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Abstract: Autonomous navigation of unmanned vehicles in forests is a challenging task. In such

environments, due to the canopies of the trees, information from Global Navigation Satellite Systems

(GNSS) can be degraded or even unavailable. Also, because of the large number of obstacles,

a previous detailed map of the environment is not practical. In this paper, we solve the complete

navigation problem of an aerial robot in a sparse forest, where there is enough space for the flight and

the GNSS signals can be sporadically detected. For localization, we propose a state estimator that

merges information from GNSS, Attitude and Heading Reference Systems (AHRS), and odometry

based on Light Detection and Ranging (LiDAR) sensors. In our LiDAR-based odometry solution,

the trunks of the trees are used in a feature-based scan matching algorithm to estimate the relative

movement of the vehicle. Our method employs a robust adaptive fusion algorithm based on the

unscented Kalman filter. For motion control, we adopt a strategy that integrates a vector field, used to

impose the main direction of the movement for the robot, with an optimal probabilistic planner,

which is responsible for obstacle avoidance. Experiments with a quadrotor equipped with a planar

LiDAR in an actual forest environment is used to illustrate the effectiveness of our approach.

Keywords: forest flight; surveillance; robust state estimation; sensor fusion; motion planning

1. Introduction

Robot navigation in forests is a big challenge, mainly due to the several obstacles existent in

such environments, such as tree trunks, bushes and uneven or swamped terrains. Ground robots

that can navigate in forests are usually expensive, due to their complex and adaptive locomotion

systems [1,2]. In this scenario, autonomous Micro Air Vehicles (MAVs), such as electric drones, appear

as a viable and cost-effective alternative, as they are able to fly below the canopies of the trees and

execute several missions such as surveillance [3], search and rescue [4], ecological monitoring [5],

and forest management [6]. Although the forest terrain has low or no influence in the motion of the

MAVs, forest environments may be GNSS (Global Navigation Satellite System)-denied environments,

preventing the use of standard and commercial localization systems. Also, in forests, the presence of

several unknown obstacles imposes the need for efficient online obstacle avoidance systems to keep

the flight safe and allow the completion of the robotic task. This paper presents solutions for both

localization and motion control of a drone inside a sparse forest. In this context, we consider a forest

to be sparse if the average distance between trees is large enough to (i) allow a safe flight among the

trees and (ii) permit GNSS signals to be sporadically available. A picture of our MAV flying in a sparse

forest using our integrated solution is shown in Figure 1.
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Several recent works have addressed the problem of flying in a forest. Cui et al. [7], for example,

developed an autonomous navigation system for a quadrotor drone in forests using Simultaneous

Localization and Mapping (SLAM) to construct a map and localize the robot. The authors assume

that GNSS signals are never available inside the forest. The vehicle is equipped with an Attitude and

Heading Reference System (AHRS) and a LiDAR (Light Detection and Ranging) sensor that is used

in a LiDAR odometry (LO) algorithm. Although the inertial sensors in the AHRS are used in the

forecast step of a Kalman filter (KF), LO-based estimates of the drone velocity and magnetometer-based

heading are used in its data assimilation step. After the robot is localized on the map, the system plans

and controls the vehicle through a safe trajectory.

Figure 1. Aerial vehicle used in this work flying in a sparse forest.

Due to their complementary characteristics, the combination of inertial and GNSS measurements

is the standard approach for most navigation solutions for drones and other small flying vehicles.

However, for long drop-out periods of the GNSS, the lower-grade AHRS, which are normally

embedded in these aerial vehicles, are not sufficient to estimate the robot position and velocity.

Therefore, it is necessary to combine information from other exteroceptive sensors such as cameras

and LiDAR as is done by the authors of [7] and other authors [8,9].

Shen et al. [8] proposed a modular and extensible multisensor fusion algorithm based on the

unscented Kalman filter (UKF). The proposed algorithm is able to combine information from a wide

variety of sensors. However, it is not proposed as a solution for the time-varying uncertainty of

the sensors, which is the case when, for instance, the GNSS signal changes from fully available to

unavailable. Chambers et al. [9] also proposed a multisensor fusion algorithm able to combine

relative and absolute information. The authors proposed the use of a chi-squared test to reject outliers,

common, for example, in LiDAR odometry data. Despite the algorithm being able to reject outliers in

the measurements, it is vulnerable to slow drift error in the measurements, as identified by the authors.

The combination of inertial and visual/LiDAR odometry for state estimation is commonly divided

into loosely and tightly coupled approaches. The later jointly estimates the vehicle states and the

position of the detected visual landmarks [10,11]. On the other hand, loosely coupled approaches

compute the vehicle motion by comparing sequential images (scans) [12,13], and then the estimated

motion is used in the fusion algorithm. In the present work, a loosely coupled LO is used because

of its smaller computational burden. However, two challenges arise in this strategy: the first is how

to combine relative information from LO with absolute information from GNSS system into a fusion

architecture; the second is how LO and GNSS errors are modeled in the standard Kalman filter-based

fusion algorithms, since they are usually corrupted with time-varying noise, such as outliers and slow

drift, which are not easily modeled by Gaussian variables.

