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Deixo meus agradecimentos às pessoas que fizeram e seguem fazendo diferença na minha

vida acadêmica, e também fora dela.
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Resumo

O presente trabalho concentra-se no estudo de um modelo de percolação anisotrópica de

elos em Zd+s, onde elos de Zd estão abertos de forma independente com probabilidade

p (menor que o ponto cŕıtico de Zd), e elos de Zs estão abertos com probabilidade q,

também de forma independente. Assim, o principal objetivo do trabalho é analisar o

comportamento da curva cŕıtica qc(p) = sup{q; θ(p, q) = 0}, apresentando cotas que

garantem a existência ou não existência de um aglomerado aberto infinito quando a curva

assume valores de p próximos do ponto cŕıtico de Zd.

Palavras-chave: Percolação Anisotrópica. Curvas Cŕıticas. Probabilidade.



Abstract

This work concerns the study of an anisotropic bond percolation model on Zd+s, where
edges of Zd are open independently with probability p (less than the critical threshold of

Zd) and edges of Zs are open with probability q, also independently. Thus, the main goal

of the work is to analyze the behaviour of the critical curve qc(p) = sup{q; θ(p, q) = 0},
giving upper and lower bounds that guarantee the existence or non-existence of an infinite

open cluster when the curve assumes values of p close to the critical threshold of Zd.

Keywords: Anisotropic Percolation. Critical Curves. Probability.
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Chapter 1

Introduction

Becoming famous for having problems with simple statements but complex solutions, the

mathematical percolation model emerged with [2] by studying the transport of a fluid

through a porous medium, where we can cite as an example the phenomenon of the

propagation of oil through a porous rock. Thus, the heart of percolation theory is the

description of the porous medium, treating it as a network (translated in mathematics

as a graph) of small channels (edges/bonds of the graph) and pores (vertices/sites of

the graph) that connect in such a way as to allow the passage of the fluid. Keeping in

mind the example of oil, it becomes interesting to analyze under which conditions the

rock allows the oil to propagate completely, i.e. the rock gets all wet. When this occurs,

that is, when the porous medium allows the complete passage of the fluid, we say that

there exists percolation. Then, to answer the question “when there is percolation in the

model?” becomes an object of interest to those who venture to investigate percolation

theory.

Over time, derivations of the Broadment and Hammersly model emerged, such as

the anisotropic percolation models, which we will treat by associating different probabili-

ties for edges placed in different directions. For instance, we can mention the work of [12]

and [9] with results about critical curves, and also the work of [1, 3, 7, 4] regarding critical

exponents and phase transition. In the present text, we focus on the anisotropic bond

percolation model on Zd+s presented in the work of [10, 11], where we seek to analyze and

understand the behaviour of critical curves in such a percolation model.

In Chapter 2, we define the independent bond percolation model and present es-

sential concepts for a first contact with percolation theory, besides stating some relevant

results and theorems, such as the Phase Transition Theorem and the FKG and BK in-

equalities. We demonstrate the latter, which will be useful for proving a result in the next

chapter.

In Chapter 3, we define an anisotropic bond percolation model on Zd+s, where
each edge of Zd is open independently with probability p < pc(Zd) (the critical threshold

of bond percolation), and we declare each edge of Zs as open with a probability q, also

independently. Thus, we define the critical curve qc(p) = sup{q; θ(p, q) = 0} and we study

the problem posed by [10, 11] concerning the behaviour of the curve qc(p) for values of p
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close to pc(Zd). Our major goal is to present the following theorems.

Theorem 1. Consider a bond percolation process on Zd × Zs with parameters (p, q),

p < pc(d), and let χd(p) denote the mean size of the open cluster in Zd. If the pair (p, q)

satisfies

q <
1

2sχd(p)
,

then there is a.s. no infinite open cluster in Zd+s.

Theorem 2. Consider a bond percolation process on Z × Zs, s > 1, with parameters

(p, q). Then
1

2sχ1(p)
≤ qc(p) ≤

α

χ1(p)
,

for some α > 0 and p sufficiently close to 1.
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Chapter 2

Basic concepts in percolation

In this chapter, we describe the independent percolation model and present some fun-

damental concepts and results of the percolation theory. We refer the reader to [5] for

everything that is presented in the chapter.

Let G = (V , E) be a infinite graph, locally finite (i.e. every vertex has finite

degree), where V and E denote the set of vertices and edges of G, respectively, and let

p ∈ [0, 1]. In a bond percolation process, we attribute to each edge e ∈ E the probability

of being open with parameter p and we say that e is closed with probability 1−p. In a site

percolation model, we consider each edge as open and we say that a vertex v ∈ V is open

with probability p, and hence v is closed with probability 1 − p. Throughout the text,

except where indicated otherwise, we deal with bond percolation models. Also, although

we only deal with undirected graphs, we write E ⊂ V × V , such that (x, y) ∈ E denotes

the unique, undirected, edge {x, y} between the vertices x and y.

Definition 3. A configuration ω is a function ω : E → {0, 1} where ω(e) = 1 if e is

open and ω(e) = 0 if the edge is closed. We denote by Ω = {0, 1}E the set of all possible

configurations.

Definition 4. Given x, y ∈ V, a path connecting x and y is a finite sequence of vertices

γ = ⟨v0 = x, v1, . . . , vn = y⟩ such that (vi, vi+1) ∈ E for all i, that is, there exists an

edge between any two consecutive vertices of the sequence. Given a configuration ω ∈ Ω

we say that the path γ is open in ω if, for each i ∈ {1, . . . , n}, ω((vi, vi+1)) = 1; i.e a

path is open if all its edges are open. Moreover, we say that x is connected to y in the

configuration ω if there exists an open path connecting x and y, and we denote this event

by {x↔ y} = {ω ∈ Ω;x is connected to y by open paths in ω}.

Definition 5. Given a vertex x ∈ V and a configuration ω ∈ Ω, the open cluster of x

in ω is the set Cx(ω) = {y ∈ V ;x is connected to y by open paths in ω}, i.e. the set of

vertices that are connected to x by a path of open edges.

