
UNIVERSIDADE FEDERAL DE MINAS GERAIS

School of Engineering

Graduate Program in Electrical Engineering

Hugo Vinicius Bitencourt

Embedding Fuzzy Time Series: a
framework for high-dimensional time
series forecasting in IoT applications

Belo Horizonte

2025



Hugo Vinicius Bitencourt

Embedding Fuzzy Time Series: a framework for

high-dimensional time series forecasting in IoT

applications

Thesis presented to the Graduate Program
in Electrical Engineering at the Universi-
dade Federal de Minas Gerais, as a partial
requirement for obtaining the title of Doctor
in Electrical Engineering.

Supervisor: Prof. Dr. Frederico
Gadelha Guimarães

Belo Horizonte

2025



                      Bitencourt, Hugo Vinicius.
B624e                Embedding Fuzzy Time Series [recurso eletrônico] : a framework for
                      high-dimensional time series forecasting in IoT applications / Hugo 
                      Vinicius Bitencourt. - 2025.
                          1 recurso online (110 f. : il., color.) : pdf.

 
    Orientador: Frederico Gadelha Guimarães.
                                                                            

                          Tese (doutorado) - Universidade Federal de Minas Gerais,
                      Escola de Engenharia.   

                          Anexos: f. 107-110.

                          Bibliografia: f. 96-106.
                            

    1. Engenharia elétrica - Teses. 2. Internet das coisas - Teses.               
3. Análise de séries temporais - Teses. 4. Previsão - Teses. I. Guimarães, 
Frederico Gadelha. II. Universidade Federal de Minas Gerais. Escola de 
Engenharia. III. Título.                                                                                    

                                                                                                                 CDU: 621.3(043)
             Ficha catalográfica elaborada pelo bibliotecário Reginaldo César Vital dos Santos CRB/6 2165

                                           Biblioteca Prof. Mário Werneck, Escola de Engenharia da UFMG



UNIVERSIDADE FEDERAL DE MINAS GERAIS

ESCOLA DE ENGENHARIA

COLEGIADO DO CURSO DE GRADUAÇÃO / PÓS-GRADUAÇÃO EM ENGENHARIA
ELÉTRICA

FOLHA DE APROVAÇÃO

"Embedding Fuzzy Time Series: A Framework For High-dimensional Time
Series Forecasting in IoT Applications"

 
 
 

Hugo Vinicius Bitencourt Paula
 
 
 

Tese de Doutorado submetida à Banca Examinadora designada pelo Colegiado do
Programa de Pós-Graduação em Engenharia Elétrica da Escola de Engenharia da
Universidade Federal de Minas Gerais, como requisito para obtenção do grau de Doutor em
Engenharia Elétrica.
 
Aprovada em 31 de janeiro de 2025.
 
Por:

 
Prof. Dr. Frederico Gadelha Guimarães

DCC (UFMG) - Orientador
 
 

Prof. Dr. Guilherme de Alencar Barreto
DETI (UFC)

 
 

Prof. Dr. Ticiana Linhares Coelho da Silva
Instituto Universidade Virtual (UFC)

 
 

Prof. Dr. Danton Diego Ferreira
Dep. Automática (DAT) (UFLA)

 
 

Prof. Dr. Petrônio Cândido de Lima e Silva
(IFNMG)

 

 

Folha de Aprovação 3876026         SEI 23072.202021/2025-86 / pg. 1



Documento assinado eletronicamente por Frederico Gadelha Guimaraes, Professor do
Magistério Superior, em 02/02/2025, às 21:42, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Petrônio Cândido de Lima e Silva, Usuário
Externo, em 03/02/2025, às 09:44, conforme horário oficial de Brasília, com fundamento no
art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Danton Diego Ferreira, Usuário Externo, em
03/02/2025, às 11:34, conforme horário oficial de Brasília, com fundamento no art. 5º do
Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Ticiana Linhares Coelho da Silva, Usuário
Externo, em 10/02/2025, às 09:28, conforme horário oficial de Brasília, com fundamento no
art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Guilherme de Alencar Barreto, Usuário Externo,
em 10/02/2025, às 11:22, conforme horário oficial de Brasília, com fundamento no art. 5º do
Decreto nº 10.543, de 13 de novembro de 2020.

A autenticidade deste documento pode ser conferida no site
https://sei.ufmg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador
3876026 e o código CRC 8D985842.

Referência: Processo nº 23072.202021/2025-86 SEI nº 3876026

Folha de Aprovação 3876026         SEI 23072.202021/2025-86 / pg. 2



Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor Prof.
Dr. Frederico Gadelha Guimarães for continuous support for my Ph.D study and research,
for his patience, immense knowledge and valuable feedback. His guidance helped me in all
the time of my research.

I would like to offer my special thanks to Prof. Dr. Petrônio Cândido de Lima e
Silva for his assistance at every stage of my research project and insightful comments.

In addition, I would like to extend my sincere thanks to my fellows Omid Orang
and Patrícia Lucas for his valuable assistance. He helped me in all the time of this research
and writing of this PhD Thesis.

I want to give my deepest appreciation to the undergraduate students: Luiz
Augusto Facury and Matheus Cascalho dos Santos for their valuable contribution to my
research. I am very grateful for their help in designing the proposed framework and testing.

I would be remiss in not mentioning my family, especially my grandmother Duce,
my aunt Dadá, and my mother. I am acutely grateful for their support and love.

Finally, my thanks go to all labmates on MINDS and professors and staff of the
PPGEE/UFMG.



Abstract

Na Internet das Coisas (IoT), séries temporais multivariadas (de alta dimensão) são
coletadas e armazenadas continuamente a partir de diferentes fontes de dados. Essas séries
temporais são não-estacionárias visto que as características estatísticas do processo de
geração dos dados modificam-se ao longo do tempo tornando-se dependentes do tempo. O
processo de tomada de decisão em aplicações em Internet das Coisas pode envolver vários
fatores e critérios. Portanto, é de grande valia para IoT, métodos de previsão inteligentes
capazes de lidar com séries temporais multivariadas não-estacionárias e múltiplas saídas.
Os métodos de Fuzzy Time Series (FTS) destacam-se como algoritmos não paramétricos
orientados a dados, de fácil implementação e alta acurácia. Contudo, a previsão de séries
temporais usando os métodos FTS existentes pode ser inviável caso todas as variáveis
sejam utilizadas no treinamento do modelo em um problema de previsão, além disso,
métodos de previsão FTS frequentemente enfrentam limitações ao lidar com dados de alta
dimensão e fazer previsões de múltiplas saídas. Nesse sentido, para resolver os desafios
apresentados, este trabalho apresenta um novo framework para previsão de séries temporais
multivariadas não-estacionárias em aplicações de IoT denominado embEFTS (Embedding
Fuzzy Time Series). Dessa forma, foi aplicada uma combinação de embedding (redução
de dimensionalidade) com modelos FTS. A combinação dessas técnicas permitiu uma
melhor representação dos dados mais relevantes para previsão das séries temporais e
previsões mais acuradas. Projetado como uma solução explicável e baseada em dados,
embEFTS é flexível e adaptável a diversas aplicações de IoT. O embEFTS foi avaliado
em múltiplos conjuntos de dados reais de séries temporais de alta dimensão na área
de IoT. Os resultados experimentais demonstram que nosso framework supera diversos
modelos de aprendizado de máquina e aprendizado profundo, incluindo LSTM, BiLSTM,
CNN-LSTM, GRU, RNN, MLP, GBM e TCN. Comparado a abordagens existentes e
resultados previamente publicados na literatura, embEFTS apresenta eficiência, acurrácia
e parcimônia superiores. O framework proposto foi testado em várias bases de dados de
IoT do mundo real. O embEFTS é uma abordagem explicável e orientada a dados, que é
flexível e adaptável a diferentes aplicações de IoT. Os resultados experimentais mostram
que o nosso framework supera na acurácia diversos métodos de aprendizado de máquina e
aprendizado profundo. Além disso, os resultados confirmam a eficiência e parcimônia do
embEFTS em comparação com outras abordagens e resultados publicados na literatura.
Portanto, embEFTS é uma solução robusta e eficaz para previsão de séries temporais não
estacionárias de alta dimensão.

Palavras-chave: Séries Temporais Multivariadas; Séries Temporais Nebulosas; Redução de
Dimensionalidade; Internet das Coisas; Previsão de Séries Temporais.



Abstract

In the Internet of Things (IoT), high-dimensional time series data are continuously
generated from multiple sources and often exhibit intrinsic changes known as concept
drifts. Additionally, IoT decision-making frequently involves multiple factors and criteria.
Therefore, methods capable of handling high-dimensional non-stationary time series with
multiple outputs are essential. Fuzzy Time Series (FTS) methods stand out for their
data-driven, non-parametric nature, ease of implementation, and high accuracy. However,
existing FTS approaches struggle with high-dimensional data and multi-output predictions.
To fill these gaps, we present a new framework for forecasting high-dimensional non-
stationary time series in IoT applications called embEFTS (Embedding Fuzzy Time
Series). We apply a combination of data embedding transformation and FTS methods.
Combining these techniques enables a better representation of the complex content of
multivariate time series and more accurate forecasts. Designed as an explainable and
data-driven solution, embEFTS is flexible and adaptable to various IoT applications. We
evaluated embEFTS on multiple real-world high-dimensional IoT time series datasets.
Experimental results demonstrate that our framework outperforms several machine learning
and deep learning models, including LSTM, BiLSTM, CNN-LSTM, GRU, RNN, MLP,
GBM, and TCN. Compared to existing approaches and previously published results,
embEFTS showcases superior efficiency, accuracy, and parsimony. Therefore, embEFTS

is a robust and effective solution for forecasting high-dimensional non-stationary time
series. It has the potential to assist homeowners in developing more efficient energy-saving
strategies and can also support decision-making in air pollution management.

Keywords: Multivariate Time Series; Fuzzy Time Series; Embedding Transformation;
Internet of Things; Time Series Forecasting.
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Chapter 1

Introduction

The main focus of this chapter is listed as follows: problem statement and motiva-
tion; objectives; contributions; and work structure.

1.1 Problem Statement and Motivation

The rise of IoT (Internet of Things) applications and the increased data storage
has led to a significant increase in streaming data, often structured as time series. However,
this time series can be prone to errors and noise due to sensor issues, such as aging or
hardware faults. Additionally, the monitored phenomena may change over time due to
seasonal or weather variations. [Ditzler et al., 2015].

These time series are characterized by intrinsic changes that modify the properties
of the process of data generating (i.e. non-stationary time series), which changes its
underlying probability distribution over time. A non-stationary time series is the type
of time series whose statistical characteristics including mean or variance (or both) are
varying over the time and the changes can take several forms known as “concept drifts”.
Concept drifts may deteriorate the accuracy of the model prediction over time, which
requires permanent adaptation strategies.

In IoT, data from multiple sources is continuously recorded, forming a streaming,
high-dimensional time series, where each dimension represents measurements from a sensor.
An IoT system with SN (number of sensors) sensors generates an SN -dimensional time
series. IoT and IoE are key contributors to Big Data, as they involve connecting numerous
devices to the Internet to constantly monitor and report environmental conditions.

Decision-making in IoT applications may often involve multiple factors and criteria,
for instance: the house owner can see not only the overall energy consumption prediction
but also the estimated energy consumption from each room and appliances; authorities may
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want the forecast of several air pollutants (e.g. PM2.51, SO2, NO2, PM102) simultaneously.

However, the analysis of such IoT time series poses significant challenges, both
statistically and numerically due to seasonal variations, irregular trends, and the presence
of missing values, outliers, and uncertainties in sensor data. These factors make accurate
predictions difficult due to the unpredictable and noisy of the data [Atitallah et al.,
2020],[Olu-Ajayi et al., 2022], [Sepasgozar et al., 2020].

Multiple output forecasting faces challenges such as exploring inter-target depen-
dencies, modeling complex input-output relationships, and effectively capturing dependen-
cies among predictors [Xu et al., 2020], [Reyes and Ventura, 2019].

Multi-step-ahead problem faces uncertainty factors, such as error accumulation and
insufficient information, making multi-step-ahead forecasting more challenging. Therefore,
when dealing with time series data from diverse sources like IoT applications, selecting an
appropriate modeling strategy for multi-step-ahead time series forecasting holds significant
practical value [Chandra et al., 2021] [Gocheva-Ilieva et al., 2023a].

Consequently, there are two primary strategies for multi-step forecasting: recursive
and direct. The recursive approach involves utilizing the prediction from a one-step ahead
model as input for subsequent predictions. Conversely, the direct approach treats the
multi-step problem as a multi-output task, creating some models equal to the number of
time steps [Suradhaniwar et al., 2021] [Gocheva-Ilieva et al., 2023b]. The recursive strategy
tends to accumulate errors across future horizons, making it more suitable for relatively
short forecasts. This is due to the propagation of bias and variance from previous time
steps into future predictions.

Finally, it is important to analyze relationships between variables to select the
most valuable inputs for accurate predictions. The key challenge is identifying an optimal
set of inputs that are strongly correlated with the target output.

1.2 Objectives

To overcome the challenges presented above, the main objective of this work is
to propose a new framework for forecasting high-dimensional non-stationary time series
called embEFTS (Embedding Fuzzy Time Series) that are shown in Figure 1.

Consequently, we address the following objectives:

• Investigate the potential benefits of a methodology that combines an embedding
transformation and a fuzzy time series forecasting approach for dealing with high-

1 PM2.5 concentration refers to fine particles in the air with an aerodynamic equivalent diameter of 2.5
microns or less

2 PM10 concentration means particulate matter 10 micrometers or less in diameter
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Figure 1 – Embedding Fuzzy Time Series (embEFTS)

dimensional non-stationary time series.

• Apply a data embedding transformation and use FTS models in a low dimensional,
learned continuous representation, to provide more parsimonious and explainable
models, consequently, with better possibilities of integration to real IoT applications.

• Propose forecasting methods (i.e. MISO one-step, MISO multi-step ahead, and
MIMO one-step ahead) which are flexible and adaptable for many IoT applications.

• Present methods to handle high-dimensional data and multiple outputs.

• Propose methods able to provide accurate forecasting results in non-stationary
environments.

• Test our proposed methods on several real-world high-dimensional IoT time-series
datasets (smart buildings and smart cities applications) in order to evaluate and
justify the superior accuracy of our approach with regards to the accuracy metrics.

1.3 Contributions

Guided by the aforementioned objectives, this work presented some contributions,
the main ones being listed below:



Chapter 1. Introduction 24

1. We introduce a new framework called embEFTS, valuable for IoT applications in
smart buildings and cities. It can help reduce electricity consumption and enhance
energy-saving strategies. embEFTS is also useful for decision-making related to air
pollution

2. A new methodology called EFTS (Embedding-based Fuzzy Time Series) [Bitencourt
et al., 2023] is detailed for forecasting high-dimensional non-stationary time series.
EFTS is a first-order MISO multivariate method.

3. A new multi-step forecasting method, MS-EFTS (Multi-Step Embedding-based
FTS) [Bitencourt et al., 2025] is presented, extending EFTS for multi-step-ahead
predictions of high-dimensional, non-stationary time series.

4. The study details our MO-ENSFTS (Multiple Output Embedding-based Non-
Stationary Fuzzy Time Series) approach [Bitencourt et al., 2022], a first-order
MIMO method that treats all variables as both target and explanatory variables.

5. Another MIMO forecasting methodology, MO-WMVFTS (Multiple-Output Weighted
Multivariate Fuzzy Time Series) [Bitencourt et al., 2024] is introduced, improving
upon EWMVFTS (Embedding Weighted Multivariate Fuzzy Time Series) [Bitencourt
et al., 2023] to predict multiple outcomes. MO-WMVFTS shows higher accuracy
than MO-ENSFTS [Bitencourt et al., 2022].

6. The study is among the few to address high-dimensional non-stationary time series
forecasting with multiple outputs using FTS methods.

7. Experimental results indicate that the embEFTS framework outperforms other one-
step and multi-step MISO and MIMO models in terms of accuracy, efficiency, and
simplicity. Additionally, the proposed approach proves more efficient and accurate
compared to existing methods in the literature.

1.4 Work Structure

To advance the objectives discussed above, the document is organized in the
following chapters:

• Chapter 2 - Literature Review: introduce the literature review from the point
of view of application problem and methodology.

• Chapter 3 - Design of Experiments: shows the experiments methodology,
providing a description of the case of studies, experiments design, the evaluation
metrics, computational experiments and reproducibility issues.
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• Chapter 4 - Embedding-based Fuzzy Time Series (EFTS): details our
proposed and published methodology EFTS [Bitencourt et al., 2023] in order to
deal with high-dimensional time series in MISO systems. This chapter also shows
the experimental results of our proposed approach over several forecasting methods
tested on the case of studies.

• Chapter 5 - Multi-Step Embedding-based Fuzzy Time Series (MS-EFTS):
introduces our multi-step forecasting methodology named Multi-Step Embedding-
based FTS (MS-EFTS) [Bitencourt et al., 2025]. Additionally, we present the experi-
mental results of MS-EFTS in comparison with various deep learning methods.

• Chapter 6 - Multiple Output Embedding Non-Stationary FTS (MO-
ENSFTS): describes our introduced and released approach MO-ENSFTS [Bitencourt
et al., 2022] to handle high-dimensional time series and multiple output prediction (i.e.
MIMO systems). Besides, we presents obtained experimental results of MO-ENSFTS
against several machine learning and deep learning methods.

• Chapter 7 - Multiple-Output Weighted Multivariate FTS (MO-WMVFTS):
we present another MIMO forecasting methodology known as Multiple-Output
Weighted Multivariate Fuzzy Time Series (MO-WMVFTS) [Bitencourt et al., 2024].
Furthermore, this chapter also highlights the performance of our proposed approach
across multiple forecasting methods applied on the case of studies.

• Chapter 8 - Conclusion and Future Works: concludes this work, summarizing
all the discussions presented. I also presents the new directions for future work based
on what was conducted in this work.
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Chapter 2

Literature Review

We describe the literature review from the point of view of application problem
(i.e. time series prediction in Internet of Things) and and methodology (i.e. fuzzy time
series and embedding transformation). In this chapter, we discuss the concepts of the
Internet of Things (IoT), Time Series forecasting, Fuzzy Time Series (FTS) and embedding
transformation (emb), which underlines the solutions proposed in this work. Furthermore,
this chapter presents several current methods for energy consumption forecasting in smart
buildings and air quality prediction in smart cities.

2.1 Internet of Things

We are on the verge of a new era in networking and communication that has
significantly impacted our community and personal lives. This era has led to the creation
of a dynamic and expansive network known as the Internet of Things (IoT). The IoT (see
Figure 2) refers to a global network of interconnected devices, such as sensors, RFID (Radio
Frequency Identification) tags, actuators, and mobile phones, all uniquely identifiable
and connected through standard communication protocols [Union, 2005],[Gubbi et al.,
2013],[Miorandi et al., 2012]. Internet of Things can impact on several aspects of everyday-
life and behavior of potential users (see Figure 3), for instance:

• Sensors placed in homes and offices can enhance comfort in various ways, such as
adjusting heating based on preferences and weather, changing lighting according to
the time of day, preventing domestic incidents with monitoring systems, and saving
energy by automatically turning off unused devices and anticipating user needs.

• Sensors can track vehicular traffic on highways, providing data like average speed and
car count. They can also monitor air pollution by measuring smog levels, including
carbon dioxide concentrations, and relay this information to health agencies.
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Figure 2 – Internet of Things [Gubbi et al., 2013]

• IoT can assist in predicting and managing unpredictable events like natural disasters.
For instance, ambient sensors can detect the presence of hazardous chemicals.