For the problem of combining relative and absolute measurements, there are typically three

approaches in the literature: using LO measurements as pseudo-global information [12], numerical

differentiating the relative motion to compute velocity [7], and applying the so-called stochastic cloning
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approach [14]. In practice, pseudo-global position drifts with time, and the numerically computed

velocity is a poor approximation of the actual velocity. Thus, some authors [8,9,15] advise that one

should rather consider LiDAR-odometry as a relative measurement and use stochastic cloning. This is

basically a state augmentation technique, in which two instances of the same states, at different

time instants, are concatenated in the state vector. These two instances are then used to define a

measurement model that explicitly considers relative information given by LO. Our strategy uses the

stochastic cloning approach within a UKF.

The classical way to deal with time-varying uncertainty of measurements is the use of adaptive

filters, in which the statistical parameters that characterize the uncertainty are jointly estimated with

the dynamic states of the system. In this context, approaches based on the techniques, namely,

covariance matching (CM) [16], Interacting Multiple Models (IMM) [17], and covariance scaling

(CS) [18], were investigated. Among these methods, the covariance matching approaches yield

improved results in the estimation of the covariance matrix for Gaussian distribution, if compared

to the CS approach, and also with greater simplicity compared to approaches based on multiple

models [19]. However, in the presence of outliers, its performance can be damaged. In such case,

statistical tests, such as chi-squared test, can be used to identify and reduce the influence of outliers [9].

The first contribution of this work is a LiDAR-based odometry for forest environments. Although

similar to the work by the authors of [20], we refine the motion estimate with an iterative closed point

(ICP) algorithm. The second contribution is the extension of the Quaternion-Based Robust Adaptive

Unscented Kalman Filter (QRAUKF), proposed in our previous work only for attitude estimation [21].

In the present paper, this method is used to estimate the complete state of the MAV by combining

measurements from relative and absolute sensors, namely, LiDAR-based odometry, GNSS, and AHRS.

The proposed sensor fusion algorithm can handle the time-varying uncertainty of measurements, such

as outliers and slow varying errors. Note that some preliminary results of these contributions were

initially presented in our conference paper [22].

To fulfill the requirements of a complete navigation system, we integrate the proposed state

estimation approach with the motion planning strategy proposed by Pereira et al. [23]. In this strategy,

a continuous vector field, such as the one proposed by Gonçalves et al. [24], which is meant to

encode the drone task and is constructed over the environment. This vector field only indicates

the main direction of movement for the vehicle and completely ignores small obstacles, such as

trees. These obstacles are considered in a lower level of the strategy, which is based on an optimal

motion planner that generates trajectories that both follows the vector field and avoids the obstacles.

In this regard, the third contribution of this paper is the development an efficient LiDAR-based object

detection and its integration with the optimal motion planner, which in our case is a slightly modified

version of RRT*, an asymptotically optimal version of the Rapidly Exploring Random Tree (RRT)

planner [25]. In this paper we use a 2D vector field and a 2D version of RRT* to fly the robot on a plane

parallel to the ground. The present paper is one of the few works that consider a complete navigation

system for autonomous aerial vehicles in forests. Another example is the work by the authors of [7],

which, in addition to the localization system discussed before, also presents a strategy that uses the

estimated information to close the loop with a motion planner. In this sense, the main difference

between the work by the authors of [7] and our work is that we have a target curve, where the work by

the authors of [7] has a setpoint in 2D. Although the authors also use a two-level planner, their higher

level is performed by an A* algorithm that runs for each laser data obtained. Their lower level is a

vector field histogram (VFH) method, which is a reactive approach. Although it is difficult to compare

both strategies due to the fact that our goal is to follow a curve instead of reaching a setpoint, we believe

that having a deliberative approach, such as RRT*, in the lower level of the planner can yield shorter

and smoother global paths.

Figure 2 shows the block diagram of the proposed navigation solution. The blocks representing the

available measurements of AHRS, GNSS, and LO are discussed in Section 2. In Section 3.1, the laser-based

odometer block, LO, is detailed. Section 3.2 presents the mathematical model used in our sensor fusion
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approach, represented in Figure 2 by the block RAUKF. This approach is detailed in Section 3.3. The motion

control system, responsible to plan and drive the robot through the target path is presented in Section 4.

Finally, Section 5 presents experimental results executed in a forest environment.
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Figure 2. Block diagram of the proposed navigation solution. Data from the available sensors are

combined using a robust and adaptive version of UKF (RAUKF). The filter outputs and estimates of

position p̂k and velocity v̂k, feed the motion control system, which consists of a path planner and a

velocity controller. The controller outputs are the MAV roll φ, pitch θ, yaw rate ψ̇, and vertical velocity

vz, with respect to NED frame.

