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“The only way to find out what will happen when a complex system is disturbed is to

disturb the system, not merely to observe it passively.”

(G. Mosteller and J. Tukey, 1977)



Resumo

Estudos recentes mostraram que o desempenho estimado de um modelo de classificação

em um conjunto de dados de origem espećıfico (treinamento) pode ser muito diferente

do desempenho do mesmo modelo após a implantação no mundo real, ou quando

avaliamos o modelo em um conjunto de dados alvo com distribuição diferente do

conjunto de dados de origem. Podemos chamar esse problema de mudança de

distribuição (do inglês distribution shift) ou mudança de conjunto de dados (do inglês

dataset shift), e uma estratégia emergente para esse problema é estimar o desempenho

do modelo de classificação em dados não rotulados com distribuição desconhecida, essas

estratégias são conhecidas como Avaliação Automática do Modelo (do inglês Automatic

Model Evaluation ou AutoEval). A maioria dos trabalhos recentes estudaram como a

mudança de distribuição afeta os modelos de aprendizado profundo aplicados a tarefas

de visão computacional (ou seja, dados não estruturados). No entanto, as mudanças na

distribuição também podem afetar o desempenho de um modelo em dados

tabulares/estruturados. Diante deste contexto, esta tese explorou a explicabilidade e o

aprendizado de causalidade para propor novas abordagens de AutoEval para modelos

aplicados a dados tabulares. Primeiramente, apresentamos o método eXplainability for

Automatic Model Eval (X-Eval), um algoritmo de AutoEval baseado no uso de métricas

que normalmente são usadas para explicação de modelos (por exemplo, SHAP values e

confiança na previsão) para detectar padrões de predições corretas e incorretas, para

estimar o desempenho do modelo. Em seguida, propusemos a abordagem Causality for

Automatic Model Evaluation (C-Eval), um método de AutoEval baseado na causalidade

entre os atributos do conjunto de dados. O objetivo do C-Eval é regularizar a estimativa

de um estimador de desempenho (por exemplo, da validação cruzada) de acordo com as

mudanças de distribuição detectadas a partir de diferenças nos gráficos causais inferidos

dos dados de origem e dos dados alvo. Finalmente, conduzimos experimentos com dados

do mundo real e sintéticos. Especificamente, avaliamos as abordagens propostas usando

(1) seis conjuntos de dados do mundo real relacionados a três assuntos (isto é,

COVID-19, doença de Alzheimer e abandono escolar) e (2) dados sintéticos simulando

diferentes tipos de mudanças de distribuição. Nossos resultados indicam que os métodos

propostos superaram a linha de base, alcançando até erro zero na estimativa de

desempenho do modelo. Além disso, avaliamos nossas abordagens de AutoEval como

indicadores para seleção de modelos na tarefa de seleção de atributos. Nesta tarefa,

comparado ao CV, os algoritmos propostos obtiveram ganhos de até 77%, em relação à



macro f1 no conjunto alvo. Dado o exposto, os métodos propostos podem contribuir

para a avaliação cont́ınua de um modelo de classificação em produção (isto é, em

execução no mundo real). Além disso, nossas descobertas contribuem para áreas de

pesquisa como Aprendizado Semi-Supervisionado, Aprendizado Ativo e Aprendizagem

por Transferência, dado que os algoritmos nestas áreas frequentemente lidam com dados

de diferentes distribuições e uma estimativa do desempenho do modelo mais precisa

pode melhorar a eficácia dos algoritmos nessas áreas.

Palavras-chave: mudança de distribuição; mudança no conjunto de dados; mudança nas

covariáveis; desvio de conceito; fora da distribuição; avaliação automática de modelos.



Abstract

Recent studies have showed that the estimated performance of a classification model in

a specific source (training) dataset can be very different from the performance of the

same model after the deployment in the real world, or when we evaluate the model in a

target dataset with different distribution from the source dataset. We can call this

problem of distribution shift or dataset shift, and an emerging strategy for this problem

is to estimate the performance of the classification model in unlabeled data with

unknown distribution (i.e., aka AutoEval approaches). Most recent works have studied

how distribution shift affects Deep Learning Models applied to Computer Vision tasks

(i.e., unstructured data). However, distribution shifts can also affect the performance of

a model on tabular/structured data. This thesis explored explainability and causality

learning to propose novel AutoEval approaches on tabular data. First, we presented the

method eXplainability for Automatic Model Evaluation (X-Eval), an AutoEval

algorithm based on the use of metrics which are typically used as model explanations

(e.g., SHAP values, and prediction confidence) to detect patterns of correct and

incorrect predictions to estimate model performance. Next, we proposed the Causality

for Automatic Model Evaluation (C-Eval) approach, an AutoEval method based on

causality among the features. The C-Eval goal is to regularize the estimation of a

performance estimator (e.g., 10-fold cross-validation) according to distribution shifts

detected from differences in the causal graphs inferred from the source and the target

data. Finally, we conducted experiments with real-world and synthetic data. We

evaluated the proposed approaches using (1) six real-world datasets related to three

subjects (i.e., COVID-19, Alzheimer’s disease, and School dropout), and (2) synthetic

data simulating different types of distribution shifts. Our results indicated that our

proposed methods outperform the baseline, with a reduction of up to 100% in the gap

between the estimated and the true performance, compared with standard 10-fold

cross-validation error estimation. Besides, we evaluated our AutoEval approaches as

indicators for model selection in the feature selection task. In this task, compared to

CV, the proposed algorithms achieved gains up to 77%, regarding the macro f1 in the

target set. Given this context, our proposed methods can contribute to the continuous

evaluation of a classification model in production environments (i.e., executing a task in

the real-world). Furthermore, our findings contribute to research areas such as

Semi-Supervised learning, Active Learning, and Transfer Learning. Given that the

algorithms in these areas often deal with data from different distributions, the improved



model performance estimation can improve the efficacy of these algorithms.

Keywords: distribution shift; dataset shift; covariate shift; concept drift;

out-of-distribution; automatic model evaluation.
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Chapter 1

Introduction

How can we estimate the performance of a classification model on an unlabeled dataset

with unknown distribution? Usually, there is a source and a target dataset in the

automatic classification process. We build (or train) a classification model using a

source dataset and we apply this model to predict labels for the target data (also known

as a test dataset). If the source dataset and the target dataset come from the same

distribution, we can use a strategy such as k-fold cross-validation (CV) to estimate the

model performance [46]. However, if the source and target dataset come from different

distributions, the k-fold cross-validation (CV) cannot be adequate to estimate the model

performance [61, 54]. This is because a pre-requirement of the CV is that the source and

the target datasets are independent and identically distributed (iid) [61].

The situation in which the distribution of the target dataset is different from the

distribution of the source dataset is known as out-of-distribution, distribution shift or

dataset shift [69, 54, 25, 33, 31]. In this thesis, we will use the term distribution shift.

Figure 1.1 illustrates the problem of estimating the model performance in an environment

where we expect distribution shifts.

Distribution shifts are very common when we deploy a model in the real-world [21,

67, 25, 33]. Since, in the real world, a classification model may face data with different

distributions from the source dataset in which it was built because the data can change

in different ways. Suppose that a hospital wants to use an X-ray classifier trained on

data from another hospital. In that case, distribution shifts can occur because of (1)

differences between the X-ray devices or (2) differences in the age of patients treated

at each hospital [33]. Thus, several studies have shown that this distribution shift (aka

dataset shift) can significantly deviate the estimated performance of a classification model

from its true performance [21, 67, 25, 33, 11].

This difference between the estimated performance and the true performance can

have severe impacts when the model is applied in the real world. For instance, we can

have the prerequisite that a model achieves a minimum performance for this model to be

suitable for a given real-world task. However, suppose the model achieves this minimum

performance on the source dataset, but the same model does not achieve the performance

in the target data. In that case, the mistakes of the model may cause severe consequences
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Figure 1.1: Illustration of the problem of estimate the model performance in an
environment where distribution shifts can occur.

(a) Source example [75] (b) Target example [38]

Figure 1.2: Examples of possible images in the source and target dataset that could cause
a distribution shift and degrade the performance of a classification model.

in the real world. For example, an image classification model in an autonomous car may

cause severe accidents whether the true performance deviates too much from the estimated

performance [11]. Figure 1.2 shows an example in which this situation of distribution shift

could occur, where a model may have been trained with images of sunny streets, but this

model may face images of streets with snow in the real world. In addition, a wrong

estimation may provoke the selection of an unsuitable model to be applied in the real

world. A recent approach to deal with the distribution shift problem is to estimate the

classification model performance on unlabeled data with unknown distribution [25, 33].
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The task of estimating the performance of a classification model on unlabeled

data with unknown distribution is called Automatic Model Evaluation (or

AutoEval) [25]. AutoEval is particularly appealing when a distribution shift may occur,

and the acquisition cost of new label data is prohibited. In this case, unlabeled data is

explored in specific ways to measure the performance of the classification model [33].

The majority of recent studies on this topic have applied AutoEval to Deep

Learning Models in Computer Vision tasks (i.e., unstructured data) [25, 33]. However,

distribution shifts can also affect the performance of models built from tabular data [61],

e.g., disease prescription data may have different distributions depending on the devices

used for performing laboratory tests or different laboratories. Besides, tabular data is

the most commonly used data type in real-world machine learning applications [18, 4].

1.1 Goals and Methodology

Considering the previous context, this work aims to advance the Machine Learning

community knowledge regarding the applicability of AutoEval approaches in the context

of tabular data. To achieve this goal, we have proposed AutoEval approaches based on

explainability and causality learning to estimate the performance of classification models

built from tabular data in situations where a distribution shift is expected to occur to some

degree. Specifically, we proposed two novel AutoEval methods named eXplainability for

Automatic Model Evaluation (X-Eval) [90] and Causality for Automatic Model Evaluation

(C-Eval).

In the X-Eval, we proposed the use of explanations (e.g., local feature importance

SHAP values) to AutoEval. Once we build a classification model using the source dataset,

we can extract the explanations from the source and the target datasets in an unsupervised

way. Intuitively, changes in the explanations can provide patterns of correct and incorrect

predictions on the source and target datasets. So, we can estimate the model performance

on a particular target dataset with these patterns. We introduced the core X-Eval idea

in [90].

Specifically, the X-Eval uses explanations because they represent the model from

different perspectives. Thus, we investigated the applicability of these perspectives to

provide information to model evaluation (i.e., to approximate the estimated performance

to the true performance). Thus, we investigated the hypothesis that model

representation with explanations can provide patterns of correct and incorrect

predictions on environments with distribution shifts.

In turn, the C-Eval employs causality learning [17] to infer causal graphs of the
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source (training) and target (test) datasets. A causal graph is a directed acyclic graph

(DAG), in which the vertices are the features of a dataset and an edge is a causal relation

between two features [103]. Then, the C-Eval computes the similarity among inferred

causal graphs and uses this similarity to regularize the model performance estimated

by the standard k-fold cross-validation or the X-Eval. Consequently, this regularization

yields an estimative of the model performance in a specific target dataset (i.e., yields an

estimation of the model performance in a possible out-of-distribution target dataset).

Thus, in the C-Eval, from the hypothesis that the causality relationships are

stronger than the correlations and that causal relations should not change from one

dataset to another, we used causality learning in the C-Eval to investigate the

hypotheses that (1) differences between the causal graphs of the source and target

datasets indicate distribution shifts [94] and (2) these differences can be used to

regularize the estimates of the X-Eval and the k-fold cross-validation.

We evaluated the proposed algorithms using real-world and synthetic data. In

our experiments with real-world data, we used six datasets related to three subjects (i.e.,

COVID-19, Alzheimer’s disease, and Dropout School) to evaluate the proposed algorithms

on natural distribution shifts. On the other hand, we used synthetic data to evaluate our

proposed algorithms on controlled distribution shift types and intensities.

In our experiments, we estimated the performance of two types of models: (1)

decision tree ensembles (i.e., XGBoost, LightGBM, and CatBoost) [15] since they are

state-of-the-art representative to deal with tabular data; and (2) the Deep Learning model

TabNet since Arik and Pfister [4] demonstrated that the TabNet can outperform state-

of-the-art classifiers on tabular datasets. We emphasize that our work did not intend to

improve model performance, but rather to refine the estimation of model performance.

In the first type of experiment, we evaluated the error between the estimated and

the true performance (aka estimation error). In this experiment, our proposed methods

outperformed the standard 10-fold cross-validation in the majority of experiments.

Besides, in the second type of experiment, we evaluated the usage of the proposed

AutoEval methods as indicators within the feature selection task. In this task, our

proposed methods achieved gains up to 77% over the standard 10-fold cross-validation.

1.2 Contributions

In terms of contributions, the proposed AutoEval algorithms and our insights can

improve the effectiveness of the classification model in several Machine Learning areas,

such as Semi-Supervised Learning, Active Learning, Transfer Learning, and Continue
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Learning [79], since estimating the model performance in this kind of area is very

important.

For instance, a Semi-Supervised algorithm could evaluate the model performance

after inserting a new example with a pseudo-label in the training set. Besides, Semi-

Supervised learning is an approach to performing Continual Learning [44]. Moreover,

researchers have studied the advantages of incorporating AutoEval approaches in Active

Learning algorithms [59].

Additionally, the proposed algorithms can contribute to a continuous evaluation of

a classification model in the production (i.e., in the real-world execution). The continuous

evaluation of a model is a challenge to apply a model in a real-world task [80, 69, 25, 33].

1.3 Thesis Statement

In different situations, the source dataset in which a classification model was built

can come from a different distribution of the target dataset. However, the traditional

approaches to estimate the model performance (e.g., the k-fold cross-validation) assume

that the source and the target dataset come from the same distribution. This requirement

is hardly ever attended in the real world because the data distribution can change in an

uncontrolled way. Thus, this thesis aims to explore explainability and causality learning

to propose approaches to estimate the model performance on an unlabeled dataset with

unknown distribution.

1.4 Thesis Structure

The remainder of the thesis is organized as follows: Chapter 2 presents relevant

related work. Chapter 3 presents the main concepts used in this thesis. Chapter 4

describes our proposed approaches for Automatic Model Evaluation. Chapter 5 presents

the experimental design, in which we describe the main decisions to perform the

experimental evaluation of our proposed approaches. In Chapter 6 and Chapter 7, we

report the results of experiments with real-world and synthetic datasets with different

distribution shifts. Chapter 8 presents a discussion of our results. Finally, Chapter 9

presents conclusions and future works.
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Chapter 2

Theoretical Background

This chapter introduces the fundamental concept used in our work. Additionally, we

present the background that supports our proposed algorithms. Next, we start by

presenting the concept and the different types of distribution shifts.

2.1 Distribution Shift

Distribution shift occurs when the source dataset in which a model was trained

differs from the target data that the model is used to predict the label [69]. For example,

when we train a model with images of sunny streets and the model is applied to classify

images of snowy streets. In this situation, the model probably could fail to predict labels

in the snowy streets.

There are different categories of distribution shifts [79]. However, the literature

commonly categorizes the distribution shift into the following types:

1. Covariate shift: when p(X ) changes between the source and target datasets, but

p(y|X ) does not change [79];

2. Label shift: when p(y) changes between the source and target datasets, but p(X|y)
does not change [79];

3. Concept drift: when p(y|X ) changes between the source and target datasets [107].

Where X = {x1, x2, .., xn} and each xi ∈ X is a set of features or covariates. y is an array

with the labels of each x ∈ X .
Once covariate shift occurs when p(X ) changes between source and target dataset,

but p(y|X ) does not change (i.e., the distribution of the feature changes between the source

and the target dataset, but the relationship between the features and the labels does not

change), may be counter-intuitive think that this impacts the model performance, since

the model learns the function p(y|X ) [79]. However, suppose the population in the target
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dataset increases exactly in a range of feature values in which the model performance is

low. In that case, the estimated model performance can deviate too much from the true

performance.

For instance, consider a scenario where a model has a high performance in

predicting a disease in older individuals but has less efficiency when predicting the same

disease in younger people. If we evaluate this model in a hospital where most of the

population comprises old individuals, the model performance might be high. However, if

we apply the same model in another hospital where the patients are predominantly

young, the model performance may be comparatively lower. That is, given a patient, the

probability of the disease remains the same (i.e., p(y|x)), but there is a distribution shift

of patients by age (i.e., p(X )).
For example, consider a linear model built from the source data exemplified in

Figure 2.1. In this situation, we can get the function represented by the dashed line.

However, the solid line represents a model that better fits the target data. Then, from

Figure 2.1, we easily see that the estimated model performance could deviate from the

true performance because of the position where the target data are localized (i.e., p(X )).
Besides, this example shows that covariate shifts can impact the model selection process,

since an inappropriate model can be selected.

Figure 2.1: Example of covariate shift. We represented the source examples with the light
gray color and the target examples with the dark gray color. For example, a linear model
has a low performance in the target data using all the source data to build the model
(dashed line). However, a linear model focused on the region associated with the target
data distribution (solid line) could have a better performance on the target data. Figure
adapted from [79].

On the other hand, when we consider the label shift (i.e., p(y) changes, but p(X|y)
does not), if the model assumes that p(X|y)p(y) is valid from the source and the target

datasets to predict the labels, as we would like to predict y it is not a surprise that

this form of distribution shift will affect the model prediction. For example, the Naive
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Bayes is an algorithm that makes this assumption and this algorithm uses the Bayes

rule to infer p(y|X ) (i.e., p(y|X ) = p(y)p(X|y)/p(X )). Thus, in this case the estimated

model performance will be affected by changes in p(y) between target and source datasets

distributions [79]. Figure 2.2 exemplifies the label shift.

Figure 2.2: A label shift example. The y distribution changed in relation to the source and
target datasets, which can impact the predictions and the model performance estimation.
Figure extracted from [79].

Concept drift (also referred to as posterior shift) can be considered the most

complex distribution shift to be treated when compared with the three presented

distribution shift types. Once, concept drift occurs when there are changes in the

conditional distribution of the output given an input (i.e., p(y|x) in the source and the

target datasets and a model normally learns p(y|x). In simpler terms, in the concept

drift, we have the same input, with different output [79].

To illustrate this, consider that in 2019 in Brazil, we had a model to predict car

prices based on their features. Before the start of COVID-19 pandemic , in 2019, the

average price of a new car was R$ 76,430.59. In 2020, it rose to R$ 86,385.63. In 2021,

the average price exceeded R$ 100 thousand, reaching R$ 111,938.31 [1]. In this case, the

distribution of the car features remained the same. However, the conditional distribution

of car prices given the car features, suffered a significant shift [107].

In addition to the three presented types of distribution shift, [79] describe the

Source Component Shift (aka Natural Distribution Shift [31]). In the Source Component

Shift, the data come from multiple sources, and each source has its own characteristics.

Hence, the data distribution of these sources may vary between the source and the target

datasets in various ways. Source Component Shift can be the most frequent distribution

shift type.
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The Component Source Shift is present in different situations. For example, (1)

vote expectations in an election vary depending on the type of the voters’ job, and different

locations in a country have different distributions of jobs; (2) a large furniture store wants

to analyze advertising effectiveness across multiple simultaneous advertising media, but

the effectiveness of each will likely vary; (3) the volume of network traffic on a computer

system of a university can vary with the time of the year because different groups of

students are present or absent at different times [79]. Next, we present the standard

k-fold k-cross-validation (CV), a typical strategy to estimate the model performance.

Additionally, we show the problems of applying the CV in distribution shift scenarios.

2.2 k-Fold Cross-Validation

The k-fold cross-validation (CV) is a strategy to evaluate a classification model.

Essentially, the CV aims to estimate the model performance in a new dataset [28].

In the k-fold cross-validation (CV) we divide the dataset into k subsets. Then, we

use k-1 subsets for training and one subset (remainder) to test the model. This process

is repeated k times by alternating the test subset. After k iterations, we calculate the

model performance as the average performance in the k-subsets [28].

Another strategy to estimate the model performance is the Leave-One-Out

approach. The Leave-One-Out approach is a specific case of the CV, where the k data

subset is equal to the number of examples in the dataset. An advantage of the

Leave-One-Out approach is that it can provide information regarding the model

variation in all available labeled data. However, the main disadvantage of this method is

that it shows a high computational cost. Once in the Leave-One-Out, we need to train a

number of models equal to the labeled examples [28].

The CV controls the computational cost by limiting the number of built models

in k. This limitation is essential, especially when we evaluate the model in large datasets

[28]. Thus, the Machine Learning community widely uses CV because of these

properties. Generally, the 10-fold cross-validation is recommended for the model

performance estimation, even when computational cost allows more folds, due to the

10-CV relatively low bias and variance [34, 65].

However, for the CV to effectively estimate the model performance, the source

(training) and target (test) datasets must come from the same distribution, i.e., the source

and target datasets must be independently identically distributed (iid). For example,

we can achieve this situation when we have a collection of documents to be classified;

next, we sample the source dataset from this document collection; and then, we build a
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classification model from this sample, as Figure 2.3 exemplifies. The requirement of the

source and the target datasets to be iid can be statically demonstrated [106, 84, 61, 54] and

we can observe this when we use a model in a real-world application [96, 21, 67, 25, 33].

Figure 2.3: Example of a situation that the k-fold cross-validation is effective to estimate
the model performance.

In other words, in many real-world applications, the data distribution can change

in different and uncontrolled ways (e.g., in autonomous cars [11], when a hospital creates

a model and other hospitals use the same model [33], and spam filters [79]). Hence,

the traditional CV estimation, including the leave-one-out, may not reflect the model

performance in this kind of real-world application [96, 78]. So, new approaches should be

proposed to estimate the model performance when the data distribution can change (aka

distribution shift). Next, we present the concept of causality learning and the algorithms

for causality graph inference used in this thesis.

2.3 Causality Learning

Causality learning, or causality inference, aims to identify cause-and-effect

relationships between variables (i.e., features). Specifically, causality is a relationship

between two variables where changes in one variable cause changes in the other variable.

Causality inference is important for many empirical sciences [87].

Causality and correlation differ once the correlation between variables indicates

that changes in one variable are associated with changes in another. In other words,

correlation measures the strength of a relationship between two variables. Causality

learning goes beyond correlation and tries to determine whether changes in one variable

directly cause changes in another. In this sense, (1) just correlation does not imply
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causality, and (2) there is causality between two variables does not guarantee that there

is a correlation between the same variables [93].

The final goal of causality inference is to discover the causal structure among

the variables of the observational data. Normally, the inferred causal relationships are

represented as a causal graph [93]. A causal graph of a dataset is a directed acyclic graph

(DAG) where we represent the features as vertices, and edges are the causal relationship

between features (i.e., when one feature is directly influenced by another feature) [103, 35].

For instance, Figure 2.4 shows a causal graph for the problem of predicting if the pavement

is slippery given four features: the season of the year (X1), if it is raining (X2), if the

sprinkler is on (X3), and if the pavement is wet (X4) and a prediction M(X) of if the

pavement is slippery, where X = {X1, .., Xn} [35, 103].

Figure 2.4: A causal graph example for the problem of predicting if the pavement is
slippery given four features: the season of the year (X1), whether it is raining (X2),
whether the sprinkler is on (X3), and whether the pavement is wet (X4) and a prediction
M(X) of whether the pavement is slippery, where X = {X1, .., Xn}. Figure adapted from
[103].

In this thesis, we used the following algorithms for causality inference:

DirectLinGAM [87], Notears [114], and PC [93]. Next we present the used causality

inference algorithms in this thesis.

2.3.1 DirectLinGAM

The core of the DirectLinGAM algorithm [87] is an approach to estimate a causal

ordering of variables (or features) with no prior knowledge of the structure. Causal order

is a sequence that indicates whether a variable can have causal relationships (i.e., can

cause) with the previous variables in the sequence. The method estimates the causal
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order of variables by successively removing the most independent variable from the input

data. Once the causal order of variables is identified, the connection strengths among

the variables can be estimated using a covariance-based methods such as least squares

regression.

The DirectLinGAM is based on the Linear Non-Gaussian Acyclic Model

(LiNGAM) [86]. The LiNGAM assumes that the observational data are generated from

a process involving a causal graph. Let us represent the causal graph with a m × m

adjacency matrix B = bij where each bij ∈ B represents the connection strength from a

variable xj to a variable xi in the causal graph. Adicionally, let ki denotes the causal

order of variables xi in the causal graph. Specifically, the causal order indicates that xi

has no path to any xkj |j > i in the causal graph (a path from xi to xj is defined as a

sequence of directed edges connecting xi to xj). Furthermore, the LiNGAM assumes

linearity in the relationships among variables. This is expressed as:

xi =
∑
kj<ki

bijxj + ei,

where ei represent an external influence. Specifically, e are a continuous random

variables. [87] emphasize that xi is equal to ei whether any variable xj (j ̸= i) has a

causal relationship to xi (i.e.,bIj = 0∀j ̸= i). In this scenario, xi is referred to as an

exogenous variable. Otherwise, ei is an error. For instance, considering the model:

x2 = e2

x1 = 1.5x2 + e1

x3 = 0.8x1 + 1.5x2 + e3,

where x2 is equal to e2 since it is not determined by either x1 or x3. Consequently, x2 is

an exogenous variable, while e1 and e3 are errors. In the LiNGAM, there is at least one

exogenous variable xi(= ei) because of the acyclicity assumption and the causal graph

characteristics. Algorithm 1 shows the DirectLiNGAM algorithm based on the LiNGAM.

Many independence measure can be used in the DirectLiNGAM algorithm.

However, [87] proposed the use of following kernel-based independence measure:

Tkernel(xj, U) =
∑

i∈U,i ̸=j

MIkernel(xj, r
(j)
i ), (2.1)

where MI is the common independence measure mutual information, computed by

MIkernel(y1, y2) = −
1

2
log

detKk

detDk

, (2.2)

where



2.3. Causality Learning 37

Algorithm 1: DirectLinGAM

Input: Dataset Xoriginal, Set of features U
Result: B (adjacency matrix of the inferred causal graph)

1 X ← copyXoriginal

2 K ← ∅
3 while size of K ≤ p− 1 do

/*Conduct least squares regressions of xi on xj for all i ∈ U\K
(where i ̸= j), and calculate the corresponding residual vectors

r(j) as well as the residual data matrix R(j) from the data matrix

X for all j ∈ U\K*/

4 for j ∈ U\K do
5 for i ∈ U\K(i ̸= j) do

6 r
(j)
i = Xi − cov(Xi, Xj)/var(Xj)×Xj and

7 R
(j)
i = r

(j)
i

end

end
/*Find the most independent feature*/

8 Xm = arg minj∈U\K independenceMeasure(Xj, U\K)
9 Append m to the end of K

10 X ← R(m)

end
11 Append the remaining feature to the end of K

/*Build the adjacency matrix B according to the order in K, and

determine the connection strengths bi,j by employing conventional

covariance-based regression on the original dataset Xoriginal */

B ← adjacency matrix with 0 in all positions
12 for i← 1 until i ≤ size of K do

/*k0:i denotes the values in k from the index 0 until the index i
*/

13 predictors← k0:i
14 target← ki
15 regressor ← build a linear regressor from < Xpredictors, Xtarget >

Btarget,predictors ← coefficients estimated by the regressor
end
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Kk =

[
(K1 +

nk
2
I)2 K1K2

K2K1 (K2 +
nk
2
I)2

]

and

Dk =

[
(K1 +

nk
2
I)2 0

0 (K2 +
nk
2
I)2

]
,

where

K1(y
(i)
1 , y

(j)
1 ) = exp(− 1

2σ2
||y(i)1 − y

(j)
1 ||2)

and

K2(y
(i)
2 , y

(j)
2 ) = exp(− 1

2σ2
||y(i)2 − y

(j)
2 ||2)

.

