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Abstract

Background: Oral leukoplakia (OL) is associated with an increased risk for oral 

cancer (OC) development. Prediction of OL cancer progression may contribute 

to decreased OC morbidity and mortality by favoring early intervention. Current 

OL progression risk assessment approaches face large interobserver variability 

and is weakly prognostic. We hypothesized that convolutional neural networks 

(CNN)- based  histology image analyses could accelerate the discovery of better 

OC progression risk models.

Methods: Our CNN- based oral mucosa risk stratification model (OMRS) was 

trained to classify a set of nondysplastic oral mucosa (OM) and a set of OC H&E 
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1  |  INTRODUCTION

The concept of premalignancy was introduced more than 

two centuries ago by a European panel of physicians 

suggesting that some histologic changes may take place 

before the onset of cancer.1 In the oral cavity, precursor 

lesions are named oral potentially malignant disorders 

(OPMD), characterized by visual changes to the oral mu-

cosa, usually white or red patches, which are associated 

with increased risk for oral cancer (OC) development. 

Oral leukoplakia (OL) is the most common type of OPMD, 

for which the malignant transformation rate ranges from 

1% to 3% per year.2,3

An estimated half million new cases of OC are diag-

nosed globally each year, with more than 300,000 deaths.4 

Despite oncological treatment advances, the prognosis 

for OC patients remains poor, especially for patients di-

agnosed at advanced disease stages. Early OC detection is 

critical for therapeutic success and satisfactory quality of 

life.5 Yet, most OC patients are diagnosed at an advanced 

stage, at least partially due to our limited ability to deter-

mine which and when OPMD are at higher risk for malig-

nant progression.6,7

Currently, OL malignant transformation risk is es-

timated by histopathological evaluation of epithelial 

dysplasia, which involves the detection of architectural al-

terations and cytological atypia and their extension across 

the oral epithelial tissue.8,9 The World Health Organization 

proposes a three- tier OL grading scheme (mild, moderate, 

and severe) for dysplastic lesions, but due to low accuracy 

and low reproducibility, simplified binary systems have 

also been proposed.10– 12 Importantly, the evaluation of ep-

ithelial dysplasia is inevitably subjective, resulting in great 

inter-  and intraexaminer variability in the interpretation 

of the presence, degree, and significance of the criteria.8,13 

Most OL diagnosed with dysplasia never progress to OC 

in the life of the patient and the time- to- progression (TTP) 

in those that do is not predictive of subsequent invasive 

disease. Furthermore, various reactive and regenerative 

changes in the oral epithelium, secondary to trauma and 

chronic inflammatory ulcerations, closely mimic mild to 

moderate dysplasia. Hence, a more objective and efficient 

grading system is needed such that risk stratification of 

OL patients is suitable for guiding disease management 

decisions.

Since the introduction of whole slide scanners in 1990, 

technology has evolved, allowing the creation of digital 

histology images that retain high levels of detail.14 In par-

allel, the development of deep learning— a newer branch 

of artificial intelligence (AI)— technologies has provided 

opportunities to design automated learning algorithms 

to examine these high- definition histologic images and 

potentially benefit the practice of surgical pathology.15– 19 

Some deep learning algorithms have achieved perfor-

mance comparable to pathologists in tasks such as the 

detection and segmentation of tumor regions20,21 and 

the identification of metastatic foci in lymph nodes.22– 24 

Among deep learning techniques, convolutional neural 

networks (CNNs) have been the most successful and have 

been widely used for a variety of applications including 
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slides. As a result, the OMRS model could identify abnormal morphological fea-

tures of the oral epithelium. By applying this model to OL slides, we hypothesized 

that the extent of OC- like features identified in the OL epithelium would cor-

relate with its progression risk. The OMRS model scored and categorized the OL 

cohort (n = 62) into high-  and low- risk groups.

