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Resumo

Virtualização de funções de rede (NFV) e redes definidas por software (SDN) habilitam

flexibilidade e programabilidade no plano de dados. Offloading do processamento de pa-

cotes em hardware minimiza o uso de núcleos de processamento. No entanto, cumprir

requisitos atuais, como alta vazão e baixa latência combinados com offloading de funções

de rede (NFs) com um plano de dados flex́ıvel e programável, ainda é uma tarefa desafi-

adora. Este trabalho propõe o eBPFlow, uma plataforma para acelerar a computação

da rede. Ele baseia-se no eBPF, combinando flexibilidade e capacidade de programação

em software com alto desempenho usando uma FPGA. O eBPFlow foi implementado na

NetFPGA SUME. Experimentos com NFs foram realizados em um ambiente f́ısico. Nos-

sos resultados mostram que o eBPFlow suporta aceleração de NFs com vazão em taxa

de linha, latência entre 20 µs e 40 µs, consumindo pouca energia 22 W. Além disso, o

eBPFlow processa 12.05 Mpps mais que o kernel. Ele tem uma vazão de 2.59 Gbps maior

que o hXDP, um sistema similar ao eBPFlow.

Palavras-chave: virtualização de funções de rede; redes definidas por software; plano de

dados programáveis; filtro de pacote berkeley estendido; netfpga.



Abstract

Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) en-

able flexibility and programmability at the data plane. In addition, offloading packet

processing to a hardware saves processing resources to compute other workloads. How-

ever, fulfilling requirements such as high throughput and low latency with a flexible and

programmable data plane is challenging. This thesis proposes eBPFlow, a platform for

seamlessly accelerating network computation. It builds upon eBPF (extended Berkeley

Packet Filter). eBPFlow combines flexibility and programmability in software with high

performance using an FPGA. We implemented our system on the NetFPGA SUME, per-

forming tests on a physical testbed. We built a range of NFs, including LPM forwarding,

DDoS mitigation, stateful firewall, deep packet inspection, and application layer packet

classifier. Our results show that the eBPFlow supports offloading of NFs with throughput

at the line rate, latency between 20 µs and 40 µs, communication with host, and consump-

tion of 22 W. Moreover, eBPFlow processes 12.05 Mpps more than the kernel. eBPFlow

has a throughput of 2.59 Gbps higher than the hXDP, a system similar to eBPFlow.

Keywords: networking functions virtualization; software defined networking; programmable

data plane; extended berkeley packet filter; netfpga.
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Chapter 1

Introduction

Network Function Virtualization (NFV) and Software-Defined Networking (SDN) provide

flexibility and programmability on the network data plane. Combining these technologies

improves manageability, reliability, and agility, enabling network operators to adapt to

both upgrades and service demands. However, NFVs processing typically occurs in soft-

ware on virtual machines or containers of commodity servers. Such software dataplanes,

while much faster today than a decade ago, struggle to support today’s traffic demands.

Numerous recent studies have aimed to mitigate the poor performance of software,

while retaining their flexibility, by offloading network functions (NFs) to hardware ac-

celerators such as programmable switches and SmartNICs [33]. NFs can be partially or

entirely offloaded and accelerated. Programmable data planes provide programmability

and flexibility to implement different tasks on network devices, enabling adaptability for

new headers and protocols. Also, they support NF offloading, improving processing per-

formance. However, each offload platform brings with it major limitations on generality

(e.g., P4 can only support a narrow range of types of NF) and expressiveness. Thus to

date most efforts have focused on bespoke implementations for a specific offload platform

rather than developing a fast, general-purpose approach to NF offload [25, 6].

1.1 Contextualization

This brief history of recent programmable data planes illustrates the industry’s

trend of adopting eBPF. Pacifico et al. [48] proposed a simplified version of the eBPFlow

on NetFPGA SUME. In this version, the system contains four eBPF engines shared be-

tween all the ports. Each eBPF engine has a pipeline with 5-stages, providing parallelism

of instructions. However, this system does not support parallelism in forwarding packets

and per-port with a number of exclusive cores, harming the system’s performance due

to lost packets and processing overhead. Here, we extended this work by providing new

types of parallelism (per port and forwarding of packets), increasing the number of eBPF
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cores, and adding an output crossbar. We have also realized new experiments to evaluate

and compare the system with similar systems. Netronome [3] provides a SmartNIC that

includes programming capabilities with eBPF instructions, showing the trend towards

programmable data planes with eBPF. But, to program the SmartNIC, the code has to

pass a verifier that disables back-edge jump (e.g., for, while loops), so the SmartNIC can

not execute NFs that compute on the packet payload (e.g., DPI). Moreover, Netronome

is firmware and kernel-dependent, making it challenging to manage the network; it has a

very low port density (only 2 ports); it does not provide specific hardware modules, such

as CAM or TCAM to handle stateful NFs. Finally, hXDP executes XDP code in hard-

ware. Besides eBPF ISA, hXDP also provides new instructions. But, it does not support

offloading of NFs in runtime. The eBPFlow is compatible with the eBPF standard [57].

Moreover, it presents more return codes of the design in hardware. This does not harm

the compatibility with other eBPF systems.

1.2 Motivation

Software-Defined Networking (SDN) is a paradigm for the development of research

in computer networks that has gained the attention of the scientific community and in-

dustry in the area. SDN is a paradigm that separates the control plane from the data

plane and allows the administrator to program the devices [40]. In SDN, the control

plane configures the routing rules of the network with a logically centralized entity called

controller, while the data plane forwards the packets according to the actions defined by

this controller. Due to the structure that SDN provides, research areas such as traffic

engineering, quality of service (QoS), and virtualization have evolved rapidly [61].

The OpenFlow [42] standard is an example of SDN, which has seen significant

growth since its first release in 2008 until the release of the current version (1.5). The

first version of OpenFlow had a matching table of ten fields and evolved into multiple

tables with 44 different fields [28]. However, the number of fields supported by OpenFlow

is constantly being updated to support new fields and protocols, such as the IPv6 proto-

col. Unfortunately, OpenFlow has a protocol-dependent data plane which difficulties the

adoption of new fields and protocols realeased [24].
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1.3 Problem definition and objectives

The formulated research question that this thesis tries to solve in the context of

programmability on networking is: How to provide flexibility and programmability of the

data plane with abstraction and performance?

To solve this research question, this thesis proposes eBPFlow, a platform that

supports offloading NFs using the standard, general-purpose eBPF (extended Berkeley

Packet Filter) instruction set [68] already used widely in the Linux kernel. eBPF specifies a

bytecode machine and an instruction set that we leverage to program general-purpose NFs

on the data plane. eBPFlow is a platform for seamlessly accelerating network computation

to deploy building upon eBPF. Moreover, it combines flexibility and programmability in

software with high performance in hardware using an FPGA (Field Programmable Gate

Array).

Furthermore, eBPFlow is protocol-independent, allowing the utilization of new dy-

namically defined fields and protocols without recompiling or restarting the device when

the user changes the packet processing algorithm on the data plane at runtime. eBPFlow

supports all network hardware requirements to offload and accelerate NFs, such as sim-

ilar integration, performance, programmability, flexibility, lookup and pattern matching,

forwarding, traffic shaping and control, serviceability, and data manipulation. eBPFlow

runs on the NetFPGA SUME 40 Gbps platform [81]. The tests were performed in a phys-

ical testbed, demonstrating the eBPFlow performance to offload stateless and stateful

NFs and accelerate processing. We present the feasibility of building NFs such as LPM

forwarding, Stateful firewall, DDoS mitigation, and Deep Packet Inspection (DPI). The

eBPFlow’s repository is publicly available on Github [18].

1.3.1 Specific goals

To achieve the overall goal, the follows specific goals were to attend:

• Setup NetFPGA SUME’s development environment;

• Put NetFPGA SUME to work in a physical testbed;

• Setup pktgen-DPDK to generate traffic;

• Design and implementation of the eBPFlow;
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• Develop and integrate tools of the userspace with data plane;

• Support maps on eBPFlow using CAM/TCAM memories (32 lines x 64 bits);

• Optimize design and implementation of the architecture to improve performance

(double buffer memory and DM FIFO memory);

• Add instructions parallelism with multi-cores containing 5-stages pipeline;

• Support parallelism per port through a cores group reserved per port;

• Insert parallelism on the forwarding of packets through an output crossbar coupled

on the data path;

• Establish communication with the host via PCI express bus;

• Develop test scripts to evaluate the system;

• Evaluate eBPFlow to offloading of NFs;

• To overcome problems of simulation, synthesis, and frequency;

• Evaluate other similar systems (kernel, Netronome, and hXDP) to compare with

eBPFlow;

1.4 Contributions

This section presents the contributions of this thesis on the scenario of programmable

networking. The main contributions of this thesis are:

(i) Offloading network functions and accelerating packet processing by leveraging eBPF

and integrating existing eBPF environments and projects;

(ii) eBPFlow allows users with little hardware expertise to develop functions that op-

erate on packet headers and payload, L2-L7 layers of the network stack with high

throughput and low latency.

(iii) Logic design and hardware implementation of eBPFlow, built on top of the NetF-

PGA SUME [81] with three parallelism types: instructions parallelism with a multi-

core hardware design containing 5-stages pipeline; parallelism per port through a

cores group reserved per port; and parallelism on the packet forwarding through an

output crossbar coupled on the data path;
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(iv) eBPFlow enables the programming of stateful and stateless NFs and the use of

dynamically defined new fields and protocols at runtime.

1.5 Challenges to design eBPFlow

Offloading allows network functions to be loaded and executed in general-purpose

hardware. This feature provides fast adoption of new networking protocols and services,

flexibility on maintenance and management operations, and reduces operational costs be-

cause the hardware is generic instead of dedicated to a specific network function. There

are many benefits of using NetFPGA to offload network functions and accelerate packet

processing on the fly. However, to achieve these goals, some challenges need to be over-

come. We present two challenges found on programming FPGA for network functions.

Programmability and flexibility: FPGAs are hardware platforms that combine

flexibility in software with high processing power. Due to these features, FPGAs are

attractive platforms to accelerate packet processing and offload NFs. Moreover, they

are reprogrammable with power efficiency. On the other hand, hardware programming

occurs through low-level hardware description languages (HDLs) such as Verilog and

VHDL, which do not offer high productivity rate. eBPFlow overcomes this challenge by

combining NetFPGA’s features with eBPF technology. This combination allows users to

accelerate packet processing on userspace using eBPF NFs.

