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Resumo

Neste trabalho, apresentamos dois índices de 1-formas holomorfas. Primeiramente,
definimos o número de Bruce-Roberts para 1-formas holomorfas em relação a variedades
analíticas complexas, e demonstramos o nosso principal resultado, que mostra que o
número de Bruce-Roberts de uma 1-forma ω com respeito a uma hipersuperfície analítica
complexa X com singularidade isolada pode ser expresso em função do índice de Ebeling–
Gusein-Zade de ω em X, o número de Milnor de ω e o número de Tjurina de X. Esse
resultado nos permite obter fórmulas conhecidas para o número de Bruce-Roberts de uma
função holomorfa em relação a X, e também estabelecer conexões entre esse número,
o índice radial e a obstrução local de Euler de ω ao longo de X. Em seguida, defini-
mos o número de Tjurina de Bruce-Roberts para 1-formas holomorfas com respeito a um
par (X, V ) de subvariedades analíticas complexas. Quando a dupla (X, V ) consiste em
hipersuperfícies analíticas complexas isoladas, mostramos que o número de Tjurina de
Bruce-Roberts se relaciona com o número de Bruce-Roberts, o número de Tjurina de uma
1-forma com respeito a V , e o número de Tjurina de X, dentre outros invariantes. Mais
ainda, exibimos aplicações de ambos os índices para folheações holomorfas globais e locais
em dimensão complexa dois.

Palavras-chave: número de Bruce-Roberts; número de Tjurina; número de Milnor;
folheações holomorfas; variedades analíticas complexas.



Abstract

In this work, we introduce two indices of holomorphic 1-forms. First, we define the
Bruce-Roberts number for holomorphic 1-forms relative to complex analytic varieties,
and prove our main result, that shows that the Bruce-Roberts number of a 1-form ω with
respect to a complex analytic hypersurfaceX with an isolated singularity can be expressed
in terms of the Ebeling–Gusein-Zade index of ω along X, the Milnor number of ω and
the Tjurina number of X. This result allows us to recover known formulas for the Bruce-
Roberts number of a holomorhic function along X and to establish connections between
this number, the radial index, and the local Euler obstruction of ω along X. After that, we
define the Bruce-Roberts Tjurina number for holomorphic 1-forms with respect to a pair
(X, V ) of complex analytic subvarieties. When the pair (X, V ) consists of isolated complex
analytic hypersurfaces, we prove that the Bruce-Roberts Tjurina number is related to the
Bruce-Roberts number, the Tjurina number of the 1-form with respect to V , and the
Tjurina number of X, among other invariants. Moreover, we present applications of both
indices to global and local holomorphic foliations in complex dimension two.

Keywords: Bruce-Roberts number; Tjurina number; Milnor number; holomorphic folia-
tions; complex analytic varieties.
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Introduction

When it comes to the theory of complex analytic hypersurfaces, it is possible to find
several important indices. In this work, we wanted to establish a connection between
known invariants and introduce new indices of 1-forms, which we will call the Bruce-
Roberts number and the Bruce-Roberts Tjurina number. As a result, we obtained [6] and
[7], which were developed along with this thesis. But first, we start talking about two
crucial invariants for us: the Milnor and the Tjurina numbers.

The Milnor number for a hypersurface X with an isolated singularity was first con-
ceived by J. Milnor in [56], and it is exactly the rank of the middle homology group of
the Milnor fiber of X. It is denoted by µ0(f), where f ∈ On is the holomorphic func-
tion that defines X, with On being the local ring of holomorphic functions from (Cn, 0)

to C. Algebraically, µ0(f) is defined as the colength of the Jacobian ideal J(f) in On.
Other indices with the nomenclature "Milnor number" can be defined for different math-
ematical objects. When F is a singular foliation defined by a holomorphic vector field

v =
n∑

i=1

Ai(z)
∂

∂zi
with an isolated singularity at 0 ∈ Cn, the Milnor number µ0(F) of

F can be seen as a colength of an ideal in On, but in that case, the ideal in question is
defined by the generators of v, or simply ⟨A1, . . . , An⟩. As far as we know, the notion
of Milnor number for singular foliations by curves (with that name) appears for the first
time in the work of C. Camacho, A. Lins Neto and P. Sad ([17]). Both in the case of
hypersurfaces and singular foliations by curves, it is known that the Milnor number is a
topological invariant. The Milnor number of singular hypersurfaces is often studied, and
there are plenty of works regarding its definition and properties. Recently, in particular,
A. Fernández-Pérez, G. Costa and R. Rosas studied the Milnor number of foliations by
curves with non-isolated singularities [30].

On the other hand, the Tjurina number is an index that measures the dimension of
the base space of a semi-universal deformation of the hypersurface X, and it is denoted
by τ0(f), with f again representing the holomorphic function that defines X. τ0(f) can
also be seen in an algebraic way, as the colength of the ideal generated by f and its
Jacobian ideal J(f) in On. The Tjurina number is named after G. Tjurina, who first
defined it in [67]. It is also known that, different from the Milnor number, the Tjurina
number is not a topological invariant, but an analytic invariant of the singularity. The
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Tjurina number τ0(ω, V ) of a 1-form ω =
n∑

i=1

Aidzi with an isolated singularity at 0 ∈ Cn

with respect to a complex analytic hypersurface V is defined in an intuitive way, as the
colength of ⟨A1, . . . , An, f⟩ in On, with f ∈ On defining V . In that case, we require that
V be a hypersurface invariant by ω, which means that the tangent space of V satisfies
TpV ⊂ ker(ωp), for all regular points p ∈ V . For a holomorphic vector field v with an
isolated singularity on a complex analytic hypersurface V , the Tjurina number of v with
respect to V first appears in the work of X. Gómez-Mont [38], though he does not use
this terminology. To our knowledge, the first authors to explicitly use the term “Tjurina
name” in the context of foliations were F. Cano, N. Corral and R. Mol in [20]. This
number also appears in the study of Baum-Bott residues of foliations by S. Licanic [46].
More recently, in [32], A. Fernández-Pérez, E. R. García Barroso and N. Saravia-Molina
established a relationship between the Milnor and Tjurina numbers of germs of foliations
on (C2, 0).

With that in mind, we can talk about the Bruce-Roberts numbers. Denoted most
times by µBR and τBR, those indices generalize the Milnor and Tjurina numbers described
above, and are named after J. Bruce and R. Roberts, who were the first to describe the
number now known as the Bruce-Roberts number µBR.

In 1988, J. Bruce and R. Roberts defined in [13] a number denoted by µX(f), which
generalizes the Milnor number of f . This number, called in this work the Milnor number
of f on X and also the multiplicity of f on X at 0, was later known as the Bruce-Roberts
number of f with respect to X, and it can be defined in the following way: when (X, 0)

denotes the germ of a complex analytic variety at (Cn, 0), and f : (Cn, 0) → (C, 0) is a
germ of a holomorphic function at (Cn, 0), the Bruce-Roberts number associated with f

relative to (X, 0), denoted by µBR(f,X), is defined as

µBR(f,X) = dimC
On

df(ΘX)
,

where On represents the local ring of holomorphic functions from (Cn, 0) to (C, 0), df
stands for the differential of f , and ΘX is the On-submodule of Θn (the On-module of
germs of holomorphic vector fields) consisting of holomorphic vector fields on (Cn, 0) that
are tangent to (X, 0) over their regular points. If IX ⊂ On is the ideal of germs of
holomorphic functions vanishing on (X, 0), then

ΘX = {ξ ∈ Θn : dh(ξ) ∈ IX , ∀ h ∈ IX}.

We observe that in [62], K. Saito also presented a definition of ΘX , calling it the module of
logarithmic vector fields and denoting it by DerS,p(logD). In particular, when X = Cn,
df(Θn) corresponds to the Jacobian ideal J(f) of f which is generated by the partial
derivatives of f in On. Consequently, µBR(f,Cn) coincides with the Milnor number of f
- it is valid to mention that in some works, µBR(f,X) is also called the Bruce-Roberts’
Milnor number of f with respect to X. Furthermore, if X is the germ of a complex
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analytic subvariety at (Cn, 0), then µBR(f,X) is finite if, and only if f has an isolated
singularity over (X, 0). In [13], the authors also defined the number called the relative
Bruce-Roberts number, that can be stated as

µ−
BR(f,X) = dimC

On

df(ΘX) + IX
.

The Bruce-Roberts number for holomorphic functions has been studied by several
authors, who gave it some important properties and characterizations. For example,
in 2013, J. Nuño-Ballesteros, B. Oréfice and J. Tomazella established in [58] a relation
between the Bruce-Roberts and the Milnor number. When X is a weighted homogeneous
hypersurface with isolated singularity and f is RX-finitely determined, they showed that

µBR(f,X) = µ0(f) + µ0(f,X),

where µ0(f,X) denotes the Milnor number of the fiber X ∩ f−1(0), which is an ICIS - an
isolated complete intersection singularity. In [59], the same authors (along with B. Lima-
Pereira) showed that if µBR(f,X) < ∞, the Bruce-Roberts number of f with respect to
an isolated hypersurface singularity satisfies

µBR(f,X) = µ0(f) + µ0(ϕ, f) + µ0(ϕ)− τ0(ϕ),

with ϕ being the function that defines X. In [48], the same authors also present some
results regarding the relative Bruce-Roberts number.

For other works concerning the Bruce-Roberts number, we recommend, for instance,
[3], [23], [10], [57], [44], [47] and [8].

This thesis has two main goals. The first one was presented by the author, P. Barbosa,
along with A. Fernández-Pérez and V. León in [6], and it is to extend the definition of
the Bruce-Roberts number to holomorphic 1-forms relative to complex analytic varieties.
More precisely, let ω be the germ of a holomorphic 1-form with an isolated singularity
at 0 ∈ Cn, n ≥ 2, and let X be a germ of complex analytic variety with an isolated
singularity at 0 ∈ Cn. We define the Bruce-Roberts number of the 1-form ω with respect
to X as

µBR(ω,X) := dimC
On

ω(ΘX)
.

We observe that µBR(ω,X) is finite if and only if ω is a 1-form on X admitting (at most)
an isolated singularity at 0 ∈ Cn, which is equivalent to saying that X is not invariant by
ω in the case of a germ of a complex analytic subvariety X. Note also that µBR(ω,X)

generalizes the Bruce-Roberts number of a function, since µBR(ω,X) = µBR(f,X) when
ω = df .

Our main result about the Bruce-Roberts number of a 1-form provides a straight-
forward method to calculate µBR(ω,X), since the explicit computation of ΘX can be
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difficult. With that in mind, our first result establishes that if ω is a germ of a holomor-
phic 1-form with isolated singularity at 0 ∈ Cn, n ≥ 2, and X is a germ of a complex
analytic hypersurface with an isolated singularity at 0 ∈ Cn that is not invariant by ω,
then

µBR(ω,X) = IndGSV(ω;X, 0) + µ0(ω)− τ0(X),

where IndGSV(ω;X, 0) is the GSV-index of ω with respect to X, defined by S. Gusein-Zade
and W. Ebeling in [42] (see also [26]). We also observe that, since both IndGSV(ω;X, 0)

and µ0(ω) are topological invariants when (X, 0) is an isolated hypersurface singularity,
the equality above implies that µBR(ω,X) is also a topological invariant under homeo-
morphisms of (Cn, 0) that fix (X, 0).

Using the definitions and topics explored in [48] as base, we also define the relative
Bruce-Roberts of the 1-form ω with respect to X as

µ−
BR(ω,X) := dimC

On

ω(ΘX) + IX
.

With that, it is also possible to show a relation between µBR(ω,X) and µ−
BR(ω,X).

With ω and X under the same hypothesis shown above, it is possible to show that

µBR(ω,X) = µ0(ω) + µ−
BR(ω,X).

A natural application of the Bruce-Roberts that we defined is to the case of foliations.
Since a foliation F in (C2, 0) can be defined by a holomorphic 1-form, we set µBR(F , X) :=

µBR(ω,X), where ω is the 1-form that defines F . In that case, we demonstrate that

µBR(F , X) = µ0(X) + tang(F , X, 0) + τ0(X),

where tang(F , X, 0) is the tangency order of F to X, as defined in [14] by M. Brunella.
Working with foliations, we also managed to give formulas for the Bruce-Roberts number
under blow-ups in dimension two, some results in the case of generalized curve foliations
in (C2, 0), introduced by C. Camacho, A. Lins Neto and P. Sad in [17], and also some
applications to global foliations.

On the other hand, in 2011, I. Ahmed and M. Ruas defined in [2] two numbers, called
the relative Milnor and Tjurina algebras of a function h on an analytic variety V , denoted
by MV (h) and TV (h). It is not difficult to see that the definition of this Milnor algebra
coincides with the definition of the Bruce-Roberts number µBR(h, V ). Moreover, the
Tjurina algebra seems to be defined intuitively, when comparing its definition with that
of the Milnor algebra, and those with the definitions of the classic Milnor and Tjurina
numbers.

In 2020, C. Bivià-Ausina and M. Ruas [10] introduced the Bruce-Roberts’ Tjurina
number of f with respect to X, with an equivalent definition of the Tjurina algebra of
a function. With a slightly different notation, here we define the Bruce-Roberts Tjurina
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number of f ∈ On with respect to an analytic subvariety X (of (Cn, 0)) by

τBR(f,X) = dimC
On

df(ΘX) + ⟨f⟩
,

when the colength on the right side is finite. With that definition, it is not difficult
to see that τBR(f,Cn) = τ0(f), i.e., the Bruce-Roberts Tjurina number generalizes the
classic Tjurina number. It is interesting to note that in [10], the authors also presented a
relation between the Bruce-Roberts’ Milnor and Tjurina numbers. Denoting by rf (I) the
minimum of r ∈ Z≥1 such that f r ∈ I, they managed to show that

µBR(f,X)

τBR(f,X)
≤ rf (df(ΘX)).

For some references who studied the Bruce-Roberts Tjurina number of holomorphic func-
tions, we cite [2], [10], [8], and [9].

The second main goal of this thesis is to introduce the Bruce-Roberts Tjurina number
of ω with respect to the pair (X, V ). It is defined as follows: let (X, 0) denote the germ
of a complex analytic variety at (Cn, 0), let ω be a germ of a holomorphic 1-form with
an isolated singularity at (Cn, 0), and let V be a germ of a complex analytic hypersurface
with an isolated singularity at 0 ∈ Cn. If X is not invariant by ω, but V is invariant by
ω, the Bruce-Roberts Tjurina number of ω with respect to the pair (X, V ) is given by

τBR(ω,X, V ) := dimC
On

ω(ΘX) + IV
.

This definition and the consequent results were first introduced, again, by P. Barbosa,
A. Fernández-Pérez and V. León in [7]. Note that if ω = df is an exact holomorphic
1-form with an isolated singularity at 0 ∈ Cn, then V = {f = 0} is a complex analytic hy-
persurface invariant by ω, and consequently, τBR(df,X, V ) generalizes the Bruce-Roberts
Tjurina number of f along X, since τBR(df,X, V ) = τBR(f,X). We observe that it is also
a generalization of the classic Tjurina number, as τBR(df,Cn, V ) = τ0(V ).

Our main theorem for this definition says that, with the hypothesis established above,
we got

τBR(ω,X, V ) = IndGSV(ω;X, V, 0) + τ0(ω, V )− τ0(X) + dimC
ω(ΘX) ∩ IV
ω(ΘT

X) ∩ IV
,

where ΘT
X is a submodule of ΘX , given by ΘT

X =

〈
ϕ
∂

∂xi
,
∂ϕ

∂xj

∂

∂xk
− ∂ϕ

∂xk

∂

∂xj

〉
, with

i, j, k = 1, . . . , n; k ̸= j, and IndGSV(ω;X, V, 0) is a GSV-index, also defined in [7], that
generalizes IndGSV(ω;X, 0).

It is natural to compare the Bruce-Roberts and the Bruce-Roberts Tjurina numbers for
1-forms that are defined in this work. Both numbers generalize not only the homonymous
indices defined for functions, but also the classic Milnor and Tjurina numbers that we
discussed in the beginning. Furthermore, it follows directly from the definitions that

τBR(ω,X, V ) ≤ µBR(ω,X),
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and then if µBR(ω,X) <∞, then τBR(ω,X, V ) <∞.
In this work, another aim is to establish connections between the Bruce-Roberts Tju-

rina number and other indices of 1-forms. As an application, we can obtain again some
results for holomorphic foliations in complex dimension two, defining τBR(F , X, V ) :=

τBR(ω,X, V ), with ω being the 1-form defining F . In fact, we prove a quasihomogeneity
result for germs of non-dicritical generalized curve holomorphic foliations with respect to
a non-invariant complex analytic curve X: when F is a germ of a non-dicritical curve
generalized foliation at (C2, 0) defined by a 1-form ω, X a germ of a reduced curve at
(C2, 0) not invariant by F , and V = {f = 0} is the reduced equation of the total set of
separatrices of F , if µBR(F , X) = τBR(F , X, V ), then there exist coordinates (u, v) ∈ C2,
g, h ∈ O2, with u(0) = 0, v(0) = 0, g(0) ̸= 0 and integers α, β, ζ ∈ N such that

f(u, v) =
∑

αi+βj=ζ

Pi,ju
ivj, Pi,j ∈ C,

gω = df + h(βvdu− αudv),

and the pair (f,X) is relatively quasihomogeneous in these coordinates. This result is
obtained by combining a J.-F. Mattei’s theorem [55], with a corollary of C. Bivià-Ausina,
K. Kourliouros and M. Ruas given in [8].

This text is organized as follows: In Chapter 1, we present some important definitions
and already known results that will be fundamental to the development of this work. In
the first part of the chapter, we present the concept of holomorphic foliations, and in the
second one, we define and talk about the properties of several indices that will appear
in our main results: the Milnor numbers, the Tjurina numbers, the GSV-index, and the
Bruce-Roberts numbers.

In Chapter 2, we define the Bruce-Roberts number for holomorphic 1-forms, prove
our main result (namely, Theorem 2.1.3), and give some examples. Then, we present
a definition of the relative Bruce-Roberts number of a holomorphic 1-form, and apply
our results to germs of holomorphic foliations on (C2, 0), also showing blow-up formulas
for µBR(ω,X) and µ−

BR(ω,X) and providing more examples. Additionally, we establish a
characterization of a non-dicritical foliation F when it is a generalized curve foliation, and
finish the chapter with a formula for the sum of the Bruce-Roberts numbers of a global
foliation on a compact complex surface. As a consequence, we obtain an upper bound to
the global Tjurina number of X.

In Chapter 3, we define the Bruce-Roberts Tjurina number for holomorphic 1-forms,
prove the main theorem of this chapter (Theorem 3.1.1), and also provide examples.
Then, we present a formula that relates the Bruce-Roberts Tjurina number and the
Bruce-Roberts number, and other relations between them. At last, we work again with
foliations on (C2, 0), and use the Bruce-Roberts Tjurina number of a foliation to prove
the quasihomogeneity result mentioned earlier.

Finally, in Chapter 4, we conclude the thesis and present some problems that we intend
to work on in the future.
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Chapter 1

Preliminaries

In this first chapter, we start by presenting some definitions and results that are the
basic principles to comprehend this study. The works used as reference to this chapter
are [14], [17], [19], [22], [39], [50], [62] and others that will appear throughout the text.
Initially, we present some notations and definitions.

Let (X, 0) denote the germ of a complex analytic variety at (Cn, 0). We consider Θn

the On-module of germs of vector fields, where On represents the local ring of holomorphic
functions from (Cn, 0) to (C, 0). We write as ΘX the module of the so-called logarithmic
vector fields, as defined by K. Saito [62, Definition 1.4]:

ΘX = {ξ ∈ Θn : ξ(IX) ⊆ IX},

where IX is the ideal of germs of holomorphic functions vanishing on (X, 0). It is also
possible to write IX = ⟨ϕ⟩, with ϕ : (Cn, 0) → (Cn, 0) being the holomorphic function
that defines X. We highlight that ΘX defines a coherent sheaf of modules in a small
neighborhood U of 0 ∈ Cn ([10, p. 2]). Observe that, geometrically, ΘX represents the
On-submodule of Θn of vector fields that are tangent to (X, 0) along the regular points
of X. With that, we can also write

ΘX = {ξ ∈ Θn : dh(ξ) ∈ IX , ∀ h ∈ IX}. (1.1)

Now, we can present the notion of the On-submodule of ΘX generated by the trivial
vector fields, denoted by ΘT

X and defined in [47, Section 2]. Thus, we write

ΘT
X =

〈
ϕ
∂

∂xi
,
∂ϕ

∂xj

∂

∂xk
− ∂ϕ

∂xk

∂

∂xj

〉
, with i, j, k = 1, . . . , n; k ̸= j. (1.2)

Through the concept of flatness, we can define the concept of complete intersection.
First, we need a definition, given in [40, Definition 7.2.1].

Definition 1.0.1. Let (X, x) and (S, s) be complex space germs. A deformation of (X, x)
over (S, s) consists of a flat morphism ϕ : (X, x) → (S, s) of complex germs together with
an isomorphism (X, x)

∼=→(Xs, x). (X, x) is called the total space, (S, s) the base space, and
(Xs, x) := (ϕ−1(s), x) or (X, x) the special fibre of the deformation.



17

We can write a deformation as a Cartesian diagram

(X, x)
i
↪→ (X, x)y yϕ flat

{p} ↪→ (S, s)

,

where i is a closed embedding mapping (X, x) isomorphically onto (Xs, x) and {p} is the
reduced point considered as a complex space germ with local ring C. A deformation can
also be denoted by

(i, ϕ) : (X, x)
i
↪→ (X, x)

ϕ→ (S, s),

or simply by ϕ : (X, x) → (S, s) in order to shorten notation. Now, we refer to [40,
Remark 7.2.3] to the following properties:

1. f = (f1, . . . , fk) : (X, x) → (Ck, 0) is flat if, and only if, f1, . . . , fk is a regular
sequence;

2. If (X, x) is Cohen-Macaulay, then f1, . . . , fk ∈ m ⊂ OX,x is a regular sequence if,
and only if

dim
OX,x

⟨f1, . . . , fk⟩
= dim(X, x)− k;

3. In particular, f : (Cm, 0) → (Ck, 0) is flat if, and only if, dim(f−1(0), 0) = m− k. If
this holds, (X, 0) := (f−1(0), 0) is called a complete intersection and (i, f) : (X, 0) ⊂
(Cm, 0) → (Ck, 0) is a deformation of (X, 0) over (Ck, 0). If k = 1, then (X, 0) is
called a hypersurface singularity.

We recall that if f1, . . . , fk ∈ A is a regular sequence (on a A-module M , where A is a
ring) if, and only if,

(i) ⟨f1, . . . , fk⟩M ̸=M ,

(ii) for i = 1, . . . , k, fi is a non-zero divisor of M/⟨f1, . . . , fk−1⟩M ,

by [39, Definition B.6.2]. Also, if A is a Noetherian ring with maximal ideal m, a A-module
M is called Cohen-Macaulay if depth(M) = dim(M), with depth(M) being the maximal
length of an M -regular sequence contained in m ([39, Definition B.8.1]). With that, we
say that A is a Cohen-Macaulay ring if it is a Cohen-Macaulay A-module.

The definition of a Cohen-Macaulay ring is also related to the concept of a complete
intersection ring. We refer to [39, Definition B.8.9] to present the following definition:

Definition 1.0.2. Let A be a regular local ring and I ⊂ A an ideal. Then A/I is called
a complete intersection ring if I is generated by dim(A)− dim(A/I) elements.
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Consequently, any minimal set of generators x1, . . . , xk of I is an A-regular sequence.
Hence, depth(A/I) = dim(A) − k = dim(A/I), and then any complete intersection ring
is a Cohen-Macaulay ring.

Finally, we say that the germ (X, x) is a complete intersection singularity if the local
ring OX,x is a complete intersection. In this work, we sometimes refer to an isolated
complete intersection singularity as an ICIS.

The following proposition is a result from [47, Proposition 2.1], and gives us a charac-
terization of ΘT

X when (X, 0) is an ICIS.

