UNIVERSIDADE FEDERAL DE MINAS GERAIS
School of Engineering
Graduate Program in Mechanical Engineering

MATHEUS UNGARETTI BORGES

SIGNAL-INTERPRETED COLOURED PETRI NETS:
A MODELLING TOOL FRAMEWORK FOR IMPLEMENTATION OF
FEEDBACK-BASED CONTROL OF DISCRETE-EVENT SYSTEMS

Belo Horizonte
2024

MATHEUS UNGARETTI BORGES

SIGNAL-INTERPRETED COLOURED PETRI NETS:
A MODELLING TOOL FRAMEWORK FOR IMPLEMENTATION OF
FEEDBACK-BASED CONTROL OF DISCRETE-EVENT SYSTEMS

Thesis presented to the Graduate Program in Mechanical
Engineering from Universidade Federal de Minas
Gerais, as a partial requirement for obtaining the Doctor

degree in Mechanical Engineering.

Supervisor: Prof. Dr. Eduardo José Lima II

Belo Horizonte
2024

Borges, Matheus Ungaretti.

B732s Signal-Interpreted Coloured Petri Nets [recurso eletrdnico] : a
modelling tool framework for implementation of feedback-based control of
discrete-event systems / Matheus Ungaretti Borges. — 2024.

1 recurso online (74 f. : il., color.) : pdf.

Orientador: Eduardo José Lima ll.

Tese (doutorado) — Universidade Federal de Minas Gerais,
Escola de Engenharia.

Anexos: f. 72-74.

Bibliografia: f. 66-71.

1. Engenharia mecanica — Teses. 2. Modelagem matematica —
Teses. 3. Redes de petri — Teses. 4. Microcontroladores — Teses.

|. Lima Il, Eduardo José. Il. Universidade Federal de Minas Gerais.
Escola de Engenharia. Ill. Titulo.

CDU: 621(043)

Ficha catalografica elaborada pelo bibliotecario Marcio A. A. Gomes CRB/6 2812
Biblioteca Prof. Mario Werneck, Escola de Engenharia da UFMG

e
« BALNERs

LEAY FAL,
% AN
..I: Ny ey ""+;_ -"?t"

TS

UNIVERSIDADE FEDERAL DE MINAS GERAIS
ESCOLA DE ENGENHARIA
PROGRAMA DE POS-GRADUAGAO EM ENGENHARIA MECANICA

FOLHA DE APROVACAO

“SIGNAL-INTERPRETED COLOURED PETRI NETS: A MODELLING
TOOL FRAMEWORK FOR IMPLEMENTATION OF FEEDBACK-
BASED CONTROL OF DISCRETE EVENT SYSTEMS”

MATHEUS UNGARETTI BORGES

Tese submetida a Banca Examinadora designada pelo Colegiado do Programa de Pos-
Graduacdo em Engenharia Mecéanica da Universidade Federal de Minas Gerais, constituida
pelos Professores: Dr. Eduardo Jose Lima Il (orientador - Departamento de Engenharia
MecanicalUFMG), Dr. Paulo Eigi Miyagi (Escola Politécnica - USP), Dr. Pedro Henrique
Ferreira Machado (Instituto Federal de Minas Gerais), Dr. Carlos Andrey Maia
(Departamento de Engenharia ElétricalUFMG), Dr. Alessandro Pilloni (Department of
Electrical and Electronic Engineering (DIEE), University of Cagliari — Italia) e Dra. Carla
Seatzu (Department of Electrical and Electronic Engineering (DIEE), University of Cagliari
- Italia), como parte dos requisitos necessarios a obtencdo do titulo de "Doutor em
Engenharia Mecanica", na area de concentracdo de "Projetos e Sistemas".

Tese aprovada no dia 02 de outubro de 2024.

Por:

Documento assinado eletronicamente por Eduardo Jose Lima li, Professor do Magistério
Superior, em 10/10/2024, as 14:42, conforme horario oficial de Brasilia, com fundamento no
art. 5° do Decreto n°® 10.543, de 13 de novembro de 2020.

il

sel B
assinatura L2
gletrénica

Documento assinado eletronicamente por Paulo Eigi Miyagi, Usuario Externo, em
10/10/2024, as 18:06, conforme horario oficial de Brasilia, com fundamento no art. 5° do
Decreto n° 10.543, de 13 de novembro de 2020.

1.
seil o
assinatura - L
eletrbnica

Documento assinado eletronicamente por Carlos Andrey Maia, Professor do Magistério
Superior, em 25/11/2024, as 17:03, conforme horario oficial de Brasilia, com fundamento no
art. 5° do Decreto n°® 10.543, de 13 de novembro de 2020.

1.
seil o
assinatura - z
eletrbnica

Documento assinado eletronicamente por Carla Seatzu, Usuaria Externa, em 27/11/2024, as
12:34, conforme horario oficial de Brasilia, com fundamento no art. 5° do Decreto n® 10.543
de 13 de novembro de 2020.

1.

seil o
assinatura - :
eletrbnica

il
Sel’ o
assinatura L
eletronica

Documento assinado eletronicamente por Alessandro Pilloni, Usuario Externo, em
28/11/2024, as 12:07, conforme horario oficial de Brasilia, com fundamento no art. 5° do
Decreto n°® 10.543, de 13 de novembro de 2020.

1.
Sel: o
assinatura L
eletrénica

Documento assinado eletronicamente por Pedro Henrique Ferreira Machado, Usuario
Externo, em 28/11/2024, as 12:34, conforme horario oficial de Brasilia, com fundamento no
art. 5° do Decreto n°® 10.543, de 13 de novembro de 2020.

A autenticidade deste documento pode ser conferida no site
;% https://sei.ufmg.br/sei/controlador_externo.php?
¥ acao=documento_conferir&id_orgao_acesso_externo=0, informando o codigo verificador

Referéncia: Processo n° 23072.258469/2024-73 SEI n° 3624443

To my family, whom I can always count on.

Acknowledgements

This thesis is the result of a lot of dedication and study. In addition to my efforts, I,
fortunately, could count on the support of many people. From the bottom of my heart, I want to

express my most sincere gratitude to everyone who helped me in some way along this path.

Firstly, I thank my family, parents (Jodao and Ruth) and siblings (Luciana and Daniel), as
they are a source of affection, understanding, inspiration and support. Their examples throughout
my life were fundamental in building who I am today. May we celebrate this achievement and

the ones to come. Thank you for being with me in every moment of my life.

To my supervisor Dr. Eduardo José Lima II. His trust in my research, encouragement

and all the opportunities provided enriched my academic experience. Thank you for everything!

To Professor Dr. Carla Seatzu and Professor Dr. Alessandro Pilloni. Thank you for
hosting me in your laboratory for a year during my exchange in Italy and for supporting this

research with meaningful contributions.

To all my doctoral colleagues, especially, Augusto Moura and Bryan Castro, who shared
many stories and over a decade of friendship with me. The conversations during the break were

fundamental, as rest is necessary for accomplishing the work.

To my friends, who always supported me and cheered for me. Even if it is not always
possible to be with you all, you will always be in my heart. May each opportunity that life gives

us to encounter be a different joy to share and build good memories.

To all my teachers, from childhood to graduate school, for all the knowledge and experi-
ence they imparted to me. They were all important in building who I am today and some of them
undoubtedly gave me lifetime memories. I thank you from the bottom of my heart for dedicating

your life to this beautiful profession of teaching people!

To the Postgraduate Program in Mechanical Engineering of the School of Engineering
(PPGMEQC) of the Universidade Federal de Minas Gerais (UFMG), for allowing the development
of this work. This study was financed in part by the Coordenacdo de Aperfeicoamento de Pessoal
de Nivel Superior - Brazil (CAPES) - Finance Code 001.

To everyone who, directly or indirectly, helped in the development of the work.

My sincerest thanks.

“I'll carry on! Carry on!
This end is my start
We are such stuff as dreams are made on”

— ASHES (ANGRA)

“Here we go, carrying no longer sorrow
Standing up in the wind
Walk along, marching on for tomorrow
In this neverending way"

— For ToMORROW (SHAMAN)

RESUMO

Redes de Petri sdo normalmente utilizadas para design e verificagdo em vez de implementagdo de
controle direto. No entanto, em linha com o foco do paradigma da Industria 4.0 em sistemas de
controle flexiveis e reconfigurdveis, é proposta uma ferramenta de modelagem para prototipagem
répida de algoritmos de controle de eventos discretos baseados em feedback em controladores
programéveis, como CLPs ou placas de microcontroladores. Esta ferramenta de modelagem,
chamada Redes de Petri Coloridas Interpretadas, visa combinar a expressividade de modelagem
formal de das Redes de Petri Coloridas com as capacidades das Redes de Petri Interpretadas, que
sdo especializadas no processamento de medi¢des de plantas e na determinacdo de comandos de
atuadores. Ao mesclar essas propriedades, a nova estrutura pode resolver problemas que nao foram
considerados antes. A contribuic@o da tese envolve: a) A definicdo formal da estrutura das Redes
de Petri Coloridas Interpretadas; b) A modelagem da Estagcao de Processamento Modular FESTO
MPS construindo um Gémeo Digital em Matlab; ¢) A implementacdo da estrutura para controle
por feedback de Sistemas de Eventos Discretos em um Arduino compativel, via linguagem
C++, para dar suporte a tomada de decisdo baseada em feedback dentro das Redes de Petri
Coloridas Interpretadas, destacando o chamado Token-Player, estrutura projetada para representar
o comportamento dindmico do sistema modelado; d) A validagdo da eficicia do formalismo
proposto no controle de um Gé€meo Digital de uma configuracdo estendida da FESTO MPS
usando um microcontrolador Arduino via comunicagdes seriais UART bidirecionais. Os testes
demonstram que, durante as transicoes, as condig¢des de interpretacio de cor e sinal permitem ao
microcontrolador programar com precisdo e reconfigurar dinamicamente as acdes de controle
sem explosao do modelo do controlador baseado em Redes de Petri, dada a complexidade do

problema de controle.

Palavras-chave: Controle de sistema a eventos discretos; Redes de Petri; Controle do sistema de

fabricacdo; Controladores Logicos Programdveis; IEC61131-3; Microcontroladores.

ABSTRACT

Petri nets (PNs) are typically utilised for design and verification rather than direct control imple-
mentation. However, in line with the Industry 4.0 paradigm’s focus on flexible and reconfigurable
control systems, a modelling tool for rapidly prototyping feedback-based discrete-event control
algorithms on programmable controllers such as PLCs or microcontroller boards is proposed. This
modelling tool, named Signal-Interpreted Coloured Petri Nets (SICPNs), aims to combine the
formal modelling expressiveness of Coloured PNs with the capabilities of Signal-Interpreted PNs,
which are specialised in processing plant measurements and determining actuator commands. By
merging these properties, the new framework can solve problems that were not considered before.
The thesis’ contribution involves: a) The formal definition of the framework SICPN; b) The DT
FESTO Modular Processing Station (MPS) testbed modelling in Matlab; c) The implementation
of the framework for feedback-control of Discrete-Event Systems (DES) in an Arduino compliant,
via C++ language, to support feedback-based decision-making within the SICPN, highlighting the
so-called Token-Player, structure designed to represent the dynamic behaviour of the modelled
system; d) The validation of the effectiveness of the proposed formalism in controlling a Digital
Twin (DT) of an extended configuration of the FESTO MPS using an Arduino microcontroller
via two-way UART serial communications. The tests demonstrate that, during transitions, the
colour and signal interpretation conditions enable the microcontroller to accurately schedule
and dynamically reconfigure control actions without explosion of the PN-based model of the

controller given the control problem complexity.

Keywords: Discrete-event system control; Petri Nets; Manufacturing system control; Programmable
Logic Controllers; IEC61131-3; Microcontrollers.

LIST OF FIGURES

Figure 2.1 — SIPN flowchart. (Frey, 2002) 30
Figure 2.2 — SFC scan cycle flowchart. 30
Figure 3.1 — PN structure elements 31
Figure 3.2 — PN coloured elements 32
Figure 3.3 — PN signal interpretation elements 33
Figure 3.4 — A SICPN (N, M) with My =2®c1 +1®co, €, €].o ... 35

Figure 3.5 — Screenshot of the Siemens TIA Portal V16 IDE, displaying the GLOBAL DB
used to store the primitives of the SICPN as shown in Figure 3.4, and (3.37)-
(3.39). . e 39
Figure 3.6 — Screenshot of the Siemens TIA Portal V16 IDE displaying the list of SCL
instructions included in the FC implementing the dynamics of the SICPN
displayed in Figure 3.4, and with primitives defined as in Figure 3.5. 40
Figure 4.1 — Standard Configuration of the FESTO S-BE-M Processing Station (Ebel
& Pany, 2015). Note the extended configuration considered encompasses

supplementary testing and drilling modules, situated at position indexes 2

and 3, respectively. Lo 42
Figure 4.2 — SICPN-based modelling of FESTO MPS control algorithm. 45
Figure 4.3 — SICPN-based modelling of FESTO MPS control algorithm - Position Index

PI-1. e 48
Figure 4.4 — Excerpt from the SICPN in Figure 4.2. 48
Figure 4.5 — Screenshot of the Arduino IDE, displaying the variable declaration. 51
Figure 4.6 — Screenshot of the Arduino IDE, displaying the input and output functions. . 51
Figure 4.7 — Screenshot of the Arduino IDE, displaying the setup configuration. 51

Figure 4.8 — Screenshot of the Arduino IDE, displaying the transitions ¢; to ¢, of Figure 4.3. 53
Figure 4.9 — Screenshot of the Arduino IDE, displaying the transitions ¢ to ¢; of Figure 4.3. 54

Figure 4.10-Screenshot of the Arduino IDE, displaying the transition ¢g of Figure 4.3. . . 55
Figure 4.11-Screenshot of the Arduino IDE, displaying the transition t9 of Figure 4.3. . . 56
Figure 4.12-Scheme for MATLAB and Arduino communication. 57
Figure 4.13—-SFC modelling of the plant’s rotating table. 58
Figure 4.14-SFC modelling of the Testing A station (resp. Testing B station). 59
Figure 4.15-SFC modelling of the Processing A station (resp. Processing B station). . . . 59
Figure 4.16-Results of Test 1: One metal block on the table. 62

Figure 4.17-Results of Test 2: Four heterogeneous blocks on the table. 63

LIST OF TABLES

Table 2.1 — Mapping between Signal-Interpreted Petri Net and Sequential Function Chart.
Adapted from (de Melloetal.,2012).
Table 4.1 — Sensor combinations for the PI-1’s identification task.
Table 4.2 — Meaning of the SICPN placesinthecasestudy.
Table 4.3 — Possible colours based on system properties.
Table 4.4 — Ordered list of workpieces and corresponding expected operations in the second
L
Table 4.5 — Dynamic processes for the controlled queue with four blocks. Note that the
bold numbers represents in which station the given block will be processed at
thetable.

List of symbols

set of natural numbers

set of integer numbers

set of non-negative integer numbers
set of all multisets over A

set of all non-negative multisets over A
empty multiset

colour function

set of possible colours

set of places

set of transitions

set of logical inputs

set of logical outputs

marking of place p;

net marking vector

logical firing conditions

candidate output function

output function

Contents

1 INTRODUCTION . . . ot ittt e e it e ittt i ettt eneeas 15
I.1 Motivation 16

1.2 Proposition e 17

1.3 Objectives e 17

1.4 Thesisstructure e 19

2 LITERATUREREVIEW it ittt i ittt 20
2.1 Descrete Event Systems and Petri Nets 20
2.1.1 Supervisory control problems oL 21

2.1.2 Manufacturing systems 22

2.1.3 Embedded systems 24

2.1.4 Communicationnetworks L. 26

2.2 Coloured Petri Nets 27
2.3 Signal-Interpreted Petri Nets 28
2.3.1 Sequential Function Chart as Signal-Interpreted Petri Nets 28

3 SIGNAL-INTERPRETED COLOURED PETRINETS 31
3.1 Preliminary notions on multisets 31
3.2 SICPN Definition e 31

3.3 Netdynamics 34
3.3.1 Example of SICPN dynamics 35

3.4 Output Function implementation 38
3.5 1EC61131-3 compliant SICPN compiler 38
3.5.1 Memory allocations and function definitions 38

3.5.2 Token-Player implementation 41

4 DISCUSSION BASEDONA CASESTUDYc0iiieon. 42
4.1 Presentingthecasestudy 42
4.1.1 Control problem formulation 43

4.2 Feedback controller modelling via SICPN 44
4.2.1 Modelling structure Lo 44

4272 Colour. 46

4.2.3 Signal interpretationo 47

424 A detailed descriptionof PI-1 47

4.3 Arduino compliant SICPN compiler 50
4.3.1 Memory allocations and function definitions 50

4.3.2 Token-Player implementation 51

4.4 Closed-loop test designand results 57

4.4.1 Modelling the FESTO MPS Testbed Using SFC 57

442 Closed-looptests e 59

4.42.1 Acquiring and plottingdata 61

4.42.2 Test 1: One metal blockonthetable 61

4.42.3 Test 2: Four different blockson the table 62

5 FINAL CONSIDERATIONS i i ittt ittt e ettt oot a s aoann 64
5.1 Conclusion e e e 64
5.2 Publishedpaper 64

5.3 Futurework 65
Bibliography 0 i i e e e e e e e e e e e e 66

ANNEX A L i e e e e e e e e e e e 72

15

1 INTRODUCTION

Discrete-event systems (DES) were based on the system theory, whose main objectives

were described by Cassandras and Lafortune (2008).

1. Modelling and Analysis:

This is the first step toward understanding how an existing system actually works. A model
should be developed in order to see if it can reproduce the physical system (mathematically,
in a laboratory, or through computer simulation). Once the accuracy of the model is
verified, the system behaviour should be analysed under different conditions (e.g., different

parameter values or input functions);
2. Design and Synthesis:

Having accurate modelling techniques at our disposal, the next issue to be addressed is
“How to build a system that behaves as we desire.” Therefore, parameter values of the

system components should be selected to result in a “satisfactory” design.
3. Control:

This is the next logical step to the basic design process. Attempt to select the input functions
to ensure the system behaves as expected under a variety of (possibly adverse) operating
conditions. Once again, a model capable of testing and validating various control approaches
is needed. In addition, to make the process of selecting the right control as efficient as

possible some techniques are required;
4. Performance Evaluation:

After a system has been designed and controlled to ensure proper behaviour, issues such as
“How well is the system really performing?” are addressed. Measures of system performance
may often be subjective or application-dependent. Several different controls may accomplish
basic design objectives. When evaluating the performance of a system, it is usually needed

to refine or limit control schemes to the select few that satisfy the performance objectives;
5. Optimisation:

Considering that a system can be designed and controlled to achieve desirable performances,
a natural question is “How can we control it to achieve the best possible performance?” This
requires the development of additional analytical or experimental techniques for efficiently

determining the optimal system behaviour and the means for attaining it.

