
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Lucas Francisco da Matta Vegi

Code Smells and Refactorings for Elixir

Belo Horizonte
2024

Lucas Francisco da Matta Vegi

Code Smells and Refactorings for Elixir

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Doctor in Com-
puter Science.

Advisor: Marco Túlio de Oliveira Valente

Belo Horizonte
2024

UNIVERSIDADE FEDERAL DE MINAS GERAIS

CODE SMELLS AND REFACTORINGS FOR ELIXIR

LUCAS FRANCISCO DA MATTA VEGI

Tese defendida e aprovada pela banca examinadora constituída pelos Senhores:

Prof. Marco Túlio de Oliveira Valente - Orientador
Departamento de Ciência da Computação - UFMG

Prof. Rohit Gheyi
Departamento de Sistemas e Computação - UFCG

Prof. Marcelo de Almeida Maia
Faculdade de Computação - UFU

Prof. André Cavalcante Hora
Departamento de Ciência da Computação - UFMG

Prof. Eduardo Magno Lages Figueiredo
Departamento de Ciência da Computação - UFMG

Belo Horizonte, 10 de dezembro de 2024.

Documento assinado eletronicamente por Marco Tulio de Oliveira Valente, Professor do
Magistério Superior, em 06/02/2025, às 12:03, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Andre Cavalcante Hora, Professor do Magistério
Superior, em 06/02/2025, às 19:58, conforme horário oficial de Brasília, com fundamento no
art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Eduardo Magno Lages Figueiredo, Professor do
Magistério Superior, em 07/02/2025, às 02:15, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Marcelo de Almeida Maia, Usuário Externo, em

Folha de Aprovação Tese: Lucas Francisco da Matta Vegi (3947797) SEI 23072.208285/2025-43 / pg. 1

10/02/2025, às 10:00, conforme horário oficial de Brasília, com fundamento no art. 5º do
Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Rohit Gheyi, Usuário Externo, em 18/02/2025, às
09:48, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543,
de 13 de novembro de 2020.

A autenticidade deste documento pode ser conferida no site
https://sei.ufmg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador
3947797 e o código CRC B616CD36.

Referência: Processo nº 23072.208285/2025-43 SEI nº 3947797

Folha de Aprovação Tese: Lucas Francisco da Matta Vegi (3947797) SEI 23072.208285/2025-43 / pg. 2

To José and Aline, my beloved son and dear wife.

Acknowledgments

Esta tese é fruto de uma longa jornada de entrega, aprendizado e superação pessoal.

Não seria possível construir um caminho como esse sozinho. Por esse motivo, gostaria

de agradecer a todos que, de alguma forma, contribuíram nesse período importante da

minha vida. Sob o risco de esquecer figuras essenciais, agradeço, em especial:

A Deus, por me dar força em todos os momentos.

Aos meus pais e avós, que me ensinaram valores inegociáveis.

Aos meus primos/padrinhos Alexandre e Ana, que acolheram a mim e à minha

esposa durante todo o tempo que residimos em Belo Horizonte.

À minha esposa, Aline, que, além de ser a minha grande inspiração para seguir na

carreira acadêmica, abriu mão do seu sonho para viabilizar o meu.

Ao professor José Luis Braga (UFV), principal responsável pela minha paixão pela

área de Engenharia de Software. Além disso, por meio de seu incentivo, pude

conhecer meu orientador, dando início, assim, a essa jornada.

Ao meu orientador, Marco Túlio Valente, por todo o respeito, atenção, empatia e

ensinamentos. Foi um enorme prazer ter a oportunidade de trabalhar com uma

pessoa tão especial em tantos aspectos. Tenho certeza de que a parceria continuará.

À comunidade Elixir, pela acolhida e pelas participações abundantes ao longo das di-

versas etapas deste trabalho. Ao professor Adolfo Neto (UTFPR), faço um agradec-

imento mais especial, pois, além de ter despertado meu interesse por essa linguagem

por meio de seus podcasts, ele também foi um dos grandes responsáveis por tornar

a mim e ao meu trabalho conhecidos por essa comunidade de desenvolvedores.

A José Valim, criador do Elixir, por facilitar nossa comunicação com a comunidade

Elixir e intermediar o suporte financeiro fornecido a esta pesquisa pelas empresas

FinBits, Dashbit e Rebase, a quem também agradeço.

Aos membros da banca, pela disponibilidade em contribuir com este trabalho.

Ao DPI/UFV, por me conceder licença integral, permitindo-me manter o foco exclusi-

vamente na pesquisa nesses últimos anos.

Ao DCC/UFMG, pelo suporte financeiro, logístico e profissional.

“Have a healthy disregard for the impossible.”

(Larry Page)

Resumo

Elixir é uma linguagem de programação funcional moderna, criada em 2012, cuja pop-

ularidade vem crescendo na indústria. No entanto, até onde sabemos, existem poucos

estudos na literatura que abordem a qualidade interna de sistemas implementados com

essa linguagem. Particularmente, nenhum estudo até o momento investigou code smells

ou refatorações específicos para Elixir. Portanto, para aproveitar essas oportunidades de

pesquisa, nos inspiramos no conhecido livro de Fowler sobre code smells e refatorações

para prospectar, estudar, documentar e avaliar code smells e estratégias de refatoração

adaptadas especificamente a Elixir. Em um primeiro estudo, utilizamos uma abordagem

metodológica mista para catalogar 35 code smells, dos quais 23 são novos e específicos

para Elixir, enquanto 12 são code smells tradicionais catalogados por Fowler e Beck, que

também afetam códigos implementados nessa linguagem. Esse catálogo foi validado por

meio de questionários respondidos por 181 desenvolvedores experientes em Elixir, oriun-

dos de 37 países e de todos os continentes. Em um segundo estudo, também adotamos

uma abordagem metodológica mista, que incluiu uma revisão sistemática da literatura,

para catalogar 82 estratégias de refatoração compatíveis com Elixir, sendo 14 delas in-

éditas e específicas para essa linguagem. Todas essas refatorações foram validadas por

meio de novos questionários respondidos por 151 desenvolvedores de 42 países diferentes.

Para documentar os code smells e as refatorações catalogadas, além de descrições textuais

estruturadas, produzimos exemplos de código que os representam. Por fim, conduzimos

um terceiro estudo, no qual os code smells e as refatorações para Elixir foram correla-

cionados, permitindo assim a definição de diretrizes práticas sobre como cada code smell

pode ser removido de forma disciplinada com a ajuda de estratégias de refatoração. Nesse

último estudo, também catalogamos cinco novas refatorações compostas para Elixir. De

maneira geral, os resultados desta tese têm implicações práticas relacionadas à prevenção

e remoção de code smells em Elixir, bem como à priorização do entendimento e uso das

estratégias de refatoração para essa linguagem.

Palavras-chave: code smells; refatoração; Elixir; programação funcional; mineração de

repositórios de software; revisão da literatura cinza; revisão sistemática da literatura.

Abstract

Elixir is a modern functional programming language, created in 2012, whose popularity

has been growing in the industry. Despite this fact, and to the best of our knowledge,

there are few studies in the literature addressing the internal quality of systems imple-

mented with this language. In particular, no study to date has investigated specific code

smells or refactorings for Elixir. Therefore, to fill these research gaps, we take inspiration

from Fowler’s well-known book on code smells and refactorings to prospect, study, doc-

ument, and evaluate code smells and refactoring strategies specifically tailored to Elixir.

In the first study, we employed a mixed-method approach to catalog 35 code smells, 23

of which are new and specific to Elixir, while 12 are traditional code smells cataloged

by Fowler and Beck that also affect code implemented in this language. We validated

this catalog by surveying 181 experienced Elixir developers from 37 countries across all

continents. In a second study, we also adopted a mixed-method approach, including a

systematic literature review, to catalog 82 refactoring strategies compatible with Elixir,

14 of which are novel and specific to this language. All these refactorings were validated

through another survey answered by 151 developers from 42 countries. To document the

cataloged code smells and refactorings, in addition to structured textual descriptions, we

produced code examples representing them. Finally, we conducted a third study where the

code smells and refactorings for Elixir were correlated, allowing the definition of practical

guidelines on how each code smell can be removed systematically with the help of refac-

toring strategies. In this final study, we also cataloged five new composite refactorings

for Elixir. Overall, the results of this thesis have practical implications for the prevention

and removal of code smells in Elixir, as well as the prioritization of understanding and

using refactoring strategies for this language.

Keywords: code smells; refactoring; Elixir; functional programming; mining software

repositories; grey literature review; systematic literature review.

List of Figures

3.1 Overview of methods for cataloging code smells in Elixir 46

3.2 Overview of survey on code smells in Elixir . 63

3.3 Countries where the survey participants reside 65

3.4 Developers’ perception of code smells in Elixir (RQ3) 67

4.1 Overview of methods for cataloging refactorings in Elixir 75

4.2 Examples of unclear commits . 82

4.3 Overview of survey on refactorings for Elixir 105

4.4 Countries where the survey on refactorings participants reside 107

4.5 Developers’ perception of refactorings in Elixir (RQ2) 109

4.6 Developers’ perception of refactorings in Elixir by category (RQ2) 110

5.1 Overview of methods for correlating code smells and refactorings in Elixir . . . 121

5.2 Database used to document treatments to code smells by refactoring strategies 122

List of Tables

2.1 Traditional code smells . 32

3.1 Sections of the catalog of Elixir-specific code smells 48

3.2 Elixir communication channels used to promote the initial catalog 48

3.3 Contributions by the Elixir community . 50

3.4 Overview of artifacts selection . 51

3.5 Code smell discussions by artifact type (MSR) 52

3.6 Traditional code smells discussed by Elixir developers (RQ1) 53

3.7 Design-related Elixir-specific code smells (RQ2) 56

3.8 Low-level concerns Elixir-specific code smells (RQ2) 60

3.9 Survey versions template . 64

3.10 Responses for each survey version . 65

3.11 Influence of the number of Elixir projects in the developer’s perception of a

smell . 68

3.12 Influence of the Elixir experience time in the developer’s perception of a smell 69

4.1 Examples of variations of refactoring candidates 77

4.2 Distribution of valid documents among authority criteria 79

4.3 Top-10 Elixir repositories with the most stars 81

4.4 Overview of artifacts selection . 82

4.5 Categories used to organize the catalog of refactorings for Elixir 83

4.6 Functional Refactorings compatible with Elixir - Part 1 85

4.7 Functional Refactorings compatible with Elixir - Part 2 86

4.8 Elixir-Specific Refactorings . 92

4.9 Erlang-Specific Refactorings compatible with Elixir 97

4.10 Traditional Refactorings compatible with Elixir 101

4.11 Survey versions template . 106

4.12 Valid responses for each survey version . 108

4.13 Refactorings with a high average between their relevance and prevalence levels 112

4.14 Averages between the relevance and prevalence levels of each category 113

4.15 Influence of the Elixir experience in the developer’s perception of a refactoring 114

4.16 Influence of the number of Elixir projects in the developer’s perception of a

refactoring . 114

5.1 Elixir smells and the refactorings that assist their elimination - Part 1 126

5.2 Elixir smells and the refactorings that assist their elimination - Part 2 127

5.3 Composite refactorings for Elixir . 129

5.4 Refactorings not mapped to the removal of code smells 134

5.5 Overview of refactorings by category (Unmapped x Mapped) 136

A.1 Demographic questions (equals across all questionnaire versions) 170

A.2 Questionnaire A - Perceptions on traditional code smells in Elixir 171

A.3 Questionnaire B - Perceptions on traditional code smells in Elixir 172

A.4 Questionnaire C - Perceptions on traditional code smells in Elixir 173

A.5 Questionnaire D - Perceptions on traditional code smells in Elixir 174

A.6 Questionnaire A - Perceptions on Elixir-Specific code smells 175

A.7 Questionnaire B - Perceptions on Elixir-Specific code smells 176

A.8 Questionnaire C - Perceptions on Elixir-Specific code smells 177

A.9 Questionnaire D - Perceptions on Elixir-Specific code smells 178

A.10 Final remarks questions (equals across all questionnaire versions) 178

B.1 Questionnaire A - Perceptions on refactorings for Elixir 180

B.1 Questionnaire A - Perceptions on refactorings for Elixir (continued) 181

B.1 Questionnaire A - Perceptions on refactorings for Elixir (continued) 182

B.2 Questionnaire B - Perceptions on refactorings for Elixir 183

B.2 Questionnaire B - Perceptions on refactorings for Elixir (continued) 184

B.2 Questionnaire B - Perceptions on refactorings for Elixir (continued) 185

B.3 Questionnaire C - Perceptions on refactorings for Elixir 186

B.3 Questionnaire C - Perceptions on refactorings for Elixir (continued) 187

B.3 Questionnaire C - Perceptions on refactorings for Elixir (continued) 188

B.4 Questionnaire D - Perceptions on refactorings for Elixir 189

B.4 Questionnaire D - Perceptions on refactorings for Elixir (continued) 190

B.4 Questionnaire D - Perceptions on refactorings for Elixir (continued) 191

B.5 Questionnaire E - Perceptions on refactorings for Elixir 192

B.5 Questionnaire E - Perceptions on refactorings for Elixir (continued) 193

B.5 Questionnaire E - Perceptions on refactorings for Elixir (continued) 194

C.1 Functional Refactorings compatible with Elixir not listed in Section 4.1.2 (at

most two sources) . 195

C.2 Traditional Refactorings compatible with Elixir not listed in Section 4.1.2 (at

most two sources) . 196

Contents

1 Introduction 17

1.1 Problem and Motivation . 17

1.2 Objectives and Contributions . 19

1.2.1 Code Smells in Elixir . 20

1.2.2 Refactorings in Elixir . 21

1.2.3 Relationship between Code Smells and Refactorings in Elixir 22

1.2.4 Impact on the Elixir Developers’ Community 23

1.3 Publications . 24

1.4 Outline of the Thesis . 25

2 Background and Related Work 26

2.1 Functional Programming . 26

2.2 Elixir Language . 28

2.3 Code Smells . 32

2.4 Refactoring . 34

2.5 Related Work . 39

2.5.1 Context-specific Code Smells and Developers’ Perceptions 40

2.5.2 Language-specific Refactorings . 41

2.6 Final Remarks . 43

3 Code Smells in Elixir 44

3.1 Catalog of Code Smell for Elixir . 44

3.1.1 Study Design . 45

3.1.2 Do Elixir developers discuss traditional code smells? (RQ1) 52

3.1.3 Do Elixir developers discuss other smells? (RQ2) 55

3.1.3.1 Design-related smells . 55

3.1.3.2 Low-level concerns smells 59

3.1.4 Threats to Validity . 61

3.2 Catalog Validation . 62

3.2.1 Survey Design . 62

3.2.2 What are the developers’ perceptions of code smells in Elixir? (RQ3) 66

3.2.3 Threats to Validity . 69

3.3 Implications . 71

3.4 Final Remarks . 71

4 Refactorings in Elixir 73

4.1 Catalog of Refactorings for Elixir . 74

4.1.1 Study Design . 74

4.1.2 What are the refactoring strategies that occur in Elixir? (RQ1) . . 83

4.1.2.1 Functional refactorings . 84

4.1.2.2 Elixir-specific refactorings 90

4.1.2.3 Erlang-specific refactorings 96

4.1.2.4 Traditional refactorings 100

4.1.3 Threats to Validity . 103

4.2 Catalog Validation . 104

4.2.1 Survey Design . 105

4.2.2 What are the developers’ perceptions of refactorings in Elixir? (RQ2)109

4.2.3 Threats to Validity . 115

4.3 Implications . 117

4.4 Final Remarks . 118

5 Relationship between Code Smells and Refactorings in Elixir 120

5.1 Study Design . 121

5.2 Results . 124

5.2.1 Mapping between smells and refactorings 125

5.2.2 Composite refactorings for Elixir 129

5.2.3 Example: Removing a smell step-by-step through a composite refac-

toring . 131

5.3 Discussion . 134

5.4 Threats to Validity . 136

5.5 Final Remarks . 137

6 Conclusion 139

6.1 Thesis Recapitulation . 139

6.2 Contributions . 140

6.3 Future Work . 142

References 147

Appendix A Documents of the Survey on Code Smells in Elixir 168

A.1 Free and Enlightened Consent . 168

A.2 Survey Questions . 170

Appendix B Documents of the Survey on Refactorings for Elixir 179

B.1 Free and Enlightened Consent . 179

B.2 Survey Questions . 180

Appendix C Refactorings not listed in Chapter 4 195

Appendix D Refactoring Code Smells: Practical Guidelines 197

D.1 Accessing non-existent map/struct fields 197

D.2 Agent obsession . 198

D.3 Alternative return types . 199

D.4 Code organization by process . 199

D.5 Comments . 200

D.6 Compile-time global configuration . 201

D.7 Complex branching . 201

D.8 Complex else clauses in with . 202

D.9 Complex extractions in clauses . 202

D.10 Data manipulation by Migration . 203

D.11 Divergent change . 204

D.12 Duplicated code . 205

D.13 Dynamic atom creation . 207

D.14 Feature envy . 208

D.15 GenServer envy . 208

D.16 Inappropriate intimacy . 209

D.17 Large class . 209

D.18 Large code generation by macros . 210

D.19 Large messages . 210

D.20 Long function . 211

D.21 Long parameter list . 213

D.22 Modules with identical names . 213

D.23 Primitive obsession . 214

D.24 Shotgun surgery . 215

D.25 Speculative assumptions . 215

D.26 Speculative generality . 215

D.27 Switch statements . 216

D.28 Unnecessary macros . 217

D.29 Unrelated multi-clause function . 217

D.30 Unsupervised process . 219

D.31 Untested polymorphic behaviors . 219

D.32 "Use" instead of "import" . 220

D.33 Using App Configuration for libraries . 220

D.34 Using exceptions for control-flow . 221

D.35 Working with invalid data . 221

17

Chapter 1

Introduction

This chapter introduces this Ph.D. thesis. We begin by presenting our problem and

motivation in Section 1.1. Next, in Section 1.2, we detail the objectives, goals, and major

contributions of this work. In Section 1.3, we list our current publications. Finally, we

present the outline of this thesis in Section 1.4.

1.1 Problem and Motivation

The concern for ensuring product quality is a common characteristic among engi-

neering disciplines, and software engineering is no exception. According to Meyer [128],

the assessment of software quality can be classified into two categories: external quality

and internal quality. Based on this definition, the external quality of software measures

quality attributes that do not depend on source code to be evaluated, such as robustness,

correctness, usability, and efficiency. On the other hand, the internal quality of software

evaluates quality attributes directly related to its code, such as maintainability, testability,

and readability.

According to Valente [193], successive maintenance activities over time lead to an

increase in complexity and difficulty in maintaining the code and internal structure of a

system. Essentially, there is a progressive degradation of the system’s internal quality

as maintenance interventions and enhancements occur. This fact is also mentioned by

Fowler in the preface of his well-known book on refactoring [74], where he recounts an

experience as a consultant on a project that failed for this reason: “...the project failed,

in large part because the code [became] too complex to debug or to tune to acceptable

performance”. This same failed project was successfully restarted and maintained by

applying refactoring techniques, which are code transformations aimed at improving the

quality of a system without altering its behavior [74], thereby stabilizing the natural

decline in quality of these systems after successive maintenance activities [193].

The success of this project motivated Fowler to write his aforementioned book on

1.1. Problem and Motivation 18

refactorings [74] to communicate to other developers how to improve the quality of their

code. In this book, Fowler cataloged 72 refactorings for object-oriented code, helping to

popularize these code transformation techniques. Additionally, Fowler and Beck coined

the term “code smell” to describe sub-optimal code structures that can harm the evolution

of software, characterizing them as opportunities for refactoring. In total, Fowler’s book

cataloged 22 code smells, also contributing to the popularization of this concept.

Since the impacts on software quality caused by code smells are not homogeneous

and can vary across different domains [72], developers’ perception of code smells can

also differ [181]. Particularly, each programming language has its own constraints and

challenges to perform refactorings [106], and thus there is vast research on code smells and

refactoring strategies for specific contexts and languages, such as mobile applications [82,

83], JavaScript [63, 67, 155], CSS [146], games [27, 133], Java [57], Python [215, 216],

Ruby [11, 49], and quantum computing [46, 217]. However, the majority of these studies

are focused on improving the quality of object-oriented systems [1, 176].

Historically, functional languages have not been as popular in the industry as

object-oriented ones. However, there has been a recent increase in interest in functional

languages [26]. More specifically, Elixir is a modern functional programming language that

is gaining traction in the industry, with over 300 companies worldwide using the language,

including Discord, Heroku, and PepsiCo.1 This language is renowned for its performance

in parallel and distributed computing environments [183]. Conceived in 2012, Elixir draws

inspiration from a blend of programming languages, such as Ruby, Haskell, Erlang, and

Clojure [94]. According to approximately 72% of developers who participated in the Elixir

Survey 2023,2 the three main factors that influenced their decisions to adopt Elixir are

its functional paradigm, increased productivity, and facilitated support for concurrency.

The recent results of the Stack Overflow Survey3 also highlight how Elixir is a

relevant language in the industry today. According to the last three editions of this survey

(i.e., 2022, 2023, and 2024), Elixir is the second most admired programming language

among developers, just after Rust. This suggests that a large number of developers who

currently use the language intend to continue using it in the coming years. Additionally,

according to these surveys, Phoenix4—the main framework for web development with

Elixir—is currently the most loved web technology. Finally, the Stack Overflow Survey

2024 shows that Elixir developers are the second highest-paid in the industry, only behind

Erlang developers—the language that most influenced Elixir’s design [183].

Although Elixir is becoming particularly popular and relevant in the industry,

to the best of our knowledge, no study has yet investigated code smells or refactorings

specifically tailored for this language. However, just as in any programming language, it is
1
https://elixir-lang.org/cases.html

2
https://curiosum.com/surveys/elixir-2023

3
https://insights.stackoverflow.com/survey

4
https://phoenixframework.org/

1.2. Objectives and Contributions 19

natural to expect that Elixir developers will make bad design choices and then

implement sub-optimal code structures, making their systems challenging to

maintain, comprehend, modify, and test. Thus, we also expect these develop-

ers to pursue design improvements within their codebase through refactoring

strategies.

Therefore, considering the growing significance of functional languages, particu-

larly Elixir, and the lack of studies regarding the quality of systems developed with this

language, this thesis aims to fill this research gap.

1.2 Objectives and Contributions

As previously mentioned, there is a lack of studies examining design and mainte-

nance issues that are specific to systems implemented using Elixir. The main reason for

this gap is that existing literature predominantly focuses on the object-oriented paradigm

and more traditional programming languages. Therefore, taking inspiration from Fowler’s

book [74] but applied in a specific context, the general objective of this Ph.D. thesis

is described as follows:

We aim to prospect, study, document, evaluate, and correlate code smells and refac-

toring strategies specifically tailored to the Elixir functional language.

To achieve this objective, we divided the thesis into three major working units:

1. First, we cataloged specific code smells for the Elixir language by extracting these

sub-optimal structures from multiple content sources, such as grey literature doc-

uments, open-source project codebases, and direct interactions with developers of

the language. These code smells were validated by developers who work with Elixir.

2. In the second working unit, we cataloged refactoring strategies specifically aimed at

improving the quality of systems developed in Elixir, and we also validated these

strategies with developers who work with the language. For each of these strategies,

we provided examples showing the code before and after the transformations, as

well as some conditions to help preserve the behavior of the refactored code.

3. Finally, in the third working unit, we established relationships between the catalogs

of code smells and refactorings specific to systems developed in Elixir. This mapping

enables us to provide practical guidance to developers on which refactoring strategies

1.2. Objectives and Contributions 20

can be used to remove each code smell in a disciplined way, thereby improving the

quality of the code.

We summarize each work and highlight their contribution in the remainder of this

section. In addition to presenting these scientific contributions, at the end of this section,

we also list some indirect contributions from this thesis that are already having an impact

on the Elixir developer community.

1.2.1 Code Smells in Elixir

In the first working unit of this thesis, aiming to build a catalog of code smell for

Elixir, we first conducted a qualitative study, extracting and cataloging code smells for

Elixir from 17 grey literature documents, 25 documents created by interactions with the

Elixir community in GitHub (13 issues and 12 pull requests), and 46 artifacts mined from

Elixir repositories on GitHub. Second, we conducted a survey that collected quantitative

data with 181 Elixir developers. Each participant received a list of smells and they were

asked to rank each one’s relevance and prevalence on a scale of one (very low) to five

(very high). In this study, we present the following contributions:

• We cataloged 23 novel Elixir-specific code smells and categorize them into two dif-

ferent groups (Low-Level Concerns smells and Design-Related smells).

• We find that at least 12 traditional code smells (as proposed by Fowler and Beck [74])

are also present in Elixir systems.

• We showed through the results of a survey that the majority of cataloged smells

(97%) have at least mid-relevance levels, therefore having the potential to impair the

readability, maintenance, or evolution of Elixir systems. Additionally, most smells

(54%) have at least mid-prevalence levels, making them common in production code.

These findings have practical implications for developers and researchers, such as

establishing priorities for preventing and removing code smells, directing efforts toward

the evolution of tools for the automatic detection of code smells in Elixir, and identifying

open research fields related to the catalog.

1.2. Objectives and Contributions 21

1.2.2 Refactorings in Elixir

In the second working unit, with the goal of cataloging refactoring strategies tai-

lored for Elixir, we first conducted a systematic literature review where we analyzed 135

research papers to identify and catalog refactoring strategies that have been proposed for

other functional languages but that are also compatible with Elixir. Second, we cataloged

refactorings for Elixir from 26 grey literature documents. Third, we mined 119 artifacts

from the Top-10 Elixir repositories with the most stars on GitHub to expand our catalog

of refactorings. Fourth, we surveyed 144 experienced Elixir developers. Each participant

was given a list of refactorings and asked to rate the relevance and prevalence of each on

a scale from one (very low) to five (very high). With this study we achieved the following

contributions:

• We cataloged 82 refactorings for Elixir and categorized them into four different

groups (Elixir-Specific refactorings, Functional refactorings, Erlang-

Specific refactorings, and Traditional refactorings).

• We provided documentation with code examples and some tailored side conditions

that can support the implementation of automated refactoring tools for Elixir in

the future.

• We showed through the results of our survey that most of the cataloged refactorings

(70.6%) are at least moderately prevalent, indicating they are common in production

code. Furthermore, the vast majority of refactorings (92.7%) are at least moderately

relevant, suggesting they have the potential to enhance the quality of Elixir systems.

Lastly, nine refactorings in the catalog (11%) have a high average score between their

relevance and prevalence levels, indicating they deserve special attention from Elixir

developers.

• We found that the experience level of the developers who participated in our sur-

vey had little impact on their perceptions of the relevance and prevalence of the

refactorings in our catalog, as only 19% of the refactorings were influenced by these

factors.

These findings have practical implications. For example, when developers are learn-

ing the refactoring strategies we cataloged, they should prioritize mastering the most

prevalent ones first, as understanding these transformations can save time during code re-

views. Conversely, when maintaining their systems and encountering multiple refactoring

opportunities, developers should apply the most relevant refactorings first to maximize

code quality improvements.

1.2. Objectives and Contributions 22

1.2.3 Relationship between Code Smells and Refactorings in

Elixir

In previous working units, we have cataloged code smells and refactorings specifi-

cally tailored for Elixir, but we did not establish direct correlations between them. There-

fore, intending to correlate these catalogs in the same way Fowler and Beck [74] did for

theirs, and thus to create a practical guide on how to remove each code smell in a disci-

plined way, in this final working unit we first conducted an empirical study where each of

the 35 code smells previously cataloged by us was manually compared with each of the 82

refactorings. Through these comparisons, we identified the refactorings that could aid in

removing each smell in Elixir and the order in which they should be performed. Second, we

classified the motivations behind each refactoring not mapped to removing Elixir smells,

aiming to understand the reasons for these mapping absences. In this context, we provide

the following contributions:

• We found that all 35 code smells for Elixir have their removal assisted by at least

one refactoring also cataloged for this language.

• We showed that some refactoring operations cataloged for Elixir can be useful for

addressing more than one code smell.

• On the other hand, we found that 12 of the 82 refactorings cataloged for Elixir are

not associated with the removal of known code smells for this language.

• We identified five composite refactorings (i.e., sequences of interrelated atomic5

refactorings [178]) that are useful for removing code smells in Elixir.

• We have found evidence suggesting the existence of an uncatalogued smell for Elixir.

• We showed that the traditional refactorings, originally proposed to improve the

quality of object-oriented systems [74], are also highly important for removing code

smells in Elixir.

The results of this final working unit can guide developers—especially those new

to Elixir—on how to systematically remove code smells and enhance the internal quality

of their systems.

5Atomic refactorings are those not decomposable into other simpler code transformations [109].

1.2. Objectives and Contributions 23

1.2.4 Impact on the Elixir Developers’ Community

In addition to the contributions from the three working units mentioned before, this

Ph.D. thesis helped popularize discussions on software quality among developers working

with Elixir. Some examples of this impact are listed as follows:

• Our GitHub repository created to catalog code smells for Elixir became popular

among Elixir developers, receiving approximately 1.5k stars, thus ranking among

the 60 most-starred Elixir GitHub-based projects.6 Due to the interest sparked

in the developer community for this content, part of this work was later incor-

porated into the official Elixir documentation through collaboration with the core

team that maintains the language.7 Unlike the taxonomy proposed in this thesis

to classify code smells for Elixir (i.e., Low-Level Concerns, Design-Related,

and Traditional), the members of the Elixir Core Team chose to use an alter-

native taxonomy, composed of the categories Code-Related, Design-Related,

Process-Related, and Metaprogramming-Related.

• The GitHub repository we used to catalog refactorings for Elixir has around 160

stars.8 Although it has not become as popular as our code smells repository, some

Elixir developers are already drawing inspiration from it to create tools capable of

automatically applying some of the refactoring strategies cataloged in this thesis

(e.g., RefactorEx9).

• In mid-2022, we were interviewed on the podcast Elixir em Foco,10 the main podcast

of the Brazilian Elixir developers’ community, where we were able to discuss the

research conducted in this thesis. Additionally, our research was a topic of discussion

on the Thinking Elixir 11 and Elixir Mentor 12 podcasts, two of the most well-known

podcasts in the international Elixir developers’ community.

• The author of this Ph.D. thesis gave a talk on Elixir-specific code smells and refac-

torings at Elixir Fortaleza Conf 2023.13 This event was organized by members of the

Brazilian Elixir developers’ community. In addition to promoting the dissemination

of these topics among developers, this opportunity allowed us to engage directly

6
https://github.com/lucasvegi/Elixir-Code-Smells

7Official documentation: https://hexdocs.pm/elixir/what-anti-patterns.html
8
https://github.com/lucasvegi/Elixir-Refactorings

9
https://github.com/gp-pereira/refactorex

10Elixir em Foco: https://youtu.be/dp8zQUadDgQ
11

https://podcast.thinkingelixir.com/93
12Elixir Mentor: https://youtu.be/BAchf-VSOhY
13Elixir Fortaleza Conf 2023 talk: https://youtu.be/klubcNmv4qI

1.3. Publications 24

with them to discuss issues related to the catalog of refactorings for this language,

which was still a work in progress at the time.

• The research conducted in this thesis was also the topic of talks at ElixirConf 202314

and Code BEAM Europe 2023,15 two of the main international events specifically

geared towards developers working with Elixir. These talks were given by Elaine

Watanabe, an experienced programmer specializing in Ruby and Elixir.

• Finally, José Valim, the creator of Elixir, was the keynote speaker at ElixirConf

EU 2024. In his talk on design patterns for Elixir,16 he also presented our work on

code smells and refactorings, highlighting some of its key contributions and impacts

on the developer community. Moreover, he described our research as a source of

inspiration for discussions on other topics related to software quality in Elixir.

1.3 Publications

This thesis is based on the content of the following publications:

• ICPC’22 Vegi, L. F. M. and Valente, M. T. Code smells in Elixir: early results

from a grey literature review. In 30th International Conference on Program Com-

prehension (ICPC) - ERA track, pages 580–584, 2022. doi: https://doi.org/10.1145/

3524610.3527881. (Chapter 3).

• EMSE’23 Vegi, L. F. M. and Valente, M. T. Understanding code smells in Elixir

functional language. Empirical Software Engineering, 28(102):1–32, 2023. doi: https:

//doi.org/10.1007/s10664-023-10343-6. (Chapter 3).

• ICSME’23 Vegi, L. F. M. and Valente, M. T. Towards a catalog of refactorings

for Elixir. In 39th International Conference on Software Maintenance and Evolu-

tion (ICSME) - NIER track, pages 358–362, 2023. doi: https://doi.org/10.1109/

ICSME58846.2023.00045. (Chapter 4).

Furthermore, we also contributed to the following work during this Ph.D. research:

• VEM’22 Nunes, H. G., Vegi, L. F. M., Cruz, V. P. G., and Figueiredo, E. Democ-

racia em xeque: um estudo comparativo sobre detecção de code smells. In 10th

14ElixirConf 2023 talk: https://youtu.be/aSOY70vydp4
15Code BEAM Europe 2023 talk: https://youtu.be/6r5b574ttV8
16ElixirConf EU 2024 keynote talk: https://youtu.be/agkXUp0hCW8

1.4. Outline of the Thesis 25

Workshop de Visualização, Evolução e Manutenção de Software (VEM), pages 11–

15, 2022. doi: https://doi.org/10.5753/vem.2022.226562.

1.4 Outline of the Thesis

We organize this thesis as follows:

Chapter 2 covers background information to support this thesis. We provide an overview

about the Elixir functional language, code smells, and refactoring. Additionally, we

present a comprehensive review of relevant works directly related to the thesis. Fi-

nally, we emphasize the main distinctions between these works and our research.

Chapter 3 presents two studies conducted with the objective of characterizing code

smells in Elixir. The first study involves prospecting, documenting, and cataloging

code smells for Elixir. In the second study, we carry out a survey with developers

to validate this catalog of code smells.

Chapter 4 introduces two other studies aimed at characterizing refactorings in Elixir.

The first study focuses on identifying, documenting, and cataloging refactorings

for Elixir. Each cataloged refactoring technique is accompanied by code examples

and some specific side conditions tailored to the Elixir language. The second study

involves conducting a survey with developers to validate this catalog of refactorings.

Chapter 5 reports a study on the interplay between code smells and refactorings in

Elixir. Based on the relationships established by comparing the catalogs defined and

validated in Chapters 3 and 4, we proposed practical guidelines for systematically

removing code smells in this language. These guidelines suggest applying refactoring

strategies in a specific order, one step at a time, to ensure a disciplined approach.

Chapter 6 summarizes the conclusions we leveraged throughout this thesis. It also out-

lines ideas we find interesting to investigate in the future.

26

Chapter 2

Background and Related Work

We begin this chapter by providing an overview of functional programming (Section 2.1)

and Elixir language (Section 2.2). Then, in Section 2.3, we describe what code smells are

and discuss the main types of investigations related to these sub-optimal code structures.

Similarly, in Section 2.4, we delve into the concept of refactoring and explore its major

fields of study. In Section 2.5, we present the works directly related to this thesis. Finally,

we provide our final remarks in Section 2.6.

2.1 Functional Programming

The history of functional programming began in the 1930s when Church [48] intro-

duced the Lambda calculus, which is used in computation to implement functions capable

of accepting other functions as parameters and even returning functions after process-

ing [6]. The first programming language to implement ideas influenced by the Lambda

calculus was LISP, developed in 1958 and first presented in the early following decade by

McCarthy [126].

While the ideas that formed the basis of the functional programming paradigm are

older, it was only formalized a few years later by Backus [16]. In his work, Backus [16]

presented various aspects of developing software through the combination of mathemati-

cal equations, coining the term “functional” to describe this paradigm and defining some

of the guiding principles for its languages. Unlike the object-oriented paradigm, which

stores states in objects and provides methods to modify those states, functional program-

ming does not rely on this state-function dependency. This is due to the principle of

immutability, which is one of the fundamentals of functional programming and deter-

mines that once data is defined, it should not change anymore [15]. When immutable data

needs to be modified through an operation, functional programming languages create new

data containing the transformed values, thus preserving the original data. According to

Almeida [6], this feature benefits parallel and concurrent programming environments.

2.1. Functional Programming 27

Since the creation of LISP, parallel processing has been a driving force behind soft-

ware development using functional programming. Although historically functional lan-

guages have not been as popular in the industry as object-oriented languages, there has

been a recent increase in interest in functional languages [26]. According to Swaine [179],

with modern CPUs having an increasing number of cores and many systems requiring

high availability for a large volume of concurrent users, modern functional languages such

as Elixir1 and Clojure2 have emerged as viable options for such environments. These

languages enable optimizing the utilization of computational resources, resulting in per-

formance gains for the code [179]. In addition to immutability, functional programming is

based on concepts such as pure functions, recursion, first-class functions, lazy evaluation,

and pattern matching [15]. These concepts are described in the following paragraphs.

While in object-oriented languages we are more accustomed to assigning values

to a variable as soon as it is defined, in functional languages a variable is not always

computed at the moment of its definition. Through the concept of lazy (or nonstrict)

evaluation, functional languages allow us to have variables that know how to compute

the values that can be assigned to them, but only perform this computation the first time

they are referenced in the code. Lazy evaluation can significantly optimize processing by

avoiding unnecessary computations, especially when certain variables might never be used

in specific code paths [15]. In some functional languages, such as Haskell,3 lazy evaluation

is the default behavior. In others, like Clojure, F#,4 Scala,5 and Elixir, we must explicitly

specify when to use this feature [124].

In general, functions are considered first-class citizens in functional languages.

This means they are treated as a data type and can therefore be assigned to variables [94].

Since functional languages have this characteristic, we can use them to define higher-order

functions, which are those that take one or more functions as arguments or return a func-

tion as a result. According to Swaine [179], this powerful feature of function composition

can be useful for increasing code reusability.

In functional languages, iterations are commonly performed via recursive func-

tions, as these languages typically do not have classical iteration constructs like while and

do..while, which are common in object-oriented languages that rely on mutable state [6].

However, functional languages also offer several higher-order functions that enable iter-

ation while hiding the details of recursion, which can reduce the size and improve the

understandability of the code, as will be demonstrated throughout this thesis. Exam-

ples of these functions include map, which applies a transformation to each element of a

list, returning a new modified list; filter, which is used to select elements from a list

1
https://elixir-lang.org/

2
https://clojure.org/

3
https://www.haskell.org/

4
https://fsharp.org/

5
https://www.scala-lang.org/

2.2. Elixir Language 28

that satisfy a specific condition, creating a sublist based on logical criteria; and reduce,

which condenses all elements of a list into a single value by accumulating the results of a

user-defined operation [185].

Still regarding the behavior of functions in functional languages, whenever possible,

they are defined as pure functions. A function is considered pure when, given the same

set of inputs, it always returns the same result. Furthermore, a pure function should not

cause side effects, meaning it should not have any interaction with the external world

beyond its scope (e.g., altering global variables or sending data over the network) or

make modifications to the program’s state (e.g., saving to a file/database or displaying

something on the screen). According to Backfield [15], although it is generally not possible

to build a system composed solely of pure functions, the characteristics of these functions

make them more predictable and easier to test.

Finally, pattern matching is a mechanism that allows a value to be compared

with a specific pattern while simultaneously extracting information from it. This feature

is used by functional languages to destructure complex data, facilitating access to specific

parts of structures such as lists or tuples [160]. Based on the patterns found in the

compared values, different actions can be executed by code that utilizes this feature.

For this reason, pattern matching is also frequently used by functional languages as a

control-flow mechanism instead of traditional conditional statements, such as if..else

and case [6].

2.2 Elixir Language

Elixir is a modern functional programming language that performs well in parallel

and distributed environments [94]. It was conceived in 2012 by José Valim, inspired by

a mix of other languages like Erlang, Haskell, Clojure, and Ruby. Specifically, Elixir’s

syntax is Ruby-based, so it tends to be user-friendly. It uses immutable data, just like

Haskell, making it well-fit for concurrent environments. Despite their differing syntaxes

and features, Elixir code can seamlessly integrate with Erlang code since they both run on

BEAM, which is Erlang’s virtual machine. BEAM is known to be robust, fault-tolerant,

and powerful to run concurrent and distributed systems [6]. In addition, Elixir is a

polymorphic and extensible language, as it has inherited features such as protocols and

macros from Clojure. Elixir is primarily used to develop high-demand Web applications,6

6
https://www.phoenixframework.org/

2.2. Elixir Language 29

but it can also be used to develop machine learning systems,7 embedded software,8 code

notebooks,9 data science solutions,10 and systems for many other purposes. As a result,

although not yet mainstream, Elixir is becoming more popular in the industry, with over

300 companies worldwide using the language, including some well-known, such as Adobe,

Cabify, Discord, Heroku, Motorola, PepsiCo, Pinterest, and Spotify.11

With Elixir, developers can create scalable and fault-tolerant concurrent systems

more easily and with fewer computational resources. Instead of directly managing syn-

chronization mechanisms such as semaphores, Elixir systems are based on units of concur-

rency known as BEAM processes [183]. Unlike OS processes or threads, BEAM processes

are lightweight concurrent entities managed by the VM. Creating a single BEAM process

requires only a few microseconds, and its initial memory usage is minimal, typically just

a few kilobytes. In contrast, OS processes typically consume a couple of megabytes [94].

Elixir programs are organized by modules, which are groups of functions. Listing 2.1

shows an Elixir module (Square) composed of two functions—area/1 and perimeter/1. In

lines 10 and 11, these functions are called using Elixir’s interactive shell (IEx),12 which is

an intelligent terminal that allows developers not only to run their code but also to test

and access its documentation.

Listing 2.1: Example of code organization in Elixir

1 defmodule Square do

2 def area(side) do

3 side * side

4 end

5 def perimeter(side) do

6 side * 4

7 end

8 end

9 ...

10 iex(1)> Square.area(5) #25

11 iex(2)> Square.perimeter(5) #20

Although Elixir does not support object creation, it allows modules to define

structs, which are key-value pairs similar to objects. Listing 2.2 shows an Elixir module

with a struct that represents a Triangle. This struct has three fields—a, b, and c—which

are initialized to null values (nil) on line 2.

Listing 2.2: Examples of some of Elixir’s features

1 defmodule Triangle do

2 defstruct [a: nil, b: nil, c: nil]

3

7
https://github.com/elixir-nx/nx

8
https://www.nerves-project.org/

9
https://livebook.dev/

10
https://github.com/elixir-explorer/explorer

11
https://elixir-companies.com/en

12
https://hexdocs.pm/iex/IEx.html

2.2. Elixir Language 30

4 def scale_by(t, factor) do

5 %Triangle{a: t.a * factor, b: t.b * factor, c: t.c * factor}

6 end

7

8 def is_right_angled(t) do

9 [c1, c2, h] = Enum.sort([t.a, t.b, t.c])

10 Float.pow(c1, 2) + Float.pow(c2, 2)

11 |> equals(h * h)

12 end

13

14 defp equals(a, b) do

15 a == b

16 end

17 end

18 ...

19 iex(1)> tri = %Triangle{a: 4.0, b: 5.0, c: 3.0} # struct creation

20 iex(2)> Triangle.scale_by(tri, 2) # %Triangle{a: 8.0, b: 10.0, c: 6.0}

21 iex(3)> Triangle.is_right_angled(tri) # true

22 iex(4)> Triangle.equals(2, 3)

23 ** (UndefinedFunctionError) Triangle.equals/2 is undefined or private

In Elixir, a struct has the same name as the module where it is defined. Besides

the struct, the module Triangle also has three functions—scale_by/2, is_right_angled/1

and equals/2. It is important to note that, unlike objects, structs are immutable data

structures. For this reason, the scale_by/2 function creates a new Triangle, instead of

simply modifying the sides’ values of an existing Triangle (line 5). In Elixir, %T{...} is

analogous to new T(...) in an object-oriented language. In addition to being immutable,

structs also differ from objects in that they do not support the this pointer, as in Java

and C++, nor do they support instance variables. Therefore, the internal state of a struct

is not available directly within the functions of the module where the struct is defined.

If it is necessary to access the field values of a struct within these functions, they must

receive a parameter of the struct’s type, as in scale_by/2 and is_right_angled/1.

The is_right_angled/1 function needs to sort the sides of the triangle in ascending

order before classifying it (line 9). This sorting is done by calling Enum.sort/1, provided

by Elixir. It receives a list composed of the values of the three fields of the struct Triangle

and returns a list with these values sorted. To facilitate direct access to these values from

the returned list, they are extracted into three distinct variables—c1, c2, and h—using

pattern matching, common in Elixir systems. A pipe operator (|>), another idiomatic

feature of Elixir, is then used to make the nested calls of Float.pow/2 in the equals/2 call

more natural (line 11). For example, in Elixir, foo() |> bar(p) is equivalent to bar(foo(),

p). For this reason, in the equals/2 call, only one parameter is informed directly (line 11).

Finally, equals/2 is defined as a private function (line 14), and for that reason, it can only

be called within the Triangle module.

As shown in Listing 2.3, in Elixir it is possible to use the when statement to define

guard clauses, as seen in the definition of empty?/1 (line 2). A guard clause allows a

2.2. Elixir Language 31

function to perform conditional checks directly in its signature, thereby determining if

the code within its body will be executed when the function is called. For example, this

feature can be used to perform type validations on a function’s parameters, which is very

useful for a dynamically-typed language like Elixir.

Listing 2.3: Example of more Elixir’s features

1 defmodule ListOperations do

2 def empty?(list) when is_list(list) do

3 if length(list) > 0 do

4 false

5 else

6 true

7 end

8 end

9

10 def sum_list([]), do: 0

11 def sum_list([head | tail]) do

12 head + sum_list(tail)

13 end

14

15 def sort_double_list(list) do

16 list

17 |> Enum.map(fn x -> x * 2 end)

18 |> Enum.sort()

19 end

20 end

21 ...

22 iex(1)> ListOperations.empty?([2, 3, 1]) # false

23 iex(2)> ListOperations.sum_list([2, 3, 1]) # 6

24 iex(3)> ListOperations.sort_double_list([2, 3, 1]) # [2, 4, 6]

Although Elixir has classical conditional constructs like if..else (lines 3 to 7),

throughout this thesis, it will be shown that these constructs can be replaced by pat-

tern matching, which, among other things, is often used as a control-flow mechanism

in Elixir [94]. The use of pattern matching in Elixir also allows the implementation of

multi-clause functions, as shown in the definition of sum_list/1 (lines 10 and 11). This

overloaded function has two clauses with the same name, both receiving a list as a pa-

rameter. When sum_list/1 is called, the two clauses are matched against the parameter to

determine which clause will be executed. Lists in Elixir have a recursive nature, where the

first element is known as the head and the sub-list composed of the remaining elements

is known as the tail. Therefore, when iterating through a list, we reach the end when its

tail is an empty list, as shown in the pattern of the first clause of sum_list/1 (line 10).

Since Elixir does not have classical iteration constructs like while and do..while,

the function sum_list/1 (lines 10 and 11) is defined as a recursive one, as recursion is

the primary looping mechanism used in this language. However, Elixir has several high-

level abstractions that hide the details of recursion, such as the functions Enum.map/2 and

Enum.sort/1 (lines 17 and 18). These functions are used to iterate over each element in

2.3. Code Smells 32

the list received as a parameter by sort_double_list/1 (line 15). Note that Enum.map/2 is a

higher-order function because it receives an anonymous function (i.e., fn x -> x * 2 end)

as one of its parameters. This anonymous function is called by Enum.map/2 for each element

in the list received in its first parameter (line 16). Therefore, Enum.map/2 returns a modified

list that is passed to the Enum.sort/1 (line 18).

2.3 Code Smells

Fowler and Beck [74] coined the terms code (or bad) smells to name sub-optimal

code structures that can harm software maintenance and evolution [177, 212]. In addition

to coining the terms, they cataloged 22 code smells, which are listed in Table 2.1. There

are also other terms that are mostly synonyms of code smells, such as anti-patterns [40],

code anomalies [136, 137] and bad practices [180].