Results: OL patients classified as high- risk (n = 31) were 3.98 (95% CI 1.36– 11.7) 

times more likely to develop OC than low- risk ones (n = 31). Time- to- progression 

significantly differed between high-  and low- risk groups (p = 0.003). The 5- year 

OC development probability was 21.3% for low- risk and 52.5% for high- risk pa-

tients. The predictive power of the OMRS model was sustained even after adjust-

ment for age, OL site, and OL dysplasia grading (HR = 4.52, 1.5– 13.7).

Conclusion: The ORMS model successfully identified OL patients with a high 

risk of OC development and can potentially benefit OC early diagnosis and pre-

vention policies.
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image segmentation and classifications.16,25 Through its 

deep network structure, CNNs can learn from the data sets 

to extract highly predictive image features and make accu-

rate predictions independent of clinical intervention.26,27

In this way, we believe that CNN can be an effective 

tool for the identification of morphological features asso-

ciated with malignant progression risk in OL. We hypoth-

esized that OL with a higher risk of cancer progression 

might exhibit morphological features that resemble OC 

tissue and that a CNN- based model would be able to iden-

tify such features by analyzing and comparing OC and 

nondysplastic oral mucosa images. To test this hypothe-

sis, we developed OMRS (oral mucosa risk stratification), 

a CNN- based deep learning model that uses images of 

Hematoxylin and Eosin (H&E) stained tissue as input. 

This model was initially trained with images of nondys-

plastic oral mucosa and oral squamous cell carcinoma to 

create a cancer progression risk score based on the iden-

tification of morphological differences between epithelial 

cells in these two types of tissues. The model was then ap-

plied to OL histopathological slides, assuming that OL ep-

ithelium with morphological similarity to OC has a higher 

risk of cancer progression. We demonstrated that OMRS 

can predict time- to- progression more effectively than the 

three- tier World Health Organization (WHO) OL classifi-

cation system, and it performs on par with newer binary 

systems in terms of disease progression risk assessment. 

We expect that prospective improvements to OMRS, by 

the addition of new layers of morphological complexity 

into the model, could improve the accuracy of OL malig-

nant progression risk assessment and potentially be used 

to tailor surveillance intervals and treatment decisions for 

leukoplakia patients.

2  |  METHODS

2.1 | Training datasets

The OMRS model was developed on hematoxylin and 

eosin (H&E)- stained sections of 38 oral mucosal biop-

sies. Among these tissues, 13 tissue sections consist of 

nondysplastic oral epithelium, which was retrieved from 

the archives of the Oral Pathology Service of the School 

of Dentistry at Universidade Federal de Minas Gerais, 

Brazil (Table  S1). This cohort included biopsies of the 

clinically normal oral epithelium of oral mucosal diseases 

with pathologic changes limited to the lamina propria 

while preserving the normal architecture and cytology 

of the oral epithelium. The remaining 25 samples were 

H&E- stained images of oral squamous cell carcinomas 

(OSCC) randomly selected from The Cancer Genome 

Atlas (TCGA) Head and Neck Squamous Cell Carcinoma 

(HNSCC) tissue imaging data set28 (https://wiki.cance 

rimag ingar chive.net/displ ay/Publi c/TCGA- HNSC, ac-

cessed early 2019. Table S2), with inclusion criteria of oral 

cavity location and human papillomavirus (HPV) nega-

tive. All H&E- stained slides for model development were 

scanned or available at 40× magnification.

Each slide/image was evaluated by an expert oral pa-

thologist (F.O.G- N) in order to annotate areas of technical 

artifacts that should be excluded and to annotate the re-

gions of the epithelium (tumor or nondysplastic), connec-

tive tissue, and background.

2.2 | OMRS model development

To develop the model using nondysplastic oral epithe-

lium and OSCC tissue slides, image patches measuring 

300 × 300 pixels (40×) of four classes (nondysplastic epi-

thelium, cancerous epithelium, connective tissue, and 

background) were extracted from the annotated regions 

and randomly divided into training, validation, and test-

ing sets. Image patches from the same slide were always 

assigned to the same set. The model development dataset 

size is shown in Table 1.