• Wireless sensors and actuators can facilitate factory automation, inventory man-
agement, and leakage detection in liquids or gases. They are crucial for monitoring
parameters like shock, noise, and temperature in remote or hard-to-reach areas, such
as tanks, turbine engines, or pipelines.

• Sensors enable access to critical and hazardous areas where human presence is
impractical, such as volcanic regions, ocean depths, or remote locations. They can
detect anomalies, like fires, and promptly send alarms along with relevant data to
support decision-making and response efforts.

• Patients can wear sensors to monitor vital signs, detect emergencies, and assist in
diagnosing conditions. These sensors also gather important clinical data for rehabili-
tation, elderly monitoring, and support for individuals with physical impairments.

2.1.1 Internet of energy

The Internet of Energy (IoE) is a subset of the Internet of Things (IoT) that
integrates sensors, actuators, smart meters, and other electrical grid components with
information and communication technology (see Figure 4). IoE leverages the bidirectional
flow of energy and information to provide deep insights into electricity usage, enhancing
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Figure 3 – Internet of Things Applications [Reka, 2018]

energy efficiency. It is crucial for implementing smart grids [Jaradat et al., 2015b], [Shahzad
et al., 2020],[Shahinzadeh et al., 2019].

Figure 4 – Internet of Energy [Shahinzadeh et al., 2019]

Smart grids are advanced electrical power systems that modernize power distribu-
tion by digitally connecting all users, including suppliers and consumers. This integration
makes power systems safer, more reliable, efficient, flexible, and sustainable. The use of
Internet of Energy (IoE) technology in smart grids helps achieve these improvements
[Jaradat et al., 2015a].
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IoE can enhance home energy efficiency by connecting appliances to the internet,
allowing homeowners to better manage utility usage and costs. Additionally, it can utilize
meteorological data to predict and optimize appliance energy consumption [Mohammadi
et al., 2018],[Manic et al., 2016].

2.1.2 Smart buildings and smart Cities

Smart cities and smart buildings are prominent IoT applications. Various IoT
devices are deployed across modern cities to manage urban resources and improve services
like healthcare, transportation, and energy. In smart buildings, sensors collect data to
analyze and optimize energy consumption.

Smart buildings use IoE devices to monitor and analyze data, providing insights
that optimize environments and operations. The smart home concept can also be applied
to industrial, commercial, and residential buildings, adapting smart technology to various
structures [Lobaccaro et al., 2016].

In smart buildings, an IoT network connects all digital devices to automate and
assist users. For example, IoE devices track energy consumption and enable users to manage
their electricity use through two-way communication with home appliances [Shahinzadeh
et al., 2019].

Air quality is a critical concern in modern cities due to its impact on health
issues like asthma, bronchitis, lung cancer, and heart problems, as well as its threat to
the environment. To address this, technology is needed to measure and predict air quality.
IoT is a promising solution that has significantly improved air quality monitoring and
forecasting [Ameer et al., 2019].

Monitoring air pollution in modern cities enhances public health by issuing alerts
when pollution levels exceed thresholds. This allows local authorities to assess the situation,
predict pollution trends, and make informed decisions to address air quality issues [Ameer
et al., 2019], [Zhang et al., 2021],[Bekkar et al., 2021].

2.2 Time Series Forecasting

A crisp time series Y of size N is an ordered sequence of observations Y =

(y(t1), y(t2), ..., y(tN )) where y(ti) represents the value at time period i− th. A multivariate
time series Y ∈ RNxV extends this to include multiple time-dependent variables, with
the dimensionality defined by V where each vector y(t) ∈ Y contains the values for all
variables Vi ∈ V at a given time.

Time series forecasting is a challenging problem which comprises both Multiple
Input Single Output (MISO) and Multiple Input Multiple Output (MIMO) methods.
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MISO methods receive a set of explanatory variables (or exogenous) Vi ∈ V and only
one target variable (or endogenous) V∗ ∈ V that is the output set, while MIMO methods
use the same input set of variables as the output set, hence MIMO forecasting aims to
estimate multiple values at once. Furthermore, time series forecasting methods can be
divided into one-step ahead problem (i.e. forecast a time-step immediately following the
latest observation) and multi-step ahead problem (i.e. predict two or more time-steps) [Xu
et al., 2020] [Atitallah et al., 2020],[Olu-Ajayi et al., 2022],[Sepasgozar et al., 2020],[Syed
et al., 2021],[Sajjad et al., 2020],[Ullah et al., 2020],[Parhizkar et al., 2021],[Bekkar et al.,
2021],[Zhang et al., 2021],[Jin et al., 2021].

In this regard, the forecast horizon is the period for output forecasting and can be
categorized into the following categories: (1) Very short-term forecast: it involves forecast
outputs of less than 1 hour; (2) Short-term forecast: the forecast done for one hour, several
hours, one hour, or up to seven days; (3) Medium-term forecast: it involves forecast outputs
from one week to one month; (4) Longer-term forecast: it involves forecast output from
one month to one year [Das et al., 2018],[Yadav and Chandel, 2014][Ahmed et al., 2020].
In general, the longer the forecast horizon, the greater is the chance of forecast error since
model’s error fluctuates with the change in the forecast horizon and add complexity.

2.2.1 Energy consumption forecasting

Accurately predicting energy consumption is crucial for smart buildings, as it
helps reduce power usage, leading to significant energy and cost savings. Energy forecasting
enables building managers to plan consumption, shift usage to off-peak times, set energy-
saving targets, and optimize energy purchases [Mocanu et al., 2016].

Accordingly, energy consumption forecasting in smart buildings is a time series
problem that can involve single or multiple variables. These time series often display
seasonal variations, irregular trends, and may contain missing data, outliers, or uncertainties.
This makes precise forecasting challenging due to unpredictable disturbances and noisy
sensor data. To address these issues, various machine learning models have been developed,
leveraging historical sensor data to enhance grid quality and optimize energy utilization.

Candanedo et al. [Candanedo et al., 2017] implemented and evaluated four forecast
models for appliance energy consumption in a low-energy house in Belgium: Multiple
Linear Regression (MLR), Support Vector Machine with Radial Kernel (SVM-radial),
Random Forest (RF), and Gradient Boosting Machines (GBM). Among these, GBM
performed the best, explaining 57% of the variance (R2) and achieving an RMSE of 66.65,
a MAE of 35.22, and a MAPE of 38.29% in the testing set when all variables were included.

Chammas et al. [Chammas et al., 2019] proposed a Multilayer Perceptron (MLP)
with four hidden layers, each containing 512 neurons, to forecast appliance energy con-
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sumption. The MLP model explained 56% of the variance and achieved a RMSE of 66.29,
a MAE of 29.55, and a MAPE of 27.96% on the testing set when using all variables.
However, the dataset was small for an MLP, and neural networks are sensitive to weight
initialization, prone to local minima, and exhibit slow convergence. Balancing overfitting
and generalization remains a challenge for neural networks.

Mocanu et al. [Mocanu et al., 2016] developed two variants of the Restricted
Boltzmann Machines (RBMs) stochastic model for forecasting residential energy consump-
tion: the Conditional RBM (CRBM) and the Factored Conditional RBM (FCRBM). They
compared these models with traditional machine learning methods like Support Vector
Machines (SVM), Artificial Neural Networks (ANN), and Recurrent Neural Networks
(RNN), across various time horizons and resolutions, ranging from one minute to one week.
The FCRBM outperformed all other models, including ANN, RNN, SVM, and CRBM, in
terms of accuracy. However, the study was limited to one-dimensional time series data.

Moldovan et al. [Moldovan and Slowik, 2021] introduced a multi-objective binary
grey wolf optimization technique combined with various regression algorithms such as
Random Forest, Extra Trees, Decision Trees (DT), and K-Nearest Neighbor (KNN) for
energy appliance prediction.

Parhizkar et al. [Parhizkar et al., 2021] enhanced the accuracy of smart building
energy forecasting by applying PCA to preprocess data and extract key features from
four smart building datasets. These features were then used to improve the prediction
performance of five machine learning models: linear regression, support vector regression
(SVR), regression tree, random forest, and K-nearest neighbors.

Syed et al. [Syed et al., 2021] introduced a framework called HSBUFC, which
integrates a hybrid stacked bi-directional and uni-directional Long Short-Term Memory
Networks (LSTMs) with fully connected dense layers and a data cleaning process. This
framework outperformed other hybrid models, including CNN-LSTM and ConvLSTM, in
prediction accuracy.

Kim et al. [Kim and Cho, 2019] proposed a hybrid model, CNN-LSTM, for
household energy consumption forecasting. CNN was used to extract variables that
influence energy consumption, while the LSTM modeled the temporal patterns. This
hybrid model outperformed standalone LSTM, achieving MSE of 37.38 and RMSE of
61.14. However, the authors noted that the primary drawback of the hybrid approach was
the extensive trial-and-error process required to determine the optimal hyperparameters,
leading to increased complexity.

Sajjad et al. [Sajjad et al., 2020] implemented a hybrid deep learning method,
CNN-GRU, for energy forecasting. This approach combines CNN for extracting spatial
variables with Gated Recurrent Unit (GRU) for exploiting temporal patterns through its
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gated structure. The results demonstrated that CNN-GRU outperformed both individual
models and the CNN-LSTM hybrid model.

Similarly, Ullah et al. [Ullah et al., 2020] introduced a hybrid method integrating
CNN with multilayer bidirectional LSTM (M-BLSTM) for short-term energy forecasting.
Their approach was compared against BLSTM, LSTM, and CNN-LSTM models, showing
superior performance across all benchmarks.

Lu et al. [Lu et al., 2021] proposed a Temporal Attention Encoder-Decoder Network
(TA-EDN) hybrid method, which combines the encoder-decoder network, LSTM, and
attention mechanism for 24-hour-ahead thermal load forecasting. Similarly, Antal et al.
[Antal et al., 2022] introduced a model that integrates clustering with MLP classification
for 24-step-ahead energy prediction, aimed at detecting energy profile classes.

Furthermore, Cascone et al. [Cascone et al., 2023] presented a convolutional LSTM
model for predicting electric power consumption one week in advance, while Alobaidi
et al. [Alobaidi et al., 2018] developed an ensemble ANN-based framework utilizing
minute-controlled resampling techniques to predict day-ahead average household energy
consumption in France.

2.2.2 Air quality forecasting

Intelligent air pollution forecasting systems play a crucial role in decision-making
for both individuals and governments. Accurately predicting air quality requires a clear
understanding of how pollutants change across various temporal contexts, as well as the
non-linear relationships in time and space that affect forecast accuracy. As a result, air
quality forecasting has become an active research area, with numerous methodologies
being developed [Ameer et al., 2019][Zhang et al., 2021].

Ammer et al. [Ameer et al., 2019] implemented and compared four models Decision
Tree Regression (DTR), Random Forest Regression (RFR), Multi-layer Perceptron (MLP),
and Gradient Boosting Regression (GBR) to predict PM2.5 concentrations in large Chinese
cities. Among these, RFR emerged as the most accurate method, achieving the lowest
RMSE and shortest processing time.

Bekkar et al. [Bekkar et al., 2021] introduced a hybrid deep learning method
(CNN-LSTM) to forecast hourly PM2.5 concentrations in Beijing, using data from twelve
nationally-controlled air-quality monitoring sites. The method integrated historical air
pollution data from the Aotizhongxin site, weather data from a nearby meteorological
station, and PM2.5 concentrations from adjacent sites to predict PM2.5 concentrations at
the Aotizhongxin site.

Zhang et al. [Zhang et al., 2021] proposed another hybrid deep learning model
(VBM-BiLSTM) for forecasting hourly PM 2.5 concentrations in Beijing. This model
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combines variational model decomposition (VMD) with bi-directional LSTM. The approach
was tested on air pollution and weather data from various monitoring sites individually,
including Dongsi, Dingling, Gucheng, and Changping.

Jin et al. [Jin et al., 2021] proposed a data-driven deep learning method using
nested LSTM to predict six air quality features (PM2.5, PM10, SO2, NO2, CO, and O3)
simultaneously. The approach incorporates federated learning and is among the few studies
addressing multiple prediction outputs in smart cities.

Zhang at al. [Zhang et al., 2020] introduced BiAGRU, a spatial-temporal deep
learning algorithm for air quality prediction. This method combines a Bidirectional GRU
with an embedded attention mechanism, tested with different forecast horizons. BiAGRU
outperformed several methods, including RF, KNN, LSTM, GRU, Bi-GRU, and CNN-
LSTM.

Fei et al. [Fei et al., 2019] proposed an ensemble method called physical-temporal
collection (PTC) for predicting PM2.5 with a forecast horizon of 24 hours. PTC integrates
a cascaded LSTM (C-LSTM) for prediction and uses auxiliary information for time series
correction. Additionally, XGBoost is applied to identify key temporal and weather patterns,
optimizing input variables by eliminating irrelevant nodes.

Qi et al. [Qi et al., 2019] introduced a hybrid model called GC-LSTM, combining
Graph CNN and LSTM to forecast the spatiotemporal variations of PM2.5 concentrations
with a 24-hour prediction horizon. Additionally, Ma at al. [Ma et al., 2019] developed a
multi-step-ahead method known as Transferred Bi-directional LSTM (TL-BLSTM) for
PM2.5 prediction, also focusing on a 24-hour forecast. Furthermore, Gocheva-Ilieva et al.
[Gocheva-Ilieva et al., 2023b] utilized RF combined with arcing (Arc-x4) to predict PM10,
SO2, and NO2 concentrations up to 10 days in advance.

Liu et al. [Liu et al., 2019] presented the Attention-based Air Quality Predictor
(AAQP) as a sequence-to-sequence model for predicting PM2.5 concentrations, with a focus
on 8 and 24-hour forecasts. Xu et al. [Xu and Ren, 2019] proposed a supplementary leaky
integrator echo state network (SLI-ESN) combined with minimum redundancy maximum
relevance (mRMR) to forecast PM2.5 concentrations in Beijing for one, five, and ten steps
ahead.

Jin et. al [Jin et al., 2021] introduced a multitask multichannel nested LSTM
(MTMC-NLSTM) to predict six air quality features, including PM2.5, PM10, SO2, NO2,
CO, and O3. Additionally, Samal at al. [Samal et al., 2022] proposed a method known as
the LSTM auto-encoder (M-LSTMA) to forecast PM2.5 and PM10 levels in Beijing. Samal
at al. also introduced an approach called the multi-output temporal CNN auto-encoder
(MO-TCNA) for long-term predictions of PM2.5 and PM10.

Finally, Munkhdalai et al. [Munkhdalai et al., 2019] proposed a method combin-
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ing RNN with an adaptive feature selection mechanism. The approach consists of two
components: the first generates context-dependent importance weights to select relevant
variables, while the second component predicts the target variable. Notably, this study
considers CO(GT ) and NO2(GT ) variables from the dataset mentioned in subsection 3.1.5
along with the appliance energy consumption dataset discussed in subsection 3.1.1, as
individual target variables.

2.2.3 Deep learning methods challenges

Various deep learning (DL) methods have been presented above to forecast energy
consumption in smart buildings and air quality in smart cities, outperforming classical
statistical methods like Vector AutoRegression (VAR). Recently, hybrid DL models have
gained popularity by combining techniques to improve prediction accuracy. For example,
Convolutional Neural Networks (CNNs) capture spatial variables, while Recurrent Neural
Networks (RNNs), such as LSTMs, focus on temporal patterns.

However, DL models face challenges when forecasting high-dimensional non-
stationary time series in IoT applications. As the number of variables grows, the presence
of redundant variables can reduce training efficiency and increase the risk of falling into
local minima in the error function. Moreover, hyperparameter optimization in DL models
is often a trial-and-error process that requires significant effort. These methods also tend
to be highly complex and offer limited explainability.

While CNNs are effective at feature extraction and LSTMs excel in handling
sequential data, increasing dataset sizes and model parameters make hyperparameter
tuning even more difficult, leading to higher computational costs and complexity.

2.3 Fuzzy Time Series

Fuzzy Time Series (FTS) methods have gained popularity in time series forecasting
due to their simplicity, low computational cost, accuracy, and interpretability [Singh, 2016],
[Bose and Mali, 2019], [Singh, 2015], [Palomero et al., 2022]. First introduced by Song
and Chissom [Song and Chissom, 1993] to address ambiguity in time series data, FTS
represents time series using fuzzy sets, converting numerical values into linguistic terms.

Fuzzy time series involves dividing the Universe of Discourse (U) in a time
series into intervals or partitions (fuzzy sets) and analyzing their behavior by identifying
patterns. The extracted rules describe how these partitions interact over time as values
shift. Essentially, this process transforms the numerical time series data into a linguistic
variable, where each partition serves as a linguistic term. Fuzzy sets are naturally suited
for time series forecasting due to their ability to approximate functions and their intuitive,
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human-readable rules. Using linguistic variables enhances interpretability, making analysis
accessible to both experts and non-experts.

Over time, various FTS methods have been developed, classified by their order
Ω (i.e. number of lags) and time variance (i.e. whether the model changes over time)
[de Lima Silva et al., 2020]. A first order FTS model requires y(t − 1) data to predict
ŷ∗(t), and a high order FTS model requires y(t − Ω), . . . , y(t − 1) data to predict ŷ∗(t).
Additionally, both multivariate and univariate FTS approaches have been explored in
the literature [Singh, 2016], [Bose and Mali, 2019], [Singh, 2015], [Palomero et al., 2022].
Figure 5 presents the key steps of the FTS training and forecasting process.
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Figure 5 – General training and forecasting steps for fuzzy time series methods

2.3.1 FTS training procedure

Figure 6 shows the training procedure for a generic one-step ahead univariate
FTS model (i.e. toy example). The Universe of Discourse is divided into intervals within
the known range of the time series Y , where U = [min(Y ),max(Y )]. For each interval, a
fuzzy set Ai ∈ Ã with its own membership function (MF) µAi

: R→ [0, 1] is defined, then
each fuzzy set is assigned a linguistic label representing a specific range within U . For our
example, the time series is divided into six partitions, such that the linguistic variable
Ã = {A1, A2, A3, A4, A5, A6}.

Consequently, the time series Y with its numerical values Y (t) is then fuzzified
into a fuzzy time series F , by mapping the values to fuzzy sets based on their maximum
membership. Since the fuzzy sets in Ã are overlapped, it is possible that for each y(t) ∈ Y

it belongs to more than one fuzzy set.

Temporal patterns with lag count Ω are derived from F . Each pattern represents
two sequential fuzzy sets in a fuzzy time series, formatted as Precedent→ Consequent.
The precedent corresponds to the fuzzy set at time t, while the consequent represents
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the fuzzy set at time t + 1. Each pattern represents a fuzzy rule called Fuzzy Logical
Relationship (FLR). In our example, the generated patterns are as follows: A1 → A2,
A2 → A3, A3 → A4, A4 → A4, A4 → A5, A5 → A4, A4 → A3, A3 → A3.

Step 1: Partitioning Step 2: Fuzzification Step 3: Knowledge Extraction

T
ra

in
in

g

FRLGFRLs

Figure 6 – FTS training procedure [Lucas et al., 2022]

Since fuzzy rules have the format Precedent → Consequent, given that the
previously generated temporal patterns will be grouped by its precedents - Fuzzy Logical
Relationship Group (FLRG). In the given example, the model includes a fuzzy rule for each
unique precedent. The consequent of each rule is determined by combining all consequents
from temporal patterns that share the same precedent. The FLRG form the rule base
which is the final representation of the FTS forecasting model. For the given example, the
resulting fuzzy rules are:
A1 → A2

A2 → A3

A3 → A4, A2

A4 → A4, A5, A3

A5 → A4

The fuzzy rule set represents the trained FTS model, which defines the time series
behavior and enables predictions for t+ 1. In summary, FTS is a simple and interpretable
approach, easily parallelizable for big data and efficiently updatable for dynamic datasets.

