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Resumo
A interação entre luz e matéria em sistemas quânticos abertos atraiu uma atenção signi-
ficativa nas últimas décadas devido à sua importância no desenvolvimento de tecnologias
quânticas emergentes, como a computação quântica e as comunicações ópticas. Nesse
contexto, sistemas de microcavidades acoplados a pontos quânticos e nanostruturas têm
sido objeto de extensos estudos teóricos e experimentais devido à sua capacidade de
controlar e manipular fenômenos quânticos fundamentais. Este trabalho reúne três estudos
de pesquisa que, embora abordem diferentes aspectos das interações luz-matéria, compar-
tilham um interesse comum em explorar os efeitos do bombeio incoerente e dos processos
de decoerência nas propriedades ópticas de sistemas quânticos abertos.

O primeiro estudo foca no efeito do bombeio incoerente de excitons sobre a retificação
óptica de uma nanostrutura que interage com um campo óptico clássico monocromático.
Usando uma equação mestra de Born-Markov na forma de Lindblad, a emissão espontânea,
o desfasamento e o bombeio incoerente são incluídos na análise. Uma expressão analítica
é derivada para descrever a retificação óptica em função da taxa de bombeio incoerente,
mostrando como o sistema transita entre os regimes de bombeio fraco e forte.

O segundo trabalho examina o comportamento do espectro de fotoluminescência de um
ponto quântico dentro de uma microcavidade semicondutora, sob a influência de um campo
magnético externo. O sistema é modelado numericamente usando uma equação mestra
na forma de Lindblad para capturar os efeitos da emissão espontânea, das perdas através
dos espelhos da cavidade e do defasamento. Este trabalho revela a transição do regime de
acoplamento forte para o regime da emissão desacoplada à medida que o campo magnético
aumenta, com a linha σ− no espectro desacoplando-se mais rapidamente.

O terceiro estudo investiga teoricamente os espectros de potência em um sistema de
microcavidade-ponto quântico sob bombeio incoerente de fótons e excitons. Dois modelos
diferentes são examinados, relacionando as taxas de perdas da cavidade e o bombeio, e
são analisadas as transições entre os regimes de acoplamento forte e fraco em diferentes
intensidades de bombeio. Apesar das diferenças entre os modelos, ambos preveem uma
sequência de transições entre acoplamento fraco e forte à medida que o bombeio aumenta,
um fenômeno que ainda não foi observado experimentalmente.

Embora esses três trabalhos abordem diferentes aspectos e sistemas quânticos, todos
compartilham o objetivo comum de entender como o bombeio incoerente e os processos
de decoerência afetam as propriedades ópticas e os regimes de acoplamento de sistemas
quânticos abertos. Esses estudos não apenas fornecem novos insights teóricos, mas também



oferecem previsões que podem orientar futuros experimentos no campo da óptica quântica
e das nanocavidades.

Palavras-chave: Interação luz-matéria, sistemas quânticos abertos, bombeio incoerente,
decoerência, retificação óptica.



Abstract
The interaction between light and matter in open quantum systems has attracted significant
attention in recent decades due to its importance in the development of emerging quantum
technologies, such as quantum computing and optical communications. In this context,
microcavity systems coupled to quantum dots and nanostructures have been the subject of
extensive theoretical and experimental studies due to their ability to control and manipulate
fundamental quantum phenomena. This work brings together three research studies that,
while addressing different aspects of light-matter interactions, share a common interest
in exploring the effects of incoherent pumping and decoherence processes on the optical
properties of open quantum systems.

The first study focuses on the effect of incoherent exciton pumping on the optical rectifi-
cation of a nanostructure interacting with a monochromatic classical optical field. Using
a Born-Markov master equation in the Lindblad form, spontaneous emission, dephasing,
and incoherent pumping are included in the analysis. An analytical expression is derived
that describes optical rectification as a function of the incoherent pumping rate, showing
how the system transitions between weak and strong coupling regimes.

The second work examines the behavior of the photoluminescence spectrum of a quantum
dot within a semiconductor microcavity, under the influence of an external magnetic field.
The system is numerically modeled using a Lindblad-form master equation to capture
the effects of spontaneous emission, losses through cavity mirrors, and dephasing. This
work reveals the transition from the strong coupling regime to uncoupled emission as the
magnetic field increases, with the σ− line in the spectrum decoupling more rapidly.

The third study investigates theoretically the power spectra in a microcavity-quantum
dot system under incoherent pumping of photons and excitons. Two different models are
examined, relating cavity loss rates and pumping; and transitions between strong and weak
coupling regimes at different pumping intensities are analyzed. Despite differences between
the models, both predict a sequence of transitions between weak and strong coupling as
the pumping increases, a phenomenon that has yet to be observed experimentally.

Although these three works address different aspects and quantum systems, they all share
the common goal of understanding how incoherent pumping and decoherence processes
affect the optical properties and coupling regimes of open quantum systems. These studies
not only provide new theoretical insights but also offer predictions that may guide future
experiments in the field of quantum optics and nanocavities.



Keywords: Light-matter interaction, Open quantum systems, Incoherent pumping, Deco-

herence, Optical rectification.
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1 Introduction

Due to its potential applications in the fields of computing [1], photonics [2],
nanotechnology [3], and metrology [4], among others [5], the control of optical and
electrical properties in semiconductor devices with nanometric dimensions has attracted
great scientific and technological interest. The basis of this technology consists in preparing,
controlling and taking advantage, efficiently, of the quantum states of structures composed
of hundreds or thousands of atoms arranged in a special way. The main difficulty is to
reduce the effects of decoherence produced by the interactions between thousands of atoms
and impurities present in semiconductor materials.

At present, the quantum effects that have been achieved in semiconductor structures
are comparable to the developments attained in systems of atoms. For example, the analog
of the superposition of light-atom states developed experimentally by Haroche and his
group [6,7] was achieved with cavity-quantum dot heterostructures developed by Reithmaier
et al. [8] and others. This control was achieved through the development of atom by atom
growth techniques such as molecular beam epitaxy (MBE) combined with nanolithographic
processing techniques.

Similar to the atomic case, in semiconductor physics the principle of operation
of the superposition of light-matter quantum states is based on the coupling of light
quantum states obtained from light-confining structures with high quality factors such
as micropillars, photonic crystals, nano-discs or nano-spheres, which make it possible to
preserve light quantum states for a long time, and quantum states of matter obtained
from structures such as quantum wires, quantum wells or quantum dots, which confine
electric charge in one, two and three dimensions, respectively.

The physics behind these achievements is attributed to the ability to modify
and control the electromagnetic density of states in the case of optical cavities, and the
electronic density of states in the case of matter. Another possible way of modification of
the structure of the electronic density of states is the inclusion of an external field, as a
magnetic field for example. As in the atomic system, for example, for a quantum dot (QD)
in the presence of an external magnetic field its spectral lines split; an effect known as
Zeeman effect.

When the interaction between the quantum states of light and matter is sufficiently
large, quantum states are obtained with combined characteristics of light and matter. This
is the case of the exciton-polariton quasi-particle, which is a quantum effect resulting from
the strong coupling of photons and excited states of matter (excitons) of a nanostructure.
This type of particle can be evidenced in the luminescence spectrum of the material, in
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which there is a separation of two lines in the emission spectrum of the material, an effect
called Rabi splitting. This separation into two lines indicates that light and matter are
strongly coupled and when this is not achieved it is considered that the states of light and
matter are weakly coupled. In QDs, the Zeeman effect is useful to manage the tuning of the
QDs levels with the cavity modes and to obtain control of the semiconductor light-matter
coupling.

All of these developments form a new platform to study quantum effects in one
single and relatively simple structure and also form the basis for possible new applications.

The works presented in this thesis are theoretical proposals that should be useful
for the experimental researcher in the investigation of the coupling properties of cavity -
quantum dot systems. To perform the corresponding calculations, many assumptions have
to be done:

• Our motivation is semiconductor self-assembled quantum dots, which are obtained
by the Stranski-Krastanov growing method. Such quantum dots can have different
shapes (lens, pyramid, semi-spherical, ...). Since we are not interested in calculating
the exact values of the energy levels of the quantum dots, we will not worry about
their specific shape.

• The number of quantum dots in our system will be one or two, depending on our
needs.

• We will consider only one exciton in each quantum dot.

• We will restrict our cavity to a semiconductor micropillar case.

• When the magnetic field is used, it will be considered constant and applied along
the growth direction of the quantum dots.

This thesis is a compilation of previously published work by the author, in the
area of coupling effects, incoherent pumping and influence of an external magnetic field in
quantum dot-cavity systems. These references are:

• Portacio, A.A., Cano, L.E., Rasero, D.A. (2021). Optical rectification in self-assembled
quantum dots: The role of incoherent pumping. Superlattices and Microstructures,
156, 106937.

• Cano, L.E., Guimaraes, P.S.S., Portacio, A. (2018). Efecto del campo magnético
sobre el espectro de emisión para un sistema microcavidad-punto cuántico. Rev.
Cubana Fis, 35, 115.
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• L.E. Cano, J.M. Villas-Bôas, P.S.S. Guimarães (2024). Weak to strong coupling
conditions for a microcavity-quantum dot system under incoherent pumping. Physica
B 591, 416282.

Next, some important concepts necessary to understand each of the previous
references will be presented.

The first concept is the Jaynes-Cummings model. This model is a simple quantum
mechanical model that includes the light-matter interaction of a single cavity mode with a
two-level system. The principal characteristic of this model is the oscillating behavior of
the populations of light and matter states due to the coupling. These oscillations, known
as Rabi oscillations, are characteristic of quantum mechanical systems.

The second concept is Lindblad dynamics. The realistic necessity to put a quantum
system in an environment has led to the development of the theory of open quantum
systems. In these developments, the system and the environment are considered to be
coupled in a way that the system is affected by the environment, but the environment is not
significantly affected by the system. Additionally, the system does not have a memory term.
With these approximations, the quantum evolution of the system’s state is represented as
a set of differential equations and operators that allow us to study the dynamics of the
system.