The approach used for OMRS model development is 

summarized in Figure  1A. The OMRS model adapted a 

modified Inception (V3) architecture,29 a type of CNN- 

based deep learning model. The model was fine- tuned 

using our training data set including nondysplastic oral 

epithelium and OSCC tissue, as described above. The 

model took as input an image patch and output a patch- 

level probability of the four classes. Detailed methodology 

is described in Appendix S1.

To test the model on the image patch level, we used the 

test dataset with size as described in Table 1. Probabilities 

of being in each of the four classes were predicted by the 

OMRS model and recorded. Slide- level prediction heat-

maps were also generated for each nondysplastic and 

OSCC tissue pathology slide, where each pixel represented 

the class of the image patch with the highest probability 

at that location.

2.3 | Application of the OMRS model on 
leukoplakia slides

To evaluate the prognostic performance of the OMRS 

model on OL patients, we retrieved H&E slides of OL cases 

biopsied and followed up at the Department of Head and 

Neck Surgery at The University of Texas MD Anderson 

Cancer Center. This cohort included 62 patients with clin-

ical OL diagnoses without evidence of concurrent cancer. 

H&E- stained slides were reviewed by pathologists and 
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scanned at 40×. In order to assess the prognostic perfor-

mance of the OMRS model in identifying patients with a 

high risk of progression to OC, we retrieved demographi-

cal and clinical data, including time- to- progression (TTP) 

to oral cancer, from patient clinical charts. OL histopatho-

logical grading was performed by an oral pathologist 

(N.V.) according to the WHO Classification of Tumors.30

The OL H&E- stained tissue images were scanned at 

40× magnification. A 300 × 300 pixel window was slid over 

the entire scanned slide to extract image patches for the 

OMRS model without overlapping between any adjacent 

windows. For each image patch, probabilities of being in 

different classes (nondysplastic and cancerous epithelium, 

deemed as one class— epithelium, also a second class was 

defined and included stroma and white background) 

were predicted and recorded. Based on the prediction, a 

heatmap was generated for each pathology slide, where 

each pixel represented the class of the image patch with 

the highest probability at that location (Figure 1B). From 

the heatmap, areas predicted as epithelium were used in 

further analysis. OL epithelium image patches were then 

evaluated to predict the probability of an OL epithelium 

patch being either “nondysplastic- like” or “tumor- like” 

by the OMRS- trained model, which quantified the resem-

blance of the OL epithelium to tumor or nondysplastic 

oral mucosa epithelium. We used this predicted proba-

bility as the tumor progression risk score for each tissue 

patch.

2.4 | Statistical analysis

To determine the progression risk for each slide, we 

used the median model- predicted probability value of 

all the epithelium patches on the slide as the slide- level 

risk score. Patients were categorized into two equal- sized 

groups— low-  and high- risk groups— according to their 

individual slide- level risk score in relation to the median 

risk score of the cohort.

Kaplan– Meier plots were used to summarize the 

progression- free survival curves of the patients in pre-

dicted low-  or high- risk groups. Univariate Cox regression 

models were used to evaluate the association between 

clinicopathological variables and TTP. A multivariate Cox 

proportional hazard (CoxPH) model was used to evalu-

ate the association between the predicted risk score and 

patient TTP- adjusted relevant variables. The results were 

considered significant if the resulting two- tailed p value 

was less than 0.05.

2.5 | Ethics

Written informed consent was obtained from patients 

included in the study. This study was approved by the 

Institutional Review Board (IRB).