2.3.2 FTS forecasting procedure

Figure 7 shows the FTS forecasting procedure. Once the FTS model is trained, it
can be used to predict new values. In this sense, the crisp values y(t−Ω), . . . , y(t− 1) are
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mapped to the fuzzified values f(t−Ω), . . . , f(t− 1), where f(t) = µAi
(y(t)),∀Ai ∈ Ã, for

t = 1, . . . , N . The input values are transformed into fuzzy values based on the linguistic
variable, producing a corresponding fuzzy value. In the example from Figure 7, fuzzifying
y(t), results in the most relevant fuzzy set being A4, so f(t) = A4.

The fuzzy rules matching the given input are identified by finding the rule whose
precedent equals f(t). The rule’s consequent then provides the fuzzy forecast for t + 1,
denoted as f(t + 1). In our example, for f(t) = A4, the corresponding fuzzy rule is
A4 → A4, A5, A3. In other words, the FLRG whose precedent (Left Hand Side - LHS) is
equal to the input value is selected and the candidate fuzzy sets in its consequent (Right
Hand Side - RHS) are applied to estimate the predicted value.

Finally, To obtain a numerical value from f(t+ 1), the center-of-mass method is
applied. Then, the numerical forecast value ŷ∗(t) is calculated as the mean of the centers
of the fuzzy sets in f(t+ 1).

Step 1: Fuzzification Step 2: Rule Matching Step 3: Defuzzification
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Figure 7 – FTS forecasting procedure [Lucas et al., 2022]

2.3.3 Fuzzy time series forecasting methods

As previously mentioned, various multivariate FTS models have been proposed,
such as WMVFTS (Weighted Multivariate Fuzzy Time Series) [de Lima Silva et al.,
2019], which allows for individual partitioning schemes for each variable, and can be
distributed across network clusters for efficient training. Additionally, multivariate time
series forecasting using self-organizing maps and FTS has been introduced in [dos Santos
et al., 2021], along with the high-order MIMO forecasting model (FIG-FTS) [Lima e Silva
et al., 2019].
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Other examples of FTS methods which have been applied to time series prediction
tasks, including point, interval, and probabilistic forecasting. Notable examples include
Probabilistic Weighted FTS (PWFTS) [Silva et al., 2019b], Fuzzy Information Granular
FTS (FIG-FTS) [Silva et al., 2019a]. An evolving multivariate FTS approach (e-MVFTS)
[Severiano et al., 2021] has also been proposed for multi-step forecasting, particularly
in renewable energy systems, emphasizing the method’s flexibility for spatio-temporal
predictions

Non-Stationary Fuzzy Sets (NSFS) [Garibaldi and Ozen, 2007] and [Garibaldi
et al., 2008] dynamically adjust membership functions over time. NSFS can be used for
non-stationary series forecasting but are limited to predictable changes in data variance,
struggling with complex shifts like concept drift. The Non-Stationary Fuzzy Time Series
(NSFTS) [de Lima Silva et al., 2020] method improves this by adapting fuzzy sets based
on residual errors, though it is limited to univariate forecasting.

Fuzzy cognitive maps (FCMs) are the other category of FTS forecasting models.
In [Papageorgiou and Froelich, 2012], a method was proposed for multi-step forecasting
of pulmonary infection, utilizing FCM and an evolutionary learning algorithm. Froelich
et al. [Froelich et al., 2012] introduced an FCM model for the long-term prediction of
prostate cancer. Froelich and Salmeron [Froelich and Salmeron, 2014] suggested a multi-step
FCM-based model to predict multivariate interval-valued time series.

In [Vanhoenshoven et al., 2020], a multivariate forecasting method was adopted
utilizing FCM trained via the Moore-Penrose inverse. A new multi-step ahead forecasting
model was presented in [Feng et al., 2021] integrating FCM, time series segmentation,
and fuzzy clustering Wang et al. [Wang et al., 2022] presented a long-term time series
forecasting model using an adaptive FCM model based on trend-fuzzy granulation. The
method considers various forecasting horizons.

2.3.4 Fuzzy time series methods challenges

The FTS methods mentioned above show the potential for handling various
forecasting tasks but often face limitations in handling high-dimensional and complex
IoT datasets. A limited number of FTS methods have been developed to handle high-
dimensional time series, and few multi-step FTS forecasting techniques exist in the
literature. Notably, none have been applied to IoT scenarios. Moreover, FTS methods face
challenges in managing high-dimensional data and making multiple output predictions.

As the dimensionality of time series increases, the accuracy of FTS methods
decreases, and their complexity escalates. Each variable requires its own fuzzy sets, and
the number of rules in multivariate FTS models grows exponentially with more variables,
making it impractical to input all data into a single FTS model. The challenge lies in
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selecting an optimal set of inputs based on strong correlations with the target variable.

2.4 Embedding Transformation

Various approaches have been developed for handling high-dimensional data, with
two main techniques being feature selection and feature extraction. In feature selection, a
subset of the original features is chosen, while feature extraction creates new variables by
mapping from the existing variables, using either linear or non-linear methods. This work
concentrates on feature extraction techniques.

The objective of feature extraction is to learn a mapping function emb : RV → RK

that transform V -dimensional data over N -time steps into a low dimensional space K,
where K ≪ V . Consequently, several feature extraction methods are available for different
data types and needs. This work focuses on three key methods: Principal Component
Analysis (PCA) [F.R.S., 1901], Kernel Principal Component Analysis (KPCA) [Kim et al.,
2005] and Autoencoder (AE) [Rumelhart et al., 1986].

2.4.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a widely used feature extraction technique.
It identifies the cross-correlation among variables and generates a reduced set of variables
known as principal components, which are linearly uncorrelated. These principal compo-
nents capture the maximum possible variance in the data while maintaining orthogonality
to previously extracted components. PCA provides a compact data representation that
explains a specified total percentage of the variance in the original dataset.

PCA assesses the cross-correlation among variables and identifies a reduced set of
variables known as linearly uncorrelated principal components. These principal components
explain the maximum possible variance in the data while maintaining orthogonality to all
previously extracted variables.

PCA embedding comprises the following steps: we calculate the covariance matrix
CM ∈ RV×V and extract the first K eigenvectors associated with the largest eigenvalues.
Consequently, we access the matrix Z ∈ RV×K that is used to compute the embedding
variables emb(Y ) : Z⊤ · y with y ∈ RV .

2.4.2 Kernel Principal Component Analysis (KPCA)

Since PCA cannot capture non-linear correlations between variables, Kernel
Principal Component Analysis (KPCA) is used as an alternative to address this limitation.
KPCA utilizes kernel functions (Φ) to perform non-linear feature extraction by applying a
suitable non-linear mapping function. Examples of kernel functions used in KPCA include
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Gaussian radial basis function (RBF), polynomial kernels, and sigmoid kernels, which
enable the extraction of non-linear relationships among the features.

The Gaussian Radial Basis Function (RBF) for KPCA is implemented in three
steps: (a) The similarity matrix is computed using Equation (2.1), which evaluates the
similarity between two points, xi and xj, based on the kernel coefficient kc.

k(ij) = exp
(
−kc ∥ xi − xj ∥22

)
. (2.1)

(b) Since the kernel matrix k(ij) is not guaranteed to be centered, it is centralized
by calculating k̃ = k(ij)− 1Tk(ij)− k(ij)1T + 1Tk(ij)1T , where 1T is an T × T matrix
with all elements equal to 1/T . (c) The eigenvalue problem k̃αv = embvTαv is solved.
The eigenvectors corresponding to the largest eigenvalues of the centered matrix k̃ are
then extracted.

2.4.3 Autoencoder (AE)

Autoencoders (AEs) are a type of artificial neural network designed to convert
input data into a latent, compact representation, effectively encoding the data. First
introduced by Rumelhart et al. [Rumelhart et al., 1986], autoencoders aim to reconstruct
the input by minimizing reconstruction error, making them useful for unsupervised learning
and transfer learning. This process involves encoding the data, then decoding it back to
compare it with the original input [Mohammadi et al., 2018] [Gensler et al., 2016].

An autoencoder consists of an encoder and a decoder layers, connected through one
or more hidden layers that transform high-dimensional data into a reduced K-dimensional
representation. The reduced representation is achieved through bottleneck features in the
hidden layers, enabling the autoencoder to capture and manage non-linear correlations
between variables.

Autoencoders embedding procedure seeks to learn an encoding function e : RV →
RK and decoding function d : RK → RV , as follows

(e(·), d(·)) = arg min
e(·),d(·)

||Y − d(e(Y ))||2 (2.2)

we utilized the encoding function e as a direct embedding function emb for the
high-dimensional time series Y ∈ RV , such that

emb(Y ) = e(Y ) (2.3)
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Chapter 3

Design of Experiments

In this chapter, we describe the design of experiments. Several experiments have
been conducted to assess the accuracy of the proposed framework (i.e. embEFTS). The
accuracy is compared with several time series forecasting methods. The main focus of this
chapter is listed as follows: a description of the case of studies, experiments design, the
evaluation metrics, computational experiments and reproducibility issues.

3.1 Case Studies

We evaluate our proposed framework on two IoT applications: smart building
and air quality monitoring. Smart cities and buildings are among the most popular
IoT applications. In smart cities, a variety of IoT devices are deployed across urban
areas, serving as a source of information for managing urban resources, enhancing health
services, and providing energy facilities for their citizens [Ameer et al., 2019],[Zhang et al.,
2021],[Bekkar et al., 2021]. Smart buildings leverage IoT devices to monitor diverse building
characteristics, analyze the data, and generate insights into usage patterns and trends that
can be used to optimize the building environment and operations [Lobaccaro et al., 2016].

Accordingly, five public datasets were selected to test our proposed methodology
as explained in the following subsections. The input data of each dataset was refined before
training the forecasting methods. Therefore, we employ data pre-processing strategies to
remove outliers and missing values on datasets presented below.

3.1.1 UCI Appliances energy prediction dataset (AEC)

The first case study is "UCI Appliances energy prediction dataset" (AEC) [Dua
and Graff, 2017], which includes measurements of temperature and humidity collected by a
Wireless Sensor Network (WSN), weather information from a nearby Weather Station and
recorded energy use of appliances and lighting fixtures. The energy appliances data was
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obtained by continuously measuring (every 10 minutes) a low-energy house in Belgium for
137 days (around 4.5 months). This dataset has 27 variables. Table 1 shows all variables.

Regarding to MISO forecasting, the appliances energy consumption (Wh) measured
is the focus of our analysis, then it was chosen as the target variable (endogenous variable)
V∗ and the set of explanatory variables (exogenous variable) V is composed by the remaining
variables.

Table 1 – UCI Appliances Energy Consumption dataset (AEC)

Variables Description Units Mean St. dev.

Appliances Appliances energy consumption Wh 97.695 102.525
lights Light energy consumption Wh 3.802 7.936
T1 Temperature in kitchen area °C 21.687 1.606

RH_1 Humidity in kitchen area % 40.260 3.979
T2 Temperature in living room area °C 20.341 2.193

RH_2 Humidity in living room area % 40.420 4.070
T3 Temperature in laundry room area °C 22.268 2.006

RH_3 Humidity in laundry room area % 39.243 3.255
T4 Temperature in office room °C 20.855 2.043

RH_4 Humidity in office room % 39.027 4.341
T5 Temperature in bathroom °C 19.592 1.845

RH_5 Humidity in bathroom % 50.949 9.022
T6 Temperature outside the building °C 7.911 6.090

RH_6 Humidity outside the building % 54.609 31.150
T7 Temperature in ironing room °C 20.267 2.110

RH_7 Humidity in ironing room % 35.388 5.114
T8 Temperature in teenager room 2 °C 22.029 1.956

RH_8 Humidity in teenager room 2 % 42.936 5.224
T9 Temperature in parents room °C 19.486 2.015

RH_9 Humidity in parents room % 41.552 4.151
T_out Temperature outside °C 7.412 5.317

Press_mm_hg Pressure mmHg 755.523 7.399
RH_out Humidity outside % 79.750 14.901

Windspeed Wind Speed m/s 4.040 2.451
Visibility Visibility km 38.331 11.795
Tdewpoint Dew Point °C 3.761 4.195

date Date time stamp y-m-d hh:mm:ss - -

3.1.2 Kaggle smart home with Weather Information dataset

(KSH)

"Kaggle Smart home with Weather Information dataset" (KSH) [Kaggle, 2021] is
selected as the second case study which is a public dataset of sensor nodes with weather
features. The dataset contains the house appliances consumption in kW and weather data,
ranging from January 2016 to December 2016 at a frequency of 1 minute (i.e. KSH1 or
just KSH). Another scenario was also considered with time resolution equal 10 minutes
(i.e. KSH10). The dataset contains 500,910 instances and 29 variables. Table 2 shows all
the variables.
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The total measured energy consumption (kW) is our target variable V∗ in the
MISO prediction problem, and the set of exogenous variables V is composed of the others
variables.

Table 2 – Kaggle Smart Home with Weather Information dataset (KSH)

Variables Description Units Mean St. dev.

use Total energy consumption kW 0.859 1.058
gen Total energy generated by solar resources kW 0.076 0.128

Dishwasher Energy consumed by dishwasher kW 0.031 0.191
Furnace 1 Energy consumed by furnace 1 kW 0.099 0.169
Furnace 2 Energy consumed by furnace 2 kW 0.137 0.179

Home office Energy consumed in home office kW 0.081 0.104
Fridge Energy consumed by fridge kW 0.064 0.076

Wine cellar Energy consumed by wine cellar kW 0.042 0.058
Garage door Energy consumed by garage door kW 0.014 0.014
Kitchen 12 Energy consumed in kitchen 1 kW 0.003 0.022
Kitchen 14 Energy consumed in kitchen 2 kW 0.007 0.077
Kitchen 38 Energy consumed in kitchen 3 kW 0.0 0.0

Barn Energy consumed by barn kW 0.059 0.203
Well Energy consumed by well kW 0.016 0.138

Microwave Energy consumed by microwave kW 0.011 0.099
Living room Energy consumed in living room kW 0.035 0.096

Solar Solar power generation kW 0.076 0.128
temperature Temperature °C 50.742 19.114

humidity Humidity % 0.664 0.194
visibility Visibility km 9.253 1.611

apparentTemperature Apparent Temperature °C 48.263 22.028
pressure Pressure mmHg 1016.302 7.895

windSpeed Wind Speed m/s 6.650 3.983
windBearing Wind Direction ° 202.357 106.520

dewPoint Dew Point °C 0.003 0.011
precipProbability Precipitation Probability % 38.694 19.088

time Date time stamp ID 0.056 0.166

3.1.3 UCI Household power consumption dataset (HPC)

"UCI Household Power Consumption dataset" (HPC) [Dua and Graff, 2017]
contains electricity consumption data from a residential house in France. Electricity
consumption was collected by continuous measurements over a four-year period from
December 2006 to November 2010 with a resolution of one minute (i.e. HPC1). In this
work, in some experiments we changed the time resolution of this dataset, growing it to
30 minutes (i.e. HPC30). The dataset consists of 2,075,259 instances and 12 variables,
including 7 explanatory variables and 2 temporal variables. A total of 25,979 missing
values were removed in pre-processing. Submetering indicate electricity consumption in
the kitchen, laundry room, and for the air conditioner and electric water heater. Table 3
shows all variables.

In regard to MISO problem, the focus of our analysis is the measured global active
power (kW), which we have chosen as the endogenous variable V∗ and the set of exogenous
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variables V is composed of the past values of six variables.

Table 3 – UCI Household Power Consumption Dataset (HPC)

Variables Description Units Mean St. dev.

date Date dd/mm/yyyy - -
time time hh:mm:ss - -

global_active_power global active power kW 1.092 1.057
global_reactive_power global reactive power kW 0.124 0.113

voltage averaged voltage V 240.84 3.24
global_intensity global current intensity A 4.628 4.444
sub_metering_1 energy sub-metering No. 1. kW 1.122 6.153
sub_metering_2 energy sub-metering No. 2 kW 1.299 5.822
sub_metering_3 energy sub-metering No. 3 kW 6.458 8.437

3.1.4 UCI Beijing multi-site air-quality data dataset (AQB)

The "UCI Beijing Multi-Site Air-Quality Data dataset" (AQB) [Dua and Graff,
2017] is the third case study. AQB is a public dataset that includes collections of hourly
meteorological and air pollutants data from 12 nationally-controlled air-quality monitoring
sites/stations. The meteorological data in each air quality station are matched with
the nearest weather station from the China Meteorological Administration. The dataset
contains 35,065 instances with multi-features in each station over a four-year period from
March 1st, 2013 to February 28th, 2017. This dataset was published by Zhang et al. [Zhang
et al., 2017] and all the variable are presented in Table 4.

Table 4 – UCI Beijing Multi-Site Air-Quality Data dataset (AQB)

Variables Description Units Mean St. dev.

year Year of data - -
month Month of data - -
day Day of data - -
hour Hour of data - -

PM2.5 PM2.5 concentration ug/m³ 81.883 80.461
PM10 PM10 concentration ug/m³ 109.135 93.707
SO2 SO2 concentration ug/m³ 22.664 367.549
NO2 NO2 concentration ug/m³ 59.021 37.092
CO CO concentration ug/m³ 1257.172 1223.586
O3 O3 concentration ug/m³ 120.898 1803.538

TEMP Temperature °C 54.203 1091.904
PRES Pressure hPa 1043.531 5663.287
DEWP Dew point temperature °C 3.235 13.666
RAIN Precipitation mm 0.068 0.837
WSPM Wind speed m/s 1.718 1.205
station Site name - - -
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3.1.5 UCI Air quality dataset (AQI)

Lastly, the "UCI Air Quality dataset" (AQI) [Dua and Graff, 2017], which is a
public dataset containing 9358 samples of hourly averaged values from five metal oxide
chemical sensors embedded in an air quality sensing device recorded from March 2004 to
February 2005. These IoT devices were located in a significantly contaminated area of an
Italian city. The dataset contains 12 variables and De Vito et al. [De Vito et al., 2009]
published this dataset as summarized in Table 5.

Table 5 – UCI Italy Air Quality dataset (AQI)

Variables Description Units Mean St. dev.

Date Date DD/MM/YYYY - -
Time Time HH.MM.SS - -

CO(GT) Concentration CO mg/m³ -34.208 77.657
PT08.S1(CO) Sensor response tin oxide 1048.990 329.833
NMHC(GT) Overall NMHC concentration microg/m³ -159.090 139.789
C6H6(GT) Benzene concentration microg/m³ 1.866 41.380

PT08.S2(NMHC) Sensor response titania 894.595 342.333
NOx(GT) NOx concentration ppb 168.617 257.434

PT08.S3(NOx) Sensor response tungsten oxide 794.990 321.994
NO2(GT) NO2 concentration microg/m³ 58.149 126.940

PT08.S4(NO2) Sensor response tungsten oxide 1391.48 467.21
PT08.S5(O3) Sensor response indium oxide 975.072 456.938

T Temperature °C 9.778 43.204
RH Relative Humidity % 39.485 51.216
AH Absolute Humidity - -6.838 38.977

3.1.6 Non-stationary analysis

In order to check which time series (multivariate time series) in the datasets are
non-stationary, we used the Augmented Dickey-Fuller (ADF) [Cheung and Lai, 1995]
and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) [Kwiatkowski et al., 1992] tests with a
confidence level of 95%. ADF is used to determine the presence of unit root in the series.
The presence of a unit root indicates that the time series is non-stationary. Additionally,
the number of unit roots in the series determines how many differencing operations are
needed to achieve stationarity. KPSS is used to check for stationarity of a time series
around a mean or linear trend or if it is non-stationary due to the presence of a unit root.