2. Problem Statement and Proposed Solution

We address the problem of autonomous navigation of a rotorcraft micro aerial vehicle (MAV)

flying in forests. We assume that the forest is sparse, allowing the vehicle to safely fly among the trees

and GNSS signals to be detected in some parts of the forest. For a more precise definition, if we assume

to have a circular vehicle with one meter diameter, then we consider that a sparse forest has an average

distance between two trees of at least four meters.

We also assume that the vehicle is equipped with an AHRS (a GNSS), which may fail when

the vehicle is flying inside a forest, and a planar LiDAR whose plane is parallel to the ground.

The LiDAR may need to be mounted on a gimbal to make sure its plane is parallel to the ground

during the vehicle acceleration or deceleration. From these measurement systems, the following

information may be available: (i) AHRS provides the attitude of the vehicle represented as the unit

quaternion em = [e0,m e1,m e2,m e3,m]T ∈ H1, with respect to the north-east-down (NED) coordinate

frame, and acceleration am =
[

ax,m ay,m az,m

]T
, with respect to the vehicle’s body coordinate frame;

(ii) GNSS provides global position pm = [pN,m pE,m pD,m]T and velocity vm = [vN,m vE,m vD,m]T with

respect to NED. In this paper we assume that other altitude sensors, such as a barometer, may be also

used to compute pD,m; and (iii) LiDAR provides distance ri and relative bearing δψ of the environment

obstacles. A LiDAR odometry system will use such data to provide estimates of position increments

δm = [δN,m δE,m]T with respect to NED. In our notation "m" denotes on-board measurements. LiDAR

measurements will also be used to detect and avoid the obstacles found in the vehicle path.

Figure 2 shows a block diagram of the proposed solution. Basically, the information provided by the

sensors is combined by a UKF-based sensor fusion algorithm and the combined information is used by

the motion control system, which consists of a path planner and a velocity controller. The path planner

computes the vehicle path and uses the information from the LiDAR to construct a local map for collision

avoidance. Then, the velocity controller drives the vehicle through the planned path. It is important to

mention that, although we assume to have 2D LiDAR-odometry information, the proposed system is

able to estimate the states of the vehicle and to perform its guidance and control in 3D. For this paper,

however, we use a 2D motion planner that only generates paths at a fixed height parallel to the ground.

Fortunately, most of the drones found in the market today are equipped with AHRS, GNSS,

or some combination of both that will deliver part of the data required by our approach. A LiDAR
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sensor, which is currently becoming lighter and less expensive, must be installed in such vehicles to

complete the set-up necessary for our approach.

3. Localization

This section presents our solution for MAV localization in forests. We start by presenting the

LiDAR based odometry.

3.1. LiDAR-Based Motion Estimation in Forests

LiDAR-based odometry is a motion estimation technique that uses the matching between

consecutive laser scan data to estimate the incremental motion of the vehicle. In a forest, raw laser

measurements do not have much information, as most of the measurement beams do not hit any

obstacle. In such a way, more information can be extracted from measurements by detecting

environmental features. If this is done efficiently, the detection of features can decrease considerably

the amount of data to be processed for motion estimation, thus reducing the computational burden of

the entire system. The feature-based laser-odometer algorithm used in this work is mainly composed

of two steps: (i) feature extraction and (ii) incremental motion estimation.

Feature extraction is the first step towards accurate motion estimation. Considering that the

operating environment is a forest, tree trunks seem to be natural choices for features. To detect

the trunks in the LiDAR data we use three steps. First, the range measurements are constrained to

minimum and maximum values; this is necessary to reduce the influence of noise in the measurements,

which increases with distance, and to eliminate beams that hit parts of the vehicle. In the second step,

laser scans are segmented using edge points, detected as discontinuities in the scan:

∆i =
ri+1 − ri−1

2
, (1)

where ri is the range measured by ith LiDAR beam for i = 2, . . . , nr − 1, where nr is maximum number

of beams. Note that such a segmentation strategy is widely used in the literature to generate clusters of

laser data [26]. Figure 3a shows the original scan, represented by a sequence of range values ri and the

detected discontinuities ∆i. To mitigate measurement noise, we only accept ∆i ≥ 0.1 m. In addition,

to compute the discontinuity ∆i, we use the range beams in positions i − 1 and i + 1, which diminishes

the influence of outliers in the measurements. A tree trunk is probably found between the peaks down

and up of the signal.
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Figure 3. (a) Original laser scan in blue and the detected discontinuities in red. (b) Tree radius estimate.