3  |  RESULTS

3.1 | CNN model distinguishes tissue 
type

After the training process (Figure  2E– G), the OMRS 

model showed an overall prediction accuracy in the test-

ing set of 95.4%; the accuracy was 94.7% for tumor epi-

thelium patches and 98.0% for nondysplastic epithelium 

patches. Receiver- operating characteristic (ROC) curve 

showed the area under the curve (AUC) was 0.992 for the 

tumor and 0.999 for nondysplastic epithelium. Example 

results of slide- level region detection results are shown in 

Figure  2A– D. These results showed that the model was 

successfully trained with the ability to distinguish nondys-

plastic epithelium from tumor epithelium very accurately.

3.2 | Risk score predicts cancer- free  
survival

The clinical characteristics of OL patients included in the 

study are described in Table 2. Patients were followed up 

for a mean time of 5 ± 4.14 years (minimum of 0.12 and 

maximum of 14.0 years) after performing the diagnostic 

biopsy used in the study.

Model 

development 

phase Tissue type Epithelium

Connective 

tissue

White 

background

Training OSCC 2419 1207 992

Oral mucosa 2981 1491 649

Validation OSCC 451 337 343

Oral mucosa 709 444 138

Testing OSCC 513 296 288

Oral mucosa 739 247 181

T A B L E  1  The number of image 

patches used to develop the OMRS 

model. Showing the number of 300 × 300 

pixel patches of each class in training/

validation/testing sets.
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F I G U R E  1  (A) Flow chart of the 

OMRS model training process. Image 

patches of high- risk epithelium, low- 

risk epithelium, connective tissue, 

and white background were extracted 

from nondysplastic epithelium or oral 

cancer slides to establish the model. (B) 

The model predicted on all the slides 

and generated the prediction heatmap, 

including the tissue classification heatmap 

and cancer progression risk probability 

heatmap.

(A)

(B)

Normal oral mucosa Oral squamous cell carcinoma

Lamina propria
Connective tissue

Oral Convolutional Neural Network (OralCNN) model training

High-risk epithelium
Oral cancer cellsOral epithelial cells

Low-risk epithelium

Validation of the OralCNN model

Image region classification

Epithelium

Connective tissue
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Twenty- four cases of OL (41.9%) progressed to OC, 

within 4.4 ± 3.5 years of the initial biopsy (minimum 

of 0.12 and maximum of 13.0 years). Associations be-

tween OC progression and clinicopathological variables 

are described in Table 2. Malignant progression was sig-

nificantly associated with younger age (progressors age 

51.5 ± 14.0 vs. nonprogressors age 59.1 ± 9.36, Wilcoxon p 

value = 0.038), and with OL located in the tongue (23 out 

of 43 developed OC, 53.5% progression) compared with 

the other combined sites (3 out of 19 developed OC, 15.8% 

progression, Fisher's exact test p  =  0.006). OL dysplasia 

grading was not associated with OC progression.

F I G U R E  2  OMRS model training results. (A– D) Example results of image- level region detection results on nondysplastic and tumor 

epithelium pathology images. Here (A) and (C) are the original images of nondysplastic and tumor slides, and (B) and (D) are predicted 

region labels. Yellow: tumor epithelium region; green: nondysplastic epithelium region; blue: connective tissue region; purple: white 

background region. Each point in the region label maps and cancerous epithelium probability heatmaps corresponds to a 300 × 300- pixel 

image patch in the original 40× image. (E) OMRS model learning curves in both training and validation image patch data sets. Epoch is 

one learning pass of all the training patches. (F) Receiver- operating characteristic (ROC) curve of nondysplastic epithelium and tumor 

epithelium classes. (G) Confusion matrix of the trained OMRS model for image patch classification in test data set.