Table 2.1: Traditional code smells

Code smells cataloged by Fowler & Beck [74]

Duplicated Code Switch Statements

Long Function Lazy Class

Large Class Alternative Classes with Different Interfaces

Long Parameter List Incomplete Library Class

Feature Envy Inappropriate Intimacy

Shotgun Surgery Temporary Field

Divergent Change Message Chains

Speculative Generality Middle Man

Comments Data Class

Data Clumps Parallel Inheritance Hierarchies

Primitive Obsession Refused Bequest

Many studies have been conducted in recent years aiming to detect, prevent, pre-

dict, remove, and understand the extent of the impacts caused by these structures on

code quality. In addition to decreasing maintainability and hampering evolution, code

smells can increase bug-proneness [115, 138]. According to Nagappan et al. [132], apply-

ing predictive strategies to anticipate the presence of sub-optimal structures in a codebase

is one approach to mitigate the impact of code smells. To simplify the task of training

and evaluating machine learning models used in the prediction of code smells, Santos et

al. [158] compared which features and quality attributes are redundant or different among

these models, and which of them contribute more to the predictions. Regarding code

2.3. Code Smells 33

smells removal, according to Liu et al. [116], the interrelation between code smells can be

used to prioritize the removal of these code structures during refactoring activities. For

example, removing instances of Duplicated Code can also promote the disappearance

of instances of Long Function. Sobrinho and Maia [175] investigated the possibility

of interrelation between three code smells in five open-source systems. More specifically,

the authors sought to understand whether instances of the smells Large Class and

Complex Class, with different intensities, can influence the presence of Duplicated

Code. Some patterns of interrelationship between these three smells were found, such as

classes with high complexities, regardless of their sizes, tend to have a higher prevalence

of instances of Duplicated Code. According to the authors, patterns like this can be

used to improve code smell detection techniques and tools.

Different techniques and tools for detecting code smells have already been proposed.

They are mainly based on strategies that utilize software metrics, textual analysis, and

AST analysis [66]. Chidamber and Kemerer [47] present commonly used metrics for

detecting smells, such as Weighted Methods Per Class (WMC), Depth of Inheritance

Tree (DIT), Number of Children (NOC), Coupling between Objects (CBO), Response For

Class (RFC), and Lack of Cohesion of Methods (LCOM). Marinescu [122, 123] presents

metrics-based approaches to detect the smells God Class and Data Class. Bavota

et al. [20] use the McCabe cyclomatic complexity metric to detect the Complex Class

smell. According to the authors, monitoring the evolution of metrics like this can also be

used to prevent the introduction of code smells. Code smell detection is also performed

in some studies using artificial intelligence techniques, such as in Fontana et al. [71], who

conducted a study comparing 16 different machine learning algorithms to detect four types

of code smells (i.e., Data Class, Large Class, Feature Envy, and Long Method).

Similarly, Cruz et al. [51] evaluated seven different machine learning algorithms on the

task of detecting four types of code smells (i.e., God Class, Long Method, Feature

Envy, and Refused Parent Bequest), showing that with proper optimization, these

algorithms can perform well. Regarding yet to the artificial intelligence-based detection

techniques, White et al. [206] proposed a technique based on deep learning to detect

the Duplicated Code smell. The aforementioned code smell detection strategies, along

with others already studied, are summarized and categorized in some systematic literature

reviews conducted to help researchers compare and understand existing methods and

improve them [95, 171].

More than 80 tools designed for detecting code smells were published in the liter-

ature [66, 176]. According to Sobrinho et al. [176], DECOR [129] is the most frequently

used tool for handling code smells in studies focused on detecting these sub-optimal struc-

tures. Detection tools do not always behave the same in a given context. For example,

tools like PMD [70], JDeodorant [69], and JSpIRIT [202]—open-source plugins for the

Eclipse IDE [61] that can statically analyze Java code—may detect different instances

2.4. Refactoring 34

of the God Class smell [151] when analyzing the same code [148]. This discrepancy can

occur due to the different metrics and thresholds employed in their detection strategies.

There are also solutions that detect smells by intersecting the results from multiple tools.

In these approaches, if at least 50% of the tools identify a smell, the element is considered

problematic, similar to a voting system [51, 87].

According to Fontana et al. [72], the impacts on software quality caused by code

smells are not homogeneous and may differ among domains. Furthermore, developers’

perception of code smells can also vary across different software contexts [181]. For this

reason, code smells for specific contexts like Android [83], iOS [82], JavaScript [63, 67, 155],

and others have also been studied. Although there is vast research on code smells for

specific contexts [27, 63, 67, 82, 83, 133, 146, 155, 165], it is mostly focused on the object-

oriented paradigm. Sobrinho et al. [176] carried out a systematic review of the literature

on articles about code smells published between 1990 and 2017. Exactly 104 code smells

were cataloged in this period, however, none of them refer to the functional paradigm or

to languages that follow this paradigm. Indeed, a technical report by Cowie [50] focusing

on Haskell, and the works published by Li et al. [108, 113] centered on Erlang, are the

only ones we found that address specific smells of functional languages.

The systematic literature review conducted by Sobrinho et al. [176] also highlighted

several other research opportunities involving code smells, such as: studying the interac-

tion between less widely known code smells and the more popular ones in the literature

to understand their combined impacts; investigating the impact of code smells in specific

contexts; identifying novel code anomalies in these specific contexts; and documenting

new catalogs of code smells specific of a context, as we do in this thesis for the Elixir

functional language (Chapter 3).

2.4 Refactoring

Refactoring is a widely recognized technique that enhances the design of a sys-

tem by changing its code without changing its behavior, thus facilitating its evolution

and maintenance [74]. The term was first proposed by Opdyke [141] and popularized by

Fowler in his well-known catalog containing 72 refactorings for object-oriented code [74].

According to Fowler [74], Ward Cunningham and Kent Beck were among the first people

to understand the importance of refactoring. They applied these techniques within the

Smalltalk ecosystem starting in the 1980s, thereby influencing the notion of refactoring

to become a significant element of Smalltalk culture. However, the concept of program

transformations has been discussed since the 1970s by Burstall and Darlington [42]. This

2.4. Refactoring 35

term is equivalent to refactoring and commonly used in the context of functional lan-

guages [85, 144].

According to Thompson [184], an important characteristic of refactorings is that

they are diffuse. In other words, their effects are not restricted to a specific point in code,

so it is necessary to consider the side effects of a refactoring during its application. An

example of this diffusion can be seen in the application of the Renaming refactoring,

which is the most frequently performed refactoring by developers [79]. When we rename

the definition of a function, we also need to update all the points in the code where

that function is called, something that can spread widely across various files, classes, and

modules of a software.

Many studies have been conducted in the field of refactoring, with the main goals

of characterizing the granularity of refactorings [32, 178], assessing their impact on soft-

ware quality [4, 7, 24, 25, 149, 205], developing tools for detecting and/or automatically

performing refactorings [36, 112, 119, 153, 156, 166], comprehending the reasons why

practitioners perform refactoring [1, 169], and also investigate how and when refactorings

are performed [131, 139, 209].

According to Abid et al. [1], the primary motivation for developers to refactor

their code is the pursuit of improving the internal quality of systems (41.6%), followed by

improving external quality (22.7%), and enhancing performance (16%). With the same

goal of understanding the motivations behind refactoring operations applied by developers,

Silva et al. [169] monitored 748 Java projects maintained on GitHub to detect refactoring

activities and then requested developers from these projects to explain the reasons for

the performed refactorings. The authors identified 12 refactoring strategies applied in

these projects, all cataloged by Fowler [74]. In total, the authors cataloged 44 different

motivations for these refactorings, most of which were related to changes in requirements

and business rules, and less related to quality improvements, such as removing code smells.

Almogahed et al. [7] investigated how specific refactoring techniques can impact

software reusability. The authors selected five traditional refactoring strategies cataloged

by Fowler [74]—Extract Interface, Encapsulate Field, Extract Class, Inline

Class, and Inline Method—and applied them about 300 times to the open-source

code of the well-known text editor jEdit.13 The impacts of this experiment were quan-

tified using software metrics to measure reusability, and it was shown that while some

refactoring strategies can significantly improve reusability (i.e., Extract Interface,

Encapsulate Field, and Extract Class), others can harm this software quality

attribute—Inline Class and Inline Method.

Additionally, the correlation between refactoring activities and the introduction

of bugs has been investigated by Weißgerber and Diehl [205]. This study compared

the refactoring history of three open-source systems (JUnit, jEdit, and ArgoUML)

13
https://sourceforge.net/projects/jedit/

2.4. Refactoring 36

with their respective bug reports. For most historical phases, an increase in refactoring

activities did not lead to a higher bug rate in these systems. In a similar study, Ratzinger

et al. [149] concluded that an increase in refactoring activity tends to be followed by a

decrease in software defects.

In addition to documenting their well-known catalogs of code smells and refactor-

ings, Fowler and Beck [74] establish a relationship between these catalogs, characterizing

code smells as opportunities for refactoring. For each of the 22 traditional code smells,

the authors suggest refactoring techniques to remove them, which can be either atomic

(i.e., not decomposable into simpler refactorings [109]) or composed of a set of these

atomic ones. Some studies investigate issues related to composite refactorings, which are

refactorings of larger granularity, characterized by being sequences of atomic refactor-

ings as those proposed by Fowler [74]. According to Souza et al. [178], all refactorings

in a composite can either be of the same type (e.g., multiple Pull Up Method) or

not (e.g., multiple Move operations eventually followed by a Rename, or a sequence

of Extract Method operations followed by Move Method operations). These au-

thors refer to this characteristic as composite uniformity. Bibiano et al. [24] identified the

most common types of incomplete composite refactorings and their impact on software

quality attributes such as coupling and cohesion. Refactorings are considered incomplete

when they fail to remove a code smell completely. The authors analyzed 353 incomplete

refactorings related to the removal of the smells Feature Envy and God Class in five

different systems, concluding that the main reason for the failure to remove these smells

are incomplete composite refactorings with at least one Extract Method applied with-

out Move Methods. On the other hand, the authors concluded that most incomplete

composite refactorings at least do not worsen the quality attributes of a code. According

to Cedrim et al. [43], incomplete refactorings can be very frequent. In an analysis of

16,566 refactorings along the version histories of 23 projects, the authors identified that

although approximately 79% of the refactorings modified code that contained smells, only

9.7% of these refactorings completely eliminated these smells.

Regarding yet to the composite refactorings, Brito et al. [32] proposed a catalog

containing eight of these strategies. The authors detected these cataloged composite refac-

torings through a set of scripts integrated into RefDiff [33, 168, 170], which is a tool that

automates the identification of refactoring operations performed in the version history of

systems developed in multiple languages such as Java, JavaScript, Go, and C. Other

similar tools for detecting refactorings, such as RefactoringMiner [13, 191], Refac-

toring Crawler [58], Ref-Finder [97], RefactorInsight [103], and RMiner [190],

have also been proposed in the literature. Oliveira et al. [140] sought to better understand

the detection capability of the RefDiff and RefactoringMiner tools. To do so, the

authors conducted a survey with 53 developers who work on popular open-source projects

implemented in Java and asked them to identify refactorings applied to a codebase. Many

2.4. Refactoring 37

of the manual detections performed by developers were not detected by the studied tools,

thus demonstrating that there are still research opportunities related to improving the

automatic detection capability of refactorings.

Concerning tools and libraries that support automatic refactoring, there are options

available for various programming languages. For example, for C# and .NET, there is

ReSharper [90]. Smalltalk developers can utilize the Refactoring Browser [152].

Java developers can benefit from tools such as IntelliJ IDEA [89], Eclipse IDE [61],

NetBeans [134], and JastAdd Refactoring Tools (JRRT) [159]. More specifically,

mobile developers who use Java for Android development or Objective-C and Swift to

develop iOS applications can utilize a tool called Piranha [147]. The refactoring library

Piuma [166] can be used in code implemented in Scala. Erlang programmers have access

to tools like Wrangler [109, 112, 113], Tidier [156], and RefactorErl [119]. Haskell

developers, on the other hand, benefit from a range of tools, including HaRe [36, 39,

111], Programming Assistant for Transforming Haskell (PATH) [192], Ulm

Transformation System (Ultra) [81], HERMIT [64, 65, 161], and the Haskell

Equational Reasoning Assistant (HERA) [78]. Meanwhile, OCaml developers can

leverage the Rotor tool [153, 154].

These tools that support automatic refactoring have a limited number of imple-

mented refactoring strategies. Before executing any of these strategies to transform a

code, these tools check for certain conditions to ensure that the transformed code will

preserve the same behavior as the original one. Soares et al. [174] proposed a technique

based on differential testing [127] to quantify the automatic refactorings rejected by the

Eclipse IDE, NetBeans, and JRRT that are related to overly strong preconditions,

i.e., unnecessary conditions to preserve code behavior after refactoring. The authors iden-

tified 24 types of overly strong conditions that limit the applicability of Eclipse IDE and

JRRT to perform automatic refactorings. Similarly, Mongiovi et al. [130] proposed a tech-

nique to detect overly strong preconditions in refactoring implementations by disabling

preconditions. The authors evaluated this technique by quantifying automatic refactor-

ings rejected by the Eclipse IDE and JRRT, finding 14 overly strong preconditions in

Eclipse IDE and four in JRRT. In addition, the authors compared this technique based

on disabling preconditions with the technique proposed by Soares et al. [174] that makes

use of differential testing, concluding that these techniques are complementary. Although

they have common detections, there are also detections found exclusively by each of the

techniques, justifying their joint use by developers.

Since refactorings are code transformations that should not alter the observable

behavior of a program, some studies have specifically focused on validating behavior

preservation (i.e., correctness) in refactored code. Bereczky et al. [22, 23] introduced a

machine-checked formalization of Core Erlang, a subset of the Erlang language, to estab-

lish concepts of program equivalence useful for formally proving that specific refactoring

2.4. Refactoring 38

strategies preserve program behavior in Erlang. This formalization includes rigorous

mathematical definitions of syntax and semantics for Core Erlang. The authors utilized

this to prove the correctness of simple refactorings in Erlang.

In contrast, Seres et al. [163] focused on verifying behavior preservation in refac-

tored Erlang code through extensive testing. They developed a tool called Equiv-

checkEr, which can be used as an extension of VSCode IDE or integrated into CI

pipelines. This tool detects changes in the code and compares the old and new versions of

all affected functions. To determine whether the behavior has been preserved, the tool uses

property-based testing, generating a large number of random test cases that automatically

validate the correctness of refactorings applied to Erlang code.

Refactoring activities are frequently performed [205, 209]. However, despite the

existence of several tools to assist in refactoring activities, according to Murphy-Hill et

al. [131], approximately 90% of refactorings are performed manually by developers. In

their research involving Java projects maintained on GitHub, Silva et al. [169] also ob-

served that manual refactorings are more prevalent, representing 55% of the refactoring

operations performed. These results contrast with those presented by Oliveira et al. [139],

where the authors conducted a survey with 107 developers and identified that approxi-

mately 75% of them use IDEs to apply refactorings.

An increasing number of studies are investigating the use of artificial intelligence

strategies in the software refactoring process. Considering that state-of-the-art tools

aimed at identifying refactoring opportunities (e.g., code smells) still present a high num-

ber of false positives [92], in real-world scenarios, the identification of these opportunities

still heavily relies on the expertise and intuition of developers. Aiming to understand how

supervised machine learning (ML) algorithms can support developers in making faster

and more informed decisions regarding what to refactor, Aniche et al. [9] trained models

using six different ML algorithms with a database containing over two million refactorings

performed in nearly 11.2k open-source projects. The authors believed that by training

these models with refactored classes and methods from real-world projects, they could

provide more reliable refactoring recommendations to developers. Indeed, this study pro-

duced models capable of identifying opportunities for applying 20 different refactoring

strategies with an accuracy often higher than 90%.

Al-Fraihat et al. [5] proposed a technique based on four ML algorithms to detect

whether refactorings occurred in a commit and determine which types of them were per-

formed. The authors trained their models using a dataset of 573 commits from three

Python projects to detect and classify refactorings. Their technique recognizes and cat-

egorizes nine different traditional refactorings as cataloged by Fowler [74]. Among the

algorithms compared, XGBoost achieved the best performance, with an accuracy of 100%.

Since Large Language Models (LLMs), such as ChatGPT, have become widely

popular, they have been applied to a variety of software engineering tasks, including

2.5. Related Work 39

refactoring. AlOmar et al. [8] conducted an exploratory study aimed at understanding

how developers interact with ChatGPT during refactoring activities. Specifically, the au-

thors sought to understand how developers describe their refactoring needs to ChatGPT,

how they initiate conversations with the LLM when seeking help, and what key qual-

ity attributes are considered by ChatGPT in its responses. To achieve this, the authors

mined a dataset composed of 176 code files, 470 commits, and 69 issues from open-source

GitHub projects. All of these artifacts are associated with nearly 18k developer-ChatGPT

conversations (i.e., prompts and responses) concerning their refactorings.

The aforementioned study found that, although it is not uncommon for developers

to use generic terms to describe their refactoring needs in prompts (e.g., cleanup and im-

prove code quality), they more frequently use specific operation names following Fowler’s

conventions [74], indicating that developers are familiar with the cataloged refactorings

and use them in their communications. Additionally, the results showed that while 41.9%

of the prompts contain a code snippet to be changed along with a detailed textual descrip-

tion of how developers want it refactored, approximately 35% of the prompts overestimate

the model’s capabilities, such as by providing only a textual description of the code with-

out the actual code snippet. Finally, the study revealed that ChatGPT considers a wide

range of internal and external quality attributes in its responses.

According to Bordignon and Silva [26], an increasing number of developers are

using functional languages in the industry. Conversely, the systematic literature review

conducted by Abid et al. [1] has shown the scarcity of studies conducted on refactoring for

these languages. Furthermore, to the best of our knowledge, no study has yet investigated

refactorings specifically tailored for Elixir. Therefore, this is a research opportunity that

we are taking advantage of in this thesis (Chapter 4).

2.5 Related Work

In this section, we discuss work related to this thesis. Since there is a scarcity of

studies conducted on code smells and refactorings for functional languages, and to the best

of our knowledge, no studies in these fields specifically tailored for Elixir, in the following

subsections, we present the works we identified as relevant to this thesis in a more general

way. First, we discuss studies about context-specific code smells, highlighting topics

related to our research and the main differences to our catalog of Elixir-specific smells

(Subsection 2.5.1). Next, we present studies about language-specific refactoring strategies

(Subsection 2.5.2).

2.5. Related Work 40

2.5.1 Context-specific Code Smells and Developers’ Perceptions

As code smells are context-sensitive, other studies were carried out to catalog code

smells in specific domains. Reimann et al. [150] proposed a catalog with 30 Android-

specific code smells, extracted from the grey literature. Hecht et al. [83] selected four of

these Android-specific smells and tried to identify them in real projects using a detection

technique based on code metrics. Also on code smells specific to mobile platforms, Habchi

et al. [82] cataloged six iOS-specific smells through a grey literature review and later

validated them by analyzing their prevalence in 279 iOS repositories on GitHub.

Some studies have cataloged code smells specific to Web platforms. Fard and

Masbah [63] proposed a set of 13 code smells for JavaScript, seven out of them are

adapted from traditional smells, and six are specific to the language, extracted from the

grey literature. They also analyzed 11 Web applications from different domains, seeking

to detect these smells through a strategy based on code metrics. Closely related, Ferreira

and Valente [67] proposed a catalog with 12 React-related code smells identified by a grey

literature review and by interviewing developers. Afterward, they implemented a tool to

detect these smells in the top-10 most popular GitHub projects that use React. Similarly,

Saboury et al. [155] cataloged 12 code smells for JavaScript and validated them in five

popular Web applications on GitHub. Still on specific code smells for Web applications,

Punt et al. [146] cataloged 33 smells for CSS by reviewing the scientific and grey literature.

They were grouped into seven different categories and later detected in 41 real Web

applications available on GitHub.

Mashiach et al. [125] selected 35 traditional code smells among those cataloged by

Fowler and Beck [74] and Brown et al. [40], and mined them in 44 real open-source projects

implemented in C++ to validate a tool for detecting these sub-optimal structures in this

language. There are other works that have cataloged code smells in even more specific

contexts, such as the configuration management language Puppet [165], the command

language Bash [59], quantum computing programs [46], machine learning systems [77,

213], and specific smells for video game development [3, 27, 28, 133]. In general, as in

our work (Chapter 3), these papers also use grey literature or investigate real projects

through repository mining techniques to catalog code smells from specific contexts.

Just like our work (Chapter 3), which conducted a survey to reveal the developers’

view of which smells are more prevalent and which have the most negative impact on

the maintenance of Elixir systems, other studies also sought to map the perception that

developers have about code smells. Nardone et al. [133] cataloged 28 specific code smells

for video game development and later validated these smells by applying questionnaires

to 76 professionals in the area. The perception of these professionals regarding code

smells served not only to validate the catalog but also to improve it with suggestions

2.5. Related Work 41

for preventing and refactoring these smells. Similarly, Chen et al. [46] cataloged eight

quantum-computing-specific smells extracted from grey literature and validated them

through a survey with 35 quantum-computing developers. Subsequently, the authors

analyzed the prevalence of these quantum-computing-specific smells by mining them in

15 open-source quantum programs.

Other studies sought to assess developers’ perception of traditional code smells [12,

121, 143, 210, 211]. Taibi et al. [181] conducted surveys with experienced developers to

understand their views on the negative impacts that smells can bring to software evolution

and maintenance. Although most developers considered smells as harmful when they were

analyzing their descriptions, few had the same perception when they analyzed chunks

of code containing the same smells. That is, developers tend to see code smells more

harmful in theory than in practice. In our study (Chapter 3), in order to express their

perceptions, developers had access simultaneously to the smells descriptions and to code

examples containing these sub-optimal structures.

About code smells specific to functional languages, Cowie [50] describe a tool for

detecting eight code smells in Haskell. The author defined these smells based on code

implemented by first-year undergraduate Computer Science students at the University of

Kent. The most frequent structures that were inefficient or did not follow Haskell coding

conventions were marked as code smells. Most of these smells affect small code structures,

thus having a granularity equivalent to our Low-Level Concerns smells (Chapter 3).

2.5.2 Language-specific Refactorings

To the best of our knowledge, our study (Chapter 4) is the first one that catalogs

refactorings for Elixir. Other research, however, provides transformation strategies and

tools for other functional languages like Erlang [14, 31, 60, 84, 98, 100, 109, 112, 113,

114, 117, 118, 119, 156, 157, 182, 187], Haskell [36, 39, 62, 64, 65, 78, 81, 104, 105, 111,

161, 184, 186, 192, 203], ML [21, 93], OCaml [153, 154], Scala [166], and Racket [44]. In

addition, some studies have investigated refactorings in Ruby, which is a non-functional

language that influenced the creation of Elixir’s syntax [11, 49].

Li et al. [109, 112, 113] present an automatic refactoring tool for Erlang called

Wrangler. To illustrate the use of this tool, some refactoring strategies for this language

are presented. Similarly, Sagonas and Avgerinos [156] and Lövei et al. [119] respectively

propose the tools Tidier and RefactorErl, accompanied by refactoring strategies

for Erlang. Regarding studies on refactorings for Haskell, Brown et al. [36, 39] and Li

et al. [111] briefly described the refactorings implemented in the HaRe tool, a Haskell

2.5. Related Work 42

refactorer. These refactoring strategies for Haskell and Erlang were compared by Li and

Thompson [106], highlighting that each language has its unique constraints and challenges,

thus justifying the creation of language-specific refactoring catalogs.

Some studies delve into even more specific refactoring strategies for functional

languages. For instance, there are refactorings designed to parallelize programs in both

Erlang [29, 30, 35, 38, 88, 101, 102, 189] and Haskell [19, 37]. Additionally, Chechina

et al. [45] presented a systematic and tool-based approach for refactoring distributed

Erlang applications. This approach uses some traditional refactorings that also belong

to our catalog (Chapter 4), such as Rename an Identifier, Extract Function,

and Moving a Definition. Furthermore, Li and Thompson [110] introduced three

refactorings for promoting concurrency in Erlang applications. All of these refactorings are

compatible with Elixir and have therefore been incorporated into our catalog (Chapter 4).

Similarly to what we did in our study presented in Chapter 5, the use of refactorings

to remove code smells has been explored in studies involving functional languages other

than Elixir. Li et al. [113] present a list of refactoring strategies capable of removing

seven process-related smells specific to Erlang. The authors also discuss the challenges of

automatically performing these refactorings due to Erlang’s dynamic nature, the implicit

nature of processes, and the communication structure between them in this language.

Additionally, Li and Thompson [108] present other refactoring strategies for Erlang that

can be semi-automatically performed by the Wrangler tool to remove four Erlang-

specific smells related to the modularity of systems developed in this language. These

code smells are similar to our Design-related smells (Chapter 3). Other studies focus

exclusively on refactoring the traditional code smell Duplicated Code in Erlang [73,

107, 162, 188] and Haskell [34].

The aforementioned studies were retrieved by our systematic literature review

(SLR), and some refactoring strategies outlined in them were adapted to our catalog

of refactorings for Elixir (Chapter 4). Other studies have also conducted SLRs or GLRs

to explore different areas related to refactoring. Aiming to understand the field and ex-

isting research results, Abid et al. [1] reviewed 3,183 papers on refactoring published until

May 2020. Based on this SLR, the authors created a taxonomy to classify the existing

research in this area, identified research trends, and highlighted gaps in the literature to

be filled in further research. In another study, Al Dallal and Abdin [4] conducted an SLR

focused on exploring works related to the impacts of refactorings on internal and external

software quality attributes. The authors identified 76 papers published until December

2015 in seven relevant digital libraries. Through an in-depth analysis of these papers,

they provided a clear view of the impacts of some refactoring strategies on quality at-

tributes such as cohesion, coupling, complexity, and size. Similarly, Singh and Kaur [171]

conducted an SLR on the relationship between refactorings and code smells in object-

oriented systems. After applying their inclusion-exclusion criteria, the authors selected

2.6. Final Remarks 43

and analyzed 238 papers published until September 2015 in four digital libraries. Among

other findings, this study lists a series of refactoring tools and describes which code smells

each of them can remove. Finally, Abid et al. [2] performed a GLR on over 100K Stack

Overflow questions about refactoring. This study aimed to identify the real challenges de-

velopers face when refactoring in the wild and highlight the developers’ priorities related

to this process. The authors discovered, among other things, that developers mainly ask

about design patterns, UI, web services, parallel programming, and mobile apps when

discussing refactoring. The findings of this GLR can, for example, help researchers direct

their studies towards practical refactoring problems. Although these four previously men-

tioned studies have conducted SLRs or GLRs on refactoring, none specifically focused on

functional languages as our work (Chapter 4).

2.6 Final Remarks

This chapter presents an overview and work related to the central themes addressed

in this thesis. We begin by presenting a background of the functional programming

paradigm, the main practical applications of some functional languages, and the principles

that characterize languages in this paradigm (Section 2.1). In Section 2.2, we introduce the

Elixir functional language, highlighting some of its key features through code examples.

In Sections 2.3 and 2.4, we present overviews of code smells and refactorings, respectively.

Besides defining these concepts, we also highlight the main types of investigations related

to these fields of study. Finally, we concluded by addressing and discussing in Section 2.5

the studies closely related to this thesis.

While there are many investigations on code smells and refactoring strategies in

the literature, to the best of our knowledge, only a scarce amount of them directly address

functional languages, and none specifically target Elixir. Since Elixir is a language appli-

cable to many programming purposes and has been becoming increasingly popular in the

industry, we aim to fill this gap by generating knowledge that allows for the improvement

of software quality implemented with this language.

44

Chapter 3

Code Smells in Elixir

In this chapter, we propose a catalog composed of 35 code smells, 23 of them are

new and specific to Elixir, and 12 of them are traditional code smells, as cataloged by

Fowler and Beck [74], which also affect Elixir systems. To accomplish this, we conducted

two studies, with the first one focused on prospecting and documenting code smells for

Elixir, and the second one aimed at validating them with developers.

This chapter is organized as follows. In Section 3.1, we present our catalog of

code smells for Elixir. Also, we detail our mixed methodology, based on a grey literature

review, the interaction with the Elixir developer community, and on the mining GitHub

repositories to prospect and document code smells for this language. Additionally, this

section presents the threats to validity associated with prospecting and documenting our

code smells. In Section 3.2, we go into depth on the survey we conducted with developers

to validate our catalog of Elixir smells. This section presents the survey findings, discusses

the threats to validity, and outlines the methods employed in designing the questionnaires,

reaching out to respondents, and analyzing the answers. In Section 3.3, we discuss the

implications of our results. Finally, we conclude this chapter in Section 3.4.

3.1 Catalog of Code Smell for Elixir

In this section we present our first study, which focused on prospecting and doc-

umenting code smells in Elixir, thus proposing a catalog. This study was supported by

qualitative data, letting the findings emerge from observations, providing a better under-

standing of the problem [208]. In this context, previous research cataloged code smells

for specific-contexts [63, 82, 83, 146, 155, 165], but none consider the Elixir functional

language. Therefore, in this study, we explore the code smells commonly discussed in the

Elixir context. Particularly, we decided to use a mixed methodology to answer two key

research questions:

RQ1. Do Elixir developers discuss traditional code smells? In this RQ, we seek

3.1. Catalog of Code Smell for Elixir 45

to understand whether the 22 code smells proposed in the nineties for object-oriented

languages by Fowler and Beck [74] are important in the Elixir context.

RQ2. Do Elixir developers discuss other smells? Next, we investigate discussions

about design and code problems specific to Elixir systems, thus referring to them as

Elixir-specific smells.

We dedicate Section 3.1.1 to present the mixed methodology applied to proposing

a catalog of code smells for Elixir. In Section 3.1.2, we present the 12 traditional smells

discussed by developers in the Elixir context. Next, in Section 3.1.3, we present a catalog

composed by 23 Elixir-specific smells that emerged from our studies. We also classify these

novel smells into two groups (Design-Related and Low-Level Concerns smells).

Finally, Section 3.1.4 discusses threats to validity.

3.1.1 Study Design

Since Elixir is a new programming language, we have few scientific articles inves-

tigating software engineering and quality aspects of Elixir systems. For this reason, to

prospect, document, and catalog code smells in Elixir, we use a mixed methodological

approach, based on a grey literature review (GLR), interactions with Elixir community,

and mining software repositories (MSR). Figure 3.1 summarizes the steps we followed to

propose the catalog of code smells for Elixir. We also detail all these steps in the following

paragraphs.

1) Google Search: In this step, we begin by reviewing the grey literature—composed

of blogs, forums, videos, podcasts, etc.—in order to find discussions that characterize

code smells in Elixir. Considering that few scientific articles investigate software engi-

neering and quality aspects of Elixir systems, the grey literature is an interesting source

of information for our goals [96, 214]. According to Garousi et al. [76], when defining

the keywords for a Google search in a grey literature review, it is important to perform

preliminary experiments to calibrate the queries, in order to combine synonyms or to

exclude specific terms that might affect the results. Therefore, we started with the query

presented in Listing 3.1.

3.1. Catalog of Code Smell for Elixir 47

2) Document Selection: As approximately 676,000 documents were retrieved, it would

be impractical to analyze all of them. This is a recurring problem in grey literature

reviews, for this reason, according to Garousi et al. [76], it is necessary to limit the

number of documents to be analyzed. As Google is based on the PageRank algorithm,

which returns results in descending order of importance [142], it is natural that the further

a document is from the beginning of the ranking of results, the greater the chances that it

is out of context. Based on this premise, we established that when four consecutive pages

with less than 50% of valid documents were found, we would stop selecting documents.

However, the valid documents in these four pages will not be discarded.

We analyzed the documents. In particular, our selection criteria were based on an

adaptation of the Quality Assessment Checklist proposed by Garousi et al. [76]. For a

document to be considered valid, first it should be related to the context of our research

questions (RQ1 and RQ2). Second, it should meet at least one of the following Authority

of the Producer criteria of Garousi’s checklist: (a) is the publishing of a company that

works with Elixir?2 (b) is the author associated with a company that works with Elixir?

(c) has the author published other works in the field? (d) does the author have expertise

in the area?

After inspecting the top-60 documents returned by Google, i.e., the first six pages

of results, our stopping criterion was met, and 17 valid documents were selected, which

we refer to as G1 to G17. All 43 documents that were discarded did not meet our first

selection criterion, meaning they were not related to our RQs.

3) Data Extraction and Validation (GLR): The documents selected in the previous

step were analyzed in detail by the author of this work, in order to identify discussions

on traditional or novel code smells. The discussions were then validated by the advisor

of this thesis. We discarded only two out of 17 documents—G4 and G15—due to a lack

of agreement between the author and the advisor.

An example of disagreement can be seen in G15. In that document, posted on

Reddit, a developer started a discussion that could indicate a novel Elixir-specific code

smell related to the with statement, an Elixir control-flow structure:

“I think the "with" statement is an anti-pattern. Saying that this follows the let it crash

principle is misleading. [...] having this construction makes it easier to abstract patterns

in the wrong way. For example, if you get to the point where you have a lot of "with"

clauses, you write code for handling all these errors, or you just swallow them and

continue. It feels a lot like try-catch but for pattern matching results. [...] You can end

up with a lot of complex synchronous code as a result.”

At Reddit, this post generated dissenting views, with some developers agreeing.

However, other developers disagreed, as they think this is just a personal implementation

2Companies using Elixir in production code: https://elixir-companies.com

3.1. Catalog of Code Smell for Elixir 48

preference. This same type of disagreement occurred between the author and the advisor

of this work and for this reason, we decided to discard the document and the discussed

smell.

In total, 29 code smells emerged from our analysis in this step.

4) Catalog Creation: We analyzed the 29 code smells found in the previous step and

classified 11 of them as traditional smells, as proposed by Fowler and Beck [74]. The other

18 smells were classified as Elixir-specific smells. The latter were also categorized into two

different groups, according to the granularity of the structures they affect. The Design-

Related group involves 10 smells related to code organization issues and therefore affects

larger chunks of code. These smells can harm code readability or maintainability, for

example. On the other hand, the Low-Level Concerns group is composed of eight

smells that are more simple and that affect small code structures.

Table 3.1 presents the topics used to document each code smell of our catalog,

which is also available in a GitHub public repository [195].

Table 3.1: Sections of the catalog of Elixir-specific code smells

Topic Description

Name Unique name of the code smell. This name is important to facilitate
communication between developers.

Category The portion of code affected by the smell and its granularity.

Problem How the code smell can harm code quality and the impacts it can have
on software maintenance, comprehension, and evolution.

Example Code example and description to illustrate the occurrence of the smell

Refactoring Code transformations to change smelly code in order to improve its qual-
ity. Examples are also presented to illustrate these changes.

5) Catalog Promotion: We also promoted the catalog in the main Elixir communication

channels listed in the language official website. These channels are presented in Table 3.2.

Table 3.2: Elixir communication channels used to promote the initial catalog

Channel URL

Telegram https://t.me/elixir_world

Discord https://discord.gg/elixir

Slack https://elixir-slackin.herokuapp.com

DevTalk https://devtalk.com/elixir

Reddit https://www.reddit.com/r/elixir/

Elixir Forum https://elixirforum.com/

We posted a message on these channels, inviting Elixir developers to browse our

catalog on GitHub and to open Issues and Pull Requests suggesting improvements,

3.1. Catalog of Code Smell for Elixir 49

new code smells, and refactorings. These messages were posted between March and May

2022. During this period, influential people from the Elixir community, such as the creator

of the language, became aware of our research and helped us to promote the catalog

spontaneously. As a result, our repository became popular on GitHub, receiving around

950 stars over that period, thus ranking among the 100 most-starred Elixir GitHub-based

projects.

6) Interaction with Elixir Community: In total, 25 documents—13 Issues and

12 Pull Requests—were created by the community in the GitHub repository, which

we refer to as E1 to E25, and 83 comments were made on them. All these documents

underwent collective validation by the community, as well as by the author and the advisor

of this study, seeking to select only those related to internal quality problems and not

personal implementation preferences, for example.

As shown in Table 3.3, 20 documents were accepted by the author and the advisor

of this study, resulting in 27 improvements in the catalog. Therefore, some documents

have more than one contribution. In this table, contributions classified as Others involve,

for example, typo corrections, and improvements to formatting and organization. Two

contributions of this type stand out. In E22 and E23, a developer suggested an adaptation

of the catalog to the interactive format provided by Livebook,3 a tool to write articles

with adaptable and runnable code. With this format, each reader can create their own

catalog instance, where code smell examples can be modified and executed interactively,

thus enriching the learning experience.

Another relevant improvements were the addition of four Elixir-specific code smells—

E3, E4, E6, and E7—expanding the catalog to a total of 22 specific code smells, including

14 Design-Related and eight Low-Level Concerns smells. In addition to these four

new Elixir-specific smells, three others were suggested in documents E9, E11, and E13,

but were not validated by the community, nor by the author and the advisor of this study,

as they were considered personal implementation preferences rather than internal code

quality issues. An example of this can be seen in E11. In this document, a community

member suggested a smell related to the use of the pipe operator, receiving the following

comment by another member and which also represents the conclusion of the author and

the advisor of this work:

“I don’t [think] this is a smell either. I also think it mostly boils down to syntax preference

and not really related to code design or code quality.”

Although in E2 and E7, developers have discussed two traditional code smells, one

of them being present in both documents, they were not new to our research, as they had

already been cataloged in our grey literature review.

3
https://livebook.dev/

3.1. Catalog of Code Smell for Elixir 50

Table 3.3: Contributions by the Elixir community

Type Issue Pull Request Total

Sub.(Acc.) Sub.(Acc.) Sub.(Acc.)

Refactorings 3(2) 1(1) 4(3)

Smell Rename 1(1) 1(1) 2(2)

Bug Fixes 1(1) 2(2) 3(3)

Elixir-Specific Smell 7(4) 0(0) 7(4)

Traditional Code Smell 2(3) 0(0) 2(3)

Description Improvements 5(4) 0(0) 5(4)

Others 0(0) 8(8) 8(8)

Total 19(15) 12(12) 31(27)

Sub.: Submitted. / Acc.: Accepted.

7) GitHub Search: Aiming to expand the code smells catalog by mixing prospecting

methodologies, at this step we mined software repositories (MSR) on GitHub. According

to Dabic et al. [56], there are two main steps for mining repositories. First, researchers

must define a repository selection criterion to filter only those related to their research

questions. After that, researchers must execute a search query to retrieve contextualized

data from the repositories.

To find artifacts—Issues, Pull Requests, Commits, and Files—that contain

references to code smells, we used the same query from Step 1 (Listing 3.2). To execute

this query, we use the standard GitHub search service. All searches were performed in

May 2022, and we also used GitHub search qualifiers to filter the query keywords only in

repositories where Elixir is the main language or in files with Elixir’s extensions (.ex and

.exs).

8) Artifacts Selection: A total of 301 artifacts were retrieved in the previous step. All

were inspected by the thesis’ author and his advisor seeking an agreement to select only

those that meet a set of criteria.

As in Step 2, in order for an artifact to be selected, it must first be related to

the context of our research questions (RQ1 and RQ2). Second, the artifact cannot have

been previously retrieved in our grey literature review or be part of our GitHub repository

created in Step 4 [195]. Third, we adapted Garousi’s Authority of the Producer criteria [76]

for the context of this MSR step. Therefore, in order to be selected, an artifact must meet

at least one of the following criteria: (a) was the artifact published in the repository of a

company that works with Elixir? (b) is the author a developer associated with a company

that works with Elixir? (c) does the author have code repositories implemented in Elixir?

Finally, to be selected, an artifact cannot be duplicated in relation to others already

selected. These duplications can occur due to forked repositories on GitHub.

At the end of this step, 46 artifacts were selected and identified with keys ranging

3.1. Catalog of Code Smell for Elixir 51

from M1 to M46. Table 3.4 provides an overview of the retrieved and selected artifacts.

Among the 255 discarded artifacts, 180 were not related to the context of our RQs, 65

were fork’s duplications, and 10 were from our repository [195] or just direct links to it.

Table 3.4: Overview of artifacts selection

Artifact Retrieved Selected

Source Code Files 57 5

Commits 22 2

Issues 99 17

Pull Requests 123 22

Total 301 46

To ensure that these 46 artifacts meet our third selection criterion, we checked

the author’ profiles on GitHub, more specifically in the Bio field or in repositories they

collaborate. After that, we concluded that all these 46 artifacts were also valid according

to our criterion. For example, we selected artifacts created by Elixir-based companies,

such as Finbits;4 and from very popular repositories, such as Elixir Language5 or Phoenix

framework.6

9) Data Extraction and Validation (MSR): After selecting 46 artifacts in the pre-

vious step, the author of this thesis read and analyzed in detail the content of each one,

seeking to find sentences that could characterize code smells in Elixir, whether traditional

or specific.

All sentences were later validated by the advisor of this thesis, seeking to reach an

agreement regarding the classification of a discussion as a code smell. Only eight artifacts

out of 46 analyzed—M1, M2, M6, M7, M8, M22, M32, and M35—resulted in a lack of

agreement between the thesis’ author and his advisor.

An example of disagreement can be seen in M6. In this artifact, the developers

started a discussion that could indicate a novel Elixir-specific code smell related to the

update of values in a Map:

“Finding this typo was very hard because the |> Map.put syntax doesn’t raise any compile

errors. [It can be] a potential code smell. [...] Another way of updating [value] and throw

an error if the key doesn’t exist is to use the built-in update syntax [Instead of] using the

Map.put function”

In Elixir, the Map.put(key, value) function can be used to update a value associ-

ated with a key. However, if due to a typo, the given key does not exist, Elixir adds a

new key to the Map, not accusing any error related to the non-existence of the key. On

4
https://github.com/Finbits

5
https://github.com/elixir-lang

6
https://github.com/phoenixframework

3.1. Catalog of Code Smell for Elixir 52

GitHub, there was no consensus on whether this is a code smell. Also, among us, one

reviewer understands that this problem is a Low-Level Concern smell, as it can con-

fuse developers, causing the false sensation that the Map has been updated correctly, while

the other reviewer thinks that this does not characterize a quality problem. Due to this

disagreement, M6 was discarded.

In total, 39 code smells discussions were found in the 38 selected artifacts. As

shown in Table 3.5, most discussions were found in Pull Requests and they refer more

to Elixir-specific smells than to traditional smells.

Table 3.5: Code smell discussions by artifact type (MSR)

Artifact Traditional Elixir-specific

Discussions (#Novel) Discussions (#Novel)

Source Code Files 0(0) 3(0)

Commits 2(0) 0(0)

Issues 1(0) 14(2)

Pull Requests 3(1) 16(2)

Total 6(1) 33(4)

Thus, only one novel Elixir-specific smell emerged from the MSR steps. This novel

smell was found four times and expanded the catalog to a total of 23 specific code smells.

Furthermore, a traditional code smell—Switch Statements—was also cataloged in this

third prospecting approach.

3.1.2 Do Elixir developers discuss traditional code smells?

(RQ1)

Using our mixed methodological approach, we found discussions about 12 tradi-

tional code smells, as shown in Table 3.6. Discussions found in our GL review are identified

starting with the letter "G", while those from the interaction with the Elixir community

are identified with the letter "E" and those found in our MSR approach are started with

the letter "M".

One of the most discussed traditional smells is Comments. This smell was found

in four sources, all from the grey literature. In G12, for example, the author argues

that using comments to document code in languages that have a specific construct for

documentation is a code smell:

3.1. Catalog of Code Smell for Elixir 53

“[...] for me documentation isn’t a comment, in most languages [Unfortunately] docu-

mentation happens to be represented as a comment. [...] some languages, such as Elixir,

Clojure and Rust, have a separate construct for documentation to make this obvious and

facilitate working with documentation. [...]”

Table 3.6: Traditional code smells discussed by Elixir developers (RQ1)

Traditional smell Sources #Sources

Comments G1, G10, G12, G14 4

Long Parameter List G1, G16, E2, M3 4

Long Function G1, E2, E7 3

Primitive Obsession G3, M4, M13 3

Shotgun Surgery G1, G17, M5 3

Duplicated Code G1, M26 2

Feature Envy G1, G6 2

Divergent Change G1 1

Inappropriate Intimacy G1 1

Large Class G1 1

Speculative Generality G1 1

Switch Statements M10 1

Another code smell—Long Parameter List—was found in four discussions

coming from the grey literature, GitHub artifacts, and interaction with the Elixir com-

munity. In G16, the author compares a way to remove Long Parameter List in Elixir

with strategies to remove this smell in object-oriented languages:

“A long parameters list is one of many potential bad smells [...]. In object-oriented

languages like Ruby or Java, we could easily define classes that help us solve this problem.

Elixir does not have classes but because it is easy to extend, we can define our own types.”

Primitive Obsession emerged from three different sources during our explo-

ration. It was found mainly in our MSR approach, being the traditional smell most found

by this strategy. In commit M4, although the author did not explicitly name this smell,

he describes the replacement of variables of type float (primitive) by ones of a composite

type:

“[...] Cleaned up some code smell [...] Deprecates use of ’floats’ for money amounts...

[Instead] Introduces the ’Gringotts.Money’ protocol.”

In Elixir, protocols7 are polymorphic mechanisms similar to interfaces in Java. In

this way, they can be used to extend primitive types. In commit M4, variables of the

7
https://elixir-lang.org/getting-started/protocols.html

3.1. Catalog of Code Smell for Elixir 54

primitive type float were replaced by implementations of a protocol—Gringotts.Money—

that more accurately represent the characteristics of money values.

Shotgun Surgery also emerged from three different sources in our research. In

G17, the author refers to a problem where particular code modifications require many

small changes in different files, which is the main characteristic of Shotgun Surgery:

“[When using microservices we] need to be able to deploy independently. [Despite that]

tight coupling could be found through shared libraries forcing an upgrade throughout the

system. Or [microservices] could be coupled through a database schema where many

services need to upgrade after a schema change.”

Switch Statements is a traditional smell found only in our MSR approach.

GitHub users who participated in M10’s discussions clearly refer to a situation related to

it:

“[...] When I see a type field, it’s a little bit of a code smell: it usually ends with a

"replace conditional with polymorphism" refactor. Different types of players will behave

differently but conform to the same interface. That’s a great case for polymorphism [...]”

Using a parameter to inform a type for a function can decrease software quality.

Considering these functions can be scattered throughout different modules, if in the future

new types need to be handled, many conditionals will need to be updated in different parts

of the code. These Elixir’s control-flow structures are analogous to switch statements in

other languages. According to Fowler and Beck [74], this smell can be removed through

the use of polymorphism, as also suggested in M10.

By analyzing Table 3.6, we can conclude that 16 (out of 88) sources analyzed in

our studies have discussions on traditional code smells. However, a single document (G1)

concentrates most discussions. This document discusses all, except two, traditional smells

that emerged from our methods. When comparing the results obtained by each method,

11 of the 22 traditional code smells (50%) were found in the grey literature review, two

smells were discussed in the interaction with the Elixir community, and five were in our

MSR approach.

RQ1 answer: Traditional code smells are also important in modern functional lan-

guages like Elixir, as discussions about more than half of them (12 out of 22) were

found in our study.

3.1. Catalog of Code Smell for Elixir 55

3.1.3 Do Elixir developers discuss other smells? (RQ2)

We found discussions about 23 Elixir-specific smells, and we classified those into

two different groups, as described previously in our study design (Section 3.1.1). Table 3.7

summarizes the 14 smells classified as Design-Related, and Table 3.8 does the same

for nine smells classified as Low-Level Concerns. We selected a subset of the code

smells to present in more detail in this section. They were chosen because they jointly

present an overview of the main features of their respective categories, thus enabling a

good understanding of the catalog.

More details and examples on all 23 Elixir-specific smells can be found in our

catalog on GitHub [195].