Both the KPSS and ADF tests assess stationarity but from opposite viewpoints.
The ADF test assumes non-stationarity and tests for evidence to reject this assumption
by identifying unit roots. In contrast, the KPSS test assumes stationarity and checks for
evidence to refute it by detecting unit roots. Their complementary nature provides a more
thorough stationarity analysis. The non-stationarity analysis for each dataset is presented
as follows:
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• AEC: Both ADF and KPSS tests concluded that the Temperature in ironing room
and Temperature in parents room series are non-stationary since there is a gradual
concept drift (i.e. incremental mean and variance) in both time series (Figure 8),
while Appliances energy consumption series is stationary. According to KPSS, the
other series are difference stationary (i.e. one differencing is required to make the
series stationary).

• KSH: The KPSS test concluded that use, Furnace 1, Furnace 2, Home office, Kitchen
12, Kitchen 14, Kitchen 38, temperature, apparentTemperature, pressure, windBearing
and dewPoint variables are difference stationary.

• HPC: According to KPSS test, all variables are difference stationary.

• AQB: For all stations, only the RAIN and TEMP variables are stationary, then
there are non-stationary times series in this dataset.

• AQI: According to KPPS test, the following time series are difference stationary
CO(GT), NMHC(GT), PT08.S2(NMHC), NOx(GT), PT08.S3(NOx), NO2(GT),
PT08.S4(NO2) and T. Therefore, to make the series stationary one differencing is
needed.

Figure 8 – Gradual concept drift in "Temperature in ironing room" and "Temperature in
parents room" time series.

3.1.7 Summary

To showcase the effectiveness of our framework for high-dimensional and MIMO
prediction, three scenarios were tested on the AQB dataset:
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1. AQB1: data from only the Aotizhongxin station was used to predict all features.

2. AQB6: data from six stations (Aotizhongxin, Changping, Dingling, Dongs, Guanyuan,
and Gucheng) were utilized to predict 66 features.

3. AQB12: data from 12 stations were used to forecast 132 features.

These scenarios, labeled as AQB1, AQB6, and AQB12, were referenced through-
out the subsequent sections to highlight the model’s capabilities across different data
complexities.

In addiction, to demonstrate the high ability of our proposed framework to handle
different forecast horizons, we also changed the time resolution of some of those datasets
(i.e. KSH and HPC), and six scenarios are considered, which are listed in Table 6:

Table 6 – The six scenarios of tests in respect to forecast horizons

Scenario Time resolution

KSH1 1 minute
KSH10 10 minutes
KSH30 30 minutes
HPC1 1 minutes
HPC10 10 minutes
HPC30 30 minutes

3.2 Experiments Methodology

In this work, we separate 75% of data for training set and 25% for testing applying
sliding window cross-validation (CV) in the computational experiments. The sliding window
is a re-sampling procedure based on splitting the dataset into more than one training
and test subsets. The obtained results indicate the model accuracy in terms of accuracy
metrics for test subset of data.

Furthermore, this method reduces error by splitting the data into smaller subsets,
using each as a testing set in turn instead of a single fixed test set. This approach enhances
model robustness and improves generalization to new data by ensuring evaluation on
varied samples. Figure 9 shows cross-validation with sliding window.

The number of instances N (i.e. the length of the dataset or the size of the time
series) of the variables v ∈ V of each dataset dsj ∈ DS were divided into 30 data windows
w ∈ W with Ntest instances. For each window dsw,j ∈ dsj , we train the forecasting models
m ∈M using the training set, apply the model to the test set and compute forecasting
metrics over the test set. Thus, each model has 30 experiments and we evaluate the
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Figure 9 – Schematic of the sliding window cross-validation.

accuracy of the proposed methodology from the average and standard deviation error
value measured in all windows used for forecasting in the experiments.

3.2.1 Performance metrics

In order to assess the accuracy of each model, two statistical metrics are utilized
according to the following equations. Let ŷi as the predicted values at time t and yi as the
observed values.

• Root Mean Squared Error (RMSE), defined by equation 3.1. It shows how accurate
the forecasting model is, as it compares the difference between the predicted value
and the real value (error), returning the standard deviation of this difference.

RMSE =

√∑N
i=1 (yi − ŷi)2

N
(3.1)

• Mean Absolute Error (MAE), defined by equation. It demonstrates the percentage
difference between predicted values.

MAE =
1

N

N∑
i=1

|yi − ŷi| (3.2)

• Normalized Root Mean Squared Error (NMRSE) by the difference between maximum
and minimum, defined by equation

NRMSE =
RMSE

Ymax − Ymin

(3.3)
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• Fractional Bias (FB), a value close to -2 indicates under-prediction, while a value
close to 2 designates over-prediction, and a value close to 0 stands for the optimal
prediction

FB = 2
Y − Ŷ

Y + Ŷ
(3.4)

3.2.2 Skill score index

We also evaluate the accuracy of our proposed methodology using the Skill Score
Index. The skill score defines the difference between the forecast and the reference forecast:

SkillScore = 1− MF

MR

(3.5)

where MF refers to the value of the metric for the forecasting method and MR is the value
of the metric for the reference method. The Skill Score can be used not only to compare
with a naive model, but also to compare different forecasting methods with each other
Voyant et al. [2017]. For example, a skill score of 0.50 indicates a 50% improvement in
accuracy over the competing model. A negative score indicates worse performance than
the competitor model.

3.2.3 Parsimony and explainability

We assess the parsimony and explainability of our proposed methodology. Parsi-
mony, based on Occam’s razor, favors the simplest model that achieves reliable forecasting
for non-stationary high-dimensional time series. While simpler forecasting models are
preferred, a balance must be struck between simplicity and accuracy.

Minimizing forecasting model complexity is essential, as it directly affects compu-
tational cost and training time. This is particularly crucial for IoT applications, where
models must run on resource-constrained edge devices. Additionally, a model’s parsimony
is closely linked to its explainability.

To assess the parsimony of our approach, we measure the number of fuzzy rules.
While increasing fuzzy rules enhances the accuracy of FTS models, it introduces a trade-off
- higher accuracy reduces parsimony and explainability, making the model more complex
and harder to interpret. However, the explainability of FTS models depends on the active
fuzzy rules and their length. Furthermore, we also evaluate the time complexity of our
proposed methodology using the Big O notation.

For deep learning methods, we evaluate parsimony and explainability by counting
the number of trainable parameters in the neural networks.
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3.3 Computational Experiments and Reproducibility

All the experiments (including proposed methodology and baseline models) were
implemented and tested with Python 3 using open source libraries including Scikit-Learn
[Pedregosa et al., 2011], Keras [Chollet et al., 2015], Tensorflow [Abadi et al., 2015],
PyTorch [Paszke et al., 2019], StatsModels [Seabold and Perktold, 2010] and pyFTS [Silva,
2016]. For the PyTorch models, the seed generator was set to 1 in order to optimize the
hyper parameters and improve the reproducibility of the experiments.

3.3.1 A Fuzzy Time Series Library for Python (pyFTS)

To ensure transparency and reproducibility, all proposed models are available in
the open-source Python library, pyFTS, developed at the Machine Intelligence and Data
Science (MINDS) laboratory at the Federal University of Minas Gerais (UFMG). The
models can be accessed via the pyFTS.models package, which extends conventional models
as outlined in previous publications [Silva, 2016]. The architecture of the pyFTS library is
shown in Figure 10

pyFTS.benchmarks

pyFTS.common

pyFTS

pyFTS.common.transformations

pyFTS.data

pyFTS.distributed

pyFTS.hyperparam

pyFTS.models

pyFTS.partitioners

pyFTS.probabilistic

pyFTS.models.ensemble

pyFTS.models.incremental

pyFTS.models.multivariate

pyFTS.models.nonstationary

pyFTS.models.seasonal

Figure 10 – Architecture of the pyFTS library packages [Lucas et al., 2022]
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Chapter 4

Embedding-based Fuzzy Time Series
(EFTS)

In this chapter, we describe our MISO high-dimensional non-stationary time
series forecasting methodology named EFTS (Embedding-based Fuzzy Time Series) and
published in [Bitencourt et al., 2023]. Accordingly, EFTS is a data-driven and explainable
approach that consists of embedding, training and forecasting procedures.

4.1 Embedding Procedure

The embedding procedure generates a new variable space that more effectively
represents high-dimensional time series data for forecasting task. In this approach, we
focuses on two embedding methods: PCA detailed in Section 2.4.1 and Autoencoders (see
Section 2.4.3).

4.2 Training Procedure

In the training procedure, a multivariate embFTS model is generated to catch
all the patterns in the embedding time series Yemb ∈ RK with its individual instances
yemb(t) ∈ Yemb for t = 0, 1, ..., T . Given the number of fuzzy sets κ, the training procedure,
despised in Figure 11, includes the following steps:

1. Partitioning: we define UVemb
= [lb, ub] where lb = min(Yemb) − D1 and ub =

max(Yemb) +D2, with D1 = r × |min(Yemb)| and D2 = r × |max(Yemb)|, 0 < r < 1.
Then, we extrapolate the known bounds of the variables Vembi as a security margin.

2. Defining the linguistic variable: we split UVemb
in κi overlapping intervals Uj

with midpoints cj for j = 0, 1, 2, ..., κi. For each interval Uj ∈ UVemb
, we create an

overlapping fuzzy set AVi
j with the membership function µVi

Aj
and generate a variable
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Figure 11 – EFTS Training procedure [Bitencourt et al., 2023]

Vembi and a linguistic variable Ṽembi ∈ Ṽemb where each fuzzy set is a linguistic
variable.

3. Fuzzification: we change Yemb into Femb (embedding fuzzy time series) where each
data point is an n× κ array with the fuzzified values with respect to the linguistic
variable with the fuzzy membership defined as follows

f(t)←
{
AVi

j | µ
Vi
Aj
(Yemb(t)

i) > 0
}

(4.1)

4. Generate the temporal patterns: we create temporal patterns with the format
AV0

j , ...,AVn
j → AV∗

j , where the precedent or LHS is femb(t) = AVi
j and the consequent

or RHS is the target variable such that femb(t+ 1) = AV∗
j . Both LHS and RHS are

related to AVi
j with maximum membership.

5. Generate the rule base: finally, each pattern represents a fuzzy rule and they
are grouped by their same precedents, creating a fuzzy rule r with the format
LHS → RHS. Each fuzzy rule indicates set of possible outcomes at time t+1 where
a specific precedent is recognized from the past.

4.3 Forecasting Procedure

In the forecasting procedure, we discover the fuzzy rules that match a given
fuzzified input and uses them to calculate a forecast value. Accordingly, we estimate
V∗(t+ 1) for a given input instance and using the fuzzy rules of the embFTS model.

Given the Yemb, the following steps are taken to forecast V∗(t+ 1).
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Figure 12 – EFTS Testing procedure [Bitencourt et al., 2023]

1. Fuzzification: for each variable, we fuzzify the embedding time series according to
equation 4.1.

2. Rule matching: we select r fuzzy rules whether any fuzzy set of f(t) is equal to
LHS, then we compute the rule fuzzy membership grade using the minimum function
T-norm as follows

µq =
⋂

j∈Ṽi ; i∈V

µji (4.2)

3. Rule mean points: for each rule q, we compute the mean point mpq of V∗ according
the following equation

mpq =
∑
j∈Ṽ∗

i

cj (4.3)

where cj is the c parameter of the membership function from the fuzzy sets.

4. Defuzzification: finally, V∗(t + 1) is obtained as the weighted sum of the rule
midpoints by their membership grades µAj

, according to equation:

ŷ(t+ 1) =
∑
q∈r

µq ·mpq (4.4)

4.4 Embedding Weighted Multivariate Fuzzy Time

Series (EWMVFTS)

To demonstrate our proposed methodology, in [Bitencourt et al., 2023] we extend
the Weighted Multivariate Fuzzy Time Series (WMVFTS) [de Lima Silva et al., 2019],
to enable it for high-dimensional time series. We used the embedding transformation
presented in section 4.1 to reduce the dimensionality of the time series and enable efficient
pattern recognition and induction of fuzzy rules. WMVFTS combined with PCA and AE
are referred to as PCA-WMVFTS and AE-WMVFTS, respectively.
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The training procedure is presented in Algorithm 1 and illustrated in Figure 13.
In the Generate the rule base step, we create fuzzy rules r with the format LHS →
wg ·RHS, where wg = |AVi

j |/|RHS| which are normalized frequencies of each temporal
pattern (i.e. weights) according to equation

wgi =
#AV∗

j

#RHS
∀AV∗

j ∈ RHS (4.5)

where #A is the number of occurrences of Ai on temporal patterns with the same LHS
and #RHS is the total number of temporal patterns with the same precedent LHS. The
other steps remain the same as described in Section 4.2.

Figure 13 – EWMVFTS training for number of dimensions k = 2 and number of fuzzy
sets κ = 5 [Bitencourt et al., 2023]

Algorithm 2 shows the forecasting procedure. In Rule mean points step, for
each rule q, we compute the mean point mpq of the endogenous variable V∗ as follows

mpq =
∑
j∈Ṽ∗

i

wgj · cj (4.6)

where wgj is the weights calculated according to 7.2. The other steps remain the same as
presented in Section 4.3.

4.4.1 EWMVFTS Hyperparameters

In EWMVFTS, the most significant hyperparameters are the embedding dimen-
sions (K) and the number of fuzzy sets (κ). Performance can be enhanced by simply
increasing these hyperparameter values. In this sense, a combination of these HP was tested
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Algorithm 1: EWMVFTS Training
input :A multivariate time series Y , number of instances N , number of dimensions K,

number of fuzzy sets κ
output : the linguistic variable Ṽ, the rule set R
foreach y(t) ∈ Y do

yemb(t)← Embedding Procedure(y(t), K);
Yemb ← yemb(t)

end
for i← 1 . . . k do

u← Split UoD in κ overlapping intervals;
Vi ← Create a variable for the dimension i;
Ṽ ← Create an empty linguistic variable for Vi;
for j ← 1 . . . Ni do
AVi

j ← Create a fuzzy set with the interval uj with membership function µVi ;
Ṽ ← AVi

j ;
end

end
F ← Create empty fuzzified data;
foreach yE(t) ∈ YE do

f(t)← {AVi
j | µA

Vi
j

(yE(t)
i) > 0} for all fuzzy sets AVi

j ∈ Ṽ⟩ and all variables Vi;

F ← f(t);
end
R ← Create an empty set of rules;
foreach f(t), f(t+ 1) ∈ F do

foreach fuzzy set LHS ∈ f(t) do
RHS ← all fuzzy sets AVi

j in f(t+ 1) with weight wg = |AVi
j |/|RHS|;

r ← Create rule LHS → RHS;
if r does not exist in R then
R ← r;

end
end

end

empirically to catch the best values, varying these HP as following: κ ∈ {10, 20, 30, 40, 50})
and K ∈ {2, 3, 4, 5}. Table 7 shows the obtained mean accuracy results for 30 experiments.
Our proposed methods shows similar results and reached high forecast accuracy with
K ∈ {3, 4} and κ ∈ {40, 50}.

4.4.1.1 Autoencoder’s hyperparameters

We empirically tested seven hyperparameters: Epochs, Stack Size, Optimizer,
Learning Rate, Kernel Initializer, Number of Neurons, and Activation Function. Each
hyperparameter was assessed using a two-layer AutoEncoder architecture that included l1

regularization in both the encoder and decoder layers. Due to the random initialization of
weights, results may vary slightly with each program run. To achieve a more accurate esti-
mation for each hyperparameter set, we recorded the mean RMSE values from 10 forecast
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Algorithm 2: EWMVFTS Forecasting
input :A sample y(t), the dimensions K, the linguistic variable Ṽ, the rule set R
output : target forecasting value ŷ(t+ 1)
yemb(t)← Embedding Procedure(y(t), K);
f(t)← {AVi

j | µA
Vi
j

(yE(t)
i) > 0} for all fuzzy sets AVi

j ∈ Ṽ⟩ and all variables Vi;

Rfired ← Create an empty set of rules;
µ← Create the empty vector of activation of each rule;
foreach r ∈ R do

if any fuzzy set of f(t) is equal to rLHS then
Rfired ← r;

end
end
foreach r ∈ Rfired do

mpr ←
∑

A
Vi
j ∈rRHS

wgi ·mpi where wgi is the weight and mpi is the midpoint of the

fuzzy set;
µr ←

⋂
A

Vi
j ∈rLHS

µ
A

Vi
j

(y(t))

end

ŷ(t+ 1) =

∑
r∈Rfired

µr·mpr∑
r∈Rfired

µr

Table 7 – PCA-WMVFTS and AE-WMVFTS accuracy with different number of K (DIM)
and κ (FS) in terms of RMSE [Bitencourt et al., 2023]

PCA-WMVFTS AE-WMVFTS

DIM FS AEC KSH10 HPC30 AEC KSH10 HPC30

2 10 28.957 ± 11.254 0.424 ± 0.390 0.549 ± 0.139 26.547 ± 13.601 0.439 ± 0.360 0.556 ± 0.105
2 20 17.095 ± 8.610 0.310 ± 0.310 0.511 ± 0.181 18.357 ± 22.659 0.313 ± 0.232 0.430 ± 0.093
2 30 9.859 ± 9.294 0.266 ± 0.259 0.469 ± 0.184 12.663 ± 16.707 0.289 ± 0.269 0.396 ± 0.113
2 40 8.585 ± 9.883 0.193 ± 0.168 0.410 ± 0.196 4.572 ± 3.545 0.269 ± 0.245 0.352 ± 0.134
2 50 5.457 ± 7.305 0.169 ± 0.135 0.366 ± 0.202 2.871 ± 3.021 0.261 ± 0.246 0.369 ± 0.142
3 10 16.988 ± 11.948 0.275 ± 0.238 0.517 ± 0.132 12.569 ± 9.164 0.386 ± 0.320 0.528 ± 0.099
3 20 4.117 ± 3.082 0.143 ± 0.124 0.368 ± 0.146 3.793 ± 4.638 0.289 ± 0.287 0.317 ± 0.080
3 30 2.060 ± 2.634 0.102 ± 0.126 0.276 ± 0.143 1.580 ± 2.720 0.212 ± 0.180 0.206 ± 0.073
3 40 0.996 ± 1.267 0.055 ± 0.048 0.204 ± 0.130 0.328 ± 0.461 0.169 ± 0.120 0.149 ± 0.068
3 50 0.348 ± 0.510 0.040 ± 0.064 0.162 ± 0.117 0.523 ± 1.180 0.124 ± 0.138 0.093 ± 0.069
4 10 10.451 ± 16.059 0.147 ± 0.107 0.421 ± 0.135 3.789 ± 4.669 0.358 ± 0.338 0.422 ± 0.136
4 20 1.495 ± 2.394 0.045 ± 0.034 0.236 ± 0.116 0.801 ± 1.377 0.208 ± 0.214 0.133 ± 0.077
4 30 0.415 ± 0.775 0.015 ± 0.019 0.138 ± 0.098 0.229 ± 0.774 0.119 ± 0.099 0.065 ± 0.051
4 40 0.187 ± 0.480 0.006 ± 0.009 0.084 ± 0.074 0.073 ± 0.168 0.077 ± 0.133 0.021 ± 0.029
4 50 0.083 ± 0.228 0.003 ± 0.006 0.061 ± 0.065 0.060 ± 0.175 0.041 ± 0.047 0.019 ± 0.029
5 10 6.006 ± 16.138 0.081 ± 0.049 0.371 ± 0.118 5.175 ± 20.992 0.330 ± 0.306 0.253 ± 0.106
5 20 0.587 ± 1.648 0.012 ± 0.013 0.174 ± 0.092 0.091 ± 0.218 0.153 ± 0.207 0.053 ± 0.064
5 30 0.071 ± 0.194 0.003 ± 0.004 0.089 ± 0.060 0.044 ± 0.155 0.051 ± 0.110 0.013 ± 0.025
5 40 0.042 ± 0.157 0.001 ± 0.002 0.049 ± 0.043 0.040 ± 0.150 0.016 ± 0.017 0.005 ± 0.008
5 50 0.044 ± 0.151 0.000 ± 0.001 0.028 ± 0.028 0.039 ± 0.150 0.010 ± 0.011 0.001 ± 0.005

iterations. Table 8 shows the values tested for each hyper-parameter with autoencoder
and the values that obtained the best result are shown in boldface.
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Table 8 – Hyperarameters tested for the AutoEncoder. The best configuration is shown in
boldface [Bitencourt et al., 2023].