The third concept is the Power Spectra observable. The light emission spectrum is
a characteristic of quantum systems that reflects many aspects of the internal behavior of
the system, such as energy levels and coupling strengths. Quantum mechanically, the light
emission spectrum is defined as the Fourier transform of the mean value of the two-times
correlation of the light operator. This quantity is directly related to the luminescence
spectra measured in experimental works.

The last concept to understand principally, specially in the context of the first work
described in this thesis, is the optical rectification term. When a material is subjected
to a light beam, it can become polarized as a result of the light’s influence. The level
of this polarization is directly correlated to the intensity of the electric field acting on
the material. The linear component of this relationship is referred to as linear optical
susceptibility, while the second-order component is known as optical rectification.

These concepts are explained in more detail in the next chapter and its associated
references.
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2 Theoretical Frame

2.1 Simple quantum model for light-matter interaction

2.1.1 Jaynes-Cummings model

The Jaynes-Cummings model [9, 10] describes the interaction of a two level system,
indicated by the excited |X⟩ and the ground |G⟩ states, with a single mode of the radiation
field represented as

−→
E = ê

(
ℏω
ϵ0V

)1/2

(â† + â)sin(kz), (2.1)

where ê is a polarization vector, â (â†) is the light annihilation (creation) operator, and
k is the wave vector in the z-direction. The constants ℏ, ω, ϵ0 and V are, respectively,
Planck’s constant divided by 2π, the angular frequency, the vacuum permittivity and the
volume of the system.

The total Hamiltonian can be written as

Ĥ = HT.L. +Hfield +HInt., (2.2)

where HT.L. is the two level Hamiltonian, Hfield represents the single electromagnetic mode,
and HInt. is used to describe the interaction between the two level system (TL) and the
single electromagnetic mode. If we consider the zero of energy as the halfway point between
the levels |X⟩ and |G⟩, which have a difference of energy EX − EG = ℏω0, and with the
help of the operator σ̂z = |X⟩ ⟨X| − |G⟩ ⟨G|, HT.L. can be written as HT.L. = 1

2ℏω0σ̂z.
The Hamiltonian for the electromagnetic single mode field is Hfield = ℏω â†â, where
the zero-photons energy 1

2ℏω was neglected. The interaction Hamiltonian in the dipole
approximation is the dipole operator d̂ = d(σ̂+ + σ̂−) multiplied by the operator Ê
(equation 2.1). Here, d = ⟨X|d̂|G⟩ is the dipole element of the operator d̂. We obtain
HInt. = ℏg(σ̂+ + σ̂−)(â† + â), where σ̂+ = |X⟩ ⟨G|, σ̂− = |G⟩ ⟨X| and g = d

ℏ

(
ℏω

ϵ0V

)1/2
sin(kz).

With these definitions the Hamiltonian takes the form

Ĥ = 1
2ℏω0σ̂z + ℏω â†â+ ℏg(σ̂+ + σ̂−)(â† + â). (2.3)

2.1.1.1 The rotating wave approximation and the Jaynes-Cummings Hamiltonian

Another approximation used in this model is the rotating wave approximation
(RWA). This approximation consists in maintaining in the interaction Hamiltonian only the
transitions that couple the excitation of matter with a deexcitation of the electromagnetic
field and vice versa. This approximation brings the Jaynes-Cummings Hamiltonian to the
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form
Ĥ = 1

2ℏω0σ̂z + ℏωâ†â+ ℏg(σ̂+â+ σ̂−â
†). (2.4)

Because the Hamiltonian only takes account of single photon transitions with the corre-
sponding excitation of matter, it is possible to write the Hamiltonian in a block form. In
the base of states for a number n of photons, the possible transitions are between the
states known as bare states, |X⟩ |n⟩ ↔ |G⟩ |n+ 1⟩. The n-block of the Hamiltonian has
the form

H(n)=̇
1

2ℏω0 + nℏω ℏg
√
n+ 1

ℏg
√
n+ 1 −1

2ℏω0 + (n+ 1)ℏω

 , (2.5)

with eigen-energies written in terms of a detuning parameter ∆ = ω − ω0,

E+/− = ℏ
2

(
(1 + 2n)(∆ + ω0) ±

√
∆2 + 4(1 + n)g2

)
(2.6)

and eigenvectors,

|n,+⟩ = cos
(
θ

2

)
|X⟩ |n⟩ + sin

(
θ

2

)
|G⟩ |n− 1⟩ , (2.7)

|n,−⟩ = − sin
(
θ

2

)
|X⟩ |n⟩ + cos

(
θ

2

)
|G⟩ |n− 1⟩ , (2.8)

typically known as dressed states. Here, tan
(

θ
2

)
= ∆+Ω(∆)

Ω(0) , Ω(∆) = [∆2 + 4g2(n+ 1)]1/2

and Ω(0) = 2g(n+ 1)1/2.

The most important contribution that the Jaynes-Cummings model brings is the
possibility to study light-matter transitions in a complete quantum mechanics formalism.
A physical consequence of this treatment is the prediction of the collapses and revivals of
the atomic populations for a special case of the electromagnetic field (a coherent state).

2.2 Simple models for quantum dots, cavities and light-matter
interac.

2.2.1 Semiconductor quantum dots

One of the most prominent advantage of the semiconductor quantum dots is the
ability to confine charge in a very narrow region of the space, quantizing the electron (and
hole) energy levels. This discrete behavior gives the possibility of relaxation of energy in a
discrete manner, giving rise to an emission spectrum that is similar to that of atoms. For
that reason the semiconductor quantum dots are usually called artificial atoms.

Semiconductor quantum dots (QDs) growth techniques have been developed mainly
in two branches: colloidal solutions, that use chemical reactions to obtain the QD [11],
and epitaxial growth [12], where the materials are deposited on substrates, layer by layer,
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in a controlled way. Here, we only explain the technique called molecular beam epitaxy in
the Stranski-Krastanov regime [13]. This technique consists in the growth of thin films
of two or more semiconductor materials of different lattice constants, which cause strain
forces that generates spontaneous formation of “islands”, processes that relaxes the strain
forces. Those “islands” are our self-assembled quantum dots.

The complexity of the strain mechanism makes that the quantum dots can grow
in different shapes, i.e., they could adopt the form of pyramids, cylinders, semi-spheres,
lenses, depending of the growth parameters.

Some control of the size and shape of the quantum dot is possible, by adjusting
the growth parameters. Unfortunately, normally there is no control of the position where
the quantum dots will grow. Some developments in this aspect come from the growth on
substrates with a well determined defect pattern. In this kind of sample the self-assembled
quantum dots can be grown in predictable positions [14, 15]. The method of achieving the
growth of quantum dots in specific positions is still a matter of intensive study.

In the theoretical aspect, some different shapes of the confining potential are
adopted, such as spheres, cylinders and pyramids, allowing the possibility to model discrete
energy levels of the carriers inside the quantum dot. Another possibility supported by the
experimental evidence [13] is that it is possible to consider most self-assembled quantum
dots as a harmonic (parabolic) potential of confinement.

2.2.2 The exciton

In a semiconductor material, the exciton is a kind of particle formed when an
electron in the conduction band is bounded with a hole in the valence band by the Coulomb
force. The bound energy of this particle is typically of the order of a few meV and its
characteristic lifetime is some nanoseconds. The recombination of the pair can be in a
radiative process emitting light or in non-radiative processes heating the system due to
interactions with the lattice. Figure 2.1 shows a schematic representation of the interaction
between one photon and a bounded electron-hole pair, the excition.

2.2.3 Photonic Cavities

A photonic crystal is a system that combines two or more dielectric materials in
a periodic arrangement leading to the formation of a photonic band structure [16]. The
periodic variation of the refraction index can result in the appearance of bands of allowed
and bands of forbidden frequencies; the latter are usually called photonic band gaps. The
most important property of a photonic crystal is the property to enhance or forbid the
flux of light of some wavelengths in the direction of periodicity of the system. Also, the
presence of the band gap can be used to control the flux of light.
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Figure 2.1 – Schematic representation of a quantum dot within a two-level approximation,
where |G⟩ denotes the ground state and |X⟩ the excited state. (a) The quantum
dot system in the ground state |G⟩ and an incident light of frequency ω. (b)
Creation of an exciton (electron-hole pair) due to light absorption. (c) Photon
emission during the annihilation of the exciton.

If some defects in the periodicity of the dielectric material are introduced, frequencies
inside the band gap could now be allowed. These frequencies are localized near the region
of the defects, thus confining the light with the formation of an optical cavity. Some typical
configurations of these cavities are a pillar cavity [17], a L3 cavity [18], and others [19].
Specially, a pillar cavity is a one dimensional system in which light is trapped using the
effect of confinement of light of a one dimensional photonic crystal (periodic variation
of the refraction index in one dimension) and a lateral confinement of light using total
internal reflection, with the critical angle for this confinement determined by the difference
between the refractive indexes of the pillar material and of its surroundings.

2.2.4 Exciton-polariton

The exciton-polariton is a particle formed by the exciton strongly coupled with a
photon, in such way that their behavior cannot be described as separable particles.

In this part of this work, we present a short historical presentation of the exciton-
polariton concept. The exciton-polariton concept was first introduced by Hopfield [20]
in 1958, in an intent to give a more complete view of the absorption process. This work
formulates the optical properties of excitons in a quantum-electrodynamical treatment,
developing an exciton-photon interaction Hamiltonian theory for the absorption process
in an infinitely extended bulk material. The next development in the area of polaritons
took nearly four decades: the control of the polariton behavior. The work of Weisbuch et
al. [21] was the study that showed for the first time the mode splitting of quantum-well
excitons, using the spectral response of a semiconductor microcavity and quantum wells
in the strong-coupling regime. This work explicitly shows the need to take account of the
dimensionality effects in quantum confined systems in order to obtain a control of the
optical properties of these systems. With these ideas in mind, Houdre et al. [22] showed
the experimental behavior of the intensity of the photoluminescence spectrum, reporting
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that the strong coupling regime saturates under high excitation power. This latter work
uses the properties of a quantum-well exciton inserted in semiconductor microcavities. The
special interest with this study is that it contributes to the characterization of the two
regimens of coupling, the strong-coupling and the weak-coupling, finding that the strong-
coupling regime has a saturation point caused by the non-resonant electron-hole pairs. With
the knowledge obtained about photoluminescence measurements, Tartakovski et al. [23]
studied the behavior of the dispersion of polaritons in semiconductor microcavities with
two-dimensional light confinement. They found that the strong exciton-photon coupling
can be suppressed when the exciton densities are increased. The same idea was explored in
other geometrical microcavities configurations [19]. Photoluminescence measurements were
reported by Bloch et al. [24] in pillar microcavities and GaAs quantum-wells. Gutbrod et
al. [25] studied the photoluminescence of photons and excitons in photonic dots. In this
work it was reported that the photon energies are a function of the dot size and shape and
the changes in the exciton-photon coupling due to the confinement were studied. After
all of these experimental works, it was possible to formulate for the first time the idea of
polariton lasing. Cao et al. [26] were the ones responsible for this discovery. They presented
experimental data for the microcavity polariton system at high density, interpreting the
experimental data obtained as the existence of a region where the lasing process was
possible. Another interesting fact in the polariton concept was developed with the study
of Deng et al. [27]. That work shows the existence of a phase transition from a classical
thermally mixed state to a quantum-mechanical pure state of exciton polaritons in a
GaAs multiple quantum-well microcavity, confirming the condensation of microcavity
exciton-polaritons. For quantum dots immersed in microcavities the studies are still in
progress after the pioneering work of J. Gao et al. [28].