Achieve high-performance: Hardware to offload NFs and accelerate packet

processing must support many stateless and stateful functions (e.g., tunneling, forward-

ing, traffic shaping, monitoring, access control list (ACL), firewall, and DDoS protection)

with a throughput of 40-200 Gbps. Moreover, it should minimize processing overheads

and performance bottlenecks. All these points directly affect the hardware performance

and quality of services. eBPFlow improves the system’s performance by adding a process-

ing cores group per queue composed of four eBPF engines on the data plane to support

parallelism in packet processing per queue. Each eBPF engine contains an eBPF pro-

cessor with a 5-stage pipeline, which provides instruction-level parallelism. Moreover, we

included an output crossbar connected to output arbiters of the eBPF engine groups to

supply parallelism on the forwarding of packets.

eBPFlow design and implementation on NetFPGA solves all the challenges pre-

sented in this section.
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1.6 Organization

The remainder of this thesis is organized as follows. Chapter 2 approaches an

overview of themes covered in this thesis. Chapter 3 describes and compares the related

work of the literature. Chapter 4 introduces details of design and implementation of the

eBPFlow built on top of the NetFPGA SUME platform. Chapter 5 shows the evaluation

and results of offloading stateless and stateful NFs, in a physical environment. Chapter 6

presents the conclusion and future work. Finally, Appendix A lists the ALU instructions

supported by system.



18

Chapter 2

Approaches and Overview

This chapter presents approaches and overview of the themes eBPF, programmable data

plane, traffic classification, FPGA, and NetFPGA covered by this thesis. The chapter is

organized as follows: the Section 2.1 introduces eBPF technology. Section 2.2 describes

the motivation behind the use of FPGAs on programmable networking. Section 2.3 defines

traffic classification and deep packet inspection. Section 2.4 introduces concepts about

FPGA. Finally, Section 2.5 approaches concepts about NetFPGA.

2.1 Extend Berkeley Packet Filter (eBPF)

McCanne and Jacobson [41] in 1992 proposed Berkeley Packet Filter (BPF), a

virtual machine composed of a small instruction set for filtering and analyzing packets.

Since its launch, BPF has been a library used in several network applications, for example,

libpcap and Wireshark. Over the years and adoption by the area’s community, BPF has

undergone several revisions that contributed to the emergence of eBPF (extended BPF).

It is an extension of BPF integrated into the Linux kernel in version 3.18, allowing the

compilation and insertion of eBPF programs into the kernel at runtime.

eBPF is an improvement of BPF in which the architecture has been expanded from

32 to 64 bits, increased the number of registers from 2 to 11, added a stack, and supports

maps operations in userspace via function calls [57]. In addition, whereas BPF has only

forward jumps, eBPF can have jumps in both directions. Figure 2.1 presents the overview

of the eBPF machine.

Addresses [0 to 9] are the general-purpose registers [r0 to r9], and address 10 is the

register [r10] that to stores the address of the top of the stack. The stack is a data structure

of 512 bytes that stores data local variables of eBPF programs. Finally, maps are generic

data structures that provide eBPF programs to share collected information and store

state. eBPF allows designing architectures independent of platforms or protocols. No

prior knowledge of the protocol or packet structure is required. The parsing starts when
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Figure 2.1: Overview of the eBPF machine.

the system loads a packet into the eBPF data memory, and the execution of the eBPF

instructions moves the packet fields into registers and makes the necessary comparisons.

eBPF supports expressive flow rules. It enables flow rules supporting inequality,

complement (not operation), or range matching. For instance, it can do logical operations

such as ≥ or <, needed for range expressions. Moreover, by allowing the negation rule,

packets with destinate different of the port 80 (web traffic), for example, can be matched

directly without the need to create rules for the other complement values, reducing the

number of flow rules.

The software implementation of eBPF in the Linux kernel supports a set of func-

tions to handle maps (< key; value > data structure). The most important functions are:

lookup, update, and delete. The eBPF program can invoke these functions executing

the eBPF call instruction. The maps include arrays, hashmaps, the Least Recently Used

(LRU) replacement policy, and the longest prefix match (LPM) using trie. These maps

allow eBPF programs to keep state between packet arrivals. For example, classic Layer-2

switches use a hashmap to map the port associated with a MAC address. LPM maps

generally can be used to quickly implement IP routing, mapping the port associated with

a sub-network. Thus, maps are essential to store states. In our hardware implementation,

our design choice was to use hardware modules. Thus, the maps are content-addressable

memory (CAM) for exact-matching and ternary content-addressable memory (TCAM)

for LPM, and Dynamic Random Access Memory (DRAM) for arrays.



2.2. Programmable Data Plane 20

2.1.1 eBPF verifier

The Linux kernel implementation provides an eBPF verifier. The verifier checks the

validity, security, and performance of eBPF programs. If desired, the verifier allows eBPF

programs with only bounded-loops to enable static analysis. The eBPF verifier checks

whether a program terminates, whether the memory accesses are in the range of memory

space, and the greatest depth of the execution path (critical path). This critical path can

provide an upper bound on the execution time. Thus, the verifier aims to guarantee eBPF

kernel-safe code execution. In eBPFlow, the verifier is an auxiliary tool of the system.

After the compiled code, the programmer can use the verifier before loading it into the

data plane for static analysis. We leave the programmer the responsibility to check for

infinite loops.

2.2 Programmable Data Plane

Programmability on data plane has been an active research field that gained high-

light inside SDN. Hardware devices that support programmability on data plane provide

expressiveness and flexibility on packet processing without requiring knowledge on low-

level commands or device specifications. Currently, hardware devices such as FPGAs,

ASICs, GPUs, and SmartNICs are the main options for performing packet processing, of-

floading, and NF acceleration. This use aims to meet processing demands, achieve energy

efficiency, and abstract the data plan by providing programmability [16].

FPGAs are the most attractive hardware devices for developing network applica-

tions because it combines software flexibility with high power processing in a reconfig-

urable and energy-efficient way [69]. An FPGA is a device composed of programmable

logic blocks, memories (TCAM, CAM, and SRAM), and I/O devices. Developers can

program it through hardware description languages such as Verilog and VHDL. Building

network services on FPGAs consists of synthesizing the circuit described in HDL and

loading the bitstream file generated after the synthesis on the hardware device. This

process is complex, time-consuming, and has not zero downtime. The network operator

must also know much about the hardware besides being an expert in hardware description

languages.
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2.2.1 High-Level Languages

High-level languages can be used to write code to the data plane and compile it

into the eBPF instruction set. A subset of C already exists, which excludes some external

libraries, system calls, and pointer arithmetic while providing functions for defining and

manipulating tables. Since version 3.7, the LLVM compiler collection has a backend for

the eBPF platform, allowing programming in this subset of C and generating executable

code in eBPF format. Many projects use eBPF, e.g., Facebook[20] built a layer 4 load

balancing forwarding plane using eBPF to provide fast packet processing in-kernel. More-

over, problems such as interdependence, distribution, and heterogeneous hardware can be

solved due to the features and environments available in this technology.

2.3 Traffic classification

Traffic classification (TC) allows network operators to characterize packet flows

better, manage resources, and improve network security. It is fundamental to applications

such as traffic engineering, network analytics, and Quality of Service (QoS) [56]. However,

the traditional TC is a straightforward approach that fails when fields are inconclusive

or unavailable. For example, in peer-to-peer (P2P) traffic, the applications do not have

default ports, and the HTTP server runs on different ports from port 80 with encrypted

connections. L7 classification (Application layer packet classification) rises as a solution to

overcome these limitations. In this approach, the classification occurs based on patterns

often shared with other applications [55].

TC uses Deep Packet Inspection (DPI) to examine each byte of the packet’s payload

at runtime and returns when it finds one or more patterns (e.g., malicious traffic or attacks)

previously defined. DPI is a crucial component of classification, and it uses the Regular

Expressions (RegExs) power to increase performance to find patterns. However, some

limitations and challenges remain open in the context of L7 classification and DPI, such

as programmability, performance, efficiency, security, scalability, and usability [50].
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2.4 FPGA

Field-Programmable Gate Array (FPGA) is an integrated circuit that can be pro-

grammed or reprogrammed to execute a specific application or functionality after man-

ufacturing [29]. FPGA combines the flexibility of software with hardware performance

has been applicable in many areas. For example, in computer networking, FPGAs are

employed on packet acceleration to improve the throughput and reduce the latency of

data centers [52]. Moreover, they are vital components in deploying new services and

functionality due to the flexibility by being programmable [13, 47].

Figure 2.2: FPGA design.

The architecture of an FPGA consists of three main parts: configurable logic blocks

(CLB), programmable interconnects, and programmable input/output (I/O) blocks. Fig-

ure 2.2 demonstrates the basic structure of an FPGA. CLBs implement different logic

functions creating a physical array of logic ports. Although they work as separate mod-

ules that operate in parallel, they are configurable, allowing each internal state to be

controlled. Moreover, they can be connected, programming the interconnections to build

a specific function. CLBs consists of several components such as flip-flops, look-up tables

(LUT), and multiplexers. Programmable interconnects are responsible for implementing

the routing. They allocate the resource among CLBs. Routing paths have wire segments

with different lengths that are connected using anti-fuse or memory-based techniques.

Each CLB connects a switch matrix to access the routing structure. The switch matrix

selects the signal of a routing channel connecting vertical and horizontal lines. Finally,

I/O blocks allow communication with the external components. CLBs and interconnects

use the I/O blocks to receive and transfer data. I/O blocks are responsible for data

transfers in and out of the FPGA [17].
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Register Transfer Level (RTL) design is a high-level logic design abstraction con-

structed using hardware description languages (HDL), VHDL or Verilog. Simulation is

the stage to debug errors on RTL design before of the synthesis process. Synthesis is

the process of converting an RTL design into a logic gates representation to set up the

behavior of the FPGA. The synthesis occurs using a synthesis tool, where the design is

synthesized. The synthesis tool receives an HDL program as input and generates as out-

put a bitstream file that will be loaded on FPGA. During the processing of the design, the

tool interprets the HDL program into implementations of digital elements in the FPGAs,

such as lookup tables (LUT), flip flops, RAM blocks using boolean algebra operations [76].

Figure 2.3: Overview of the synthesis stages.

The synthesis of the design (Figure 2.3) consists of three main steps: synthesis,

place and route, and file generation. The synthesis tool transforms the functional RTL

design into an array of gate-level macros in the synthesis stage, creating a flat hierarchical

circuit diagram that implements the RTL design. Macros are models of the FPGA’s logic

cells. Logic cells are implemented as digital elements. The synthesis process requires at

least two inputs: the source code and timing constraints. The source code has files that

define the configuration of the synthesis tool. These files are responsible for telling the

tool which FPGA to target, the pinout of the design, and which strategy to use when

running the synthesis. The timing constraints define timing details about the FPGA.

This stage also optimizes the netlist of the design. Moreover, it removes or replaces any

elements of the netlist which are redundant or duplicated. Netlist contains information

as nets, sequential and combinational cells, and their connectivity. This stage terminates

with the netlist of the generated and optimized design.