. Where k and σ are a small positive constants, n is the number of observed values in a

variable (e.g., size of Xi), and I is an n × n identity matrix. In this thesis, we used the

described algorithm to infer a causal graph from a dataset with the DirecLiNGAM. Next,

we present the PC-algorithm.

2.3.2 PC Algorithm

The PC (Peter and Clark) algorithm is a causal inference algorithm designed to

identify the conditional independence relationships among variables in a dataset. The

PC algorithm is widely used for causality inference in observational data and has been

applied in various research areas [93, 42].

The PC algorithm first builds a complete undirected graph. Next, the PC

algorithm systematically performs conditional independence tests (e.g., chi-square or

Fisher’s z-transform) between each pair of variables (i, j) in the dataset, given a set of

conditioning variables. Then, based on these conditional independence tests, the PC

removes edges of the complete undirected graph. Thus, the PC algorithm builds an

undirected graph known as the skeleton.
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Algorithm 2: PC

Input: Vertex Set V , Conditional Independence Test
Result: Causal graph B

1 Build a complete undirected graph G on the vertex set V
2 n = −1;B = G
3 for each ordered pair of adjacent vertices i, j : |adj(C, i)\{j}| < n do
4 n = n+ 1
5 do
6 Select a (new) ordered pair of vertices i, j that are adjacent in B such that

|adj(B, i)\{j}| ≥ n
7 do
8 Choose (new) k ⊆ adj(B, i)\{j}with|k| = n
9 if i and j are conditionally independent given k then

10 Remove the edge i, j from B
11 Sepset(i, j) = k and Sepset(j, i) = k

end
while until edge i, j is deleted or all k ⊆ adj(B, i)\{j}with|k| = n have
been selected

while until all ordered pairs of adjacent variables i and j such that
|adj(B, i)\{j}| ≥ nandk ⊆ adj(B, i)\{j}with|k| = n have been tested for
conditional independence

end
12 for each triple of vertices i, j, z such that the pair i, j and the pair j, z are each

adjacent in j but the pair i, z are not adjacent in j do
13 if j /∈ Sepset(i, z) then
14 orient i− j − z as i −→ j ←− z

end

end
15 do
16 if i −→ j, j and z are adjacent, i and z are not adjacent, and there is no

arrowhead at j then
17 orient j − z as j −→ z

end
18 if there is a directed path from i to j, and an edge between i and j then
19 orient i− j as i −→ j

end

while until no more edges can be oriented
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Then, the PC algorithm applies rules to determine the directions of the edges in

the skeleton (i.e., to identify the causal direction of edges in the graph). Algorithm 2

details the PC algorithm [93, 42].

A great challenge of algorithms such as PC and DirectLiNGAM is to estimate

conditional independence from finite data. [42] focused on Gaussian scenarios (i.e., where

random variables follow a multivariate normal distribution) and assumed that conditional

independence relations correspond to d-separations. Here, d-separation is a criterion used

to determine whether a set A of variables is independent of another set C, given a third

set Z in the causal graph (where the term d-separated emphasizes the directional (d)

characteristic of the causal graph). The idea is to associate dependence between the pair

of variables i, j with the existence of a path connecting i and j, while independence is

associated with unconnectedness or separation.

Thus, given these considerations, Kalisch et al. [42] suggest that conditional

independence can be deduced from partial correlations, and the partial correlation of the

sample can be calculated via regression. Then, Kalisch et al. [42] use Fisher’s

z-transformation to test the conditional independence from the partial correlation.

Figure 2.5 (extracted from Peter et al. [93]) illustrates the PC process to build the

skeleton graph, considering that a conditional independence test can correctly detect the

dependence cases between two variables. Note that when n = 0, there is no independence

among the variables because there is a path between all pairs of variables in the true

graph. However, when n = 1, considering the B (in other words, whether there is a path

from A to other vertices excluding B), there is no dependence among A and the other

vertices, so A is independent of the C,D, and E. Similarly, when n = 2, considering

{C,D} there is no dependence between B and E.

Following the example in Figure 2.5, Figure 2.6 shows how the undirected graph at

the bottom of Figure 2.5 is partially oriented by the PC algorithm. These edge orientations

occurred because the triples of variables with two adjacent vertices among them are:

A−B − C

C −B −D

B −D − E

A−B −D

B − C − E

C − E −D

In this instance, considering the triple C − E − D, E /∈ Sepset(C,D) (Sepset

denotes separation set), C − E and E − D collide at the vertex E. The other triplets

do not have this kind of collider. So, the resulting pattern generated by the algorithm is

shown in Figure 2.6.
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Figure 2.5: Illustration of the PC process to build the skeleton graph. Where n denotes
the size of the set of conditioning variables. Figure extracted from [93].

Peter et al. [93] highlight that the pattern presented in Figure 2.6 shows a

indistinguishability class. Once every orientation of the undirected edges in Figure 2.5 is

valid, since it does not include a collision at B. Thus, the PC result is a partially

directed acyclic graph (CPDAG), i.e., a graph that can include both directed and

undirected edges.

Despite this, the PC algorithm is advantageous because it can handle a large

number of variables and efficiently discover causal structures without assuming linearity

or specific functional forms. Next, we present the Notears algorithm.
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Figure 2.6: The final causal graph of the PC process example. Figure extracted from [93].

2.3.3 NOTEARS

Zheng et al. [114] proposed the method Non-combinatorial Optimization via Trace

Exponential and Augmented lagRangian for Structure learning (NOTEARS) for inference

of causal graphs from data based on a continuous optimization program.

Zheng et al. [114] formulated the causal graph inference as an optimization problem,

in which Zheng et al. [114] replaced the constraint of inferring a graph that is a DAG by

a function h(W ). Given that W denotes a weighted adjacency matrix of a graph G(W ),

h(W ) measures the violations to the inferred graph G(W ) to become a DAG. Thus, the

goal of the NOTEARS is to solve the following optimization problem:

max
α∈R

D(α),

where D(α) = min
W∈Rd×d

Lρ(W,α),

Lρ(W,α) = F (W ) +
ρ

2
|h(W )|2 + αh(w),

F (W ) = ℓ(W,X) + λ||W ||1

=
1

2n
||X −XW ||2 + λ||W ||1.

Where ρ(> 0) is a penalty parameter, X ∈ Rn×d is a data matrix of observations (i.e.,

a dataset), ℓ(W,X) is the least-squares loss (i.e., 1
2n
||X − XW ||2). F (W ) adds the ℓ1-

regularization (||W ||1 = ||vec(W )||1) to the graph inference process.

Algorithm 3 shows the main steps of the NOTEARS. We can see that in the

optimization process α is updated as α ← α + ρh(W ∗
α), where W ∗

α is the local W which

has been optimizing. Besides, the NOTEARS applies a threshold in the estimates of

coefficients to reduce the number of false discovered edges. So, NOTEARS thresholds the

edges weight as: after obtaining W̃ (in the line 7), given a threshold ω > 0, set the weights

smaller than ω to zero. Besides, as h(W̃ ) measures the W̃ violations to become a DAG,

a small threshold ω is enough to remove edges included in cycles. Next, we introduce

the similarity functions used in this thesis to compute the similarity between the causal

graphs inferred from the source and target datasets.
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Algorithm 3: NOTEARS

Input: Initial guess (W0, α0), progress rate c ∈ (0, 1), tolerance ε > 0, threshold
ω ¿ 0
Result: Causal graph Ŵ

1 for t ∈ {0, 1, 2, ...} do
2 Wt+1 ← arg minWLρ(Wt, αt) with ρ such that h(Wt+1) < c h(Wt)
3 αt+1 ← αt + ρ h(Wt+1)
4 if h(Wt+1) < ε then

5 W̃ ← Wt+1

6 break

end

end

7 Ŵ ← W̃ ◦ (W̃ > ω) // change to 0 all W̃ positions < ω

2.4 Similarity Functions

A similarity function quantifies the similarity between two arrays. Our proposed

algorithm C-Eval requires a metric to measure the similarity between two causal graphs.

We used the Cosine similarity, the Jaccard Index, and Macro F1 as similarity functions.

Firstly, we used these similarity functions because:

1. We represented the causal graphs as adjacency matrices and we can represent a

matrix as an array, which makes it possible to use the Cosine, the Jaccard Index,

and Macro F1 similarity functions.

2. Furthermore, the used similarity metrics have a smaller computational cost than

the typical graph similarity functions, which involve subgraph isomorphism [74].

Moreover, given the small size of the causal graphs, the typical graph similarity

functions cannot be applicable.

3. Our proposed method requires that the similarity function return a value between

zero and one.

Specifically, we used the Cosine similarity and the Jaccard Index because these

are among the most used similarity functions [34]. Besides, considering that the causal

graphs are represented as adjacency matrices: (1) these similarity functions are indicated

when the arrays that the similarity will be measured are composed of values between zero

and one, and (2) these similarity functions are commonly used to compute the similarity

of space data [92, 74], which is the case of the graphs represented as adjacency matrices

since in this case we have a small number of edges compared with the possible number of

edges in the graph.
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Cosine similarity measures the cosine of the angle between two vectors. Given two

vectors a and b, Han et al. [34] define cosine similarity as:

a · b
||a|| · ||b||

=

∑
ai · bi∑√

a2i ·
∑√

b2i
(2.3)

The Jaccard index, also known as the Jaccard similarity coefficient, is defined as

the size of the intersection divided by the size of the union of the evaluated arrays [34]:

a ∩ b

a ∪ b
(2.4)

In turn, Macro F1 is a metric commonly used to measure the model performance

in imbalanced data. Because the Macro F1 averages the model performance on each class

(i.e., the Macro F1 attributes the same importance to each class) [22]. We generally get

imbalanced data when representing causal graphs with adjacency matrices once the causal

graphs have fewer edges than the potential number of edges. Thus, we hypothesized that

the proposed method could effectively use the Macro F1 as a similarity function. Besides,

once Macro F1 was the metric used to measure the model performance, the interval

of values of the graphs similarity will be similar to the range of values of the model

performance.

The Macro F1 is computed using the average of the F1 score for each class c. So,

given two arrays a and b, and considering a as true labels and b as predictions, and the

number of the True Positives (tp), False Positives (fp), and False Negative (fn) for each

class c, we compute F1 score as [34]:

precision(c) =
tp(c)

tp(c) + fp(c)
(2.5)

recall(c) =
TP (c)

tp(c) + FN(c)
(2.6)

f1(c) = 2 · precision(c) · recall(c)
precision(c) + recall(c)

=
2tp(c)

2tp(c) + fp(c) + fn(c)
(2.7)

.

Finally, we compute the Macro F1 as:

macroF1 =
1

|classes|
∑

c∈classes

f1(c) (2.8)

.

Next, we present the explainability types used in this thesis to provide information

for the proposed X-Eval algorithm.
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2.5 Explainability

Given the complexity of some popular classification models (often referred to as

black-box models), it raised the necessity to propose explainability approaches for

understanding the model predictions. Explainability refers to methods and metrics that

help to understand and interpret the predictions made by a black-box model (i.e., a

non-explainable model). In this thesis, to provide information for the proposed

AutoEval algorithm X-Eval, we used the following metrics typically employed to

explainability: model prediction confidence, agreement between model, and SHAP

values. Next, we present these explainability metrics. We start by presenting how the

model prediction confidence can be employed for explainability.

2.5.1 Explainability based on Prediction Confidence

The prediction confidence is a measure that indicates the possibility that the model

prediction is correct. In other words, the prediction confidence quantifies the level of

certainty that the model has in its prediction. Generally, an automatic classification

model returns a prediction confidence value with a prediction. Thus, the prediction

confidence can be used to improve the understanding and trusting in the model prediction

[113, 102, 50, 101].

For instance, Le et al. [50] introduced approaches based on counterfactual

explanations of prediction confidence to help the users to better understand and trust

the model prediction. The counterfactual explanation is the smallest changes in a target

instance values to change the model prediction to a desired output. Thus, Le et al. [50]

proposed approaches to generate target examples that increase or decrease the model

prediction confidence to a specific value.

Additionally, Zhang et al. [113] conducted a study of the impact on the model

prediction trust when we present the users the prediction confidence for a particular

prediction. Zhang et al. [113] demonstrated that showing the prediction confidence to

users can improve the user’s trust in the model prediction.

Thus, as Zhang et al. [113] and Le et al. [50] evidenced, approaches based on

confidence can provide insights and explainability regarding the model. Thus, this

evidence supports the use of prediction confidence to provide information for AutoEval

in the proposed X-Eval algorithm.
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2.5.2 Explainability based on Agreement between Models

There are strategies that use an explainable model (e.g., Decision Tree or Naive

Bayes) to explain the black-box model predictions (e.g., Surrogates Tree). Similarly, some

strategies use the agreement between the black-box model and the explainable model to

explain the black-box model predictions [49]. Two models agree in a prediction whether

both predict the same class to a target instance.

For example, Kuttichira et al. [49] proposed an explainability approach using a

decision tree. They train the black-box model and the decision tree in the same training

set. Subsequently, they identify the region in which the predictions presented significant

differences between the black-box model and the decision tree. They sample a small set

of examples in this region and train the decision tree using this data labeled by the black-

box model. This process is repeated until the differences between the two models become

small. After this process, decision tree rules can be used to explain the black-box model.

Some popular algorithms that build interpretable models are Decision Tree,

Decision Rules, k-Nearest Neighbors (k-NN), and Naive Bayes. For instance, Naive

Bayes is interpretable because of the independence among features assumption. Hence,

the Naive Bayes model provides the possibility of checking the contribution of each

feature to the prediction, since we can interpret the conditional probability [10].

Hence, we hypothesized that when the black-box model agrees with an

interpretable model, the predictions of the black-box model can be easily explained.

Thus, once the model explainability is known to improve the trust in the model

predictions [81], we expect that the agreement with an interpretable model will increase

the probability of the correct model predictions.

In this thesis, we used the Naive Bayes to compute the agreement between the

evaluated model and the interpretable model. From this comparison, we generate the

agreement information to be used in the X-Eval algorithm. We chose the Naive Bayes

algorithm to bring diversity to the predictions because of the different internal work of

this algorithm to the evaluated model. Once, in this thesis, we focused on evaluating tree

ensemble algorithms (e.g., the XGBoost). Besides, making predictions with the Naive

Bayes is relatively faster than the k-NN. Next, we present SHAP values, the metric used

in the X-Eval to measure the importance of the features in the model predictions.
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2.5.3 SHAP values

SHapley Additive exPlanations (SHAP) is a popular explainability approach [58,

109, 64, 53, 12]. SHAP values is a way to explain a model by setting the impact or

importance of each feature in the model prediction. In the SHAP values, we represent

the explanation of a modelM prediction as an m-dimensional array E(M) = {e1, e2, . . . ,
em} showing which features are driving the model prediction. Specifically, ei takes a value

that corresponds to the respective feature influence on the model decision. Since we do

not assume feature independence while learningM, then correlated features within model

M should share impact or importance [2, 72].

Thus, given an instance x, SHAP provides the weighted contribution of each feature

in the outcome (i.e., local feature importance) by learning how the model behaves in the

x proximity. SHAP uses an explanation model g that is capable of approximating the

output of the modelM(x). The explanation model is described as:

g(z′) = ϕ0 +
m∑
i=1

ϕiz
′
i (2.9)

, where z′ ∈ {0, 1}m, and ϕi ∈ R is the feature contribution [20, 66]. In the binary

classification (i.e., when the model output is 0 or 1), the SHAP values range from −1 to

1, where negative SHAP values indicate that the feature impact for the model predicts

the negative label (represented in this thesis by the label 0), and the positive SHAP values

indicate the feature impact for the model predicts the positive label (represented by the

label 1).

Lundberg and Lee [58] describe SHAP as a permutation-based approach for feature

importance attribution which defines a model as a cooperation of features, and it assigns a

value for each feature in the cooperation based on its contribution to the model decisions.

More precisely, SHAP is a solution to Equation:

ϕi(M, x) =
∑
z′⊆x′

|z′|!(m− |z′| − 1)!

m!
[M(z′)−M(z′\i)] (2.10)

, where

• z′ ⊆ x′ denotes all z′ vectors where the non-zero entries are a subset of the non-zero

entries in x′;

• |z′| is the number of entries different from zero in z′;

• Mx(z
′) = E[M(z)|zS], S is the feature set of indexes different from zero in z′, zS

denotes the original feature values but within missing values for features not in the

set S;
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• z′\i denotes setting z′i = 0;

• x′ is simplified input, which corresponds to the original input x by a mapping

function x = hx(x
′), where x′

i = 0 −→ ϕi = 0

There are many other feature attribution methods (e.g., [81, 82]), but SHAP is the

only method with the three desirable properties:

• Local accuracy: the explanation model g(z′) should match the output of the model

M(x) when x = hx(x
′) (i.e., g(z′) =M(hx(z

′)) when z′ = x′);

• Missingness: missing features have no attributed impact on the model decisions;

• Consistency: if a model changes and some feature impact increases or stays the

same independent of the other features, the feature impact of that feature should

not decrease. In other words, SHAP values only change if there is a change in the

importance of a feature. This property ensures a consistent interpretation of the

model behavior, even after alterations in the model architecture or parameters.

The exact computation of SHAP values is challenging [58]. However, approximated

options to calculate the explanation model g include Linear SHAP, Kernel SHAP, Deep

SHAP, and Tree SHAP [58, 57]. In this thesis, we used (1) Tree SHAP to compute the

SHAP values of models built with ensemble tree classifiers (such as the XGBoost). and

(2) Kernel SHAP for the TabNet classifier.

Tree SHAP only takes allowed paths within the feature set, which means that the

Tree SHAP does not include non-realistic combinations of features as in other

permutation-based methods. Instead, it takes the weighted average of all the model

decisions reachable by a certain coalition of features [57]. On the other hand, the Kernel

SHAP is a sample-based method that approximates SHAP values using a weighted

linear regression [58].

SHAP values differ from the agreement and prediction confidence approaches

regarding the granularity of information they offer. Once SHAP values provide

information by feature, and the other approaches provide information considering the

overall prediction. Consequently, the SHAP values can provide more detailed

information regarding the model. In the following section, we present the Bayesian

Search optimization strategy used in the X-Eval.
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2.6 Bayesian Search

Bayesian Search is an optimization strategy based on the Bayesian methods to

guide the search for the best solution in a parameter space. The Bayesian Search is

regularly used when the objective function is noisy and expensive to evaluate. The

Bayesian Search core idea is to estimate the objective function outcomes using

probabilistic models, typically Gaussian Processes (GPs), to decide the next solution to

be evaluated [9]. This strategy is interesting because estimating the outcome of the

objective function using a probabilistic model has a lower cost than executing the actual

objective function. For instance, in the model hyperparameters turning of a Neural

Network, the objective function is to build the model and to compute the model

performance in a test set [49].

According to Brochu et al. [9], in the Bayesian Search, first, we randomly generate

a set of initial candidate solutions. Then, we evaluated this solution using an objective

function.

Next, we built a probabilistic surrogate model (e.g., a Gaussian Process) from the

observed data solutions. The goal of this surrogate model is to provide an estimate of the

objective function outcome. Thus, we use the surrogate model to estimate the conditional

probability of the objective function (obf), given the available data (D) (i.e., p(obf |D)).

Many techniques can be used to define the surrogate model, although the most

popular is using a regression model. A Gaussian Process (GP) is a model that builds

a conditional probability distribution over the data, assuming a multivariate Gaussian

distribution. The GP can efficiently summarize a great number of functions and smooth

the transition as more data are provided to the model.

We can build a GP regression model from a sample of solutions

(X = {x1, x2, ..., xn}) and their objective function outcomes (y = obf(xi)∀xi ∈ X). That

is, the candidate solutions and their objective function outcomes are generated to define

a dataset D = {< xi, obf(xi) >, ..., < xn, obf(xn) >} to train the GP regressor. We can

consider that the GP regressor will estimate the outcome for the new provided solutions

as p(obf |D) = p(D|obf) ∗ p(obf). Thus, GP regressor predictions will change as more

candidate solutions are provided for the GP regressor.

So, an acquisition function is defined based on the surrogate model. We use the

surrogate model to estimate the outcome of a new set of candidate solutions in the space

parameters. For instance, we can define the candidate solutions randomly and estimate

the objective function outcome using the surrogate model. The next step is to select

the candidate solution based on the highest estimated outcome. Then, we evaluate the

selected solution with the actual objective function to get its true outcome.

Finally, the new observation is incorporated into the dataset D, and the surrogate
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model is updated with the selected candidate solution. The process is repeated from

the definition of the surrogate model until a stopping criterion (e.g., a specified number

of iterations or achievement of a predetermined result). Algorithm 4 summarizes the

Bayesian Search process.

Algorithm 4: Bayesian Search

Input: seachspace, obf
Result: xt // selected solution

1 X = generate candidate solutions from the seachspace
2 y = obf(xi)∀xi ∈ X
3 D =< X, y >
4 GP = build a regression model from D
5 for t ∈ {1, 2, ..., until a stopping criterion} do
6 C = generate candidate solutions // possibly randomly

88 // GP(x) estimates the obf outcome

1010 Find xt by the acquisition function over the GP: xt = argmaxx∈C GP(x)
1212 yt = obf(xt)
1414 D = D ∪ < xt, yt >
1616 Update the GP with D

end

Bayesian Search is particularly effective in scenarios where the objective function

is expensive to evaluate, and noisy. Bayesian Search has been used in hyperparameters

tuning, and other optimization problems [49]. In this thesis, we used the Bayesin Search

to looking for the best values of a specific hyperparameters of the proposed algorithm

X-Eval, which is presented in the Secton 4.1.2. In the following chapter, we present our

related work.
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Chapter 3

Related Work

In the literature, there are different strategies to estimate the model performance in an

unknown distribution (e.g., Regression-based AutoEval [25, 33, 99], Agreement Among

Models [59, 77, 76, 14], and Threshold-based AutoEval [31]). This chapter presents an

overview of works related to AutoEval.

3.1 Regression-based AutoEval

This section presents: (1) works that used regression models to predict model

performance [25, 33, 99]; and (2) works that introduced metrics highly correlated with

model performance in out-of-distribution target data, which can be used in regression to

predict model performance [24, 100, 110].

Deng and Zheng [25] have recently introduced the term Automatic model

Evaluation (or simply, AutoEval) to reference the problem expressed by the following

question:

“how can we estimate model performance on a test set without labels?”

To investigate the AutoEval problem, they constructed a meta-dataset in which

each instance is a transformed dataset from original images. Specifically, the authors

used transformations such as rotation, background substitution, and foreground scaling.

To predict the accuracy of the classification model on an unlabeled dataset, Deng and

Zheng [25] trained regression models using features such as the Fréchet distance (FD)

between the meta-dataset and original images. The authors compared three approaches:

(i) based on threshold and predictions confidence, (ii) linear regression trained with FDs,

and (iii) neural network regression also trained with FDs. In their experiments, the neural

network regression approach achieved better results.

In a similarly way, Guillory et al.[33] also proposed AutoEval approaches based on

regression methods. Guillory et al. [33] estimated the model performance on unlabeled
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data using regression models trained with: (i) the average confidence (AC) of the model

predictions; and (ii) the Difference of average Confidences (DoC) on the training set and

the test set. The authors evaluated their approaches over a variety of distribution shifts.

In their results, Guillory et al. [33] observed that DoC outperformed the feature statistics-

based methods (e.g., FD and Maximum Mean Discrepancy) and AC in the AutoEval task.

Sun et al. [99] used distribution shapes, clusters, and representative samples

extracted from image features to propose a semi-structured training set representation

for regression-based AutoEval. In the experiments, their AutoEval method achieved

consistent and competitive results in comparison to existing methods such as FD Deng

and Zheng [25], AC, and DoC Guillory et al. [33] for generation of training sets to

AutoEval.

Deng et al. [24] applied dispersity to predict model performance in distribution shift

situations. Dispersity measures the diversity and distribution of the model predictions

among the classes. Deng et al. [24] use the nuclear norm to characterize confidence and

dispersity and show that the nuclear norm strongly correlates with the model performance

in out-of-distributions datasets.

Weijie et al. [100] proposed a bag-of-prototypes (BoP) dataset representation,

which is a semantic bag at the dataset level. In BoP, they create K clusters from a

reference dataset. Next, they create a K-dimensional histogram by counting the number

of images in each cluster. The BoP representation aims to provide a characterization of

the dataset semantic distribution. Then, Weijie et al. [100] use the Jensen-Shannon (JS)

divergence to measure the similarity between two datasets. Their experiments

demonstrated a strong correlation between the JS distance of source and target datasets

represented as BoP and the model accuracy.

Similarly, XIE et al. [110] proposed an approach that uses feature dispersion as

an indicator of the model performance in an out-of-distribution target dataset. They

allocate the target instances into different clusters based on model predictions. Then,

they compute a dispersion score by using the average distances between each cluster

centroid and the center of all features, weighted by the sample size of each cluster. The

proposed metric was highly correlated with the model performance in their experiments.

Huang et al. [37] aim to improve model performance estimation on

out-of-distribution datasets by customizing a meta-dataset. In their proposal, each set

of samples in this meta-dataset exhibits a reasonable distribution shift relative to the

target dataset.

This section presented approaches to generate statistics regarding the model

prediction to train regression models to predict the model performance. However, Garg

et al. [31] showed that the correlation between these presented statistics and the true

performance could significantly vary when we consider different natures of distribution

shifts. Furthermore, in this kind of approach, the information used to predict the model
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performance is aggregated at the dataset level, thus, it is impossible to consider specific

characteristics of an instance in the test set. Next, we present approaches that use

Agreement Among Models (which provide instance-level information about the model

prediction) to predict the model performance.

3.2 Agreement Among Models

There are initiatives that use agreement (or disagreement) on ensemble classifiers

to predict the model performance (e.g., [59, 77, 76, 14]). This kind of approach uses the

predictions of two (or more) independently-trained models. Then, the model performance

is defined based on how often the models agree in their predictions of the unlabeled data

(or some statistics about it) [59].

Madani et al. [59] named this approach as co-validation, and they used the

disagreement for performing error estimation and model selection. Madani et al. [59] use

as extreme example of distribution shift the Active Learning, where we choose the most

informative training instances using a process that does not reflect the test distribution.

To compute the agreement among models on the test set, Madani et al. [59] partitioned

the training set into equal halves, and they trained a model on each half. Madani et

al. [59] showed empirically that in Active Learning, agreement among models: (1)

provides a more accurate estimation of the model performance, and (2) is more useful as

an indicator for model selection.

Platanios et al. [77] introduced a Bayesian approach that uses the predictions of

many classifiers to estimate the model performance on unlabeled data. The central idea is

that each model in the ensemble takes a sampled label for each example and changes the

label with a probability equal to the model error rate. In their experiments, the proposed

methods outperformed state-of-the-art approaches based on agreement among models to

estimate the model accuracy.