The blue dots represent the laser beams, and the tree trunks are represented by red circles.
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The third step of the feature extraction algorithm assumes that all trunks are cylindrical and

estimates the radius rc of each trunk. Figure 4 illustrates the radius estimation method used in our

work. This method follows the procedure proposed by the authors of [26], and computes the radius as

rc =
rm sin(ψc)

1 − sin(ψc)
, (2)

where ψc = (ψb − ψa) /2 is the angle of the beam that hits the center of the tree and ψa and ψb are the

angles of the edges. Figure 3b shows some trees (red circles) estimated using this method. To eliminate

possible wrong features, such as bushes, we only consider tree trunks with radius greater than 0.1 m

and less than 1.5 m.

ψa

ψc

ψb

r m

y

x

(x
c , yc)rc

Figure 4. Procedure to compute the radius of tree trunk.

Before the estimation of the circles that model the trees, the range information from the LiDAR

was transformed from the body coordinate frame to the NED coordinate frame. Thus, the positions

of the centers of the circles are represented in NED. These centers are then considered as features

and used in an Iterative Closest Points (ICP) algorithm [27]. This algorithm is used to establish the

correspondence between the features just found with the ones found in a previous instant of time.

Thus, for the set of features D = {d1, d2, . . . , dnd
} at time step k and M = {m1, m2, . . . , mnm} at

time step l < k, where di, mj ∈ R
2 are centers of the fitted circles and nd and nm are the numbers of

features extracted, the problem is to find an alignment; rotation, R; and translation, ρ that minimizes

the distance between the two sets of points. This can be formulated as

ε(R, ρ) =
nc

∑
i=1

∥

∥

∥
Rdi + ρ − mi

∥

∥

∥

2
, (3)

(R∗, ρ∗) = arg min
R,ρ

ε(R, ρ) , (4)

where ε(R, ρ) is called ICP metric fit error and nc is the number of common features between the

current feature set D and the past feature set M. The closed-form solution for the least-squares

problem of Equation (4) in 2D is given by [28]

R∗ = R(ψ) ,

ρ∗ = m̄ − R∗ d̄ ,

where R(ψ) is a 2D rotation matrix that represents the vehicle rotation of angle ψ about the vertical

axis, m̄ , 1
nc

∑
nc
i mi, d̄ , 1

nc
∑

nc
i di, and

ψ = arctan

(

S12 − S21

S11 + S22

)

,
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with Sij being the element ij of the covariance matrix S , 1
nc

∑
nc
i (di − d̄)(mi − m̄)T .

3.2. Mathematical Modeling

In this section, the stochastic models used in the state estimators are presented. First, we present

the process model f , which is based on the kinematic equations of the aircraft. Then, we show the

observation model h, which relates the measured output data y with the vehicle’s states x. The notation

used through this section is listed at the end of the paper.

3.2.1. Process Model

The temporal evolution of the vehicle dynamics is described by two sets of nonlinear first-order

ordinary differential equations relative to a local NED coordinate frame.

The set of equations related to the position of the vehicle’s center of gravity,

p = [pN pE pD]
T ∈ R

3, with respect to the NED coordinate frame, is given by

ṗ(t) = v(t). (5)

The time evolution of the linear velocity with respect to NED, v = [vN vE vD]
T ∈ R

3 is given by

v̇(t) = RNED
b (e)a(t) + g, (6)

where g = [0 0 gz]
T ∈ R

3 is the gravity acceleration vector with gz = 9.81 m/s2, and RNED
b is the

orthogonal rotation matrix that represents the rotation of the body coordinate frame with respect to

the NED coordinate frame (the work by the authors of [29], p. 256). In this work, this rotation matrix

is computed using the attitude provided by the AHRS. In systems for which this information is not

provided, such attitude information needs to be estimated together with the other vehicle states. Also,

it is important to mention that, for the case of high velocities, a term corresponding to the Coriolis effect

may be added to Equation (6). In this work, we assume that the vehicle achieves small enough velocities.

Aiming at discrete-time state estimators, the continuous-time dynamic Equations (5) and (6) are

discretized by integrating over time interval [(k − 1)T, kT], where t = kT relates continuous time to

the discrete index and T > 0 is the sampling period. In this case, only the right-hand end point of

[(k − 1)T, kT], given by xk , x(kT), is used. In this work, for simplicity, the Euler integration method

is used for discretization (see the work by the authors of [30], p. 26).

Then, it is considered that the measured input vector uk =
[

aT
k eT

k

]T
∈ R

6 is corrupted by bias

βa,k and random noise qk, and are modeled as

am,k = ak + βa,k + qa,k, (7)

em,k = ek ⊕ qe,k, (8)

where βa,k = [βax βay βaz ]
T ∈ R

3 are the bias terms, qa,k ∼ N ([0]3×1, Qa) ∈ R
3 is the acceleration

noise vector, and qe,k ∼ N ([0]3×1, Qe) ∈ R
3 is the orientation noise vector parameterized as “rotation

vector”. The operator ⊕, as in the work by the authors of [21], maps the rotation vector qe,k to a

quaternion and rotates ek.