With the generated netlist begins the place and route stage. The first process exe-

cuted in this stage is known as placement, in which the synthesis tool maps the optimized

netlist to physical cells in the FPGA. In the following, the routing process defines the

interconnection between the logic cells of the FPGA. In this stage, the synthesis tool exe-

cutes the placement and routing operations several times to meet the timing requirements

of the design. Moreover, the tool is responsible for scheduling these multiple runs based
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on the configuration of the placement and routing algorithms. This stage terminates when

the tool meets the best time based on time constraints.

The last stage occurs the generation of the programming file, called bitstream.

The synthesis tool generates this file after the place route stage. With the generated

bitstream, the user can load it on FPGA using the synthesis tool.

2.5 NetFPGA

It is an open-source project that leverages research and development of new net-

working applications using a SmartNIC based on FPGA. It provides a platform composed

of software and hardware. All platforms’ infrastructure aims to simplify development tasks

such as design, simulation, and testing of high-speed networking applications in hardware.

The NetFPGA’s development environment allows the creation of new designs reusing the

base code of reference projects (e.g., NIC, Switch, and IPv4 Router). In addition, it has

support from a broad research community [43]. We chose the NetFPGA to demonstrate

the system due to the platform’s benefits. Moreover, the NetFPGA platform allows by-

pass challenges of the system’s design, creating new circuits to provide parallelism and

using the resources available in the platform, such as IP cores, FIFOs, and memories, to

optimize the performance of the system.

2.5.1 Advanced eXtensible Interface (AXI)

It is a protocol designed for on-chip communication, released in 2003 as part of

ARM AMBA, a family of microcontroller buses introduced in 1996. In 2010, AMBA

released the most current version of the AXI, AXI4 [2]. AXI4 [75] uses types different

protocols based on an interface. An interface is composed of communication channels

between a single AXI master and AXI slave, representing Intellectual Property (IP) cores

exchanging information. In addition, the design can connect multiple AXI masters and

slaves using AXI Interconnect, which is a traditional monolithic crossbar approach. Fig-

ure 2.4 shows an interconnection between masters and slaves.

Currently, there are three types of interfaces: AXI4, AXI4-Lite, and AXI4-Stream.

Memory-mapped interfaces of designs that demand high-performance use AXI4 interface.

It allows high throughput bursts of up to 256 data transfer cycles with just a single
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Figure 2.4: Interface and interconnection between masters and slaves.

address. AXI-Lite manages the control and status of registers using memory-mapped

communication with low throughput. Moreover, It is composed of a single transaction

memory-mapped interface. Finally, AXI-Stream is an interface for streaming data, not

memory-mapped of high speed, that does not use the address on the transference of data.

Therefore, this interface allows unlimited data burst size.

All protocol interfaces consist of five different channels: read address, write address,

read data, write data, write response. The data in reading operations move only in a

direction according to the read address. In write operations, the data can move in both

directions between the master and slave simultaneously, and data transfer sizes can vary.

For example, in AXI4, there is a limit of a burst transaction of up to 256 data transfers.

On AXI4-Lite occurs only one data transfer per transaction.

This protocol added in hardware designs provides benefits like productivity, flexi-

bility, availability. AXI4 contributes to the productivity of the design due to standardizing

on the AXI interface, where developers need to learn only a single protocol for the IP core.

Moreover, flexibility occurs because the correct interface (e.g., AXI, AXI-Lite, and AXI-

Stream) can be used according to the design requirements. Many IP providers support

the AXI protocol, which provides availability to the design if released as a product to the

industry.

2.5.2 Datapath

Figure 2.5 presents the datapath of the NetFPGA SUME. The packets in the

NetFPGA are processed in the form of 256-bit words and 128 bits control to identify

the word type (data or metadata). The datapath transmits packets words utilizing data

signals and control signals of the AXI4 Stream interface. If the control signal is zero, the

words transmitted are words of the packet. Otherwise, the words are from the metadata.
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Figure 2.5: NetFPGA SUME datapath.

The standard NetFPGA library provides the following modules: input arbiter,

output port lookup, and output queue. The input arbiter receives the packets from the

network (via the MAC interface) or the PCI bus (via CPU) in the format of 256-bit words

and stores them in internal queues of the module. Then, the words are taken from the

queues using the round-robin algorithm, and it routes them to the output port lookup

module. The output port lookup module defines which port the packet will be sent to

based on the packet properties, for example, an input port or destination address. This

operation happens on the metadata output port field. Output queues receive the packet

with the output port marked and send it to packets TX queues. The output port value

defines if the output queues module will forward the packet to the network interface or

host machine.

The NetFPGA datapath uses the AXI4 protocol to communicate among modules,

operations with registers, and direct memory access (DMA). The standard NetFPGA

modules send and receive packets through the AXI4 Stream interface. Operations with

registers and DMA happen from the AXI4 Lite interface. It also has auxiliary modules

such as Microblaze, AXI Interconnection, and DMA. Microblaze module is a Xilinx Mi-

croblaze subsystem used only for clock configuration of the design. AXI Interconnection

is responsible by to manage the communication among IP cores of the design. Finally,

the DMA module works as a DMA engine that communicates between hardware and the

host machine through Xilinx’s PCIe core.

We implemented the eBPFlow’s design inside the output port lookup module to

allow the system to perform parsing, matchings, and actions on packets. We chose this

module because it is the module of the NetFPGA’s datapath that defines the output port

to where the packet will be forward on hardware. The following section (Section 4.1)

describes more details about eBPFlow design.
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2.5.2.1 Synchronization

Figure 2.6: Modules synchronization of the datapath.

The synchronization of the NetFPGA modules operates using the AXI-4 stream

Xilinx protocol [73]. Figure 2.6 shows the modules’ synchronism with their respective

signals. TDATA represents the data stream. TUSER is out of band metadata. TKEEP

enables which bytes of TUSER are active on the data path (by standard, NetFPGA

projects enable all bytes of TUSER). TLAST indicates the end of the packet/burst. The

write (TVALID) and ready (TREADY) signals control the communication between the

modules. The TVALID signal informs when the previous module is ready to transmit

(when it has content to transmit), and the TREADY signal indicates that the next module

is ready to receive. The data transfer between modules only occurs if the two signals are

active. Each module contains an input queue and a finite state machine. The input

queue temporarily stores the TDATA, TUSER, TKEEP, and TLAST signals until the

state machine module can remove the word from the queue. The state machine of each

module has specific behavior.
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Chapter 3

Related work

This chapter presents a discussion about related work that support programmability using

different technologies in hardware and software targets. The works are divided in six

topics: programmable networks, high level domain-specific languages, BPF related, FPGA

related, Smart NICs, NIDS and DPI.

Programmable networks. The OpenFlow [42] standard, although being the

most adopted SDN architecture, has limitations. Its matching structure cannot do in-

equality, complement (not operation), or range matching. On the other hand, eBPFlow

allows for logical expressions (not, and, or) and range comparison (>,<). Liu et al. [36]

developed the CLARA, a network slicing architecture that uses NFV concepts and rein-

forcement learning algorithms for resource allocation management. Finally, Yen et al. [78]

proposed the Lemur, a system that places and executes NF chains across heterogeneous

hardware while meeting service-level objectives (SLOs) in NFV. It receives as input a

high-level description of multiple NF chain DAGs and their associated SLOs. As out-

put, the system returns a placement configuration for each NF chain and coordination

code, ensuring that the NF executes on the appropriate hardware element specified by

the placement.

High level domain-specific languages. The P4 programming language P4 [8]

adopts the match-action abstraction model. Therefore, it is possible to use the P4 lan-

guage to generate eBPF instructions using the compiler from P4 to eBPF [10]. Domino [59]

is a high-level language compiled into Banzai, a low-level machine model designed for line-

rate switches. Although P4 and Domino include small and fast registers to store states,

they provide a restricted functionality for many stateful functions. Kfoury et al. [26]

present an exhaustive survey about P4 programmable data plane switches highlighting

subjects like taxonomy, applications, challenges, and trends.

BPF related. BPFabric [24] proposed a software platform that allows protocol-

independent packet processing. It uses eBPF instructions to define the packet processing

and forwarding in the data plane. BPFabric was initially implemented over a Linux

raw socket interface and later adapted over the DPDK. hXDP [9] is a system to run

Linux’s XDP programs on an FPGA. hXDP is similar to the eBPFlow, and it executes

XDP code. The hXDP design changed the load/store instructions and introduced three-



29

operand instructions. The hXDP design does not support network functions offloading at

runtime like the eBPFlow, which has many processing cores with an instruction memory

containing a double buffer system. FFShark [66] is an implementation of the Wireshark

in an FPGA. It contains eBPF cores to execute written filters in the PCAP filtering

language. However, FFShark does not provide instructions parallelism with eBPF cores

containing a 5-stages pipeline coupled on the cores. Katran [20] is an open-source eBPF

load-balancer application provided by Facebook, showing eBPF’s adoption trend in the

industry. Chaining-Box [12] is a Service Function Chaining (SFC) architecture where all

the SFC functionality are implemented, in a fully transparent manner, as a sequence of

eBPF stages.

FPGA related. P4FPGA [69] is a platform developed in hardware that per-

forms conversion of P4 programs to Verilog. P4-To-VHDL [4] is a tool that converts a

P4 description to a synthesizable VHDL code suitable for the FPGA implementation.

ClickNP [31] also focuses on increasing programmability flexibility. It provides a declar-

ative language called ClickNP. ClickNP can be compiled into an intermediate hardware

description language (HDL) and synthesized on the FPGA. Zang et al. [79] proposed a

distributed-agent NFV system that supports Service Function Chaining (SFC) of FPGAs

and microprocessors. The system works with an agent helping the partial reconfigu-

ration core to control the dynamic reconfiguration of middlebox functions on FPGAs.

FlowBaze [51] is an FPGA-based SmartNIC that allows stateful packet processing in

hardware by programming using Extended Finite State Machines (EFSM). However, it

cannot operate on the packet payload and only supports storing 64 states. eBPFlow does

not have these limitations because the states and transitions of an FSM are transformed

into instructions. PANIC [32] is an FPGA based on Reconfigure Match Action (RMT)

switches that schedule the order in which the packets are processed and distribute the

packets across the different compute units. Finally, Eran et al. [19] proposed the NICA,

an FPGA-based NIC server acceleration system that supports software abstractions via

functional units for application acceleration in cloud systems. NICA was implemented on

Mellanox and integrated with an abstraction denominated ikernel (inline kernel), which

represents an Acceleration Functional Unit (AFU) in a user program.

