR15,
Theorem 3.1], that uses classical tools [SVJ66, VJ69].

Let ν and h be positive vectors such that

νPt = e−αtν; Pth = e−αth νh < +∞,

and suppose ν is normalized to be a probability measure, i.e., ν1 = 1, with
1 being the column vector with all entries equal to 1. Since eαtνPt = ν, for
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every t ≥ 0 and i, j ∈ Λ,

eαtPt(i, j) = eαtνiPt(i, j)
νi

≤ νj

νi

.

Since Σjνj = 1, by dominated convergence, we can sum over the second
coordinate of (3.13) to conclude that

lim
t→+∞

eαtPt(i, Λ) = hi. (3.16)

Hence, using (3.13) and (3.16)

lim
t→+∞

Pi(ξt = j | ξt ̸= ∅) = lim
t→+∞

Pt(i, j)
Pt(i, Λ) = νi.

Another way to prove existence of the Yaglom limit for the subcritical
branching process is to use the fact that a discrete-time branching process
with offpsring distribution Z̃ is R-positive if, and only if, E[Z̃ log Z̃] < +∞.
Moreover, in this case the right eigenvector is given by h̃j = j [SVJ66,
Section 5]. Summability of the left eigenvector then follows readily from R-
positiveness.

3.5 The Q-process

Now we prove Proposition 3.5. We make use of the following lemma, which is
a version of Theorem 9 of [MV12] for countable state spaces.

Lemma 3.17. Let (ξt)t be a Markov chain on a countable state space Λ0 =
Λ ∪ {∅}. Suppose that (Xt)t is absorbed at ∅ a.s. and that its sub-Markovian
kernel is α-positive with summable left eigenvector. Then, there exists a
Markov process Y = (Yt)t in Λ, whose finite dimensional distributions are
given by

P(Ys1 = i1, . . . Ysn = in) = lim
t→+∞

P(ξs1 = i1, . . . , ξsn = in | ξt ̸= ∅). (3.18)

Moreover, (Yt)t is time homogeneous and positive recurrent.
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Remark 3.19. The process Y is called the Q-process of the process (ξt)t.

Proof of Lemma 3.17. By α-positiveness of (ξt)t, there are positive ν and h

such that (3.12) holds and νh = 1. We are also assuming Σjνj = 1.

First, we prove that the process Y is well-defined, i.e., that the limit (3.18)
exists. Define Fs to be the natural filtration of (ξt)t. Using the Markov
property of the process (ξt)t,

Pi0(ξs1 = i1, . . . , ξsn = in, ξt ̸= ∅)
= Ei0(1{ξs1 =i1,...,ξsn =in}Ei0(1{ξt ̸=∅}|Fsn))
= Ei0(1{ξs1 =i1,...,ξsn =in}Ein(1{ξt−sn ̸=∅})
= Pi0(ξs1 = i1, . . . , ξsn = in)Pin(ξt−sn ̸= ∅). (3.20)

Using (3.16) and (3.20),

lim
t→+∞

Pi0(ξs1 = i1, . . . ξsn = in | ξt ̸= ∅)

= lim
t→+∞

Pi0(ξs1 = i1, . . . , ξsn = in)Pin(ξt−sn ̸= ∅)eα(t−sn)eαsn

Pi0(ξt ̸= ∅)eαt

= Pi0(ξs1 = i1, . . . ξsn = in)hin

hi0

eαsn , (3.21)

proving that the limit (3.18) exists.

Furthermore, the process (Yt)t with finite dimensional distributions given
by (3.18) is a Markov process. Indeed,

Pi0(Ys1 = i1, . . . , ξsn = in, Yt = j)

= eαt hj

hi0

Pi0(ξs1 = i1, . . . , ξsn = in, ξt = j)

= eα(t−sn)eαsn
hj

hin

hin

hi0

Pi0(ξs1 = i1, . . . , ξsn = in)Pin(ξt−sn = j)

= Pi0(Ys1 = i1, . . . , Ysn = in)Pin(Yt−sn = j),

where in the first and last equalities we used (3.21) and in the second one we
used the Markov property of (ξt)t.

Therefore,

Pi0(Yt = j | Ys1 = i1, . . . , Ysn = in) = Pin(Yt−sn = j),
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i.e., Y has the Markov property and is time homogeneous.

By (3.21) and α-positiveness of (ξt)t, we have that Pi0(Yt = j) ↛ 0 and thus
Y is positive recurrent.

We prove now Proposition 3.5. The proof consists in approximating the process
(Xt)t by the process (Yt)t using finite dimensional sets. As the process (Yt)t

is recurrent, with probability 1 it has many branching events. As the finite
dimensional distributions of Xt converge to those of the Q-process, the result
follows.

Proof of Proposition 3.5. Denote by Y := (Yt)t the Q-process of (Xt)t defined
in Lemma 3.17. Let T > 0, its value will be determined later. Take a sequence
(Pn)n of partitions of [0, T ] such that Pn+1 ⊊ Pn and limn ∥Pn∥ = 0. For
T > 0, n ∈ N and i ∈ Σ, define the following events:

JT (X) = {There are 0 < t1, . . . tk < T : Xt1 = 1, Xt2 = 2, . . . , Xtk−1 = 1, Xtk
= 2}

and

Jn
T (X) = {There are t1, . . . tk ∈ Pn : Xt1 = 1, Xt2 = 2, . . . , Xtk−1 = 1, Xtk

= 2}.

We define JT (Y ) and Jn
T (Y ) analogously.

Take ε > 0 arbitrary. By positive recurrence of Y , there is T > 0 such that

P1(JT (Y )) ≥ 1 − ε/3. (3.22)

For the chosen T , there is n0 such that

|P1((Jn0
T (Y ))c) − P1((JT (Y ))c)| ≤ ε/3 (3.23)

Finally, for all t big enough, since JT and Jn0
T are finite dimensional cylinders,

by the definition of (Yt)t,

|P1(Jn0
T (Y ))c) − P1((Jn0

T (X))c | Xt ̸= ∅)| ≤ ε/3. (3.24)

Therefore, (3.22, (3.23) and (3.24) together imply, for t big enough,

P1((JT (X))c | Xt ̸= ∅) ≤ P1((Jn0
T (X))c |Xt ̸= ∅)
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≤ |P1((Jn0
T (Y ))c) − P1((Jn0

T (X))c | Xt ̸= ∅)|
+ |P1((Jn0

T (Y ))c) − P1((JT (Y ))c)| + P1((JT (Y ))c)
≤ ε.

As ε is arbitrary, this finishes the proof.
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