Proposition 1.0.3. If (X, 0) is the ICIS determined by ϕ = (ϕ1, . . . , ϕk) : (Cn, 0) →
(Ck, 0), then

ΘT
X = Ik+1



∂

∂x1
· · · ∂

∂xn
∂ϕ1

∂x1
· · · ∂ϕ1

∂xn... · · · ...
∂ϕk

∂x1
· · · ∂ϕk

∂xn


+

〈
ϕi

∂

∂xj
, i = 1, . . . , k, j = 1, . . . , n

〉
,

where Ik+1(A) is the submodule of ΘX generated by the (k + 1)-minors of a matrix A.

Lastly, let X be a germ of a reduced curve at (C2, 0). We set

ΩX := Ω1
C2,0/IXΩ

1
C2,0 +O2dIX

as the set of holomorphic 1-forms on (X, 0), as given in [25, p. 1].

1.1 Holomorphic Foliations

In this section, we give some definitions, examples and known results about holomor-
phic foliations. In particular, the case when a foliation is defined by a holomorphic 1-form,
an object that will appear many times in the next chapters. For a general overview of Fo-
liation theory, we refer the reader to [50], from which the next two results were extracted
(Definition 1.1 and Remark 1.1, respectively).

Definition 1.1.1. Let M be a complex manifold of complex dimension n. A holomorphic
foliation of dimension k, or codimension n−k, 1 ≤ k ≤ n−1 is a decomposition F on M
in disjoint complex submanifolds (called leaves of the foliation F) of complex dimension
k, bijective immersed, having the following properties:

(i) for all p ∈ M , there exists a unique submanifold Lp of the decomposition that
contains the point p (called the leaf by p);

(ii) for all p ∈ M , there exists a holomorphic chart of M (called a distinguished chart
of F), (φ,U), p ∈ U, φ : U → φ(U) ⊂ Cn, such that φ(U) = P ×Q, where P and
Q are open polydisc subsets in Ck and Cn−k, respectively;
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(iii) if L is a leaf of F such that L ∩ U ̸= ϕ, then L ∩ U =
⋃

q∈DL,U
φ−1(P × {q}), where

DL,U is a countable subset of Q. The subsets of U of the form φ−1(P × {q}) are
called plaques of the distinguished chart (φ,U). A foliation of dimension one is also
called foliation by curves. In this case, the leaves are Riemann surfaces bijectively
immersed in the ambient manifold.

Remark 1.1.2. A dimension k foliation F in M , induces in M a distribution of planes
of dimension k, denoted by TF , which is defined by

TpF = Tp(Lp) = tangent plane at p,

of the leaf F passing by p.

From Definition 1.1.1 (iii), this distribution is holomorphic. It defines a holomorphic
vector sub-bundle of the tangent bundle TM , which will also be denoted by TF .

In [50, Proposition 1.1], we have another two definitions of a foliation, which are
equivalent as the definition above. We enunciate them here as Definition 1.1.3:

Definition 1.1.3. A dimension k foliation F of M can be set equivalent to the following
modes:

(I) Description by distinguished charts: F is given by an atlas of M , {(φα, Uα)/α ∈ A}
where:

(I.1) φα(Uα) = Pα × Qα, where Pα, Qα are polydiscs of dimension k and n − k,
respectively;

(I.2) if Uα ∩ Uβ ̸= ∅, then the change of charts φβ ◦ φ−1
α is locally of the form

φβ ◦ φ−1
α (xα, yα) = (hαβ(xα, yα), gαβ(yα)).

In this case, the plaques of F in Uα are the sets of the form φ−1
α (Pα × {q}).

(II) Description by local submersions: F is given by an open cover M =
⋃

α∈A Uα and
by collections {yα}α∈A and {gαβ}Uα∩Uβ ̸=∅, that satisfy:

(II.1) for all α ∈ A, yα : Uα → Cn−k is a submersion;

(II.2) if Uα ∩ Uβ ̸= ∅, then yα = gαβ(yβ), where gαβ : yβ(Uα ∩ Uβ) ⊂ Ck → yα(Uα ∩
Uβ) ⊂ Ck is a local holomorphic diffeomorfism. In this case, the plaques of F
in Uα are the sets of the form y−1

α (q), q ∈ Vα.

Example 1.1.4. If we consider any decomposition of Cn in the form of Cn = Ck ×Cn−k,
that decomposition defines a foliation F of dimension k in Cn. The leaves of F are the
affine subspaces Ck × {q}, with q ∈ Cn−k.

Example 1.1.5 (Pull-back or inverse image of a foliation). For the next example, first,
we need to define the pullback of a foliation.
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Definition 1.1.6. Let M and N be complex varieties, f : M → N a holomorphic
application and F a foliation of N of codimension k. We say that f is transversal to F if
for every point p ∈ N , the subspace dfq(TqM) and TpF generate the tangent space TpN ,
where p = f(q). When that happens, there is a foliation in M , denoted by f ∗(F), of the
same codimension k, whose leaves are the inverse images by f of the leaves of F in N .
The foliation f ∗(F) is called the pull-back or inverse image of F by f .

The construction of the foliation f ∗(F) is given by item (II) of Definition 1.1.3.

Example 1.1.7 (Foliations generated by differential 1-forms). LetM be a complex variety
of dimension n and ω a 1-form not identically zero holomorphic in M . Let S = {p ∈
M ;ωp ≡ 0} be the singular set of ω. In this case, ω induces a distribution of hyperplanes
Ω in open N =M \ S defined by

Ωp = kerωp = {v ∈ TpM ; ωp(v) = 0}.

Now, we say that ω (or Ω) is integrable if there is a holomorphic foliation F in N such
that TF = Ω (which means that TpF = Ωp). It is an established result - known as the
Theorem of Frobenius - that ω is integrable if, and only if, ω ∧ dω = 0. It is often said
that the foliation F is defined by the differential equation ω = 0 and that the leaves of F
are integral submanifolds of this equation.

The foliations generated by 1-forms given in the example above are a fundamental
part of this work. Regarding that, [19, Proposition 2.21] gives us the following result:

Proposition 1.1.8. A foliation F over Cn can be defined by a global integrable holo-
morphic 1-form.

Note that if η is a 1-form such that η = fω, where f is a holomorphic function that
does not vanish in N , then the hyperplane distribution induced by η coincides with Ω. In
particular, η is also integrable and the foliations defined by η = 0 and ω = 0 coincide.

Example 1.1.9. Let f : Cn → C a holomorphic function. We can associate the differen-
tial equation y′ = f(x, y) to a foliation F over Cn defined by the 1-form

ω = dy − f(x, y)dx.

In that case, the leaves of F are precisely the graphs of the solutions of the equation. It
is worth noting that, even when f is a polynomial, little is known about such foliations.

Back to Example 1.1.7, it shows us that a holomorphic differential 1-form integrable
ω, defined in a complex manifold M , defines a foliation of codimension one in M \ S,
where S is the singular set of ω. With that in mind, we refer to [50, Section 1.4] for our
next results regarding a singular foliation of codimension one that, in a rough way, can
be seen locally as an object defined by an integrable one-form.
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Definition 1.1.10. Let M be a complex manifold of dimension n ≥ 2. A holomorphic
singular foliation of codimension one in M is an object F given by collections {ωα}α∈A,
{Uα}α∈A and {gαβ}Uα∩Uβ ̸=∅, such that:

(i) {Uα}α∈A is an open cover of M .

(ii) ωα is a holomorphic differential one-form integrable non-identically zero in Uα.

(iii) gαβ ∈ O∗(Uα ∩ Uβ).

(iv) if Uα ∩ Uβ ̸= ∅ then ωα = gαβ · ωβ in Uα ∩ Uβ. For each ωα, we consider its singular
set given by

sing(ωα) = {p ∈ Uα | ωα(p) = 0} =: Sα.

We observe that Sα is an analytic subset of Uα. From (iii) and (iv) it follows that
Sα ∩ Uα ∩ Uβ = Sβ ∩ Uα ∩ Uβ. Thus, the union of these Sα defines an analytic subset
S of M . This set, denoted by sing(F), is called the singular set of F . We say that two
foliations F and F1 coincide if sing(F) = sing(F1) and F|M\sing(F) = F1|M\sing(F1). In the
case where sing(F) = ∅, we see that F is a foliation of codimension one, which we call a
regular foliation. The next proposition gives us some properties of singular foliations.

Proposition 1.1.11. Let F be a singular foliation of codimension one in M . There exists
a foliation F1 in M with the following properties:

(a) the irreducible components of sing(F1) are of codimension ≥ 2, where sing(F1) ⊂
sing(F).

(b) F1 coincides with F in M \ sing(F).

(c) F1 is maximal, that is, if F2 is the foliation in M satisfying (a) and (b), then
F2 = F1.

1.1.1 Foliations in (C2, 0)

In this subsection, we present some definitions and results of holomorphic foliations
on (C2, 0).

If F is a foliation on (C2, 0), Proposition 1.1.8 gives us that F is defined by a global
integrable holomorphic 1-form ω. Then, consider F being defined by

ω = A(x, y)dx+B(x, y)dy, (1.3)

where A,B ∈ C{x, y} are relatively prime, with C{x, y} denoting the ring of complex
convergent power series in two variables. Then, we define the order νm of the foliation F
at the point m as

νm = min{νm(A), νm(B)},
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where νm(X) is the order of the first term of the first jet in the Taylor series of X. In
that way, m is a non-singular point of F if, and only if, νm(F) = 0.

If a holomorphic foliation F is defined by a holomorphic 1-form ω = A(x, y)dx +

B(x, y)dy, it is equivalent to say that F is defined by its dual vector field, given by

v = −B(x, y)
∂

∂x
+ A(x, y)

∂

∂y
. (1.4)

Now, the concept of non-invariancy of a hypersurface over a 1-form can be given by
the next definition:

Definition 1.1.12. We say thatX ⊂ (C2, 0) is invariant by an 1-form ω, if TpX ⊂ ker(ωp)

for all regular points p on X.

We can define then the invariancy of a curve over a foliation in a similar way of
Definition 1.1.12. Let f(x, y) ∈ C{x, y}. We say that C : f(x, y) = 0 is invariant by F if
TpC ⊂ ker(ωp) for all regular points p on C. That statement is equivalent to saying that

ω ∧ df = (f · h)dx ∧ dy,

for some h ∈ C{x, y}. If C is irreducible, then we will say that C is a separatrix of F .
We say that the separatrix C is analytical if f is convergent. We denote by Sep0(F) the
set of all separatrices of F . When Sep0(F) is a finite set, we will say that the foliation F
is non-dicritical. Otherwise, we will say that F is dicritical.

Definition 1.1.13. Let X be a curve not invariant by F . Following [14, Chapter 2,
Section 2], we can consider the tangency order of F to X at 0 ∈ C2:

tang(F , X, 0) = dimC
O2

⟨ϕ, v(ϕ)⟩
,

where {ϕ = 0} is the local (reduced) equation of X around 0, and v is a local holomorphic
vector field generating F around 0.

Example 1.1.14. Consider the foliation F , defined by the vector field

v = −2x
∂

∂x
+ y

∂

∂y
,

and consider X the curve defined by ϕ(x, y) = y3 − x2. Note that X is not invariant by
F , since F is also defined by ω = 2xdy + ydx and

ω ∧ dϕ = (2xdy + ydx) ∧ (−2xdx+ 3y2dy)

= (3y3 + 4x2)dx ∧ dy.

In that case, we have

⟨ϕ, v(ϕ)⟩ = ⟨y3 − x2, 4x2 + 3y3⟩ = ⟨x2, y3⟩,

and with that
tang(F , X, 0) = dimC

O2

⟨x2, y3⟩
= 6.
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Later, we will see that Example 1.1.14 is a particular case of the tangency order of
a foliation defined by an 1-form ω = λxdy + ydx, with λ ̸= 1 to a curve X defined by
ϕ = yp − xq (see Example 2.3.2).

Next, we define reduced singularities of a foliation, an important definition that we
will work in the next topic of this section.

Definition 1.1.15. We say that 0 ∈ C2 is a reduced singularity for F if the linear part
Dv(0) of the vector field v in (1.4) is non-zero and has eigenvalues λ1, λ2 ∈ C fitting in
one of the cases:

(i) λ1λ2 ̸= 0 and λ1

λ2
̸∈ Q+ (non-degenerate);

(ii) λ1 ̸= 0 and λ2 = 0 (or vice-versa) (saddle-node singularity).

This is a known definition for reduced singularities, which can be seen in [14, Definition
1.1] or [50, Definition 1.17], for example. In the case (i), there is a system of coordinates
(x, y) in which F is defined by the equation

ω = x(λ1 + a(x, y))dy − y(λ2 + b(x, y))dx,

where a(x, y), b(x, y) ∈ C{x, y} are non-units, so that Sep0(F) is formed by two transver-
sal analytic branches, given by {x = 0} and {y = 0}. In the case (ii), up to a formal
change of coordinates, the saddle-node singularity is given by a 1-form of the type

ω = xk+1dy − y(1 + λxk)dx,

where λ ∈ C and k ∈ Z+ are invariants after formal changes of coordinates (see [53,
Proposition 4.3]). The curve {x = 0} is an analytic separatrix, called strong separatrix,
while {y = 0} corresponds to a possibly formal separatrix, called weak separatrix. The
integer k + 1 > 1 is called tangency index of F with respect to the weak separatrix.

1.1.2 Blow-Ups

To talk about reduction of singularities, we have to define the process of blow-up (or
explosion), that we shall describe in this section. Our main reference is [50, p. 37].

In this work, we are focusing in defining the blow-up of C2 in 0. Consider two copies
of C2, say U and V , with coordinates (t, x) and (s, y), respectively. We define a complex
manifold C̃2, identifying the point (t, x) ∈ U \ {t = 0} with the point (s, y) = α(t, x) =

(1/t, tx) ∈ V \ {s = 0}.
A divisor of C̃2 is, by definition, a submanifold D of C̃2 such that U ∩D = {x = 0}

and V ∩ D = {y = 0}. Note that y = tx, D is well-defined and is biholomorphic to
C = CP (1).

Consider now a holomophic map π : C̃2 → C2 defined by

π|U(t, x) = (x, tx) and π|V (s, y) = (sy, y).
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Note that π is well-defined, given that in U ∩ V we have y = tx and x = sy. Moreover, π
has the following properties:

• π−1(0) = D;

• π|C̃2\D : C̃2 \D → C2 \ {0} is a biholomorphism;

• π is proper.

With all that, we say that C̃2 is the blow-up or explosion of C̃2 in 0, with the map of
a blow-down π.

Now, if π : C̃2 → C2 is a blow-down of C2 in 0, we can take the expression of π for
the chart ((t, x), U) of C2, and obtain

f ◦ π(t, x) = f(x, tx) =
∞∑
j=k

fj(x, tx)

= xk
∞∑
j=k

xj−kfj(1, t)

= xkfU(t, x),

such that
π−1(C) ∩ U = {x = 0} ∪ {fU(t, x) = 0}.

In an analogous way, we obtain in the chart ((s, y), V ) that

π−1(C) ∩ V = {y = 0} ∪ {fV (s, y) = 0},

where fV (s, y) =
∞∑
j=k

yj−kfj(s, 1). Thus, we have that π−1(C) = D ∪ C̃, where

C̃ = {fU = 0} ∪ {fV = 0}.

The curve C̃ defined above is called the strict transform of C.

Example 1.1.16. Consider a singular curve C, in C2 given by f(x, y) = y2−x3 = 0, and
let π : C̃2 → C2 be the blow-down for C2 in 0. Taking the expression of π in the chart
((t, x), U), we obtain

f ◦ π = f ◦ π|U(t, x) = f(x, tx) = x2(t2 − x).

Thus, π−1(C) ∩ U consists of the divisor {x = 0} and the strict transform C1 of C, with
equation x − t2 = 0. It is also not difficult to see that π−1(C) ⊂ U , such that it is not
necessary to consider another chart.

The next result was given in [50, Theorem 1.4] (in which they refer to [18]), and its
proof is obtained by making use of blow-ups:
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Theorem 1.1.17 (Theorem of the separatrix of Camacho–Sad). Let F be a holomorphic
foliation of dimension one in a complex manifold M of dimension two with an isolated
singularity q ∈M . Then F has a separatrix in q.

Now, consider a holomorphic foliation F in a neighborhood of 0 ∈ C2, with isolated
singularity at 0, and suppose that F is defined by ω = A(x, y)dx + B(x, y)dy, as seen in
(1.3). We denote by F∗ a foliation with isolated singularities obtained from π∗(ω). If we
write the Taylor expansion of ω in 0 as

ω =
∞∑
j=k

(Ajdx+Bjdy),

where Aj and Bj are homogeneous polynomials of degree j, with Ak ̸≡ 0 or Bk ̸≡ 0, a
form π∗(ω) can be written in the chart ((t, x), U) as

π∗(ω) =
∞∑
j=k

(Aj(x, tx)dx+Bj(x, tx)d(tx))

= xk ·
∞∑
j=k

xj−k[(Aj(1, t) + tBj(1, t))dx− xBj(1, t)dt].

Dividing the formula above by xk we obtain

x−kπ∗(ω) = (Ak(1, t) + tBk(1, t))dx+ xBk(1, t)dt+ x · α, (1.5)

where α =
∞∑

j=k+1

xj−k−1[(Aj(1, t)+ tBj(1, t))dx−xBj(1, t)dt]. Similarly, calculating π∗(ω)

in the chart ((s, y), V ), we obtain

y−k · π∗(ω) = (sAk(s, 1) +Bk(s, 1))dy + yAk(s, 1)ds+ y · β. (1.6)

When we divide (1.5) by a convenient power of x, we obtain a foliation ω1. For example,
if Ak(1, t) + tBk(1, t) ≡ 0, we have that ω1 = Bk(1, t)dt + α. In a similar way, we can
obtain ω2 by dividing (1.6) by y. Hence, the foliation F∗ will be represented in the first
chart by ω1, and in the other chart by ω2. For more details of this process, see [50, Section
1.6, p.41].

When we deal with a simple blow-up π at 0 ∈ C2, it may occur that π−1(p) is invariant
or not. We say that π is dicritical with respect to a holomorphic foliation F on (C2, 0), if
the exceptional divisor π−1(0) is not F∗-invariant. Otherwise, π is called non-dicritical.

In [19, Théorème 4.6], it is shown that the blow-ups play a fundamental role in the
process of reduction of singularities.

Theorem 1.1.18. Let F be a germ of a foliation over (C2, 0). Then, there exists a
morphism π : E → (C2, 0) (with E = π−1(0)), given by a finite number of blow-ups of
points, such that every singularity of π∗F is a reduced singularity.
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With that in mind, we can define generalized curve foliations:

Definition 1.1.19. A generalized curve foliation is a foliation F defined by a vector
field v whose reduction of singularities admits only non-degenerate singularities with non-
vanishing eigenvalues.

The concept of a generalized curve foliation was defined by Camacho-Lins Neto-Sad,
in [17, p. 144]. The reduction of singularities is the process described in Theorem 1.1.18,
first achieved by Seidenberg ([64]) and also by Van den Essen ([29]) using the notion of
intersection multiplicity.

To present a property of generalized curve foliations, we say that a formal first integral
for a germ of holomorphic foliation F at 0 ∈ C2 is a formal series

f̂(x, y) =
∞∑

i,j=0

fijx
iyj ∈ C{x, y}

such that df̂ ∧ ω = 0 as a formal expression, where ω is the holomorphic 1-form defining
F . It can be shown that, if F admits a formal first integral, then it is a generalized curve
foliation ([63, p. 83]).

1.1.3 Global Foliations

To end this section, we present some notions on global foliations. The main reference
to this section is [14, Chapter 2]. Let S be a compact complex surface and let {Uj}j∈I be
an open covering of S. A holomorphic foliation F on S can be described by a collection
of holomorphic 1-forms ωj ∈ Ω1

S(Uj) with isolated zeros such that

ωi = gijωj on Ui ∩ Uj, gij ∈ O∗
S(Ui ∩ Uj),

which means that each gij is a nowhere vanishing holomorphic function. The singular set
Sing(F) of F is the finite subset of S defined by

Sing(F) ∩ Uj = zeros of ωj, ∀j ∈ I.

We say that a point q ∈ S is a regular point if q ̸∈ Sing(F). The functions {gij}
form a multiplicative cocycle - i.e., gii is the identity and gij ◦ gjk = gik for all different
i, j, k - that defines a line bundle (a complex vector bundle of rank 1) NF on S, called the
normal bundle of F , and its dual N∗

F is called the conormal bundle of F . The foliation
gives rise to a global holomorphic section of NF ⊗ T ∗S, with finite zero set and modulo
multiplication by O∗

S(S), and to an exact sequence

0 → N∗
F → T ∗S → IZ · T ∗

F → 0,
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where T ∗
F is a line bundle on S, called the canonical bundle of F , and IZ is an ideal sheaf

supported on Sing(F). The dual TF of T ∗
F is called the tangent bundle of F . These line

bundles are related to each other in the following way

KS = T ∗
F ⊗N∗

F ,

where KS is the canonical bundle S, i.e., the line bundle of S whose sections are the
2-forms on S:

KS = T ∗S ∧ T ∗S.

Finally, we present the next two propositions, according to [14, Propositions 2.1 and
2.2]. In the first one, the indice µp(F), which represents the Milnor number of the foliation
F and that appears in Proposition 1.1.20, will be defined in the next section of this chapter.

Proposition 1.1.20. Let F be a foliation on a compact surface X. Then∑
p∈Sing(F)

µp(F) = TF · TF + TF ·KS + c2(X),

where c2(X) represents the second Chern class of X.

Proposition 1.1.21. Let F be a foliation on a complex surface S, and let X ⊂ S be a
compact curve, each component of which is not invariant by F . Then∑

p∈Sing(F)∩X

tang(F , X, p) = NF ·X − χ(X),

where χ(X) = −KS ·X −X ·X is the virtual Euler characteristic of X.

Remark 1.1.22. In Proposition 1.1.20, we mentioned the (second) Chern class of X, a
subject that comes from the study of the Chern-Weil theory of characteristic classes that,
due to its extension, will not be covered here. In a simpler way, we define a Chern class
ci(E) of a complex vector bundle E in a manifold M by

ci(E) =

[
P i

(√
−1

2π
Θ

)]
∈ H2i

DR(M),

where P is an invariant polynomial of degree k and Θ is a curvature operator. For a more
detailed definition of Chern classes, we refer the reader [41, Chapter 3, Section 3].

1.2 Indices

In this section, we give the definition and a few properties of important indices that
will be fundamental to comprehend this work: the Milnor and Tjurina numbers, the
GSV-Index, and the Bruce-Roberts numbers.
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1.2.1 Milnor numbers

The terminology "Milnor number" can refer to foliations, hypersurfaces, and many
other mathematical objects. Here, we first present the classical Milnor number of a
function f defined in [56, Section 7].

Definition 1.2.1. The Milnor number µm(f) of the isolated zero m is the degree of the
mapping

z 7→ ∇f(z)
||∇f(z)||

,

from a small sphere Sϵ centered at m to a small sphere of the unit sphere of Cn, where
f : Cn → C.

In the same work ([56, Appendix B]), it is also shown that the Milnor number can be
computed as the length of the quotient of C{x1, . . . , xn} by the Jacobian ideal of f . In
other words,

µm(f) = dimC
C{x1, . . . , xn}〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉 .
In particular, by [22, Theorem 6.6.3], if n ≥ 1 and f have an isolated critical point at

0, then the Milnor number of f can be written as

µ0(f) = dimC
On〈

∂f

∂x1
, . . . ,

∂f

∂xn

〉 , (1.7)

where On represents the local ring of holomorphic functions from (Cn, 0) to (C, 0). The
name "Milnor number" is given after the author of [56], although in that work this indice
is simply called the multiplicity µ.

As a consequence of this result, we have that the Milnor number is an invariant of a
hypersurface with isolated singularity of the form (X, 0) = (f−1(0), 0). The next result,
proven in [22, Lemma 6.6.4], states that formally:

Lemma 1.2.2. Let f, g : (Cn, 0) → (C, 0), with n ≥ 1, be holomorphic functions with
isolated singularity such that f−1(0) = g−1(0). Then, µ0(f) = µ0(g).

With that, we can present the definition of the Milnor number of a hypersurface.

Definition 1.2.3. Let (X, 0) be a hypersurface with isolated singularity at (Cn, 0), n ≥ 1.
The Milnor number of (X, 0) is defined as

µ0(X) = µ0(f),

where f : (Cn, 0) → (C, 0) is any reduced holomorphic function such that f−1(0) = X.
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Namely, the Milnor number of a hypersurface is the Milnor number of the function
that defines it, and that does not depend on the choice of the function. Moreover, in this
work, we will also write f−1(0) = X as X = {f = 0}.