The accelerometer bias βa,k is modeled as a random-walk process:

βa,k = βa,k−1 + qβ,k−1 , (9)

where qβ ∼ N
(

[0]3×1, Qβ

)

∈ R
3. The bias components are jointly estimated with vehicle states,

yielding the “joint state vector” x̌k ∈ R
9, defined as

x̌k ,
[

pT
k vT

k βT
a,k

]T
. (10)
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In our work, LiDAR-based odometry (LO) yields relative measurements, which means that

it depends on past states. Therefore, state vector in Equation (10) is augmented with a “clone”,

p̀c
l =

[

pc
N pc

E

]T
∈ R

2, of the position states projected in the xy-plane as estimated in time step l < k,

p̀l = [pN pE]
T ∈ R

2. Here, the term “clone” (represented by the superscript “c”) is used to define a

simple and exact copy of a past state, as is done by the authors of [14]. After a new LO measurement is

obtained and used to correct the system estimates (see Section 3.3.1), the cloned states are updated

with the newest estimate of p̀k. The equation that describes the evolution of the cloned states with

respect to time is given by

p̀c
k = p̀c

k−1. (11)

Notice that there is no noise in this model, indicating that the cloned states remain the same until

they are replaced by a new clone. We define the augmented state vector xk ∈ R
11 as

xk ,
[

x̌T
k ( p̀c

k)
T
]T

. (12)

The discretized version of Equations (5) and (6) together with Equations (9) and (11) compose the

“process model” of the vehicle, which can be compactly recast as

xk = f (xk−1, uk−1, qk−1, k − 1) . (13)

3.2.2. Observation Model

The observation model relates the components of the state vector xk with the measured output

variables yk ∈ R
8 is given by

yk , [pm,k vm,k δm,k]
T . (14)

Global position and velocity are given by the GNSS system and are modeled as

pm,k = pk + rp,k , (15)

vm,k = vk + rv,k , (16)

where rp,k ∼ N
(

[0]3×1, Rp

)

∈ R
3 and rv,k ∼ N ([0]3×1, Rv) ∈ R

3 are the position and velocity noises,

respectively.

LiDAR-odometry gives incremental displacement, δm,k ∈ R
2, in the xy-plane, which means

that the measurement depends both on the current p̀k and the past states, stored as clone p̀c
k

(see Equation (12)). The augmentation of the state vector with a copy (clone) of the past state is

the approach known as stochastic cloning [14]. Then, assuming that the state vector is augmented with

the position states p̀c
k, the relative measurement model is given by

δm,k = p̀k − p̀c
k + rδ,k, (17)

where rδ,k ∼ N
(

[0]2×1, Rδp

)

∈ R
2.

The complete observation model may be written as

yk = h (xk, rk, k) , (18)

where h is a function of random noise rk and the current xk states given by Equations (15)–(17).
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3.3. Nonlinear State Estimator

In this paper, we assume that the dynamic system is modeled by the nonlinear state-space

Equations (13) and (18), in which ∀k ≥ 1 and the known data are the measured output yk and

input uk−1. It is also assumed that process noise, qk−1 ∈ R
nq , and output measured noise, rk ∈ R

nr ,

are mutually independents with covariance matrices of Qk−1 ∈ R
nq×nq and Rk ∈ R

nr×nr , respectively.

Under these assumptions, the state estimation problem aims at providing approximations for the mean

x̂k = E[xk] and covariance Pxx
k = E[(xk − x̂k) (xk − x̂k)

T ] that characterize the a posteriori probability

density function (PDF) ρ(xk|y1:k).

Due to the nonlinear characteristics of the model, we use, as basis to our approach, the unscented

Kalman filter (UKF) [31]. In the standard form of the UKF, two problems arise: (i) due to the

stochastic cloning approach, the covariance matrix Pxx
k may become negative semidefinite [8], which is

inconsistent with its definition, and (ii) the output measured noise rk can have time-varying statistical

properties, which can degrade the estimates. Regarding (i), a modification based on statistical linear

regression (SLR), similar to what was used by Shen et al. [8], is shown in Section 3.3.1. The solution

to (ii) is our core contribution. We consider two events that may change the statistical properties of

measured noise: sudden jumps and slow varying error in the measurements. The rejection of these

perturbations are addressed in Sections 3.3.2 and 3.3.3.