Thus, we can see that the size of the open cluster of a vertex x in a configuration

ω, that is, the number of vertices connected to x by open paths, is a discrete random

variable since it assumes values in the set of natural numbers or it can be infinite (e.g
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when p = 1). Then we write this as |Cx| : Ω → N ∪ {+∞} and investigate the case where

|Cx| = +∞. The event {ω ∈ Ω; |Cx| = +∞} is what we call percolation, meaning that

percolation occurs when there exists an infinite open cluster or, equivalently, we can also

say that the vertex x is connected to infinity, and then we use the notation {x↔ ∞}.
Now, we consider a particular graph, namely the d-dimensional cubic lattice, de-

noted by Ld = (Zd, E) with Zd being the set of d-dimensional vectors with coordinates

in Z and E = {(x, y) ∈ Zd × Zd; where ∃! i ∈ {1, . . . , d} such that |xi − yi| = 1 while

xj = yj for all i ̸= j}. That is, E is the set of edges that join two vertices iff their coor-

dinates are identical except for a single one, which is different by a single unit. We also

call E the set of nearest neighbours of Zd. Again, we say that edges of Ld are open with

probability p in a configuration ω independently, and we remark that studying the open

cluster of the vertex x = 0 (the d-dimensional vector of zeros) is equivalent to studying

the open cluster of any other vertex, since every edge is equal and it is open with the

same probability. Then, in Ld we bring our attention to the origin of Zd, denoting by

C the open cluster containing the origin, and we are interested in knowing when C has

infinite size.

At this point, it is important to observe that we cannot consider all the vertices in

a general infinite graph as equal. Nevertheless, we verify that in any connected infinite

graph G, if a given vertex x is connected to infinity with positive probability, then any

other vertex y is also connected to infinity with positive probability (as it is proved in

Proposition 10).

Now, note that the process of bond percolation on Ld where each edge is open

with probability p in a configuration ω that associates 1 to open edges and 0 to the closed

ones can be described by the probability space (Ω,F ,Pp), where Ω =
∏

e∈E{0, 1}, F is

the σ-algebra of subsets of Ω generated by the finite dimensional cylinders, that is, by the

events which depend only on edges in finite subsets of E , and Pp is the product measure

Pp =
∏

e∈E µe, where µe is the Bernoulli measure in {0, 1} defined for every edge e ∈ E by

µe(ω(e) = 1) = p and µe(ω(e) = 0) = 1− p.

2.1 The θ(p) function

As already mentioned, we are interested in the occurrence of percolation in Ld,
i.e. in the occurrence of the event that there exists an infinite open cluster, and that
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motivates the definition of the function θ(p) given by

θ : [0, 1] → [0, 1]

p 7→ Pp(0 ↔ ∞).

So given p ∈ [0, 1], θ(p) is the probability of percolation’s occurrence with parameter p.

Trivially we have that if p = 0 then θ(p) = 0, and if p = 1 then θ(p) = 1.

Proposition 6. θ is a non-decreasing function of parameter p, that is, if p1 < p2 then

θ(p1) ≤ θ(p2).

Proof. Observe that a bond percolation model with parameter p1 can be described by the

probability space (Ω,F ,Pp1), as we have already seen. Then if we change the parameter

from p1 to p2, the model now is described by the probability space (Ω,F ,Pp2). We use

the important space coupling argument, that allows us to compare the parameters p1 and

p2 in a single probability space. For this, remember that Ω = {0, 1}E , that is, Ω is the

set of configurations that associate 0 or 1 to each edge e ∈ E . Now, define the set of

configurations Ω̃ = [0, 1]E that associate a number between 0 and 1 to each edge e ∈ E ,
and let F̃ be the smallest σ-algebra that contains all the cylinders in F̃ . Then, consider

P the probability measure with uniform distribution in [0, 1], that is, in which a number

belongs to the interval [α, β] ⊂ [0, 1] with probability equal to the interval size, i.e. β−α.
Thus, in (Ω̃, F̃ ,P), given ω̃ ∈ Ω̃, e ∈ E and p ∈ [0, 1], we say that the edge e is

p-open if ω̃(e) ≤ p; so an edge is p-open with probability p, since it equals the probability

of ω̃(e) ∈ [0, p]. Moreover, note that if we have p1 ≤ p2 then every p1-open edge is a p2-

open edge: if e ∈ E is p1-open then ω̃(e) ≤ p1, and since p1 ≤ p2 we have that ω̃(e) ≤ p2,

hence e is a p2-open edge.

Now, let C(p, ω̃) = {v ∈ V ; 0 ↔ v by p-open paths in ω̃} be the p-open cluster

containing the origin. Then, we have that

θ(p1) = Pp1{ω; |C(ω)| = +∞} = P{ω̃; |C(p1, ω̃)| = +∞},

as every edge is p1-open with probability p1. And, since every p1-open edge is a p2-open

edge, it results that

{ω̃; |C(p1, w̃)| = +∞} ⊆ {ω̃; |C(p2, w̃)| = +∞}.

Then,

θ(p1) = P{ω̃; |C(p1, w̃)| = +∞} ≤ P{ω̃; |C(p2, w̃)| = +∞}

= Pp2{ω; |C(ω)| = +∞}

= θ(p2).

Hence, θ(p) is a non-decreasing function.
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Since θ is a monotone function of parameter p, we bring our attention to the so

called critical threshold of bond percolation on Zd, defined by pc(d) = sup{p; θ(p) = 0}.
Moreover, we state the important theorem of Broadment-Hammersly about the existence

of the critical threshold in Ld.

Theorem 7 (Phase Transition Theorem). In Ld, with d ≥ 2, there exists a critical

threshold pc(d) ∈ (0, 1) such that

(i) θ(p) = 0 for all p < pc,

(ii) θ(p) > 0 for all p > pc.

Observe that the above theorem guarantees the existence of a critical point which

divides the probability of percolation on Ld in two phases, namely the subcritical phase,

where there is no infinite open cluster, and the supercritical phase, where there is an

infinite open cluster with strictly positive probability. Nevertheless, the theorem says

nothing about θ(p) when evaluated in pc(d). By the works of [8] and [6], it is known

that θ(pc(d)) = 0 for d = 2 and for d ≥ 19, while determining the value of θ(pc(d)) for

3 ≤ d ≤ 18 might be the most famous open problem in percolation theory.

2.2 The Harris-FKG and BK Inequalities

Let ω, ω̃ ∈ Ω be two configurations and define a partial order between them as

follows: we say that ω ≤ ω̃ if ω(e) ≤ ω̃(e), for all e ∈ E . Thus, if the smaller configuration

maps e to 1 then the larger one also maps e to 1; hence, we can obtain ω̃ from ω by simply

opening more edges.

Definition 8. An event A ∈ F is said to be increasing if, for all ω ∈ A, we have that

ω̃ is also in A, for all ω̃ ≥ ω; i.e. an increasing event is favoured by opening more edges.

Analogously, we say that A is decreasing if Ac is an increasing event. Moreover, we say

that a random variable N in (Ω,F ,P) is increasing if we have N(ω) ≤ N(ω̃) whenever

ω ≤ ω̃.