Platanios et al. [76] proposed a method based on logical constraints to estimate

classifiers accuracy, using only unlabeled data. The proposed method is based on the

intuition that when the models make a prediction that violates a pre-built constraint, at

least one model should have made a mistake.

Chen et al. [14] combined an ensemble of classifiers and self-training to identify

misclassification. First, the proposed method iteratively trains an ensemble of models.

Then, the proposed method performs self-training to improve the ensemble with the

identified misclassified examples. They evaluated the proposed method in 59 tasks related

to image classification and Natural Language Processing. The proposed method achieved
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state-of-the-art results in the experiments.

Baek et al. [6] explored the correlation between the agreement between models

in the source and the target datasets to estimate the model performance. They call

this correlation of agreement-on-the-line phenomenon. They introduced the ALine-D

method, which leverages the agreement-on-the-line phenomenon and uses linear regression

to estimate the model performance under distribution shift.

Rosenfeld and Garg [83] introduced a method that trains a secondary model

maximizing two objectives: (1) the agreement with the evaluated classifier on the source

distribution and (2) the disagreement on the target distribution. Then, the method uses

the trained model to calculate the estimation error.

Baek et al. [6] explored the correlation between the agreement between models

in the source and the target datasets to estimate the model performance. They call

this correlation of agreement-on-the-line phenomenon. They introduced the ALine-D

method, which leverages the agreement-on-the-line phenomenon and uses linear regression

to estimate the model performance under distribution shift.

This kind of approach that uses agreement among models is intuitive, and we could

find good results reported with this strategy in the literature.

3.3 Generalization Bounds

Some studies have proposed generalization bounds using theoretical and empirical

complexity measures [26, 5, 40, 19, 41]. This kind of research bounds the generalization

gap from complexity measures calculated on a trained model.

Arora et al. [5] proposed generalization bounds that are based on

reparametrization of the trained neural network from a compression-based framework.

Jiang et al. [40] proposed a measure based on the distances of the training examples to

the decision boundary to predict the model generalization gap. Corneanu et al. [19]

proposed an algorithm to estimate the model performance without any testing dataset.

They used network topology measures to identify and to compute the model error in the

test set, even with no access to it. Jiang et al. [41] investigated more than 40 complexity

measures and they found out that the Sharpness-based measures (e.g., PAC-Bayesian

bounds [26]) perform best.

These bounds (1) are usually numerically loose regarding the true generalization

error [31], and (2) they do not focus on predict the model performance in a specific

unlabeled dataset. Thus, the works that focus on the prediction of a model performance

on an unlabeled dataset with unknown distribution are more relevant to our work.
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3.4 AutoEval based on the Model Confidence or

Parameters

Garg et al. [31] proposed the Average Thresholded Confidence (ATC), a method

to define a threshold to be applied to the confidence of the model prediction. Next, the

ATC estimates the accuracy of a model with the portion of unlabeled examples that the

model confidence is greater than the defined threshold. ATC identifies a threshold t on

the training set such that the number of training examples, with a score less than the

threshold, match the error of the evaluated model. Then ATC estimates the model error

on the test set by the number of test examples with a score less than t. Garg et al. [31]

evaluated as score function the maximum confidence, and the negative entropy. In the

experiments, ATC outperforms the baselines, and the ATC estimated the performance on

the test set from 2 to 4 times more accurately than the baselines.

Inspired by Garg et al. [31], Lu et al. [56] proposed the Confidence Optimal

Transport with Thresholding (COTT) method. COTT leverages optimal transport

theory to compute a threshold t ∈ {0, 1}. Then, the COTT uses t to estimate the model

performance by comparing the threshold t with the transport cost matrix.

Yu et al. [112] proposed the Projection Norm to predict the model performance

on an out-of-distribution target dataset. First, the Projection Norm technique uses the

model predictions to assign labels to the target dataset. Next, the Projection Norm builds

a new model based on these assigned labels. Then, the Projection Norm estimates the

model performance from the Euclidean distance of the parameters of the two models (i.e.,

the models trained with the source and the target data).

Our proposed C-Eval approach is similar to the Yu et al. [112] approach. However,

instead of using the similarity between the models parameters, we used the similarity

between the causal graphs extracted from the source and the target datasets. We based

our idea on literature that suggests a relation between changes in the causal graph and

distribution shift [94].

3.5 Domain Adaptation using Causality

Many works use causal graphs to learn a feature subset invariant for distribution

shifts. These works use these invariant features to build models to make predictions from

a new target dataset. This problem is known as domain adaptation [94, 60, 95]. However,
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in this thesis, our focus is on a different issue than the domain adaptation problem.

Specifically, we aim to address the challenge of estimating the model performance in a

specific out-of-distribution target dataset.

Typically, the works about domain adaptation provide theoretical guarantees about

minimax optimal performance (i.e., the best possible performance of a model in the worst-

case scenario) [94]. However, these works do not estimate the model performance in a

specific target dataset. This kind of estimation is important because the distribution can

be stable among different datasets and there can be different distribution shifts among

other datasets [94].

3.6 AutoEval based on Feature Importance

Mougan et al. [70] proposed the use of explanation shifts as a way to detect

distribution shifts that can impact on the model predictions. The authors conducted a

mathematical analysis to demonstrate that these measures of explanation shifts are more

reliable indicators of the model performance than other measures of distribution shifts.

3.7 Weighting the examples based on the target

data

Shimodaira [88] introduced an approach for weighting the source examples based

on the impact on the model. This approach assigns higher weights to source examples in

regions with high density in the target data. Sugiyama et al. [98] extended this concept,

they proposed a method to estimate generalization error considering covariate shift.

Subsequently, Sugiyama et al. [96] and Sugiyama et al. [97] used the adaptability

of importance weighting to improve the cross-validation (CV) performance estimation.

Our proposed C-Eval approach is similar to the Sugiyama et al. [96] and

Sugiyama et al. [97] approaches. However, rather than using the density to weight the

examples in the CV, we regularize the (e.g., CV) performance estimated by the

similarity between the causal graph inferred from the source and target datasets. Once,

according to Subbaswamy et al. [94], causality relations are strongly related to

distribution shifts.
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3.8 Our Work

Our work differs from the aforementioned ones because, to the best of our

knowledge: (a) our work was the first to use explanations to Automatic Model

Evaluation [91], and (b) our initiative is the first work that uses causality in the

classification model evaluation to estimate the model performance on an

out-of-distribution target dataset (i.e., dataset drift).

We emphasize that the goal of our approach is to estimate the model performance

in a specific out-of-distribution dataset (i.e., AutoEval), rather than focusing on improving

or guaranteeing model performance in scenarios involving distribution shifts (e.g., building

minimax optimal models), as was the case in [104, 52, 29, 7, 105, 48, 94, 39]. While there

are some similarities between these two tasks, certain characteristics justify separating

the research in each field. For instance, suppose that there are multiple models with high

performance on a source dataset, and we aim to select the most suitable one to apply to

a specific target dataset. In such situations, our focus is not on creating a new model but

choosing the best existing model. Another example is when we would like to monitor the

model performance after deployment in the real world. Next, we present the algorithms

proposed in this thesis.
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Chapter 4

Proposed Approaches

This chapter presents our proposed approaches to AutoEval: eXplainability for Automatic

Model Evaluation (X-Eval) and Causality for Automatic Model Evaluation (C-Eval). The

proposed algorithms aim to estimate the model performance in an unlabeled dataset with

an unknown distribution. That is, given a classification model M trained on a source

(training) dataset D=<Xtrain, ytrain> (where Xtrain={x1, .., xn}, xi is an array with the

values of m features, and ytrain is an array with the label for each instance xi ∈ Xtrain),

and a target (test) dataset T =<Xtarget, ?> (where Xtarget={x1, .., xo}, and xi is an array

with the values of m features), considering that T is unlabeled and its distribution is

unknown, the proposed algorithm aims to estimate the performance of aM on T . Next,
we present the X-Eval.

4.1 X-Eval: eXplainability for Automatic Model

Evaluation

This section presents the proposed algorithm to AutoEval with common metrics

used to explainability. We name this algorithm as eXplainability for Automatic Model

Evaluation (referred to as X-Eval). We split the X-Eval into two algorithms: (1) the

X-EvalCore, an interactive algorithm to estimate model performance on a specific target

dataset, and (2) the complete X-Eval, an extension of the X-EvalCore using Bayesian

Search to improve the performance estimation and the approximation of the target data

distribution. The next section presents the X-EvalCore.
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4.1.1 X-EvalCore: The X-Eval Fundamental Concept

The main idea of the X-EvalCore is to approximate the performance of the model

(M) in the target data (T ) by the average of k estimations of the performance of the

modelM in the T . To estimate the performance of the modelM in the target data T ,
we use a second model (denoted asMautoEval) to classify each prediction ofM as correct

or incorrect. We train the second modelMautoEval using data commonly used to explain

the model. We denoted the true performance ofM on T as ℓ(M, T ) and the estimation

of the ℓ(M, T ) as ℓ′(M, T , pcorIncor), where pcorIncor is a array which picorIncor indicates

whether the i-th prediction is correct or incorrect.

We used the following model explainability approaches to provide data to the

X-Eval process: (1) confidence in the model prediction [33], (2) agreement among two

models [14], and (3) SHAP values (i.e., feature importance in the prediction) [90, 70].

As Figure 4.1 illustrates, the core premise of the X-Eval algorithm is that there are

similar patterns in the model explanation in the source and the target datasets, which are

kept in different data distributions. For instance, even with differences in the distributions

of the target and the source datasets: (1) a low prediction confidence indicates an incorrect

prediction in the target and in the source datasets; (2) a disagreement among classifiers

can indicate an incorrect prediction in both datasets; and (3) if the model predicted

the positive label and the most features impacted the model for the negative label, this

indicates a mistake in the target and source datasets.

Figure 4.1: X-Eval central premise.

Figure 4.2 illustrates the main X-Eval idea and the X-EvalCore method

implements this main idea. Algorithm 5 shows the main steps of the X-EvalCore

method [90]. The goal of the X-EvalCore is to approximate the target dataset

distribution with a classification model (referred to as AutoEval Model and denoted as

MautoEval) built from the explanations of the modelM predictions. For this, we use an

explainer function Explainer(M, < X , y >) that extracts explanations about the
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Figure 4.2: X-EvalCore fluxogram.

predictions of the modelM on a dataset X (we describe the Explainer function in the

Section 4.1.3, Section 4.1.4, Section 4.1.5, and Section 4.1.6).

Thus, from the explainer Explainer(M,D) we start the creation of a dataset

Xsci (to trainMautoEval), which can provide patterns of correct or incorrect predictions,

i.e., Xsci=Explainer(M,D). To complement theMautoEval training dataset (¡Xsci,, . ¿),

we create an array ysci of labels which indicates whether each M prediction is correct

or incorrect. Thus, to create ysci, we simulate predictions of a model building a noise

array (ynoise) with possible labels to the ytrain. We defined ynoise as a noised array to

approximate different distributions that could occur on target data T . One approach to

construct the ynoise is by generating a random array (i.e., ynoise = {r}|ytrain|, where r is a

random possible label for ytrain). From the ynoise we create ysci checking if yinoise=yitrain,

i.e.,

yisci =

{
1, if yinoise = yitrain

0, otherwise
∀i ∈ {1, .., |yn|} (4.1)

.

So, we concatenate y⊺noise to the columns of the Xsci (i.e., Xsci = y⊺noise ∪ Xsci).

Then, we trainMautoEval on <Xsci, ysci>.

For theMautoEval to classifyM predictions as correct or incorrect and to estimate

the model performance on the target dataset (i.e., to estimate the ℓ(M, T )), we also

need to create a target dataset based on the model explanations on the Xtarget. So

we define Xtci by concatenating (1) the M predictions on the target data T and (2)

the model explanations prediction in the target dataset (i.e., Explainer(M, T )). That

is, Xtci=M(T )⊺ ∪ Explainer(M, T ). Then, we use the prediction of MautoEval (i.e.,

MautoEval(Xtci)) to estimate the performance of the model M on the target dataset T
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Algorithm 5: X-EvalCore

Input: M,D, T , Ynoise

Result: estimatedPerformance

1 estimates← ∅
2 forall yno ∈ Ynoise do
3 X yno

sci = Explainer(M,D) ∪ y⊺no

4 ysci=

{
1, if yino = yitrain
0, otherwise

∀i ∈ {1, .., |yn|}

5 Myno

ci ← model built from < Xsci, ysci >
6 Xtci ← Explainer(M, T ) ∪M(Xtarget)

⊺

7 estimate← ℓ′(M, T ,Myno

ci (Xtci))
8 estimates← estimates ∪ estimate

end
9 estimatedPerformance← average of estimates

(i.e.,ℓ′(M, T ,Mi
autoEval(X i

tci))).

Given Ynoise={y1noise, .., yknoise}, the X-EvalCore process is executed with each

ynoise ∈ Ynoise because: (1) X-EvalCore involves randomness to approximate different

distributions which could occur on T , and (2) this repetition is important to decrease

the variance and the estimation error.

The final estimated performance is the average of all estimates made with each

ynoise ∈ Ynoise. In other words, as the expected value (E[X]) of a random variable is the

average of all possible values of the variable [106, 84], we approximated E[ℓ(M, T )] using:

E[ℓ(M, T )] ≈ 1

|Ynoise|
∑

yno∈Ynoise

ℓ′(M, T ,Myno

autoEval(Xtci)) (4.2)

, whereMyno

autoEval denotes theMautoEval built from a yno ∈ Ynoise.

This section presented the X-EvalCore, a novel method for estimating the model

performance in the target dataset. Leveraging the X-EvalCore characteristics, we

integrated the X-EvalCore into the X-Eval algorithm. Next, we present the X-Eval,

which incorporates Bayesian Search to the X-EvalCore to improve the approximation of

the target data distribution and to refine the performance estimation of the model

performance in the target dataset.



4.1. X-Eval: eXplainability for Automatic Model Evaluation 62

4.1.2 X-Eval: Extending the X-EvalCore using Bayesian

Search

To improve the X-EvalCore estimation, we used a Bayesian Search to search for

Ynoise that better represents the target data distribution. According to Rossi [84], the

X-EvalCore could be considered MSE-consistent if the mean squared error (MSE) of the

estimator X-EvalCore and ℓ(M, T ) goes to zero as the number to the used ynoise (denoted

as |Ynoise|) goes to infinity, i.e.,

lim
|Ynoise|→∞

MSE(X-EvalCore(M,D, T , Ynoise), ℓ(M, T ))→ 0 (4.3)

. Thus, the X-EvalCore can be as accurate as desired by setting a sufficiently large number

of ynoise (i.e., |Ynoise|).
However, it is impossible to use an infinity number of ynoise (i.e., |Ynoise| → ∞) in

the X-EvalCore algorithm. In this sense, we hypothesized that the following components

can improve the X-EvalCore estimation and approximate the X-EvalCore of the state of

MSE-consistent:

1. The accuracy of theMautoEval, which depends on (a) the choice of a Ynoise set that

decreases the estimation error, (b) the quality of the provided explanations (by the

Explainer) used to judge each target instance as correct or incorrect, and (c) the

effectiveness of the classifier used to buildMautoEval;

2. The size |Ynoise| must be large enough to make the estimation error goes to the

desired value.

To deal with the components 1.a (the choice of a Ynoise set) and 2 (the size |Ynoise|
must be large enough), we proposed the use of Bayesian Search in the X-Eval algorithm.

X-Eval uses Bayesian Optimization [68, 9] to search for the best values for each ynoise ∈
Ynoise to be applied in the X-EvalCore.

To deal with component 1.b (the quality of the provided explanations), we

showed the applicability and effectiveness of feature importance (SHAP values) to

provide information to AutoEval.

To deal with component 1.c (the effectiveness of the classifier used to build

MautoEval), in this thesis, we used the XGBoost classifier to create the AutoEval Model

(MautoEval) because it is a state-of-art representative on automatic classification in the

context of tabular data.

Thus, aiming to reduce the estimation error of the X-EvalCore by choosing better

values for Ynoise, we proposed the use of the Bayesian Search to search for Ynoise that can

approximate the estimated performance to the true performance. This algorithm is an
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interactive process to define the Y k
noise based (1) on the previous Y 1

noise, .., Y
k−1
noise and (2)

in the objective value (v1, .., vk−1) associated to each Y 1
noise, .., Y

k−1
noise. The objective value

vi is a noisy measure of the X-EvalCore effectiveness using a Ynoise ∈ {Y 1
noise, .., Y

k−1
noise} to

estimate the true performance ℓ(M, T ). We chose the Bayesian Optimization to search

for the best parameter Ynoise because this is a powerful strategy to seek the maximum and

the minimum of a function when the objective function is complex, noisy, and expensive

to evaluate [68, 9]. Thus, the Bayesian Optimization was a logical definition once our

objective function is:

1. Complex and expensive to compute since it depends on a call of the X-EvalCore (as

we will see next), and

2. Noisy, because we do not have enough information about the T distribution to make

an accurate estimate of how far the X-EvalCore is from the true performance.

Algorithm 6 shows the main steps of the X-Eval algorithm. To define our objective

function, we needed to modify the X-EvalCore to return a measure of how near the X-

EvalCore estimation is to the true performance ℓ(M, T ) with a specific Y k
noise. In this

thesis, we used as objective function the average accuracy (acc) ofMyno

autoEval ∀yno ∈ Ynoise

on its training set (¡X yno

sci , ysci¿) plus the average of a measure (con) of how consistent

the Expected AutoEval Labels are to each xi
target ∈ Xtarget by M(Xtarget) considering

MautoEval(Xtci).

Algorithm 6: X-Eval

Input: M,D, T , l
Result: estimatedPerformance

// The BayesianSearch chooses the Y 0
noise randomly

22 Y 0
noise ← BayesianSearch(∅, ∅)

44 k ← 0
66 while k < l do
88 estimatek, vk ← X-EvalCore(M,D, T , Y k

noise)
1010 k ← k + 1

1212 Y k
noise ← BayesianSearch({Y 0

noise, .., Y
k−1
noise}, {v0, .., vk−1})

13 end
1515 estimatedPerformance← average of {estimate0, .., estimatel−1}

Definition 1 (Expected AutoEval Label). The Expected AutoEval Label (eal) to a

specific xi
target (given a yno ∈ Y k

noise) is: the own model M(xi
target) prediction if its

prediction was classified as correct by the AutoEval Model (i.e.,Myno

autoEval(x
i
tci) = 1), or

the opposite label predicted by the modelM(xi
target) if its prediction was classified
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as incorrect by the AutoEval Model (i.e.,Myno

autoEval(x
i
tci) = 0), as Equation shows 4.4.

eal(xi
target, yno) =

{
M(xi

target), Myno

autoEval(x
i
tci) = 1

1−M(xi
target), otherwise

(4.4)

Specifically, our objective function (obf) is:

obf(Xtarget, Y
k
noise) =

1

|Y k
noise|

∑
yno∈Y k

noise

acc(Myno

autoEval(X
yno

sci ), ysci)+
1

|Xtarget|
∑

xte∈Xtarget

con(xte, Y
k
noise)

(4.5)

, where the averageMyno

autoEval accuracy in the training set (acc) is

acc(Myo
autoEval(X

yo
sci), ysci) =

1

|X yo
sci|

|X yo
sci|∑
i

{
1, Myno

autoEval(x
i
sci) = yisci

0, otherwise
(4.6)

, and the consistency function con is

con(xi
target, Y

k
noise) =

{
eal(xi

target, Y
k
noise), eal(xi

target, Y
k
noise) > 0.5

1− eal(xi
target, Y

k
noise), otherwise

(4.7)

, where eal is the average expected AutoEval label, computed with

eal(xi
target, Y

k
noise) =

1

|Y k
noise|

∑
yno∈Y k

noise

{
M(xi

target), Myno

autoEval(x
i
tci) = 1

1−M(xi
target), otherwise

(4.8)

In the objective function obf , we usedMautoEval accuracy on the training dataset

(acc in the Equation 4.6) because if MautoEval cannot find patterns on the training set

(i.e.,MautoEval has a low accuracy),MautoEval hardly will find out patterns on the target

dataset and accurate classify the modelM predictions as correct or incorrect.

The consistency function (con in the Equation 4.7) is a measure of how frequently

the Expected AutoEval Label does not change for different yno ∈ Y k
noise. Thus, the

consistency of theMautoEval predictions can indicate the confidence of the X-EvalCore in

the MautoEval classifications. Figure 4.3 shows the distribution of the con function over

different values of average Expected AutoEval Label.

Besides the right choice of the parameter Ynoise, an essential component of the

X-Eval effectiveness is the data provided to the X-Eval to classify each target instance as

correct or incorrect since it is the data that should have patterns that are kept in different

distributions. Thus, in this thesis, we focused on performing AutoEval with the X-Eval

with the following measure typically used for the model explanation: (1) confidence in

the model prediction [33], (2) agreement among models [14], and (3) we proposed the use

of feature importance (i.e., SHAP values) [90, 70]. Next, we present how we used these

explanations to provide information for AutoEval with the X-Eval.
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Figure 4.3: Distribution of the con function

4.1.3 Provided Confidence in the Model Prediction for the

X-Eval

Given the predictions of the modelM to a dataset < X , ? >,M normally provides

a confidence (c1, .., c|y|) of prediction for each possible label. The confidence in the model

predictions is used in many approaches to model explainability.

In this thesis, we denote Confidence(M,X ) as a function which returns c1, ..c|y|,

where ci ∈ R, 0 ≤ ci ≤ 1, and ci is the confidence of the predicted label is correct to the

target instance xi. We used the absolute difference of the confidence of model prediction

for each label (i.e., |confidenceLabel0− confidenceLabel1|) instead of the confidence for

both labels. This way, we can reduce the data dimensionality, providing the same amount

of information to the AutoEval ModelMyno

autoEval. In this thesis, we consider the scenario

in which the summation of the model prediction confidence for all data classes is equals

one (i.e.,
∑classes

cl ccli = 1, where ccli denotes the model prediction confidence to the class

cl).

Thus, we can use Confidence(M,X ) to provide data to the X-Eval to estimate

the model performance. Next, we present how we used the agreement among models to

provide information for the X-Eval.

4.1.4 Provided Agreement Among Models for the X-Eval

Different works use agreement among classifiers to AutoEval [59, 77, 14]. However,

given the characteristics of the X-Eval algorithm, we needed to propose a novel approach

to compute agreement between two classifiers. Thus, to compute agreement between
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models, we use a model second model M′, different form the evaluated model M (i.e.,

M′ ̸=M), to compare the prediction ofM′(X ) andM(X ). To train the AutoEval Model

MautoEval with explanations related to the modelM in the source dataset, we perform a

10-fold cross-validation (Algorithm 7) using the source dataset and we get the predicted

label to each xi ∈ Xtrain withM andM′. That is:

• For the training set, we compute

pred = CrossV alPredict(M, < Xtrain, ytrain >)

and

pred′ = CrossV alPredict(M′, < Xtrain, ytrain >)

. Algorithm7 shows the main steps of the CrossV alPredict function.

• For the test set, we compute pred =M(Xtest) and pred′ =M′(Xtest).

To compute the agreement betweenM andM′, we perform

agreement=

{
1, if predi = pred′i

0, otherwise
∀i ∈ {1, .., |yn|}.

We referred to as Agreement the presented algorithm to compute agreement

between models. Algorithm 8 summarizes the Agreement process. Next, we present

how we used the SHAP values (i.e., feature importance) to provide information for the

X-Eval.

Algorithm 7: CrossValPredict

Input: M, < X , y >
Result: predictions

1 predictions← ∅
2 Folds← split < X , y > in 10-folds //without shuffling the data
3 forall ¡trainingSet,testSet¿ in Folds do
4 Mcopy ← to copyM
5 Mcopy ← model built on the trainingSet
6 predictions ∪Mcopy(testSet)

end

In this thesis, we used the Naive Bayes classifier in the agreement approach to

create the model M′. We chose the Naive Bayes because it is an explainable model.

Besides, the Naive Bayes can bring diversity to the predictions since Naive Bayes applies

a different classification strategy from the evaluated models in this thesis (i.e., decision

tree ensembles, and the TabNet).



4.1. X-Eval: eXplainability for Automatic Model Evaluation 67

Algorithm 8: Agreement

Input: M, < X , y >
Result: agreement

1 M′ ← model ̸=M
2 if ¡X , y > is the training set then
3 pred← CrossV alPredict(M, < X , y >)
4 pred′ ← CrossV alPredict(M′, < X , y >)

else
5 To trainM′ on the source data D
6 pred←M(X )
7 pred′ ←M′(X )
end

8 agreement=

{
1, if predi = pred′i
0, otherwise

∀i ∈ {1, .., |yn|}

4.1.5 Provided SHAP values for the X-Eval

Section 2.5.3 provided the background regarding the SHAP values. As showed, the

exact computation of SHAP values is challenging [58]. However, there are approximated

options to calculate SHAP values, such as LinearSHAP, KernelSHAP, DeepSHAP, and

TreeSHAP [58, 57].

In this thesis, we used TreeSHAP to compute the SHAP values of the decision tree

ensemble classifiers (i.e., XGBoost, LightGBM, and CatBoost) and the KernelSHAP to

compute the SHAP values to the TabNet classifier. We denote the function that generates

SHAP values as Shap. Next, we present how we combined these three approaches to

explanation to provide information for the X-Eval.

4.1.6 Combining Different Types of Explanation for the X-Eval

An advantage of the X-Eval algorithm is that it allows the combination of different

types of model explanations. In this work, we combined explanations: SHAP values, the

confidence in the model predictions, and the agreement among models just concatenating

the columns of the result of each explanation type. For instance, Algorithm 9 shows

how we combined the information coming from SHAP values (Shap), confidence in the

prediction (Conficence), and agreement among models (Agreement).
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Algorithm 9: Explaner

Input: M, < X , y >
Result: explanations

explanations←
Shap(M,X ) ∪
Conficence(M,X )⊺ ∪
Agreement(M, < X , y >)⊺

This kind of strategy is interesting because each type of explanation can be

important to define whether a specific prediction is correct or not. Our experiments

evaluated the X-Eval with the combination of feature importance (SHAP values),

confidence in the model prediction, and agreement among models. Next, we present the

time complexity analysis of the X-Eval.

4.1.7 Time Complexity Analysis of the X-Eval

In this section, we present the time complexity analysis of the X-Eval algorithm.

We denote the source dataset number of examples as n, the target dataset number of

instances as m, and the number of features in the training dataset as |x|. Considering

the Algorithm 6, the X-Eval executes the BayesianSearch and the X-EvalCore method

in l iterations. The BayesianSearch complexity is O(l3) and letting O(XEvalCore) be

the complexity of the X-EvalCore algorithm, the X-Eval complexity is

O(l3) +O(l XEvalCore).

The X-EvalCore complexity is dependent on many experimental design decisions.

Hence, next, we present the X-EvalCore complexity considering this thesis main

experimental design decisions. Given the Algorithm 5, in the X-EvalCore the loop in

line 2 is executed a number of interactions equals the size of the Ynoise (denoted as

|Ynoise|). Inside this loop, we execute the Explainer in line 3. The Explainer is sum of

the Shap, the Confidence, and the Agreement complexities. Given that:

• The Shap is O(n t e d2), where t be the number of trees, d the maximum depth of

any tree, and e the number of leaves, considering that we used the TreeSHAP [57].

