
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-graduação em Física

Pedro Gonçalves de Oliveira

TOPOLOGICAL ASPECTS AND TRANSVERSE
TRANSPORT IN MAGNONIC AND ELECTRONIC

TWO-DIMENSIONAL LATTICES

Belo Horizonte
2025



Pedro Gonçalves de Oliveira

TOPOLOGICAL ASPECTS AND TRANSVERSE
TRANSPORT IN MAGNONIC AND ELECTRONIC

TWO-DIMENSIONAL LATTICES

Doctoral thesis presented to the Graduate
Program in Physics at the Universidade
Federal de Minas Gerais as a partial re-
quirement for the degree of Doctor in Physics.

Supervisor: Antônio Sérgio Teixeira Pires

Belo Horizonte
2025







Acknowledgements

This work was supported by CAPES (Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e
Tecnológico).



Resumo
Nas últimas décadas, a topologia desempenhou um papel crucial na física da matéria con-
densada, especialmente com a descoberta dos isolantes topológicos. Um isolante topológico
é um sistema eletrônico cujo interior é isolante, mas estados condutores robustos estão
localizados nas bordas ou superfícies. Esses sistemas são caracterizados por um índice
topológico, como o número de Chern em isolantes topológicos de Chern.

O conceito de isolantes topológicos estende-se para bósons e, particularmente, para magnons.
Embora sistemas bosônicos não sejam verdadeiros isolantes, um isolante topológico mag-
nônico é definido como um sistema magnônico com um gap de energia e um índice
topológico não-trivial. Eles apresentam transporte transversal (efeitos tipo-Hall), e, para
bósons, isto pode ocorrer mesmo quando o índice topológico é zero (fase trivial).

Esta tese investiga diversas redes bidimensionais, com foco em sua classificação topológica
e propriedades de transporte transversal. A ênfase está em redes magnônicas com diferentes
ordenamentos de spin. Três geometrias são exploradas: a rede Lieb modificada, a rede
Union Jack e a rede brickwall. Além disso, é estudado um modelo eletrônico tight-binding
na rede checkerboard com Hamiltoniano não-Hermitiano, que pode descrever sistemas
abertos, que trocam partículas e energia com o ambiente.

Os principais resultados incluem a descoberta de uma fase topológica na rede Lieb modifi-
cada ferromagnética, relacionada a uma anisotropia nas interações exchange. Nos sistemas
antiferromagnéticos (redes Union Jack e brickwall), a curvatura de Berry e o transporte
transversal foram analisados, elucidando os papéis da interação DMI e da geometria da
rede. Na rede ferrimagnética Cu2F5, uma inversão na direção do transporte transversal
em função da temperatura sugere potenciais aplicações em spintrônica de magnons. Por
fim, o estudo da rede não-Hermitiana checkerboard revelou uma condutividade Hall não
quantizada e pontos excepcionais, características únicas desse tipo de Hamiltoniano.

Unificados por sua dispersão com duas bandas de energia e formalismo matemático
comum, esses sistemas fornecem insights sobre o papel da curvatura de Berry, topologia e
transporte transversal em redes cristalinas. Os resultados sugerem aplicações em spintrônica
de magnons e aprofundam o entendimento do transporte eletrônico em sistemas não-
Hermitianos.

Palavras-chave: Efeito Hall, Magnons, Não-Hermitiano, Topologia.



Abstract
Over the past decades, topology has played a crucial role in condensed matter physics,
particularly with the discovery of topological insulators. In the study of crystal lattices,
a topological insulator is an electronic system where the bulk behaves as an insulator,
while robust conducting states are localized at the edges or surfaces. These systems are
characterized by a robust integer index, such as the Chern number in Chern topological
insulators.

The concept of topological insulators extends to bosonic systems, particularly magnonic
lattices. Although bosonic systems are not true insulators, a topological magnon insulator
can be defined as a gapped magnonic system with a non-trivial topological index. These
systems present transverse transport (Hall-like effects), and for bosons it can occur even
when the topological index is zero (trivial phase).

This thesis investigates various two-dimensional lattices, focusing on their topological
classification and transverse transport properties. The emphasis is on magnonic lattices
with different spin orderings. Three geometries are explored: the modified Lieb lattice,
Union Jack lattice, and brickwall lattice. Additionally, an electronic tight-binding model in
the checkerboard lattice with a non-Hermitian Hamiltonian is studied, which can describe
open systems that exchange particles and energy with its environment.

Key findings include the discovery of a topological Chern phase in the ferromagnetic mod-
ified Lieb lattice, related to an anisotropy in exchange interactions. For antiferromagnetic
systems (Union Jack and brickwall lattices), Berry curvature and transverse transport were
analyzed, elucidating the roles of DMI and lattice geometry. In the ferrimagnetic Cu2F5

lattice, temperature-dependent reversal of the direction of transverse transport suggests
potential applications in magnon spintronics. Finally, the study of the non-Hermitian
checkerboard lattice revealed non-quantized Hall conductivity and exceptional points,
unique to such Hamiltonians.

Unified by their two-band dispersion and shared mathematical formalism, these systems
provide insights into Berry curvature, topology, and transverse transport in crystal lattices.
The findings highlight applications in magnon spintronics and deepen understanding of
electronic transport in non-Hermitian systems.

Keywords: Hall effect, Magnons, Non-Hermitian, Topology.
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1 Introduction

Topological effects in condensed matter systems have been intensely studied since
the discovery of the quantum Hall effect (QHE) by von Klitzing et al [1]. This phenomenon
arises with the application of strong magnetic fields in a two-dimensional electron gas,
breaking time-reversal symmetry and creating a transverse Hall current in the lattice.
The Hall conductance is quantized and characterized by a topological invariant, known as
the Chern number or TKKN integer [2, 3]. Topology is the branch of mathematics that
studies properties which remain invariant under continuous transformations of a system.
For example, the genus is the “number of holes” on an oriented closed surface. The sphere
has genus 0, and the torus has genus 1. The genus remain invariant under continuous
deformations of the surface (“stretching”). The only way to change the genus is to “tear
apart” or “glue together” pieces of surface, which are not continuous transformations.
Hence, the genus is a topological invariant. Another example is the winding number
of a closed oriented curve, which is the number of times this curve encircles the origin
counterclockwise.

In condensed matter insulating systems, the Chern number is calculated from the
bulk wave functions. When C ̸= 0, the edge of the sample holds conducting modes which
are robust against perturbations. This is the bulk-edge correspondence [4], and the system
is called a topological insulator (TI). The system can present different Chern numbers for
different theory parameters, making it possible to construct a topological phase diagram.

In a topological insulator in equilibrium, the bulk states are insulating but the
the egde of the sample holds conducting states. This can be understood semiclassically
as follows. When the Chern number is non-zero, the magnetic field creates cyclotron
motion of the electronic wave packets inside the bulk. Different pieces of neighboring orbits
overlap and the current in the bulk vanishes, but in the edges the skipping orbits create
conducting edge states. In a strip geometry, electrons at the top edge move in a different
direction than at the bottom edge: the current is chiral. These edge states are robust
against perturbations due to their topological nature.

The same effect can happen in a two-dimensional lattice systems even in the
absence of an external magnetic field. In this case, complex hopping induces magnetic
fluxes which results in quantized Hall conductance and edge states, in what is called the
anomalous quantum Hall effect (AQHE) [5, 6]. A similar phenomenon is the quantum
spin Hall effect (QSHE), when time-reversal symmetry is not broken [5, 7–12]. In this
case, strong spin-orbit couplings act differently in spin up and down electrons, creating
a transverse spin current without net electronic flow. In the equilibrium, that results in
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helical edge modes, when at each edge of the sample electrons of opposite spins flow in
opposite directions in separate conducting channels. In these systems the Chern number is
zero, but a different topological integer ±1 defines a Z2 topological insulator.

In light of that, we can introduce the notion of topological states of matter,
characterized by topological indices [13, 14]. Within this approach, a topological insulator
(TI) is an insulating system which has a non-trivial ( ̸= 0) topological index. The bulk-edge
correspondence assures the existence of robust edge states in topological insulators. In the
so-called Chern insulators, the Chern number is the topological index. It can be calculated
through the integration of the Berry curvature over the Brillouin zone [15]. The Berry
curvature is a local function of the crystal momentum which is assigned to each energy
band. It is related to the Berry phase that an electronic state acquires when transported
in a closed loop due to the Aharonov-Bohm effect [16]. The Chern number can be easily
calculated from the eigenstates of the bulk Hamiltonian through the Berry curvature.

In ordered magnetic lattices, the spin carriers are magnons and not electrons.
Magnons are spin-wave excitations of the ground state in systems of localized spins. They
are bosonic quasiparticles which carry definte spin but are naturally chargeless. Because of
that, they have the advantage of showing much lower dissipation in comparison to electron
transport, being of great interest in spintronics [17]. Much like electrons, they can show
topologically protected edge modes, robust against structural or magnetic disorder and
that can form ideal waveguides for long-range magnon transport [18]. That allows one to
make an analogy between topological electrons and magnons, and the formalism developed
for electronic systems can be fully applied to magnonic systems. In fact, it was argued by
Nakata et al that magnons in a ferromagnetic lattice behave as a complete analogue of the
QHE, while antiferromagnetic magnons can be an analogue of the QSHE [19,20]. These
systems can be considered topological magnon insulators (TMIs), classified by topological
indices. In this case, the term “insulator” is applied to gapped magnonic systems only as
an analogy, as there is no Fermi level in bosonic systems.

Regarding the bulk transport properties of topological systems, electrons and
magnons present Hall transport in response to electromagnetic fields. That can be seen as
a result of the Aharonov-Bohm effect in the case of electrons, and the Aharonov-Casher
effect in the case of magnons [21, 22]. For magnons, the spin Hall effect can happen
even for non-topological systems, as long as the Berry curvature is not null [23–33].
Another important transport effect is related to thermal diffusion, when particles flow in
a transverse direction to a thermal gradient. This thermal Hall effect has been studied
mainly in magnetic systems. The thermal Hall coefficients depend on the Berry curvature,
much like the Hall conductivity does [24, 27].

Concerning the experimental aspect, it is established that magnons can be generated
and detected via spin Hall effect and charge-to-spin current conversion [34,35]. The above-



Chapter 1. Introduction 12

mentioned Hall-like effects in magnons also have strong experimental evidence: the thermal
Hall effect of magnons was firstly detected in ferromagnetic materials with pyrochlore
geometry [25, 36], and after, in kagome lattices both in the ordered and disordered
phase [37–39]. The magnonic spin Nernst effect has been reported for the MnPS3, an
antiferromagnetic insulator with honeycomb geometry [40], and other materials seem
promising [41]. The experimental evidence, together with the patent advantages of magnon
transport in spintronics, justifies the theoretical study of magnons and its topological
features in different lattice geometries as an effort to lay ground for future experiments
and applications.

Another interesting platform to study the connection between topology and trans-
verse transport is in open systems, subjected to loss and gain of particles and energy. While
topological effects in regular, energy-conserving Hamiltonians have robust theoretical
and experimental evidence, this investigation in non-conservative open systems is still
in progress. One way to model an open system is with a non-Hermitian Hamiltonian.
The non-Hermitian formalism can be applied to a variety of quantum and classical sys-
tems [42–46]. A highly studied phenomenon related to those systems is the non-Hermitian
skin effect, in which the majority of bulk states are localized at the edges of a sample
with open-boundary conditions [47]. Experimental evidence of this effect can be found in
many systems, including photonic crystals and acoustic topological insulators [45,48,49].
Another unique characteristic of non-Hermitian Hamiltonians are the exceptional points in
the Brillouin zone, which are points where the Hamiltonian is defective. They have been
experimentally observed in different systems, mainly in photonic crystals [42, 50–55].

Specifically for electronic insulators, it is known that Chern topology works dif-
ferently in non-Hermitian systems compared to their Hermitian counterpart. The main
difference is that the non-Hermiticity spoils the bulk-edge correspondence. As a conse-
quence, the topological edge states are not related to the bulk Chern number, although
possibly present. Also, the Hall conductivity is no longer quantized [56,57]. Some efforts
have been made to restore the bulk-edge correspondence, defining a non-Bloch Chern
number which seems to be related to the presence of edge states [58–61].

This thesis reports investigations on the Chern topology and transverse transport
in several two-dimensional lattices. In Chapter 2 we present the mathematical methodology
that links the transverse transport to the the Berry curvature and Chern topology of
the eigenstates. In Chapter 3, a modified version of the Lieb lattice is presented, and its
magnonic structure is studied in a ferromagnetic ordering. In Chapter 4, the antiferromag-
netic Union Jack lattice is investigated, and anharmonic contributions are included with a
mean-field approach. The antiferromagnetic brickwall lattice is studied in Chapter 5. In
Chapter 6, we present a ferrimagnetic model for the layered Cu2F5 crystal, which has the
same geometry as the modified Lieb lattice in Chapter 3. In Chapter 7, the non-Hermitian
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fermionic checkerboard lattice is presented, where very unique features arise due to its
non-Hermiticity. The final remarks are made in Chapter 8.



14

2 Transverse transport - methodology

In this chapter the mathematical methods used to study the topology and Hall-like
transport in two-dimensional lattices are presented. The linear response theory establishes a
connection between the Berry curvature and the transport coefficients. The Berry curvature
can give rise to topological phases in those systems.

2.1 Linear response theory
The assumption of the linear response theory is that equilibrium states can be

perturbed by an external field, and for weak perturbations, the system’s observables
respond linearly. Without perturbation, the many-body Hamiltonian is H0, and the
time-independent Schrödinger equation read:

H0

∣∣∣n0
〉

= ϵ0
n

∣∣∣n0
〉
. (2.1)

When a perturbation H ′ (t) is turned on in t0 = −∞, a time-dependent Hamiltonian
H(t) = H0 +H ′ (t) is defined, which satisfies (ℏ ≡ 1):

H (t) |n (t)⟩ = i
∂

∂t
|n (t)⟩ . (2.2)

Using the definitions

|n (t)⟩ ≡ e−iH0t |nI (t)⟩
H ′ (t) ≡ e−iH0tH ′

I (t) eiH0t, (2.3)

we can show that the Schrödinger equation in the interaction picture is:

H ′
I (t) |nI (t)⟩ = i

∂

∂t
|nI (t)⟩ . (2.4)

This equation has formal solution (using the Dyson series) up to linear order as

|nI (t)⟩ ≃
∣∣∣n0
〉

− i
∫ t

−∞
dt′ H ′

I (t′)
∣∣∣n0
〉
, (2.5)

and with this, the evolved state |nI (t)⟩ is written in terms of the unperturbed
state |n0⟩ and the perturbation H ′

I (t).