An important property of the Milnor number is its topological invariance. For that, we
present that definition formally (along with the definition of analytical invariance, which
we are going to use later), as given in [39, Definition 3.30]:

Definition 1.2.4. Let (X, z) ⊂ (Cn, z) and (Y,w) ⊂ (Cn, w) be two germs of isolated
hypersurface singularities.

1. (X, z) and (Y,w) (or any defining power series) are said to be analytically equivalent
(or contact equivalent) if there exists a local analytic isomorphism (Cn, z) → (Cn, w)

mapping (X, z) to (Y,w). The corresponding equivalence classes are called analytic
types.

2. (X, z) and (Y,w) (or any defining power series) are said to be topologically equivalent
if there exists a homeomorphism (Cn, z) → (Cn, w) mapping (X, z) to (Y,w). The
corresponding equivalence classes are called topological types.

3. A number (or a set, or a group, ...) associated to a singularity is called an analytic
(respectively topological) invariant if it does not change its value within an analytic
(respectively topological) equivalence class.

With that, we observe that the Milnor number is a topological invariant of complex
hypersurfaces with isolated singularities, as proved in [69, Theorem 2.1].

Now, consider V a hypersurface that has an isolated complete intersection singularity
(an ICIS) at 0, defined by a germ

h = (g1, . . . , gk) : (Cn+k, 0) → (Ck, 0). (1.8)

Then, the Milnor number of an ICIS can be defined in a similar way to Definition
1.2.1, as established in [60, Section 1]: for a small enough ε, the fiber

Xt = f−1(t) ∩ Bε,

where 0 < |t| < ε, and Bε is the ball centered in 0 and radius ε, is called the Milnor fiber
of (V, 0). In this case, Hamm [43] establishes that the Milnor fiber of (V, 0) possesses the
homotopy type of a bouquet of spheres of the same dimension dim(V, 0) = n. We also
denote by bn(Xt) the middle Betti number of the Milnor fiber.

Definition 1.2.5. The Milnor number of the ICIS (V, 0), denoted as µ0(V ) (or µ0(h) and
µ0(g1, . . . , gk), according to (1.8), is defined by

µ0(V ) := bn(Xt),

representing the number of these spheres.
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With that, we can present the Lê-Greuel formula for the Milnor number of an ICIS,
that generalizes (1.7), as seen in [12], [68] or [22, Theorem 6.6.8]:

Theorem 1.2.6 (Lê-Greuel formula). If g1, . . . , gk and f are holomorphic map germs
(Cn+k+1, 0) → (C, 0) such that h = (g1, . . . , gk) and (h, f) define isolated complete inter-
section germs, then their Milnor numbers are related by

µ0(h) + µ0(h, f) = dimC
On+k,0

(h, Jk+1(h, f))
,

where Jk+1(h, f) denotes the ideal generated by the determinants of all (k + 1)-minors of

∂g1
∂x1

· · · ∂g1
∂xn+k+1

... . . . ...
∂gk
∂x1

· · · ∂gk
∂xn+k+1

∂f

∂x1
· · · ∂f

∂xn+k+1


.

In dimension two, the definition of the Milnor number is equivalent to the definition
of the intersection multiplicity. By introducing this definition, our main goal is to make
easier the calculation of the Milnor number through the properties of the intersection
multiplicity. We refer to [19, Section 4.2.2] to the next results, but also to [33, Section
3.3] to some properties.

Definition 1.2.7. Let a, b ∈ O2, or two principal ideals aO2 and bO2. The intersection
multiplicity i0(a, b) is, by definition

i0(a, b) = dimC
O2

⟨a, b⟩
.

Although the intersection multiplicity can be defined on the ring of holomorphic func-
tions around a point m, our focus here will be on holomorphic functions on (C2, 0). The
intersection multiplicity has the following properties:

1. i0(a, b) = i0(b, a);

2. i0(aa′, b) = i0(a, b) + i0(a
′, b);

3. i0(a, b) <∞ if, and only if a and b don’t have common factors;

4. i0(a, b) = 0 if, and only if a(0) ̸= 0 or b(0) ̸= 0;

5. i0(a, b) = i0(a, b+ k1a) and i0(a, b) = i0(a+ k2b, b), with k1, k2 ∈ C{x, y};

6. If a = cmx
m and b = cny

n, with m,n ≥ 1 and cm, cn ∈ C, then i0(a, b) = mn.

With that definition, we have that µ0(f) = i0(fx, fy), when f ∈ O2.



1.2. Indices 31

Example 1.2.8. Consider the polynomial f(x, y) = x5 + x2y + y4. We are going to
compute the Milnor number of f using the properties of the intersection multiplicity:

µ0(f) = i0(fx, fy)

= dimC
O2

⟨5x4 + 2xy, x2 + 4y3⟩

= dimC
O2

⟨x(5x3 + 2y), x2 + 4y3⟩

= dimC
O2

⟨x, x2 + 4y3⟩
+ dimC

O2

⟨5x3 + 2y, x2 + 4y3⟩

= dimC
O2

⟨x, x2 + 4y3 − x · x⟩
+ dimC

O2

⟨5x3 + 2y − 5x(x2 + 4y3), x2 + 4y3⟩

= dimC
O2

⟨x, 4y3⟩
+ dimC

O2

⟨2y − 20xy3, x2 + 4y3⟩

= 3 + dimC
O2

⟨2− 20xy2, x2 + 4y3⟩
+ dimC

O2

⟨y, x2 + 4y3⟩

= 3 + 0 + dimC
O2

⟨y, x2⟩
= 3 + 2 = 5.

As an application of the Milnor number and the intersection multiplicity in dimension
two, we refer to [34, p. 3] to present the following definition:

Definition 1.2.9. Let ϕ ∈ O2, and consider l = ay − bx ∈ C{x, y} a regular parameter
that does not divide ϕ, for (a, b) ̸= (0, 0). We call the polar of ϕ with respect to l

Pl(ϕ) =
∂ϕ

∂x

∂l

∂y
− ∂ϕ

∂y

∂l

∂x
= a

∂ϕ

∂x
+ b

∂ϕ

∂y
.

With that, we refer to [34, Corollary 3.4] to enunciate the next proposition, that is a
result first proved in [66, Chapter II, Proposition 1.2].

Proposition 1.2.10. (Teissier’s Lemma) Let ϕ ∈ O2, and consider l = ay− bx ∈ C{x, y}
a regular parameter that does not divide f , for (a, b) ̸= (0, 0). Then, for X = {ϕ = 0},

µ0(X) = i0(ϕ,Pl(ϕ))− i0(ϕ, l) + 1.

Moreover, we observe that, in [71, Theorem 6.5.1], it is shown that the Milnor number
of a product of two functions f, g ∈ O2 satisfies

µ0(fg) = µ0(f) + µ0(g) + 2i0(f, g)− 1. (1.9)

Our next step is to define the Milnor number for holomorphic 1-forms. Based on [17,
Section 2], we present the following:
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Definition 1.2.11. The Milnor number of a holomorphic 1-form ω, defined by ω =
n∑

j=1

Aj(z)dzj, with an isolated singularity at 0 ∈ Cn, n ≥ 2, is defined as follows:

µ0(ω) := dimC
On

⟨A1, . . . , An⟩
.

Thus, the Milnor number of a foliation F is given by µ0(F) = µ0(ω), where F is
a foliation by curves in dimension two defined by an integrable holomorphic 1-form ω.
Moreover, an important property of the Milnor number of a foliation by curves is that
µp(F) is a topological invariant when (X, 0) is an isolated hypersurface singularity, and
n ≥ 2, as shown in [17, Theorem A]. In that case, that means that, if F and F ′ are
one-dimensional holomorphic foliations locally topologically equivalent at p and p′, re-
spectively, i.e., there is a homeomorphism ϕ between neighborhoods of p and p taking
leaves of F to leaves of F ′, with ϕ(p) = p′, then

µp(F) = µp′(F ′).

In the literature, the Milnor number of ω at 0 ∈ Cn can sometimes be denoted as
ind(ω;Cn, 0), and referred to as the Poincaré-Hopf index of ω at 0 ∈ Cn; see, for instance,
[28, Definition 5.2.3].

The Milnor number defined above has some properties. In particular, let’s work with
the case where F is a holomorphic foliation in (C2, 0). Then, we can define the Milnor
number of F using the 1-form ω that defines F , but also notice that F is defined by a

vector field v = −B(x, y)
∂

∂x
+ A(x, y)

∂

∂y
, as shown in (1.4). Then, we have

1. µ0(F) = 0 if, and only if, v(0) ̸= 0;

2. 0 < µ0(F) <∞ if, and only if, 0 is an isolated singularity for v;

3. µ0(F) = 1 if, and only if,

det


−∂B(0, 0)

∂x

−∂B(0, 0)

∂y

∂A(0, 0)

∂x

∂A(0, 0)

∂y

 ̸= 0.

We also remark that in [17, p. 146] it is proved that the properties above are valid

when F is defined by a holomorphic vector field v =
n∑

i=1

vi
∂

∂zi
defined in an open set of

Cn, n ≥ 2. In that case, (3) can be rewritten as µ0(F) = 1 ⇔ det

(
∂vi(0)

∂zj

)
1≤i,j≤n

̸= 0.

Another property of the Milnor number of a foliation F , is given in [36, p. 1440],
and gives us a lower bound of µ0(F) in terms of the algebraic multiplicity of F . Writing
ν = ν0(F), it is given by

µ0(F) ≥ ν(ν + 1)

2
. (1.10)
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Example 1.2.12. The Milnor number µ0(F) of a foliation F at 0 ∈ C2, defined by the
1-form ω = A(x, y)dx+B(x, y)dy, is given by

µ0(F) = µ0(ω) = dimC
O2

⟨A,B⟩
.

In [19, Definition 4.11], the definition above is given making use of the intersection
multiplicity, as

µ0(F) = i0(A,B).

An important result about generalized curve foliations, defined in Definition 1.1.19,
can be given by making use of the Milnor number of a foliation. Assuming that the
foliation F is non-dicritical at 0 ∈ C2, and denoting by C = Sep0(F) the union of the
separatrices of F , in [17, Theorem 4] the following theorem is proved:

Theorem 1.2.13. Given a germ of a non-dicritical holomorphic foliation F at 0 ∈ C2,
one has µ0(F) ≥ µ0(C). The equality holds if, and only if F is a generalized curve
foliation.

Lastly, we have a way to describe how the Milnor number of a foliation of dimension
two behaves under a blow-up. The next proposition was first demonstrated by Mattei-
Moussu [54], but here we follow the approach given in [19, Proposition 4.13]:

Proposition 1.2.14. Let π : (C̃2, E) → (C2, 0), be the blow-up of center q, where E =

π−1(0). Writing F̃ = π∗F , and by ν = ν0(F) the algebraic multiplicity of F , where F is
a foliation on (C2, 0), we have that

µ0(F) =


ν2 − (ν + 1) +

∑
p∈π−1(0)

µp(F̃) if π is non-dicritical;

(ν + 1)2 − (ν + 2) +
∑

p∈π−1(0)

µp(F̃) if π is dicritical.

Speaking of blow-ups, we observe that a relation between the Milnor number of an
irreducible curve and its blow-up is also known. From [72, p. 4], we have

µ0(X)− µq(X̃) = m(m− 1), (1.11)

where m is the multiplicity of X, sometimes denoted by ν0(X) and X̃ stands for the strict
transform of X at q ∈ π−1(0).

1.2.2 Tjurina numbers

In this section, our main subject is the Tjurina number. It was first defined in [67],
as the dimension of the base space of a semi-universal deformation of a hypersurface.
Despite not being called "Tjurina number" in that work, the name came after the author,
G. Tjurina. Here, we are going to focus on an equivalent definition of this index in the
case of a hypersurface. For that, we refer to [39, Definition 2.1]:
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Definition 1.2.15. Let C = {f = 0} be a germ of a reduced hypersurface, with f ∈
C{x1, . . . , xn}. Then, the Tjurina number of (C, 0) is defined as

τ0(C) = dimC
C{x1, . . . , xn}〈
f,
∂f

∂x1
, . . . ,

∂f

∂xn

〉 .
While the Milnor number is a topological invariant, a known property about the

Tjurina number is that it is an analytical invariant. We give an example that shows that
the Tjurina number τ is not a topological invariant.

Example 1.2.16. Consider the holomorphic functions f = y3−x7 and g = y3−x7+x5y.
In [39, Example 3.43.1(a)], it is shown that f and g are topologically equivalent. As
expected, we have µ0(f) = µ0(g) = 12. However, f and g are not analytically equivalent,
since τ0(f) = 12 and τ0(g) = 11.

Remark 1.2.17. The computations above were made using the software Singular ([24]).
Singular will be referred to more times in this work, since it is a very important tool in
our algebraic calculations. The codes used to compute Example 1.2.16 are shown below:

> ring r=0,(x,y),ds; // local ring
> poly f=y3-x7; // f
> poly g=f+x5y; // g
> LIB "sing.lib"; // package with commands "milnor" and "tjurina"

> milnor(f); // Milnor number of f
12

> milnor(g); // Milnor number of g
12

> tjurina(f); // Tjurina number of f
12

> tjurina(g); // Tjurina number of g
11

In particular, when (X, 0) ⊂ (Cn, 0) is an isolated singularity hypersurface defined by
f ∈ On, we have

τ0(X) = dimC
On〈

f,
∂f

∂x1
, . . . ,

∂f

∂xn

〉 .
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A characterization of the Tjurina number for an ICIS was given in [47, Proposition
4.6] (and also demonstrated in [65, Theorem 2.3] by Tajima, but with a different proof).
When (X, 0) is an ICIS, then

τ0(X) = dimC
ΘX

ΘT
X

. (1.12)

Now, observe that when X is an irreducible curve, there is a relation of the Tjurina
numbers through a blow-up (defined in Section 1.1.2). As the one shown in (1.11) for
Milnor numbers, [72, p. 4] gives us that

τ0(X)− τq(X̃) =
m(m− 1)

2
+D, (1.13)

where, again, m is the multiplicity of X and D = dimC
σ̃∗ΩX̃

σ∗ΩX

, where σ̃ : (X, 0) → (X̃, 0)

is the normalization, and σ = π ◦ σ̃, with π being the strict transform of X. A better
study of these concepts is given in [72, Section 2]. In this work, we highlight that the
construction of [72, Section 2] reveals that such D can be seen in terms of Milnor and
Tjurina numbers, as

D =

(
τ0(X)− µ0(X)

2

)
−

(
τ0(X̃)− µ0(X̃)

2

)
. (1.14)

Now, we present a definition of the Tjurina number of a 1-form with respect to a
curve, in a definition that is similar to the one that appears in [32, p. 24]. In that case,
we request a curve that is invariant by the 1-form.

Definition 1.2.18. Let V = {f = 0} be a germ of complex analytic hypersurface with

an isolated singularity at 0 ∈ Cn. The Tjurina number of ω =
n∑

j=1

Aj(z)dzj with respect

to V , when V is invariant by ω, is defined as follows:

τ0(ω, V ) = dimC
On

⟨A1, . . . , An, f⟩
. (1.15)

By the definitions above, it is easy to see that τ0(X) ≤ µ0(X) and τ0(ω, V ) ≤ µ0(ω).
We observe that the Tjurina number τ0(v, V ) of a holomorphic vector field v with an

isolated singularity on a complex analytic hypersurface V first appears in [38, Theorem
2], but is referred to as h0(ΩV,0, X). We believe that the term "Tjurina number" first
appeared in the context of foliations in [20, Remark 7]. To end this section, we refer to
[32, Example 6.9] to present an example that calculates τ0(F , V ).

Example 1.2.19. Consider ω = 4xydx+(y−2x2)dy a 1-form defining a singular foliation
F at (C2, 0). We consider the curve C = {y = 0}, which is the unique separatrix of F .
With that, we get

τ0(F , C) = dimC
O2

⟨4xy, y − 2x2, y⟩
= dimC

O2

⟨−2x2, y⟩
= 2.
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1.2.3 GSV-Index

In this section, we define several numbers that can be named GSV-index, named after
X. Goméz-Mont, J. Seade e A. Verjovsky [37]. The ideia of its definition is to generalize the
Poincaré-Hopf index and inherit its stability under perturbations - which means that, if we
approximate a given vector field by another vector field that only has Morse singularities,
then the local index of the initial vector field equals the number of singularities of its
Morsification (counted with signs).

In our first definition of this section, we will consider f = (f1, . . . , fk) : (Cn, 0) →
(Ck, 0) a holomorphic mapping germ defining an ICIS (X, 0) = (f−1(0), 0). Since 0 is an
isolated singularity of X, the complex conjugate gradient vector fields ∇f1, . . . ,∇fk are
linearly independent away from the origin, and

∇fi =
(
∂fi
∂x1

, . . . ,
∂fi
∂xn

)
.

We will also need the following definition, given in [11, Definition 1.3.1]:

Definition 1.2.20. An r-field on a subset A of M is a set v(r) = {v1, . . . , vr} of r
continuous vector fields defined on A. A singular point of v(r) is a point where the vectors
(vi) fail to be linearly independent. A nonsingular r-field is also called an r-frame.

We denote by W r,m the Stiefel manifold of complex r-frames in Cm. In the case where
these frames are orthonormal, we denote the Stiefel manifold by W r(m).

On an ICIS, [11, Section 3.2] define the GSV-index as follows:

Definition 1.2.21. Consider the set {v,∇f1, . . . ,∇fk}, which forms a (k + 1)-frame on
X \ {0}, where v is a continuous vector field on X, singular only at the origin. The
GSV-index of v at 0 ∈ X, denoted by indGSV(v,X, 0) is the degree of the map

φv = (v,∇f1, . . . ,∇fk) : K → W k+1(n+ k),

where K = X ∩ Sε represents the link of 0 in X, and W k+1(n + k) denotes the Stiefel
manifold of complex (k + 1)-frames in Cn+k.

In [37, Theorem 4.5], the authors managed to show that the GSV-index is a topological
invariant, in the case where (X, 0) is an isolated hypersurface singularity in Cn+1, n > 2.
Also, as stated above, the GSV-index generalizes the Poincaré-Hopf index, as shown in
[11, Theorem 3.2.1]:

Theorem 1.2.22. The GSV-index of v at 0 is equal to the Poincaré-Hopf index of v in
the Milnor fiber Mf of X = {f = 0}:

indGSV(v,X, 0) = indPH(v,Mf ).
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Using [11, p. 47] as a reference, the Milnor fiber Mf can be regarded as a compact
2n-manifold with boundary ∂Mf = K.

In [42], [26, Section 2], Ebeling–Gusein-Zade introduced the notion of the GSV-index
for a 1-form ω with respect to X, in a similar way to Definition 1.2.21:

Definition 1.2.23. The index IndGSV(ω;X, 0) of the 1-form ω on the ICIS X at the
origin is the degree of the map

Ψ = (ω, df1, . . . , dfk) : K → W k+1(n).

We observe that IndGSV(ω;X, 0) is finite if and only if the 1-forms ω, df1, . . . , dfk are
linearly independent for all points over K. According to [42] or [28, Theorem 5.3.35], the
index IndGSV(ω;X, 0) can also be defined as

IndGSV(ω;X, 0) = dimC
On

I
,

where I is the ideal generated by f1, . . . , fk and the (k+1)× (k+1)-minors of the matrix

(
ω

dϕ

)
=



∂f1
∂x1

· · · ∂f1
∂xN... · · · ...

∂fk
∂x1

· · · ∂fk
∂xN

A1 · · · AN

 ,

where ϕ = (f1, . . . , fk). The definition of this GSV-index can also be stated as

IndGSV(ω;X, 0) := dimC
On

IX + Ik+1

(
ω

dϕ

) , (1.16)

where IX denotes the ideal of germs of holomorphic functions vanishing on (X, 0) and

Ik+1

(
ω

dϕ

)
represents the ideal generated by the (k + 1) × (k + 1)-minors of the matrix(

ω

dϕ

)
.

Example 1.2.24. Set k = 1, n = 1 and N = 2 in the definition above. Then, X is a
hypersurface, and we can write ω = Adx + Bdy. We also consider X = {ϕ = 0}. Then,
I is generated by ϕ and the 2× 2 minors of ∂ϕ

∂x

∂ϕ

∂y
A B

 ,
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i.e., I = ⟨ϕ, ∂ϕ
∂x
B − ∂ϕ

∂y
A⟩. Then, we have

IndGSV(ω;X, 0) = dimC
O2

⟨ϕ, ∂ϕ
∂x
B − ∂ϕ

∂y
A⟩
. (1.17)

In that example, we can see that in dimension two, the GSV-index is equivalent to
the tangency order of F to X. In fact, according to Definition 1.1.13, we have

tang(F , X, 0) = dimC
O2

⟨ϕ, v(ϕ)⟩
= dimC

O2〈
ϕ,−B ∂ϕ

∂x
+ A∂ϕ

∂y

〉 = IndGSV(ω;X, 0).

Example 1.2.25. Let n = 2, k = 1, f(x, y) = x2 + y3 and consider the 1-form

ω = 3y2dx− 2xdy.

The form ω on X = {f = 0} has an isolated zero at the origin. In [26, p. 6], it is shown
that the degree of the map

(ω, df) : K → W 2(2)

is 6, and then, IndGSV(ω;X, 0) = 6. Here, we are going to show that by computing the
right side of (1.16). With that, we have

IndGSV(ω;X, 0) = dimC
O2

IX + I2

(
ω

dϕ

)
= dimC

O2

⟨x2 + y3,−4x2 − 9y4⟩

= dimC
O2

⟨x2, y3⟩
= 6.

Now, consider the case where X is an isolated singularity hypersurface defined by

ϕ : (Cn, 0) → (C, 0). If ω =
n∑

j=1

Ajdzj, then we can write

IndGSV(ω;X, 0) = dimC
On

⟨ϕ, ∂ϕ
∂xj
Ak − ∂ϕ

∂xk
Aj⟩(j,k)∈Λ

(1.18)

where Λ = {(j, k); j, k = 1, . . . , n, j ̸= k}. Moreover, according to Lê-Greuel formula
(Theorem 1.2.6), when f : (Cn, 0) → (C, 0) is a holomorphic function with an isolated
singularity on (X, 0), we have

IndGSV(df ;X, 0) = µ0(X) + µ0(ϕ, f). (1.19)

For another application of that GSV Index, we present some definitions and known
results about the radial index and the local Euler obstruction of a 1-form. We refer to [28,
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Sections 5.3.1 and 5.3.5] for the following propositions and definitions. Here, our focus
is on the case of complex hypersurfaces with an isolated singularity, but a more detailed
study of these subjects can also be seen in that reference. But first, we recur to [70,
Sections 4.1 and 4.2] to define the Whitney stratification of a subset of a differentiable
manifold.

Definition 1.2.26. Let Z be a closed subset of a differentiable manifold M of class Ck.
A Ck stratification of Z is a filtration by closed subsets

Z = Zd ⊃ Zd−1 ⊇ · · · ⊇ Z1 ⊇ Z0

such that each difference Zi − Zi−1 is a differentiable submanifold of M of class Ck and
dimension i, or is empty. Each connected component of Zi − Zi−1 is called a stratum
of dimension i. Thus, Z is a disjoint union of the strata, denoted {Xα}α∈A, and Z is a
stratified set.

Definition 1.2.27. The pair (X, Y ) is said to satisfy Whitney’s condition (b) at y ∈ Y ,
or to be (b)-regular at y if: for all sequences {xi} ∈ X and {yi} ∈ Y with limit y such
that, in a local chart at y, {Txi

X} tends to τ and the lines xiyi tend to λ, one has λ ∈ τ .

When every pair of adjacent strata of a stratification is (b)-regular (at each point)
then we say that the stratification is (b)-regular. Hence, we have the next definition:

Definition 1.2.28. Let Z be a closed subset of a differentiable manifold M of class
C1. When Z =

⋃
α∈A

Xα is a locally finite (b)-regular stratification satisfying the frontier

condition, we say we have a Whitney stratification of Z.