For historical context, please refer to “On the history of Discrete Event Systems” (M.
Silva, 2018), “Petri nets and Automatic Control: A historical perspective” (Giua & Silva, 2018)
and “50 years after the PhD thesis of Carl Adam Petri: A perspective” (M. Silva, 2012).

1.1. MOTIVATION 16

From the second half of 20" century onwards, several methods were developed to
represent DES, such as automata (Ramadge & Wonham, 1989), Mark Flow Graph (MFG) (P. E.
Miyagi et al., 1988; P. Miyagi et al., 1995; J. R. Silva & Miyagi, 1995), Grafcet (David, 1995),
Sequential Function Chart (SFC) (IEC, 2003), Input-Output Place-Transition (IOPT) (Gomes &
Barros, 2018; Gomes et al., 2007), Petri Nets (Murata, 1989).

Petri nets (PNs) have been extensively used across various domains as a declared for

modelling discrete events since their introduction by Petri (1962).

The mathematical formalism of Petri allowed the replacement of the temporal relation-
ship by the causal relationship, in addition to defining concepts such as concurrency, parallelism,
cooperation, competition and resource allocation, inherent to the behaviour of discrete-event
systems (DES) (Ramirez-Trevifio et al., 2003; M. Silva, 2012).

Murata (1989) wrote a paper called “Petri Nets: Properties, Analysis and Applications”,

in which he explains the basic elements of a Petri net, including weighting and initial marking.

There are plenty of examples that can be represented by using PNs that go from a simple
production schema and the change of seasons (Petri, 1980) to chemical equations, a state diagram
of a vending machine and even dataflow computation of mathematical expressions (Murata,
1989). Some new Petri nets were derived from the original by aggregating new features into their

definition. Thus, they can surpass these simple examples and represent more complex systems.

1.1 Motivation

There are some limitations when modelling a system using the original PN. As a natural
course of science, these problems appeared and needed to be solved. Hence, researchers have
studied for decades and continue to study Petri’s thesis to develop new definitions, creating
networks capable of aggregating even more information, allowing different systems to be described
in the most realistic way possible, thus becoming a very versatile tool to build a framework. As a

motivation, two of these limitations are discussed presenting the problem and a possible solution.

A limitation of PNs is the explosion in size when used to model complex systems
such as multi-product manufacturing systems and reconfigurable production lines. To tackle
this challenge, high-level Petri net models have been derived. In some cases, they allow a more
compact representation than a standard PN model (Gratie & Petre, 2014; Jensen, 1992). In
other cases, the modelling power is increased. However, this typically leads to a loss in terms
of capability analysis. In this regard, Long et al. (2015) recognise that High-level Petri Nets
(HLPNSs), including Coloured Petri Nets (CPNs), demonstrated superior in modelling Industry
4.0 compliant applications than alternatives declared. Also, the EU Commission’s report on
Digital Twins (DTs) (Flamigni et al., 2020) mentions HLPNs as a candidate declared for the
DT implementation, emphasising the need for advanced PN models. As a result, HLPNs have

recently gained standardisation as a software engineering tool for a wide range of concurrent

1.2. PROPOSITION 17

discrete-event systems and, in particular, distributed systems, see ISO/IEC 15909-1 (IEC, 2019)

for details in this regard.

Another limitation of PN is the incapability of read and process external signals due
to the lack of low-level signal interpretation. In this regard, Frey (2000) derived the Signal-
Interpreted Petri Nets (SIPN) adding these characteristics allowing the model to recognise the
signal inputs and dynamically respond to them determining the system behaviour. As a result,
SIPN can be applied to manufacturing lines through PLC (Frey, 2000) or microcontroller (Borges
& Lima II, 2018) implementation.

Both limitations were solved by developing new types of PN considering the charac-
teristics of the respective problem. For the first limitation, CPNs were developed, and for the
second, SIPNs.

1.2 Proposition

CPNs and SIPNs frameworks were studied separately and solve different questions.
For example, CPNs are typically used for hierarchical design and control verification at a high
level, rather than for control implementation, due to the lack of low-level signal-interpretation
characteristics (Farah et al., 2019; Grobelna et al., 2016). In contrast, when compared to CPNss,
SIPNs lack high-level expressivity features, resulting in high-dimensional models.

Therefore, a new PN formalism, named Signal-Interpreted Coloured Petri Net (SICPN),
is proposed in this thesis. This framework merges colour and signal interpretation properties
to solve new problems taking advantages of CPNs by providing them with low-level signal

interpretation functionalities, which are useful for control purposes.

1.3 Objectives

In line with the perspective of section 1.2, the main objective of this thesis is to devise a

SICPN-based control and to implement it on an Arduino microcontroller for validation.

To use a PN as a plant controller requires the modelling of the framework for feedback-
control of DES in Arduino to support feedback-based decision-making within the SICPN, high-
lighting the so-called Token-Player, a structure designed within the controller managing input
signals and validating transition firing conditions, i.e. verify if a transition is enabled or not given
the presented condition of the system. Then, it is illustrated how to deploy a SICPN-based con-
troller into an Arduino microcontroller via C++ language. It is important to note that, compared
to CPN supervisory control solutions and low-level SIPN controllers, in a SICPN, there is no
hierarchy. Thus, both the interpretation of low-level signals, e.g. external sensor reading, and
the verification of colour transitions, i.e. a transition can fire differently depending on the given

conditions, operate at the same decision level (Basile et al., 2021; Farah et al., 2019; Frey, 2002;

1.3. OBJECTIVES 18

Grobelna et al., 2016). As a case study, a Digital Twin of an extended configuration of the FESTO
MPS modular processing station (MPS) is modelled in closed-loop.

Thus, the specific objectives are:

* Modelling and implementation of a Digital Twin (DT) on Matlab:

In light of the absence of a real FESTO MPS system, details for the modelling and im-
plementation of a Digital Twin (DT) of the FESTO MPS testbed is provided on Matlab.
Additional studies involving the use of Digital Twins for the FESTO MPS system include
Mykoniatis and Harris (2021) and Abdelsattar et al. (2022), which focus on the standard
configuration depicted in Figure 4.1, as well as Batchkova et al. (2013), which explores an

extended configuration closely resembling the one under consideration, but simpler.

* Implementation of the SICPN framework in Arduino:

Translating a PN into C++ language or running it on Arduino is not new. For example,
Comlan and Delfieu (2019) introduced a tool named Petri Nets to Arduino (PN2A), which
facilitates the modelling of systems with embedded Time Petri Nets (TPNs). Additionally,
Borges and Lima IT (2018) discusses conversion methodologies from SIPN to either Ladder
diagram (LD) or C++. On the other hand, Gomes and Barros (2018) provides a tool to
translate Input-Output Place Transition (IOPT), which is a class of PNs supported by
the IOPT Tools. However, unlike these works, this thesis’s formalism encompasses both
coloured firing transitions and tokens and includes I/0O decision-making. Moreover, it is also
noteworthy that while previous works simply show how to implement a single transition
into a control language, here the approach showcases the implementation of the entire

system, giving emphasis to the Token-Player.

e Run an SICPN-based controller in an Arduino:

The effectiveness of the proposed formalism for prototyping complex feedback controllers,
such as control an extended configuration of the FESTO Modular Processing Station (MPS)
(Ebel & Pany, 2015) is demonstrated. More precisely, as proof-of-concept, an inexpensive
Arduino MEGA board is utilised to run an ad-hoc designed SICPN-based controller for

controlling operations and the control reconfiguration.

Experimental tests demonstrating the interaction between the controller running on the
Arduino and the Digital Twin, which operated on MATLAB through two-way UART serial
communications, are also discussed. As a result, the microcontroller operates seamlessly,

whether controlling a real plant or a simulated one.

Remarking that the SICPN framework is applied specifically to FESTO MPS as a Digital
Twin, however it could be applied in the real plant as well. The objective is to have feedback

on the controller’s response given the reading of input signals from external sensors. This case

1.4. THESIS STRUCTURE 19

study is utilised to validate the formalism of the thesis’ proposition. Knowing FESTO as an
important company of system automation, using one of its simulation plants is relevant to show
the applicability and the reproducibility of the case study and also to use in the education of new
engineers. Therefore, the representativeness of this case study is proven. Once one get used to
the language of this new formalism, it can be extended to other cases and the development time

to model the new system is reduced.

1.4 Thesis structure

The chapters if this thesis are organised as follows:

* Chapter 1. The introduction gives context to the worked theme and presents the motivation,

proposition, objectives and structure organisation of the thesis.

* Chapter 2. The literature review discusses themes such as Discrete-Event Systems (DES),
Petri Nets - their derivations and applications - and the state-of-art of the main themes
studied in this Ph.D thesis.

* Chapter 3. The SICPN model definition is introduced, explaining the dynamic behaviour
of the net, with particular emphasis on its formal definition and an in-depth exploration of
its sequential behaviour, including dynamic and I/O aspects. Thus, a simple example of its
modelling is given. Furthermore, it is presented the output function implementation and

the IEC61131-3 compliant SICPN compiler to implement the example in a PLC.

* Chapter 4. A discussion is done by presenting a case study and formulating the control
problem (section 4.1). Afterwards, the case is modelled using the proposed formalism
(section 4.2). Subsequently, a compiler designed to translate a SICPN into C++ to support
the prototyping of feedback-based controllers within a Arduino microcontroller architec-
ture is presented (section 4.3). Then, details regarding the implementation of the plant
Digital Twin in MATLAB, and how the experimental tests are conducted, are explained
(section 4.4).

* Chapter 5. The conclusion highlights the most relevant topics in this thesis and also
presents the publication derived from this work and suggests ideas and directions to carry

out future research.

20

2 LITERATURE REVIEW

2.1 Descrete Event Systems and Petri Nets

Discrete-event systems (DES) are dynamical systems whose states take value from a
set that may either be finite or infinite. The state changes because of the occurrence of events
that are typically asynchronous. Appropriate conditions should be satisfied in order to enable
the occurrence of an event. An evolution of a DES is thus described by a sequence of events
interleaved by the sequence of states that are visited (Skoldstam et al., 2007). For example, an event
may represent the arrival or departure of a customer in a queue, the completion of a task or the
failure of a machine in a production system, among other examples that are in different domains of
knowledge such as production, robotics, logistics, computing, communication networks (Ramadge
& Wonham, 1989).

As previously mentioned, one form of representation is through the finite state automaton,
as exemplified by the authors Skoldstam et al. (2007), and which may be unfeasible to represent
more complex cases because of the explosion of states (M. Silva, 2018). To deal with this
problem, researchers began to model DESs using the Petri net formalism to represent, for example:
manufacturing systems, communication networks, supervisory control systems (such as PLC or
SCADA) and embedded systems.

There are other modelling approaches such as continuous and hybrid systems. For a
brief discussion and examples, please refer to Vazquez et al. (2014), Desirena-Lopez et al. (2019),
F. Liu et al. (2021) for continuous systems and Dotoli et al. (2008), Outafraout, Nait-Sidi-Moh,
et al. (2020), Hiils et al. (2021), Li et al. (2022), Z. Liu et al. (2022) for hybrid systems. However,
the chosen modelling is DES because it can be modelled by using PN. A typical way to represent
the structure of a PN is through the use of graphical elements such as places, transitions, arcs
and tokens. The dynamics of the net involve the movement of tokens through the net when a

sequence of enabled transitions fire, causing an update in the net marking (Murata, 1989).

The PN declared is generally used to solve supervisory control problems (Awad, 2018;
Bashir et al., 2021; Basile et al., 2021; Chen & Hu, 2020; Flochovd & Lojan, 2019; Hu et al.,
2021; Lima II & Dérea, 2004; Singh & Singh, 2019; Wang et al., 2021; You et al., 2021), and
to model complex and flexible systems such as manufacturing systems (Azkarate et al., 2021;
Fernandez et al., 2021; Gaona et al., 2021; Grobelna & Karatkevich, 2021; Nabi & Aized, 2019;
Simon et al., 2018; Zhang et al., 2018), embedded systems (Berger et al., 2019; Comlan et al.,
2017; Gomes & Barros, 2018; Xia, 2016) and communication networks (Cao et al., 2020; Farah
et al., 2019; Juranié et al., 2019; Machado et al., 2018; Wu et al., 2021).

A discussion of several topics within supervisory control problems (subsection 2.1.1),

manufacturing systems (subsection 2.1.2), embedded systems (subsection 2.1.3) and communica-

2.1. DESCRETE EVENT SYSTEMS AND PETRI NETS 21

tion networks (subsection 2.1.4) will be made to show that Petri nets have several applications.

These topics, directly or indirectly, helped to idealise the SICPN framework (Chapter 3).

2.1.1 Supervisory control problems

This subsection only discuss proposals based on the use of PN. From a practical point
of view, supervisory control systems are, in general, designed based on experiences derived from

previous similar applications and professionals specialised in the processes involved.

Lima II and Dérea (2004) developed a controller supervisor based on the concept of
place invariants of PNs, which are capable to describe discrete-event systems with a set of
operation constraints that must be respected by the controlled system. In their case study, they
present a practical implementation of supervisory control in a manufacturing cell. The closed
loop system (plant + supervisor), modelled by a PN, is implemented through a program written
in STL in a Programmable Logic Controller (PLC), which drives the plant operation.

Awad (2018) presented a step-by-step on how to construct a supervisory control scheme
in the field of DES modelling and control and also shows how the continuous activities, such as
temperature control, pressure control, etc. are represented by few places resided in the embedded
PN models.

Singh and Singh (2019) introduced the concept of performance-based risk in case
of safety-critical systems. The performance analysis can be done by using deterministic or
stochastic models. The authors illustrated the technique on a case study using PNs to perform the

performance analysis to validate the design of safety-critical systems of a Nuclear Power Plant.

Flochova and Lojan (2019) described principles and methods of supervisory control
of discrete-event systems initiated by Ramadge and Wonham and introduced three supervisory
control methods based on the PN models highlighting the key features of the Petri tool software

application for the supervisory control of discrete-event systems.

Chen and Hu (2020) proposed the extended P-invariant control principle in order to
extend the application of P-invariants and provide a general methodology for the control of siphons,
which can bring a concern regarding supervisors’ structural complexity problem. The numbers
of siphons and states are exponential with regard to the size of PNs. Thus, supervisors often
suffer from huge size and complex structure. Therefore, supervisor simplification is indispensable
before their implementation. This principle was applied to solve the supervisor simplification

problem, which relies mainly on structural, reachability and algebra analysis.

Bashir et al. (2021) proposed a new method to construct a supervisory structure using
combine control places and control transitions to ensure flexible manufacturing systems’ smooth
operation. This new method is used to design supervisor for FMSs using a Place-Transition
Controller (PTC) and a Transition-Place Controller (TPC). A loop marking is computed for each

concurrent processes in the FMSs to specify where the deadlock markings return in the live

2.1. DESCRETE EVENT SYSTEMS AND PETRI NETS 22

marking without affecting the proper operation of the system.

Basile et al. (2021) proposed a novel framework for the supervisory control of timed
discrete-event systems based on Time Petri nets (TPNs). This method addresses logical spec-
ifications, including target markings to be reached in succession (reachability) and markings
to avoid (safety); and also temporal specifications, including arrival and departure times in the

target markings are required to be in prescribed time intervals (performance).

Hu et al. (2021), based on the active diagnosis problem in labelled Petri nets, developed
a supervisor for a plant such that the closed-loop system is diagnosable. Considering that control
actions may introduce deadlocks even if an original plant is deadlock-free, the classical notion
of diagnosability in labeled Petri nets is generalised to the nets that may contain potential
deadlocks. The authors also developed a structure called quiescent basis reachability graph to
avoid enumerating all reachable markings of a plant and accordingly proposed a structure named

Q-diagnoser to verify the diagnosability of a net.

Wang et al. (2021) researched the supervisory control problem of a DES modelled with
labeled Petri nets under malicious attacks, which can be divided into two groups: (i) actuator
attacks, that may cause a failure of an actuator for executing the commands issued from a
supervisor that enforces a specification; and (ii) sensor attack, that may corrupt an observation
(i.e., a sequence of observable transition labels) from a sensor by different types of attacks such as
insertion, removal, and replacement of transition labels. The authors proposed a novel structure,
namely a product observation reachability graph constructed from a plant and its specification, to
decide the existence of such a supervisor by checking whether each state in the graph satisfies a

particular condition.

You et al. (2021) used Petri nets as the reference declared to model the plant and
assume a control specification in terms of a generalised mutual exclusion constraint. The authors
also presented three different methods to derive a control policy that is robust to the possible
replacement attacks. The first method provides an optimal (namely, maximally permissive) control
policy based on the enumeration of markings consistent with the current observation. The second
method derives an optimal policy based on constructing a monitor-controlled PN system, which
still requires marking enumeration. The third method computes a control policy with timely

response even for large-size PN systems at the expense of optimality.

2.1.2 Manufacturing systems

Simon et al. (2018) investigated the suitability of a DES environment for the modelling
of Petri nets in the context of manufacturing systems. Their study tackled the issue of simulation
for the modelling of manufacturing systems and the advantages of using Petri net models over
classic DES element-based models. Petri nets were chosen because it has a solid mathematical

ground with a simple language that enables the development of transparent models, which allow

2.1. DESCRETE EVENT SYSTEMS AND PETRI NETS 23

increased flexibility and control for designers.

Zhang et al. (2018) declared that the wide use of Internet of Things (IoT) technologies
in manufacturing shop-floor creates an opportunity to turn the traditional manufacturing factories
into smart ones. Zhang et al. (2018) tackled problems such as the large amount of raw data to
process and the quantity of connected devices. Based on these concerns, the authors proposed a
systematic graphics-based modelling approach for manufacturing information sensing, namely
CPN-based active sensing system of real-time and multi-source manufacturing information
(CPN-MIASS), which can assist the general operators in monitoring and controlling the real-time

manufacturing process easily and dynamically.

Nabi and Aized (2019) proposed a hierarchical CPN model which is developed to
analyse the performance of flexible manufacturing systems. The system performance has been
investigated in relation to material supply and handling system, process execution, and production
resources reliability variables. Different input factors are considered for simulation modelling such
as mean machining time, mean loading/unloading time, mean assembly time, buffer capacity,
material supply inter-arrival time, number of operations between failures, and mean time to
repair for production resources; a variation in input factors has shown a significant impact on
system performance measures. The CPN-based modelling, simulation, and analysis approach has
been demonstrated as an efficient method for carousel-based mixed-model configured flexible

manufacturing system.