Turning to a generic observable A, the thermal average of its expected value without
perturbation is

⟨A⟩0 = 1
Z0

∑
n

e−βϵ0
n

〈
n0
∣∣∣A ∣∣∣n0

〉
. (2.6)
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When the perturbation is turned on, the states evolve to |n (t)⟩, and the thermal
average is

⟨A (t)⟩ = 1
Z0

∑
n

e−βϵ0
n ⟨nI (t)|AI (t) |nI (t)⟩ = ⟨A⟩0 + δ ⟨A (t)⟩ . (2.7)

Note that the equilibrium thermal distribution e−βϵ0
n is used. This is valid when

the perturbation is fast enough compared to the time to reach the thermal equilibrium, so
that the thermal distributions do not change. That is called adiabatic response. Using Eq.
2.5 to rewrite the equation above, we can show that:

δ ⟨A (t)⟩ = i
∫ t

−∞
dt′ ⟨[AI (t) , H ′

I (t′)]⟩0 . (2.8)

We now assume spatial and temporal dependence (x ≡ (r, t)). We also assume that
the perturbation H ′ can be written as H ′ (t′) =

∫
dr′ B (r′, t′) f (r′, t′), where B (r, t) is an

operator and f (r, t) is a scalar function, so that

δ ⟨A (x)⟩ = −i
∫ ∞

−∞
dx′ θ (t− t′) ⟨[AI (x) , BI (x′)]⟩0 f (x′) , (2.9)

and defining a response function as

χAB (x, x′) = −iθ (t− t′) ⟨[AI (x) , BI (x′)]⟩0 , (2.10)

we obtain the Kubo formula

δ ⟨A (x)⟩ =
∫
dx′ χAB (x, x′) f (x′) . (2.11)

If the system is spatially homogeneous (which is assumed from now on), the
convolution theorem can be used to write the Kubo formula in momentum space:

δ ⟨A (q, ω)⟩ = χAB (q, ω) f (q, ω) . (2.12)

2.2 Current response
One wants to know how the electric current ⟨J⟩ reacts to an electromagnetic field.

Applying the linear-response formalism to an electronic system in an external vector
potential A (do not confuse with the observable A in the last section). The unperturbed
Hamiltonian is

H0 =
∫
drψ†

(
p2

2m + V

)
ψ, (2.13)

and the perturbed Hamiltonian is found making the substitution p → p + e
c
A,

getting:
H = H0 +H ′ = H0 + e

c

∫
dr J · A, (2.14)
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where the current J is defined as

J ≡ e

mc
Aψ†ψ − i

1
2m

[
ψ†∇ψ −

(
∇ψ†

)
ψ
]
. (2.15)

The first and second terms are called diamagnetic (JD) and paramagnetic current
(JP ), respectively. The paramagnetic term can be rewritten using the Kubo formula (Eq.
2.11) making the substitutions:

A → Jµ

B → Jν

f → Aν . (2.16)

Supposing the equilibrium current is zero, the Kubo formula for the conductivity
is:

⟨Jµ (x)⟩ = e

c

∫
dx′ χµν (x, x′)Aν (x′) , (2.17)

with a current-current response function defined as (m ≡ 1):

χµν (x, x′) = δµνδ (x− x′) ρ (x) − iθ (t− t′)
〈[
JP

µ (x) , JP
ν (x′)

]〉
= χD

µν (x, x′) + χP
µν (x, x′) . (2.18)

The diamagnetic response (first term) is zero when µ ̸= ν, which is the case of the
transverse response.

In the space of the frequencies, one has

χµν (r, r′, ω) = χD
µν (r, r′, ω) + χP

µν (r, r′, ω) (2.19)

with
χP

µν (r, r′, ω) = −i
∫ ∞

0
dt eiωt

〈[
JP

µ (r, t) , JP
ν (r′, 0)

]〉
. (2.20)

We now have to compute the thermal average. Remembering that the operators
are written in the interaction picture, so JP

µ (r, t) = eiH0tJP
µ (r, 0) e−iH0t, we get

〈[
JP

µ (r, t) JP
ν (r′, 0)

]〉
=
∑

n

e−βϵn

Z
⟨n| JP

µ (r, t) JP
ν (r′, 0) |n⟩

=
∑
mn

e−βϵn

Z
ei(ϵn−ϵm)t ⟨n| JP

µ (r, 0) |m⟩ ⟨m| JP
ν (r′, 0) |n⟩ . (2.21)

In the second quantization formalism, the many-body operator JP
µ (r, 0) can be

written in terms of the creation and annihilation operator and the single particle operator
jµ (r):

JP
µ (r, 0) =

∑
ij

⟨i| jµ (r) |j⟩ a†
iaj. (2.22)
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Substituting that in Eq. 2.21, we get terms of the form ⟨n| a†
iaj |m⟩ ⟨m| a†

kal |n⟩.
Making the assumption that the fermions do not interact with each other (free fermions),
from Wick’s theorem the only non-zero terms of that form are:

∑
n

e−βϵn

Z
⟨n| a†

iai |m⟩ ⟨m| a†
jaj |n⟩ = fifj

∑
n

e−βϵn

Z
⟨n| a†

iaj |m⟩ ⟨m| a†
jai |n⟩ = fi (1 − fj) , (2.23)

where fi is the Fermi-Dirac distribution fi =
(
eβϵi + 1

)−1
. With these results, χP

µν

in Eq. 2.20 can be written as

χP
µν (r, r′, ω) = −i

∑
ij

∫ ∞

0
dt eiωtei(ϵi−ϵj)t ⟨i| jµ (r) |j⟩ ⟨j| jν (r′) |i⟩ (fi − fj)

=
∑
ij

(fi − fj)
⟨i| jµ (r) |j⟩ ⟨j| jν (r′) |i⟩

ω + ϵi − ϵj

. (2.24)

In the momentum space:

χP
µν (q, ω) = 1

V

∑
ij

(fi − fj)
⟨i| jµ (q) |j⟩ ⟨j| jν (−q) |i⟩

ω + ϵij

, (2.25)

where ϵij ≡ ϵi − ϵj. Bringing back the diamagnetic part, the full current-current
response function is:

χµν (q, ω) = δµνρ0 + 1
V

∑
ij

(fi − fj)
⟨i| jµ (q) |j⟩ ⟨j| jν (−q) |i⟩

ω + ϵij

. (2.26)

Recall that the response function gives the current response to an external electric
potential:

⟨Jµ (q, ω)⟩ = e

c
χµν (q, ω)Aν (q, ω) . (2.27)

From the relation between electric field and potential, E (ω) = iω
c
A (ω), and using

the definition of the electrical conductivity

σµν (q, ω) ≡ i
e2

ω
χµν (q, ω) , (2.28)

we rewrite 2.27 as:

⟨−eJµ (q, ω)⟩ = σµν (q, ω)Eν (ω) . (2.29)

The equation above shows the dependence of the expected value of the electrical
current −eJµ as a response to the electrical field E. One can show that the conductivity
σµν , for uniform and static fields (q = ω = 0), can be written as

σµν = −i e
2

ℏV
∑
ij

fi
⟨i| pµ |j⟩ ⟨j| pν |i⟩ − ⟨i| pν |j⟩ ⟨j| pµ |i⟩

ϵ2
ij

. (2.30)
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2.3 Integer quantum Hall effect
Let us now establish that the system described here is a two-dimensional lattice,

where µ, ν = x, y and the Bloch states are |n,k⟩. We also assume it is a two-band
insulating system, and that the Fermi level is located within the gap. We focus on the
Hall conductivity, when µ ̸= ν, and the current response is transverse to the field direction.
Noting that pµ = ∂H

∂kµ
, Eq. 2.30 can be written as

σxy = −e2

h

∑
n

∫ d2k

4π fn (k) i
[〈
∂unk

∂kx

∣∣∣∣∣∂unk

∂ky

〉
−
〈
∂unk

∂ky

∣∣∣∣∣∂unk

∂kx

〉]
, (2.31)

where unk is the periodic part of the Bloch eigenfunction, and the continuum limit
is assumed, so the summation becomes an integral.

The term inside squared brackets is called the Berry curvature Ωn
xy (k), and the

Hall conductivity is written as

σxy = −e2

h

∑
n

∫ d2k

4π fn (k) Ωn
xy (k) . (2.32)

That is the fundamental expression for Hall conductivity used in this work. For
fermions at zero temperature, fn (k) = 1 for the occupied band, so that

σxy = −e2

h

∫ d2k

4π Ωval
xy (k) ≡ −e2

h
C. (2.33)

C is an integer: the Chern number of the valence band. The equation above
describes the integer Hall effect, which was first described for a 2D electron gas [1]. The
Hall conductivity is quantized according to the Chern number, also known as the TKNN
integer [2, 3]. The Chern number defines a topological class, and in the case of a two-band
insulator, it has a natural geometrical interpretation. As k spreads over the Brillouin torus,
a parameter vector d describes a surface. The Chern number represents the number of
times this surface wraps around the origin (the winding number of the surface).

Systems with C ̸= 0 must break time-reversal symmetry. This can happen with
an external magnetic field or a clever arrangement of magnetic fluxes inside the unit cell
of condensed-matter systems [6]. These systems are Chern topological insulators. In the
interface of a topological insulator with a trivial insulator, the energy gap closes. The
consequence is the emergence of one or more conducting states at the interface - the
so-called edge states. Because the vacuum (or the air) can be considered a trivial insulator,
the surface of a sample of a TI holds one or more conducting edge states, in spite of
the the bulk being an insulator. The bulk-edge correspondence dictates that the edge
states are robust against perturbation. Beyond the discovery of Chern insulators, the
topological approach was fruitful in numerous models, like magnetic, photonic, acoustic,
and superconducting systems [62–67].
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2.4 Magnon Hall transport
As mentioned before, magnons are quantized spin-waves in a system of localized

spins. They carry spin, but are chargeless. When a magnonic system is perturbed by a
magnetic field gradient ∇B, a spin current is generated in what we call the spin Hall effect
of magnons. In the linear response limit, we have〈

JS
x

〉
= σS

xy (−∂yB) , (2.34)

where σS
xy is the spin Hall conductivity given by (the integration is over the Brillouin

zone)

σS
xy = −(gµB)2

ℏ
∑

λ

∫ d2k

VBZ

nλ (k) Ωλ
xy (k) . (2.35)

The thermal population nλ (k) is given by the Bose–Einstein distribution nλ (k) =
(eβϵλ(k) − 1)−1. As magnons are bosons, there is no Fermi level, and both bands are
always populated. The conductivity is no longer quantized. Nevertheless, the bands are
characterized by a Chern number defined as

Cλ =
∫ d2k

4π Ωλ
xy (k) . (2.36)

The sum of the Chern numbers of all bands must be zero [16]. Hence, for a two-band
system, the Chern numbers appear in pairs ±C. The Berry curvature Ωλ

xy (k) of the λ
magnon band is defined as in the electronic case.

Ωλ
xy (k) = i

[〈
∂uλk

∂kx

∣∣∣∣∣∂uλk

∂ky

〉
−
〈
∂uλk

∂ky

∣∣∣∣∣∂uλk

∂kx

〉]
, (2.37)

where uλk are the magnonic eigenfunctions. When the system is gapped and the
Chern number is non-trivial, the system is a topological magnon insulator (TMI). It is
worth mentioning that, as there is no Fermi level for bosonic systems, the term “insulator”
can be applied only as an analogy: for bosons in finite temperature, all bands are always
occupied, and there is no filled or empty bands. Nevertheless, magnonic topological
insulators, much like electronic insulators, present topologically protected edge modes,
robust against structural or magnetic disorder and that can form ideal waveguides for
long-range magnon transport [18].

Another important transport phenomenon is the magnon current that emerges
as a consequence of a temperature gradient. Temperature is not a dynamical force, but
a “statistical force” that affects the particles through the distribution function [68]. To
construct the linear response theory, one must use a fictitious gravitational potential to fit
temperature variations into the linear response formalism. That field perturbs the system
(like the electromagnetic field does) generating a transverse spin current (spin Nernst effect
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of magnons) and energy current (thermal Hall effect of magnons) [24,69–71]. These effects
rely on the orbital angular momentum of the magnon states [27]. In the linear response
regime, the spin and energy currents due to a thermal gradient are written as

〈
JS

x

〉
= αxy (−∂yT ) (2.38)〈

JE
x

〉
= κxy (−∂yT ) . (2.39)

αxy is called spin Nernst coefficient, and κxy is the thermal Hall conductivity.
Together with the spin Hall conductivity σxy, those transverse transport coefficients are the
focus of the studies presented on this thesis, and were calculated for various two-dimensional
systems. The expressions for each of those are [27, 28,71–73]

σxy = −1
ℏ

(gµB)2∑
λ

∫ d2k

VBZ

nλ (k) Ωλ
xy (k) (2.40)

αxy = − kB

ℏ
gµB

∑
λ

∫ d2k

VBZ

c1 [nλ (k)] Ωλ
xy (k) (2.41)

κxy = − k2
BT

ℏ
∑

λ

∫ d2k

VBZ

c2 [nλ (k)] Ωλ
xy (k.) (2.42)

The functions c1 and c2 are defined as

c1 (x) = (1 + x) log (1 + x) − x log x

c2 (x) = (1 + x)
(
ln

1 + x

x

)2
− (ln x)2 − 2Li2 (−x) , (2.43)

and Li2 (x) is Spence’s dilogarithm function. We stress that for bosons, the trans-
verse transport coefficients (2.40)-(2.42) are not quantized, even thought the Chern number
is. Also, even for a zero Chern number the coefficients can be non-zero.
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3 Ferromagnetic modified Lieb lattice

In this chapter, the topology and Hall transport of magnons in a modified Lieb
lattice is studied. This study was published in Ref. [74]. Magnons are spin wave excitations
of the ground state in a lattice of localized spins. When magnon bands have non-null
Berry curvature, Hall-like transport effects can arise. Since magnons are bosons, magnonic
systems are intrinsically different from electronic ones, which motivates their study. A
notable fact is that magnons favor dissipationless transport because of their uncharged
nature. While topological effects in magnon systems were first discovered in a three-
dimensional material with the geometry of the pyrochlore lattice [25], the main theoretical
interest nowadays falls on two-dimensional lattices, where the most studied geometries
are the honeycomb [75–77] and the kagome lattices [24, 31, 78–80]. Other lattices that
were predicted to hold topological magnon effects are the Shastry-Sutherland [81, 82],
square [83], checkerboard [84–89] and Lieb [90] lattices.

J1

J1

J 3
,D

J2

Figure 1 – The original Lieb lattice (left) and modified Lieb lattice studied in this chapter
(right). Circles represent the A sites, and squares represent the B sites. The
horizontal and vertical lines are ferromagnetic exchange bonds (J1 between
A and B; J2 between two A sites). The diagonal lines represent both J3 and
Dzyaloshinskii-Moriya interaction. The latter has νij = +1 along the arrows,
and −1 against them.

The Lieb lattice is particularly interesting because it is the geometry that CuO2

planes assume in high-Tc cuprate superconductors [91]. It has also been identified in
some organic compounds as a “hidden lattice” [92]. Magnonic systems in the Lieb lattice
have been intensely investigated in the context of the Heisenberg model. In Ref. [90] it
was shown that a complex hopping between next-near-neighbours can induce topological
insulating phases.
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In this chapter we report the investigation of a modified version of the ferromagnetic
Lieb lattice, where one of the lattice sites was removed. This lattice has two inequivalent
sites (A and B) in each square unit cell (whose side was taken as equal to one, Fig. 1). The
spin ordering is off-plane ferromagnetic, and the system is described by a Heisenberg model
with exchange interactions between the three first neighbors. Transverse transport effects
are induced by a Dzyaloshinskii-Moriya interaction (DMI) between the next-next-near
neighbors. The Hamiltonian is:

H = − J1
∑
⟨i,j⟩

[
Si · Sj + (λ− 1)Sz

i S
z
j

]
− J2

∑
⟨⟨i,j⟩⟩∈A

[
Si · Sj + (λ− 1)Sz

i S
z
j

]
− J3

∑
⟨⟨⟨i,j⟩⟩⟩

[
Si · Sj + (λ− 1)Sz

i S
z
j

]
−D

∑
⟨⟨⟨i,j⟩⟩⟩

νij ẑ · Si × Sj −B
∑

i

Sz
i . (3.1)

There are ferromagnetic exchange interactions between near-neighbors A and B
(strength J1, vertical lines in Fig. 1) and next-near-neighbors A (strength J2, horizontal
lines). In all exchange interactions there is an anisotropy λ on the z terms. When λ > 1, the
exchange term is minimized for spins in the z direction [93, 94]. On the diagonals between
A and B, there are a J3 exchange interaction and a Dzyaloshinskii-Moriya interaction of
the form −Dij · (Si × Sj). The latter is also called antisymmetric exchange and has its
physical origin in the spin-orbit coupling of the material. This interaction is responsible for
the finite Berry curvature and Hall-like transport effects. The vector Dij is antisymmetric
by exchange i ↔ j, so the bond is oriented. We take this DM vector as Dij = Dνij ẑ
(perpendicular to the lattice plane), with νij = ±1 following or against the arrows.

The DMI tends to orient two interacting spins in a perpendicular orientation,
and for sufficiently large D (comparable to J1) the ground state is no longer a collinear
ferromagnet but a spin spiral: the magnetic sublattices tilt away from their parallel
alignment. Therefore, only small values of D are considered, in order to preserve the
collinear state. High values of the off-plane magnetic field B =Bẑ ensure the off-plane
ordering via Zeeman interaction (last term in Eq. 3.1). The same effect could be achieved
with a single-ion anisotropy.