Now, let V be a closed (real) subanalytic variety in a smooth manifold M , where M is
equipped with a (smooth) Riemannian metric. Consider also V = ∪q

i=1Vi be a subanalytic
Whitney stratification of V , and ω be the germ at p ∈ CN of a (continuous) 1-form on
(V, p). For each p ∈ V , set V(p) = Vi be the stratum containing p. Then, a point p ∈ V

is a singular point of ω if the restriction of ω to the stratum V(p) containing p vanishes at
the point p. With that, we present the following definition:

Definition 1.2.29. The germ ω of a 1-form at the point p is called radial if, for all
ϵ > 0 small enough, the 1-form is positive on the outward normals to the boundary of the
ϵ-neighborhood of the point p.

Let p ∈ Vi = V(p), dimV(p) = k, and let η be a 1-form defined in a neighborhood of
the point p. As above, let Ni be a normal slice (with respect to the Riemannian metric)
of M to the stratum Vi at the point p and h a diffeomorphism from a neighborhood of
p in M to the product Ui(p) × Ni, where Ui(p) is an ϵ-neighborhood of p in Vi, which is
the identity on Ui(p). A 1-form η is called a radial extension of the 1-form η|V(p)

if there
exists such a diffeomorphism h which identifies η with the restriction to V of the 1-form
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π∗
1η|V(p)

+ π∗
2η

rad
Ni

, where π1 and π2 are the projections from a neighborhood of p in M to
V(p) and Ni respectively, and ηradNi

is a radial 1-form on Ni.
For a 1-form ω on (V, p) with an isolated singular point at the point p there exists a

1-form ω̃ on V such that

1. ω̃ coincides with ω on a neighborhood of the intersection of V with the boundary
∂Bϵ of the ϵ-neighborhood around the point p;

2. the 1-form ω̃ has a finite number of singular points (zeros);

3. in a neighborhood of each singular point q ∈ V ∩Bϵ, q ∈ Vi, the 1-form ω̃ is a radial
extension of its restriction to the stratum Vi.

Definition 1.2.30. The radial index Indrad(ω;V, p) of the 1-form ω at the point p is

Indrad(ω;V, p) =
∑

q∈Sing(ω̃)

ind(ω̃|V(q)
;V(q), q),

where ind(ω̃|V(q)
;V(q), q) is the usual index of the restriction of the 1-form ω̃ to the stratum

V(q), see [28, Definition 5.2.3].

By [28, Proposition 5.3.9], we can state that the radial index Indrad(ω;V, p) is well-
defined. Also, it follows from the definition that Indrad(ω;V, p) satisfies the law of con-
servation of number, i.e., if a 1-form ω′ with isolated singular points on X is close to the
1-form ω, then

Indrad(ω;V, 0) =
∑

q∈Sing(ω′)

Indrad(ω
′;V, q),

where the sum on the right-hand side is over all singular points q of the 1-form ω′ on V

in a neighbourhood of the origin. Moreover, it is valid a Poincaré-Hopf type theorem [28,
Theorem 5.3.10]: for a compact real subanalytic variety V and a 1-form ω with isolated
singular points on V , we have ∑

q∈Sing(ω)

Indrad(ω;V, q) = χ(V ),

where χ(V ) denotes the Euler characteristic of the space (variety) V .
Finally, we can prove a relation between Ind(ω;X, 0) and Indrad(ω;V, p). For a 1-form

ω, we have the following proposition, proved in [27, Proposition 2.8].

Proposition 1.2.31. For a 1-form ω on an ICIS (V, 0) we have

IndGSV(ω;V, 0) = Indrad(ω;V, 0) + µ0(V ).

Now, we define the local Euler obstruction of a singular point of a 1-form following
[28, Section 5.3.5]. The initial idea was given by MacPherson [52], who defined the Euler
obstruction of a singular point of a complex analytic variety. For a recent reference where
the reader can find an explicit definition, we refer [16].
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Definition 1.2.32. The local Euler obstruction Eu(ω;V, 0) of the 1-form ω on V at
0 ∈ CN is the obstruction to extend the non-zero section ω̂ from the preimage of a
neighborhood of the sphere Sε = ∂Bε to the preimage of its interior. More precisely, its
value (as an element of the cohomology group H2n(ν−1(V ∩ Bε), ν

−1(V ∩ Sε),Z)) on the
fundamental class of the pair [(ν−1(V ∩Bε), ν

−1(V ∩ Sε))].

The Euler obstruction of a 1-form can be considered as an index. In particular, it
satisfies the law of conservation of number - just as the radial index - and, on a smooth
variety, the Euler obstruction and the radial index coincide. We set χ̄(Z) := χ(Z) − 1

and call it the reduced (modulo a point) Euler characteristic of the topological space Z
(though, strictly speaking, this name is only correct for a non-empty space Z). Hence,
we have the following result from [28, Proposition 5.3.32]:

Proposition 1.2.33. Let (V, 0) ⊂ (CN , 0) have an isolated singularity at 0 ∈ CN and let
ℓ : CN → C be a generic linear function. Then

Indrad(ω;V, 0)− Eu(ω;V, 0) = Indrad(dℓ;V, 0) = (−1)n−1χ̄(Mℓ),

where Mℓ is the Milnor fiber of the linear function ℓ on V . In particular, if f is a germ of
a holomorphic function with an isolated critical point on (V, 0), then

Eu(df ;V, 0) = (−1)n(χ(Mℓ)− χ(Mf )),

where Mf is the Milnor fiber of f .

Back to foliations, let F be a germ of a singular holomorphic foliation at 0 ∈ C2

defined by the holomorphic 1-form ω, and let V = {f = 0} be an F -invariant curve,
where f ∈ O2. Then, we can establish our next result (we are enunciating the result in
[50, Lemma 3.1], but it is also presented in [62, (1.1)]):

Lemma 1.2.34. There exist holomorphic functions g, h and a holomorphic 1-form η,
defined in a neighborhood of 0, such that

gω = hdf + fη, (1.20)

where h ̸≡ 0 ̸≡ g on each branch of V .

We remark that, in that lemma, f is relatively prime to g ∈ O2 and h ∈ O2. With
this context, we can define our next index. It was introduced in [37], but here we follow
the presentation of [15, Section 3].

Definition 1.2.35. The Gómez-Mont–Seade–Verjovsky index of the foliation F at the
origin with respect to V is given by

GSV0(F , V ) =
1

2πi

∫
∂V

g

h
d

(
h

g

)
,

where ∂V is the link of V at 0 ∈ C2 and g, h are given by (1.20).
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In the next proposition, we enunciate a characterization of the index defined above
that can be seen at [32, Proposition 6.2]. We also remark that this result is a particular
case of [38, Corollary 2.7].

Proposition 1.2.36. Let F be a singular foliation at (C2, 0) and V be a reduced curve
of separatrices of F . Then

GSV0(F , V ) = τ0(F , V )− τ0(V ). (1.21)

We also have the following results by [15, Propositions 6 and 7]:

Proposition 1.2.37. If S is a non-dicritical separatrix of the foliation F , then

GSV0(F , S) ≥ 0.

Proposition 1.2.38. If the singularity of F at 0 is a generalized curve and if S is the
union of all separatrices of F then

GSV0(F , S) = 0.

Example 1.2.39. We use the Example of [15, p. 538] to illustrate Proposition 1.2.36.
Let F be generated by the normal form of a saddle-node, i. e.,

ω = zp+1dw − w(1 + λzp)dz, p ≥ 1, λ ∈ C.

Then, we have dω = λ∧ω, with λ = (p+1)
dz

z
+
dw

w
. If S1 = {z = 0} and S2 = {w = 0},

we have, again by [15, p. 538],

GSV0(F , S1) = 1, GSV0(F , S2) = p+ 1.

Now, we compute the Tjurina numbers. It is not difficult to see that τ0(S1) = τ0(S2) = 0,
and for the Tjurina numbers of ω with respect to S1 and S2, we have

τ0(F , S1) = dimC
O2

⟨zp+1, w(1 + λzp), z⟩
= dimC

O2

⟨w, z⟩
= 1

and

τ0(F , S2) = dimC
O2

⟨zp+1, w(1 + λzp), w⟩
= dimC

O2

⟨zp+1, w⟩
= p+ 1.

Thus,

τ0(F , S1)− τ0(S1) = 1 = GSV0(F , S1)

τ0(F , S2)− τ0(S2) = p+ 1 = GSV0(F , S2),

and then (1.21) is satisfied.
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1.2.4 Bruce-Roberts numbers

The Bruce-Roberts number associated with f relative to (X, 0) was originally intro-
duced by J. W. Bruce and R. M. Roberts in [13, Definition 2.4] (but named in this work as
the multiplicity of f on X), and studied by many authors - see, for example, [3], [8], [10],
[23], [44], [47], [48], [57], [58] and [59]. This number, denoted by µBR(f,X), is defined as
follows:

Definition 1.2.40. Let f ∈ On and (X, 0) be a germ of a complex analytic variety at
(Cn, 0). The Bruce-Roberts number of f with respect to X is given by

µBR(f,X) = dimC
On

df(ΘX)
,

where ΘX is the On-submodule of Θn defined in (1.1).

We remark that the definition above is the same as in [13, Definition 2.4], but with
a different notation, similar to the definition of the Bruce-Roberts number in [58, Defi-
nition 2.1], for example. It is worth noting that some authors refer to µBR(f,X) as the
Bruce-Roberts’ Milnor number of f with respect to X. We also remark that, if df(ΘX)

has finite colength, then J(f) - the Jacobian ideal of f - also has finite colength, and
then µBR(f,X) ≥ µ0(f), since df(ΘX) ⊆ J(f). In particular, when X = Cn, df(Θn)

corresponds to the Jacobian ideal of f which is generated by the partial derivatives of f
in On. Consequently,

µBR(f,Cn) = dimC
On

df(Θn)
= dimC

On〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉 = µ0(f).

In other words, µBR(f,Cn) coincides with the classical Milnor number µ0(f) of f .
Moreover, if X is the germ of a complex analytic subvariety at (Cn, 0), then µBR(f,X)

is finite if, and only if f has an isolated singularity over (X, 0). The following example is
given in [10, Example 2.4].

Example 1.2.41. Let X = {(x, y, z) ∈ C3 : xyz = 0} and let f ∈ O3 be given by
f(x, y, z) = xy + xz + yz. We observe that

ΘX =

〈
x
∂

∂x
, y

∂

∂y
, z

∂

∂z

〉
,

and then df(ΘX) = ⟨xy+xz, xy+yz, xz+yz⟩. In that case, µBR(f,X) is not finite, while
f has an isolated singularity at the origin.

Example 1.2.42. Consider f, h : (C2, 0) → (C, 0) given by f(x, y) = x2+y5 and h(x, y) =
x3 + x2y2 + y7. Let X be the plane curve defined by X = h−1(0). In [58, Example 3.5],
it is shown that

df(ΘX) = ⟨882x3− 80x2y+42x2y2− 8xy4+945xy5− 80y6,−8x3+42x2y3− 8xy5+45y8⟩.

With that, using Singular ([24]), we can compute µBR(f,X) = 15.
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In [10, Theorem 2.3], it is shown that µBR(f,X) is finite if, and only if, V (df(ΘX)) ⊆
{0}, with V (df(ΘX)) being the variety of zeros of the ideal df(ΘX). We may also state a
result that shows that, when the Bruce-Roberts number of f with respect to X is finite,
the index defined as c(f, h) is also finite.

Proposition 1.2.43. ([10, Proposition 2.8]) Let h = (h1, . . . , hp) : (Cn, 0) → (Cp, 0) be
an ICIS, where p ≤ n − 1, and let f ∈ On. Let X = h−1(0). If µBR(f,X) < ∞, then
c(f, h) <∞, where

c(f, h) = dimC
On

⟨h1, . . . , hp⟩+ J(f, h1, . . . , hp)
.

Consider now (X, 0) a germ of a hypersurface with isolated singularity in (Cn, 0). We
say that two germs f, g : (Cn, 0) → C are RX-equivalent (respectively, C0-RX-equivalent)
if there exists a germ of diffeomorphism (respectively homeomorphism) ψ : (Cn, 0) →
(C, 0) such that ψ(X) = X and f = g ◦ ψ. With that characterization, we have that
µBR(f,X) is finite if, and only if, f is finitely RX-determined - i.e., RX is the subgroup
of R of coordinate changes that preserve X (see [59, p. 1051] or [13, Section 2]).

Remark 1.2.44. We can extend the equality shown in (1.12) using the concept of RX-
equivalence. In [59, Corollary 3.4] it is shown that, if (X, 0) is an isolated hypersurface
singularity and f ∈ On is finitely RX-determined, then

τ0(X) = dim
df(ΘX)

df(ΘT
X)

= dim
ΘX

ΘT
X

.

For our next results, we need to define the concept of weighted homogeneous functions.
The next definition comes from [1, Section 2].

Definition 1.2.45. A holomorphic function f : (Cn, 0) → (C, 0) is a weighted homoge-
neous function of degree δ with weights w1, . . . , wn if

f(λw1x1, . . . , λ
wnxn) = λδf(x1, . . . , xn), ∀λ > 0.

In the terms of the Taylor series
∑
fkx

k of f , the weighted homogeneity condition
means that the exponents of the nonzero terms of the series lie in the hyperplane

L = {k : w1k1 + . . .+ wnkn = δ}.

Example 1.2.46. Consider the polynomial f = x2y + z2. For the terms x2y and z2, we
can write two equalities regarding the degree and the weights of f :

2w1 + w2 + 0 · w3 = δ

0 · w1 + 0 · w2 + 2w3 = δ.

With that, we have 2w1 + w2 = 2w3 = δ. Then, we can say that f is a weighted
homogeneous polynomial of degree 6 with respect to weights (2, 2, 3).
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Given a vector of weights w = (w1, . . . , wn) ∈ Zn
≥1, if the coordinates x1, . . . , xn are

fixed, then we define the Euler vector field associated to w as

θw = w1x1
∂

∂x1
+ . . .+ wnxn

∂

∂xn
.

With that, we can enunciate [10, Theorem 2.6], which gives us a way to compute ΘX

when X is defined by a weighted homogeneous function.

Theorem 1.2.47. Let w ∈ Zn
≥1 and let h ∈ On, n ≥ 2 such that h is weighted homoge-

neous with respect to w and h has an isolated singularity at the origin. Let X = h−1(0).

Then ΘX is generated by θw and the derivations θij =
∂h

∂xj

∂

∂xi
− ∂h

∂xi

∂

∂xj
, for 1 ≤ i < j ≤ n.

Hence, for all f ∈ On, we have

df(ΘX) = ⟨θw(f)⟩+ J(f, h).

Example 1.2.48. Let’s consider X = h−1(0), with h(x, y, z) = xy+ z4. We observe that
h is weighted homogeneous, and also that w1 = 1, w2 = 3 and w3 = 1. With that, it is
possible to compute ΘX as

ΘX =

〈
y
∂

∂y
− x

∂

∂x
, y

∂

∂z
− 4z3

∂

∂x
, x

∂

∂z
− 4z3

∂

∂y
, x

∂

∂x
+ 3y

∂

∂y
+ z

∂

∂z

〉
.

Still working with weighted homogeneity, we enunciate [10, Theorem 2.13], that gives
a relation of the Bruce-Roberts number and two Milnor numbers in that case. We also
remark that this result can be seen in [58, Theorem 3.1], with the hypothesis of f being a
RX-finitely determined germ instead of µBR(f,X) <∞ (which we saw that are equivalent
conditions).

Theorem 1.2.49. Let w ∈ Zn
≥1, n ≥ 2. Let h ∈ C[x1, . . . , xn] be weighted homogeneous

with respect to w with isolated singularity and let X = h−1(0). Let f ∈ On such that
µBR(f,X) <∞. Then (f, h) : (Cn, 0) → (C2, 0) is an ICIS whose Milnor number satisfies
the relation

µBR(f,X) = µ0(f) + µ0(f, h).

And, as a direct application of the theorem above, we have [10, Corollary 2.16]:

Corollary 1.2.50. Let f, h ∈ C[x1, . . . , xn] be weighted homogeneous polynomials, not
necessarily with respect to the same vector of weights, and n ≥ 2. Let X = h−1(0) and
Y = f−1(0). Suppose also that µBR(f,X) <∞ and µBR(h, Y ) <∞. Then

µBR(f,X)− µBR(h, Y ) = µ0(f)− µ0(h).

Example 1.2.51. In Example 1.2.42, we considered f, h : (C2, 0) → (C, 0) given by
f(x, y) = x2+ y5 and h(x, y) = x3+x2y2+ y7, and X = h−1(0). That example, originally
from [58, Example 3.5], shows us that Theorem 1.2.49 is not valid when X is not weighted
homogeneous. In fact, they showed that µ0(f) = 4 and µ0(f, h) = 14, and then

µBR(f,X) = 15 ̸= µ0(f) + µ0(f, h) = 18.
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One interesting result regarding the Bruce-Roberts number for functions is given in
[59, Corollary 4.1], and it also relates it with the Tjurina number, along with the Milnor
numbers as seen above. The idea, as mentioned in [59], is to extend the formula of
Theorem 1.2.49 to the general case that (X, 0) is a hypersurface with isolated singularity
(and not necessarily weighted homogeneous).

Corollary 1.2.52. Let X be an isolated hypersurface singularity defined by ϕ : (Cn, 0) →
(C, 0) and consider f ∈ On, that has an isolated singularity over (X, 0). Then

µBR(f,X) = µ0(f) + µ0(X) + µ0(ϕ, f)− τ0(X).

Two consequent results of Corollary 1.2.52 are shown below. For them, we refer to
[59, Corollaries 4.2 and 4.3]. In particular, Corollary 1.2.54 shows that the Bruce-Roberts
number is a topological invariant when (X, 0) is an isolated hypersurface singularity.

Corollary 1.2.53. Let f, ϕ : (Cn, 0) → (C, 0) be function germs with isolated singularity,
and let (X, 0) and (Y, 0) be the hypersurfaces determined by ϕ and f , respectively. If
µBR(f,X) <∞ and µBR(ϕ, Y ) <∞, then

µBR(f,X)− µBR(ϕ, Y ) = τ0(Y )− τ0(X).

Corollary 1.2.54. Let (X, 0) ⊂ (Cn, 0) be an isolated hypersurface singularity. Let
f, g ∈ On be finitely RX-determined function germs such that f is C0 − RX-equivalent
to g. Then µBR(f,X) = µBR(g,X).

In [13, p. 71], the notion of the relative Bruce-Roberts number is also defined, although
they do not use that denomination. We present the definition of that number with a
notation similar to the one used in Definition 1.2.40:

Definition 1.2.55. Let f : (Cn, 0) → (C, 0) be a function germ in On. The relative
Bruce-Roberts number of f with respect to (X, 0) is defined by

µ−
BR(f,X) = dimC

On

df(ΘX) + IX
.

When (X, 0) is an isolated hypersurface singularity, [48, p. 6] shows a relation between
the Bruce-Roberts number and the relative Bruce-Roberts number of a function. In that
case, when f ∈ On is RX-finitely determined, we have

µBR(f,X) = µ0(f) + µ−
BR(f,X). (1.22)

In addition, [47, Theorem 2.2] presents another relation between the Bruce-Roberts
number and the relative Bruce-Roberts number of a function, but now on an ICIS:

Theorem 1.2.56. Let (X, 0) ⊂ (Cn, 0) be an ICIS and f ∈ On such that µ−
BR(f,X) <∞.

Then, (X ∩ f−1(0), 0) defines an ICIS and

µ0(X ∩ f−1(0)) = µ−
BR(f,X)− µ0(X) + τ0(X).
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We remark a result equivalent to Theorem 1.2.56 is shown in [48, Theorem 2.5].
One interesting corollary of this result, shown in [47, Corollary 2.3], is that when (X, 0)

is a weighted homogeneous ICIS, then the Milnor and the Tjurina numbers of X are the
same. Beyond that, another consequence of Theorem 1.2.56, regarding the topological
invariance of the relative Bruce-Roberts number, is given in [47, Corollary 2.4]:

Corollary 1.2.57. The relative Bruce-Roberts number is a topological invariant for a
family of functions over a fixed ICIS.

The Milnor and Tjurina numbers are two indices with a similar definition. With that
in mind, if the Bruce-Roberts number defined above generalizes the Milnor number of
a function, it is possible to think of an index that generalizes the Tjurina number of a
function. We refer to [10, Definition 3.1] to present the following definition, but other
works regarding the Bruce-Roberts Tjurina number of holomorphic functions can be found
in [2], [8], and [9].

Definition 1.2.58. Let X be an analytic subvariety of (Cn, 0) and let f ∈ On. We define
the Bruce-Roberts Tjurina number of f with respect to X as

τBR(f,X) := dimC
On

df(ΘX) + ⟨f⟩
, (1.23)

when the colength on the right side of (1.23) is finite.

A definition similar to that can be found on [2, p. 2], but with the name of Tjurina
algebras of a function on an analytic variety. It follows from the definition that when
X = Cn, τBR(f,Cn) = τ0(f), which means that the Bruce-Roberts Tjurina number
generalizes the Tjurina number of a function. Moreover, comparing Definitions 1.2.40
and 1.2.58, it is immediate that

τBR(f,X) ≤ µBR(f,X).

It is interesting to note that in [10], the authors presented a relation between the
Bruce-Robert’s Milnor and Tjurina numbers. We will construct that relation below, but
first, we refer to [10, p. 9] to present the following definition:

Definition 1.2.59. Let R be a ring and let I be an ideal of R, with f ∈ R. The number
rf (I) is the minimum of r ∈ Z≥1 such that f r ∈ I. If such r does not exist, we set
rf (I) = ∞.

With that in mind, let us also denote by φf,I the morphism R/I → R/I defined by
g + I 7→ fg + I, for all g ∈ R. If M is a R-module, denote by ℓ(M) the length of M and
ℓ(R/I) the colength of I. Now, we can enunciate [10, Theorem 3.2]:



Chapter 1. Preliminaries 48

Theorem 1.2.60. Let (R,m) be a Noetherian local ring. Let I be an ideal of R of finite
colength and let f ∈ R such that rf (I) <∞. Then

ℓ

(
R

I

)
ℓ

(
R

⟨f⟩+ I

) ≤ rf (I),

and the equality holds if, and only if

ker(φf,I) =
⟨f r−1⟩+ I

I
,

where r = rf (I).

A direct corollary of Theorem 1.2.60, given in [10, Corollary 3.3], provides the following
comparison between the Bruce-Roberts and the Bruce-Roberts Tjurina number:

Corollary 1.2.61. Let X be an analytic subvariety of (Cn, 0). Let f ∈ On such that
µBR(f,X) <∞. Then

µBR(f,X)

τBR(f,X)
≤ rf (df(ΘX)),

and the equality holds if, and only if

ker(φf,df(ΘX)) =
⟨f r−1⟩+ df(ΘX)

df(ΘX)
,

where r = rf (df(ΘX)).

Example 1.2.62. We refer to [10, Example 3.5] to provide an example where Corollary
1.2.61 is valid. Consider h ∈ O2 the polynomial given by h(x, y) = xy6 + x4y4 + x10, and
let X = h−1(0). We have that ΘX is given by

ΘX =

〈
− 2x4y3

∂

∂x
+ (5y6 + 2x3y4 + 5x9)

∂

∂y
, 2x

∂

∂x
+ 3y

∂

∂y

〉
.

Now, consider the function f(x, y) = x + y. With that, we have µBR(f,X) = 6,
τBR(f,X) = 1 and

rf (df(ΘX)) = rf (−2x4y3 + 5y6 + 2x3y4 + 5x9, 2x+ 3y) = 6.

With that, Corollary 1.2.61 is satisfied.

To end this section, we present an equivalence relating the Bruce-Roberts numbers.
We refer to [8, Corollary 2.2] to enunciate the following proposition:

Proposition 1.2.63. Let (f,X) be a pair with µBR(f,X) < ∞. Then the following
conditions are equivalent

1. µBR(f,X) = τBR(f,X);
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2. µ0(f) = τ0(f) and ΘY = ΘX ∩ΘY +HY ,

where Y = f−1(0) - making ΘY the submodule of Θn of vector fields that are tangent to
(Y, 0) - and HY = {η ∈ Θn : df(η) = 0}.