2.3 Master equation: for a more realistic dynamics
The models described before do not take account of the interaction with the

environment. It is possible to include characteristic environments to these models through
an approach called the master equation. This approach describes the time evolution of
the process, and includes the non-unitary effects that destroy the quantum behavior of a
system.

The Lindblad form is a formulation of the master equations written as a set of
differential equations for the density matrix operator, ρ̂, of the system, describing the
time evolution of the probabilities of the occupation of each state. The master equation
in the Lindblad form [1] has two important approximations: the Born approximation,
where the environment is considered to be huge relative to the system, leaving the states
of the environment and the system separable; and the Markov approximation, where
no memory effect of the environment on the system is taken into account.
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The master equation in the Lindblad form is

dρ̂

dt
= − i

ℏ
[Ĥ, ρ̂] +

∑
j

(
2Lj ρ̂L

†
j − {L†

jLj, ρ̂}
)

(2.9)

where the Lj are the non-unitary operators that model the coupling of the system for the
different environments and {Â, B̂} = ÂB̂ + B̂Â is the anti-commutation operation for
arbitrary operators Â and B̂. It is better to explain all of these with a specific example.
Here, we will follow the work of Perea et al. [29], where the system is a quantum dot in a
microcavity, and the interactions with environments that are considered are the coupling
with the vacuum state producing spontaneous emission processes, loss of photons from the
system for a non-perfect cavity, and incoherent pumping of excitons, which is a form of
populating the system with particles. All of this leads to the master equation,

dρ̂

dt
= − i

ℏ
[Ĥ, ρ̂] + Γx

2
(
2σ̂ρ̂σ̂† − {σ̂†σ̂, ρ̂}

)
+ Γc

2
(
2âρ̂â† − {â†â, ρ̂}

)
+ Pc

2
(
2â†ρ̂â− {ââ†, ρ̂}

)
+ Px

2
(
2σ̂†ρ̂σ̂ − {σ̂σ̂†, ρ̂}

)
(2.10)

where Γx represents the spontaneous emission rate, Γc is the loss of photons from the
system, Pc is the rate of continuous incoherent pumping of photons and Px is the rate
of continuous incoherent pumping of excitons. Note the difference in the order of the
operators for the pumping term with respect to the operators for the spontaneous emission
and loss of photons. The pumping terms in the Lindblad equation describe any kind of
particles that is incoming to the system, i.e., incoming excitons or photons, and the other
terms describe outgoing particles.

When the Lindblad dynamics describe the interaction of the quantum dot with the
microcavity, the natural solution typically leads to an equilibrium or steady-state solution
for the density matrix ρ. Under certain conditions where the system is in resonance with
the cavity mode and there is a weak coupling between the emitter and the cavity, the
system reaches a steady state characterized by an enhanced emission rate, that is the
so-called Purcell effect. On the other side, when the coupling emitter-cavity is strong
enough, we have the formation of a quasi-particle, the exciton-polariton.

2.4 Theory of the photoluminescence spectra using the Green
method
The photoluminescence spectra s(ω) is defined as the light emitted by a system

observed in its frequencies components, i.e., it is the field intensity for a given frequency.
The photoluminescence spectra is usually calculated by the Fourier transform of the electric
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field intensity and this intensity is related with the mean number of photons emitted by a
system in a determined angular frequency ⟨â†(ω)â(ω)⟩.

Here, we calculate the spectra using the relation that exists between ⟨â†(ω)â(ω)⟩
and the Fourier transform of the average of the two-times first order correlation function
K(t) ≡ ⟨â†(t)â(0)⟩ [30]. This relation is written as

s(ω) = 2Re
∫ ∞

0
K(t)e−iωtdt. (2.11)

The K(t) operator is calculated using the density matrix theory, i.e., for an arbitrary
operator Â the mean value is defined as ⟨Â⟩ = Tr[Âρ], where Tr represents the trace of
the product of the density matrix ρ̂ and the operator Â. If we have a composed system,
the density matrix describes two or more subsystems. For the mean values of a given
operator, we used the partial trace operator to calculate the density matrix operator
that describes the subsystem and used it to calculate the mean value. In the case that
the density operator represents matter states and light modes, the mean value for the
two-times operator ⟨â†(t)â(0)⟩ has to be calculated using the relation

K(t) = Trρmat.

 ∞∑
n,m,l=0

√
l(m+ 1)Ul−1,m(t) ⟨m+ 1| ρ̂ |n⟩U †

n,l(t)
 , (2.12)

where Ul−1,m(t) = ⟨l − 1| Û(t) |m⟩, U †
n,l(t) = ⟨n| Û †(t) |l⟩ and the partial trace TrLight

operation was made over light state |n⟩. The symbol Trρmat. represents trace over matter
states.

With the assumption that at the steady state the density operator can be written
in a separable way from matter and light, the density matrix at the steady state is
ρ̂(SS) = ρ̂

(SS)
mat. ⊗ ρ̂

(SS)
Light, where the symbol (SS) represents steady state and K(t) can be

written as

K(t) = Tr(SS)
ρmat.

 ∞∑
n,m,l=0

√
l(m+ 1)Ul−1,m(t) ⟨m+ 1| ρ̂mat. ⊗ ρ̂Light |n⟩U †

n,l(t)


=
∞∑

n,m,l=0
Trρmat.

[
Ul−1,m(t)ρ̂mat.U

†
n,l(t)

]√
l(m+ 1) ⟨m+ 1| ρ̂Light |n⟩

=
∞∑

n,m,l=0
Gn,m,l(t)

√
l(m+ 1) ⟨m+ 1| ρ̂Light |n⟩ , (2.13)

where Gn,m,l(t) = Trρmat.

[
Ul−1,m(t)ρ̂mat.U

†
n,l(t)

]
is usually called the Green function of the

system.

An initial condition for the Green function Gn,m,l(0) is obtained applying the
definition of the Û operators for the time t = 0, Ul−1,m(0) = ⟨l − 1| |m⟩ = δl−1,m, and
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U †
n,l(0) = ⟨n| |l⟩ = δn,l, leading to the initial condition as

Gn,m,l(0) = δl−1,mδn,l, (2.14)

where we use the fact that Trρmat. [ρ̂mat.] = 1.

With the assumption that the density matrix for light is diagonal,

⟨m+ 1| ρ̂(SS)
Light |n⟩ = δm+1,n ⟨n| ρ̂(SS)

Light |n⟩

= δm+1,nPn, (2.15)

where Pn = ⟨n| ρ̂(SS)
Light |n⟩, the function K(t) can be written as

K(t) =
∞∑

n,m,l=0
Trρmat.

[
Ul−1,m(t)ρ̂(SS)

mat.U
†
n,l(t)

]√
l(m+ 1) ⟨m+ 1| ρ̂(SS)

Light |n⟩

=
∞∑

m,l′=0
Gl′,m(t)

√
(l′ + 1)(m+ 1)Pm+1, (2.16)

where the Green function is Gl′,m(t) = Trρmat.

[
Ul′,m(t)ρ̂(SS)

mat.U
†
m+1,l′+1(t)

]
, and the variable

replacement l′ = l − 1 was used.

The initial condition for this Green function is

Gl′,m(t = 0) = Trρmat.

[
Ul′,m(0)ρ̂(SS)

mat.U
†
m+1,l′+1(0)

]
= Trρmat.

[
⟨l′|m⟩ ρ̂(SS)

mat. ⟨m+ 1|l′ + 1⟩
]

= ⟨l′|m⟩Trρmat.

[
ρ̂

(SS)
mat.

]
= ⟨l′|m⟩ . (2.17)

The Green function Gl′,m is interpreted as the off-diagonal element for light modes

Gl′,m = ⟨l|G(m) |l + 1⟩ (2.18)

Gl′,m = Trρmat.

[
⟨l′|U(t) |m⟩ ρ̂(SS)

mat. ⟨m+ 1|U †(t) |l′ + 1⟩
]

= ⟨l′| Ĝ(m)
l′ (t) |l′ + 1⟩ , (2.19)

where Ĝ(m)
l′ (t) = Trρmat.

[
U(t)(|m⟩ ⟨m+ 1|)ρ̂(SS)

mat.U
†(t)

]
is the Green operator. To describe

the time dependence of the Green function, it is useful to consider that the operator
Ĝ

(m)
l′ (t) must satisfy the same kind of equation that the light operator; because the light

operator evolutes in the same way as the Green operator. That means that each Green
function Gl′,m = ⟨l′| Ĝ(m) |l + 1⟩ satisfies the same equation of motion (ρ̂Light)l′,l′+1 =
⟨l′|ρ̂Light|l′ + 1⟩. It allows us to write the dynamics of the Green function in the known
form of the density matrix operator.