3.1 Ferromagnetic magnons - formalism
Supposing a bidimensional spin system with a ferromagnetic ground state, where

all the spins are ordered in the off-plane direction, we rewrite the spin operators using the
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Holstein-Primakoff (HP) transformation [95]:

S+ (r) =
√

2S
√

1 − a† (r) a (r)
2S a (r)

S− (r) =
√

2Sa† (r)
√

1 − a† (r) a (r)
2S

Sz (r) = S − a† (r) a (r) . (3.2)

We stress that this transformation is only appliable to spins ordered in an off-
plane configuration (in our case, the z direction). That off-plane ground state should be
ensured even at non-zero temperature. To achieve this it is important to add some kind
of anisotropy in the Hamiltonian, otherwise the system would have no long-range order
according to the Mermim-Wagner theorem [96]. The operators a(†) (r) are the bosonic
creation and anihilation operators at the r point. We assume a periodic lattice with N

inequivalent sites in the basis, and introduce N inequivalent operators a(†)
1 , a

(†)
2 , ..., a

(†)
N .

These operators obey the bosonic commutation relation:[
am (r) , a†

n (r′)
]

= δmnδrr′ . (3.3)

In systems with two inequivalent sites per unit cell, like the modified Lieb lattice,
two magnon operators are used: a(†) and b(†). Assuming the magnons do not interact
with each other, the square root in the HP transformation is expanded to zeroth order
(otherwise, non-harmonic terms would be generated in the Hamiltonian, indicating magnon
interaction):

S+
i =

√
2S ai, S−

i =
√

2S a†
i , Sz

i = S − a†
iai, i ∈ A

S+
i =

√
2S bi, S−

i =
√

2S b†
i , Sz

i = S − b†
ibi, i ∈ B (3.4)

This is the so called linear spin wave (LSW) regime. The subscript i indexes the
quantized position in the lattice. Any ferromagnetic spin Hamiltonian in the ordered
phase can be described within this approach. After performing the HP transformation,
the terms with order higher than two in the magnon operators are ignored, together with
the constant terms, which represent the classic vacuum energy. Fourier transforming, we
get a harmonic Hamiltonian

H =
∑

k

ψ†
k (h0(k)I2 + hx(k)σx + hy(k)σy + hz(k)σz)ψk

≡
∑

k

ψ†
kHkψk, (3.5)

where ψ†
k =

(
a†

k b†
k

)
, σi are the Pauli matrices and I2 is the 2x2 identity matrix.

The Hamiltonian matrix Hk is written explicitly as
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Hk =
 h0 + hz hx − ihy

hx + ihy h0 − hz

 (3.6)

The parameter vector h is defined as h (k) ≡ (hx(k), hy(k), hz(k)). The diagonal-
ization of the Hamiltonian matrix Hk leads to a two-band model with eigenvalues written
as:

ϵ± (k) = h0 (k) ± h (k) . (3.7)

Here, h (k) ≡ |h (k)| =
√
h2

x (k) + h2
y (k) + h2

z (k). The explicit form of the eigen-
vectors φ±

k in the ψk basis is:

φ+
k =

 p1e
−iθ

p2

 ; φ−
k =

 p2e
−iθ

−p1

 , (3.8)

where (the k dependence is implicit):

p1 =
√
h+ hz

2h , p2 =
√
h− hz

2h , tan θ = hy

hx

.

Both states carry spin −1 (opposite to the ferromagnetic order). The linear spin
wave formalism is general and the results above can be applied for any FM two-band
system, i. e., lattice systems with two inequivalent sites per unit cell. To obtain the magnon
bands one should merely find the parameters h0, hx, hy and hz for the specific system and
apply them to Eq. 3.7.

3.2 Magnon bands
For the model studied here (Eq. 3.1), the Hamiltonian parameters are:

h0 (k) = SJ2 (λ− cos kx) + 2Sλ (J1 + 2J3) +B

hx (k) = −2S cos ky

2 (J1 + 2J3 cos kx)

hy (k) = 4SDmk

hz (k) = SJ2 (λ− cos kx) , (3.9)

where mk ≡ −sin kx cos
ky

2 is a structure factor. All the calculations in this study
were made for a lattice with an infinite number of sites with periodic boundary conditions,
so the wave vectors k continuously cover the Brillouin zone (kx = [−π, π] , ky = [−π, π]).
The explicit dispersion relation is

ϵ± (k) =SJ2 (λ− cos kx) + 2Sλ (J1 + 2J3) +B

± S

√
4 cos2 ky

2 (J1 + 2J3 cos kx)2 + J2
2 (λ− cos kx)2 + 16D2m2

k. (3.10)
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Figure 2 – Band structure of the modified Lieb lattice. The parameters are S = 1/2,
B = 1.0, J1 = 1.0, J2 = 0.5, J3 = 0.2, and D = 0.1. There is a topological
phase transition from a trivial insulating phase (Chern number C = 0), when
λ > 1 (λ = 1.5 in the left panel) to a topological insulating phase (C = ±1),
when λ < 1 (λ = 0.5 in the right panel). In the transition (middle panel, λ = 1)
the gap is closed, the Berry curvature diverges and the Chern number is not
defined.
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Figure 3 – Berry curvature of the upper band for S = 1/2, B = 1.0, J1 = 1, J2 = 0.5,
J3 = 0.2 and D = 0.1. In the trivial phase ((a) and (b), where in (b) the y-axis
is stretched around y = 0 for better visualization), regions of negative Berry
curvature cancel out the positive peak (X ′ point) in the integral that defines
the Chern number. That does not occur in the topological phase (c).

The system’s band structure is plotted in Fig. 2. There is a gap of 2SJ2 |λ− 1| at
the high-symmetry point X ′ = (0,±π). The gap vanishes into a Dirac point in the isotropic
limit (λ = 1) independently of the value of other parameters. Therefore, the anisotropy is
responsible for the gap. This is in contrast with with other magnon insulating systems,
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when the DMI creates the gap [77,87,90,97]. There is a topological phase transition in
λ = 1: for λ > 1 the system is a trivial magnon insulator (C± = 0, where the Chern
number C± is defined in Eq. 2.36), and for λ < 1, the system is a topological magnon
insulator (C± = ∓1). In this lattice, the topological phase is problematic, because for
λ < 1 the exchange term is minimized for an in-plane spin configuration, competing with
the Zeeman term. Nevertheless, we assume that the Zeeman term is strong enough to
assure the off-plane (z direction) ground state.
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Figure 4 – Transport coefficients in the topological (blue) and trivial (red) phases. The
parameters are the same as in Fig. 3.

The Chern number is calculated from the Berry curvature (Eq. 2.36). For a two-
band FM system, the Berry curvature of the upper and lower bands have opposite sign
and can be written as [15,77]

Ω±
xy (k) = ∓ĥ ·

 ∂ĥ
∂kx

× ∂ĥ
∂ky

 , (3.11)

where ĥ = h/h. The Berry curvatures of the trivial and topological phase are
represented in Fig. 3. Ω±

xy is peaked around the point in the Brillouin zone where the
energy gap vanished when λ = 1. In the trivial phase, the positive peak is cancelled out
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by regions of negative values, so its integral is null. The Berry curvature is itself null when
the DMI parameter is D = 0.
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Figure 5 – (a-c) Transport coefficients versus temperature (S = 1/2, B = 0, J1 = 1,
J2 = 0.5, J3 = 0, λ = 1.2) for different values of D. (d-f) Same coefficients
versus applied magnetic field (S = 1/2, T = 0.1, J1 = 1, J2 = 0.5, J3 = 0,
λ = 1.2, D = 0.2).



Chapter 3. Ferromagnetic modified Lieb lattice 28

3.3 Transverse transport coefficients
The transverse transport coefficients defined in Section 2 (spin Hall conductivity

σxy, spin Nernst coefficient αxy and thermal Hall conductivity κxy, Eqs. (2.40)-(2.42) were
calculated numerically for the trivial and topological phases, using several combinations
of theory parameters. The first thing to note, in Fig. 4, is that these coefficients are
higher in the topological phase. Also, the plots shows a monotonically rising behavior
with T , similar to what is observed in several magnetic lattices [76, 79,80,86–88]. At zero
temperature, the conductivities are zero due to the absence of magnon excitations. That
is a consequence of the fact that boson numbers are not conserved and vanish in the zero
temperature limit. Magnons are thermally excited as the temperature increases from zero.
At low temperatures, the lower band dominates. It can be seen that σxy rises linearly with
T , while αxy and κxy have asymptotic behavior. That is because c1 (x) and c2 (x) (Eqs.
2.43) decreases with x, leading to the flattening of the curves at high temperatures. In fact,
it is possible to calculate analytically the high-T limit, which corroborates the numerical
results:

σxy (T → ∞) = −kB T

ℏ2

∫ d2k

(2π)2

(
1
ϵ+

k

− 1
ϵ−

k

)
Ω+

k

αxy(T → ∞) = kB

ℏ

∫ d2k

(2π)2

(
ln ϵ+

k − ln ϵ−
k

)
Ω+

k

κxy(T → ∞) = kB

∫ d2k

(2π)2

(
ϵ+

k − ϵ−
k

)
Ω+

k . (3.12)

Fig. 5 shows the transport coefficients’ dependence with T (above) and the external
magnetic field B (below). The coefficients are intensified for high Dzyaloshinskii-Moriya
interaction D. Also, they are suppressed for high magnetic field B. That is explained as
follows. The magnetic field does not affect the Berry curvature, but raises both energy
bands. For a given T , a smaller number of magnons are excited in both bands, leading to
a suppression of σxy, αxy and κxy. In an intuitive picture, a high magnetic field inforces
the magnetic order, diminishing the density of excited states (magnons).

In Fig. 6, one can see the dependence of the transport coefficients on the relative
exchange parameters J2/J1 and J3/J1. An increase in J3 leads to a decrease in the
coefficients. On the other hand, all coefficients show a peak for a definite J2/J1 value. The
exact value and peak height depend on the other parameters of the theory.
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Figure 6 – All three transport coefficients as functions of the relative parameters J2/J1 and
J3/J1 for different temperatures and applied magnetic fields: (a)-(c) B/J1 = 0
and kBT/J1 = 0.1. (d)-(f) B/J1 = 0 and kBT/J1 = 0.5. (g)-(i) B/J1 = 0.1 and
kBT/J1 = 0.1. (j)-(l) B/J1 = 0.2 and kBT/J1 = 0.1. The other parameters are
J1 = 1.0, S = 1/2, D = 0.1 and λ = 1.2.
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4 Antiferromagnetic Union Jack lattice

Magnons can mediate Hall-like transport phenomena in both ferromagnets and
antiferromagnets. Antiferromagnets exhibit ultrafast dynamics and are robust against
reasonably large external fields [98–100]. They are a competitive alternative to ferromag-
nets to store and manipulate information, as topological ferromagnets present drawbacks
such as strong magnetic disturbances and low mobility due to high magnetization. Topo-
logical transport in magnets with AFM exchange interaction has been investigated in
several contexts, such as in the paramagnetic phase [101], non-collinear and non-coplanar
ordering [82, 102, 103] and dimer states [104–106]. In this scenario, it is essential to
study antiferromagnetic topological insulators in all kinds of lattices and investigate their
thermomagnetic properties.

In this chapter, we investigate the energy bands and transverse transport of magnons
in a Néel state antiferromagnet with the geometry of the Union Jack lattice, represented in
Fig. 7. This investigation was published in Ref. [107]. The Union Jack lattice is obtained
by adding alternate diagonals to the square lattice. The Hamiltonian of the model is:

H =J1
∑
⟨i,j⟩

Si · Sj +
∑

⟨⟨i,j⟩⟩∈A

J2,ij (Si · Sj + (λ− 1)Sz
i S

z
i′)

+D
∑
⟨i,j⟩

νij ẑ · Si × Sj − A
∑

i

(Sz
i )2 . (4.1)

The lattice is divided into A and B sublattices. The NNN exchange interaction
carries two kinds of anisotropy: an off-plane λ > 1 anisotropy (like in the case of the
modified Lieb lattice) which favors the alignment of the spins in the z direction; and an
in-plane anisotropy in the form of different exchange constants J2,ij for different in-plane
directions (x and y). From now on we define J2 ≡ J2,x and αJ2 ≡ J2,y, and the system is
plane-isotropic when α = 1. The third term of the Hamiltonian is the spin-orbit induced
Dzyaloshinskii-Moriya interaction between NN sites A and B. The last term is a single
ion easy-axis anisotropy (SIA) which favors spin alignment in the z direction.

From the Hamiltonian above, we are able to find the magnon energy bands (in the
linear spin wave regime) and Berry curvature, and from those calculate the transverse
transport coefficients. In order do preserve the bosonic commutation relations, the diag-
onalization of the bosonic antiferromagnetic Hamiltonian requires a different treatment
than the FM case, which is presented below.
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Figure 7 – The Union Jack lattice in the Néel state. The red sites are sublattice A, with
spins pointing in the +z direction. The blue sites are sublattice B, −z direction.
J1 and J2 are exchange interactions, while α is an in-plane anisotropy. D is
a Dzyaloshinskii-Moriya interaction, with νij = +1 along the arrows, and −1
against them.

4.1 Antiferromagnetic magnons - formalism
For the analysis of the bosonic antiferromagnetic Hamiltonian, some ordered ground

state needs to be established, which is chosen to be the off-plane Néel state. The system has
two inequivalent sites, so the lattice is broken in two sublattices, A and B. This procedure
is similar to what was done in the ferromagnetic modified Lieb lattice in the previous
chapter, but with the crucial difference that each sublattice has internal ferromagnetic
order with opposite spin orientation. We take the Néel order perpendicular to the lattice
plane, i. e., spins on the A and B sublattices satisfy SA = −SB = Sẑ in the ground state.
Like in the FM case, we take the Holstein-Primakoff transformation, which for AFM
systems in the Néel order is [95,108]:

S+
i =

√
2S

√
1 − a†

iai

2S ai, S−
i =

√
2S a†

i

√
1 − a†

iai

2S , Sz
i = S − a†

iai, i ∈ A

S+
i =

√
2S b†

i

√
1 − b†

ibi

2S , S−
i =

√
2S

√
1 − b†

ibi

2S bi, Sz
i = −S + b†

ibi, i ∈ B.

(4.2)

The AFM Holstein-Primakoff transformation is different from its FM counterpart
in order to preserve the commutation relations between different spin operators. In the
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linear spin wave regime, the square roots are expanded to zeroth order:

S+
i =

√
2S ai, S−

i =
√

2S a†
i , Sz

i = S − a†
iai, i ∈ A

S+
i =

√
2S b†

i , S−
i =

√
2S bi, Sz

i = −S + b†
ibi, i ∈ B. (4.3)

After Fourier transforming, we ignore terms with order higher than two (anharmonic
terms) in the magnon operators, assuming a free-boson, linear spin wave regime. It is
possible to write the Hamiltonian as

H =
∑

k

ψ†
kHkψk (4.4)

with
ψ†

k =
(
a†

1,k , ..., a
†
N,k , a1,−k , ... , aN,−k

)
, (4.5)

where the system is generalized from two to N sublattices. We note that terms of the
form a†

1,ka
†
2,−k appear naturally with the application of Eq. (4.3) to the Hamiltonian (4.1).