Variables n (%)

No progression

OSCC 

progression

p valuen = 36 n = 26

Gender

Female 30 (48.4) 14 (22.6) 16 (25.8) 0.123a

Male 32 (51.6) 22 (35.5) 10 (16.1)

Age

Mean ± SD 55.9 ± 12.0 59.1 ± 9.36 51.5 ± 14.0 0.038c

Prior oral cancer

No 44 (70.1) 27 (43.5) 17 (27.4) 0.571

Yes 18 (29.0) 9 (14.5) 9 (14.5)

OL dysplasia

No dysplasia 5 (8.1) 3 (5.26) 2 (3.5) 0.185b

Mild 20 (32.3) 16 (28.1) 4 (7.0)

Moderate 21 (33.9) 11 (19.3) 10 (17.5)

Severe 11 (19.3) 5 (8.8) 6 (10.5)

AVEH

Present 16 (28.1) 12 (21.0) 4 (7.0) 0.236a

Absent 41 (71.9) 23 (40.4) 18 (31.6)

OL site

Tongue 43 (69.4) 20 (32.3) 23 (37.1) 0.079b

Gingiva 6 (9.7) 4 (6.4) 2 (3.23)

Buccal mucosa 5 (8.1) 5 (8.1) 0

Floor of the mouth 3 (4.8) 2 (3.2) 1 (1.6)

Palate 3 (4.8) 3 (4.8) 0

Oropharynx 2 (3.2) 2 (3.2) 0

OMRS model risk 

classification

Low risk 31 (50.0) 23 (37.1) 8 (12.9) 0.019a

High risk 31 (50.0) 13 (21.0) 18 (29.0)

Abbreviation: AVEH, atypical verrucous epithelial hyperkeratosis.
aFisher's exact test.
bPearson Chi- Square.
cWilcoxon 2- Sample Test.

T A B L E  2  Clinical characteristics of 

the prognostic evaluation cohorts.
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The OMRS risk classification was significantly associ-

ated with OC progression. Among OL patients categorized 

as high risk, 58.1% (18 out of 31) developed OC, whereas 

only 25.8% (8 out of 31) of the low- risk patients developed 

OC (Fisher's Exact test, p = 0.019). OL patients classified 

as high- risk were 3.98 (CI 95% 1.36– 11.7) times more 

likely to develop OC than low- risk ones.

TTP was significantly different between high-  and low- 

risk groups (p = 0.003). Low- risk OL patients had a signifi-

cantly longer TTP compared with those of the high- risk 

group (Figure 3). The 5 and 10 years OC progression prob-

abilities for high- risk patients were 52.5% (36.1– 68.3) and 

71.8% (52.4– 85.4), respectively, whereas, for the low- risk 

group, the probabilities were 21.2% (10.6– 38.4) and 34.9% 

(18.4– 55.9). Interestingly, TTP was not different among sam-

ples grouped according to their dysplasia grade (no and mild 

dysplasia versus moderate and severe dysplasia) (Figure 3B).

Univariate analyses showed that age (HR = 0.97, 0.94– 1.0 

CI 95%), OL site (HR = 4.1, 1.22– 13.8 CI 95%), and OMRS 

risk classification (HR = 3.48, 1.44– 8.40 CI 95%) were the 

only factors significantly associated with TTP. OL dysplasia 

grading was not associated with TTP (HR = 1.81, 0.7– 4.65 

CI 95%), but it was also included in the multivariate model 

since it is considered an important variable for OC progres-

sion risk (Table 3). The multivariate analysis showed that 

the OMRS risk score was the only factor significantly asso-

ciated with OC progression in OL after adjustment for other 

variables (HR = 4.52, 1.49– 13.7 CI 95%) (Table 3).

4  |  DISCUSSION

In this study, we presented the OMRS model, designed 

to predict OC development risk using H&E- stained OL 

slides. The model demonstrated an encouragingly pow-

erful ability to discriminate OL with higher potential for 

malignant progression from those cases with lower cancer 

progression risk, serving as an independent and objective 

prognostic tool different from current practices. To the 

best of our knowledge, this is the first deep learning study 

regarding OL pathology H&E image analysis.

Implementation of traditional epithelial dysplasia 

grading systems used to estimate malignant progression 

risk of OL requires a dedicated/specially trained expert 

pathologist, and still suffers from high inter-  and intraob-

server variability with poor reproducibility. Modification 

of the traditional three- tier OL grading system to a binary 

classification has improved the grading system's accuracy. 