Smart NICs. Netronome [3] provides a SmartNIC programmed with eBPF in-

structions. Some features and commands are specific to the kernel and firmware version,

generating incompatibility on the network. When an update is released, firmware or ker-

nel needs to be updated manually, generating failures and hindering the management of

the network. Nonetheless, eBPFlow does not have these dependencies. It is indepen-

dent and seamless with other technologies, e.g., the Linux kernel. Furthermore, to load a

program into Netronome NIC, the code has to pass a verifier which does not allow back-

edge jump (e.g., for, while), so the SmartNIC can not compute DPI NFs with different

packet sizes. Netronome NICs have very low port density, with at most two ports per
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NIC. Moreover, it does not support CAM and TCAM memories. On the other hand, the

eBPFlow prototype has 12 physical ports. Moreover, eBPFlow design includes specific

memory hardware, such as CAM and TCAM, to handle stateful NFs.

NIDS and DPI. Zeek[63], and L7 Filter[60] are NIDS that use RegEx to iden-

tify content inside packets on the application layer. They run on the Linux kernel or in

userspace, sharing CPU resources between other processes. When the number of packets

that arrive on the host increases, processing overhead occurs due to the busy CPU, harm-

ing the performance of applications L7. Wang et al. [70] implemented an IDS that uses

eBPF technology for pattern matching in packets. The system runs on Linux kernel and

userspace. On kernel, the system uses eBPF filters for pattern matching and dropping

packets that do not match the matching rule. The system runs a program on userspace

that examines the packets not dropped by the kernel. The system has processing overhead

with processing bottleneck by sharing CPU cores with other processes running in parallel.

Pigasus [80] is an IDS/IPS architecture FPGA-based that performs TCP reassembly on

hardware and supports regular expressions to detect attacks in packets. DeepMatch [22]

presents a DPI system implemented on the SmartNic Netronome that uses P4 and RegExs

to detect attacks in suspicious packets. NetFilterOffloader [14] proposed a NetFilter Fire-

wall on NetFPGA 1G using Iptables. It does not support RegExs and L7 classification.

Moreover, it uses hardware deprecated with a throughput of 4 Gbps. Some works exploit

specialized hardware such as TCAMs, GPUs, and FPGAs [27, 30, 35, 39, 53, 58, 49, 62, 65].

However, none of these works presents the set of eBPFlow contributions together in one

system.
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Chapter 4

eBPFlow architecture

This chapter shows details of the overall architecture, design, and implementation of

eBPFlow built on top of the NetFPGA SUME platform. The eBPFlow architecture has

a logically centralized controller that communicates through a socket TCP/IP with the

network elements (e.g., routers, switches). The controller can install programs in the data

plane at run time without network interruption, and it includes a scheduler to support

multi-tenants and to move code in and out of the data plane. Section 4.1 presents the

eBPFlow design, describes the system, and how it works. Finally, Section 4.2 shows

details of implementation on hardware and optimizations to improve the performance of

the system.

4.1 Design

Figure 4.1 gives an overview of the eBPFlow’s design and implementation built on

top of the NetFPGA SUME [81] platform. The system has two components: data plane

and userspace tools.

The data plane contains sixteen processing cores divided into groups composed of

four eBPF engines, with each group responsible for packet processing and forwarding for

each RX and TX queue. We chose the number of eBPF engines (four) per group based on

the design’s consumed resource (logic cells) and the maximum frequency obtained after

the synthesis. All groups share an instruction memory, a timer, a coprocessor, and an

output crossbar. The instruction memory includes a system with a double buffer that

changes programs without stopping the processing. The timer allows measurement of

network performance (for example, through EWMA, latency, and jitter) when storing the

timestamp of packets on metadata. The coprocessor works as eBPF maps in hardware

using TCAM/CAM memories to store pairs <key, value>. The output crossbar provides

parallelism in the forwarding of packets, improving the throughput and latency of the

system. Moreover, each group has one demux and output arbiter reserved per RX and TX
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queue, which allows the system to receive and send packets exchanging cores in runtime.

We divided the eBPF engines into groups by queue to provide per-port parallelism on

packet processing. Moreover, we added an output crossbar to receive the processed packets

per each group to all output queues, providing parallelism on forwarding.

On eBPFlow, four parallel engines per port can cause packet reordering in a single

flow. We do not treat the packet reordering on the system, leaving the TCP protocol

responsible for this task because it treats the packet reordering on the transport layer.

The userspace includes a controller that opens a socket connection TCP/IP to the

device and applications created at the user level as a loader to compile/load programs

and handle maps, an eBPF disassembler to convert binary code to eBPF instructions, a

software emulator to debug, and a CLI application to interact with eBPF engines.

Figure 4.1: eBPFlow design.

4.1.1 How does eBPFlow work?

The packet processing on eBPFlow begins with the user-generated eBPF instruc-

tions via C eBPF or P4 code on userspace. Once generated, the instructions take their

course from userspace to the data plane, where the system loads them into the instruc-

tion memory. The communication between userspace and data plane occurs through
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userspace tools loader, and PCIe bus. All processing on the platform occurs without the

user knowing specific low-level commands or having experience with hardware targets.

The processing on the data plane begins with the packet’s arrival in an Rx queue.

RX’s queue demux forwards the packet to the current eBPF engine according to the

register value that controls which eBPF engine has access priority. The access priority

algorithm between eBPF engines is a standard Round Robin (RR) algorithm. If an eBPF

engine cannot receive a packet, the system updates the register to the next eBPF engine.

Each eBPF engine waits for the first packet word to arrive. In the next step, eBPFlow

processes and forwards the packet to the output arbiter. It selects the current eBPF

engine packet that terminates the processing and sends it to the output crossbar. The

output arbiter chooses the priority of access of the current eBPF equal to the demux

using the standard RR algorithm. The output crossbar receives packets of the output

arbiters simultaneously, it parallelizes the forwarding of packets, and decides which TX

queue will store the packet. In its turn, the TX queue sends or drops the packet according

to the value stored in the eBPF r0 register. Each engine has one action module. Thus,

for 16 eBPF engines, we have 16 action modules. The action module updates the packet’s

metadata for the TX queue to process it. The TX queue is responsible for drop or send

the packet based on r0 value. We present more details about eBPFlow in Section 4.2.

4.1.2 How does eBPFlow provide flexibility and

programmability of the data plane?

The eBPFlow is not tied to specific network protocols, enabling programmers to

perform runtime parse, match, and action operations dynamically. On eBPFlow, pro-

grammers can change how the system processes packets after the design is synthesized

and loaded on hardware. This feature allows the system to provide the flexibility of the

data plane, defining the packet processing logic in two ways: (i) Reconfigurable in the

field; and (ii) processing protocol-independent packets. The combination of these func-

tionalities allows programmers to insert new fields and protocols. The eBPF technology is

responsible for the system’s flexibility using eBPF instructions generated from programs

in the C language.

eBPFlow supports the standard eBPF ISA, allowing similar integration with other

existing eBPF environments and projects on the network. In addition, the eBPFlow

provides programmability, enabling programmers to describe packet processing logic in-

dependent of the specifics of the underlying hardware. This feature becomes the target-

independent eBPFlow. Programmers only need to know the eBPF technology to use
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the eBPFlow. It is possible due to a combination of software and hardware technologies

implemented on the userspace and data plane of the system. For example, hXDP [9] is

similar to the eBPFlow, and it executes XDP code. However, hXDP is incompatible with

eBPF because of the addition of new instructions, thus changing the standard eBPF ISA.

4.1.3 eBPF engine

Each eBPF engine comprises four hardware modules: a data memory FIFO (DM FIFO),

the eBPF processor, a Finite State Machine (FSM), and an action module. Figure 4.2

shows the eBPF engine design. The DM FIFO stores packets on the fly, working as data

memory and FIFO with no extra transfer. The eBPF processor is responsible for perform-

ing the parse, matching, and actions using instructions stored in the instruction memory.

Also, the processor communicates with the control plane through a socket TCP/IP. The

FSM controls the whole operation of packet processing. It removes the packet from the

DM FIFO of the module, starts executing the eBPF instructions, and forwards the packet

to the next module (action packet) when the last instruction (exit) of eBPF finishes ex-

ecuting. The action module forwards or discards the packet according to the value stored

in r0 after processing the eBPF instructions.

Figure 4.2: eBPF engine design.

4.1.4 Metadata

The data plane receives the packet through the input interface and stores the

packet in the input queue with additional information called metadata. Table 4.1 shows
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the metadata header. The first line indicates the byte order and size. The other lines show

the stored structure. After the metadata is received, it comes the Ethernet frame. eBPF

programs and any other protocol field can use the metadata header fields. The currently

defined metadata is the destination port, packet size in multiples of 64-bit, source port,

packet size in bytes, timestamp in nanoseconds, and seconds. The fields of packet size,

in multiples of 64-bit and bytes, are included because the input queue module already

provided this information.

Table 4.1: Metadata: Information retrieved from the input queue of the stored packet in
the data memory of the eBPF processor.

0 bit 255
8 bits 8 bits 8 bits 32 bits 32 bits 16 bits 152 bits
Input Source Destination Time- Time- Length Free
Port Queue Queue stamp (s) stamp (ns) (bytes)

Ethernet Frame
Payload

4.1.5 Actions

The register r0 stores the return value of the eBPF processor. In addition, it

determines which action the processor will execute on the packet. Table 4.2 describes the

return values of eBPF and their respective actions. After eBPF finishes the computation,

the packet can be: forwarded to a port, forwarded to the controller, discarded, flooded to

all ports except for the input port, or sent to the host machine via PCIe bus.

eBPFlow enables other dynamic actions such as modifying the packet header,

packet payload, and adding or removing fields. With the packet stored in the data mem-

ory, a store instruction can modify the packet. The packet content can also be used

for arithmetic and logical operations, for example, decrementing TTL or recomputing

checksum.

4.1.6 Output Crossbar

On eBPFlow, we added an output crossbar to provide parallelism on the forwarding

of packets. The output crossbar (Figure 4.3) allows connecting the eBPF engine outputs
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Table 4.2: Action performed on the packets.

Action Code Description
Forwarding 0 - 0xFFEF Forward packet to a specific port.
Controller 0xFFF3 Send packet to the controller.

Drop 0xFFF0 Drop packet.

Flood 0xFFFF
Send packet to all ports
except for the input port.

Host 0xFFF[2-5]
Send packet to host.
(CPU Queue: 0-3).

to TX queues using the output queues (OQ) module of the NetFPPGA’s datapath as

a buffer. Packets processed by eBPF engines are forwarded to output queues modules

and TX queues via crossbar interconnect. TX queues receive the packets based on the

destination queue metadata field generated by eBPF engines. This field receives the

r0 value updated of the eBPF engine after the eBPF program finishes. The output

crossbar works on non-blocking mode, allowing multiple simultaneous packet forwarding

for different TX queues. We used an N-to-M uni-directional crossbar interconnection

architecture to connect output queues to TX queues. N is the number of output queues

modules, and M is the number of TX queues. The crossbar interconnection has a size

equal to N ×M (4× 4 = 16 points).

Figure 4.3: Output crossbar design.
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4.2 Implementation

Here, we describe the implementation details of eBPFlow. We built eBPFlow data

plane in Verilog HDL on the top of the NetFPGA SUME platform and created tools on

userspace to manage operations of the system [38].