So a Nambu spinor (4.5) must be used, and the Hilbert space is doubled: the Hamiltonian
matrix Hk has dimension 2N , and satisfies the bosonic particle-hole symmetry [28]:

Hk = ρHT
−kρ, ρ =

 0 IN

IN 0

 , (4.6)

where IN is the identity matrix. To diagonalize the Hamiltonian Hk and find the
magnon spectrum, we must perform a generalized Bogoliubov transformation from a

(†)
nk to

α
(†)
nk . That procedure is general and do not require a specific lattice order or number of

inequivalent sites [109,110]. We find a transformation matrix Tk from the old basis to a
new basis, ψk = Tkφk. Let α(†)

nk be the magnon creation and annihilation operators:

φ†
k =

(
α†

1,k, ..., α
†
N,k, α1,−k, ..., αN,−k

)
. (4.7)

After the transformation, the components of φk must satisfy the same bosonic
commutation relation as ψk: [

φik, φ
†
jk

]
=
[
ψik, ψ

†
jk

]
= ηij, (4.8)

where η is a “metric matrix”:

η =
 IN 0

0 −IN

 . (4.9)

The matrix Tk is such that the Hamiltonian can be written as

H =
∑

k

(Tkφk)† Hk (Tkφk) =
∑

k

φ†
kH̃kφk, (4.10)
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where H̃k is diagonal: H̃k = T †
kHkTk = diag (ϵ1, ϵ2, ..., ϵn, ϵ1, ϵ2, ...ϵn). To ensure that

the new operators αnk satisfy the bosonic algebra, the matrix Tk must fulfil the condition

T †
k = ηT−1

k η−1. (4.11)

A matrix Tk satisfying condition above is called as pseudo-unitary (or para-unitary)
[111]. The eigenvalues of Hk are obtained indirectly by the diagonalization of Kk ≡ ηHk.
The operator Kk is not Hermitian, but satisfy the property

K†
k = ηKkη

−1, (4.12)

being called pseudo-Hermitian and having real eigenvalues [112,113]: its diagonal-
ization leads to K̃k = diag (ϵ1, ϵ2, ..., ϵn,−ϵ1,−ϵ2, ...− ϵn). Its right eigenvectors vi (k) are
the columns of the pseudo-unitary matrix Tk. Therefore, when diagonalizing Kk we obtain
the eigenvalues and the Tk matrix automatically. The eigenvectors are orthogonal and
normalized as:

v†
i (k) ηvj (k) = ±1, (4.13)

where +1 is used for particle states and −1 for hole states. The inner product is
modified by the pseudo-Hermiticity: ⟨a|b⟩ ≡ a†ηb.

The procedure shown above establishes a specific order for the a†
i operators in ψ†

k

(see Eq. 4.5). Nevertheless, sometimes it is convenient to establish a different order. The
matrix η is most generically η = diag (σ1, σ2, ..., σ2N), with σi = +1 if the correspondent
operator in ψ†

k is b†
k, and σi = −1 if it is b−k. That shuffles the particle/hole eigenvectors

in Tk, but it can be useful if the corresponding matrix Hk is block-diagonal in this basis.

At this point we retrieve the restriction that the system is a two band magnon
system, and choose a specific order for the vectors ψ†

k and φ†
k:

ψ†
k =

(
a†

k b−k a−k b†
k

)
φ†

k =
(
α†

k β−k α−k β†
k

)
. (4.14)

For this choice of basis, the metric matrix is η = diag(1,−1,−1, 1).

The most general form of a bosonic 4x4 Hamiltonian with particle-hole symmetry
is known as the bosonic Bogoliubov-de Gennes (BdG) Hamiltonian and is written as [109]:

HBdG =
 Mk ξk

ξ∗
−k M∗

−k

 , (4.15)

where Mk and ξk are 2x2 matrices. In the Union Jack lattice, the basis in Eq. 4.14
leads to a representation where ξk = 0, so the Hamiltonian is block diagonal and Mk can
be written as

Mk =
 r1 f ∗

f r2

 = h0I + hxσx + hyσy + hzσz. (4.16)



Chapter 4. Antiferromagnetic Union Jack lattice 34

We will assume that Mk = M−k, which is a result obtained for the AFM Union
Jack lattice. The advantage of working with a block-diagonal Hamiltonian is evident when
Kk is written as (by block multiplication):

Kk = ηHk =
 σzMk 0

0 −σzMk

 . (4.17)

Hence, the sectors of Kk can be diagonalized separately. The first block, which is
called α sector, has eigenvectors

φ+
α =

 u∗

−v∗

 , φ−
α =

 −v
u

 , (4.18)

with functions u and v are defined as

u ≡ f

|f |

(
r + w

2w

)1/2
, v ≡

(
r − w

2w

)1/2
. (4.19)

The corresponding eigenvalues are

ϵ+
α = ∆ + w, ϵ−

α = ∆ − w, (4.20)

with
r ≡ r1 + r2

2 , ∆ ≡ r1 − r2

2 , w ≡
√
r2 − |f |2, f ≡ hx + ihy. (4.21)

The eigenvectors of the β sector (second block of Hk) are the complex conjugate of
the α sector with a change of sign for the eigenvalues, so the eigenvalues of Kk show up in
pairs ±ϵ. As the bosonic Bogoliubov transformation duplicates the Hilbert space, we have
redundant solutions, so only the φ+

α and φ+
β solutions are kept [114], which correspond

to the the particle states. The matrix Tk, which diagonalizes Kk and carries all four
eigenvectors is, then:

Tk =
 Tα 0

0 Tβ

 =


u∗ −v 0 0

−v∗ u 0 0
0 0 u −v∗

0 0 −v u∗

 =
(
φ+

α , φ
−
α , φ

−
β , φ

+
β

)
. (4.22)

The diagonalized K̃k, which carries the eigenvalues, is:

K̃k =


ϵα 0 0 0
0 −ϵβ 0 0
0 0 −ϵα 0
0 0 0 ϵβ

 . (4.23)
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The particle states correspond to the first and fourth column of Tk. The physical
eigenvalues are:

ϵα,β (k) = w (k) ± ∆ (k) . (4.24)

We can show that [115]

Sz =
∑
i∈A

∑
j∈B

(
Sz

i + Sz
j

)
=
∑

k

(
−α†

kαk + β†
kβk

)
. (4.25)

Hence ⟨0|αkS
zα†

k |0⟩ = −1 and ⟨0| βkS
zβ†

k |0⟩ = +1, where|0⟩ is the magnon
vacuum. This means that α magnons carry spin −1 and β magnons carry spin +1 (along
the z direction).

�
(k
)

�
(k
)

Figure 8 – Magnon energy bands of the antiferromagnetic Union Jack lattice. (a) S =
J1 = λ = α = 1.0, A = 0, D = 0.2 and three values of J2: 0 (solid red,
both bands are totally degenerate), 0.2 (dashed blue) and 0.4 (dashed green).
(b) S = J1 = λ = α = 1.0, J2 = D = 0.2 and two values of single-ion
anisotropy: A = 0 (solid red) and A = 0.2 (dashed blue). (c) S = J1 = α = 1.0,
J2 = A = D = 0.2 and two values of off-plane exchange anisotropy: λ = 1 (solid
red) and λ = 1.4. (dashed blue). (d) S = J1 = 1.0, J2 = D = 0.2, A = 0.6,
λ = 1.1, α = 1.6. (e) S = J1 = α = 1.0, J2 = A = 0.2, λ = 1.2 and two values
of Dzyaloshinskii-Moriya interaction: D = 0 (solid red) and D = 0.4.

4.2 Magnon bands
After performing the linear Holstein-Primakoff transformation and following the

formalism described above, the Hamiltonian 4.26, a bosonic Bogoliubov-de Gennes Hamil-
tonian is obtained (in this specific case, a block-diagonal matrix):
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Hk =
 Mk 0

0 M∗
−k

 , Mk = rI + ∆σz + hxσx + hyσy, (4.26)

with

r = 2SJ1 + A
(2S − 1

2

)
+ SJ2

(
ηk − λ

α + 1
2

)
∆ = SJ2

(
ηk − λ

α + 1
2

)
hx = 2SJ1γk

hy = 2SDmk. (4.27)

The structure factors are

γk = cos
kx

2 cos
ky

2 , ηk = 1
2 (coskx + α cosky) , mk = −sinkx

2 sin
ky

2 . (4.28)

Those are even functions of k. Hence, Mk = M−k. The diagonalization of Hk gives
the antiferromagnetic band structure from Eq. 4.24 (see also the definitions Eqs. 4.21)

ϵα,β (k) = w (k) ± ∆ (k) . (4.29)

If J2 = 0 the term ∆ (k) vanishes, the magnon bands are totally degenerate and
the system is reduced to the AFM square lattice [20]. Higher values of J2 lower the β band,
while the α band remains almost unchanged (Fig. 8a). For small enough values of J2/J1,
A/J1 and D/J1, both bands have a minimum at kx = ky = 0 (point Γ). The single-ion
anisotropy A makes the minimum value non-zero (Fig. 8b). In Fig. 8c, one can see how
the exchange anisotropy λ > 1 splits the bands at point Γ.

The effect of the in-plane anisotropy α is to create an energetic inequivalence
between points X and X ′ in the Brillouin zone (Fig. 8d). That energetic imbalance is
necessary for transverse transport effects. We also note that the DMI itself does not open
a gap, but changes the character of the dispersion by lowering the energy at the point M
(Fig. 8e).

4.3 Modified spin waves
All results above apply to free bosons, in the linear spin wave regime (LSW). It is

possible to include the lowest order anharmonic contributions of the Hamiltonian via a
mean-field treatment that we call here modified spin wave (MSW) approach. Expanding
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the square root in the HP transformations (Eq 4.3) up to first order, we get:

S+
i =

√
2S
(
ai − a†

iaiai

4S

)
, S−

i =
√

2S
(
a†

i − a†
ia

†
iai

4S

)
, Sz

i = S − a†
iai, i ∈ A

S+
i =

√
2S
(
b†

i − b†
ib

†
ibi

4S

)
, S−

i =
√

2S
(
bi − b†

ibibi

4S

)
, Sz

i = −S + b†
ibi, i ∈ B.

(4.30)

One must apply the transformation above to the Hamiltonian and ignore the terms
of order higher than four on the operators, which would represent interaction between
more than two magnons, and have a lower contribution to the perturbative series. The
harmonic (quadratic) terms reproduce the LSW results. The terms of fourth order represent
interaction between two magnons. Those terms are rewritten using a mean-field approach:

ABCD ≈ ⟨AB⟩CD + ⟨CD⟩AB + ⟨AC⟩BD + ⟨BD⟩AC + ⟨AD⟩BC + ⟨BC⟩AD.
(4.31)

where A, B, C and D can be a(†)
i or b(†)

i′ , and ⟨...⟩ are thermal averages, which we
call MSW coefficients Γj. This procedures decouples the magnons, generating an effective
harmonic Hamiltonian. The MSW coefficients are ultimately written in terms of the
magnon occupation numbers

〈
α†

kαk

〉
and

〈
β†

kβk

〉
, which are defined thermodynamically

as the thermal population (Bose-Einstein distribution nα,β
k (T )):

Γj = Γj

(
nα

k (T ) , nβ
k (T )

)
. (4.32)

The effective Hamiltonian (and energy bands) is renormalized by the mean-field
coefficients Γj (T ) and is implicitly temperature-dependent. For each temperature, the co-
efficients are found with a numerical self-consistent calculation which follows the algorithm
in Fig. 9.

Figure 9 – Algorithm for the self-consistent calculation of the MSW coefficients.

As long as the numerical result of the self-consistent algorithm converges, one can
find the lowest order correction to linear spin waves by finding the temperature-dependent
coefficients Γj (T ) and solving the effective Hamiltonian for each temperature.
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Figure 10 – Effect of the modified spin wave (MSW) approach in the AFM Union Jack
lattice. The parameters are S = J1 = A = 1.0, J2 = D = 0.2, λ = α = 1.1. (a)
Linear spin wave dispersion relation (LSW, solid red line) compared to the
MSW case (dashed blue line) for zero temperature. (b) MSW dispersion for
kBT = 0 (solid red), kBT = 0.4 (dashed blue) and kBT = 0.456 (dashed green).
The energy at Γ-point falls abruptly to zero as we approach the transition
temperature kBTN ≈ 0.456. (c) Staggered magnetization, signalling a phase
transition at TN .

When this procedure is applied in the AFM Union Jack lattice, a total of 7 MSW
coefficients is found. A complete description and the results of the MSW approach for the
Union Jack lattice can be found in Appendix A. The energy bands are modified as shown
in Fig. 10. Even at zero temperature, the anharmonic contributions affect the dispersion,
lowering the bands’ minimum energy (Fig. 10a). As the temperature rises, the bands
remain almost unchanged until we get close to a definite temperature TN , when the bands
lower abruptly (Fig. 10b). TN is interpreted as the Néel temperature that signals a phase
transition. At that temperature, the Néel order is unstable: the lower band reaches zero
energy at point Γ and the staggered magnetization vanishes (Fig. 10c). The temperature
TN tends to be higher for high values os A or S.
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Figure 11 – Berry curvature of the antiferromagnetic Union Jack lattice in the linear spin
wave regime. Both bands have the same Berry curvature. The parameters are
S = J1 = A = 1.0, J2 = D = 0.2, λ = α = 1.1.

4.4 Transverse transport coefficients
The Berry curvature of a system described by a two-band block diagonal Bogoliubov-

de Gennes Hamiltonian has the form (see Appendix B):

Ωα (k) = −1
2sinh θk

(
∂ϕk

∂kx

∂θk

∂ky

− ∂ϕk

∂ky

∂θk

∂kx

)

Ωβ (k) = −1
2sinh θ−k

(
∂ϕ−k

∂kx

∂θ−k

∂ky

− ∂ϕ−k

∂ky

∂θ−k

∂kx

)
(4.33)

where θk and ϕk are defined as

tan ϕk = hy

hx

, cosh θk = r

w
. (4.34)

Expression (4.33) can be applied for both LSW or MSW regime, since in the MSW
regime all the parameters (including θk and ϕk) are still defined, although renormalized.
There is a fundamental relation between the Berry curvatures of both bands: Ωα (k) =
Ωβ (−k). In the AFM Union Jack lattice in the LSW regime, those are even functions:
Ωi (k) = Ωi (−k). Those two properties result in identical Berry curvatures (Ωα (k) =
Ωβ (k)), represented in Fig. 11. The Berry curvature is not well-behaved in zero-energy
states, so we need A ̸= 0 and S ≠ 1/2. In Appendix B, it is shown that an imaginary term
in the Hamiltonian (hy ̸= 0) is necessary for the Berry curvature to be non-zero. In the
Union Jack case, that means D must be non-zero, so the Dzyaloshinskii-Moriya interaction
is the responsible for the non-null Berry curvature. The Chern number is proportional to
the integral of the Berry curvature over the Brilloiun zone. In this case it is null, as it
can be seen from the Berry curvature’s symmetry. Hence, the system has trivial Chern
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Figure 12 – Transport coefficients of the antiferromagnetic Union Jack lattice. S = J1 =
A = 1.0, J2 = 0.2, λ = α = 1.1.

topology. That happens for every combination of Hamiltonian parameters, both in the
LSW and MSW regimes.

The transport coefficients for a two-band antiferromagnet in the Néel state are
given by [32,73,116]:

σxy = −1
ℏ

∫ d2k

(2π)2

[
nα

k Ωα
k + nβ

k Ωβ
k

]
αxy = −kB

ℏ

∫ d2k

(2π)2

[
c1 (nα

k ) Ωα
k − c1(nβ

k) Ωβ
k

]
κxy = −k2

BT

ℏ

∫ d2k

(2π)2

[
c2 (nα

k ) Ωα
k + c2(nβ

k) Ωβ
k

]
, (4.35)

where ci(x) are the functions defined in Eqs. (2.43), and nα,β
k are the Bose-Einstein

distributions (thermal population) of each band. Non-null Berry curvature is a necessary
(but not sufficient) condition for non-null transport coefficients. Another necessary condition
is that the system has in-plane anisotropy α ̸= 1, which generates an energetic imbalance
between bands (see Fig. 8d), and the integrals above are non-null.