Hyperparameter Values

Epochs 10, 50, 100, 150
Stack Size 10, 20, 32, 64, 80, 120
Optimizer Adam, SGD, RMSprop,

AdaDelta, AdaGrad,
AdaMax, NAdam

Learning Rate 0.001, 0.01, 0.1, 0.2, 0.3
Kernel Initializer leCun Uniform, Normal,

Glorot Normal, Glorot Uni-
form, He Normal, He Uni-
form

Neurons 10, 15, 20, 30, 40, 50, 80, 100
Activation Linear, Softmax, Softplus,

Softsign, Tanh, Sigmoid,
Hard Sigmoid, ReLU

4.5 Results

This section presents the experimental results of our proposed models over several
forecasting methods tested on five datasets. First, we provide a brief introduction of the
baseline models as well as HP setting. Second, we compare the forecast results of our
models with the baseline methods. Third, we compare our model’s accuracy against several
state-of-the-art forecasting models described in the literature review (Section 2). Fourth,
we discuss the parsimony, computational cost and explainability of our methods. Finally,
a discussion of the limitations and computational complexity of our proposed methods is
presented.

4.5.1 Baseline models

We compared the performance of our proposed approach with the following
baseline models: SARIMAX, PCA-SARIMAX, LSTM [Hochreiter and Schmidhuber, 1997],
GRU [Chung et al., 2014], Temporal Convolutional Network (TCN) [Bai et al., 2018] and
naive model, which is a reference technique that assumes that y(t) equals y(t− 1).

In SARIMAX, the selection of seasonal (P,D,Q) and non-seasonal (p, d, q) com-
ponents was based on the Akaike Information Criterion (AIC) using the auto_arima

function from the pmdarima library [Smith et al., 2017–] and autocorrelation (ACF) and
partial autocorrelation (PACF) plots. Besides, using the PCA algorithm, we transform M

features of each dataset into K = 3 features and apply the SARIMAX model (henceforth
called PCA-SARIMAX).
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The LSTM and GRU architecture used consists of two layers and kernel regularizers,
and the configuration of hyperparameters were chosen using hyperopt [Bergstra et al.,
2013], which is a library designed for hyper-parameter tuning. Several combinations were
tested and we used the best one as baseline. The Optuna optimization framework [Akiba
et al., 2019] was employed to find the best HP values of the TCN method. A pre-defined
range of parameters was tested for each dataset, and the combination that yielded the
best result was chosen for the experiments.

4.5.2 EFTS versus baseline methods

In this subsection, we compare the forecast accuracy of our proposed models with
the baseline methods. For all accuracy results presented in this subsection, the number
of fuzzy sets κ was 50 and the number of K dimensions was 3 for our models. Table 9
presents the results of RMSE for each baseline model, as well as the accuracy metrics
results for PCA-WMVFTS and AE-WMVFTS proposed models.

Table 9 – Proposed and baseline methods accuracy on the datasets in terms of RMSE(Wh)
[Bitencourt et al., 2023].

AEC KSH1 KSH10 HPC1 HPC30

PCA-WMVFTS 0.348 ± 0.51 0.024 ± 0.015 0.04 ± 0.064 0.067 ± 0.031 0.069 ± 0.038
AE-WMVFTS 0.523 ± 1.18 0.101 ± 0.067 0.124 ± 0.138 0.095 ± 0.028 0.093 ± 0.069
PCA-SARIMAX 158.768 ± 69.073 0.587± 0.347 0.995 ± 0.751 0.258 ± 0.064 0.901 ± 0.211

SARIMAX 172.283 ± 70.574 0.663± 0.494 1.316 ± 1.816 0.26 ± 0.063 0.901 ± 0.211
NAIVE 64.749 ± 28.836 0.846 ± 0.719 0.846 ± 0.719 0.256 ± 0.065 0.899 ± 0.212
LSTM 70.544 ± 33.058 0.395 ± 0.249 0.379 ± 0.249 0.255 ± 0.061 0.260 ± 0.071
GRU 68.810 ± 31.477 0.365 ± 0.219 0.365 ± 0.226 0.255 ± 0.061 0.255 ± 0.061
RNN 68.353 ± 31.568 0.384 ± 0.268 0.383 ± 0.271 0.287 ± 0.076 0.260 ± 0.072
TCN 89.210 ± 41.911 0.410 ± 0.202 0.353 ± 0.224 0.075 ± 0.031 0.061 ± 0.020

Comparing the results with those obtained by baseline models, it is clear that our
models outperform them on AEC, KSH1, KSH10, HPC1 datasetss, outputting a consistent
and accurate prediction. However, TCN showed the smallest prediction error compared
to all forecasting methods on HPC30 dataset, and TCN is superior than AE-WMVFTS
on HPC1 dataset. Nevertheless, PCA-WMVFTS outperforms TCN on HPC1 dataset,
presenting equally good results in all the datasets that were used.

Furthermore, we use RMSE metric to evaluate the accuracy ϵ[mi, dsj, w] of each
prediction method. We conducted Kruskal-Wallis test [Kruskal and Wallis, 1952] with the
significance level of α = 0.01.

Given the mean µmi,dsj =
∑W

w=1 ϵ[mi,dsj ,w]

W
, Kruskal-Wallis aims to test the hy-

pothesis where the null hypothesis (H0) stands for the equality of means (µmi,dsj) of
the forecasting methods, then we cannot distinguish between the methods. In contrast,
alternative hypothesis (H1) indicates that at least one of the means (µmi,dsj ) of forecasting
models is not equal.
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When the H0 is rejected, we compared the equality of each pair of means applying
post hoc tests using the Wilcoxon test [Wilcoxon, 1945] such that

H0 : µma,dsj < µmb,dsj

H1 :µma,dsj ≥ µmb,dsj

Table 10 shows the test statistics obtained and the p-values at the confidence level
for the Kruskal-Wallis test. The null hypothesis H0 has been rejected for the all datasets,
therefore the model’s accuracy are not statistically equivalent.

Table 10 – Kruskal-Wallis Statistical Tests [Bitencourt et al., 2023].

dataset Statistic p-value Result

AEC 196.021 4.399e-38 H0 rejected
KSH1 164.462 1.863e-31 H0 rejected
KSH10 172.077 4.731e-33 H0 rejected
HPC1 168.399 2.791e-32 H0 rejected
HPC30 225.393 2.790e-44 H0 rejected

To compare all forecasting methods against each others, we employed the Wilcoxon
test. Table 11 presents the summary of statistical ranking of the forecasting accuracy,
which means how many times we failed to reject H0 at confidence level. For instance, first
rank belongs to PCA-WMVFTS on HPC1 dataset since we failed to reject H0 in all cases
when we tested PCA-WMVFTS against the other forecasting models, then its accuracy
error is statistically smaller then other methods. The complete Wilcoxon test results are
available in the supplementary materials (Section A).

Table 11 – The summary of the ranking of the forecasting methods [Bitencourt et al.,
2023].

Method AEC KSH1 KSH10 HPC1 HPC30

PCA-WMVFTS 1 1 1 1 1
AE-WMVFTS 1 2 2 2 1
PCA-SARIMAX 8 7 8 5 8

SARIMAX 8 7 8 8 8
NAIVE 3 9 7 4 7
LSTM 5 3 4 4 4
GRU 3 3 3 4 4
RNN 3 3 3 9 4
TCN 7 3 3 1 1

PCA-WMVFTS reached the first rank in all datasets followed by AE-WMVFTS,
except HPC for which TCN is statistically equivalent to our proposed methods. Thus
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it is also clear that our methodology outperforms the baseline forecasting methods. It
can be seen from the results above that, compared to the baseline methods, our models
achieve optimal prediction accuracy on all datasets, specially PCA-WMVFTS, showing
that they output good results in both very high dimensional data, such as AEC and KSH,
and moderate dimensional data, such as HPC, reinforcing the model’s capacity to make
excellent predictions for different data.

4.5.3 PCA-WMVFTS versus AE-WMVFTS

According to results presented in the Sections above, PCA-WMVFTS is slightly
superior than AE-WMVFTS, but not significantly. To confirm that PCA-WMVFTS
prediction error is statistically smaller then AE-WMVFTS, we test the forecast performance
of both our methods over different configurations of K dimensions (i.e. K ∈ {2, 3, 4, 5})
and κ fuzzy sets (i.e. κ ∈ {10, 20, 30, 40, 50}). In addiction, we applied the Wilcoxon test
and the hypothesis tests results are shown in Table 12.

Table 12 – Wilcoxon Statistical Tests [Bitencourt et al., 2023].

dataset Statistic p-value Result

AEC 209637.0 2.65e-07 H0 rejected
HPC30 212755.5 2.41e-08 H0 rejected
KSH10 113873.0 1.0 Fail to Reject H0

The hypothesis null H0 has been failed to reject at confidence level for KSH10,
hence it confirms that there is a significant difference between the two methods, in other
words, PCA-WMVFTS is better than AE-WMVFTS. Nevertheless, H0 has been rejected
for the AEC and HPC30 datasets which means the our model’s accuracy are statistically
equivalent. Both embedding methods achieved similar performance on these datasets,
reinforcing the results shown in Table 11.

It is necessary to highlight that we selected only three datasets since it takes
a considerable time to train/test all the combinations of K and κ on HPC1 and KSH1
datasets. The thorough results can be accessed publicly through the following link address
in supplementary materials (Annex A)

4.5.4 EFTS versus competitors methods

In this subsection, we compare the accuracy of the proposed models (K = 3 and
κ = 50) with several forecasting models detailed in the literature review, which are the
following: GBM with feature selection (the best model in [Candanedo et al., 2017]); MPL
with feature selection [Chammas et al., 2019]; CNN-GRU [Sajjad et al., 2020]; HSBUFC
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[Syed et al., 2021], AIS-RNN [Munkhdalai et al., 2019]; M-BDLSTM [Ullah et al., 2020];
CNN-LSTM [Kim and Cho, 2019].

It is worth noting that each one of these models used a different experimental
methodology, either in terms of cross-validation methodology or train/test split. In those
terms, it is counterproductive to perform a different experimental set up for each competitor
model and this research used their published results as they are, to compare with our
experimental results.

Figure 14 and Figure 15 shows the results of RMSE and MAE for the competitors
methods and our models on AEC and HPC (HPC1) datasets, respectively.

Figure 14 – Models accuracy on AEC dataset in terms of RMSE(Wh) and MAE(Wh)
[Bitencourt et al., 2023]

According to Figure 14, PCA-WMVFTS is superior than all competitors models
with RMSE of 0.34Wh, a MAE of 0.96Wh. AE-WMVFTS also showed a high accuracy
compared to the competitors models. However, our proposed methods are inferior than
HSBUFC on HPC1, but not significantly, and our forecast models outperform the other
competitors methods.

Table 13 presents the skill score index of PCA-WMVFTS with AE-WMVFTS with
respect to some competitors methods and the accuracy metric selected was the RMSE.

For the AEC dataset, our models significantly outperformed the competitor
methods, with RMSE improvements exceeding 98% compared to GBM, MLP, CNN-GRU,
and AIS-RNN. Specifically, PCA-WMVFTS and AE-WMVFTS showed a 94% and 90%
improvement over HSBUFC, respectively.
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Figure 15 – Models accuracy on HPC (HPC1) dataset in terms of RMSE(Wh) and
MAE(Wh) [Bitencourt et al., 2023]

Table 13 – Skill score of PCA-WMVFTS and AE-WMVFTS with respect to competitors
methods on AEC and HPC1 datasets [Bitencourt et al., 2023].

dataset Methods PCA-WMVFTS AE-WMVFTS

AEC GBM 0.99 0.99
AEC MPL 0.99 0.99
AEC CNN-GRU 0.99 0.98
AEC HSBUFC 0.94 0.90
AEC AIS-RNN 0.99 0.99
HPC1 CNN-LSTM 0.89 0.84
HPC1 M-BDLSTM 0.88 0.83
HPC1 CNN-GRU 0.86 0.80
HPC1 HSBUFC -1.31 -2.28

For the HPC dataset, our models demonstrated improvements over CNN-LSTM,
M-BDLSTM, and CNN-GRU. AE-WMVFTS showed over an 80% improvement. PCA-
WMVFTS outperformed CNN-GRU by 86% and surpassed CNN-LSTM and M-BDLSTM
by more than 88%. However, compared to HSBUFC, PCA-WMVFTS and AE-WMVFTS
exhibited a decline of around 56% and 69%, respectively.

Despite the lower performance relative to HSBUFC, our models could improve
accuracy by increasing the number of embedding dimensions or fuzzy sets, potentially
surpassing HSBUFC. Additionally, HSBUFC, being a deep learning model, requires
significant time for training and optimization, whereas FTS models are much faster to
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train. Furthermore, our models are more parsimonious and interpretable than deep learning
alternatives.

4.5.5 Parsimony and explainability

Parsimony is crucial as it reduces the number of parameters or rules, leading
to lower computational costs and shorter training times (see Section 3.2.3). Generally,
increasing the K and κ improves the accuracy of EFTS models. However, this comes with
a trade-off: higher accuracy leads to reduced parsimony and explainability. Table Table 14
illustrates this trade-off by showing the mean rules generated by PCA-WMVFTS across
30 experiments.

Table 14 – The parsimony of PCA-WMVFTS with different number of embedding dimen-
sions (K) and number of fuzzy sets (κ) [Bitencourt et al., 2023].

K κ AEC KSH10 HPC30

2 10 332 ± 52 428 ± 70 293 ± 37
2 20 842 ± 117 1420 ± 259 784 ± 134
2 30 1269 ± 149 2531 ± 464 1306 ± 232
2 40 1628 ± 182 3528 ± 634 1834 ± 318
2 50 1939 ± 181 4392 ± 744 2364 ± 392
3 10 1110 ± 152 1892 ± 290 1193 ± 207
3 20 2538 ± 287 5552 ± 883 3229 ± 694
3 30 3574 ± 308 8546 ± 1365 5305 ± 1155
3 40 4351 ± 375 10652 ± 1660 7241 ± 1513
3 50 5009 ± 368 12208 ± 1773 9010 ± 1785
4 10 3138 ± 337 6133 ± 872 3829 ± 580
4 20 6552 ± 555 15007 ± 2147 9769 ± 1452
4 30 8828 ± 562 21103 ± 2922 15197 ± 2128
4 40 10431 ± 613 24949 ± 3317 19833 ± 2581
4 50 11693 ± 544 27656 ± 3280 23767 ± 2926
5 10 7948 ± 697 17722 ± 2851 9390 ± 1296
5 20 15641 ± 1059 37324 ± 5289 22260 ± 3005
5 30 20313 ± 1082 48771 ± 6226 33730 ± 4235
5 40 23369 ± 1051 55389 ± 6489 43510 ± 5125
5 50 25568 ± 917 59767 ± 6049 51707 ± 5815

Parsimony is especially important in IoT applications, where models are often
deployed on edge devices with limited computational power. PCA-WMVFTS models are
less parsimonious than SARIMAX but significantly more parsimonious than deep learning
models like LSTM, GRU, and TCN, particularly on the KSH datasets, as demonstrated
in Table 15.
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Table 15 – The parsimony of PCA-WMVFTS against deep learning methods [Bitencourt
et al., 2023].

Method AEC KSH1 KSH10 HPC1 HPC30

PCA-WMVFTS 5009 29933 12208 31401 9010
LSTM 14071 187801 132501 276751 258826
GRU 10561 140881 99401 207601 194156
RNN 35410 47041 33201 69301 64816
TCN 101401 1979924 182368 50736 81780

4.5.6 Computational Complexity

The time complexity of the proposed PCA-WMVFTS and AE-WMVFTS methods
is primarily driven by the embedding and training procedures. The time complexity of
the PCA embedding process is (min(V 3, N3)) [Johnstone and Lu, 2009], while the AE
embedding has the same complexity as training a Multilayer Perceptron Network [Freire
et al., 2022]

Training depends on κ and K. Each embedded variable has its own fuzzy sets, so
the total fuzzy sets are represented as γκ as K × κ. The fuzzification step has a potential
time complexity of O(n× γκ). By using a binary search tree, the search among fuzzy sets
can be reduced from O(γκ), making the rule base generation step have a time complexity
of O(log γκ).

For testing, the time complexity includes both the embedding and forecasting
procedures. For an embedded input instance y(t)γi , fuzzification costs O(γκ) and rule
matching takes O(log γκ).

In summary, the computational complexity of RNNs, LSTMs, and GRUs is
significantly higher than that of MLPs [Freire et al., 2022]. EFTS methods, including
PCA-WMVFTS, have much lower computational complexity due to fewer parameters, as
evidenced by Table 15.
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Chapter 5

Multi-Step Embedding-based Fuzzy
Time Series (MS-EFTS)

In this chapter, we introduce a new multi-step-ahead forecasting methodology
named Multi-Step Embedding-based FTS (MS-EFTS). This work was published to IEEE
Internet of Things Journal [Bitencourt et al., 2025]. MS-EFTS builds upon our proposed
Embedding-based Fuzzy Time Series (EFTS) available in [Bitencourt et al., 2023] and
detailed in Chapter 4. Accordingly, MS-EFTS adapts EFTS to accommodate multi-step-
ahead forecasting using a direct strategy to predict non-stationary, high-dimensional IoT
time series. Similarly, embedding transformation is exploited for reducing the dimensions
of time series to allow efficient pattern discovery and the induction of fuzzy rules. The
forecast horizon is equal H = {5, 10, 15, 20, 25, 30}.

Through this approach, given the high-dimensional non-stationary time series
Y ∈ RN×V and its instances y(n) ∈ Y for n = 0, 1, ..., N . Given the target variable V∗,
and the time-steps vector (i.e forecast horizon) H where hi ∈ H for i = 0, 1, ...,M . Then
we create hm independent and parallel EFTS models. These models effectively capture all
the relevant information in the time series for the subsequent multi-step-ahead forecasting.
The MS-EFTS methodology is made up of learning and testing procedures, which are
detailed in the next subsections.

5.0.1 Learning procedure

The MS-EFTS learning procedure, illustrated in Figure 16, involves three main
steps: embedding, variable partitioning, and rule induction. It generates hm multivariate
EFTS models (MEFT S), which capture all the information in the time series Y .

Given the high-dimensional time series Y , the target variable V∗, the time-steps
vector H, the number of fuzzy sets κ, and the embedding dimensions K, the following
steps are performed for each hi.
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Figure 16 – MS-EFTS Learning and Testing procedures [Bitencourt et al., 2025].