Within the three- tier grading system, the malignant trans-

formation rate (MTR) for OL classified as mild and moder-

ate has been reported as ranging from 5% to 12%, whereas 

among severe cases, the MTR is around 25%.31,32 On the 

other hand, within binary systems, OL classified as high 

risk and low risk have an MTR of 58% and 13% respec-

tively.10 In our OMRS model, high- risk patients have an 

MTR of 58.1%, indicating that it outperforms the three- tier 

system prediction and parallels with the most recent bi-

nary grading approaches. Furthermore, the OMRS model 

has the advantage of being a standardized procedure that 

performs with virtually no variability.

An growing body of evidence has demonstrated the 

success of AI, especially deep learning image analysis of 

tissue slides, in contributing to the diagnosis and progno-

sis of a range of diseases.23,33,34 However, despite advance-

ments in AI technology during the last decade, there are 

few studies adopting deep learning techniques in the field 

of oral potentially malignant disorders. According to a re-

cently published systematic review,35 only one study has 

F I G U R E  3  (A) Oral cancer progression- free survival according to the OMRS model- predicted risk values. Kaplan– Meier plot shows a 

significant decrease in progression- free survival for oral leukoplakia patients classified as “high risk” compared with leukoplakia patients 

classified as “low risk” (high-  vs. low- risk HR = 3.48, 95% CI = 1.44– 8.40, p value = 0.003). (B) Oral cancer progression- free survival 

according to OL dysplasia grading was not significantly associated with survival (HR = 1.81, 95% CI = 0.70– 4.65, p value = 0.188).
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evaluated the use of machine learning to predict cancer 

development risk in OL; Baik et al.36 developed their semi- 

automated algorithm using Random Forests, which is a 

more traditional machine learning approach, but applied 

an algorithm training strategy similar to what we did in 

this study. Their algorithm learned from a set of normal 

oral mucosa and OC specimens how to differentiate nor-

mal from abnormal cell nuclei. Although their approach 

was highly effective, it relied on a special nucleus staining 

(Feulgen- Thionin), which is not part of the routine H&E/

surgical pathology- staining protocols routine, and it was 

dependent on a skilled technician for identification and 

delineation of regions of interest in the tissue. Conversely, 

our algorithm was developed using an advanced deep 

learning technique, which autonomously identifies re-

gions of interest from digital whole slide images and was 

trained to work with H&E- stained slides using the stan-

dard staining protocol at surgical pathology services.

The OMRS model provides supporting evidence for the 

usefulness of deep learning algorithms using image fea-

ture extraction to contribute to the development of new 

diagnostic and prognostic tools that could potentially 

benefit patients with oral diseases. That said, we believe 

that by incorporating other data points into our algorithm, 

including clinical and genomic data, we may be able to 

build an even stronger OC risk prediction model, though 

a much larger dataset will be needed.

There are still limitations for future improvement in 

this study. The current training data set of nondysplastic 

oral epithelium and OSCC tissue images used for OMRS 

model development is small, which could lower the ro-

bustness of the currently trained OMRS model. More 

tissue sections of nondysplastic and dysplastic oral epithe-

lium and OSCC, preferably from multiple centers should 

be incorporated into future models to improve perfor-

mance. In addition, the prognostic study was only done 

in OL patients without concurrent oral cancer. It would be 

prudent to expand the study into other subsets of OPMD, 

and explore patients with or without concurrent oral can-

cer when a larger data set is available.

In summary, our study presents a new predictive tool 

that performs at least as well as the available OL histo-

logic dysplasia grading approach, but with the additional 

advantage of being automated and free of variability. We 

believe that with the improvement of this model, it could 

potentially be an important tool for the early diagnosis of 

OC and safeguard those patients with a lower risk of ma-

lignant progression from unnecessary mental stress and 

recurring surgical intervention.
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