Gaona et al. (2021) explored a different control framework, named Regulation control,
in which the system to be controlled, named Plant, is represented by an Interpreted Petri net
(IPN), which is an extension to PN in which labels are associated to places (representing sensors)
and transitions (representing actuators). In this framework, the goal is to control the Plant in
such a way that its output becomes equal to the output of another IPN, named Specification,
representing the required behaviour of the system. The authors introduced a Matlab app named
RCPetri, which allows to automatically compute regulation controllers. In particular, the app
allows to build, compose and simulate IPN models in an efficient and graphical way. Moreover,
the app allows to automatically generate the IPN Specification from an Excel table describing the
required tasks in a high-level fashion. The synthesised IPN control program can be automatically

translated to PLC code, for its final implementation.

Ferndndez et al. (2021) raised the possibility of reducing that probability of error when
programming discrete-event dynamic systems by implementing a PN managing algorithm. A
framework is presented which combines the use of this algorithm, by means of pre-incidence
and post-incidence matrices and initial marking vector of a net, with code validation through
emulation. A use case is brought forward in which the control program of a sequential process
with parallel operations is implemented, with both virtual (VC) and real commissioning. Focusing
on PNs and using their matrix representation and evolution rules, allowing tokens moving among

net places as transitions firing consequence, opens a new perspective to the programming of this

2.1. DESCRETE EVENT SYSTEMS AND PETRI NETS 24

type of processes. The authors proposed a methodology for the development and commissioning
of sequential systems controlled by PLC, based on a semi-compiled approach, which manages
the evolution of any PN, by means of their pre-incidence and post-incidence matrices and initial

marking vector.

Azkarate et al. (2021) declared that industrial discrete-event dynamic systems are com-
monly modelled by means of PNs, which have the capability to model behaviours such as
concurrency, synchronization and resource sharing. The authors stated that there is not an effec-
tive systematic way to implement a PN in a PLC, and so the implementation of such a controller
outside a PLC in some external software that will communicate with the PLC is very common.
There have been some attempts to implement PNs within a PLC, but they are dependent on how
the logic of places and transitions is programmed for each application. They proposed a novel
application-independent and platform-independent PN implementation methodology, which is
a systematic way to implement a PN controller within industrial PLCs. A great portion of the
code will be validated automatically prior to PLC implementation. Net structure and marking
evolution will be checked on the basis of PN model structural analysis, and only net interpretation
will be manually coded and error-prone. Thus, this methodology represents a systematic and
semi-compiled PN implementation method. A use case supported by a digital twin (DT) is shown
where the automated solution required by a manufacturing system is carried out and executed in
two different devices for portability testing, and the scan cycle periods are compared for both

approaches.

Grobelna and Karatkevich (2021) affirmed that PNs are a useful mathematical declared
for specification of manufacturing systems, supported by various analysis and verification methods.
The progress made in automating control systems and the widespread use of Industry 4.0 pose
a number of challenges to their application, starting from the education at university level
and ending with modelling of real case studies. The authors presented and analysed the most
relevant challenges and opportunities related to the use of Petri nets as a modelling technique of

manufacturing systems.

2.1.3 Embedded systems

Xia (2016) stated that Petri net based Representation for Embedded Systems (PRES+) is
a promising methodology for modelling, verification, analysis and control of embedded systems.
But the state space explosion problem is somewhat tedious for PRES+ to specify and analyse
large complex embedded systems. To solve state space explosion problem of PRES+, the authors
proposed a method for expanding PRES+ model to the desired level of detail using a refinement
approach. The authors presented definitions of two PRES+ models have the same dynamic
properties, such as reachability, timing and functionality. Definitions of liveness and boundedness
of PRES+ are also presented. A temperature measure and control example illustrates the efficiency

of our refinement approach on practical applications.

2.1. DESCRETE EVENT SYSTEMS AND PETRI NETS 25

Comlan et al. (2017) presented a tool, named Petri Net to Arduino (PN2A), which
embeds Time Petri Nets (TPN) to Arduino micro-controller architecture. PN2A imports TPN
and generates Arduino sketches, which can be then compiled and uploaded to a micro-controller
architecture. Some transitions (resp. places) of the transition set (resp. place set) can be assigned
to pins of the micro-controller. Embedded, the TPN becomes partially non-autonomous and can
be defined as a microcontroller Synchronised Time Petri net (mSTPN). The structure of the TPN
is translated in an incident matrix and enabling and firing functions are defined. In addition, one
originality of the approach is the possibility of a “partial association”: a subset of places and
transitions can be associated to the pins of a microcontrollers. The environment is external and
physical: actuators, sensors, motors, LEDs, human interactivity. The modelling can be simulated

in a real context.

Borges and Lima II (2018) equipped a laboratory bench with a two-cylinder pneumatic
system whose function is to separate metallic blocks from other materials by using two inductive
sensors (one for each cylinder). Other components of the bench are four end-course sensors
and a start button. When the blocks are put in front of the cylinders, inductive sensors will
respond a Boolean signal (TRUE or FALSE) to the system, informing if both blocks are metallic
or not. If the first condition is true and the start button is pressed, both cylinders will advance
simultaneously to collect the blocks together and return one at a time, whereas, in any other
situation, they will advance separately and return simultaneously. At the end of this process, it
will only restart when new blocks are put in their initial positions for new analysis and the firing

conditions are satisfied again.

Gomes and Barros (2018) presented the Input-Output Place Transition (IOPT), which
is a class of Petri nets supported by the IOPT Tools, with some additions. The corresponding

formal syntax and semantics rules are also presented, followed by an illustrative example.

Berger et al. (2019) stated that concepts like the Internet of Things (IoT) or Cyber-
physical Systems (CPS) accelerate the development from traditional production facilities towards
smart factories. Due to their reliance on information flows and the high degree of cross-linking,
these networks are, in particular, vulnerable to availability risks caused by attacks and errors. To
address this problem, the authors aim to identify and analyse availability threats by developing
a modelling approach that depicts specific characteristics of smart factory networks and, then,
to propose a modular Petri net approach. To demonstrate the usefulness and applicability of
this model, one real-world use case and two planned extensions of a mechanical engineering
company were simulated. The model depicts information-based dependencies within smart factory
networks and allows for the simulation and analysis of threat propagation. Thereby, it enables both
researchers and practitioners to identify critical network connections and components, serving as

a basis for layout decisions and IT security mitigation measures.

2.1. DESCRETE EVENT SYSTEMS AND PETRI NETS 26

2.1.4 Communication networks

Machado et al. (2018) stated that the increasing penetration of distributed energy re-
sources (DERs) and local/small-scale power systems, named microgrids (MG), becomes a
growing challenge for distribution system operators (DSOs). In general, the DER units and MG
operation are based on a decentralized and time-critical decisions, which performs a complex
behaviour. To deal with this complex distributed system, the information and communication
schemes are essential. Considering this, the IEC 61580 standard shows up as an appropriate
solution, as it fulfills all related specifications of distributed systems. In this context, the authors’
goal is to present and demonstrate a formal approach to deal with uncertainties and event-driven
behaviours of an IEC 61850-based automated microgrid, showing their impacts in power system
protection/control scheme. In addition, this work attempts to aid network designers suggesting a
systematic approach to network modelling, especially if specific components need to be developed.
To achieve this objective, it is suggested a methodology using the CPN declared as a tool to
model an IEC 61850-based microgrid.

Jurani¢ et al. (2019) affirmed that the increasing complexity of engineering activities
emphasises the need to enhance software support for design team collaboration and improve
the management of design process dynamics, especially in critical situations. Thus, the authors
proposed a new approach in which a set of CPNs enable a practical implementation of design
activities ontology by modelling rules and relationships simultaneously with the instantiation of
taxonomy elements. The development of the proposed model is based on an in-depth analysis of
several long-lasting development projects in a large industrial company and three case studies
on designers’ collaboration. To facilitate the implementation of ontology models into industrial
practice, this work focuses on the issues of interoperability between design support systems and
ontology models. The proposed method has significant potential to provide real-time updating

and propagation of design information in teamwork.

Farah et al. (2019) declared that the Networked control system (NCS) is a set of entities
communicating and exchanging data via a network, which makes its analysis and synthesis com-
plex. Coloured Petri nets (CPN) provide a very compact way and a well-adapted and progressive
framework for modelling and analysis complex systems in which competition, synchronisation,
resource sharing and parallelism are present. The authors used a CPN for designing of NCS.
For that goal, a software named CPNtools simulator is used to present a graphical model with
hierarchical coloured Petri nets (HCPN) for the Ethernet network in the first step, starting with
the global model, then going through its internal modules. Then, the authors proposed a model

for different entities that constitute the control system.

Cao et al. (2020) defined that a cyber-physical system (CPS) typically consists of the
plant, sensors, actuators, the controller and a communication network. The communication

network connects the individual components to achieve the computing and communication in

2.2. COLOURED PETRI NETS 27

the CPS. It also makes the CPS vulnerable to network attacks. How to deal with the network
attacks in CPSs has become a research hotspot. The authors classified network attacks in CPSs

and review the work on intrusion detection and defence strategies.

Wu et al. (2021) proposed a Petri net of network attack and defence stochastic evo-
lutionary game based on the effectiveness constraints on both sides with network attack and
defence with the help of stochastic Petri net and evolutionary game theory. Using this model, a
quantitative analysis of network attack events is carried out to solve a series of indicators related
to system security, namely, attack success rate, average attack time, and average system repair
time. Finally, the proposed model and analysis method are applied to a classic network attack
and defence process for experimental analysis, and the results verify the rationality and accuracy

of the model and analysis method.

2.2 Coloured Petri Nets

To enhance the expressiveness of PNs, various types of HLPNs have been developed,
including continuous (Desirena-Lépez et al., 2019; F. Liu et al., 2021; Vazquez et al., 2014),
hybrid (Dotoli et al., 2008; Hiils et al., 2021; Li et al., 2022; Z. Liu et al., 2022; Outafraout,
Nait-Sidi-Moh, et al., 2020), and coloured PNs (Gehlot, 2019; Jensen, 1981, 1987; Long et al.,
2015; Sheng & Prescott, 2019), to name a few.

CPNs were first introduced by Jensen (1981) and further developed into a more detailed
methodology (Jensen, 1987). Unlike classical PNs, CPNs use tokens of different colours, thus
enabling the representation of specific system features or characteristics, since information is
attached to each token. The information can be inspected and modified when a transition fires.
This makes CPNs particularly well-suited for modelling multi-product manufacturing systems

and priority queue data structures and yields to a much smaller net.

Notable recent applications of CPNs include their use to model the process of sending
different printing jobs to different printers (Gehlot, 2019), applications to model all the factors
and activities related to aircraft fleet maintenance (Sheng & Prescott, 2019) and applications to
model railway networks systems (Fanti et al., 2006) and also traffic lights, readers and writers,
data base and telephone systems (Jensen, 1987). It is worth mentioning Farah et al. (2019), where
the CPN framework is used for modelling and analysis networked systems in which competition,
synchronisation, resource sharing and parallelism are present, as for the Ethernet communication
system. For additional examples of applications, refer to Jensen and Kristensen, Chapter 14
(2009).

2.3. SIGNAL-INTERPRETED PETRI NETS 28

2.3 Signal-Interpreted Petri Nets

Considering that the input-output response of a dynamical system is often referred to
as low-level behaviour, some authors (Frey, 2000, 2002; Minas & Frey, 2002; Ramirez-Treviiio
et al., 2003) use the term Low-level PN to characterise the use of PN for fine-grained modelling
of interacting systems by acquiring and interpreting low-level signals from a system (OR external
low-level signals). Consequently, to employ them for feedback control purposes, definitions
for Signal-Interpreted Petri Nets (SIPN) were introduced in the early 2000s (Frey, 2000, 2002;
Ramirez-Trevifio et al., 2003). Further note the IEC61131-3 Sequential Function Chart (SFC)
visual programming language for PLCs is also a primitive version of binary SIPN (Lewis, 1998).
In essence, a SIPN can be regarded as a specialised type of PN designed to incorporate input
signals into their firing conditions and generate outputs in each place. This feature makes them
well-suited for formally representing sequential algorithms, which can then be implemented
on Programmable Logic Controllers (PLCs) (Frey, 2000; Klein et al., 2003) or translated into
structured text for microcontroller code (Borges & Lima II, 2018; Comlan & Delfieu, 2019).

Real-life and industrial processes modelled with application of Petri nets can be easily
implemented in various hardware platforms with the guarantee that behavioural user-defined
requirements are satisfied. The system can be decomposed into smaller parts, called modules,
and implemented over the distributed devices working in different time-domains with the proper

synchronization of the whole system (Grobelna et al., 2016).

As an illustration of SIPNs application, Lima II and Dérea (2004) utilised them to
control a manufacturing cell system, where identical workpieces underwent sequential drilling,
testing, and unloading, all managed by a PLC. There it is shown also how translating a SIPN
into a controller using the IEC61131-3 compliant Structured Test (ST) language. Among others,
notable due to the growing demand in the field is Grobelna et al. (2016), where a SIPN is used to
automate a smart home system; Among others, notable recent applications also include Grobelna
et al. (2016), where a SIPN is used to automate smart home systems, catering to the growing
demand in this field; Grobelna and Szczes$niak (2022), focusing on SIPN application in battery
energy storage system management control; and , Basile et al. (2021), which proposes a novel
framework based on Timed Petri nets (TPNs) for supervisory control purposes; and Basile and
Ferrara, 2022, which utilises TPNs to develop a fault detection algorithm for discrete-event

systems within a PLC.

2.3.1 Sequential Function Chart as Signal-Interpreted Petri Nets

The standard IEC 848 defined Sequential Function Chart (SFC) as a graphical program-
ming language based on Grafcet (M. Silva, 2012). Later, the standard IEC 61131-3 specifies

syntax and semantics of programming languages for programmable controllers (IEC, 2003).

2.3. SIGNAL-INTERPRETED PETRI NETS 29

SFC elements provide a means of partitioning and organizing controller programs
with a set of steps and transitions connected by directed connector lines. A set of actions is
associated with each place and a set of conditions is associated with each transition. An action
can be represented in several ways: as a Boolean variable, as a collection of statements in the
IL language, as a collection of statements in the ST language, as a collection of lines in the LD
language, as a collection of lines/blocks in the FBD language, or even as a sequential function
diagram in the SFC language (IEC, 2003). Refer to IEC (2003) standard for more information on

rules for steps, transitions and evolution of a SFC.

According to de Mello et al. (2012), there is an intrinsic relationship between the
elements of SIPN and the SFC language, as shown in Table 2.1.

Table 2.1 — Mapping between Signal-Interpreted Petri Net and Sequential Function Chart.
Adapted from (de Mello et al., 2012).

Signal-Interpreted Petri Net || Sequential Function Chart
Place Step

Transition Transition

Arc Connection

Input variables Receptivity of each transition
Output variables Action of each step

The SFC language has similarities with the SIPN. However, David (1995) highlights
two differences: (i) marking a step in Grafcet is Boolean, that is, each step is associated with the
value 0 (False) or 1 (True), while marking a place in SIPN is numeric and can be represented
by a non-negative integer of tokens (resources). In the definition of Frey (2000), which is a safe
network, the maximum value that the weight function can assume is unity; (ii) in Grafcet, all
simultaneously enabled transitions fire simultaneously, while in SIPN, if there are conflicting
enabled transitions, only one of them will be fired and its behaviour will be non-deterministic
unless there is a condition that selects the transition to be fired. Despite these differences, if a
SIPN is safe (its marks behave like logical variables) and deterministic (if there are no conflicting
transitions that present true firing conditions simultaneously), it can be represented in the SFC

language.

In addition to these differences mentioned above, Frey (2000) highlights a difference in
the dynamic behaviour of states. The flowchart on Figure 2.1 shows that the states of a SIPN can
be unstable (transient), while the flowchart on Figure 2.2 shows that in the SFC language these
states are kept active for at least one PLC cycle, also known as the scan cycle. However, given

the short duration of the PLC cycle, these states can be viewed as almost transient.

2.3. SIGNAL-INTERPRETED PETRI NETS 30

Figure 2.1 — SIPN flowchart. (Frey, 2002)

A

Read input signals

Y

Computing firing
conditions

Non stable l Stable
marking marking

Stability check

4

Computing output
signals

Set new marking

Figure 2.2 — SFC scan cycle flowchart.

> Read input signals

Y

Verifying enabled transitions

Y

Firing transitions

Y

Calculating output signals

Therefore, this subsection is important to contextualise because the modelling of the

operational plant was done in SFC and implemented in Matlab, even if the control is applied in

Arduino later.

31

3 SIGNAL-INTERPRETED COLOURED PETRI NETS

3.1 Preliminary notions on multisets

Some useful notation is introduced to formally define the SICPN model.

The sets of integers, naturals, and non-negative integers are denoted as Z, N, and
Nyo = {0} UN. Let A be a set, its cardinality is |A|. A multiset (resp. non-negative multiset)
a=>,4a(a)® ais defined by a mapping o : A — Z (resp. a : A — Np), where ® denotes

the multiset constructor operator.

Then, Z(A) (resp. N (A)) denotes the set of all multisets (resp. all non-negative multisets)
over A, whereas € = >, 4 £(a) ® a is the so-called empty multiset where ¥V a € A it results that

e(a) = 0. Finally, A, V and — denote, resp., the and, or, and not logical operators.

For example, consider {a, b, d, b, a, b} a finite multi-set over the set {a, b, ¢, d}, and it is
represented by the formal sum2 ® a+ 3® b + 1 ® d (Jensen, 1987).

For more examples on multisets, I refer to Fanti et al. (2006) in the thesis’ Annex A.

3.2 SICPN Definition

A SICPN N is defined by the following 11-tuple
N = (P, T, Co, Pre, Post,My, I, O, p, w, Q), 3.1

where P = {p1,pa, . .., Pm}, with cardinality |P| = m,and T = {t1, t, ..., t, }, with cardinality
|T'| = n, are the finite sets of places and transitions, respectively. Figure 3.1 highlights the
elements of the structure of the net.

B0

p1 t1 P2

Figure 3.1 — PN structure elements

Co : PUT — Cyis a colour function that associates to each element in P U T
a non-empty ordered set of colours in the set of possible colours C,. Therefore, V p;, € P,
Co(p;) = {ai1,ai2,...,a;,4} C Cyis the ordered set of possible colours of tokens in p;,
and u; = |Co(p;)| is the number of possible colours of tokens in p;. Analogously, V t; € T,
Co(t;) = {bj1,bj2,...,bju; } C Cqis the ordered set of possible occurrence colours of t;, and

v; = |Co(t;)| is the number of possible occurrence colours in t;.

Then, Pre and Post represent the pre- and post-incidence matrices with dimensions
n x m. Here, each element of either Pre(p;,t;) : Co(t;) — N(Co(p;)), or Post(p;,t;) :

3.2. SICPN DEFINITION 32

Co(t;) — N(Co(p;)), is a mapping from the set of occurrence colours of ¢; (with cardinality
v;) to a non-negative multiset over the set of colours of place p; (with cardinality w;), V ¢ =

1,2,...,m,and j =1,2,... n.