3.3.1. Unscented Kalman Filter for Absolute and Relative Measurements

Let the process noise be partitioned as qk−1 ,
[

qT
1,k−1 qT

2,k−1

]T
∈ R

15 with covariance matrix

Qk−1 , diag (Q1,k−1, Q2,k−1) ∈ R
15×15, where q1,k−1 ∈ R

6 is the multiplicative noise related to the

state vector and q2,k−1 ∈ R
9 is the additive partition of noise. To improve the numerical stability of

the filter, additive noise is considered for all states [32]. Henceforth, the notation x̂k|k−1 indicates an

estimate of xk at time k based on information available up to and including time k − 1. Likewise, x̂k

indicates an estimate of xk at time k based on information available up to and including time k.

Given these definitions, the modified UKF forecast step is given by

(

ˆ̌xk|k−1, P̃x̌x̌
k|k−1, Px̌ ¯̌x

k|k−1

)

= UT
(

x̂a
k−1, Pxaxa

k−1 , uk−1, f
)

, (19)

Px̌x̌
k|k−1 = P̃x̌x̌

k|k−1 + Q2,k−1, (20)

in which, UT(·) is the unscented transform function, as defined in the work by the authors of [22],

xa
k−1 ∈ R

15 and Pxaxa

k−1 ∈ R
15×15 are respectively the augmented state vector and its corresponding

covariance matrix, given by

xa
k−1 ,

[

x̌T
k−1 qT

1,k−1

]T
,

Pxaxa

k−1 ,

[

Px̌x̌
k−1 [0]9×6

[0]6×9 Q1,k−1

]

.

Recall that, in the previous step, the cloned states are not part of the augmented state vector. Then,

the propagated cloned state and covariance is computed as

x̂k|k−1 =

[

ˆ̌xT
k|k−1

(

ˆ̀pc
k−1

)T
]T

, (21)

Pxx
k|k−1 =

[

Px̌x̌
k|k−1

FkP
p̀x̌
k−1

P
x̌ p̀
k−1FT

k P
p̀ p̀
k−1

]

, (22)
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where Fk is computed as

Fk =
(

Px̌ ¯̌x
k|k−1

)T (

Px̌x̌
k−1

)−1
. (23)

The state estimate and error covariance matrix are updated using information from yk in the data

assimilation step, given by

(

ŷk|k−1, P̃
yy

k|k−1
, P

xy

k|k−1

)

= UT
(

x̂k|k−1, Pxx
k|k−1, 0, h

)

, (24)

P
yy

k|k−1
= P̃

yy

k|k−1
+ Rk, (25)

νk = yk − ŷk|k−1, (26)

where νk is the innovation.

Kk = P
xy

k|k−1

(

P
yy

k|k−1

)−1
, (27)

x̂k = x̂k|k−1 + Kkνk, (28)

Pxx
k = Pxx

k|k−1 − KkP
yy

k|k−1
KT

k . (29)

After measurement update, the cloned states ˆ̀pc
k are replaced with a new copy of current states ˆ̀pk

and a new covariance matrix Pxx
k is computed, as per the authors of [9],

Pxx
k = C

(

Px̌x̌
k

)

CT , (30)

C =











I3×3 [0]3×3 [0]3×3

[0]3×3 I3×3 [0]3×3

[0]3×3 [0]3×3 I3×3
[

I2×2 [0]2×1

]

[0]2×3 [0]2×3











,

where [0]n×n and In×n are zero and identity matrices with n by n elements, respectively. Notice that

the operations with the cloned states are performed only when new relative measurement is available.

3.3.2. Adaptive Measurement Covariance Matrix

The uncertainty of the measurements in the UKF is represented by the covariance matrix Rk.

This is usually a predefined parameter, which remains constant. However, as previously commented,

the measurement uncertainties can be time-varying. We then propose the use of innovation νk to tune

the measurement covariance matrix online through the covariance matching (CM) approach [16].

Based on the assumption that the observation covariance matrix Rk is constant during a sliding

sampling window with finite length N, the basic idea of CM is to make the innovation νk consistent

with its covariance E[νkνT
k ] , P

yy

k|k−1
. The covariance of νk is estimated as based on the last N innovation

samples as

E[νkνT
k ] ≈

1

N

k

∑
j=k−N+1

νjν
T
j . (31)

Notice that the UKF (see Equation (25)) approximates the covariance by E[νkνT
k ] , P̃

yy

k|k−1
+ Rk.

Then, Rk can be estimated as

R̂k =
1

N

k

∑
j=k−N+1

νjν
T
j − P̃

yy

k|k−1
. (32)
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To avoid negative values due the subtraction operation in Equation (32), the following treatment

is performed,

R̂k = max

(

1

N

k

∑
j=k−N+1

νjν
T
j − P̃

yy

k|k−1
, R0

)

, (33)

where R0 is a lower threshold given by the nominal measurement-noise covariance, which may be

empirically determined, and max(A, B) returns a diagonal matrix with the max elements taken from

the diagonal of A and B.

3.3.3. Outlier Rejection

Outliers are spurious data that contaminate the statistical distribution. The contaminated

measurements may deviate significantly from the “normal” observations, thus directly reflecting

in the innovation value νk, and, consequently, in the covariance estimated by CM.