The following result is due to Harris, Fortuin, Kasteleyn and Ginibre and gives an

important inequality for increasing events.

Theorem 9 (FKG-Inequality). Considering the probability space (Ω,F ,Pp), we have

(i) If Z and Y are increasing random variables with finite second moments, then

Ep(ZY ) ≥ Ep(Z) · Ep(Y ).
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(ii) If A and B are increasing events in F , then

Pp(A ∩B) ≥ Pp(A) · Pp(B).

Now, we can use the above theorem in order to prove a statement made at the

beginning of the chapter.

Proposition 10. Given any connected infinite graph G, the existence of the critical

threshold does not depend on any vertex, that is, if a vertex x has an infinite open clus-

ter with positive probability, then each vertex of G also has an infinite open cluster with

positive probability.

Proof. Let G be a connected infinite graph where each edge is open with probability

p ∈ (0, 1), let x, y be vertices of G, and suppose that x has an infinite open cluster

with positive probability. Considering the events A = {x ↔ y}, B = {x ↔ ∞} and

C = {y ↔ ∞}, we have that θx(p) = Pp(B) and θy(p) = Pp(C), and then by hypothesis

θx(p) > 0. It follows from the connectedness of G that there exists an open path joining

the vertices x and y; let d be the distance between them, i.e. the number of vertices at

the smallest path that connects x and y. Note that A and B are increasing events, so the

FKG-inequality implies that

Pp(A ∩B) ≥ Pp(A) · Pp(B) ≥ pd · θx(p) > 0,

since θx(p) > 0.

Now, note that A∩B ≡ {y ↔ x}∧{x↔ ∞}, then the occurrence of A∩B implies

the occurrence of the event {y ↔ ∞}, and so we have that (A ∩B) ⊂ {y ↔ ∞. Hence,

P(y ↔ ∞) = θy(p) ≥ P(A ∩B) > 0,

i.e. there is an infinite open cluster containing the vertex y with positive probability.

Let e1, . . . , en be different edges of Ld, and ω = (ω(e1), . . . , ω(en)) be the vector of

the state of the n edges (open or closed). Consider the increasing events A and B, which

depend only on ω, and let us describe each ω by the set K(ω) = {ei : ω(ei) = 1}, i.e.
K(ω) is the set of open edges in the configuration ω.

Definition 11. We define the event disjoint occurrence of A and B by A ◦B = {ω ∈ Ω :

∃H ⊆ K(ω) such that ω′ ∈ A, and ω′′ ∈ B, with ω′ determined by K(ω′) = H, and

ω′′ determined by K(ω′′) = K(w) \ H}. That is, the disjoint occurrence of A and B is

the set of configurations ω for which there exist disjoint sets of open edges where the first

set ensures the occurrence of A and the second one ensures the occurrence of B.
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Now, let m be a positive integer number and consider the space (Γ,G,P) where

Γ =
∏m

i=1{0, 1}, G is the set of all subsets of Γ, and P is the product measure defined by

P =
∏m

i=1 µi, where µi(0) = 1− p(i) and µi(1) = p(i)· Then we proceed with the famous

inequality of [13] concerning disjoint occurrences.

Theorem 12 (The BK Inequality). Considering the space (Γ,G,P), if A and B are

increasing events, then

P(A ◦B) ≤ P(A) · P(B).

Proof. Let (Γ1,G1,P1) and (Γ2,G2,P2) be two copies of (Γ,G,P), and consider the product

space (Γ1×Γ2,G1×G2,P12), where P12 = P1P2. We will write (x, y) for a point in Γ1×Γ2,

with x = (x1, . . . , xm) and y = (y1, . . . , ym), where each xi, yi equals 0 or 1.

Define the events A′ and B′
k by

A′ = {(x, y) ∈ Γ1 × Γ2 : x ∈ A},

B′
k = {(x, y) ∈ Γ1 × Γ2 : (y1, . . . , yk, xk+1, . . . , xm) ∈ B, for 0 ≤ k ≤ m}.

Note that A′ and B′
k are increasing events in Γ1 × Γ2 : if ω, ω̃ ∈ Γ1 × Γ2 are

configurations such that ω ≤ ω̃ and ω ∈ A′, then we have that (x1, . . . , xm) ∈ A, and then

(x̃1, . . . , x̃m) ∈ A since A is an increasing event; therefore ω̃ ∈ A′, which implies that A′

is increasing. By an analogous argument we have that B′
k is also an increasing event in

the product space.

For each point (x, y) ∈ Γ1×Γ2 we say a subset I of {1, . . . ,m} forces A′ if (u, v) ∈ A′

whenever (u, v) ∈ Γ1 ×Γ2 and ui = xi for all i ∈ I. We say that I forces B′
k if (u, v) ∈ B′

k

whenever ui = yi for each i ∈ I with i ≤ k, and vi = xi for each i ∈ I with i > k.

We verify next that P(A ◦ B) = P12(A
′ ◦ B′

0). Since B′
0 is the set of all points in

Γ1 × Γ2 for which the vector (x1, . . . , xm) ∈ B, we have that

A′ ◦B′
0 = {ω ∈ Γ1 × Γ2 : ∃S1, S2 ⊆ K(ω) such that ω′ ∈ A′ and ω′′ ∈ B′

0,

where ω′ and ω′′ are such that K(ω′) = S1 and K(ω′′) = S2},

with ω = (x1, . . . , xm, y1, . . . , ym). But (x1, . . . , xm) ∈ Γ1, then

P12(A
′ ◦B′

0) = P12{ω ∈ Γ1 × Γ2 : ∃S1, S2 disjoint, such that ω′ ∈ A′ and ω′′ ∈ B′
0}

= P1{ω ∈ Γ1 : ∃S1, S2 disjoint, such that ω′ ∈ A and ω′′ ∈ B}

= P(A ◦B).

On the other hand, note that the events A′ and B′
m are defined for disjoint coor-

dinate sets of Γ1 × Γ2, since A
′ is the set of all points (x, y) for which (x1, . . . , xm) ∈ A

and B′
m is the set of all points (x, y) for which the vector (y1, . . . , ym) ∈ B. That is,
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A′ depends on (x1, . . . , xm) and B
′
m depends on (y1, . . . , ym). Hence,

P12(A
′ ◦B′

m) = P12(A
′ ∩B′

m)

= P12(A
′) · P12(B

′
m)

= P1(A) · P2(B)

= P(A) · P(B).

Thus, we can rewrite P(A ◦ B) ≤ P(A) · P(B) as P12(A
′ ◦ B′

0) ≤ P12(A
′ ◦ B′

m), and to

show that the last inequality is true we prove that P12(A
′ ◦ B′

k−1) ≤ P12(A
′ ◦ B′

k) for all

1 ≤ k ≤ m.