• TheAgreement is (O(n |x|)+O(n |x| c))+(O(t d |x| log n)+O(n t d)) . Considering

that a Gaussian Naive Bayes classifier takes (1) O(n |x| c) to train, and (2) O(n |x| c)
to make the predictions of the dataset, where c the number of classes. Additionally,

(1) the training of an XGBoost model is O(t d |x| log n), where t is the number
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of trees, d is the height of the trees, and (2) predicting the labels of the dataset is

O(n t d).

• The Confidence is O(1), once we get the prediction confidence during the executions

of the Agreement function.

Thus, we have the following time complexities:

O(n t e d2) +O(n |x|) +O(n |x| c) +O(t d |x| log n) +O(n t d)) +O(1)

Once we used the default XGBoost hypeparameters1 (i.e., d = 6 and t = 100), d

and t can be considered constants. Then, we obtain:

O(n e) +O(n |x|) +O(n |x| c) +O(|x| log n) +O(n) +O(1) =

(n e) + (n |x|) + (n |x| c) + ( |x| log n) + n =

(n e) + (n |x|) + (n |x| c) + ( |x| log n) = (because n is dominated by (n |x| c))
(n e) + (n |x| c) + ( |x| log n) = (because (n |x|) is dominated by (n |x| c))
O((n e) + (n |x| c)) (because (|x| log n) is dominated by (n |x| c))

In the Algorithm 5, the lines 4 and 7 are O(m). In line 5, we train the XGBoost

that is O(|x| log n) [15]. In line 6, we execute the Explainer in the target dataset, in which

the complexity is (m e) + (m |x| c). Additionally, in line 6, we make predictions with the

XGBoost, in which the complexity is O(m t d) = O(m), where d is the maximum depth

of the tree and t is the total number of trees. Again, as we used the default XGBoost

hyperparameters (i.e., d = 6 and t = 100), d and t can be considered constants [15].

However, in the real implementation, the Explainer is executed just once. So, the

X-EvalCore is

O((n e) + (n |x| c)) + O((m e) + (m |x| c)) + (l |Ynoise|(O(m) + O(|x| log n) +
O(m) +O(1))) =

(n e) + (n |x| c) + (m e) + (m |x| c) + (l |Ynoise|((|x| log n) + 2m)) =

(n e) + (n |x| c) + (m e) + (m |x| c) + (l |Ynoise|((|x| log n) +m)) = (removing

the constant 2)

n+(n |x| c)+m+(m |x| c)+ (l |Ynoise|((|x| log n)+m)) = (removing e because

e can be considered a constant since it is limited by 2d, ie, e ≤ 2d, and d = 6)

(n |x| c) + (m |x| c) + (l |Ynoise|((|x| log n) +m)) = (removing n and m, because

they are dominated by (n |x| c) and (m |x| c))
O((max(n,m) |x| c) + (l |Ynoise|((|x| log n) +m)))

In the X-Eval (Algorithm 6), the BayesianSearch complexity is O(l3), where l is

maximum number of generated Ynoise [63]. So, the X-Eval is

O(l3 + ((max(n,m) |x| c) + (l |Ynoise|((|x| log n) +m)))

1https://xgboost.readthedocs.io/en/latest/parameter.html

https://xgboost.readthedocs.io/en/latest/parameter.html
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Thus, the time complexity of our X-Eval implementation is dominated by (1) the

Bayesian Search time complexity (i.e., l3), (2) the number of evaluated ynoise (i.e.,

l |Ynoise|), (3) the time complexity of the Explainer, specifically to build and make

predictions with the Naive Bayes classifier in the Agreement function (i.e.,

((n |x| c) + (m |x| c))), and (4) the time complexity to build and make the predictions

with the XGBoost in the AutoEval ModelMautoEval (i.e., (l |Ynoise|((|x| log n) +m))).

We highlight that the presented time complexity analysis is dependent on this

thesis main experimental design. Consequently, the time complexity can change according

to the evaluated model, the chosen classifier to build the AutoEval Model (MautoEval),

the classifier used in the Agreement function, and the optimization algorithm used to

search for Ynoise values. Moreover, we highlight that we used a small l and |Ynoise| (i.e.,
|Ynoise| ≤ l ≤ 300, in the X-Eval hyperparameters analysis, and |Ynoise| = l = 30 in

the other experiments). Next, we present the proposed algorithm based on causality to

regularize the estimated model performance in distribution shift scenarios.

4.2 C-Eval: Causality for Automatic Model

Evaluation

We proposed the approach Causality for Automatic Model Evaluation (C-Eval) to

regularize the estimated performance of the classification model M on a specific target

dataset, which can be out-of-distribution.

The hypothesis and the central idea of our approach is that the changes in the

causal relations of the features in different datasets can indicate changes in the

distribution, which will affect the estimated performance of the model. From this

hypothesis, we use the similarity among the causal graphs inferred from different

datasets to regulate the estimated performance reported by a performance estimator

(e.g., the standard k-fold cross-validation). Figure 4.4 illustrates the main steps of the

proposed algorithm C-Eval.

Specifically in our approach, first, we estimate the model performance in the target

dataset with a performance estimator, denoted as estimator(D, T ), (such as the X-Eval

and the k-fold cross-validation). In our experiments, we used the 10-fold cross-validation

(CV) because it is a commonly used and well-studied method that presents low bias

and variance [46, 61]. In addition, we evaluated the C-Eval regularizing the proposed

X-Eval estimate because the X-Eval showed a lower estimation error than the CV in our

experiments.
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Figure 4.4: Illustration of the algorithm Causality for Automatic Model Evaluation (C-
Eval).

Next, we use a causality inference algorithm C to infer a causal graph from the

source (training) dataset (denoted as C(D)) and another causal graph from the target

(test) dataset (denoted as C(T )). A causal graph of a dataset is a directed acyclic graph

(DAG) where the features and the label are represented as vertices and the edges denote

causal relationship among these vertices (i.e., when one feature directly influences another

feature) [103, 35]. Figure 2.4 shows a causal graph example. Once the labels of the target

dataset (T =<Xtarget, ?>) are unknown (i.e., ytarget =?), we fill the labels of the target

dataset with the predictions of the evaluated model M (i.e., ytarget = M(T )), in the

source dataset (D=<Xtrain, ytrain>) we use the data label in the causal graph inference

(i.e., we use the ytrain).

Then, we compute the similarity from the inferred causal graphs (denoted as

s(C(D), C(T ))), where 0 ≤ s(C(D), C(T )) ≤ 1. Finally, we use this similarity to

regularize the estimated performance estimator(D, T ) reported by the Performance

Estimator (e.g., the X-Eval or the k-fold cross-validation). Specifically, we estimate the

regularized model performance with the equation:

λ estimator(D, T ) + s(C(D), C(T ))
(1 + λ)

(4.9)

We use a factor λ ≥ 0 to multiply the estimated performance estimator(D, T ) to
control the overfitting and underfitting, in a similar way that is made in ℓ1 and ℓ2 norm

regularization approaches [47]. Another way to interpret the λ is the λ is the degree of

confidence in the performance estimator (estimator), e.g., the more distribution shift is

expected in the target dataset, the smaller should be the λ. We used 1 + λ to normalize

the λ estimator(D, T )) + s(C(D), C(T )) result between 0 and 1. Next, we present the

time complexity analysis of the C-Eval algorithm.
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4.2.1 Time Complexity Analysis of the C-Eval

In this section, we present the C-Eval time complexity analysis. We denote the

source dataset number of examples as n, the target dataset number of instances as m,

and the number of features in the training dataset as |x|. From Equation 4.9, we can

see that the C-Eval complexity time is dominated by the time complexities of the used

performance estimator, causality inference algorithm, and similarity function.

Considering the used causality inference algorithms in this thesis:

• The PC is O(|x|q), where q is the maximal degree of any vertex in the causal graph

[93, 43].

• The DirectLinGAM is O(nd |x|3 M2+ |x|4 M3), where nd is the number of examples,

and M (≪ nd) is the maximal rank found by the low-rank decomposition used in

the kernel-based independence measure [87].

• The Notears is O(|x|3) [114]

Additionally, considering that we evaluated the XGBoost performance (with the

hyperparameters t = 100 and d = 6) and the used performance estimator in this thesis:

• The 10-fold cross-validation (10-CV) is O((|x| log n) + n). Once (1) the training

of an XGBoost model is O( |x| log n), and (2) predicting the labels of the dataset

is O(n).

• The X-Eval complexity is

O(l3+((max(n,m) |x| c)+(l |Ynoise|((|x| log n)+m))). Considering our experimental

design decisions, as shown in Section 4.1.7.

Once we represent the causal graphs as adjacent matrices (which complexity is

O(|x|2), the similarity (s) between the causal graphs can be computed with the following

complexities, considering the used similarity functions in this thesis:

• The Cosine similarity is O(|x|2) [89];

• The Jaccard similarity is O(|x|2) [23].

• The Macro F1 similarity is O(|x|2).

Finally, we can define the C-Eval complexity according to the chosen causality

inference algorithm, performance estimator, and similarity function. For instance:
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• The C-Eval with the X-Eval performance estimator, DirectLinGAM, and Macro

F1 similarity is O(l3 + ((max(n,m) |x| c) + (l |Ynoise|((|x| log n) + m)) +

(n |x|3 M2 + |x|4 M3) + (m |x|3 M2 + |x|4 M3))

• The C-Eval with the 10-CV performance estimator, DirectLinGAM, and Macro F1

similarity is O((|x| log n) + (n |x|3 M2 + |x|4 M3) + (m |x|3 M2 + |x|4 M3))

We highlight that we used a small l and |Ynoise| (i.e., |Ynoise| ≤ l ≤ 300, in the

X-Eval hyperparameters analysis, and |Ynoise| = l = 30 in the other experiments). Next,

we present the experimental evaluation of the proposed algorithms X-Eval and C-Eval.
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Chapter 5

Experimental Design to Evaluate the

Proposed Algorithms

In this chapter, we present the experimental design, i.e., the main decision to evaluate the

X-Eval and C-Eval. Chapter 6 and Chapter 7 present these experimental evaluations. In

our experiments, we used real-world and synthetic data.

In the experimental evaluation (Chapter 6 and Chapter 7), we analyzed the

approximations of the X-Eval and the C-Eval to the true performance of the classifier

XGBoost in a specific target out-of-distribution dataset. We used the XGBoost because

it is representative of the state-of-the-art to deal with tabular data [15]. Additionally, in

Section 6.2.2, we evaluated the estimation error of the models LightGBM, CatBoost,

and TabNet since they are in the state-of-art of automatic classification for tabular data

[8].

In the X-Eval evaluation, considering the substantial computational cost of

executing the X-EvalCore, we opted for a Ynoise size of 30 and set the number of

interactions in Bayesian Search (l) to 30. We used these settings because as

demonstrated in the experimental analysis in Appendix D, increasing the values of these

hyperparameters did not significantly decrease the estimation error.

Besides, in the C-Eval, we evaluated the algorithms PC (named after its authors,

Peter and Clark) [93, 42], NOTEARS [114], and DirectLiNGAM [87] to infer the causal

graphs. We chose these algorithms because they are state-of-the-art representative method

for causal discovery [51]. In addition, we varied the hyperparameter λ factor from 0 to 10

with an interval of 0.01.

We evaluated the C-Eval with the similarity functions Cosine, Jaccard, and Macro

F1 (i.e., we used these similarity functions to compute the causal graph similarities). We

used these metrics because they are commonly used metrics when the feature values are

between 0 and 1 [92]. Besides, in our proposed method C-Eval, we needed a similarity

metric that the output is between 0 and 1. We evaluated the metric Macro F1 as similarity

function because of its proprieties to compare imbalance data (Section 2.4 provides a

longer explanation regarding the decision of the similarity functions). To calculate the

similarity between the causal graphs, we represented a causal graph as an adjacency
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matrix and we transformed the adjacency matrix into an array as Figure 5.1 exemplifies.

Figure 5.1: Example of transformation of an adjacency matrix to an array.

We evaluated the proposed methods with real-world and synthetic data. The

goal of the experiments with synthetic data was to characterize the performance of the

proposed algorithm in different types and degrees of distribution shifts.

We used the standard 10-fold cross-validation (10-CV) as a baseline. According

to Han et al. [34], the 10-CV is the recommended approach to evaluate a classification

model, even when computational cost allows more folds, due to the 10-CV relatively low

bias and variance. Besides, Marcot and Hanea [65] experiments support the common

use of the 10-CV. However, some works suggest that defining the appropriated number

of folds according to the data characteristics can improve the CV estimation [108, 73],

but this process of defining the number of folds cannot remove the constraint of the

target data must have the same distribution of the source dataset (i.e., must be iid).

To demonstrate this empirically, Appendix C shows experiments indicating that only

increasing the number of folds of the k-fold cross-validation is not enough to reduce the

estimation error in distribution shift scenarios.

Our experiments aimed to investigate the following research questions (RQ):

RQ1: Can AutoEval approaches based on Causality Learning and Explainability be

better than the standard 10-fold cross-validation to estimate the model performance in

the situation which can occur distribution shift in the tabular data context?

RQ2: Can AutoEval approaches based on Causality Learning and Explainability be

better than the standard 10-fold cross-validation to feature selection in the situation that

can occur distribution shift in the tabular data context?
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Chapter 6

Experimental Evaluation with

Real-World Data

This chapter presents the experiments to evaluate the proposed methods in real-world

situations in which we expect distribution shifts. In these experiments, we used real-

world data related to the following three subjects: COVID-19, Alzheimer’s disease, and

School Dropout. For each covered subject, we selected two datasets that share the same

features and classes, but there are some differences in the data generation process or

population (i.e., different hospitals, different departments, and different periods). As

showed in the Table 6.1, the datasets are imbalanced. Thus, we employed macro f1 [22]

as the basic evaluation metric in our experiments. Besides, the Chapter 5 describes the

main experimental decisions. Next, we detail the used datasets.

6.1 Datasets and Setups of Training and Test

This section presents the datasets used in our experiments and the defined training

and test setups. Table 6.1 describes the main characteristics of our datasets1. We can

observe that we used datasets of typical sizes found in the healthcare area [3] and large

datasets, such as those related to COVID-19. We extracted the COVID-19 datasets

from the Repository COVID-19 DataSharing/BR2. These datasets contain laboratory

test results of patients with COVID-19, and the outcome indicates whether the patient

has died or not. The data were provided by Hospital Beneficência Portuguesa de São

Paulo (HBP)3 and Hospital Śırio Ĺıbanes (HSL)4.

The datasets regarding the Alzheimer’s disease (AD) subject comprise data from

patients who may have AD (e.g., gender, age, education level, and laboratory test results).

1Datasets available on https://github.com/ismasantana/AutoEval.
2https://repositoriodatasharingfapesp.uspdigital.usp.br/
3https://repositoriodatasharingfapesp.uspdigital.usp.br/handle/item/101
4https://repositoriodatasharingfapesp.uspdigital.usp.br/handle/item/97

https://github.com/ismasantana/AutoEval
https://repositoriodatasharingfapesp.uspdigital.usp.br/
https://repositoriodatasharingfapesp.uspdigital.usp.br/handle/item/101
https://repositoriodatasharingfapesp.uspdigital.usp.br/handle/item/97
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Table 6.1: Main characteristics of the used datasets

Subject Name # intances # features
positive
class

COVID-19
HBP 453

471
15%

HSL 4,018 5%

Alzheimer
Geriatrics 106

18
72%

Neurology 74 54%

School dropout
Students2008 143

15
13%

Students2014 164 19%

The class indicates whether a patient has been diagnosed with AD or not. The datasets

come from the Geriatrics and Neurology departments of the Universidade Federal de

Minas Gerais5, we denoted these datasets as: Geriatrics and Neurology. Each department

receives patients with different characteristics.

In the School Dropout datasets, the data comprise diverse information about high

school students. The outcome indicates whether a student will drop out school or not.

The Students2008 dataset contains data from students who started school in 2008, and

the Students2014 dataset contains data from students who started in 2014. We split the

data in these periods because a student needs to complete the course within six years.

Thus, to have a training dataset in the real world, we would wait for six years to determine

if a student would drop out of school. Nevertheless, we believe that the characteristics of

students can change after six years, causing a distribution shift.

We considered the following source (training) and target (test) datasets setups in

the experiments. Given two datasets Ds=<Xs, ys> and Dt=<Xt, yt>, which share the

same feature-set and possibly have differences in the distributions:

1. For COVID-19 and Alzheimer datasets, we performed the experiments in which (a)

Ds was used for training and Dt for testing, and (b) Dt was used for training and

Ds for testing.

2. For School Dropout datasets we used the Students2008 dataset to train and the

Students2014 to test. Once we split the School Dropout Datasets in time, training

the model with future data would not make sense.

In the experiments, we used all features of the Alzheimer and School dropout

dataset, once domain experts selected and analyzed these features. However, due to the

great number of features of the COVID-19 dataset, in each setup, we selected the most

5https://ufmg.br
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informative features using the training set, and the Borutashap feature selection method

[45]. Thus, BorutaShap selected 20 features for the HBP dataset, and 30 features for

the HSL dataset. Next, we characterize the distribution shift in the datasets used in this

thesis.

6.1.1 Distribution Shift Characterization in the Datasets

Nagarajan et al. [71] identified that spurious features are related to fundamental

factors that cause models fail in the presence of the distribution shifts. In summary,

spurious features are features correlated with a label in the training set but not in the

test set.

To visualize the distribution shift and identify spurious features on the datasets of

the same subject, we plotted approximations of the probability density function (PDF)

to each feature in each label. To categorical features, we plotted histograms and to

continue features we plotted the Kernel Density Estimation (KDE) [16]. However, to

facilitate the visualization of the difference in the distributions of each dataset: (1) we

subtracted the PDFs of the data with the label 1 and the data with the label 0 in each

dataset, and (2) we plotted the result of the difference in each dataset in the same graph.

That is, to each Ds and Dt about the same subject, we plotted in the same graph: (1)

PDF (Dlabel=1
s )−PDF (Dlabel=0

s ) and (2) PDF (Dlabel=1
t )−PDF (Dlabel=0

t ), where label = 0

and label = 1 denote the examples in the label 0 and 1, respectively. Figure 6.1 shows an

illustration of this process to visualize the spurious features and distribution shift. This

way, the regions below 0 in the y-axis show a greater correlation with the label 0, and

the regions above 0 show a greater correlation with the label 1. Consequently, the regions

where the correlation is opposite in the datasets indicate spurious correlations.

We plotted some examples of features that could contribute to this analysis. In the

COVID-19 datasets, due to the high number of features, we selected the most important

features of each dataset individually, using the BorutaSHAP [45] feature selection method,

and we considered in the analysis just the selected features.

Figure 6.2, Figure 6.3, and Figure 6.4 show the result of these plots. Considering

that a model would be trained on a dataset and the same model would be tested in

another, visually, we can identify some spurious features in the datasets, such as (1) Peak-

Low TF-aTFPI, Peak-High TF+APC, and APO E in the datasets about Alzheimer, and

(2) Potassio mEq/Lm, Fosforo mg/dL, Volume plasquetario medio %, pO2 venoso mmHg,

and HCO3 venoso mmol/L in the COVID-19 datasets. In this characterization, we cannot

identify evident spurious features in the datasets about school dropout, we only could see
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Figure 6.1: The process to visualize the spurious features and distribution shift.

small differences in the distributions (e.g., in the feature 1ANOFALTA).

These characterizations indicate that the Alzheimer and COVID-19 datasets have

significant natural distribution shifts (or source component shift [79]). On the other

hand, the distributions of the datasets related to School Dropout are similar. These

characteristics are expected because the data about School Dropout were collected from

the same place, and the datasets about Alzheimer and COVID-19 were collected from

different places. Next, we characterize the causality in the datasets used in the thesis.

6.1.2 Characterization of the Causality in the Datasets

This section characterizes the causal relations in the datasets used in this thesis.

We employed the algorithms PC, DirectLinGAM, and Notears to infer a causal graph

for each dataset. In this characterization, we used the true label of each dataset in the
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Figure 6.2: Differences between the Probability Density Function (PDF) of examples with
label 1 and examples with label 0 in the datasets about Alzheimer. We filled out with
the gray color the regions correlated with different labels in the evaluated datasets.

causality inference process. In addition, we highlighted the common edges between the

graphs regarding the same subject.

Figure 6.5, Figure 6.6, and Figure 6.7 show the causal graph inferred by the

algorithms PC, DirectLinGAM, and Notears for each dataset. We can observe that

there are common edges between the graphs regarding the same subject in most cases.

For instance, in Figure 6.5, we can see common edges among the graphs inferred from

the datasets regarding the School Dropout when we used the algorithm Notears and

DirectLiNGAM. However, the PC algorithm did not find causal relationships in the

Students2014 dataset and this implies in zero similarity between the causal graphs

inferred to the datasets Students2008 and Students2014. This lack of causal relations
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Figure 6.3: Differences between the Probability Density Function (PDF) of examples with
label 1 and examples with label 0 in the datasets about COVID-19. We filled out with
the gray color the regions correlated with different labels in the evaluated datasets.
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Figure 6.4: Differences between the Probability Density Function (PDF) of examples with
label 1 and examples with label 0 in the datasets about School Dropout. We filled out
with the gray color the regions correlated with different labels in the evaluated datasets.

indicates that the PC algorithm may not be suitable for use in the proposed algorithm

C-Eval in this dataset. In other words, whether the algorithm to infer causality relation

does not find causal relations in the data, the C-Eval with this causal algorithm will not

be effective for performance estimation. Thus, we must choose another algorithm to

infer causality in this dataset.

Figure 6.6 shows the graphs inferred from the datasets regarding COVID-19. We

can notice common edges between the graphs inferred for the same algorithm to the

datasets of different population, independent of the used algorithm for causality discovery.

However, in the graphs inferred by the Notears (Figure 6.6a and Figure 6.6b), there is

concentration of features with causal relations with the feature Platelets /mm3 (i.e., the

node 16). This concentration is interesting because some studies indicate the impacts

of COVID-19 in the platelets, fundamental cells for the coagulation process [36, 27]. In

addition, according to Fleury [27], platelets participate in the immune response, and

changes in the platelets number are related to many diseases.

Figure 6.7 makes evident that the Notears algorithm tends to infer more causal

relations. Besides, we can observe a few cases of edges to the class (node 1) in all

graphs. However, this does not preclude using this kind of information in the C-Eval

because changes in feature distributions also cause distribution shifts (e.g., covariate

shifts). Next, we present the experimental evaluation of our proposed algorithms using

real-world datasets.



6.1. Datasets and Setups of Training and Test 83

1

2

3

5
7

8

9

10

11

13

14

15

16

(a) Students2008 - Notears

1
2

3

4

5
7

8

9

10

1113

14

15
16

(b) Students2014 - Notears

1
2

3

7

10

13

14
16

(c) Students2008 - DirectLiNGAM

1

3

4

7

9
10

13

14

16

(d) Students2014 - DirectLiNGAM

1

2
3

4

5

6

7

8

9

10

11

12

13

1415

16

(e) Students2008 - PC (f) Students2014 - PC

Figure 6.5: Causal graphs inferred from the datasets about School Dropout (i.e.,
Students2008 and Students2014 )) by each causal discovery algorithm used in this thesis.
We showed the name of the causal discovery algorithm used to infer the graph in the legend
of each subfigure. We highlighted the common edges among the two graphs inferred by
the same algorithm with the red color. Appendix A shows the map among the node labels
and the feature names.
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Figure 6.6: Causal graphs inferred from the datasets about COVID-19 (i.e., HBP and
HSL) by each causal discovery algorithm used in this thesis. We showed the name of the
causal discovery algorithm used to infer the graph in the legend of each subfigure. We
highlighted the common edges among the two graphs inferred by the same algorithm with
the red color. Appendix A shows the map among the node labels and the feature names.
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Figure 6.7: Causal graphs inferred from the datasets about Alzheimer (i.e., Geriatrics
and Neurology) by each causal discovery algorithm used in this thesis. We showed the
name of the causal discovery algorithm used to infer the graph in the legend of each
subfigure. We highlighted the common edges among the two graphs inferred by the same
algorithm with the red color. Appendix A shows the map among the node labels and the
feature names.
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6.2 Analysis of Generalization Gaps on Natural

Distribution Shifts

In the first type of experiment, we evaluated the generalization gap (i.e., estimation

error, which we computed as the absolute difference between the estimated performance

and the true performance in a target dataset [40]). First, we estimated the performance

of the XGBoost classifier with a 10-fold cross validation (CV) and with the proposed

AutoEval approaches (X-Eval and C-Eval). Next, we computed the absolute error between

each estimated performance and true performance when the model was applied to the

target dataset (i.e., |estimatedPerformance− truePerformance|).
Figure 6.8, Figure 6.9, and Figure 6.10 show the absolute error between the

estimated and true performance on each analyzed setup of source and target sets. Each

figure shows the results of one evaluated similarity function (i.e., Cosine, Jaccard, and

Macro F1). We investigated the effectiveness of C-Eval when applied to regularize the

performance estimation of both CV and X-Eval. We show the results for different values

of the λ factor, ranging the value of λ from 0 to 10 with an interval of 0.01, to evaluate

the λ factor influence on C-Eval results. Besides, we used the algorithms PC [93, 42, 51],

Notears [114], and DirectLiNGAM [87] to infer the causal graphs from a datatset in the

C-Eval algorithm.

In Figure 6.8, Figure 6.9, and Figure 6.10, we can observe that the X-Eval

estimation error remained lower or equal to the CV estimation error in all cases. The

inherent characteristics of each approach explain this tendency. This is because, we

designed the X-Eval to perform performance estimation in scenarios in which we expect

distribution shifts and the CV was not prepared for such situations (i.e., the CV was

designed for conditions where the target and source datasets are independent and

identically distributed (iid)). In other words, the X-Eval considers k estimates of the

model performance in the target data. In contrast, CV considers k estimates based only

on the source data. Since the distributions of the source and the target datasets are

different, we expect the CV to achieve a greater estimation error than the X-Eval.

Specifically, we can attribute the superior X-Eval results to the following

characteristics:

1. Individual Instance Judgment: The X-Eval employs a strategy to classify each

target instance as correct or incorrect. This strategy is essential to treat covariate

shifts.

2. Label Shift Simulation: Another key X-Eval characteristic is the simulation of

changes in the label distribution (i.e., p(y)) in the target dataset. This strategy
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(b) Source: HSL, Target: HBP
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(c) Source: Geriatrics, Target: Neurology
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(d) Source: Neurology, Target: Geriatrics
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(e) Source: Students2008, Target:
Students2014
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Figure 6.8: Generalization gap analysis of the X-Eval and the C-Eval with the Cosine
similarity function. For each evaluated approach, we can see the absolute error between
the true performance and the estimated model performance on the target dataset over
different values to the λ factor. C-Eval(C, s) denotes the C-Eval with the causal discovery
algorithm C and the similarity function s.
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(b) Source: HSL, Target: HBP
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(c) Source: Geriatrics, Target: Neurology
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(d) Source: Neurology, Target: Geriatrics
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(e) Source: Students2008, Target:
Students2014

CV
C-Eval(CV,Direct,Jaccard)
C-Eval(CV,Notears,Jaccard)

C-Eval(CV,PC,Jaccard)
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C-Eval(X-Eval,Direct,Jaccard)
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C-Eval(X-Eval,PC,Jaccard)

Figure 6.9: Generalization gap analysis of the X-Eval and the C-Eval with the Jaccard
similarity function. For each evaluated approach, we can see the absolute error between
the true performance and the estimated model performance on the target dataset over
different values to the λ factor. C-Eval(C, s) denotes the C-Eval with the causal discovery
algorithm C and the similarity function s.
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(a) Source: HBP, Target: HSL

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  1  2  3  4  5  6  7  8  9  10

es
tim

at
io

n 
er

ro
r 

|t
ru

eP
er

fo
r. 