3.1.3.1 Design-related smells

In Elixir it is possible to overload a function by specifying different clauses com-

posed of patterns and guard checks. These clauses are matched against the values of the

arguments when the function is called to define which clause will be executed. These

overloaded functions are known as multi-clause functions. Thus, Unrelated Multi-

Clause Function is a Design-Related smell that poses a problem peculiar to Elixir.

For example, according to G10’s author, the abuse of this resource makes the code difficult

to understand, as follows:

“In Elixir, we can use multi-clause functions to group functions together using the same

name. [However] when we start adding and mixing more pattern matchings and guard

clauses [...] trying to squeeze too many business logics into the function definitions, the

code will quickly become unreadable and even harder to reason with. [...]”

Complex Extractions in Clauses represent another significant smell of the

Design-Related group. Usually, when we use multi-clause functions, it is possible to

extract values from structs for further usage and for pattern matching or guard checking.

These values can be used both in the function body and in its interface, therefore impairing

code readability, making it difficult to trace the origin of the values, especially when we

have many clauses or many arguments, as reported in E6:

“[...] Pattern matching [can be used] to extract fields [...]. Once you have too many

clauses or too many arguments, it becomes hard to know which parts are used for pat-

tern/guards and what is used only inside the body [...].”

3.1. Catalog of Code Smell for Elixir 56

Table 3.7: Design-related Elixir-specific code smells (RQ2)

Elixir-specific smell Description Sources

Using App Configuration for Li-
braries

A library function that is configured using
parameterization mechanisms instead of ar-
guments, thus limiting its reuse by clients

G5, M18,
M31, M36,
M37, M38,
M41, M42,

M45

Using Exceptions for Control-
Flow

A library that forces clients to handle
control-flow exceptions

G5, G11,
M31, M33,
M40, M44

Code Organization by Process Library unnecessarily organized as a pro-
cess, instead of modules and functions

G5, M20,
M29, M30

Unsupervised Process When a library creates processes outside a
supervision tree, therefore not allowing users
to control their apps fully

G5, M14,
M34, M43

"Use" Instead of "Import" Module that relies on "use" to declare de-
pendencies when an "import" is enough.
Typically, "use" implies a tight coupling
with the target module

G5, M19,
M27, M46

Compile-Time Global Configura-
tion

Function that uses module attributes for
configuration purposes, therefore preventing
run-time configurations

G5, M23,
M39

Complex Extractions in Clauses Function that uses pattern matching in its
signature to extract values used both in
guard checks and in its body

E6, M12

Large Code Generation by
Macros

Macros that generate a lot of code, affecting
compilation or execution performance

E7, M28

Unrelated Multi-Clause Func-
tion

Function with many guard clauses and pat-
tern matchings

G10, M9

Agent Obsession When the responsibility for interacting with
an Agent process is spread across the system

G8

Data Manipulation by Migration Module that performs both data and
structural changes in a DB schema via
Ecto.Migration

G9

GenServer Envy Using a Task or Agent but handling them like
GenServers

G8

Large Messages Processes that exchange long messages fre-
quently

G13

Untested Polymorphic Behaviors Function with a generic Protocol type pa-
rameter, but that does not have guards ver-
ifying its behavior

G7

Listing 3.3 illustrates the occurrence of Complex Extractions in Clauses.

The drive/2 multi-clause function extracts from a %User{} struct the value of the field name

for further usage (lines 2 and 5), and the value of the field age for pattern/guard checking

(lines 1 and 4). In addition to the %User{} struct, the two clauses of this function also

receive the boolean argument d_lic to define if the user has a driver’s license. This value

is then used in the function guard (when clauses), as follows.

3.1. Catalog of Code Smell for Elixir 57

Listing 3.3: Example of Complex Extractions in Clauses

1 def drive(%User{name: n, age: a}, d_lic) when a >= 18 and d_lic == true do

2 "#{n} can drive"

3 end

4 def drive(%User{name: n, age: a}, d_lic) when a < 18 or d_lic == false do

5 "#{n} cannot drive"

6 end

A solution to remove this smell is to extract in the function signature only values

that are used in the function clauses, as in the Listing 3.4.

Listing 3.4: Refactoring of Complex Extractions in Clauses

1 def drive(%User{age: a} = user, d_lic) when a >= 18 and d_lic == true do

2 %User{name: n} = user

3 "#{n} can drive"

4 end

5 def drive(%User{age: a} = user, d_lic) when a < 18 or d_lic == false do

6 %User{name: n} = user

7 "#{n} cannot drive"

8 end

Our next discussed smell happens in parallel and distributed environments. In such

environments, the unnecessary use of parallelization to organize code poses a problem in

some contexts. Particularly, Code Organization by Process was the second most

discussed smell in the Design-Related category. This smell occurs when a library uses

processes unnecessarily, imposing a specific parallelization behavior on its clients.

Listing 3.5 illustrates an instance of this smell. In this example, the Calculator

library implements arithmetic operations—add/3 (line 4) and subtract/3 (line 8)—through

a GenServer, which is one of the process abstractions provided by Elixir. In lines 25-30,

examples of using this code are presented. In line 26, the process responsible for running

the code is started with the initial state zero. The init/1 function (line 12), which is a

GenServer callback, is automatically called when the Calculator process is started to set

its initial state. However, this value is not used for any purpose in the code. Instead,

the process identifier is used in the add/3 and subtract/3 to make calls to the Calculator

process (lines 5 and 9) and then to wait for replies, which are provided respectively by the

handle_call/3 functions, implemented in lines 16 and 20. These functions always return a

tuple composed of three values, the second one containing the operation result.

Listing 3.5: Example of Code Organization by Process

1 defmodule Calculator do

2 use GenServer

3

4 def add(a, b, pid) do

5 GenServer.call(pid, {:add, a, b})

6 end

7

8 def subtract(a, b, pid) do

9 GenServer.call(pid, {:subtract, a, b})

3.1. Catalog of Code Smell for Elixir 58

10 end

11

12 def init(initial_state) do

13 {:ok, initial_state}

14 end

15

16 def handle_call({:add, a, b}, _from, state) do

17 {:reply, a + b, state}

18 end

19

20 def handle_call({:subtract, a, b}, _from, state) do

21 {:reply, a - b, state}

22 end

23 end

24

25 # Starting the process that organizes the code

26 iex(1)> {:ok, pid} = GenServer.start_link(Calculator, 0)

27 {:ok, #PID<0.132.0>}

28 ...

29 iex(2)> Calculator.add(1, 5, pid) # 6

30 iex(3)> Calculator.subtract(2, 3, pid) # -1

Although the code works correctly, when a library uses a process to organize its

code, its readability is reduced due to complex logic. In addition, this organization forces

the clients to work with processes even when that would not be their design choice.

The most discussed Elixir-specific smell was Using App Configuration for

Libraries (nine documents), which was classified as a Design-Related smell. In M45,

for example, a GitHub user reports that using the config.exs file to parameterize values

used inside a library is a code smell that makes a library less flexible, limiting its reuse.

This quote illustrates some sentences taken from M45 that characterize this smell:

“[...] using config[.exs] for libraries is considered an anti-pattern [...] For instance, see

this discussion where [...] Jose Valim and others discuss it and recommend, if possible,

configuring your library through function arguments. [Using parameterized values to

configure libraries] gets tricky setting the configuration with regard to compilation and

releases.”

As illustrated in Listing 3.6, DashSplitter module is a library that configures the

behavior of its functions through the Application Environment parameterization mech-

anism. DashSplitter implements split/1, a function to separate a string into a certain

number of parts. The character used as a separator in split/1 is always "-" and the num-

ber of parts the string is split into is parameterized. This parameterized value is retrieved

by split/1 in line 3. Therefore, all clients are forced to use split/1 with the same number

of parts. In our example, this value is three, as defined in the config.exs file (line 3).

Listing 3.6: Example of Using App Configuration for Libraries

1 import Config

2 config :g_config,

3.1. Catalog of Code Smell for Elixir 59

3 parts: 3

4 import_config "#{config_env()}.exs"

1 defmodule DashSplitter do

2 def split(string) when is_binary(string) do

3 parts = Application.fetch_env!(:g_config, :parts) # <= get config

4 String.split(string, "-", parts: parts) # <= parts: 3

5 end

6 end

3.1.3.2 Low-level concerns smells

Dynamic Atom Creation is our first example of smell in the Low-Level Con-

cerns category. An atom is a basic Elixir data type that is not collected by the language’s

garbage collector, so atoms live in memory throughout an application’s execution cycle.

However, BEAM (the virtual machine used by Elixir) has a limit on the number of atoms

that can exist in an application. For this reason, the dynamic creation of atoms is con-

sidered a code smell. M16’s author describes Dynamic Atom Creation as follows:

“[...] creating atoms from untrusted input is bad practice since atoms are not garbage

collected. In addition, the number of atoms is limited to 1,048,576 and the size of each

atom can be at most 255 [...]”

As a second example, Complex else Clauses in with is a Low-Level Con-

cerns smell that refers to with statements that flatten all their error clauses into a single

complex else block. Listing 3.7 illustrates an instance of this smell, where the function

open_decoded_file/1 reads a base 64 encoded string content from a file (lines 2-3) and re-

turns a decoded binary string (line 4). This function has an with statement that handles

two possible errors in a single else block (lines 5-8). Although this example has an else

block that handles only two errors, as this function evolves it can gain new types of errors,

which will harm readability and maintainability.

Listing 3.7: Example of Complex else Clauses in with

1 def open_decoded_file(path) do

2 with {:ok, encoded} <- File.read(path),

3 {:ok, value} <- Base.decode64(encoded) do

4 value

5 else

6 {:error, _} -> :badfile

7 :error -> :badencoding

8 end

9 end

3.1. Catalog of Code Smell for Elixir 60

Table 3.8: Low-level concerns Elixir-specific code smells (RQ2)

Elixir-specific smell Description Sources

Dynamic Atom Creation Function that creates atoms in an uncontrolled and
dynamic way, affecting memory management.

M16, M17,
M23, M25

Working with Invalid Data A function that does not validate its parameters,
potentially inducing a caller to introduce a hard-
to-understand bug

G5, M11,
M21

Unnecessary Macros Using macros instead of functions and structs G5, M15

Accessing Non-Existent
Map/Struct Fields

Accessing struct or map fields dynamically may re-
sult in null values that can be ambiguous and lead
a programmer to introduce bugs

G7

Alternative Return Types Functions with parameters that significantly
change their return type

E3

Complex Branching Function that handles multiple errors, making it
complex

G2

Complex else Clauses in with with statements that handle all their error clauses
in a single else block

E4

Modules with Identical Names Modules with identical names, preventing their
simultaneous load

G5

Speculative Assumptions Code that makes assumptions that have not been
planned for, thus returning incorrect values when
a crash is desired

G7

Another Low-Level Concerns smell, Working with Invalid Data, has

been discussed both in the grey literature review and in the MSR approach. G5’s author

describes this smell as follows:

“Elixir programs should prefer to validate data as close to the end-user [...] so the errors

are easy to locate and fix. [When this is not done] if the user supplies an invalid input,

the error will be raised deep inside [the function], which makes it confusing for users.

[...] when you don’t validate the values at the boundary, the internals [of the function]

are never quite sure which kind of values they are working with.”

RQ2 answer: Using three different research methods, we were able to find 23 Elixir-

specific code smells. Among them, nine are from the Low-Level Concerns cate-

gory and 14 are Design-Related smells.

3.1. Catalog of Code Smell for Elixir 61

3.1.4 Threats to Validity

Construct Validity: The main threat to construct validity is related to the format of

the search queries used in our grey literature review (GLR) and in our mining software

repository (MSR) methodological approach. If some keyword combinations are missing

in queries, the search results can include many artifacts out of context or even important

documents cannot be retrieved. To mitigate this threat, as proposed by Garousi et al. [76],

we performed preliminary searches to calibrate the queries, adding code smells synonyms,

both in singular and in the plural, and deleting some keywords that were polluting the

results.

Conclusion Validity: Since our code smell prospection is based on a grey literature

review, interaction with the Elixir community, and MSR approach, our sources are doc-

uments that were not peer-reviewed. To reinforce the validity of our results, we carefully

inspected the documents and artifacts returned by executing the queries or created by the

Elixir community. Both the author of this thesis and his advisor did a preliminary reading

of all sources, selecting for further analysis only those that are relevant and are written

by professionals who work or have experience with Elixir. However, as our opinion was a

fundamental factor in defining which documents would be analyzed and which problems

extracted from them should be cataloged as a code smell, there was a risk of bias in these

qualitative analyses. To prevent the results from representing only an individual view

and being biased by personal experiences, the author of this thesis and his advisor par-

ticipated in these methodological steps. Thus, the artifacts selected for in-depth analysis

represented the agreement of both regarding the relevance and quality of the results.

Internal and External Validity: The threats here concern the degree to which we can

generalize the relevance of the catalog of code smells proposed by this work. This risk was

partially mitigated, since we used a mixed methodology of code smells prospection, having

as sources documents from the grey literature with heterogeneous representativeness (indi-

vidual or companies views), spontaneous contributions from the Elixir community coming

from developers with distinct backgrounds, and GitHub public repositories with different

sizes, purposes, domains, and popularity. Ultimately, we mitigated this risk more broadly

by conducting a survey with Elixir developers. This survey, which will be presented in

the next section (3.2), validates these smells from the perspective of developers.

3.2. Catalog Validation 62

3.2 Catalog Validation

To validate the catalog of code smells for Elixir presented in Section 3.1, we con-

ducted a survey with developers who use this language. Particularly, in this current section

we present a study that collected quantitative data with this instrument to answer the

following research question:

RQ3. What are the developers’ perceptions of code smells in Elixir? In this

RQ, we seek to understand, from the developers’ perspective, the prevalence and relevance

levels of each of the traditional and Elixir-specific smells in real projects. Our definition of

relevance, as communicated to the participants in the survey form, relates to the potential

that a smell has to produce negative impacts on the maintainability, comprehensibility,

and evolution of the code.

As this validation involves the direct participation of human subjects, before con-

ducting this survey, it was evaluated and approved by the Research Ethics Committee of

the Federal University of Minas Gerais, Brazil (CAAE: 58679222.8.0000.5149).

We dedicate Section 3.2.1 to present the methodology applied to design, conduct,

and analyze the results of our survey. In Section 3.2.2, we present and discuss the results

on the prevalence and relevance of code smells in Elixir. Finally, Section 3.2.3 discusses

threats to validity.

3.2.1 Survey Design

Although the code smells for Elixir have been prospected from documents and code

artifacts created by professionals who work with this language, we decide to conduct a

survey to reveal the extension of the impacts caused by each of these sub-optimal code

structures in the daily lives of developers. Figure 3.2 summarizes the steps we followed

to conduct this survey. We also detail these steps in the following paragraphs.

1) Survey Structure: We began our survey questionnaire by explaining the goals of the

study, introducing the research team, describing the voluntary nature of participation,

and getting consent from the participants (Appendix A.1). All the questions8 that were

asked to the participants during the study are available online in the replication package

of this chapter [198] and in Appendix A.2. Particularly, the questions were organized

8Readers can also quickly check all these questions at: https://doi.org/10.5281/zenodo.7430258

3.2. Catalog Validation 63

Figure 3.2: Overview of survey on code smells in Elixir

according to the following topics:

– Demographics : In this topic, we asked about the participant’s geographic location,

their number of years of experience with Elixir, and the number of Elixir projects

they have worked on.

– Perceptions on code smells in Elixir : After presenting a list of traditional and Elixir-

specific smells, accompanied by their respective descriptions and code examples, we

asked the participants how often they encounter each smell in the Elixir projects they

work on and what is the level of the negative impact of each smell on the maintenance

and evolution of these projects. The responses were given on scales of one (very low)

to five (very high). To prevent the order in which the smell is presented influence

the quality of the responses, they were presented in random order. Finally, to ensure

the quality of our results, all questions that involved developers’ perception of code

smells were optional, thus avoiding forcing participants to answer about smells for

which they did not have sufficient background knowledge.

During this elaboration step, we invited seven developers from our network who

work with Elixir to participate in a pilot test. Five of these developers answered the pilot

test and gave us feedback that helped us to clarify some questions and mainly to reduce

the size of the questionnaire, making it faster to be answered.

Initially, we planned to ask each participant their perception of each of the 35 code

smells in our catalog. During the pilot test, we realized that the participants were taking

a long time to complete the questionnaire and therefore we decided to create four different

versions of the survey, each one asking the participant’s perception of a maximum of nine

code smells. In this way, each smell was included in only one version of the survey, and

the selection of the smells in each of the versions was made randomly. Table 3.9 presents

the distribution of the smells in the survey versions.

3.2. Catalog Validation 64

Table 3.9: Survey versions template

Version # Smells by type

A 3 traditional smells + 6 Elixir-specific smells (2 LL + 4 DR)

B 3 traditional smells + 6 Elixir-specific smells (2 LL + 4 DR)

C 3 traditional smells + 6 Elixir-specific smells (3 LL + 3 DR)

D 3 traditional smells + 5 Elixir-specific smells (2 LL + 3 DR)

LL: Low-level concerns. / DR: Design-related.

Each of the survey versions was constructed using a different Google form. To

define which version each participant should answer, we implemented a small algorithm

that generates a random number in the range from zero to three. According to the number

generated, this script automatically forwards the participant to one of the survey versions.

The pilot test answers were solely used to validate and receive feedback on our

survey design procedures. Thus, we do not consider these answers in our data analysis.

2) Participants Recruitment: In this step, aiming to increase the representativeness

of our results, we focused to recruit a sufficient number of Elixir developers with multiple

levels of experience, coming from different cultures and working on various projects.

Instead of sending messages to developers using emails collected at GitHub [17],

we followed a recruitment approach based on public social media. First, we created a

post on Twitter inviting Elixir developers to respond to our survey and share it with

their private networks. In this tweet we use the most common hashtags from the Elixir

developer community,9 thus increasing the reach potential of our publication. At the same

time, we also promoted the survey on the Elixir Forum, the official discussion platform for

the developers of this language. Second, throughout the two weeks of the survey, every

two days we made publications inviting participants on the language’s official channels at

Discord, Slack, Telegram, DevTalk, Reddit, and LinkedIn (in a group with 7K members).

After two weeks, we closed the survey with 182 responses. We analyzed all these

responses to filter out those provided by participants who are also authors of documents

used in the previous steps of this work to prospect code smells (Section 3.1). After this

analysis, we found that only one survey respondent is also an author of a document used

in the grey literature review. Therefore, we removed this response to completely avoid

possible biases, resulting in 181 valid responses.

The survey participants are distributed across 37 countries and all continents. As

shown in Figure 3.3, the majority of our participants currently work in America (51%)

and Europe (40%), with the United States (28%) and Brazil (12%) being the top two

countries. In terms of experience with Elixir, nearly 69% of our participants have more

than three years of experience, and 63% have worked on more than four different projects

9#MyElixirStatus and #ElixirLang

3.2. Catalog Validation 66

participant has worked with Elixir (at most three or more than three) and the number

of different projects they have participated in using this language (at most four or more

than four). For all analyses, we used the SPSS statistical analysis tool,10 and considered

a significance level of 0.05.

3.2.2 What are the developers’ perceptions of code smells in

Elixir? (RQ3)

As can be seen in Figure 3.4, we chose to present the results using a scatter plot

to facilitate the comparison between smells. In this plot, we also decided to divide the

plane into nine zones to show the perceived relevance and prevalence levels for each smell.

Particularly, in each axis, there are three quadrants: low (average scores between 1.0

and 2.3), mid (average scores between 2.3 and 3.7), and high (average scores between 3.7

and 5.0).

The scatter plot reveals that the three code smells with the highest levels of rele-

vance are respectively Unnecessary Macros (UNM, 4.16),11 Dynamic Atom Cre-

ation (DAC, 3.82), and Working with Invalid Data (WID, 3.81). In contrast,

the three least relevant smells are Comments (COM, 2.29), Data Manipulation by

Migration (DMM, 2.46), and "Use" Instead of "Import" (UII, 2.55). As can also

be seen in the figure, the only smell with a low-relevance level is Comments, all the

others have relevance levels at least in the mid zone and 17.1% (6 out of 35) have high

relevance. In this way, most smells have the potential to cause non-negligible impacts on

the maintainability, comprehensibility, or evolution of Elixir systems.

Comparatively, our data suggest that the negative impacts caused by Elixir-specific

smells are greater than those caused by traditional smells, as the average relevance level

of Elixir-specific smells was 3.32 compared to 3.09 for traditional smells. This is also

evidenced when we specifically observe the smells evaluated with high relevance by de-

velopers, as five out of the six smells that received this evaluation are Elixir-specific smells.

Additionally, 11 out of the 13 code smells evaluated with mid relevance but in the range

closest to the high relevance zone are also Elixir-specific smells.

Regarding their prevalence, most smells (54.3%) have a mid-prevalence level. This

shows that code smells are not uncommon in Elixir systems and therefore require atten-

tion. According to the survey participants, Complex Branching is the most prevalent

10
https://www.ibm.com/spss

11When discussing each smell, we are adding between parentheses the acronym used in Figure 3.4
(e.g., UNM) and the respective average score of the survey answers (e.g., 4.16).

3.2. Catalog Validation 68

Finally, to better understand which smells stood out the most in our catalog, we

calculated the arithmetic mean of each smell between its relevance and prevalence levels.

The three smells with the highest averages are respectively Working with Invalid

Data (WID, 3.53), Shotgun Surgery (SHS, 3.34), and Complex Branching (CBR,

3.32), being, therefore, those that deserve special attention from Elixir developers.

Since the prevalence and relevance levels of each code smell, shown in Figure 3.4,

were calculated using the arithmetic mean of their respective responses, we also decided

to compute the standard deviation (SD) for both prevalence and relevance. This helps

us better understand the dispersion of responses in relation to the averages. The SDs for

prevalence range from 0.54 to 1.43, with Agent Obsession (AOB) having the lowest

variation and Compile-time Global Configuration (CGC) showing the most het-

erogeneous responses. For relevance, the SDs fall between 0.97 and 1.54, where Long

Parameter List (LPL) stands out with the most homogeneous responses, while Mod-

ules with Identical Names (MIN) exhibits the highest variation. Detailed values

for standard deviation for each code smell are available in the replication package of this

chapter [198].

The level of experience of the developers influenced their perception of just five code

smells from our catalog. Specifically, the number of Elixir projects the developers worked

on affected their perception of four out of the 35 smells, as shown in Table 3.11. Out of

these four smells, two had a higher perceived relevance (Dynamic Atom Creation and

Feature Envy) among developers who worked on a maximum of four different projects.

On the other hand, developers who worked on more than four projects perceived that the

other two smells (Primitive Obsession and Unrelated Multi-clause function)

are more prevalent.

Table 3.11: Influence of the number of Elixir projects in the developer’s perception of a
smell

Smell (Perception)
Mean rank Significance

≤ 4 projects > 4 projects

Dynamic Atom Creation (R) 25.73 16.26 0.011

Feature Envy (R) 25.04 16.62 0.025

Primitive Obsession (P) 21.64 32.40 0.020

Unrelated Multi-clause function (P) 24.24 32.96 0.044

R: Relevance. / P : Prevalence.

The number of years working with Elixir has less influence on developers’ percep-

tion of code smells in our catalog. As shown in Table 3.12, the prevalence of only two

smells was affected by this factor. In both cases, developers with more than three years

of experience found these smells to be more prevalent than less experienced ones.

The complete results with the prevalence and relevance levels of each of the 35 code

3.2. Catalog Validation 69

Table 3.12: Influence of the Elixir experience time in the developer’s perception of a smell

Smell (Perception)
Mean rank Significance

≤ 3 years > 3 years

Compile-time Global Configuration (P) 19.41 33.35 0.004

Unrelated Multi-clause function (P) 21.25 32.64 0.016

P : Prevalence.

smells that compose our catalog, as well as the complete results of the Mann-Whitney test

(including those without statistical significance), are available in the replication package

of this chapter [198]: https://doi.org/10.5281/zenodo.7430258.

RQ3 answer:

– Most of the smells in Elixir have relevances between mid and high (97%), there-

fore having the potential to cause non-negligible impacts on maintenance.

– Most of the smells in Elixir have a mid-prevalence level (54%), so they require

attention from developers because they are not rare in production code.

– The scatter plot quadrant with the largest number of smells is the central one,

indicating that almost half (46%) of the smells require the attention of Elixir

developers both to prevent them and to remove them.

– The developers’ level of experience influenced their perception of only five code

smells from our catalog.

3.2.3 Threats to Validity

Construct Validity: Threats here concern the mapping between theory and the real

world. The main threat of this kind in our study concerns the recruitment of representative

participants to answer the survey. By recruiting participants who are inexperienced in

software development, or even with little knowledge of Elixir, we could obtain results

that are not consistent with reality. To minimize this threat, we promoted our survey

especially on the language’s official communication channels, in order to reach participants

with the profile desired by our research. In addition, we checked the experience level of

these participants and the number of different projects they have worked on using the

language. Most participants (69%) have more than three years of experience in Elixir,

and 63% have worked on more than four different projects using this language.

3.2. Catalog Validation 70

Conclusion Validity: The main threat of this kind in our survey refers to the different

number of responses received by each version of the questionnaire. As each participant

had to answer only one of the four versions of the questionnaire and this version allocation

was done randomly, some versions had more responses than others. However, the total

number of valid responses obtained was high (181) and the version of the questionnaire

that received fewer responses had 27 participants, which is still a significant number

for this type of empirical research. To compensate for the unbalance between our four

groups, we normalized the responses for each of them. Finally, another threat of this

kind concerns our participants’ recruitment strategy. As we used a public social media

approach, it was possible to receive biased responses from participants who were also

authors of documents we used to catalog smells. To mitigate this threat, we eliminated

the only response received from an author of a previously used document. Furthermore,

among all the documents used to catalog the code smells, we were unable to identify the

author of a single one, as it is part of the official Elixir documentation.

Internal Validity: This threat concerns the internal factors that could influence the

study results. Rating the prevalence and relevance of a code smell on a scale of one to

five can be subjective. To mitigate this possible subjectiveness, we included a brief ex-

planation of the scale in the questionnaire. We also attached to each smell a description

of the problems caused, and code examples containing these sub-optimal structures. Ad-

ditionally, we offered participants the choice of not responding to questions about smells

that they did not have enough background knowledge about. As reported by Nardone et

al. [133], participant fatigue when answering a long questionnaire is another factor that

could influence our results. To mitigate this threat, we distributed the 35 code smells

into four different versions of the questionnaire, thus reducing the number of responses

requested from each participant. Finally, the order in which the smells were presented to

the participants was random, thus avoiding the threat that the first smells were privileged

with better answers than the latter.

External Validity: The threats here are related to the generalization of our results, as

the perception collected by our questionnaire regarding smells could be affected by some

kind of bias from our group of participants, thus not representing the general perception of

Elixir developers. To mitigate this threat, we widely disseminated our survey on various

official channels of the Elixir community, seeking to recruit a heterogeneous group of

developers, from diverse cultures and professional environments. This strategy made it

possible to recruit participants from 37 countries and from all continents.

3.3. Implications 71

3.3 Implications

Based on the results presented in this chapter, we shed light on the following

practical implications:

1. Priority in preventing code smells. Our results can guide developers that work

with Elixir in their decision-making about which code smells they should pay more atten-

tion to avoid inserting into their code while programming. The prevalence level of code

smells is a good indicator to consider in this decision, because the higher the prevalence

of a smell, the more common it is in Elixir systems. As these smells are inserted more

frequently, developers can be more careful to avoid inserting them in their systems.

2. Priority in refactoring code smells. When developers detect instances of different

types of code smells simultaneously in their code, they may wonder which smell to remove

first. In line with the previous implication, we conjecture that the relevance level is a good

indicator to define the priority of refactoring smells, because the more relevant a smell, the

greater is its potential to have a negative impact on a system. Thus, it is recommended

to remove it before the others.

3. Directing efforts to adapt tools for automatically detecting code smells. As

shown in our preliminary study [196], only three code smells from our catalog are auto-

matically detected by Credo,12 which is currently the most popular static code analysis

tool for Elixir. Our catalog of code smells not only represents a good opportunity to

power the capacity of tools to detect code smells but can also direct the efforts of the

developers of these tools, indicating which are the most prevalent and relevant smells,

therefore being the ones that should have detection strategies implemented first.

3.4 Final Remarks

In this chapter, we proposed and validated the first catalog of code smells for Elixir.

We used a mixed methodology, based on a grey literature review, interactions with the

Elixir community, and mining GitHub code repositories to prospect and document smells.

Specifically, a total of 60 grey literature documents, 25 documents generated through

interactions with the developer community—13 Issues and 12 Pull Requests—and

301 artifacts mined from Elixir code repositories on GitHub were analyzed to catalog 35

12
http://credo-ci.org/

3.4. Final Remarks 72

code smells that occur in Elixir systems.

The proposed catalog of code smells was validated by conducting a survey with

181 experienced Elixir developers. These developers, who come from 37 countries and

all continents, expressed their perceptions regarding the prevalence and relevance of the

smells that make up our catalog.

It is important to acknowledge that we do not claim the proposed catalog to be

exhaustive. While we have aimed to provide a comprehensive compilation, we recognize

that the catalog could be expanded through alternative methodologies for identifying

smells or even by revisiting the same methods employed in this study at a later time,

when new discussions may have emerged within the developer community.

We summarize the contributions of this chapter as follows:

• We cataloged 23 novel Elixir-specific code smells and categorize them into two

groups, Low-Level Concerns smells (9) and Design-Related smells (14).

• We find that at least 12 traditional code smells (as proposed by Fowler and Beck [74])

are also present in Elixir systems.

• We showed that the majority of cataloged smells have at least mid relevance, and

therefore have the potential to impair the readability, maintenance, and evolution

of Elixir systems.

• Furthermore, we have shown that the occurrence of code smells in Elixir systems

are common.

These findings have practical implications for both developers and researchers.

Given the variety of code smells in Elixir, their non-rarity in production code, and that

they have significant potential to negatively impact systems, it is necessary attention to

both prevent the insertion of these sub-optimal code structures and also to conduct their

removal when identified.

Replication Package. We provide the complete dataset used in this chapter and a

replication package at: https://doi.org/10.5281/zenodo.7430258.

73

Chapter 4

Refactorings in Elixir

In this chapter, we propose a comprehensive catalog of 82 refactorings, including

14 new ones specific to Elixir, 32 aimed at functional languages, 11 Erlang-specific trans-

formations compatible with Elixir, and 25 traditional refactorings cataloged by Fowler [74],

which are also compatible with Elixir code. To accomplish this, similar to what we did

in our investigation on code smells (Chapter 3), we conducted two studies, with the first

one focused on prospecting and documenting refactorings for Elixir, and the second one

aimed at validating them with developers.

Similar to Fowler [74], this thesis defines behavior preservation in refactor-

ings as the principle that the external behavior of code must remain unchanged

during the transformation process. In other words, to preserve behavior, a refac-

toring strategy should only improve the internal structure of the code without altering

how it works from the end user’s perspective. This implies that all observable features of

a program—including inputs, outputs, interactions with the external environment, and

even existing bugs—must remain consistent before and after refactoring. Consequently,

if a test suite adequately covers the refactored code using one of the strategies in our

catalog, it is possible to confirm that the changes do not introduce regressions.

This chapter is organized as follows. In Section 4.1, we outline our catalog of Elixir

refactorings. Also, we detail our mixed methodology, based on a systematic literature re-

view, a grey literature review, and on the mining of artifacts in GitHub repositories to

prospect and document new refactorings for Elixir. Additionally, this section presents

potential threats to validity concerning the identification and documentation of our refac-

torings. In Section 4.2, we delve into the details of the survey we conducted with Elixir

developers to validate our catalog of refactorings for Elixir. This section presents the

survey findings, discusses potential validity issues, and describes the questionnaire design

and the methods used to recruit respondents. In Section 4.3, we discuss the practical

implications of our findings. Finally, we conclude this chapter in Section 4.4.

4.1. Catalog of Refactorings for Elixir 74

4.1 Catalog of Refactorings for Elixir

In this section, we introduce the first study of this chapter, which centered on

discovering and documenting refactorings compatible with Elixir, thereby suggesting a

catalog. Although there are studies on refactoring in other functional languages such as

Erlang [106, 113, 119, 156], Haskell [36, 105, 106, 111], OCaml [153, 154], among others,

to the best of our knowledge, only one preliminary study conducted by us [200] has sought

so far to investigate and catalog specific refactoring strategies for Elixir. Therefore, in

the present study, we aim to expand our preliminary short paper [200] using a mixed

methodological approach to propose a comprehensive catalog of refactorings for Elixir.

Particularly, we want to answer the following research question:

RQ1. What are the refactoring strategies that occur in Elixir? In this RQ,

we seek to understand not only whether the 72 refactorings proposed in the nineties for

object-oriented languages by Fowler [74] are important in the Elixir context, but also to

identify if other refactorings typical of functional languages or even specific refactorings

occur in Elixir.

We dedicate Section 4.1.1 to present the mixed methodology applied to proposing a

catalog of refactorings for Elixir. Next, in Section 4.1.2, we present a catalog composed by

82 refactorings that are discussed and performed by Elixir developers. We have classified

these refactorings into four groups (Functional, Elixir-Specific, Erlang-Specific,

and Traditional refactorings). Finally, Section 4.1.3 discusses threats to validity.

4.1.1 Study Design

Given that Elixir is a programming language created just 12 years ago and it is

gaining recent popularity, only a limited number of studies have been conducted to explore

software engineering aspects and quality attributes of code written in this functional

language.

Nevertheless, since there are studies on refactorings for other functional languages,

we decided to initiate our investigation by conducting a systematic literature review (SLR)

to assess the compatibility of refactorings already studied in other functional languages

with Elixir. Furthermore, our mixed methodological approach also included a grey litera-

ture review (GLR) and mining software repository (MSR) study. Figure 4.1 summarizes

our steps to propose the catalog of refactorings for Elixir. We also detail these steps in

4.1. Catalog of Refactorings for Elixir 75

the following paragraphs.

Figure 4.1: Overview of methods for cataloging refactorings in Elixir

1) Papers Search: In this step, we begin a systematic literature review to uncover

refactorings compatible with code implemented in Elixir. To do this, we based on specific

guidelines for conducting SLR studies in software engineering [18, 41, 99], which guided

how we identified and analyzed scientific papers related to our research question. The

decision to conduct a SLR to initiate the exploration of refactorings for Elixir stemmed

from the existence of studies on refactorings for other functional languages, so it is natural

to expect that some of these code transformations may also be useful for Elixir developers.

Therefore, at this step, our objective was to search for papers on refactoring in

well-known functional programming languages. To construct a query string aligned with

this objective, we followed some procedures proposed by Kitchenham and Charters [99] to

identify relevant search terms. Initially, we extracted the main terms using our research

question as a foundation and also incorporated variations and synonyms of these main

terms. Subsequently, to handle the variations related to the main terms, we utilized

OR operators, and to combine the main terms themselves, we employed an AND operator.

Following these procedures, we formulated the query presented in Listing 4.1.

Listing 4.1: SLR query string

1 ("Refactoring" OR "Program Transformation") AND

2 ("Functional Language" OR "Functional Paradigm" OR "Alice" OR "APL" OR "Clojure" OR

3 "Elixir" OR "Elm" OR "Erlang" OR "Haskell" OR "Julia" OR "Kotlin" OR "Lisp" OR "Logo"

4 OR "ML" OR "Nim" OR "OCaml" OR "Racket" OR "SAS" OR "Scala" OR "Swift" OR "Wolfram")

4.1. Catalog of Refactorings for Elixir 76

The definition of the functional languages included in the query string presented in

Listing 4.1 was carried out by analyzing the Top-100 most popular programming languages

according to the TIOBE index.1 The author of this study examined these languages and

selected only those classified as purely functional or as multi-paradigm with a strong

influence of functional programming principles, such as data immutability. This selection

was subsequently validated by the advisor of this thesis, resulting in a comprehensive list

of 22 functional languages.

After selecting these languages, we conducted preliminary searches to refine the

query string, aiming to obtain more accurate results. During this calibration task, three

out of 22 languages (i.e., F#, Scheme, and J) were removed from the query string. Due

to the characteristics of their names, their presence was polluting the results, returning

many papers not related to our research goals. Moreover, in a preliminary inspection, we

did not find any relevant paper when these languages were initially included.

In order to carry out the search, we opted for four reputable digital libraries that

index software engineering publications relevant to our research questions: IEEE Xplore

digital library,2 ACM digital library,3 ScienceDirect,4 and Scopus.5 We also adapted the

query string to formats compatible with these digital libraries and the final search was

conducted in October 2023.

2) Papers Selection: A total of 378 papers, labeled P1 to P378, were found after

conducting searches across the four digital libraries chosen in the previous step. The

abstracts of all papers were reviewed by the author of this work, an expert Elixir developer,

to identify only those pertinent to our research question. Of these, 288 papers were

excluded because they are out of the context of our research. Furthermore, 90 other papers

were discarded as duplicates, indicating their retrieval from multiple digital libraries. After

this step, 122 papers were selected for full reading and detailed analysis. Our replication

package encompasses all retrieved papers, including duplicates or those unrelated to our

research question.

3) Snowballing: After selecting the 122 papers in the previous step, we carried out

a snowballing process to find other papers related to our research question that, for

some reason, had not been found in the four digital libraries. To do this, we relied on

recommendations by Wohlin [207] for conducting snowballing in systematic reviews of

software engineering studies. Therefore, the author of this work analyzed the titles of all

papers referenced by the 122 papers selected in the previous step, selecting 13 new papers

that are relevant to our research question. Subsequently, the abstracts of these papers

1
https://www.tiobe.com/tiobe-index/

2
http://ieeexplore.ieee.org

3
https://dl.acm.org

4
http://www.sciencedirect.com

5
https://www.scopus.com

4.1. Catalog of Refactorings for Elixir 77

were read, and all of them, referred to as P379 to P391, were selected for an in-depth

analysis alongside the 122 papers selected in the previous step.

4) Data Extraction and Validation (SLR): All 135 papers selected in the previous

steps were fully read by the author of this study to identify refactoring candidate strate-

gies. In other words, refactoring candidates are those refactorings documented in the

analyzed papers but whose compatibility with Elixir is not yet clear. In total, 106 refac-

toring candidates were extracted from 99 out of the 135 analyzed papers, with all these

extractions being validated by the advisor of this thesis. However, some of these can-

didates represented the same transformation but with different names. For example, as

shown in Table 4.1, nine variations of the refactoring candidate Rename an identifier

were found.

Table 4.1: Examples of variations of refactoring candidates

Variations of the refactoring Rename an identifier

Rename a registered process Rename variable Rename function

Rename record Rename record field Rename macro

Rename header Rename module Rename directory

Considering the existence of these variations, the author of this work used thematic

analysis, a technique for identifying patterns (or “themes”) within a collection of data [52,

53, 169] to group these candidates and then name the groups. At the end of this process,

80 different candidates were identified in this step by the author and validated by the

advisor of this thesis. Among these 80 refactoring candidates, 69 did not have variations,

while 11 resulted from grouping 37 variations of refactoring candidates, as can be seen in

our replication package.

5) Mapping to Elixir: In this step, all 80 refactoring candidates extracted from our SLR

were analyzed by the author of this work to identify those compatible with Elixir’s features

and then adapt them to the language’s syntax and semantics. Due to incompatibilities

with some language features, 25 out of the 80 initial refactoring candidates were not

selected to be included in our catalog of refactorings for Elixir. For example, 11 out

of the 25 unselected refactoring are transformations that rely on Haskell’s static data

typing system, something that cannot be replicated in Elixir. Other six candidates were

considered incompatible with Elixir because they rely on specific Erlang libraries, such as

Skel6 and SD Erlang,7 that do not have implementations in Elixir.

Therefore, 55 out of the 80 refactoring candidates were classified as compatible with

Elixir. Since they were originally extracted from other languages, the author of this study

produced code examples in Elixir to illustrate and document all these code transformation

6
https://github.com/ParaPhrase/skel

7
https://www.dcs.gla.ac.uk/research/sd-erlang/

4.1. Catalog of Refactorings for Elixir 78

strategies. Additionally, we provide tailored documentation of side conditions for each

refactoring in Elixir, defining conditions that need to be respected before and after the

transformations so that they do not alter the behavior of the refactored code.

6) Google Search: In this step, we began reviewing the grey literature (GLR)—which

comprises documents not peer-reviewed, such as blogs, videos, forums, books, podcasts,

etc.—aiming to find specific refactoring content for Elixir, something that was not possible

in our SLR. This is a complementary methodological step commonly used when extracting

knowledge on a topic that is still relatively unexplored in scientific articles [96, 196, 199,

214], as is the case with refactorings for Elixir.

To define the query string used for conducting searches on Google in our GLR,

we followed the guidelines proposed by Garousi et al. [76]. Specifically, we identified and

combined keywords related to refactoring in Elixir. After that, we conducted preliminary

experiments to calibrate the query string, ensuring that the combined terms and synonyms

yield results aligned with the objectives of our research. Listing 4.2 presents our query

after this calibration.

Listing 4.2: GLR query string

1 ("Refactoring" OR "Program Transformation" OR "Refactorings" OR "Program

Transformations") AND ("Elixir")

The main difference between this query and the one used in our SLR (Listing 4.1)

lies in the reduction of variations for the second main term. In the SLR, it was known

that there were no specific studies on refactoring for Elixir. Therefore, we combined the

main term “Refactoring” with variations of the term “Functional Language” (i.e., a list of 19

functional languages). However, in the GLR, considering that our key goal is to comple-

ment the SLR study with refactorings that focus specifically on Elixir, we chose to replace

the main term “Functional Language” and its variations with just “Elixir”. Additionally, we

used both singular and plural terms. This approach was taken to mitigate the risk that

some discussions would not be retrieved by Google. The final search was carried out in

November 2023.

7) Documents Selection: After running our query string on Google, 111 documents

were returned, which we refer to as G1 to G111. Considering that PageRank always

sorts Google’s search results in descending order of relevance [142], the tendency is that

documents farther from the top positions in this ranking have more potential to be out

of context. Taking into account this characteristic of Google’s search algorithm, as done

in our previous study on code smells for Elixir (Chapter 3), we established a stopping

criterion to avoid analyzing contextless documents. This criterion states that when four

consecutive pages with less than 50% of valid documents were found, we would stop

selecting documents. However, the valid documents in these four pages will not be dis-

carded [196, 199]. This requirement to limit the number of documents to be analyzed is

4.1. Catalog of Refactorings for Elixir 79

recurring in GLRs, as described by Garousi et al. [76].

We also replicated the validity criteria used in our previous study (Chapter 3),

which is an adaptation of the Quality Assessment Checklist proposed by Garousi et al. [76].

Therefore, the documents were analyzed by the author and the advisor of this thesis in

the order returned by Google, and to be considered valid, first, the documents should

not be authored by them. Second, they should be related to the context of our research

question (RQ1). Third, they should meet at least one of the following authority criteria:

(a) is the publisher a company that works with Elixir?8 (b) is the author associated with

a company that works with Elixir? (c) has the author published other works in the field?

After analyzing the first seven pages of returned documents, our stopping criterion

was reached, establishing a saturation point. Among the 70 documents analyzed until

reaching the stopping criterion, 26 of them were selected as valid, while the other 44 were

discarded. Out of these 44 discarded, 11 are from the author of this work,9 31 were not

related to our RQ, and two did not meet the authority criteria. Table 4.2 shows the

distribution of the 26 valid documents among the three authority criteria.

Table 4.2: Distribution of valid documents among authority criteria

Authority criteria # Documents

(a) is the publisher a company that works with Elixir? 2

(b) is the author associated with a company that works with Elixir? 18

(c) has the author published other works in the field? 6

We checked the authors’ profiles on the platforms where the documents were pub-

lished to ensure compliance with the proposed authority criteria. The representativeness

of the selected documents varies from individual publications on blogs or forums like

Elixir Forum and StackOverflow, made by highly active members in Elixir-related topics,

to developers who have worked in companies using Elixir, such as Remote,10 Veeps,11

Trybe,12 Plataformatec,13 among others. Additionally, documents from the official Elixir

documentation or authored by companies working with Elixir, such as DockYard,14 were

also selected.

8) Data Extraction and Validation (GLR): All 26 documents selected in the previous

step were read and analyzed in detail by the author of this study to find discussions

about refactoring strategies performed in Elixir. Subsequently, the advisor of this thesis

validated the decisions made regarding extracting or not refactoring strategies from these

8Companies using Elixir in production code: https://elixir-companies.com
9Example [G3]: https://elixirforum.com/t/towards-a-catalog-of-refactorings-for-elixir/

10
https://remote.com/

11
https://veeps.com/

12
https://betrybe.com/

13
https://plataformatec.com/

14
https://dockyard.com/

4.1. Catalog of Refactorings for Elixir 80

documents. We discarded only two out of 26 documents—–G24 and G39—–because they

describe very specific code transformations and therefore could not be generalized as

refactoring strategies applicable to different scenarios.

An example of a valid document that had no refactoring extracted can be seen

in G24. In that document, posted on a personal blog by an experienced Elixir devel-

oper, there is an indication of a possible refactoring strategy that involves substituting

conditional statements with a mathematical approach:

“[Trying to refactoring] and improve the game [...] I found a mathematical approach to

solving the logic of our game. [...] Now we use modular arithmetic to add a few math

to our code and make the code brighter and cleaner.”

Although in the context discussed in G24 this transformation has resulted in the

reduction of many lines of code and quality improvements, we consider that the approach

used, based on the remainder of an integer division, is too specific to the rules of the game

Rock-Paper-Scissors, therefore not recommended to be included in a catalog.

Initially, 41 refactorings were extracted in this step. However, as happened in

the SLR, some of these refactorings actually represented the same code transformation,

but with different names. To group these variations, we conducted again a thematic

analysis [52, 53, 169], as described in step 4. At the end, we found 35 different refac-

torings, with 21 of them being new compared to previous steps. Only one out of these

35 refactorings—Replace pipeline with a function—resulted from the grouping of

seven variations.

9) GitHub Search: In this step, we conducted a study of mining software repositories

(MSR) on GitHub, aiming to expand our catalog of refactorings through the analysis of

artifacts directly related to code implemented in Elixir. To mine these repositories, we

followed the two main steps suggested by Dabic et al. [56] for conducting this type of

study, which are first to define a criterion for selecting the repositories and subsequently

to define a query string related to the research question (RQ1).

However, instead of conducting an open search in all existing repositories on

GitHub, which could generate a large and polluted volume of artifacts, we selected the

Top-10 Elixir repositories with the most stars on GitHub and then mine artifacts only

from them. In this selection, repositories that contain only documentation (e.g., Awesome

Elixir15) were disregarded. Table 4.3 lists the repositories that were the subject of study

in our MSR.

To find artifacts—Issues, Pull Requests, Commits, and Files—that contain

references to refactorings, we used a query string similar to the one used in our GLR

(Listing 4.2), as shown in Listing 4.3.

15
https://github.com/h4cc/awesome-elixir

4.1. Catalog of Refactorings for Elixir 81

Listing 4.3: MSR query string

1 "refactoring" OR "program transformation" repo:user/repository

We executed this query in January 2024 for each of the 10 selected repositories

(Table 4.3), replacing the user/repository part with the data from each respective repos-

itory (e.g., elixir-lang/elixir). Moreover, we used the standard GitHub search service

without any additional qualifiers.

Table 4.3: Top-10 Elixir repositories with the most stars

Repository Stars Retrieved* Selected*

https://github.com/elixir-lang/elixir 22.5k 135 43

https://github.com/phoenixframework/phoenix 20.3k 30 9

https://github.com/plausible/analytics 17.4k 44 14

https://github.com/supabase/realtime 6.3k 9 4

https://github.com/elixir-ecto/ecto 5.9k 56 15

https://github.com/firezone/firezone 5.9k 75 8

https://github.com/phoenixframework/phoenix_live_view 5.6k 17 1

https://github.com/papercups-io/papercups 5.5k 28 6

https://github.com/teslamate-org/teslamate 4.9k 8 0

https://github.com/rrrene/credo 4.8k 86 19

Total 488 119

* Number of Artifacts.