5.0.1.1 Embedding

Similarly, the embedding procedure involves extracting a new variable space that
more accurately captures the content of high-dimensional non-stationary time series. This
process reduces dimensionality and facilitates the subsequent forecasting function. In this
introduced approach, we focuses on two embedding methods: PCA detailed in Section
2.4.1 and Kernel PCA (KPCA) (see Section 2.4.2).

Subsequently, the embedding multivariate time series Yγ ∈ RN×K is created. This
embedding step is applied in both the learning and testing procedures.

5.0.1.2 Partitioning of variables

In this phase, the universe of discourse (UoD) is determined as UVγ = [lb, ub],
where the lower bound lb = min(Y γ)−D1 and the upper bound ub = max(Yγ)+D2. Here,
D1 = r × |min(Yγ)| and D2 = r × |max(Yγ)|, with 0 < r < 1.

Next, UVγ is divided into κi overlapping intervals Uj , each with a midpoint cj , for
all j ∈ 0, 1, 2, . . . , κi. A fuzzy set AVi

j is created for each interval, with its membership
function µAj

Vi defining the variable Vγi for dimension i, which in turn becomes a linguistic
variable Ṽγi ∈ Ṽγ.
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5.0.1.3 Rule induction

At this stage, the embedding time series Yγ is converted into a fuzzy time series Fγ .
For each data point fγ(n) ∈ Fγ , an array of size n× κ is created, containing the fuzzified
values corresponding to the linguistic variable. The fuzzy memberships are calculated
according to predetermined criteria as follows:

f(t)←
{
AVi

j | µ
Vi
Aj
(Yγ(t)

i) > 0
}

(5.1)

Temporal patterns are created in the form of AjV0, ...,AjVn → AjV∗, where the
left-hand side (LHS) is defined as fγ(t) = AjVi, and the right-hand side (RHS) represents
the target variable fγ(t+ hi) = AjV

∗ . Both sides correspond to AVi
j with the maximum

membership.

Finally, fuzzy rules r with the format LHS → w · RHS are built in which the
weights w = |AVi

j |/|RHS| are defined as follows

wi =
#A

#RHS
∀AV∗

j ∈ RHS (5.2)

where #A is the number of occurrences of fuzzy rule Ai on temporal patterns
with the same LHS and #RHS is the total number of temporal patterns with the same
precedent LHS. Each fuzzy rule represents a weighted set of possibilities for what may occur
at time t+ h (right-hand side) based on identified patterns in prior time lags (left-hand
side).

5.0.2 Testing procedure

The testing procedure is illustrated in Figure 16. MS-EFTS models are applied
to the test set, denoted as Ytest ∈ RNtest×V . The embedding process from Section 4.1 is
then used to generate the test embedding time series, Ytestγ ∈ RNtest×K . For each hi, the
MS-EFTS model forecasts hi target values (V̂∗(t+ hi)) using the forecasting forecasting
steps.

First, Ytestγ is fuzzified for each variable Vi ∈ V according to equation 7.1

Second, we choose r fuzzy rules to determine whether any fuzzy set is equal to
LHS and compute the rule membership grade µq using the minimum function T-norm
according to the equation:

µq =
⋂

j∈Ṽi ; i∈V

µji (5.3)



Chapter 5. Multi-Step Embedding-based Fuzzy Time Series (MS-EFTS) 68

here µj and µi represent the membership grades of the target and exploratory variables,
respectively, with, µq being the minimum intersection of these grades.

Third, we compute the mean point mpq of V∗ as follows:

mpq =
∑
j∈Ṽ∗

i

wj · cj (5.4)

where wj is the weights calculated according to 7.2.

Finally, the predicted value ŷ(t+ hi), is calculated as a weighted sum of the rule
midpoints, with the weights determined by the membership grades µAj

:

†̂∗(t+ hi) =
∑
q∈r

µq ·mpq (5.5)

In this approach, we developed two methods: PCA-MS-EFTS and KPCA-MS-
EFTS, which integrate the EFTS model with PCA and KPCA, respectively.

5.0.3 MS-EFTS hyperparameter setting

As with the EFTS model, the embedding dimension (K) and the number of fuzzy
sets (κ) are the most critical hyperparameters in the PCA-MS-EFTS and KPCA-MS-EFTS
methods. Various combinations of these hyperparameters were tested through trial and
error using the training set, with K ∈ 2, 3, 4 and κ ∈ 30, 35, 40, 45, 50 to find the optimal
configuration. For all datasets, the best results were achieved with K = 2 and κ = 30.

Although increasing the values of K and κ can improve accuracy, it may also
lead to an exponential increase in the number of fuzzy rules, which could compromise the
model’s parsimony and explainability.

5.1 Results

This section presents the experimental results of the proposed methodology
compared to several deep learning multi-step forecasting methods across three datasets.
Various techniques were implemented to evaluate the ability of these methods to handle
different data patterns and forecast horizons.

In Section 5.1.1, the competing methods and their HP settings are explained.
Section 5.1.2 compares the forecast performance of PCA-MS-EFTS and KPCA-MS-EFTS
with baseline models, focusing on accuracy, parsimony, and optimal predictions. Finally,
Sections 5.1.3 and 5.1.3 discuss the computational complexity and limitations of the
proposed methods.
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Table 16 – Optimal values of hyperparameters for the TCN, LSTM, CNN-LSTM (CLSTM),
and BiLSTM methods [Bitencourt et al., 2025].

Hyperparameters KSH30 AQB1 HPC10

LSTM /
BiLSTM TCN CLSTM LSTM /

BiLSTM TCN CLSTM LSTM /
BiLSTM TCN CLSTM

Number of residual block
stacks - 2 - - 2 - - 2 -

Convolution filter size - 64 64 - 64 64 - 32 32
Number of conv. layers - 1 1 - 1 1 - 1 1
Number of conv. layer
filters - 5 5 - 2 2 - 5 5

Number of units 97 - 97 99 - 99 97 - 97
Number of LSTM layers 5 - 5 2 - 2 2 - 2
Dropout percentage 0.4 0.3 0.4 0.4 0.1 0.4 0.2 0.2 0.2
Batch normalization Yes Yes Yes Yes Yes Yes Yes Yes Yes

5.1.1 Deep learning baseline methods

Deep learning models, including TCN, LSTM, BiLSTM, and CNN-LSTM, were
chosen as baseline methods. These models were implemented with the hyperparameters
shown in Table Table 16, using the Adam optimization algorithm and the ReLU activation
function. Hyperparameter optimization was performed through a random grid search.

Two experimental approaches were used: (1) utilizing n+ 1 input values (one for
each variable at time t) and (2) selecting variables with the highest correlation to the target
variable. The variables chosen for each dataset are listed in Table 17. All methods produced
six output values, one for each forecast horizon. The results reflect the best-observed
performances, with approach (1) generally outperforming, except for CNN-LSTM in the
KSH30 and AQB1 datasets.

Table 17 – Deep learning baseline methods: Selected Variables [Bitencourt et al., 2025].

Datasets Variables

KSH30 Furnace 2 [kW]; Furnace 1 [kW]
AQB1 PM10; CO; NO2
HPC10 Global_intensity; Sub_metering_3; Sub_metering_2

5.1.2 MS-EFTS versus baseline forecasting methods

This section compares the forecasting accuracy of our MS-EFTS methods with
baseline algorithms. The overall prediction performance is summarized by computing the
mean and standard deviation of NRMSE across all time steps for each dataset, as shown
in Table 18. Detailed results are available through the link in the supplementary materials
(Annex B).

Our MS-EFTS methods consistently outperform the baseline methods across all
datasets. Unlike the MS-EFTS models, where specific models are used for each forecast
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horizon, the baseline methods make direct predictions for all forecast horizons at once,
which likely explains the significantly higher errors in their results.

In contrast to the MS-EFTS models, the performance of all baseline methods
is significantly influenced by the number of training instances, as evident in the AQB1
dataset results. Additionally, due to their stochastic nature and numerous HP, the baseline
methods show greater variance compared to the MS-EFTS models.

These results highlight the superiority of the MS-EFTS methods for multi-step
time series forecasting in various IoT applications. The MS-EFTS models consistently
outperform the baseline methods, demonstrating robust accuracy regardless of dataset
size, while using a minimal window of just one lag to predict up to 30 steps.

Table 18 – Forecasting model’s accuracy in term of mean NRMSE [Bitencourt et al., 2025].

Methods KSH30 AQB1 HPC10

PCA-MS-EFTS 0.031 ± 0.02 0.028 ± 0.01 0.036 ± 0.03
KPCA-MS-EFTS 0.030 ± 0.01 0.029 ± 0.02 0.035 ± 0.03

LSTM 0.122 ± 0.05 0.917 ± 0.78 0.204 ± 0.24
BiLSTM 0.124 ± 0.05 0.655 ± 0.49 0.183 ± 0.13

TCN 0.122 ± 0.11 0.758 ± 0.68 1.418 ± 1.28
CNN-LSTM 0.180 ± 0.47 0.898 ± 1.51 0.893 ± 0.93

5.1.2.1 Statistical test

The statistical analysis, performed using the AutoRank python package [Herbold,
2020], was conducted on six populations, corresponding to the NRMSE results of the
baselines and proposed methods across all datasets in the study. The analysis included
120 paired samples pertaining to the 30 windows for each of the six forecast horizons.

The statistical significance of the differences between the NRMSE means for all
methods was evaluated using the non-parametric Friedman test, as normality could not
be assumed for any of the samples. A significance level of 0.05 was used for the tests.
The Friedman test assesses the null hypothesis that there are no significant differences
between the median values of the populations. In all cases, the null hypothesis was rejected,
indicating that there is a statistically significant difference between the median values of
the populations.

The post-hoc Nemenyi test was applied to determine which differences are sig-
nificant, which can be visualized through the critical difference diagram (Figure 17).
Differences between populations are considered significant if the difference in mean ranks
is greater than the critical distance (CD) of the Nemenyi test, represented in the diagram
by the black bar. It is observed that, across all forecast horizons, the proposed methods
show significant differences compared to the baselines, but not among themselves.
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Figure 17 – Critical difference diagram of the KSH30, AQB1, and HPC10 datasets for
each forecast horizon [Bitencourt et al., 2025].

5.1.2.2 Optimal prediction

Figure 18 illustrates the fractional bias (FB) index of various forecasting methods
across all datasets and forecast horizons. An FB of zero indicates perfect alignment between
forecasted and observed values, while positive values suggest over-prediction and negative
values indicate under-prediction.

For the KSH30 and HPC10 datasets, the MS-EFTS methods exhibit FB values
ranging from -0.03 to -0.09, reflecting slight under-prediction across all forecast horizons.
In contrast, these methods achieve optimal prediction on the AQB1 dataset, with FB
values between -0.01 and 0.01, indicating minimal systematic error in their forecasts.

In comparison, the LSTM, BiLSTM, and CNN-LSTM models tend to over-predict
the target variable in the AQB1 dataset, particularly LSTM and BiLSTM, which show the
highest levels of over-prediction. For the KSH30 and HPC10 datasets, these deep learning
methods demonstrate moderate over-prediction, with FB values between 0.05 and 0.18.
Conversely, the TCN model performs comparably to the MS-EFTS methods regarding the
FB metric.

In summary, both PCA-MS-EFTS and KPCA-MS-EFTS showed comparable
prediction errors and achieved the highest accuracy among the forecasting methods. These
methods consistently performed well across all datasets, highlighting their effectiveness
and robustness in delivering accurate predictions for various high-dimensional IoT time
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Figure 18 – Fractional bias heatmap of the KSH30, AQB1, and HPC10 datasets for each
forecast horizon [Bitencourt et al., 2025].

series, as evidenced by metrics such as RMSE, NRMSE, and FB.

5.1.2.3 Parsimony and explainability

In MS-EFTS methods, complexity and explainability are influenced by HP κ

and K, which increase the number of rules as they grow. However, the explainability
of the models depends on the active fuzzy rules, with rule length corresponding to the
number of embedding variables. Thus, despite the rise in complexity, the methods remain
interpretable based on the active rules.

Table 19 highlights the parsimony of the MS-EFTS and deep learning methods
by showing the mean number of rules or parameters across 30 experiments for all forecast
horizons. This comparison illustrates the efficiency of each method in terms of model
complexity.

Table 28 shows that MO-EFTS methods are much more parsimonious than the
baseline methods. Among deep learning techniques, BiLSTM is the least parsimonious,
while TCN stands out for its high parsimony. PCA-MS-EFTS is slightly more parsimonious
than KPCA-MS-EFTS, but the difference is minor.

The MS-EFTS methods achieve simplicity while maintaining strong forecasting
accuracy, primarily controlled by two key hyperparameters. Increasing the values of κ
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Table 19 – The parsimony of MS-EFTS methods against deep learning methods [Bitencourt
et al., 2025]

Methods KSH30 AQB1 HPC10

PCA-MS-EFTS 22,808 17,268 15,472
KPCA-MS-EFTS 23,991 17,815 16,519

LSTM 373,068 126,132 56,370
BiLSTM 1,051,098 330,666 147,582

TCN 137,670 63,558 35,046
CNN-LSTM 141,684 139,304 60,778

and K reduces forecast error, suggesting that further improvement requires tuning these
hyperparameters. In contrast, baseline deep learning models require extensive effort to
optimize hyperparameters, are complex, and offer limited explainability.

5.1.3 Computational complexity of the MS-EFTS methodology

The computational complexity of the learning procedure can be analyzed by
considering the computational cost of training hm multivariate EFTS modelsMEFT S . For
eachMEFT S , the time complexity depends on κ and K.

Since each Vγ (i.e. embedded variable) has its own fuzzy sets, we define γκ as K×κ.
The fuzzification step has a potential cost of O(n× γκ). By using a binary search tree to
sort the κ, the computational complexity for a search among them is reduced from O(γκ)
to O(log γκ). In addition, the embedding step costs O(γ) either O(min(V 3, N3)) (PCA)
or O(N3) (KPCA). Therefore, the computational complexity of the learning procedure
can be expressed as O(hm × (O(log γκ) +O(γ)))
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Chapter 6

Multiple Output Embedding
Non-Stationary FTS (MO-ENSFTS)

In this chapter, we detail our MIMO high-dimensional non-stationary time series
forecasting methodology called MO-ENSFTS (Multiple Output Embedding-based Non-
Stationary Fuzzy Time Series) and published in [Bitencourt et al., 2022]. Accordingly,
MO-ENSFTS is an extended form of our ENSFTS approach [Bitencourt and Guimarães,
2021]. The forecast horizon H = {1} is one step ahead.

In this approach, the original V variables of a high-dimensional non-stationary
time series are transformed into K embedded components. An independent ENSFTS
model is then applied to each of the K components, creating K parallel ENSFTS models
that capture the relevant information for forecasting multiple features. In this methodology,
we developed two models: PCA-MO-ENSFTS and KPCA-MO-ENSFTS, which combine
the ENSFTS model with PCA and KPCA, respectively. These methods involve distinct
learning and testing procedures, which are detailed in the subsequent sections.

6.1 MO-ENSFTS Learning Procedure

he MO-ENSFTS learning procedure, as illustrated in Figure 19, involves four key
steps. First, K ENSFTS models are generated to capture the information from the K

embedding components. Next, the parameters of the fuzzy sets are adjusted based on
prediction errors from the training set, followed by the creation of fuzzy rules.

In summary, the learning process consists of four main stages: embedding, training,
parameter adaptation, and forecasting. It is important to note that the forecasting step is
common to both the learning and testing phases of the MO-ENSFTS procedure.
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Figure 19 – MO-ENSFTS Learning Procedure [Bitencourt et al., 2022]

6.1.1 Embedding

Similar to the EFTS and MS-EFTS approaches, the embedding procedure plays a
key role in extracting the principal components that best capture the essential information
from high-dimensional time series, facilitating more accurate forecasting. In this approach,
we focus on two embedding methods: PCA (as described in Section 2.4.1) and KPCA
(detailed in Section 2.4.2). It is important to note that the embedding step is applied in
both the learning and testing procedures.

6.1.2 Training

Let Yemb ∈ R1 as the embedding time series where yemb(t) ∈ Yemb for t = 0, 1, ..., N

indicates its individual instances. Also, we considered κ as the number of fuzzy sets and
we as the length of the residuals window.

The universe of discourse is defined using U = [lb, ub] in which lb = min(Yemb)−D1

and ub = max(Yemb) + D2, with D1 = r× | min(Yemb) | and D2 = r× | max(Yemb) |,
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0 < r < 1. The partitioning is oriented by the midpoints ci of each fuzzy set Ai, as follows:

ci = lb+ i× ub− lb

κ− 1
(6.1)

For each interval, a fuzzy set is defined by its triangular membership function
µAi

(yemb)

µAi
(yemb) =


0, if y < l or y > u

y−li
ci−li

, if li ≤ y ≤ ci
ui−y
ui−ci

, if ci ≤ y ≤ ui

All fuzzy sets have a perturbation function πi

π(l, c, u, δ, ρ) =
{ρ

2
− (l + δ), c+ δ,

ρ

2
+ (u+ δ)

}
(6.2)

In this step, δ denotes the displacement of Ai along U , while ρ is the scaling
parameter responsible for altering the coverage area of Ai, either by stretching or com-
pressing its shape. The parameters l, c, and u represent the lower bound, midpoint, and
upper bound of the triangular membership function, respectively, and they are initially
set to zero.

Next, each embedded time series Yemb is transformed into a FTS, denoted as Femb.
Temporal patterns are then extracted in the form of fuzzy rules ALHS → ARHS, where
ALHS represents the precedent and ARHS the consequent. Both are linked to Ai, which
has the maximum membership. These patterns represent fuzzy rules and are grouped
according to their precedents.

Finally, residuals are computed by applying the forecasting procedure (Section
6.1.4) to the training set. The last we values are predicted, and the residuals are calculated
as follows:

E = {e(t− we), e(t− (we − 1), ..., e(t))} (6.3)

where e(t) = yemb(t)− ŷemb(t) and ŷemb(t) is the predicted value.

6.1.3 Parameter adaptation

During parameter adaptation step, the mean and variance of residuals are tracked
to adjust the membership function. Let E represent the residuals, ŷ(t+ 1) the forecast
value, and y(t + 1) the actual value. The displacement parameter is updated based on
midpoint changes, triggered when y(t) falls outside the range of U , according to the
following conditions:

if (y(t) < lb) then (dl = lb− y(t)) else (dl = 0) (6.4)
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if (y(t) > ub) then (du = y(t)− ub) else (du = 0) (6.5)

Then, we calculate the mean Ē and variance σE of the residuals, and these values
are used to update position and length parameters of the fuzzy sets. For each fuzzy set,
the displacement δi is computed according to the following equation:

δi = Ē +

(
i

r

k + 1
− dmp

)
+

(
i
2σE

k − 1
− σE

)
(6.6)

where r = du − dl (displacement range) and dmp = r/2 (displacement midpoint).

Finally, we measured the scaling factors ρi as follow: ρi =| δi−1 − δi+1 |. The new
parameters values δi and ρi are used by the perturbation function.

6.1.4 Forecasting

Given Yemb as the embedding univariate time series and yemb(t) as its instances
for t = 0, 1, ..., N , the predicted values ŷ(t+1) are computed as follows. First, we calculate
the membership grade µAi

for each fuzzy set Ai using the membership function (MF) with
parameters adjusted by π. Fuzzy sets are then selected where Aj where µAi

≥ 0.

These selected fuzzy sets Aj serve as inputs for the rule base to match rules based
on their precedent. The rule set is defined as S = {Aj → RHSj | µAj

(y(t)) > 0}, where
RHSj is the consequent of the rule.