The numerical results for the transport coefficients are shown in Fig. 12. As usual,
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Figure 13 – Effect of the modified spin wave (MSW) approach in the antiferromagnetic
Union Jack lattice transport coefficients. The black curve is the linear spin
waves, while the dashed red curve is the MSWs. The theory parameters are
S = J1 = A = 1.0, J2 = D = 0.2, λ = α = 1.1.

all transport coefficients increase with D. The effect of the off-plane exchange anisotropy
λ is only quantitative: transverse transport exists even when λ = 1. Also, we can see that
the high-temperature behavior of the coefficients is in accordance to the analytical results:

σxy (T → ∞) = −kB T

ℏ2

∫ d2k

(2π)2

(
1
ϵα

k

± 1
ϵβ

k

)
Ωα

k

αxy(T → ∞) = kB

ℏ

∫ d2k

(2π)2

(
ln ϵα

k ∓ ln ϵβ
k

)
Ωα

k

κxy(T → ∞) = kB

∫ d2k

(2π)2

(
ϵα

k ± ϵβ
k

)
Ωα

k . (4.36)

The coefficients αxy and κxy have asymptotic behavior, while σxy is linear with T .
This is similar to 3.12, but adapted to the AFM case where magnons have opposite spins
and respond differently to perturbation. Inside the integrand, the upper sign is used when
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Ωα
k = Ωβ

k (as it is the case of the AFM Union Jack lattice here), and the lower sign is used
when Ωα

k = −Ωβ
k .

We also consider the effect of anharmonic contributions using the modified spin
wave approach. In the linear spin wave treatment, the temperature dependence of the
transport coefficients comes only from the Bose–Einstein distribution nα,β

k . The energy
bands and Berry curvature are independent of temperature (as it is the Hamiltonian). In
the self-consistent MSW theory, we partly include the effects of finite T in the Hamiltonian
bands with a mean-field approach. The corrections make the energy dispersion and
Berry curvature temperature-dependent, correcting the transport coefficients for each
temperature. In Fig. 13 we present the results for MSW. The self-consistent corrections
lower the energy bands (see Fig. 10), raising the magnon population for a given temperature
and increasing all transport coefficients. That happens until we reach a temperature TN

(kBTN/J1 ≈ 0.456 for the chosen parameters), where no self-consistent solution is found
(the solution does not converge).
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5 Antiferromagnetic brick-wall lattice

In the Union Jack lattice shown in the last chapter, both spin Nernst and thermal
Hall coefficients are non-null: spin transport is followed by a net magnon transport (heat
current). In some systems, (effective) time-reversal symmetry results in spin transport
without net magnon transport, which can be seen as magnonic equivalent of the QSHE.
That phenomenon happens in the AFM brickwall lattice, which is presented in this chapter
and published in Ref. [107]. In this geometry, consider the following Hamiltonian:

H = J1
∑
⟨i,j⟩

Si · Sj +J2
∑
⟨i,j⟩

Si · Sj +D
∑

⟨⟨i,j⟩⟩
νij ẑ · Si × Sj −A1

∑
i∈A

(Sz
i )2 −A2

∑
i∈B

(Sz
i )2 . (5.1)

There are exchange interactions J1 and J2 between sites A (red sites) and B (blue
sites) in a “wall of bricks” pattern, as seen in Fig. 14. The arrows show the Dzyaloshinskii–
Moriya interaction between sites AA and BB. The model is extended to account for
different on-site anisotropies A1 and A2.

xy

z
J1J1

J2

D
D

Figure 14 – The antiferromagnetic brick-wall lattice. The red sites are sublattice A, with
spins pointing in the +z direction. The blue sites are sublattice B, −z direction.
The Dzyaloshinskii-Moriya interaction has νij = +1 along the arrows, and −1
against them.

Following the same procedure as in the case of the Union Jack lattice, one gets a
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Bogoliubov-de Gennes Hamiltonian (see Eq. 4.26) with parameters:

r = 2 + α

2 J1S + A1 + A2

2

(2S − 1
2

)
∆ = 2SDmk + A1 − A2

2

(2S − 1
2

)
hx = 3

2J1S δk

hy = −3
2J1S εk, (5.2)

where α ≡ J2/J1 and the structure factors are

δk = 1
12

[
(2 + α) cos

(
kx

2

)
cos

(
ky

2

)
+ α sin

(
kx

2

)
sin

(
ky

2

)]

εk = − 1
12

[
(2 − α) cos

(
kx

2

)
sin

(
ky

2

)
+ α sin

(
kx

2

)
cos

(
ky

2

)]

mk = 1
2 (sin kx − sin ky) . (5.3)

The imaginary part of the Bogoliubov-de Gennes Hamiltonian is contained in hy.
From the equations above, we see that hy ∝ εk, which is the complex part of the exchange
interaction structure factor γk ≡ δk + iεk. In Appendix B, it is shown that hy ̸= 0 is
necessary for the Berry curvature to be non-zero. Hence, the complex lattice structure
factor γk is responsible for the non-zero Berry curvature in this system. In the brick-wall
case, the system has non-null Berry curvature even for D = 0. This is opposite to the
AFM Union Jack lattice, there the DMI is responsible for the Berry curvature.

The structure factors are odd functions of k. In this case, the diagonalization of
the BdG Hamiltonian leads to:

ϵα (k) = w (k) + ∆ (k)
ϵβ (k) = w (k) − ∆ (−k) , (5.4)

with w and ∆ defined in 4.21 Let us first consider the case A1 = A2, which makes
∆ (k) = 2SDmk. As mk is an odd function of k, the bands are totally degenerate (Fig. 15).
This degeneracy comes from an effective time-reversal symmetry, which is also responsible
for a pure spin Nernst effect of magnons, when a thermal gradient generates a transverse
spin current without a net heat flow. This will be shown below.

5.1 Pure spin Nernst effect of magnons
Crystal structures can be classified by the symmetries they present. An ideal

crystal is a periodically repeating pattern. Since all lattice points of a periodic lattice are
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Figure 15 – Degenerate energy bands of the antiferromagnetic brick-wall lattice (a) through
the Brillouin zone (white square) and (b) between the high symmetry points.
The theory parameters are S = J1 = A1 = A2 = α = 1 and D = 0.2.

equivalent, every point has the same neighborhood as the other points. The lattice itself
can be characterized by listing the symmetry operations that keep each of them fixed.
When there is magnetic ordering, the crystallographic symmetries can be extended to
describe magnetic crystals, observing that the magnetic lattice can be different from the
crystal lattice.

Figure 16 – Effective time-reversal symmetry T τ0C2 of the brick-wall lattice. T is the time-
reversal transformation, which flips the spins. τ0 is a sublattice translation,
and C2 is a rotation of π taken around the magenta lattice site.

Space inversion and time-reversal symmetry (TRS) play a fundamental role in
topological systems. Two-dimensional space inversion makes (x, y) → (−x,−y), and the
time-inversion (T ) flips the spins. As a general result, the presence of those symmetries
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determine the parity of the Berry curvature. Time-reversal symmetry yields Ωi (k) =
−Ωi (−k) (odd function), and space inversion symmetry yields Ωi (k) = Ωi (−k) (even
function, like the AFM Union Jack lattice) [16]. If both symmetries are present, Ωi (k) = 0.
Retrieving the well-known electronic topological systems, a Chern topological insulator
must break TRS, the bulk presents the anomalous quantum Hall effect (AQHE) and the
edge states are chiral [6]. On the other hand, a Z2 topological insulator does not break
TRS. There is no net transverse electron transport, but as electrons with different spins
flow in different directions, there is transverse spin current: the quantum spin Hall effect
(QSHE) [10,11].
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Figure 17 – Berry curvature of band α for the antiferromagnetic brick-wall lattice (same
parameters as in Fig. 15). The band β has Berry curvature of opposite sign.

For magnonic systems, analogues of the effects described above can be found. An
analogue of the AQHE happens when a transverse flow of magnons exists due to a thermal
gradient (thermal Hall effect of magnons). Also, the analogue of the QSHE can happen in
antiferromagnets, when magnons of opposite spin flow in opposite directions with exactly
the same intensity, cancelling the energy flow but reassuring the spin current, in what is
called here pure spin Nernst effect of magnons [115,117]. Of course the thermal Hall effect
can still happen in antiferromagnets, provided that the opposite currents do not cancel
each other. That happens in the situation of a broken symmetry, analogously to the TRS
in electronic systems. If this symmetry is present, the pure spin Nernst effect occur.

The mentioned symmetry cannot be the TRS itself, which is trivially broken in an
antiferromagnet with Néel order: flipping all the spins swaps A and B sublattices, changing
the sign of the staggered magnetization [100]. But an effective time-reversal symmetry
(ETRS) can still be defined. That symmetry happens when the system is invariant under
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Figure 18 – The pure spin Nernst effect of magnons in the antiferromagnetic brick-wall
lattice with A1 = A2. The magnons are driven in opposite directions with the
same intensity, resulting in a spin current without net heat current (left). The
spin Nernst coefficient αxy as a function of temperature is shown on the right.
The other theory parameters are the same as in Fig. 15.

the combination of the time-reversal T and other (or others) transformation of the system.
In the brick-wall lattice with A1 = A2, that symmetry is present, identified as a combination
of T , a “sublattice translation” τ0, and a rotation C2 around an arbitrary lattice site (Fig.
16).

Whereas the spin Hall and thermal Hall conductivities rely on ETRS breaking, the
spin Nernst effect does not [118], and can exist even when the symmetry is present. Suppose
the system shows ETRS. As we have seen, that implies Ωi (k) = −Ωi (−k). That is the
case of the brick-wall lattice, as it can be seen in the Berry curvature plotted in Fig. 17. In
Appendix B, we show that Ωβ (k) = Ωα (−k). Those two properties yield Ωβ (k) = −Ωα (k),
i.e., the bands have Berry curvatures of opposite sign. Degenerate bands with opposite
Berry curvatures were also predicted for the honeycomb AFM lattice [115,117]. Considering
the band degeneracy, the integrals σxy and κxy (Eq. 4.35) are zero. The same does not occur
for αxy, as there is a subtraction in the integrand instead of a sum. Phenomenologically,
the thermal gradient ∂xT drives the two magnon modes in opposite transverse directions
with the same intensity, making κxy = 0 and αxy ≠ 0. That is a magnonic equivalent of the
QSHE of electrons: the pure spin Nernst effect of magnons, when a temperature gradient
generates a spin current without heat flow (Fig. 18). A field gradient ∂xB, on the other
hand, drives the two magnon modes in the same direction with the same intensity, so the
spin current vanishes, σxy = 0, while a heat current is present.

In the less strict case A1 ̸= A2, the bands are not degenerate, but differ by a
constant factor K ≡ (A1 − A2)

(
2S−1

2

)
. The ETRS is broken because the sublattices are

not equivalent, and all three transport coefficients are non-null (Fig. 19). When subjected to
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Figure 19 – (a) Energy bands and (b-d) transport coefficients of the antiferromagnetic
brick-wall lattice when A1 ̸= A2. The parameters are S = J1 = α = A1 = 1,
A2 = 0.8 and D = 0.2. All three coefficients are non-null.

a thermal gradient, up/down magnons are driven in opposite directions but with different
intensities. The system shows non-null thermal and spin currents. The same can be said
about the response to a magnetic field gradient, except now the magnons flow in the same
direction. One interesting fact is that, in the high-temperature limit, the thermal Hall
conductivity tends to zero. This can be seen from Eq. 4.36. In the brick-wall lattice, the
lower sign in the integrand is used, as Ωα

k = −Ωβ
k . Because the difference between energies

is a constant K, we get:

κxy(T → ∞) = kB

∫ d2k

(2π)2

(
ϵα

k − ϵβ
k

)
Ωα

k = kBK
∫ d2k

(2π)2 Ωα
k = 0 (5.5)

The result is naturally zero because Ωα
k is an odd function of k, as it can be seen

in Fig. 17. The integral
∫ d2k

(2π)2 Ωα,β
k is the Chern number of the bands, which is zero in

either case (A1 equal or different than A2). This is expected from antiferromagnets in the
off-plane Néel configuration [119].
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6 Ferrimagnetic Cu2F5 monolayer

Although widely studied in FM and AFM systems, the Hall transport of magnons
has not been well investigated in ferrimagnetic (FiM) lattices [33, 73]. With that in mind,
in this chapter we study the magnon Hall transport in 2D layers of the proposed copper
fluoride complex Cu2F5, which stability was predicted by first principle methods [120–122].
Our results ware published in Ref. [123].

c (x)

b (y)

J2

J2
D

J1

Figure 20 – The crystal structure of the Cu2F5 lattice (left, reproduced with permission
from Ref. [121]), and the 2D model for a layer in the b-c plane of the crystal
structure (right). Blue sites have spin S = 1, and magenta sites, s = 1/2.

That proposed Cu2F5 crystal is composed of CuF6 distorted octahedra and CuF4

plaquettes, as shown in Fig. 20. The inequivalent Cu ions form a magnetic crystal. We call
Cu1 the S = 1 ions in the center of the octahedra, and Cu2 the s = 1/2 ions in the center
of the plaquette. The most energetically favorable configuration is a G-type ferrimagnet,
and DFT+U calculations show that the 3D crystal can be seen as a layered structure
with the interlayer exchange parameter five times smaller than the intralayer one [121].
That inspires us to study the 2D layers from a spin wave point of view. A ferrimagnetic
off-plane spin configuration is chosen, with the S = 1 spins pointing in the +z direction
and the s = 1/2 in the −z direction. The stacked layers form a ferrimagnetic C-type
configuration, and the magnetic lattice has two inequivalent sites. That is not the most
stable configuration, but it is much simpler than the aforementioned G-type FiM, which
has four inequivalent sites.

The exchange model which stabilizes the layer’s spin order comprises a FM exchange
bond between Cu1 sites and an AFM exchange bond between Cu1 − Cu2 sites. A
Dzyaloshinskii–Moriya interaction is added between NNN sites. That interaction is not
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present in the original proposed lattice by Korotin et al, but is an addition made here to
explore the topology and transverse transport in the lattice. A single-ion anisotropy (SIA)
in the z direction stabilizes the off-plane configuration. The Hamiltonian of the model is:

H = − J1
∑
⟨i,j⟩

Si · Sj + J2
∑
⟨i,j⟩

Si · Sj +D
∑

⟨⟨i,j⟩⟩
νij ẑ · Si × sj

− A
∑

i

[
(Sz

i )2 + (sz
i )2
]
. (6.1)

The upper (lower) case S1 (si) operator denotes the spin operators for S = 1
(s = 1/2) sites. The first term (with J1 > 0) represents the FM exchange between S = 1
(Cu1) sites, and the second term (with J2 > 0) represents the AFM exchange between
S = 1 and s = 1/2 (Cu1 − Cu2) sites. Both interactions happen between near-neighbors.
The third term is the DMI between NNN sites, where νij = ±1, following the arrow
convention in Fig. 20. The last term is the single-ion anisotropy. The SIA between 1/2
spins is ineffective, so only the first term inside the square brackets needs to be considered.
From Fig. 20, it is easy to see that the lattice’s geometry is the same as the modified Lieb
lattice in Chapter 3, but with a “compressed” unit cell. The lattice parameter is taken as
1/2 in the x direction, and 1 in the y direction.

A linearized Holstein-Primakoff representation for up/down spins is used:

S+
i =

√
2S ai, S−

i =
√

2S a†
i , Sz

i = S − a†
iai

s+
i =

√
2s b†

i , s−
i =

√
2s bi, sz

i = −s+ b†
ibi. (6.2)

That is the same representation used in the collinear AFM lattice presented in
Chapter 4, but with different spin values S and s. Fourier transforming, we obtain a
block-diagonal BdG Hamiltonian in the momentum space (see Eq. 4.26) with parameters:

r = 1
2
[
A
(
S̃ + s̃

)
+ J1S (1 − γk) + J2 (S + s)

]
∆ = 1

2
[
A
(
S̃ − s̃

)
+ J1S (1 − γk) − J2 (S − s)

]
hx =

√
Ss J2ηk

hy = 2
√
SsDmk, (6.3)

where S̃ ≡ 2S−1
2 and s̃ ≡ 2s−1

2 (in the system studied here, S̃ = 1/2 and s̃ = 0).
The structure factors are

γk = cos
kx

2 , ηk = cos
ky

2 , mk = −sinkx

2 sin
ky

2 . (6.4)

Using generalized Bogoliubov-de Gennes transformation, the physical magnon
spectrum is (see 4.21):

ϵα,β (k) = w (k) ± ∆ (k) . (6.5)
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Figure 21 – Band structure of the system when J1 = J2 = 1.0, A = 0.1, and D = 0.2. On
the left, band structure between high symmetry point. The blue (red) line
corresponds to the α (β) magnons. On the right, the band structure in the
whole Brillouin zone.