2.5. POLARIZATION IN NONLINEAR QUANTUM OPTICAL SYSTEMS 24

2.5 Polarization in Nonlinear Quantum Optical Systems
In nonlinear optics, the study of polarization plays a crucial role in understanding

the interactions between light and matter. Its importance lies in its ability to capture
the response of a medium to an incident electromagnetic field, providing insights into the
optical properties of materials. In this kind of systems, the behavior of polarization can
be described by the susceptibility function, which quantifies the relationship between the
induced polarization and the applied electric field. The linear susceptibility represents how
the polarization depends linearly on the electric field, offering insights into how materials
respond to weak fields. In the linear approximation, the polarization is written as [31, 32]:

P (t) = ϵ0χE(t), (2.20)

where P represents polarization, ϵ0 is the permittivity of free space, χ is the linear
susceptibility, and E(t) is the electric field.

In contrast, stronger fields introduce a nonlinear component to the polarization,
where higher-order processes, such as quadratic and cubic susceptibilities, become significant
[31]. In these cases, the polarization is expressed as:

P (t) = ϵ0
(
χE(t) + χ(2)E2(t) + χ(3)E3(t) + · · ·

)
, (2.21)

where χ(2) and χ(3) are the second- and third-order susceptibilities, respectively. For
this equation to hold, it is essential that the polarization at time t depends instantaneously
on the intensity of the electric field, a condition valid only in lossless, non-dispersive media,
and in the absence of photoionization.

It is possible to apply the mathematical methods for open quantum systems to
calculate the nonlinear optical susceptibility under external incoherent pumping. This is
done using the following theoretical framework [33].

Use the Lindblad Master Equation to model the dynamics of open quantum systems,
incorporating both the coherent evolution of the system and the dissipative effects due to
spontaneous emission, incoherent pumping, dephasing or other incoherent process.

∂ρ̂

∂t
= 1
iℏ
[
Ĥ0 + V̂ (t), ρ̂

]
+ L[ρ], (2.22)

where the Hamiltonian part describes the matter system (e.g., a quantum dot and
its associated exciton) modeled as a two-level system, with the ground state |g⟩ and excited
state |e⟩. Their interaction with monochromatic light is represented by V (t) = −

−→
M ·

−→
E (t),

where the term −→
M denotes the dipole moment operator M̂ = qx̂, with q being the particle

charge and x̂ the position operator. The dissipative Lindblad terms L[ρ] are included to
account for spontaneous emission, decoherence, and incoherent exciton pumping.
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The solution to the density operator is proposed through a perturbative expansion,
applied to solve the master equation by expanding the density operator and the electric
field in powers of a parameter λ, enabling the calculation of the density matrix for different
orders. The density matrix is expressed as:

ρ =
∞∑

n=0
λnρ(n), (2.23)

where λ represents the order of perturbation, and the electric field is introduced in
the expansion as:

E(t) → λE(t). (2.24)

The expansion allows solving the master equation order by order, obtaining the
density matrix for each expansion, which in turn leads to the polarization vector and the
corresponding susceptibilities. The differential equations derived from the master equation
are solved under the assumption of steady-state conditions, t → ∞.

For each order, the value of the polarization operator is calculated as the expectation
value of the dipole moment per unit volume V :

P = 1
V

Tr[ρM̂ ]. (2.25)

Finally, the linear and nonlinear polarization terms in the frequency domain are
computed and compared with the classical polarization terms. This comparison provides
the linear and nonlinear susceptibilities in the context of open quantum systems [33].

The procedure outlined here is applied in the chapter titled "Optical Rectification
in Self-Assembled Quantum Dots: The Role of Incoherent Pumping." for the case of
spontaneous emission and incohenrent pumping of excitons.
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3 Optical rectification in self-assembled quan-
tum dots: The role of incoherent pumping

The effect of the incoherent pumping of excitons on the optical rectification of
a nanostructure that interacts with a monochromatic classical optical field is studied
theoretically, by solving a Born-Markov master equation in the Lindblad form that
includes the processes of spontaneous emission, dephasing, and incoherent pumping of
excitons between two levels of the nano– structured quantum system. In addition, the
quantum vacuum of the electromagnetic field that affects the nanostructure was considered
as an environment for the system. An analytical expression for the optical rectification
was found in terms of the incoherent pumping rate of excitons P in which a weak pumping
regime and a strong pumping regime are evidenced.1

3.1 Introduction
Low dimensional semiconductor structures (LDSS) has been a branch in semi-

conductor physics of rapid development [34, 35]. This field has great importance due to
its possible applications in areas such as quantum optics, nano-photonics [36], quantum
information [37, 38], optoelectronics [39], quantum metrology [40] and quantum computa-
tion [41]. Inherently, its development was due to the advance in semiconductor growth
techniques, which allowed the confinement of charge carriers in one, two, or three di-
mensions, producing quantum wells, quantum wires, and quantum dots (QD) structures,
respectively. All of these structures led to the development of better infrared detectors [42],
image sensors [43], laser diodes [44], and many other emerging technologies [45]. One of the
main aims in the development of LDSS technology is to achieve a theoretical understand-
ing and experimental control on the linear and non-linear optical response of LDSS [46].
Recently, in the theoretical side, the research was directed to the understanding and the
exploration of nonlinear optical properties and response of nanostructures such as quantum
dots in the presence of external magnetic [47] and electric fields [48], and laser driving [48].
For this purpose, an alternative theoretical methodology was reported, which uses the
theory of quantum open systems to analyze spontaneous emission and dephasing processes,
and which reproduces the accepted solution of the Liouville-Von Neuman equation with
included Lindblad terms [33]. Here, we propose a further development of this theory, which
includes a new term on the Lindblad master equation that models incoherent pumping of
excitons. In work reported here, this theory is applied to study the optical rectification
1 Published at Superlattices and Microstructures 156 (2021) https://doi.org/10.1016/j.spmi.2021.106937
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response of self-assembled semiconductor quantum dots. In section 3.2 the model of the
system to be studied is formulated and the dynamics of the system is proposed, in section
3.3 the results and discussions are presented and in section 3.4 the conclusions are shown.

3.2 Theoretical background
To model the system, the Born-Markov master equation in the Lindblad form [49]

is used
∂ρ̂s

∂t
= 1
iℏ

[Ĥ, ρ̂] +
3∑

ν=1

λν

2 (2L̂νρL̂
†
ν − L̂†

νL̂ν ρ̂− ρ̂L̂†
νL̂ν) (3.1)

where ρ̂s is the density matrix of the system, Ĥ the Hamiltonian operator, L̂ are
the Lindblad operators with λ as the coefficient rate. Spontaneous emission is defined as
L̂1 = σ̂ with rate λ1 = γ, dephasing as L̂2 = σ̂z with λ2 = γφ and the continuous and
incoherent exciton pumping term L̂3 = σ̂†, associated with a reservoir of quantum dots,
at a pumping rate λ3 = P [50, 51]. Here the operators σ̂ = |g⟩⟨e|, σ̂z = |e⟩⟨e| − |g⟩⟨g| are
operators in the frame of the theory for two-level systems for ground and excited states
{|g⟩, |e⟩}, respectively.

To solve equation (3.1) for a Hamiltonian of a two levels system interacting with
a monochromatic light E(t) in the dipole approximation, we define the Hamiltonian as
Ĥ = Ĥ0 + V̂ (t), with V̂ (t) = −M̂ ·E(t) and the dipolar moment operator M̂ . The matrix
elements of (3.1) are

ρ̇eg = −
(
iωeg + γ

2 + P

2 + γφ

)
ρeg − 1

iℏ

[
M̂E(t), ρ̂

]
eg

, (3.2)

ρ̇ee = −γρee + Pρgg − 1
iℏ

[
M̂E(t), ρ̂

]
ee

, (3.3)

ρ̇gg = γρee − Pρgg − 1
iℏ

[
M̂E(t), ρ̂

]
gg

, (3.4)

where ee, gg, eg are indexes that represent the corresponding matrix element.

To solve equations (3.2)–(3.4), a perturbation method is used, where the density
matrix is expanded as ρ̂ = ∑

n=0 λ
nρ̂(n) and E(t) = λE(t). We obtained a set of iterated

equations. Specifically, the set of equations for zero-order are

ρ̇(0)
eg = −

(
iωeg + γ

2 + P

2 + γφ

)
ρ(0)

eg , (3.5)

ρ̇(0)
ee = −γρ(0)

ee + Pρ(0)
gg , (3.6)
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ρ̇(0)
gg = γρ(0)

ee − Pρ(0)
gg , (3.7)

and for the n-order are

ρ̇(n)
eg = −

(
iωeg + γ

2 + P

2 + γφ

)
ρ(n)

eg − 1
iℏ

[
M̂E(t), ρ̂(n−1)

]
eg

, (3.8)

ρ̇(n)
ee = −γρ(n)

ee + Pρ(n)
gg − 1

iℏ

[
M̂E(t), ρ̂(n−1)

]
ee

, (3.9)

ρ̇(n)
gg = γρ(n)

ee − Pρ(n)
gg − 1

iℏ

[
M̂E(t), ρ̂(n−1)

]
gg

. (3.10)

To achieve our goal to describe the effects of the incoherent pumping on the optical
rectification, in the thermodynamic limit, the condition (t → ∞) must be included to solve
the iterated set of equations (3.5)–(3.10) and to study the optical response it is necessary
to solve the expansion until second-order. For the zero-order solution

ρ(0)
eg (t) → ρ(0)

eg = 0, (3.11)

ρ(0)
ee (t) → ρ(0)

ee = P

γ + P
, (3.12)

ρ(0)
gg (t) → ρ(0)

gg = γ

γ + P
, (3.13)

while to first-order the solution is

ρ̇(1)
eg = −

(
iωeg + γ

2 + P

2 + γφ

)
ρ(1)

eg −
E(t)Meg(ρ(0)

gg − ρ(0)
ee )

iℏ
, (3.14)

ρ̇(1)
ee = −γρ(1)

ee + Pρ(1)
gg , (3.15)

ρ̇(1)
gg = γρ(1)

ee − Pρ(1)
gg , (3.16)

and for the second-order, the solution is

ρ̇(2)
eg = −

(
iωeg + γ

2 + P

2 + γφ

)
ρ(2)

eg − E(t)
iℏ

ρ(1)
eg (Mee −Mgg) (3.17)
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ρ̇(2)
ee = −γρ(2)

ee + Pρ(2)
gg − E(t)

iℏ
(Megρ

(1)
ge − ρ(1)

eg Mge) (3.18)