In simple words, Pre(p;,t;) (resp. Post(p;,t;)) specifies how many tokens of each
colour in p; should be removed from p; (put in p;, respectively) when ¢, fires with respect to any
possible colour associated with it. Note SICPN definitions are more complex than in uncoloured
PN’ because the weights of the arcs going from a place to a transition and from a transition to a

place, depend on the colour with respect to which the transition is fired.

To maintain a concise notation, we compactly represent each entry of Pre and Post,
resp. Pre(p;,t;) and Post(p;,t;), as |Co(p;)| x |Co(t;)| matrices. Thus, the generic entry
Pre(p;,t;)(h, k) is equal to the number of tokens of colour a; ;, removed from p; when transition
t; fires w.r.t. colour b; ;.. Similarly, Post(p;,t;)(h, k) is equal to the number of tokens of colour
a; » put in p; when transition ¢; fires w.r.t. colour b, ;. This holds for A = 1,2,...,u,, and
kE=1,2,...,v;.

Based on the Pre and Post definitions it is further defined the n x m incidence matrix
as C = Post — Pre, where each element C (p;, t;) : Co(t;) — Z(Co(p;)).

Let m; : Co(p;) — Ny be the mapping associating to each possible token colour
a;, € Co(p;) a non-negative integer representing the number of tokens of that colour in the

given place, then the marking of place p; is

m; = Z mi(ain) ® aip, (3.2)

a; n€Co(p;)

The net’s marking is an m-dimensional column vector of non-negative multisets
M= [my, my -, my, (33)

whereas with M, is denoted the net’s initial marking. The notation (N, M) indicates that N in
(3.1) is initialised M.

Figure 3.2 highlights the colour elements of the net, including the initial marking M.

Co(p1) Co(ty) Co(ps)
@ Pre \I Post Q
Y > >
P1 t1 P2

Figure 3.2 — PN coloured elements

By drawing inspiration from Frey (2000), and to equip a generic CPN
N' = (P,T,Co, Pre, Post, M)

with input signal interpretation and output decision-making, it is introduced the next additional
fields in (3.1).

3.2. SICPN DEFINITION 33

The set I = {iy, is,...,iq} denotes the set of logical signals received as input to the net
from the environment. The set O = {01, 02, ..., 0.} indicates the set of logical outputs (or action
to be done or not) computed by the net after processing the current marking M and inputs 7,
with 7N O =0, and d = |I|, = = |O|. Notice that, I can be understood as a set of measurements

from a plant to be controlled, while O as the set of commands issued to the plant’s actuators.

Then, with ¢(t;,b%) = t; X Co(t;) — fjr(i1,i2...,14) is denoted a mapping that
associates with each transition ¢; € T, and each occurrence colour b; ., a logical firing condition
w.rt. [, namely f; 5 : {i1,%2,...,74} — {0, 1}. Here, f;, = {1} means such condition holds rue,
thus the / configuration is such that ¢; is enabled to fire w.r.t. b; ;. On the contrary, f;, = {0}

means t; is not enabled to fire w.r.t. b; ;.

Figure 3.3 highlights the signal interpretation elements represented on the net. It is
noteworthy that only ¢ (1, by 1) appears explicitly on the net representation. Input / is an argument

of ¢ function, whereas output O and functions w and {2 are the system’s response.

Sp(tla bl,k‘)
C—F——0O
LY > >
b1 t b2

Figure 3.3 — PN signal interpretation elements

Then, with w(p;, a;n) : P x Co(p;) — {0, 1, —}* is denoted a candidate output con-
figuration for each p; € P marked w.r.t. a token of colour a; ;. Here, w(p;,a;,)(r) = {0}
indicates the candidate status for the action associated with o, is not requested when place p; is
marked w.r.t. colour a; ,; conversely w(p;, a;) (r) = {1} signifies that such action is requested.
Finally, w(p;, a;) () = {—} implies that performing or not such an action is irrelevant, with

‘—’ signifying ‘don’t care’.
The output function is defined as follows:
[e]
Q:M_>{0717_7q7T07T1aQOJQI7QO1 } (34)

that computes the output configuration at marking M, for each output o,, by verifying the
congruence of all the candidate output configurations. To formalise this, the following set is

preliminarily introduced as follows:

I'= { (pi,ai’h) € P x Cg Tm; 7é g, mi(am) 7& 0 } (35)

associated with marking M = [my,---, m,, |. The generic r-th component of (2 is equal to:

* zero (0) (resp. one (1)) if and only if there is only one pair (p;,a;5) € I' such that
w(pi,a;p)(r) = 0 (resp. 1), while for all the other pairs in I', namely for all (p,a) €

T\ {(pi, aip)}s itis w(p, a)(r) = —;

3.3.

NET DYNAMICS 34

e don’t care (—), if w(p,a)(r) = — for all (p,a) € T}

* contradictory (q) when there are 2 pairs (p;, a;), (p;, ajx) € I', (with p; not necessarily
different from p;) such that w(p;,a;,)(r) = 0 and w(pj, a;x)(r) = 1, while for all the
other pairs in I', it is w(p, a)(r) = —;

* redundant zero (ry) (resp. redundant one (1)) if there are at least 2 pairs (p;, a; 1), (pj, ajx) €
I" (with p; not necessarily different from p;) such that w(p;, a;) (r) = w(p;, ajx)(r) =0
(resp. 1), while for all the other pairs in [, it is w(p, a)(r) = —;

* contradiction and redundant zero (qy) means there are at least 2 pairs (p;, a;), (pj, a;x) € T
(with p; not necessarily different from p,) such that w(p;, a;) () = w(p;, a;%)(r) = 0 and

exactly one pair is w(p,, a,) () = 1, while for all the other pairs in I, it is w(-, -)(r) = —;

* contradiction and redundant one (g;) means there are at least 2 pairs (p;, a;), (p;, @jx)
(with p; not necessarily different from p,) such that w(p;, a;) () = w(p;, a;%)(r) = 1 and

exactly one pair is w(p,, a,)(r) = 0, while for the other pairs in I', it is w(-,-)(r) = —;

* contradiction and redundant zero and redundant one (qq,), means that there are at least
2 pairs (p;, a;p), (pj, a;x) € I such that w(p;, a;p)(r) = w(pj,ajr)(r) = 0 and at least
2 more different pairs (p,, . 4), (py, @y k) such that w(ps, az) (r) = w(py, ayr)(r) =1,

while for all the other pairs in I, it is w(-, -)(r) = —.

It is remarkable to note that a SICPN behaves as a standard Petri net with four main differences:

. Places may be marked by tokens with different colours;

2. Transitions may fire w.r.t. different colours;

. The enabling of a transition w.r.t. a certain colour b;;, € Co(t;) does not depend only on
the content of the input places, but also on some input conditions, encoded by the transition

functions ¢(;,b;1);

4. When a transition fires w.r.t. a certain colour, not only the PN marking is updated, but also

3.3

some output signals are produced, as clarified by functions w and ().

Net dynamics

Consider a SICPN (N, M). A transition ¢; € T is said to be enabled w.r.t. colour

b; i at a marking M if and only if for each p; € P and forall h = 1,2,... u;, itis m;(a;p) >

Pre(p;,t;)(h, k) and simultaneously the firing condition ¢(¢;,b;;) = f;x holds true. If an

enabled transition t; fires at M w.r.t. b; , then it is reached a new marking M’ where, for all

p; € Pandforallh =1,2,..

., Usg, mg(am) = mi(aiyh)—i—Post(pi, t])(h, k) —Pre(pi, t]>(h, k’)

3.3. NET DYNAMICS 35

In the following, M [t;(k)) M’ denotes that ¢; fires at M w.r.t. colour b, yielding M'. A firing

sequence from M is a (possibly empty) sequence of transitions

o=t (k) tj,(ky,) - t, (k) (3.6)

each one firing w.r.t. a given colour, such that M [t;, (k;,)) M [t;,(kj,)) - - - M -_1[t;. (kj.)) M.
Finally, M is said to be reachable from M, if and only if there exists a sequence o such that
MO [O’> M.

The SICPN model assumes the presence of a controller who reads from the environment
sensors the input signals /, processes them along with the current net marking M, and generates
the outputs O. Then, the outputs will set the plant actuator’s commands, while closing a feedback
control loop. However, it is important to remark that the outputs do not directly affect the SICPN’s

dynamics.

Unlike standard PNs and CPNs, in a SICPN, as well as in its primitive form, the SIPN,
the input signals I affect the net dynamics. As a consequence, well-known properties of PNs
should be completely revisited in their definition and even more, in their analysis. Examples in
this respect are: (a) liveness, indicating whether or not the model gets stuck in a deadlock state;
(b) reachability, which refers to the ability to reach a particular marking or state; (c) reversibility,
assessing whether it is possible to return to the initial state; (d) safety, determining whether
all places contain at most one token. In addition, when SICPNs are used to derive a feedback
controller as in this paper, what would be most interesting and challenging is the definition of the

above properties w.r.t. the closed-loop system.

3.3.1 Example of SICPN dynamics

(1, co)
{c1,¢2} {1 0 2} {ea,es,c6} {e1,e2,¢3,cat

— I O

S o N O
OO O
—_ == O

tl 0 0 %)
0 0
0 1
p(ta,c3) L 1],
|:(2) (1):| SD(tQaCE)) 8 8
{03,05} 0 1 {01,02303704}
——)
t2 Y2

Figure 3.4 — A SICPN (N, M) with My =2® c; + 1 ® o, €, €].

3.3. NET DYNAMICS 36

Consider the SICPN in Figure 3.4 with P = {p1,pe,p3}, T = {t1,t2} and C;, =
{c1, 9, 3, ¢4, 5, c6}. The set of logical inputs and outputs are equal to I = {iy, i, 43,44} and
O = {01, 09, 03,04, 05 }, respectively. In this example, each input and output is assumed to be

boolean. Furthermore, inputs are initialised at
i1=1,1=1,13=0,1=0 3.7

Here, place p; (resp. p2, p3) may only contain tokens of colours C'o(p;) = {c1, ca} (resp. Co(ps) =
{Clv C2, C3, 04}, CO(pS) == {Cl7 C2, C3, 04}) and CO(tl) - {047 Cs, 06} (resp' CO(tQ) - {037 65})
means that ¢; (resp. t2) may fire only w.r.t. to either c4, or cs, or cg (resp. c3 or ¢5) provided that

corresponding firing conditions, which are defined as follows, hold true:

o(ti,ca) = fralin, i, is,i4) = i1 Ny (3.8)
o(ti,e5) = fis(in,de,is,14) = 1 A i3 3.9)
o(ti,c6) = frein,ia, iz, is) = 2 A iy (3.10)
o(ta,c3) = fas(ir,ie,i3,14) = i1 A i3 (3.1
O(ta,c5) = fas(in,de,13,04) = i1 Ao (3.12)

Given the net’s topology, each entry (7, j) of matrices Pre (resp. Post), namely
Pre(p;,t;) (resp. Post(p;,t;)) is a non-empty non-negative multiset if and only if the pre-arc
(resp. post-arc) (p;, t;) exists, otherwise Pre(i, j) = . Following Figure 3.4, the only non-empty
Pre and Post entries are

Pre(pi,t1)(cy) = 1®¢ (3.13)
Pre(pi,ti)(cs) = 2®cy (3.14)
Pre(pi,t1)(cs) = 2@ +1®cy (3.15)
Pre(pi,ta)(cs) = 2®@¢ (3.16)
Pre(p,ta)(cs) = 1®c (3.17)
Post(ps, t1)(cs) = 2®cy (3.18)
Post(ps, t1)(c5) = 1®a (3.19)
Post(ps,t1)(cs) = 1Q@c+1Rcz+1®ey (3.20)
Post(py,ta)(cs) = 1®c¢y (3.21)
Post(ps,ta)(c;) = 1@c+1R¢ (3.22)
Post(ps,ta)(c3) = 1®¢y (3.23)
Post(ps,ta)(c;) = 1@c+1R¢y (3.24)

A simpler and smarter way to define the Pre (resp. Post) matrix is depicted in Figure 3.4.
Here, each non-empty multiset Pre(p;,t;) (resp. Post(p;,t;)) is a |Co(p;)| x |Co(t;)| matrix

of non-negative integers. Let the net’s initial marking be

My=[20c+1®c, € €], (3.25)

3.3. NET DYNAMICS 37

upon verification of (3.8)-(3.12), it is observed that both ¢; and ¢, may fire. Specifically, ¢; could
fire w.r.t. either ¢4 or cg, while t5 could fire w.r.t. either ¢35 or cs. It is crucial to note that this
example is designed to highlight such ambiguity and emphasise that the order in which a transition
will fire is not unique and depends on the user’s policy and here it is assumed a policy that first
gives priority to transitions with lower index and then gives priority to colours with lower index.
Therefore, given that P, T', and C} are ordered sets, transition ¢, fires w.r.t. ¢, because when
iterating through all the transitions and places it will be detected first. After that, then the net’s
marking becomes

M1:{1®01+1®02, 2 ® cg, e}. (3.26)

Notice that since in a SICPN several signals can change simultaneously, it is essential to
update the net’s marking as soon as a transition fires to avoid critical situations. Thus, following
this policy, from (N, M) and recalling (3.7) only ¢, w.r.t. c5 can fire, thus yielding the next
marking

M;=[1®c¢,200+1®ca+1®c,1Q@c+1®cy.

Now, assume the candidate output functions w are defined as follows:

wipner) = |1, = = - -] (3.27)
wip,e) = |-, - -] (3.28)
wipz, 1) = [1, 1, - - (3.29)
wps,e)) = |- 1, 0, —, 0] (3.30)
wps,es) = [-, 0, 0, 1, -] (3.31)
wps,er) = [1, - 0, 0, 1] (3.32)
wips,c1) = [1, R (3.33)
wips,e)) = |- 1,0, = -] (3.34)
wips,es) = |-, } (3.35)
wips,c1) = [0, ;] (3.36)

Now it is explained how the output function 2 in (3.4) relates to the current marking.

Let us consider M. Since only p; is marked (with colours c¢; and ¢5), based on eq.
(3.27)-(3.28),itis (M) =[1, —, —, —, — |

If instead we consider M |, where p; is marked with colours ¢; and ¢y, while p, is marked
with colour ¢,. Thus, based on eq. (3.27), (3.28) and (3.30), itis Q(M,)=[1, 1, 0, —, 0].

Finally, if we consider M5, from (3.30) - (3.32), it is Q(M3) = [r1, q, 7o, ¢1, qo1 |-
The first entry follows from eq. (3.27) and (3.32); the second entry follows from eq. (3.30) and
(3.31); the third entry follows from (3.30) - (3.32), (3.35) and (3.36); while the fourth entry is
because there is simultaneously a contradiction and a redundancy 1 due to (3.31), (3.32) and

3.4. OUTPUT FUNCTION IMPLEMENTATION 38

(3.35); finally, the fifth entry follows from eq. (3.30), (3.35) that propose 0 while (3.32), (3.36)
that propose 1.

3.4 Output Function implementation

In real discrete-event control systems, outputs are typically Booleans. Moreover, at
each time cycle, they must be uniquely assigned to avoid unexpected behaviours. In SICPNs the
output function €2 generates more than simply “1” or “0” symbols, as shown in (3.4). This allows
Q) to function as an “Always On WatchDog”, aimed at detecting bugs in the code during the
controller commissioning or generating alarms whenever a contradiction is detected due to faults
or other issues. Also having undefined outputs “—"" should also be avoided by design to prevent
unexpected behaviours, while any redundant zeros or redundant ones will be translated to 0 or 1,

respectively.

3.5 IEC61131-3 compliant SICPN compiler

A SICPN can be viewed as an input-output function that determines the configuration
for O based on an input configuration / and the current net marking M . This makes it suitable for
designing feedback controllers for discrete-event systems. Moreover, compared with SIPN (Borges
& Lima I, 2018; Frey, 2002) or more primitive formalisms such as the SFC (Sequential Function
Chart) (which is based on binary PNs (Lewis, 1998)), the presence of coloured tokens/transitions

may lead to lower-dimensional models.
To run a SICPN within a PLC or any other control board, two key aspects are crucial:

a) properly defining the net’s primitives within the controller’s memory. This involves

aligning them with available data-type structures;

b) developing a software entity, referred to as the Token-Player, tasked to correctly

implement the SICPN dynamics, see e.g. subsection 3.3.1.

Here the focus is explaining how to implement it within a PLC. Specifically, among
the five IEC 61131-3 languages (LD, ST, SFC, FBD, IL), it is utilised the Siemens’ compliant
version of ST, known as SCL (Structured Control Language). Note that since the SCL is based on

Pascal, the migration to other textual languages, e.g. C or C++, becomes quite straightforward.