The system’s band structure can be seen in Fig. 21. For values of A < J2, the bands
cross in two separate paths in the Brillouin zone. The α and β magnons carry magnetic
dipole momentum σgσµB with σ = ∓1. For FM and AFM systems, the g-factor gσ is the
same for all magnon modes, so it is usually absorbed into another constant (in fact, this
was done implicitly in the previous chapters). For ferrimagnets, however, usually gα ̸= gβ

due to the inequivalence of the spins in the sublattices [73].

The Berry curvature of the FiM Hamiltonian is written identically to the AFM
case:

Ωα,β (k) = −1
2sinhθk

(
∂ϕk

∂kx

∂θk

∂ky

− ∂ϕk

∂ky

∂θk

∂kx

)
, (6.6)

with θk and ϕk defined in Eq. B.12. A plot of the Berry curvature can be seen in
Fig. 22. We note that the Berry curvature is an even function, which justifies the fact that
Ωα and Ωβ have the same sign (see Appendix B). The integration of Ωα over the Brillouin
zone is zero, so the system is not a Chern insulator (C = 0).

6.1 Transverse transport coefficients
The transverse transport coefficients are written similarly to the AFM case, but

here the bands have a different g-factors. For each band, the coefficients are:
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Figure 22 – Berry curvature of both bands in the Brillouin zone. Same parameters as in
Fig. 21.

σσ
xy = −(gσµB)2

ℏ

∫ d2k

(2π)2n
σ
k Ωσ

k

ασ
xy = −(gσµB) kB

ℏ

∫ d2k

(2π)2 c1 (nσ
k) Ωσ

k

κσ
xy = −k2

BT

ℏ

∫ d2k

(2π)2 c2 (nσ
k) Ωσ

k , (6.7)

and the combination of the transverse currents of both magnons generates the total
conductivities of the system:

σxy = σα
xy + σβ

xy

αxy = αα
xy − αβ

xy

κxy = κα
xy + κβ

xy. (6.8)

The transport coefficients of each band have different signs, so the total σxy and
κxy become subtractive, while αxy becomes additive. If the bands were degenerate, the
subtractive coefficients would cancel out as it happens in the brick-wall lattice in the last
chapter, but this is not the case here. The transport coefficients versus temperature are
plotted in Fig. 23. We see the well-known asymptotic behavior of αxy (T ) and κxy (T ). The
coefficients increase with D, and vanish when D = 0 (as well as the Berry curvature).

For A ≥ J2 it is possible to observe an interesting behavior of σxy and κxy: the
curves are non-monotonic and present a sign change, while that does not occur αxy (Fig.
24). That can be explained as follows. When A ≥ J2, the narrower β-band does not cross
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Figure 23 – (a) Spin Hall conductivity, (b) thermal Hall conductivity and (c) spin Nernst
coefficient as functions of kBT/J1. The parameters are J1 = J2 = 1.0, A = 0.1,
gα = 1.2, gβ = 1.0 and three values of D.

the wider α-band (Fig. 23d). In low temperatures, the lower band dominates, so in this
case, the narrower band (which has negative σβ

xy and κβ
xy) is more populated, resulting

in negative total transport coefficients. As the temperature rises, the population in the
wider band surpasses the narrower one, and the total σβ

xy and κβ
xy become positive. This

competition does not occur for αxy, which is additive. That behavior of σβ
xy and κβ

xy does
not occur for A < J2, as the wider band reaches lower values, and its population dominates
in all temperatures.

The non-monotonic character of the curves does not change with the inclusion of NN
exchange between the s = 1/2 sites. However, the valley becomes rapidly less pronounced
and closer to T = 0 with the rise of the exchange parameter. We also investigated the role of
different spins in the lattice, and the conclusion was that the curves can be non-monotonic
independently of spin value for both sites, provided that at least one spin is different from
1/2. That occurs even for S = s (the AFM case, when the bands touch but do not cross),
for all values of A. In summary, the necessary conditions for the non-monotonic behavior
are: (1) The SIA exists and is effective (A ̸= 0 and at least one spin is different from
1/2), and (2) the bands do not cross. This behavior seems to be an intrinsic feature of
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Figure 24 – Transverse transport coefficients (a-c) and band structure (d) for the system
when A ≥ J2. The parameters are J1 = J2 = 1.0, D = 0.3, A = 1.1, gα = 1.2
and gβ = 1.0.

the system’s geometry and spin ordering studied here. The change of sign that follows
the non-monotonic transport coefficients, which also happens in other magnon systems,
opens the exciting possibility of controlling the direction of transverse magnon flow with
the change of temperature.
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7 Non-Hermitian fermionic checkerboard lat-
tice

As mentioned in the Introduction, non-Hermitian Hamiltonians can describe systems
subjected to gain and loss of particles and/or energy. The interplay between non-Hermiticity
and topological effects has recently become an active field of study. In this chapter, we
study a fermionic non-Hermitian Hamiltonian in the checkerboard lattice, which is known
to hold non-trivial topology. Our results are presented as a preprint in [124].

The checkerboard lattice is a two-dimensional lattice structure with square geometry,
which can be seen as a planar version of the pyrochlore lattice [84,86,87,89,125–136]. The
experimental realization is challenging, but the structure has already been discovered in
some compounds [137–139]. The checkerboard lattice has some interesting properties. For
instance, it is a member of a set of structures known as line-graph lattices, which can show
flat bands and spatially localized states [132,133]. It has also been shown that it can hold
a variety of topological states [84,86,87,89,126,129–132,134–136]. Using a tight-binding
approach, one can construct a non-Hermitian fermionic Hamiltonian in the checkerboard
geometry, in order to study its topology and transverse transport.

7.1 Non-Hermitian Hamiltonian for open systems
One widely recognized way to describing open quantum systems involves the use of

non-Hermitian Hamiltonians. These open systems account for many physical processes, for
instance, the interaction with a surrounding environment or an experimental apparatus
of continuous measurements [42]. Regarding the interaction of a two-band quantum
system with its surroundings, one way to describe it is to locally couple the system to
a series of baths, representing the environment [140]. That formalism accounts for a
lossy system, where quasiparticles have a finite lifetime due to dissipation. Integrating
out the baths’ degrees of freedom, one obtains a Green function of the form G (k, ϵ) =
(ϵ−H (k) − Σ (k, ϵ))−1. The term Σ (k, ϵ) is the self-energy and contains information
about the bath modes. The effective Hamiltonian Heff (k) includes a dissipation term
Hdiss = i (γjσj) , j = (0, x, y, z), which makes it non-Hermitian.

Non-Hermitian Hamiltonians have complex eigenvalues and distinct right and left
eigenstates, demanding a biorthogonal algebra [141, 142]. In the formalism of coupled
baths described above, the physical requirement that the system’s density of states is
non-negative results in a constraint to the complex eigenvalues: their imaginary part has
to be non-positive [140].
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Regarding the transport properties of quasiparticles, it is established that the Hall
conductivity for a two-dimensional fermionic system can be obtained from the Matsubara
Green function G as [57,143–145]:

σxy = e2

h

εµνρ

24π2

∫
d3p Tr

[
G
∂G

∂pµ

G
∂G

∂pν

G
∂G

∂pρ

]
, (7.1)

where we assume T = 0K so the sum over Matsubara frequencies becomes an
integral. The expression above works for Hermitian and non-Hermitian Hamiltonians,
provided that the Green function is known. For a Hermitian Hamiltonian, this Hall
conductivity is quantized and gives rise to the integer Hall effect, as a consequence of
the non-trivial topology of the Hamiltonian. The system is a topological insulator due
to the bulk-edge correspondence. Evaluating expression 7.1 is an alternative approach to
the linear response theory presented in Chapter 2, but yields the same results for free
fermions [142], if the free particle Green functions are used. The non-Hermitian linear
response theory is still a field in development [146–149], and its evaluation for specific
systems is a complicated procedure, which justifies this alternative approach.

For a non-Hermitian system, the self-energy Σ (k, ϵ) spoils the quantization of the
Hall conductivity even if the system is a Chern insulator [37,57,145]. The reason is that the
non-Hermitian Green functions are not continuous functions of the Mastsubara frequency
iω, but have a discontinuity in iω = 0. That discontinuity creates extra terms in Eq. 7.1,
which breaks down the quantization observed in Hermitian systems.

7.2 Hermitian checkerboard lattice
We begin by presenting some results for the Hermitian checkerboard lattice before

advancing to the non-Hermitian case. The checkerboard lattice is represented in Fig. 25,
with tight-binding Hamiltonian written as:

HH = −t
∑
⟨i,j⟩

eiϕij

(
c†

icj + h.c.
)

−
∑

⟨⟨i,j⟩⟩
t′ij
(
c†

icj + h.c.
)
. (7.2)

Here, c†
i (ci) is the fermion creation (annihilation) operator at site i. The pairs ⟨i, j⟩

and ⟨⟨i, j⟩⟩ represent NN and NNN sites, respectively. There are two inequivalent sites in
the primitive cell. The NN hopping is complex, carrying a phase factor ϕij = ±ϕ with the
sign determined by the arrows’ directions in Fig. 25. That term breaks the time-reversal
symmetry for ϕ ≠ nπ (n ∈ Z) and allows non-trivial topology [131]. The NNN hopping
t′ij = t′1 (t′2) is represented by solid (dashed) lines. As a minimal model, we take t′2 = 0 and
define t′ ≡ t′1. In the momentum space, the general Hermitian Hamiltonian is:
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Figure 25 – The checkerboard lattice. The inequivalent sites are represented in blue and red.
The near-neighbor hopping is complex, with a phase of +ϕ in the direction of
the arrows and −ϕ against it. The solid vertical and horizontal lines represent
next-near-neighbor hopping

HH =
∑

k

ψ†
kH

H
k ψk, (7.3)

with ψ† =
(
a†

k b†
k

)
. The checkerboard Hamiltonian matrix takes the form

HH
k = d0I + dxσx + dyσy + dzσz (7.4)

with

d0 = −t′ (cos kx + cos ky)

dx = −4t cos ϕ
(
cos

kx

2 cos
ky

2

)

dy = −4t sin ϕ
(
sin

kx

2 sin
ky

2

)
dz = −t′ (cos kx − cos ky) . (7.5)

We note that Hamiltonian 7.4 is formally identical to the magnonic FM Hamiltonian
presented in Section 3. The Hamiltonian’s eigenvalues are:

ϵ± = d0 ± d, d ≡
√
d2

x + d2
y + d2

z, (7.6)

and the spectrum is gapped for ϕ ̸= mπ (m ∈ Z/2).
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The bands’ Berry curvatures are also formally identical to the expression presented
in Section 3. For the valence band, it is written as

Ωxy (k) = d̂ ·

 ∂d̂
∂kx

× ∂d̂
∂ky

 (7.7)

with d̂ = d/d, d = (dx, dy, dz) . From the linear response theory, the Hall conduc-
tivity is given by:

σxy = −e2

h

∫ d2k

4π Ωxy (k) = −e2

h
C. (7.8)

That is the expression for the integer quantum Hall effect presented in Section 2.3.
It differs from the magnonic case, as in the fermionic case at T = 0 the valence band is
occupied with nF M = 1 and the conduction band in unoccupied. Here, C ≡

∫ d2k
4π

Ωxy (k)
is the Chern number. In the case of a two-band insulator, the Chern number has a natural
geometrical interpretation. As k spreads over the Brillouin torus, the parameter vector d
describes a surface. The Chern number represents the number of times this surface wraps
around the origin (the winding number).

In Hermitian systems, a non-trivial Chern number is related to robust conducting
edge states via bulk-boundary correspondence, making the system a topological insulator.
In the gapped checkerboard lattice, the Chern number of the valence band is C = −1 if ϕ
lies in the first and third quadrants, and C = +1 for ϕ in the second and fourth quadrants.
For ϕ = nπ/2, the system is ungapped. The bands touch quadratically at the corners of
the Brillouin zone for even n, and in the center for odd n.

7.3 The Non-Hermitian case
One way of obtaining a non-Hermitian Hamiltonian is to include an anti-Hermitian

diagonal term in the momentum-space Hamiltonian:

HAH =
∑

k

ψ†
kH

AH
k ψk, (7.9)

where

HAH
k = i

 γa 0
0 −γb

 = i

 γ0 + γz 0
0 γ0 − γz


= i (γ0I + γzσz) . (7.10)

Here, we define γ0 ≡ (γa−γb)
2 and γz ≡ (γa+γb)

2 .
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Figure 26 – Energy spectrum (real and imaginary parts) of the system for different values
of γz. The points of high symmetry are Γ(0, 0), X(π, 0), X ′(0, π), M(π, π).
For γz = 2, a hybrid exceptional point (in magenta) is generated in the center
of the Γ −M line, which splits into two ordinary exceptional points for γz > 2.
The other parameters of the model are t = 1.0, t′ = 0.5, ϕ = π/4, γ0 = −2.5.
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The total non-Hermitian Hamiltonian HNH
k = HH

k + HAH
k can be written with

complex parameters hi ≡ di + iγi as

Hk = h0I + hxσx + hyσy + hzσz. (7.11)

That is a general form. In our system, the only non-real parameters (which carry
the non-Hermiticity) are h0 = d0 + iγ0 and hz = dz + iγz. Diagonalizing the Hamiltonian,
we obtain the eigenvalues:

ϵ± = h0 ± h, (7.12)

with

h =
√
h2

x + h2
y + h2

z =
√
d2

x + d2
y + (dz + iγz)2

= hR + ihI . (7.13)

The eigenvalues are complex, with:

Re ϵ± = d0 ± hR

Im ϵ± = γ0 ± hI . (7.14)

Within the interpretation of system-environment coupling derived in Ref. [140],
Im ϵ± must be negative, ensuring the density of states is non-negative. To fulfil this
property it is sufficient to assume γ0 < 0 and |γ0| > γz. The spectrum is shown in Fig. 26
for different values of γz.

For high values of γz the gap closes in exceptional points (EPs). Exceptional points
are a unique and interesting characteristic of non-Hermitian systems. On an EP, in addition
to the gap closing ϵ+ = ϵ−, the system’s eigenstates coalesce, and the Hamiltonian is said
to be defective: the dimension of the Hilbert space is reduced. [42]. For our system, Fig. 26
shows hybrid exceptional points at kHEP = (±π/2,±π/2) when γz = 2. Those are called
“hybrid” because they result from the merging of two ordinary exceptional points with
opposite vorticities or winding numbers [150–152]. In fact, for γz > 2, each hybrid EP
splits in two ordinary EPs localized in the Γ −M line. These coupled EPs are linked by a
path in which the eigenvalues’ real parts are identical, which can be called a bulk Fermi
arc [43, 55], and is a consequence of PT symmetry of the Hamiltonian [44].

As the eigenvalues of non-Hermitian systems are complex, a different nomenclature
has been proposed to describe the non-Hermitian analogues of “gapped”, “fully gapped”
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Figure 27 – Complex Berry curvature of the non-Hermitian checkerboard lattice. The
theory parameters are t = 1.0, t′ = 0.5, ϕ = π/4, γz = 1.5.

and “gapless” bands, which become, respectively, “separable”, “isolated” and “inseparable”
bands [150]. In Fig. 26, the bands are isolated for γz < 2 and inseparable for γz ≥ 2.