- 
es

tim
at

ed
Pe

rf
or

.|

λ Factor

(b) Source: HSL, Target: HBP
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(c) Source: Geriatrics, Target: Neurology
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(d) Source: Neurology, Target: Geriatrics
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(e) Source: Students2008, Target:
Students2014
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Figure 6.10: Generalization gap analysis of the X-Eval and the C-Eval with theMacro F1
similarity function. For each evaluated approach, we can see the absolute error between
the true performance and the estimated model performance on the target dataset over
different values to the λ factor. C-Eval(C, s) denotes the C-Eval with the causal discovery
algorithm C and the similarity function s.
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addresses label shift by preparing the AutoEval model for different changes in the

data distribution.

3. Agreement as Complementary Feature: X-Eval leverages the agreement as

a complementary feature. When we combine the agreement with other features

that the X-Eval uses, the X-Eval may deal with some cases of concept drift. For

instance, when concept drift is caused by underspecification (i.e., when different

solutions solve equivalent problems) [30, 21]).

Thus, as in Section 6.1.1 we identified distribution shifts among the datasets

regarding COVID-19 and Alzheimer. In conjunction with the X-Eval characteristics,

these distribution shifts explain the lower X-Eval estimation error in these datasets.

However, in the case of the School Dropout datasets, as showed in Section 6.1.1, we did

not observe significant distribution shifts among the datasets. In this situation, even

without notable distribution shifts, the X-Eval estimation error remained equal to the

CV estimation error.

Analyzing the C-Eval regularizing the CV estimate, this combination outperformed

the standard CV in most cases. For instance, the C-Eval with CV and Macro F1 as a

similarity function (Figure 6.10) outperformed the standard CV in all evaluated cases with

the DirectLinGAM algorithm. The best results were achieved with the λ factor between

0 and 1. We attribute this result to the close approximation of the Macro F1 similarity

to the true performance, as detailed in Table 6.2.

The C-Eval regularizing the CV estimate compared to the X-Eval (alone)

approximated more to the true performance with specific hyperparameters. For

instance, (1) in COVID-19 datasets with Cosine similarity, PC, and a λ factor equals 2

(Figure 6.8a and Figure 6.8b); (2) in Alzheimer datasets with Cosine similarity, PC, and

a λ factor equals 1 (Figure 6.8c and Figure 6.8d); and (3) in dataset related to School

Dropout with Macro F1 similarity, DirectLinGAM, and a λ factor equals 1

(Figure 6.10e).

Analyzing the λ factor impact in the C-Eval results, in Figure 6.8, Figure 6.9, and

Figure 6.10, we can see that the C-Eval achieved the best results in the majority of cases

according to the used λ factor. For instance, in the COVID-19 and Alzheimer datasets,

the C-Eval with DirectLinGAM and PC, in most cases, achieved near zero estimation

error when regularized the: (1) CV estimate, with λ factor between 1 and 3, and (2) the

X-Eval estimate, with λ factor between 4 and 7. These ranges of λ factor are due to

the fact that, as X-Eval tends to approximate more to the true performance compared to

CV, the X-Eval estimate must have a greater weight in the C-Eval process than the CV

estimate.

Overall, the results of the C-Eval with the causality inference algorithms

DirectLinGAM and PC and the similarity function Cosine and Jaccard were similar. We
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can better understand these results by analyzing the Table 6.2. Once, (1) on the

COVID-19 and Alzheimer datasets, the CV estimated a higher performance than the

true performance, and (2) the similarities between the causal graphs inferred by the

DirectLinGAM and PC algorithms were lower than the true performance, then the

C-Eval decreased the estimated performance. This adjustment closely approximated the

C-Eval estimate to the true performance. Besides, given the close similarities of the

causality graphs inferred by the DirectLinGAM and PC algorithms, the C-Eval results

with these algorithms were close.

Table 6.2: This table presents detailed metrics used in generalization gap analysis. It
includes Cosine, Jaccard, and Macro F1 similarities among the causal graphs inferred by
the DirectLiNGAM (Direct), PC, and Notears algorithms. Additionally, the last two lines
of the table show the True Performance (macro f1) and the performance estimated with
10-fold Cross-Validation (CV).

Causality
Inference

Algorithm
Metric

Source:
Geriatrics

Target:
Neurology

Source:
Neurology

Target:
Geriatrics

Source:
HBP

Target:
HSL

Source:
HSL

Target:
HBP

Source:
Students2008

Target:
Students2014

Direct
Cosine 0.17 0.13 0.20 0.33 0.41
Jaccard 0.09 0.06 0.11 0.19 0.22
Macro-F1 0.56 0.54 0.56 0.62 0.67

PC
Cosine 0.16 0.22 0.26 0.21 0.00
Jaccard 0.09 0.12 0.15 0.11 0.00
Macro-F1 0.56 0.59 0.59 0.56 0.43

Notears
Cosine 0.78 0.80 0.53 0.71 0.67
Jaccard 0.64 0.67 0.36 0.55 0.50
Macro-F1 0.85 0.86 0.74 0.84 0.81

True
performance

0.46 0.45 0.66 0.62 0.73

CV
estimation

0.83 0.71 0.85 0.82 0.56

X-Eval
estimation

0.51 0.51 0.70 0.68 0.56

In the case of the School Dropout datasets, when considering C-Eval with the

causal inference algorithms DirectLinGAM and PC and the similarity functions Cosine

and Jaccard, the C-Eval results were worse or equal to the CV. We attribute these results

to the following facts:

1. In the case of PC, the similarity was zero (Table 6.2). A simple adaptation to the

C-Eval algorithm for this scenario would be using a second algorithm for causality

inference if the causality inference algorithm does not identify causal relations in a

dataset.
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2. In the DirectLinGAM case, the similarity among the inferred causal graphs and

the CV estimate was lower than the true performance (Table 6.2). Thus, C-Eval

provided an even lower estimate, which increased the estimation error.

In general, the error in the C-Eval estimation with Notears was either greater or

close to the error in the CV estimate, as illustrated in Figure 6.8b. This result is

attributed to Notears tendency to infer a larger number of causal relationships, as

evidenced in the graphs presented in Figure 6.5, Figure 6.6, and Figure 6.7.

Consequently, the higher similarity between graphs inferred by Notears implies that the

C-Eval estimates performance higher than the CV, as exemplified in Table 6.2 (e.g.,

considering Neurology as the source dataset, Notears, and Macro F1 similarity). In

other words, with both the CV estimate and the Notears graphs similarity higher than

the true performance, the error in C-Eval estimates tended to increase.

Given the experiments presented in this section, in general, the best results were

achieved with the C-Eval regularizing the X-Eval estimate, using the following

hyperparameters: Macro F1 as the similarity function, the DirectLinGAM algorithm for

causality inference, and a λ factor between 2 and 3. The reasons for this are the

following:

1. The estimation of the X-Eval approximated more to the true performance,

outperforming the CV in the studied scenarios involving distribution shifts. Even

in cases with minimal distribution changes, such as in the datasets regarding

School Dropout, the error in the X-Eval estimation was nearly identical to the CV

error. These results indicate that, even with no distribution shifts, the X-Eval

estimation error is close to the CV estimation error.

2. The Macro F1 as the similarity function showed the best results because it was the

same metric used to measure the model performance. Consequently, the similarity

measured by this function tends to be closer to the true performance than the

similarities obtained from Cosine and Jaccard functions. Another hypothesis is

because of the characteristics of Macro F1 to measure similarity in imbalanced data.

This characteristic becomes especially relevant considering the adjacency matrices

of causal graphs, where the analyzed data is sparse, i.e., the causality graphs have

few edges compared to the number of possible edges.

3. The DirectLinGAM outperformed the other evaluated causality inference algorithms

because of its effectiveness and simplicity in causality discovery. Comparing the

DirectLinGAM with the Notears, the Notears tends to infer a greater number of

causal relationships, resulting in high similarity between causal graphs (which can

be observed in Table 6.2, Figure 6.7, Figure 6.6, and Figure 6.5). With this high

similarity, the estimated performance was not penalized in cases where it should
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have been penalized. This situation occurred because the similarity between the

causality graph was greater than the true performance, while the CV estimate was

also greater than the true performance. Concerning the PC, despite the proximity of

causality graphs inferred by the PC to those graphs inferred by the DirectLinGAM,

the PC algorithm failed to identify causal relationships in one dataset about School

Dropout. Consequently, the error of the C-Eval estimate with PC was higher than

the error of the CV estimate in this dataset. This may have happened mainly

because of the conditional independence test used in each algorithm. Once in the

DirectLiNGAM we used mutual information [87] and in the PC we used Fisher’s

z-transformation [43].

4. The best results were achieved with the λ factor between 2 and 3 because of the

close approximation of the X-Eval estimate and the Macro F1 similarity to the true

performance. Consequently, the weight of these two measures in the analysis must

be similar.

In the context of Alzheimer datasets, the performance of C-Eval with X-Eval and

Macro F1 similarity is not superior to that of X-Eval (alone) (i.e., the errors in the

estimation are practically identical) (Figure 6.10c and Figure 6.10d). This result is because

both Macro F1 similarity and X-Eval estimate were close to the true model performance.

As we can see in Table 6.2, the difference between the true performance and the Macro

F1 similarity was 0.10, and between the true performance and the X-Eval estimate was

0.05. However, C-Eval with X-Eval demonstrates lower estimation error when compared

to X-Eval (alone) when we use the Jaccard and Cosine similarity functions.

These results indicate that the proposed C-Eval approach can achieve better

effectiveness if we select appropriate hyperparameters for each distribution shift

scenario. Therefore, a challenge in the C-Eval approach may be the definition of

appropriate hyperparameters for the data in analysis based on its characteristics and the

expected type/degree of distribution shift. For instance, (1) in cases where a strong

distribution shift is likely, we can use the Cosine similarity, as it tends to be smaller

than the estimated performance; and (2) in cases where we expect a small distribution

shift, we can use the Macro F1 similarity, as this metric returns a range of values closer

to the true performance. However, the experiments showed that the combination of the

C-Eval with the X-Eval consistently achieved the best results. Next, we analyze the

impact of the explanation feature used in the AutoEval model on the X-Eval estimation.
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6.2.1 Analysis of the Impact of the Features Used in the

X-Eval

To classify each target example as correct or incorrect, the X-Eval builds an

AutoEval model using features commonly used for model explanation. As these features

come from different explainability approaches, it is interesting to understand the impact

of each type of explanation feature in the AutoEval model.

Initially, we computed the SHAP values (i.e., the impact of each feature on the

model prediction) for every model built in the X-Eval process. Next, we calculated the

average of the SHAP values for each feature across all models. This aggregation aims to

facilitate the analysis. By analyzing these average SHAP values, we can have insights into

the model behavior and identify the most important features by considering all AutoEval

models in the X-Eval process.

Figure 6.11 shows the average impact of each feature used in the X-Eval AutoEval

model. We can see that the prediction of the evaluated model has the greatest impact in

the majority of cases (4/5). This result is significant because it is the model prediction

that the AutoEval model must judge if it is correct or not. The second feature that has

the most impact is the agreement among the classifiers, this shows the importance of

this feature to judge the prediction as correct or incorrect. However, we can see that we

have a greater number of features created from the SHAP values, and if we consider the

impact of all SHAP values features, we can consider this source of information as the

most important.

Figure 6.12 shows the absolute estimation error (i.e.,

|TruePerformance − EstimatedPerformance|) of X-Eval across various combinations

of feature types. The combination of Agreement, Confidence, and SHAP values provided

the most stable results. This combination consistently achieved the smallest error in

three of the five setups of source and target datasets (3/5). Even in the Alzheimer

datasets, where it achieved the second smallest error, the difference to the first approach

was relatively small (i.e., ¡ 0.05). These evidences demonstrate the importance of

combining the three feature types.

In this section, we evaluated the applicability of the proposed X-Eval and C-Eval

approaches to estimate the model performance, focusing on the XGBoost classifier. The

next section analyzes the proposed AutoEval approaches considering different classifiers.
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Figure 6.11: Impact of the features used in the AutoEval model. The names of the
features created using SHAP values start with shap.
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Figure 6.12: X-Eval absolute estimation error with different combinations of feature types.

6.2.2 Generation Gap Analysis with Different Classifiers

This section analyzes the estimation error of the proposed approaches for different

classifiers. To facilitate the analysis, in this section we present the experiments with the

C-Eval algorithm only with the DirectLinGAM causality inference algorithm, the Macro

F1 similarity function, and factors 1, 3, and 6. We used these C-Eval hyperparameters

because they achieved the best results in the previous analysis. The results for the other

causality inference algorithms and similarity functions are in Appendix E.

In this experiment, we used the classifiers XGBoost, LightGBM, and CatBoost

because they are in the state-of-art to automatic classification for tabular data [8]. Besides,

we used the deep learning model TabNet because in the [4] experiments, the TabNet

outperformed many state-of-art classifiers (such as ensemble decision trees methods, e.g.,

XGBoost) on the classification task on tabular datasets. To generate the SHAP values,

we used (1) the TreeSHAP for XGBoost, LightGBM, and CatBoost classifiers and (2) the

KernelSHAP for TabNet.

Table 6.3 shows the estimation error of the proposed autoEval approaches (X-

Eval and C-Eval) and the CV. We can see that the proposed approaches achieved the

smallest estimation error in most cases. The 10-fold cross-validation (CV) just achieved

the smallest estimation in one analyzed case (i.e., 1/20), specifically in the experiment with

the dataset regarding School Dropout and the TabNet classifier. However, we highlight

that when the CV was the best, the TabNet achieved a very small performance in the

target dataset (i.e., 0.17 performance in Macro F1) and in the CV estimation (i.e., 0.18
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performance in Macro F1). So, in this case, in the real world, the TabNet would hardly

ever be selected to build a classification model to the School Dropout data.

Table 6.3: Estimation error analysis for the classifiers XGBoost, LightGBM, CatBoost,
and TabNet. We compared the proposed autoEval approaches (X-Eval and C-Eval) with
the 10-fold cross-validation (CV). The C-Eval(Estimatior, Direct, MacroF1, λ) denotes
the C-Eval approach with one Estimatior (i.e, CV or X-Eval), the DirectLiNGAM
inference causality algorithm and one λ factor (i.e., 1, 3, or 6). We highlighted the
smallest estimation error for each dataset considering each classifier in bold, and we also
underline the second smallest estimation error.

Performance Estimator

Source:
Geriatrics

Target:
Neurology

Source:
Neurology

Target:
Geriatrics

Source:
HBP

Target:
HSL

Source:
HSL

Target:
HBP

Source:
Students2008

Target:
Students2014

CV 0.37 0.26 0.19 0.20 0.16
X-Eval 0.05 0.06 0.04 0.06 0.17
C-Eval(CV, Direct, MacroF1, 1) 0.24 0.17 0.04 0.10 0.11
C-Eval(X-Eval, Direct, MacroF1, 1) 0.08 0.07 0.03 0.03 0.11
C-Eval(CV, Direct, MacroF1, 3) 0.31 0.22 0.12 0.15 0.13
C-Eval(X-Eval, Direct, MacroF1, 3) 0.07 0.07 0.00 0.04 0.14
C-Eval(CV, Direct, MacroF1, 6) 0.34 0.24 0.15 0.17 0.15

X
G
B
o
os
t

C-Eval(X-Eval, Direct, MacroF1, 6) 0.06 0.06 0.02 0.05 0.15

CV 0.31 0.11 0.22 0.32 0.09
X-Eval 0.00 0.09 0.07 0.16 0.12
C-Eval(CV, Direct, MacroF1, 1) 0.17 0.04 0.07 0.17 0.07
C-Eval(X-Eval, Direct, MacroF1, 1) 0.01 0.06 0.00 0.09 0.08
C-Eval(CV, Direct, MacroF1, 3) 0.24 0.07 0.15 0.25 0.08
C-Eval(X-Eval, Direct, MacroF1, 3) 0.01 0.07 0.04 0.13 0.10
C-Eval(CV, Direct, MacroF1, 6) 0.27 0.09 0.18 0.28 0.09
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C-Eval(X-Eval, Direct, MacroF1, 6) 0.00 0.08 0.05 0.14 0.11

CV 0.33 0.09 0.25 0.30 0.15
X-Eval 0.01 0.09 0.08 0.07 0.21
C-Eval(CV, Direct, MacroF1, 1) 0.20 0.00 0.09 0.17 0.12
C-Eval(X-Eval, Direct, MacroF1, 1) 0.03 0.08 0.01 0.06 0.14
C-Eval(CV, Direct, MacroF1, 3) 0.26 0.04 0.17 0.24 0.14
C-Eval(X-Eval, Direct, MacroF1, 3) 0.02 0.09 0.04 0.07 0.18
C-Eval(CV, Direct, MacroF1, 6) 0.29 0.06 0.20 0.26 0.14

C
at
B
o
os
t

C-Eval(X-Eval, Direct, MacroF1, 6) 0.01 0.09 0.06 0.07 0.19

CV 0.10 0.12 0.07 0.03 0.01
X-Eval 0.04 0.10 0.00 0.05 0.06
C-Eval(CV, Direct, MacroF1, 1) 0.10 0.08 0.31 0.06 0.26
C-Eval(X-Eval, Direct, MacroF1, 1) 0.07 0.07 0.27 0.02 0.29
C-Eval(CV, Direct, MacroF1, 3) 0.10 0.10 0.19 0.05 0.13
C-Eval(X-Eval, Direct, MacroF1, 3) 0.05 0.08 0.13 0.01 0.18
C-Eval(CV, Direct, MacroF1, 6) 0.10 0.11 0.14 0.04 0.08

T
ab

N
et

C-Eval(X-Eval, Direct, MacroF1, 6) 0.05 0.09 0.07 0.03 0.13

Besides, it is interesting to observe that the X-Eval achieved a relatively small

estimation error in the datasets regarding Alzheimer and COVID-19, once the estimation

error was between 0.0 and 0.1. Additionally, even in all datasets, the X-Eval estimation

error was relatively small since the greatest estimation error of the X-Eval was 0.21, and

the greatest CV estimation error was 0.37. This result demonstrates the stability of the
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X-Eval estimation. Furthermore, the C-Eval decreased the X-Eval estimation error in

many cases. For instance, considering the approach C-Eval(X-Eval, Direct,MacroF1, 1),

the C-Eval improved the X-Eval estimation error in 13/20 cases.

The results presented in this section demonstrated the applicability of the

proposed autoEval approaches considering different classifiers. The next section deepens

our experimental evaluation and demonstrates the applicability of the X-Eval and

C-Eval to feature selection.

6.3 An In-depth Analysis of the Proposed

Algorithms Across Diverse Feature Subsets

Once it is a challenge to get datasets with differences in the data generation process

that share the same features and classes, this section presents an analysis of the proposed

AutoEval approaches in the performance estimation of models built from different feature

sets. Thus, this analysis aims to conduct a more robust evaluation.

Additionally, this methodology evaluates the proposed approaches in the feature

selection task considering unlabeled data with an unknown distribution (i.e., a specific

out-of-distribution target dataset). Feature selection is an important task to improve the

effectiveness and interpretability of classification models. We can define feature selection

as a process to select a subset of the most important features of a dataset [62].

Thus, a relevant application to the proposed algorithms is to use them as

indicators for model selection, also considering unlabeled data from an unknown

distribution. This approach is interesting because most existing strategies consider only

labeled data to select the best model to use [46]. So, we proposed to use AutoEval

approaches to deal with the problem of selecting a suitable model for an unlabeled

dataset with an unknown distribution. Specifically, we proposed a random search

process to evaluate the proposed AutoEval method for feature selection for a specific

and possible out-of-distribution dataset.

In this experiment, we used random feature subsets because, as we do not know the

distribution of the target set, it would not make sense to use the source dataset distribution

information to perform tasks such as feature selection. Besides, through this experiment,

we can measure the effectiveness of AutoEval in choosing the best classification model

for different distribution shifts. Thus, the proposed random search process consists of the

following steps:

• First, we generated 1,000 different feature subsets, one subset with all features of
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the source dataset, and the remaining 999 were random feature subsets (in terms of

size and items);

• Second, we built a model from the source dataset with each feature subset and we

estimated each model performance using the proposed approaches and the 10-fold

cross-validation (CV);

• Next, to perform a feature selection, we generated ranks of the models by

estimations;

• Finally, we selected the best subset on the feature subset rankings.

Figure 6.13 shows detailed examples of the proposed evaluation process with

AutoEval using the XGBoost classifier. In Figure 6.13, we can compare the true

performance (macro f1), the estimates of the C-Eval, and the CV for all generated

feature subsets in four datasets. In all cases, the shape of the C-Eval points is closer to

the true performance points than the CV points.
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Figure 6.13: Detailed examples of executions of the proposed feature selection process. C-
Eval and CV estimates, and true performance of the XGBoost classifier on 1,000 different
features subsets. We sorted the feature subsets by the true performance. In this example,
we executed the C-Eval regularizing the X-Eval estimate, the Macro F1 similarity function,
the DirectLiNGAM causality inference algorithm, and λ factor 1.
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To quantify this observation, first, we analyzed the number of models that the

proposed approaches approximated more to the true performance than the CV

(Figure 6.14, Figure 6.15, and Figure 6.16). We evaluated the C-Eval with the following

settings: (1) with different values of the λ factor (i.e., we varied the value of λ from 0 to

10 with an interval of 0.01), (2) regularizing the estimates of the CV and the X-Eval,

and (3) with the DirectLinGAM, PC, and Notears causality inference algorithms.

In Figure 6.14, Figure 6.15, and Figure 6.16, we can see that the X-Eval achieved

a smaller estimation error than CV in at least 70% of the analyzed models in all datasets.

This finding highlights the X-Eval potential to provide more precise estimates of model

performance under distribution shift scenarios.

Furthermore, in most cases, the C-Eval regularizing the CV estimate improved the

estimation error compared to the standard CV. For instance, we observed this in more

than 60% of models in all datasets when the C-Eval used the DirectLinGAM and the

Macro F1 similarity function (Figure 6.16).

Overall, in this first analysis, the C-Eval results with Cosine and Jaccard

similarities, and the causality inference algorithms DirectLinGAM and PC were similar

(Figure 6.14 and Figure 6.15). The C-Eval with these similarity functions achieved an

estimation error smaller than the CV estimation error in at least 60% of the analyzed

models in four datasets, specifically in the datasets regarding COVID-19 and Alzheimer

(Figure 6.14a, Figure 6.14b, Figure 6.14c, and Figure 6.14d) with the causality inference

algorithm DirectLinGAM and PC and a λ factor ≥ 2.

In this first analysis, in the dataset about School Dropout (Figure 6.14e,

Figure 6.15e), the C-Eval with Cosine and Jaccard similarities, and the causality

inference algorithms DirectLinGAM and PC showed inferior results compared to other

datasets. This result is explained by the fact that the distributions of the School

Dropout datasets are similar (as we saw in Section 6.1.1), so the estimated performance

by the CV or X-Eval is close to the true performance. However, the estimated

performance decreases when we regularize the CV or X-Eval estimates using the Cosine

or Jaccard similarities. Then, when we consider the datasets regarding COVID-19 and

Alzheimer (Figure 6.20, and Figure 6.21), this decrease approximates the estimated

performance to the true performance (i.e., this is the correct behavior). However, in the

datasets regarding School Dropout, the estimated performance is lower than the true

performance, so a decrease in the estimated performance increases the estimation error.

Section 6.3.1 better demonstrates these phenomena.

In contrast, the Notears causality inference algorithm was more effective in

situations with a small distribution shifts (i.e., in the School Dropout dataset). In the

School Dropout dataset, the C-Eval with Notears and Cosine similarity achieved a lower

estimation error than the CV in more than 70% of the analyzed models (Figure 6.14e).

Besides, C-Eval with Notears, Jaccard similarity, X-Eval, and factor λ ≥ 4 achieved a
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(e) Source: Students2008, Target:
Students2014

C-Eval(CV,Direct,Cosine)
C-Eval(CV,Notears,Cosine)

C-Eval(CV,PC,Cosine)
X-Eval

C-Eval(X-Eval,Direct,Cosine)
C-Eval(X-Eval,Notears,Cosine)

C-Eval(X-Eval,PC,Cosine)

Figure 6.14: The number of models (created by sub-feature sets) that the X-Eval and the
C-Eval with theCosine similarity function approximated more to the true performance
than the CV estimate. The graphs show the results for different values of the λ factor.
C-Eval(C, s) denotes the C-Eval with the causal discovery algorithm C and the similarity
function s.
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(c) Source: Geriatrics, Target: Neurology
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(e) Source: Students2008, Target:
Students2014

C-Eval(CV,Direct,Jaccard)
C-Eval(CV,Notears,Jaccard)

C-Eval(CV,PC,Jaccard)
X-Eval

C-Eval(X-Eval,Direct,Jaccard)
C-Eval(X-Eval,Notears,Jaccard)

C-Eval(X-Eval,PC,Jaccard)

Figure 6.15: The number of models (created by sub-feature sets) that the X-Eval and
the C-Eval with the Jaccard similarity function approximated more to the true
performance than the CV estimate. The graphs show the results for different values
of the λ factor. C-Eval(C, s) denotes the C-Eval with the causal discovery algorithm C
and the similarity function s.



6.3. An In-depth Analysis of the Proposed Algorithms Across Diverse Feature Subsets103

 0

 200

 400

 600

 800

 1000

 0  1  2  3  4  5  6  7  8  9  10

# 
m

od
el

s 
w

he
re

 a
n 

ap
pr

oa
ch

 o
ut

pe
rf

or
m

ed
 C

V

λ Factor

(a) Source: HBP, Target: HSL

 0

 200

 400

 600

 800

 1000

 0  1  2  3  4  5  6  7  8  9  10

# 
m

od
el

s 
w

he
re

 a
n 

ap
pr

oa
ch

 o
ut

pe
rf

or
m

ed
 C

V

λ Factor
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(c) Source: Geriatrics, Target: Neurology
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(d) Source: Neurology, Target: Geriatrics
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(e) Source: Students2008, Target:
Students2014

C-Eval(CV,Direct,MacroF1)
C-Eval(CV,Notears,MacroF1)

C-Eval(CV,PC,MacroF1)
X-Eval

C-Eval(X-Eval,Direct,MacroF1)
C-Eval(X-Eval,Notears,MacroF1)

C-Eval(X-Eval,PC,MacroF1)

Figure 6.16: The number of models (created by sub-feature sets) that the X-Eval and
the C-Eval with the Macro F1 similarity function approximated more to the true
performance than the CV estimate. The graphs show the results for different values of
the λ factor. C-Eval(C, s) denotes the C-Eval with the causal discovery algorithm C and
the similarity function s.
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lower estimation error than the CV in more than 60% of the analyzed models

(Figure 6.15e).