Remark 1.2.64. To obtain the results of Proposition 1.2.63, [8, Section 2] there is a
construction that uses the definition of two numbers µX(f) and τX(f), given by

µX(f) := dimC
Θn

ΘX +HY

and
τX(f) = dimC

Θn

ΘX +ΘY

in the case where this numbers are finite. Although it is a bit of an extensive work to be
presented here, we would like to note that a similar construction will be made in Section
3.2, and that will be made using the work done in [8, Section 2] as a base.
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Chapter 2

The Bruce-Roberts Number for
Holomorphic 1-Forms

In this chapter, our main goal is to present the notions of the Bruce-Roberts number
for holomorphic 1-forms relative to complex analytic varieties, first presented in [6]. We
will also establish a theorem that relates this number with other important indices. With
that, we can define the relative Bruce-Roberts number and, in (C2, 0), it is possible to
define the Bruce-Roberts number for foliations defined by 1-forms in the form of (1.3). In
that case, it is also possible to see how the Bruce-Roberts number behaves under blow-ups,
and finish the study of this chapter working with generalized curve foliations.

Definition 2.0.1. Let ω be the germ of a holomorphic 1-form with an isolated singularity
at 0 ∈ Cn, n ≥ 2, and let X be a germ of a complex analytic variety with an isolated
singularity at 0 ∈ Cn. We define the Bruce-Roberts number of the 1-form ω with respect
to X as

µBR(ω,X) := dimC
On

ω(ΘX)
. (2.1)

Note that µBR(ω,X) is finite if, and only if ω is a 1-form on X admitting (at most) an
isolated singularity at 0 ∈ Cn. In the case of a germ of a complex analytic subvariety X,
this condition is equivalent to saying that X is not invariant by ω, as stated in Definition
1.1.12.

Note also that, if ω = df , for some f ∈ On, then

µBR(ω,X) = dimC
On

ω(ΘX)
= dimC

On

df(ΘX)
= µBR(f,X),

which means that Definition 2.0.1 generalizes the Bruce-Roberts number for functions
defined in Definition 1.2.40. Also, it generalizes the Milnor number of ω when X = Cn,
since

µBR(ω,X) = dimC
On

ω(ΘX)
= dimC

On

ω

(〈
∂

∂x1
, . . . ,

∂

∂xn

〉) = dimC
On

⟨A1, . . . , An⟩
= µ0(ω),
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with ω being defined by ω =
n∑

i=1

Ai(x)dxi. Thus, when ω = df , it is easy to see that

µBR(ω,X) = µ0(X),

showing that it is a generalization of the classical Milnor number of f as well.

2.1 Main Results

First, we state a technical lemma on commutative algebra inspired by [32, Lemma
6.1]:

Lemma 2.1.1. Let f1, . . . , fm, g, p1, . . . , pn ∈ On, where fi and g are relatively prime, for
any i ∈ {1, . . . ,m}. Then

dimC
On

⟨f1, . . . , fm, gp1, . . . , gpn⟩
= dimC

On

⟨f1, . . . , fm, p1, . . . , pn⟩
+ dimC

On

⟨f1, . . . , fm, g⟩
.

Proof. First, we write O =
On

⟨f1, . . . , fm⟩
and, for every k ∈ On, we consider k′ = k +

⟨f1, . . . , fm⟩. With that, when r′i = ri + ⟨f1, . . . , fm⟩, for any i ∈ {1, . . . , n} and any
ri ∈ On, observe that

dimC
On

⟨f1, . . . , fm, r1, . . . , rn⟩
= dimC

O
⟨r′1, . . . , r′n⟩

.

Now, consider the following sequence:

0 −→ O
⟨p′1, . . . , p′n⟩

σ−−→ O
⟨g′p′1, . . . , g′p′n⟩

δ−→ O
⟨g′⟩

−→ 0,

where σ(z′ + ⟨p′1, . . . , p′n⟩) = g′z′ + ⟨g′p′1, . . . , g′p′n⟩ and δ(z′ + ⟨g′p′1, . . . , g′p′n⟩) = z′ + ⟨g′⟩
for any z′ ∈ O.

We shall prove that the sequence is exact:

• Consider h′ ∈ kerσ. With that, σ(h′ + ⟨p′1, . . . , p′n⟩) ∈ ⟨g′p′1, . . . , g′p′n⟩, which means

h′g′ + ⟨g′p′1, . . . , g′p′n⟩ = σ(h′ + ⟨p′1, . . . , p′n⟩) ∈ ⟨g′p′1, . . . , g′p′n⟩.

Hence, h′g′ ∈ ⟨g′p′1, . . . , g′p′n⟩. That is equivalent to

hg ∈ ⟨gp1, . . . , gpn, f1, . . . , fm⟩.

From the hypothesis, that means that either h ∈ ⟨f1, . . . , fm⟩, or h ∈ ⟨p1, . . . , pn⟩.
In each case, h′ ∈ ⟨g′p′1, . . . , g′p′n⟩, and then σ is injective.

• Consider h′ ∈ O
⟨g′⟩

. Then, we can write h′ = z′ + ⟨g′⟩, with z′ ∈ O′. With that,

z′ + ⟨g′p′1, . . . , g′p′n⟩ ∈
O

⟨g′p′1, . . . , g′p′n⟩
, and then

δ(z′ + ⟨g′p′1, . . . , g′p′n⟩) = z′ + ⟨g′⟩ = h′,

giving us that δ is surjective.
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• Let h′ ∈ Imσ. Hence, there exists y′ + ⟨p′1, . . . , p′n⟩ ∈ O
⟨p′1, . . . , p′n⟩

such that h′ =

σ(y′ + ⟨p′1, . . . , p′n⟩) = g′y′ + ⟨g′p′1, . . . , g′p′n⟩. With that,

δ(h′) = g′y′ + ⟨g′⟩ ∈ ⟨g′⟩,

giving us Imσ ⊆ ker δ.

• Now, let h′ ∈ ker δ. Then, writing h′ = z′ + ⟨g′p′1, . . . , g′p′n⟩, we have

δ(h′) = z′ + ⟨g′⟩ ∈ ⟨g′⟩ ⇒ z′ ∈ ⟨g′⟩.

Then, there exists y′ ∈ O such that z′ = y′g′. Then, considering y′ + ⟨p′1, . . . , p′n⟩ ∈
O

⟨p′1, . . . , p′n⟩
, we have

σ(y′ + ⟨p′1, . . . , p′n⟩) = g′y′ + ⟨g′p′1, . . . , g′p′n⟩ = z′ + ⟨g′p′1, . . . , g′p′n⟩ = h′.

Thus, ker δ ⊆ Imσ, which implies ker δ = Imσ.

The exactness of the sequence concludes the proof:

dimC
On

⟨f1, . . . , fm, gp1, . . . , gpn⟩
= dimC

O
⟨g′p′1, . . . , g′p′n⟩

= dimC
O

⟨p′1, . . . , p′n⟩
+ dimC

O
⟨g′⟩

= dimC
On

⟨f1, . . . , fm, p1, . . . , pn⟩
+ dimC

On

⟨f1, . . . , fm, g⟩
.

Before we enunciate our main result, let’s prove the following lemma:

Lemma 2.1.2. The sequence

0 −→ ΘX

ΘT
X

·ω−→ On

ω(ΘT
X)

β−→ On

ω(ΘX)
−→ 0,

of C-vector spaces is exact, where β is induced by the inclusion ω(ΘT
X) ⊂ ω(ΘX), and ·ω

is the evaluation map.

Proof. First, it is not difficult to see that the sequence is well-defined. Let us now prove
that it is an exact sequence. Suppose f ∈ Im(ω). Then, there exists η ∈ ΘX such that
f = ω(η +ΘT

X) = ω(η) + ω(ΘT
X). Hence,

β(f) = β(ω(η) + ω(ΘT
X)) = β(ω(η)) + ω(ΘX).

Since η ∈ ΘX , we have ω(η) ∈ ω(ΘX), and thus, β(ω(η)) = ω(η) ∈ ω(ΘX). Consequently,
β(f) ∈ ω(ΘX), and then f ∈ ker(β).
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On the other hand, consider g ∈ ker(β). Then, g = f + ω(ΘT
X), where f ∈ On and

β(g) ∈ ω(ΘX). This implies

f + ω(ΘX) = β(f + ω(ΘT
X)) = β(g) ∈ ω(ΘX).

Therefore, f ∈ ω(ΘX), i.e., f = ω(ξ), where ξ ∈ ΘX . Thus, we have g = f + ω(ΘX) =

ω(ξ +ΘT
X), which gives us g ∈ Im(ω).

Consequently, ker(β) = Im(ω), establishing the exactness of the sequence and con-
cluding the proof.

Theorem 2.1.3. Let ω be the germ of a holomorphic 1-form with an isolated singularity
at 0 ∈ Cn, n ≥ 2. Let X be the germ of a complex analytic hypersurface with an isolated
singularity at 0 ∈ Cn. Assume that X is not invariant by ω. Then

µBR(ω,X) = IndGSV(ω;X, 0) + µ0(ω)− τ0(X).

Proof. From Lemma 2.1.2, we obtain

µBR(ω,X) = dimC
On

ω(ΘX)
= dimC

On

ω(ΘT
X)

− dimC
ΘX

ΘT
X

. (2.2)

Note that, by the definition of ΘT
X given in (1.2) and Lemma 2.1.1, we have

dimC
On

ω(ΘT
X)

= dimC
On

⟨ϕA1, . . . , ϕAn,
∂ϕ
∂xj
Ak − ∂ϕ

∂xk
Aj⟩(j,k)∈Λ

= dimC
On

⟨ϕ, ∂ϕ
∂xj
Ak − ∂ϕ

∂xk
Aj⟩(j,k)∈Λ

+dimC
On

⟨A1, . . . , An,
∂ϕ
∂xj
Ak − ∂ϕ

∂xk
Aj⟩(j,k)∈Λ

,

since the components
∂ϕ

∂xj
Ak −

∂ϕ

∂xk
Aj and ϕ are relatively prime, by the non-invariance

hypothesis. Note also that

∂ϕ

∂xj
Ak −

∂ϕ

∂xk
Aj ∈ ⟨A1, . . . , An⟩,

for all (j, k) ∈ Λ. In that way, we get

dimC
On

⟨A1, . . . , An,
∂ϕ
∂xj
Ak − ∂ϕ

∂xk
Aj⟩(j,k)∈Λ

= dimC
On

⟨A1, . . . , An⟩
= µ0(ω).

Thus, we deduce

dimC
On

ω(ΘT
X)

= dimC
On

⟨ϕ, ∂ϕ
∂xj
Ak − ∂ϕ

∂xk
Aj⟩(j,k)∈Λ

+ µ0(ω). (2.3)

Finally, (1.12) gives us that dimC
ΘX

ΘT
X

= τ0(X). The proof is concluded by substituting

(2.3) in (2.2), and considering the definition of IndGSV(ω;X, 0) given by (1.18).
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With that, since both IndGSV(ω;X, 0) and µ0(ω) are topological invariants when (X, 0)

is an isolated hypersurface singularity, Theorem 2.1.3 implies that µBR(ω,X) is also a
topological invariant under homeomorphisms of (Cn, 0) that fix (X, 0).

As a consequence, we can use our tools to recover [59, Corollary 4.1], which we enun-
ciated as Corollary 1.2.52:

Corollary 2.1.4. Let X be an isolated hypersurface singularity defined by ϕ : (Cn, 0) →
(C, 0) and let f ∈ On with an isolated singularity over (X, 0). Then,

µBR(f,X) = µ0(f) + µ0(ϕ, f) + µ0(X)− τ0(X).

Proof. Consider the 1-form ω given by ω = df . As we observed in previous results, we
have

µBR(f,X) = dimC
On

df(ΘX)
= µBR(df,X) and

µ0(f) = dimC
On〈

∂f

∂x1
, . . . ,

∂f

∂xn

〉 = µ0(df).

By Theorem 2.1.3, we have

µBR(f,X) = µBR(df,X) = IndGSV(df ;X, 0) + µ0(df)− τ0(X). (2.4)

Since µ0(f) = µ0(df), the proof concludes by rewriting IndGSV in equation (2.4) using the
Lê-Greuel formula (1.19), given by

IndGSV(df ;X, 0) = µ0(X) + µ0(ϕ, f).

As a second corollary, we establish a connection between the Bruce-Roberts number
µBR(ω,X) and other indices of 1-forms along X presented in our first chapter.

Corollary 2.1.5. Let ω be a germ of a holomorphic 1-form with isolated singularity at
0 ∈ Cn, n ≥ 2. Let X be a germ of a complex analytic hypersurface with an isolated
singularity at 0 ∈ Cn. Assume that X is not invariant by ω. Then

µBR(ω,X)− µ0(ω) + τ0(X)− µ0(X)− Eu(ω;X, 0) = (−1)n−2χ̄(Mℓ),

where Mℓ is the Milnor fiber of the generic linear function ℓ : Cn → C on X and χ̄(Mℓ) =

χ(Mℓ)− 1.

Proof. We have µBR(ω,X) = IndGSV(ω;X, 0) + µ0(ω)− τ0(X) by Theorem 2.1.3. On the
other hand, Proposition 1.2.31 gives us that IndGSV(ω;X, 0) = Indrad(ω;X, 0) + µ0(X).
Therefore,

µBR(ω,X) = Indrad(ω;X, 0) + µ0(X) + µ0(ω)− τ0(X). (2.5)

The proof concludes by applying Proposition 1.2.33 to (X, 0) and substituting into (2.5).
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We finish this section with two examples where Theorem 2.1.3 is verified.

Example 2.1.6. Let X = {ϕ = 0}, where ϕ : (C3, 0) → (C, 0) is given by ϕ(x, y, z) =

x3 + yz2 + y3 + xy4. Using [57, Example 9], we have

ΘX =
〈
(3xy2 + 3y2 + z2)

∂

∂x
+ (−3x2 − y3)

∂

∂y
,

(2z3)
∂

∂x
+ (−6x2z)

∂

∂y
+ (9x3y + 9x2y − y2z2)

∂

∂z
,

(2yz)
∂

∂x
+ (−3x2 − y3)

∂

∂z
,

(2yz)
∂

∂y
+ (−3xy2 − 3y2 − z2)

∂

∂z
,(

−4

3
x2y − x

)
∂

∂x
+

(
−2

3
xy2 − y

)
∂

∂y
+

(
−5

3
xyz − z

)
∂

∂z

〉
.

Let ω = zdx + xdy + ydz a germ of a holomorphic 1-form with isolated singularity at
0 ∈ C3. Since

ω ∧ dϕ =(z3 + 3y2z + 4xy3z − 3x3 − xy4)dx ∧ dy+
(2yz2 − 3x2y − y5)dx ∧ dz + (2xyz − yz2 − 3y3 − 4xy4)dy ∧ dz,

then X is not invariant by ω. Using Singular ([24]) to compute the indices, we verify
that Theorem 2.1.3 holds, since µBR(ω,X) = 14, IndGSV(ω;X, 0) = 21, µ0(ω) = 1 and
τ0(X) = 8.

Example 2.1.7. Let X = {ϕ(x, y, z) = xy + z4 = 0} be a germ of an isolated complex
hypersurface on (C3, 0), and let f be the polynomial f = x2+y2+z2. With that, consider

ω = (2x+ zf)dx+ (2y + xf)dy + (2z + yf)dz.

Since

ω ∧ dϕ = [((2x+ zf)dx+ (2y + xf)dy + (2z + yf)dz)] ∧ (ydx+ xdy + 4z3dz)

= (2x2 − 2y2 + (xz − xy)f)dx ∧ dy + (8yz3 − 2xz + (4xz3 − xy)f)dy ∧ dz
+ (8xz3 − 2yz + (4z4 − y2)f)dx ∧ dz,

we have that X is not invariant by ω. In Example 1.2.48, we showed that

ΘX =

〈
y
∂

∂y
− x

∂

∂x
, y

∂

∂z
− 4z3

∂

∂x
, x

∂

∂z
− 4z3

∂

∂y
, x

∂

∂x
+ 3y

∂

∂y
+ z

∂

∂z

〉
.

With the help of Singular ([24]), we computed µBR(ω,X) = 6, IndGSV(ω;X, 0) = 8,
µ0(ω) = 1 and τ0(X) = 3, and with that

6 = µBR(ω,X) = IndGSV(ω;X, 0) + µ0(ω)− τ0(X)

= 8 + 1− 3.

Thus, Theorem 2.1.3 is verified.
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2.2 Relative Bruce-Roberts number for 1-forms

The definition of the relative Bruce-Roberts number of a function, given in Definition
1.2.55, comes straightforward from the definition of the Bruce-Roberts number of a func-
tion. Likewise, in this section we define the relative Bruce-Roberts number of a foliation,
getting some similar results to the ones verified for µ−

BR(f,X). We also provide some
examples of these results.

Definition 2.2.1. Let ω be a germ of a holomorphic 1-form with isolated singularity at
(Cn, 0) and let X be a complex analytic germ with isolated singularity at (Cn, 0). The
relative Bruce-Roberts number of the 1-form ω with respect to X is defined as

µ−
BR(ω,X) = dimC

On

ω(ΘX) + IX
.

It is evident that, when ω = df , µ−
BR(ω,X) = µ−

BR(f,X). In other words, the relative
Bruce-Roberts number of ω with respect to X generalizes the relative Bruce-Roberts
number of f with respect to X. Now, our main goal is to establish a relation between
µBR(ω,X) and µ−

BR(ω,X). For that, we present the following Lemma, which is analogous
to [48, Lemma 2.2].

Lemma 2.2.2. Let ω =
n∑

i=1

Aidxi ∈ Ω1(Cn, 0) be a germ of 1-form and let g ∈ On be

such that dimV ((ω, dg)) = 1 and V (ω) = {0}, where (ω) = ⟨A1, . . . , An⟩ and (ω, dg) is
the ideal in On generated by the maximal minors of the matrix of

(
Ai,

∂g
∂xi

)
. Consider

the matrices

A =

(
A1 · · · An

∂g
∂x1

· · · ∂g
∂xn

)
, A′ =

(
µ A1 · · · An

λ ∂g
∂x1

· · · ∂g
∂xn

)
,

where λ, µ ∈ On. Let M and M ′ be the submodules of O2
n generated by the columns

of A and A′, respectively. If I2(A) = I2(A
′) then M = M ′, where I2(A) the ideal in R

generated by the 2× 2 minors of the matrix A.

Proof. The proof follows the same approach as the proof of [48, Lemma 2.2], so we shall
only give an idea of the demonstration. First, considering R = On, we see A and A′ as
homomorphisms of modules over R:

A : Rn → R2, A′ : Rn+1 → R2.

Then, it is possible to show that the R-module R2/M is Cohen-Macaulay, and if its
submodule M ′/M is not equal to 0, then dim(M ′/M) = 1. Now, let U be a neighborhood
of 0 ∈ Cn such that 0 is the only point where A1(0) = . . . = An(0) = 0. Then, for all
x ∈ U \{0}, there exist i0 ∈ {1, . . . , n} such that Ai0(x) ̸= 0. We can suppose that i0 = 1,
and then obtain

B =

(
1 0 · · · 0

c1 c2 . . . cn

)
, B′ =

(
µ 1 0 · · · 0

λ c1 c2 . . . cn

)
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making elementary operations on the columns of A and A′, respectively, such that I2(A) =
I2(B), I2(A′) = I2(B

′), Im(A) = Im(B) and Im(A′) = Im(B′). Then, by the hypothesis,
I2(B) = I2(B

′), and this implies ⟨c2, . . . , cn⟩ = ⟨µc1 − λ, c2, . . . , cn⟩. With that, we can
write (

µ

λ

)
= µ

(
1

c1

)
+ α2

(
0

c2

)
+ · · ·+ αn

(
0

cn

)
,

for some αi ∈ R, i = 2, . . . , n. This gives us that Supp(M ′/M) ⊂ {0}, and then M ′ =

M .

We can now prove a theorem similar to [48, Theorem 2.3].

Theorem 2.2.3. Let ω =
n∑

i=1

Ai(x)dxi be a germ of a holomorphic 1-form with isolated

singularity at 0 ∈ Cn, n ≥ 2, where Ai ∈ On. Let X = {ϕ = 0} be a germ of a complex
analytic hypersurface with an isolated singularity at 0 ∈ Cn. Assume that X is not
invariant by ω. Then

(i)
ΘX

ΘT
X

∼=
ω(ΘX) + IX
ω(ΘT

X) + IX
;

(ii) ω(ΘX) ∩ IX = (ω) ∩ IX ;

(iii)
On

(ω)
∼=
ω(ΘX) + IX
ω(ΘX)

,

where (ω) = ⟨A1, . . . , An⟩ and IX = ⟨ϕ⟩.

Proof.

(i) Let’s define the map Ψ : ΘX → ω(ΘX) + IX by Ψ(ξ) = ω(ξ). It’s easy to see that
Ψ is an homomorphism. Note that Ψ induces the isomorphism

Ψ :
ΘX

ΘT
X

→ ω(ΘX) + IX
ω(ΘT

X) + IX
.

To see that, it is enough to show that ker(Ψ) = ΘT
X . Let ξ + ΘT

X ∈ ker(Ψ). Then,
ω(ξ) ∈ ω(ΘT

X) + IX , that is, there exist η ∈ ΘT
X and µ, λ ∈ On, such that

ω(ξ − η) = µϕ and dϕ(ξ − η) = λϕ,

since ϕ ∈ IX and from the definition of ΘX showed in (1.1). Then, we have(
µϕ

λϕ

)
∈

〈(
Ai

∂ϕ
∂xi

)
: i = 1, . . . , n

〉

and

I2

(
µϕ A1 · · · An

λϕ ∂ϕ
∂x1

· · · ∂ϕ
∂xn

)
= I2

(
A1 · · · An

∂ϕ
∂x1

· · · ∂ϕ
∂xn

)
= (ω, dϕ),
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where I2(B) is denoted as the ideal in the ring On generated by the 2× 2 minors of
the matrix B. Therefore, ∣∣∣∣∣∣∣∣

µ Ai

λ
∂ϕ

∂xi

∣∣∣∣∣∣∣∣ϕ ∈ (ω, dϕ).

Now, from the non-invariance hypothesis, we have that ϕ is regular in
On

(ω, dϕ)
, which

means ϕ is not a zero divisor in
On

(ω, dϕ)
. Thus,

∣∣∣∣∣∣∣∣
µ Ai

λ
∂ϕ

∂xi

∣∣∣∣∣∣∣∣ ∈ (ω, dϕ), i = 1, . . . , n.

By Lemma 2.2.2, λ ∈ J(ϕ), since λ ∈M and M ′ = J(ϕ). We finish the proof using
[59, Lemma 3.1], that states the following:

Lemma 2.2.4. Let ϕ : (Cn, 0) → (C, 0) be an analytic germ with isolated singular-
ity and let X = ϕ−1(0). Assume that η ∈ ΘX and dϕ(η) = λϕ, for some ϕ ∈ On.
Then η ∈ ΘT

X if, and only if λ ∈ J(ϕ).

Then, ξ ∈ ΘT
X , and then ξ +ΘT

X ∈ ΘT
X . Hence, ker(Ψ) = ΘT

X .

(ii) Let ξ ∈ ω(ΘX) ∩ IX . Then, there exist η ∈ ΘX and µ, λ ∈ On such that

ξ = ω(η) = µϕ and dϕ(η) = λϕ,

again by the definition of ΘX . Using a similar argument as in the proof of (i), we
have that µ ∈ (ω). Hence, ξ ∈ (ω) ∩ IX . Conversely, let ξ ∈ (ω) ∩ IX . Then, there
exist α1, . . . , αn, µ ∈ On such that

ξ =
n∑

i=1

µϕαiAi,

since (ω) = ⟨A1, . . . , An⟩ and IX = ⟨ϕ⟩. Taking

η =
n∑

i=1

µϕαi
∂

∂xi
∈ ΘX ,

we obtain ω(η) = ξ, which means that ξ ∈ ω(ΘX), and then, ξ ∈ ω(ΘX) ∩ IX .

(iii) Consider the following module isomorphism, from [5, Proposition 2.1 (ii)]:

M1 +M2

M1

∼=
M2

M1 ∩M2

.
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Then, if M1 = ω(ΘX) and M2 = IX , and using item (ii), we have

ω(ΘX) + IX
ω(ΘX)

∼=
IX

ω(ΘX) ∩ IX
=

IX
(ω) ∩ IX

∼=
On

(ω)
,

and the last step follows from the isomorphism

φ :
⟨ϕ⟩

(ω) ∩ ⟨ϕ⟩
−→ On

(ω)

sϕ+ (ω) ∩ ⟨ϕ⟩ 7−→ s+ (ω)
.