The predicted value ŷ(t+1) is obtained as the weighted sum of the rule midpoints
by their membership grades µAj

, according to equation:

ŷ(t+ 1) =
∑
S

µAj
(y(t)) ·mp(RHSj) (6.7)

with mp(RHS) determined as follows:

mp(RHS) =

∑
Ai∈RHS cAi

| RHS |
(6.8)

6.2 MO-ENSFTS Testing Procedure

The testing procedure for the MO-ENSFTS model is illustrated in Figure 20.
Its objective is to identify rules that correspond to a given fuzzified input and use them
to forecast numerical values by applying non-stationary fuzzy sets adjusted by π. This
process aims to estimate ŷ(t+ 1) for the target variables V∗ ∈ RV , given input samples
y(t)i ∈ RV using the non-stationary fuzzy rules from the K ENSFTS models.

Specifically, the testing set, denoted as Y ∈ RN×V , which represents a high-
dimensional non-stationary time series, is input into the proposed model. We then apply
the embedding procedure outlined in Section 6.1.1 to generate K embedding variables.
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Figure 20 – MO-ENSFTS Testing Procedure [Bitencourt et al., 2022]

For each variable, we utilize an ENSFTS learning model (as described in Section 6.1) to
forecast K embedding predict values ŷemb(t+ 1) using the forecasting procedure detailed
in Section 6.1.4. Finally, an embedding inverse transformation is applied to revert to the
original data dimensional space.

6.2.1 MO-ENSFTS Hyperparameters

Although our proposed approach can adapt to the data by adjusting the shape
and scale of fuzzy sets based on the dataset, certain hyperparameters must be defined
prior to the learning process. Key hyperparameters include the embedding dimension
(K) the number of fuzzy sets (κ), the length of the residuals window (we) and the kernel
coefficient of KPCA (γ). Therefore, these HPs need to be optimally tuned to achieve the
best accuracy in terms of RMSE, then we empirically tested various combinations of these
HPs empirically on the training set to identify the optimal configuration, adjusting each
HP as follows:

κ : Both our models were tested with {30, 40, 50, 60, 70} fuzzy sets.
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K : PCA-MO-ENSFTS needs more embedding dimensions than KPCA-MO-ENSFTS
because of generating higher error using inverse transformation in PCA, afterwards
KPCA-MO-ENSFTS were tested using K ∈ {2, 3, 4, 5} while in PCA-ENSFTS we
have K ∈ {2, 3, ..., 12}.

we : For all datasets we ∈ {3, 4, 5} except AQI that was tested with we ∈ {3, 5, 10, 15, 20, 25, 30},
then different values of we show little influence on the accuracy, excluding AQI.

γ : KPCA-MO-ENSFTS were executed with γ ∈ {0.01, 0.1, 0.5, 1} and the results
indicate that the model are not affected by varying these values.

Table 20 – HP values for KPCA-MO-ENSFTS model [Bitencourt et al., 2022]

HP AEC KSH1 AQI AQB1 AQB6 AQB12

K 3 3 3 2 8 10
κ 50 60 60 60 65 60
we 3 3 25 3 3 3
γ 0.1 0.1 0.1 0.1 0.1 0.1

Tables 20 and 21 summarize the best values found. As seen in Table 20 the
KPCA-MO-ENSFTS method achieves its best accuracy with a limited number of principal
components. Additionally, forecasting accuracy improves with an increase in the number
of partitions, with optimal performance noted at κ ∈ {50, 60, 65} across different datasets.
Table 21 indicates that higher values of K and κ correlate with increased accuracy in the
PCA-MO-ENSFTS method.

A key advantage of KPCA-MO-ENSFTS is its ability to achieve optimal prediction
accuracy with a lower K value compared to PCA-MO-ENSFTS. However, it is important
to consider that increasing the number of fuzzy sets and reducing dimensions without
limit could lead to an exponential growth in the number of fuzzy rules. In conclusion,
our model’s accuracy is significantly influenced by the values of K and κ, whereas their
effectiveness is less affected by we and γ.

Table 21 – HP values for PCA-MO-ENSFTS model [Bitencourt et al., 2022]

HP AEC KSH1 AQI AQB1 AQB6 AQB12

K 10 8 6 6 20 10
κ 50 60 60 70 60 60
we 3 3 25 3 3 3
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6.3 Experimental Results

This section presents the experimental results. First, we introduce the baseline
methods along with their hyperparameter settings. Next, we compare the forecast accuracy
of our methods against the baseline models, highlighting their multiple prediction accuracy,
mean NRMSE error, and ranking of forecasting method accuracy. Finally, we discuss the
parsimony and explainability of our proposed methodology. Notably, PFTS and KFTS in
all tables refer to the PCA-MO-ENSFTS and KPCA-MO-ENSFTS methods, respectively.

6.3.1 Baseline methods

The accuracy of the proposed MO-ENSFTS models was compared to several
baseline models, including three types of RNNs: Vanilla RNN, LSTM, and GRU. These
models were implemented following the guidelines of [LeCun et al., 2015], [Hochreiter and
Schmidhuber, 1997], and [Chung et al., 2014], respectively. Optimal hyperparameters were
selected empirically for each model. The best results were obtained using 1 layer, 300
epochs, a batch size of 64, a learning rate of 0.001, weight decay of 0.1, and the Adam
optimizer. The hidden state size varied from 3 to 467 dimensions/units depending on the
dataset.

We also implemented a Stacked LSTM encoder-decoder (SLSTM) method, a more
complex version of the vanilla LSTM designed for sequence-to-sequence problems. The
optimal configuration for the SLSTM was achieved with 25 epochs, a batch size of 32, a
hidden state of 200, and the Adam optimizer, after testing various settings.

Additionally, we included Random Forest [Breiman, 2001] and Support Vector
Regression [Drucker et al., 1996] as competitor models. Table 22 shows the optimal
hyperparameters for each dataset obtained using the Randomized Search CV technique,
with m-d, m-l, and m-s representing maximum depth, maximum leaf nodes, and minimum
samples leaf, respectively.

Table 22 – HP values for RF and SVR models [Bitencourt et al., 2022]

Model HP AEC KSH1 AQI AQB1 AQB6 AQB12

RF
m-d 20 15 20 30 30 30
m-l 10 20 50 30 30 30
m-s 6 3 6 2 2 2

SVR C 5.76 17.07 9.98 25.71 25.71 25.71
ϵ 0.07 0.15 0.0001 0.05 0.05 0.05
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6.3.2 Comparison against baselines

In this section, we compare the accuracy of our proposed models with baseline
methods. Given the high number of variables in the datasets, particularly AQB6 and
AQB12, presenting the complete prediction results for all datasets would be impractical.
Thus, we focus on evaluating the accuracy of MIMO models on the AEC and AQB12
datasets using RMSE as the primary acurracy metric. Complete results are available
publicly through the supplementary materials (Section C), where prediction accuracy
can also be found using other metrics such as Mean Absolute Percentage Error (MAPE),
alongside RMSE and NRMSE.

Table 23 shows the RMSE results for our PCA-MO-ENSFTS and KPCA-MO-
ENSFTS models compared to baseline methods on the AEC dataset, with the best results
highlighted in bold. Our proposed models consistently outperform the competitors across
all variables. Specifically, the KPCA-MO-ENSFTS model delivers superior accuracy for
more than 92% (24 out of 26) of the variables. However, for Appliance and lights as target
variables, the PCA-MO-ENSFTS model achieves better results than other techniques.

Table 23 – Accuracy of our proposed models and baseline methods over AEC in terms of
RMSE [Bitencourt et al., 2022].

KFTS PFTS RF GRU RNN LSTM SLSTM SVR

Variables AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD
Appliances 64.76 29.06 62.16 27.91 72.92 33.65 77.57 39.05 75.02 34.27 78.07 37.21 79.55 32.48 86.81 30.96
lights 5.00 1.73 4.79 1.64 5.37 2.06 5.67 2.41 5.91 2.51 5.90 2.63 6.60 2.98 7.06 2.91
T1 0.06 0.02 0.10 0.05 0.26 0.23 0.27 0.13 0.27 0.15 0.30 0.15 0.42 0.26 0.70 0.46
RH_1 0.42 0.21 0.55 0.25 0.83 0.64 1.02 0.42 0.97 0.42 1.06 0.45 1.23 0.68 2.05 1.36
T2 0.12 0.06 0.19 0.11 0.31 0.21 0.50 0.20 0.50 0.26 0.51 0.19 0.65 0.39 1.04 0.52
RH_2 0.28 0.13 0.39 0.16 0.74 0.76 0.94 0.43 0.95 0.45 0.99 0.50 1.47 1.07 2.20 1.66
T3 0.07 0.03 0.12 0.06 0.37 0.36 0.35 0.24 0.32 0.18 0.36 0.20 0.55 0.35 0.73 0.50
RH_3 0.20 0.10 0.29 0.12 0.57 0.50 0.67 0.28 0.66 0.36 0.74 0.37 0.99 0.62 1.50 1.08
T4 0.08 0.05 0.13 0.08 0.33 0.33 0.43 0.32 0.41 0.29 0.41 0.26 0.69 0.48 0.86 0.56
RH_4 0.17 0.05 0.25 0.08 0.61 0.53 0.70 0.28 0.69 0.30 0.82 0.33 1.09 0.59 1.90 1.52
T5 0.11 0.06 0.14 0.09 0.29 0.23 0.31 0.18 0.32 0.21 0.34 0.22 0.46 0.35 0.63 0.41
RH_5 1.90 1.11 2.40 1.39 3.10 1.75 4.35 2.32 4.85 2.50 4.97 2.60 5.28 2.41 6.94 2.78
T6 0.31 0.13 0.51 0.25 0.89 0.78 1.24 0.46 1.43 0.78 1.42 0.62 1.61 0.68 2.70 1.29
RH_6 1.42 0.67 2.27 1.03 2.14 1.61 5.65 2.60 5.16 2.20 5.67 2.46 7.54 5.35 10.13 5.34
T7 0.05 0.02 0.08 0.04 0.23 0.20 0.22 0.12 0.24 0.14 0.25 0.15 0.37 0.22 0.59 0.38
RH_7 0.22 0.12 0.34 0.13 1.04 1.16 1.10 0.48 1.03 0.44 1.14 0.44 1.85 1.25 2.89 2.10
T8 0.06 0.02 0.12 0.03 0.23 0.27 0.34 0.15 0.38 0.15 0.39 0.17 0.63 0.35 0.70 0.40
RH_8 0.28 0.09 0.53 0.18 0.87 0.83 1.43 0.49 1.46 0.46 1.48 0.55 1.67 0.79 2.80 1.80
T9 0.04 0.02 0.05 0.03 0.22 0.23 0.14 0.08 0.15 0.08 0.17 0.09 0.30 0.19 0.40 0.24
RH_9 0.21 0.10 0.35 0.16 0.62 0.62 0.90 0.39 0.94 0.34 1.10 0.38 1.42 0.74 2.19 1.57
T_out 0.22 0.11 0.32 0.13 0.71 0.62 0.91 0.45 1.01 0.62 1.05 0.52 1.29 0.65 2.25 1.34
Press 0.11 0.06 0.27 0.16 1.23 1.45 1.61 1.22 1.45 1.07 1.52 1.10 2.58 1.86 3.41 3.45
RH_out 1.06 0.47 1.70 0.55 1.86 1.35 4.19 1.51 4.11 1.77 4.31 1.65 6.32 2.07 8.57 4.25
Windspeed 0.21 0.05 0.39 0.12 0.41 0.40 1.04 0.55 1.07 0.65 1.12 0.73 1.40 0.89 1.55 0.91
Visibility 2.09 0.90 3.62 1.58 2.39 1.11 6.31 3.05 7.15 3.81 7.51 3.35 6.31 3.54 7.99 4.05
Tdewpoint 0.15 0.07 0.28 0.08 0.70 0.61 0.88 0.50 0.95 0.48 1.04 0.41 1.29 0.73 1.94 1.44

Table 24 presents a comparison of the forecasting accuracy of our models against
the competitors on the AQB12 dataset. Although predictions were made for all 132
variables, only the results for PM2.5, a key air quality index, are shown in this work. Once
again, our models outperform the baseline models for each variable.
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Table 24 – PM2.5 prediction accuracy of our proposed models and baseline methods over
all stations data in terms of RMSE [Bitencourt et al., 2022].

KFTS PFTS RF GRU RNN LSTM SLSTM SVR

Stations AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD
Aotizhongxin 22.19 11.29 23.93 11.10 25.36 13.44 40.82 21.06 55.68 29.25 49.77 25.59 31.38 0.13 36.60 23.20
Changping 19.49 7.77 23.27 11.35 21.74 12.16 39.20 16.54 47.90 20.74 35.97 15.86 30.86 0.15 34.26 22.62
Dingling 17.41 7.49 22.26 9.84 20.57 13.02 36.18 14.77 48.05 20.08 37.00 16.22 28.41 0.16 31.32 16.76
Dongsi 23.14 10.61 26.00 12.81 25.06 12.74 46.89 24.74 61.42 32.40 41.76 20.96 31.67 0.13 38.58 21.58
Guanyuan 20.69 9.05 23.14 10.11 23.31 12.20 37.16 17.42 52.70 25.12 37.89 19.62 29.97 0.13 35.67 21.66
Gucheng 20.69 8.09 24.94 12.10 24.06 12.42 43.93 21.79 55.28 27.25 41.44 22.10 32.95 0.14 36.60 21.01
Huairou 18.27 7.88 22.85 11.76 21.08 10.96 36.95 17.12 46.17 20.77 37.62 17.34 30.00 0.15 31.35 15.61
Nongzhanguan 22.42 10.62 25.90 13.49 25.08 14.56 44.21 22.96 66.66 36.74 40.97 20.97 32.01 0.13 37.47 23.71
Shunyi 21.95 10.78 26.63 13.43 24.66 14.87 43.51 22.95 53.89 28.38 49.62 25.49 35.11 0.15 38.44 23.04
Tiantan 21.66 9.40 24.55 11.66 23.43 13.92 40.35 18.83 52.71 25.89 42.78 22.44 29.57 0.13 35.40 21.76
Wanliu 20.20 8.56 24.38 15.02 23.99 14.87 46.01 21.74 58.76 29.29 38.91 19.85 32.54 0.14 36.08 25.56
Wanshouxigong 23.15 10.16 26.47 13.04 26.76 15.68 41.80 21.71 56.58 29.93 43.02 24.48 33.43 0.13 39.55 25.06

Ranking the methods based on RMSE results is challenging due to the variability
in algorithm performance for different variables. Therefore, as shown in Table 25, the
mean NRMSE across all variables vj for each dataset dj is used to provide a more accurate
comparison among the models.

Table 25 – Model’s accuracy in term of mean NRMSE [Bitencourt et al., 2022].

Methods AEC KSH1 AQI AQB1 AQB6 AQB12

KFTS 0.043 0.052 0.14 0.09 0.098 0.109
PFTS 0.063 0.116 0.138 0.118 0.122 0.126

RF 0.138 0.065 1.047 0.9 3.228 0.177
GRU 0.163 0.051 0.16 0.085 0.144 0.189
RNN 0.164 0.046 0.162 0.086 0.143 0.228
LSTM 0.167 0.054 0.168 0.088 0.153 0.193
SLSTM 0.273 0.43 0.284 0.417 0.507 0.171

SVR 0.394 1.123 0.341 0.839 1.077 0.275

Table 25 highlights the superior accuracy of the proposed models on the AEC,
AQI, AQB6, and AQB12 datasets. However, RNN and GRU outperform the proposed
models on the KSH1 and AQB1 datasets, respectively. Notably, KPCA-MO-ENSFTS
generally performs better than PCA-MO-ENSFTS across most datasets.

The results demonstrate the outperformance of our proposed models, KPCA-MO-
ENSFTS more specifically, to the baseline methods with high reliability and stability. To
our best of knowledge, RNNs show the best accuracy for datasets with large number of
instances, such as KSH1. In this case, RNN is more accurate than KPCA-MO-ENSFTS,
GRU and LSTM with a very slight differences.

6.3.3 Statistical test

We assess the accuracy of each forecasting model (mi) by calculating the mean
NRMSE ϵ[mi, dsj, w] across all variables in each dataset (dsj) for each window (w). A
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Kruskal-Wallis test, with a significance level of α = 0.01, was performed to evaluate
differences in performance.

The test compares the mean error µmi,dsj =
∑W

w=1 ϵ[mi,dsj ,w]

W
of the forecasting

methods. The null hypothesis (H0) assumes the equality of means (µmi,dsj), indicating no
significant difference between the models. If H0 is rejected, it suggests that at least one
model’s mean differs from the others.

In cases where H0 is rejected, we further compare the means between each pair of
forecasting models using post hoc Wilcoxon tests.

H0 : µma,dsj < µmb,dsj

H1 :µma,dsj ≥ µmb,dsj

The results, presented in Table 26, include the test statistics and p-values at a
defined confidence level. For the AQI dataset, we failed to reject the H0, indicating that
the methods are statistically equivalent. However, for the other five datasets, H0 has been
rejected, suggesting significant differences among the forecasting methods.

Table 26 – Kruskal-Wallis Statistical Tests [Bitencourt et al., 2022].

dataset Statistic p-value Result

AEC 204.834 1.09e-40 Reject H0

KSH1 151.692 1.79e-29 Reject H0

AQI 7.411 3.87e-01 Fail to Reject H0

AQB1 113.241 1.95e-21 Reject H0

AQB6 126.861 2.84e-24 Reject H0

AQB12 158.052 8.24e-31 Reject H0

To further compare all methods, we utilized the Wilcoxon method. Table 27
summarizes the statistical rankings of forecasting accuracy, indicating the number of
instances where we failed to reject the null hypothesis at the defined confidence level. For
example, our method achieved the top rank for the AEC dataset, as we did not reject H0

in any comparisons with other forecasting methods. Complete results from the Wilcoxon
test can be found in the supplementary materials (Section C).

The KPCA-MO-ENSFTS model achieved the top rank in three datasets (AEC,
AQB6, and AQB12), followed closely by PCA-MO-ENSFTS, demonstrating the superiority
of our methodology in these datasets. In the KSH1 and AQB1 datasets, KPCA-MO-
ENSFTS ranked second and third, respectively.

These results affirm the effectiveness of our models in handling high-dimensional
datasets, such as AQB12 and AQB6, as well as the AEC dataset. Overall, the KPCA-
MO-ENSFTS model demonstrated the best accuracy among the forecasting methods
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Table 27 – The summary of the ranking of the forecasting methods [Bitencourt et al.,
2022].

Methods AEC KSH1 AQB1 AQB6 AQB12

KFTS 1 2 3 1 1
PFTS 2 7 5 2 2

RF 3 2 5 2 2
GRU 4 3 1 4 5
RNN 4 1 2 4 7
LSTM 6 5 3 6 6
SLSTM 7 5 5 3 4

SVR 8 8 8 8 5

evaluated. In conclusion, our proposed methods are both effective and robust for predicting
various high-dimensional time series based on accuracy metrics. It also shows the excellent
prediction ability of our approach for different datasets.

6.3.4 Parsimony and explainability

As model complexity increases, so do the computational cost and training time.
To address this, minimizing parsimony (i.e. the number of parameters or rules in the
model) is crucial, especially in IoT applications where models are often deployed on edge
devices with limited computational resources (see Section 3.2.3).