The best results, in terms of consistency, were achieved with C-Eval regularizing

the X-Eval estimate, using DirectLinGAM, Macro F1 similarity, and λ factor ≥ 1

(Figure 6.16). This combination achieved an estimation error smaller than the CV in at

least 80% of the analyzed models. We attribute this result to the following reasons:

• X-Eval estimates are closer to the true performance than CV estimates. This is

because the X-Eval considers the possible difference in the source and target dataset

distributions, and the CV does not.

• DirectLinGAM is a simple and effective causal inference algorithm able to

estimate causal relationships, and these causal relationships contribute to

regularizing the performance estimation. Besides: (1) the Notears tends to infer

many causal relationships, and (2) there are cases where the similarity between the

PC graphs is zero. However, both extreme similarities (i.e., near zero or one) do

not contribute to the regulation process.

• Macro F1 similarity is the same metric used to measure model performance. Hence,

the range of values returned by this metric is closer to the true performance, which

was adequate for regularization. Furthermore, Macro F1 is a recommended metric

to measure similarity in imbalanced data, such as the causal graphs represented

with adjacent matrices, which have few edges compared to the number of possible

edges.

In a second analysis, we evaluated the proposed method as an indicator for

feature selection. Figure 6.17, Figure 6.18, and Figure 6.19 show the gain of the

proposed approaches in relation to CV using the described evaluation process as a

feature selection process. We computed the gain as:

ℓ(autoEval,Dtarget)− ℓ(CV,Dtarget)

ℓ(CV,Dtarget)
(6.1)

. Where ℓ(autoEval,Dtarget) and ℓ(CV,Dtarget) denote the achieved performance (i.e.,

macro f1) in the target dataset with the proposed feature selection process using one

proposed AutoEval approach and CV respectively.

In this second analysis, the proposed approaches outperformed the standard CV

in all analyzed cases with gains up to 77%, as evidenced by Figure 6.17d, Figure 6.18d,

and Figure 6.19d. Our proposed approaches showed a lesser gain percentage in the School

Dropout dataset, this is due to the small distribution shift between the School Dropout

datasets (as Section 6.1.1 demonstrated), i.e., with a small distribution shift, the CV

estimate tends to have a close approximation to the true performance.
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Analyzing the X-Eval, from Figure 6.17, Figure 6.18, and Figure 6.19, we can see

that the X-Eval showed gains when compared to the standard CV in all analyzed cases.

These gains ranged from 2% to 40% . The gains up to 40% (e.g., in Figure 6.19d) highlight

the X-Eval potential for improving the achieved performance in the challenge scenario of

model selection in the presence of distribution shift.

Regarding the C-Eval, in Figure 6.17, Figure 6.18, and Figure 6.19 we can
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Figure 6.17: Gain of the X-Eval and the C-Eval, with the Cosine similarity function,
compared to the CV in terms of achieved performance in the feature selection experiment.
The graphs show the results for different values of the λ factor. C-Eval(C, s) denotes the
C-Eval with the causal discovery algorithm C and the similarity function s.
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Figure 6.18: Gain of the X-Eval and the C-Eval, with the Jaccard similarity function,
compared to the CV in terms of achieved performance in the feature selection experiment.
The graphs show the results for different values of the λ factor. C-Eval(C, s) denotes the
C-Eval with the causal discovery algorithm C and the similarity function s.
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Figure 6.19: Gain of the X-Eval and the C-Eval, with the Macro F1 similarity
function, compared to the CV in terms of achieved performance in the feature selection
experiment. The graphs show the results for different values of the λ factor. C-Eval(C, s)
denotes the C-Eval with the causal discovery algorithm C and the similarity function s.
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observe that C-Eval using DirectiLinGAM and PC causality inference algorithms is

better than or equal to CV in most values of the λ factor ≥ 1, independent of the used

similarity function, and methodology to estimate the model performance (i.e., CV or

X-Eval). For instance, C-Eval with Cosine similarity, DirectLinGAM and λ factor ≤ 6

showed gains on the COVID-19 and Alzheimer datasets in all analyzed cases, with

improvements up to 70% (Figure 6.17d). For the School Dropout dataset (Figure 6.17e):

(1) C-Eval (with DirectLinGAM and Cosine) regularizing the CV estimate always

achieved gains compared to CV with λ factors ≤ 7; (2) C-Eval (with DirectLinGAM

and Cosine) regularizing the X-Eval estimate achieved the same performance as CV for

λ factors ≥ 6 (Figure 6.17e). Besides, the C-Eval with PC causality inference algorithm

showed gains in all analyzed cases with a λ factor greater than 0, reaching up to 77%

improvement (Figure 6.17d). However, C-Eval with the Notears causality inference

algorithm failed to demonstrate consistent gains compared to CV across most cases.

This is attributed to the Notears tendency to infer a large number of causal

relationships (as Section 6.1.2 demonstrated). Consequently, the C-Eval with the

Notears did not apply adequate penalties to the estimated performance during

regularization. From Figure 6.17 we can highlight that the C-Eval with the Cosine

similarity consistently showed gain over CV (i.e., the C-Eval was always better or equal

to the standard CV) with the settings:

• λ factor between 1 and 2, Cosine, CV and the DirectLinGAM algorithm;

• λ factor between 1 and 2, Cosine, CV and the PC algorithm;

• λ factor ≥ 6, Cosine, X-Eval, and the DirectLinGAM algorithm.

The C-Eval with Jaccard and Macro F1 similarities demonstrated similar results to

Cosine similarity, with gains up to 77% (Figures 6.18d and Figure 6.19d). This is because

the ranking of the models remains similar with both similarity functions.

Overall, we achieved the best results, in terms of gain in achieved performance

with the proposed feature selection process, with the C-Eval regularizing the X-Eval with

λ factor between 1 and 3, Macro F1 similarity, and the PC algorithm (Figure 6.19). This

is because the C-Eval with these settings was always better than the standard CV and

achieved a gain of up to 77% (e.g., Figure 6.19d).

These results related to the gain in the feature selection were expected because,

as shown in Figures 6.14, 6.15, and 6.16, the proposed approaches approximated more to

the true performance than the CV. Thus, these results indicate that the X-Eval and the

C-Eval approaches can be more effective than the CV for feature selection on unlabeled

data with an unknown distribution. In other words, the section findings demonstrate that

the feature and model selection can be applications of the proposed AutoEval approaches.
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Next, we characterize the results of the evaluation presented in this section analyzing the

distribution of the metrics used to estimate the model performance.

6.3.1 Analysis of the Distributions of Used Metrics in Model

Performance Estimation

To better understand our results, this section characterizes the distributions of

the true performance, similarity between the causality graphs, CV estimate, X-Eval

estimate, and C-Eval estimate, on the proposed feature selection process.

Figures 6.20, 6.21, 6.22 6.23, 6.24, 6.25, 6.26, 6.27, and 6.28 show the distribution of the

analyzed metrics considering the 1,000 generated feature subsets in each analyzed

similarity function and causality inference algorithm.

First, we highlight that when we compare the X-Eval estimate and the CV estimate

distributions, the X-Eval is closer to the true performance distribution (Figure 6.20). This

is because the X-Eval estimate is more precise than the CV estimate, as evidenced in the

previous section (i.e., Section 6.3).

Furthermore, the Macro F1 similarity is the evaluated similarity function that

the distribution more approximated to the true performance distribution (Figure 6.22,

Figure 6.25, and Figure 6.28). This explains why the C-Eval achieved the best results

with the Macro F1 similarity (Figure 6.16).

We can observe that the distributions presented a similar behavior in the

COVID-19 and Alzheimer datasets (e.g., Figure 6.20a, Figure 6.20b, Figure 6.20c, and

Figure 6.20d). For instance, in Figure 6.20a the distribution of the CV estimate is

concentrated in a range of values above the true performance distribution. In contrast,

the distribution of the cosine similarity between the causal graphs is concentrated in a

range of values below the true performance distribution. Consequently, C-Eval

regularization decreases the CV estimate, bringing the CV estimate distribution closer

to the true performance distribution. This is an expected behavior in many distribution

shift scenarios, where the model performance in the target data tends to drop in relation

to the estimated performance in the source dataset [31]. The same occurred with the

X-Eval estimate distribution (i.e., the C-Eval approximated more the X-Eval estimate

distribution to the true performance distribution). This result reinforces the

applicability of the C-Eval to estimate the model performance in a target dataset with

distribution shift.

However, in the School Dropout dataset, we observed a different behavior. For

the School Dropout dataset, the distributions of the estimated performance (with CV or
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Figure 6.20: Distributions of metrics used in the experiments. C-Eval(V) denotes the C-
Eval estimation with the Cosine similarity function, the algorithm DirectLinGAM
and the λ factor 1, and the performance estimator V .
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Figure 6.21: Distributions of metrics used in the experiments. C-Eval(V) denotes the C-
Eval estimation with the Jaccard similarity function, the algorithm DirectLinGAM
and the λ factor 1, and the performance estimator V .
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Figure 6.22: Distributions of metrics used in the experiments. C-Eval(V) denotes
the C-Eval estimation with the Macro F1 similarity function, the algorithm
DirectLinGAM and the λ factor 1, and the performance estimator V .
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Figure 6.23: Distributions of metrics used in the experiments. C-Eval(V) denotes the
C-Eval estimation with the Cosine similarity function, the algorithm PC and the λ
factor 1, and the performance estimator V .
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Figure 6.24: Distributions of metrics used in the experiments. C-Eval(V) denotes the
C-Eval estimation with the Jaccard similarity function, the algorithm PC and the λ
factor 1, and the performance estimator V .
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Figure 6.25: Distributions of metrics used in the experiments. C-Eval(V) denotes the
C-Eval estimation with the Macro F1 similarity function, the algorithm PC and the
λ factor 1, and the performance estimator V .
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Figure 6.26: Distributions of metrics used in the experiments. C-Eval(V) denotes the
C-Eval estimation with the Cosine similarity function, the algorithm Notears and
the λ factor 1, and the performance estimator V .
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Figure 6.27: Distributions of metrics used in the experiments. C-Eval(V) denotes the
C-Eval estimation with the Jaccard similarity function, the algorithm Notears and
the λ factor 1, and the performance estimator V .
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Figure 6.28: Distributions of metrics used in the experiments. C-Eval(V) denotes the C-
Eval estimation with the Macro F1 similarity function, the algorithm Notears and
the λ factor 1, and the performance estimator V .
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X-Eval) and the Cosine and Jaccard similarities between the causal graphs were

concentrated below the true performance. So, the C-Eval with the DirectLinGAM and

PC algorithms and similarity functions Cosine and Jaccard decreased the estimated

performance (Figure 6.20e, Figure 6.21e, Figure 6.23e, and Figure 6.24e), which

distanced the C-Eval distribution to the true performance distribution. Consequently,

this also increased the estimation error observed in Figure 6.14e and Figure 6.15e. On

the other hand, the Macro F1 similarity distribution closely approximated to the true

performance distribution. This made the C-Eval regularization approximate more the

distributions of the CV estimate and the X-Eval estimate to the true performance

distribution (Figure 6.22e, Figure 6.25e, and Figure 6.28e). This also decreased the

estimation error, as Figure 6.16e shows. In Figure 6.16e, the combination of C-Eval with

Notears and Macro F1 similarity achieved the best results. We attribute this result to

the Macro F1 similarity closer proximity to the true performance (Figure 6.28e) and the

Notears tendency to predict a greater number of causal relationships (as Section6.1.2

demonstrated). This way, the penalization of the C-Eval with the Notears and Macro

F1 similarity is smaller than the other C-Eval configurations. Thus, given the small

distribution shift between the datasets about School Dropout, this configuration that

causes a smaller penalization (i.e., C-Eval, with Notears and Macro F1) is more

appropriate.

Additionally, still considering the School Dropout dataset, the distributions of the

similarity functions Cosine (Figure 6.20e and Figure 6.23e) and Jaccard (Figure 6.21e

and Figure 6.24e) showed peaks at zero when the causality inference algorithm was the

PC and the DirectLiNGAM. However, the C-Eval improved the results in the School

Dropout dataset with the Notears algorithm (Figure 6.16). In this case, the similarity

distribution does not have peaks at zero. These peaks in the distributions also explain

the superior performance of C-Eval using the Notears algorithm (that there is no peak at

zero in the similarity distribution) in the School Dropout dataset (Figure 6.28e). Thus,

as mentioned previously in Section 6.2, a future improvement in the C-Eval is to choose

another causality inference algorithm when no causal relationships is inferred. This was

observed with the PC algorithm, which inferred zero causal relationships for the School

Dropout dataset (Figure 6.5).

The analyses realized in this section reinforce the observations made in the previous

section, which indicated the X-Eval and C-Eval effectiveness in improving the precision in

the model performance estimation. Next, we present the experimental evaluation of the

proposed methods using synthetic data. This experimental evaluation aims to understand

the behavior of the proposed methods across different types and intensities of distribution

shifts.
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Chapter 7

Experimental Evaluation with

Synthetic Data

In this section, we evaluated the proposed methods using synthetic data. This experiment

aims to analyze the behavior of the proposed method across different types and intensities

of distribution shifts. We employed three approaches to generate synthetic data: (1) we

simulated covariate shift by splitting a real-world dataset in source and target dataset

based on the age feature present in the data; (2) we generated semi-synthetic data by

shuffling subsets of feature values of a real-world dataset; (3) we created a full synthetic

dataset and we shuffled specific portions of the feature values correlated to the labels. For

a detailed description of the main experimental decisions, refer to Chapter 5. Next, we

will describe how we generated and conducted the experiments with each type of synthetic

data.

7.1 Experiments with Semi-Synthetic Data

In our experiments with semi-synthetic data, we chose a real-world dataset

regarding the Polycystic Ovary Syndrome (PCOS) disease, which was introduced by

Silva et al. [91]. We selected this dataset because we needed an easily separable dataset

(i.e., a dataset in which the model has high performance) to analyze the effects of

distribution shifts in the model performance (i.e., the degradation of the model

performance over the distribution shift). Besides, the PCOS dataset is interesting

because it deals with one of the most frequent endocrinopathy among women of

reproductive age [91].

The PCOS dataset has 145 examples, 14 features, and two classes. Besides, the

classes are balanced (i.e., with 49,66% of examples of the positive class and 50,34% in the

negative class). The class indicates if the woman has PCOS or not.
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7.1.1 Experiments with Covariate Shift Simulation

In this experiment, we split the PCOS data into source and target datasets based

on the age feature. So, this way, we intend to simulate covariate shift (i.e., when there is a

change in p(X )) in a similar way that Ginsberg [32] presented. For example, a model was

built from data provided by a hospital that received people of a range of ages. However,

the same model was applied to data from another hospital that received patients of a

different range of age from the hospital in which the model was built. Specifically, for

each unique age t in the PCOS dataset, we created: (1) a source dataset D(t) with all

examples with age < t; and (2) a target dataset T (t) with the examples with the age ≥ t.

Figure 7.1 shows the PCOS dataset distribution by the age feature. We used the

source and target datasets created with ages (t) from 27 to 38 because the PCOS dataset

has a few examples for causal graphs inference with ages less than 27 and greater than 38.

Thus, we created 12 different source and target datasets with different data distributions

(i.e., distribution shifts).
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Figure 7.1: Data distribution by age in the PCOS dataset. Additionally, this figure
presents the label distribution for each age.

In Figure 7.2, we can observe that the C-Eval showed more stable results with

the Macro F1 similarity. These results reinforce our analysis and hypothesis made in

Section 6 regarding the applicability of the Macro F1 similarity in the proposed C-Eval

to AutoEval. Besides, in this experiment, the C-Eval achieved a smaller estimation error

than the CV in most cases with the configurations:
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• C-Eval regularizing the X-Eval estimate with the Macro F1 similarity, independent

of the other hyperparameters.

• C-Eval with the PC causality inference algorithm and Macro F1 similarity,

independent of the other hyperparameters.

• C-Eval regularizing the CV estimate with the Macro F1 similarity, and the PC or

Notears causality inference algorithms, independent of the used λ factor.
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Figure 7.2: Absolute estimation error on covariate shift simulation by splitting the PCOS
dataset by age. Each sub-figure presents the name of the algorithm used for causal graph
inference in the legend.

Figure 7.2 shows that the X-Eval achieved a smaller estimation error than the

CV in most cases. We attribute these results to the variation of the used metrics in the

X-Eval as Figure 7.3 and Figure 7.4 show. Figure 7.3 shows the variation of the average

impact of each feature in the model. Additionally, Figure 7.4 shows the variation of the

average prediction confidence and agreement percentage over the created training and test

dataset split by age. Thus, the X-Eval used this variation to detect patterns of correct

and incorrect prediction and estimate the model performance in a closer approximated

way than the CV.
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These results indicate the applicability of the proposed X-Eval and C-Eval

approaches for approximating the model generalization in covariate shift scenarios.

Next, we present the experiments simulating distribution shifts caused by noisy data.
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Figure 7.3: This figure shows the average SHAP values (feature importance) over covariate
shift simulation by splitting the data by age.
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7.1.2 Experiments Simulating Distribution Shift Caused by

Noisy Data in Semi-Synthetic Data

In this experiment, we used the PCOS dataset. Figure 7.5 illustrates the process

of creating the test sets for this experiment. First, we split the dataset into a training

(70% of the data) and a test set (30% of the data). Next, we ranked the features by

importance using the SHAP values [58, 57]. Then, we started shuffling 10% of the feature

values in the test set and we created a new test set with this percent of values shuffled.

We repeated this process increasing the percentage of the shuffled values in 10% until we

achieved 100% of this feature values shuffled. Then, we continued the process with the

next feature in the rank and we repeated this process of shuffling of the feature values.

At the end of the process, we created 140 test sets, each test set with a percentage of

shuffled feature values and the last test set has all the feature values shuffled. Introducing

noise into the data is a common way to simulate distribution shift in the classification

task [25, 31, 111].

Figure 7.5: Illustrations of the process to create the synthetic data shuffling the feature
values. The grids represent the datasets, each column represents a feature, and a cell
represents a set of feature values.
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Specifically, to generate the semi-synthetic data, given a dataset D =< X, y >,

where X = {x1, .., xn} and xi is an array of feature F = {f1, .., fm} and y is an array

with the labels associated with each xi. We split D into two subsets, training Dtrain and

test Dtest. Considering a function GenSynt(D, z, fi) to generate a synthetic dataset by

shuffling z% of the feature fi, where z ∈ {0.1, 0.2, .., 0.9, 1.0} and fi ∈ F . So, we created

Dtest,i = GenSynt(Dtest, zi, fi)∀zi ∈ Z ∀fi ∈ F .

Next, we built a model M from Dtrain and we estimated the model performance

of the M in each Dtest,i using the 10-fold cross-validation (CV), and the proposed

AutoEval approaches (X-Eval and C-Eval). We did experiments with the C-Eval with:

(1) the causality inference algorithms discovery PC, DirectLiNGAM, and Notears; (2)

the λ factors 1, 3, and 6; and (3) the similarity functions Cosine, Jaccard, and Macro F1.

We adopted the strategy of shuffling data because this way the feature values are

possible values. For example, if we increase the feature values by a constant, we could

create an impossible example (e.g., a person aged 150). Besides, this strategy is used in

algorithms such as SHAP values [58, 57]. We employed SHAP values to rank the features

because some works have shown that this method can achieve better results than other

commonly used algorithms for feature selection [109, 64, 53].

Figure 7.6 shows the results of the experiments with the generated synthetic data.

This figure shows the absolute error between the estimated and the true performance as

the percentage of shuffled feature values increases. We compared the absolute estimation

error (i.e., —truePerformance-estimatedPerformance—) of the proposed approaches

with the 10-fold cross-validation (CV) absolute estimation error. We can observe that as

the rate of the shuffled feature values increases, the estimation error of the proposed

approaches tends to be smaller than the CV estimation error in all cases.

Besides, one can see the C-Eval results with the Macro F1 similarity were more

stable than the C-Eval results with the other similarity functions (Figure 7.6a,

Figure 7.6b, and Figure 7.6c). As mentioned previously, this is because the Macro F1

similarity approximated more to the true performance, and we attribute this result for:

(1) the Macro F1 was the same metric used to measure the model performance, and (2)

the Macro F1 recommendation to measure similarity in imbalanced data. Furthermore,

Figure 7.7 shows that the Macro F1 similarity between the causal graphs is closer

approximated to true performance than the other similarity functions, supporting our

hypothesis.

Considering the X-Eval and the C-Eval with the Macro F1 similarity

(Figure 7.6a, Figure 7.6b, and Figure 7.6c), specifically when the percentage of the

shuffled data was small (i.e., < 0.2), the estimation error of the proposed approaches

was close to the CV estimation error, because with a small distribution shift the CV is

precise to estimate the model performance. However, we consider this a positive result

because this close estimation error indicates that the proposed approaches do not
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Figure 7.6: Absolute estimation error on incrementally shuffled feature values. In each
subfigure, the legend shows the name of the algorithm for causal graph inference and the
similarity function used in the C-Eval.

increase the estimation error achieved with the CV in scenarios with no distribution

shift or with a small distribution shift. Besides, these results are another indication of

the Macro F1 superiority in the evaluated distribution shift scenarios.

Analyzing the X-Eval results, in Figure 7.6a, we may observe that the X-Eval

achieved the smallest estimation error and outperformed the CV in most cases. Besides,

the X-Eval showed stable results in all series (i.e., when we increased the percentage of

shuffled data). For instance, the X-Eval maximum estimation error was 0.2, whereas the

CV maximum estimation error was 0.4.

An explanation for this result is the variation in the features used by the X-Eval in

the estimation of the model performance (these variations can be observed in Figure 7.8

and Figure 7.9). Figure 7.8 and Figure 7.9 show that when the percentage of the shuffled

data increases: (1) the average feature importance changes in different ways; and (2)

the prediction confidence and agreement between the model decreases. Thus, the X-Eval

uses these variations (in the feature importance, prediction confidence, and agreement)

to discover patterns to classify each model prediction as correct or incorrect.

Besides, still regarding the X-Eval results, focus on the beginning of the series

in Figure 7.6a, when the percentage of the shuffled data was less than 0.2, the CV was
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and (2) the True Performance (Macro F1). Each sub-figure shows the name of the used
similarity function in the legend.

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
ve

ra
ge

 s
ha

p 
va

lu
es

 (
fe

at
ur

e 
im

pa
ct

)

% shuffled feature values

CA
IMC
LAP

HOMA
17OHp.

Idade
Insulina
Triglic.

PCR
Prolactina

HDL
TAFI
FSH

DiabPar.

Figure 7.8: Impact of the shuffling in the feature values on the features importance. This
figure shows the average SHAP values (feature importance) over different percentages of
shuffled feature values in the PCOS dataset.
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Figure 7.9: Average prediction confidence (standard deviation between 0.24 and 0.44)
and percentage of agreement over different percentages of shuffled feature values on the
PCOS dataset.

better than the X-Eval. This is because when there is a small distribution shift between

the source and the target datasets, the CV is precise to estimate the model performance.

However, we can observe that the X-Eval showed an estimation error ≤ 0.1, which can

be considered relatively low compared to the highest CV estimation error in the series,

which was 0.4.

On the other hand, from 10% up to 30% of the feature values shuffled the proposed

approaches presented an evident lower estimation error than the CV, as Figure 7.6a,

Figure 7.6b, and Figure 7.6c show. This is an interesting result because in the real-world

we can consider up to 30% a reasonable percentage of noise in the data. Besides, with 30%

of feature values shuffled, the error of the CV was 0.19 and the proposed approach C-Eval

achieved an estimation error of up to 0.04 (Figure 7.6b). Thus, we can see a reduction of

78% of the estimation error.

In addition, the C-Eval, with Macro F1 similarity, stabilized the X-Eval estimation

error where the percent of feature values shuffled was small (i.e., < 0.1), making the

estimation error always smaller or close to the CV estimation error in the complete series,

with the following setting:

• The C-Eval regularized the X-Eval estimate using the Macro F1 similarity function,

the PC causality inference algorithm, and λ factors 3 and 6 (Figure 7.6a);

• The C-Eval regularized the X-Eval estimate using the Macro F1 similarity function,

the causality inference algorithm DirectLinGAM, and λ factor 6 (Figure 7.6b).

Similarly, the C-Eval regularizing the CV estimate achieved an estimation error

always smaller or close to the CV error when:
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• The C-Eval regularized the CV estimate using the Macro F1 similarity function, the

causality inference algorithm DirectLinGAM, and λ factor 3 (Figure 7.6b);

• The C-Eval regularized the CV estimate using the Macro F1 similarity function, the

Notears causality inference algorithm, and λ factor 6.

These results indicate the applicability of the proposed methods to estimate the

performance of the classification model when noise in the data causes distribution shifts.

Once, the proposed methods outperformed the standard CV in the reasonable situation

(i.e., with a small percentage of noised data) and hard situation (i.e., with noise in the

greatest part of the data). Next, we present our experiments simulating distribution shift

in full synthetic data.

7.2 Experiments Simulating Distribution Shift

Caused by Noisy Data in Full Synthetic Data

In this experiment with synthetic data, we generated a completely synthetic

dataset following the approach presented by [85]. Basically, in this approach, given the

number of informative features k (i.e., feature correlated to the class) and the number of

non-informative features j, the algorithm creates a dataset with k informative features

correlated to the classes (using a cluster approach) and with j non-informative features

applying noise [85]. Thus, we created a synthetic dataset with 1000 examples and 20

features, using [85] approach. However, only two features were informative (i.e., features

correlated to the class) and the other features were randomly generated. Then, we split

the dataset into a training (70% of the data) and a test (30% of the data) dataset. So,

we simulated distribution shifts as illustrated in Figure 7.10. Thus, we started shuffling

10% of the values of the two informative features in the test set and we created a new

test set considering the shuffled and non-randomized values. We repeated this process

increasing the percentage of the shuffled values by 10% until we shuffled all the values of

the original test set.

Specifically, we used [85] to create a dataset Ds =< X , y >, where

X = {x1, .., xn} and xi is an array of feature and y is an array with the labels associated

with each xi. We split Ds into two subsets, training Ds
train and test Ds

test. Considering a

function GenSynt(D, z) to simulate distribution shift by shuffling z% of the informative

features individually (i.e., the values of a feature fi were shuffled with the values of the
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Figure 7.10: Illustrations of the process to create the synthetic data shuffling the feature
values. The grids represent the datasets, each column represents a feature, and a cell
represents a set of feature values. Considering that we had just two informative features
in the synthetic dataset, we shuffled the values of both features simultaneously.

same feature fi), where Z = {0.1, 0.2, .., 0.9, 1} and z ∈ Z. So, we created

Dtest,i = GenSynt(D, zi)∀zi ∈ Z.
Next, we built a model M from Dtrain and we estimated the model performance

of the M in each Dtest,i using the 10-fold cross-validation (CV), the X-Eval, and the

proposed C-Eval approach. When we used the C-Eval, we performed the experiments

with: (1) the causal graph algorithm discovery PC, DirectLiNGAM and Notears; (2) the

factors 1, 2, and 3; and (3) the similarity functions MacroF1, Cosine, and Jaccard.