10) Artifacts Selection: As shown in Table 4.3 and Table 4.4, a total of 488 artifacts,

which we refer to as M1 to M488, were retrieved in the searches conducted in the previous

step. Out of these 488 artifacts, 119 were selected to be further analyzed in detail.

To select these 119 artifacts, all 488 retrieved artifacts were analyzed by the author

and subsequently validated by the advisor of this thesis, aiming for agreement on the

fulfillment of the following selection criteria. First, to be selected, an artifact should align

with the context of our research question (RQ1). Second, the artifact cannot have been

previously retrieved in our GLR or authored by the author or advisor of this study.

Particularly, the inspection of Commits and Pull Requests did not involve

code analysis but only their titles and textual descriptions. In this way, 52 of these

artifacts were discarded for containing ambiguous messages or not precisely describing

the performed code transformation. Figure 4.2 shows an example with two Commits—

M103 and M104—discarded due to lack of clarity. The titles of these commits just mention

the words “refactoring” or “little refactoring”. Furthermore, the commit descriptions do

not provide information about the refactorings that were performed.

Among the other 317 discarded artifacts, 299 are not related to the context of our

RQ, and 18 are co-authored by the author of this work.16 Table 4.4 provides an overview

16Example [M38]: https://github.com/elixir-lang/elixir/pull/12952

4.1. Catalog of Refactorings for Elixir 82

Figure 4.2: Examples of unclear commits

of the retrieved and selected artifacts organized by types. The most retrieved and selected

artifact type was the Pull Request, where 24.7% of retrievals were selected. In contrast,

the selection rate of Files was only 12%.

Table 4.4: Overview of artifacts selection

Artifact Retrieved Selected

Source Code Files 25 3

Commits 118 31

Issues 106 26

Pull Requests 239 59

Total 488 119

11) Data Extraction and Validation (MSR): In order to extract sentences, com-

ments, or changes that characterize instances of refactorings among the 119 artifacts

selected in the previous step, the author of this work read and analyzed these artifacts

thoroughly. Unlike the process used to select artifacts, for extracting the refactorings,

the author not only analyzed the textual descriptions but also examined the code diffs to

understand better the details of the changes made in the codebase.

All extractions were later validated by the advisor of this thesis, seeking to reach

an agreement on whether they represent a refactoring or not. The author and his advisor

agreed on all the extractions, and only three artifacts out of 119 analyzed—M9, M15,

and M165—did not have any refactorings extracted. An example of an artifact with no

refactoring can be seen in M9. In this Issue, a developer describes a code transforma-

tion related to vertical alignment for multiline keyword lists,17 code comments, and pipe

indentation in Elixir:

“[I want to refactor the code] to make multiline keyword lists easier to read by aligning

the values into a column. [Without whitespaces] within the lines it is way harder to

read.”
17

https://hexdocs.pm/elixir/keywords-and-maps.html#keyword-lists

4.1. Catalog of Refactorings for Elixir 83

Although this description indicates a transformation that can improve code read-

ability, we understand that issues related to formatting style can be opinionated, as ev-

idenced by the discussions generated in M9, where divergent comments were made by

other developers. For this reason, it was discarded.

In total, 179 instances of 46 different refactorings were extracted in this mining

study. Among the 46 refactorings extracted, six are new compared to previous steps, thus

completing the catalog with a total of 82 refactorings.

12) Refactorings Classification: Finally, we analyzed all the refactorings in the cat-

alog and categorized them into four groups. This classification was done based on the

programming features used by the code transformations, as described in Table 4.5.

Table 4.5: Categories used to organize the catalog of refactorings for Elixir

Category Description # %

Traditional Refactoring strategies described on Fowler’s catalog [74] 25 30.5

Functional Refactorings using characteristic features of functional
languages (e.g., pattern matching, list comprehension,
pipelines, and higher-order functions)

32 39.0

Erlang-Specific Refactorings using features unique of the Erlang ecosys-
tem (e.g., OTP, typespecs, and behaviours)

11 13.4

Elixir-Specific Refactorings using specific features of this language
(e.g., with statements, Agents, Tasks, and Streams)

14 17.1

4.1.2 What are the refactoring strategies that occur in Elixir?

(RQ1)

Using our mixed methodological approach, we cataloged 82 refactorings for Elixir

found in discussions contained in 239 different sources. In the following subsections, we

describe the refactorings from the categories Functional, Elixir-Specific, Erlang-

Specific, and Traditional, respectively. A subset of these refactorings was chosen

by us to offer more detailed explanations in these subsections. This selection was made

because they collectively provide an overview of the primary features of their respective

categories, thus enabling a good comprehension of the entire catalog.

A comprehensive documentation of all 82 cataloged refactorings and their corre-

sponding code examples is available in our GitHub public repository [197].

4.1. Catalog of Refactorings for Elixir 84

4.1.2.1 Functional refactorings

This category had the highest number of Elixir-compatible refactorings cataloged,

with 32 (out of 82). Therefore, to improve the readability of this chapter, we chose to

present in Table 4.6 and Table 4.7 only those found in at least three different sources.

Consequently, the descriptions of the remaining 10 refactorings from this category can be

found in Table C.1 (Appendix C).

Pattern matching is a mechanism that checks whether a sequence of tokens follows a

specific pattern. It is often used in functional programming languages to destructure com-

plex data and perform different actions based on the patterns found in expressions [160].

In Elixir, pattern matching can be useful for assigning variables, unpacking values, and

acting as a control-flow mechanism [6]. The refactoring Introduce pattern match-

ing over a parameter was found in 23 sources, being one of the most extracted in

this category. It can be used to replace conditional structures (e.g., if, cond, and case)

that control the branches defined by a function’s parameter, as described by the author

of G16:

“[Let’s replace] the case statement conditional to pattern matching [...] Since Elixir and

Erlang let you define multiple function heads for functions with the same arity [multi-

clause function], we can rely on pattern matching on our arguments and move more

specific, conditional cases towards the top, leaving default and generic cases as the last

definitions [...]”

Listing 4.4 shows an example of code where Introduce pattern matching

over a parameter can be used. The fibonacci/1 function has three different branches

defined by the value of its single parameter: two for its base cases (lines 5 and 6) and one

for its recursive case (line 7). The control flow for these branches is managed by a case

statement (line 4).

Listing 4.4: Example of a code before Introduce pattern matching over a parameter

1 # Before refactoring:

2

3 def fibonacci(n) when is_integer(n) do

4 case n do

5 0 -> 0

6 1 -> 1

7 _ -> fibonacci(n-1) + fibonacci(n-2)

8 end

9 end

This refactoring can be used to replace the case statement by a pattern matching

over the parameter n, as shown in Listing 4.5. By performing this refactoring, fibonacci/1

4.1. Catalog of Refactorings for Elixir 85

Table 4.6: Functional Refactorings compatible with Elixir - Part 1

Refactoring Description #

Generalise a function def-
inition

Creates a new higher-order function to generalize different
functions that have equivalent expressions

23

Introduce pattern match-
ing over a parameter

Replaces conditional structures (e.g., if, unless, cond, case)
that control the branches of a function, with pattern-
matching and multi-clause functions

23

Turning anonymous into
local functions

Transforms identical anonymous functions defined at different
places (i.e., duplicated code) into a single local function—
a.k.a. lambda lifting

11

Nested list functions to
comprehension

Transforms nested calls to Enum.map/2 and Enum.filter/2 into
a list comprehension (i.e., for construct). This transforma-
tion avoids multiple traversals over a data structure and
intermediate lists—a.k.a. deforestation

10

Replace pipeline with a
function

Replaces a pipeline composed of Elixir’s built-in higher-
order functions (e.g., Enum.map/2 |> Enum.into/2) with a call
to one of these functions or by calling another built-in func-
tion with equivalent behavior (e.g., Enum.into/3)

10

From tuple to struct Transforms tuples into structs, which are data structures
that allow naming their fields, thus hiding some details of
the data representation

9

Merging multiple defini-
tions

Groups complementary functions, that have identical code
snippets, into a single function that returns a tuple. Each
original return provided by the merged functions will be
contained in different elements of the tuple returned by the
new function—a.k.a. tupling

8

Transform a body-
recursive function to
a tail-recursive

Converts a body-recursive function into a tail-recursive one,
thus improving runtime performance due to the BEAM’s
tail-call optimization

8

Transform to list compre-
hension

Transforms calls to Enum.map/2 or Enum.filter/2 into list com-
prehensions, thus creating a semantically equivalent code

8

Remove single pipe Replace a pipe that doesn’t involve multiple chained func-

tion calls (i.e., those that have only two members, with the
first being a variable or a zero-arity function, followed by a
non-zero-arity function call), with a call to the function that
was originally the last pipe member

7

#: Number of sources.

transforms into an Elixir multi-clause function, which is a group of functions with the

same name, where the first two clauses handle the base cases (lines 3 and 4), and the last

clause handles the recursive case (line 5), thus preserving the behavior of the code.

Listing 4.5: Example of a code after Introduce pattern matching over a parameter

1 # After refactoring:

2

3 def fibonacci(0), do: 0

4 def fibonacci(1), do: 1

5 def fibonacci(n) when is_integer(n) do

6 fibonacci(n-1) + fibonacci(n-2)

7 end

4.1. Catalog of Refactorings for Elixir 86

Table 4.7: Functional Refactorings compatible with Elixir - Part 2

Refactoring Description #

Closure conversion Transforms closures (i.e., anonymous functions that access
variables outside their scope) into functions that receive
those variables as parameters

6

Equality guard to pat-
tern matching

Replaces a temporary variable extracted from a struct field,
that is only used in an equality comparison in a guard, with
pattern matching

6

Improving list appending
performance

Replaces tail concatenations into a list with head concate-
nations, thus increasing the amount of shared memory be-
tween the intermediate lists

6

Introduce Enum.map/2 Replaces a list expression in which each element is gener-
ated by calling the same function with a call to the higher-
order function Enum.map/2

6

Splitting a definition Separates a recursive function by creating distinct recursive
functions, each responsible for individually generating a re-
spective element originally contained in a tuple

6

Struct field access elimi-
nation

Replaces direct access to fields of a struct with temporary
variables that hold values extracted from these fields

5

Converts guards to condi-
tionals

Replaces all guards in a multi-clause function with tradi-
tional conditionals (e.g., if or cond), creating only one clause
for the function

4

Widen or narrow defini-
tion scope

Widens the scope of an anonymous function defined inside
a named function, by transforming it into a new named
function. The reverse operation can also narrow the scope

4

Eliminate single branch Simplifies the code by eliminating control statements that
have only one possible flow

3

Function clauses to/from
case clauses

Transforms a multi-clause function into a single-clause one,
mapping function clauses into clauses of a case statement

3

Inline macro Replaces a macro with the code defined in its body. It can
be useful when a macro is created to solve problems that
functions or other pre-existing Elixir structures could solve

3

Replace function call
with raw value in a
pipeline start

Changes the beginning of a pipeline (i.e., sequence of |>),
extracting the initial parameter from the function call that
originally starts the pipe and incorporating this value at
the pipeline’s start

3

#: Number of sources.

Generalise a function definition also emerged from 23 sources, making

it the most extracted Functional refactoring in our SLR. This refactoring aims to use

higher-order functions—which are functions that take one or more functions as parameters—

to eliminate duplicated code among functions with equivalent expressions. To achieve this,

these functions can be generalized into a new one, which is later called within the bodies of

the redundant functions. Listing 4.6 illustrates an opportunity to apply this refactoring.

Although foo/1 and bar/1 transform lists differently, they share equivalent expressions.

The foo/1 changes a list in two stages: first, it squares each element of the list (line 4),

and then it multiplies each of them by three (line 5), resulting in a new list. Likewise,

4.1. Catalog of Refactorings for Elixir 87

bar/1 takes a list, doubles the value of each element (line 9), and then creates a new list

containing only those multiples of four (line 10).

Listing 4.6: Example of a code before Generalise a function definition

1 # Before refactoring

2

3 def foo(list) do

4 list_comprehension = for x <- list, do: x * x

5 Enum.map(list_comprehension, &(&1 * 3))

6 end

7

8 def bar(list) do

9 list_comprehension = for x <- list, do: x + x

10 Enum.filter(list_comprehension, &(rem(&1, 4) == 0))

11 end

Listing 4.7 shows the result of performing this refactoring. Since foo/1 and bar/1

have equivalent expressions, this refactoring generalizes both by creating a new function

generic/4 (line 3). Additionally, the bodies of foo/1 and bar/1 are replaced with calls to

generic/4 (lines 9 and 13). Note that generic/4 is a higher-order function because its last

three parameters are anonymous functions that are called only within its body (lines 4

and 5).

Listing 4.7: Example of a code after Generalise a function definition

1 # After refactoring

2

3 def generic(list, generator_op, trans_op, trans_args) do

4 list_comprehension = for x <- list, do: generator_op.(x, x)

5 trans_op.(list_comprehension, trans_args)

6 end

7

8 def foo(list) do

9 generic(list, &(&1 * &1), &Enum.map/2, &(&1 * 3))

10 end

11

12 def bar(list) do

13 generic(list, &(&1 + &1), &Enum.filter/2, &(rem(&1, 4) == 0))

14 end

A list comprehension is a syntactic construct capable of creating a list based on

existing ones. This feature is inspired by the mathematical notation for defining sets and

is very common in functional languages like Elixir.18 List comprehension simplifi-

cations is a refactoring technique that can be used to transform an Elixir list compre-

hension (i.e., for construct) into semantically equivalent calls to the functions Enum.map/2

or Enum.filter/2, thus improving the code readability by facilitating the visualization of

chains of functional transformations.

The function generic/4, shown in the code refactored by Generalise a function

definition (Listing 4.7), therefore presents an opportunity for applying the refactoring
18

https://hexdocs.pm/elixir/comprehensions.html

4.1. Catalog of Refactorings for Elixir 88

List comprehension simplifications, since a list comprehension is used to perform

the first of the two transformation steps (line 4). Listing 4.8 shows the result of performing

this refactoring, where the existing list comprehension was replaced by a call to the func-

tion Enum.map/2 (line 4). Furthermore, since the temporary variable list_comprehension is no

longer needed to store an intermediate list, it was removed (see Temporary variable

elimination in Table 4.10), and a pipe operator was used to pass the value returned by

Enum.map/2 as the first parameter of the anonymous function trans_op (line 5).

Listing 4.8: Example of a code after List comprehension simplifications

1 # After refactoring

2

3 def generic(list, generator_op, trans_op, trans_args) do

4 Enum.map(list, generator_op)

5 |> trans_op.(trans_args)

6 end

In Elixir, as well as in other functional languages like Erlang and Haskell, functions

are considered first-class citizens. This means they can be assigned to variables, allowing

for the creation of anonymous functions, also known as lambda [94]. Although anony-

mous functions are useful, they have less potential for reuse than local functions and

cannot be exported to other modules, for example. Turning anonymous into local

functions was found in 11 sources, ranking as the third most extracted Functional

refactoring. This refactoring strategy aims to transform identical anonymous functions

defined in different parts of the codebase into a single local function. Additionally, the

locations where the anonymous functions were originally implemented are updated to use

the new local function. This refactoring is also known as lambda lifting, as described by

the authors of the paper P6 [156]:

“This transformation is known as lambda lifting in functional languages [...] It trans-

forms a [lambda] to local function and changes the point where the [lambda] was previ-

ously applied to a function call [...]”

Listing 4.9 shows two different local functions—foo/1 and bar/1—defining the same

lambda fn x -> x * 2 end (lines 4 and 8), resulting in duplicated code.

Listing 4.9: Example of a code before Turning anonymous into local functions

1 # Before refactoring

2

3 def foo(list) do

4 Enum.map(list, fn x -> x * 2 end)

5 end

6

7 def bar(list) do

8 Enum.map_every(list, 3, fn x -> x * 2 end)

9 end

4.1. Catalog of Refactorings for Elixir 89

As shown in Listing 4.10, after performing Turning anonymous into local

functions, the lambda fn x -> x * 2 end was transformed into the local function double/1

(line 3), and the places where this lambda was defined were updated to use double/1 (lines

8 and 12). This transformation led to improvements in code maintainability and reusabil-

ity. Instead of having scattered identical anonymous functions throughout the codebase,

which can be harmful when code changes are needed, we extracted and concentrated this

duplicated code in just one place—double/1.

Listing 4.10: Example of a code after Turning anonymous into local functions

1 # After refactoring

2

3 def double(x) do

4 x * 2

5 end

6

7 def foo(list) do

8 Enum.map(list, &double/1)

9 end

10

11 def bar(list) do

12 Enum.map_every(list, 3, &double/1)

13 end

Convert nested conditionals to pipeline is a composite refactoring found

in two sources from our GLR and MSR studies. This type of refactoring, as described by

Brito et al. [32], is a code transformation of larger granularity, characterized by being a

sequence of atomic refactorings, such as the Traditional refactorings proposed in our

catalog. This Functional refactoring aims to eliminate nested conditionals used only

to control a sequence of function calls, replacing them with pipe operators. The interfaces

of functions involved in the pipeline are also modified by adding parameters and using

pattern matching.

Listing 4.11 exemplifies an opportunity to apply this refactoring. The function

update_game_state/3 uses nested conditional statements—if (line 5) and case (line 7)—to

ensure the safe invocation of the next function in the sequence: valid_move/2 (line 4),

players_turn/2 (line 6), and play_turn/3 (line 8).

Listing 4.11: Example of a code before Convert nested conditionals to pipeline

1 # Before refactoring:

2

3 defp update_game_state(%{status: :started} = state, index, user_id) do

4 {move, _} = valid_move(state, index)

5 if move == :ok do

6 players_turn(state, user_id)

7 |> case do

8 {:ok, marker} -> play_turn(state, index, marker)

9 other -> other

10 end

11 else

4.1. Catalog of Refactorings for Elixir 90

12 {:error, :invalid_move}

13 end

14 end

Listing 4.12 shows the result of applying Convert nested conditionals to

pipeline. The refactored code continues to ensure the safe invocation of the next function

in the sequence, as in the previous version, but it reduces the number of lines of code and

improves readability. To maintain the same code behavior, this refactoring increased the

arity of players_turn/2 and play_turn/3, transforming them into players_turn/3 (line 6) and

play_turn/4 (line 7), respectively. The additional parameter in each of these functions is

meant to receive the returns of the previous functions in the pipeline—which are in the

Elixir’s patterns {:ok, _} or {:error, _}—and then guides their internal flows.

Listing 4.12: Example of a code after Convert nested conditionals to pipeline

1 # After refactoring:

2

3 defp update_game_state(%{status: :started} = state, index, user_id) do

4 state

5 |> valid_move(index)

6 |> players_turn(state, user_id)

7 |> play_turn(state, index, marker)

8 end

Finding #1: Through three distinct research methods, we found 32 functional refac-

torings compatible with Elixir. This category holds the highest number of refactorings

in the catalog, comprising 39% of them.

4.1.2.2 Elixir-specific refactorings

To the best of our knowledge, this is the first study that catalogs Elixir-Specific

refactorings. Unlike the other 68 refactorings that compose our catalog, the 14 refactor-

ings in this category perform code transformations that depend on programming features

unique to this language, and therefore are not adaptations of refactorings initially pro-

posed for other contexts. Due to these factors, in this section, we chose to present and

describe all the Elixir-Specific refactorings in Table 4.8.

The with statement is an Elixir-specific conditional statement. This conditional is

used for pattern matching chaining. It compares the results of several expressions with

patterns, returning a predefined value if all patterns match, or the result of the first

expression that does not match a pattern [94]. Listing 4.13 presents an example of using

4.1. Catalog of Refactorings for Elixir 91

a with statement containing two clauses (lines 1 and 2), where the results of expression_1

and expression_2 are respectively compared with pattern_1 and pattern_2. If the results

of these two expressions match their respective patterns, the with statement will return

predefined_value (line 3); otherwise, it will return the result of the expression that did not

match.

Listing 4.13: Example of a "with" conditional statement

1 with pattern_1 <- expression_1,

2 pattern_2 <- expression_2 do

3 predefined_value

4 end

Pipeline using "with" is a transformation that depends on the with statement.

When conditional statements, such as if..else and case, are nested to control sequences of

function calls, the code’s readability can become compromised. In these situations, we can

replace nested conditionals with a kind pipeline using a with statement, thus performing

pattern matching at each function call and interrupting the pipeline if any pattern does

not match.

As already shown in Listing 4.11, the function update_game_state/3 uses nested con-

ditional statements to control a sequence of calls to valid_move/2, players_turn/2, and

play_turn/3. Although update_game_state/3 can be refactored using Convert nested

conditionals to pipeline, as presented in Listing 4.12, this function can also be

refactored using Pipeline using "with", as these two strategies can be applied in the

same opportunities.

Listing 4.14 shows the result of refactoring update_game_state/3 using Pipeline us-

ing "with". Using this transformation, the calls to valid_move/2 (line 4), players_turn/2

(line 5), and play_turn/3 (line 6) were chained using pattern matching in each of the three

clauses of a with statement, thus eliminating the need to use nested conditional state-

ments. Additionally, unlike the transformation using Convert nested conditionals

to pipeline (Listing 4.12), Pipeline using "with" does not require modifications in

the interfaces of the functions involved in the transformation.

Listing 4.14: Example of a code after Pipeline using "with"

1 # After refactoring:

2

3 defp update_game_state(%{status: :started} = state, index, user_id) do

4 with {:ok, _} <- valid_move(state, index),

5 {:ok, marker} <- players_turn(state, user_id),

6 {:ok, new_state} <- play_turn(state, index, marker) do

7 {:ok, new_state}

8 else

9 (other -> other)

10 end

11 end

4.1. Catalog of Refactorings for Elixir 92

Table 4.8: Elixir-Specific Refactorings

Refactoring Description #

Pipeline using "with" Replaces the nested use of conditional statements to control
a sequence of function calls, with a kind of pipeline using a
with statement

7

Alias expansion Expands multi-alias instructions fused into one (e.g., alias

Foo.Bar.{Baz, Boom}), transforming them into separate alias
instructions (e.g., alias Foo.Bar.Baz and alias Foo.Bar.Boom)

5

Transform nested "if"
statements into a "cond"

Transforms multiple nested if statements, used to compen-
sate for the absence of the else if construct in Elixir, into
a cond statement

5

Explicit a double boolean
negation

This refactoring replaces a double boolean negation with a
new helper multi-clause function

2

Moving "with" clauses
without pattern matching

A with statement can be defined using an initial or final
clause without pattern matching. This refactoring can: (1)
move outside an initial clause that doesn’t match anything,
placing it just before the with; or (2) move into the body of
a with a final clause that doesn’t match anything

2

Pipeline for database
transactions

Converts an anonymous function used in a
Ecto.Repo.transaction/2 call, into an Ecto.Multi instance

2

Transform "if" statements
using pattern matching
into a "case"

This refactoring transforms an if statement that uses pat-
tern matching, into a case conditional statement

2

Default value for an ab-
sent key in a map

Replaces a Map.has_key?/2 call together an if...else, with
only a Map.get/3 call. This can be used when we expect a
Map to have a certain key, and if not, we need to provide a
default value

1

Defining a subset of a map Replaces the manual creation of a Map subset, performed by
accessing individually each of the desired key/value pairs,
with a call to Map.take/2

1

Generalise a process ab-
straction

Transforms Task or Agent process abstractions into GenServer 1

Modifying keys in a map Replaces the combined usage of Map.get/2, Map.put/2, and
Map.delete/2 with a Map.new/2 call and a multi-clause lambda,
so changing a Map’s key name, but keeping it pointing to the
same value

1

Remove redundant last
clause in "with"

This refactoring removes a redundant last clause in with

and replaces the predefined value to be returned by this
statement with the expression that was checked in the re-
dundant clause

1

Replace "Enum" collec-
tions with "Stream"

Replaces the use of the Enum module with the Stream module
when multiple operations in large collections are performed
in a pipeline

1

Simplifying Ecto schema
fields validation

Replaces a list of Ecto schema fields created manually, used
for validations (i.e., validate_required/3), with a call to the
Ecto __schema__/1

1

#: Number of sources.

When the last clause of a with statement is composed of a pattern identical to

the predefined value to be returned by this conditional in case all checked patterns

4.1. Catalog of Refactorings for Elixir 93

match, this clause is redundant. For example, the with statement within the function

update_game_state/3, in Listing 4.14, has a redundant last clause, since the tuple {:ok,

new_state} is used both as the pattern of the last clause (line 6) and as the return value

of the with (line 7). This is therefore an opportunity to perform the refactoring Remove

redundant last clause in "with".

As shown in Listing 4.15, this refactoring removes the redundant last clause, leaving

only two clauses in the with statement (lines 4 and 5). Additionally, it also replaces the

predefined return value of this conditional statement with a call to play_turn/3 (line 6),

which was the expression previously checked in the removed redundant clause. This

transformation eliminates duplicated code while maintaining the code behavior.

Listing 4.15: Example of a code after Remove redundant last clause in "with"

1 # After refactoring:

2

3 defp update_game_state(%{status: :started} = state, index, user_id) do

4 with {:ok, _} <- valid_move(state, index),

5 {:ok, marker} <- players_turn(state, user_id) do

6 play_turn(state, index, marker)

7 else

8 (other -> other)

9 end

10 end

Elixir provides different types of process abstractions to create concurrent systems.

While Task
19 and Agent

20 are abstractions with specific purposes, GenServer
21 is a more

generic one. Thus, Generalise a process abstraction is a refactoring that aims to

transform Task or Agent instances into GenServer when these specific-purpose abstractions

are used beyond their suggested purposes. In M26, one of the participants in the discussion

that occurred in this Issue found in our MSR study described an opportunity to apply

this refactoring:

“[...] If you need to monitor [a process], it is better to upgrade the Agent to a GenServer[...]”

Listing 4.16 presents another opportunity for using Generalise a process ab-

straction. DatabaseServer is a Task used beyond the suggested purpose of this abstrac-

tion. According to Jurić [94], a Task should be used only to execute actions without

communication with other processes, since there are other process abstractions in Elixir

with simpler interfaces to perform message exchange. Furthermore, Task is not designed

to act as a long-running server, so these processes should only run a job and stop when

the work is done. In Listing 4.16, this purpose is violated in two ways: besides the loop/0

and get/2 functions exchanging messages with other processes (lines 13 and 19), the work

19
https://hexdocs.pm/elixir/Task.html

20
https://hexdocs.pm/elixir/Agent.html

21
https://hexdocs.pm/elixir/GenServer.html

4.1. Catalog of Refactorings for Elixir 94

performed by this Task is implemented in an infinite loop (line 7), thus this process never

stops.

Listing 4.16: Example of a code before Generalise a process abstraction

1 # Before refactoring:

2

3 defmodule DatabaseServer do

4 use Task

5

6 def start_link() do

7 Task.start_link(&loop/0)

8 end

9

10 defp loop() do

11 receive do

12 {:run_query, caller, query_def} ->

13 send(caller, {:query_result, run_query(query_def)})

14 end

15 loop()

16 end

17

18 def get(server_pid, query_def) do

19 send(server_pid, {:run_query, self(), query_def})

20 receive do

21 {:query_result, result} -> result

22 end

23 end

24 end

The result of this refactoring is presented in Listing 4.17. By transforming Databas-

eServer into a GenServer, which is a abstraction that remains alive waiting to serve other

processes when it receives messages from them, the behavior of the Task was maintained.

Furthermore, the message exchanges included in the actions provided by this abstraction

are also preserved after the refactoring; however, they are implicit in the GenServer.call/2

call (line 11) and in the implementation of the handle_call/3 callback (line 15), thus im-

proving the code readability.

Listing 4.17: Example of a code after Generalise a process abstraction

1 # After refactoring:

2

3 defmodule DatabaseServer do

4 use GenServer

5

6 def start_link() do

7 GenServer.start_link(__MODULE__, nil)

8 end

9

10 def get(server_pid, query_def) do

11 GenServer.call(server_pid,{:run_query, query_def})

12 end

13

14 @impl true

15 def handle_call({:run_query, query_def}, _, state) do

4.1. Catalog of Refactorings for Elixir 95

16 {:reply, run_query(query_def), state}

17 end

18 end

Since Elixir does not have an elseif statement, an alternative for this absence can

be the use of nested if..else statements. However, this can be a verbose and not very

maintainable solution, as shown by the classify_bmi/2 function in Listing 4.18.

Listing 4.18: Example of a code before Transform nested "if" statements into a "cond"

1 # Before refactoring:

2

3 def classify_bmi(weight, height) do

4 {status, bmi} = calculate_bmi(weight, height)

5

6 if status == :ok do

7 if bmi < 18.5 do

8 "Underweight"

9 else

10 if bmi < 25.0 do

11 "Normal weight"

12 else

13 if bmi < 30.0 do

14 "Overweight"

15 else

16 "Obesity"

17 end

18 end

19 end

20 else

21 "Error in BMI calculation: #{bmi}"

22 end

23 end

Transform nested "if" statements into a "cond" is a refactoring found

in five sources from our GLR and MSR studies. It aims to improve code readability

since Elixir has a specific statement called cond that can be used as an alternative to a

sequence of nested if..else statements. Listing 4.19 shows the refactored code, where a

cond statement is used in the classify_bmi/2 function to evaluate four different expressions

(lines 8 to 11). This new implementation returns a string when the first expression with

a result equal to true is found, thus maintaining the same behavior as the version before

the refactoring.

Listing 4.19: Example of a code after Transform nested "if" statements into a "cond"

1 # After refactoring:

2

3 def classify_bmi(weight, height) do

4 {status, bmi} = calculate_bmi(weight, height)

5

6 if status == :ok do

7 cond do

8 bmi < 18.5 -> "Underweight"

4.1. Catalog of Refactorings for Elixir 96

9 bmi < 25.0 -> "Normal weight"

10 bmi < 30.0 -> "Overweight"

11 true -> "Obesity"

12 end

13 else

14 "Error in BMI calculation: #{bmi}"

15 end

16 end

Finding #2: To the best of our knowledge, we are the first to investigate specific

refactorings for Elixir. Particularly, through sources from our GLR and MSR studies,

we cataloged 14 refactoring specific to this language (17.1% of the catalog).

4.1.2.3 Erlang-specific refactorings

This category had the lowest number of refactorings cataloged by us, 11 (out of

82). Therefore, we chose to present and describe all the Erlang-Specific refactorings

in Table 4.9.

Despite being dynamically-typed languages, Erlang and Elixir offer typespecs,22

a feature for specifying or creating the types of a function’s return value and parame-

ters. Although the compiler never uses these types specifications to optimize or modify

code, they provide documentation, enhancing code readability and enabling tools such

as Dialyzer23 to perform static code analysis to detect type inconsistencies and potential

bugs [94]. Add type declarations and contracts is a refactoring found in seven

sources from our SLR and MSR studies, which uses typespecs to create custom data types

by naming recurring data structures in the codebase, as described in P22 [157]:

“Type declarations can give convenient names to key data structures which can then be

used to document function and module interfaces. Such type information can then be

used by Dialyzer to detect interface violations without occurring any runtime overhead

[...]”

Listing 4.20 presents the definition of set_background/1 (line 4), which is an oppor-

tunity to apply Add type declarations and contracts. According to the type

specification on line 3, this function receives a tuple composed of three integer values as

a parameter and returns a value of the atom type.

22
https://hexdocs.pm/elixir/typespecs.html

23
https://www.erlang.org/doc/man/dialyzer.html

4.1. Catalog of Refactorings for Elixir 97

Listing 4.20: Example of a code before Add type declarations and contracts

1 # Before refactoring:

2

3 @spec set_background({integer(), integer(), integer()}) :: atom()

4 def set_background(rgb) do

5 do_something()

6 end

Table 4.9: Erlang-Specific Refactorings compatible with Elixir

Refactoring Description #

Typing parameters and
return values

Uses Erlang/Elixir typespecs in a function definition to spec-
ify the types of its parameters and its return value

8

Add type declarations
and contracts

Creates custom data types using Erlang/Elixir typespecs,
thereby naming recurring data structures in the codebase

7

From meta to normal
function application

Replaces calls to Kernel.apply/3 with calls to functions that
have modules, names, and parameters defined at compile time

6

Introduce processes Introduces new concurrent processes to achieve a better map-
ping between parallel processes and parallel activities of the
problem being solved

5

Remove processes Removes unnecessary concurrent processes and replaces
them with Elixir regular modules

5

Moving error-handling
mechanisms to supervision
trees

Removes error-handling mechanisms in a process
(i.e., try..rescue) and adds this process to a supervi-
sion tree, thereby providing the non-defensive programming
style—a.k.a. Let it crash

3

Add a tag to messages Identifies groups of messages exchanged between processes
by adding tags. This identification allows for different treat-
ments of received messages

1

Behaviour extraction Extracts a function that repeats in different modules but serves
specific roles in each of them. This function is then abstracted
into an Erlang/Elixir behaviour, thus standardizing a contract
to be followed by all modules that implement it

1

Behaviour inlining In Erlang/Elixir, a behaviour is an interface that a module
(i.e., behaviour instance) can implement to define functions.
This refactoring removes callbacks in a behaviour instance,
moving the functions that implement them to the behaviour

definition

1

Register a process Assigns a user-defined name to a process ID and use that
name instead of the process ID in messages exchanged be-
tween processes

1

Remove unnecessary calls
to length/1

Replaces unnecessary calls to length/1 in guard clauses with
pattern matching

1

#: Number of sources.

Although the function set_background/1 presented in Listing 4.20 is already docu-

mented using a @spec directive (line 3), this documentation can be improved by defining

a custom data type, as shown in Listing 4.21. Since the tuple received as a parameter by

set_background/1 represents a color in the RGB standard, the directives @typedoc (line 3)

and @type (line 6) were used to document and define a new type color(), respectively. This

4.1. Catalog of Refactorings for Elixir 98

new type then replaces the explicit use of the tuple in the specification of set_background/1

(line 8).

Listing 4.21: Example of a code after Add type declarations and contracts

1 # After refactoring:

2

3 @typedoc """

4 A tuple with three integer elements between 0..255

5 """

6 @type color() :: {red :: integer(), green :: integer(), blue :: integer()}

7

8 @spec set_background(color()) :: atom()

9 def set_background(rgb) do

10 do_something()

11 end

In Erlang and Elixir, the function Kernel.apply/3 can be used to dynamically make

a runtime decision about which function to call. This function takes as parameters the

module name where the dynamically called function is defined, an atom containing the name

of this function, and a list containing the arguments to be passed to the called function.

This dynamic call pattern is known as MFA—module, function, and arguments [94]. List-

ing 4.22 shows an example of using the Kernel.apply/3 to dynamically call the function

Enum.sort/1.

Listing 4.22: Example of a code before From meta to normal function application

1 # Before refactoring:

2

3 Kernel.apply(Enum, :sort, [[3, 4, 1, 2]])

From meta to normal function application is a refactoring found in six

sources across all three of our studies, which allows replacing the use of Kernel.apply/3

with a direct call to a function that has the module, name, and argument list defined

at compile time, as shown in Listing 4.23. This refactoring improves code readability by

explicitly stating which functions are being called. Therefore, it should be used whenever

Kernel.apply/3 is unnecessarily employed to perform function calls that do not depend on

runtime decisions.

Listing 4.23: Example of a code after From meta to normal function application

1 # After refactoring:

2

3 Enum.sort([3, 4, 1, 2])

Another refactoring—–Introduce processes—–was found in five sources from

our SLR and MSR studies. In P38 [106], the authors describe the motivation for applying

this refactoring as follows:

“[...] Introducing concurrent processes so as to achieve a better mapping between the

parallel processes and the truly parallel activities [...]”

4.1. Catalog of Refactorings for Elixir 99

Listing 4.24 shows a code where the use of Introduce processes can be ben-

eficial. The function start/0 (line 6) starts a process of type GenServer and registers it

with the name __MODULE__ (i.e., Todo.Database) (line 7). This ensures that there is only

one instance of this process throughout the system. Since this process is responsible for

providing access to the system’s database for all its clients, bottlenecks can occur if a large

number of calls to the function store/2 (line 10) occur simultaneously. This can lead to an

accumulation of requests in the message queue of this single process, potentially reaching

a point where it cannot handle new calls of store/2 before the previous ones finish, thus

reducing the system’s responsiveness.

Listing 4.24: Example of a code before Introduce processes

1 # Before refactoring:

2

3 defmodule Todo.Database do

4 use GenServer

5

6 def start do

7 GenServer.start(__MODULE__, nil, name: __MODULE__) #<-- Singleton!

8 end

9

10 def store(key, data) do

11 GenServer.cast(__MODULE__, {:store, key, data})

12 end

13

14 @impl true

15 def handle_cast({:store, key, data}, state) do

16 key

17 |> file_name()

18 |> File.write!(:erlang.term_to_binary(data))

19

20 {:noreply, state}

21 end

22 end

Since the calls to store/2 are handled by the implementation of the callback han-

dle_cast/2, as shown by the tuple {:store, key, data} received as its first parameter (line

15), we can refactor this callback. Listing 4.25 shows the resulting code of this refactor-

ing, where a new Task process has been introduced in each call to handle_cast/2 (line 9),

allowing each call to store/2 to be handled by a different process executing concurrently,

thus improving scalability.

Listing 4.25: Example of a code after Introduce processes

1 # After refactoring:

2

3 defmodule Todo.Database do

4 use GenServer

5 ...

6

7 @impl true

8 def handle_cast({:store, key, data}, state) do

4.1. Catalog of Refactorings for Elixir 100

9 Task.start(fn -> #<-- Introduced process!

10 key

11 |> file_name()

12 |> File.write!(:erlang.term_to_binary(data))

13 end)

14

15 {:noreply, state}

16 end

17 end

Finding #3: Among the 82 refactorings cataloged, 11 belong to this Erlang-specific

category (13.4%), which has the fewest representatives.

4.1.2.4 Traditional refactorings

Overall, we cataloged 25 Traditional refactorings compatible with Elixir. There-

fore, for the same reason stated in Subsection 4.1.2.1, we chose to present in Table 4.10

only those found in at least three sources. Due to this, eight refactorings from this category

were not included in these tables; however, their descriptions can be found in Table C.2

in Appendix C of this work.

The refactoring found in the highest number of distinct sources was Rename an

identifier. As shown in Table 4.10, it was found in 73 sources from both our SLR,

GLR, and MSR studies. According to Murphy-Hill et al. [131] and Golubev et al. [79],

this refactoring is the most frequently performed by developers. The significant number

of sources extracting indicates that this fact can also be observed in our work. In Elixir,

besides modules and functions, identifiers can refer to macros, variables, map/struct fields,

processes, and others, as shown in the variations of this refactoring in Table 4.1.

Extract function emerged from 69 sources, making it the second most ex-

tracted refactoring among all in the catalog, highlighting the importance of this tradi-

tional strategy also in Elixir. In M12, the author of the Issue described performing the

refactorings Rename an identifier and Extract function in an Elixir app:

“During refactoring of an Umbrella app I was extracting some functions to a helper

library [...] I renamed Umbrella.Child.MyStruct to MyLib.MyStruct [...]”

Listing 4.26 illustrates an opportunity to perform Extract function. The

function ticket_booking/5 is responsible for booking an airline ticket for a passenger. All

the main steps of the booking are done through a sequence of operations chained by

pipe operators (lines 4 to 7). After payment confirmation (line 7), the booking process is

4.1. Catalog of Refactorings for Elixir 101

Table 4.10: Traditional Refactorings compatible with Elixir

Refactoring Description #

Rename an identifier Changes the name of an identifier such as a function or module

to a more meaningful one for humans
73

Extract function Extracts a code from a function and creates a new function

with the extracted code, giving it a name that clearly ex-
plains its purpose. In the original function, the extracted
code block is replaced by a call to the new function

69

Folding against a func-
tion definition

Removes duplicated code, replacing a set of expressions with
a call to an existing function that performs the same as the
duplicated code

34

Moving a definition Moves a definition (e.g., function, or macro) between modules 29

Add or remove a parame-
ter

Used when it is necessary to request additional informa-
tion from the callers of a function or when some information
passed by the callers is no longer necessary

26

Inline function This refactoring replaces all calls to a function with its body
and removes the function

26

Remove dead code Eliminates code definitions that are not being used 24

Introduce a temporary
duplicate definition

Temporarily duplicates a definition when we want to test a
modification. Once this new code version is approved, it will
replace the original one

21

Grouping parameters in
tuple

Groups a number of a function’s parameters into a tuple 12

Extract expressions Extracts unavoidably large and hard-to-understand expres-
sions into smaller parts and assigns them to variables

10

Reorder parameter Reorders parameters of a function that are defined in an order
that doesn’t group similar semantic concepts

10

Remove import attributes Removes the import directives in a module, replacing all
calls to imported functions with fully-qualified name calls
(i.e., Module.function(args))

8

Remove nested condi-
tional statements in
function calls

Replaces nested conditional statements (e.g., case), used as a
parameter of a function call, with strict equality comparisons
(i.e., ===)

6

Extract constant Replaces occurrences of magic numbers directly in expres-
sions with a constant (i.e., module attribute)

5

Introduce import Replaces fully-qualified name calls of functions from other
modules (i.e., Module.function(args)) with calls that use only
the imported names

5

Splitting a large module Splits a large module into several new ones 5

Temporary variable elimi-
nation

Removes variables solely responsible for storing results to be
returned by a function or intermediate values

3

#: Number of sources.

finalized by returning a tuple containing reservation data that must be informed to the

passenger. We can also observe that lines 9 to 11 are responsible for presenting a report

with this data. These lines were preceded by a comment attempting to explain their

purposes, highlighting that these expressions are misplaced within ticket_booking/5.

4.1. Catalog of Refactorings for Elixir 102

Listing 4.26: Example of a code before Extract function

1 # Before refactoring:

2

3 def ticket_booking(passenger, air_line, date, credit_card, seat) do

4 {company, contact, cancel_policy} = check_availability(air_line, date)

5 |> docs_validation(passenger)

6 |> select_seat(seat)

7 |> payment(credit_card)

8 #print booking report

9 IO.puts("Booking made at the company: #{company}")

10 IO.puts("Any doubt, contact: #{contact}")

11 IO.puts("For cancellations, see company policies: #{cancel_policy}")

12 end

The refactored version of this code is presented in Listing 4.27. In this code, a new

function report/1 receives a tuple as a parameter (line 3) and lines 9 to 11 from Listing 4.26

were moved to this new function (lines 4 to 6). Additionally, the body of ticket_booking/5

was updated to include a call to report/1 (line 14).

Listing 4.27: Example of a code after Extract function

1 # After refactoring:

2

3 def report({company, contact, cancel_policy} = confirmation) do

4 IO.puts("Booking made at the company: #{company}")

5 IO.puts("Any doubt, contact: #{contact}")

6 IO.puts("For cancellations, see company policies: #{cancel_policy}")

7 end

8

9 def ticket_booking(passenger, air_line, date, credit_card, seat) do

10 check_availability(air_line, date)

11 |> documents_validation(passenger)

12 |> select_seat(seat)

13 |> payment(credit_card)

14 |> report() # extracted function call!

15 end

Analyzing specifically the sources used to extract the Traditional refactorings,

we can conclude that 165 (out of 239) analyzed sources contain refactorings of this category

(69%). When comparing the results obtained from each refactoring prospecting method,

we observe that 21 (out of 25) of our traditional refactorings (84%) were extracted in the

SLR study, 12 were obtained in the GLR—three of which were extracted solely in this

study—and 15 were found in artifacts from the MSR study.

Finding #4: Traditional refactorings are also relevant in modern functional lan-

guages like Elixir, as 30.5% of our catalog belongs to this category, the second with

more refactorings.

4.1. Catalog of Refactorings for Elixir 103

4.1.3 Threats to Validity

Construct Validity: The main threat to construct validity concerns the format of the

query strings used in our mixed methodological approach, which comprises a systematic

literature review (SLR), a grey literature review (GLR), and a mining software repository

(MSR) study. Since the combination of search terms is crucial in determining the quality of

results, in our SLR, we followed the procedures proposed by Kitchenham and Charters [99]

to define relevant search terms, thus mitigating the risk of important papers for our

research not being found or retrieving many articles out of context. For the same reason,

we adhered to the guidelines proposed by Garousi et al. [76] and Dabic et al. [56] to

define the query string used in our GLR and MSR studies, respectively, ensuring that

the search terms and their synonyms align with the objectives of our research and do

not undermine the results. Despite our care in selecting important keywords to compose

the query strings, there is a threat that documents discussing refactorings by referring to

them only by their names (e.g., Extract function) may not have been retrieved by

our searches. However, we believe this risk is small because in the survey with developers

(Section 4.2), we did not receive any comments about missing refactorings.

Conclusion Validity: Considering that documents retrieved in a GLR and an MSR

study are not peer-reviewed, there is a risk related to the quality of their contents. To

mitigate this risk, in our GLR, we established validity criteria to be applied during the

document selection process. Therefore, the author and the advisor of this thesis conducted

an initial review of all the retrieved documents, selecting only those that are relevant and

authored by professionals who are actively engaged in or have expertise with Elixir. This

same risk was mitigated in the MSR study by limiting the searches to only the 10 most

popular Elixir repositories on GitHub. Since these repositories have large and active

communities regulating their activities, we understand that all artifacts present in them

have their quality validated.

Internal Validity: Threats to internal validity may be related to methodological deci-

sions that lead to biased results. In our work, the entire process of analysis, extraction,

classification, and adaptation of refactoring strategies for Elixir was manual, which can

be subjective. The author and the advisor of this thesis participated in these activities

to prevent these qualitative decisions from representing only one researcher’s opinion, po-

tentially biased due to their background. Thus, all steps of selection, data extraction,

classification, and mapping to Elixir were independently validated by the advisor of this

thesis, therefore minimizing individual perception biases. Hence, the decisions made in

these steps reflected the consensus of the author and his advisor. Another threat to in-

ternal validity concerns possible missed refactorings in the artifacts analyzed in our MSR

4.2. Catalog Validation 104

study. As explained in step 10 of Section 4.1.1, we only analyzed the titles and tex-

tual descriptions of Commits and Pull Requests during artifact selection; however,

some of these artifacts have titles and descriptions that merely indicate that a refactoring

occurred without providing information on the actual code transformations performed.

Although there is a risk that some refactorings with potential for cataloging were missed,

we claim this risk is not relevant because our data suggests that the mixed methodological

approach used in this work was close to saturation. While our MSR study had the highest

number of documents retrieved in searches (488 artifacts), it also contributed the least to

adding new refactorings to the catalog (six out of 82).

External Validity: The threat to external validity concerns the generalizability of our

findings. Considering that there are other digital libraries of scientific papers beyond the

four utilized in our SLR, there is a risk that important works may not have been retrieved

in our research. To mitigate this threat, we incorporated a snowballing step into our

methods, enabling the retrieval of relevant papers published in a broader range of digital

libraries. Moreover, in our MSR study, we selected only 10 repositories to investigate

refactorings for Elixir. This is a small number since currently there are around 93K Elixir

repositories on GitHub, so our dataset may not fully represent the entire population of

Elixir-based projects. However, it is important to emphasize that the refactorings were

also extracted from other sources (SLR and GLR) and then validated through a survey

with developers (Section 4.2). In this survey, we did not receive any comments about

missing refactorings.

4.2 Catalog Validation

In this section, we introduce the second study of this chapter, in which we surveyed

Elixir developers to validate the catalog of refactorings outlined in Section 4.1. Specifically,

we gathered quantitative data using this instrument to address the following research

question:

RQ2. What are the developers’ perceptions of refactorings in Elixir? In this

RQ, we aim to understand, from the developers’ perspective, the prevalence and relevance

of each refactoring in real-world Elixir projects. The way we define relevance, as explained

to survey participants, pertains to how a refactoring strategy can potentially improve the

maintainability, comprehensibility, and evolution of Elixir code. The prevalence refers to

the frequency with which each refactoring is performed in Elixir codebases.