ρ̇(2)
gg = γρ(2)

ee − Pρ(2)
gg + E(t)

iℏ
(Megρ

(1)
ge − ρ(1)

eg Mge) (3.19)

Now, it is considered the change from time domain to the frequency domain as in
Ref. [52]:

ρ(2)
nm(t) = ρ̃

(2)
nm;0(ω) + ρ̃

(2)
nm;2ω(ω)e−i2ωt + ρ̃

(2)
nm;2ω(−ω)ei2ωt, (3.20)

where ρ̃(2)
nm;0(ω) is the density matrix associated with the optical rectification and

with the second order terms

ρ̃
(2)
eg;2ω(ω) =

(Mee −Mgg)ρ̃(1)
eg;ω(ω)Ẽ(ω)

ℏ(ωeg − 2ω) − iℏ
(

γ
2 + P

2 + γφ

) (3.21)

ρ̃
(2)
eg;0(ω) =

(Mee −Mgg)
(
ρ̃(1)

eg;ω(ω)Ẽ(−ω) + ρ̃(1)
eg;ω(−ω)Ẽ(ω)

)

ℏωeg − iℏ
(

γ
2 + P

2 + γφ

) (3.22)

ρ̃
(2)
ee;2ω(ω) = γ − 2iω

γ + P − 2iω

(
(Mgeρ̃

(1)
eg;ω(ω) −Megρ̃

(1)
ge;ω(ω))E(ω)

2ℏω + iℏγ

)
(3.23)

ρ̃
(2)
gg;2ω(ω) = γ − 2iω

γ + P − 2iω

(
(Mgeρ̃

(1)
eg;ω(ω) −Megρ̃

(1)
ge;ω(ω))E(ω)

2ℏω + iℏγ

)
(3.24)

ρ̃
(2)
ee;0(ω) = γ

(γ + P )

(
(Mgeρ̃

(1)
eg;ω(ω) −Megρ̃

(1)
ge;ω(ω))E(−ω)

iℏγ
+

(Mgeρ̃
(1)
eg;ω(−ω) −Megρ̃

(1)
ge;ω(−ω))E(ω)

iℏγ

)
(3.25)

ρ̃
(2)
gg;0(ω) = − γ

(γ + P )

(
(Mgeρ̃

(1)
eg;ω(ω) −Megρ̃

(1)
ge;ω(ω))E(−ω)

iℏγ
+

(Mgeρ̃
(1)
eg;ω(−ω) −Megρ̃

(1)
ge;ω(−ω))E(ω)

iℏγ

)
(3.26)

The second order optical susceptibility is defined as

P (2)(t) = 1
V
Tr(ρ̂(2)(t)M̂) (3.27)

= 2ϵ0χ
(2)(ω)Ẽ(ω)Ẽ(−ω) + ϵ0χ

(2)
2ω (ω)Ẽ2(ω)e−i2ωt + ϵ0χ

(2)
2ω (−ω)Ẽ2(−ω)ei2ωt,
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Figure 3.1 – The optical rectification coefficient (OR) as a function of the incident photon
energy ℏω for five different values of incoherent pumping in the weak pumping
regime (i.e., P < γ), for a cylindrical QD with height L = 10 nm and radius
R = 8 nm.

where V represents the volume of the system.

From equation (3.28), with the proper replacements (3.11)-(3.26) and without the
anti-resonant term, we obtain the optical rectification equation

χ
(2)
0 (ω) =

(Mee −Mgg)(ρ(0)
gg − ρ(0)

ee )
2V ϵ0

(3.28)((
γ

(γ + P )
Mge

iℏγ
+ Mge

ℏωeg − iℏ
(

γ
2 + P

2 + γφ

))( Meg

ℏωeg − iℏ
(

γ
2 + P

2 + γφ

)
− ℏω

)

+
(

Meg

ℏωeg + iℏ
(

γ
2 + P

2 + γφ

) − γ

(γ + P )
Meg

iℏγ

)(
Mge

ℏωeg + iℏ
(

γ
2 + P

2 + γφ

)
− ℏω

))

3.3 Results and analysis
The QD system considered has a cylindrical geometry structure, with a radius of

R = 8 nm and a length of L = 10 nm; the calculations are made considering the parameters
of a semiconductor QD of GaAs/Ga0.6 Al0.4As [53]. Therefore, the following times are
used, T1 = 1 ps and T2 = 0.2 ps, which are the times associated with spontaneous emission
and decoherence, respectively [54].

The optical rectification coefficient χ0 as a function of the incident photon energy,
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in a cylindrical QD (CQD) with height L = 10 nm and radius R = 8 nm is shown in Fig.
3.1, for five different values of incoherent pumping in the weak pumping regime (ie: P < γ).
Where it can be easily seen that in the weak pumping regime the optical rectification
intensity decreases with the increase in pumping, keeping the resonance peak constant.
Similar behavior was reported by Ref. [55]. The physical reason for this behavior is because
incoherent pumping modifies the population of charge carriers in the nano-structured
system without affecting the quantum energy levels of the system.

To investigate the effect of an incoherent pumping P on the optical response, it is
plotted in Fig. 3.2 the maximum intensity of the optical rectification coefficient χ(2)

0,max as
a function of incoherent pumping. It is observed that as P increases in the weak regime
(i.e.: P/γ < 1), the resonance peak decreases and it is zero when P = γ. However, in the
strong pumping regime (i.e.: P/γ > 1), the intensity of the resonant peak of the optical
rectification increases until it reaches a saturation value. This behavior occurs because
χ

(2)
0 is proportional to the term (ρ(0)

gg − ρ(0)
ee ), the so-called quantum system population

inversion as shown in Eq. (3.28), and, according to Chen et al. [56], the increase in the
incoherent pumping rate P produces a decrease in the population of the ground state,
while the population in the excited state increases. That is the reason that when P = γ

the population equilibrium condition is met, ρ(0) = ρ(0)
ee , in which case the optical response

is zero, since all resonant quantum levels are occupied. In the saturation state, the ground
state is empty and the excited state is full. This condition will not change for incoherent
pumping rate P >> γ.

3.4 Conclusions
In this work, an analytical expression was formally obtained for the optical rec-

tification in a nanostructure through the solution of a Born-Markov master equation in
the Lindblad form, considering as environment for the system the quantum vacuum of
the electromagnetic field and taking into account the processes of spontaneous emission,
dephasing, and incoherent pumping of excitons between two levels of the quantum system.
It was found that incoherent pumping of excitons on the nanostructure: i) does not affect
the energy separation of the levels of the quantum system and ii) produces population
inversion. Also, it was found that in the weak pumping regime the intensity of the optical
response decreases with the increase of incoherent pumping, while in the strong pumping
regime the optical response increases until it is saturated when the excited state is full.
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Figure 3.2 – Maximum optical rectification coefficient χ(2)
0,max is plotted as function of P/γ,

for a cylindrical QD with height L = 10 nm and radius R = 8 nm. P/γ < 1
corresponds to weak pumping and P/γ > 1 to strong pumping.
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4 Magnetic Field Effects for the Emission
Spectra in a Microcavity-Quantum Dot Sys-
tem

The behavior of the photoluminescence spectra of a single quantum dot in a
semiconductor microcavity is modeled numerically in the presence of an external and
constant magnetic field. The dynamics of the density operator is calculated using the
master equation in the Lindblad form for decoherence processes: spontaneous emission,
losses trough cavity mirrors, and dephasing. An incoherent pumping of excitons is used
to feed the system. It is found in the photoluminescence spectra that for magnetic fields
lower than ∼ 2 T the system is in the strong coupling regime and for magnetic fields
greater than 2 T the system emits light like three independent systems. The line that
uncouples faster is the σ− line.1

4.1 Introduction
The development of semiconductor physics at the experimental level made possible

the creation of materials that confine electric charge in one, two or three dimensions. This
has been achieved thanks to the development of epitaxial techniques for the growth of
materials [57–61] and advanced lithographic techniques. In addition, these same techniques
allow the control of the density of light states inside a semiconductor through spatial
variations of the dielectric function, creating the cavity effect for electromagnetic radi-
ation [62, 63].The creation of this type of physical systems that combine electronic and
photonic confinements has allowed the possibility of studying and testing the quantum
electrodynamics of cavities in systems other than atomic systems [64]. In the specific
case of three-dimensional electric charge confinement, the structure called quantum dot
(QD), immersed in a semiconductor microcavity (MC), coupling phenomena between these
systems are evident [65, 66]. For example, in the emission spectrum of a MC-QD system,
spontaneous emission can be modified or even inhibited if the system is in one of the
strong or weak coupling regimes depending on the fabrication of the system [67–70].

An analysis of these emission processes allows the study of not only the electronic
properties inside the QD, but also to determine some of the characteristics of the light
emitted by the system, such as its quantum state and degree of radiation-matter coupling,
among others [71].
1 Published at http://www.revistacubanadefisica.org/index.php/rec/article/view/RCF_2018_35_115
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A constant magnetic field applied to a QD affects its emission frequency, a fact that
affects the shape of the full emission spectrum of the MC-QD system [72], therefore the
variations of a magnetic field external to the system could be used as a control parameter
of the emission spectrum. This is important in the implementation of quantum optics
protocols; quantum teleportation protocol [73], development of single photon emission or
detection technologies [74].

In section 4.2 the model of the system to be studied is formulated, in section 4.3
the dynamics of the system are proposed, in section 4.4 the results are presented and in
section 4.5 the conclusions are presented.

4.2 Model
The behavior of the photoluminescence (PL) spectrum of a QD immersed in a MC

is studied in the presence of an external magnetic field applied parallel to the confinement
direction (see fig.4.1). The QD is considered as a two-level system and the MC with a single
oscillation mode. This system is modeled as a modified version of the Jaynes-Cummings
Hamiltonian [9] where an external magnetic field produces Zeeman and diamagnetic effects
in the QD modifying the behavior of the emission lines of the entire system [72].

Figure 4.1 shows the sketch of the MC-QD physical system in the presence of an
external magnetic field. Similar to a real one-dimensional cavity, the confinement effect
is achieved using Bragg mirrors and the QD is located at the center of the microcavity.
Dissipative processes are not shown in this sketch.