We first divide the event A′ ◦B′
k−1 in two other events, A′ ◦B′

k−1 = C1∪C2, where

C1 = {(x, y) : A′ ◦B′
k−1 occurs independently on the value of xk},

C2 = {(x, y) : A′ ◦B′
k−1 occurs if and only if xk = 1} ∩ {xk = 1}.

Then we divide the event C2 in two other ones, C2 = C ′
2 ∪ C ′′

2 , where

C ′
2 = C2 ∩ {(x, y) : ∃I ⊂ 1, . . . ,m such that k ∈ I, I forces A′, Ic forces B′

k−1},

C ′′
2 = C2 \ C ′

2, with I
c = {1, . . . ,m} \ I.

Then we can see C ′
2 as the sub-event of C2 where xk contributes essentially with A′.

Now we construct an injective map φ from A′◦B′
k−1 to A

′◦B′
k: for (x, y) ∈ Γ1×Γ2,

let (x′, y′) be the point in Γ1 × Γ2 obtained from (x, y) as followsx′i = xi, for i ̸= k, and x′k = yk

y′i = yi, for i ̸= k, and y′k = xk

and let φ be defined on A′ ◦B′
k−1 by

φ(x, y) =

(x, y), if (x, y) ∈ C1 ∪ C ′
2

(x′, y′), if (x, y) ∈ C ′′
2 .

Note that C1 ⊆ A′ ◦ B′
k . If (x, y) ∈ C1 then A′ ◦ B′

k−1 occurs independently of

the value of xk and yk: if A′ ◦ B′
k−1 occurs, then the occurrence of the event B′

k−1 is

guaranteed, i.e. the vector (y1, . . . , yk−1, xk, xk+1, . . . , xm) ∈ B no matter the value of xk.

Thus, if we take xk = yk then the vector (y1, . . . , yk−1, yk, xk+1, . . . , xm) still belongs to B,

that is, the occurrence of B′
k is guaranteed, so we have that the event A′ ◦B′

k also occurs.

Moreover, note that C ′
2 ⊂ A′ ◦B′

k . If (x, y) ∈ C ′
2 then A

′ and B′
k−1 occur disjointly

and there exists such a disjoint occurrence where xk contributes essentially with A
′ and not

with B′
k−1. Now, since the event B

′
k−1 occurs, the vector (y1, . . . , yk−1, xk, xk+1, . . . , xm) ∈

B. Thus, we have that the value of xk does not change the occurrence of B′
k−1; then, if
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we take xk = yk, the vector (y1, . . . , yk−1, yk, xk+1, . . . , xm) still belongs to B, that is, the

occurrence of B′
k is guaranteed, so we have that the event A′ ◦B′

k also occurs.

Now, take a point in C ′′
2 . If (x, y) ∈ C ′′

2 then φ(x, y) = (x′, y′) ∈ A′ ◦ B′
k, since

in this case xk = 1 and there exists I ⊆ {1, . . . ,m} \ {k} such that I forces A′, and Ic

forces B′
k−1; i.e. xk contributes essentially with B′

k−1. So we have that φ(x, y) = (x′, y′) =

(x1, . . . , xk−1, xk, xk+1, . . . , xm, y1, . . . , yk−1, xk, xk+1, . . . , xm), and from the point of view

of the configuration (x′, y′), I forcesA′ and Ic forcesB′
k which implies that (x′, y′) ∈ A′◦B′

k,

and we have that φ(C ′′
2 ) ⊆ A′ ◦B′

k

Another result that will be useful in a proof in the next chapter provides a relation

between the critical threshold of bond percolation and that of site percolation. A more

general version of the following result is proved in [5, Theorem 1.33].

Theorem 13. Let G be a connected infinite graph. Let psc(G) be the critical threshold of

independent site percolation in G, and pbc(G) be the critical threshold of independent bond

percolation in G. Then,

psc(G) ≥ pbc(G).

Proof. The idea of the proof is as follows. Given a configuration of the vertices of G, we

order the vertices so that we start from a vertex v0, which we ask to be open. Then,

looking at the nearest neighbours of v0, we take the vertex with smallest index (according

to our order) and we check its state: if it is open, call it an infected vertex; if it is closed,

call it a dead vertex. We repeat this step, labelling the vertices as infected or dead, and

we induce a bond percolation process by opening the edges of G according to the state of

the vertices. We repeat this until we get to a final step or we “reach” infinity - that is,

the process does not stop, in which case we have percolation.

To formalize the argument, take an arbitrary order on the vertices V(G) of G

and on the set of edges E(G) of G, and let {χv}v∈V(G) be i.i.d. random variables with

χv ∼ Ber(p). Consider the sets

I0 = {v0} (infected vertices);

S0 = V(G)\{v0} (non explored vertices);

D0 = ∅ (dead vertices);

E0 = ∅ (explored edges).

To determine the iteration completely, suppose that In, Dn, Sn and En are defined,

take u = min{v ∈ Sn\Dn : v ∈ Γ(t), for some t ∈ In}, where Γ(t) is the neighbourhood of

t, and let f be the edge with endpoints u and t.

Now, define Yf = χu.
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If χu = 1, then we define In+1 = In ∪ {u};

Sn+1 = Sn\{u};

Dn+1 = Dn;

En+1 = En ∪ {f}.

If χu = 0, then we define In+1 = In;

Sn+1 = Sn\{u};

Dn+1 = Dn ∪ {u};

En+1 = En ∪ {f}.

Thus, we can see that the process ends if {v ∈ Sn\Dn : v ∈ Γ(t), t ∈ In} = ∅.
Then,

Pp(the process does not end) = p · θs(v0, p),

where θs(v0, p) is the percolation probability for the independent site percolation process

with parameter p.

Moreover, we note that the random variables {Yf}f∈En are i.i.d. with Yf ∼ Ber(p),

and we have that In ⊂ Cb
p(v0).

Therefore, if we take p > psc(G), then |In| → ∞ (when n goes to infinity) with

probability p · θs(v0, p) > 0, which implies that θs(v0, p) > 0. Finally, by inclusion of sets,

we have that Pp
(
|Cb

p(v0)| = ∞
)
> 0. Thus, pbc(G) ≤ psc(G).
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Chapter 3

Anisotropic percolation in Zd+s

In the previous chapter, we presented fundamental definitions and results from percolation

theory, always dealing with isotropic bond percolation process. In this chapter, that is

based in [10, 11] we consider an anisotropic bond percolation process on the graph G =

(Zd+s, E(Zd+s)), where E = E(Zd+s) denotes the set of edges between nearest neighbours

of Zd×Zs, and we associate different probabilities for a bond if it is placed in Zd or in Zs

Definition 14. An edge of E(Zd+s) is called a Zd-edge if it connects two vertices which

are different only in their Zd components (in a single coordinate, necessarily); similarly, we

call the edge a Zs-edge if it connects two vertices which differ only in their Zs components.