Since this validation entails the active involvement of human subjects, prior to

4.2. Catalog Validation 105

conducting the survey, it underwent evaluation and approval by the Research Ethics Com-

mittee at the Federal University of Minas Gerais, Brazil (CAAE: 76454823.8.0000.5149).

We dedicate Section 4.2.1 to outline the methodology employed in designing, con-

ducting, and analyzing our survey results. In Section 4.2.2, we detail and discuss upon

the findings regarding the prevalence and relevance of refactorings in Elixir. Finally, Sec-

tion 4.2.3 addresses potential threats to the validity of our study and what measures we

took to mitigate them.

4.2.1 Survey Design

While our process of cataloging refactorings for Elixir also involved analyzing doc-

uments and artifacts created by developers working with this language, we did not have

direct contact with these developers during this process. This limitation prevented us

from gaining a broader understanding of the motivations behind each code transforma-

tion and the extent of the impacts caused by these changes on code quality. Additionally,

the refactorings identified in our SLR were all adaptations of code transformations per-

formed in other functional languages, so we did not have confirmation of their impacts

on real-world Elixir projects. Figure 4.3 summarizes the steps we followed to conduct a

survey that allowed us to have contact with developers to elucidate these issues. We also

elaborate on these steps in the following paragraphs.

Figure 4.3: Overview of survey on refactorings for Elixir

1) Survey Structure: Our survey questionnaire commenced by outlining the study’s ob-

jectives, introducing the research team, explaining the voluntary nature of participation,

and obtaining participants’ consent (Appendix B.1). The questions posed to participants

during this study are available in our replication package [201] and in Appendix B.2.

4.2. Catalog Validation 106

Specifically, these questions were grouped into the following topics:

– Demographics : First, we inquired about the participant’s geographical location,

their years of experience with Elixir, and the number of Elixir projects they have

been involved in.

– Perceptions on refactorings for Elixir : Afterward, we introduced a compilation of

refactorings tailored for Elixir. This compilation comprised explanations of these

transformations and illustrative code snippets depicting the code before and after

each refactoring. We then inquired about the frequency with which participants

encounter each refactoring in their Elixir projects and the positive impacts they

believe these refactorings have on these projects. Participants responded using a

scale ranging from one (very low) to five (very high). To prevent any bias from the

presentation order of the refactorings, they were displayed in random order. Fur-

thermore, to maintain the integrity of our findings, questions regarding developers’

perceptions of refactorings were optional, granting participants the freedom to skip

questions related to transformations they were unfamiliar with.

– Final remarks : At the end of the questionnaire, participants were given the option

to leave comments, justifying their responses.

Given that it would be time-consuming and tiring for participants to provide their

perceptions on each of the 82 refactorings cataloged for Elixir, we chose to create five dif-

ferent versions of the survey, with each version asking participants about their perceptions

of a maximum of 17 refactorings. Therefore, each refactoring was included in just one

survey version, and the choice of refactorings included in each version was randomized.

The distribution of refactorings across the survey versions is shown in Table 4.11.

Table 4.11: Survey versions template

Version # Refactorings by type

A (5 Traditional) + (6 Functional) + (2 Erlang-Specific) + (3 Elixir-Specific)

B (5 Traditional) + (6 Functional) + (2 Erlang-Specific) + (3 Elixir-Specific)

C (5 Traditional) + (6 Functional) + (2 Erlang-Specific) + (3 Elixir-Specific)

D (5 Traditional) + (7 Functional) + (2 Erlang-Specific) + (3 Elixir-Specific)

E (5 Traditional) + (7 Functional) + (3 Erlang-Specific) + (2 Elixir-Specific)

A distinct Google form was utilized to create each survey version. Moreover,

we developed a simple script—available in our replication package [201]—that yields a

random number between zero and four. Based on this number, the script also forwards

the participants to the survey version they should answer to. This survey structure is

similar to one used in our previous study on code smells for Elixir (Chapter 3).

4.2. Catalog Validation 107

2) Participants Recruitment: To gather findings that represent the perceptions of a

diverse group of developers, we prioritized recruiting a substantial number of Elixir de-

velopers with different levels of experience in this language, diverse cultural backgrounds,

and varying number of Elixir projects they were working on.

Our recruitment process followed the same approach used in our previous study

on code smells for Elixir (Chapter 3), which was based on promotion across social media

platforms. Initially, we posted an invitation on Twitter/X for Elixir developers to partic-

ipate in our survey and encouraged them to share it within their networks. We utilized

in this post popular hashtags from the Elixir developer community (i.e., #MyElixirSta-

tus and #ElixirLang) to maximize visibility. Concurrently, we promoted the survey on

the Elixir Forum,24 the official discussion platform for Elixir developers. Additionally,

throughout the two-week survey period, we regularly posted invitations on other commu-

nication channels of the language, including DevTalk,25 Discord,26 LinkedIn,27 Reddit,28

Slack,29 and Telegram.30

We concluded the survey with 151 responses after two weeks. The recruited partic-

ipants are spread across 42 countries spanning all continents. As depicted in Figure 4.4,

most of our respondents are located in America (46.5%) and Europe (41%), with the

United States (22.9%) and Canada (11.1%) standing as the top two countries.

Figure 4.4: Countries where the survey on refactorings participants reside

Note: The legend presents the top 4 countries with most participants.

24
https://elixirforum.com/

25
https://devtalk.com/elixir

26
https://discord.gg/elixir

27
https://www.linkedin.com/groups/6530248/

28
https://www.reddit.com/r/elixir/

29
https://elixir-slackin.herokuapp.com

30
https://t.me/elixir_world

4.2. Catalog Validation 108

Regarding their familiarity with Elixir, about 78% of our participants have worked

with Elixir for over three years, and 66% have used this language on more than four

distinct projects.

3) Responses Validation: To eliminate potentially biased responses, we cross-referenced

the names of the authors of the 239 sources selected for cataloging refactorings in our SLR,

GLR, and MSR studies with all survey respondents’ identities. After conducting this anal-

ysis, we discovered that seven (out of 151) participants are also authors of sources used

in the prospecting of refactorings. Four of them are the authors of documents selected in

the GLR, and three are authors of artifacts from our MSR study. Therefore, we filtered

out these seven responses, keeping 144 valid responses for further analysis.

4) Data Analysis: Given that we divided the 82 refactorings into five survey versions

and assigned a version randomly to each participant (step 1), the number of responses

received for each version, and consequently for each refactoring, varied. This variation

is shown in Table 4.12. To compensate for this variation, we calculated the arithmetic

mean of all valid responses, thereby normalizing the prevalence and relevance levels of

each one of these code transformations. As a result, the closer a refactoring’s prevalence

or relevance level is to five, the more common or beneficial it can be considered for Elixir

systems, respectively.

Table 4.12: Valid responses for each survey version

Version A Version B Version C Version D Version E

23 32 33 30 26

Despite the fact that the questions about the relevance and prevalence of each

refactoring were optional, the average percentage of valid (i.e., non-empty) answers for

all refactorings analyzed in our survey was 97.6%, with a standard deviation of 2.5%.

Among all those cataloged, the Inline macro refactoring had the lowest response rate

(90.9%). On the other hand, 34 out of 82 refactorings (41.5%) had a 100% response rate.

Finally, we employed the Mann-Whitney test [167] to evaluate whether the re-

spondents’ experience level affected their perception of the prevalence and relevance of

refactorings. Due to the lack of a normal distribution in our data, we opted for this

non-parametric test. The number of years a participant has worked with Elixir (at most

three or more than three) and the number of projects they have worked on using this

language (at most four or more than four) were the two distinct grouping variables used

in this test. We conducted these analyses using the SPSS statistical analysis tool,31 with

a significance level set at 0.05.

31
https://www.ibm.com/spss

4.2. Catalog Validation 111

SGS : Simplifying guard sequences SLM : Splitting a large module

SPM: Simplifying pattern matching with nested structs SSR : Static structure reuse

TAL : Turning anonymous into local functions TAS : Transforming list appends and subtracts

TBT: Transform a body-recursive to a tail-recursive TIC : Transform a nested "if" into a "cond"

TIP : Transform "if" using pattern matching into "case" TLC : Transform to list comprehension

TPR: Typing parameters and return values TUN: Transform negated "unless" into a "if"

TVE: Temporary variable elimination WNS: Widen or narrow definition scope

Figure 4.5 also shows that 70.6% (58 out of 82) of the refactorings in our cat-

alog have at least mid-prevalence, with five of them—four traditional and one Elixir-

specific—having high-prevalence. Moreover, Figure 4.6 shows that the three most preva-

lent refactorings are the traditional ones, including Extract function (EF, 3.90)32 and

Extract constant (EC, 3.72), along with the Elixir-specific refactoring Pipeline us-

ing "with" (PUW, 3.86). On the other hand, the three least prevalent ones are the

traditional refactorings Group case branches (GCB, 1.50) and Introduce a tem-

porary duplicate definition (ITD, 1.69), along with the Erlang-specific Behaviour

inlining (BI, 1.61). Overall, considering that the use of these code transformations is

not uncommon in systems developed in Elixir, it is important for developers working with

this language to master these techniques, thereby acquiring the capacity to refactor their

own code and to conduct code reviews more productively, as a quick understanding of the

code changes made by their teammates can save work time.

Finding #5: Most of the refactorings in our catalog have prevalences between mid

and high (70.6%), so it is important for developers to master these techniques because

they are commonly used in Elixir projects.

When comparing refactoring categories, our data suggests that traditional refac-

torings are the most frequently used in Elixir, since their average prevalence level is 2.88,

the highest value among all categories. In contrast, Erlang-specific refactorings had the

lowest average prevalence level (2.42). This is also evident when observing the distribution

of refactorings in the respective plots for each category (see Figure 4.6). While 16% (4

out of 25) of traditional refactorings have high-prevalence, the Erlang-specific category

has the highest percentage of refactorings with low-prevalence level, at 45.5% (5 out of

11).

Regarding the relevance of refactorings, the majority of these transformations

(92.7%) have at least mid-relevance. Additionally, in Figure 4.5, we can see that 29

of them (35.3%) are in high-relevance zones, showing that, in the perception of develop-

ers who participated in the survey, a significant portion of our catalog has a non-negligible

potential to improve the quality of systems developed in Elixir. Specifically, participants

believe that the three refactorings with the highest levels of relevance are respectively

32When discussing each refactoring, we are adding between parentheses the acronym used in Figure 4.6
(e.g., EF) and the respective average score of the survey answers (e.g., 3.90).

4.2. Catalog Validation 112

Extract constant (EC, 4.28), Extract function (EF, 4.24), and Remove dead

code (RDC, 4.22), all of which are traditional refactorings. The three least relevant ones

are also traditional refactorings, Introduce import (II, 1.77), Group case branches

(GCB, 1.84), and Introduce a temporary duplicate definition (ITD, 2.19). Al-

though Erlang-specific refactorings had the lowest average prevalence level, our data sug-

gests that this category has the highest average relevance level (3.53), making it the one

with the greatest potential to improve the quality of systems developed in Elixir. On

the other hand, functional refactorings were those with the lowest average relevance level

according to the participants’ perception (3.16).

Finding #6: Most of the refactorings in our catalog have relevances between mid

and high (92.7%), therefore having a non-negligible potential to improve the quality

of Elixir systems.

To better understand which refactorings stood out the most in our catalog, we

calculated the arithmetic mean of their relevance and prevalence levels. As shown in

Table 4.13, nine (out of 82) refactorings have high-averages (i.e., scores above 3.67)—

seven traditional and two Elixir-specific—and, therefore, are those that deserve special

attention from Elixir developers. Lastly, in order to also understand which categories

stood out the most, we calculated the arithmetic mean of each one between its average

relevance and average prevalence levels. As shown in Table 4.14, the category with the

highest arithmetic mean was that of Traditional refactorings (3.15), closely followed

by the Elixir-specific one (3.01). Not coincidentally, these are also the categories of

the nine refactorings with high-averages.

Table 4.13: Refactorings with a high average between their relevance and prevalence levels

Refactoring (Acronym) Category Mean

Extract function (EF) TR 4.07

Pipeline using "with" (PUW) ES 4.03

Extract constant (EC) TR 4.00

Remove dead code (RDC) TR 3.95

Extract expressions (EE) TR 3.83

Transform nested "if" statements into a "cond" (TIC) ES 3.74

Rename an identifier (RI) TR 3.74

Moving a definition (MD) TR 3.72

Reducing a boolean equality expression (RBE) TR 3.68

TR: Traditional. / ES: Elixir-Specific.

4.2. Catalog Validation 113

Table 4.14: Averages between the relevance and prevalence levels of each category

Category of refactorings Mean

Traditional 3.15

Elixir-Specific 3.01

Erlang-Specific 2.97

Functional 2.88

Finding #7: Nine refactorings in the catalog (11%) have a high arithmetic mean

between their relevance and prevalence levels, making them the ones that require the

most attention from Elixir developers, both to learn and to perform.

Since the prevalence and relevance levels of each refactoring, shown in Figure 4.6,

were calculated using the arithmetic mean of their respective responses, just as we did in

Chapter 3, we decided to compute the standard deviation (SD) for both prevalence and

relevance. The SDs for prevalence range from 0.72 to 1.82, with Behaviour inlining

(BI) showing the lowest variation of the responses relative to the mean and Remove

unnecessary calls to length/1 (RUL) demonstrating the most heterogeneous re-

sponses. For relevance, the SDs range between 0.82 and 1.68, where Transform "if"

using pattern matching into "case" (TIP) stands out with the most homogeneous

responses, while Alias expansion (AE) exhibits the highest variation. Detailed values

for these standard deviations are provided in the replication package of this chapter [201].

The Mann-Whitney test results indicate that the developers’ experience level af-

fected how they perceived just 16 refactorings from our catalog. Table 4.15 shows how

their perception of 11 out of these 16 refactorings is influenced by the number of years they

had worked with Elixir. Out of these 11 refactorings, three—From tuple to struct,

Introduce a temporary duplicate definition, and Transform a body- recur-

sive function to a tail-recursive—are viewed as more prevalent among developers

who have worked with Elixir for more than three years. Conversely, those with fewer

years of experience thought the other eight refactorings shown in Table 4.15 to be more

prevalent or relevant than their more experienced counterparts.

The number of Elixir projects worked on has less influence on developers’ percep-

tion of our refactorings. Table 4.16 shows that only five refactorings were affected by

this factor. Specifically, developers with more than four Elixir projects found Intro-

duce import and Introduce processes more relevant and prevalent, respectively. In

contrast, those with a maximum of four Elixir projects perceived Move file, Remove

dead code, and Replace "Enum" collections with "Stream" as more prevalent

or relevant than their counterparts with more Elixir project experience.

Interestingly, experience levels with Elixir have more influence on developers’ per-

4.2. Catalog Validation 114

Table 4.15: Influence of the Elixir experience in the developer’s perception of a refactoring

Refactoring (Perception)
Mean rank Sig.

≤ 3 years > 3 years

From tuple to struct (P) 8.71 18.68 0.011

Introduce a temporary duplicate definition (P) 9.00 15.50 0.047

Transform a body-recursive function to a tail-recursive (P) 8.75 15.61 0.035

Behaviour inlining (R) 18.90 10.08 0.007

Closure conversion (P) 21.83 13.22 0.026

Grouping parameters in tuple (P) 22.33 12.36 0.007

Grouping parameters in tuple (R) 21.33 13.35 0.041

Modifying keys in a Map (P) 25.38 15.23 0.040

Nested list functions to comprehension (R) 25.62 15.20 0.034

Replace conditional with polymorphism via Protocols (P) 22.75 12.98 0.009

Temporary variable elimination (R) 18.00 11.50 0.047

Transform "if" statements using pattern matching into a
"case" (P)

22.00 13.17 0.022

R: Relevance. / P : Prevalence. / Sig.: Significance.

ception of the prevalence than of the relevance of these code transformations. Out of

the 18 perceptions33 influenced by the two factors analyzed by the Mann-Whitney test,

11 of them (61%) are about the prevalence of refactorings in our catalog. Another as-

pect to highlight is that perceptions regarding Traditional refactorings were the most

affected by developers’ experience levels, as seven (out of 16) refactorings whose per-

ceptions were influenced by these factors belong to this category. On the other hand,

the Erlang-Specific category had only two perceptions of refactorings influenced by

experience levels with Elixir, thus being the least affected by these factors.

Table 4.16: Influence of the number of Elixir projects in the developer’s perception of a
refactoring

Refactoring (Perception)
Mean rank Sig.

≤ 4 projects > 4 projects

Introduce import (R) 10.28 17.74 0.032

Introduce processes (P) 8.29 17.14 0.015

Move file (R) 18.11 10.12 0.008

Move file (P) 17.22 10.62 0.032

Remove dead code (R) 14.58 8.65 0.036

Replace "Enum" collections with "Stream" (P) 14.46 7.95 0.017

R: Relevance. / P : Prevalence. / Sig.: Significance.

33As can be seen in Table 4.15 and Table 4.16, the refactorings Grouping parameters in tuple
and Move file had both their perceptions of relevance and prevalence affected by the analyzed factors,
resulting in 18 affected perceptions regarding 16 different refactorings.

4.2. Catalog Validation 115

Finding #8: The developers’ experience levels influenced their perception of only

16 refactorings in our catalog (19.5%). Among these, the refactorings belonging to

the traditional category and the perceptions of the refactorings’ prevalence were the

most affected by these factors.

The replication package of this chapter [201] contains the full results of the Mann-

Whitney test (including those lacking statistical significance) and the prevalence and

relevance levels of each of the 82 refactorings that compose our catalog.34

4.2.3 Threats to Validity

Construct Validity: The risk of recruiting some unrepresentative participants to re-

spond the survey poses a threat to construct validity of this study. In other words, if

the recruitment process of our survey were not effective enough to primarily find experi-

enced software developers with a deep understanding of Elixir, the findings obtained with

this research tool could be inconsistent with the real world. To mitigate this threat, we

followed the same strategy used in our previous study on code smells for Elixir (Chap-

ter 3). So, we promoted our survey mainly using Elixir’s official communication channels,

thereby increasing the chances of attracting respondents who fit the target profile of our

research. Additionally, we examined the level of experience among participants and the

diversity of projects they have worked using Elixir. A significant portion of respondents

(78%) have more than three years of experience with Elixir, and 66% have engaged in

over four distinct projects using this functional language.

Conclusion Validity: The primary concern regarding this type of threat in our survey

is the disparity in the quantity of answers obtained by each version of the questionnaire.

Certain versions received more responses than others since each participant was required

to respond to just one of them, and this allocation was done randomly. Nonetheless,

the version of the questionnaire with fewer valid responses recruited 23 participants (16%

of 144), and the version with the most responses obtained 33 (23% of the total), which

are not significantly inbalanced percentages, considering that the ideal scenario would

be each version getting 20% of the total survey responses. Moreover, the coefficient of

variation (CV) for the number of responses among the versions was 14.6%, suggesting only

moderate dispersion relative to the mean [204]. To mitigate this threat, we normalized

the answers for each of our five questionnaire versions, thereby compensating for the

34
https://doi.org/10.5281/zenodo.11372758

4.2. Catalog Validation 116

imbalance. Another threat to our survey’s conclusion validity relates to how we recruited

participants. By employing a public social media strategy, we potentially acquired biased

responses from participants who are also the authors of the documents we utilized as

sources for cataloging refactorings. To address this threat, we identified and excluded the

seven responses received from the authors of these documents.

Internal Validity: The main threat to the internal validity of this study concerns possi-

ble misunderstandings by respondents, which could influence the quality of their answers

and consequently our findings. More specifically, there is a risk that participants’ per-

ception of refactorings may become distorted if they misunderstand the motivations and

mechanics of these transformations. To mitigate this risk in our questionnaires, we in-

cluded explanations about the refactorings and illustrative code snippets depicting the

code before and after each transformation. Additionally, we made all questions about

refactorings optional, giving participants the freedom to only respond about the transfor-

mations they feel confident about. Moreover, as classifying the prevalence and relevance

of refactorings on a scale can be subjective, we described in the form the key points to

be considered by respondents when rating each of these two characteristics. Finally, the

author of this work was available via email to clarify any doubts respondents had regard-

ing refactorings and the questions to be answered. Considering that we have a catalog

with 82 refactorings, another threat that could affect our results is participant weariness

throughout a lengthy questionnaire, as noted by Nardone et al. [133] in other studies. To

mitigate this threat, we created five versions of the questionnaire and distributed the 82

refactorings among them, thereby reducing the number of questions asked to each par-

ticipant. Additionally, we randomly list the refactorings presented to each participant,

thus reducing the risk that participant fatigue would consistently affect the quality of

responses provided for the same refactoring strategy.

External Validity: The threats to external validity concern the generalization of our

results. Although we recruited 144 Elixir developers to answer our questions, this group

may not fully represent the overall perception of the entire community of developers

working with this language. To mitigate this threat, we promoted our survey across eight

different communication channels within the Elixir community. This allowed us to recruit

a representative group, consisting of developers from 42 countries spanning all continents,

with distinct levels of expertise in Elixir. Additionally, it is important to emphasize

that we employed the Mann-Whitney test [167] to evaluate whether the respondents’

experience level affected their perception of the prevalence and relevance of refactorings.

The results of this test showed that only the perceptions about 16 out of 82 refactorings

(19%) were influenced by these factors, thus indicating that this study is not biased by a

specific group of developers.

4.3. Implications 117

4.3 Implications

Based on the results presented in this chapter, we shed light on the following

practical implications:

1. Priority in learning and understanding the refactorings. Our findings can

assist developers working with Elixir in deciding which refactoring techniques to learn

first while studying our catalog. A useful metric to consider in making this choice is

the prevalence level of the refactorings, as higher prevalence indicates more frequent use

of a particular transformation in the Elixir systems maintenance. Since these frequent

refactoring strategies can be executed by other team members, developers must first

become proficient in them to better comprehend the code written by their teammates

and thus be more efficient during a code review process, for example.

2. Priority in choosing which refactoring to perform. While developers are work-

ing on maintaining and evolving an Elixir system, they may simultaneously encounter

several refactoring opportunities in the code and then face the dilemma of choosing which

transformation to perform first. Similar to the implication presented earlier, we conjec-

ture that the relevance level is a good indicator to define the priority in choosing which

refactoring to perform first. Since the more relevant a refactoring, the greater its potential

to improve code quality, it is recommended to perform higher relevant refactorings before

the others.

3. Assists beginners in Elixir to produce idiomatic code. Idiomatic code refers

to a coding style that follows the conventions and standards of a specific programming

language. Therefore, they are more natural and efficient for that particular language,

as they adhere to the best practices accepted by the developer community working with

it [215]. When developers with a background in object-oriented languages (e.g., Java and

C++) start programming in Elixir, it is natural to expect them to try to reproduce in

this language the coding styles they are accustomed to, thus producing non-idiomatic

code, which can, for example, hinder collaboration among their teammates. Our cata-

log can therefore guide developers who are beginners in Elixir to make their code more

idiomatic. Some practical examples of this implication include replacing the excessive

use of classical conditional constructs (e.g., if and unless) with pattern matching (see

Pipeline using "with" and Introduce pattern matching over a parameter)

and replacing concurrency units with other process abstractions more appropriate for the

code (see Generalise a process abstraction).

4. Directing efforts to adapt tools for automatically performing refactorings.

4.4. Final Remarks 118

The Styler35 is an Elixir formatter plugin that can also perform seven (out of the

82) refactorings from our catalog. Although not exclusively focused on refactoring, the

Styler is currently the main tool for this purpose among developers working with Elixir.

Considering that even the primary refactoring tool for Elixir still has limited capabilities,

we conjecture that our catalog of refactorings can be used to fill these gaps, improving

the capacity of tools like Styler to automatically perform a larger number of refactor-

ings. Additionally, metrics such as the prevalence and relevance levels of refactorings can

direct the efforts of the developers of these tools when making these adaptations, since

the implementation of the most prevalent and relevant refactoring strategies should be

prioritized.

4.4 Final Remarks

This chapter proposes and validates a comprehensive catalog of refactorings for

Elixir. We used a mixed methodology, based on a systematic literature review, a grey

literature review, and mining GitHub code repositories to prospect and document refac-

torings. Specifically, 391 research papers, 111 grey literature documents, and 488 artifacts

mined from the Top-10 Elixir repositories with the most stars on GitHub were analyzed

to catalog 82 refactorings that can be applied in Elixir systems.

The proposed catalog of refactorings was validated by surveying 144 experienced

Elixir developers. These developers, who come from 42 countries spanning all continents,

expressed their perceptions regarding the prevalence and relevance of the refactorings that

comprise our catalog.

Only six of the 82 refactorings cataloged in this thesis—Generalise a process

abstraction, Moving error-handling mechanisms to supervision trees, In-

troduce processes, Remove processes, Add a tag to messages, and Register

a process—directly involve concurrent programming features. Like the other 76 sequen-

tial refactorings, these concurrent refactorings preserve the original behavior of

the transformed code due to the BEAM VM’s design, which inherently pro-

vides thread safety. Specifically, concurrent code creates multiple processes on the

BEAM [94]. These processes operate independently, sharing no memory and communi-

cating exclusively through message passing [183]. Moreover, each process handles a single

request at a time, maintaining consistency and thereby avoiding common concurrency

issues such as race conditions [94]. Thus, the process isolation model provided by
35

https://github.com/adobe/elixir-styler

4.4. Final Remarks 119

the BEAM guarantees behavioral preservation in concurrent refactorings, even

without the explicit use of synchronization mechanisms required in other languages.

It is important to acknowledge that we do not claim completeness for the proposed

catalog. Although we have sought to provide a comprehensive catalog, we believe it is

possible to extend this catalog through different methodologies for identifying refactorings

or even by applying the same methods used in this study at a future time, when new

discussions may have emerged within the developer community or when new scientific

papers on refactorings for functional languages may have been published.

We summarize the contributions of this chapter as follows:

• We cataloged 82 refactorings for Elixir and categorized them into four different

groups, Elixir-Specific refactorings (14), Functional refactorings (32),

Erlang-Specific refactorings (11), and Traditional refactorings (25).

• We provided documentation with code examples and some tailored side conditions

that can support the implementation of automated refactoring tools for Elixir in

the future. Indeed, no robust, up-to-date, and widely adopted refactoring tool is

available for Elixir, as shown by an exploratory search conducted by us on Hex,36

Elixir’s package manager.

• We showed that most of the cataloged refactorings are at least moderately prevalent,

indicating they are common in production code.

• Furthermore, we have shown that the vast majority of refactorings are at least

moderately relevant, suggesting they have the potential to enhance the quality of

systems developed in Elixir.

• Moreover, we found that nine refactorings in the catalog have a high average score

between their relevance and prevalence levels, indicating they deserve special atten-

tion from Elixir developers.

• Finally, we found that the experience level of the Elixir developers had little impact

on their perceptions of the relevance and prevalence of the refactorings in our catalog.

These findings have practical implications. For example, developers should prior-

itize mastering the most prevalent refactorings first, as understanding these code trans-

formations can save time during the code review process. Additionally, developers should

perform the most relevant refactorings first to maximize improvements in code quality.

Replication Package. We provide the complete dataset used in this chapter and a

replication package at: https://doi.org/10.5281/zenodo.11372758.

36
https://hex.pm/

120

Chapter 5

Relationship between Code Smells and

Refactorings in Elixir

In this chapter, we propose a mapping between Elixir code smells (Chapter 3)

and the refactorings cataloged in this thesis (Chapter 4). In total, 176 relation-

ships were mapped between all 35 code smells and 70 corresponding refactorings that can

be useful in transformations that eliminate them. Additionally, we were able to iden-

tify five new composite refactorings for Elixir during this mapping process,

which were not cataloged in Chapter 4. To accomplish this, we conducted an empirical

study where each of the 35 code smells proposed in this thesis (Chapter 3) was manually

compared with each of the 82 refactorings cataloged by us (Chapter 4). Through these

comparisons, we identified the refactorings that could aid in removing each smell, which

ones they are, and in what order they should be performed.

The methods used in this chapter to establish and describe relationships between

code smells and refactorings is similar to the one used by Fowler and Beck [74] to correlate

their well-known catalogs and guide developers when they are unsure on how to improve

the quality of their sub-optimal code structures. Many other authors have also conducted

studies that empirically mapped refactoring strategies to eliminate code smells [10, 34,

68, 107, 108, 113, 162, 188].

This chapter is organized as follows. In Section 5.1, we detail the methods used

to correlate code smells with refactorings that can assist in their removal. Next, in Sec-

tion 5.2, we present the results of this mapping between smells and refactorings, detailing

step-by-step how some of these code transformation strategies can be used in transfor-

mations to remove sub-optimal structures. Additionally, in this section, we present five

new composite refactorings useful in removing code smells in Elixir. In Section 5.3, we

discuss the practical implications of our findings and also possible reasons that justify the

absence of relationships for 12 (out of 82) refactorings in our catalog. Potential threats

to validity and ways to mitigate them are presented in Section 5.4. Finally, we conclude

this chapter in Section 5.5.

5.1. Study Design 123

ing a particular refactoring, which would thus remove it at least partially, a relationship

between a code smell and a refactoring was mapped.

Considering the number of smells and refactorings for Elixir, this step had the

potential to identify 2,870 relationships between these two sets, representing their Carte-

sian product. Out of these, 164 relationships were mapped, involving 35 smells and 59

refactorings. In other words, in this step, it was possible to identify that all the code

smells for Elixir have their removal aided by at least one refactoring for this language.

However, at the end of this step, 23 refactoring strategies had not yet been associated

with the removal of any cataloged code smells for Elixir.

Parallel to this step, the activity Composite Refactoring Extraction was also con-

ducted, as shown in Figure 5.1. In this parallel activity, whenever a relationship between

a code smell and a refactoring was identified, the author of this work empirically ana-

lyzed whether the refactoring in question is sufficient to remove the mapped code smell on

its own, or if this code transformation needed to be complemented by other refactorings

performed in a specific sequence to enhance the removal. This parallel activity therefore

allowed us to identify composite refactoring candidates [32, 178] for Elixir, something not

directly explored in Chapter 4.

3) Mapping Refactorings to Smells: Considering the manual and subjective nature of

the mapping carried out in the previous step, and also that a code smell can eventually be

removed in different ways depending on the specific problem a developer has at hand [68,

74], in this third methodological step, the author of this work manually compared each

of the 23 refactorings not yet associated with any code smell in the previous step with

all 35 code smells cataloged for Elixir. The objective of following the reverse path of

the previous step and additionally using only a specific subset of the refactorings was to

mitigate any potential flaws in the previous mapping process that may have caused the

absence of relationships for these 23 refactorings.

The aspects compared between the code smells and the refactorings in this step

were the same as those described in the step 2, with the main difference being that the

initial comparative reference here was the refactorings, not the code smells as previously.

Considering the sets of refactorings and code smells compared in this third step, we had the

potential to identify 805 relationships between them, representing the Cartesian product

of the involved elements. Out of these, 12 new relationships were mapped, involving

11 refactorings and seven smells. Among these refactorings involved in removing code

smells, only Remove import attributes was mapped in two different removals. The

remaining 10 were each mapped to the removal of only one code smell. Regarding the code

smells involved in these new relationships, one was mapped four times (Long Function)

and another three times (Duplicated code). The remaining five were each mapped only

once. Therefore, at the end of this step, the number of refactoring strategies not associated

with the removal of cataloged code smells decreased to 12. In Section 5.3, we analyze and

5.2. Results 124

discuss possible reasons that justify the absence of relationships for these refactorings.

As in the previous step, the Composite Refactoring Extraction activity was also

conducted parallel to this third step. Thus, after completing the mappings between the

code smells and refactorings for Elixir, in addition to identifying how each code smell

can be systematically removed with the help of atomic refactoring operations, the author

of this work also identified 26 different interrelated sequences of refactorings that can

be used to assist the removal of code smells in Elixir. The resulting mapping and the

identified composite refactoring candidates were discussed with the advisor of this thesis,

who agreed with and validated the decisions made by the author.

4) Composite Refactorings Analysis: Considering that the Composite Refactoring

Extraction activity occurred parallel to steps 2 and 3, it was therefore only completed

after all the mappings conducted in this work. In total, 28 of the 35 cataloged code smells

for Elixir had at least one composite refactoring candidate mapped for their removal.

The objective of this fourth and final methodological step was to quantify the

number of times each of the 26 composite refactoring candidates identified in the previous

steps was mapped and then give a name to only those that were recurrent. In total, five

of these 26 complex transformations were mapped more than once and were therefore

considered composite refactorings for Elixir. Out of these five recurrent composite refac-

torings, four resemble other complex code transformations previously discussed in the

literature in different contexts [32, 74, 86]. Therefore, we used the names of these refac-

torings as originally proposed by other authors as inspiration for naming these composite

refactorings for Elixir.

5.2 Results

In Subsection 5.2.1, we present the mappings found between Elixir smells and the

corresponding refactorings that can be useful in transformations performed to eliminate

them. Moreover, we selected a subset of four code smells to provide a more detailed

explanation of how their elimination can be aided by refactoring strategies. These smells

were selected for being the most relevant or prevalent in Elixir (Chapter 3), making

their removal important and representative for developers working with this language.

In Subsection 5.2.2, we present five new composite refactorings that contribute to the

removal of code smells in Elixir. These composite refactorings were identified during the

mappings performed in this study. Finally, in Subsection 5.2.3, we present a complete

example of removing a code smell step-by-step using a composite refactoring in Elixir.

5.2. Results 125

For this, all intermediate versions between the original code and the fully refactored code

are presented.

5.2.1 Mapping between smells and refactorings

In our mapping study, we found that all 35 code smells are covered by at least one

of the refactorings in our catalog, meaning there is at least one refactoring that helps in the

removal of these smells. In total, 176 relationships between code smells and refactorings

for Elixir were identified, demonstrating that a code smell can have their removal aided

by more than one distinct refactoring strategy, and also that a refactoring can be useful

in the removal of multiple code smells. Due to the large number of relationships between

smells and refactorings found in this study, to improve the readability of this chapter, we

chose to present in Table 5.1 and Table 5.2 only the smells that have their removal aided

by no more than five different refactorings. Consequently, the mappings for the remaining

10 smells that do not meet this criterion can be found in Appendix D.

Unnecessary macros is the most relevant code smell for Elixir according to

the perception of developers who work with this language. This smell occurs whenever

a macro is used in situations where it would be possible to solve the same problem using

functions or other Elixir structures. When a code is implemented as a macro but could

be implemented as a conventional function in Elixir, we can use the Inline macro

refactoring in the removal of this smell, thereby replacing all instances of the macro with

the code defined in its body. When creating a macro is unavoidable, but part of it could

be implemented as a conventional named function, we can use the refactoring Extract

function to remove this smell. With this refactoring, we extract part of the macro’s

code and encapsulate it into a conventional function, which the macro will then call. This

approach improves code organization and readability while leveraging the macro for its

specific role. After extracting the function, it may eventually be necessary to move it to

another module to make the code more cohesive. This can be done using the Moving a

definition refactoring.

Dynamic atom creation is Elixir’s second most relevant smell. This smell

occurs when a function creates atoms in an uncontrolled and dynamic way. Since values

of this Elixir basic type are not garbage collected by BEAM, this lack of control by the

developer over how many atoms will be created during an application’s execution cycle can

expose the software to unexpected behaviors caused by excessive memory usage. We can

contribute to the removal of this smell by replacing calls to the String.to_atom/1 function,

which dynamically creates atoms, with explicit conversions. To do this, we should use the

5.2. Results 126

Table 5.1: Elixir smells and the refactorings that assist their elimination - Part 1

Smell Refactoring

Shotgun surgery Moving a definition

Speculative assumptions Introduce pattern matching over a parameter

Pipeline using "with"

Complex branching Extract function

Introduce pattern matching over a parameter

Using App Configuration for li-
braries

Add or remove a parameter
Typing parameters and return values

Large code generation by macros Extract function

Moving a definition

Code organization by process Remove processes

Remove dead code

Unsupervised process Moving error-handling mechanisms to supervision trees

Moving a definition

Feature envy Extract function

Moving a definition

Remove import attributes

Primitive obsession Grouping parameters in tuple

From tuple to struct

Add type declarations and contracts

Unnecessary macros Inline macro

Extract function

Moving a definition

Untested polymorphic behaviors Introduce overloading

Folding against a function definition

Typing parameters and return values

Large messages Defining a subset of a Map

Extract expressions

Add a tag to messages

Large class Splitting a large module

Rename an identifier

Behaviour extraction

Moving a definition

Divergent change Splitting a large module

Moving a definition

Behaviour extraction

Rename an identifier

Long parameter list Add or remove a parameter

Grouping parameters in tuple

Reorder parameter

From tuple to struct

Modules with identical names Rename an identifier

Introduce a temporary duplicate definition

Remove dead code

Move file

5.2. Results 127

Table 5.2: Elixir smells and the refactorings that assist their elimination - Part 2

Smell Refactoring

Complex else clauses in with Extract function

Remove dead code

Remove redundant last clause in "with"

Moving "with" clauses without pattern matching

"Use" instead of "import" Alias expansion

Remove dead code

Remove import attributes

Introduce import

Compile-time global configuration Extract constant

Folding against a function definition

Remove dead code

Introduce a temporary duplicate definition

Agent obsession Generalise a function definition

Add or remove a parameter

Moving a definition

Behaviour extraction

GenServer envy Generalise a process abstraction

Remove dead code

Introduce processes

Register a process

Inappropriate intimacy Moving a definition

Closure conversion

Add or remove a parameter

Splitting a large module

Rename an identifier

Dynamic atom creation Extract function

Introduce pattern matching over a parameter

Introduce a temporary duplicate definition

Remove dead code

Folding against a function definition

Alternative return types Introduce a temporary duplicate definition

Rename an identifier

Add or remove a parameter

Typing parameters and return values

Remove dead code

Using exceptions for control-flow Rename an identifier

Introduce a temporary duplicate definition

Folding against a function definition

Introduce processes

Moving error-handling mechanisms to supervision trees

Extract function refactoring on the calls to String.to_atom/1 to create a new function.

This new function should accept a string as a parameter and convert it to a statically

predefined atom. The body of this new function should include a conditional that checks the

5.2. Results 128

content of the string. Depending on the string’s content, the function will return a different

predefined atom directly, without using String.to_atom/1. After extracting a new function

for explicit conversions from strings to atoms, we can also use the refactoring Introduce

pattern matching over a parameter to transform the extracted function into a

multi-clause function, where each clause is responsible for returning one of the possible

statically predefined atoms.

Instead of extracting new functions to refactor Dynamic atom creation, we

can also reuse functions implemented previously. If there is already a function in the

module responsible for performing the explicit conversion of a string to an atom (e.g., a

function extracted for this purpose at a different place in the same module), we can

use the refactoring Folding against a function definition to replace a call to

String.to_atom/1 with a call to the existing function.

Complex branching is the most prevalent smell among all 35 cataloged for

Elixir. This smell occurs when a function takes on the responsibility of handling multiple

errors alone, which makes it difficult to maintain and test. When a function uses a con-

ditional statement with many different branches, each responsible for handling a specific

error type, we can use the Extract function refactoring many times to delegate each

branch (handling of a response type) to a different new private function. This approach

makes the code cleaner, more concise, and readable. Another possibility to assist the

removal of this smell is to use the Introduce pattern matching over a param-

eter refactoring to break down complex branching into a multi-clause function, where

each clause handles a different type of error. This approach enhances readability and

maintainability by organizing the code according to distinct error scenarios.

Finally, Working with invalid data is the second most prevalent smell for

Elixir according to developers. This smell occurs when a function does not validate its

parameters and propagates them to other functions, which can lead to unexpected in-

ternal behavior. When a library function does not validate the types of its parameters,

we can at least create a Proxy [75] function for this smelly library function and use the

Typing parameters and return values refactoring to document the types of these

data directly in the proxy. This will help clients of the smelly function (i.e., third-party

code) protect themselves from potential errors caused by invalid data. If recurring data

structures are identified while documenting a function using Typing parameters and

return values, these structures can be named using the Add type declarations

and contracts refactoring. This approach creates new reusable data types and en-

hances the system’s readability.

The replication package of this chapter and Appendix D provide comprehensive

details on all the mapped refactoring operations.

5.2. Results 129

Finding #1: All 35 code smells for Elixir have their removal assisted by at least

one refactoring also cataloged for this language. Moreover, some of these refactoring

operations can be useful for addressing more than one code smell, providing developers

with alternatives for solving these issues.

5.2.2 Composite refactorings for Elixir

We found five recurring sequences of complementary atomic refactorings that can

be useful to remove code smells in Elixir. In other words, in this study, we also cataloged

five new composite refactorings for Elixir, as presented in Table 5.3.

Table 5.3: Composite refactorings for Elixir

Refactoring Composed by Related smells

Extract to outside 1. Extract Function Feature Envy

2. Moving a definition Switch statements *

Large code generation by macros

Data manipulation by migration *

Unnecessary macros

Module decomposi-
tion

1. Splitting a large module Divergent Change

2. Rename an identifier Inappropriate Intimacy

Large class

Data manipulation by migration *

Introduce parame-
ter struct

1. Grouping Parameters in tu-
ple

Long Parameter List

2. From tuple to struct Primitive Obsession

Gradual change 1. Introduce a temporary du-
plicate definition

Dynamic atom creation

2. Remove dead code Modules with identical names

Explicit a changed
function signature

1. Add or remove a parameter Alternative return types *

2. Typing parameters and re-
turn values

Using App configuration for libraries

* Smell eliminated by composite refactoring used in conjunction with other refactorings.

Extract to outside is a sequence of atomic refactoring operations that con-

tributes to the removal of five different code smells in Elixir, making it the most recurrent

composite refactoring among those cataloged in this study. This refactoring is character-

ized by being a sequence composed of an Extract function, followed by a Moving

a definition. Generally, this sequence can be used to break down an original function

5.2. Results 130

into smaller parts and move them to modules that group other functions with similar ob-

jectives. Therefore, this composite refactoring aims to improve the understandability of a

function while maintaining the cohesion of the module where it is originally defined. The

mechanics of Extract to outside are analogous to Method decomposition [32],

which is an equivalent composite refactoring cataloged for object-oriented code.

The second most recurrent composite refactoring for Elixir is Module decom-

position. Its name is similar to another equivalent composite refactoring—Class de-

composition—cataloged by Brito et al. [32]. Some instances of code smells in Elixir are

characterized by modules with too much behavior or modules that collaborate excessively

and are too highly coupled. This refactoring can address smells with these characteristics

by improving the modularity and cohesion of a system, while also reducing unnecessary

coupling between modules. To achieve this, the refactoring employs a sequence composed

of Splitting a large module, followed by Rename an identifier, as breaking a

module into smaller ones may require updating the name of the original module to better

reflect its new purpose.

Introduce parameter struct is analogous to the traditional refactoring In-

troduce parameter object, cataloged by Fowler [74]. Although this traditional

refactoring is not composite, both aim to group related data into a reusable data struc-

ture. However, to achieve a result equivalent to Introduce parameter object with

Introduce parameter struct, we need to perform two distinct atomic refactorings

sequentially: Grouping parameters in tuple and From tuple to struct, respec-

tively.

Gradual change is a composite refactoring for Elixir that can occur over sev-

eral different commits until its completion. It involves code transformations that coexist

with the original versions for a certain period, thereby avoiding breaking changes. The

expressions or modules involved in this composite refactoring are initially duplicated using

the atomic refactoring Introduce a temporary duplicate definition. The origi-

nal versions are set as deprecated while the actual changes are applied to the duplicates.

After a period with the original versions deprecated, they are removed using the atomic

refactoring Remove dead code. The purpose of Gradual change is similar to the

technique Branch by Abstraction [86], commonly used in continuous delivery processes to

implement large-scale changes to a software system gradually, allowing for regular releases

even while the change is still ongoing.

Finally, Explicit a changed function signature is a composite refactoring

for Elixir used in situations where, to remove a smell, we need not only to modify a

function’s signature but also to describe the types of its parameters and return values.

This refactoring consists of two atomic refactorings from our catalog applied in sequence.

First, Add or remove a parameter changes the function’s signature, and then Typ-

ing parameters and return values documents the types for the new signature.

5.2. Results 131

As we can see in Table 5.3, two of the five composite refactorings cataloged for

Elixir in this study—Introduce parameter struct and Gradual change—have

the capability to aid the elimination of the smells they were mapped to without requiring

any additional refactorings. The other three composite refactorings sometimes need to

be used in conjunction with other refactorings to enhance the removal of the mapped

smells. For example, instances of the Large code generation by macros smell

can be completely removed using just the composite refactoring Extract to outside.

Similarly, instances of the Divergent change smell can be removed using Module

decomposition. However, during the elimination of Data manipulation by Mi-

gration instances, we need to apply the following sequence of refactorings: Module

decomposition → Extract to outside → Remove dead code.3

All instances of combined usage of composite refactorings and atomic refactorings

mapped for removing smells in Elixir are described in detail in Appendix D and in the

replication package of this chapter. To illustrate how we can remove a code smell in Elixir

through a composite refactoring, in the next section, we present a step-by-step example.

Finding #2: We identified five composite refactorings that can be useful in removing

code smells in Elixir. Three of them can be used in conjunction with other refactorings

to assist the removal of the smells they were mapped to.

5.2.3 Example: Removing a smell step-by-step through a

composite refactoring

In this section, the smell Large code generation by macros is removed step-

by-step using the composite refactoring Extract to outside to illustrate how this type

of refactoring can be applied in Elixir. As shown in Table 5.3, this composite refactoring

is characterized by the following sequence of atomic refactorings: Extract function

→ Moving a definition.

Macros are meta-programming mechanisms in Elixir that can extend the language.4

They enable robust code generation at compile time, which helps reduce boilerplate and

allows the creation of DSL constructs for Elixir [94]. The code smell used as an example

in this section is related to macros that generate too much code. When a macro generates

a large amount of code, it impacts how the compiler or the runtime work. The reason

3This sequence is a composite refactoring candidate for Elixir. However, since it does not recur in
removing other code smells like the five listed sequences in Table 5.3, it was not named.

4
https://hexdocs.pm/elixir/macros.html

5.2. Results 132

for this is that Elixir may have to expand, compile, and execute the code multiple times,

which makes compilation slower and the compiled artifacts larger.

Listing 5.1 shows a module used to access a router for a web application. The

function show/0 (line 7) lists all the routes defined for this application. They are stored in

the Elixir’s module attribute @store_routes, which is created and modified by the calls to

the macro Routes.get/2 (lines 4 and 5).

Listing 5.1: Router for a web application

1 defmodule MyApp.Routes do

2 require Routes

3

4 Routes.get("/home", MyApp.HomeController)

5 Routes.get("/about", MyApp.AboutController)

6

7 def show() do

8 @store_routes

9 end

10 end

11 ...

12 iex> MyApp.Routes.show

13 [{"/about", MyApp.AboutController}, {"/home", MyApp.HomeController}]

As shown in Listing 5.2, the macro get/2 (lines 3 to 19) is an instance of the

Large code generation by macros smell. On every invocation of this macro, which

could be hundreds, the code inside get/2 is expanded and compiled, which can generate

a large volume of code overall. This occurs because most of the code defined in get/2

could be implemented in a conventional function, thus avoiding excessive expansions and

compilations.

Listing 5.2: Instance of the smell Large code generation by macros

1 defmodule Routes do

2 ...