Figure 7.11 shows the results of this experiment with the generated synthetic data.

This figure displays the estimation error across various percentages of shuffled data (i.e.,

simulations of distribution shifts). As expected, the error of the CV estimation increases

when the percentage of shuffled data increases because we performed the CV estimation

considering just the source dataset, which does not represent the distributions of the noisy

target datasets.

In Figure 7.11, we can see that the X-Eval estimation error was consistently smaller

than the CV estimation error. Besides, the X-Eval was stable with the error always

less than 0.15 (e.g., Figure 7.11a). We attribute these results to the variation in the

explanation metrics used in the X-Eval (specifically, the SHAP values, agreement between

classifiers as Figure 7.12 and Figure 7.13 evidence). Figure 7.12 and Figure 7.13 show

that when the percentage of the shuffled data increased, the average SHAP values (i.e.,

feature importance), the average prediction confidence and the percentage of agreement

decreased.

One can see, if we evaluate the C-Eval results regarding the similarity function,

the C-Eval estimation error was more stable using the Macro F1 as similarity function

because the C-Eval estimation error was smaller than CV estimation error in most cases,

independent of the used causality learning algorithm (Figure 7.11a, Figure 7.11b, and

Figure 7.11c). Figure 7.14 shows the variation of the similarity among the causal graphs

over the percentage of the shuffled feature values; these variations explain these C-Eval
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Figure 7.11: Absolute estimation error over different percentages of shuffled feature
values in the full-synthetic data with just two informative features. We shuffled the
two informative features values simultaneously. Each subfigure shows the name of the
causality inference algorithm and the similarity function used in the C-Eval algorithm.

results. Figure 7.14 shows that the Macro F1 Similarity is closer approximated to the

true performance than the other similarity functions. These results are similar to the

C-Eval results presented in the previous experimental evaluation sections (i.e., Section 6,

Section 7.1.2, and Section 7.1.1), which reinforces our finds.

Besides, the C-Eval decreased the X-Eval estimation error in most cases with:

• The causality inference algorithm PC with the percentage of shuffled data > 30%

(Figure 7.11a).

• The DirecLinGAM up to 70% of data shuffled, which we consider reasonable that

in the real world the target data present less than 70% of noise (Figure 7.11b).

• The Notears causality inference algorithm in all series (Figure 7.11c).

Specifically, the C-Eval achieved the best result with the Notears causality inference

algorithm and the Cosine and Jaccard similarity functions. These approaches were stable

and showed estimation errors of less than 0.1 during the experiment.

These results indicate the applicability of the proposed algorithms X-Eval and

C-Eval to estimate the model performance in this kind of distribution shift. Once, our



7.2. Experiments Simulating Distribution Shift Caused by Noisy Data in Full Synthetic
Data 132

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
ve

ra
ge

 s
ha

p 
va

lu
es

 (
fe

at
ur

e 
im

po
rt

an
ce

)

% shuffled feature values

Informative Feature 1
Informative Feature 2

Figure 7.12: Impact of the shuffled
in the feature values in the features
importance. This figure shows the
average SHAP values (standard
deviation between 0.018 and 0.28)
over different percentages of shuffled
feature values in the full-synthetic data
with just two informative features.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

% shuffled feature values

Average Prediction Confidence
Percentage Agreement

Figure 7.13: Average prediction
confidence (standard deviation between
0.35 and 0.38) and percentage of
agreement over different percentages
of shuffled feature values in the full-
synthetic data with just two informative
features. ................... ....................
....................

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

% shuffled feature values

(a) Cosine Similarity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

% shuffled feature values

(b) Jaccard Similarity

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

% shuffled feature values

(c) Macro F1 Similarity

Similarity Graphs DirectLiNGAM
Similarity Graphs PC

Similarity Graphs Notears
True MacroF1

Figure 7.14: This figure shows (1) the graphs similarity by causality inference algorithm,
and (2) the True Performance (Macro F1) in the full-synthetic data with just two
informative features. Each sub-figure shows the name of the used similarity function
in the legend.

algorithms presented an estimation error consistently smaller than the standard CV

estimation error. Next, we present a discussion of the results.
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Chapter 8

Discussion of the Results

In Chapter 6 and Chapter 7 , we presented the evaluation of the proposed algorithms

C-Eval and X-Eval with more than 5,150 models, including models built from synthetic

and real-world datasets. Our experiments showed that the proposed X-Eval and C-Eval

algorithms outperformed the standard 10-fold cross-validation (CV) in different

distribution shift situations.

Specifically, we observed that the X-Eval consistently showed a smaller estimation

error than the CV. We attribute these results to the following X-Eval characteristics:

1. Individual Instance Judgment: The X-Eval classifies each target instance as

correct or incorrect. This strategy is essential to treat covariate shift.

2. Label Shift Simulation: Another key X-Eval characteristic is the simulation of

changes in the label distribution (i.e., p(y)) in the target dataset. This strategy

addresses label shift by preparing the autoEval model for different label distribution

changes.

3. Agreement as Complementary Feature: X-Eval leverages the agreement as a

complementary feature. When we combine the agreement with other features that

the X-Eval uses, the X-Eval may deal with some cases of concept drift.

The C-Eval, regularizing both the CV and X-Eval estimates, outperformed the

standard CV. Besides, the C-Eval improved the X-Eval estimate in most cases by closer

approximating the X-Eval estimate to the true performance. The C-Eval showed better

results using the Macro F1 similarity because it is the same metric used to measure the

model performance since the similarities with the Macro F1 approximated more to the

true performance. Besides, C-Eval with the causality inference algorithms DirectLinGAM

and PC presented the best results. However, the DirectLinGAM presented an advantage

over the PC because the PC predicted zero causality relationships in some datasets.

In addition, we observed that the C-Eval regularizing the CV estimate achieved

better results using a λ factor between 1 and 3, which indicates that the weight of similarity

between the causal graphs and the CV estimate should be near. On the other hand, C-

Eval regularizing the X-Eval estimate achieved better results using the λ factor between
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5 and 7 because as the X-Eval estimate closer approximated to the true performance, the

X-Eval estimate must have a greater weight in the C-Eval process. In other words, the

similarity between the causal graphs can influence the CV estimate more than the X-Eval

estimate.

These results demonstrated the applicability of the proposed algorithms to

approximate the model performance in distribution shift scenarios. Besides, the results

showed the superiority of the proposed algorithms over the CV in approximating the

true performance in distribution shift scenarios. Next, we discuss some limitations of

our research.

8.1 Research Limitations

In this section, we discuss the limitations of our research. One limitation is the

C-Eval dependence of hyperparameters. However, experimentally, we could define a set

of hyperparameters indicated for the C-Eval.

In addition, the proposed algorithms C-Eval and X-Eval have a higher

computational cost than the CV, as showed in the Section 4.1.7, Section 4.2.1, and

evidenced by the process time analysis presented in the Appendix B. However,

considering the challenging task of estimating the model performance in distribution

shift scenarios, this higher computational cost can be considered less relevant in the first

moment because (1) a precise model performance estimation in situations that can occur

distribution shifts can bring benefits to many areas (e.g., Transfer Learning, Continual

Learning, and Semi-Supervised Learning), and (2) the AutoEval approaches allow a

continuous evaluation of the model in a real-world application (i.e., a deployed model).

Besides, in the future, we can propose strategies to decrease the computational cost

(e.g., to sample a target dataset to estimate the model performance). However, even

with the processing time presented in Appendix B, applying the proposed algorithms in

real-world environments is feasible because the greatest processing time was less than 20

minutes.

Finally, the small size of some datasets used to evaluate our approaches may limit

the results of our experiments in terms of process time. However, in the real world, it is

possible to control the size of the used target data to estimate model performance, or the

size of the target dataset can be reduced by sampling the data. Besides, we used datasets

of sizes commonly encountered in the healthcare area [3] and large datasets, such as those

related to COVID-19. Next, we present our conclusions and future work.
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Chapter 9

Conclusions and Future Work

This thesis focused on the important and underexplored problem of Automatic Model

Evaluation (AutoEval) [25, 33, 111] on the tabular data context. We proposed novel

AutoEval methods (i.e., the X-Eval and the C-Eval) to approximate the true

performance of a classification model on unlabeled data of unknown distribution. The

proposed methods benefit from the possibility of extracting explanations and causal

graphs from labeled and unlabeled data.

Specifically, the proposed X-Eval method uses explanations because they

represent the model from different perspectives. Thus, we investigated the applicability

of these perspectives to provide information to model evaluation (i.e., to approximate

the estimated performance to the true performance). Thus, we investigated the

hypothesis that model representation with the explanation can diverge when there is a

distribution shift between two datasets. Our experiments demonstrated these changes in

the model explanations in distribution shift scenarios. Besides, this becomes more

evident in the experiments with synthetic data.

Regarding the C-Eval, from the concept of causality relationships are stronger

relations than the correlation, and that causal relations should not change from one

dataset to another, we investigated the hypotheses that: (1) changes in the causal

graphs of the source and target datasets indicate distribution shifts and (2) this

difference can be used to regularize the estimated model performance with the 10-fold

cross-validation (CV) or X-Eval.

We evaluated the proposed method in terms of gap between estimation and

observed true performance. We also showed the application of the AutoEval approaches

to model selection from a case study on feature selection. In this case study we proposed

a simple process to feature selection with the estimations of proposed approach on

unlabeled data of unknown distribution.

The proposed algorithms outperformed the standard 10-fold cross-validation

(CV) in all experiments. Regarding the gap between estimated and true performance,

the proposed methods showed a reduction of up to 100% in the error estimation when

compared with the standard CV approach. Regarding feature selection, our proposed

method achieved gains up to 76% in comparison to the CV. These results indicate that
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the proposed method can be used to improve the model performance estimation and

model selection (e.g., hyperparameter tuning, and feature selection) in scenarios where

distribution shift can occur.

In the future, the proposed algorithms can be studied in application to constant

monitoring of the model performance in environments in which the distribution of future

data can change [61]. In this sense, our results can benefit research areas (e.g.,

Semi-Supervised Learning, Ensemble Learning, Misclassification detection, Active

Learning, and Continual Learning) and industrial processes that use machine learning

models for automatic data classification in distribution shift environments (e.g.,

automatic classification in data stream scenarios). Besides, the proposed methods can

be easily applied or adapted to Computer Vision and Natural Language Processing

problems. Additionally, the proposed approach to compute the similarity between

datasets can be used in another application to estimate distribution difference [25] and

distance between dataset (e.g., for datasets clustering).
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Teixeira, Ester A Barreto, Camila RR Pão, Cassia Righy, Sérgio Franco, Thiago ML

Souza, Pedro Kurtz, et al. Platelet activation and platelet-monocyte aggregate

formation trigger tissue factor expression in patients with severe covid-19. Blood,

The Journal of the American Society of Hematology, 136(11):1330–1341, 2020.

[37] Yan Huang, Zhang Zhang, Yan Huang, Qiang Wu, Han Huang, Yi Zhong, and

Liang Wang. Customized meta-dataset for automatic classifier accuracy evaluation.

Pattern Recognition, 146:110026, 2024.

[38] iStock. Alley de neve pela manhã - imagem em alta resolução.
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A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

https://www.istockphoto.com/br/foto/alley-de-neve-pela-manh%C3%A3-gm533292615-56247296?irgwc=1&cid=IS&utm_medium=affiliate&utm_source=Du%C5%A1an+Bi%C4%8Danski+Pr+Digitalnio&clickid=1tQUzj3mjxyPUwjX9tT9ITDaUkFWGaw3-y2vXc0&utm_content=258824&irpid=1404368
https://www.istockphoto.com/br/foto/alley-de-neve-pela-manh%C3%A3-gm533292615-56247296?irgwc=1&cid=IS&utm_medium=affiliate&utm_source=Du%C5%A1an+Bi%C4%8Danski+Pr+Digitalnio&clickid=1tQUzj3mjxyPUwjX9tT9ITDaUkFWGaw3-y2vXc0&utm_content=258824&irpid=1404368
https://www.istockphoto.com/br/foto/alley-de-neve-pela-manh%C3%A3-gm533292615-56247296?irgwc=1&cid=IS&utm_medium=affiliate&utm_source=Du%C5%A1an+Bi%C4%8Danski+Pr+Digitalnio&clickid=1tQUzj3mjxyPUwjX9tT9ITDaUkFWGaw3-y2vXc0&utm_content=258824&irpid=1404368
https://www.istockphoto.com/br/foto/alley-de-neve-pela-manh%C3%A3-gm533292615-56247296?irgwc=1&cid=IS&utm_medium=affiliate&utm_source=Du%C5%A1an+Bi%C4%8Danski+Pr+Digitalnio&clickid=1tQUzj3mjxyPUwjX9tT9ITDaUkFWGaw3-y2vXc0&utm_content=258824&irpid=1404368
https://www.istockphoto.com/br/foto/alley-de-neve-pela-manh%C3%A3-gm533292615-56247296?irgwc=1&cid=IS&utm_medium=affiliate&utm_source=Du%C5%A1an+Bi%C4%8Danski+Pr+Digitalnio&clickid=1tQUzj3mjxyPUwjX9tT9ITDaUkFWGaw3-y2vXc0&utm_content=258824&irpid=1404368


REFERENCES 141

[40] Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the

generalization gap in deep networks with margin distributions. In International

Conference on Learning Representations, pages 1–19, 2019.

[41] Yiding Jiang*, Behnam Neyshabur*, Hossein Mobahi, Dilip Krishnan, and Samy

Bengio. Fantastic generalization measures and where to find them. In International

Conference on Learning Representations, pages 1–26, 2020.
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Appendix A

Map among the Node Labels in the

Causal Graph and the Features

Mapping among the node labels of the causal graph that was presented in the Figure 6.7

and the features of the Alzheimers datasets:

• 1:Alzheimer (class),

• 2:Escolaridade,

• 3:Apo E,

• 4:Peak-Low TF-aTFPI,

• 5:ETP-High TF+APC,

• 6:Lagtime-High TF-APC,

• 7:ETP-High TF-APC,

• 8:PC-RQ,

• 9:Peak-High TF-APC,

• 10:HAS,

• 11:Etilismo,

• 12:Lagtime-Low TF-aTFPI,

• 13:ETP-Low TF-aTFPI,

• 14:DM,

• 15:Tabagismo,

• 16:Sexo,

• 17:Peak-High TF+APC,
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• 18:Lagtime-High TF+APC, and

• 19:Idade

Mapping among the node labels of the causal graph that was presented in the

Figure 6.6 and the features of the COVID-19 datasets:

• 1:Veio a obito (class),

• 2:DT COLETA DIAS CORRIDOS,

• 3:Concentracao de Hemoglobina Corpuscular g/dL,

• 4:ALT (TGP) U/L,

• 5:Ureia mg/dL,

• 6:Eritrocitos milhoes/mm3,

• 7:Primeiro PCR,

• 8:Bilirrubina Indireta mg/dL,

• 9:AST (TGO) U/L,

• 10:Platelets /mm3,

• 11:Hematocrito

• 12:Creatinina mg/dL,

• 13:AGE,

• 14:Potassio mEq/L,

• 15:VCM fL,

• 16:Hemoglobina g/dL,

• 17:Ultimo PCR,

• 18:Proteina C-Reativa mg/dL,

• 19:RDW

• 20:Bilirrubina Total mg/dL, and

• 21:Hemoglobina Corpuscular Media pg.

Mapping among the node labels of the causal graph that was presented in the

Figure 6.5 and the features of the Dropout School datasets:
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• 1:Evadiu,

• 2:SEXO,

• 3:1ANOFALTA,

• 4:Forma Ingresso,

• 5:N FILHOS,

• 6:ESTADO CIVIL,

• 7:IDADE,

• 8:ETNIA,

• 9:ESCOLA FUNDAMENTAL,

• 10:CIDADE ORIGEM,

• 11:TIPO ESCOLA ANTERIOR,

• 12:TIPO CONCOMITANCIA,

• 13:Cidade,

• 14:IDADE INGRESSO,

• 15:CURSO, and

• 16:1CONCEITO.
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Appendix B

Processing Time Analysis

This appendix presents the analysis of the processing time of the evaluated algorithm in

this thesis. We executed the experiments in the hardware with 2-core Intel(R) Xeon(R)

CPU @ 2.20GHz, 13GB RAM, and 33GB HDD. The machine there was no graphics card.

Regarding the software specifications, we used the Ubuntu 22.04.3 LTS operating system

with Python 3.10 installed.

Table B.1 shows the average process time of 30 executions of the algorithms 10-

fold cross-validation, the X-Eval, and the C-Eval. The table shows the C-Eval results (1)

by used causality inference algorithm, (2) regularizing the CV and the X-Eval estimates,

and (3) with the Cosine similarity function. We present just the C-Eval results with the

Cosine similarity because the used similarity function did not impact the processing time.

Table B.1: Average process time in 30 executions of the algorithms. We show the standard
deviation in parentheses.

Source:
Geriatrics
Target:
Neurology

Source:
Neurology
Target:
Geriatrics

Source:
HBP
Target:
HSL

Source:
HSL
Target:
HBP

Source:
Students2008
Target:
Students2014

CV 00:00:02 (00:00:01) 00:00:02 (00:00:01) 00:00:04 (00:00:01) 00:00:03 (00:00:02) 00:00:02 (00:00:01)
X-Eval 00:03:07 (00:01:14) 00:02:21 (00:00:08) 00:04:16 (00:00:42) 00:08:01 (00:00:19) 00:03:06 (00:00:38)
C-Eval(Direct,CV) 00:00:06 (00:00:02) 00:00:13 (00:00:06) 00:00:11 (00:00:04) 00:00:43 (00:00:13) 00:00:04 (00:00:02)
C-Eval(Notears,CV) 00:05:16 (00:00:31) 00:10:47 (00:00:53) 00:02:40 (00:00:23) 00:09:07 (00:00:37) 00:00:34 (00:00:07)
C-Eval(PC,CV) 00:00:02 (00:00:01) 00:00:03 (00:00:01) 00:00:10 (00:00:01) 00:00:54 (00:00:03) 00:07:38 (00:00:17)
C-Eval(Direct,X-Eval) 00:03:12 (00:01:16) 00:02:32 (00:00:13) 00:04:24 (00:00:46) 00:08:43 (00:00:34) 00:03:09 (00:00:39)
C-Eval(Notears,X-Eval) 00:08:22 (00:01:28) 00:13:07 (00:00:56) 00:06:59 (00:01:10) 00:17:20 (00:00:59) 00:03:40 (00:00:43)
C-Eval(PC,X-Eval) 00:03:07 (00:01:14) 00:02:23 (00:00:08) 00:04:23 (00:00:42) 00:08:50 (00:00:19) 00:10:43 (00:00:56)

We computed the processing time of the algorithms with the real-world datasets

described in Section 6.1. In these experiments, we used all features of the Alzheimer and

School dropout datasets. However, due to the great number of features of the COVID-19

dataset, in each setup, we selected the most informative features using the training set

and the Borutashap feature selection method [45]. Thus, BorutaShap selected 20 features

for the HBP dataset, and 30 features for the HSL dataset.

In Table B.1, we can see that the processing time of the proposed algorithms X-

Eval and C-Eval are much greater than the CV process time. However, these greater

processing times are less important in the first moment, given the challenging task of

estimating the model performance in scenarios where we expect distribution shifts.



153

Appendix C

Analysis of the Number of Folds

Impact in the k-fold Cross-Validation

in Distribution Shift Scenarios

In this appendix, we analyze how the variation in the number of folds in the k-fold cross-

validation (CV) changes the CV estimation error in distribution shift scenarios. Figure C.1

shows the CV and the X-Eval estimation errors in each analyzed setup of source and target

datasets. In this experiment, we used the features described in Section 6.1. We estimated

the model performance with the CV varying the number of folds (k) ranging from 11 to

the number of examples in the source dataset, with an interval of one. We compared the

CV only with the X-Eval to facilitate analysis because, in this experiment, we focused on

the analysis of the effect of increasing the number of folds (i.e., it is not our intention to

compare all proposed approaches).

In Figure C.1, we can see that in most cases, when we increase the number of

folds, the estimation error is not consistently reduced. Besides, even with the variation

in the number of folds, the X-Eval outperformed the CV persistently in four setups (i.e.,

Figure C.1a, Figure C.1b, Figure C.1c, and Figure C.1d). These results are attributed

to the fact that in the cases of COVID-19 and Alzheimer, there are evident distribution

shifts between the source and the target datasets (as shown in Section 6.1.1), and the CV

requires that the source and the target datasets share the same distribution [61, 54, 33].

Additionally, we emphasize that only in the datasets related to School Dropout

(Figure C.1e) did the estimation error decrease significantly until approximately forty

folds. However, after forty folds, the estimation error increased again. This result is

attributed to the fact that we identified in Section 6.1.1 that there is no strong distribution

shift between the datasets regarding School Dropout. Hence, the CV estimation tends to

be precise. Despite the observed significant reduction in the estimation error with around

30 folds, we cannot assume this parameter as default for all datasets. Once defining the

optimal number of folds for each dataset is a challenging task [108, 73].

These findings indicate that only increasing the folds in the k-fold cross-validation

does not improve the performance estimation when there is a distribution shift between



154

the source and the target datasets. Consequently, proposing new approaches considering

distribution shifts between the datasets is important.
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Figure C.1: Analysis of the CV estimation error (—truePerformance -
estimatedPerformance—) when we increase the number of folds (k).
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Appendix D

X-Eval Hyperparameter Analysis

In this appendix, we show the conducted experimental analysis to define the X-Eval

hyperparameters Ynoise size and the number of interactions (l) in Bayesian Search. We

evaluated the X-Eval using Ynoise sizes and l values of 10, 30, 90, 100, 200, and 300. In

this experiment, we used the features described in Section 6.1.

Figure D.1 shows the X-Eval estimation errors in each analyzed setup of source

and target datasets. In Figure D.1, we see that there was no consistent improvement in

the estimation error with the variations in the hyperparameters.

Hence, in the experiments involving the X-Eval in the rest of this thesis, we set the

size of Ynoise to 30 and the Bayesian Search number of interactions (l) to 30. This decision

was because (1) 30 is considered the minimum sample size to make statistical conclusions

regarding a population [13, 55], and (2) during the experiments in this appendix, the X-

Eval estimation error did not present a significant reduction with the variations in these

hyperparameters. Thus, given the considerable computational cost to execute the X-Eval

(as demonstrated in Appendix B and Section 4.1.7), minimizing the repetitions number

is desirable.
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Figure D.1: X-Eval hyperparameters analysis.
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Appendix E

Complementary Tables of the

Estimation Error Analysis for

Diverse Classifiers

Section 6.2.2 presented an analysis of the estimation error of the proposed approaches

for different classifiers. However, Section 6.2.2 showed only the C-Eval results with the

DirectLinGAM causality inference algorithm and the Macro F1 similarity function. Hence,

this appendix includes tables presenting the C-Eval estimation error with the other causal

inference algorithms and similarity functions used in this thesis, which were not shown in

Section 6.2.2.



158

Table E.1: Estimation error analysis for the classifiers XGBoost, LightGBM, CatBoost,
and TabNet. We compared the proposed autoEval approaches (X-Eval and C-Eval) with
the 10-fold cross-validation (CV). The C-Eval(Estimatior, Direct, Cosine, λ) denotes
the C-Eval approach with one Estimatior (i.e., CV or X-Eval), the DirectLiNGAM
(Direct) causality inference algorithm, the Cosine similarity function, and one λ factor
(i.e., 1, 3, or 6). We highlighted the smallest estimation error for each dataset considering
each classifier in bold, and we also underline the second smallest estimation error.

Performance Estimator

Source:
Geriatrics

Target:
Neurology

Source:
Neurology

Target:
Geriatrics

Source:
HBP

Target:
HSL

Source:
HSL

Target:
HBP

Source:
Students2008

Target:
Students2014

CV 0.37 0.26 0.19 0.20 0.16
X-Eval 0.05 0.06 0.04 0.06 0.17
C-Eval(CV,Direct,Cosine,1) 0.04 0.03 0.14 0.05 0.24
C-Eval(X-Eval,Direct,Cosine,1) 0.12 0.13 0.21 0.12 0.24
C-Eval(CV,Direct,Cosine,3) 0.21 0.11 0.03 0.08 0.20
C-Eval(X-Eval,Direct,Cosine,3) 0.03 0.04 0.09 0.03 0.21
C-Eval(CV,Direct,Cosine,6) 0.28 0.18 0.10 0.13 0.18

X
G
B
o
os
t

C-Eval(X-Eval,Direct,Cosine,6) 0.00 0.01 0.04 0.01 0.19

CV 0.31 0.11 0.22 0.32 0.09
X-Eval 0.00 0.09 0.07 0.16 0.12
C-Eval(CV,Direct,Cosine,1) 0.04 0.14 0.10 0.03 0.21
C-Eval(X-Eval,Direct,Cosine,1) 0.19 0.24 0.17 0.05 0.23
C-Eval(CV,Direct,Cosine,3) 0.14 0.02 0.06 0.17 0.15
C-Eval(X-Eval,Direct,Cosine,3) 0.09 0.16 0.05 0.06 0.17
C-Eval(CV,Direct,Cosine,6) 0.21 0.04 0.13 0.24 0.13

L
ig
h
tG

B
M

C-Eval(X-Eval,Direct,Cosine,6) 0.05 0.13 0.00 0.10 0.15

CV 0.33 0.09 0.25 0.30 0.15
X-Eval 0.01 0.09 0.08 0.07 0.21
C-Eval(CV,Direct,Cosine,1) 0.02 0.22 0.08 0.04 0.26
C-Eval(X-Eval,Direct,Cosine,1) 0.14 0.31 0.17 0.07 0.29
C-Eval(CV,Direct,Cosine,3) 0.18 0.07 0.08 0.17 0.21
C-Eval(X-Eval,Direct,Cosine,3) 0.07 0.20 0.05 0.00 0.25
C-Eval(CV,Direct,Cosine,6) 0.24 0.00 0.15 0.23 0.18

C
at
B
o
os
t

C-Eval(X-Eval,Direct,Cosine,6) 0.04 0.15 0.01 0.03 0.23

CV 0.10 0.12 0.07 0.03 0.01
X-Eval 0.04 0.10 0.00 0.05 0.06
C-Eval(CV,Direct,Cosine,1) 0.09 0.27 0.16 0.21 0.12
C-Eval(X-Eval,Direct,Cosine,1) 0.12 0.26 0.12 0.17 0.15
C-Eval(CV,Direct,Cosine Sim.,3) 0.00 0.20 0.11 0.12 0.06
C-Eval(X-Eval,Direct,Cosine Sim.,3) 0.04 0.18 0.06 0.06 0.11
C-Eval(CV,Direct,Cosine Sim.,6) 0.04 0.16 0.10 0.08 0.04

T
ab

N
et

C-Eval(X-Eval,Direct,Cosine,6 0.01 0.14 0.03 0.02 0.09
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Table E.2: Estimation error analysis for the classifiers XGBoost, LightGBM, CatBoost,
and TabNet. We compared the proposed autoEval approaches (X-Eval and C-Eval) with
the 10-fold cross-validation (CV). The C-Eval(Estimatior, Notears, Cosine, λ) denotes
the C-Eval approach with one Estimatior (i.e, CV or X-Eval), the Notears causality
inference algorithm, the Cosine similarity function, and one λ factor (i.e., 1, 3, or 6).
We highlighted the smallest estimation error for each dataset considering each classifier
in bold, and we also underline the second smallest estimation error.