Given two parameters p, q ∈ [0, 1], we say that each Zd-edge is open with prob-

ability p independently of the others, and each Zs-edge is open with probability q, also

independently of the others. One notes readily that this can be described by the proba-

bility space (Ω,F ,Pp,q), where Ω = [0, 1]E , F is the σ-algebra generated by the cylindrical

sets in Ω, that is, those which depend only on finite subsets of edges, and

Pp,q =
∏
e∈E

µ(e),

where µ(e) is the Bernoulli measure with parameter p if e is a Zd-edge or q if it is a

Zs-edge.
Now, for u and v vertices in Zd+s, let {u ↔ v} be the event where u and v are

connected, and C(ω) = {u ∈ Zd × Zs;u ↔ 0} denote the open cluster containing the

origin. Again, we are interested in the probability that the open cluster of the origin is

infinite. Hence we define the function θ on [0, 1]× [0, 1] by θ(p, q) = Pp,q{ω ∈ Ω; |C(ω)| =
∞}, that is, θ(p, q) is the probability of percolation on Zd+s with parameters p and q.

Moreover, define χ(p, q) = Ep,q(|C(ω)|), so that χ(p, q) denotes the mean size of the open

cluster in Zd+s.

Proposition 15. θ(p, q) is a non-decreasing function of parameters p and q.

Proof. We simply observe that(p1, q) < (p2, q), if p1 < p2

(p, q1) < (p, q2), if q1 < q2
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So, if p1 < p2 and q1 < q2, then

θ(p1, q1) ≤ θ(p2, q1), since θ is non-decreasing for a single variable

≤ θ(p2, q2).

Now, by the above proposition, we can define the function qc(p) = sup{q : θ(p, q) =
0} for p ∈ [0, 1]. The function qc(p) is what we call our critical curve in Zd+s, and the

following proposition makes some relevant observations about this curve. Recall from

Theorem 7 in Chapter 2 that pc(d) = sup{p; θ(p) = 0} denotes the critical threshold of

bond percolation on Zd.

Proposition 16. If qc(p) : [0, 1] → [0, 1] is defined by qc(p) = sup{q : θ(p, q) = 0}, then

(i) qc(0) = pc(s);

(ii) qc(p) = 0 for p > pc(d);

(iii) qc(p) is a non-increasing function of parameter p.

Proof.

(i) By definition of qc(p), we have that

qc(0) = sup{q : θ(0, q) = 0} = sup{q : θ(q) = 0} = pc(s).

That is, if every edge of Zd is closed, then the probability of percolation on Zd+s

depends only on values of q, so qc(0) is equal the critical threshold on Zs.
(ii) If p > pc(d), then by the Phase Transition Theorem we have that the prob-

ability of percolation on Zd is strictly positive, and so θ(p, q) > 0, which give us that

qc(p) = sup{q : θ(p, q) = 0} = 0.

(iii) We want to show that for p1, p2 ∈ [0, 1] if p1 < p2, then qc(p1) ≥ qc(p2). By

definition of qc(p), we have that

qc(p1) = sup{q : θ(p1, q) = 0}, qc(p2) = sup{q : θ(p2, q) = 0}.

Consider the sets Q1 = {q; θ(p1, q) = 0}, Q2 = {q; θ(p2, q) = 0}, and let q′ ∈ Q2.

Since θ(p, q) is a non-decreasing function, if p1 < p2 then θ(p1, q) ≤ θ(p2, q). Hence, we

have that

θ(p1, q
′) ≤ θ(p2, q

′) = 0,

that is, θ(p1, q
′) = 0. Then q′ ∈ Q1, and we have that Q2 ⊆ Q1, which implies that

supQ2 ≤ supQ1. Thus, qc(p2) ≤ qc(p1), as desired.
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Now, looking at the curve qc(p), we aim to analyze its critical behaviour for values

of p less than or equal to pc(d), specially when p ↑ pc(d). In addition, as the study of

critical exponents is part of the interest of percolation theory, we turn our attention to

quantities such as χd(p), since it is believed that there exists γ(d) > 0 such that

χd(p) ≈ |p− pc(d)|−γ, (3.1)

when p ↑ pc(d) and the relation a(p) ≈ b(p) means that log a(p)
log b(p)

−→ 1 when p ↑ pc(d); in
this case, we say γ is a critical exponent.

Then, we would like to obtain an answer for the following question: is it true that

there exists a constant ψ such that qc(p) ≈ |p−pc(d)|ψ when p ↑ pc(d)? We will call ψ the

crossover exponent, and state that the answer for the above question is partially positive.

Conjecture 17. There exists a critical exponent ψ = ψ(d) > 0 such that

qc(p) ≈ |p− pc(d)|ψ.

Moreover, if γ(d) exists, then ψ(d) = γ(d).

We shall prove that the above conjecture holds for d = 1, and establish a relation

between ψ(d) and γ(d) for general d. We begin with some necessary results.

Theorem 18. Consider a bond percolation process on Zd × Zs with parameters (p, q),

p < pc(d). If the pair (p, q) satisfies

q <
1

2sχd(p)
,

then there is a.s. no infinite open cluster in Zd+s.

Proof. First, we put forward some relevant notation.

• A point in Zd+s will be written as (u, t), where u and t denote its Zd and Zs

components, respectively.

• {un, n ∈ Z+} and {tn, n ∈ Z+} denote sequences of points in Zd and Zs, respectively.

• Od denotes the d-dimensional vector of zeros.

• The distance between two points x, y ∈ Zs is defined by

δ(x, y) =
s∑
i=1

|xi − yi|.

• Given u ∈ Zd and s, t ∈ Zs such that δ(s, t) = 1, write e(u,t),(u,s) ∈ E(Zs) for the

edge with end-vertices (u, t) and (u, s).
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Thus, to see that there is no infinite open cluster in Zd+s, we will show that the

mean size of the open cluster, χ(p, q), is bounded.