The Hamiltonian in the rotating wave approximation is written as [49, 75,76]:

HRW A = ℏωcâ
†â+ ℏωQ.D.σ̂

†σ̂ + ℏg(σ̂â† + σ̂†â), (4.1)

where ℏωc is the cavity resonance energy, ℏωQ.D. is the separation energy between (two)
levels of the QD, ℏg is the coupling energy between the MC and the QD, a represents the
photon annihilation operator, σ the excitation annihilation operator in matter. Specifically,
the separation energy between levels of the QD is modeled as: ℏωQD = ℏωQD(0)± 1

2αµBB+
β × 10−3B2, where ℏωQD(0) is the separation energy between states of the QD when the
magnetic field is zero; The summands after the ± sign represent the Zeeman effect, where
the QD’s emission line splits into two (lines denoted by σ+ and σ−); and the diamagnetic
effect, where the emission lines shift toward the blue. These effects exist under nonzero
positive magnetic fields. The constants α = 2.9 and β = 0.6 are used to fit the calculations
for an InAs/GaAs QD [72] and µB is the Bohr magneton.
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Figure 4.1 – Sketch of the quantum dot physical system immersed in a one-dimensional
microcavity.

4.3 Dynamics
To describe in a more realistic way the dynamics of a QD-MC system it is necessary

to consider both the evolution that comes from the Hamiltonian operator and the interaction
with its environment. For this we will use the Lindblad formulation of the master equation
written as [49, 75]:

ρ̇ = − i

ℏ
[ρ,HRW A] + L[ρ], (4.2)

where ρ is the density operator of the system and L is the Lindblad operator that describes
the dynamics of the system, composed of the sum of the operators that describe relaxation
processes in the system such as: cavity losses κ(2aρa† −a†aρ−ρa†a), spontaneous emission
γ(2σρσ† − σ†σρ− ρσ†σ), phase shift 1

2γϕ(σzρσz − ρ), in addition to the incoherent exciton
pumping process in the QD 1

2P
(
2σ†ρσ − ρσσ† − σσ†ρ̂

)
.

The solution to this system was implemented in the Python language with the
QuTip extension [77],developed to solve the dynamics of open quantum systems. For the
calculation of the photoluminescence spectrum the expression

S(ω) =
∫ ∞

−∞
lim
t→∞

〈
a†(t+ τ)a(t)

〉
e−iωτdτ (4.3)

[76], is used, which is the Fourier transform of the two-times correlation function〈
a†(t+ τ)a(t)

〉
= Tr(a†(t+ τ)a(t)ρ), (4.4)

this calculation is solved in Qutip using the command “spectra" [77].
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Figure 4.2 – Photoluminescence spectrum of a QD-MC system for different values of
constant magnetic field. The dotted lines from left to right represent the
behavior of the QD lines (σ+, σ−) and the cavity that the system should
follow in the presence of a magnetic field when the quantum dot is decoupled
from the cavity.

4.4 Results and discussion
The necessary parameters used to make the calculations were the cavity energy

ℏωc = 1333.0 meV [72], the initial separation of the QD energy levels ℏωQ.D.(0) =
1333.0 meV [72],the radiation-matter coupling parameter ℏg = 25 × 10−3 meV, the cavity
dissipation rate κ = 1.0 × 10−3, the dissipation rate of the QD excitation γ = 1.0 × 10−3,
the phase shift term γϕ = 1 × 10−3 and the incoherent pumping rate of excitations
P = 1.0 × 10−6.

Figure 4.2 shows the photoluminescence spectrum as a function of emission energy
of a QD-MC system in the presence of a constant external magnetic field and the behavior
of the QDs in the presence of an external magnetic field applied parallel to the cavity
confinement direction, for magnetic fields from zero to 9 T, in increments of 0.5 T. In
Figure 4.2, it is observed that for magnetic fields less than ∼ 2 T the typical behavior of
the luminescence spectrum associated with a coupled system is obtained; where two peaks
are found in the luminescence spectrum. This is because magnetic fields of intensities less
than ∼ 2 T maintain the coupling between the emission lines of the QD and the MC,
however when the magnetic field is increased the system is no longer in resonance, therefore
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the coupling disappears and thus the system behaves as three independent emitters; cavity,
σ+ emission line and σ− emission line for the QD. The physical reason for this behavior
is due to the Zeeman effect induced by the interaction of the system with the external
magnetic field, this effect is evidenced because a breaking of the degeneracy of the system
is observed. However an asymmetry is also observed between the central line and the
lateral lines due to the Zeeman and diamagnetic terms defined in the Hamiltonian of the
QD.

4.5 Conclusions
In this work, the behavior of an MC-QD system in the presence of an external

magnetic field was studied. It was found that from a value of magnetic field greater than
approximately 2 T there is decoupling between the emission lines of the system. It is
shown that the σ− line of the QD decouples more rapidly with the cavity.
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5 Weak to strong coupling conditions for a
microcavity-quantum dot system under in-
coherent pumping

We theoretically study the power spectra of a microcavity-quantum dot system
under incoherent pumping of photons and excitons, considering two models: one with
linked cavity loss rate and pumping, and one with independent cavity loss rate and
pumping. We investigate the transition from strong to weak coupling under low and high
incoherent pumping in each model and determine sets of parameters necessary to achieve
these regimes of light-matter interaction. Despite their differences, both models exhibit
a sequence of transitions between weak, strong, and weak coupling as the pumping is
increased. This prediction has not yet been observed, before this work.1

5.1 Introduction
The development of the physics of semiconductor heterostructures has allowed

greater control of the optical and electrical properties of semiconductor devices [78–82].
With these achievements, it is possible to control charge confinement at the nanoscale
in several dimensions. A semiconductor structure that confines the charges in all three
dimensions at the nanometer scale is usually called a “quantum dot" [5, 13, 83, 84]. On the
other hand, in the case of light, it is possible to develop semiconductor heterostructures that
modify the diffraction index to confine light to regions with the order of its wavelength [2,16,
63,85]. The combination of these technological developments has allowed the investigation
of quantum electrodynamics phenomena within the realm of solid-state physics and
brought the area of quantum optics, where light-matter coupling is a very important topic,
within the domain of semiconductor physics. For the specific case of heterostructures that
constitute optical nanocavities with embedded quantum dots, two kinds of light-matter
coupling have been identified, the weak coupling [86, 87] and the strong coupling [8, 88–90]
regimes. In the weak coupling regime, the interaction between light (photons in the cavity
mode) and matter (the excitons in the quantum dots) is relatively weak, compared to the
individual incoherent rates of creation (pumping) and annihilation (decay). In this regime,
the light and matter dynamics are nearly independent and can be satisfactorily described
separately. Conversely, the strong coupling regime involves a significant coherent energy
exchange between the exciton and a single cavity mode, necessitating the description
1 Published at Physica B 591, 416282 (2024) https://doi.org/10.1016/j.physb.2024.416282
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of the system in terms of a new set of quantum states of the light-matter system, the
hybridized polariton states. This regime exhibits a characteristic splitting of the energy
levels at resonance, visible in the emission (photoluminescence) spectra. Changes in the
pumping or decay rates alter the coupling conditions, as explored by Laussy et al. [91],
Del Valle and Laussy [92] and others, and as it will be further discussed in this work.

To achieve experimentally the regime of strong coupling in this system was initially
a challenge due to the difficulty of obtaining an optical cavity with a high-quality factor
and with quantum dots tuned spatially and spectroscopically to one of the cavity modes.
It was the work of Reithmaier et al. [67] and Yoshie et al. [68] that demonstrated for
the first time strong coupling in an optical cavity with embedded quantum dots, for the
case of a micropillar and a photonic crystal, respectively. Due to their optical properties
of recombination of electron-hole pairs, with a large separation between energy levels,
quantum dots are in general modeled as a two-level system. And, usually, only one photonic
mode of the cavity needs to be considered, the mode which is close to resonance to the
two-level quantum dot. Under several approximations, it is possible to use the theory of
open quantum systems to describe this kind of system, where a Lindblad master equation
has to be solved [29, 91,93,94]. This equation includes rates of loss through cavity mirrors,
spontaneous emission, and pumping rates in the cavity and in the matter modes, in
an effort to describe the system more realistically. One observable quantity that can be
obtained from the solution of this master equation, and correlation theory, is the power
spectra. Laussy et al. [91] report the dependence of the spectra of a system of a quantum
dot embedded in an optical cavity on several of the above-mentioned parameters. The
conditions for weak coupling, non-resolution strong coupling, and strong coupling were
investigated as a function of exciton pumping (Px) and cavity loss (Γc), for a set of values
expressed as multiples of the coupling term. Questions such as how the characteristics of
the rate of pumping of excitons affect the power spectra have been studied by Poddubny et
al. [95], who investigated the emission spectra of quantum dots coupled to a cavity under
variation of the pumping of excitons. It was pointed out that the form of the emission
spectrum depends strongly on the pumping of excitons parameter, Px. Analytical results
describing the effect of pumping on the coupling regime were provided by Elena Del
Valle [96].

Some studies similar to the idea of strong-to-weak coupling transition have been
reported in [97–107]. In the work reported in this chapter, we study theoretically the
emission spectra of a coupled cavity-quantum dot system in the strong and weak coupling
regimes, under various conditions of photon and exciton losses and pumpings, for two
similar theoretical models, one in which the cavity loss rate and the pumping are linked,
and another where they are independent. We show that in the resonance condition for each
model, the pumping of photons in the cavity is a determinant parameter for the shape
of the photoluminescence (PL) spectra, which clearly reveals the regime of light-matter
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coupling in which the system is located. Also, for our sets of parameters, we found that
for an increasing cavity pumping Pc, it is possible to start from an initial weak coupling
condition, pass through a strong coupling region, and then return to a weak coupling
condition. This is an interesting effect that must be carefully considered in experimental
work. We also show that in some situations, a minimal level of photon pumping is required
to achieve the strong coupling regime.

5.2 Model
We describe a system comprising a microcavity with one embedded quantum dot,

considering both exciton and photon pumping, as well as processes involving the loss of
photons and matter decay.