3 defmacro get(route, handler) do

4 quote do

5 route = unquote(route)

6 handler = unquote(handler)

7

8 if not is_binary(route) do

9 raise ArgumentError, "route must be a binary"

10 end

11

12 if not is_atom(handler) do

13 raise ArgumentError, "handler must be a module"

14 end

15

16 Module.register_attribute(__MODULE__, :store_routes, accumulate: true)

17 Module.put_attribute(__MODULE__, :store_routes, {route, handler})

18 end

19 end

20 end

5.2. Results 133

The first step in removing this smell is to perform Extract function. With this

refactoring, we can extract part of the macro’s code and encapsulate it into a conventional

function, which the macro will then call. As shown in Listing 5.3, by extracting to the

function __define__/3 (line 9) the code originally defined inside the quote/1 (Listing 5.2

- lines 4 to 18), we reduce the amount of code that is expanded and compiled on every

invocation of get/2, and instead we dispatch to __define__/3 to do the bulk of the work.

Listing 5.3: Intermediate code version after Extract function

1 defmodule Routes do

2 ...

3 defmacro get(route, handler) do

4 quote do

5 Routes.__define__(__MODULE__, unquote(route), unquote(handler))

6 end

7 end

8

9 def __define__(module, route, handler) do

10 if not is_binary(route) do

11 raise ArgumentError, "route must be a binary"

12 end

13

14 if not is_atom(handler) do

15 raise ArgumentError, "handler must be a module"

16 end

17

18 Module.register_attribute(module, :store_routes, accumulate: true)

19 Module.put_attribute(module, :store_routes, {route, handler})

20 end

21 end

After extracting the function __define__/3 into the Routes module (Listing 5.3), we

can also move it to the Routes.Utils module using the Moving a definition refactoring,

thus making the code more cohesive (Listing 5.4). This occurs because, although omitted

in Listing 5.4, Routes.Utils groups other functions with the same objective as __define__/3.

As a result of this second step, the code smell Large code generation by macros is

completely removed, since the macro now generates only the minimum necessary amount

of code to maintain the original system behavior, and we also achieve cleaner and more

organized code.

Listing 5.4: Code smell is completely removed after using a composite refactoring

1 defmodule Routes do

2 ...

3 defmacro get(route, handler) do

4 quote do

5 Routes.Utils.__define__(__MODULE__, unquote(route), unquote(handler))

6 end

7 end

8 end

5.3. Discussion 134

1 defmodule Routes.Utils do

2 ...

3 def __define__(module, route, handler) do

4 if not is_binary(route) do

5 raise ArgumentError, "route must be a binary"

6 end

7

8 if not is_atom(handler) do

9 raise ArgumentError, "handler must be a module"

10 end

11

12 Module.register_attribute(module, :store_routes, accumulate: true)

13 Module.put_attribute(module, :store_routes, {route, handler})

14 end

15 end

5.3 Discussion

Since 12 of the 82 refactorings cataloged for Elixir were not mapped to removing

any code smell, we sought to understand the reasons for these mapping absences. To do

this, we used a taxonomy proposed by Abid et al. [1] to classify the main motivations

behind performing a refactoring strategy. After the author of this thesis classified the

motivations behind each of the 12 code transformation strategies not mapped to the

removal of smells, the advisor of this thesis validated these classifications, which are

presented in Table 5.4.

Table 5.4: Refactorings not mapped to the removal of code smells

Refactoring Motivation

From meta to normal function application Internal quality

Group case branches Performance

Improving list appending performance Performance

Nested list functions to comprehension Performance

Remove single pipe Internal quality

Replace "Enum" collections with "Stream" Performance

Replace a nested conditional in a "case" statement with guards Internal quality

Replacing recursion with a higher-level construct Internal quality

Transform "if" statements using pattern matching into a "case" Internal quality

Transform "unless" with negated conditions into "if" Internal quality

Transform a body-recursive function to a tail-recursive Performance

Transforming list appends and subtracts Internal quality

5.3. Discussion 135

According to the taxonomy used in this classification, the motivation for improving

internal quality involves, for example, maintainability, flexibility, portability, reusability,

or readability code issues. On the other hand, the motivation for improving performance

involves aspects such as response time, error rate, request rate, memory use, or code

parallelization. In addition to these two motivations, the taxonomy proposed by Abid et

al. [1] includes three other categories which clearly do not have any relation with the 12

unmapped refactorings: external quality, security, and migration issues.

As shown in Table 5.4, five of the 12 unmapped refactorings are motivated by per-

formance concerns. This explains their absence in removing code smells in Elixir, as these

sub-optimal code structures are more related to aspects that hinder the internal quality of

systems [74]. On the other hand, the other seven unmapped Elixir refactorings focus on

improving internal quality, which at first could suggest the existence of uncataloged code

smells for Elixir. However, six out of these seven refactorings primarily address minor

coding style adjustments, such as replacing certain conditional statements or substituting

calls to Elixir’s built-in functions with specific operators of this language. Given that

code smells generally involve structures with more substantial granularities, this explains

the absence of mappings for these six refactorings. The lack of mappings for Replacing

recursion with a higher-level construct, however, might indeed indicate the

existence of an uncataloged code smell. This refactoring involves significant code block

transformations, potentially impacting the design of functions or modules. This type of

change is compatible, for example, with the removal of an uncatalogued Design-related

smell (Chapter 3).

Since Elixir does not have classical iteration constructs (e.g., while and do..while),

recursion is the primary looping mechanism used in this language. However, given that

Elixir also provides many higher-order functions that enable iteration while hiding the

details of recursion (e.g., Enum.map/2 and Enum.reduce/3), using explicit recursion might be

considered a code smell when a built-in higher-order function could be used instead. This

is because Unnecessary explicit recursion, as we refer to this new smell, can make

the code verbose and harm its understandability, thus requiring developers to use greater

cognitive load to grasp their purposes, especially when the code is developed by someone

else. With the help of the refactoring Replacing recursion with a higher-level

construct, which initially was not mapped to the removal of any code smell, we can

transform the body of recursive functions into calls to higher-order functions, making the

code more concise, easier to understand, and consequently easier to maintain.

Finding #3: We have found evidence suggesting the existence of one uncatalogued

Design-related smell for Elixir.

Regarding the unmapped refactorings, as shown in Table 5.5, the Traditional

5.4. Threats to Validity 136

refactorings category had the lowest proportion of refactoring strategies not associated

with code smell removal in Elixir (8.00%). Furthermore, 51.14% of the 176 relationships

mapped in this study involved Traditional refactorings, making it the category that

contributes the most to code smell removal. These data show that refactorings cataloged

25 years ago by Fowler and Beck [74], although originally proposed for a different context,

remain highly useful and relevant even for a specific scenario like a functional language

such as Elixir.

Table 5.5: Overview of refactorings by category (Unmapped x Mapped)

Category # Refactorings # Unmapped (%) # Relationships (%)

Traditional 25 2 (8.00) 90 (51.14)

Functional 32 7 (21.88) 46 (26.14)

Erlang-Specific 11 1 (9.09) 21 (11.93)

Elixir-Specific 14 2 (14.29) 19 (10.80)

Finding #4: Traditional refactorings proposed to improve the quality of object-

oriented systems are also highly important for removing code smells in Elixir.

5.4 Threats to Validity

Construct Validity: Considering that a single refactoring might not always be sufficient

to fully eliminate a code smell, a threat to the construct validity of this study is that our

mapping might lead developers to perform incomplete refactorings [24, 25, 43] due to

a lack of knowledge about the necessary complementary steps to completely remove a

smell, or at least address the largest possible portion of it. To mitigate this threat,

we not only mapped simple relationships between smells and atomic refactorings, but

also documented 26 composite refactoring candidates and five composite refactorings for

Elixir. These sequences of code transformations used together can help developers reduce

the occurrence of incomplete refactorings in Elixir codebases, thereby promoting smell

removals that are more aligned with real-world needs.

Conclusion Validity: The primary concern regarding this type of threat in our mapping

study relates to potential biases in qualitative analyses that could compromise the relia-

bility of the work. Since all the initial mappings between smells and refactorings, as well

as the identification of composite refactoring candidates, were conducted solely by the au-

thor of this study, these analyses might have been influenced by personal experiences and

5.5. Final Remarks 137

perspectives, potentially compromising the results. To address this threat, the resulting

mappings and the identified composite refactoring candidates were also discussed with

the advisor of this thesis, who reviewed, agreed with, and validated the decisions made

by the author.

Internal Validity: The main threat to the internal validity of this study concerns the

possible existence of relationships between smells and refactorings not captured by the

methodological steps employed, which could influence the quality of our findings. Given

the manual and subjective nature of the mapping process carried out in this study, it

is natural to consider that it is susceptible to human error in identifying these relation-

ships. To mitigate this risk, in addition to conducting an initial comparison between all

35 smells and 82 refactorings for Elixir (Section 5.1 - step 2), we also implemented a

second comparison activity (Section 5.1 - step 3) aimed at finding relationships for the

23 refactorings not associated with any code smell in the previous step. This additional

step helped to reduce potential flaws in this manual comparison process, as it allowed us

to find relationships for 11 of the 23 refactorings initially not correlated to the removal of

code smells. Additionally, we used the taxonomy proposed by Abid et al. [1] to classify

the motivations behind the 12 refactorings not associated with code smells and concluded

that this absence of relationships is not related to the methods used in this study.

External Validity: This threat concerns the generalization of the relationships found

between the catalogs of code smells and refactorings, since these smells may not represent

all possible quality issues in Elixir systems, and these refactorings might not be the only

ways to address these sub-optimal structures. Despite this risk, both catalogs compared

in this study have been extensively validated with experienced developers in previous

studies. Additionally, the mappings between both catalogs include refactorings that are

useful for removing all cataloged smells, and among the refactorings not associated with

smell removal, only one shows indications of an uncataloged smell for Elixir. This suggests

the robustness and high level of completeness of our results, which mitigates this threat.

5.5 Final Remarks

This chapter proposes a mapping between the code smells (Chapter 3) and the

refactorings (Chapter 4) cataloged for Elixir in this thesis, indicating which refactorings

may be useful in code transformations carried out to remove each code smell. To establish

these relationships between the two catalogs, we manually compared the characteristics of

the problems caused by each code smell with the motivations and the code improvements

5.5. Final Remarks 138

each of the Elixir refactorings can generate.

We summarize the contributions of this chapter as follows:

• We found that all 35 code smells for Elixir are covered by at least one of the refac-

torings in our catalog, meaning there is at least one refactoring that helps in the

removal of these smells.

• We showed that some refactoring operations cataloged for Elixir can be useful for

addressing more than one code smell, thereby highlighting their versatility in solving

these issues.

• On the other hand, we found that 12 of the 82 refactorings cataloged for Elixir are

not associated with the removal of known code smells for this language.

• We identified five new composite refactorings that can be useful in removing code

smells in Elixir. Three of them can be used in conjunction with other refactorings

to assist the removal of the smells they were mapped to.

• We have found evidence suggesting the existence of an uncatalogued Design-

related smell for Elixir.

• Finally, we found that the traditional refactorings proposed by Fowler and Beck [74]

to improve the quality of object-oriented systems are also highly important for

removing code smells in Elixir.

These findings have practical implications. For example, the mapping between

catalogs conducted in this study can guide developers, especially those beginners to Elixir,

on how to systematically remove code smells and improve the internal quality of their

systems implemented with this language. Additionally, this guide can serve as inspiration

for removing code smells in systems implemented in other functional languages. Finally,

our research indicates the need for an investigation to validate with Elixir developers

the prevalence and relevance of the new code smell identified through the analysis of

unmapped refactorings. It also points to the need for further research into the existence

of other Elixir-specific composite refactorings, as although we identified five of them in

this study, this was not the primary focus of our investigation.

Replication Package. We provide the complete dataset used in this chapter and a

replication package at: https://doi.org/10.5281/zenodo.13835771.

139

Chapter 6

Conclusion

This chapter concludes the thesis by discussing the main contributions and suggesting

directions for future work. In Section 6.1, we provide an overview of the thesis. Section

6.2 summarizes the results and highlights the major contributions of this research, while

Section 6.3 explores potential topics for future work.

6.1 Thesis Recapitulation

In the late 1990s, Fowler published his well-known book focused on promoting the

disciplined improvement of existing code [74]. This book comprises two catalogs: one

containing 22 code smells, which are sub-optimal code structures, and another featuring

72 code transformation strategies, known as refactorings, which can be used to eliminate

code smells. Reflecting the popularity of this book, numerous studies have been conducted

in the years following its publication up to the present day, aiming to understand various

aspects related to code smells and refactorings. However, much like Fowler’s book [74],

these works have primarily focused on object-oriented programming languages [1, 176].

Historically, functional languages have not been as prevalent in the industry as

object-oriented ones. However, interest in functional languages has recently risen in this

environment [26]. More specifically, Elixir is a modern functional programming language

that is gaining traction in the industry, with over 300 companies worldwide using it. In

contrast to this recent popularity, to the best of our knowledge, no study has yet investi-

gated code smells or refactorings specific to Elixir. In this context, we took advantage of

this research opportunity and, in this Ph.D. thesis, conducted a set of three major studies

in which we cataloged code smells and refactorings specifically for Elixir.

In Chapter 2, we provide an overview of the functional programming paradigm

and the main characteristics of the syntax and semantics of the Elixir functional lan-

guage. Additionally, we discuss the extensive literature on code smells and refactorings,

as well as outline potential research opportunities related to these topics. Finally, we

6.2. Contributions 140

compare the studies conducted in this thesis with related work investigating code smells

and refactorings in other specific contexts, including some functional languages such as

Haskell and Erlang.

Next, we reported in Chapter 3 our first study, where we cataloged and validated

35 code smells for Elixir. To identify and catalog these smells, we employed a mixed

methodology approach based on a grey literature review [76], direct interaction with

developers who work with Elixir, and mining code repositories on GitHub. We also

surveyed 182 developers from 37 countries across all continents to measure the relevance

and prevalence of each code smell, thus validating the proposed catalog.

In Chapter 4, we conducted a study structurally similar to the one reported in

Chapter 3, which resulted in the cataloging of 82 refactorings for Elixir. The methodology

used to catalog these refactorings was based on a systematic literature review [99], followed

again by a grey literature review and mining code repositories on GitHub. The validation

of these code transformation strategies was carried out through a second survey, where

151 experienced Elixir developers from 42 countries ranked the relevance and prevalence

of the cataloged refactorings. Both surveys (Chapters 3 and 4) were previously approved

by the Research Ethics Committee at the Federal University of Minas Gerais.

Finally, in Chapter 5, we reported an empirical study in which each of the 35 code

smells proposed in this thesis (Chapter 3) was manually compared with each of the 82

refactorings we cataloged (Chapter 4). Through these comparisons, we identified which

refactorings could help remove each smell and in what order they should be performed. A

key contribution of this study was the proposal of practical guidelines for systematically

removing code smells in Elixir systems, using refactoring strategies specific to the language

(Appendix D). This guide follows a format similar to the one used by Fowler in his book

to correlate code smells and refactorings for object-oriented systems [74].

6.2 Contributions

We summarize our contributions as follows:

• We initially proposed a comprehensive catalog of 35 code smells for Elixir

(Chapter 3). This catalog includes 23 novel Elixir-specific code smells and 12 tradi-

tional ones (as proposed by Fowler and Beck [74]) that also occur in Elixir systems.

We categorized the Elixir-specific smells into two groups: nine Low-Level Con-

cerns smells, which have a narrow scope and affect small code structures, and

14 Design-Related smells, which are more complex and related to code orga-

6.2. Contributions 141

nization, thus impacting larger portions of code. Additionally, we demonstrated

that the majority of cataloged smells (97%) have at least mid-relevance levels, indi-

cating their potential to hinder the readability, maintenance, or evolution of Elixir

systems. Furthermore, we showed that most of these smells (54%) exhibit at least

mid-prevalence levels, making them common in production code. These findings can

assist developers, for instance, in establishing priorities for preventing and removing

code smells.

• We also proposed a comprehensive catalog of 82 refactorings for Elixir (Chap-

ter 4). To better organize this catalog, we categorized the refactorings into four dis-

tinct groups: 14 Elixir-Specific refactorings, 32 Functional refactor-

ings, 11 Erlang-Specific refactorings, and 25 Traditional refactor-

ings. Additionally, we revealed that most of the cataloged refactorings for Elixir

(70.6%) are at least moderately prevalent, indicating their recurring use in produc-

tion code. Furthermore, we showed that the vast majority of refactorings (92.7%)

are at least moderately relevant, suggesting they have the potential to enhance the

quality of Elixir systems. These findings indicate that developers should prioritize

mastering the most prevalent refactorings first, as understanding these code trans-

formations can save time during the code review process. Additionally, performing

the most relevant refactorings first can help maximize improvements in code quality.

• We correlated the cataloged code smells and refactorings for Elixir (Chap-

ter 5) and proposed practical guidelines for removing each code smell in

a disciplined manner using refactoring strategies in this language (Ap-

pendix D). In total, we identified 176 relationships between code smells and cor-

responding refactorings for Elixir, which can be applied to eliminate these smells.

More specifically, we found that all 35 code smells for Elixir have their removal

assisted by at least one refactoring also cataloged for this language. Additionally,

we showed that some refactorings can resolve multiple code smells, while 12 of the

82 cataloged refactorings are not associated with the removal of any known Elixir

smell. Through these correlations, we also identified five new composite refactorings

that are useful for removing code smells in Elixir. Furthermore, we demonstrated

that traditional refactorings, originally proposed to enhance the quality of object-

oriented systems [74], also play a significant role in eliminating code smells in Elixir.

• We created a GitHub repository to document all the code smells in our

catalog. This documentation is formatted to be developer-friendly, containing,

for instance, a description of the problem caused by each smell, along with code

examples and textual descriptions to illustrate the occurrence of the code smell.

This repository is available at https://github.com/lucasvegi/Elixir-Code-Smells. Es-

6.3. Future Work 142

sentially, this artifact allows us to make public all the details of the sub-optimal

structures reported in Chapter 3.

• We also created another GitHub repository to document all the cataloged

refactorings for Elixir: https://github.com/lucasvegi/Elixir-Refactorings. For each

refactoring, we provide a structured description of the main motivations for perform-

ing them and illustrate the resulting code from the refactoring, showing versions of

it before and after the transformation. Therefore, developers can consult this repos-

itory to understand and apply the findings reported in Chapter 4 to their code.

• The investigations conducted in this thesis and their respective results have fostered

discussions about software quality among members of the Elixir devel-

oper community. After sparking developers’ interest and becoming one of the

60 most popular Elixir repositories on GitHub among over 100k existing ones, part

of the content from our repository on code smells for Elixir was incorporated into

the official Elixir documentation: https://hexdocs.pm/elixir/what-anti-patterns.html.

Furthermore, since 2022, the studies conducted in this thesis have been discussed

recurrently in major podcasts and conferences aimed at Elixir developers.

6.3 Future Work

Throughout the research conducted in this thesis, we identified some unexplored

topics with the potential for significant future studies. These topics are outlined in the

following paragraphs:

Metrics for detecting code smells in Elixir. As presented in Section 2.3, there are

numerous studies and tools that rely on a combination of metrics such as Weighted

Methods Per Class (WMC), Depth of Inheritance Tree (DIT), Number of Children

(NOC), Coupling between Objects (CBO), Response For Class (RFC), and Lack of

Cohesion of Methods (LCOM) to detect traditional code smells [20, 122, 123]. To the

best of our knowledge, these studies and tools are focused on object-oriented code.

Therefore, we claim that there is a lack of understanding regarding the effectiveness

of using these classical metrics to detect Elixir-specific smells (Chapter 3). Thus,

we suggest, as future work, the conduction of studies aimed at verifying whether

these classical metrics can be used to detect code smells specific to a functional

language like Elixir, and eventually propose new metrics tailored to this context.

6.3. Future Work 143

Creation or adaptation of tools for detecting code smells in Elixir. Although in

Section 2.3 we showed that there are more than 80 tools available in the literature fo-

cused on detecting code smells (e.g., DECOR [129], PMD [70], JDeodorant [69],

and JSpIRIT [202]), in Chapter 3 of this thesis, we also discussed the existence of

few tools capable of detecting code smells in systems implemented in Elixir. More

specifically, only three code smells from our catalog (Chapter 3) are automatically

detected by Credo,1 which is currently the most popular linter tool for Elixir.

This motivates the development of new code smell detection tools for this language

in future work. These tools for detecting code smells in Elixir can be based on a

combination of strategies that utilize software metrics, as discussed in the previous

topic, static code analysis like the one currently performed by Credo, or even the

use of machine learning algorithms, as done by Aniche et al. [9] in a more generic

context. Considering that Credo is open-source, instead of creating a new tool

from scratch, a potential direction for future work would be to adapt Credo to

detect a larger number of code smells for Elixir.

Creation and adaptation of tools for automated refactoring in Elixir. In Sec-

tion 2.4, we presented many tools focused on automated refactoring in languages

such as C# [90], SmallTalk [152], Java [61, 89, 134, 159], Swift [147], Scala [166],

Erlang [112, 119, 156], Haskell [36, 78, 81, 161, 192], and OCaml [153]. However,

in Chapter 4 of this thesis, we showed that developers working with Elixir still lack

a more comprehensive tool for refactoring code in this language, as Styler,2 the

main tool for this purpose in Elixir, can perform only seven (out of the 82) refac-

torings from our catalog (Chapter 4). Thus, we suggest that future work could

involve adapting Styler, an open-source tool, to incorporate more of the refac-

toring strategies cataloged in this thesis. Additionally, efforts could be directed

toward developing new tools for refactoring Elixir code. These tools can be based

on the analysis and transformation of the Elixir AST, potentially utilizing libraries

such as Sourceror,3 which facilitates AST manipulation. Another possibility in-

volves creating refactoring tools for Elixir based on the Language Server Protocol

(LSP).4 Language Servers provide features like auto-completion, go-to-definition,

find-all-references, and others for a specific language. Those features are normally

implemented from scratch by each IDE for the language. LSP, created by Microsoft,

standardizes how such servers and IDEs communicate, thus reducing redundant im-

plementations of the same features across tools. Using LSP to build a refactoring

tool for Elixir could be something especially promising, given that the core team

1
http://credo-ci.org/

2
https://github.com/adobe/elixir-styler

3
https://github.com/doorgan/sourceror

4
https://microsoft.github.io/language-server-protocol/

6.3. Future Work 144

maintaining the language recently announced the development of the official Elixir

Language Server, consolidating ongoing efforts to implement LSP for Elixir.5 Lastly,

another promising direction for future work could involve understanding how auto-

mated refactoring tools for Elixir can be enhanced through integration with LLMs,

such as GPT-4.6

Catalog of composite refactorings for Elixir. Although we identified five composite

refactorings for Elixir in the study described in Chapter 5 of this thesis, this was not

the primary focus of the investigation. Considering that we were able to identify

some of these coarse-grained source code transformations, even though it was only a

secondary objective of our study, we believe that there are many more beyond these

five composite refactorings that could be identified more efficiently in studies focused

on understanding them. Thus, we suggest as future work creating a comprehensive

catalog of composite refactorings for Elixir. One direction for conducting these

studies could involve a partial adaptation of the methodology used by Brito et

al. [32] to propose a catalog of composite refactorings focused on object-oriented

code. In that study, the authors used the tool RefDiff [170] to mine the history of

10 well-known open-source projects on GitHub in search of composite refactorings

performed on Java code. Since RefDiff currently does not have the capability to

identify refactoring operations performed in the version history of systems developed

in Elixir, and to the best of our knowledge, there is no tool with this ability, another

future work associated with creating a catalog of composite refactorings for Elixir

could involve adapting RefDiff, which is an open-source tool, by adding support

for this language.

Catalog of test smells for Elixir. Test smells are bad programming practices that

indicate potential problems in the design and implementation of automated soft-

ware tests, potentially affecting the maintainability, coverage, and reliability of test

code [172, 194]. Several studies in the literature have investigated the implications

of test smells in specific contexts, such as Java [173], C# [145], and Python [91],

among others. Although this thesis does not explore test-related smells in Elixir,

we believe they may exist and warrant investigation in future work. As Elixir is

a functional language and thus tends to have pure functions [15], we hypothesize

that the manifestation of test smells in Elixir’s test code may differ from those in

object-oriented languages. For instance, there might be a lower incidence of non-

deterministic tests, commonly referred to as flaky tests [80, 120].

Behavior preservation guarantees of refactorings for Elixir. Although in Chapter

5 of this thesis we empirically produced a practical guide on how to remove code

5
https://elixir-lang.org/blog/2024/08/15/welcome-elixir-language-server-team/

6
https://openai.com/index/gpt-4/

6.3. Future Work 145

smells in Elixir using refactorings for this language, we did not aim to formally

prove that all these code transformations fully preserve the original behavior of the

programs. To achieve this, it would be necessary, for example, to apply a rigorous

mathematical formalism to define syntactic and semantic equivalences in Elixir.

Some studies focused on Erlang have used such approaches to prove that specific

refactoring strategies preserve program behavior in that functional language [22, 23,

163]. Thus, we suggest that future work, analogous to those conducted for Erlang,

should be carried out to ensure the behavior preservation of all Elixir code refactored

according to the practical guidelines provided in this thesis (Appendix D).

Interrelation between code smells for Elixir. Although we proposed a comprehen-

sive catalog of code smells for Elixir in this thesis (Chapter 3), we did not investigate

the existence of interrelations between these sub-optimal code structures. However,

some related works have already established interrelations between traditional code

smells, such as those proposed by Fowler and Beck [74], intending to reduce the ef-

fort required to remove them [116, 175]. For instance, Liu et al. [116] demonstrated

that removing instances of Duplicated code can also promote the elimination of

Long function instances. Thus, it may be beneficial to prioritize the removal of

Duplicated code over other smells that do not also result in the elimination of

other types of smells. In light of this, we suggest future investigations to explore

potential interrelations of this nature between the Elixir-specific smells from our

catalog. We hypothesize that the understanding of these interrelations, together

with the levels of relevance of the smells reported in Chapter 3, could serve as

valuable indicators for developers when prioritizing which smell to remove first in

their codebases. For example, by removing an Elixir-specific smell that not only

has high relevance but also, when eliminated, leads to the disappearance of many

other types of smells, developers could minimize the effort needed to achieve broader

quality improvements in a system.

Quantify the impacts of refactorings for Elixir on software quality attributes.

Although in this thesis we qualitatively indicated which software quality attributes

(e.g., reusability, readability, extensibility, etc.) are impacted by the refactorings

in our catalog (Chapters 4 and 5), and we also quantified the perceptions of Elixir

developers regarding the relevance of these code transformation strategies (Chap-

ter 4), we did not analyze real-world Elixir projects to individually measure the

magnitude of the impacts these Elixir-tailored refactorings have on the correspond-

ing software quality attributes they affect. In related works, some authors have

used metrics to quantify the impacts of traditional refactorings on software quality

attributes. For instance, Almogahed et al. [7] quantified the impact of five tradi-

tional refactoring strategies on code reusability in a well-known open-source system.

6.3. Future Work 146

Similarly, Weißgerber and Diehl [205] analyzed the history of open-source systems

to quantify the effect of traditional refactorings on bug rates in the systems they

studied. Therefore, we propose that future studies, akin to the aforementioned, be

conducted specifically in the context of Elixir. These studies should focus on quan-

tifying the impacts of the refactorings from our catalog (Chapter 4) on real-world

Elixir projects, thus enabling a more precise and objective understanding of the ex-

tent of improvements or drawbacks resulting from the use of these transformations.

Use of eye tracking to evaluate developers’ perception of the relevance of

code smells and refactorings for Elixir. Although this thesis evaluates the

relevance of code smells and refactorings for Elixir through questionnaires applied to

developers (Chapters 3 and 4), studies conducted on code developed in Python [55]

and C [54] suggest that eye tracking should be considered in investigations aimed

at assessing the difficulty developers face when understanding the code they are

working with. Specifically, by measuring the time spent by a developer to complete

a task in the code, the number of attempts, and visual effort, eye tracking can

quantify the level of difficulty developers encounter in maintaining a codebase [55].

Therefore, we hypothesize that eye tracking could be used in future work to assess

the difficulty developers experience when maintaining Elixir code with code smells

and their refactored versions, providing a complementary evaluation of developers’

perceptions regarding the relevance of the smells and refactorings cataloged in this

thesis.

Generalization of catalogs for the functional programming paradigm. As pre-

sented in Chapter 2, there are studies addressing the existence of code smells and

refactorings specific to different functional languages. However, to the best of our

knowledge, this thesis was the first study focused on proposing comprehensive cat-

alogs of smells and refactorings for a functional language and correlating them.

Considering that the investigations in this thesis were concentrated on the specific

context of the functional language Elixir, it is not possible to affirm that all of our

findings are applicable to other functional programming languages. In light of this,

we conjecture that future work aiming to replicate the investigations of this thesis

in the specific context of other functional languages like Clojure, F#, Scala, Julia,

and others should be conducted. Following the completion of these new studies

specific to other functional languages, an investigation aimed at identifying the in-

tersections of their findings could finally lead to the generalization of code smells

and refactorings characteristic of the functional paradigm, thus reaching results ap-

plicable to a broader scope, similar to those produced by Fowler and Beck [74] for

the object-oriented programming paradigm.

147

References

[1] Abid, C., Alizadeh, V., Kessentini, M., Ferreira, T. N., and Dig, D. 30 years of soft-

ware refactoring research: a systematic literature review. ArXiv, abs/2007.02194:

1–23, 2020. doi: https://doi.org/10.48550/arXiv.2007.02194.

[2] Abid, C., Gaaloul, K., Kessentini, M., and Alizadeh, V. What refactoring topics do

developers discuss? a large scale empirical study using Stack Overflow. IEEE Access,

10:56362–56374, 2022. doi: https://doi.org/10.1109/ACCESS.2021.3140036.

[3] Agrahari, V., Shanbhag, S., Chimalakonda, S., and Rao, A. E. A catalogue of

game-specific anti-patterns based on GitHub and game development stack exchange.

Journal of Systems and Software, page 111789, 2023. doi: https://doi.org/10.1016/

j.jss.2023.111789.

[4] Al Dallal, J. and Abdin, A. Empirical evaluation of the impact of object-oriented

code refactoring on quality attributes: A systematic literature review. IEEE

Transactions on Software Engineering, 44(1):44–69, 2018. doi: 10.1109/TSE.2017.

2658573.

[5] Al-Fraihat, D., Sharrab, Y., Al-Ghuwairi, A., Sbaih, N., and Qahmash, A. Detecting

refactoring type of software commit messages based on ensemble machine learning

algorithms. Scientific Reports, 14(21367):1–20, 2024. doi: https://doi.org/10.1038/

s41598-024-72307-0.

[6] Almeida, U. Learn functional programming with Elixir: new foundations for a new

world. Pragmatic Bookshelf, 1 edition, 2018.

[7] Almogahed, A., Mahdin, H., Rejab, M. M., Alawadhi, A., Barraood, S. O., Othman,

M., Al-Jamili, O., Almazroi, A. A., and Shaharudin, S. M. Code refactoring for

software reusability: An experimental study. In 4th International Conference on

Emerging Smart Technologies and Applications (eSmarTA), pages 1–6, 2024. doi:

https://doi.org/10.1109/eSmarTA62850.2024.10638872.

[8] AlOmar, E. A., Venkatakrishnan, A., Mkaouer, M. W., Newman, C., and Ouni, A.

How to refactor this code? an exploratory study on developer-ChatGPT refactoring

conversations. In 21st International Conference on Mining Software Repositories

(MSR), page 202–206, 2024. doi: https://doi.org/10.1145/3643991.3645081.

REFERENCES 148

[9] Aniche, M., Maziero, E., Durelli, R., and Durelli, V. S. The effectiveness of su-

pervised machine learning algorithms in predicting software refactoring. IEEE

Transactions on Software Engineering, 48(04):1432–1450, 2022. doi: https://doi.

ieeecomputersociety.org/10.1109/TSE.2020.3021736.

[10] Aranda, M., Oliveira, N., Soares, E., Ribeiro, M., Romão, D., Patriota, U., Gheyi,

R., Souza, E., and Machado, I. A catalog of transformations to remove smells

from natural language tests. In 28th International Conference on Evaluation and

Assessment in Software Engineering (EASE), pages 7–16, 2024. doi: https://doi.

org/10.1145/3661167.3661225.

[11] Arnaoudova, V. and Constantinides, C. Adaptation of refactoring strategies to

multiple axes of modularity: Characteristics and criteria. In 6th International Con-

ference on Software Engineering Research, Management and Applications (SERA),

pages 105–114, 2008.

[12] Arnaoudova, V., Di Penta, M., and Antoniol, G. Linguistic antipatterns: What

they are and how developers perceive them. Empirical Software Engineering, 21(1):

104–158, 2016. doi: https://doi.org/10.1007/s10664-014-9350-8.

[13] Atwi, H., Lin, B., Tsantalis, N., Kashiwa, Y., Kamei, Y., Ubayashi, N., Bavota, G.,

and Lanza, M. PyRef: refactoring detection in Python projects. In 21st IEEE Inter-

national Working Conference on Source Code Analysis and Manipulation (SCAM),

pages 136–141, 2021.

[14] Avgerinos, T. and Sagonas, K. Cleaning up Erlang code is a dirty job but somebody’s

gotta do it. In 8th ACM SIGPLAN Workshop on ERLANG, pages 1–10, 2009. doi:

https://doi.org/10.1145/1596600.1596602.

[15] Backfield, J. Becoming functional: steps for transforming into a functional pro-

grammer. O’Reilly Media, 1 edition, 2014.

[16] Backus, J. Can programming be liberated from the von Neumann style? a functional

style and its algebra of programs. Commun. ACM, 21(8):613–641, 1978. doi: https:

//doi.org/10.1145/359576.359579.

[17] Baltes, S. and Diehl, S. Worse than spam: Issues in sampling software developers.

In 10th ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement (ESEM), pages 1–6, 2016. doi: https://doi.org/10.1145/2961111.

2962628.

[18] Barn, B., Barat, S., and Clark, T. Conducting systematic literature reviews and sys-

tematic mapping studies. In 10th Innovations in Software Engineering Conference

(ISEC), page 212–213, 2017. doi: https://doi.org/10.1145/3021460.3021489.

REFERENCES 149

[19] Barwell, A. D., Brown, C. M., and Hammond, K. Finding parallel functional

pearls: Automatic parallel recursion scheme detection in Haskell functions via

anti-unification. Future Generation Computer Systems, 79:669–686, 2018. doi:

https://doi.org/10.1016/j.future.2017.07.024.

[20] Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., and Palomba, F. An exper-

imental investigation on the innate relationship between quality and refactoring.

Journal of Systems and Software, 107:1–14, 2015.

[21] Bellegarde, F. Notes for pipelines of transformations for ML. Technical report,

Oregon Graduate Institute of Science & Technology, 1995.

[22] Bereczky, P., Horpácsi, D., and Thompson, S. A frame stack semantics for sequential

Core Erlang. In 35th Symposium on Implementation and Application of Functional

Languages (IFL), pages 1–13, 2024. doi: https://doi.org/10.1145/3652561.3652566.

[23] Bereczky, P., Horpácsi, D., and Thompson, S. A formalisation of Core Erlang,

a concurrent actor language. Acta Cybernetica, 26(3):373–404, 2024. doi: https:

//doi.org/10.14232/actacyb.298977.

[24] Bibiano, A. C., Soares, V., Coutinho, D., Fernandes, E., Correia, J. a. L., Santos,

K., Oliveira, A., Garcia, A., Gheyi, R., Fonseca, B., Ribeiro, M., Barbosa, C.,

and Oliveira, D. How does incomplete composite refactoring affect internal quality

attributes? In 28th International Conference on Program Comprehension (ICPC),

page 149–159, 2020. doi: https://doi.org/10.1145/3387904.3389264.

[25] Bibiano, A. C., Assunção, W. K. G., Coutinho, D., Santos, K., Soares, V.,

Gheyi, R., Garcia, A., Fonseca, B., Ribeiro, M., Oliveira, D., Barbosa, C., Mar-

ques, J. L., and Oliveira, A. Look ahead! revealing complete composite refac-

torings and their smelliness effects. In 37th IEEE International Conference on

Software Maintenance and Evolution (ICSME), pages 298–308, 2021. doi: https:

//doi.org/10.1109/ICSME52107.2021.00033.

[26] Bordignon, M. D. and Silva, R. A. Mutation operators for concurrent programs

in Elixir. In 21st IEEE Latin-American Test Symposium (LATS), pages 1–6, 2020.

doi: https://doi.org/10.1109/LATS49555.2020.9093675.

[27] Borrelli, A., Nardone, V., Di Lucca, G. A., Canfora, G., and Di Penta, M. Detecting

video game-specific bad smells in Unity projects. In 17th International Conference

on Mining Software Repositories (MSR), page 198–208, 2020. doi: https://doi.org/

10.1145/3379597.3387454.

[28] Bosco, M., Cavoto, P., Ungolo, A., Muse, B. A., Khomh, F., Nardone, V., and

Di Penta, M. UnityLint: A bad smell detector for Unity. In 31st IEEE/ACM

REFERENCES 150

International Conference on Program Comprehension (ICPC), pages 186–190, 2023.

doi: https://doi.org/10.1109/ICPC58990.2023.00033.

[29] Bozó, I., Fordós, V., Horvath, Z., Tóth, M., Horpácsi, D., Kozsik, T., Köszegi, J.,

Barwell, A., Brown, C., and Hammond, K. Discovering parallel pattern candidates

in Erlang. In 13th ACM SIGPLAN Workshop on Erlang, page 13–23, 2014. doi:

https://doi.org/10.1145/2633448.2633453.

[30] Bozó, I., Fördős, V., Horpácsi, D., Horváth, Z., Kozsik, T., Kőszegi, J., and Tóth, M.

Refactorings to enable parallelization. In 15th Trends in Functional Programming

(TFP), pages 104–121, 2015.

[31] Bozó, I. and Tóth, M. Restructuring Erlang programs using function related refac-

torings. In 11th Symposium on Programming Languages and Software Tools and 7th

Nordic Workshop on Model Driven Software Engineering (SPLST & NW-MODE),

pages 162–176, 2009.

[32] Brito, A., Hora, A., and Valente, M. T. Towards a catalog of composite refactorings.

Journal of Software: Evolution and Process, 1:1–22, 2023. doi: https://doi.org/10.

1002/smr.2530.

[33] Brito, R. and Valente, M. T. RefDiff4Go: Detecting refactorings in Go. In

14th Brazilian Symposium on Software Components, Architectures, and Reuse (SB-

CARS), pages 1–10, 2020.

[34] Brown, C. M. and Thompson, S. Clone detection and elimination for Haskell.

In ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation

(PEPM), page 111–120, 2010. doi: https://doi.org/10.1145/1706356.1706378.

[35] Brown, C. M., Hammond, K., Danelutto, M., Kilpatrick, P., Schöner, H., and

Breddin, T. Paraphrasing: Generating parallel programs using refactoring. In 10th

Symposium on Formal Methods for Components and Objects (FMCO), pages 237–

256, 2011. doi: https://doi.org/10.1007/978-3-642-35887-6_13.

[36] Brown, C. M., Li, H., and Thompson, S. An expression processor: A case study in

refactoring Haskell programs. In Page, R., Horváth, Z., and Zsók, V., editors, 12th

Trends in Functional Programming (TFP), volume 6546, pages 31–49, 2011.

[37] Brown, C. M., Loidl, H.-W., and Hammond, K. ParaForming: Forming parallel

Haskell programs using novel refactoring techniques. In 12th International Con-

ference on Trends in Functional Programming (TFP), pages 82–97, 2011. doi:

https://doi.org/10.1007/978-3-642-32037-8_6.

REFERENCES 151

[38] Brown, C. M., Danelutto, M., Hammond, K., Kilpatrick, P., and Elliott, A. Cost-

directed refactoring for parallel Erlang programs. International Journal of Parallel

Programming, 42:564–582, 2014.

[39] Brown, C. M. Tool support for refactoring Haskell programs. Phd thesis, University

of Kent, UK, September 2008.

[40] Brown, W. J., Malveau, R. C., McCormick, H. W., and Mowbray, T. J. AntiPat-

terns: refactoring software, architectures, and projects in crisis. John Wiley and

Sons, 1998.

[41] Budgen, D. and Brereton, P. Performing systematic literature reviews in software

engineering. In 28th International Conference on Software Engineering (ICSE),

pages 1051–1052, 2006. doi: https://doi.org/10.1145/1134285.1134500.

[42] Burstall, R. M. and Darlington, J. A transformation system for developing recursive

programs. J. ACM, 24(1):44–67, 1977. doi: https://doi.org/10.1145/321992.321996.

[43] Cedrim, D., Garcia, A., Mongiovi, M., Gheyi, R., Sousa, L., de Mello, R., Fonseca,

B., Ribeiro, M., and Chávez, A. Understanding the impact of refactoring on smells:

A longitudinal study of 23 software projects. In 11th Joint Meeting on Foundations

of Software Engineering (ESEC/FSE), page 465–475, 2017. doi: https://doi.org/

10.1145/3106237.3106259.

[44] Chang, S. Laziness by need. In Programming Languages and Systems (ESOP),

pages 81–100, 2013.

[45] Chechina, N., MacKenzie, K., Thompson, S., Trinder, P., Boudeville, O., Fördős,

V., Hoch, C., Ghaffari, A., and Hernandez, M. M. Evaluating scalable distributed

Erlang for scalability and reliability. IEEE Transactions on Parallel and Distributed

Systems, 28(8):2244–2257, 2017. doi: https://doi.org/10.1109/TPDS.2017.2654246.

[46] Chen, Q., Câmara, R., Campos, J., Souto, A., and Ahmed, I. The smelly eight:

An empirical study on the prevalence of code smells in Quantum Computing. In

45th IEEE/ACM International Conference on Software Engineering (ICSE), pages

1–13, 2023.

[47] Chidamber, S. and Kemerer, C. A metrics suite for object oriented design. IEEE

Transactions on Software Engineering, 20(6):476–493, 1994. doi: https://doi.org/

10.1109/32.295895.

[48] Church, A. A set of postulates for the foundation of logic. Annals of Mathematics,

33(2):346–366, 1932.

REFERENCES 152

[49] Corbat, T., Felber, L., Stocker, M., and Sommerlad, P. Ruby refactoring plug-in

for Eclipse. In 22nd ACM SIGPLAN Conference on Object-Oriented Programming

Systems and Applications Companion (OOPSLA), pages 779–780, 2007. doi: https:

//doi.org/10.1145/1297846.1297884.

[50] Cowie, J. Detecting bad smells in Haskell. Technical report, University of Kent,

UK, 2005.

[51] Cruz, D., Santana, A., and Figueiredo, E. Detecting bad smells with machine learn-

ing algorithms: An empirical study. In 3rd International Conference on Technical

Debt (TechDebt), page 31–40, 2020. doi: https://doi.org/10.1145/3387906.3388618.

[52] Cruzes, D. S. and Dybå, T. Research synthesis in software engineering: A tertiary

study. Information and Software Technology, 53(5):440–455, 2011. doi: https:

//doi.org/10.1016/j.infsof.2011.01.004.

[53] Cruzes, D. S. and Dybå, T. Recommended steps for thematic synthesis in software

engineering. In 5th International Symposium on Empirical Software Engineering

and Measurement (ESEM), pages 275–284, 2011. doi: https://doi.org/10.1109/

ESEM.2011.36.

[54] da Costa, J. A. S., Gheyi, R., Ribeiro, M., Apel, S., Alves, V., Fonseca, B., Medeiros,

F., and Garcia, A. Evaluating refactorings for disciplining #ifdef annotations: An

eye tracking study with novices. Empirical Software Engineering, 26(92):1–35, 2021.

doi: https://doi.org/10.1007/s10664-021-10002-8.

[55] da Costa, J. A. S., Gheyi, R., Castor, F., de Oliveira, P. R. F., Ribeiro, M., and

Fonseca, B. Seeing confusion through a new lens: on the impact of atoms of confu-

sion on novices’ code comprehension. Empirical Software Engineering, 28(81):1–42,

2023. doi: https://doi.org/10.1007/s10664-023-10311-0.

[56] Dabic, O., Aghajani, E., and Bavota, G. Sampling projects in GitHub for MSR stud-

ies. In 18th IEEE/ACM International Conference on Mining Software Repositories

(MSR), pages 560–564, 2021. doi: https://doi.org/10.1109/MSR52588.2021.00074.

[57] Dig, D. A refactoring approach to parallelism. IEEE Software, 28(1):17–22, 2011.

doi: 10.1109/MS.2011.1.

[58] Dig, D., Comertoglu, C., Marinov, D., and Johnson, R. Automated detection

of refactorings in evolving components. In 20th European Conference on Object-

Oriented Programming (ECOOP), pages 404–428, 2006.

[59] Dong, Y., Li, Z., Tian, Y., Sun, C., Godfrey, M. W., and Nagappan, M. Bash in

the wild: language usage, code smells, and bugs. ACM Transactions on Software

Engineering and Methodology, 2022. doi: https://doi.org/10.1145/3517193.

REFERENCES 153

[60] Drienyovszky, D., Horpácsi, D., and Thompson, S. Quickchecking refactoring tools.

In 9th ACM SIGPLAN Workshop on Erlang, page 75–80, 2010. doi: https://doi.

org/10.1145/1863509.1863521.

[61] Eclipse, F. Eclipse IDE. Available at: https://www.eclipse.org/, 2023.

[62] Erwig, M. and Ren, D. An update calculus for expressing type-safe program updates.

Science of Computer Programming, 67(2):199–222, 2007. doi: https://doi.org/10.

1016/j.scico.2007.01.003.

[63] Fard, A. M. and Mesbah, A. Jsnose: detecting JavaScript code smells. In 13th

IEEE International Working Conference on Source Code Analysis and Manipulation

(SCAM), pages 116–125, 2013. doi: https://doi.org/10.1109/SCAM.2013.6648192.

[64] Farmer, A., Gill, A., Komp, E., and Sculthorpe, N. The HERMIT in the machine:

A plugin for the interactive transformation of GHC core language programs. In

ACM SIGPLAN Symposium on Haskell (Haskell’12), pages 1–12, 2012. doi: https:

//doi.org/10.1145/2364506.2364508.

[65] Farmer, A., Sculthorpe, N., and Gill, A. Reasoning with the HERMIT: Tool support

for equational reasoning on GHC core programs. In ACM SIGPLAN Symposium

on Haskell (Haskell’15), pages 23–34, 2015. doi: https://doi.org/10.1145/2804302.

2804303.

[66] Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and Figueiredo, E. A review-based

comparative study of bad smell detection tools. In 20th International Conference

on Evaluation and Assessment in Software Engineering (EASE), pages 1–12, 2016.

doi: https://doi.org/10.1145/2915970.2915984.

[67] Ferreira, F. and Valente, M. T. Detecting code smells in React-based web apps. In-

formation and Software Technology, 155:1–16, 2023. doi: https://doi.org/10.1016/

j.infsof.2022.107111.

[68] Ferreira, F., Borges, H., and Valente, M. T. Refactoring React-based web apps.

Journal of Systems and Software, 215:1–36, 2024. doi: https://doi.org/10.1016/j.

jss.2024.112105.

[69] Fokaefs, M., Tsantalis, N., Stroulia, E., and Chatzigeorgiou, A. JDeodorant:

identification and application of extract class refactorings. In 33rd International

Conference on Software Engineering (ICSE), pages 1037–1039, 2011. doi: https:

//doi.org/10.1145/1985793.1985989.

[70] Fontana, F., Zanoni, M., Marino, A., and Mäntylä, M. Code smell detection: to-

wards a machine learning-based approach. In 29th International Conference on

REFERENCES 154

Software Maintenance (ICSM), pages 396–399, 2013. doi: https://doi.org/10.1109/

ICSM.2013.56.

[71] Fontana, F. A., Mäntylä, M. V., Zanoni, M., and Marino, A. Comparing and

experimenting machine learning techniques for code smell detection. Empiri-

cal Software Engineering, 21(3):1143–1191, 2016. doi: https://doi.org/10.1007/

s10664-015-9378-4.