7.4 Hall conductivity
One can generalize the Berry curvature in Eq. 7.7 to non-Hermitian systems,

obtaining a non-Hermitian complex Berry curvature [56]:

Ωxy (k) = ĥ ·

 ∂ĥ
∂kx

× ∂ĥ
∂ky

 , (7.15)

where ĥ = h/h, h = (hx, hy, hz) . Actually, because of the difference between
right and left eigenstates, one can construct four different “Berry curvatures” Ωαβ

xy (k) =
iεxy

〈
∂kxψ

α (k)
∣∣∣∂kyψ

β (k)
〉
, where α, β = L/R [150]. We use here Ωxy (k) ≡ ΩLR

xy (k), which
is well-suited for systems with loss and gain. The non-Hermitian Chern number is defined
as in the Hermitian case: C ≡

∫ d2k
4π

Ωαβ
xy (k). It is a real and quantized number and does

not depend on α, β, even though Ωαβ
xy (k) are locally different.

In Hermitian systems, non-trivial Chern numbers are related to robust edge states
through the bulk-edge correspondence, characterizing a topological insulator. This bulk-
edge correspondence breaks down in non-Hermitian systems. It has been argued that it
can be restored defining a non-Bloch Chern number as the integral of the Berry curvature
over an extended complex Brillouin zone [58]. Nevertheless, the bulk Hall transport is
unaffected by that. The Hall conductivity in Eq. 7.1 can be written as [57]:
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σxy = −e2

h

∫ d2k

2π2Re
[
ĥ ·

(
∂kxĥ × ∂ky ĥ

)
×

×
(
π

2 sgn (Reh) − ihh0

h2 − h2
0

− i arctanh

(
h0

h

))]

= −e2

h

∫ d2k

4π Re [Ωxy (k) f (k)] . (7.16)
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Figure 28 – Hall conductivity of the non-Hermitian checkerboard lattice as a function of
γz. Different curves represent different values of γ0. The other parameters are
t = 1.0, t′ = 0.5 and ϕ = π/4. The dotted sections of the plots are not physical
in the coupled baths model (γz > |γ0|). The data does not go further than
γz = 2.0 because this is the value of gap closing, where the Berry curvature
diverges.

The conductivity now bears a factor f (k) in the integrand, and the integral cannot
be identified with the Chern number. Therefore, there is no topological interpretation of the
Hall response, and the Hall conductivity for a non-Hermitian topological Chern insulator
is in general non-quantized. That can also be seen as a consequence of a discontinuity in
the Matsubara Green function around iω = 0 [57]. Taking the Hermitian limit h → d, it is
easy to show that the expression above reduces to Eq. 7.8, restoring the integer quantum
Hall effect.

In the insulating regime (isolated bands), the non-Hermitian Chern number was
numerically calculated and is equal to C = ±1, identically to the Hermitian version of the
system. The values of ϕ for which the gap closes are not only nπ/2 (as in the Hermitian
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case), but an interval around those values. In that interval, the gap closes in exceptional
points, the Berry curvature diverges and the Chern number is not defined. As long as one
stays in the insulating phase, the Chern topology is identical to the Hermitian system.
The real and imaginary parts of the Berry curvature are plotted in Fig. 27. Note that
ImΩxy (k) has a symmetry such that its integral is null, making the Chern number a real
integer.

The Hall conductivity as a function of γz is plotted in Fig. 28. The conductivity
increases with the raise of γz, but decreases with the raise of |γ0|. This is in accordance
with the interpretation that, for systems coupled to the environment, |γ0| > γz represents a
net loss, i.e., particles with finite lifetimes [142]. A high value of |γ0| means higher loss (or
shorter quasiparticle lifetime), decreasing the charge carriers in equilibrium and damping
the conductivity. The opposite occurs for a high γz, which means longer quasiparticle
lifetime (less loss), resulting in a higher conductivity.

0

0

0

�

�
��

��
����

���

kx

ky

Figure 29 – The function arg [ϵ+ (k) − ϵ− (k)], plotted as a color map. The direction of its
gradient is plotted as white arrows, and the exceptional points are the black
dots. The parameters are t = 1.0, t′ = 0.5, ϕ = π/4, γ0 = −2.5, and γz = 2.1.
The region inside the black contour is zoomed in on Fig. 30.

7.5 Exceptional points
As briefly mentioned above, an unique feature of non-Hermitian systems is the

presence of exceptional points (EPs). In addition to being points of band degeneracy, in
those points the eigenstates coalesce and the dimension of the Hilbert space is reduced.
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Exceptional points can be topologically classified by their vorticity. This classification is
related to the energy eigenvalues rather than the eigenstates [61, 150], in opposition to
Chern or Z2 topology. The vorticity of a pair of states m and n through a closed loop Γ is
defined as [150]:

νmn (Γ) = − 1
2π

∮
Γ

∇k arg [ϵm (k) − ϵn (k)] · dk. (7.17)
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Figure 30 – Detail of the function arg [ϵ+ (k) − ϵ− (k)] showing a pair of exceptional points
centered in (π/2, π/2) with their respective vorticity ν. As γz rises, the ex-
ceptional points merge into a hybrid exceptional point before vanishing. The
parameters are the same as in Fig. 29, but for four values of γz: (a) γz = 2.1,
(b) γz = 2.03, (c) γz = 2.0 and (d) γz = 1.97.

If the loop encloses exceptional points (where the Hamiltonian is defective), the
vorticity can be non-zero, but is restricted to half-integers. This Z/2 index is robust and
can be considered a topological classification of the exceptional points.

For the non-Hermitian checkerboard lattice, exceptional points appear for high
values of γz, when the gap closes and the system is no longer an insulator. In Fig. 29 the
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function arg [ϵ+ (k) − ϵ− (k)] is plotted as the color map. That function is the phase of
the (complex) energy difference ϵ+ − ϵ−, and reaches from −π/2 to π/2. As it can be seen,
there are four lines of discontinuity centered in (±π/2,±π/2) (the bulk Fermi arcs), where
the function jumps from −π/2 to π/2. These lines start and end in exceptional points.
If the closed loop in Eq. 7.17 is chosen to encircle only one EP, it is easy to see that the
integral will be reduced to the difference of phase through the Fermi arc, which is ±π, and
the vorticity of each EP is ±1/2. In Figs. 29 and 30, the arrows represent the direction of
∇k arg [ϵ+ (k) − ϵ− (k)], and the opposite vorticity of the EPs can be easily observed.

As the value of γz decreases, the paired EPs get closer, and merge for some value
of γz (Fig. 30). In this point, the Hamiltonian is still defective and the spectrum is still
ungapped, as it can be seen in Fig. 26 for γz = 2.0. Nevertheless, its vorticity is ν = 0, as it
is the result of merging two EPs with opposite vorticity. This point exhibits a square-root
dispersion of Re ϵ (k) along some direction but a linear dispersion along an orthogonal
direction, as it can be seen in Fig. 31. That behaviour is in opposition to "regular" EPs,
which exhibit square-root dispersion in all directions (except over the bulk Fermi arc
where Re ϵ (k) is degenerate). Points with that behaviour are called hybrid exceptional
points [150–152]. Opposite to regular EPs, those points are not stable: any change in
the parameters makes them split into two regular EPs or vanish into a gapped Re ϵ (k)
dispersion (see Fig. 26). In the gapped regime (isolated bands), no EP is present. The
Berry curvature and Chern number are well-behaved and it is possible to calculate the
Hall conductivity, as it is was done in the previous section.
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Figure 31 – Real part of the bands plotted around the exceptional points centered in
(π/2, π/2). (a) The hybrid exceptional point (γz = 2.00, see Fig. 30c). The
insets show the side views of the sheets from the respective corner. One can
see a linear dispersion in one direction but a square-root dispersion in the
perpendicular direction. (b) A pair of regular exceptional points (γz = 2.01).
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8 Conclusion

This thesis reports studies conducted on two-dimensional lattices, focusing on Berry
curvature-related effects. The systems studied are quite different from one another. Most
of them are magnonic lattices, with different ground state orderings (ferro-, antiferro-, and
ferrimagnetic) and various lattice geometries. The systems are approximated as linear spin
wave systems, with only harmonic contributions to the Hamiltonian. Additionally, one
chapter addresses an electronic tight-binding model with a non-Hermitian Hamiltonian.
Despite this diversity, all systems have two-band dispersion and exhibit transverse transport
of (quasi-)particles, and some display non-trivial topology. This chapter summarizes the
results of each study, drawing connections and comparisons between them to elucidate the
role of theoretical parameters in the transverse transport of particles.

A magnonic lattice with ferromagnetic ordering was studied in Chapter 3. The
geometry is that of a “modified Lieb lattice”, with one lattice site missing. The energy
spectrum shows a pair of gapped bands. The variation of the exchange anisotropy parameter
λ reveals two topological Chern phases: a trivial phase (C = 0 for both bands) when
λ > 1, and a non-trivial phase (C = ±1) when λ < 1 (the system is a topological magnon
insulator). When λ = 1 the band gap vanishes, as expected for topological phase transitions.
The existence of the Berry curvature is dependent on the Dzyaloshinskii-Moriya interaction
(DMI), as it is common for magnonic lattices. High DMI parameter enhances the transverse
transport, and this behavior is ubiquitous for all magnonic systems studied here. The
transverse transport coefficients behave as expected for different temperatures, resembling
other ferromagnetic magnonic systems.

In Chapter 4 and 5, antiferromagnetic magnons were studied in the Union Jack
and brick-wall lattices with Néel order, respectively. The formalism for AFM magnons
is fundamentally different from FM ones, and involves the construction of a bosonic
Bogoliubov-de Gennes Hamiltonian with particle-hole symmetry. Usually, an AFM magnon
lattice has two degenerate bands, which is a consequence of an effective time-reversal
symmetry (ETRS). This symmetry is broken in the Union Jack lattice by the alternate
NNN exchange interaction, and the bands split. A detailed study of the bands’ dependency
on the parameters was made. The DMI generates a non-null Berry curvature, which enables
transverse transport. The dependence of the transport coefficients on the temperature
is monotonic. In that Union Jack lattice, the anharmonic contributions were included
with a self-consistent mean-field approach, and the transport coefficients were enhanced
by magnon-magnon interactions. At some definite temperature, the Néel order becomes
unstable, signalling a transition to a disordered phase.
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Concerning the AFM brick-wall lattice, the effective time-reversal symmetry is
broken by a difference in the single-ion anisotropy on each lattice site. In this geometry,
differently from the Union Jack lattice, the thermal Hall conductivity is not monotonic
with the temperature, but peakes for some temperature and approaches zero in the high-
temperature limit. In the case of degenerate bands, the spin Hall conductivity and thermal
Hall conductivity are zero, but the spin Nernst coefficient is not, realizing a pure spin
Nernst effect. In that case, the ETRS could be identified as a combination of time-reversal,
half-lattice translation and rotation of π around the off-plane axis. Another fundamental
difference from the Union Jack lattice is the role of the DMI in the transverse transport.
In that lattice, the DMI generates the Berry curvature. But in the brick-wall lattice, the
Berry curvature is non-null even in the absence of DMI, being generated by the complex
structure factor of the exchange interaction. That is a feature of the brick-wall geometry.
Nevertheless, the DMI is still necessary for non-null transverse transport. For both Union
Jack and brick-wall lattices, the Chern number is zero.

In Chapter 6, a two-band magnonic system is proposed for a predicted Cu2F5

layered crystal. The ordering is ferrimagnetic, as the Cu atoms have different spins (1/2
and 1). The formalism is the same as the AFM lattices, with the difference that the
magnons can have a different g-factor. The geometry is the same as the modified Lieb
lattice studied in Chapter 3. The main feature of this lattice is that, for some combinations
of lattice parameters, the spin Hall and thermal Hall conductivities change sign with
a change in the temperature. That opens the possibility of controlling the direction of
magnon flux with the temperature, which can have applications in magnon spintronics.

The last system discussed in this thesis differs radically from the previous ones,
as it is not a magnonic system, but an electronic tight-binding model on a checkerboard
lattice, which is a topological insulator. A Berry curvature arises due to a complex phase
in the hopping parameter. A distinguishing characteristic of the studied system is that its
Hamiltonian is non-Hermitian, a feature of open quantum systems. The complex energy
bands are separable for some parameter choices. In this regime, the system exhibits a
non-trivial Chern number; however, the Hall conductivity is not quantized, as expected in
non-Hermitian systems, where the bulk-edge correspondence is broken. The dependence
of the Hall conductivity on the non-Hermitian parameters was investigated. For other
parameter choices (high γz), the bands touch at exceptional points, where the eigenstates
coalesce and the Hamiltonian becomes defective. The vorticity of these points was analyzed,
revealing that pairs of exceptional points with opposite vorticity (ν = ±1/2) can merge into
hybrid exceptional points with zero vorticity. The topological classification of exceptional
points based on their vorticity, which depends only on the eigenvalues rather than the
eigenstates, is a hallmark of non-Hermitian Hamiltonians.

All systems studied have a feature in common: they are two-band systems, whose
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Hamiltonian can be written as a Pauli vector (linear combination of the Pauli matrices
and the identity matrix). As all systems are formally equivalent, the same diagonalization
method can be applied to all of them, with a slight modification for AFM and FiM systems
which demand a generalized Bogoliubov transformation. In all systems, an imaginary term
in the Hamiltonian, proportional to σy, is necessary for a non-null Berry curvature. For
magnons, this imaginary term is originated either by the lattice geometry (in the brick-wall
lattice) or the DMI (in the other magnon lattices). In the fermionic checkerboard lattice,
the imaginary term comes from the phase of the hopping parameter. This applies to the
Hermitian and non-Hermitian versions of the lattice, and the Chern topology is not altered
by the non-Hermiticity. All the investigations reported in this thesis shed light on the
transverse transport and topology-related effects in two-dimensional, two-band systems.
Those findings point to potential applications in spintronics, in the case of magnons, as well
as in electronic transport in open systems, exemplified by the non-Hermitian checkerboard
lattice.
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APPENDIX A – Modified Spin Wave (MSW)
approach

Here we explicitly show the inclusion of anharmonic contributions to the Union
Jack lattice in the MSW picture, complementing Section 4.3. We start with the Holstein-
Primakoff transformation written up to four operator terms:

S+
i =

√
2S
(
ai − a†

iaiai

4S

)
, S−

i =
√

2S
(
a†

i − a†
ia

†
iai

4S

)
, Sz

i = S − a†
iai (A.1)

on a sublattice A and

S+
j =

√
2S
b†

j −
b†

jb
†
jbj

4S

 , S−
j =

√
2S
bj −

b†
jbjbj

4S

 , Sz
j = −S + b†

jbj (A.2)

on sublattice B. Taking (A.1) and (A.2) into Hamiltonian (4.1) we find, neglecting
all constant terms:

H = H1 +H2 +HDM +HSIA, (A.3)

where

H1 = J1S
∑
⟨i,j⟩

(
a†

iai + b†
jbj + aibj + a†

ib
†
j

)
+

− J1

4
∑
⟨i,j⟩

(
aib

†
jbjbj + a†

iaiaibj + a†
ib

†
jb

†
jbj + a†

ia
†
iaib

†
j + 4a†

iaib
†
jbj

)
(A.4)

H2 = S
∑

⟨⟨i,j⟩⟩
J2,ij

[
aia

†
j + a†

iaj − λ
(
a†

iai + a†
jaj

)]
+

− 1
4
∑

⟨⟨i,j⟩⟩
J2,ij

(
aia

†
ja

†
jaj + a†

iaiaia
†
j + a†

ia
†
jajaj + a†

ia
†
iaiaj − 4λa†

iaia
†
jaj

)
(A.5)

HDM = iDS
∑
⟨i,j⟩

νij

(
aibj − a†

ib
†
j

)
+

+ i
D

4
∑
⟨i,j⟩

νij

(
−aib

†
jbjbj − a†

iaiaibj + a†
ib

†
jb

†
jbj + a†

ia
†
iaib

†
j

)
(A.6)
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HSIA = 2AS
∑

i∈A

a†
iai +

∑
j∈B

b†
jbj

− A

∑
i∈A

a†
iaia

†
iai +

∑
j∈B

b†
jbjb

†
jbj


= A (2S − 1)

∑
i∈A

a†
iai +

∑
j∈B

b†
jbj

− A

∑
i∈A

a†
ia

†
iaiai +

∑
j∈B

b†
jb

†
jbjbj

 . (A.7)

In the SIA term, we have used a†
iaia

†
iai = a†

iai + a†
ia

†
iaiai (and similarly for the bj

operators) to normal order the quartic terms.