4.2.1 Hardware Instance

FPGA enables the building of hardware logic systems. The NetFPGA SUME

hardware has four SFP+ transceivers that support 10 Gbps Ethernet ports. It connects

to a motherboard through a PCIe Gen 3 x8 adapter. In addition, it contains a Xilinx

Virtex-7 690T FPGA [72], which has approximately 693,120 logic cells, a 27 MiB SRAM,

and a 5 ns (200 MHz) clock cycle. After synthesis, eBPFlow consumed 20.71% of the

logical slices and 11.35% of the register slices on the NetFPGA SUME. The maximum

frequency is 166.67 MHz (cycle of 6.172 ns).

4.2.2 eBPF Processor with Pipeline

The eBPF processor performs the parse, matching, and actions according to the

user-generated C-code or P4-generated eBPF instructions. When starting the device

operation, the user must load the eBPF instructions into the instruction memory to

define the behavior of the data plane. Figure 4.4 presents the data and control paths

in register transfer level (RTL), containing five data functional units (program counter,

instruction memory, register file, arithmetic logic unit – ALU, and data memory) and

three control units (hazard detection, forwarding, and control).

After the instruction memory returns the instruction pointed by the current pro-

gram counter, eBPFlow divides the instruction into five parts: operation code, destination

register address, source register address, offset, and immediate value. Each specific unit

of the datapath receives part of the instruction. The control unit receives the operation

code and forwards the control signals to the functional units, defining the behavior of

each unit. For example, the ALU class instructions do not use the data memory, so the

read and write signals from the data memory are not activated.
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Figure 4.4: Control and Datapath of the eBPF processor.

We design the eBPF processor with a 5-stage pipeline: instruction fetch (IF),

instruction decode (ID), execute (EXE), memory (MEM), and write back (WB). IF stage

gets instruction from memory and increments program counter (PC). ID stage translates

opcode into control signals and reads registers from the register file. EXE stage performs

ALU operation and computes jump/branch targets. MEM stage accesses data memory

if needed. Finally, the WB stage updates the register file. This design follows the MIPS

load-store pipeline architecture [21]. We add four pipeline registers (between the stages),

the forwarding, and hazard units.

We implemented the eBPF engines with a 5-stage pipeline because it allows mul-

tiple instructions to be executed simultaneously, each in a different stage of the pipeline,

thus improving the overall performance of the engines. Moreover, we added the forward-

ing and hazard units to ensure the correct execution of the instructions on the pipeline

when there is data dependence between instructions in execution on the datapath.

4.2.3 Data memory (Optimized FIFO)

To avoid the overhead of copying the packet from the transfer FIFO to the pro-

cessor data memory, we designed a new abstract data type called Data Memory FIFO

(DM FIFO), which works as a FIFO and as well a Data Memory. DM FIFO enables

the eBPF processor to access the packet’s data without waiting for all the packets to
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arrive with no extra transfer and running load and store operations with high efficiency.

Moreover, DM FIFO synchronizes with the NetFPGA datapath’s modules (input arbiter

and output queues) and the eBPF processor. Therefore, the packet does not need to be

initially stored on FIFO and forwarded to data memory to be processed by the processor.

We added two-way communication to communicate with NetFPGA’s modules and

eBPF processor. Thus, DM FIFO works as a FIFO receiving and forwarding packets

using the AXI4 stream interface signals. At the same time, DM FIFO also operates as a

data memory that communicates with the eBPF processor using control signals sent by

the control unit of the eBPF processor’s data path and load and store instructions. As a

result, DM FIFO has a capacity of 2.048 bytes (64 depth lines x 256 bits width) and can

store up to 32 packets of 64 bytes.

The eBPF engine can start processing the packet even if the packet has not fully

arrived yet. Inside DM FIFO, for each word, we added a valid bit to indicate if the word

contains data from the new incoming packet. Thus, DM FIFO brings two advantages: It

does not has no extra transfer and allows the eBPF engine to begin the packet processing

before waiting for the entire packet to arrive.

Each engine has its own DM FIFO. The DM FIFO can simultaneously receive

multiple packets of the datapath. But, it can only process one packet at a time. When

a new packet is inserted in the DM FIFO, and an older packet is in processing, it must

wait for the processing to finish. The metadata region can not be overwritten because we

use a FSM. Each FSM has its own metadata register.

4.2.3.1 eBPF stack

On eBPFlow, the stack is part of the data memory on the last bytes (2,112 to

2,624). We include the stack in data memory to facilitate the eBPF engine access to the

stack. eBPFlow’s stack has a size of 512 bytes, the same as the Linux’s kernel, following

the standard of the eBPF virtual machine. Figure 4.5 presents the data memory structure

with spaces reserved for metadata, packet, and stack. The loader is responsible for defining

the value r10 on the system. Byte 2,624 (0xa40) is the first byte of the stack. After the

generated eBPF instructions by the eBPF compiler, the loader initializes and adds one

instruction with r10 value (mov r10, 0a40) on the eBPF program before loading the

instructions on the instruction memory of the eBPFlow. If there is a local variable on the

eBPF program, one of the r6 to r9 registers receives the r10 value minus the number of

bytes of the local variable size to define the reserved space on the stack. With the address

of the local variable defined in a register, the eBPF processor can access the local variable
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data on the stack through load and store instructions.

Figure 4.5: Data memory division.

4.2.4 Instruction Memory

The eBPF instructions define the behavior of how the eBPF processor handles

the packets. First, we created software registers to insert the eBPF instructions into the

instruction memory through NetFPGA’s register interface. The controller is responsible

for sending the instructions to the data plane of the eBPFlow. They are then written

to the software registers using the loader and forwarded to instruction memory through

the PCIe bus. Instruction memory (Figure 4.6) uses a double buffer system - DBS. We

added a DBS on eBPFlow to not stop the execution of the system when a new program

is loaded on instruction memory, avoiding the loss of packets due to wait time to load a

new program. This system contains two memories (M1 and M2). Both memories never

assume the same state (writing or reading) simultaneously. It means that while a memory

receives eBPF program instructions, the eBPF processor reads the instructions of other

memory.

As a design decision, we have put the instruction memory outside the eBPF pro-

cessor to enable the connection of multiple processors using a shared instruction memory

to reduce the number of used logic resources in the design. Moreover, with the increasing

number of eBPF processors, it is possible to process more packets simultaneously, thus

also increasing the throughput.
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Figure 4.6: Instruction memory - Double Buffer System.

4.2.5 Maps

eBPF Linux kernel implementation allows for maps. A map is a generic data

structure that stores different data types in the form of key-value pairs. Our design

currently provides three types of maps: longest prefix matching (LPM), exact-match, and

array, as hardware components of the system. For LPM, we use the Ternary Content

Addressable Memory (TCAM) module combined with the BRAM (Block RAM).

Our TCAM module contains one TCAM memory with 32 lines of 64 bits. In

addition, it spends 16 cycles for a write operation and only one cycle for the read operation.

We use the Content Addressable Memory (CAM) module combined with the BRAM for

the exact match. The CAM module contains one CAM memory with 32 lines of 64

bits. The TCAM is implemented using Xilinx SRL16e primitives [37]. It is generated

using Xilinx’s IP core generator coregen [77]. The CAM is implemented using block

RAM (BRAM) instead of SRL16e. This option enables writing on CAM using two cycles

instead of 16 cycles. We defined the size of 64 bits to CAM and TCAM memories to

optimize the system’s design to insert other functionalities on eBPFlow. The size of these

memories can be extended to support keys greater than 64 bits. However, it consumes

more logical resources that can harm the system’s performance. For the array map, we

use the DRAM memory.

There are three functions to manipulate the maps: update, delete, and lookup.

The update operation updates an item on the map. If the item does not exist, it inserts

the item. The delete operation removes the item with the given key. Finally, the lookup
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operation searches for the key and returns an item.

The coprocessor needs to know the actual size of the data read/written on the

memory map. This information is stored on fields type, key mask, value mask, and max-

imum number of the maps table, shown in Figure 4.7, which holds metadata about each

map declared in the currently loaded program. A lookup on the map table is performed

on every map operation to retrieve key and value masks used in a bitwise-AND operation

with the data to clean any unwanted bits. The coprocessor also uses the map type to

switch to the proper memory unit (CAM or TCAM). The r3 register stores a pointer to

the item when used to operations with maps. The size of the r3 register is 64 bits based

on standard eBPF architecture.

Figure 4.7: Coprocessor and map table.

On eBPFlow, the maps are loaded dynamically via the registers interface. It sup-

ports 64 flows simultaneously using static rules through the CAM and TCAM memories.

However, if the user uses the wildcard mechanism of the TCAM memory with the oper-

ator (*), the number of flows monitored can be increased. Another mechanism to extend

the number of flows is to forward the packets to userspace for offline processing via the

PCIe bus. However, it is slow, decreasing the system’s processing power due to the speed

of the PCIe bus and context switch between hardware and userspace.

4.2.6 Call instruction

eBPF allows invoking functions to access tables. In our design, to manipulate

maps, we decided to use the TCAM, CAM, and DRAM modules. The function call

inside the processor establishes communication with the coprocessor hardware module to

manipulate tables. Thus, the processor communicates with the coprocessor module where

there is a call instruction. This module identifies what function (lookup, update, delete)



4.2. Implementation 43

was called through the call instruction immediate opcode parameter. Registers 1 to 4

store the passed parameters on the call instruction. Register r1 indicates which hardware

module to communicate (tables TCAM, CAM, DRAM, respectively). Register r2 provides

the key. Register r3 stores the item of 64 bits. Register r4 has the TCAM mask item.

The function return parameter is through register r0. Since the call instruction requires

register values, it can also suffer from hazards in the pipeline. Therefore, the hazard unit

has to stall to solve this issue.

4.2.7 Bus, demux and output arbiter

On eBPFlow, we implemented demux and output arbiter modules to manage the

receiving of the packet from the RX queue to the eBPF engines and forward the packet

from eBPF engines to the output crossbar. Each RX/TX queue has its demux and output

arbiter. These modules use the AXI-4 stream interface signals to synchronize the receiv-

ing and forwarding of the packet from/to eBPF engines. Moreover, these modules are

sequential circuits that depend on AXI-4 stream interface signals value and the hardware

register state to control what eBPF engine has access priority. We used the Round Robin

algorithm to schedule between eBPF engines using a finite state machine that controls

the hardware register responsible for access priority between eBPF engines.

4.2.8 User space

It has a controller, a loader, and tools created at the user level. We implemented

it all in the Python language.

Controller: It opens a socket connection TCP/IP to the device to exchange the

messages. After establishing the connection, the operator can transmit the eBPF program

already compiled as bytecode. Finally, the controller installs the bytecode in the hardware

at runtime.