[72] Fontana, F. A., Ferme, V., Marino, A., Walter, B., and Martenka, P. Investigating

the impact of code smells on system’s quality: an empirical study on systems of

different application domains. In 29th IEEE International Conference on Software

Maintenance (ICSM), pages 260–269, 2013. doi: https://doi.org/10.1109/ICSM.

2013.37.

[73] Fördős, V. and Tóth, M. Identifying code clones with RefactorErl. Acta Cybernetica,

22(3):553–571, 2016. doi: https://doi.org/10.14232/actacyb.22.3.2016.1.

[74] Fowler, M. and Beck, K. Refactoring: improving the design of existing code.

Addison-Wesley, 1 edition, 1999.

[75] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design patterns: Elements of

reusable object-oriented software. Pearson Education, 1 edition, 1994.

[76] Garousi, V., Felderer, M., and Mäntylä, M. V. Guidelines for including grey litera-

ture and conducting multivocal literature reviews in software engineering. Informa-

tion and Software Technology, 106(1):101–121, 2019. doi: https://doi.org/10.1016/

j.infsof.2018.09.006.

[77] Gesi, J., Liu, S., Li, J., Ahmed, I., Nagappan, N., Lo, D., de Almeida, E. S.,

Kochhar, P. S., and Bao, L. Code smells in machine learning systems. ArXiv,

arXiv:2203.00803:1–12, 2022. doi: https://doi.org/10.48550/arXiv.2203.00803.

[78] Gill, A. Introducing the Haskell equational reasoning assistant. In ACM SIGPLAN

Workshop on Haskell (Haskell’06), pages 108–109, 2006. doi: https://doi.org/10.

1145/1159842.1159856.

[79] Golubev, Y., Kurbatova, Z., AlOmar, E. A., Bryksin, T., and Mkaouer, M. W.

One thousand and one stories: a large-scale survey of software refactoring. In 29th

ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE), pages 1303–1313, 2021.

doi: https://doi.org/10.1145/3468264.3473924.

[80] Gruber, M., Lukasczyk, S., Kroiß, F., and Fraser, G. An empirical study of flaky

tests in Python. In 14th IEEE Conference on Software Testing, Verification and

REFERENCES 155

Validation (ICST), pages 148–158, 2021. doi: https://doi.org/10.1109/ICST49551.

2021.00026.

[81] Guttmann, W., Partsch, H., Schulte, W., and Vullinghs, T. Tool support for the

interactive derivation of formally correct functional programs. Journal of Universal

Computer Science, 9(2):173–188, 2003.

[82] Habchi, S., Hecht, G., Rouvoy, R., and Moha, N. Code smells in iOS apps: how

do they compare to Android? In 4th IEEE/ACM International Conference on

Mobile Software Engineering and Systems (MOBILESoft), pages 110–121, 2017.

doi: https://doi.org/10.1109/MOBILESoft.2017.11.

[83] Hecht, G., Benomar, O., Rouvoy, R., Moha, N., and Duchien, L. Tracking the

software quality of Android applications along their evolution. In 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE), pages 236–

247, 2015. doi: https://doi.org/10.1109/ASE.2015.46.

[84] Héder, M., László, Z., and Sulyán, T. Another neat tool for refactoring Erlang

programs. In 11th IASTED International Conference on Software Engineering and

Applications (SEA), pages 336–341, 2007.

[85] Hudak, P. Conception, evolution, and application of functional programming lan-

guages. ACM Comput. Surv., 21(3):359–411, 1989. doi: https://doi.org/10.1145/

72551.72554.

[86] Humble, J. and Farley, D. Continuous delivery: Reliable software releases through

build, test, and deployment automation. Addison-Wesley Professional, 1 edition,

2010.

[87] Ichtsis, A., Mittas, N., Ampatzoglou, A., and Chatzigeorgiou, A. Merging smell

detectors: Evidence on the agreement of multiple tools. In 5th International Con-

ference on Technical Debt (TechDebt), pages 61–65, 2022. doi: https://doi.org/10.

1145/3524843.3528089.

[88] Janjic, V., Brown, C., Barwell, A., and Hammond, K. Refactoring for introducing

and tuning parallelism for heterogeneous multicore machines in Erlang. Concurrency

and Computation: Practice and Experience, 33(14):1–25, 2021.

[89] JetBrains. IntelliJ IDEA: the leading Java and Kotlin IDE. Available at: https:

//www.jetbrains.com/idea/, 2023.

[90] JetBrains. ReSharper: the visual studio extension for .NET developers. Available

at: https://www.jetbrains.com/resharper/, 2023.

REFERENCES 156

[91] Job, R. and Hora, A. How and why developers implement OS-specific tests.

Empirical Software Engineering, 30(8):1–33, 2025. doi: https://doi.org/10.1007/

s10664-024-10571-4.

[92] Johnson, B., Song, Y., Murphy-Hill, E., and Bowdidge, R. Why don’t software

developers use static analysis tools to find bugs? In 35th International Conference

on Software Engineering (ICSE), pages 672–681, 2013. doi: https://doi.org/10.

1109/ICSE.2013.6606613.

[93] Johnsson, T. Lambda lifting: Transforming programs to recursive equations. In

Functional Programming Languages and Computer Architecture (FPCA), pages

190–203, 1985.

[94] Jurić, S. Elixir in action. Manning, 3 edition, 2024.

[95] Kalhor, S., Keyvanpour, M. R., and Salajegheh, A. A systematic review of refac-

toring opportunities by software antipattern detection. Automated Software Engi-

neering, 31(42):1–65, 2024. doi: https://doi.org/10.1007/s10515-024-00443-y.

[96] Kamei, F., Wiese, I., Lima, C., Polato, I., Nepomuceno, V., Ferreira, W., Ribeiro,

M., Pena, C., Cartaxo, B., Pinto, G., and Soares, S. Grey literature in software

engineering: a critical review. Information and Software Technology, 138(1):1–26,

2021. doi: https://doi.org/10.1016/j.infsof.2021.106609.

[97] Kim, M., Gee, M., Loh, A., and Rachatasumrit, N. Ref-Finder: a refactoring recon-

struction tool based on logic query templates. In 8th ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE), page 371–372, 2010.

doi: https://doi.org/10.1145/1882291.1882353.

[98] Király, R. Complexity metric based source code transformation of Erlang programs.

In Annales Mathematicae et Informaticae, pages 29–44, 2013.

[99] Kitchenham, B. and Charters, S. Guidelines for performing systematic literature

reviews in software engineering. Technical report, Keele University, July 2007.

[100] Kozsik, T., Csörnyei, Z., Horváth, Z., Király, R., Kitlei, R., Lövei, L., Nagy, T.,

Tóth, M., and Víg, A. Use cases for refactoring in Erlang. In 2nd Central European

Functional Programming School (CEFP), pages 250–285, 2007. doi: https://doi.

org/10.1007/978-3-540-88059-2_7.

[101] Kozsik, T., Tóth, M., Bozó, I., and Horváth, Z. Static analysis for divide-and-

conquer pattern discovery. Computing and Informatics, 35(4):764–791, 2017.

REFERENCES 157

[102] Kozsik, T., Tóth, M., and Bozó, I. Free the conqueror! refactoring divide-and-

conquer functions. Future Generation Computer Systems, 79:687–699, 2018. URL

https://doi.org/10.1016/j.future.2017.05.011.

[103] Kurbatova, Z., Kovalenko, V., Savu, I., Brockbernd, B., Andreescu, D., Anton, M.,

Venediktov, R., Tikhomirova, E., and Bryksin, T. RefactorInsight: Enhancing IDE

representation of changes in Git with refactorings information. In 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE), pages 1276–

1280, 2022. doi: https://doi.org/10.1109/ASE51524.2021.9678646.

[104] Lämmel, R. Towards generic refactoring. In ACM SIGPLAN Workshop on Rule-

Based Programming (RULE), page 15–28, 2002. doi: https://doi.org/10.1145/

570186.570188.

[105] Lee, D. Y. A case study on refactoring in Haskell programs. In 33rd International

Conference on Software Engineering (ICSE), pages 1164–1166, 2011. doi: https:

//doi.org/10.1145/1985793.1986030.

[106] Li, H. and Thompson, S. Comparative study of refactoring Haskell and Erlang pro-

grams. In 6th IEEE International Workshop on Source Code Analysis and Manipu-

lation (SCAM), pages 197–206, 2006. doi: https://doi.org/10.1109/SCAM.2006.8.

[107] Li, H. and Thompson, S. Clone detection and removal for Erlang/OTP within

a refactoring environment. In ACM SIGPLAN Workshop on Partial Evaluation

and Program Manipulation (PEPM), pages 169–178, 2009. doi: https://doi.org/10.

1145/1480945.1480971.

[108] Li, H. and Thompson, S. Refactoring support for modularity maintenance in Er-

lang. In 10th IEEE Working Conference on Source Code Analysis and Manipulation

(SCAM), pages 157–166, 2010. doi: https://doi.org/10.1109/SCAM.2010.17.

[109] Li, H. and Thompson, S. A domain-specific language for scripting refactorings in

Erlang. In de Lara, J. and Zisman, A., editors, Fundamental Approaches to Software

Engineering (FASE), volume 7212, pages 501–515, 2012.

[110] Li, H. and Thompson, S. Safe concurrency introduction through slicing. In Workshop

on Partial Evaluation and Program Manipulation (PEPM), page 103–113, 2015. doi:

https://doi.org/10.1145/2678015.2682533.

[111] Li, H., Thompson, S., and Reinke, C. The Haskell refactorer, HaRe, and its API.

Electronic Notes in Theoretical Computer Science, 141(4):29–34, 2005. doi: https:

//doi.org/10.1016/j.entcs.2005.02.053.

REFERENCES 158

[112] Li, H., Thompson, S., Lövei, L., Horváth, Z., Kozsik, T., Víg, A., and Nagy, T.

Refactoring Erlang programs. In 12th International Erlang/OTP User Conference

(EUC), pages 1–10, 2006.

[113] Li, H., Thompson, S., Orosz, G., and Tóth, M. Refactoring with Wrangler, updated:

Data and process refactorings, and integration with Eclipse. In 7th ACM SIGPLAN

Workshop on ERLANG, pages 61–72, 2008. doi: https://doi.org/10.1145/1411273.

1411283.

[114] Li, H., Thompson, S., Lamela Seijas, P., and Francisco, M. A. Automating property-

based testing of evolving web services. In ACM SIGPLAN Workshop on Partial

Evaluation and Program Manipulation (PEPM), page 169–180, 2014. doi: https:

//doi.org/10.1145/2543728.2543741.

[115] Li, W. and Shatnawi, R. An empirical study of the bad smells and class error

probability in the post-release object-oriented system evolution. Journal of Systems

and Software, 80(7):1120–1128, 2007. doi: https://doi.org/10.1016/j.jss.2006.10.

018.

[116] Liu, H., Ma, Z., Shao, W., and Niu, Z. Schedule of bad smell detection and reso-

lution: A new way to save effort. IEEE Transactions on Software Engineering, 38

(1):220–235, 2012. doi: https://doi.org/10.1109/TSE.2011.9.

[117] Lövei, L., Horváth, Z., Kozsik, T., and Király, R. Introducing records by refactoring.

In SIGPLAN Workshop on ERLANG Workshop, pages 18–28, 2007. doi: https:

//doi.org/10.1145/1292520.1292524.

[118] Lövei, L., Horváth, Z., Kozsik, T., and Király, R. Introducing records by refactoring

in Erlang programs. In 10th Symposium on Programming Languages and Software

Tools (SPLST), pages 1–18, 2007.

[119] Lövei, L., Hoch, C., Köllö, H., Nagy, T., Nagyné Víg, A., Horpácsi, D., Kitlei, R.,

and Király, R. Refactoring module structure. In 7th ACM SIGPLAN Workshop on

ERLANG, pages 83–89, 2008. doi: https://doi.org/10.1145/1411273.1411285.

[120] Luo, Q., Hariri, F., Eloussi, L., and Marinov, D. An empirical analysis of flaky

tests. In 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE), page 643–653, 2014. doi: https://doi.org/10.1145/2635868.

2635920.

[121] Mäntylä, M. V. and Lassenius, C. Subjective evaluation of software evolvability us-

ing code smells: an empirical study. Empirical Software Engineering, 11(3):395–431,

2006. doi: https://doi.org/10.1007/s10664-006-9002-8.

REFERENCES 159

[122] Marinescu, R. Detecting design flaws via metrics in object-oriented systems. In

39th International Conference and Exhibition on Technology of Object-Oriented Lan-

guages and Systems (TOOLS), pages 173–182, 2001.

[123] Marinescu, R. Measurement and quality in object-oriented design. In 21st IEEE

International Conference on Software Maintenance (ICSM), pages 701–704, 2005.

[124] Martin, R. C. Functional design: Principles, patterns, and practices. Addison-

Wesley Professional, 1 edition, 2023.

[125] Mashiach, T., Sotto-Mayor, B., Kaminka, G., and Kalech, M. Clean++: Code

smells extraction for C++. In 20th International Conference on Mining Software

Repositories (MSR), pages 441–445, 2023. doi: https://doi.org/10.1109/MSR59073.

2023.00066.

[126] McCarthy, J. Recursive functions of symbolic expressions and their computation

by machine, part i. Commun. ACM, 3(4):184–195, 1960. doi: https://doi.org/10.

1145/367177.367199.

[127] McKeeman, W. M. Differential testing for software. Digital Technical Journal, 10

(1):100–107, 1998.

[128] Meyer, B. Object-oriented software construction. Prentice Hall Englewood Cliffs, 2

edition, 1997.

[129] Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur, A.-F. DECOR: A method

for the specification and detection of code and design smells. IEEE Transactions on

Software Engineering, 36(1):20–36, 2010. doi: https://doi.org/10.1109/TSE.2009.

50.

[130] Mongiovi, M., Gheyi, R., Soares, G., Ribeiro, M., Borba, P., and Teixeira, L. De-

tecting overly strong preconditions in refactoring engines. IEEE Transactions on

Software Engineering, 44(5):429–452, 2018. doi: https://doi.org/10.1109/TSE.2017.

2693982.

[131] Murphy-Hill, E., Parnin, C., and Black, A. P. How we refactor, and how we know

it. IEEE Transactions on Software Engineering, 38(1):5–18, 2012. doi: https:

//doi.org/10.1109/TSE.2011.41.

[132] Nagappan, N., Ball, T., and Zeller, A. Mining metrics to predict component failures.

In 28th International Conference on Software Engineering (ICSE), page 452–461,

2006. doi: https://doi.org/10.1145/1134285.1134349.

REFERENCES 160

[133] Nardone, V., Muse, B. A., Abidi, M., Khomh, F., and Penta, M. D. Video game

bad smells: What they are and how developers perceive them. ACM Trans. Softw.

Eng. Methodol., 32(4):1–35, 2023. doi: https://doi.org/10.1145/3563214.

[134] NetBeans.org. NetBeans IDE. Available at: http://www.netbeans.org/, 2023.

[135] Nunes, H. G., Vegi, L. F. M., Cruz, V. P. G., and Figueiredo, E. Democracia em

xeque: um estudo comparativo sobre detecção de code smells. In 10th Workshop de

Visualização, Evolução e Manutenção de Software (VEM), pages 11–15, 2022. doi:

https://doi.org/10.5753/vem.2022.226562.

[136] Oizumi, W., Garcia, A., da Silva Sousa, L., Cafeo, B., and Zhao, Y. Code anomalies

flock together: exploring code anomaly agglomerations for locating design problems.

In 38th International Conference on Software Engineering (ICSE), page 440–451,

2016. doi: https://doi.org/10.1145/2884781.2884868.

[137] Oizumi, W. N., Garcia, A. F., Colanzi, T. E., Ferreira, M., and von Staa, A. When

code-anomaly agglomerations represent architectural problems? an exploratory

study. In 28th Brazilian Symposium on Software Engineering (SBSE), pages 91–100,

2014. doi: https://doi.org/10.1109/SBES.2014.18.

[138] Olbrich, S. M., Cruzes, D. S., and Sjøberg, D. I. Are all code smells harmful?

a study of God Classes and Brain Classes in the evolution of three open source

systems. In 26th IEEE International Conference on Software Maintenance (ICSM),

pages 1–10, 2010. doi: https://doi.org/10.1109/ICSM.2010.5609564.

[139] Oliveira, J., Gheyi, R., Mongiovi, M., Soares, G., Ribeiro, M., and Garcia, A.

Revisiting the refactoring mechanics. Information and Software Technology, 110:

136–138, 2019. doi: https://doi.org/10.1016/j.infsof.2019.03.002.

[140] Oliveira, J., Gheyi, R., Teixeira, L., Ribeiro, M., Leandro, O., and Fonseca, B.

Towards a better understanding of the mechanics of refactoring detection tools.

Information and Software Technology, 162:107273, 2023. doi: https://doi.org/10.

1016/j.infsof.2023.107273.

[141] Opdyke, W. F. Refactoring object-oriented frameworks. Phd thesis, University of

Illinois at Urbana-Champaign, USA, August 1992.

[142] Page, L., Brin, S., Motwani, R., and Winograd, T. The PageRank citation ranking:

bringing order to the Web. Technical report, Stanford InfoLab, November 1999.

[143] Palomba, F., Bavota, G., Penta, M. D., Oliveto, R., and Lucia, A. D. Do they

really smell bad? a study on developers’ perception of bad code smells. In 30th

REFERENCES 161

IEEE International Conference on Software Maintenance and Evolution (ICSME),

page 101–110, 2014. doi: https://doi.org/10.1109/ICSME.2014.32.

[144] Partsch, H. and Steinbrüggen, R. Program transformation systems. ACM Comput.

Surv., 15(3):199–236, 1983. doi: https://doi.org/10.1145/356914.356917.

[145] Paul, P. P., Akanda, M. T., Ullah, M. R., Mondal, D., Chowdhury, N. S., and

Tawsif, F. M. xNose: A test smell detector for C#. In IEEE/ACM 46th Interna-

tional Conference on Software Engineering: Companion Proceedings (ICSE), page

370–371, 2024. doi: https://doi.org/10.1145/3639478.3643116.

[146] Punt, L., Visscher, S., and Zaytsev, V. The A?B*A pattern: undoing style in CSS

and refactoring opportunities it presents. In 32nd IEEE International Conference

on Software Maintenance and Evolution (ICSME), pages 67–77, 2016. doi: https:

//doi.org/10.1109/ICSME.2016.73.

[147] Ramanathan, M. K., Clapp, L., Barik, R., and Sridharan, M. Piranha: Reducing

feature flag debt at Uber. In IEEE/ACM 42nd International Conference on Software

Engineering (ICSE), pages 221–230, 2020.

[148] Rasool, G. and Arshad, Z. A review of code smell mining techniques. Journal of

Software: Evolution and Process, 27(11):867–895, 2015. doi: https://doi.org/10.

1002/smr.1737.

[149] Ratzinger, J., Sigmund, T., and Gall, H. C. On the relation of refactorings and soft-

ware defect prediction. In 5th International Working Conference on Mining Soft-

ware Repositories (MSR), page 35–38, 2008. doi: https://doi.org/10.1145/1370750.

1370759.

[150] Reimann, J., Brylski, M., and Aßmann, U. A tool-supported quality smell cata-

logue for Android developers. In Modellbasierte und modellgetriebene Softwaremod-

ernisierung (MMSM), page 1–2, 2014.

[151] Riel, A. J. Object-oriented design heuristics. Addison-Wesley, 1 edition, 1996.

[152] Roberts, D., Brant, J., and Johnson, R. A refactoring tool for Smalltalk. Theory

and Practice of Object Systems, 3(4):253–263, 1997.

[153] Rowe, R. N. S., Férée, H., Thompson, S., and Owens, S. ROTOR: A tool for

renaming values in OCaml’s module system. In 3rd International Workshop on

Refactoring (IWOR), pages 27–30, 2019. doi: https://doi.org/10.1109/IWoR.2019.

00013.

REFERENCES 162

[154] Rowe, R. N. S., Férée, H., Thompson, S., and Owens, S. Characterising renaming

within OCaml’s module system: Theory and implementation. In 40th ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI),

pages 950–965, 2019. doi: https://doi.org/10.1145/3314221.3314600.

[155] Saboury, A., Musavi, P., Khomh, F., and Antoniol, G. An empirical study of code

smells in JavaScript projects. In 24th IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER), pages 294–305, 2017. doi: https:

//doi.org/10.1109/SANER.2017.7884630.

[156] Sagonas, K. and Avgerinos, T. Automatic refactoring of Erlang programs. In 11th

ACM SIGPLAN Conference on Principles and Practice of Declarative Programming

(PPDP), pages 13–24, 2009. doi: https://doi.org/10.1145/1599410.1599414.

[157] Sagonas, K. and Luna, D. Gradual typing of Erlang programs: A Wrangler expe-

rience. In 7th ACM SIGPLAN Workshop on ERLANG, pages 73–82, 2008. doi:

https://doi.org/10.1145/1411273.1411284.

[158] Santos, G., Santana, A., Vale, G., and Figueiredo, E. Yet another model! a study

on model’s similarities for defect and code smells. In 26th International Conference

on Fundamental Approaches to Software Engineering (FASE), pages 282–305, 2023.

doi: https://doi.org/10.1007/978-3-031-30826-0_16.

[159] Schaefer, M. and de Moor, O. Specifying and implementing refactorings. In

ACM International Conference on Object Oriented Programming Systems Lan-

guages and Applications (OOPSLA), page 286–301, 2010. doi: https://doi.org/

10.1145/1869459.1869485.

[160] Scott, M. L. Programming language pragmatics. Morgan Kaufmann, 4 edition, 2015.

[161] Sculthorpe, N., Farmer, A., and Gill, A. The HERMIT in the tree - mechanizing

program transformations in the GHC core language. In Hinze, R., editor, 25th Sym-

posium on Implementation and Application of Functional Languages (IFL). Lecture

Notes in Computer Science, volume 8241, pages 86–103, 2013.

[162] Seijas, P. L. and Thompson, S. Identifying and introducing interfaces and callbacks

using Wrangler. In 28th Symposium on the Implementation and Application of

Functional Programming Languages (IFL), pages 1–13, 2016. doi: https://doi.org/

10.1145/3064899.3064909.

[163] Seres, B., Horpácsi, D., and Thompson, S. Is this really a refactoring? automated

equivalence checking for Erlang projects. In 23rd ACM SIGPLAN International

Workshop on Erlang, page 55–66, 2024. doi: https://doi.org/10.1145/3677995.

3678194.

REFERENCES 163

[164] Sharma, T., Suryanarayana, G., and Samarthyam, G. Challenges to and solutions

for refactoring adoption: An industrial perspective. IEEE Software, 32(6):44–51,

2015. doi: https://doi.org/10.1109/MS.2015.105.

[165] Sharma, T., Fragkoulis, M., and Spinellis, D. Does your configuration code smell?

In 13th IEEE/ACM Working Conference on Mining Software Repositories (MSR),

pages 189–200, 2016.

[166] Sherwany, A., Zaza, N., and Nystrom, N. A refactoring library for Scala com-

piler extensions. In Franke, B., editor, 24th International Conference on Compiler

Construction (CC). Lecture Notes in Computer Science, volume 9031, pages 31–48,

2015.

[167] Siegel, S. and Castellan, J. Nonparametric statistics for the behavioral sciences.

McGraw-Hill International Editions, 2 edition, 1988.

[168] Silva, D. and Valente, M. T. RefDiff: Detecting refactorings in version histories. In

14th International Conference on Mining Software Repositories (MSR), pages 1–11,

2017.

[169] Silva, D., Tsantalis, N., and Valente, M. T. Why we refactor? confessions of GitHub

contributors. In 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering (FSE), pages 858–870, 2016. doi: https://doi.org/10.1145/

2950290.2950305.

[170] Silva, D., da Silva, J. P., Santos, G., Terra, R., and Valente, M. T. RefDiff 2.0:

A multi-language refactoring detection tool. IEEE Transactions on Software Engi-

neering, 47(12):2786–2802, 2021. doi: https://doi.org/10.1109/TSE.2020.2968072.

[171] Singh, S. and Kaur, S. A systematic literature review: Refactoring for disclosing

code smells in object oriented software. Ain Shams Engineering Journal, 9(4):2129–

2151, 2018. doi: https://doi.org/10.1016/j.asej.2017.03.002.

[172] Soares, E., Aranda, M., Oliveira, N., Ribeiro, M., Gheyi, R., Souza, E., Machado,

I., Santos, A., Fonseca, B., and Bonifacio, R. Manual tests do smell! Cataloging

and identifying natural language test smells. In 17th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM), pages

1–11, 2023. doi: https://doi.org/10.1109/ESEM56168.2023.10304800.

[173] Soares, E., Ribeiro, M., Gheyi, R., Amaral, G., and Santos, A. Refactoring test

smells with JUnit 5: Why should developers keep up-to-date? IEEE Transactions

on Software Engineering, 49(3):1152–1170, 2023. doi: https://doi.org/10.1109/TSE.

2022.3172654.

REFERENCES 164

[174] Soares, G., Mongiovi, M., and Gheyi, R. Identifying overly strong conditions in

refactoring implementations. In 27th IEEE International Conference on Software

Maintenance (ICSM), pages 173–182, 2011.

[175] Sobrinho, E. and Maia, M. On the interplay of smells large class, complex class

and duplicate code. In 35th Brazilian Symposium on Software Engineering (SBSE),

page 64–73, 2021. doi: https://doi.org/10.1145/3474624.3474716.

[176] Sobrinho, E., De Lucia, A., and Maia, M. A systematic literature review on bad

smells–5 w’s: which, when, what, who, where. IEEE Transactions on Software

Engineering, 47(1):17–66, 2021. doi: https://doi.org/10.1109/TSE.2018.2880977.

[177] Soh, Z., Yamashita, A., Khomh, F., and Guéhéneuc, Y.-G. Do code smells impact

the effort of different maintenance programming activities? In 23rd IEEE Interna-

tional Conference on Software Analysis, Evolution, and Reengineering (SANER),

pages 393–402, 2016. doi: https://doi.org/10.1109/SANER.2016.103.

[178] Sousa, L., Cedrim, D., Garcia, A., Oizumi, W., Bibiano, A. C., Oliveira, D., Kim,

M., and Oliveira, A. Characterizing and identifying composite refactorings: Con-

cepts, heuristics and patterns. In 17th International Conference on Mining Software

Repositories (MSR), pages 186–197, 2020. doi: https://doi.org/10.1145/3379597.

3387477.

[179] Swaine, M. Functional programming: a PragPub anthology: exploring Clojure,

Elixir, Haskell, Scala, and Swift. Pragmatic Bookshelf, 1 edition, 2017.

[180] Taibi, D. and Lenarduzzi, V. On the definition of microservice bad smells. IEEE

Software, 35(3):56–62, 2018. doi: https://doi.org/10.1109/MS.2018.2141031.

[181] Taibi, D., Janes, A., and Lenarduzzi, V. How developers perceive smells in source

code: a replicated study. Information and Software Technology, 92(1):223–235,

2017. doi: https://doi.org/10.1016/j.infsof.2017.08.008.

[182] Taylor, R. and Derrick, J. mu2: A refactoring-based mutation testing framework for

Erlang. In 27th International Conference on Testing Software and Systems (ICTSS),

pages 178–193, 2015.

[183] Thomas, D. Programming Elixir |> 1.6: functional |> concurrent |> pragmatic |>

fun. Pragmatic Bookshelf, 1 edition, 2018.

[184] Thompson, S. Refactoring functional programs. In 5th International Summer School

on Advanced Functional Programming (AFP), pages 331–357, 2005.

[185] Thompson, S. Haskell: the craft of functional programming. Addison-Wesley Pro-

fessional, 3 edition, 2023.

REFERENCES 165

[186] Thompson, S. and Reinke, C. A case study in refactoring functional programs. In

7th Brazilian Symposium on Programming Languages (SBLP), pages 1–16, 2003.

[187] Thompson, S., Horpacsi, D., and Koszegi, J. Towards trustworthy refactoring in

Erlang. In 4th International Workshop on Verification and Program Transformation

(VPT), pages 83–103, 2016.

[188] Thompson, S., Li, H., and Schumacher, A. The pragmatics of clone detection and

elimination. The Art, Science, and Engineering of Programming, 1(2):1–34, 2017.

[189] Tóth, M., Bozó, I., and Kozsik, T. Pattern candidate discovery and paral-

lelization techniques. In 29th Symposium on the Implementation and Applica-

tion of Functional Programming Languages (IFL), pages 1–26, 2017. doi: https:

//doi.org/10.1145/3205368.3205369.

[190] Tsantalis, N., Mansouri, M., Eshkevari, L. M., Mazinanian, D., and Dig, D.

Accurate and efficient refactoring detection in commit history. In 40th inter-

national conference on software engineering (ICSE), pages 483–494, 2018. doi:

https://doi.org/10.1145/3180155.3180206.

[191] Tsantalis, N., Ketkar, A., and Dig, D. RefactoringMiner 2.0. IEEE Transactions

on Software Engineering, 48(3):930–950, 2022. doi: https://doi.org/10.1109/TSE.

2020.3007722.

[192] Tullsen, M. A. PATH, a program transformation system for Haskell. Phd thesis,

Yale University, USA, May 2002.

[193] Valente, M. T. Engenharia de software moderna - princípios e práticas para de-

senvolvimento de software com produtividade. Editora: Independente, 1 edition,

2020.

[194] van Deursen, A., Moonen, L., van den Bergh, A., and Kok, G. Refactoring test code.

In 2nd International Conference on Extreme Programming and Flexible Processes

in Software Engineering (XP2001), pages 92–95, 2001.

[195] Vegi, L. F. M. and Valente, M. T. Catalog of Elixir-specific code smells. Available

at: https://github.com/lucasvegi/Elixir-Code-Smells, 2022.

[196] Vegi, L. F. M. and Valente, M. T. Code smells in Elixir: early results from a grey

literature review. In 30th International Conference on Program Comprehension

(ICPC) - ERA track, pages 580–584, 2022. doi: https://doi.org/10.1145/3524610.

3527881.

[197] Vegi, L. F. M. and Valente, M. T. Catalog of Elixir refactorings. Available at:

https://github.com/lucasvegi/Elixir-Refactorings, 2023.

REFERENCES 166

[198] Vegi, L. F. M. and Valente, M. T. Understanding code smells in Elixir functional lan-

guage - Replication Package. Available at: https://doi.org/10.5281/zenodo.7430258,

2023.

[199] Vegi, L. F. M. and Valente, M. T. Understanding code smells in Elixir functional

language. Empirical Software Engineering, 28(102):1–32, 2023. doi: https://doi.

org/10.1007/s10664-023-10343-6.

[200] Vegi, L. F. M. and Valente, M. T. Towards a catalog of refactorings for Elixir. In 39th

International Conference on Software Maintenance and Evolution (ICSME) - NIER

track, pages 358–362, 2023. doi: https://doi.org/10.1109/ICSME58846.2023.00045.

[201] Vegi, L. F. M. and Valente, M. T. Understanding refactorings in Elixir func-

tional language - Replication Package. Available at: https://doi.org/10.5281/zenodo.

11372758, 2024.

[202] Vidal, S., Vazquez, H., Diaz-Pace, J., Marcos, C., Garcia, A., and Oizumi, W.

JSpIRIT: a flexible tool for the analysis of code smells. In 34th International Con-

ference of the Chilean Computer Science Society (SCCC), pages 1–6, 2015. doi:

https://doi.org/10.1109/SCCC.2015.7416572.

[203] Villavicencio, G. A bottom-up approach to understand functional programs. In

4th International C* Conference on Computer Science and Software Engineering

(C3S2E), page 111–120, 2011. doi: https://doi.org/10.1145/1992896.1992910.

[204] Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. Probability & statistics for

engineers and scientists. Pearson Education, 8 edition, 2007.

[205] Weißgerber, P. and Diehl, S. Are refactorings less error-prone than other changes? In

3rd International Workshop on Mining Software Repositories (MSR), page 112–118,

2006. doi: https://doi.org/10.1145/1137983.1138011.

[206] White, M., Tufano, M., Vendome, C., and Poshyvanyk, D. Deep learning code

fragments for code clone detection. In 31st IEEE/ACM International Conference

on Automated Software Engineering (ASE), pages 87–98, 2016.

[207] Wohlin, C. Guidelines for snowballing in systematic literature studies and a

replication in software engineering. In 18th International Conference on Evalu-

ation and Assessment in Software Engineering (EASE), pages 1–10, 2014. doi:

https://doi.org/10.1145/2601248.2601268.

[208] Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., and Wessln, A.

Experimentation in Software Engineering. Springer, 2012.

REFERENCES 167

[209] Xing, Z. and Stroulia, E. Refactoring practice: How it is and how it should be

supported - an Eclipse case study. In 22nd IEEE International Conference on

Software Maintenance (ICSM), pages 458–468, 2006.

[210] Yamashita, A. and Moonen, L. Do code smells reflect important maintainability

aspects? In 28th IEEE International Conference on Software Maintenance (ICSM),

pages 306–315, 2012. doi: https://doi.org/10.1109/ICSM.2012.6405287.

[211] Yamashita, A. and Moonen, L. Do developers care about code smells? an ex-

ploratory survey. In 20th Working Conference on Reverse Engineering (WCRE),

pages 242–251, 2013. doi: https://doi.org/10.1109/WCRE.2013.6671299.

[212] Yamashita, A. and Moonen, L. To what extent can maintenance problems be

predicted by code smell detection? an empirical study. Information and Software

Technology, 55(12):2223–2242, 2013. doi: https://doi.org/10.1016/j.infsof.2013.08.

002.

[213] Zhang, H., Cruz, L., and van Deursen, A. Code smells for machine learning applica-

tions. In 1st International Conference on AI Engineering: Software Engineering for

AI (CAIN), page 217–228, 2022. doi: https://doi.org/10.1145/3522664.3528620.

[214] Zhang, H., Zhou, X., Huang, X., Huang, H., and Babar, M. A. An evidence-based

inquiry into the use of grey literature in software engineering. In 42nd ACM/IEEE

International Conference on Software Engineering (ICSE), pages 1422–1434, 2020.

doi: https://doi.org/10.1145/3377811.3380336.

[215] Zhang, Z., Xing, Z., Xia, X., Xu, X., and Zhu, L. Making Python code idiomatic

by automatic refactoring non-idiomatic Python code with pythonic idioms. In 30th

ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE), page 696–708, 2022. doi:

https://doi.org/10.1145/3540250.3549143.

[216] Zhang, Z., Xing, Z., Zhao, D., Xu, X., Zhu, L., and Lu, Q. Automated refactoring of

non-idiomatic Python code with pythonic idioms. IEEE Transactions on Software

Engineering, pages 1–22, 2024. doi: https://doi.org/10.1109/TSE.2024.3420886.

[217] Zhao, J. On refactoring quantum programs in Q#. In 4th IEEE International

Conference on Quantum Computing and Engineering (QCE), pages 169–172, 2023.

doi: https://doi.org/10.1109/QCE57702.2023.10203.

168

Appendix A

Documents of the Survey on Code

Smells in Elixir

In this appendix, we present the instruments used to perform the validation of our catalog

of code smells for Elixir (Chapter 3). In Section A.1, we introduced the Free and Enlight-

ened Consent document that should be signed by all participants of our survey before

responding to our questionnaire on code smells in Elixir. In Section A.2, we presented

each of the four versions of our questionnaire.

A.1 Free and Enlightened Consent

Title: Code Smells specific to systems implemented in the Elixir functional language

Institution: DCC / ICEx / UFMG

Responsible researchers:

Lucas Vegi (lucasvegi@dcc.ufmg.br)

Doctoral student at the Department of Computer Science at UFMG

Prof. Marco Túlio Valente (mtov@dcc.ufmg.br)

Associate professor at the Department of Computer Science at UFMG

Introduction: This “Free and Enlightened Consent” contains information about our

research. If you have any questions, do not hesitate to ask the responsible researchers.

Evaluation goals: This study aims to understand the main code smells that can occur

in Elixir systems.

Survey information: We will ask you questions about your demographics, positions

held, experience with Elixir, and your perception of code smells in Elixir.

Data collection and use: The data will be collected through this Google Form. It

A.1. Free and Enlightened Consent 169

is estimated that each participant will need a maximum of 25 minutes to complete the

answers. This data will be used to promote good practices to improve the quality of

code implemented in Elixir. The identities of all participants, as well as their responses,

will be kept confidential. You may choose to receive the preliminary results of the study,

with the anonymity of data and participants preserved. The results will be published

and presented at conferences and scientific journals without revealing the identity of the

participants.

If you decide not to participate in the research: You are free to refuse to participate

or withdraw your consent at any time. Your decision will not affect any relationship with

the evaluators, professors, or the institution responsible for this research.

Compensation: Your participation is voluntary and unpaid. In addition, you will not

be charged for participating in this research.

If you have any problems or any other questions about the research: You can

contact Lucas Vegi at any time at lucasvegi@dcc.ufmg.br.

If you have questions about the ethical aspects of this research: Contact the

Research Ethics Committee of the Federal University of Minas Gerais (COEP-UFMG).

Address: Av. Antônio Carlos, 6627. Administrative Unit II – 2nd floor - Room 2005. Pam-

pulha Campus. Belo Horizonte – MG, Brazil. CEP: 31270-901. E-mail: coep@prpq.ufmg.br.

Phone: +55 (31) 3409-4592. Opening hours: 09:00 AM to 11:00 AM; 02:00 PM to 04:00

PM (UTC-3).

Risks and measures to minimize them: When answering the questions, you may

feel uncomfortable with questions that can bring back bad memories, fear of not knowing

the answer, or even being identified. If you feel uncomfortable, you can pause complet-

ing the questionnaire and withdraw from participation at any time. The guarantee of

data confidentiality ensured by the researchers is limited to the privacy policies of the

virtual environment used for data collection (Google Forms). According to Brazilian leg-

islation (Art. 9 of Resolution nº 510/16 of the National Health Council), in case of any

damages resulting from your participation in this research, you will have the right to be

compensated, under the terms of the Law.

Benefits: This research aims to promote good practices for improving the quality of

systems implemented in Elixir, thus justifying its risks.

This survey will be carried out entirely remotely. In this way, this consent term will be

made available in digital copy through this Google Form. A copy of this digital

consent will be kept by the responsible researchers and you will receive a digital copy via

email after signing the term.

A.2. Survey Questions 170

Participant e-mail:

Participant full name:

Free and Enlightened Consent (voluntary agreement):

□✓ I declare that I have read the document mentioned above and that I agree to par-

ticipate as a volunteer, authorizing the anonymous use of the data generated by my

participation for the academic purposes described above.

A.2 Survey Questions

Table A.1: Demographic questions (equals across all questionnaire versions)

Topic Questions

Demographics Select your country:

[Dropdown list...]

Your city:

Elixir experience time:

[Less than 1 year | Between 1 and 3 years | More than 3 years]

How many different projects have you participated in using Elixir?

[Only one project | Between 2 and 4 projects | More than 4 projects]

A.2. Survey Questions 171

Table A.2: Questionnaire A - Perceptions on traditional code smells in Elixir

Topic Questions

Perceptions on code
smells in Elixir

(Short overview of the concept of traditional code smells)

∗ How often does such smells occur in the Elixir systems you
have worked with?

(1 = it is very rare; 5 = it is very common)

Smell (in random order) 1 2 3 4 5

Inappropriate Intimacy
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Large Class
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Speculative Generality
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗ How relevant are these smells in Elixir systems (evaluated as
their potential to have a negative impact on maintainability,
comprehensibility, and evolution)?

(1 = very low impact and relevance; 5 = high impact and relevance)

Smell (in random order) 1 2 3 4 5

Inappropriate Intimacy
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Large Class
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Speculative Generality
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

A.2. Survey Questions 172

Table A.3: Questionnaire B - Perceptions on traditional code smells in Elixir

Topic Questions

Perceptions on code
smells in Elixir

(Short overview of the concept of traditional code smells)

∗ How often does such smells occur in the Elixir systems you
have worked with?

(1 = it is very rare; 5 = it is very common)

Smell (in random order) 1 2 3 4 5

Duplicated Code
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Feature Envy
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Switch Statements
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗ How relevant are these smells in Elixir systems (evaluated as
their potential to have a negative impact on maintainability,
comprehensibility, and evolution)?

(1 = very low impact and relevance; 5 = high impact and relevance)

Smell (in random order) 1 2 3 4 5

Duplicated Code
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Feature Envy
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Switch Statements
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

A.2. Survey Questions 173

Table A.4: Questionnaire C - Perceptions on traditional code smells in Elixir

Topic Questions

Perceptions on code
smells in Elixir

(Short overview of the concept of traditional code smells)

∗ How often does such smells occur in the Elixir systems you
have worked with?

(1 = it is very rare; 5 = it is very common)

Smell (in random order) 1 2 3 4 5

Comments
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Long Parameter List
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Primitive Obsession
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗ How relevant are these smells in Elixir systems (evaluated as
their potential to have a negative impact on maintainability,
comprehensibility, and evolution)?

(1 = very low impact and relevance; 5 = high impact and relevance)

Smell (in random order) 1 2 3 4 5

Comments
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Long Parameter List
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Primitive Obsession
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

A.2. Survey Questions 174

Table A.5: Questionnaire D - Perceptions on traditional code smells in Elixir

Topic Questions

Perceptions on code
smells in Elixir

(Short overview of the concept of traditional code smells)

∗ How often does such smells occur in the Elixir systems you
have worked with?

(1 = it is very rare; 5 = it is very common)

Smell (in random order) 1 2 3 4 5

Long Function
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Shotgun Surgery
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Divergent Change
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗ How relevant are these smells in Elixir systems (evaluated as
their potential to have a negative impact on maintainability,
comprehensibility, and evolution)?

(1 = very low impact and relevance; 5 = high impact and relevance)

Smell (in random order) 1 2 3 4 5

Long Function
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Shotgun Surgery
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Divergent Change
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

A.2. Survey Questions 175

Table A.6: Questionnaire A - Perceptions on Elixir-Specific code smells

Topic Questions

Perceptions on code
smells in Elixir

(Short overview of the concept of Elixir-Specific code smells)

∗ How often does such smells occur in the Elixir systems you
have worked with?

(1 = it is very rare; 5 = it is very common)

Smell (in random order) 1 2 3 4 5

GenServer Envy
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Untested polymorphic behaviors
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Data manipulation by migration
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Using App Configuration for libraries
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Working with invalid data
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Modules with identical names
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗ How relevant are these smells in Elixir systems (evaluated
as their potential to have a negative impact on maintainability,
comprehensibility, and evolution)?

(1 = very low impact and relevance; 5 = high impact and relevance)

Smell (in random order) 1 2 3 4 5

GenServer Envy
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Untested polymorphic behaviors
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Data manipulation by migration
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Using App Configuration for libraries
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Working with invalid data
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Modules with identical names
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

A.2. Survey Questions 176

Table A.7: Questionnaire B - Perceptions on Elixir-Specific code smells

Topic Questions

Perceptions on code
smells in Elixir

(Short overview of the concept of Elixir-Specific code smells)

∗ How often does such smells occur in the Elixir systems you
have worked with?

(1 = it is very rare; 5 = it is very common)

Smell (in random order) 1 2 3 4 5

Large messages
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Code organization by process
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Large code generation by macros
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

"Use" instead of "import"
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Alternative return types
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Dynamic atom creation
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗ How relevant are these smells in Elixir systems (evaluated as
their potential to have a negative impact on maintainability,
comprehensibility, and evolution)?

(1 = very low impact and relevance; 5 = high impact and relevance)

Smell (in random order) 1 2 3 4 5

Large messages
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Code organization by process
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Large code generation by macros
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

"Use" instead of "import"
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Alternative return types
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Dynamic atom creation
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

A.2. Survey Questions 177

Table A.8: Questionnaire C - Perceptions on Elixir-Specific code smells

Topic Questions

Perceptions on code
smells in Elixir

(Short overview of the concept of Elixir-Specific code smells)

∗ How often does such smells occur in the Elixir systems you have
worked with?

(1 = it is very rare; 5 = it is very common)

Smell (in random order) 1 2 3 4 5

Agent Obsession
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Complex extractions in clauses
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Using exceptions for control-flow
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Complex else clauses in with
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Accessing non-existent map/struct fields
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Unnecessary macros
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗ How relevant are these smells in Elixir systems (evaluated as
their potential to have a negative impact on maintainability, com-
prehensibility, and evolution)?

(1 = very low impact and relevance; 5 = high impact and relevance)

Smell (in random order) 1 2 3 4 5

Agent Obsession
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Complex extractions in clauses
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Using exceptions for control-flow
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Complex else clauses in with
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Accessing non-existent map/struct fields
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Unnecessary macros
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

A.2. Survey Questions 178

Table A.9: Questionnaire D - Perceptions on Elixir-Specific code smells

Topic Questions

Perceptions on code
smells in Elixir

(Short overview of the concept of Elixir-Specific code smells)

∗ How often does such smells occur in the Elixir systems you
have worked with?

(1 = it is very rare; 5 = it is very common)

Smell (in random order) 1 2 3 4 5

Unsupervised process
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Unrelated multi-clause function
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Compile-time global configuration
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Complex branching
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Speculative Assumptions
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗ How relevant are these smells in Elixir systems (evaluated as
their potential to have a negative impact on maintainability,
comprehensibility, and evolution)?

(1 = very low impact and relevance; 5 = high impact and relevance)

Smell (in random order) 1 2 3 4 5

Unsupervised process
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Unrelated multi-clause function
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Compile-time global configuration
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Complex branching
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

Speculative Assumptions
[link to description and code example]

⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

Table A.10: Final remarks questions (equals across all questionnaire versions)

Topic Questions

Final Remarks ∗ Please add here any comment about our work and survey:

Do you want to receive the preliminary results of this study?

[YES | NO]

∗: Optional answer.

179

Appendix B

Documents of the Survey on

Refactorings for Elixir

In this appendix, we present the instruments used to perform the validation of our catalog

of refactorings for Elixir (Chapter 4). In Section B.1, we introduced the Free and Enlight-

ened Consent document that should be signed by all participants of our survey before

responding to our questionnaire on refactorings for Elixir. In Section B.2, we presented

each of the five versions of our questionnaire.

B.1 Free and Enlightened Consent

Title: Refactorings for systems implemented in the Elixir functional language

Evaluation goals: This study aims to understand the main refactoring strategies used

in code implemented in the Elixir functional language.

Survey information: We will ask you questions about your demographics, positions

held, experience with Elixir, and your perception about the refactoring strategies in Elixir

(use frequency and impact on system quality).

The remainder of this document essentially follows the same structure of topics and

content as the Free and Enlightened Consent form signed by participants in our Survey

on Code Smells in Elixir (see Section A.1).

B.2. Survey Questions 180

B.2 Survey Questions

The questions about demographics and final remarks were identical to those in our

Survey on Code Smells in Elixir, as shown in Table A.1 and Table A.10, respectively. The

questions regarding perceptions on refactoring strategies for Elixir followed a different

format, as presented in the following tables.

Table B.1: Questionnaire A - Perceptions on refactorings for Elixir

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Generalise a process abstraction.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Converts guards to conditionals.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Folding against a function definition.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Moving "with" clauses without pattern matching.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

(Continues)

B.2. Survey Questions 181

Table B.1: Questionnaire A - Perceptions on refactorings for Elixir (continued)

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
List comprehension simplifications.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Remove dead code.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Behaviour inlining.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Widen or narrow definition scope.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Remove unnecessary calls to length/1.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Add or remove a parameter.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

(Continues)

B.2. Survey Questions 182

Table B.1: Questionnaire A - Perceptions on refactorings for Elixir (continued)

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Merging multiple definitions.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Static structure reuse.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Replace "Enum" collections with "Stream".

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Remove nested conditional statements in function
calls.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Moving a definition.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Splitting a definition.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

B.2. Survey Questions 183

Table B.2: Questionnaire B - Perceptions on refactorings for Elixir

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Extract constant.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Merging match expressions into a list pattern.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Add a tag to messages.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Simplifying Ecto schema fields validation.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Equality guard to pattern matching.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Group Case Branches.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

(Continues)

B.2. Survey Questions 184

Table B.2: Questionnaire B - Perceptions on refactorings for Elixir (continued)

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Remove redundant last clause in "with".