3.5.1 Memory allocations and function definitions

To achieve this task, the Token-Player was initially implemented in MATLAB and then
transitioned to SCL. In this regard, and following point a), the major difficulty was the lack of
advanced data-type structures such as cell-arrays (Mathworks, 2024), which would have been

ideal for defining each entry (7, j) of Pre and Post as a |Co(p;)| x |Co(t;)| indexed matrix if

3.5. IEC61131-3 COMPLIANT SICPN COMPILER 39

sicpn » PLC_1 [Unspecific CPU 1500] » Blocchi di programma

= =l B = °7 wmantienivaloriatiuali [gg Istantanea =
DB
Mome Tipo di dati Wal... Commento
1 |4 ~ Static
2 |<@ = » Colist Arrayl1..6] of Int Colours set
3 <@ = » P Array[1..3] of Int Fset
4 4Q = m Int 3 card{P}
5 e » T Array[1..2] of Int Tset
6 |4 w n Int 2 card{T}
7 <@ = p CoP Array[1..10] of Int stack of CoP{i}
g <@ = » dCoP Array[1..3] of Int stack of card{CoP{i}}
9 = p CoT Arrayl1..5] of Int stack of CoP{j}
10 <@ = » dCoT Array[1..2] of Int stack of card{CaT{j}}
11 <@ = » mPRE Array[1..3, 1..2] of Int adj PRE matrix
12 <@ = » mPOST Array[1..3,1..2] of Int adj POST matrix
13 <@ = » PREtIp1 Array[1.2,1.3]ofInt PRE{t1,p1}
14 <@ = » PREtZp1 Array[1.2,1.2] of Int PRE{t2,p2}
15 <@ = » POSTHIp2 Arrayll.4, 1.3] of Int
16 <@ = » POSTE2p2 Array[1.4,1.2] of Int
17 <@ = » POSTE2p3 Array[1.4,1.2] of Int
18 <@ = » mark Array1..3, 1..6] of Int marking
19 <@ = b Inputs Array[1..4] of Bool Inputs vector
20 <40 = » Outputs |Array[1.6] of Bool Outputs vector
21 | = fi4 Bool true
22 |4gQ = f1s Bool false
23 |4 w fi6 Bool false
24 qQ = 23 Bool false
25 |40 = f 25 Bool true

Figure 3.5 — Screenshot of the Siemens TIA Portal V16 IDE, displaying the GLOBAL DB used to
store the primitives of the SICPN as shown in Figure 3.4, and (3.37)-(3.39).

the arc (p;, t;) exists, otherwise, such (7, j) entry would be an empty cell. Unfortunately, PLCs do
not support such advanced containers but only traditional multi-dimensional arrays, see Figure 3.5.
To overcome this issue, some additional support variables were introduced in the IEC61131-3
compliant GLOBAL DB used to store the Net’s primitives, the current marking (3.2) and values
of the transition functions f;x, see Figure 3.5 for details. More precisely, and concerning the

example in Figure 3.4, these additional variables are
CoP=[12[1 234|123 4] (3.37)
CoT=[4 5 6[3 5] (3.38)
aimed to stack each Co(p;) (resp. Co(t;)), and
dcoP=[2 4 4| | dcoT=[3 2] (3.39)

aimed at storing the cardinality of each C'o(p;) (resp. C'o(t;)); see lines 7-10 of Figure 3.5.
Moreover, for memory optimisation, only the non-empty entries of Pre (resp. Post) are

memorised, as shown in lines 13-17 of Figure 3.5. Then, the matrices

11 0 0
mPRE=| 0 0 , mPOST= |1 1 (3.40)
0 0 01

3.5. IEC61131-3 COMPLIANT SICPN COMPILER 40

were used to keep track to which pairs (p;, ¢;) there exists (i.e. 1) or not (i.e. 0) an non-empty
Pre(p;,t;) (resp. Post(p;,t;)) matrix, cf. Figure 3.4 with (3.40) and with line 3 of Figure 3.6.
The meaning of all the other variables in Figure 3.5 can instead be easily inferred from the

comments provided on the right of the GLOBAL DB interface.

sicpn » PLC_1 [Unspecific CPU 1500] » Blocchi di programma » SICPNdyn [FC1] - 2@ X
s EsafliaFad & 77 &
TrT——
e e OB oAt (+..4) REGION
1EFOR #j := 1 TO "DB".n DO // for each tj in T, n=length(T)
2HFOR #i := 1 TO "DB".m DO // for each pi in P, m=length(P)
3HIF "DB".mPRE[#i,#j] = 1 THEN // eck pr {tj,pi} exists
4 |// if so, let's check if "m{pi} > PRE{tj,pi}, namely,
5 |// for each column b_jk of PRE{tj,pi}, let's check m{pi}
FOR #b_jk := 1 TO #j DO // for each column of PRE{tj,pi}
#sum val := 0; // checksum variable
8EFOR #h := 1 TO "DB".dCoP[#i] DO // for colours a_ih in Co{pi}
g e i i
1 or ed for the given SICPN.
1 = 1 AND #j = 1) THEN
136 IF "DB".PREtlpl[#h,#k] > "DB".mark([#h,#i] THEN
14 #sum val := #sum val + 1;
5| END_IF;
LSE IF (#1 = 1 AND #j = 2) THEN
IF "DB".PREt2pl([#h, #k] > "DB".mark([#h,#i] THEN
#sum val := #sum val + 1;
END IF; END IF; END IF; // End ad-hoc code //
20 |END_FOR;
2 // If {tj,pi} may fires wrt a b_jk then sum val=0. If so, let's
2 // check if "f bjk = true", then updated the marking m{pi}
23 HIF #sum val = 0 THEN
2 // Line 28 has an handle to the f bjk status based on {il,...,id}
250" hanlde_f j_bjk"(j := #j, k := "DB".CoT[#b_jkI,
Inputs := "DB".Inputs, out_f bjk => #f bjk);
CIF #f bjk = true THEN
// Note:
29 |// In gen
30 |// e.qg. m
31HIF (#i = 1) THEN
32HFOR #h := 1 TO "DB".dCoP[#i] DO
= "DB".mark[#h,#i] := "DB".mark[#h,#i]-"DB".PREtlpl[#h,#b_jk];
3
3 LSE IF (#1 = 1 AND #j = 2) THEN
< := 1 TO "DB".dCoP[#i] DO
37 "DB".mark[#h,#i] := "DB".mark[#h, #i]-"DB".PREt2pl([#h,#b_jki;
38 |END_FOR; END_IF;
39 :ENDﬁIF: // End ad-hoc code //
40 |// Let's update postmark
41EFOR #z := 1 TO "DB".m DO
42 éIF " #j] = 1 THEN // eck if arc{tj,pi} exists
43 S 1i [] are adhoc ins
44 £ update t.
45 t. T{tj,pz}. T
46 d "updt_mark pz 1
47HIF (#] = 1 AND #z = 2) THEN
4f FOR #h := 1 TO "DB".dCoP[#z] DO
49 "DB".mark[#h,#z] := "DB".mark[#h,#z]+ "DB".POSTt1lp2[#h,#b_jkI;
50 END_FOR;
il E‘]ELSE IF (#j = 2 AND #i = 2) THEN
5268 FOR #h := 1 TO "DB".dCoP[#z] DO
53 "DB".mark[#h,#z] := "DB".mark[#h,#z]+ "DB".POSTt2p2[#h,#b_jkI]-;
54 END_FOR;
E‘iELSE IF (#j = 3 AND #i = 2) THEN
] FOR #h := 1 TO "DB".dCoP[#z] DO
"DB".mark[#h,#z] := "DB".mark[#h,#z]+ "DB".POSTt2p3[#h,#b_jkI;
END_FOR; END_IF; END_IF;
:END_IF: // End ad-hoc code //
60 |END_IF; END_FOR; // End FOR in line [41]
61 |[END_IF; // End IF in line [27]
62 |END_IF; // End IF in line [23]
63 |END_FOR; END_IF; END_FOR; END_FOR;

Figure 3.6 — Screenshot of the Siemens TIA Portal V16 IDE displaying the list of SCL instructions
included in the FC implementing the dynamics of the SICPN displayed in Figure 3.4,
and with primitives defined as in Figure 3.5.

3.5. IEC61131-3 COMPLIANT SICPN COMPILER 41

3.5.2 Token-Player implementation

In Figure 3.6 is provided a screenshot of the Siemens TIA Portal V16 IDE displaying
the list of the SCL instructions we included in the IEC61131-3 compliant FC (function) tasked to
implement the dynamics of the SICPN displayed in Figure 3.4, and with primitives in the GLOBAL
DB depicted in Figure 3.5.

Note that the definition of the support variables in (3.37)-(3.39) was a strategy to allow
the verification of the firing condition for all the net transitions ¢; (see index #j in line 1) w.r.t.:
all places p; (see index #1 in line 2); all colours transitions b;, € C'o(t;) (see index #b_jk in
line 6, and e.g. k=DB.CoT [#b_jk] in line 25); all colours places a;, € Co(p;) (see line 8 where
#h=1, 2,..., DB.CoP[#il).

Further note that since the Token-Player in Figure 3.6 is thoroughly commented within
the figure. Thus, it is essential to highlight that the red-highlighted blocks of code, i.e., lines 9-20,
28-39, and 45-59, are specialised for the SICPN shown in Figure 3.4.

In general, those code portions should be replaced with function calls specifically
designed for the given SICPN (see the comment in line 9-11). However, these instructions were

made explicit here for clarity.

With that said, please note that lines 12-20 are dedicated to checking whether the generic
transition ¢; is enabled to fire w.r.t. a pair of colours b, ;, considering the current marking m;
and the condition Pre(p;,t;)(-, k).

On the other hand, lines 31-39 handle the update of the net marking based on the firing
transition costs associated corresponding to the Pre(p;,t;)(-, k) arc-weights, because ¢, ;. (1)
holds true (as indicated by #f_jk=true in line 27).

Finally, lines 47-59 handle the conclusion of the net marking update based on the
Post(-,t;)(-, k) arc-weights.

Moreover, it is important to note that the provided Token-Player FC in Figure 3.6 is
expected to be executed within the 0B1 main cyclic organisation block of the PLC. This ensures
that during each scan cycle, the entire SICPN marking is continuously updated based on the current
input status I and marking M . Further note immediately after the net marking is updated, a second
FC aimed at implementing the output function (2 is requested to be executed in subsection 3.3.1.
Here, the FC corresponding to the output function 2 is omitted due to space limitations. However,

it can be easily derived based on equations (3.27)-(3.36).

42

4 DISCUSSION BASED ON A CASE STUDY

4.1 Presenting the case study

To validate the effectiveness of this formalism for directly implementing control algo-
rithms, a SICPN-based feedback control is modelled and tested on an Arduino microcontroller
equipped with a 16 MHz ATmega2560 CPU, 4kB of SRAM, and 256kB of Flash memory. The
control is devised to coordinate actions on a Digital Twin representing an extended configuration
of the FESTO MPS (Ebel & Pany, 2015). The control loop between the Arduino and the DT,
which runs in MATLAB, is facilitated through two-way UART serial communications. Con-
sequently, it is shown the SICPN-based controller’s effective and seamless operation with the

proposed DT, despite the plant being emulated.

It is noteworthy that this testbench has long served as a benchmark in the field of
manufacturing automation (Lima II & Dérea, 2004). Recently, it has also emerged as a common
reference for DT applications and PLC virtual commissioning (Abdelsattar et al., 2022; Batchkova
et al., 2013; Fernandez et al., 2021; Mykoniatis & Harris, 2021). In contrast to previous studies,
which typically focus on the standard FESTO configuration as depicted in Figure 4.1, this
thesis research, akin to Batchkova et al. (2013), delves into an extended configuration. This
expanded setup includes additional and different testing and drilling modules. Moreover, it is
considered workpieces of various materials, random arrival times, and potentially requiring

different operations.

Figure 4.1 — Standard Configuration of the FESTO S-BE-M Processing Station (Ebel & Pany,
2015). Note the extended configuration considered encompasses supplementary
testing and drilling modules, situated at position indexes 2 and 3, respectively.

4.1. PRESENTING THE CASE STUDY 43

4.1.1 Control problem formulation

The process to be automated is the FESTO MPS of Festo Didactic, global leader in
technical training solutions for industrial and process automation. The core of the station is a DC-
motor driven rotating table as shown in Figure 4.1. As the table rotates clockwise, the workpieces
(which are cylindrical blocks of different materials) undergo different stations identified by a
position-index (PI) until they are withdrawn, see Figure 4.1. Each PI identifies a specific station

and a function, resp.:

PI-1 Identification (ID)— A workpiece is here loaded from a buffer, and its material is identified.
PI-2 Testing A (TA) — A testing module checks for a hole with a diameter d 4 > 0 or larger in the piece.
PI-3 Processing A (PA) — A drilling module pierces the workpiece using a tip with a diameter d4 > 0.

PI-4 Testing B (TB) — A testing module checks for a hole with a diameter dg > d 4 or larger in the

piece.
PI-5 Processing B (PB) — A drilling module pierces the workpiece using a tip with a diameter dp > d 4.

PI-6 Ejection (EJ)— The worked piece is pushed out using an ejector module.

Three types of block materials are considered: metal (M), black plastic (BP), and red
plastic (RP). Additionally, it is assumed that metal blocks require two drilling operations, one at
PA and another at PB, where the tip diameters satisfy dg > d4 > 0. In contrast, plastic blocks
undergo a single drilling operation at PB. The control problem is formulated in a way that allows
a maximum of six pieces to be worked on simultaneously. Furthermore, in the workpiece arrival
process, it is assumed that some blocks may not require any operation, and the control system

must be capable of recognising them.

Here, unlike in the previously mentioned literature, the control will be formulated to

handle a maximum of six pieces being worked on simultaneously instead of just one.

Additionally, in the workpiece arrival process, it is assumed that some blocks may not
require any operations, while the control system must be capable of identifying and dealing with
them. An important aspect to emphasise and underscore is the complexity of the problem and the

fundamental role of using coloured PN to keep the controller dimension small.

To identify the materials, PI-1 is equipped with digital sensors. Specifically, a capacitive
sensor (CAP) to detect the presence of a block, an optical sensor (OPT) identifying the material’s
reflectiveness, and an inductive sensor (IND) sensitive to metallic objects. Table 4.1 summarise

the material identification logic.

Additional digital measurements from the table can serve purposes beyond the PI-1
task. When the table is aligned correctly with a PI (and consequently with others, given their

equispaced), the signal IDX is high.

4.2. FEEDBACK CONTROLLER MODELLING VIA SICPN 44

Table 4.1 — Sensor combinations for the PI-1’s identification task.

Logical statement || Conclusion
IND metal (M)
—-IND A OPT red plastic (RP)
—IND A —=OPT A CAP || black plastic (BP)
otherwise no workpiece

Sensors TAO, PAO, and TA1, PA1 (and their counterparts TBO, PBO, and TB1, PB1)
correspond to the lower and upper limit switches associated with the testing piston and processing
tip at stations A and B, respectively. These signals indicate whether the actuator is retracted or

extended.

TAOK represents the output of the TA station. However, based on the given specifications,
this test is only required for M parts, while RP or BP blocks can skip the test at PI-2. In contrast,
all types of blocks must undergo testing in the TB station in PI-4, and TBOK denotes the test’s
output.

When TAOK is false, meaning that M part is not yet drilled, thus PA station PI-3 will
drill it. Whereas, when TBOK is false, meaning that the block of any material is not yet drilled,
thus PB station PI-5 will drill it.

Finally, CAPF is the capacitive sensor that identifies whether there is a block at PI-6 of
the table, indicating that the block is ready to be removed from the station as its manufacturing

process is completed.

4.2 Feedback controller modelling via SICPN

Before introducing the feedback controller modelling, there are two issues to highlight:

* There is no "uncontrolled" model because it is built considering its controlled behaviour,

i.e. the synthesis is done when design the model in SICPN.

* In a decision-making process there is a feedback based on the given information based on
the input signals to calculate possible outputs that will generated different control actions

to be executed.

Here is presented the modelling of the proposed SICPN feedback controller for the case
study under consideration, and each entry of 11-tuple in (3.1) will be now characterised for the

control problem at hand.

4.2.1 Modelling structure

Figure 4.2 illustrates the bipartite graph associated with the SICPN-based controller,
custom-designed for automating the extended FESTO MPS station. Considering each case study

4.2. FEEDBACK CONTROLLER MODELLING VIA SICPN 45

is different, the built model is ad hoc and the researcher must know what behaviour is expected
for the system. Despite the consistency of the SICPN notation, the researcher must pay attention

if the outputs are contradictory when applying the notation to a model.

Definitions for each of the 33 net’s places can be found in Table 4.2.

PI-2 (TA)

PI-3 (PA)
©oD16 P17

Ok
fléj_ t%-(z)o

PI-1 (ID)

Rotation PI'6 &)

Rotation
ti7

G

Figure 4.2 — SICPN-based modelling of FESTO MPS control algorithm.

Remarkably, the SICPN with 33 places can be considered compact, considering the
control problem complexity. This problem entails managing 3 types of workpieces, coordinating
up to 6 different operations simultaneously (one operation for each PI), addressing scenarios
where no operation is required (e.g., when TA or TB tests fail or when there is no block in PI-1),

and controlling the DC motor for table rotation.

In Figure 4.2, the dashed boxes, labelled PI-X with X = 1,2, ... 6, highlight the
portion of the SICPN net responsible for coordinating each PI task, while those labelled Table and
Rotation-Request manage the rotation table’s operations. Notably, places ps; to pso, responsible
for controlling operations in PI-4 and PI-5, have been omitted from Figure 4.2. This is because
TB and PB can operate on all the material types, while TA and PA only on metal blocks, resulting

in similar but simpler functionalities to implement.
Places p4 and p5; denote two resources of the system (see Figure 4.2 and Table 4.2):

e p, controls the connection and synchronisation of processes and table rotation by
functioning as a rotation request, indicating that there must be at least one block on the table to

request its rotation;
e p; limits the sum of tokens in pg, p7, and pg to one, as a place invariant.

It is possible to ensure the system is not blocking by modelling construction. Resource
ps guarantees there is only one block at a time in station PI-1. For the other stations, this is limited

because the rotation is synchronised for all the positions PI-1 to PI-6, controlled by resource p,.

4.2. FEEDBACK CONTROLLER MODELLING VIA SICPN 46

Table 4.2 — Meaning of the SICPN places in the case study.

Modules Place Meaning
D1 Number of Idle stations
Table P2 DC-Motor starts
D3 DC-Motor rotating
Resources o Table rotation request
D5 1 piece limiter on PI-1
PI-1 Dé Workpiece arrived
(Identification) p7 Waiting synchronisation
Rotation Ds Table is turning
Do Block on PI-2
PI-2 P1o iest?ng Eioclli
. P11 esting bloc
(Testing A) P12 Block on PI-2
P13 Waiting synchronisation
Rotation P14 Table is turning
P15 Block on PI-3
PI-3 D16 grocessing E}oci
. 17 rocessing bloc
(Processing A) i s Block on %1_3
P19 Waiting synchronisation
Rotation P20 Table is turning
P21 Block on PI-4
pry | e | T e
. 2
(Testing B) pgi Block on PI-4
D25 Waiting synchronisation
Rotation D26 Table is turning
Ppa7 Block on PI-5
Das Processing block
PI_? D29 Processing block
(Processing B) Dso Block on PL5
P31 Waiting synchronisation
Rotation P32 Table is turning
(Ejfe’(l:t?on) P33 Block on PI-6

Afterwards, the model was tested by extensive simulation with no errors, i.e. the system behaved

as expected.

The initial marking of the net M|, comprises 6 generic ¢, tokens in p;, indicating that all
table stations are idle or have finished processing a block, if present. Moreover, there is 1 generic
¢o token in ps, indicating that PI-1 is available to receive a block from the buffer queue (waiting

area). It is also important to note that having m; = 6 ® ¢ is a requirement for ¢, to fire.

4.2.2 Colour

The modelled system considers three different materials, as presented at Table 4.1, and
this is one of the features incorporated and stored within each token. Here, in respect to colours,
the possibilities are: 00 (Unknown), before material identification; 01 (Metal), 10 (Red plastic)

and 11 (Black plastic), after material identification. Beyond the type of material, there are two

4.2. FEEDBACK CONTROLLER MODELLING VIA SICPN 47

features regarding the status: drilled 4, for a hole with a diameter d4 > 0; and drilledp, for a

hole with a diameter dg > d4.

The list of token colours used to describe the system status is given in Table 4.3 along

with the corresponding 4-bit lookup table.

Table 4.3 — Possible colours based on system properties.