Loader: It is responsible for the following operations: loading code to the pro-

cessors, appending two instructions, handling maps, and interacting with the processor

register interface. Loader specially designed for the eBPF processor. At the beginning

of every eBPF program, registers r1 and r10 must be initialized with two pointers: one

to the packet and one to the stack’s top. Since these are specific to the runtime environ-
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ment (here, the processor), such initialization is not part of the code generated by clang

compiler. To handle maps, the compiler adds map information to the eBPF ELF file as

a relocation section, which needs to be processed before code execution. Loader adjusts

all map call instructions with their corresponding map values according to the relocation

table in the ELF file. Finally, the loader interacts with the system through the register

interface of the hardware, allowing to update and query the content of maps from the user

space at run-time independent from the loading operation of the program on eBPFlow.

There is an option on the loader specific only for operations with maps. Operations with

maps via user space do not harm the system’s performance because it uses the register

interface instead of the processing datapath. Moreover, it can query status information

about the processor.

Tools: A set of tools were implemented as part of the eBPFlow infrastructure:

an eBPF disassembler, a software emulator, and a CLI application to interact with the

eBPF engines. The emulator leverages the uBPF [7]. Software emulator aims to replicate

the processor’s behavior in software. Furthermore, it enables code testing and debugging

with well-known tools such as gdb, enabling faster and easier bug detection and correction

even before deploying the code.

Communication with host: We chose the NetFPGA’s interface nf0 to receive

and forward the packets sent from hardware to the host. We do not define the number

of cores on the host’s CPU to process the packets on userspace. Instead, we leave the

operator responsible for defining the number of cores according to the processing demand

of the host.

4.2.9 Re2c

Re2c [54, 11] is a lexer generator capable of converting regular expressions into fast

and optimized finite state machines (FSM). As a result, users can write new protocols in

eBPF. We use re2c to convert regular expressions into eBPF-compatible C code. Figure

4.8 presents an overview of the configuration flow and data processing in eBPFlow. The

process encapsulates the FSM generated by Re2c within a function with control pointers.

It is also necessary for all states to verify that the pointer’s current value is greater than

the address at the end of the packet to prevent invalid memory access. After this, the code

is packaged in a single file and compiled by the eBPF compiler. Then, a controller sends

the generated instructions to eBPFlow, saving them in its instruction memory. From

that moment on, the system waits for incoming packets, processes them according to the

instructions present in the memory, and performs the appropriate actions according to
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each packet’s content. We do not create an interface between re2c and eBPF-compatible

C code, being necessary adaptations for the generated code to work in the eBPFlow. We

left the programmer responsible for this task.

We use the unrolling loop directive on eBPF-compatible C code to optimize the

number of instructions generated from the loop to travel the packet payload. In some

situations where the number of instructions exceeded the maximum number of instructions

in the instruction memory, we perform optimizations on code to reduce the number of

instructions.

Figure 4.8: Overview of the configuration flow and data processing.
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Chapter 5

Offloading Stateless and Stateful NFs

This chapter shows the performance of the eBPFlow in a physical environment to NFs

offloading and processing of packets. This chapter is composed of two sections. In the first

section (Section 5.1) describes about stateless and stateful NFs implemented to evaluate

the system. In the second section (Section 5.2) shows the test environment, results of

performance of the system, and a discussion about the eBPFlow design.

5.1 Network Functions

Table 5.1: Network Functions implemented on eBPFlow.

eBPF
programs

#Instructions #LoC in C
State

(Yes/No)
# States

Wire 5 7 No 0
Stateful
Firewall

23 24 No 0

LPM
forwarding

30 26 No 0

DDoS
Mitigation

35 57 No 0

BitTorrent
Packets

181 86 Yes 5

SQL
Injection

(Tautology)
143 110 Yes 4

SQL
Injection
(Sleep)

183 117 Yes 2

We have implemented some NFs (Table 5.1) on eBPFlow to demonstrate the of-

floading of functions and the acceleration in packet processing. For each NF, we present

the number of eBPF instructions (#Instructions), the number of C code lines (#LoC in

C), is there state (Yes/No)?, and the number of states (#States). Here is the description

of the NFs:

Wire: acts as a wire connecting adjacent ports in pairs of two. It performs an
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XOR operation between the input port value and 1, which inverts the least significant bit.

This value defines the outgoing packet port. It is the most straightforward application

and serves as a performance baseline.

LPM Forwarding (LPMF): forwards packets using the NetFPGA’s TCAM

module, effectively speeding up longest prefix matching (LPM) operations. In addition,

this NF can use up to 32 forwarding rules inserted by the user through the loader.

DDoS Mitigation (DDoS): tries to saturate broadband or overload network-

ing equipment’s computational resources, limiting the processing or making unavailable

services, servers, and the target network. This NF can analyze random ports of UDP

packets. Moreover, it can block the attack on a specific port, dropping the packet and

not allowing the attack to have success [5].

Stateful Firewall (SFW): is a network firewall that tracks the status and char-

acteristics of network connections, distinguishing packets for different types of communi-

cations and propagating only packets that match the active connections [51].

SQL Injection with Tautology (SQL TAU): this attack is characterized by

the insertion of tautologies in an SQL query, making them manipulable. For example,

if the system has the query SELECT * FROM Users WHERE Id = “username” where

username is a user-supplied parameter. If no input filter exists, the attacker can exploit

the vulnerability by sending the string “OR 1 = 1 as a parameter. The resulting query

will be SELECT * FROM Users WHERE Id = “” OR 1 = 1, which is valid and returns

all rows in the Users table, since 1 = 1 is always true. Figure 5.1 shows the FSM

corresponding to the regular expression proposed to detect the threat.

Figure 5.1: SQL Tautology RegEx.

It consists of four states that lead to two possible final actions: PASS if there is

no attack or DROP if the malicious string is detected before the end of the payload. The

first state detects the beginning of the attack, single or double-quotes. The second state

detects the presence of spaces and the keyword OR. Finally, the last state detects the end

of the attack, 1=1.

SQL Injection with Sleep function (SQL SLEEP): this attack allows hackers

to look for possible SQL vulnerabilities on a server. It uses the User-Agent field of HTTP

requests to send an SQL query that calls the function sleep, applying a delay in seconds

to the current operation. During the delay period, any further requests received run only
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after the end of the first query, which indicates to the attacker that there are vulnerabilities

that allow the insertion of other SQL attacks. Figure 5.2 shows the FSM corresponding

to the regular expression of this example.

Figure 5.2: SQL Sleep RegEx.

The first state detects the presence of the User-Agent keyword or ends processing

if it arrives at the end of the payload. The second state looks for the sleep ( string, which

indicates the presence of the attack within the specified field. The processing terminates

if a line break occurs before this string. The SQL injection NFs presented above are

examples of functions that use regular expressions to efficiently analyze packet payload.

This type of analysis is critical today, in which servers store a large amount of valuable

data, demanding protection against this and other types of attacks.

Figure 5.3: Bittorrent Packets RegEx.

BitTorrent Packets (BITP): BitTorrent can cause many simultaneous connec-

tions, which can overload the network. This NF detects four BitTorrent packet types

based on Strait and Sommer [60]. It is an example of an Application Layer Packet Clas-

sifier. Figure 5.3 shows the FSM with five states to match the patterns containing 64

characters. The first state is responsible for detecting the patterns’ initial character at

the beginning of the packet payload. The following four states detect the rest of the

strings. This NF only forwards the packet if the patterns are not present at the end of

the payload.
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5.2 Evaluation

Here, we present the experimental evaluation of eBPFlow.

5.2.1 Test environment

The testing environment contains one NetFPGA SUME, one server running pktgen-

DPDK [64] as a traffic generator, and a custom controller to interact with the eBPFlow’s

data plane. Our server couples a Netronome Agilio CX SmartNIC and an Intel X710

DA-2 SmartNIC with two 10 Gbps interfaces directly connected to the four NetFPGA

SUME ports. We add Intel and Netronome boards on pktgen-DPDK userspace to gen-

erate the traffic and to receive the traffic forwarded by NetFPGA SUME, running the

eBPFlow design. In addition, the server and machine with coupled NetFPGA SUME

have i7-7700 processors clocked at 3.60 GHz containing eight cores and 8 GB of RAM.

Figure 5.4 presents the experiments topology of the system.

Figure 5.4: Experiments topology.

5.2.2 Throughput

We evaluated the performance of the eBPFlow to packet processing rates 64 bytes

(minimum-sized), 512 bytes (middle-sized), 1,500 bytes (maximum-sized), respectively,

for network functions described in Section 5.1. Moreover, we used the same parameters
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Figure 5.5: eBPFlow performance: throughput and latency.

to evaluate the system’s performance, the number of processing cores per port (one and

four), and the number of links generating the traffic (1x10 and 2x10 G).

Figure 5.5a summarizes the system’s throughput according to the number of cores.

For packets of 64 bytes using one processing core, all network functions except the Wire

achieve throughput less than 4 Gbps, demonstrating that the number of cores affects the

system’s performance. However, when the number of cores passes from one to four per

port, the throughput of all NFs doubles or achieves line rate (10 Gbps). Wire, DDoS

mitigation, SQL Injection attacks, and Bittorrent filter achieve line rate for 64 bytes

packets. Moreover, these NFs do not realize operations with maps using CAM/TCAM

memories. Stateful Firewall and LPM forwarding have improved throughput with the

increase of the number of cores from one to four but yet had throughput reduction due

to spent time with operations of access to maps (Section 5.2.5 presents the time in clock

cycles and microsecond of each operation).

Figure 5.5b presents the throughput of the eBPFlow based on the number of links

generating traffic per port. We generated traffic using one and two links of 10 Gbps to

evaluate the system’s performance when stressed. To packets of 64 bytes using one and
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two links of 10 Gbps, the system had a throughput of less than 6 Gbps per port for all NFs,

except the Wire. With two links of 10 Gbps for 512 bytes packets, Wire, DDoS mitigation,

and Stateful firewall achieve a throughput of 20 Gbps. On the other hand, SQL Injection

attacks and Bittorrent filter achieve a throughput of 16 Gbps, reducing throughput due

to the number of instructions because they spend more time processing packets than

other NFs and the bottleneck on the FIFOs of the datapath. LPM forwarding has been

improved throughput using two links, but the spent time with operations of access to map

TCAM harmed the throughput to this network function. Finally, to 1,500 bytes packets,

using one and two links, the eBPFlow achieved the maximum throughput (10 and 20

Gbps), respectively, to all NFs without packet loss.

5.2.3 Latency

In addition to the throughput, we also measured the average and tail latencies

for each NF (Figures 5.5c and 5.5d) using pktgen-DPDK, with 1 µs precision. pktgen-

DPDK measures the end-to-end latency by adding a timestamp on the packet payload.