It is not difficult to see that φ is well-defined. Moreover, consider g ∈ kerφ. Then,

g = g0ϕ + (ω) ∩ ⟨ϕ⟩ ∈ ⟨ϕ⟩
(ω) ∩ ⟨ϕ⟩

, and φ(g) = 0 in
On

(ω)
, i. e., g0 ∈ (ω). With that,

g0ϕ ∈ (ω) ∩ ⟨ϕ⟩, and then g ≡ 0 in
⟨ϕ⟩

(ω) ∩ ⟨ϕ⟩
, which means that φ in injective. On

the other hand, consider f ∈ On

(ω)
. Taking fϕ+ (ω) ∩ ⟨ϕ⟩ ∈ ⟨ϕ⟩

(ω) ∩ ⟨ϕ⟩
, we have

φ(fϕ+ (ω) ∩ ⟨ϕ⟩) = f + (ω),

giving us that φ is surjective.

Remark 2.2.5. Let X = {ϕ = 0} be a germ of a complex analytic hypersurface with an
isolated singularity at 0 ∈ Cn. By (1.12), we have

dimC
ΘX

ΘT
X

= τ0(X).

Therefore, by Theorem 2.2.3 (i), we have

dimC
ω(ΘX) + IX
ω(ΘT

X) + IX
= dimC

ΘX

ΘT
X

= τ0(X).

With two similar definitions, a natural question arises: is it possible to show a relation
connecting the indices µBR(ω,X) and µ−

BR(ω,X)? With that in mind, we enunciate the
following theorem:

Theorem 2.2.6. Let ω be a germ of a holomorphic 1-form with an isolated singularity at
0 ∈ Cn, n ≥ 2, and let X be a germ of a complex analytic hypersurface with an isolated
singularity at 0 ∈ Cn. Assume that X is not invariant by ω. Then

µBR(ω,X) = µ0(ω) + µ−
BR(ω,X).

Proof. From Theorem 2.2.3 (iii), we have

µ0(ω) = dimC
On

(ω)
= dimC

ω(ΘX) + IX
ω(ΘX)

.
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Hence, by the following sequence

0 −→ ω(ΘX) + IX
ω(ΘX)

−→ On

ω(ΘX)
−→ On

ω(ΘX) + IX
−→ 0,

which is easy to see that it is an exact sequence (this will also be shown in Lemma 3.0.2),
we conclude the proof of the theorem, since

µBR(ω,X) = dimC
On

ω(ΘX)

= dimC
ω(ΘX) + IX
ω(ΘX)

+ dimC
On

ω(ΘX) + IX

= µ0(ω) + µ−
BR(ω,X).

Example 2.2.7. In Example 2.1.6, we have ω = zdx + xdy + ydz, and X = {ϕ =

x3 + yz2 + y3 + xy4 = 0}, with µBR(ω,X) = 14 and µ0(ω) = 1. Computing the relative
Bruce-Roberts number using Singular [24], we have

µ−
BR(ω,X) =

O3

ω(ΘX) + (x3 + yz2 + y3 + xy4)
= 13.

Therefore, note that µ−
BR(ω,X) = µBR(ω,X)−µ0(ω), that indeed satisfies Theorem 2.2.6.

Remark 2.2.8. If we take ω = df in the Theorem 2.2.6, we recover the formula

µBR(f,X) = µ0(f) + µ−
BR(f,X)

of [48, Section 3], that we showed in (1.22).

With that remark, we have a corollary that gives a relation between the Milnor num-
bers of two functions and the Bruce-Roberts numbers of the product of these functions
in dimension two.

Corollary 2.2.9. Let X be an isolated hypersurface singularity, and let f, g ∈ O2 such
that fg has an isolated singularity over (X, 0). Then

µBR(fg,X) = µ0(f) + µ0(g) + 2i0(f, g) + µ−
BR(fg,X)− 1,

where i0(f, g) is the intersection multiplicity of the pair (f, g).

Proof. Consider Y defined by Y = (fg)−1(0). Taking ω = d(fg) in Theorem 2.2.6, we
have

µBR(fg,X) = µ0(fg) + µ−
BR(fg,X).

The proof is concluded by rewriting the Milnor number µ0(fg) as

µ0(fg) = µ0(f) + µ0(g) + 2i0(f, g)− 1,

as seen in (1.9).
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Corollary 2.2.10. Let ω be a germ of a holomorphic 1-form with an isolated singularity
at 0 ∈ Cn, n ≥ 2, and let X be a germ of a complex analytic hypersurface with an isolated
singularity at 0 ∈ Cn. Assume that X is not invariant by ω. Then

µ−
BR(ω,X) = IndGSV(ω;X, 0)− τ0(X).

Proof. The proof follows from Theorem 2.1.3 and Theorem 2.2.6.

In our last result evolving the relative Bruce-Roberts number of a foliation, we recover
[48, Theorem 2.5]. We remark that an equivalent result was enounced in Theorem 1.2.56.

Corollary 2.2.11. Let X be a germ of a complex analytic hypersurface with an isolated
singularity at 0 ∈ Cn defined by ϕ : (Cn, 0) → (C, 0) and f ∈ On be a function germ such
that µBR(f,X) <∞. Then (ϕ, f) defines an ICIS and

µ0(ϕ, f) = µ−
BR(f,X) + τ0(X)− µ0(X).

Proof. Consider the 1-form ω given by ω = df . By Corollary 2.2.10, we have

µ−
BR(df,X) = IndGSV(df ;X, 0)− τ0(X)

The proof follows by applying the Lê-Greuel formula (see equality (1.19)), and then

µ0(ϕ, f) = IndGSV(df ;X, 0)− µ0(X) = µ−
BR(f,X) + τ0(X)− µ0(X).

2.3 The Bruce-Roberts Number for Foliations on (C2, 0)

In this section, our main goal is to show how Theorem 2.1.3 and some results of
Section 2.2 work in dimension two. Since a holomorphic 1-form in (C2, 0) can be seen as
a foliation, we may be able to see, for example, what happens with the Bruce-Roberts
number of a foliation after a blow-up. Intuitively, the Bruce-Roberts number of a singular
foliation F at (C2, 0) over a germ of a reduced curve X is defined by

µBR(F , X) := dimC
O2

ω(ΘX)
,

where ω is the germ of the 1-form defining F . It is worth noting that this definition does
not depend on the choice of the 1-form ω.

The first result of this section is a version of Theorem 2.1.3 when n = 2, and it is
established as follows:

Corollary 2.3.1. Let F be a germ of a singular foliation at (C2, 0), and let X be a germ
of a reduced curve at (C2, 0). Assume that X is not invariant by F . Then

µBR(F , X) = µ0(F) + tang(F , X, 0)− τ0(X). (2.6)
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Proof. Consider the foliation F defined by the 1-form ω = Adx+B dy, where A,B ∈ O2.
Let X be the complex analytic curve defined by the function ϕ : (C2, 0) → (C, 0). From
equation (1.17) it follows that

IndGSV(ω;X, 0) = dimC
O2〈

ϕ,B ∂ϕ
∂x

− A∂ϕ
∂y

〉 .
The vector field v generating F is given by v = −B ∂

∂x
+ A ∂

∂y
. Therefore, by definition,

tang(F , X, 0) = dimC
O2

⟨ϕ, v(ϕ)⟩
= dimC

O2〈
ϕ,−B ∂ϕ

∂x
+ A∂ϕ

∂y

〉 = IndGSV(ω;X, 0).

Hence, by Theorem 2.1.3,

µBR(F , X) = tang(F , X, 0) + µ0(F)− τ0(X).

To proceed, we present some illustrative examples:

Example 2.3.2. Consider the curve X given by X = {ϕ = yp − xq = 0}, and let F be a
foliation defined by the 1-form ω = λxdy+ ydx, with λ ̸= −p

q
. Then, by [35, Example 1],

we have:

ΘX =

〈
qy

∂

∂y
+ px

∂

∂x
, pyp−1 ∂

∂x
+ qxq−1 ∂

∂y

〉
.

Note that X is not invariant by F , since

ω ∧ dϕ = (λxdy + ydx) ∧ (pyp−1dy − qxq−1dx) = (pyp + λqxq) dx ∧ dy

and λ ̸= −p
q
. Thus, we have

• µ0(F) = dimC
O2

⟨A,B⟩
= dimC

O2

⟨y, λx⟩
= 1;

• tang(F , X, 0) = dimC
O2

⟨ϕ, ϕxB − ϕyA⟩
= dimC

O2

⟨yp − xq,−qλxq − pyp⟩
= pq;

• τ0(X) = dimC
O2

⟨ϕ, ϕx, ϕy⟩
= dimC

O2

⟨yp − xq,−qxq−1, pyp−1⟩
= (p− 1)(q − 1).

Computing the Bruce-Roberts number in this case, we find

µBR(F , X) = dimC
O2

ω(ΘX)
= dimC

O2

⟨λqxy + pxy, pyp + qλxq⟩
= p+ q,

which indeed satisfies equation (2.6).
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Example 2.3.3. Let X be a curve given by X = {ϕ = y5 − x6 + x4y3} (see [35, Example
2]) and F be a foliation defined by the 1-form ω = xdy + ydx. Since

ω ∧ dϕ = (xdy + ydx) ∧ ((−6x5 + 4x3y3)dx+ (5y4 + 3x4y2)dy)

= (5y5 + 6x6 − x4y3) dx ∧ dy,

it follows that X is not F -invariant. Again, note that (2.6) applies, since computations
(using Singular [24]) show us that µ0(F) = 1, tang(F , X, 0) = 30, τ0(X) = 19 and
µBR(F , X) = 12.

Example 2.3.4 (Topologically Conjugate Foliations). In [19, Remarque 4.22], it is defined
that two foliations are topologically conjugate if there exists a homeomorphism sending
leaves from one foliation to another (which also means the topological invariance of these
two foliations, as stated in Subsection 1.2.1). In this example, we are going to compute
the Bruce-Roberts number of two topologically conjugate foliations.

First, let’s consider two holomorphic vector fields in (C2, 0) given by

V1 = x
∂

∂x
− y

∂

∂y
, V2 = (x− 4y3)

∂

∂x
− y

∂

∂y
. (2.7)

Now, consider F1 and F2 the two foliations defined by V1 and V2, respectively (as shown
in (1.4)). We recur to [19, Section 2.7.4] for a way to describe the leaves of F1 and F2,
according to its vector fields. Thus, the leaves of F1 passing through (x0, y0) can be
described by the parametrization

φ(t, (x0, y0)) = (x0e
t, y0e

−t),

and the leaves of F2 passing through (x0, y0) can be described by

ψ(t, (x0, y0)) = (y30e
−3t + (x0 − y30)e

t, y0e
−t).

Now, consider the homeomorphism

h : C2 −→ C2

(x, y) 7−→ (x+ y3, y)
.

With that, we have

h(φ(t, (x0, y0))) = h(x0e
t, y0e

−t)

= (x0e
t + y30e

−3t, y0e
−t)

and

ψ(t, h(x0, y0)) = ψ(t, (x0 + y30, y0))

= (y30e
−3t + ((x0 + y30)− y30)e

t, y0e
−t)

= (y30e
−3t + x0e

t, y0e
−t).
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Thus, h(φ(t, (x0, y0))) = ψ(t, h(x0, y0)) and then F1 and F2 are topologically conjugate.
From (2.7), we have that F1 and F2 are also defined by

ω1 = ydx+ xdy, ω2 = ydx+ (x− 4y3)dy,

respectively. Now, consider the curve X given by X = {ϕ = y3 − x2 = 0}, that is not
invariant by F1 or F2 since

ω1 ∧ dϕ = (3y3 + 2x2)dx ∧ dy,
ω2 ∧ dϕ = (3y3 + 2x2 − 8xy3)dx ∧ dy.

Computing the Bruce-Roberts number for both foliations, we have that µBR(F1, X) =

µBR(F2, X) = 5.

Example 2.3.5. Consider the foliation Fω (Suzuki’s foliation) defined by the 1-form

ω = (y3 + y2 − xy)dx− (2xy2 + xy − x2)dy,

and the foliation Fη defined by the 1-form

η = (2y2 + x3)dx− 2xydy.

The foliations Fω and Fη are topologically conjugate ([21, Part 3, Chapter II]). Using
the curve X from Example 2.3.2, with p = 7 and q = 3, i.e., X = {ϕ = 0}, with ϕ =

y7−x3, we have µBR(Fω, X) = µBR(Fη, X) = 17, µ0(Fω) = µ0(Fη) = 5, tang(Fω, X, 0) =

tang(Fη, X, 0) = 24, and τ0(X) = 12. Thus, for both foliations, (2.6) is satisfied.

Remark 2.3.6. The calculations that we could not do by hand were made by making
use of the software Singular, which we refer to in [24]. We are going to take the codes
used in Example 2.3.3 to illustrate how we managed to calculate the index used in this
chapter:

> ring r=0,(x,y),ds; // local ring
> poly f=y5-x6+x4y3; // polynomial that defines X
> ideal I1=(x,y); // defining the ideals that appear in each index
> ideal I2=(f,-6x6+x4y3-5y5);
> ideal I3=(f,-6x5+4x3y3,5y4+3x4y2);
> ideal I4=(165x2y+20y4+36x2y5-16x4y2,55xy2+18x3y3-8x5);

> size(kbase(groebner(I1)));
1 // Milnor number of the foliation

> size(kbase(groebner(I2)));
30 // tangency order of the folation
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> size(kbase(groebner(I3)));
19 // Tjurina number of X

> size(kbase(groebner(I4)));
12 // Bruce-Roberts number of the foliation

2.3.1 The Bruce-Roberts number of a foliation and blow-ups

When it comes to foliations in dimension two, it’s possible to think about what happens
when a blow-up is applied. In this part of our work, the idea is to use the definitions
of Subsection 1.1.2 and see what happens when we apply Corollary 2.3.1. In that case,
we are going to work with irreducible curves X, that can be parametrized by a germ
of a non-constant morphism φ : (C, 0) → (C2, 0), called a Puiseux parametrization of
X. In short terms, a Puiseux parametrization is a germ of a non-constant morphism
φ : (C, 0) → (C2, 0) that parameterizes a curve X. To make sure that X has such a
parametrization, it is demanded that X is an irreducible curve (see [19, Section 1.4.3]
for more details). This concept will be very useful from now on, as seen in the next
proposition:

Proposition 2.3.7. Let F be a germ of a singular foliation at (C2, 0), and let X be a
germ of a reduced curve at (C2, 0) defined by ϕ : (C2, 0) → (C, 0). Suppose that X is
irreducible and not invariant by F . Then

tang(F , X, 0) = ordt=0 φ
∗ω + µ0(X),

where φ is a Puiseux parametrization of X.

Proof. Suppose that F is defined by the vector field v = −B(x, y) ∂
∂x

+ A(x, y) ∂
∂y

. Then,
it follows from Definition 1.1.13 that

tang(F , X, 0) = ordt=0 φ
∗(Aϕy −Bϕx),

where φ(t) = (x(t), y(t)) is a Puiseux parametrization of X. Without loss of generality,
we can suppose that y(t) ̸= 0. Since ϕ(x(t), y(t)) = 0, we obtain

x′(t) ϕx(x(t), y(t)) + y′(t) ϕy(x(t), y(t)) = 0

⇒ ϕy(x(t), y(t)) = −x
′(t)ϕx(x(t), y(t))

y′(t)
.
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Hence,

φ∗(Aϕy −Bϕx) = (Aϕy −Bϕx)(x(t), y(t))

= A(x(t), y(t))ϕy(x(t), y(t))−B(x(t), y(t))ϕx(x(t), y(t))

= A(x(t), y(t))

(
−x

′(t)ϕx(x(t), y(t))

y′(t)

)
−B(x(t), y(t))ϕx(x(t), y(t))

= −ϕx(x(t), y(t))

y′(t)

(
x′(t)A(x(t), y(t)) + y′(t)B(x(t), y(t))

)
= −ϕx(x(t), y(t))

y′(t)
[φ∗ω](t) =

−φ∗(ϕx)(t) · φ∗ω(t)

y′(t)

= −φ
∗(ϕx · ω)(t)
y′(t)

.

Thus, we get

tang(F , X, 0) = ordt=0 φ
∗(Aϕy −Bϕx)

= ordt=0 (Aϕy −Bϕx)(x(t), y(t))

= ordt=0 −
φ∗(ϕx · ω)(t)

y′(t)

= ordt=0 φ
∗(ϕx · ω)− ordt=0 y

′(t)

= ordt=0 φ
∗(ϕx · ω)− ordt=0 y(t) + 1

= ordt=0 φ
∗ϕx + ordt=0 φ

∗ω − ordt=0 y(t) + 1.

(2.8)

Now, from Proposition 1.2.10, we obtain

µ0(X) = i0(ϕ,Pl(ϕ))− i0(ϕ, l) + 1, (2.9)

where Pl(ϕ) =
∂ϕ

∂x

∂l

∂y
− ∂ϕ

∂y

∂l

∂x
is the polar of X with respect to l = ay − bx ∈ C{x, y},

assuming that l does not divide f , as defined in Definition 1.2.9. Let l = ay − bx.
Computing the items on the right side of (2.9), we have

i0(ϕ,Pl(ϕ)) = ordt=0 φ
∗(aϕx + bϕy)

= ordt=0 (aϕx(x(t), y(t)) + bϕy(x(t), y(t)))

= ordt=0

(
aϕx(x(t), y(t))−

bϕx(x(t), y(t))x
′(t)

y′(t)

)
= ordt=0

(
aϕx(x(t), y(t))y

′(t)− bϕx(x(t), y(t))x
′(t)

y′(t)

)
= ordt=0

(
ϕx(x(t), y(t))

y′(t)
(ay′(t)− bx′(t))

)
= ordt=0 φ

∗ϕx + ordt=0 (ay′(t)− bx′(t))− ordt=0 y
′(t)

= ordt=0 φ
∗ϕx +min{ordt=0 y(t), ordt=0 x(t)} − ordt=0 y(t),
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and

i0(ϕ, l) = ordt=0 φ
∗(ay − bx)

= ordt=0 (ay(t)− bx(t))

= min{ordt=0 y(t), ordt=0 x(t)}.

Finally, by rewriting (2.8) using that and (2.9), we get

tang(F , X, 0) = ordt=0 φ
∗ω + ordt=0 φ

∗ϕx − ordt=0 y(t) + 1

= ordt=0 φ
∗ω + i0(ϕ,Pl(ϕ))− i0(ϕ, l) + 1

= ordt=0 φ
∗ω + µ0(X).

Remark 2.3.8. Let X = {ϕ = 0} be a germ of an irreducible reduced curve and f ∈ O2

is a germ with an isolated singularity over (X, 0). Note that applying Proposition 2.3.7
to foliation F : ω = df , we obtain an expression to compute the Milnor number of the
isolated complete intersection singularity defined by (ϕ, f). Indeed, it follows from (1.19)
that

ordt=0 φ
∗ω + µ0(X) = tang(F , X, 0) = IndGSV(df ;X, 0) = µ0(X) + µ0(ϕ, f).

Hence, µ0(ϕ, f) = ordt=0 φ
∗(df), where φ is a Puiseux parametrization of X.

On the following proposition, we show how the Bruce-Roberts number in dimension
two behaves under a blow-up. We denote by µBR(F , X, p) the Bruce-Roberts number of
F along X around a neighborhood of the point p (in Corollary 2.3.1, for example, it is
defined around 0 ∈ C2).

Proposition 2.3.9. Let F be a germ of a singular holomorphic foliation at (C2, 0), let
X be a germ of an irreducible reduced curve and let π : C̃2 → (C2, 0) be the blow-up at
(C2, 0). Assume that X is not invariant by F , F̃ := π∗F , and q ∈ π−1(0) ∩ X̃, where F̃
and X̃ are the strict transforms of F and X respectively. Denote by m the multiplicity
of X and by ν the algebraic multiplicity of the foliation F at 0 ∈ C2. Then, we have the
following statements:

(a) If π is non-dicritical, then

µBR(F , X, 0) = µBR(F̃ , X̃, q) + ν2 − ν − 1 + νm

+
∑

p∈π−1(0)
p ̸=q

µp(F̃) +
m(m− 1)

2
−D.

(b) If π is dicritical, then

µBR(F , X, 0) = µBR(F̃ , X̃, q) + ν2 + ν − 1 + (ν + 1)m

+
∑

p∈π−1(0)
p ̸=q

µp(F̃) +
m(m− 1)

2
−D.
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We write D = dimC
σ̃∗ΩX̃

σ∗ΩX

, where σ̃ : (X, 0) → (X̃, 0) is the normalization, and

σ = π ◦ σ̃.

Proof. Let ω be the 1-form defining F and let ω̃ be the 1-form defining F̃ . Applying
Proposition 2.3.7 to the Corollary 2.3.1, we have

µBR(F , X, 0) = µ0(F) + ordt=0 φ
∗ω + µ0(X)− τ0(X) (2.10)

and similarly,

µBR(F̃ , X̃, q) = µq(F̃) + ordt=q φ̃
∗ω̃ + µq(X̃)− τq(X̃),

where φ and φ̃ are the Puiseux parametrization of X and X̃, respectively.
The proof is obtained using results that show how the indexes on the right side of

equation (2.10) change through a blow-up. By Proposition 1.2.14, we have

µ0(F) =


ν2 − (ν + 1) +

∑
p∈π−1(0)

µp(F̃) if π is non-dicritical;

(ν + 1)2 − (ν + 2) +
∑

p∈π−1(0)

µp(F̃) if π is dicritical.

and, from (1.11) and (1.13), we have

µ0(X)− µq(X̃) = m(m− 1) and τ0(X)− τq(X̃) =
m(m− 1)

2
+D.

Now, from [32, Section 2], evaluating the 1-form that defines F̃ in φ̃ and taking orders,
we get

ordt=0 φ
∗ω =

{
νm+ ordt=q φ̃

∗ω̃ if π is non-dicritical;
(ν + 1)m+ ordt=q φ̃

∗ω̃ if π is dicritical.

Substituting the above formulas into (2.10), we conclude the proof of the Proposition.

The following examples illustrate Proposition 2.3.9 in both the critical and dicritical
cases.

Example 2.3.10. Let F be a foliation defined by the 1-form ω = 2xdy − 3ydx, and let
X be the curve given by X = {ϕ = y2 − x5 = 0}. Observe that X is not invariant by F .
If π is a blow-up at 0 ∈ C2, in local coordinates, we have

F̃1 = π∗F = x(−tdx+ 2xdt) and

F̃2 = π∗F = y(−3ydu− udy),

where F̃1 is obtained using the local chart π(x, t) = (x, tx), and F̃2 is obtained using the
local chart π(u, y) = (uy, y). Now, we consider X̃ = {t2 − x3 = 0}, since

ϕ ◦ π(x, t) = ϕ(x, tx) = x2(t2 − x3).
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Since X̃ is not invariant by F̃1, set F̃ = F̃1. Thus, F̃ is defined by the 1-form ω̃, given by

ω̃ = −tdx+ 2xdt.

Using Singular ([24]), we get µBR(F , X, 0) = 7, µBR(F̃ , X̃, q) = 5, ν = 1, m = 2,∑
p∈π−1(0)

p ̸=q

µp(F̃) = µ0(F̃2) = 1 and D = 1. Note that

µBR(F , X, 0) = µBR(F̃ , X̃, q) + ν2 − ν − 1 + νm+ µ0(F̃2) +
m(m− 1)

2
−D

= 5 + 1− 1− 1 + 2 · 1 + 1 + 1− 1 = 7.

Since π is non-dicritical, item (a) of Proposition 2.3.9 is satisfied.

Example 2.3.11. Consider the foliation F defined by the 1-form

ω = (2x7 + 5y5)dx− xy2(5y2 + 3x5)dy,

and let X be the curve not invariant by F given by X = {ϕ = y3 − x7 = 0}. Again, by
the local of the coordinates of the blow-up π at 0 ∈ C2, we have

F̃1 = π∗F = x5(−t3dx− (2xt2 + t− 1)dt) and

F̃2 = π∗F = y5((y + 1− u)du− udy),

where F̃1 and F̃2 are obtained using the local charts π(x, t) = (x, tx) and π(u, y) = (uy, y),
respectively. Set X̃ = {t3 − x4 = 0}, since

ϕ ◦ π(x, t) = ϕ(x, tx) = x3(t3 − x4).