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Behaviour extraction.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Pipeline for database transactions.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Replace a nested conditional in a "case" statement
with guards.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Reducing a boolean equality expression.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Transform to list comprehension.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

(Continues)

B.2. Survey Questions 185

Table B.2: Questionnaire B - Perceptions on refactorings for Elixir (continued)

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Simplifying checks by using truthness condition.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
From tuple to struct.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Eliminate single branch.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Introduce import.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

B.2. Survey Questions 186

Table B.3: Questionnaire C - Perceptions on refactorings for Elixir

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Improving list appending performance.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
From meta to normal function application.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Convert nested conditionals to pipeline.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Introduce pattern matching over a parameter.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Alias expansion.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Add type declarations and contracts.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

(Continues)

B.2. Survey Questions 187

Table B.3: Questionnaire C - Perceptions on refactorings for Elixir (continued)

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Move expression out of Case.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Introduce overloading.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Transform nested "if" statements into a "cond".

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Modifying keys in a Map.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Remove import attributes.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Inline macro.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

(Continues)

B.2. Survey Questions 188

Table B.3: Questionnaire C - Perceptions on refactorings for Elixir (continued)

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Transform "unless" with negated conditions into
"if".

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Rename an identifier.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Generalise a function definition.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Nested list functions to comprehension.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

B.2. Survey Questions 189

Table B.4: Questionnaire D - Perceptions on refactorings for Elixir

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Grouping parameters in tuple.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Extract function.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Splitting a large module.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Pipeline using "with".

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Function clauses to/from case clauses.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Transform "if" statements using pattern matching
into a "case".

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

(Continues)

B.2. Survey Questions 190

Table B.4: Questionnaire D - Perceptions on refactorings for Elixir (continued)

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Introduce processes.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Replace function call with raw value in a pipeline
start.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Remove single pipe.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Closure conversion.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Turning anonymous into local functions.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Struct field access elimination.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

(Continues)

B.2. Survey Questions 191

Table B.4: Questionnaire D - Perceptions on refactorings for Elixir (continued)

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Register a process.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Inline function.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Struct guard to matching.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Explicit a double boolean negation.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Replace conditional with polymorphism via Proto-
cols.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

B.2. Survey Questions 192

Table B.5: Questionnaire E - Perceptions on refactorings for Elixir

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Simplifying guard sequences.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Moving error-handling mechanisms to supervision
trees.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Transform a body-recursive function to a tail-
recursive.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Introduce Enum.map/2.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Default value for an absent key in a Map.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Replace pipeline with a function.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

(Continues)

B.2. Survey Questions 193

Table B.5: Questionnaire E - Perceptions on refactorings for Elixir (continued)

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Simplifying pattern matching with nested structs.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Temporary variable elimination.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Transforming list appends and subtracts.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Replacing recursion with a higher-level construct.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Defining a subset of a Map.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Extract expressions.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

(Continues)

B.2. Survey Questions 194

Table B.5: Questionnaire E - Perceptions on refactorings for Elixir (continued)

Topic Questions (refactorings listed in random order)

Perceptions on refac-
torings for Elixir

(Short overview and definition of prevalence and relevance scales)

∗ Assess the prevalence and relevance level of the refactoring
Typing parameters and return values.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Remove processes.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Introduce a temporary duplicate definitions.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Reorder parameter.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗ Assess the prevalence and relevance level of the refactoring
Move file.

[A description, a link with additional details, and code examples]

Perception 1 2 3 4 5

Prevalence ⊚ ⊚ ⊚ ⊚ ⊚

Relevance ⊚ ⊚ ⊚ ⊚ ⊚

∗: Optional answers (one per line).

195

Appendix C

Refactorings not listed in Chapter 4

To improve the readability of the Chapter 4, we chose not to show the description of all

82 refactorings cataloged by us in Section 4.1.2. However, aiming to make this thesis

self-contained, in this appendix we provide descriptions of all refactorings not presented

in Chapter 4. More details about each one, including code examples, are available at

https://github.com/lucasvegi/Elixir-Refactorings.

Table C.1: Functional Refactorings compatible with Elixir not listed in Section 4.1.2 (at
most two sources)

Refactoring Description #

Convert nested condition-
als to pipeline

Eliminates nested conditionals used only to control a se-
quence of function calls, replacing them with pipe operators.
The interfaces of functions involved in the pipe are also mod-
ified by adding parameters and using pattern matching

2

List comprehension simpli-
fications

Transforms a list comprehension (i.e., for construct) into
semantically equivalent calls to the functions Enum.map/2 or
Enum.filter/2

2

Replacing recursion with
a higher-level construct

Transforms recursive functions into calls to Elixir’s built-in
higher-order functions (e.g., Enum.reduce/3, Enum.map/2, etc.)

2

Simplifying pattern match-
ing with nested structs

Transforms a pattern matching that performs a deep extrac-
tion in nested structs into a pattern matching only with the
outermost struct in the nesting

2

Static structure reuse Eliminates unnecessary recreations of identical static struc-
tures (e.g., lists or tuples) by assigning them to variables
that allow these structures to be shared throughout the code

2

Struct guard to matching Transforms calls to is_struct/1 or is_struct/2 contained in
guards clauses, into explicit pattern matching usage

2

Transforming list appends
and subtracts

Transforms calls to the Enum.concat/2 and Enum.reject/2 into
uses of the Kernel.++/2 and Kernel.--/2 operators, respectively

2

Merging match expres-
sions into a list pattern

Merges a series of match expressions into a single match ex-
pression that employs a list pattern

1

Replace a nested condi-
tional in a "case" state-
ment with guards

Replaces nested conditional statements (e.g., if..else)
within a case with the use of guards, maintaining the ability
to perform more complex pattern matching checks

1

Simplifying guard se-
quences

Simplifies a guard clause by eliminating redundancies but
preserving the same behavior. For example, we can trans-
form (is_float(f) and f == 81.0) into only (f === 81.0)

1

#: Number of sources.

196

Table C.2: Traditional Refactorings compatible with Elixir not listed in Section 4.1.2 (at
most two sources)

Refactoring Description #

Introduce overloading Creates a variation of a function (i.e., function with identical
name but different arity or multi-clause function), enabling
its use in different contexts

2

Transform "unless" with
negated conditions into
"if"

Replaces unless statements with negated conditions with
if statements. The reason is because comprehending that
something is executed only when a negated condition is not
met is confusing

2

Group case branches The branches of a case statement in a function is partitioned,
replacing the original case with separate case statements

1

Move expression out of
case

Moves an expression outside of a case statement when it is
repeated at the end of all branches

1

Move file Moves a project file containing code such as modules, macros,
structs, etc. to another directory, improving the organization
of an Elixir project

1

Reducing a boolean equal-
ity expression

Replaces multiple equality comparisons involving the same
variable and logical OR operators with the use of the in op-
erator and a list containing all possible valid values for the
variable

1

Replace conditional with
polymorphism via Proto-
cols

Transforms a module that has a function with conditionals
based on data types into a Protocol that defines the interface
for this function. Furthermore, each data type previously
handled in the conditionals is converted into a specific im-
plementation of the Protocol

1

Simplifying checks by us-
ing truthness condition

Replaces an if..else, that checks an is_nil/1 call used
to return a default value if a given data is indeed
null (e.g., if is_nil(data), do: “default”, else: data), with
a short-circuit operator based on truthness conditions
(e.g., data || "default")

1

#: Number of sources.

197

Appendix D

Refactoring Code Smells: Practical

Guidelines

In this appendix, we provide a detailed explanation of how the removal of each of the

35 code smells for Elixir can be assisted by refactoring strategies (Chapter 5). Along

with listing the refactorings useful for removing each smell and explaining their specific

applications, we also document the order in which these refactorings should be performed

when they are part of a sequence of operations. Specifically, when a refactoring should

be used alone, it is listed with a bullet point (i.e., •) in this appendix. Conversely, when

a refactoring forms part of a sequence of operations, it is listed using numbering to define

its order (e.g., 1.; 2.; etc.)

This appendix is organized with a section for each code smell, arranged in alpha-

betical order. This document can guide developers, especially those beginners to

Elixir, on how to systematically remove code smells and improve the internal

quality of their systems implemented with this language.

D.1 Accessing non-existent map/struct fields

• Default value for an absent key in a Map: When trying to access the

value of a key from a Map dynamically, it is not possible to determine if a key is

non-existent or if it has an associated nil value. This refactoring can eliminate the

smell, as the ambiguity in the returns of dynamic accesses will no longer occur after

its application.

• Introduce pattern matching over a parameter: If the smell instance oc-

curs in the function signature, such as in a guard clause, we can use this refactoring

to extract the value of that field and then use it in the guard. This way, we can

clearly determine if a field does not exist or if it simply has an associated nil value.

D.2. Agent obsession 198

• Simplifying checks by using truthness condition: Optionally, when using

dynamic access to fields of a Map and needing to return a default value for non-

existent fields or those associated with nil, we can perform this refactoring to solve

this issue, thus producing cleaner code.

• Explicit a double boolean negation: Optionally, if we are using double

boolean negation to check if a dynamically accessed field in a Map exists, this refac-

toring can improve code readability by replacing the unintuitive logic with helper

functions that utilize pattern matching.

1. Struct field access elimination: Optionally, if accesses to the same field,

whether it exists or not, occur many times within a function, we can use this refac-

toring to replace these accesses with a temporary variable responsible for storing

the value of that field.

2. Equality guard to pattern matching: Optionally, when a temporary vari-

able extracted from a struct field is only used in an equality comparison in a guard,

extracting and using that variable is unnecessary, as we can perform that equality

comparison directly with pattern matching. To do this, we can use this refactoring.

D.2 Agent obsession

1. Generalise a function definition: When functions responsible for directly

interacting with the Agent are scattered throughout the system, it indicates the

presence of this smell. We can refactor them simultaneously using this operation,

centralizing the responsibility for interacting with the Agent in a single module or

function.

2. Moving a definition: After generalizing the functions that were originally re-

sponsible for directly accessing the Agent, the generic function created to centralize

this task might not be located in the most appropriate module. This refactoring

can be used to address this issue.

3. Add or remove a parameter: Functions that were originally responsible for di-

rectly accessing the Agent, once generalized by the previous refactoring, may require

the addition of new parameters to be passed to the generic function called within

their bodies.

D.3. Alternative return types 199

• Behaviour extraction: One way to remove this smell is to define a behaviour

containing a contract that specifies the format of all functions intended to interact

with an Agent throughout the system. Following this refactoring, all modules that

wish to access the Agent must implement this extracted behaviour.

D.3 Alternative return types

1. Introduce a temporary duplicate definition: When a function receives a

Keyword list as a parameter, which can drastically change its return type depending

on its contents, we should initially use this refactoring to create a copy of the original

function for each different return type.

2. Rename an identifier: After creating the copies, we should rename each one

according to its respective return type. Additionally, the bodies of the copies should

be modified to fit the specific return types.

3. Explicit a changed function signature (Composite)

3.1. Add or remove a parameter: At this point in the refactoring process,

since the Keyword list parameter is no longer necessary in any of the renamed

copies of the original function, we can use this operation to remove the unnec-

essary parameter.

3.2. Typing parameters and return values: Finally, we can use this opera-

tion on each of the functions involved in this composite refactoring to document

their interfaces.

4. Remove dead code: This refactoring can be used on the copies of the functions

created previously in this sequence of transformations to clean up their bodies,

removing unused code.

D.4 Code organization by process

1. Remove processes: When code unnecessarily uses a process for organizational

purposes where a simple module with functions would suffice, this refactoring can be

D.5. Comments 200

used to remove the unnecessary concurrent processes and replace them with regular

Elixir modules.

2. Remove dead code: When we transform a process into a regular Elixir module,

some functions that previously implemented process callbacks (e.g., GenServer) may

become unnecessary and can therefore be removed using this refactoring.

D.5 Comments

• Extract function: If a comment explains a block of code, that block can be

extracted into a separate function. The name of the new function can often be

derived from the comment itself.

• Extract expressions: If a comment is intended to explain a complex expres-

sion, the expression should be split into understandable sub-expressions using this

refactoring.

• Extract constant: If a comment is used to explain magic numbers, this refac-

toring can replace the comments with constants that have human-friendly names.

• Rename an identifier: If a function, expression, or constant has already been

extracted, but comments are still necessary to explain what they do, give a self-

explanatory name to them using this operation.

• Typing parameters and return values: If a comment is used to document

the types of a function’s parameters or the type of its return value, that comment

can be replaced by a function specification using the @spec module attribute.

• Add type declarations and contracts: Alternatively, if a comment is used

to document data structures received as parameters of a function or even returned

by a function, this comment can be replaced by a type specification using the @type

and @typedoc module attributes.

D.6. Compile-time global configuration 201

D.6 Compile-time global configuration

• Extract constant: To remove this smell caused by using Application Environ-

ment in compile-time to define module’s attributes (i.e., constants), we can perform

this refactoring in reverse, that is, perform an inline operation.

• Introduce a temporary duplicate definition: We can also use this refactor-

ing to create a copy of the compile-time defined constant and replace its definition

with a call to Application.compile_env/3 instead of Application.fetch_env!/2.

1. Folding against a function definition: Another possibility would be to

replace the location where a compile-time defined constant is used with a call to the

Application Environment function responsible for defining the constant’s content.

This can be done using this refactoring.

2. Remove dead code: Finally, if the compile-time defined constant is no longer

used in the module, we can simply remove it.

D.7 Complex branching

• Extract function: When a function uses a conditional statement with many

different branches, each responsible for handling a specific error type, we can use

this refactoring to delegate each branch (i.e., handling of a response type) to a

different new private function. This approach makes the code cleaner, more concise,

and readable.

• Introduce pattern matching over a parameter: Another possibility is to

use this refactoring to break down complex branching into a multi-clause function,

where each clause handles a different error type. This approach enhances readability

and maintainability by organizing the code according to distinct error scenarios.

D.8. Complex else clauses in with 202

D.8 Complex else clauses in with

1. Extract function: When an else clause in a with statement is used to handle

different types of errors that may occur during the execution of the with clauses,

the code can become confusing. To address this issue, we can use this refactoring

to transform expressions in the with clauses into separate private functions. Each

of these private functions will handle a specific error type, decentralizing the error-

handling task.

2. Remove dead code: After extracting the new functions responsible for decentral-

izing error handling, the with statement will no longer need an else clause. Therefore,

we can use this refactoring to remove the else clause.

• Remove redundant last clause in "with": Optionally, if the last clause of

the with statement used to chain operations is redundant, we can use this refactoring

to make the code less verbose and more readable.

• Moving "with" clauses without pattern matching: Optionally, if the with

statement does not perform pattern matching in the first and/or last clauses, we

can use this refactoring to make the code more idiomatic and readable.

D.9 Complex extractions in clauses

• Simplifying pattern matching with nested structs: When using pattern

matching to perform deep extraction in nested structs passed as parameters to a

clause of a multi-clause function, we may create unnecessarily messy and hard-to-

understand code. With this refactoring, we can simplify this kind of extraction by

performing pattern matching only on the outermost struct in the nesting, instead

of matching patterns with very internal structs.

• Converts guards to conditionals: To prevent complex extractions in clauses,

which are used both to access data extracted in guard clauses and in the function

body, from making the code confusing, we can use this refactoring to replace all

guards with traditional conditionals, consolidating them into a single clause for the

function. This way, all extracted data will be used exclusively in the function body.

D.10. Data manipulation by Migration 203

• Equality guard to pattern matching: Optionally, if an unnecessary tempo-

rary variable is extracted from a struct’s field in a clause of a multi-clause function

and is only used for an equality comparison in a guard, this refactoring can simplify

the pattern matching in that clause.

• Struct guard to matching: Optionally, if some clauses of a multi-clause func-

tion use guard clauses involving the functions is_struct/1 or is_struct/2, this refac-

toring can simplify the pattern matching performed by these clauses.

• Remove unnecessary calls to length/1: If a list extraction is performed in

a function clause only to use it in an unnecessary call to length/1 in a guard clause,

this extraction can be replaced by using pattern matching directly, eliminating the

need for the guard clause. To do this, use this refactoring.

• Function clauses to/from case clauses: When complex extractions are done

in clauses of multi-clause functions, making it difficult to understand which data is

used inside or outside the function body, we can use this refactoring to transform

a multi-clause function into a single clause function. By doing this, we will map

the function’s clauses into clauses of a case statement, ensuring that all extractions

occur within the function body.

1. Introduce a temporary duplicate definition: When we are moving an

extraction performed in a function clause into its body, we can initially use this

refactoring to duplicate within the function body an extraction performed in the

signature.

2. Temporary variable elimination: After duplicating the complex extraction

within the function body, we can use this operation to remove unnecessary extracted

parts, thereby cleaning up the code.

D.10 Data manipulation by Migration

1. Module decomposition (Composite)

1.1. Splitting a large module: When a module that behaves like Ecto.Migration

performs both data and structural changes in a database schema, it becomes

less cohesive, more difficult to test, and therefore more prone to bugs. In these

cases, we should split this module into two, moving only the attributes and

functions related to data updates to the new module.

D.11. Divergent change 204

1.2. Rename an identifier: In some cases, after splitting an original module into

several smaller and more cohesive modules, the name of the original module can

no longer make sense, providing an opportunity also to perform this refactoring.

2. Extract to outside (Composite)

2.1. Extract function: We can use this operation in the original module to

create a new function responsible for calling the routines for altering the data

in the database, now present in the new module.

2.2. Moving a definition: After extracting this function, we can use this refac-

toring to reposition it in the new module created after splitting the original

module.

3. Remove dead code: Finally, we can eliminate the call to the extracted function

in the original module to start the database alteration routines, as this function,

now present in the new module, should only be called during the initialization of a

Mix.Task.

• Simplifying Ecto schema fields validation: Optionally, we can take the

opportunity to apply this refactoring in the original module, making it less prone

to errors during the validation of the database schema modified via Ecto.Migration.

• Pipeline for database transactions: Optionally, we can also take the oppor-

tunity to apply this operation in the new module created only to perform changes

on data, thus improving its readability by using Ecto.Multi.

D.11 Divergent change

• Module decomposition (Composite)

1. Splitting a large module: This smell can be removed by creating new

cohesive modules and moving related functions into them.

2. Rename an identifier: In some cases, after splitting an original module into

several smaller and more cohesive modules, the name of the original module can

no longer make sense, providing an opportunity to also apply this refactoring.

• Moving a definition: If there is already a module B that is more suitable to

accommodate a function that makes module A less cohesive, we can simply move

this function from module A to module B to remove this smell.

D.12. Duplicated code 205

• Behaviour extraction: This smell can be removed by creating a new cohesive

module B and moving related functions of module A into it. Thereby, we can use this

refactoring to transform module A into a behaviour definition and create module B

as a behaviour implementation of module A, thus achieving this goal.

D.12 Duplicated code

• Defining a subset of a Map: It can be used to eliminate duplicated code

generated by the manual access of values when extracting part of a Map.

• Modifying keys in a Map: This refactoring can be used to eliminate duplicated

code generated by the manual process of replacing a name given to a Map key.

• Folding against a function definition: When code contains expressions that

perform operations already implemented in existing functions, we can remove this

code duplication by using this refactoring, thus replacing the own expressions with

calls to the existing functions.

• Extract expressions: When the same expression is repeated multiple times

within a function, we can assign the expression to a variable and reuse that variable

in all parts where the result of the expression is needed.

• Extract function: When the same code block appears in two different functions,

we can extract it to a new function and call this function from both places where

the code was originally duplicated.

• Reducing a boolean equality expression: When dealing with a boolean

expression consisting of multiple equality comparisons involving the same variable

and logical OR operators, we can eliminate duplicated code using this refactoring,

thus utilizing the IN operator and a list containing all possible valid values for the

variable.

• Generalise a function definition: When we have different functions that have

non-identical but equivalent expressions, we can use this refactoring to create a new

higher-order function that generalizes the equivalent expressions and subsequently

is called in places where the expressions were originally used.

• Turning anonymous into local functions: When we encounter the same

anonymous function being defined in different points of the codebase, these anony-

mous functions should be transformed into a local function, and the locations where

D.12. Duplicated code 206

the anonymous functions were originally implemented should be updated to use the

new local function.

• Merging multiple definitions: There are situations where a codebase may

have distinct and complementary functions. Because they are complementary, these

functions may have identical code snippets. When identified, these functions can be

merged into a new function that will simultaneously perform the processing done

by the original functions separately.

• Move expression out of case: When the same expression is repeated at the

end of all branches of a case statement, this refactoring can be used to eliminate the

duplicated code.

• Remove redundant last clause in "with": When the last clause of a with

statement is composed of a pattern identical to the predefined value to be returned

by the with in case all checked patterns match, this clause is considered redundant.

Therefore this duplicated code can be eliminated using this refactoring.

• Static structure reuse: When identical tuples or lists are used at different

points within a function, they are unnecessarily recreated by Elixir. Use this refac-

toring to eliminate these redundant recreations by assigning the structures to vari-

ables, allowing them to be shared throughout the code.

• Introduce import: When a module A calls many functions from a module B, the

name of module B may appear repetitively in the code of module A due to fully-

qualified name calls. This type of duplicated code can be eliminated by importing

module B into module A.

• Widen or narrow definition scope: When we encounter the same anony-

mous function defined in different parts of the codebase, these functions should be

transformed into a local function, eliminating code duplication by expanding the

scope of the original function. This refactoring serves as an alternative to Turning

anonymous into local functions.

1. Introduce Enum.map/2: When each element of a list is manually generated

by repeatedly calling the same function, we can use this refactoring to eliminate

duplicated code and make the code more idiomatic.

2. Transform to list comprehension: Optionally, after using the previous refac-

toring to eliminate duplicated code, we can use this operation to convert the call to

Enum.map/2 into semantically equivalent code that can be also more declarative and

easier to read.

D.13. Dynamic atom creation 207

3. List comprehension simplifications: Optionally, after using the previous refac-

toring as part of a sequence of atomic refactorings to eliminate duplicated code, we

can also use this refactoring to revert the previous transformation, thereby retaining

calls to the higher-order function Enum.map/2 instead of using list comprehensions.

D.13 Dynamic atom creation

1. Extract function: We can replace a call to the function String.to_atom/1 with

an explicit conversion. To do this, we can use this refactoring on the calls to

String.to_atom/1, creating a new function. This new function should take a string

as a parameter and convert it to an atom. The body of this function should include

a conditional to check the content of the string. Depending on its content, the

function will return a different atom directly.

2. Introduce pattern matching over a parameter: After extracting a new

function for explicit conversions from strings to atoms, we can use this refactoring to

transform the function into a multi-clause function, where each clause is responsible

for returning one of the possible converted atoms.

• Folding against a function definition: If there is already a function in the

module responsible for performing the explicit conversion of a string to an atom

(e.g., a function extracted for this purpose at a different point in the same module),

we can replace a call to String.to_atom/1 with a call to that function.

• Gradual change (Composite)

1. Introduce a temporary duplicate definition: Another alternative to

refactor this code is to first duplicate the line where the function String.to_atom/1

is called to create an atom dynamically. The new line should replace the call to

String.to_atom/1 with a call to String.to_existing_atom/1. This will ensure that

string-to-atom conversions only map the strings to atoms already in memory.

To enable this type of mapping, a suggestion is to create a list of these possible

atoms within the function where this refactoring was applied.

2. Remove dead code: After duplicating and modifying the duplicated line,

we can eliminate the original line where the call to String.to_atom/1 occurred.

D.14. Feature envy 208

D.14 Feature envy

• Extract to outside (Composite)

1. Extract function: If part of a function calls more functions from other

modules than from the module where it is defined, we can use this refactoring

to separate the envious part into a new function.

2. Moving a definition: If a function calls more functions from other modules

than from the module where it is defined (e.g., the function extracted in the

previous refactoring), we can move it to the module most accessed by it.

• Remove import attributes: By using this refactoring, we can directly identify

the origin of a function being called by another function. This way, we can more

clearly identify a Feature envy instance, helping us to subsequently remove it.

D.15 GenServer envy

1. Generalise a process abstraction: When an Agent or Task goes beyond its

suggested use cases and becomes painful, it is better to refactor it into a GenServer

using this operation.

2. Introduce processes: When we finish generalizing a process, it may still be

insufficient to achieve an optimal mapping with the parallel activities of the prob-

lem being solved. In these circumstances, we can use this refactoring to remove

bottlenecks.

3. Register a process: When we create a new process, we can also use this refac-

toring to assign a user-defined name to the new process ID and use that user-defined

name instead of the process ID in message passing.

4. Remove dead code: When we are generalizing a process Agent or Task into a

GenServer, naturally, some functions of the module that represented the original

process may become useless and can therefore be removed.

D.16. Inappropriate intimacy 209

D.16 Inappropriate intimacy

1. Closure conversion: A specific type of Inappropriate intimacy can be seen

in closures, which are impure anonymous functions, as they access variables outside

their scope. One way to remove this smell is by transforming the closure into a pure

anonymous function.

2. Add or remove a parameter: Imagine the scenario where an anonymous func-

tion A is defined within a named function B. Furthermore, consider that A accesses a

variable in its body that is a parameter of B, which is not passed as a parameter to A

(i.e., function A is a closure). When applying the previous refactoring to remove the

Inappropriate intimacy instance in A, we may end up with unused parameters

in the named function B. Therefore, we can use the present refactoring in B to fix it.

• Moving a definition: If a function in module A is impure because it accesses

internal details of module B without receiving them through its parameters, we can

remove this smell by moving the function from A to B, thus reducing the coupling

between modules.

• Module decomposition (Composite)

1. Splitting a large module: If the modules involved in an instance of this

smell have common interests, we can use this refactoring to put their common-

ality in a new module and make them high-cohesive and low-coupling modules.

2. Rename an identifier: In some cases, after splitting an original module into

several smaller and more cohesive modules, the name of the original module can

no longer make sense, providing an opportunity to also apply this refactoring.

D.17 Large class

• Module decomposition (Composite)

1. Splitting a large module: When a module does the work of two or more,

it becomes large, poorly cohesive, and difficult to maintain. In these cases, we

should split this module into several new ones, moving to each new module only

the attributes and functions with purposes related to their respective goals.

D.18. Large code generation by macros 210

2. Rename an identifier: In some cases, after splitting an original module into

several smaller and more cohesive modules, the name of the original module can

no longer make sense, providing an opportunity to also apply this refactoring.

• Behaviour extraction: This operation is helpful if it’s necessary to have a list

of operations and behaviors that client modules can reuse, thus reducing their sizes.

• Moving a definition: When a function is defined in module A but is more suited

to the responsibilities of module B, we can move it to B to reduce the size of A.

D.18 Large code generation by macros

• Extract to outside (Composite)

1. Extract function: When we have a macro that generates a large volume of

code, potentially compromising compiler performance, we can use this refac-

toring to extract part of the macro’s code and encapsulate it in a conventional

function that the macro will call. This approach reduces the amount of code

that is expanded and compiled with each invocation of the macro.

2. Moving a definition: After extracting the function, it may eventually be

necessary to move it to another module to make the code more cohesive.

D.19 Large messages

• Defining a subset of a Map: If we are originally sending a complete Map from

one process to another, but actually only need to send a few fields from this Map, we

can use this refactoring to help reduce the size of the message sent.

• Extract expressions: When we use spawn/1 to perform message passing between

processes, we can pass an anonymous function as a parameter to spawn/1 that accesses

a Map field in its body. This will still copy over all of the Map, because the Map variable

is being captured inside the spawned function. The function then extracts the field,

but only after the whole Map has been copied over. Suppose we only need to send

one field of a Map between processes. In that case, we can reduce the size of this

D.20. Long function 211

message by using this refactoring to store only the necessary value of the Map field

in a temporary variable. This variable is then used in the spawned function.

• Add a tag to messages: Optionally, when we are removing this code smell, we

may have the opportunity to adapt the processes that communicate with each other

by adding tags that identify groups of messages exchanged between them.

D.20 Long function

• Extract function: If a comment is needed to explain some part of the function

body, this refactoring can be used to create a new function to be called at the

location of this comment, thus decreasing the size of the original function.

• Transform nested "if" statements into a "cond": If a function uses many

nested if conditionals, this can greatly increase its size. In these cases, we can use

this refactoring to decrease the size of the function.

• Folding against a function definition: If a function performs operations

that can be delegated to other existing functions, it may become unnecessarily long.

In these cases, we can use this refactoring to reduce the size of the original function.

• Remove dead code: If a function contains code that is no longer used, it may

become unnecessarily long. In these cases we can use this refactoring to reduce the

size of the original function.

• Simplifying checks by using truthness condition: When we know that a

given data item can be nil and we need to return a default value if it is indeed

nil, we can use this refactoring to reduce the number of lines in a function while

maintaining clean and self-explanatory code.

• Generalise a function definition: When different functions have equivalent

expression structures, these equivalent expressions can be generalized into a new

higher-order function, thus reducing the size of the original functions.

• Introduce pattern matching over a parameter: When a function has many

branches in its body that depend on values received as parameters, it can become

unnecessarily long. We can use this refactoring to create short multi-clauses for the

original function, where each clause handles a different branch.

D.20. Long function 212

• Replace pipeline with a function: When a function is unnecessarily long due

to a pipeline of function calls that can be replaced by a single call, we can use this

refactoring to address the issue.

• Default value for an absent key in a Map: A function can have its number

of lines reduced by using this refactoring to replace the use of if statements that

check the return of Map.has_key?/2 with a call to the Map.get/3 function.

• Defining a subset of a Map: When a function is unnecessarily long because it

manually creates a subset of a Map by individually accessing each of the desired key/-

value pairs, we can use this refactoring to delegate this task to a call to Map.take/2.

• Pipeline using "with": When a function uses nested conditionals solely to control

a sequence of function calls, it can become long. By using this refactoring, we can

make the function more idiomatic and reduce its number of lines of code.

• Remove redundant last clause in "with": This refactoring can reduce the

number of lines of code used by a with statement and consequently shorten the size

of the function that uses this statement.

• Modifying keys in a Map: When a function is unnecessarily long because it man-

ually replaces a Map key with a new key using Map.get/2, Map.put/2, and Map.delete/2

functions together, we can use this refactoring to delegate this task to a call to

Map.new/2, thus significantly reducing the volume of lines of code.

• Remove nested conditional statements in function calls: When a func-

tion uses unnecessary nested conditional statements, it can become long and less

readable. In such circumstances, we can use this refactoring to replace the unnec-

essary nested conditional statements with less bulky code that maintains the same

behavior, thus making the code simpler and more readable.

• Splitting a definition: When the refactoring Merging multiple defini-

tions is used carelessly, there is a risk of creating a long function. In such cases, we

can undo this operation using the present refactoring, thereby generating smaller,

separate functions.

• Merging match expressions into a list pattern: If a function uses many

lines of code with expressions that assign results to temporary variables but can

be replaced by a single list generated through pattern matching, we can use this

refactoring to reduce the size of the function.

1. Convert nested conditionals to pipeline: When a function uses nested

conditionals solely to control a sequence of function calls, it can become long. By

D.21. Long parameter list 213

using this refactoring, we can give the function a more functional appearance and

reduce the number of lines of code.

2. Replace function call with raw value in a pipeline start: When using

the previous refactoring to remove this smell, we may also encounter an opportunity

to apply the present operation, making the refactored code more idiomatic.

D.21 Long parameter list

• Add or remove a parameter: If a function parameter for some reason is never

used, it can be removed using this refactoring.

• Reorder parameter: When a function has a long list of parameters that reduces

its readability, we can at least reorder the list into a more logical sequence to improve

clarity.

• Introduce parameter struct (Composite)

1. Grouping parameters in tuple: If a function has sequential and related

parameters in its list, these parameters can be grouped into a tuple, thus

reducing the length of the list.

2. From tuple to struct: A tuple used to group parameters can eventually

be replaced by a struct using this refactoring.

D.22 Modules with identical names

• Rename an identifier: In Elixir, there is a naming convention for modules that

should be followed when implementing libraries. According to this convention, a

library should use its own name as a prefix (namespace) for all its module names

(e.g., LibraryName.ModuleName). When a library does not adhere to this naming con-

vention, it can lead to name conflicts for the library’s clients. To remove this smell,

we can rename the modules of a library to adapt them to this convention. It is im-

portant to be careful when performing this refactoring on already released libraries,

as it may cause breaking changes in client code.

D.23. Primitive obsession 214

• Gradual change (Composite)

1. Introduce a temporary duplicate definition: As explained in the

previous refactoring, when a library does not follow the naming convention for

modules, it can lead to name conflicts in their clients. To remove this smell in

already released libraries, we can use this present refactoring on the modules of

a library, adapting the names of the copies to this convention. Meanwhile, the

modules with names outside the convention should be marked as deprecated

but not immediately removed, to avoid breaking client code.

2. Remove dead code: When modules deprecated by the previous refactoring

have remained deprecated long enough for clients to adapt to the new nam-

ing conventions, we can use this refactoring to permanently eliminate them,

thereby removing the risk of name conflicts.

• Move file: If the same directory contains two modules with the same name defined

in different files, we can use this refactoring to relocate one of these modules to

a new directory. Naturally, we will also need to rename the moved module to

conform to the naming convention for modules in Elixir, which recommends using

the directory name as a prefix (namespace) for all module names contained within

it (e.g., LibraryName.ModuleName).

D.23 Primitive obsession

• Introduce parameter struct (Composite)

1. Grouping parameters in tuple: If primitive/basic type values are used

in function parameters to inadequately represent more complex real-world ab-

stractions, you can initially apply this refactoring to group them.

2. From tuple to struct: A tuple used to group parameters can eventually

be replaced by a struct, thus creating a more robust data structure for this

purpose.

• Add type declarations and contracts: We can use this refactoring to gen-

erate a type specification to replace primitive/basic values.

D.24. Shotgun surgery 215

D.24 Shotgun surgery

• Moving a definition: When we need to simultaneously make a series of small

changes in different modules, it’s easy to overlook something important. In this

case, you can use this refactoring to reorganize the modules, aiming to make them

more cohesive so that all necessary changes are concentrated within their respective

modules. If no current module seems like a good candidate to receive parts moved

from others, we need to create one.

D.25 Speculative assumptions

• Introduce pattern matching over a parameter: This smell arises when

developers write defensive or imprecise code, which can return incorrect values that

were not planned for. To remove it, we can use this refactoring to force a function

to crash instead of returning an invalid value when something unexpected happens.

• Pipeline using "with": If this smell occurs within nested conditional statements,

we can use this refactoring to remove them. This operation relies on pattern match-

ing to prevent the continuation of tasks that depend on specific data formats.

D.26 Speculative generality

• Inline function: Use this refactoring to get rid of unused functions or even

unnecessarily created ones.

• Inline macro: Similarly to the previous refactoring, use this operation to eliminate

unused macros or those that were unnecessarily created.

• Add or remove a parameter: Functions with unused parameters should be

reviewed using this refactoring.

• Rename an identifier: Functions with abstract names should be renamed using

more specific names that reflect their current task, rather than potential future tasks

D.27. Switch statements 216

they might perform.

• Behaviour inlining: Unnecessary delegation/generalization caused by the exces-

sive use of Elixir’s behaviour can be removed with this refactoring.

• Remove dead code: In general, any code created unnecessarily to support future

features that are never implemented can be refactored using this operation.

• Eliminate single branch: When a conditional is created to potentially pro-

vide different treatments for different types of data but actually provides the same

treatment to all, we can simplify the code by removing unnecessary complexity.

D.27 Switch statements

1. Replace conditional with polymorphism via Protocols: Suppose the

same sequence of conditional statements appears duplicated in the code. In that

case, we may be forced to make changes in multiple parts of the code whenever a new

check needs to be added to these duplicated sequences of conditional statements.

This refactoring introduces polymorphism to data structures, thus improving the

code’s extensibility to handle flow controls based on data types.

2. Converts guards to conditionals: The inverse operation of this present refac-

toring can be used to complement the previous refactoring operation, combining

polymorphism with guard clauses in the implementation of the functions defined in

the created Protocol.

• Introduce pattern matching over a parameter: If a switch/conditional of

a function is based on a set of numbers or strings that form a list of allowable values

for some parameter (i.e., “type code”), we can use this refactoring to replace the

conditional with a multi-clause function.

• Introduce overloading: We can overload a function, transforming it into a

multi-clause function, to eliminate a conditional.

1. Extract to outside (Composite)

1.1. Extract function: Often the duplicated switch/conditional statement

switches on a “type code”. To isolate a switch/conditional in a type code host,

start by extracting one of the duplicated switch/conditional statements into a

new function.

D.28. Unnecessary macros 217

1.2. Moving a definition: Second, the extracted function should be moved to

the right module.

2. Generalise a function definition: After the previous composite refactoring,

the moved function should be transformed into a higher-order function. One of

the parameters of this generalized function will receive a function as an argument,

responsible for defining the strategy of the internal conditional check.

3. Folding against a function definition: Finally, all points in the code with

duplicated switch/conditional statements can use this refactoring to replace the

duplicated code with calls to the previously defined higher-order function.

D.28 Unnecessary macros

• Inline macro: When code is implemented as a macro but could be implemented as

a conventional function in Elixir, we can use this refactoring to remove this smell,

improving the readability of the code.

• Extract to outside (Composite)

1. Extract function: When creating a macro is unavoidable, but part of it

could be implemented as a conventional named function, we can extract this

part of the macro’s code and encapsulate it into a conventional function, which

the macro will then call. This approach improves code organization and read-

ability while leveraging the macro for its specific role.

2. Moving a definition: After extracting the function, it may eventually be

necessary to move it to another module to make the code more cohesive.

D.29 Unrelated multi-clause function

1. Rename an identifier: A possible solution to this smell is to use this refactoring

to break up the business rules that are mixed into several different simple functions.

Specifically, groups of clauses from the original function that share related func-

D.29. Unrelated multi-clause function 218

tionalities can be renamed with an identical name, thus forming a new multi-clause

function.

2. Function clauses to/from case clauses: Optionally, after renaming the

groups of related clauses, thus creating new multi-clause functions, these multi-

clause functions can be transformed into single-clause functions by mapping function

clauses into clauses of case statements.

• Moving a definition: When unrelated clauses of a multi-clause function differ to

the point where they do not make sense in the current module, these clauses can be

moved to other modules where they fit better, thus making the code more cohesive.

• Struct guard to matching: Optionally, when some of the clauses of a multi-

clause function use a guard clause involving the functions is_struct/1 or is_struct/2,

we can use this refactoring to simplify the pattern matching performed by these

function clause’s signature.

• Equality guard to pattern matching: Optionally, when an unnecessary tem-

porary variable is extracted from a struct’s field in a clause of a multi-clause function

only to be used in an equality comparison in a guard, we can use this operation to

simplify the pattern matching performed by this function clause’s signature.

• Simplifying guard sequences: Optionally, when a clause of a multi-clause func-

tion contains redundant logical propositions, we can simplify the pattern matching

performed by this function clause’s signature through the transformation carried

out by this refactoring.

• Converts guards to conditionals: Optionally, when what differentiates the

clauses of a multi-clause function are only the logical checks performed in their

guard clauses, we can use this refactoring to replace all guards with traditional

conditionals, creating only one clause for the function.

• Simplifying pattern matching with nested structs: Optionally, when us-

ing pattern matching to perform deep extraction in nested structs passed as param-

eters to a clause of a multi-clause function, we may create unnecessarily messy and

hard-to-understand code. With this refactoring, we can simplify this kind of extrac-

tion by performing pattern matching only on the outermost struct in the nesting,

instead of matching patterns with very internal structs.

• Remove unnecessary calls to length/1: Optionally, when unnecessary calls

to the function length/1 are used in guard clauses to differentiate the pattern match-

ing performed by different clauses of a multi-clause function, we can replace these

D.30. Unsupervised process 219

calls with direct pattern matching on the parameter list of the function clauses,

thereby improving code efficiency.

D.30 Unsupervised process

• Moving error-handling mechanisms to supervision trees: Regardless of

whether error-handling mechanisms are used or not, an unsupervised process can

be moved to a supervision tree using this refactoring. With this transformation, the

initialization of processes is delegated to a Supervisor and is no longer performed

directly by the clients. This refactoring allows you to choose which module that

behaves as a Supervisor to move to, or even to create a new module that implements

the Application behaviour to act as a supervision tree.

• Moving a definition: We can move the process initialization function calls

(e.g., GenServer.start/3) into a Supervisor, delegating this task to it.

D.31 Untested polymorphic behaviors

1. Introduce overloading: We can use this refactoring to transform a simple

polymorphic function into a multi-clause function, where each clause of the function

is responsible for handling one of the supported data types.

2. Folding against a function definition: After transforming a polymorphic

function into a multi-clause function, we can use this refactoring to delegate part of

the processing within a clause’s body to calls of other clauses of the same function.

• Typing parameters and return values: Another improvement possibility

for code suffering from this code smell is to use this refactoring to document a

polymorphic function, making it clear which data types it supports.

D.32. "Use" instead of "import" 220

D.32 "Use" instead of "import"

1. Introduce import: When a use directive is unnecessarily used to establish a

dependency between two modules, it can lead to unwanted propagation of internal

dependencies from module A to module B. To remove this smell, we can initially

replace a use directive with an import or alias directive. For this, we can first use

this refactoring, which will create a more superficial dependency in module B with

module A.

2. Remove dead code: After adding the import directive, we should remove the use

directive using this refactoring.

• Alias expansion: Optionally, if the directive used to replace use is an alias and it is

in the multi-alias format (e.g., alias Foo.Bar.{Baz, Boom}), we can use this refactoring,

thus providing an improvement in code readability and traceability.

• Remove import attributes: Optionally, if after replacing use with import we

identify that a module is excessively importing other modules to the point of im-

pairing readability—making it difficult to identify the origin of the functions it

calls—we can perform this refactoring to some unnecessary imports. After that, we

will then call the functions from the removed imports by their fully-qualified names.

D.33 Using App Configuration for libraries

• Explicit a changed function signature (Composite)

1. Add or remove a parameter: When we have a library function that

depends on globally defined values, which reduces its reusability, we can use

this refactoring to add a new optional parameter of type Keyword list with a

default value. This new parameter allows the function to be configured in

different ways when called. If the optional parameter is not provided in the

call, the function will continue to behave as originally, using the same global

configurations.

2. Typing parameters and return values: We can also use this refactoring

to explicitly document the type of the added parameter (i.e., Keyword list).

D.34. Using exceptions for control-flow 221

D.34 Using exceptions for control-flow

1. Rename an identifier: To prevent a library function from always forcing third-

party code to handle an error as an exception, we can initially rename the original

function, adding a trailing ! at the end of its name. In Elixir, there is a convention

where a ! (i.e., trailing or bang) at the end of a function name indicates that it may

raise an exception.

2. Introduce a temporary duplicate definition: After renaming the original

function by adding a ! at the end of its name, we can use this refactoring to duplicate

the renamed original function. This copy should have the original function’s name,

without the ! at the end. Instead of raising exceptions, it should return data in

the tuple format (i.e., {:ok, _} or {:error, msg}). The message provided in the error

tuple should be the same as the one originally displayed in the exception version.

3. Folding against a function definition: Finally, we can use the present refac-

toring to change the bang variant (i.e., the original function that raises an exception,

with ! at the end of its name). With this transformation, the raising version is im-

plemented on top of the non-raising version of the code.

1. Introduce processes: Another possibility for removing this smell is, if the mod-

ule where the function that raises an exception is not a process (e.g., GenServer or

Task), we can use this refactoring to transform the module into a process.

2. Moving error-handling mechanisms to supervision trees: When a pro-

cess is using defensive programming (i.e., try..rescue) to handle exceptions and

even control the execution flow, we can use this refactoring to eliminate this type

of handling, transitioning instead to the "Let it crash" style.

D.35 Working with invalid data

1. Typing parameters and return values: When a library function does not val-

idate the types of its parameters at its signature, we can at least use this refactoring

to document these data. This will help the clients of this function (i.e., third-party

code) to protect themselves from potential errors caused by invalid data.

D.35. Working with invalid data 222

2. Add type declarations and contracts: If recurring data structures are found

when documenting functions of a library, these structures can be named using the

present refactoring, thus creating new reusable data types and increasing the sys-

tem’s readability.

• Introduce pattern matching over a parameter: Optionally, if a client

validates the data passed to a library function call using traditional conditional

statements, we can use this refactoring to make the client function more idiomatic

while still addressing the smell.

• Struct guard to matching: Optionally, if a guard clause involving the func-

tions is_struct/1 or is_struct/2 is used to avoid working with invalid data, we can

use this refactoring to simplify the code used to remove this code smell.

• Simplifying guard sequences: Optionally, if a guard clause with redundancies

is used to avoid working with invalid data, we can use the present refactoring to

also simplify the code used to remove this code smell.

• Converts guards to conditionals: Optionally, we can replace guard clauses

used in a multi-clause client function to handle invalid data with traditional condi-

tional statements. By doing so, we can use this refactoring to consolidate all data

type validations into a single-clause function.

	Introduction
	Problem and Motivation
	Objectives and Contributions
	Code Smells in Elixir
	Refactorings in Elixir
	Relationship between Code Smells and Refactorings in Elixir
	Impact on the Elixir Developers' Community

	Publications
	Outline of the Thesis

	Background and Related Work
	Functional Programming
	Elixir Language
	Code Smells
	Refactoring
	Related Work
	Context-specific Code Smells and Developers’ Perceptions
	Language-specific Refactorings

	Final Remarks

	Code Smells in Elixir
	Catalog of Code Smell for Elixir
	Study Design
	Do Elixir developers discuss traditional code smells? (RQ1)
	Do Elixir developers discuss other smells? (RQ2)
	Design-related smells
	Low-level concerns smells

	Threats to Validity

	Catalog Validation
	Survey Design
	What are the developers’ perceptions of code smells in Elixir? (RQ3)
	Threats to Validity

	Implications
	Final Remarks

	Refactorings in Elixir
	Catalog of Refactorings for Elixir
	Study Design
	What are the refactoring strategies that occur in Elixir? (RQ1)
	Functional refactorings
	Elixir-specific refactorings
	Erlang-specific refactorings
	Traditional refactorings

	Threats to Validity

	Catalog Validation
	Survey Design
	What are the developers’ perceptions of refactorings in Elixir? (RQ2)
	Threats to Validity

	Implications
	Final Remarks

	Relationship between Code Smells and Refactorings in Elixir
	Study Design
	Results
	Mapping between smells and refactorings
	Composite refactorings for Elixir
	Example: Removing a smell step-by-step through a composite refactoring

	Discussion
	Threats to Validity
	Final Remarks

	Conclusion
	Thesis Recapitulation
	Contributions
	Future Work

	References
	Documents of the Survey on Code Smells in Elixir
	Free and Enlightened Consent
	Survey Questions

	Documents of the Survey on Refactorings for Elixir
	Free and Enlightened Consent
	Survey Questions

	Refactorings not listed in Chapter 4
	Refactoring Code Smells: Practical Guidelines
	Accessing non-existent map/struct fields
	Agent obsession
	Alternative return types
	Code organization by process
	Comments
	Compile-time global configuration
	Complex branching
	Complex else clauses in with
	Complex extractions in clauses
	Data manipulation by Migration
	Divergent change
	Duplicated code
	Dynamic atom creation
	Feature envy
	GenServer envy
	Inappropriate intimacy
	Large class
	Large code generation by macros
	Large messages
	Long function
	Long parameter list
	Modules with identical names
	Primitive obsession
	Shotgun surgery
	Speculative assumptions
	Speculative generality
	Switch statements
	Unnecessary macros
	Unrelated multi-clause function
	Unsupervised process
	Untested polymorphic behaviors
	"Use" instead of "import"
	Using App Configuration for libraries
	Using exceptions for control-flow
	Working with invalid data