Colour

index Material drilled s || drilledp
co 00 Unknown - -
C1 0 0
Co 01 Metal 1 0
C3 1 1
C4 . 0 0
o 10 Red plastic 1 1
Cg . 0 0
o 11 Black plastic 1 I

4.2.3 Signal interpretation

In signal interpretation, the set of input signals is as next:
I = {IDX, IND, OPT, CAP, TAO, TA1l, TAOK,

PAO, PA1, TBO, TB1, TBOK, PBO, PBI, CAPF}. @.1)

Please refer to subsection 4.1.1 for details on their meaning. Finally, the net’s controller

output, namely the set commands to be delivered to the plant’s actuators, is
0= {MT7 TAadva TAreta PAadva PAret;
TButv: TBuuts PBuses Phrar). (42)

where M T is an output enabling the motor to rotate the table, while T'A 4y, T Aret, PAadns PArets
T Baays T'Byet, PBaay, and P B,..; are outputs that provide advance and retract commands for the

pneumatic actuators associated with the station TA, PA, and TB, PB, respectively.

4.2.4 A detailed description of PI-1

To provide an understanding of how the controller in Figure 4.2 operates, it is given
more detail regarding the functions associated with the portions of the net labelled PI-1 and
Rotation in Figure 4.3. A zoomed-in view of this sub-net is provided in Figure 4.4, where the
remaining net’s primitives such as Pre(p;,t;), Post(p;,t;), Co(p;), Co(t;), and ¢(t;,b;) are
explicitly shown.

Here, when an unidentified (generic) workpiece arrives at PI-1, it triggers the firing

of transition ¢, in Figure 4.3. Subsequently, a token c, enters place pg in Figure 4.4. Then,

4.2. FEEDBACK CONTROLLER MODELLING VIA SICPN 48

PI-1 (ID)

Rotation
request

Figure 4.3 — SICPN-based modelling of FESTO MPS control algorithm - Position Index PI-1.

o(ts,c1)

o(ts; c1) #(tg; c1)
p(ts, ca) #(tg, ca)
o(ts, co) #(tg, co)
{e1,¢q,c6} {e1,¢a,¢6} {c1,¢a,c6} {e1,ea,c6} {c1,¢4,c6}

Figure 4.4 — Excerpt from the SICPN in Figure 4.2.

sensors IND, OPT, and CAP located in PI-1 perform the identification. More precisely, following
Figure 4.4 and Table 4.3, the following transition rules are devised to enable the workpiece

material identification:

gO(t5, Cl) = IND (43)
@(tﬁ, C4) = —IND A OPT (44)
o(tr,c) = —IND A —OPT A CAP (4.5)

Then, Pre(p;,t;) and Post(p;,t;) in Figure 4.4 define which tokens are consumed
from each pre-place and which tokens enter a post-place. Notice that the firing of either ¢5, or %,

or t; models the material identification task. Following Table 4.3, the corresponding post-place

4.2. FEEDBACK CONTROLLER MODELLING VIA SICPN 49

will be marked by either a ¢y, or ¢y, or cg token, while ¢ in pg is consumed, namely

Pre(ps,ts)(c1) =1® ¢ (4.6)
Pre(ps,ts)(cs) =1® ¢ 4.7)
Pre(ps,t7)(c) = 1® ¢ (4.8)
Post(pr,t5)(c1) =1®@ 4.9)
Post(pr,ts)(cs) = 1R ¢y (4.10)
Post(pr,t7)(cs) = 1 ® cg 4.11)

Moreover, as soon as 5, or tg, or t; fires, in accordance with Figure 4.3, we also have

Post(py,ts)(c1) = 1® ¢ (4.12)
Post(py,ts)(cs) =1 ® ¢ (4.13)
Post(py,t7)(cs) =1 ® ¢y (4.14)
Post(pi,t5)(c1) =1 ® ¢ (4.15)
Post(py,ts)(cs) =1 ® o (4.16)
Post(py,t7)(cs) = 1 ® ¢y 4.17)

which means that in p4 and p; a ¢y token will enter, meaning that the identification has ended,

and the table can rotate from the PI-1 station’s perspective.
However, notice that two conditions must hold to start the table rotation:

(i) there is at least 1 rotation request, namely p, contains at least 1 generic ¢, token (see Figure 4.2).
To ensure this condition, a ¢, token is added to place p, when any process is finished, namely
once one among ts, tg, t7, t15, OF too is fired, cf. e.g. (4.12)-(4.14) w.r.t. PI-1;

(ii) all the workpieces on the table have finished processing if necessary, which is satisfied when
p1 contains 6 generic ¢, tokens (see Figure 4.2). To ensure this condition, a token is removed
from p; whenever a block is being processed, and it is added to p; again when the process is
finished, as indicated by (4.15)-(4.17).

If (i) and (ii) hold, then ¢, in Figure 4.3 fires, resulting with the following output function

configurations
wipr,co) = [0, = - -] (4.18)
wipsyc0) = |1, = = =] (4.19)
wipgoco) = [1, = - = -] (4.20)

Here, the electric motor will be turned on (i.e. MT" = 1) when either p, or p3 is marked by a

generic ¢, token. Conversely, if p; is marked MT" = 0.

4.3. ARDUINO COMPLIANT SICPN COMPILER 50

Finally, with reference to Figure 4.4, the transition functions of tg are as follows:

gD(tg, Cl) = @(tg, 04) = (p(tg, 06) = =IDX (421)

indicating that the table is rotating independently of the block type until IDX = 1. Nevertheless,

it results
Pre(pr,ts)(c1) = 1®¢ (4.22)
Pre(pr,ts)(cy) = 1®ey (4.23)
Pre(p,ts)(cs) = 1®cq (4.24)
Post(ps,ts)(c1) = 1®a¢ (4.25)
Post(ps,ts)(cs) = 1®c¢y (4.26)
Post(ps,ts)(cs) = 1®c 4.27)

which means that we are keeping track of the block material currently on PI-1 and the material
approaching the PI-2 station in the controller. This will occur when py is marked, cf. with
Table 4.2.

Finally, note that places ps, p14, P20, P26, and p3, are not responsible for defining the
output signal M T, namely w(ps, -)(1) = {—}, but instead they represent movement of the work-
piece from one station to the next. On the other hand, since all blocks will rotate simultaneously,

MT is set high only by places p, and ps.

4.3 Arduino compliant SICPN compiler

Refer to section 3.5 to remember the two aspects to run a SICPN within a control board.

This thesis is focused on explaining how to implement it within an Arduino Mega board,
which is a microcontroller equipped with a 16 MHz ATmega2560 CPU, 4kB of SRAM, and
256kB of Flash memory using C++ language. This model has 33 places and 39 transitions and the
used memory in Arduino is just a small fraction of its capacity. Thus, the scalability is possible
considering the increase of the model complexity. Regarding computational complexity, Arduino

did not use much of its processing capacity.

4.3.1 Memory allocations and function definitions

To implement the Token-Player in Arduino, one should define the SICPN model consid-
ering the net structure, colours and signal interpretation (inputs and outputs) according to the

expected functionality and behaviour of the studied system.

Once defined, the first step is to declare a matrix whose inputs are the number of places
and the number of token colours as a byte, and the input and output signals as boolean vectors
(Figure 4.5).

4.3. ARDUINO COMPLIANT SICPN COMPILER 51

byte M[9+1][7+1]; // nine places [pl to p9], eight token colours [cO0 to c7]
bool input[4+1]; // four inputs [IDX, IND, OPT, CAP]
bool output[l+1l]; // one output [MT]

Figure 4.5 — Screenshot of the Arduino IDE, displaying the variable declaration.

Then, updatelnputs() and updateOutputs() functions are built (Figure 4.6). During the
loop cycle, these functions will read physical inputs and store its values in the Input Image Table
(input array) and to write the Output Image Table (output array) to the physical outputs. At
the beginning of the loop, the system’s inputs are read and copied into an input vector to be
considered during that cycle because in each cycle the input signals can vary. In the end of the
loop, all the calculated outputs are stored into an output vector and transmitted to the system to
be executed when appropriated.

void updateInputs ()

{ if (digitalRead(2)==LOW) {input[l]=false;

if 1(3)==LOW) {input[2]=f

(

(
if (digitalRead(4)==LOW) {input[3]=f =7 =
if (digitalRead(5)==LOW) {input[4]=false;} else {input

digitalR

]

void updateOutputs ()

// output ol
if ((M[2][0]>=1) || (M[3][0]>=1)) {output[l]=true;}

if (output[l]==true) {digitalWrite (6,HIGH);} else {digitalWrite (6,LOW);}
}

Figure 4.6 — Screenshot of the Arduino IDE, displaying the input and output functions.

Setup configuration (Figure 4.7) associates Arduino pins with the input/output signals.

void setup() {
// put your setup code here, to run once:
INPUT) ;
, INPUT);
INPUT) ;
INPUT) ;
OUTPUT) ;

}

Figure 4.7 — Screenshot of the Arduino IDE, displaying the setup configuration.

4.3.2 Token-Player implementation

Itis noticiable that the Token-Player is different for each SICPN model. It was constructed
in an organised and clear way to render it adaptable to any other SICPN model in study.

Now that the initial configuration is defined, the behaviour of the Token-Player is

exemplified showing the implementation only for the station PI-1 (Figure 4.3) of the FESTO

4.3. ARDUINO COMPLIANT SICPN COMPILER 52

FMS station, including the table, rotation request and rotation itself leading the workpiece to the

next station.

The firing transition rules and the dynamic behaviour is summarised as follows.

e Check if net structure and colour conditions are satisfied

— Check if signal interpretation conditions are satisfied (if any)

* Remove pre-place tokens
* Add post-place tokens
% Update outputs

The addressing of the marking is given by M[# of the place][# of the token colour]. This
notation is applied when checking if the net and colouring are satisfied to enable the transition
with respect to a specific colour and also when updating the marking after a transition fires

removing tokens with Pre and adding tokens with Post.

First, transitions ¢; to t, (Figure 4.8) represent the table and the arrival of a workpiece
with unidentified material into PI-1 station. Transitions ¢; verifies conditions (i) at least 1 token in
p4 (rotation request) and (ii) 6 tokens in p; (all stations have finished their processes), to start the
table rotation. Transition ¢, represents the process of rotating the table and ¢3 is when the rotation
finishes, returning the tokens to p; and p,. Finally, transition ¢4 verifies if there is 1 token in psm
which represents the resource that guarantees the PI-1 station is empty and ready to receive an

unidentified workpiece.

Once the workpiece enters the PI-1 station in place pg, transitions ¢ to ¢; (Figure 4.9)
are responsible to identify the workpiece’s material. This recognition is done by using CAP, IND
and OPT sensors. Each material has its own sensor combination logic as shown in Table 4.1 and
equations (4.3) for metal, firing transition ¢5; (4.4) for red plastic, firing transition Zg; and (4.5)

for black plastic, firing transition .

Transitions tg and tg of the Rotation are synchronised with the Table. While tg controls
the start of the table rotation (Figure 4.10), which signal interpretation condition is shown in
(4.21) for any kind of material; ¢y controls the finish of the table rotation (Figure 4.11), leading
the workpiece, if any, from PI-1 to PI-2 and allowing a new cycle of the loop.

4.3. ARDUINO COMPLIANT SICPN COMPILER

53

//TRANSITION 1

// test if transition tl is enabled w.r.t. cO

if ((M[1][0] >= 6)&&(M[4][0] >= 1))
// place pl, colour cO and place p4, colour cO

{
// update marking
// table
M[1][0] = M[1][O]-6;
M[2] [0] M[2] [0]+1;
// rotation request
M[4][0] = M[4][0]-1;

}

//TRANSITION 2
// test if transition t2

if (M[2][0] >= 1)
// place p2, colour cO
{

// update marking

// table
M[2][0] = M[2][0]-1;
M[3][0] = M[3][0]+1;

}

//TRANSITION 3
// test if transition t3

if (M[3][0] >= 1)

// place p3, colour cO

{
// update marking
// table
M[3][0] = M[3][0]-1;
M[1][0] = M[1][O]+6;
// rotation request
M[4][0] = M[4][0]+1;

}

//TRANSITION 4

//
//

is

//
//

is

//
//

//

update place pl, colour cO
update place p2, colour cO

update place p4, colour cO

enabled w.r.t. cO

update place p2, colour cO
update place p3, colour cO

enabled w.r.t. cO

update place p3, colour cO
update place pl, colour cO

update place p4, colour cO

// test if transition t4 is enabled w.r.t. cO

if ((M[1][0] >= 1) && (M[5]1[0] >= 1))
// place pl, colour cO and place p5, colour cO

{
// update marking

M[5][0] = M[5][0]-1;
M[6][0] = M[6][0]+1;
// table

M[1][0] = M[1][0]-1;
}

//
//

//

update place p5, colour cO
update place p6, colour cO

update place pl, colour cO

Figure 4.8 — Screenshot of the Arduino IDE, displaying the transitions ¢; to ¢, of Figure 4.3.

4.3. ARDUINO COMPLIANT SICPN COMPILER

54

//TRANSITION 5

// test if transition t5 is enabled w.r.t.

if (M[6][0] >= 1)
// place p6, colour cO

{

// test if signal interpretation

if
{

(input[2]==true)

// update marking

M[6][0] = M[6][0]-1;

M[7][1]

M[7][1]+1;

// table

M[1][0] = M[1][0]+1;

// rotation request

M[4] [0] = M[4][0]+1;

b

//TRANSITION 6
// test if transition t6 is

if (
// p
{

M[6][0] >= 1)
lace p6, colour cO

/7
/7

//

//

update
update

update

update

enabled w.r.t.

condition

place
place

place

place

pé,
p7,

pl,

p4,

// test if signal interpretation condition

if

}

((input[2]==false)

// update marking

M[6][0] = M[6][0]-1;
M[7]1[4] = M[7][4]1+1;
// table

M[1][0] = M[1][0]+1;
// rotation request
M[4] [0] = M[4][0]+1;

//TRANSITION 7

// test if transition t7

if (
// p
{

// test if signal interpretation condition is satisfied w.r.t.
&& (input[3]==false) && (input[4]==true)

if
{

}

M[6][0] >= 1)
lace p6, colour cO

((input[2]==false)

// update marking

M[6][0] = M[6][0]-1;
M[7]([6] = M[7][6]+1;
// table

M[1][0] = M[1][O0]+1;
// rotation request
M[4][0] = M[4][0]+1;

&&

/7
//

&4

//

is

//
//

//

//

(input [3]==true)

update
update

update

update

enabled w.r.t.

update
update

update

update

place
place

place

place

place
place

place

place

p6,
p7,

pl,

p4,

pé,
p7,

pl,

p4,

- |

is satisfied w.r.t.

colour
colour

colour

colour

cé

is satisfied w.r.t.

colour
colour

colour

colour

cé

colour
colour

colour

colour

c0
cl

c0

c0

c0
cé

cO

c0

c0
c6

c0

c0

Figure 4.9 — Screenshot of the Arduino IDE, displaying the transitions ¢5 to ¢; of Figure 4.3.

4.3. ARDUINO COMPLIANT SICPN COMPILER 55

//TRANSITION 8
// test if transition t8 is enabled w.r.t. cl
if (M[7]([1] >= 1)
// place p7, colour cl
{
// test if signal interpretation condition is satisfied w.r.t. cl
if (input[l]==false)
{
// update marking
M[7][1] M[7][1]-1; // update place p7, colour cl
M[8][1] M[8][1]+1; // update place p8, colour cl

}

// test if transition t8 is enabled w.r.t. c4
if (M[7]1([4] >= 1)
// place p7, colour c4
{
// test if signal interpretation condition is satisfied w.r.t. c4
if (input[l]==false)
{
// update marking
M[7][4] M[7]1[4]-1; // update place p7, colour c4
M[8][4] M[8][4]+1l; // update place p8, colour c4

}

// test if transition t8 is enabled w.r.t. cé6
if (M[7]1[6] >= 1)
// place p7, colour cé6
{
// test if signal interpretation condition is satisfied w.r.t. cé6
if (input[l]==false)
{
// update marking
M[7][6] M[7][6]-1; // update place p7, colour cé6
M([8][6] M[8][6]+1; // update place p8, colour cé6

}

Figure 4.10 — Screenshot of the Arduino IDE, displaying the transition ¢g of Figure 4.3.

4.3. ARDUINO COMPLIANT SICPN COMPILER

//TRANSITION 9
// test if transition t9 is enabled w.r.t. cl
if ((M[4][0] >= 1) && (M[8][1] >= 1))
// place p4, colour cO0 and place p8, colour cl
{

// update marking

M[8][1] = M[8][1]-1; // update place p8, colour cl
M[9][1] = M[9][1]+1l; // update place p9, colour cl
M[5][0] = M[5][0]+1; // update place p5, colour cO

// rotation request

M[4] [0] = M[4][0]-1; // update place p4, colour cO
}
// test if transition t9 is enabled w.r.t. c4

if ((M[4][0] >= 1) && (M[8][4] >= 1))
// place p4, colour cO0 and place p8, colour c4

{
// update marking

M([8][4] = M[8][4]-1l; // update place p8, colour c4
M[9] [4] = M[9][4]+1l; // update place p9, colour c4
M[5][0] = M[5][0]+1; // update place p5, colour cO

// rotation request
M[4][0] = M[4][0]-1; // update place p4, colour cO
}
// test if transition t9 is enabled w.r.t. c6
if ((M[4]([0] >= 1) && (M[8][6] >= 1))
// place p4, colour cO0 and place p8, colour cé6

{
// update marking

M[8][6] = M[8][6]-1; // update place p8, colour cé6
M[9][6] = M[9][6]+1l; // update place p9, colour cé6
M[5][0] = M[5][0]+1; // update place p5, colour cO

// rotation request
M[4][0] = M[4][0]-1; // update place p4, colour cO
}

Figure 4.11 — Screenshot of the Arduino IDE, displaying the transition ¢g of Figure 4.3.

4.4. CLOSED-LOOP TEST DESIGN AND RESULTS 57

4.4 Closed-loop test design and results

In the absence of the real FESTO MPS testbed, the proposed SICPN controller underwent
testing using a Digital Twin of the plant. MATLAB is employed to simulate the plant dynamics,
while Arduino is employed to implement the controller depicted in Figure 4.2. The control loop
was closed using two-way UART serial communications between the Arduino and MATLAB, as

illustrated in Figure 4.12.

MATLAB
Plant simulation Data acquisition
e.g. state machine | Reading PN marking

Commands Sensors String with
to actuators reading token properties
Arduino

Plant controller
Running SICPN

Figure 4.12 — Scheme for MATLAB and Arduino communication.

To facilitate real-time communication between Arduino and MATLAB, both the input
and output of the controller and of the plant DT were encoded as string, as this is the only
data type supported by the serial protocol. Synchronisation between Arduino and MATLAB was
achieved by adjusting the scan cycle in both codes. Specifically, the Arduino scan cycle is set to 1

second, enabling safe bidirectional serial communication.