To minimize the influence of outliers, a particular method is to judge each element of the

innovation with a χ2-test [33]. Thus, for the ith element of the innovation vector, the normalized

innovation squared can be computed as

εν
k,i =

ν2
k,i

P
yy

k−1|k−2,ii

. (34)

Under the linear-Gaussian assumption, the PDF of εν
k,i ∼ χ2

1 is a chi-square distribution with one

degree of freedom. Then, for a significance level α ∈ [0, 1], the probability of a “normal” measurement

is p
(

εν
k,i ≤ ζ

)

= 1 − α, where ζ ∈ R is the a value taken from the chi-square cumulative distribution

function. Thus, we can replaced the current innovation as

ν̂k = min

(

1,
ζ

εν
k,i

)

νk , (35)

where min (A, B) is a function that returns the minimum value between A and B.

One might ask, why we weaken the innovation instead of just drop the abnormal measurement

completely? The reason is that, besides detecting the presence of abnormal behaviors, statistical

procedures, such as (35), can still extract some remained information from the innovation. For instance,

we could receive a measurement with a scale error. In such a case, the outlier rejection procedure can

alter the measurement scale, eliminating the wrong information.

3.3.4. Robust Adaptive Unscented Kalman Filter

By combining Equations (33) and (35) with Equations (19)–(30), we then obtain a three step

recursive algorithm that we call Robust Adaptive Unscented Kalman Filter (RAUKF) (see Figure 2).

The first step of this algorithm is the forecast step, which is given by Equations (19)–(22). The second

step is the robust noise estimation given by Equations (24), (26), (35), (33), and (25). The third and last

step is the data assimilation step are given by Equations (27)–(30).

Observe that the measurement sampling rate may be different for each sensor, yielding a

different measurement vector at each time instant. For the case where only GNSS measurements are

available, it is not necessary to compute Equation (30) and replace the cloned states with a new copy.

Thus, the data assimilation step is only given by Equations (27)–(29). When GNSS is not available but

LO is still available, the measurement output variables vector yk in Equation (14) will contain only

altitude, given by the vehicle’s barometer, and relative motion information, δm,k. The data assimilation

step will be executed by Equations (27)–(30).
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4. Motion Control

We divide our motion control approach in three steps. In the first step, we process the data

from the LiDAR and construct a local map for collision avoidance. In the second step, a probabilistic

motion planner uses this map to compute the vehicle path, and, finally, a velocity controller drives the

vehicle through the planned path. We start by describing our mapping approach, which is one of the

contributions of this paper.

4.1. Local Mapping for Collision Avoidance

Probabilistic planners usually do not require a map of the workspace, but instead they will need a

function that returns as fast as possible if a given configuration is in collision or not. The literature

has shown that the time spent to construct search trees by probabilistic planners such as RRT*, is 99%

concentrated in checking if the random configurations are in collision [34]. In this section, we present

an efficient mapping strategy that facilitates collision checking by the planner.

By using the MAV’s position and orientation estimated by RAUKF, the first step of our local

mapping methodology is to transform, using homogenous transformation matrices, the LiDAR points

represented with respect to the vehicle coordinate frame into the NED fixed frame. Next, we define

analytically all the obstacles found.

With the method described in Section 3.1, we process the LiDAR data and approximate each

obstacle classified as trees by cylinders (circles in the plane). For the sake of simplicity, those obstacles

that are not classified as trees, i.e., obstacles that have a radius is too big or too small, are also

approximated by circles. For this case, point sequences of up to n points are grouped, and each group

is represented by a circle of diameter given by the distance between the first and the last point in

the sequence. To guarantee safety during path planning, the radius of all circles, including trees and

non-trees, is increased by the radius of the robot, RMAV, plus a small safety amount Rs, which results

in radius Rcollision. Figure 5 illustrates this approach.

Figure 5 also shows other two strategies that we use to speed up the collision check by the planner.

First, the planner (in our implementation RRT*) only searches for paths in a finite horizon determined

by a circle of radius Rrrt centered in the current vehicle position. Second, we define minimum and

maximum distances, dmin and dmax, respectively, in which we consider that LiDAR points are obstacles.

Figure 5. MAV in a environment with 7 cylindrical trees and and a wall. Only the obstacles between

dmin and dmax are used to build the local map. Obstacles outside the circle of radius Rrrt are not used

during path planning.
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To avoid discontinuity in the MAV’s global path, it is important to guarantee that the initial

position of each local path computed by RRT* is the final position of the previous one. To guarantee

that, each local path is integrated (simulated) for the time of planning tloop to find point pend. Although

the vehicle follows the current path, a new instance of RRT* thus compute the path that starts at pend.