We have that

χ(p, q) = Ep,q
∑

(u,t)∈Zd+s

1(0↔(u,t))

=
∑

(u,t)∈Zd+s

Pp,q(0d+s ↔ (u, t)). (3.2)

Now, observe that the event {0d+s ↔ (u, t)} occurs if and only if there exist

sequences of points ûn = (u0, . . . , un) and t̂n = (t0, . . . , tn) such that uj ∈ Zd for all

0 ≤ j ≤ n, and ti ∈ Zs for all 1 ≤ i ≤ n, with δ(ti, ti+1) = 1, which we construct

according to the following steps:

(1) We start at the point (0d, t0) = (0d, 0s) and then we connect it to the point (u0, t0)

using only Zd × {t0}-edges, that is, using Zd-edges with t0 in their Zs component.

(2) Move from (u0, t0) to the point (u0, t1) by a connection that uses a single open

Zs-edge.

(3) Connect the point (u0, t1) to (u1, t1) using only Zd×{t1}-edges not used to connect

(0d, t0) to (u0, t0).

...

(m) Move from (um−1, tm−1) to the point (um−1, tm) by a connection that uses a single

open Zs-edge not used in any previous step.

(m+1) Connect the point (um−1, tm) to (um, tm) using only Zd × {tm}-edges which do not

use Zd-edges used to connect (ul−1, tl) at (ul, tl) for any 1 ≤ l ≤ m−1, neither those

that were used to connect (0d, t0) to (u0, t0).

...

We repeat these steps until we reach the point (un, tn) = (u, t).

Note that, in this construction, the distance between any two points ti, ti+1 ∈ Zs

is equal to 1, but we do not make any restriction about how many points in Zd are there

between any two points uj, uj+1 ∈ Zd, we can even have none, i.e. it is possible that

uj = uj+1.

Now, given t̂n = (t0, . . . , tn) and ûn = (u0, . . . , un), consider the sequence of events

{Ai}ni=0 such that, for 0 ≤ i ≤ n− 1,

Ai =
{
{(ui−1, ti) ↔ (ui, ti) in Zd × {ti}} ∩ {e(ui,ti),(ui,ti+1) is open }

}
,
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where we define u−1 = 0d, and

An = {(un−1, tn) ↔ (un, tn) in Zd × {tn}}.

Note that {Ai}ni=0 is a sequence of increasing events, since every Ai connects two

vertices and hence opening up edges benefits the events. This enables us to use the BK

inequality later.

Thus, by the above construction we have

{0d+s ↔ (u, t)} =
⋃
n≥0

⋃
ûn:un=u
t̂n:tn=t

{A0 ◦ A1 ◦ · · · ◦ An}.

Then,

χ(p, q) =
∑

(u,t)∈Zd+s

Pp,q(0d+s ↔ (u, t)), by Eq. (3.2)

=
∑
(u,t)

Pp,q
( ⋃
n≥0

⋃
ûn
t̂n

{A0 ◦ A1 · · · ◦ An}
)

≤
∑
(u,t)

∑
n≥0

∑
ûn
t̂n

Pp,q(A0 ◦ A1 ◦ · · · ◦ An)

≤
∑
(u,t)

∑
n≥0

∑
ûn
t̂n

n∏
i=0

Pp,q(Ai), by the BK inequality

=
∑
n≥0

∑
t̂n

∑
ûn

n∏
i=0

Pp,q(Ai), (3.3)

where the last two summations in Inequality (3.3) are taken over all sequences ûn and t̂n

such that ûn = (u0, . . . , un) and t̂n = (t0, . . . , tn), and (u0, t0) = 0d+s. That is, ûn and t̂n

are sequences of points in Zd and Zs, respectively, that start at the origin of Zd and Zs,
respectively.

Note that ∑
uk∈Zd

Pp,q(An) ≤ χd(p) =
∑
u∈Zd

Pp(0d ↔ u), (3.4)

because

{An occurs given ûn = (u0, . . . , un = u)} ⊆ {0d ↔ u, u ∈ Zd},

since An is the event where, given a sequence of points in Zd, with the first one being the

origin and the last being any point u, we connect the last but one point of this sequence

to the point u; hence An is contained in the event where the origin is connected to u by

any open paths.

In addition we have that the events{
(ui−1, ti) ↔ (ui, ti) in Zd × {ti}

}
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and {
e(ui,ti),(ui,ti+1) is open

}
are independent, since in the first one we connect points in Zd, while in the second we do

it in Zs. Thus, for all k = 0, 1, . . . , n− 1, we verify

∑
t̂k
ûk

Pp,q(Ak) =
∑
t̂k
ûk

Pp,q
{
(ui−1, ti) ↔ (ui, ti) in Zd × {ti}

}∑
t̂k
ûk

Pp,q
{
e(ui,ti),(ui,ti+1) is open

}
= q

∑
t̂k
ûk

Pp,q
{
{(ui−1, ti) ↔ (ui, ti) in Zd × {ti}

}
= q

∑
tk

∑
uk

Pp,q
{
(ui−1, ti) ↔ (ui, ti) in Zd × {ti}

}
≤
∑
tk

χd(p), by the same argument in (3.2)

= qχd(p)2s (3.5)

Thus, going back to (3.1) and using Equation (3.2) and Inequality (3.3) we have

χ(p, q) ≤
∑
n≥0

∑
t̂n

∑
ûn

n∏
i=0

Pp,q(Ai)

=
∑
n≥0

∑
tk

∑
uk

∑
tn

∑
un

n∏
i=0

Pp,q(Ai)

=
∑
n≥0

∑
tk

∑
uk

∑
tn

∑
un

Pp,q(An)
n−1∏
i=0

Pp,q(Ai)

=
∑
n≥0

∑
tn

∑
un

Pp,q(An)
∑
tk

∑
uk

n−1∏
i=0

Pp,q(Ai)

≤
∑
n≥0

2sχd(p)
∑
tk

∑
uk

n−1∏
i=0

Pp,q(Ai)

=
∑
n≥0

2sχd(p)
∑
tk

∑
uk

∑
tn−1

∑
un−1

n−1∏
i=0

Pp,q(Ai)

=
∑
n≥0

2sχd(p)
∑
tk

∑
uk

∑
tn−1

∑
un−1

Pp,q(An−1)
n−2∏
i=0

Pp,q(Ai)

=
∑
n≥0

2sχd(p)
∑
tn−1

∑
un−1

Pp,q(An−1)
∑
tk

∑
uk

n−2∏
i=0

Pp,q(Ai)

≤
∑
n≥0

2sχd(p) · [2sqχd(p)]
∑
tk

∑
uk

n−2∏
i=0

Pp,q(Ai)

=
∑
n≥0

(2s)2 · qχd(p)2
∑
tn−2

∑
un−2

Pp,q(An−2)
∑
tk

∑
uk

n−3∏
i=0

Pp,q(Ai)
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≤
∑
n≥0

(2s)2qχd(p)
2[2sqχd(p)]

∑
tk

∑
uk

n−3∏
i=0

Pp,q(Ai)

=
∑
n≥0

(2s)3q2χd(p)
3
∑
tk

∑
uk

n−3∏
i=0

Pp,q(Ai)

...