Figure 5.1 – Schematic representation of the system with a quantum dot immersed in a
cavity. It illustrates processes such as cavity photon pumping (Pc), exciton
pumping (Px), loss of photons from the cavity (Γc), and spontaneous emission
(Γx) rates of the QD exciton.

Figure 5.1 shows the system representation, where a quantum dot is situated within
an optical microcavity bounded by Bragg mirrors. Lateral light confinement occurs through
total internal reflection, similar to a micropillar [67, 108]. Schematic representations of
light and exciton pumpings (Pc and Px, respectively), as well as dissipation processes,
including photon loss from the cavity (Γc) and spontaneous emission (Γx), are provided.
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5.2.1 System Hamiltonian

The Hamiltonian in this work describes a quantum dot-cavity system, modeling the
exciton associated with the quantum dot as a two-level system, with |G⟩ for the ground
state and |X⟩ for the exciton state (bound state of an electron–hole pair), within a cavity
with a single mode frequency ωc:

H = ℏωxσ̂
†σ̂ + ℏωcâ

†â+ ℏg(σ̂†â+ σ̂â†). (5.1)

The parameter ωx denotes the ground to excited state exciton transition frequency,
associated with the operator σ̂† = |X⟩⟨G|. The cavity mode frequency is represented by
ωc, corresponding to the photon creation operator â†. The coupling between the cavity
mode and the exciton is described by the parameter g. The rotating wave approximation
is employed, leading to the Jaynes-Cummings model [9, 10, 108], and section 2.1.1 for this
system.

5.2.2 Dynamics

In order to obtain the dynamics we employ the theory of open quantum systems,
making use of the Born-Markov approximations [49,109,110], and section 2.3. This approach
enables us to describe losses and pumping effects by formulating a master equation for the
density matrix in the Lindblad form (with ℏ = 1):

dρ

dt
= −ı[H, ρ] + L(ρ). (5.2)

Here, H represents the full Hamiltonian [Eq. (5.1)], and L(ρ) denotes the Lindblad
superoperator, encompassing the incoherent part of the density matrix. We consider
and compare two different models for the Lindblad superoperator: Model A, used in
Refs. [95, 111],

LA(ρ) = PcD[a†] + ΓcD[a]

+ PxD[σ+] + ΓxD[σ−], (5.3)

and Model B, utilized in Refs. [112, 113],

LB(ρ) = PcD[a†] + (Γc + Pc)D[a]

+ PxD[σ+] + ΓxD[σ−]. (5.4)
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In both models, D[L] = LρL† − 1
2(L†Lρ+ ρL†L) is the Lindblad operator, Pc and

Γc represent the incoherent cavity pump and cavity loss, while Px and Γx signify the
incoherent quantum dot pump and quantum dot losses, respectively, as schematically
depicted in Fig. 5.1. The primary distinction between the models lies in how incoherent
pumping affects the cavity losses. Model B assumes that the number of photons in the
cavity affects directly the decay rate of the cavity mode. In this way, for Model B, pumping
photons into the cavity directly increases the cavity mode’s decay rate. Conversely, for
Model A, there is no dependence of the decay rates on the cavity photon population. As it
will be seen in Section 5.3, both models predict similar results for the dynamics of the
system, although Model A presents some convergence issues in the simulation of the power
spectra. We neglect pure dephasing to focus on the effects of different pumping models.
As we increase the pump power, we anticipate a transition from strong to weak coupling,
as observed in Ref. [114].

To solve for the system’s density matrix, it is expanded in a combined Fock and
exciton basis |ψ⟩ = ∑

n,s |n⟩ |s⟩ truncated at Ncut. The suitability of this expansion is
assessed by examining the steady-state cavity occupation ⟨a†a⟩ss = Tr

(
ρssa

†a
)
.

One important difference of the two models is that there is no convergence for
model A when the pumping of the cavity is greater than the cavity loss, Pc > Γc, as we
can see in Fig. 5.2. For this figure we use Ncut = 500 and increase the pumping of the
cavity for Γc = 4 g, Γx = 0.2 g, and Px = 0.2 g. These are some of the parameter values
that we will use in this work.

Notice that when Pc > Γc, the occupation of the cavity in Model A (solid red line)
goes to the value of Ncut, which is a clear indication that the system does not converge for
that choice of parameters. In fact, as the gain is greater than the loss, this is an expected
result. Model B demonstrates a higher degree of stability in terms of the cavity occupation
number.

5.2.3 Power spectra

One of the observables that allows us to analyze the light-matter interaction is
the power spectrum, due to its property to distinguish the energy distribution available
in the system [109]. The power spectrum S(ω) is defined as the real part of the Fourier
transform of the mean values of the two-time correlation function of the photon operator,

S(ω) = Re
∫ ∞

0
e−iωt⟨a†(t)a(0)⟩dt. (5.5)

The power spectrum serves as a visual tool for analyzing the system and distin-
guishing between strong and weak coupling conditions. In resonance, a clear splitting in
the power spectra curves indicates a strong coupling condition. Variations in parameters
lead to changes in the photoluminescence (PL) spectra. Both types of pumping can modify
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Figure 5.2 – Cavity occupation as a function of cavity pumping rate (Pc) at resonance
(ωc = ωx) for Γc = 4 g, Γx = 0.2 g, and Px = 0.2 g. The solid red line is for
Model A and the blue dashed line is for Model B. Model A does not converge
when Pc > Γc. We used Ncut = 500.

the PL, not only in terms of emission intensity but also in terms of driving the system
into either strong or weak coupling regimes, as reported by Laussy et al. [91].

Spectrally, each regime is distinguishable in the system’s emission spectra. Weak
coupling exhibits a single curve, while intermediate coupling displays a single curve with a
distinctly flat top. Strong coupling is characterized by a clear splitting of the emission line.

5.3 Results and Analysis

5.3.1 Power spectra for Model A

In this part, we investigate the spectral characteristics of transitions in Model A,
defined by equation (5.3). Figures 5.3(a),(b) show the Fourier transform of the correlation
function from Eq. (5.5), each with a specific set of parameters: pumping strengths (Pc

and Px), decay terms (Γc and Γx), and the light-matter coupling term, g. Figure 5.3(a)
depicts spectra for Γc = 4.0 g, with increasing cavity pumping Pc. As Pc increases, the
spectra transition from a single peak (weak coupling) to a flat-topped curve (intermediate
coupling) to two distinct peaks (strong coupling), and finally back to a single peak (weak
coupling). For this high-loss cavity Γc = 4.0 g, strong coupling occurs between Pc ∼ 0.5 g
and Pc ∼ 2.0 g. Figure 5.3(b) shows similar coupling regime transitions as a function of Γc,
with constant Pc = 0.3 g. Strong coupling is observed between Γc ∼ 0.5 g and Γc ∼ 4.0 g.
This sequence of coupling transitions (from weak to strong and then weak coupling again),
induced by varying pumping power relative to cavity loss, is a novel observation. It reveals
that for high-loss cavities, a certain level of cavity pumping is required to achieve strong
coupling, but excessive pumping can disrupt this condition.



5.3. RESULTS AND ANALYSIS 44

Figure 5.3(c) depicts a map of Pc as a function of Γc for Model A, constructed
by quantifying the number of peaks in the spectra across the parameter space. This
mapping serves as a tool to identify the dynamics within the cavity-quantum dot system.
It establishes correlations between observed spectral characteristics in regions of strong
and weak coupling under different external pumping conditions and cavity types. This
enables the categorization and differentiation of the various coupling regions. The white
region in the map (Pc > Γc) cannot be analyzed due to model convergence issues.

While the transition between strong and weak coupling has been studied in several
works for model A, it is important to note that most have treated the problem in the low-
excitation limit, where the equations of motion for the operators can be approximated and
an analytical solution is possible. In this context, the Rabi splitting was obtained by Laucht
et al. [114] and del Valle et al. [115], whose equation can be written as Ω =

√
g2 − (λx − λc)2,

where λx = (Γx + Px)/4 and λc = (Γc − Pc)/4. This model only predicts two peaks in
the spectra that become one when the Rabi splitting goes to zero, a condition in which
the Rabi splitting becomes a purely imaginary number. We can then use this equation to
predict the strong-to-weak coupling transition.

In Fig. 5.4(a), we plot the real and imaginary parts of the Rabi splitting as a
function of cavity loss for Pc = 0.1 g and other parameters being the same as those used in
Fig. 5.3. We observe a strong-to-weak coupling transition close to Γ = 5 g, in qualitative
agreement with the result presented in Fig. 5.3(c), that presents a transition from two
to one peak around to Γ = 4 g. In Fig. 5.4(b), we plot the real and imaginary parts of
the Rabi splitting as a function of cavity pumping for Γ = 5 g. For low pumping, we see
that the result also qualitatively agrees with the result of Fig. 5.3(c), where we have a
weak-to-strong coupling transition, but the model fails to describe a new strong-to-weak
coupling transition, seen in the upper part of Fig. 5.3(c). This is because the Rabi equation
was obtained in the linear regime, and is not valid for high pumping.

Figure 5.5 presents a similar spectral analysis using Model A, but with fixed cavity
pumping Pc = 0.1 g, focusing on the dependence on exciton pumping Px. Figure 5.5(a)
shows spectra for a low-loss cavity (Γc = 0.3 g) and increasing Px. The spectra gradually
evolve from strong coupling at low Px to weak coupling with a single peak for Px ≳ 0.5 g.
Interestingly, the initial spectra for very low Px exhibit multiple peaks, a situation that
changes rapidly with increasing Px. These multiple peaks come from transitions involving
states with more than one excitation [115].