Considering only the quadratic terms on the expressions above, we obtain the
linear spin wave theory (LSW) exposed in the main text. We include the quartic terms to
consider the interactions between magnons and perform a mean-field decoupling to obtain
an effective quadratic Hamiltonian (modified spin theory, MSW). We use the well-known
relation between quantum operators (ignoring the zeroth-order terms ⟨AB⟩ ⟨CD⟩ which
only add a global constant energy to the spectrum):

ABCD = ⟨AB⟩CD + AB ⟨CD⟩ + ⟨AC⟩BD

+ AC ⟨BD⟩ + ⟨AD⟩BC + AD ⟨BC⟩ . (A.8)

The only non-null mean-field terms are
〈
a†

iaj

〉
,
〈
b†

ibj

〉
, ⟨aibj⟩, ⟨biaj⟩ and their

complex conjugates (see discussion in the end of this Appendix). For instante, the first
quartic term in H1 decouples as:

aib
†
jbjbj = 2

〈
b†

jbj

〉
aibj + 2 ⟨aibj⟩ b†

jbj (A.9)

The mean-field terms are renamed as

g1 =
〈
a†

iai

〉
, g2 =

〈
b†

jbj

〉
, g3 = ⟨aibj⟩ ,

g4 =
〈
a†

ib
†
j

〉
, g5 =

〈
a†

iaj

〉
, g6 =

〈
aia

†
j

〉
. (A.10)

Noting that g3 and g4 can be complex, we define G1 and G2:

g3 = G1 + iG2, g4 = G1 − iG2,

⇒ g3 + g4 = 2G1, g3 − g4 = 2iG2. (A.11)

With these definitions, it is possible to write:
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H1 +HDM =
∑
⟨i,j⟩

{
[J1 (S − g2 −G1) + νijDG2] a†

iai+

+ [J1 (S − g1 −G1) + νijDG2] b†
jbj

+ J1

(
S − g1 + g2

2 −G1

) (
aibj + a†

ib
†
j

)
+ i

[
J1G2 + νijD

(
S − g1 + g2

2

)] (
aibj − a†

ib
†
j

)}
(A.12)

H2 =
∑

⟨⟨i,j⟩⟩
J2,ij

[(
−g5 + g6

2 − λ (S − g1)
) (

a†
iai + a†

jaj

)
(A.13)

+ (S − g1)
(
a†

iaj + aia
†
j

)
+ λ

(
g6a

†
iaj + g5aia

†
j

)]
HSIA = A [(2S − 1) − 4g1]

∑
i∈A

a†
iai + A [(2S − 1) − 4g2]

∑
j∈B

b†
jbj. (A.14)

Let Γi be new parameters defined as:

Γ1 = S −
(
g1 + g2

2 +G1

)
Γ2 = (S −G1 − g2)
Γ3 = (S −G1 − g1)

Γ4 = S − g1 + g2

2
Γ5 = −g5 + g6

2 − λ (S − g1)

Γ6 = (2S − 1) − 4g1

Γ7 = (2S − 1) − 4g2. (A.15)

It is possible to rewrite the Hamiltonian in terms of eight temperature dependent pa-
rameters: Γi and G2 (not all linearly independent). Fourier transforming and symmetrizing
the operators, we get:

H1 +HDM = 2
∑

k

[
(J1Γ2 +mkDG2)

(
a†

kak + aka
†
k

)
+ (J1Γ3 +mkDG2)

(
b†

kbk + bkb
†
k

)
+ γkJ1Γ1

(
akb−k + b−kak + a†

kb
†
−k + b†

−ka
†
k

)
+ i (γkJ1G2 +mkDΓ4)

(
akb−k + b−kak − a†

kb
†
−k − b†

−ka
†
k

)]
(A.16)

H2 = J2
∑

k

{
Γ5 [(α + 1) − 2ληk] + 2ηk

(
1 − λ2

)
(Γ3 + Γ4 − Γ1)

}
×

×
(
a†

kak + aka
†
k

)
(A.17)

HSIA = A

2
∑

k

[
Γ6
(
a†

kak + aka
†
k

)
+ Γ7

(
b†

kbk + bkb
†
k

)]
. (A.18)
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The renormalized Hamiltonian matrix is

Hk =
 Mk 0

0 M∗
−k

 , Mk =
 r1 f ∗

f r2

 , (A.19)

with temperature dependent parameters:

r
(MSW )
1 = 2 (J1Γ2 +mkDG2) + J2 {Γ5 [(α + 1) − 2ληk]

+2ηk

(
1 − λ2

)
(Γ3 + Γ4 − Γ1)

}
+ A

2 Γ6

r
(MSW )
2 = 2 (J1Γ3 +mkDG2) + A

2 Γ7

h(MSW )
x = 2γkJ1Γ1

h(MSW )
y = 2 (γkJ1G2 +mkDΓ4) (A.20)

To obtain temperature dependent expressions for the mean-field parameters Γi

(or equivalently, gi), we Fourier transform the thermal averages
〈
a†

iaj

〉
,
〈
b†

ibj

〉
, ⟨aibj⟩ and

⟨biaj⟩ , and make a change of basis using

ψk = Tkφk (A.21)

with ψ†
k =

(
a†

k b−k a−k b†
k

)
being the original basis, and φ†

k =
(
α†

k β−k α−k β†
k

)
being a new basis. The matrix Tk is given by Eq. (4.22). As mentioned before, in a particle-
hole Hamiltonian, the Hilbert space is duplicated, so we can find an irreducible 2 × 2
representation for the transformation above:

 ak

b†
−k

 =
 u∗ −v

−v∗ u

 αk

β†
−k

 . (A.22)

The thermal averages, after a change of basis, can be written in terms of the
parameters u and v and the occupation number of the bands na,β

k . For instance:

〈
a†

iai

〉
= 2
N

∑
k

〈
a†

kak

〉
= 2
N

∑
k

[
|u|2 nα

k + |v|2
(
1 + nβ

k

)]
〈
b†

ibi

〉
= 2
N

∑
k

〈
b†

kbk

〉
= 2
N

∑
k

[
|v|2 (1 + nα

k ) + |u|2 nβ
k

]
, (A.23)

where N is the total number of sites. Here,
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nα
k =

〈
α†

kαk

〉
=
[
exp

(
Eβ

k /kBT
)

− 1
]−1

nβ
k =

〈
β†

kβk

〉
= [exp (Eα

k /kBT ) − 1]−1 (A.24)

are the Bose-Einstein distributions. The terms
〈
α†

kαk

〉
and

〈
β†

kβk

〉
are the only

thermal averages in the new basis that are not zero. To illustrate that, let’s consider a
term of the form

⟨αkβ−k⟩ = 1
Z

∑
n

e−βEn
k ⟨n|αkβ−k |n⟩ . (A.25)

The matrix element ⟨n|αkβ−k |n⟩ is an overlap of the state β−k |n⟩ and α†
k |n⟩. Both

states are eigenstates of Hk, but as they do not have identical sets of occupation numbers
of α and β bosons, their overlap is zero. Hence ⟨αkβ−k⟩ and its complex conjugate are
zero. This occurs for every other thermal average, except

〈
α†

kαk

〉
and

〈
β†

kβk

〉
.

Performing the procedure detailed above, we obtain temperature dependent expres-
sions for the gi and Gi parameters:

g1 = 2
N

∑
k

[
|u|2 nα

k + |v|2
(
1 + nβ

k

)]
g2 = 2

N

∑
k

[
|u|2 nβ

k + |v|2 (1 + nα
k )
]

g5 = 2
N

∑
k

ηk

[
|u|2 nα

k + |v|2
(
1 + nβ

k

)]
g6 = 2

N

∑
k

ηk

[
|u|2 (1 + nα

k ) + |v|2 nβ
k

]
G1 = − 2

N

∑
k

γk xv
(
1 + nα

k + nβ
k

)
G2 = 2

N

∑
k

γk yv
(
1 + nα

k + nβ
k

)
, (A.26)

where we defined u ≡ x+ iy. The sublattice (staggered) magnetization is given by

m = S −
〈
a†

iai

〉
= S − 2

N

∑
k

[
|u|2 nα

k + |v|2
(
1 + nβ

k

)]
. (A.27)

The temperature dependence comes from the Bose-Einstein factors. In the contin-
uum limit, the summation becomes an integral over the Brillouin zone:

2
N

∑
k

[♣] →
∫

BZ

d2k

(2π)2 [♣] . (A.28)



APPENDIX A. Modified Spin Wave (MSW) approach 91

For each temperature, we can obtain the Γi factors self-consistently from the Eqs.
(A.26) and Eqs. (A.15). These terms renormalize the Hamiltonian.

In summary, the effective Hamiltonian becomes temperature dependent when we
include quartic terms through a mean-field decoupling. For each temperature, coeffi-
cients Γi that renormalize the Hamiltonian parameters can be obtained self-consistently
through (A.15) and (A.26). All the equations in Chapter 4 remain the same, but with the
renormalized parameters r1, r2 and f , following Eqs. (A.20).
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APPENDIX B – Berry curvature of a bosonic
Bogoliubov-de Gennes Hamiltonian

In this appendix we derive an expression for a bosonic Bogoliubov-de Gennes
Hamiltonian, which can be applied to any two-band AFM or FiM magnonic system. The
Berry curvature is obtained from another quantity, the Berry connection An

j , as [16]:

Ωn
xy(k) ≡

∂An
y

∂kx

− ∂An
x

∂ky

, (B.1)

where n labels the bands. The j-th component of Berry connection of a bosonic
BdG Hamiltonian is given by [153]

An
j ≡ i

[
ηT †

kη
∂Tk

∂kj

]
nn

, (B.2)

where η is the “metric” matrix and Tk is the transformation matrix defined in Eq.
4.22. Note that the Hilbert space is doubled, so n = 1, 2, 3, 4, Using Eq. B.2 in Eq. B.1,
we get:

Ωn
xy (k) = i

∑
µν

εµν

[
η
∂T †

k

∂kµ

η
∂Tk

∂kν

]
nn

. (B.3)

The matrices η and Tk are block diagonal:

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 =
 σz 0

0 −σz

 (B.4)

Tk =


u∗

k −vk 0 0
−v∗

k uk 0 0
0 0 u−k −v∗

−k

0 0 −v−k u∗
−k

 =
 Tα 0

0 Tβ

 , (B.5)

so we can perform a block multiplication:

η
∂T †

k

∂kµ

η
∂Tk

∂kν

=

 σz
∂T †

α

∂kµ
σz

∂Tα

∂kν
0

0 σz
∂T †

β

∂kµ
σz

∂Tβ

∂kν

 . (B.6)
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The expression for the Berry curvature can be reduced to a 2×2 representation

Ωn
xy (k) = i

∑
µν

εµν

σz

∂T †
α,β

∂kµ

σz
∂Tα,β

∂kν


nn

, (B.7)

where we can choose the α or β sector. We focus on the particle states, remembering
that for the α-sector, it corresponds to the first column of Tα (n = 1), and for the β-sector,
to the second column of Tβ (n = 2).

Focusing on the α-sector first, we have:

Ωα
xy (k) = i

∑
µν

εµν

(
σz
∂T †

α

∂kµ

σz
∂Tα

∂kν

)
11
. (B.8)

Using Tα =
 u∗

k −vk

−v∗
k uk

 (see Section 4), we have (suppressing the index k for a

clearer notation):

σz
∂T †

α

∂kx

σz
∂Tα

∂ky

=
 ∂u

∂kx
− ∂v

∂kx

∂v∗

∂kx
−∂u∗

∂kx

 ∂u∗

∂ky
− ∂v

∂ky

∂v∗

∂ky
− ∂u

∂ky


⇒
[
σz
∂T †

α

∂kx

σz
∂Tα

∂ky

]
11

= ∂u

∂kx

∂u∗

∂ky

− ∂v

∂kx

∂v∗

∂ky

, (B.9)

and we can write

∑
µν

εµν

(
σz
∂T †

α

∂kµ

σz
∂Tα

∂kν

)
11

=
(
∂u

∂kx

∂u∗

∂ky

− ∂v

∂kx

∂v∗

∂ky

)
−
(
∂u

∂ky

∂u∗

∂kx

− ∂v

∂ky

∂v∗

∂kx

)

=
(
∂u

∂kx

∂u∗

∂ky

− ∂v

∂kx

∂v∗

∂ky

)
− C.C.. (B.10)

The expression for the Berry curvature of the state α state reduces to

Ωα
xy (k) = i

[(
∂u

∂kx

∂u∗

∂ky

− ∂v

∂kx

∂v∗

∂ky

)
− C.C.

]

= −2 Im
(
∂u

∂kx

∂u∗

∂ky

− ∂v

∂kx

∂v∗

∂ky

)
. (B.11)

Here it is convenient to define parameters θk and ϕk as:

tan ϕk = hy

hx

cosh θk = r

w
. (B.12)
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With that it is possible to show that u = eiϕ cosh
(

θ
2

)
and v =

(
r−w
2w

)1/2
. The

derivatives in Eq. B.11 become (Im ∂v
∂kx

∂v∗

∂ky
= 0 because v is real):

∂u

∂kx

= eiϕ

[
i cosh θ2

(
∂ϕ

∂kx

)
+ 1

2 sinh θ2

(
∂θ

∂kx

)]
∂u∗

∂ky

= e−iϕ

[
−i cosh θ2

(
∂ϕ

∂ky

)
+ 1

2 sinh θ2

(
∂θ

∂ky

)]
, (B.13)

and using sinh
(

θ
2

)
cosh

(
θ
2

)
= 1

2 sinh θ we finally get

Ωα
xy (k) = −1

2 sinh θk

(
∂ϕk

∂kx

∂θk

∂ky

− ∂ϕk

∂ky

∂θk

∂kx

)
. (B.14)

For the β-sector, the initial expression is

Ωβ
xy (k) = i

∑
µν

εµν

σz

∂T †
β

∂kµ

σz
∂Tβ

∂kν


22

. (B.15)

Noting that Tβ(k) = T ∗
α(−k), it is easy to show that

Ωβ
xy (k) = −1

2 sinh θ−k

(
∂ϕ−k

∂kx

∂θ−k

∂ky

− ∂ϕ−k

∂ky

∂θ−k

∂kx

)
. (B.16)

The general relation between the Berry curvatures of the two bands is Ωβ
xy (k) =

Ωα
xy (−k). When these are even functions (Ωα

xy (k) = Ωα
xy (−k)), both Berry curvatures have

the same sign: Ωβ
xy (k) = Ωα

xy (k). But when they are odd functions (Ωα
xy (k) = −Ωα

xy (−k))
the Berry curvatures have opposite signs: Ωβ

xy (k) = −Ωα
xy (k).

It is possible to show that the hole states, which correspond to the second and third
columns of Tk, have opposite Berry curvature in the same band index as a consequence of
particle-hole symmetry [16]:

Ωn(hole)
xy (k) = −Ωn(particle)

xy (k) (B.17)

Evaluating Eq. B.14 with the definitions of θk and ϕk, it is possible to show that:

Ωα
xy(k) = −1

2
1

w3 |f |

{(
hx
∂hy

∂kx

− hy
∂hx

∂kx

)[
r

|f |

(
hx
∂hx

∂ky

+ hy
∂hy

∂ky

)
− |f | ∂r

∂ky

]

−
(
hx
∂hy

∂ky

− hy
∂hx

∂ky

)[
r

|f |

(
hx
∂hx

∂kx

+ hy
∂hy

∂kx

)
− |f | ∂r

∂kx

]}
(B.18)
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and from this we can plot the Berry curvature of any system, knowing the Hamil-
tonian parameters hx, hy and r. We stress that the imaginary part of the Hamiltonian
comes from hy. From the expression above, we see it is crucial that hy ̸= 0 for a non-null
Berry curvature. In other words: an imaginary term in the Hamiltonian is necessary for
the system to have a non-null Berry curvature.
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