≤
∑
n≥0

(2s)n+1qnχd(p)
n+1

= 2sχd(p)
∞∑
n=0

[2sqχd(p)]
n, since if p < pc(d) then χd(p) <∞ a.s.

< +∞ iff 2sqχd(p) < 1, i.e., if q <
1

2sχd(p)
,

since
∑∞

n=0[2sqχd(p)]
n is a geometric series with ratio 2sqχd(p), which completes the

proof.

Theorem 19. Consider a bond percolation process on Z × Zs, s > 1, with parameters

(p, q). There exists α > 0 such that if p is sufficiently close to 1 and q > α 1+p
1−p , then there

is a.s. an infinite open cluster in Z1+s.

Proof. First we shall construct an independent site percolation process in Zs induced by

the bond percolation process in Z1+s. Then we will show that, under some hypothesis,

site percolation will occur (i.e. there exists an infinite open cluster) in Zs, and so will the

bond percolation in Z1+s.

Let u = (ū, x1, . . . , xs) and z = (z̄, x1, . . . , xs) ∈ Z1+s. So given a configuration

w ∈ Ω, we say u and z are updownwards connected in ω if every Z × {x1, . . . , xs}-edge
between u and z is open in ω, and we denote this event by {ω ∈ Ω;u ↕ z in ω}.

For u ∈ {0} × Zs, let Wu(ω) = {z ∈ Z1+s; z ↕ u in ω}. Thus, we’re going to

construct a site percolation process of good vertices on {0} × Zs as follows. Given ϵ > 0

and a configuration ω, we declare each vertex u ∈ {0} × Zs as ϵ-good if

(i) |Wu(ω)| >
1 + p

1− p
· ϵ

(ii) in each of the s possible directions of increasing coordinates, there is at least one

open edge with exactly one end-vertex in Wu.

Now, consider the sequence of events {Au(ω)}u∈{0}×Zs , where

Au(ω) = {ω ∈ Ω;u is ϵ-good in ω}, for u ∈ {0} × Zs.

Note that the events are independent of each other: since we consider directions

of increasing coordinate-values, a vertex u is ϵ-good independently of any other vertex,

as they depend on disjoint sets of edges.
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Thus, we aim to obtain an estimate for the probability of Au. If we denote the

event of the condition (ii) by Fu, then we verify for each u ∈ {0} × Zs that

Pp,q(u is ϵ-good) = Pp,q
(
|Wu| >

1 + p

1− p
· ϵ ;Fu

)
= Pp,q

(
|Wu| >

1 + p

1− p
· ϵ
)
Pp,q

(
Fu

∣∣∣ |Wu| >
1 + p

1− p
· ϵ
)
.

Now for ϵ > 0 sufficiently small and p close to 1,

Pp,q
(
|Wu| >

1 + p

1− p
ϵ

)
= p

1+p
1−p

ϵ

≥ 1− 2ϵ, (3.6)

where the last inequality can be proven as follows. We’d like to know the value of p
1+p
1−p

ϵ

when p→ 1, that is,

lim
p→1

p
1+p
1−p

ϵ =

(
lim
p→1

p
1+p
1−p

)ϵ
.

Defining y = limp→1 p
1+p
1−p , we have

log y = log

(
lim
p→1

p
1+p
1−p

)
= lim

p→1
log p

1+p
1−p

= lim
p→1

1 + p

1− p
log p

= lim
p→1

(
1 +

2p

1− p

)
log p

= lim
p→1

2p

1− p
log p

= lim
p→1

log p
1−p
2p

= lim
p→1

1
p

−1
2p2

(by L’Hôpital’s rule)

= lim
p→1

−1

p
2p2 = −2.

Thus, log y = −2 implies that y = e−2 and hence(
lim
p→1

p
1+p
1−p

)ϵ
= e−2ϵ

≥ 1− 2ϵ, since e−x ≥ 1− x, for x ≥ 0.

This proves the inequality in (3.6).
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Now, define Fu,j(ω) = {there is at least one open edge with an end-vertex in Wu

in direction j in configuration ω}, for j = 1, . . . , s. Note that {Fu,j}sj=1 is a collection of

independent events with equal probability, since the edges are open independently. Hence,

we have

Pp,q
(
Fu

∣∣∣ |Wu| >
1 + p

1− p
ϵ

)
= Pp,q

(
s⋂
j=i

Fu,j

∣∣∣ |Wu| >
1 + p

1− p
ϵ

)

=

Pp,q
[(⋂s

j=1 Fu,j

) ⋂ (
|Wu| >

1 + p

1− p
ϵ

)]
Pp,q

(
|Wu| >

1 + p

1− p
ϵ

)

=

Pp,q
[⋂s

j=1

(
Fu,j

⋂ (
|Wu| >

1 + p

1− p
ϵ

))]
Pp,q

(
|Wu| >

1 + p

1− p
ϵ

)

=

∏s
j=1 Pp,q

[
Fu,j

⋂ (
|Wu| >

1 + p

1− p
ϵ

)]
Pp,q

(
|Wu| >

1 + p

1− p
ϵ

) (by independence)

=
s∏
j=1

Pp,q
[
Fu,j

⋂ (
|Wu| >

1 + p

1− p
ϵ

)]
Pp,q

(
|Wu| >

1 + p

1− p
ϵ

)
=

s∏
j=1

Pp,q
[
Fu,j

∣∣∣ (|Wu| >
1 + p

1− p
ϵ

)]
=

[
Pp,q

(
Fu,1

∣∣∣ (|Wu| >
1 + p

1− p
ϵ

))]s
,

where the last equality holds due to the fact that every Fu,j has the same probability.

Note that

Pp,q
[
Fu,1

∣∣∣ (|Wu| >
1 + p

1− p
ϵ

)]
= 1− Pp,q

(
(Fu,1)

c
∣∣∣ (|Wu| >

1 + p

1− p
ϵ

))
= 1− Pp,q

(
there is no open edge in direction j = 1 with an

end-vertex in Wu, given that |Wu| >
1 + p

1− p
ϵ

)
= 1− (1− q)|Wu|

≥ 1− (1− q)
1+p
1−p

ϵ, since |Wu| >
1 + p

1− p
ϵ .