4.4.1 Modelling the FESTO MPS Testbed Using SFC

To test the controller, it was necessary to have a model of the FESTO MPS system
capable of emulating the input-output behaviour of the plant, thereby generating the correct
input signals to the controller (denoted as /) based on the provided commands by the controller
(denoted as O).

To tackle this task, the Sequential Function Chart (SFC) language is utilised to model
the plant dynamics, which were subsequently translated into a timed MATLAB script. The plant’s
dynamics were represented by five SFCs running in parallel, with each one depicting different

stations of the system:

e Figure 4.13 represents the input-output response of the rotating table. Here, the table is modelled
as a circular buffer with 6 positions (cf. with Figure 4.1) and the table rotates clockwise until the
SICPN generated command M1 is high. More precisely, suppose the table is initially correctly
aligned and at rest (step {1} in Figure 4.13). Here, the optical sensor IDX is high, indicating that
the table positions are correctly aligned with the processing stations. Then, once a workpiece
arrives, and after the identification process described in subsection 4.2.4 is finished, a rotation

request is called, thus p- is marked, and MT is set to high. The SFC then moves to step {2},

4.4. CLOSED-LOOP TEST DESIGN AND RESULTS 58

indicating that the motor begins rotating. During the first second, IDX stays high due to some
motor and sensor inertia. Then, in step {3}, IDX becomes low, and 4 seconds later, in step {4},
IDX returns to high, indicating that the table has finished the rotation and reached the correct

alignment again.

Simultaneously, the workpieces are shifted by one position, i.e., “partpos(2:6) <— partpos(1:5)”,
so that they are ready for the new type of service, depending on their location and the current
marking of the SICPN-based controller. For example, if place ps3 in Figure 4.2 is marked, the
workpiece in position PI-6 is ejected using an ejection module.

S
partpos(2:6)<—partpos(1:5) |

Figure 4.13 — SFC modelling of the plant’s rotating table.

e Figure 4.14 illustrates the input-output response of the Testing A station (resp. Testing B
station). When a material is already identified, the sequence of operations unfolds as follows:
upon receiving a metal workpiece (resp. any workpiece), the testing piston is triggered by the
controller to advance, using the command T'A,4, (resp. T'B,4,), and the SFC progresses to
step {2} to initiate the test, which lasts 3 seconds, leading to step {3}. Depending on the test
results, the SFC transitions to step {4} if the workpiece is drilled or to step {5} if it is not drilled.
Subsequently, the testing piston receives the command T A,..; (resp. T'B,.;) from the SICPN
controller to retract, and the SFC proceeds to step {6}, where it waits for 2 seconds before
returning to {1}. If instead the material is not metallic, both the commands T'A,4, and T' A,

will remain low.

e Figure 4.15 illustrates the input-output response of the Processing A station (resp. Processing
B station). Specifically: When a workpiece arrives at the PA (resp. PB) station, it encounters
two possible outcomes based on the results from Testing A (resp. Testing B). If the workpiece is
already drilled, it will wait until the next table rotation, thus both PA4, and PA,.; remain low.
However, if the workpiece is not drilled, it requires processing. In the latter case, the SFC is at
step {1}, and the drilling piston will be commanded through PA,,, (resp. PB,4,) by the SICPN
controller to advance. Subsequently, the SFC progresses to step {2} to initiate drilling, which

lasts 3 seconds, culminating in step {3}. Following drilling, the piston will receive the command

4.4. CLOSED-LOOP TEST DESIGN AND RESULTS 59

PA,.; (resp. PB,.) to retract, while the SFC advances to step {4}. After a 2-second wait, the
SFC returns to {1}.

O s [rao
R

TA1
T TAadv
2]
T 3s
[5]
| partpos(2).drilled | partpos(2).drilled,

true false

[« R [rao [sH ® [rao
S |Tal TAI

s [Taok] R |TAOK
T TAret T TAret

wn

Figure 4.14 — SFC modelling of the Testing A station (resp. Testing B station).

O s [eao
R

PA1
=+ PAadv
[2]
T 3s
[3H ®r [rao
N PA1
=+ PAret

Figure 4.15 — SFC modelling of the Processing A station (resp. Processing B station).

4.4.2 Closed-loop tests

As the plant controller, Arduino manages the Digital Twin (DT) dynamics by executing
the Token-Player associated with the SICPN depicted in Figure 4.2. For this purpose, the compiler

4.4. CLOSED-LOOP TEST DESIGN AND RESULTS 60

discussed in section 4.3 has been written in C++.

Based on the input signals I (i.e., the plant measurements) received through MATLAB
in each scan cycle, the SICPN controller drives the plant by sending back to MATLAB its
output signals O as commands. The main steps of the closed-loop implementation are listed in
Algorithm 1.

1: System configuration > Arduino setup
2 Define 10 vector

3 Begin serial port connection

4 Define initial marking M,

5: while true do > Arduino loop
6 SICPN Token-Player (net dynamics)

7 Arduino write outputs O

8 Communication (serial port)

9 MATLAB reads O from the Arduino

10: MATLAB calculates 1
11: MATLAB sends back I to Arduino
12: Arduino reads inputs /

13: end while

Algorithm 1 — Closed-loop tests’ main steps.

Two types of closed-loop tests were conducted to verify the correctness of the proposed
SICPN controller:

1. The first test aims to track the operation of a not-drilled metal workpiece among all stations,

while verifying the correctness of the operations it undergoes.

2. The second test aims to track the operation of four a-priory known blocks with exponentially
distributed arrival times among all the service stations, while verifying the correctness
of the operations they undergo. Clearly, this second test will take into account parallel

simultaneous operations.

Table 4.4 shows the properties of the workpieces and the order of entrance of the blocks
at the rotating table in the second test. Remember that the materials of the blocks are initially

unknown to the controller, as they have not been identified yet.

Table 4.4 — Ordered list of workpieces and corresponding expected operations in the second test.

Arrivals || Initial status Requests operations
Q1 M, ~da, ~dp || 1,2,3,4,5 D, TA, PA, TB, PB)
Q2 RP, d4, ~dp 1,4,5 (D, TB, PB)
Q3 BP,d4, dp 1,4 (ID, TB)
Q4 M, da, dp 1,2,4 (D, TA, TB)

4.4. CLOSED-LOOP TEST DESIGN AND RESULTS 61

Table 4.5 further illustrates the list of work processes each workpiece is expected to be
subjected to at a time, along with the number of simultaneous operations the modular processing

station is performing at a time.

Table 4.5 — Dynamic processes for the controlled queue with four blocks. Note that the bold
numbers represents in which station the given block will be processed at the table.

Expected processes Temporal process execution
Q1(1,2,3,4,5) 1 2 3 4 5 6
Q2(1,4,5) 1 2 3 4 5 6
Q3(1,4) 1 2 3 4 5 6
Q4(1,2,4) 1 2 3 4 5 6
Processes 1 2 2 2 3 2 1 0 0

As an example, at the time Q3 enters PI-1, simultaneously the FESTO MPS is performing
two operations: Q3 is under identification (ID), while Q1 is being drilled at PI-3 station (PA).
Meanwhile, Q2 is not undergoing any operation because red plastic blocks (RP) do not require

TA processing at the PI-2 station.

4.4.2.1 Acquiring and plotting data

Among the many verification tests we conducted to verify the correct design and im-
plementation of the proposed SICPN controller, two plots are of particular interest for this

analysis.

The first is to track the markings of places p; and p,, which relate the condition of a
processing operation being completed for a given block, represented as m; = 6 ® ¢, with the

condition of rotation request, corresponding to m, > 1 ® cy.

The second is to track the markings of places pg, p9, P15, P21, P27, and pss, which indicate

when each block enters a new process station.

4.4.2.2 Test 1: One metal block on the table

One can observe the results of Test 1 in Figure 4.16. More precisely, in Figure 4.16a, it
shows that the rotation request is synchronized with the table rotation. Furthermore, when the
metal block leaves the table, it stands still waiting for the next block to arrive, i.e., m; (t) = 6® ¢
for all £ > 220 time units. Figure 4.16b shows that the metal block passes through all positions,

as expected.

4.4. CLOSED-LOOP TEST DESIGN AND RESULTS 62

Table
6
5 il
a4]
<
2 3 1
2
e 2 E
1 il
0 :
0 50 100 150 200
ct (scan cycle)
- . . , Rotation request‘ : ‘ ,
§ |: ! :I : n |: :: :I
i I ! B ‘ n i I ! |
; h i ! ' ! ' I \ !
L I { | i n i I | !
c b I { Bl i n i i | I
2 h Il ! ! i " ' Iy | h
g b Iy ! ! i " ' Iy | h
k3] 1 ! Al i " i Iy 4 "
L] N ! | i i L] I | :I
i I ! | i n i I ! |
h N ! | i " ' I | B
0 :' Iy \'I.) i " "\] ')
0 50 100 150 200

ct (scan cycle)

(a) Table and request rotation

Position 1 (# blocks arrive) F‘fxsition 4 (# blocks tested for drilled B)

1

Tokensin p,,
o
———]
Tokens in p,,
o

50 100 150 200 0 50 100 150 200

ct (scan cycle) ct (scan cycle)
Position 2 (# metal blocks) 1Position 5 (# blocks to be drilled B
T .
g | g
a b a
< Ly <
2 ' 2
£ 1 £
(<} 1 (=}
i 1y =
1
0 1 Ol e — s
0 50 100 150 200 0 50 100 150 200
ct (scan cycle) ct (scan cycle)
P?sition 3 (# metal blocks to be drilled A) 4 Position 6 (# blocks finished
]
© (R &
Q
c 1 g
) i)
c c
o (1] o
X X
o [o
= i =

o
<)

i
50 100 150 200 50 100 150 200
ct (scan cycle) ct (scan cycle)

o
<)

(b) Positions of the block
Figure 4.16 — Results of Test 1: One metal block on the table.

4.4.2.3 Test 2: Four different blocks on the table

One can observe the results of Test 2 in Figure 4.17. More precisely, Figure 4.17a shows
that place p, is marked at each time by a number of tokens equal to the number of blocks on
the table that generate a rotation request. Moreover, my is also always upper-bounded by the
total number of blocks on the table, namely m, < 4 ® cy. Furthermore, Figure 4.17b shows
which blocks, according to their properties (see Table 4.4), are processed in each position as time
increases. By inspection of the expected results illustrated in Table 4.5, it is verified that the plant

is behaving correctly under the control of the proposed SICPN feedback control.

4.4. CLOSED-LOOP TEST DESIGN AND RESULTS

63

Table
61— —1 — .
5 4
o 4 1
£
23]
i
4
22 1
1 4
0 Il it J 1 J L L L L
0 50 100 150 200 250 300 350 400
ct (scan cycle)
Rotation request
4 T e
[] hy
o] ||I
3t ||'l'_._il' -, .]
~ i §ool LT BN
a I ! i |
S i ! [,
2 ol M R R D J
c 2 LN M ! 1 ST L
T 1
2 by Lot [Ii A
° i ' 1 1 it I\l
PSR, S s NN B B .
! |:I : N
0 50 100 150 200 250 300 350 400
ct (scan cycle)
(a) Table and request rotation
Position 1 (# blocks arrive) P105ition 4 (# blocks tested for drilled B)
~ &
Q (=4
£ £
5 2
£ £
= S
0 0
0 100 200 300 400 0 100 200 300 400
ct (scan cycle) ct (scan cycle)
1 Position 2 (# metal blocks) 1Positicm 5 (# blocks to be drilled B
T
H "
s |l ': a
£ 1 ! £
2 | 1" g
8 1! 3
x 11 i
o 1 1 (=}
= 1 =
1
1! v
0 0
0 100 200 300 400 0 100 200 300 400
ct (scan cycle) ct (scan cycle)
P?sition 3 (# metal blocks to be drilled A) Position 6 (# blocks finished)
I
© ! I o
o h o
£ I £
[} 1 ! 1}
c 1 c
2 1 2
S 1)
= I °
1
0 ! 0

o

100

Figure 4.17 — Results of Test 2: Four heterogeneous blocks on the table.

(<)

200 300 400
ct (scan cycle)

100

200

300 400

ct (scan cycle)

(b) Positions of the blocks

64

S FINAL CONSIDERATIONS

5.1 Conclusion

In this thesis, a new Petri net, Signal-Interpreted Coloured Petri Net (SICPN), is derived
by merging CPN and SIPN concepts. Adding colouring properties allows to treat tokens differ-
ently depending on the information stored in each colour, whereas adding interpretation signals
(inputs and outputs) allows the system to receive external signals and execute commands when

implemented in PLCs and microcontrollers.

The objective of this thesis is to create a methodology to use the SICPN framework to
describe and model the system in study, then write the program of the modelled system using
C-code Arduino language and then implement the (already tested) program in a microcontroller

or in the real system.

As a novelty, the plant controller for feedback-control of DES is modelled in SICPN to
run in Arduino to support feedback-based decision-making within the SICPN, highlighting the

Token-Player structure.

A case study is implemented in a microcontroller using SICPN notation. The efficacy
of this formalism is showcased in its application to control a Digital Twin of an extended
configuration of the FESTO MPS modular processing station via an Arduino microcontroller

and two-way UART serial communications.

The representativeness of this case study is proven by using the SICPN framework to
simulate a FESTO MPS plant, which is relevant to show the applicability and reproducibility of
the case study. The researchers can use this formalism to extend to other cases by defining the
system modelling, its colour and signal-interpreted conditions. A point to highlight is that the
implementation of the framework can be done in a Digital Twin simulation or even in real plants

whether in PLC or microcontrollers, for educational and industrial purposes and applications.

Thus, the framework developed in this work properly describes the system presented
in the case study and can be applied in several other cases, by modelling new systems with the
SICPN notation.

5.2 Published paper

During my PhD, I had the opportunity to study a year abroad at University of Cagliari
(UniCa), Italy, as an exchange student supervised by professors Dr. Carla Seatzu and Dr. Alessan-
dro Pilloni. Their support and meaningful contributions to my research yielded the improvement

of my studies and the publication of the following article:

5.3. FUTURE WORK 65

Borges, M. U., Pilloni, A., Pontes, G. R., Seatzu, C., Lima II, E. J. Signal-Interpreted
Coloured Petri Nets: A modelling tool for rapid prototyping in feedback-based control of discrete
event systems, Control Engineering Practice, Volume 153, 2024, 106099, ISSN 0967-0661
https://doi.org/10.1016/j.conengprac.2024.106099

5.3 Future work

As future research themes, some relevant topics that should be considered are listed:

* Exploring the versatility of SICPNs across diverse domains beyond manufacturing, such
as transportation, healthcare, or smart cities, offers the potential for addressing intricate
control challenges and driving innovation across industries. This endeavour could entail
the development of standardised SICPN-based modules aimed at working towards stan-
dardisation and interoperability of SICPN-based control systems, facilitating seamless
integration with existing industrial automation platforms and devices. More elaborated
examples could be constructed using a SICPN model that considers non-unitary arcs to be

implemented in Arduino;

 Advancing the capabilities and applicability of SICPN-based control systems across various
domains, thereby propelling the evolution of automation and decision-making processes.
For example, the model could be extended in a timed setting in order to solve problems
related to performance analysis. This approach consists of simulating and analysing systems’

response instead of modelling a controller;

* Regarding more theoretical aspects, efforts to formalise well-known concepts in PNs
such as reachability, liveness, observality, controllability, boundedness, determinism, etc.,
for SICPNs would also be undertaken. This task presents significant challenges since in
SICPNS, transitions depend on exogenous inputs, rendering the standard definitions less
applicable. Nonetheless, it would be of interest to explore the extension of these concepts
from a closed-loop perspective. This involves modelling both the controller and the plant
as coupled SICPNs, where the input of one is the output of the other and vice versa. In this
sense, and by developing tailored composition rules between the two models, one could

strive to formalise some closed-loop counterparts of these properties;

* As one knows, tokens can have different properties represented by colours, which cannot
alter these properties within the token. Coloured Petri Nets (CPN) do not support methods
execution, unlike Object Petri Nets (OPN). Based on this difference, a new PN - named
Signal-Interpreted Object Petri Nets (SIOPN) - can be proposed. Thus, the advantage of
defining a SIOPN is executing methods, which can compact even more the model of a

system given its complexity.

66

Bibliography

Abdelsattar, A., Park, E. J., & Marzouk, A. (2022). An OPC UA client/gateway-based digital
twin architecture of a SCADA system with embedded system connections. IEEE/ASME
Int. Conf. Adv. Intell. Mechatron., 798—803. https://doi.org/10.1109/AIM52237.2022.
9863367

Awad, H. (2018). Supervisory control systems: Theory and industrial applications. In Petri nets
in science and engineering (pp. 93—109). IntechOpen. https://doi.org/10.5772/intechopen.
75166

Azkarate, 1., Ayani, M., Mugarza, J. C., & Eciolaza, L. (2021). Petri net-based semi-compiled
code generation for programmable logic controllers. Applied Sciences, 11(15), 7161.
https://doi.org/10.3390/app11157161

Bashir, M., Zhou, J., & Muhammad, B. B. (2021). Optimal supervisory control for flexible
manufacturing systems model with petri nets: A place-transition control. IEEE Access, 9,
58566-58578. https://doi.org/10.1109/ACCESS.2021.3072892

Basile, F., Cordone, R., & Piroddi, L. (2021). Supervisory control of timed discrete event systems
with logical and timed specifications. I[EEE Transactions on Automatic Control. https:
//doi.org/10.1109/TAC.2021.3093618

Basile, F., & Ferrara, L. (2022). Residuals-based fault diagnosis of industrial automation systems
using timed and untimed interpreted petri nets. Control Engineering Practice, 129, 105361.
https://doi.org/10.1016/j.conengprac.2022.105361

Batchkova, 1., Popov, G., Karamishev, H., & Stambolov, G. (2013). Dynamic reconfigurability of
control systems using iec 61499 standard. IFAC Proceedings Volumes, 46(8), 256-261.
https://doi.org/10.3182/20130606-3-XK-4037.00050

Berger, S., Bogenreuther, M., Hickel, B., & Niesel, O. (2019). Modelling availability risks of
it threats in smart factory networks—a modular petri net approach. ECIS 2019 - 27th
European Conference on Information Systems.

Borges, M. U., & Lima II, E. J. (2018). Conversion methodologies from signal interpreted petri
nets to ladder diagram and c language in arduino. International Journal of Mechanical
Engineering Education, Vol. 46(4), 302-314. https://doi.org/10.1177/0306419018759921

Cao, L., Jiang, X., Zhao, Y., Wang, S., You, D., & Xu, X. (2020). A survey of network attacks on
cyber-physical systems. IEEE Access, 8, 44219-44227. https://doi.org/10.1109/ACCESS.
2020.2977423

Cassandras, C. G., & Lafortune, S. (2008). Introduction to discrete event systems. Springer.
https://doi.org/10.1007/978-0-387-68612-7

Chen, C., & Hu, H. (2020). Extended place-invariant control in automated manufacturing systems
using petri nets. I[EEE Transactions on Systems, Man, and Cybernetics: Systems. https:
//doi.org/10.1109/TSMC.2020.3035668

Bibliography 67

Comlan, M., & Delfieu, D. (2019). Petri nets to arduino (PN2A) embedding time petri nets into
a microcontroller architecture. Soft Computing and Electrical Engineering (SCEE), 1(2),
12-25.