Figure 5.5(b) shows spectra for fixed Pc = 0.1 g, Px = 0.5 g, and increasing cavity
loss Γc. For low Γc, the single-peak weak coupling regime is observed. As Γc increases, the
spectra transition to intermediate coupling, then to two peaks, and finally back to a single
peak for high Γc. Similar to Figure 5.3, a sequence of weak-to-strong-to-weak coupling
transitions is observed, but this time with varying exciton pumping. The strong coupling
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Figure 5.3 – Spectral analysis for Model A. (a) Normalized spectra as a function of cavity
pumping rate Pc at resonance (ωc = ωx), for Γc = 4 g. (b) Normalized
spectrum as a function of cavity loss rate Γc, at resonance, for Pc = 0.3 g.
(c) Number of peaks (color map) as a function of Pc and Γc at resonance,
determining weak/strong coupling regions. Zero peaks (white region): model
does not converge (Pc > Γc), one peak (light blue): weak coupling, two or
more peaks (darker blue): strong coupling. The spectra shown in panels (a)
and (b) correspond to the parameters of the dotted and dashed lines of the
panel (c), respectively. Other parameters: Γx = 0.2 g, Px = 0.2 g. For (a) and
(b), Ncut = 30, for (c), Ncut = 15.
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Figure 5.4 – (a) Real and imaginary parts of the Rabi splitting as a function of cavity loss
for Pc = 0.1 g and other parameters being the same as those used in Fig. 5.3.
(b) Real and imaginary parts of the Rabi splitting as a function of cavity
pumping for Γ = 5 g.

regime is observed for Γc ∼ 0.6 g to Γc ∼ 2.0 g at Px = 0.5 g.

Figure 5.5(c) maps Px as a function of Γc, quantifying the number of peaks in the
spectra. This map complements the coupling regimes predicted by Model A. The dark
blue region indicates strong coupling, while the light blue region indicates weak coupling.
A small region with multiple peaks is seen at the lowest Px and Γc values. Again, the
white stripe for Γc < Pc cannot be considered due to convergence issues with Model A.

5.3.2 Power spectra for Model B

We now shift our focus to the spectral characteristics of the cavity-quantum dot
system within the framework of Model B, as defined by equation (5.4). Figures 5.6(a),
(b) showcase a series of normalized spectra for the microcavity-quantum dot system at
resonance, calculated using Model B.

Figure 5.6(a) shows the spectra for a high loss cavity, Γc = 3.5 g, for increasing
values of cavity pumping, ranging from zero up to Pc = 5 g. Figure 5.6(b) presents a set of
spectra, also calculated using Model B, for a constant value of cavity pumping, Pc = 0.5 g,
and increasing values of cavity decay Γc. As observed with Model A, a sequence of coupling
regime transitions, weak-strong-weak coupling, is evident as the pumping power is varied
relative to the cavity loss. This implies that achieving the strong coupling condition
necessitates a delicate tuning of parameters. Excessive pumping power disrupts the strong
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Figure 5.5 – Spectral analysis for exciton pumping, with Model A: (a) Normalized spectra
as a function of Px at resonance (ωc = ωx) for Γc = 0.3 g; (b) Normalized
spectra as a function of Γc at resonance for Px = 0.5 g; (c) Number of
peaks (color map) as a function of Px and Γc at resonance determining
weak/strong coupling boundary regions. Zero peaks (white region): model
does not converge (Pc > Γc), one peak (light blue): weak coupling, two or
more peaks (dark blue): strong coupling. The spectra shown in panels (a)
and (b) correspond to the parameters of the dotted and dashed lines of the
panel (c), respectively. Other parameters are Γx = 0.2 g and Pc = 0.1 g. For
(a) and (b) we use Ncut = 30 and for (c) Ncut = 15.
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coupling, a well-established phenomenon. However, our results further demonstrate that
for relatively high-loss cavities, a certain amount of pumping might be required to observe
the cavity-quantum dot system in the strong coupling regime. For the parameters used in
Fig. 5.6(a), a region of strong coupling is identified for a range of cavity pumping values
between 0.4 g and 2.8 g, approximately. In the case of the set of parameters used for
Figure 5.6(b), strong coupling is observed for 0.5 g ≤ Γc ≤ 3.5 g, approximately.

The Px as a function of Γc map presented in Fig. 5.6(c), created by quantifying the
number of peaks within numerous spectra calculated using Model B, further highlights
the need for parameter tuning to achieve the desired coupling regime. The result is similar
to that obtained using Model A, but for Model B, we do not encounter convergence
issues, allowing for confident determination of the coupling regime from the spectra even
in situations with Pc > Γc. The main feature, that for poor-quality cavities (high Γc), a
certain amount of pumping is required to attain the strong coupling condition, is also
predicted by Model B, as evident from comparing Figures 5.3(c) and 5.6(c). Model B
predicts a slightly higher value of cavity pumping for a high Γc cavity to achieve strong
coupling compared to Model A, but the overall characteristics of the results are consistent
between the two models.

In summary, our results overall indicate that to achieve the strong coupling regime,
revealed in the PL spectra by the splitting of the emission peak, one needs a delicate
balance of the populations of excitons and photons in the system. At low pumping power,
we believe that we see only one peak in the spectral function due to an insufficient cavity
population hindering coherent exchange between the cavity mode and the exciton. As the
power increases, this coherent exchange becomes possible, and we observe a double peak in
the PL spectra. Further pumping induces a loss of coherence, because the injected photons
lack a defined phase. Therefore, for high loss cavities, some degree of cavity pumping is
mandatory in order to achieve strong coupling. On the other hand, high excitation power
will revert the system to the weak coupling condition.

5.4 Conclusion
We investigate the emission spectra of a system comprising an optical cavity with

an embedded quantum dot, specifically when the two-level system, i.e., the exciton in
the quantum dot, is near resonance with the cavity. The emission lines are calculated for
various values of incoherent photon pumping, exciton pumping, cavity loss, and spontaneous
emission, using two distinct models for how incoherent pumping affects cavity losses. We
utilize the shape of the spectral emission lines to indicate the prevailing coupling regime,
strong or weak, for different sets of these parameters. Under certain conditions, particularly
when photon loss in the cavity is relatively high, we find that a system initially in the weak
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Figure 5.6 – Spectral analysis using Model B. (a) Normalized spectra for several values
of cavity pumping rate Pc, for a high loss cavity, with cavity decay rate
Γc = 3.5 g. (b) Normalized spectra for increasing values of the cavity loss
rate Γc, for a fixed rate of cavity pumping, Pc = 0.5 g. (c) Number of peaks
(color map) in the PL spectra as a function of Pc and Γc, at resonance. We
use the number of peaks to determine the coupling regime regions. One peak:
weak coupling, two or more peaks: strong coupling. The dotted and dashed
lines show the parameter values chosen for the spectra shown in panels (a)
and (b), respectively. Other parameters: Γx = 0.2 g, Px = 0.2 g. For (a) and
(b), Ncut = 30, for (c), Ncut = 15.
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coupling regime can transition into the strong coupling regime as the photon pumping
parameter increases. Further increase in incoherent photon pumping returns the system
to the weak coupling regime. In other words, we demonstrate that achieving the strong
coupling regime in an optical cavity-quantum dot system with a relatively high photon
loss rate necessitates a certain level of photon pumping in the cavity. This pumping must
be sufficient to induce strong coupling but not excessive, as excessive photon pumping
disrupts the strong coupling condition.

As theoretically demonstrated by Laussy et al. [91], and verified by subsequent
studies [92,95,116–119], specific inequalities can be established to delineate the boundaries
between strong and weak coupling behavior. Notably, in regions where the exciton pumping
satisfies the conditions Px < g2/Γc and Px < g2/Γc, the strong coupling regime can be
attained. Proposing similar equations in our model proves to be challenging, due to the
high level of cavity pumping regimes we investigate. This leads to significant cavity mode
occupation, as shown in Figure 2. Consequently, truncating the density matrix is not
straightforward. For example, while Laussy’s equations predict only two peaks, valid for
lower pumping powers, our complete model captures the multi-peak scenarios shown in
Figure 4(a).

In addition, our work reveals the existence of a non-trivial set of parameters for
which the strong coupling condition emerges within a region of weak coupling in parameter
space. This region arises for a parameter set that includes large values of Γc and the
controlled cavity pumping term Pc. Our findings indicate that for certain parameter sets,
an increase in cavity photon pumping Pc can lead to a transition from weak coupling to
strong coupling. However, if Pc continues to increase, the system reverts back to weak
coupling. This subtle effect has been observed using two distinct methods for modeling the
influence of incoherent pumping on cavity losses in a quantum dot-cavity system within
the framework of open quantum system theory.

In conclusion, this work demonstrates that a well-defined set of parameters (photon
and exciton pumpings, cavity loss and spontaneous emission rates, photon-matter coupling
strength) is crucial for enabling the strong coupling regime in an optical cavity-quantum
dot system. We have mapped several parameter sets that yield strong coupling, providing
guidance for experimentalists seeking to achieve this regime. As a general principle, strong
coupling regions in parameter space are associated with high-quality cavities and strong
photon-exciton coupling. For cavities with lower quality factors, maintaining a sufficiently
high (but not excessive) rate of photon and exciton pumping is essential for reaching
strong coupling.
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6 General Conclusions

This thesis investigates various aspects of quantum systems, particularly focusing
on the interaction between optical cavities and quantum dots (QDs), and the influence
on these systems of external factors such as incoherent pumping and magnetic fields.
Through analytical and numerical approaches, significant insights have been gained into
the behavior of these systems across different coupling regimes.

The first study successfully derived an analytical expression for optical rectification
in nanostructures under a quantum vacuum environment, highlighting the effects of
incoherent exciton pumping. It was found that incoherent pumping induces population
inversion without altering the energy separation of the quantum levels, and that the optical
response varies with the pumping intensity—decreasing in weak pumping regimes and
saturating under strong pumping conditions.

The second work explored the impact of an external magnetic field on a microcavity-
quantum dot (MC-QD) system, revealing that above magnetic fields around 2 Teslas,
the emission lines of the QD decouple from the cavity. Notably, the σ− line showed a
more rapid decoupling, providing valuable information about the magnetic field’s role in
modulating light-matter interactions in such systems.

The third study focused on the emission spectra of a cavity-QD system near
resonance, demonstrating how incoherent photon and exciton pumping, cavity losses, and
spontaneous emission affect the transition between weak and strong coupling regimes. It
was shown that the system could transition into strong coupling under moderate photon
pumping, even with high photon loss, but excessive pumping disrupts this condition,
causing a reversion to weak coupling.

Together, these works contribute to a deeper understanding of light-matter inter-
actions in quantum systems, emphasizing the delicate balance of external parameters
required to control and enhance coupling behaviors. These findings open up potential
avenues for optimizing the design and operation of quantum technologies, particularly in
the fields of quantum optics and cavity quantum electrodynamics.
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