Table 28 presents the parsimony (mean number of rules/parameters across 30
experiments) of KPCA-MO-ENSFTS, PCA-MO-ENSFTS, and RNN methods. The MO-
ENSFTS methods are significantly more parsimonious than deep learning models like
RNNs, particularly on the KSH1 dataset. While RNNs achieved the highest accuracy on
the KSH1 dataset, they required a hidden state size of 467 dimensions/units, reflecting
their higher number of parameters.

Table 28 – The parsimony of our models against deep learning methods [Bitencourt et al.,
2022]

dataset KFTS PFTS LSTM GRU RNN

AEC 141 453 7132 3199 1413
KSH1 169 379 2687612 707532 244268
AQI 161 266 2623 2029 841

AQB1 113 316 67331 19163 6923
AQB6 467 899 4152 2739 1353
AQB12 423 454 2172 1761 939

FTS models, including MO-ENSFTS, are data-driven and white-box models,
known for their ease of explanation and auditability—qualities that have gained importance
in recent years. However, the explainability of MO-ENSFTS models is influenced by two
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key factors: the embedding transformation and the number of fuzzy sets. Of these, the
number of fuzzy sets has the greatest impact, as increasing the number of fuzzy sets
automatically raises the number of rules, which in turn makes the model more complex
and harder to interpret.
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Chapter 7

Multiple-Output Weighted Multivariate
FTS (MO-WMVFTS)

In this chapter, we present another MIMO forecasting methodology known as
Multiple-Output Weighted Multivariate Fuzzy Time Series (MO-WMVFTS). This work
was published in [Bitencourt et al., 2024]. It builds upon the existing Embedding Weighted
Multivariate Fuzzy Time Series (EWMVFTS) [Bitencourt et al., 2023] (see Section 4.4)
to accommodate multiple prediction outcomes. The forecast horizon H = {1} is one
step ahead, and the MO-WMVFTS comprises learning and testing procedures, which are
outlined next.

7.1 Learning Procedure

Consider a time series Y ∈ RN×V , where each instance y(n) ∈ Y is observed for
n = 0, 1, ..., N . Given a specified κ and K, we construct V∗

n independent and parallel
multivariate WMVFTS models MWMVFT S . These models are designed to capture all
relevant information for one-step-ahead forecasting. The learning process, as shown in
Figure 21, comprises three main components: embedding, variable partitioning, and rule
induction.

7.1.1 Embedding

In this method, the focus is on KPCA embedding techniques (outlined in Section
2.4.2). In this step, the embedding multivariate time series Yγ ∈ RN×K is generated.
Notably, this embedding step is common to both the learning and testing procedures.
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Figure 21 – MO-WMVFTS Learning and Testing procedures [Bitencourt et al., 2024].

7.1.2 Partitioning of Variables

As described as 4.4, UoD is defined as UVγ = [lb, ub] where lb = min(Yγ) − D1

and ub = max(Yγ) +D2, with D1 = r × |min(Yγ)| and D2 = r × |max(Yγ)|, 0 < r < 1.
We split UVγ in κi overlapping intervals Uj with midpoints cj for j = 0, 1, 2, ..., κi, then
generating an overlapping fuzzy set AVi

j for each interval with the membership function
µVi
Aj

, which results a variable Vγi for the variable i and a linguistic variable Ṽγi ∈ Ṽγ.

7.1.3 Rule Induction

Consequently, Yγ is transformed into Fγ. Each data point is represented by an
array, containing the fuzzified values corresponding to the linguistic variables. The fuzzy
memberships for these values are predetermined based on the predefined linguistic variable
structure.

f(t)←
{
AVi

j | µ
Vi
Aj
(Yγ(t)

i) > 0
}

(7.1)

Temporal patters with the format AV0
j , ...,AVn

j → AV∗
j are created. The LHS is

fγ(t) = AVi
j and the RHS is the target variable fγ(t+1) = AV∗

j , and both LHS and RHS are
related to AVi

j with maximum membership. Fuzzy rules r with the format LHS → w ·RHS

are built in which the weights w = |AVi
j |/|RHS| are defined as follows
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wi =
#AV∗

j

#RHS
∀AV∗

j ∈ RHS (7.2)

In this context, #A is the number of occurrences of Ai on temporal patterns
with the same LHS and #RHS is the total number of temporal patterns with the same
precedent LHS.

7.2 Testing Procedure

The testing set is processed through the MO-WMVFTS models. The embedding
procedure is applied to generate the test embedding time series and we fuzzify each variable
according to the equation 7.1. We then select r fuzzy rules where any fuzzy set matches
the left-hand side (LHS) and compute the rule membership grade using the minimum
function T-norm, as per the equation provided.

µq =
⋂

j∈Ṽi ; i∈V

µji (7.3)

Next, we calculate the mean point mpq of V∗ as follows

mpq =
∑
j∈Ṽ∗

i

wj · cj (7.4)

where wj is the weights calculated according to 7.2.

Finally, the forecast value ŷ(t + hi) is calculated as a weighted sum of the rule
midpoints, with the weights determined by their corresponding membership grades µAj

.
This method ensures that the contribution of each rule is proportional to its membership
grade.

V̂∗
i(t+ 1) =

∑
q∈r

µq ·mpq (7.5)

The testing procedure is shown in Figure 21 and Figure 22 presents a graphic
illustration of the learning and forecasting phases.

7.2.1 Hyperparameters setting

Similar to our forecasting methods discussed earlier, the most critical hyperpa-
rameters (HP) in MO-WMVFTS are the embedding dimension and the number of fuzzy
sets. Through trial and error, various combinations of HP were tested to determine the
best values found configuration: K ∈ {2, 3, 4, 5} and κ ∈ {30, 35, 40, 45}. For all datasets,
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Figure 22 – Graphic illustration of the learning and forecasting procedures.

κ was configured with κ = 30 while K was settled as 2 (AEC), 3 (AQB12), 4 (AQB6,
KSH10) and 5 (AQB1).

7.3 Results

In this section, we present the experimental results obtained from applying our
proposed methods and compares them with various forecasting approaches tested on
the datasets. We provide a brief overview of the selected baseline methods along with
their hyperparameter settings. A comparative analysis of the forecast results generated
by MO-WMVFTS versus these baseline methods is then performed. Finally, we assess
the accuracy of our method against several existing MIMO forecasting models from the
literature.

7.3.1 MO-WMFTS versus baseline methods

The introduced methods accuracy was compared to popular deep learning baseline
MIMO forecasting methods like Temporal Convolutional Networks (TCN), LSTM, and
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Table 29 – best values found values of hyperparameters for the TCN, LSTM, and BiLSTM
methods [Bitencourt et al., 2024].

Hyperparameters AQB1 AQB6 AEC KSH10

LSTM /
BiLSTM TCN LSTM /

BiLSTM TCN LSTM /
BiLSTM TCN LSTM /

BiLSTM TCN

Number of residual block stacks - 2 - 1 - 1 - 2
Convolution filter size - 16 - 32 - 64 - 62
Number of conv. layers - 4 - 5 - 4 - 4
Number of conv. layer filters - 11 - 11 - 11 - 11
Number of units 79 - 75 - 54 - 75 -
Number of LSTM layers 5 - 4 - 2 - 2 -
Dropout percentage 0.1 0.1 0.2 0.05 0.2 0.1 0.2 0.1
Batch normalization Yes Yes Yes Yes Yes Yes Yes Yes

Table 30 – Model’s accuracy in terms of mean NRMSE [Bitencourt et al., 2024]

Methods AEC AQB6 AQB1 KSH10

LSTM 2.96 2.20 2.35 6.44
BiLSTM 1.07 1.31 0.45 6.93

TCN 1.75 1.10 0.74 1.79
MO-WMVFTS 0.022 0.036 0.074 0.055

BiLSTM, all optimized using Randomized Search for hyperparameters (see Table 29).
Adam optimizer and ReLU activation were used across methods based on their proven
effectiveness in various problems [Schmidt et al., 2021].

Given the complexity of the datasets with numerous variables, the comparison
focused on the mean NRMSE across all target variables per dataset. Table 30 highlights
the results, showing that the proposed MO-MVFTS approach outperformed baseline
techniques in terms of mean NMRSE. Full results, including RMSE, NRMSE, and MAPE,
are provided in supplementary materials.

Deep learning methods often struggle with high-dimensional time series forecasting
in MIMO problems due to challenges like redundant variables, reduced training efficiency,
and complexity in tuning hyperparameters. Additionally, deep learning models tend to
have limited explainability. In contrast, FTS methods offer better interpretability and can
be a viable alternative. Combining embedding transformation with FTS can effectively
handle high-dimensional MIMO time series forecasting by extracting relevant information
and improving forecast accuracy.

7.3.2 MO-WMFTS versus competitors methods

We also compare the accuracy of MO-WMVFTS with several recently published
MIMO fuzzy-based forecasting methods, including MRHFCM [Orang et al., 2024a], M-
PRFCM [Orang et al., 2024b], and our other MIMO approachs published in [Bitencourt
et al., 2022] and detailed in Chapter 6 (i.e. PCA-MO-ENSFTS, and KPCA-MO-ENSFTS).
Table 31 presents the mean NRMSE results for all variables, providing a comparison
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between the competitor models and our proposed approach across various datasets.

Table 31 – MO-WMVFTS versus competitors methods in terms of mean NRMSE [Biten-
court et al., 2024]

Methods AEC AQB6 KSH10 AQB12

KPCA-MO-ENSFTS 0.043 0.098 0.09 0.109
PCA-MO-ENSFTS 0.063 0.122 0.126 0.126

MRHFCM 0.086 0.097 0.091 0.109
M-PRFCM 0.06 0.095 0.086 0.107

MO-WMVFTS 0.022 0.036 0.055 0.022

MO-WMVFTS demonstrates considerable superiority over all the competitor
methods. The results indicate that MO-WMVFTS achieves the highest prediction accuracy
across the datasets. Accordingly, Table 32 presents the skill score index of MO-WMVFTS
to some competitor methods, where the selected accuracy metric was the mean NRMSE
across all variables.

Table 32 – Skill score of MO-WMVFTS to competitors’ methods [Bitencourt et al., 2024]

Methods AEC AQB6 KSH10 AQB12

KPCA-MO-ENSFTS 0.488 0.633 0.389 0.798
PCA-MO-ENSFTS 0.651 0.705 0.563 0.825

MRHFCM 0.744 0.629 0.396 0.798
M-PRFCM 0.633 0.621 0.360 0.794

MO-WMVFTS demonstrates significant performance improvements across all
datasets. On the AQB12 dataset, it outperforms competitor methods by over 79%, and
on AQB6, it surpasses them by more than 62%. For the AEC dataset, MO-WMVFTS
beats KPCA-MO-EFTS by 48% and exceeds other models, including PCA-MO-EFTS,
MRHFCM, and M-PRFCM, by over 63%. On the KSH10 dataset, MO-WMVFTS improves
by 56% compared to PCA-MO-EFTS and over 36% against other methods.

In summary, the experimental results show that MO-WMVFTS outperforms
some MIMO deep learning and fuzzy-based methods in accuracy, making it promising
for high-dimensional time series forecasting in IoT applications. Additionally, it produces
lightweight models suited for low-power IoT devices with limited computational resources.
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Chapter 8

Conclusions and Future Works

This study explores the advantages of combining embedding transformations with
fuzzy time series to address high-dimensional, non-stationary time series in Internet of
Things (IoT) applications. High-dimensional time series pose significant challenges, as
existing FTS models can become impractical when training with numerous variables.
However, the flexibility, simplicity, interpretability, and accuracy of FTS methods make
them a promising solution for many IoT use cases.

Accordingly, in high-dimensional time series forecasting, each variable depends on
its historical values and other contemporaneous variables, making appropriate variable
selection essential. Embedding techniques help create a new variable space that captures the
complexity of multivariate time series, reduces collinearity, and reveals latent interactions.
These algorithms extract relevant information for accurate forecasting of the target variable.
Additionally, the FTS learning approach effectively manages non-stationary time series
and adapts to scenarios with concept drift.

We introduced a new framework, embEFTS (Embedding Fuzzy Time Series),
designed to handle high-dimensional non-stationary data by combining data embedding
techniques and fuzzy time series models in a reduced-dimensional space. This work brings
the following novel contributions:

1. EFTS [Bitencourt et al., 2023] (Chapter 4): A first-order MISO methodology for
forecasting high-dimensional non-stationary time series, tested in smart buildings
for energy consumption prediction. PCA and autoencoder algorithms were applied
to create a new feature space for more effective forecasting.

2. MS-EFTS [Bitencourt et al., 2025] (Chapter 5): A multi-step forecasting method
that incorporates embedding transformations and weighted FTS models to create
parsimonious models. It is designed for direct multi-step-ahead forecasting in IoT
applications.
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3. MO-ENSFTS [Bitencourt et al., 2022] (Chapter 6): A first-order MIMO approach
where all variables act as both target and explanatory variables. It was tested on
high-dimensional datasets for smart cities and smart buildings, using PCA and
KPCA to identify key components for forecasting.

4. MO-WMVFTS [Bitencourt et al., 2024] (Chapter 7): A MIMO one-step-ahead
forecasting model that integrates weighted multivariate FTS and embedding trans-
formation, with a structure different from MO-ENSFTS, tailored for smart city and
building applications.

The proposed embEFTS framework was evaluated against various machine learn-
ing and deep learning methods, demonstrating superior performance in handling high-
dimensional non-stationary time series with 7 to 132 variables across different forecasting
horizons. The results highlighted the efficiency and accuracy of embEFTS, particularly in
IoT applications, where it outperformed other methods.

Furthermore, embEFTS delivers simple yet effective forecasting models that
ensure reliable predictions for non-stationary high-dimensional time series, emphasizing
parsimony in predictive modeling. Minimizing model complexity is crucial for reducing
computational cost and training time, especially in IoT applications with resource-limited
edge devices. Additionally, greater parsimony enhances model explainability, making it
easier to interpret and deploy.

embEFTS is a robust and effective framework for forecasting high-dimensional
time series in both MISO and MIMO scenarios, suitable for one-step and multi-step
predictions. It proved especially effective for predicting smart building energy consumption
and air quality in smart cities, showing potential for optimizing power usage and aiding
air pollution management.

The framework is parsimonious, readable, and explainable, with accuracy primarily
controlled by two hyperparameters: the number of fuzzy sets (κ) and the embedding
dimension (K). Increasing these hyperparameters can enhance the model’s accuracy,
making embEFTS a versatile and valuable tool for various IoT applications.

FTS models, including embEFTS, are data-driven, white-box models that are easy
to explain and audit, a feature that has become increasingly important. The explainability
of embEFTS models is influenced by two factors: the embedding function and the number
of fuzzy sets. The number of fuzzy sets has the greatest impact, as increasing them raises
the number of rules and makes the model more complex and harder to interpret. However,
the embedding function itself does not significantly hinder explainability, as it is invertible
and allows fuzzy set values to be converted back into the original data space. Additionally,
the explainability of FTS models depends on the active fuzzy rules and their length.
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A limitation of the proposed framework is the inability to determine the most
suitable embedding algorithm for a dataset in advance. Future challenges could involve
analyzing the properties of the feature spaces to design a technique for selecting the
optimal embedding method. Additionally, extending the embEFTS framework to allow
users to plug in and out embedding algorithms could offer more flexibility.

Finding the optimal hyperparameters (K and κ) is essential for balancing low error
and high explainability, as increasing these values raises model complexity and training
time exponentially. Grid search for hyperparameter tuning is time-consuming, and the
current framework does not automatically select hyperparameters based on the dataset,
making this another area for future investigation.

Moreover, embEFTS does not inherently handle missing values and outliers,
requiring pre-processing steps like imputation and outlier removal before application.
These limitations suggest areas for future work, including enhancing the framework’s
adaptability and data-handling capabilities.

When evaluating EFTS (Chapter 4), it is also important to consider the time
required to train the autoencoder, as it is a neural network that takes considerable time
to optimize the reconstruction error. The number of AE parameters must also be included
in the parsimony and explainability analysis, alongside the number of fuzzy rules.

MO-WMVFTS (Chapter 7) offers high precision but faces limitations such as high
computational costs and extended training time, due to the individual models required for
each target variable. While parallel processing can alleviate some of these issues, it is not
ideal for real-time data streams or detecting adaptive data patterns. However, it performs
well on non-stationary time series.

Similarly, MS-EFTS (Chapter 5) also achieves high accuracy, but its training time
increases as the number of models (corresponding to time steps) rises, leading to greater
computational costs. However, both learning and testing procedures can be parallelized or
distributed, allowing for faster execution in high-overhead processing tasks.

We evaluated our proposed framework, embEFTS, in smart building and smart
city IoT applications. However, embEFTS is highly flexible and adaptable, making
it suitable for a wide range of IoT time series forecasting tasks, including healthcare,
underground and underwater monitoring, logistics, and transportation systems. Beyond IoT
data, embEFTS is also well-suited for general time series forecasting, including applications
such as stock price prediction, sales forecasting, and industrial process outcome prediction.
Furthermore, this work opens the possibility of applying embEFTS to unstructured and
high-dimensional data problems, provided that an appropriate embedding algorithm is
used. For example, it can be utilized for photovoltaic power forecasting using sky images
or predicting cloud cover at solar photovoltaic plants based on satellite imagery.
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8.1 Future Works

Guided by the previously mentioned conclusions, this work presents some future
investigations, which the main ones being listed below:

1. Future work 1: Future work could involve enhancing the framework to allow
flexible integration of various FTS methods (both univariate and multivariate) and
embedding models, enabling users to customize their configurations. Additionally,
exploring different combinations of FTS methods and embedding algorithms may
offer further improvements and new insights.

2. Future work 2: Future work could explore the properties of variable spaces generated
by embedding functions like Principal Component Analysis, Kernel Principal Compo-
nent Analysis, and Autoencoders. Additionally, the integration of other embedding
algorithms may lead to further enhancements in performance and adaptability.

3. Future work 3: Selecting optimal hyperparameters (κ and K) through grid search
can improve accuracy by minimizing errors across different datasets. However, this
process is time-consuming. Future research could explore developing methods that
automatically determine hyperparameters based on the dataset and specific IoT
application, streamlining the optimization process.

4. Future work 4: Data-driven methods, including our proposed methods, play a key
role in detecting drifts in data streams. Future work could focus on developing drift
detection techniques that enable dynamic adaptation of fuzzy sets, allowing the model
to adjust to changes in high-dimensional non-stationary time series. Integrating such
methods into our framework would enhance its adaptability and performance.

5. Future work 5: As previously mentioned, our proposed framework is adaptable to
various time series forecasting tasks. Additionally, this work introduces the potential
of applying embEFTS to unstructured data. Future research could explore its
application in photovoltaic power forecasting using sky images or predicting cloud
cover at solar photovoltaic plants with satellite imagery.
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Annex A

EFTS Supplementary Materials

The following supporting information can be downloaded at: https://github.
com/hugovynicius/EFTS

https://github.com/hugovynicius/EFTS
https://github.com/hugovynicius/EFTS
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Annex B

MS-EFTS Supplementary Materials

The following supporting information can be downloaded at: https://github.
com/hugovynicius/MS_EFTS

https://github.com/hugovynicius/MS_EFTS
https://github.com/hugovynicius/MS_EFTS
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Annex C

MO-ENSFTS Supplementary Materials

The following supporting information can be downloaded at: https://github.
com/hugovynicius/MO-ENSFTS

https://github.com/hugovynicius/MO-ENSFTS
https://github.com/hugovynicius/MO-ENSFTS
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Annex D

MO-WMVFTS Supplementary
Materials

The following supporting information can be downloaded at: https://github.
com/hugovynicius/MO-WMVFTS

https://github.com/hugovynicius/MO-WMVFTS
https://github.com/hugovynicius/MO-WMVFTS
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