Comlan, M., Delfieu, D., Sogbohossou, M., & Vianou, A. (2017). Embedding time petri nets.
2017 4th International Conference on Control, Decision and Information Technologies
(CoDIT), 0404—04009. https://doi.org/10.1109/CoDIT.2017.8102625

David, R. (1995). Grafcet: A powerful tool for specification of logic controllers. IEEE Transactions
on control systems technology, 3(3), 253-268. https://doi.org/10.1109/87.406973

de Mello, A. T. F., Barbosa, M. C., dos Santos Filho, D. J., Miyagi, P. E., & Junqueira, F. (2012).
A transcription tool from petri net to CLP programming languages. ABCM Symposium
Series in Mechatronics—Vol. 5, Section IV—Industrial Informatics, Discrete and Hybrid
Systems, 781-790.

Desirena-Lépez, G., Ramirez-Trevifio, A., Briz, J. L., Vazquez, C. R., & Gémez-Gutiérrez, D.
(2019). Thermal-aware real-time scheduling using timed continuous petri nets. ACM
Transactions on Embedded Computing Systems (TECS), 18(4), 1-24. https://doi.org/10.
1145/3322643

Dotoli, M., Fanti, M. P., Giua, A., & Seatzu, C. (2008). First-order hybrid petri nets. an application
to distributed manufacturing systems. Nonlinear Analysis: Hybrid Systems, 2(2), 408—430.

Ebel, F., & Pany, M. (2015). Festo processing station manual 648813 de/en.

Fanti, M. P., Giua, A., & Seatzu, C. (2006). Monitor design for colored petri nets: An application
to deadlock prevention in railway networks. Control engineering practice, 14(10), 1231-
1247. https://doi.org/10.1016/j.conengprac.2006.02.007

Farah, K., Chabir, K., & Abdelkrim, M. N. (2019). Colored petri nets for modeling of networked
control systems. 2019 19th International Conference on Sciences and Techniques of
Automatic Control and Computer Engineering (STA), 226-230. https://doi.org/10.1109/
STA.2019.8717215

Ferndndez, I. A., Cortabarria, J. C. M., & Echeverria, L. E. (2021). Petri net implementation
in programmable logic controllers: Methodology for development and validation. 2021
IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI),
15-20. https://doi.org/10.1109/SAMI50585.2021.9378673

Flamigni, F., Pileggi, P., Barrowclough, O., & Haenisch, J. (2020). First report on standards
relevant for digital twins. The Change2Twin Consortium.

Flochov4, J., & Lojan, T. (2019). Supervisors of petri nets. Vedecké Prdace Materidlovotechnolog-
ickej Fakulty Slovenskej Technickej Univerzity v Bratislave so Sidlom v Trnave, 27(45),
33-41. https://doi.org/10.2478/rput-2019-0023

Frey, G. (2000). Automatic implementation of Petri net based control algorithms on PLC. Pro-
ceedings of the IEEE American Control Conference (ACC), 4(June), 2819-2823. https:
//doi.org/10.1109/ACC.2000.878725

Bibliography 68

Frey, G. (2002). Design and formal analysis of petri net based logic controllers [Doctoral
dissertation, Dissertation, Shaker Verlag, Aachen, Germany].

Gaona, A. C., Chévez, J. M., & Viazquez, C. R. (2021). RCPetri: A matlab app for the synthesis
of petri net regulation controllers for industrial automation. 2021 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), 01-07. https:
//doi.org/10.1109/ETFA45728.2021.9613441

Gehlot, V. (2019). From petri nets to colored petri nets: A tutorial introduction to nets based
formalism for modeling and simulation. 2019 Winter Simulation Conference (WSC),
1519-1533. https://doi.org/10.1109/WSC40007.2019.9004691

Giua, A., & Silva, M. (2018). Petri nets and automatic control: A historical perspective. Annual
Reviews in Control, 45, 223-239. https://doi.org/https://doi.org/10.1016/j.arcontrol.2018.
04.006

Gomes, L., & Barros, J. P. (2018). Refining IOPT petri nets class for embedded system controller
modeling. IECON 2018-44th Annual Conference of the IEEE Industrial Electronics
Society, 4720-4725. https://doi.org/10.1109/TECON.2018.8592921

Gomes, L., Barros, J. P., Costa, A., & Nunes, R. (2007). The input-output place-transition petri
net class and associated tools. 2007 5th IEEE International Conference on Industrial
Informatics, 1, 509-514. https://doi.org/10.1109/INDIN.2007.4384809

Gratie, D.-E., & Petre, 1. (2014). Hiding the combinatorial state space explosion of biomodels
through colored petri nets. Annals of University of Bucharest, 61, 23-41.

Grobelna, I., & Karatkevich, A. (2021). Challenges in application of petri nets in manufacturing
systems. Electronics, 10(18), 2305. https://doi.org/10.3390/electronics 10182305
Grobelna, 1., & Szczesniak, P. (2022). Interpreted petri nets applied to autonomous components
within electric power systems. Applied Sciences, 12(9), 4772. https://doi.org/10.3390/

app12094772

Grobelna, I., Wisniewski, R., Grobelny, M., & Wisniewska, M. (2016). Design and verification of
real-life processes with application of petri nets. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 47(11), 2856-2869. https://doi.org/10.1109/TSMC.2016.2531673

Hu, Y., Ma, Z., Li, Z., & Giua, A. (2021). Diagnosability enforcement in labeled petri nets using
supervisory control. Automatica, 131, 109776. https://doi.org/10.1016/j.automatica.2021.
109776

Hiils, J., Pilch, C., Schinke, P., Niehaus, H., Delicaris, J., & Remke, A. (2021). State-space
construction of hybrid petri nets with multiple stochastic firings. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 31(3), 1-37. https://doi.org/10.1145/
3449353

IEC. (2019, August). Systems and software engineering - high-level petri nets - part 1: Concepts,
definitions and graphical notation (Standard). International Organization for Standardiza-

tion and International Electrotechnical Commission. Geneva, CH.

Bibliography 69

IEC. (2003, January). 61131-3: Programmable controllers-part 3: Programming languages (Stan-
dard). International Organization for Standardization and International Electrotechnical
Commission. Geneva, CH.

Jensen, K. (1981). Coloured petri nets and the invariant-method. Theoretical computer science,
14(3), 317-336. https://doi.org/10.1016/0304-3975(81)90049-9

Jensen, K. (1987). Coloured petri nets. In Petri nets: Central models and their properties (pp. 248—
299). Springer. https://doi.org/10.1007/978-3-540-47919-2_10

Jensen, K. (1992). Coloured petri nets, volume 1: Basic concepts. EATCS Monographs on
Theoretical Computer Science. Springer-Verlag.

Jensen, K., & Kristensen, L. M. (2009). Coloured petri nets: Modelling and validation of concur-
rent systems. Springer Science & Business Media. https://doi.org/10.1007/b95112

Juranié, J., Pavkovié¢, N., Naumann, T., & Toepfer, F. (2019). Patterns of engineering design
collaboration and reasoning activities modelled with coloured petri nets. Journal of
engineering design. https://doi.org/10.1080/09544828.2019.1630803

Klein, S., Frey, G., & Minas, M. (2003). PLC programming with signal interpreted petri nets.
International Conference on Application and Theory of Petri Nets, 2003, 440-449. https:
//doi.org/10.1007/3-540-44919-1_27

Lewis, R. W. (1998). Programming industrial control systems using IEC 1131-3. IET.

Li, H., Yang, D., Cao, H., Ge, W., Chen, E., Wen, X., & Li, C. (2022). Data-driven hybrid petri-
net based energy consumption behaviour modelling for digital twin of energy-efficient
manufacturing system. Energy, 239. https://doi.org/10.1016/j.energy.2021.122178

LimaIl, E. J., & Dérea, C. E. (2004). Synthesis and PLC implementation of supervisory control
via place invariants for a manufacturing cell. IFAC Proceedings Volumes, 37(4), 259-264.
https://doi.org/10.1016/S1474-6670(17)36128-1

Liu, F., Sun, W., Heiner, M., & Gilbert, D. (2021). Hybrid modelling of biological systems
using fuzzy continuous petri nets. Briefings in Bioinformatics, 22(1), 438—450. https:
//doi.org/10.1093/bib/bbz114

Liu, Z., Hu, L., Hu, W., & Tan, J. (2022). Petri nets-based modeling solution for cyber—physical
product control considering scheduling, deployment, and data-driven monitoring. /[EEE
Transactions on Systems, Man, and Cybernetics: Systems, 53(2), 990-1002. https://doi.
org/10.1109/TSMC.2022.3170489

Long, F., Zeiler, P., & Bertsche, B. (2015). Potentials of coloured petri nets for realistic avail-
ability modelling of production systems in industry 4.0. Proceedings of the ESREL 2015
Conference, 7, 4455-4463.

Machado, P., Silva, M. R., de Souza, L. E., de Souza, C. W., & Netto, R. S. (2018). Modeling
using colored petri net of communication networks based on IEC 61850 in a microgrid
context. Journal of control, automation and electrical systems, 29(6), 703—717. https:
//doi.org/10.1007/s40313-018-0411-x

Bibliography 70

Mathworks. (2024). Cell arrays. MATLAB help. www.mathworks .com/help/matlab/cell -
arrays.html

Minas, M., & Frey, G. (2002). Visual PLC-programming using signal interpreted petri nets. Proc.
of IEEE American Control Conf., 6, 5019-5024. https://doi.org/10.1109/ACC.2002.
1025461

Miyagi, P. E., Hasegawa, K., & Takahashi, K. (1988). A programming language for discrete event
production systems based on production flow schema and mark flow graph. Transactions
of the Society of Instrument and Control Engineers, 24(2), 183—190. https://doi.org/10.
9746/sicetr1965.24.183

Miyagi, P., Camarinha-Matos, L., Santos Filho, D., Barata, J., & Arakaki, J. (1995). The ap-
plication of enhanced mark flow graph in real time control systems. IFAC Proceedings
Volumes, 28(19), 147-154. https://doi.org/10.1016/S1474-6670(17)45073-7

Murata, T. (1989). Petri nets : Properties , analysis and applications. Proceedings of the IEEE,
Vol. 77(4), 541-580. https://doi.org/10.1109/5.24143

Mykoniatis, K., & Harris, G. A. (2021). A digital twin emulator of a modular production system
using a data-driven hybrid modeling and simulation approach. Journal of Intelligent
Manufacturing, 1-13. https://doi.org/10.1007/s10845-020-01724-5

Nabi, H. Z., & Aized, T. (2019). Modeling and analysis of carousel-based mixed-model flexible
manufacturing system using colored petri net. Advances in Mechanical Engineering,
11(12). https://doi.org/10.1177/1687814019889740

Outafraout, K., Nait-Sidi-Moh, A., et al. (2020). A control approach based on colored hybrid
petri nets and (max,+) algebra: Application to multimodal transportation systems. /[EEE
Transactions on Automation Science and Engineering, 17(3), 1208-1220. https://doi.org/
10.1109/TASE.2020.2973996

Petri, C. A. (1962). Kommunikation mit Automaten [Doctoral dissertation, Technische Universitit
Darmstadt].

Petri, C. A. (1980). Introduction to general net theory. In Net theory and applications (pp. 1-39).
Springer.

Ramadge, P. J., & Wonham, W. M. (1989). The control of discrete event systems. Proceedings of
the IEEE, 77(1), 81-98. https://doi.org/10.1109/5.21072

Ramirez-Trevifio, A., Rivera-Rangel, 1., & Lépez-Mellado, E. (2003). Observability of discrete
event systems modeled by interpreted Petri nets. IEEE Transactions on Robotics and
Automation, Vol. 19(4), 557-565. https://doi.org/10.1109/TRA.2003.814503

Sheng, J., & Prescott, D. (2019). A coloured petri net framework for modelling aircraft fleet
maintenance. Reliability Engineering & System Safety, 189, 67-88. https://doi.org/10.
1016/j.ress.2019.04.004

Silva, J. R., & Miyagi, P. E. (1995). PES/MFG: A high level net for the modeling of discrete man-
ufacturing systems. International Conference on Information Technology for Balanced
Automation Systems, 349-362. https://doi.org/10.1007/978-0-387-34910-7_33

Bibliography 71

Silva, M. (2012). 50 years after the PhD thesis of Carl Adam Petri: A perspective. I[FAC Proceed-
ings Volumes (IFAC-PapersOnline), (1976), 13-20. https://doi.org/10.3182/20121003-3-
MX-4033.00006

Silva, M. (2018). On the history of discrete event systems. Annual Reviews in Control, 45, 213—
222. https://doi.org/10.1016/j.arcontrol.2018.03.004

Simon, E., Oyekan, J., Hutabarat, W., Tiwari, A., & Turner, C. (2018). Adapting petri nets to dis-
crete event simulation for the stochastic modelling of manufacturing systems. International
Journal of Simulation Modelling, 17(1), 5-17. https://doi.org/10.2507/1JSIMM17(1)403

Singh, P., & Singh, L. K. (2019). Design of safety critical and control systems of nuclear power
plants using petri nets. Nuclear engineering and technology, 51(5), 1289—1296. https:
//doi.org/10.1016/j.net.2019.02.014

Skoldstam, M., Akesson, K., & Fabian, M. (2007). Modeling of discrete event systems using
finite automata with variables. Proceedings of the IEEE Conference on Decision and
Control, 2007, 3387-3392. https://doi.org/10.1109/CDC.2007.4434894

Vazquez, C. R., Ramirez-Trevifo, A., & Silva, M. (2014). Controllability of timed continuous
petri nets with uncontrollable transitions. International Journal of control, 87(3), 537—
552. https://doi.org/10.1080/00207179.2013.846480

Wang, Y., Li, Y., Yu, Z., Wu, N., & Li, Z. (2021). Supervisory control of discrete-event systems
under external attacks. Information Sciences, 562, 398—413. https://doi.org/10.1016/j.ins.
2021.03.033

Wu, Z., Tian, L., Zhang, Y., Wang, Y., & Du, Y. (2021). Network attack and defense modeling
and system security analysis: A novel approach using stochastic evolutionary game petri
net. Security and Communication Networks, 2021. https://doi.org/10.1155/2021/4005877

Xia, C. (2016). Property preservation of refinement for petri net based representation for embedded
systems. Cluster Computing, 19(3), 1373—-1384. https://doi.org/10.1007/s10586-016-
0597-2

You, D., Wang, S., Zhou, M., & Seatzu, C. (2021). Supervisory control of petri nets in the presence
of replacement attacks. IEEE Transactions on Automatic Control, 67(3), 1466—1473.
https://doi.org/10.1109/TAC.2021.3063699

Zhang, Y., Wang, W., Du, W,, Qian, C., & Yang, H. (2018). Coloured petri net-based active
sensing system of real-time and multi-source manufacturing information for smart factory.
The International Journal of Advanced Manufacturing Technology, 94, 3427-34309. https:
//doi.org/10.1007/s00170-017-0800-5

72

ANNEX

Annex A: Multisets

In this section we recall some notation that will be useful in the following, when formally
defining the colored PN model.

Definition .1. Let D be a set. A multiset (resp., non negative multiset) over D is defined by a

mapping o : D — Z (o : D — N) and is represented using a special symbol ® as

a=> ad®d

deD

where the sum is limited to the elements such that a(d) # 0.

Let Z(D) (resp., N (D)) denote the set of all multisets (resp., non negative multisets)

over D.

The multiset € is the empty multiset such that for all d € D, ¢(d) = 0. |

Definition .2. Given two multisets o, B € Z(D) and a number a € Z:

® The sum of o and B is denoted as v = o + B and is defined as ¥d € D : ~(d) =
a(d) + B(d).

e The difference of o and B is denoted as v = o« — B and is defined as Vd € D : v(d) =

a(d) — B(d). Note that the difference of two non negative multisets may be negative.
® The product of o and a is denoted as v = a o and is defined as ¥Vd € D : y(d) = a a(d).

o We write oo < B ifVd € D : a(d) < B(d).
[

Now, given two sets D and D', let F' : D — Z(D’) be a function that associates to each
element d € D a multiset on D"
F(d)= > F(d,d)®d e ZD".
d'eD’

We can naturally extend this application to a function F' : Z(D) — Z(D') as follows.

Definition .3. Given two sets D and D', a function F' : D — Z(D'), and a multiset oo € Z(D),
we define
Foa#= Z a(d)F(d) = Z Z a(d)F(d,d)o d € Z(D")
deD deD d'eD’
i.e., using the special symbol o, the linear combination with coefficients «(d) of the multisets

F(d) over D' is denoted F o c. [

Bibliography 73

A simple example will help to clarify the notation.

Example .1. Let us consider the two sets D = {c1,co} and D' = {z1, 23, 23}, and the multiset
aover D, where o =2 c¢1 +3Rco. Let F(c])) =4® 21 +5® 25+ 2® 23 and F(cy) =
3® 21 + 2 R® 23 + 2 ® 23 be two multisets over D'. Then, by definition,

Foa ZZdE{q,cQ} a(d)F(d)
=2F(c1) + 3F(c2)
=(2-443-3) @02 +(2-5+3-2) @2+ (2-2+3-2) ® 2
=172+ 16® 2+ 10® 2z3 € Z(D')

We finally observe that it is possible to give a matrix representation of multisets and of

functions over multisets.

Remark .1. Given two sets D and D', let us arbitrary order their elements as follows: D =
{d1,...,dp}and D' = {d}, ..., d}.

A multiset o« € Z(D) can be represented by a vector:

a(dy)
a = a(:dQ) e 7k
a(d)

Thus, given a function F : D — Z(D') for all d € D we can write

F(d,d},)
while its extension F : Z(D) — Z(D') can be represented by the matrix
F=|F(d) F(d) ... F(d)]ez"*

and finally the multiset F' o o can be computed with the usual matrix-vector product denoted by

-, Le.,

Bibliography

74

Example .2. Let us go back to the Example .1. We can write

C1 C
4 3 z
F=|F() Fla) = Zl
2
<3

and thus

Foo=

N Ot &~
N NW

	0a7a4acd34a82215ffa0936b51df5bc3366c7aff772417f6997c6ccad45df1f7.pdf
	0a7a4acd34a82215ffa0936b51df5bc3366c7aff772417f6997c6ccad45df1f7.pdf
	Folha de Aprovação 3624443

	0a7a4acd34a82215ffa0936b51df5bc3366c7aff772417f6997c6ccad45df1f7.pdf