Thus we have

Pp,q
(
Fu

∣∣∣ |Wu| >
1 + p

1− p
ϵ

)
≥
[
1− (1− q)

1+p
1−p

ϵ
]s
.
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Therefore, if for some α > 0 we choose q > α
1− p

1 + p
, then

Pp,q
(
Fu

∣∣∣ |Wu| >
1 + p

1− p
ϵ

)
≥

[
1−

(
1− α

1− p

1 + p

) 1+p
1−p

ϵ
]s

≥
(
1− e−αϵ

)s
, (3.7)

and we can see that the last inequality holds thanks to[(
1− α

1− p

1 + p

) 1+p
1−p

]ϵ
≤
[(
e−α

1−p
1+p

) 1+p
1−p

]ϵ
= e−αϵ,

since 1− x ≤ e−x, when x ≥ 0.

Hence by (3.6) and (3.7),

p := Pp,q (u is ϵ-good) ≥ (1− 2ϵ)(1− e−αϵ)s.

We can take α = α(ϵ) sufficiently large such that p is strictly larger than the critical

threshold of site percolation on Zs. This, in turn, implies that our ϵ-good site percolation

on Zs does occur, and since the anisotropic bond percolation process with parameters

(p, q) stochastically dominates the isotropic site percolation process with parameter p, we

have that

Pp,q
(
bond percolation occurs in Z1+s

)
≥ Pp (site percolation occurs in Zs) > 0,

i.e., there is an infinite open cluster in Z1+s.

Corollary 20. Consider a bond percolation process on Z × Zs, s > 1, with parameters

(p, q). Then,
1

2sχ1(p)
≤ qc(p) ≤

α

χ1(p)
,

for some α > 0 and p sufficiently close to 1.

Proof. The left inequality follows directly from Theorem 18 since it guarantees that, if

q <
1

2sχ(p)
, then there is a.s. no infinite open cluster in Z1+s, while by definition we have

qc(p) = sup{q : θ(p, q) = 0}; then

qc(p) ≥
1

2sχ1(p)
.

On the other hand, by Theorem 19 we have that if q > α
1− p

1 + p
, then θ(p, q) > 0; since

θ(p, q) > 0 for all q > qc(p), by definition of qc(p), it follows that

qc(p) ≤ α
1− p

1 + p
.
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Since the mean size of the open cluster containing the origin in Z is defined as

χ1(p) = Ep (|C(ω)|) , note that

Ep|C| = 1 + Ep
∑
x∈Z

1(0↔x)

= 1 + Ep
∑
x∈Z+

1(0↔x) + Ep
∑
x∈Z−

1(0↔x)

= 1 +
∞∑
x=1

2Pp(0 ↔ x)

= 1 +
∞∑
x=1

2px

= 1 +

(
∞∑
x=0

2px

)
− 2

= 1 +
2

1− p
− 2, since

∞∑
x=0

2px is a geometric series with ratio p < 1

=
1 + p

1− p
.

Hence, qc(p) ≤
α

χ1(p)
, as desired.

Corollary 21. The critical exponents γ(d) and ψ(d), defined in (3.1), are related as

follows:

(i) ψ(1) exists and is equal to γ(1) = 1. Hence Conjecture 17 holds in the case d = 1.

(ii) If γ(d) and ψ(d) exist, then ψ(d) ≤ γ(d) for all d.

Proof. (i) Corollary 20 states that

1

2sχ1(p)
≤ qc(p) ≤

α

χ1(p)
.

Then,

1

2sχ1(p)
≤ qc(p) ⇒ 1

2s
≤ qc(p)χ1(p)

⇒ log(2s)−1 ≤ log [qc(p)χ1(p)]

⇒ − log(2s) ≤ log qc(p) + logχ1(p). (3.8)

We also have that

qc(p) ≤
α

χ1(p)
⇒ qc(p)χ1(p) ≤ α

⇒ log[qc(p)χ1(p)] ≤ logα

⇒ log qc(p) + logχ1(p) ≤ logα. (3.9)
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Thus, it follows from (3.8) and (3.9) that

− log(2s) ≤ log qc(p) + logχ1(p) ≤ logα,

which implies that

− log(2s)

log |1− p|
≥ log qc(p) + logχ1(p)

log |1− p|
≥ logα

log |1− p|
,

since log |1− p| is negative (as |1− p| is between 0 and 1).

Now, taking the limit when p ↑ 1, we have

lim
p↑1

− log(2s)

log |1− p|
≥ lim

p↑1

log qc(p) + logχ1(p)

log |1− p|
≥ lim

p↑1

logα

log |1− p|
.

Hence,

lim
p↑1

log qc(p)

log |1− p|
= − lim

p↑1

logχ1(p)

log |1− p|

= − lim
p↑1

log 1+p
1−p

log |1− p|

= − lim
p↑1

log(1 + p)− log(1− p)

log |1− p|

= lim
p↑1

log(1− p)

log |1− p|
− lim

p↑1

log(1 + p)

log |1− p|
= 1.

That is, qc(p) ≈ |1− p|. Since pc(1) = 1, we have that qc(p) ≈ |pc(1)− p|, and then

ψ = 1.

Moreover,

− lim
p↑1

logχ1(p)

log |1− p|
= 1 ⇒ lim

p↑1

logχ1(p)

log |1− p|−1
= 1

⇒ χ1(p) ≈ |1− p|−1

⇒ χ1(p) ≈ |pc(1)− p|−1

⇒ γ = 1.

Therefore, Conjecture 17 holds for d = 1.

(ii) From Theorem 18, we have

qc(p) ≥ 1

2sχd(p)
.

Hence,

log qc(p) ≥ log(2sχd(p))
−1 ⇒ log qc(p) ≥ − log(2sχd(p))

⇒ log qc(p) ≥ − log 2s− logχd(p)

⇒ log qc(p)

log |p− pc(d)|
≤ − log 2s

log |p− pc(d)|
− logχd(p)

log |p− pc(d)|
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Taking the limit when p ↑ pc(d), we obtain

lim
p↑1

log qc(p)

log |p− pc(d)|
≤ − lim

p↑1

logχd(p)

log |p− pc(d)|
.

So, if the above limits exist, the fact that qc(p) ≈ |p − pc(d)|ψ and χd(p) ≈ |p − pc(d)|−γ

yields ψ(d) ≤ γ(d) for all d.

Finally, if the critical exponent γ(d) > 0 exists in the manner of (3.1) we can make

use of Theorem 3.2 and the following statement (a Conjecture presented by [10, 11]) to

show that the Conjecture 17 holds for an arbitrary d.

Conjecture 22. Consider a bond percolation process on Zd × Zs with parameters (p, q),

p < pc(d). Then,

qc(p) ≤
β

χd(p)
,

for some β > 0.
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