Performance Estimator

Source:
Geriatrics

Target:
Neurology

Source:
Neurology

Target:
Geriatrics

Source:
HBP

Target:
HSL

Source:
HSL

Target:
HBP

Source:
Students2008

Target:
Students2014

CV 0.37 0.26 0.19 0.20 0.16
X-Eval 0.05 0.06 0.04 0.06 0.17
C-Eval(CV,Notears,Cosine,1) 0.33 0.31 0.03 0.17 0.11
C-Eval(X-Eval,Notears,Cosine,1) 0.19 0.21 0.05 0.08 0.11
C-Eval(CV,Notears,Cosine,3) 0.33 0.28 0.11 0.21 0.14
C-Eval(X-Eval,Notears,Cosine,3) 0.12 0.13 0.01 0.07 0.14
C-Eval(CV,Notears,Cosine,6) 0.33 0.27 0.15 0.23 0.15

X
G
B
o
os
t

C-Eval(X-Eval,Notears,Cosine,6) 0.09 0.10 0.01 0.06 0.15

CV 0.31 0.11 0.22 0.32 0.09
X-Eval 0.00 0.09 0.07 0.16 0.12
C-Eval(CV,Notears,Cosine,1) 0.28 0.14 0.12 0.21 0.08
C-Eval(X-Eval,Notears,Cosine,1) 0.13 0.04 0.05 0.13 0.1
C-Eval(CV,Notears,Cosine,3) 0.29 0.12 0.17 0.27 0.09
C-Eval(X-Eval,Notears,Cosine,3) 0.06 0.02 0.06 0.15 0.11
C-Eval(CV,Notears,Cosine,6) 0.30 0.12 0.19 0.29 0.09

L
ig
h
tG

B
M

C-Eval(X-Eval,Notears,Cosine,6) 0.04 0.05 0.07 0.15 0.11

CV 0.33 0.09 0.25 0.30 0.15
X-Eval 0.01 0.09 0.08 0.07 0.21
C-Eval(CV,Notears,Cosine,1) 0.28 0.13 0.09 0.14 0.13
C-Eval(X-Eval,Notears,Cosine,1) 0.11 0.04 0.01 0.02 0.16
C-Eval(CV,Notears,Cosine,3) 0.30 0.11 0.17 0.22 0.14
C-Eval(X-Eval,Notears,Cosine,3) 0.06 0.02 0.04 0.05 0.18
C-Eval(CV,Notears,Cosine,6) 0.31 0.10 0.20 0.25 0.15

C
at
B
o
os
t

C-Eval(X-Eval,Notears,Cosine,6) 0.04 0.05 0.06 0.06 0.19

CV 0.10 0.12 0.07 0.03 0.01
X-Eval 0.04 0.10 0.00 0.05 0.06
C-Eval(CV,Notears,Cosine,1) 0.19 0.04 0.35 0.07 0.22
C-Eval(X-Eval,Notears,Cosine,1) 0.16 0.05 0.31 0.03 0.25
C-Eval(CV,Notears,Cosine,3) 0.14 0.04 0.21 0.05 0.11
C-Eval(X-Eval,Notears,Cosine,3) 0.10 0.02 0.15 0.01 0.15
C-Eval(CV,Notears,Cosine,6) 0.12 0.08 0.15 0.04 0.07

T
ab

N
et

C-Eval(X-Eval,Notears,Cosine,6) 0.07 0.05 0.09 0.02 0.12
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Table E.3: Estimation error analysis for the classifiers XGBoost, LightGBM, CatBoost,
and TabNet. We compared the proposed autoEval approaches (X-Eval and C-Eval) with
the 10-fold cross-validation (CV). The C-Eval(Estimatior, Direct, Jaccard, λ) denotes
the C-Eval approach with one Estimatior (i.e., CV or X-Eval), the DirectLiNGAM
(Direct) causality inference algorithm, the Jaccard similarity function, and one λ factor
(i.e., 1, 3, or 6). We highlighted the smallest estimation error for each dataset considering
each classifier in bold, and we also underline the second smallest estimation error.

Performance Estimator

Source:
Geriatrics

Target:
Neurology

Source:
Neurology

Target:
Geriatrics

Source:
HBP

Target:
HSL

Source:
HSL

Target:
HBP

Source:
Students2008

Target:
Students2014

CV 0.37 0.26 0.19 0.2 0.16
X-Eval 0.05 0.06 0.04 0.06 0.17
C-Eval(CV,Direct,Jaccard,1) 0.00 0.06 0.18 0.12 0.33
C-Eval(X-Eval,Direct,Jaccard,1) 0.16 0.16 0.26 0.19 0.34
C-Eval(CV,Direct,Jaccard,3) 0.19 0.1 0.00 0.04 0.25
C-Eval(X-Eval,Direct,Jaccard,3) 0.05 0.05 0.11 0.06 0.25
C-Eval(CV,Direct,Jaccard,6) 0.27 0.17 0.08 0.11 0.21

X
G
B
o
os
t

C-Eval(X-Eval,Direct,Jaccard,6) 0.01 0.00 0.05 0.01 0.22

CV 0.31 0.11 0.22 0.32 0.09
X-Eval 0.00 0.09 0.07 0.16 0.12
C-Eval(CV,Direct,Jaccard,1) 0.07 0.19 0.15 0.04 0.29
C-Eval(X-Eval,Direct,Jaccard,1) 0.22 0.29 0.22 0.12 0.31
C-Eval(CV,Direct,Jaccard,3) 0.12 0.04 0.03 0.14 0.19
C-Eval(X-Eval,Direct,Jaccard,3) 0.11 0.19 0.08 0.02 0.21
C-Eval(CV,Direct,Jaccard,6) 0.2 0.02 0.11 0.22 0.15

L
ig
h
tG

B
M

C-Eval(X-Eval,Direct,Jaccard,6) 0.06 0.14 0.01 0.08 0.17

CV 0.33 0.09 0.25 0.3 0.15
X-Eval 0.01 0.09 0.08 0.07 0.21
C-Eval(CV,Direct,Jaccard,1) 0.03 0.24 0.13 0.03 0.34
C-Eval(X-Eval,Direct,Jaccard,1) 0.2 0.32 0.22 0.15 0.37
C-Eval(CV,Direct,Jaccard,3) 0.15 0.08 0.06 0.13 0.25
C-Eval(X-Eval,Direct,Jaccard,3) 0.1 0.21 0.07 0.04 0.29
C-Eval(CV,Direct,Jaccard,6) 0.23 0.01 0.14 0.2 0.21

C
at
B
o
os
t

C-Eval(X-Eval,Direct,Jaccard,6) 0.05 0.15 0.01 0.01 0.25

CV 0.1 0.12 0.07 0.03 0.01
X-Eval 0.04 0.1 0.00 0.05 0.06
C-Eval(CV,Direct,Jaccard,1) 0.13 0.31 0.09 0.28 0.04
C-Eval(X-Eval,Direct,Jaccard,1) 0.16 0.3 0.05 0.24 0.07
C-Eval(CV,Direct,Jaccard,3) 0.02 0.22 0.08 0.16 0.02
C-Eval(X-Eval,Direct,Jaccard,3) 0.06 0.2 0.02 0.1 0.07
C-Eval(CV,Direct,Jaccard,6) 0.03 0.18 0.08 0.1 0.02

T
ab

N
et

C-Eval(X-Eval,Direct,Jaccard,6) 0.02 0.15 0.01 0.04 0.07
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Table E.4: Estimation error analysis for the classifiers XGBoost, LightGBM, CatBoost,
and TabNet. We compared the proposed autoEval approaches (X-Eval and C-Eval) with
the 10-fold cross-validation (CV). The C-Eval(Estimatior, Notears, Jaccard, λ) denotes
the C-Eval approach with one Estimatior (i.e, CV or X-Eval), the Notears causality
inference algorithm, the Jaccard similarity function, and one λ factor (i.e., 1, 3, or 6).
We highlighted the smallest estimation error for each dataset considering each classifier
in bold, and we also underline the second smallest estimation error.

Performance Estimator

Source:
Geriatrics

Target:
Neurology

Source:
Neurology

Target:
Geriatrics

Source:
HBP

Target:
HSL

Source:
HSL

Target:
HBP

Source:
Students2008

Target:
Students2014

CV 0.37 0.26 0.19 0.20 0.16
X-Eval 0.05 0.06 0.04 0.06 0.17
C-Eval(CV,Notears,Jaccard,1) 0.26 0.24 0.06 0.09 0.19
C-Eval(X-Eval,Notears,Jaccard,1) 0.12 0.14 0.13 0.01 0.20
C-Eval(CV,Notears,Jaccard,3) 0.30 0.25 0.07 0.17 0.18
C-Eval(X-Eval,Notears,Jaccard,3) 0.08 0.10 0.05 0.03 0.18
C-Eval(CV,Notears,Jaccard,6) 0.31 0.26 0.12 0.20 0.17

X
G
B
o
os
t

C-Eval(X-Eval,Notears,Jaccard,6) 0.07 0.08 0.01 0.04 0.18

CV 0.31 0.11 0.22 0.32 0.09
X-Eval 0.00 0.09 0.07 0.16 0.12
C-Eval(CV,Notears,Jaccard,1) 0.21 0.07 0.03 0.13 0.17
C-Eval(X-Eval,Notears,Jaccard,1) 0.06 0.03 0.04 0.05 0.18
C-Eval(CV,Notears,Jaccard,3) 0.26 0.09 0.13 0.23 0.13
C-Eval(X-Eval,Notears,Jaccard,3) 0.03 0.06 0.01 0.10 0.15
C-Eval(CV,Notears,Jaccard,6) 0.28 0.10 0.17 0.27 0.11

L
ig
h
tG

B
M

C-Eval(X-Eval,Notears,Jaccard,6) 0.02 0.07 0.04 0.13 0.14

CV 0.33 0.09 0.25 0.30 0.15
X-Eval 0.01 0.09 0.08 0.07 0.21
C-Eval(CV,Notears,Jaccard,1) 0.20 0.06 0.00 0.04 0.21
C-Eval(X-Eval,Notears,Jaccard,1) 0.04 0.03 0.08 0.08 0.24
C-Eval(CV,Notears,Jaccard,3) 0.27 0.07 0.12 0.17 0.18
C-Eval(X-Eval,Notears,Jaccard,3) 0.02 0.06 0.00 0.00 0.23
C-Eval(CV,Notears,Jaccard,6) 0.29 0.08 0.18 0.22 0.17

C
at
B
o
os
t

C-Eval(X-Eval,Notears,Jaccard,6) 0.02 0.07 0.03 0.03 0.22

CV 0.10 0.12 0.07 0.03 0.01
X-Eval 0.04 0.10 0.00 0.05 0.06
C-Eval(CV,Notears,Jaccard,1) 0.12 0.03 0.25 0.17 0.13
C-Eval(X-Eval,Notears,Jaccard,1) 0.09 0.02 0.21 0.13 0.16
C-Eval(CV,Notears,Jaccard,3) 0.11 0.08 0.16 0.10 0.07
C-Eval(X-Eval,Notears,Jaccard,3) 0.06 0.06 0.10 0.04 0.11
C-Eval(CV,Notears,Jaccard,6) 0.10 0.10 0.12 0.07 0.04

T
ab

N
et

C-Eval(X-Eval,Notears,Jaccard,6) 0.05 0.07 0.06 0.00 0.09
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Table E.5: Estimation error analysis for the classifiers XGBoost, LightGBM, CatBoost,
and TabNet. We compared the proposed autoEval approaches (X-Eval and C-Eval)
with the 10-fold cross-validation (CV). The C-Eval(Estimatior, Notears, MacroF1, λ)
denotes the C-Eval approach with one Estimatior (i.e, CV or X-Eval), the Notears
causality inference algorithm, the Macro F1 similarity function, and one λ factor (i.e.,
1, 3, or 6). We highlighted the smallest estimation error for each dataset considering each
classifier in bold, and we also underline the second smallest estimation error.

Performance Estimator

Source:
Geriatrics

Target:
Neurology

Source:
Neurology

Target:
Geriatrics

Source:
HBP

Target:
HSL

Source:
HSL

Target:
HBP

Source:
Students2008

Target:
Students2014

CV 0.37 0.26 0.19 0.20 0.16
X-Eval 0.05 0.06 0.04 0.06 0.17
C-Eval(CV,Notears,MacroF1,1) 0.36 0.34 0.14 0.23 0.04
C-Eval(X-Eval,Notears,MacroF1,1) 0.22 0.24 0.06 0.14 0.04
C-Eval(CV,Notears,MacroF1,3) 0.35 0.30 0.17 0.24 0.10
C-Eval(X-Eval,Notears,MacroF1,3) 0.14 0.15 0.05 0.10 0.10
C-Eval(CV,Notears,MacroF1,6) 0.34 0.28 0.18 0.25 0.13

X
G
B
o
os
t

C-Eval(X-Eval,Notears,MacroF1,6) 0.10 0.11 0.04 0.08 0.13

CV 0.31 0.11 0.22 0.32 0.09
X-Eval 0.00 0.09 0.07 0.16 0.12
C-Eval(CV,Notears,MacroF1,1) 0.32 0.17 0.19 0.28 0.01
C-Eval(X-Eval,Notears,MacroF1,1) 0.16 0.08 0.12 0.19 0.02
C-Eval(CV,Notears,MacroF1,3) 0.31 0.14 0.21 0.30 0.05
C-Eval(X-Eval,Notears,MacroF1,3) 0.08 0.01 0.10 0.18 0.07
C-Eval(CV,Notears,MacroF1,6) 0.31 0.13 0.21 0.31 0.07

L
ig
h
tG

B
M

C-Eval(X-Eval,Notears,MacroF1,6) 0.05 0.04 0.09 0.17 0.09

CV 0.33 0.09 0.25 0.30 0.15
X-Eval 0.01 0.09 0.08 0.07 0.21
C-Eval(CV,Notears,MacroF1,1) 0.31 0.16 0.18 0.22 0.06
C-Eval(X-Eval,Notears,MacroF1,1) 0.15 0.08 0.10 0.11 0.08
C-Eval(CV,Notears,MacroF1,3) 0.32 0.12 0.22 0.26 0.11
C-Eval(X-Eval,Notears,MacroF1,3) 0.08 0.00 0.09 0.09 0.15
C-Eval(CV,Notears,MacroF1,6) 0.33 0.11 0.23 0.28 0.13

C
at
B
o
os
t

C-Eval(X-Eval,Notears,MacroF1,6) 0.05 0.04 0.08 0.08 0.17

CV 0.10 0.12 0.07 0.03 0.01
X-Eval 0.04 0.10 0.00 0.05 0.06
C-Eval(CV,Notears,MacroF1,1) 0.23 0.07 0.42 0.01 0.30
C-Eval(X-Eval,Notears,MacroF1,1) 0.20 0.08 0.38 0.05 0.33
C-Eval(CV,Notears,MacroF1,3) 0.16 0.03 0.24 0.01 0.16
C-Eval(X-Eval,Notears,MacroF1,3) 0.12 0.01 0.19 0.05 0.20
C-Eval(CV,Notears,MacroF1,6) 0.13 0.07 0.17 0.02 0.09

T
ab

N
et

C-Eval(X-Eval,Notears,MacroF1,6) 0.08 0.05 0.10 0.05 0.14
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Table E.6: Estimation error analysis for the classifiers XGBoost, LightGBM, CatBoost,
and TabNet. We compared the proposed autoEval approaches (X-Eval and C-Eval) with
the 10-fold cross-validation (CV). The C-Eval(Estimatior, PC, Cosine, λ) denotes the
C-Eval approach with one Estimatior (i.e, CV or X-Eval), the PC causality inference
algorithm, the Cosine similarity function, and one λ factor (i.e., 1, 3, or 6). We
highlighted the smallest estimation error for each dataset considering each classifier in
bold, and we also underline the second smallest estimation error.

Performance Estimator

Source:
Geriatrics

Target:
Neurology

Source:
Neurology

Target:
Geriatrics

Source:
HBP

Target:
HSL

Source:
HSL

Target:
HBP

Source:
Students2008

Target:
Students2014

CV 0.37 0.26 0.19 0.20 0.16
X-Eval 0.05 0.06 0.04 0.06 0.17
C-Eval(CV,PC,Cosine,1) 0.04 0.01 0.11 0.11 0.44
C-Eval(X-Eval,PC,Cosine,1) 0.12 0.09 0.18 0.18 0.45
C-Eval(CV,PC,Cosine,3) 0.21 0.14 0.04 0.05 0.30
C-Eval(X-Eval,PC,Cosine,3) 0.03 0.01 0.07 0.06 0.31
C-Eval(CV,PC,Cosine,6) 0.28 0.19 0.10 0.11 0.24

X
G
B
o
os
t

C-Eval(X-Eval,PC,Cosine,6) 0.00 0.02 0.03 0.01 0.25

CV 0.31 0.11 0.22 0.32 0.09
X-Eval 0.00 0.09 0.07 0.16 0.12
C-Eval(CV,PC,Cosine,1) 0.03 0.12 0.21 0.14 0.42
C-Eval(X-Eval,PC,Cosine,1) 0.18 0.22 0.29 0.22 0.43
C-Eval(CV,PC,Cosine,3) 0.14 0.01 0.00 0.09 0.26
C-Eval(X-Eval,PC,Cosine,3) 0.09 0.15 0.11 0.03 0.28
C-Eval(CV,PC,Cosine,6) 0.21 0.04 0.10 0.19 0.19

L
ig
h
tG

B
M

C-Eval(X-Eval,PC,Cosine,6) 0.05 0.12 0.03 0.05 0.21

CV 0.33 0.09 0.25 0.30 0.15
X-Eval 0.01 0.09 0.08 0.07 0.21
C-Eval(CV,PC,Cosine,1) 0.02 0.15 0.04 0.01 0.46
C-Eval(X-Eval,PC,Cosine,1) 0.14 0.23 0.12 0.11 0.49
C-Eval(CV,PC,Cosine,3) 0.18 0.03 0.10 0.15 0.31
C-Eval(X-Eval,PC,Cosine,3) 0.07 0.16 0.02 0.02 0.35
C-Eval(CV,PC,Cosine,6) 0.24 0.02 0.17 0.22 0.24

C
at
B
o
os
t

C-Eval(X-Eval,PC,Cosine,6) 0.04 0.13 0.02 0.02 0.29

CV 0.10 0.12 0.07 0.03 0.01
X-Eval 0.04 0.10 0.00 0.05 0.06
C-Eval(CV,PC,Cosine,1) 0.09 0.27 0.14 0.20 0.08
C-Eval(X-Eval,PC,Cosine,1) 0.12 0.26 0.10 0.16 0.05
C-Eval(CV,PC,Cosine,3) 0.01 0.20 0.10 0.12 0.04
C-Eval(X-Eval,PC,Cosine,3) 0.04 0.18 0.05 0.06 0.00
C-Eval(CV,PC,Cosine,6) 0.04 0.16 0.09 0.08 0.02

T
ab

N
et

C-Eval(X-Eval,PC,Cosine,6) 0.01 0.14 0.02 0.01 0.03
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Table E.7: Estimation error analysis for the classifiers XGBoost, LightGBM, CatBoost,
and TabNet. We compared the proposed autoEval approaches (X-Eval and C-Eval) with
the 10-fold cross-validation (CV). The C-Eval(Estimatior, PC, Jaccard, λ) denotes the
C-Eval approach with one Estimatior (i.e, CV or X-Eval), the PC causality inference
algorithm, the Jaccard similarity function, and one λ factor (i.e., 1, 3, or 6). We
highlighted the smallest estimation error for each dataset considering each classifier in
bold, and we also underline the second smallest estimation error.

Performance Estimator

Source:
Geriatrics

Target:
Neurology

Source:
Neurology

Target:
Geriatrics

Source:
HBP

Target:
HSL

Source:
HSL

Target:
HBP

Source:
Students2008

Target:
Students2014

CV 0.37 0.26 0.19 0.20 0.16
X-Eval 0.05 0.06 0.04 0.06 0.17
C-Eval(CV,PC,Jaccard,1) 0.00 0.03 0.16 0.16 0.44
C-Eval(X-Eval,PC,Jaccard,1) 0.16 0.13 0.24 0.23 0.45
C-Eval(CV,PC,Jaccard,3) 0.19 0.11 0.01 0.02 0.30
C-Eval(X-Eval,PC,Jaccard,3) 0.05 0.04 0.10 0.08 0.31
C-Eval(CV,PC,Jaccard,6) 0.27 0.18 0.09 0.10 0.24

X
G
B
o
os
t

C-Eval(X-Eval,PC,Jaccard,6) 0.01 0.00 0.04 0.02 0.25

CV 0.31 0.11 0.22 0.32 0.09
X-Eval 0.00 0.09 0.07 0.16 0.12
C-Eval(CV,PC,Jaccard,1) 0.06 0.18 0.21 0.14 0.42
C-Eval(X-Eval,PC,Jaccard,1) 0.21 0.28 0.29 0.22 0.43
C-Eval(CV,PC,Jaccard,3) 0.12 0.03 0.00 0.09 0.26
C-Eval(X-Eval,PC,Jaccard,3) 0.11 0.18 0.11 0.03 0.28
C-Eval(CV,PC,Jaccard,6) 0.20 0.03 0.10 0.19 0.19

L
ig
h
tG

B
M

C-Eval(X-Eval,PC,Jaccard,6) 0.06 0.14 0.03 0.05 0.21

CV 0.33 0.09 0.25 0.30 0.15
X-Eval 0.01 0.09 0.08 0.07 0.21
C-Eval(CV,PC,Jaccard,1) 0.03 0.20 0.10 0.06 0.46
C-Eval(X-Eval,PC,Jaccard,1) 0.20 0.28 0.19 0.17 0.49
C-Eval(CV,PC,Jaccard,3) 0.15 0.06 0.07 0.12 0.31
C-Eval(X-Eval,PC,Jaccard,3) 0.10 0.18 0.06 0.05 0.35
C-Eval(CV,PC,Jaccard,6) 0.23 0.01 0.15 0.20 0.24

C
at
B
o
os
t

C-Eval(X-Eval,PC,Jaccard,6) 0.05 0.14 0.00 0.00 0.29

CV 0.10 0.12 0.07 0.03 0.01
X-Eval 0.04 0.10 0.00 0.05 0.06
C-Eval(CV,PC,Jaccard,1) 0.13 0.31 0.08 0.27 0.08
C-Eval(X-Eval,PC,Jaccard,1) 0.16 0.30 0.04 0.23 0.05
C-Eval(CV,PC,Jaccard,3) 0.02 0.22 0.08 0.15 0.04
C-Eval(X-Eval,PC,Jaccard,3) 0.06 0.20 0.02 0.09 0.00
C-Eval(CV,PC,Jaccard,6) 0.03 0.18 0.08 0.10 0.02

T
ab

N
et

C-Eval(X-Eval,PC,Jaccard,6) 0.02 0.15 0.01 0.03 0.03



165

Table E.8: Estimation error analysis for the classifiers XGBoost, LightGBM, CatBoost,
and TabNet. We compared the proposed autoEval approaches (X-Eval and C-Eval) with
the 10-fold cross-validation (CV). The C-Eval(Estimatior, PC, MacroF1, λ) denotes the
C-Eval approach with one Estimatior (i.e, CV or X-Eval), the PC causality inference
algorithm, the Macro F1 similarity function, and one λ factor (i.e., 1, 3, or 6). We
highlighted the smallest estimation error for each dataset considering each classifier in
bold, and we also underline the second smallest estimation error.

Performance Estimator

Source:
Geriatrics

Target:
Neurology

Source:
Neurology

Target:
Geriatrics

Source:
HBP

Target:
HSL

Source:
HSL

Target:
HBP

Source:
Students2008

Target:
Students2014

CV 0.37 0.26 0.19 0.20 0.16
X-Eval 0.05 0.06 0.04 0.06 0.17
C-Eval(CV,PC,MacroF1,1) 0.24 0.20 0.06 0.07 0.23
C-Eval(X-Eval,PC,MacroF1,1) 0.07 0.10 0.02 0.00 0.23
C-Eval(CV,PC,MacroF1,3) 0.30 0.23 0.12 0.14 0.19
C-Eval(X-Eval,PC,MacroF1,3) 0.06 0.08 0.01 0.03 0.20
C-Eval(CV,PC,MacroF1,6) 0.33 0.24 0.15 0.16 0.18

X
G
B
o
os
t

C-Eval(X-Eval,PC,MacroF1,6) 0.06 0.07 0.02 0.04 0.19

CV 0.31 0.11 0.22 0.32 0.09
X-Eval 0.00 0.09 0.07 0.16 0.12
C-Eval(CV,PC,MacroF1,1) 0.17 0.05 0.03 0.09 0.20
C-Eval(X-Eval,PC,MacroF1,1) 0.02 0.05 0.05 0.01 0.21
C-Eval(CV,PC,MacroF1,3) 0.24 0.08 0.12 0.21 0.15
C-Eval(X-Eval,PC,MacroF1,3) 0.01 0.07 0.01 0.09 0.17
C-Eval(CV,PC,MacroF1,6) 0.27 0.09 0.16 0.25 0.12

L
ig
h
tG

B
M

C-Eval(X-Eval,PC,MacroF1,6) 0.01 0.07 0.04 0.12 0.15

CV 0.33 0.09 0.25 0.30 0.15
X-Eval 0.01 0.09 0.08 0.07 0.21
C-Eval(CV,PC,MacroF1,1) 0.20 0.04 0.11 0.15 0.25
C-Eval(X-Eval,PC,MacroF1,1) 0.03 0.05 0.03 0.04 0.27
C-Eval(CV,PC,MacroF1,3) 0.26 0.06 0.18 0.23 0.20
C-Eval(X-Eval,PC,MacroF1,3) 0.02 0.07 0.05 0.06 0.24
C-Eval(CV,PC,MacroF1,6) 0.29 0.07 0.21 0.26 0.18

C
at
B
o
os
t

C-Eval(X-Eval,PC,MacroF1,6) 0.01 0.08 0.06 0.06 0.23

CV 0.10 0.12 0.07 0.03 0.01
X-Eval 0.04 0.10 0.00 0.05 0.06
C-Eval(CV,PC,MacroF1,1) 0.10 0.08 0.30 0.05 0.13
C-Eval(X-Eval,PC,MacroF1,1) 0.07 0.06 0.26 0.02 0.16
C-Eval(CV,PC,MacroF1,3) 0.10 0.10 0.19 0.04 0.07
C-Eval(X-Eval,PC,MacroF1,3) 0.05 0.08 0.13 0.01 0.11
C-Eval(CV,PC,MacroF1,6) 0.10 0.11 0.14 0.04 0.04

T
ab

N
et

C-Eval(X-Eval,PC,MacroF1,6) 0.05 0.09 0.07 0.03 0.09
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