It calculates latency stats, sends the packet to the network, and after the packet returns,

gets the timestamp and calculates the time stats. In this experiment, we load the Intel

smartNIC on pktgen-DPDK userspace and use one port to send packets and another port

to receive the back packets. Moreover, we repeated each experience 33 times for each

NF for packet sizes 64, 512, and 1,500 bytes. As expected, latency increased according

to the packet size increase because the number of words on the data plane increased,

taking more time to run the entire program. All experiments had a latency of less than

20 µs. This metric demonstrates little change in the processing time between same-sized

packets for a single NF, leading to reduced jitter. Similarly, the tail latency is close to

the average value in almost all cases. The bars in Figures 5.5c and 5.5d represent the

standard deviation, which was close to zero in all cases.

5.2.4 Communication with host

It is a functionality important when network devices with packets processing in

hardware are overloaded or arithmetics operations are not synthesizable (e.g., MULT and

DIV 64 bits, MOD (64 and 32 bits)). When there is communication between the data
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plane and control plane, the data plane can send packets to the control plane for offline

processing and then forward them back to the data plane, dividing the workload between

hardware and software. Moreover, it supports operations not synthesizable in hardware.

The communication with the host on NetFPGA SUME occurs through the PCIe

generation 3 (PCIe v3) bus with the driver SUME RIFFA managing the communication

between hardware and operating system. NetFPGA SUME design couples the IP core

PCIe v3 module available by Xilinx [74] on code. We adapt the eBPFlow design, adding a

new action (Table 4.2) responsible for sending and receiving packets between eBPFlow and

host. In this experiment, we evaluated the throughput and latency of the communication

between eBPFlow and the host running on userspace.
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Figure 5.6: Communication with host.

Throughput: Figures 5.6a summarizes the throughput of the eBPFlow communi-

cating with the host. We measured the throughput using iPerf3 tool [23] in two directions:

eBPFlow communicating with the host (eBPFlow to host) and host communicating with

eBPFlow (host to eBPFlow). We executed iPerf’s client program on the server and iPerf’s

server program running on the machine with NetFPGA SUME. Moreover, we generated

traffic with TCP packets of 64, 512, and 1,500 bytes in one second. The results show



5.2. Evaluation 53

that the system achieves a throughput of less than 5 Gbps to all packet sizes in both

directions. It occurs due to context switch and the IP core PCIe v3 with 8-lane of the

Xilinx to achieve a maximum transference speed of 5 Gbps [74].

Latency: In this experiment, we measured the average (Figure 5.6b) and tail

(Figure 5.6c) latencies of the eBPFlow communicating with the host using pktgen-DPDK,

with 1 µs precision. On a host (machine with coupled NetFPGA), we used Linux’s traffic

control subsystem called (tc) [34] to receive the packets from board to host and send them

back from host to board. Tc is responsible for setup traffic control in the Linux kernel.

Moreover, we repeated each experience 33 times for each NF for packet sizes 64, 512, and

1,500 bytes. eBPFlow’s latencies (average and tail) had a latency of less than 20 µs with

a standard deviation close to zero. While host average and tail latencies were less than 30

and 40 µs with a difference of 10 and 20 µs if compared with eBPFlow’s latencies. These

results demonstrate that sending the packet from board to host is slower than processing

the packet only on the board. However, communication with the host allows dividing the

workload between hardware and software and supporting operations not synthesizable.

5.2.5 Coprocessor measurement

This experiment evaluates the coprocessor time spent on each function call (lookup,

delete, and update) on eBPFlow. We performed this experiment by adding time registers

over the coprocessor’s Verilog code. In addition, we created an application to read and

add the time values to obtain the time spent after the function call execution. Table 5.2

presents the time in clock cycles (clks) and microseconds (µs) spent on the coprocessor

to each eBPF function call. The measurement begins when the coprocessor triggers the

call function processing. Each register on code increments its value according to the time

spent executing a coprocessor’s code-specific functionality. After the coprocessor finishes

the function call execution, the application reads and obtains the total time spent on

the function call. We compare the times obtained via simulation and tests in the real

environment to validate the experiment.

Table 5.2: Time spent function call on coprocessor.

Maps
Function call CAM TCAM

Lookup 13 clks (0.065 µs) 13 clks (0.065 µs)
Delete 15 clks (0.075 µs) 29 clks (0.145 µs)
Update 19 clks (0.095 µs) 33 clks (0.165 µs)
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5.2.6 eBPFlow performance on packet processing

We evaluated the packet processing capacity of the eBPFlow compared to ker-

nel and Netronome that support offloading of eBPF programs. The kernel runs eBPF

programs in software, while Netronome uses a SmartNIC. To compare both systems, we

choose the network functions SQL Sleep because it is the eBPF program with more sig-

nificant numbers of instructions (Table 5.1). We executed this NF on the three systems.

Moreover, we measured the throughput in millions of packets per second (Mpps) to evalu-

ate the packet processing power between software (using kernel Linux 5.0.4) and hardware

(using Netronome and eBPFlow). We generated packet rates of 64, 512, and 1500 bytes

using pktgen-DPDK.
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Figure 5.7: Systems performance on packet processing.

On the kernel, we insert a map structure in each network function to count the num-

ber of processed packets and measure this information using the xdp-stats tool available

in [71] for each experiment. We evaluated Netronome SmartNIC with their stat watch.py

tool [45]. Figure 5.7 presents the throughput in Mbps of each system, respectively, to eval-

uate network function. Netronome and eBPFlow processes approximately 12.05, 0.87, 0.15

Mpps more than the kernel to packet sizes 64, 512, and 1500 bytes. The packet process-

ing between Netronome and eBPFlow is similar to all packet sizes. However, eBPFlow

provides functionalities not available on Netronome, such as parallelism per port using

eBPF cores reserved per port and parallelism on packet forwarding using an integrated

output crossbar on the system’s data plane.
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5.2.7 eBPFlow performance compared to other systems

We compared the performance of two systems (hXDP and CPU x86@3.7 GHz)

that are similar to eBPFlow. hXDP runs eBPF code on the NetFPGA. CPU means

we execute code in the kernel. Kernel executes eBPF code on the CPU. We evaluated

the throughput and latency of the systems to 64 bytes packets (minimum-size) using

a firewall as a network function. We choose the firewall as NF based on experiments

of [9]. Moreover, to compare the systems fairly, for eBPFlow, we used one physical port

to receive packets, one physical port to send packets, and four eBPF engines. This is the

same setup applied to CPU and hXDP [9]. This is the same setup applied to CPU and

hXDP [9]. Furthermore, we use the paper’s throughput and latency results to compare

the CPU and hXDP results with eBPFlow.
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Figure 5.8: Throughput: eBPFlow, CPU, and hXDP.

Throughput: Figure 5.8 presents a throughput comparison of the systems. hXDP

achieves a throughput of 4.36 Gbps. CPU x86@3.7 GHz gets a throughput of 4.97 Gbps.

Finally, eBPFlow obtains a throughput of 6.95 Gbps. This result demonstrates that the

eBPFlow has a processing performance improvement of 2.59 and 1.98 Gbps over hXDP

and CPU x86@3.7 GHz, respectively.

Latency: Figure 5.9 presents a latency comparison of the systems on packet

forwarding. CPU x86@3.7 GHz gets a latency of 11 µs. hXDP achieves a latency of 3

µs. Finally, eBPFlow obtains a latency of 13.30 µs. This result demonstrates that the

eBPFlow spends more time on packet forwarding 2.3 µs and 10.3 µs about CPU x86@3.7

GHz and hXDP, respectively. eBPFlow overcomes this limitation by providing parallelism

in design and processing more packets than both systems.
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Figure 5.9: Latency: eBPFlow, CPU, and hXDP.

5.2.8 Power

When idle, the NetFPGA consumes 16 W. However, when we synthesize eBPFlow,

the power consumption is 22 W regardless of the packet rate or running program [51].

Devices as Netronome [46, 22], Intel Core i7-7700 [1], 1U rackmount x86 [67], and P4

Wedge 100BF-32X [15] have power consumption of approximately 25-40 W, 65 W, 300-

350 W, and 436 W, which demonstrates that eBPFlow saves power in comparison to the

listed devices.

5.2.9 Discussion

Packet reordering: Network devices use multiple packet processing cores to pro-

vide parallelism. However, they can cause packet reordering contributing to the congestion

of the network due to the number of packets out order stored on FIFOs of the eBPFlow

until the TCP adjusts the send the packets to the receptor. On eBPFlow, we leave the

TCP protocol responsible for managing packet reordering because the TCP guarantees

that the packets will be delivered in the same order in which they were sent. Moreover,

we do not spend the logic resources of the hardware with storage buffers, registers, and

finite state machines to control and handle packets to put them in order, which simplifies

the system’s design. Similar systems to eBPFlow, such as Netronome and hXDP, also do
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not do packet reordering, leaving the TCP responsible for this task.

RegExs processing in parallel: The eBPFlow supports the processing of one

RegEx on the data path. It occurs because RegExs are transformed into eBPF instruc-

tions, loaded in one instruction memory with a double buffer system shared between

eBPF engines. We used one shared instruction memory to reduce the number of used

logic resources on design. However, to support RegExs processing in parallel new circuits

on design need to be added, such as one instruction memory per eBPF engines group or to

support the tail call function that executes eBPF programs in parallel, jumping between

them.

Maps access race condition: All eBPF engines share the maps on eBPFlow.

However, only an eBPF engine has access priority to the maps by time. We created

an arbiter module to manage the access between eBPF engines. The arbiter defines the

access priority based on the scheduling algorithm Round Robin. It defines the current

eBPF engine with access priority and warns the other eBPF engines that the map is busy.

The eBPF engines without access priority wait until each one of them has permission for

access.

Extending maps capacity: The wildcard mechanism allows more flows to be

processed on eBPFlow using the operator (*). However, a service provider or networking

operator can classify or process more than 32 flows. Therefore, they can extend the

eBPFlow design by adding the DDR3 DRAM memory as an array map, available on the

NetFPGA SUME. This memory is suitable for packet buffering. In addition, it has a total

capacity of 8 Gb with a clock frequency of 933 MHz. Another mechanism to extend the

number of flows is to forward the packets to userspace for offline processing via the PCIe

bus. However, it is slow, decreasing the system’s processing power due to the speed of

the PCIe bus and context switch between hardware and userspace.
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Chapter 6

Conclusion and future work

Providing flexibility and programmability of the data plane on networking devices with

abstraction and performance is a requirement that is necessary for the next generation

of networking devices. This thesis proposes eBPFlow, a platform that support offloading

of NFs and acceleration on processing of packets. eBPFlow, has hardware and software

components, is a packet processing platform targeted for high-performance data plane.

eBPFlow is built on top of the NetFPGA SUME platform.