The next section shows how the computed path can be followed by the drone.
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-8
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-4

-2

0

2

4

6

8

10

Figure 7. Vector field (blue arrows) used in this work to define a periodic MAV’s surveillance and

monitoring task. By following the vector field, the vehicle will converge and circulate the solid

black path.

4.3. Path Following

As a result of path planning, a path is defined as a sequence of points in R
3. As we assumed

a 2D vector field, the coordinate z of this path is constant and specifies the height or altitude of the

flight. To make the MAV to follow the path, we define a second vector field, this time in 3D, using the

methodology proposed in the work by the authors of [24]. The resultant field is considered to be a

velocity field that has an attractive component that is orthogonal to the path and another component

parallel to path, which is responsible by the robot’s longitudinal velocity.

The computed path does not define a orientation to the vehicle. However, besides following the

path, we use a heading controller that keeps the front of the robot pointing to the direction of the path.

This is done to guarantee that the planar LiDAR, which usually does not have a 360◦ field of view,

is able to detect obstacles in front of the MAV.

5. Experimental Results

This section presents an experiment with the customized commercial aerial vehicle shown in

Figure 1. Our DJI Matrice 100 quadrotor, which is commercialized with built-in AHRS and GNSS, was

equipped with a Hokuyo UTM-30LX-EW planar LiDAR, which has a scanning frequency of 40 Hz.

The LiDAR was mounted on a servo-motor, which allowed us to compensate for the vehicle’s roll

angle. As we do not have a way to compensate for the vehicle’s pitch angle, the LiDAR was calibrated

so that range data is easily transformed to the body coordinate frame, and from the body frame to

NED. Once represented in NED, laser points that are more than 1 m from the current height of the

vehicle are filtered out, so that the vehicle only detects obstacles that are, approximately, on its motion

plane. AHRS and GNSS are, in fact, a DJI proprietary navigation solution that runs at the low-level

hardware and delivers attitude, global position, and velocity information in a fairly high frequency,
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RAUKF velocity Desired velocity
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Figure 14. Attitude controller results. (a) Velocity in the north direction and (b) velocity in the

east direction.

6. Conclusions

This paper presented a complete navigation solution for unmanned aerial vehicles navigating

inside a forest. The proposed solution is based on two main systems, called localization and

motion control. The localization algorithm combines LiDAR-based odometry and GNSS and AHRS

information using a robust adaptive sensor fusion algorithm (RAUKF) based on the UKF. LiDAR-based

odometry relies on the fact the trees are easily identified with a laser scan. It is important to mention

that tree detection highly increased the efficiency of both localization and motion planning methods,

allowing the system to run in a simple on-board hardware.

Our motion control approach is based on the combination of a vector field with and optimal

planner for obstacle avoidance. This makes easier to the user to plan the main task of vehicle, which

will be the simple definition of a curve in the space, letting obstacle avoidance to the MAV.

The experiment presented in this paper illustrated that the sensor fusion algorithm was able

to adequately combine global and relative measurements. RAUKF was also able to deal with some

abnormal information, both in relative and global measurements. By this experiment, we also observed

that the vehicle was able to perform its surveillance task, although its actual path deviated from the

target one, which is expected, as the target path does not considered obstacles.

In future, we plan to expand this work by using a 3D laser range finder, which will allow to plan

the vehicle’s motion in all workspace dimensions. The 3D range finder can be also used to estimate the

MAV’s orientation, which can be used in the data assimilation step of RAUKF. Finally, we also plan to

include an autonomous landing system, which by now, is done by a human operator.
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Notation

The following notations are used in this manuscript:

p = [pN pE pD]
T position with respect to the NED coordinate frame.

v = [vN vE vD]
T velocity with respect to NED coordinate frame.

g = [0 0 gz]
T gravity acceleration vector, where gz = 9.81m/s2.

RNED
b rotation matrix between the body coordinate frame and the NED coordinate frame.

uk input vector.

am,k accelerometer measurement.

em,k orientation measurement in unit quaternion.

βa,k accelerometer bias.

qa,k acceleration measurement noise.

qβ,k random walk noise.

qe,k orientation measurement noise.

p̀c
k cloned state vector.

xk state vector.

yk output measurement.

pm,k position measurement given by GNSS.

vm,k velocity measurement given by GNSS.

rp,k position measurement noise.

vp,k velocity measurement noise.

δm,k relative measurement given by LO.

rδ,k relative measurement noise.

f (·) process model.

h(·) observation model.

x̂k state estimate.

Pxx
k covariance matrix of state estimate.

qk process noise.

Qk covariance matrix of process noise.

rk output measuremnt noise.

Rk covariance matrix of output measurement noise.

R0 nominal covariance matrix of output measurement noise.

R̂k estimate of the covariance matrix of output measurement noise.

νk innovation.

εν
k,i normalized innovation squared.

ξ ′ MAV’s path.

ϑ vector field
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