Since X̃ is not invariant by F̃1, set F̃ = F̃1. In that way, F̃ is defined by the 1-form

ω̃ = −t3dx− (2xt2 + t− 1)dt.

Again, by Singular [24], we obtain µBR(F , X, 0) = 56, µBR(F̃ , X̃, q) = 9, ν = 5,
m = 3,

∑
p∈π−1(0)

p ̸=q

µp(F̃) = µ0(F̃2) = 0 and D = 3. Then,

µBR(F , X, 0) = µBR(F̃ , X̃, q) + ν2 + ν − 1 + (ν + 1)m+ µ0(F̃2) +
m(m− 1)

2
−D

= 9 + 25 + 5− 1 + 6 · 3 + 0 + 3− 3 = 56.

Since π is dicritical, item (b) of Proposition 2.3.9 is satisfied.

Remark 2.3.12. In both examples showed above, the computation of D = dimC
σ̃∗ΩX̃

σ∗ΩX
is not trivial, neither by hand nor by Singular. To compute that number, we turned to
[72, Section 2], and used some properties. By (1.14), we have that

D =

(
τ0(X)− µ0(X)

2

)
−

(
τ0(X̃)− µ0(X̃)

2

)
.



Chapter 2. The Bruce-Roberts Number for Holomorphic 1-Forms 70

Now, we can calculate the value of D since we know that, when a curve C is defined by
a equation written as yp − xq = 0, we have µ0(C) = τ0(C) = (p − 1)(q − 1). Then, for
Example 2.3.10, we have

D =

(
τ0(X)− µ0(X)

2

)
−

(
τ0(X̃)− µ0(X̃)

2

)
= (4− 2)− (2− 1) = 1,

and for Example 2.3.11, we have

D =

(
τ0(X)− µ0(X)

2

)
−

(
τ0(X̃)− µ0(X̃)

2

)
= (12− 6)− (6− 3) = 3.

2.3.2 The relative Bruce-Roberts number for foliations on (C2, 0)

The relative Bruce-Roberts number for foliations can be defined in a similar way as
we did in this section, using the same characterization of foliations in dimension two. In
that way, the relative Bruce-Roberts number of the foliation F , defined by the 1-form ω

with respect to X is given by

µ−
BR(F , X) = dimC

O2

ω(ΘX) + IX
,

where ω is a germ of a holomorphic 1-form with isolated singularity at (C2, 0) defin-
ing F and X is a complex analytic germ with isolated singularity at (C2, 0). Now, for
holomorphic foliations on (C2, 0), Theorem 2.2.6 can be stated as follows:

Corollary 2.3.13. Let F be a germ of a singular holomorphic foliation at 0 ∈ C2. Let
X be a germ of a reduced curve at 0 ∈ C2. Assume that X is not invariant by F . Then

µBR(F , X) = µ0(F) + µ−
BR(F , X).

The following examples, inspired by our previous examples in dimension two, illustrate
Corollary 2.3.13:

Example 2.3.14. We can use Singular [24] to compute the relative Bruce-Roberts num-
ber for the previous examples:

• In Example 2.3.2, we have F : ω = λxdy + ydx = 0, λ ̸= −p/q, and X = {ϕ =

yp − xq = 0}. As we needed numerical examples, for λ = 1, we have

µ−
BR(F , X) = 6, when p = 2 and q = 5, and

µ−
BR(F , X) = 23, when p = 11 and q = 13.

In both cases, µ−
BR(F , X) = p+ q − 1 = µBR(F , X)− µ0(F).

• In Example 2.3.3, we have F : ω = xdy + ydx, and X = {ϕ = y5 − x6 + x4y3 = 0},
with µBR(ω,X) = 12 and µ0(ω) = 1. Then

µ−
BR(F , X) =

O2

ω(ΘX) + (y5 − x6 + x4y3)
= 11.
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• In Example 2.3.5, we have Fω : ω = (y3 + y2 − xy)dx − (2xy2 + xy − x2)dy = 0,
Fη : η = (2y2+x3)dx− 2xydy = 0 and X = {ϕ = y7−x3 = 0}, with µBR(Fω, X) =

µBR(Fη, X) = 17 and µ0(Fω) = µ0(Fη) = 5. Then

µ−
BR(Fω, X) = µ−

BR(Fη, X) = 12.

In each case, we have µ−
BR(F , X) = µBR(F , X)− µ0(F), satisfying Corollary 2.3.13.

As seen in (1.10), an interesting property for the Milnor number of a foliation F is
given by

µ0(F) ≥ ν(ν + 1)

2
.

As an application of the above inequality, we have the following corollary:

Corollary 2.3.15. Let F be a germ of a singular holomorphic foliation at 0 ∈ C2. Let
X be a germ of a reduced curve at 0 ∈ C2. Assume that X is not invariant by F . Then

µBR(F , X)− µ−
BR(F , X) ≥ ν(ν + 1)

2
,

where ν denotes the algebraic multiplicity of F .

To end this subsection, we present a blow-up formula for the relative Bruce-Roberts
number of a foliation F with respect to a non-invariant curveX. Its proof follows similarly
as the proof of Proposition 2.3.9, using the results presented there together with Corollary
2.3.13.

Corollary 2.3.16. Let F be a germ of a singular holomorphic foliation at (C2, 0), let
X be a germ of an irreducible reduced curve and let π : C̃2 → (C2, 0) be the blow-up at
(C2, 0). Assume that X is not invariant by F , F̃ := π∗F , and q ∈ π−1(0) ∩ X̃, where F̃
and X̃ are the strict transforms of F and X respectively. Denote by m the multiplicity
of X and by ν the algebraic multiplicity of the foliation F at 0 ∈ C2. Then, we have the
following statements:

(a) If π is non-dicritical, then

µ−
BR(F , X, 0) = µ−

BR(F̃ , X̃, q) + νm+
m(m− 1)

2
−D.

(b) If π is dicritical, then

µ−
BR(F , X, 0) = µ−

BR(F̃ , X̃, q) + (ν + 1)m+
m(m− 1)

2
−D.

We write µ−
BR(F , X, p) to denote the relative Bruce-Roberts number around the point p.

Moreover, we have D = dim
σ̃∗ΩX̃

σ∗ΩX

, where σ̃ : (X, 0) → (X̃, 0) is the normalization, and

σ = π ◦ σ̃.
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2.3.3 Generalized curve foliations and the Bruce-Roberts num-
bers

To end this section, we give a characterization of the Bruce-Roberts numbers defined
above with a particular type of foliation. First, we remember that Theorem 1.2.13 -
originally [17, Theorem 4] - enunciated in Section 1.1.2 says that when F is a germ of
non-dicritical foliation at 0 ∈ C2 and C = Sep0(F) is the union of the separatrices of F ,
then

µ0(F) ≥ µ0(C),

and the equality holds if and only if F is a generalized curve foliation. As a consequence
of this and our previous results, we can establish new characterizations of non-dicritical
generalized curve foliations. Since the two next results are direct consequences of Theorem
1.2.13, we announce them as the following corollaries:

Corollary 2.3.17. Let F be a germ of a non-dicritical holomorphic foliation at 0 ∈ C2.
Let X be a germ of a reduced curve at 0 ∈ C2, and C = Sep0(F) = {f = 0} be a reduced
equation of Sep0(F). Assume that X is not invariant by F . Then

µBR(F , X)− µBR(f,X) ≥ µ−
BR(F , X)− µ−

BR(f,X),

and the equality holds if and only if F is a generalized curve foliation.

Proof. The proof follows directly from Theorem 1.2.13, applied to F and f , and Corollary
2.3.13. In fact,

µBR(F , X)− µ−
BR(F , X) = µ0(F) ≥ µ0(C) = µBR(f,X)− µ−

BR(f,X).

Corollary 2.3.18. Let F be a germ of a non-dicritical holomorphic foliation at 0 ∈ C2.
Let X be a germ of a reduced curve at 0 ∈ C2, and C = Sep0(F) = {f = 0} be a reduced
equation of Sep0(F). Assume that X is irreducible and not invariant by F . Then F is a
generalized curve foliation if, and only if

µBR(F , X)− µBR(f,X) = ordt=0 φ
∗ω − ordt=0 φ

∗(df),

where φ is a Puiseux parametrization of X.

Proof. Since X is an irreducible curve, we can recur to (2.10), and then we have

µBR(F , X) = µ0(F) + ordt=0 φ
∗ω + µ0(X)− τ0(X).

On the other hand, Remark 2.3.8 can be used to rewrite the result in Corollary 2.1.4 in
dimension two as

µBR(f,X) = µ0(C) + ordt=0 φ
∗(df) + µ0(X)− τ0(X).

Now, subtracting the two equalities above, we have

µBR(F , X)− µBR(f,X) = µ0(F)− µ0(C) + ordt=0 φ
∗ω − ordt=0 φ

∗(df).

The proof is concluded using the equivalence shown in Theorem 1.2.13.
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2.3.4 Applications to Global Foliations

To finish this chapter, we present some results involving the Bruce-Roberts number
for foliations, in the case that F is a global foliation on a compact complex surface S, as
described in Subsection 1.1.3. Hence, we have our first result:

Theorem 2.3.19. Let F be a holomorphic foliation on a compact complex surface S,
and let X ⊂ S be a compact curve, none of whose components are invariant by F . Then∑

p∈Sing(F)∩X

µBR(F , X, p) = TF · TF + TF ·KS + c2(S) +NF ·X − χ(X)− τ(X),

where χ(X) = −KS ·X−X ·X is the virtual Euler characteristic of X, c2(S) is the second
Chern class of S and τ(X) =

∑
p∈X

τp(X) is the global Tjurina number of X.

Proof. For each p ∈ Sing(F) ∩X, we have

µBR(F , X, p) = µp(F) + tang(F , X, p)− τp(X)

by Corollary 2.3.1. On the other hand, according to Proposition 1.1.20 and Proposition
1.1.21 we get ∑

p∈Sing(F)

µp(F) = TF · TF + TF ·KS + c2(S)

and ∑
p∈Sing(F)∩X

tang(F , X, p) = NF ·X − χ(X).

Hence, we have∑
p∈Sing(F)∩X

µBR(F , X, p) =
∑

p∈Sing(F)∩X

[
µp(F) + tang(F , X, p)− τp(X)

]
=

∑
p∈Sing(F)∩X

µp(F) +
∑

p∈Sing(F)∩X

tang(F , X, p)−
∑

p∈Sing(F)∩X

τp(X)

=TF · TF + TF ·KS + c2(S) +NF ·X − χ(X)− τ(X).

With that in mind, and since µBR(F , X, p) ≥ 0, for all p ∈ Sing(F)∩X, we can obtain
an upper bound for the global Tjurina number of X.

Corollary 2.3.20. Let F be a holomorphic foliation on a compact complex surface S,
and let X ⊂ S be a compact curve, none of whose components are invariant by F . Then

τ(X) ≤ TF · TF + TF ·KS + c2(S) +NF ·X − χ(X).

Example 2.3.21. In the particular case of S = P2
C, F a foliation on P2

C of degree deg(F) =

d, and X ⊂ P2
C an algebraic curve of deg(X) = r, we get

τ(X) ≤ d2 + d+ 1 + r(d+ r − 1).
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In [61, Theorem 3.2], an upper bound for τ(X) is derived under the assumption that
there exists a holomorphic foliation on P2 that leavesX invariant. In contrast, in Corollary
2.3.20, the bound for the global Tjurina number of X is established using a holomorphic
foliation that does not leave X invariant.

On the other hand, since (again by Proposition 1.1.20)∑
p∈Sing(F)

µp(F) = TF · TF + TF ·KS + c2(S),

we have the following corollary, using the difference of the Bruce-Roberts and the relative
Bruce-Roberts numbers, but now globally.

Corollary 2.3.22. Let F be a holomorphic foliation on a compact complex surface S,
and let X ⊂ S be a compact curve, none of whose components are invariant by F . Then∑

p∈Sing(F)∩X

[
µBR(F , X, p)− µ−

BR(F , X, p)
]
= TF · TF + TF ·KS + c2(S).

Proof. The proof follows immediately by taking sums in Corollary 2.3.13.
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Chapter 3

The Bruce-Roberts Tjurina Number for
Holomorphic 1-Forms

In this chapter, our main goal is to define a version of the Tjurina number for foliations,
first defined in [7]. As in the previous chapter, the idea is to generalize an existing
index and check which properties and results can be obtained. The inspiration for this
definition is the Bruce-Roberts Tjurina number τBR(f,X) of a function f along X, defined
by Ahmed-Ruas and Bivià-Ausina–Ruas, and defined in Definition 1.2.58. The idea of
our index also came after studying the Bruce-Roberts number defined in (2.1), and can
be seen in the following definition:

Definition 3.0.1. Let (X, 0) denote the germ of a complex analytic variety at (Cn, 0),
and let ω be the germ of a holomorphic 1-form with isolated singularity at (Cn, 0). Let
V be a germ of a complex analytic hypersurface with an isolated singularity at 0 ∈ Cn

invariant by ω. The Bruce-Roberts Tjurina number of ω relative to the pair (X, V ) is
defined as

τBR(ω,X, V ) := dimC
On

ω(ΘX) + IV
,

where IV is the ideal of germs of holomorphic functions vanishing on (V, 0).

Observe that if ω = df is an exact holomorphic 1-form with an isolated singularity at
0 ∈ Cn, then V = {f = 0} is a complex analytic hypersurface invariant by ω, and

τBR(df,X, V ) = dimC
On

df(ΘX) + IV
= dimC

On

df(ΘX) + ⟨f⟩
= τBR(f,X). (3.1)

In other words, τBR(df,X, V ) coincides with the Bruce-Roberts Tjurina number of f along
X. In this case, when X = Cn, we can also note that

τBR(df,Cn, V ) = dimC
On

df(ΘCn) + IV
= dimC

On〈
∂f
∂x1
, . . . , ∂f

∂xn
, f
〉 = τ0(V )

is the classical Tjurina number of V .
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Before we state our main theorem, we’re gonna need some important results. First,
we enunciate two lemmas regarding commutative algebra, both of them inspired by [5,
Proposition 2.1].

Lemma 3.0.2. Let A be a ring. If L ⊇M ⊇ N are A-modules, then

0 −→ M

N
−→ L

N
−→ L

M
−→ 0

is an exact sequence.

Proof. By the proof of [5, Proposition 2.1 (i)], θ : L/N → L/M , defined by θ(x + N) =

x +M , is a well-defined A-module isomorphism, whose kernel is M/N . Since N ⊆ M ,
it’s easy to see that θ is surjective. Now, induced by the inclusion M ⊆ L, we define
α :M/N → L/N as α(x+N) = x+ L. We have that α is injective, and Im(α) =M/N .
The proof concludes by writing

0 −→ M

N

α−→ L

N

θ−→ L

M
−→ 0.

Lemma 3.0.3. Let A be a ring and M1,M2 and M3 be submodules of an A-module M ,
with M3 ⊂M2. Then

M1 +M2

M1 +M3

∼=
M2

M3 + (M1 ∩M2)
.

Proof. By [5, Proposition 2.1 (ii)], we have

M1 +M2

M1

∼=
M2

M1 ∩M2

. (3.2)

Since M3 ⊂M2, the proof ends by substituting M1 with M1 +M3.

Inspired by the definition given in (1.16), we introduce a new version of the GSV-index
for a pair (X, V ):

Definition 3.0.4. Let X = ϕ−1(0) be an ICIS at 0 ∈ Cn, defined by ϕ = (ϕ1, . . . , ϕk),
and let V = {f = 0} be an isolated complex hypersurface invariant by ω. Assume that X
is not invariant by ω. The GSV -index of ω with respect to the pair (X, V ) is defined by:

IndGSV(ω;X, V, 0) := dimC
On

IX + Ik+1

(
ω

dϕ

)
+ ⟨f⟩

. (3.3)

The next result was given in [49, Corollary 3.7], giving another characterization of the
Milnor number when the Bruce-Roberts number defined in Definition 2.0.1 is finite.

Proposition 3.0.5. If ω is a holomorphic 1-form at 0 ∈ Cn and (X, 0) is an ICIS such
that µBR(ω,X) <∞, then

τ0(X) = dimC
ΘX

ΘT
X

= dimC
ω(ΘX)

ω(ΘT
X)
. (3.4)
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3.1 Main Results

Finally, we can enunciate our main theorem.

Theorem 3.1.1. Let ω be a germ of a holomorphic 1-form with isolated singularity at
(Cn, 0). Suppose that the pair (X, V ) are isolated complex analytic hypersurfaces at
0 ∈ Cn, V is invariant by ω and X is not invariant by ω. Then

τBR(ω,X, V ) = IndGSV(ω;X, V, 0) + τ0(ω, V )− τ0(X) + dimC
ω(ΘX) ∩ IV
ω(ΘT

X) ∩ IV
,

where ΘT
X is the submodule of ΘX of trivial vector fields.

Proof. Consider the following sequence of C-vector spaces:

0 −→ ω(ΘX) + IV
ω(ΘT

X) + IV

α−→ On

ω(ΘT
X) + IV

β−→ On

ω(ΘX) + IV
−→ 0. (3.5)

Since ω(ΘT
X)+IV ⊆ ω(ΘX)+IV ⊆ On, note that (3.5) is an exact sequence, using Lemma

3.0.2. The exactness of the sequence implies that

τBR(ω,X, V ) = dimC
On

ω(ΘT
X) + IV

= dimC
On

ω(ΘT
X) + IV

− dimC
ω(ΘX) + IV
ω(ΘT

X) + IV
. (3.6)

To compute dimC
ω(ΘX) + IV
ω(ΘT

X) + IV
, we apply Lemma 3.0.3 with M1 = IV , M2 = ω(ΘX),

and M3 = ω(ΘT
X), giving us:

ω(ΘX) + IV
ω(ΘT

X) + IV
∼=

ω(ΘX)

ω(ΘT
X) + (ω(ΘX) ∩ IV )

.

Using again Lemma 3.0.2, with the exact sequence

0 −→ ω(ΘT
X) + (ω(ΘX) ∩ IV )

ω(ΘT
X)

−→ ω(ΘX)

ω(ΘT
X)

−→ ω(ΘX)

ω(ΘT
X) + (ω(ΘX) ∩ IV )

−→ 0,

we deduce

dimC
ω(ΘX) + IV
ω(ΘT

X) + IV
= dimC

ω(ΘX)

ω(ΘT
X)

− dimC
ω(ΘT

X) + (ω(ΘX) ∩ IV )
ω(ΘT

X)
. (3.7)

Now, using (3.2) to rewrite
ω(ΘT

X) + (ω(ΘX) ∩ IV )
ω(ΘT

X)
, we have

ω(ΘT
X) + (ω(ΘX) ∩ IV )

ω(ΘT
X)

∼=
ω(ΘX) ∩ IV

ω(ΘT
X) ∩ (ω(ΘX) ∩ IV )

=
ω(ΘX) ∩ IV
ω(ΘT

X) ∩ IV
. (3.8)

Substituting (3.8) into equation (3.7), we obtain
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dimC
ω(ΘX) + IV
ω(ΘT

X) + IV
= dimC

ω(ΘX)

ω(ΘT
X)

− dimC
ω(ΘX) ∩ IV
ω(ΘT

X) ∩ IV
. (3.9)

Now, suppose X = {ϕ = 0}, V = {f = 0}, and ω =
n∑

j=1

Aj(x)dxj. By Proposition

1.0.3 we have that

ω(ΘT
X) = Ik+1

(
ω

dϕ

)
+ ⟨ϕi · Aj, i = 1, . . . , k, j = 1, . . . , n⟩ ,

where Ik+1

(
ω

dϕ

)
is the ideal generated by the (k + 1)-minors of the matrix

(
ω

dϕ

)
=


A1 · · · An

∂ϕ1

∂x1
· · · ∂ϕ1

∂xn... · · · ...
∂ϕk

∂x1
· · · ∂ϕk

∂xn

 .

Then, we can compute dimC
On

ω(ΘT
X) + IV

as follows:

dimC
On

ω(ΘT
X) + IV

= dimC
On

I2

(
ω

dϕ

)
+ ⟨ϕAi⟩1≤i≤n + ⟨f⟩

= dimC
On

⟨ϕA1, . . . , ϕAn,
∂ϕ
∂xj
Ak − ∂ϕ

∂xk
Aj, f⟩(j,k)∈Λ

,

where Λ = {(j, k) : j, k = 1, . . . , n; j ̸= k}. Since V is invariant by ω and X is not
invariant by ω, and using Lemma 2.1.1, we obtain

dimC
On

ω(ΘT
X) + IV

= dimC
On

⟨ϕ, ∂ϕ
∂xj
Ak − ∂ϕ

∂xk
Aj, f⟩(j,k)∈Λ

+dimC
On

⟨A1, . . . , An,
∂ϕ
∂xj
Ak − ∂ϕ

∂xk
Aj, f⟩(j,k)∈Λ

.

Now, note that
∂ϕ

∂xj
Ak −

∂ϕ

∂xk
Aj ∈ ⟨A1, . . . , An⟩. With that, and using (3.3), we deduce

dimC
On

ω(ΘT
X) + IV

= IndGSV(ω;X, V, 0) + dimC
On

⟨A1, . . . , An, f⟩
.

Thus, by (1.15), we have

dimC
On

ω(ΘT
X) + IV

= IndGSV(ω;X, V, 0) + τ0(ω, V ). (3.10)
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Finally, substituting (3.9), (3.10) and (3.4) in (3.6), we complete the proof of Theorem
3.1.1, since

τBR(ω,X, V ) = dimC
On

ω(ΘT
X) + IV

− dimC
ω(ΘX) + IV
ω(ΘT

X) + IV

= dimC
On

ω(ΘT
X) + IV

−
(
dimC

ω(ΘX)

ω(ΘT
X)

− dimC
ω(ΘX) ∩ IV
ω(ΘT

X) ∩ IV

)
= IndGSV(ω;X, V, 0) + τ0(ω, V )− dimC

ω(ΘX)

ω(ΘT
X)

+ dimC
ω(ΘX) ∩ IV
ω(ΘT

X) ∩ IV

= IndGSV(ω;X, V, 0) + τ0(ω, V )− τ0(X) + dimC
ω(ΘX) ∩ IV
ω(ΘT

X) ∩ IV
.

As a consequence, we obtain the following corollary:

Corollary 3.1.2. Let f ∈ On be a function germ with an isolated singularity over an
hypersurface (X, 0), and the pair (X, V ) are isolated complex analytic hypersurfaces at
0 ∈ Cn. Suppose that V is invariant by ω and X is not invariant by ω. Then

τBR(f,X) = IndGSV(df ;X, V, 0) + τ0(V )− τ0(X) + dimC
df(ΘX) ∩ ⟨f⟩
df(ΘT

X) ∩ ⟨f⟩
,

where V = {f = 0} ⊂ (Cn, 0).

Proof. The proof follows from applying Theorem 3.1.1 for the 1-form ω given by ω = df ,
and using that τBR(df,X, V ) = τBR(f,X) (by (3.1)) and

τ0(df, V ) = dimC
On〈

∂f
∂x1
, . . . , ∂f

∂xn
, f
〉 = τ0(V ).

We use the result of Gómez-Mont, presented in Proposition 1.2.36, to prove the next
corollary:

Corollary 3.1.3. Let F : ω = 0 be a singular holomorphic foliation at 0 ∈ C2. Suppose
that V = {f = 0} is a complex analytic curve at 0 ∈ C2 invariant by ω. Then

τBR(F , X, V )− τBR(f,X) = IndGSV(F ;X, V, 0)− IndGSV(df ;X, V, 0) + GSV0(F , V )

+dimC
ω(ΘX) ∩ ⟨f⟩
ω(ΘT

X) ∩ ⟨f⟩
− dimC

df(ΘX) ∩ ⟨f⟩
df(ΘT

X) ∩ ⟨f⟩
.

Proof. According to Theorem 3.1.1 and Corollary 3.1.2, we have

τBR(F , X, V ) = IndGSV(F ;X, V, 0) + τ0(F , V )− τ0(X) + dimC
ω(ΘX) ∩ ⟨f⟩
ω(ΘT

X) ∩ ⟨f⟩
and

τBR(f,X) = IndGSV(df ;X, V, 0) + τ0(V )− τ0(X) + dimC
df(ΘX) ∩ ⟨f⟩
df(ΘT

X) ∩ ⟨f⟩
.