We designed and implemented in hardware a system with multiple eBPF virtual

machines at its core. This system allows executing parse, matching, and actions dynami-

cally through eBPF instructions. The system is protocol independent, and it allows the

use of new fields, facilitating the adoption of new protocols and services The eBPFlow

allows changing the image of the eBPF program at runtime, allowing to modify how the

eBPFlow will process flows. eBPFlow is capable of processing both the packet header and

payload at line rate.

In short, Chapter 2 presented an overview of themes approached in this thesis,

such as eBPF technology, programmable data plane, traffic classification, deep packet

inspection, FPGA, and NetFPGA. Chapter 3 demonstrated a discussion about related

work found in the literature that supports programmability using different technologies

in hardware and software targets. In addition, this Chapter introduced the art state of

the literature and highlighted functionalities and scientific contributions of the system

does not present in similar systems to eBPFlow. Chapter 4 approached details about the

eBPFlow design and implementation built on top of the NetFPGA SUME. Moreover, this

Chapter presented optimizations on the data plane realized to improve the system perfor-

mance and provide different parallelism types on NFs offloading and packet processing,

such as parallelism of instructions, parallelism per port, and parallelism on the forwarding

of packets. Chapter 5 presented an evaluation broad of the system with many experiment

types and results of offloading stateless and stateful NFs in a physical test environment.

Finally, this Chapter discusses the obtained results, future work, and publications.
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6.1 Results

This research advances the art state of the networking community with scientific

contributions and relevant results to the area. In addition, the obtained results demon-

strate that the eBPFlow provides flexibility and programmability on the data plane with

abstraction and performance.

The throughput results on packet processing show that the eBPFlow achieves line

rate to most network functions and packet sizes. However, factors such as NFs that use

maps, 64 bytes packet processing, and the number of cores can affect and reduce the

system’s throughput. The latency results on the packet process present latency between

20 µs and 40 µs, demonstrating little change in the processing time between same-sized

packets for a single NF, leading to reduced jitter.

The throughput result of communication with the host shows that the system

achieves a throughput of fewer than 5 Gbps to all packet sizes in both directions, not

achieving at line rate. However, it occurred due to the context switch and the maximum

transference speed supported by IP core PCIe. eBPFlow’s latencies results communicat-

ing with the host (average and tail) had a latency of less than 20 µs with a standard

deviation close to zero. While host average and tail latencies were less than 30 and 40

µs with a difference of 10 and 20 µs if compared with eBPFlow’s latencies. These results

demonstrate that sending the packet from board to host is slower than processing the

packet only on the board. However, communication with the host allows dividing the

workload between hardware and software and supporting operations not synthesizable in

hardware.

We evaluate the time spent on each function call on eBPFlow, comparing the

times obtained through simulation and tests in a physical environment on coprocessor

measurement results. This result allows knowing how much time the coprocessor spent

in each function call. The performance results comparing the eBPFlow with kernel and

Netronome present that Netronome and eBPFlow processes approximately 12.05, 0.87,

0.15 Mpps more than the kernel for all packet sizes. The packet processing between

Netronome and eBPFlow is similar to all packet sizes. However, eBPFlow provides par-

allelism per port and parallelism on packet forwarding not available on Netronome to

improve the system’s processing performance. The performance results comparing the

eBPFlow with hXDP and CPU demonstrate that the eBPFlow has a processing perfor-

mance improvement of 2.59 and 1.98 Gbps over hXDP and CPU, respectively. Finally,

the power consumption result shows that the eBPFlow has a little power consumption

(approximately 22 W) and saves power compared to evaluated devices.
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6.2 Future work

We intend to create three versions of the eBPFlow: (1) A design that supports an

eBPF CISC instruction set. CISC Instructions perform multiple operations in a single

instruction, such as memory access and mathematical calculations. It, combined with

eBPF, can simplify operations with packets using fewer instructions and improve the

system’s processing performance; (2) A design that supports Service Function Chaining

(SFC). SFC allows the processing of NFs in parallel, providing parallelism in the execu-

tion of NFs; and (3) A design that supports measurement primitives and metrics of the

networking performance. This system will combine the programmability and flexibility of

the eBPF with accurate hardware measurements. These features together are essential to

the traffic engineering of modern networks. All these designs will be implemented on the

NetFPGA PLUS, it is a codebase built for Xilinx Alveo Data Center Accelerator Card

based on Xilinx Virtex Ultrascale+ FPGAs to networks of 100 Gbps [44].

6.3 Publications

This section lists the scientific papers generated with this thesis.
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VIEIRA, L. F. Processamento Rápido de Pacotes com eBPF e XDP. In: Simpósio

Brasileiro de Redes de Computadores e Sistemas Distribúıdos - SBRC 2019, Gra-
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Appendix A

eBPFlow: ALU instructions

Arithmetic 64 bits Memory
Opcode Mnemonic Pseudocode Opcode Mnemonic Pseudocode
0x07 add dst, imm dst = dst+ imm 0x18 lddw dst, imm dst = imm
0x0f add dst, src dst = dst+ src 0x61 ldxw dst, [src+off] dst = ∗(uint32 t∗)(src+ off)
0x17 sub dst, imm dst = dst− imm 0x69 ldxh dst, [src+off] dst = ∗(uint16 t∗)(src+ off)
0x1f sub dst, src dst = dst− src 0x71 ldxb dst, [src+off] dst = ∗(uint8 t∗)(src+ off)
0x47 or dst, imm dst = dst or imm 0x79 ldxdw dst, [src+off] dst = ∗(uint64 t∗)(src+ off)
0x4f or dst, src dst = dst or src 0x62 stw [dst+off], imm ∗(uint32 t∗)(dst+ off) = imm
0x57 and dst, imm dst = dst and imm 0x6a sth [dst+off], imm ∗(uint16 t∗)(dst+ off) = imm
0x5f and dst, src dst = dst and src 0x72 stb [dst+off], imm ∗(uint8 t∗)(dst+ off) = imm
0x67 lsh dst, imm dst = dst << imm 0x7a stdw [dst+off], imm ∗(uint64 t∗)(dst+ off) = imm
0x6f lsh dst, src dst = dst << src 0x63 stxw [dst+off], src ∗(uint32 t∗)(dst+ off) = src
0x77 rsh dst, imm dst = dst >> imm (logical) 0x6b stxh [dst+off], src ∗(uint16 t∗)(dst+ off) = src
0x7f rsh dst, src dst = dst >> src (logical) 0x73 stxb [dst+off], src ∗(uint8 t∗)(dst+ off) = src
0x87 neg dst dst = not dst 0x7b stxdw [dst+off], src ∗(uint64 t∗)(dst+ off) = src
0xa7 xor dst, imm dst = dst xor imm Branch
0xaf xor dst, src dst = dst xor src Opcode Mnemonic Pseudocode
0xb7 mov dst, imm dst = imm 0x05 ja +off PC = PC + off
0xbf mov dst, src dst = src 0x15 jeq dst, imm, +off PC = PC + off if dst == imm
0xc7 arsh dst, imm dst = dst >> imm (arithmetic) 0x1d jeq dst, src, +off PC = PC + off if dst == src
0xcf arsh dst, src dst = dst >> src (arithmetic) 0x25 jgt dst, imm, +off PC = PC + off if dst > imm

Arithmetic 32 bits 0x2d jgt dst, src, +off PC = PC + off if dst > src
Opcode Mnemonic Pseudocode 0x35 jge dst, imm, +off PC = PC + off if dst >= imm
0x04 add32 dst, imm dst = dst+ imm 0x3d jge dst, src, +off PC = PC + off if dst >= src
0x0c add32 dst, src dst = dst+ src 0xa5 jlt dst, imm, +off PC = PC + off if dst < imm
0x14 sub32 dst, imm dst = dst− imm 0xad jlt dst, src, +off PC = PC + off if dst < src
0x1c sub32 dst, src dst = dst− src 0xb5 jle dst, imm, +off PC = PC + off if dst <= imm
0x24 mul32 dst, imm dst = dst ∗ imm 0xbd jle dst, src, +off PC = PC + off if dst <= src
0x2c mul32 dst, src dst = dst ∗ src 0x45 jset dst, imm, +off PC = PC + off if dst and imm
0x34 div32 dst, imm dst = dst / imm 0x4d jset dst, src, +off PC = PC + off if dst and src
0x3c div32 dst, src dst = dst / src 0x55 jne dst, imm, +off PC = PC + off if dst ! = imm
0x44 or32 dst, imm dst = dst or imm 0x5d jne dst, src, +off PC = PC + off if dst ! = src
0x4c or32 dst, src dst = dst or src 0x65 jsgt dst, imm, +off PC = PC + off if dst > imm (signed)
0x54 and32 dst, imm dst = dst and imm 0x6d jsgt dst, src, +off PC = PC + off if dst > src (signed)
0x5c and32 dst, src dst = dst and src 0x75 jsge dst, imm, +off PC = PC + off if dst >= imm (signed)
0x64 lsh32 dst, imm dst = dst << imm 0x7d jsge dst, src, +off PC = PC + off if dst >= src (signed)
0x6c lsh32 dst, src dst = dst << src 0xc5 jslt dst, imm, +off PC = PC + off if dst < imm (signed)
0x74 rsh32 dst, imm dst = dst >> imm (logical) 0xcd jslt dst, src, +off PC = PC + off if dst < src (signed)
0x7c rsh32 dst, src dst = dst >> src (logical) 0xd5 jsle dst, imm, +off PC = PC + off if dst <= imm (signed)
0x84 neg32 dst dst = not dst 0xdd jsle dst, src, +off PC = PC + off if dst <= src (signed)
0xa4 xor32 dst, imm dst = dst xor imm 0x85 call imm Function call
0xac xor32 dst, src dst = dst xor src 0x95 exit return r0
0xb4 mov32 dst, imm dst = imm 0x00 nop do nothing
0xbc mov32 dst, src dst = src Instructions not synthesizable on NetFPGA SUME
0xc4 arsh32 dst, imm dst = dst >> imm (arithmetic) Arithmetic 64 and 32 bits
0xcc arsh32 dst, src dst = dst >> src (arithmetic) Opcode Mnemonic Pseudocode

Byteswap 0x27 mul dst, imm dst = dst ∗ imm
Opcode Mnemonic Pseudocode 0x2f mul dst, src dst = dst ∗ src

0xd4 (imm == 16) le16 dst dst = htole16(dst) 0x37 div dst, imm dst = dst / imm
0xd4 (imm == 32) le32 dst dst = htole32(dst) 0x3f div dst, src dst = dst / src
0xd4 (imm == 64) le64 dst dst = htole64(dst) 0x97 mod dst, imm dst = dst mod imm
0xdc (imm == 16) be16 dst dst = htobe16(dst) 0x9f mod dst, src dst = dst mod src
0xdc (imm == 32) be32 dst dst = htobe32(dst) 0x94 mod32 dst, imm dst = dst mod imm
0xdc (imm == 64) be64 dst dst = htobe64(dst) 0x9c mod32 dst, src dst = dst mod src
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