The proof is concluded subtracting the above equations and using (1.21).



Chapter 3. The Bruce-Roberts Tjurina Number for Holomorphic 1-Forms 80

Now, we present some examples of our main result. In the next two cases, we will see
that Theorem 3.1.1 is verified in dimension two and three, respectively.

Example 3.1.4. Let X = {ϕ(x, y) = yp − xq = 0} and V = {f(x, y) = xy = 0},
representing germs of complex analytic curves on (C2, 0), and let F be the foliation
defined ω = λxdy + ydx, with λ ̸= −p

q
, λ ̸= 1. Note that X is not invariant by F , while

V is invariant by F , since

ω ∧ dϕ = (λxdy + ydx) ∧ (pyp−1dy − qxq−1dx) = (pyp + λqxq) dx ∧ dy and

ω ∧ df = (λxdy + ydx) ∧ (ydx+ xdy) = ((1− λ)xy) dx ∧ dy.

Since λ ̸= −p
q
, λ ̸= 1, we find that τ0(X) = (p− 1)(q − 1) (as seen in Example 2.3.2)

and

τ0(ω, V ) = dimC
O2

⟨λx, y, xy⟩
= 1.

Next, we compute the remaining indices. First, observe that

ω(ΘX) + IV
ω(ΘT

X) + IV
=

⟨ (p+ λq)xy, pyp + λqxq, xy ⟩
⟨ y(yp − xq), λx(yp − xq), pyp + λqxq, xy ⟩

=
I

⟨yp+1, xq+1⟩+ I
,

where I = ⟨xy, pyp + λqxq⟩. Since, yp = αxq on I, with α ∈ C, we have:

yp+1 = y · yp = y · αxq ∈ I,

and similarly, xq+1 ∈ I. Thus, dimC
ω(ΘX) + IV
ω(ΘT

X) + IV
= 0. Then, from (3.9), we have

dimC
ω(ΘX) ∩ IV
ω(ΘT

X) ∩ IV
= dimC

ω(ΘX)

ω(ΘT
X)

= τ0(X) = (p− 1)(q − 1).

Now, for IndGSV(ω;X, V, 0), note that

IndGSV(ω;X, V, 0) = dimC
O2

⟨yp − xq, pyp + λqxq, xy⟩
.

Rewriting the given ideal, we get

⟨yp − xq, pyp + λqxq, xy⟩ = ⟨yp − xq, p(yp − xq) + pxq + λqxq, xy⟩
= ⟨yp − xq, (p+ λq)xq, xy⟩
= ⟨yp, xq, xy⟩,

and then,

IndGSV(ω;X, V, 0) = dimC
O2

⟨yp − xq, pyp + λqxq, xy⟩
= dimC

O2

⟨yp, xq, xy⟩
= p+ q − 1.



3.1. Main Results 81

Finally, let’s compute the Bruce-Roberts Tjurina number. From [35, Example 1], we know
that

ΘX =

〈
qy

∂

∂y
+ px

∂

∂x
, pyp−1 ∂

∂x
+ qxq−1 ∂

∂y

〉
.

Hence, we have

τBR(ω,X, V ) = dimC
O2

⟨(λq + p)xy, pyp + λqxq, xy⟩
= dimC

O2

⟨pyp + λqxq, xy⟩
= p+ q.

Therefore, since

p+ q = τBR(ω,X, V ) = IndGSV(ω;X, V, 0) + τ0(ω, V )− τ0(X) + dimC
ω(ΘX) ∩ IV
ω(ΘT

X) ∩ IV
= (p+ q − 1) + 1− (p− 1)(q − 1) + (p− 1)(q − 1),

we conclude that Theorem 3.1.1 is verified.

Example 3.1.5. Let X = {ϕ(x, y, z) = x3+yz = 0} and V = {f(x, y, z) = x2+y2+z2 =

0} be germs of isolated complex hypersurfaces on (C3, 0). Consider

ω = df + f(zdx+ xdy + ydz) = (2x+ zf)dx+ (2y + xf)dy + (2z + yf)dz.

By the definition of ω, is easy to see that V is invariant by ω, and since

ω ∧ dϕ = [((2x+ zf)dx+ (2y + xf)dy + (2z + yf)dz)] ∧ (3x2dx+ zdy + ydz)

= (2xz − 6x2y + (z2 − 3x2)f)dx ∧ dy + (2y2 − 2z2 + (xy − yz)f)dy ∧ dz
+ (2xy − 6x2 + (yz − 3x2y)f)dx ∧ dz,

we have that X is not invariant by ω. Additionally, by Theorem 1.2.47, we can compute
ΘX as

ΘX =

〈
z
∂

∂x
− 3x2

∂

∂y
, y

∂

∂x
− 3x2

∂

∂z
, y

∂

∂y
− z

∂

∂z
, x

∂

∂x
+ 2y

∂

∂y
+ z

∂

∂z

〉
.

Using Singular [24] to compute the indices, we get τBR(ω,X, V ) = 5, τ0(ω, V ) = 1,

IndGSV(ω;X, V, 0) = 5, τ0(X) = 2 and dimC
ω(ΘX) + IV
ω(ΘT

X) + IV
= 1. With that and (3.9), we

have

dimC
ω(ΘX) ∩ IV
ω(ΘT

X) ∩ IV
= dimC

ω(ΘX)

ω(ΘT
X)

− dimC
ω(ΘX) + IV
ω(ΘT

X) + IV
= 2− 1 = 1.

Hence, Theorem 3.1.1 is satisfied, since

5 = τBR(ω,X, V ) = IndGSV(ω;X, V, 0) + τ0(ω, V )− τ0(X) + dimC
ω(ΘX) ∩ IV
ω(ΘT

X) ∩ IV
= 5 + 1− 2 + 1.
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Remark 3.1.6. In a similar way as made in Remark 2.3.6, we show below the codes used
on the software Singular [24] to calculate the indices in Example 3.1.5. The same codes
were used along this chapter.

> ring r=0,(x,y,z),ds; // local ring
> poly f=x2+y2+z2; // polynomial that defines V
> poly g=x3+yz; // polynomial that defines X
> poly f1=diff(f,x); // parcial derivatives of f
> poly f2=diff(f,y); //
> poly f3=diff(f,z); //
> poly g1=diff(g,x); // parcial derivatives of g
> poly g2=diff(g,y); //
> poly g3=diff(g,z); //
> ideal I1=(2x+z*f,2y+x*f,2z+y*f,f); // defining the ideals that appear
in each index
> ideal I2=(f,g,g1*f2-g2*f1,g2*f3-g3*f2,g3*f1-g1*f3);
> ideal I3=(g,g1,g2,g3);
> ideal I4=(3x2*(2y+x*f)-z*(2x+z*f),-y*(2x+z*f)+3x2*(2z+y*f),
-y*(2y+x*f)+z*(2z+y*f),x*(2x+z*f)+2y*(2y+x*f)+z*(2z+y*f),f);

> size(kbase(groebner(I1)));
1 // Tjurina number of the foliation

> size(kbase(groebner(I2)));
5 // GSV-Index of the foliation

> size(kbase(groebner(I3)));
2 // Tjurina number of X

> size(kbase(groebner(I4)));
5 // Bruce-Roberts Tjurina number of the foliation

3.2 The relation between µBR(ω,X) and τBR(ω,X, V )

The natural next step of this work is to study what results we can obtain from the
definitions presented in the last two chapters. More specifically, the definitions of the
Bruce-Roberts number of an 1-form and the Bruce-Roberts Tjurina number of an 1-form,
defined in Definition 2.0.1 and Definition 3.0.1, respectively. It follows directly from those
definitions that

τBR(ω,X, V ) ≤ µBR(ω,X).

Therefore, if µBR(ω,X) <∞ then τBR(ω,X, V ) <∞.
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In order to find a relation between those indices, we are going to define two new
numbers, and make a construction inspired by the work of Bivià-Ausina–Kourliouros–Ruas
in [8, Section 2]. For that, we need to establish some notations: consider V = {f = 0} a
germ of complex hypersurface invariant by ω. With that, we write

Θω
V = {δ ∈ Θn : ω(δ) ∈ ⟨f⟩},

and we can also define by
Hω = {ζ ∈ Θn : ω(ζ) = 0}

the submodule of vector fields tangent to ω. Observe that Hω ⊂ Θω
V .

Now, we can present the following definition, inspired by [8, Section 2, p. 5]:

Definition 3.2.1. Let (X, 0) be a complex analytic subvariety, ω be a germ of a holomor-
phic 1-form with isolated singularity at 0 ∈ Cn and V a germ of a complex hypersurface.
Suppose that µBR(ω,X) <∞ and V is invariant by ω. Then, we define

µX(ω) := dimC
Θn

ΘX +Hω

and
τX(ω, V ) := dimC

Θn

ΘX +Θω
V

,

in the case where these two numbers are finite.

Note that µX(ω) ≥ τX(ω, V ), and since the sequence

0 −→ ΘX +Θω
V

ΘX +Hω

−→ Θn

ΘX +Hω

−→ Θn

ΘX +Θω
V

−→ 0

is exact, by Lemma 3.0.2, we have

µX(ω)− τX(ω, V ) = dimC
ΘX +Θω

V

ΘX +Hω

= dimC
Θω

V

Hω + (ΘX ∩Θω
V )
,

where the last step follows from the equivalence of Lemma 3.0.3.
The next proposition uses µX and τX to show new characterizations of the Bruce-

Roberts number and the Bruce-Roberts Tjurina number, and then, to compute the dif-
ference between these indices.

Proposition 3.2.2. Let (ω,X) be a pair (of a germ of a holomorphic 1-form and a
complex analytic subvariety) in (Cn, 0) with µBR(ω,X) <∞. Suppose that V is a complex
hypersurface with an isolated singularity at 0 ∈ Cn invariant by ω. Then

µBR(ω,X) = µ0(ω) + µX(ω),

τBR(ω,X, V ) = τ0(ω, V ) + τX(ω, V ).

In particular,

µBR(ω,X)− τBR(ω,X, V ) = µ0(ω)− τ0(ω, V ) + µX(ω)− τX(ω, V ).
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Proof. Consider ω defined by ω =
n∑

j=1

Ajdxj, and then, set ⟨ω⟩ = ⟨A1, . . . , An⟩. Consider

the following sequences of On-modules:

0 −→ Θn

ΘX +Hω

·ω−→ On

ω(ΘX)

π−→On

⟨ω⟩
−→ 0, (3.11)

0 −→ Θn

ΘX +Θω
V

·ω−→ On

ω(ΘX) + ⟨f⟩
π−→ On

⟨ω⟩+ ⟨f⟩
−→ 0, (3.12)

where ·ω is the evaluation map and π is induced by the inclusion ω(ΘX) ⊆ ⟨ω⟩. We claim
that both of the sequences are exact.

For (3.11), suppose that g ∈ Im(ω). Then, g = ω(h+ΘX +Hω), where h ∈ Θn. With
that,

π(g) = π(ω(h+ΘX +Hω)) = π(ω(h) + ω(ΘX)) = ω(h) + ⟨ω⟩ ∈ ⟨ω⟩,

which gives us g ∈ kerπ. On the other hand, consider j ∈ kerπ. Then, there exists
k ∈ On, such that j = k + ω(ΘX). Since π(j) = π(k + ω(ΘX)) = k + ⟨ω⟩, then k ∈ ⟨ω⟩.
With that, we can write k = ω(η), for some η ∈ Θn. Therefore,

ω(η +ΘX +Hω) = ω(η) + ω(ΘX) = k + ω(ΘX) = j,

which gives us j ∈ Im(ω).
This shows us that Im(ω) = ker π, and the sequence (3.11) is exact. With a similar

proof, (3.12) is also an exact sequence. The exactness of (3.11) and (3.12) concludes the
proof.

As a consequence, we obtain an algebraic characterization of the equality of the Bruce-
Roberts Milnor and Tjurina numbers.

Corollary 3.2.3. Let (ω,X) be a pair in (Cn, 0) with µBR(ω,X) < ∞. Suppose that V
is a complex hypersurface with an isolated singularity at 0 ∈ Cn invariant by ω. Then
the following conditions are equivalent:

1. µBR(ω,X) = τBR(ω,X, V );

2. µ0(ω) = τ0(ω, V ) and µX(ω) = τX(ω, V ), and the last equality is equivalent to

Θω
V = Hω +ΘX ∩Θω

V .

In that result, when ω = df , for some f ∈ On, and µBR(f,X) < ∞, we recover
Proposition 1.2.63. Now, in the case that X is an isolated complex hypersurface at
0 ∈ Cn, we obtain the following corollary:

Corollary 3.2.4. Let (ω,X) be a pair in (Cn, 0) with µBR(ω,X) < ∞. Suppose that V
is a complex hypersurface with an isolated singularity at 0 ∈ Cn invariant by ω. Then

µX(ω) = IndGSV(ω;X, 0)− τ0(X)

and
τX(ω, V ) = IndGSV(ω;X, V, 0)− τ0(X) + dimC

ω(ΘX) ∩ ⟨f⟩
ω(ΘT

X) ∩ ⟨f⟩
.
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Proof. From Theorem 2.1.3, we have

µBR(ω,X) = µ0(ω) + IndGSV(ω;X, 0)− τ0(X),

and from Theorem 3.1.1, we have

τBR(ω,X, V ) = IndGSV(ω;X, V, 0) + τ0(ω, V )− τ0(X) + dimC
ω(ΘX) ∩ IV
ω(ΘT

X) ∩ IV
.

The proof is concluded by comparing both equalities above with Proposition 3.2.2.

For our next result, we remind that, from Definition 1.2.59, the number rf (I) is the
minimum of r ∈ Z≥1 such that f r ∈ I, with R being a ring and I an ideal of R such that
f ∈ R. If such r does not exist, then rf (I) = ∞.

With that, it is possible to enunciate the following corollary:

Corollary 3.2.5. Let X be a complex analytic subvariety of (Cn, 0). Let ω be a germ of
a holomorphic 1-form such that µBR(ω,X) < ∞. Suppose that (V, 0) is determined by
f : (Cn, 0) → (C, 0). Then

µBR(ω,X)

τBR(ω,X, V )
≤ rf (ω(ΘX)).

Proof. It follows directly by taking R = On and I = ω(ΘX) in Theorem 1.2.60:

ℓ

(
R

I

)
ℓ

(
R

⟨f⟩+ I

) ≤ rf (I),

with ℓ(M) being the length of the set M .

We present an example that illustrates Corollary 3.2.5.

Example 3.2.6. Let V = {f(x, y) = x2m+1 + xmym+1 + y2m = 0} and X = {ϕ(x, y) =
xy = 0} be germs of complex analytic curves at 0 ∈ C2. Consider the foliation F at
(C2, 0) defined by

ω = (fx + yf)dx+ (fy + xf)dy = df + f(xdy + ydx).

Note that X is not invariant by F , since

ω ∧ dϕ = ((fx + yf)dx+ (fy + xf)dy) ∧ (ydx+ xdy) = (xfx − yfy)dx ∧ dy,

while V is invariant by F , which is evident by the definition of V . Thus, since ΘX =〈
x
∂

∂x
, y

∂

∂y

〉
, we have

ω(ΘX) = ⟨xfx + xyf, yfy + xyf⟩.

In [7, Example 4.1], we used Singular [24] to compute the indices µBR(ω,X) and
τBR(ω,X, V ). For each value of m, we found the following results:
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m µBR(ω,X) τBR(ω,X, V )
µBR(ω,X)

τBR(ω,X)

1 6 6 1
2 20 17 1.17647...
3 42 34 1.23529...
4 72 57 1.26315...
10 420 321 1.30841...
20 1640 1241 1.32151...
1000 4002000 3002001 1.33311...

Additionally, in any of the cases above, we observe that f ̸∈ ω(ΘX), but f 2 ∈ ω(ΘX).
Therefore, Corollary 3.2.5 is satisfied, as

µBR(ω,X)

τBR(ω,X, V )
<

4

3
≤ 2 = rf (ω(ΘX)). (3.13)

Furthermore, we managed to show that (3.13) is verified for each value of m ∈ N,m ≥ 2.
In fact, considering the ideal

J = ω(ΘX) = ⟨(2m+ 1)x2m+1 +mxmym+1 + fxy, (m+ 1)ym+1xm + (2m)y2m + fxy⟩,

we have

µBR(ω,X) = dimC
O2

ω(ΘX)
= dimC

O2

J
= 4m2 + 2m

and

τBR(ω,X, V ) = dimC
O2

ω(ΘX) + IV
= dimC

O2

J + ⟨f⟩
= 3m2 + 3m+ 1.

Although lim
m→∞

µBR(ω,X)

τBR(ω,X, V )
=

4

3
, we still have

µBR(ω,X)

τBR(ω,X, V )
<

4

3
≤ rf (ω(ΘX)), and the

result is satisfied.

Remark 3.2.7. In the context of singular curves in dimension two, the search for an upper
bound for

µ

τ
has been the study of recent works. In [51, Theorem 1.1], the author shows

that
µ0(X)

τ0(X)
≤ n, when X = f−1(0) and f : (Cn, 0) → (C, 0) is an analytic function germ

at the origin with only isolated singularity. In particular, in the case where V = {f = 0}
is a reduced complex analytic curve, ω = df , and X = C2, the inequality (3.13) reminds
us of

µ0(V )

τ0(V )
<

4

3
,

which is exactly the Dimca-Greuel inequality proposed in [25, Question 4.2] and recently
proved in [4, Theorem 6]. However, in the case of holomorphic foliations on (C2, 0), the
Dimca-Greuel inequality does not generally hold, as shown in [31, Example 4.2].
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3.3 The Bruce-Roberts Tjurina Number for Foliations
on (C2, 0)

In a similar way to Section 2.3.1, our main goal in this section is to define the Bruce-
Roberts Tjurina number for foliations in dimension two, since we can define them with
the notion of a germ of a holomorphic 1-form. In that case, the Bruce-Roberts Tjurina
number of a foliation F relative to the pair (X, V ) can be written as

τBR(F , X, V ) = dimC
O2

ω(ΘX) + IV
,

where ω is a germ of a holomorphic 1-form that defines F . This definition follows directly
from Definition 3.0.1. Besides that, we are going to work with the notion of relatively
quasihomogeneous of a germ f ∈ On along a variety X. This concept was defined by
Bivià-Ausina–Kourliouros–Ruas in [8, Definition 1.1]:

Definition 3.3.1. A pair (f,X) in (Cn, 0) is called relatively quasihomogeneous if there
exists a vector of positive rational numbers w = (w1, . . . , wn) ∈ Qn

+, a system of coor-
dinates x = (x1, . . . , xn) and a system of generators ⟨h1, . . . , hm⟩ = IX of the ideal of
functions vanishing on X, such that

f(x) =
∑

⟨w,m⟩=1

amx
m, am ∈ C,

hi(x) =
∑

⟨w,m⟩=di

bm,ix
m, bm,i ∈ C, i = 1, . . . ,m,

where each di ∈ Q+ is the quasihomogeneous degree of hi.

To prove the main theorem of this section, the following proposition is essential. To
that, we refer to [8, Corollary 3.4].

Proposition 3.3.2. A pair (f,X) is relatively quasihomogeneous if, and only if there
exists a logarithmic vector field δ ∈ ΘX , δ(0) = 0, with positive rational eigenvalues,
which admits f as an eigenfunction (we can always choose the eigenvalue equal to 1):

δ ∈ ΘX , δ(f) = f and sp(δ) = (w1, . . . , wn) ∈ Qn
+,

where sp(δ) is the set of eigenvalues of the linear part of δ.

Now, and motivated by [8, Theorem 4.1], we can present the following theorem, as an
application of Theorem 3.1.1:

Theorem 3.3.3. Let F be a germ of a non-dicritical generalized curve foliation at (C2, 0),
and let X be a germ of a reduced curve at (C2, 0) not invariant by F . Let V = {f = 0} be
the reduced equation of the total set of separatrices of F . If µBR(F , X) = τBR(F , X, V ),
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then there exist coordinates (u, v) ∈ C2, g, h ∈ O2, with u(0) = 0, v(0) = 0, g(0) ̸= 0 and
integers α, β, ζ ∈ N such that

f(u, v) =
∑

αi+βj=ζ

Pi,ju
ivj, Pi,j ∈ C,

gω = df + h(βvdu− αudv),

and the pair (f,X) is relatively quasihomogeneous in these coordinates.

Proof. Consider ω the holomorphic 1-form that defines F , given by ω = Adx+Bdy. Since
µBR(F , X) = τBR(F , X, V ), we have µ0(ω) = τ0(ω, V ) and

Θω
V = Hω +ΘX ∩Θω

V (3.14)

by Corollary 3.2.3. Thus,

dimC
O2

⟨A,B⟩
= µ0(ω) = τ0(ω, V ) = dimC

O2

⟨A,B, f⟩

and that implies that f ∈ ⟨A,B⟩. According to [55, Théorème A], that means that there
exist coordinates (u, v) ∈ (C2, 0), g, h ∈ O2, with u(0) = 0, v(0) = 0, g(0) ̸= 0 and
integers α, β, ζ ∈ N such that

f(u, v) =
∑

αi+βj=ζ

Pi,ju
ivj (3.15)

and
gω = df + h(βvdu− αudv). (3.16)

Now, consider the vector field given by Xα,β = αu ∂
∂u

+ βv ∂
∂v

∈ Θn. We claim that
Xα,β ∈ Θω

V . In fact, (3.15) gives us that

df =

( ∑
αi+βj=ζ

i Pi,ju
i−1vj

)
du+

( ∑
αi+βj=ζ

j Pi,ju
ivj−1

)
dv,

and, from (3.16), we got

gω(Xα,β) = df(Xα,β) + h(αβuv − αβuv)

=

( ∑
αi+βj=ζ

i Pi,ju
i−1vj

)
αu+

( ∑
αi+βj=ζ

j Pi,ju
ivj−1

)
βv

= α
∑

αi+βj=ζ

i Pi,ju
ivj + β

∑
αi+βj=ζ

j Pi,ju
ivj

=
∑

αi+βj=ζ

(αi+ βj) Pi,ju
ivj = fζ.

Therefore, ω(Xα,β) ∈ ⟨f⟩.
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Suppose now that Xα,β ̸∈ ΘX in these coordinates (otherwise, there is nothing to
prove by Proposition 3.3.2). By (3.14), we get that there exists γ ∈ Hω such that δ =

Xα,β − γ ∈ ΘX ∩ Θω
V . Since ω(γ) = 0, γ is a vector field defining F , and then f is an

eigenfunction for γ. Moreover, (3.15) gives us that f is also an eigenfunction for Xα,β.
Thus, f is an eigenfunction for δ ∈ ΘX , and from Proposition 3.3.2, we obtain that the
pair (f,X) is relatively quasihomogeneous in these coordinates.
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Chapter 4

Conclusion and Further Research

In this last chapter, we will talk about the main results of this work and present some
questions that we encountered in the construction of this thesis.

In Chapter 2, we define the Bruce-Roberts number of a holomorphic 1-form with an
isolated singularity at 0 ∈ Cn, with respect to a germ of a complex analytic variety X,
and also in the case where n = 2 and ω defines a holomorphic foliation. Although we have
plenty of examples in the case of foliations, we would like to know what happens to the
Bruce-Roberts number of some other families of foliations and if (or how) these numbers
change.

Inspired by the work made in [45], we wonder if it is possible to have a result that
relates the Bruce-Roberts number µBR(ω,X) (or the relative Bruce-Roberts number)
when we perform some deformations on the 1-form ω. For example, looking at the 1-
form given in (1.20), and also motivated by Corollary 2.2.9, if we consider the foliation
ω = d(fg) + fgη in (Cn, 0), with f, g ∈ On, what results can be obtained from the differ-
ence µBR(ω,X) − µBR(fg,X)? We know so far that in this case, the pullback of omega
π∗ω induces a complex saddle df = 0, with f = xy, similar to the ones studied in [45],
and we believe that this may possibly lead to new results.

In Chapter 3, our main work is to define the Bruce-Roberts Tjurina number of a 1-form
relative to a pair (X, V ), with (X, 0) a germ of a complex analytic variety at (Cn, 0) and
V a germ of a complex analytic hypersurface. Naturally, the next step is to wonder how
this number can be defined in the case where X or V are an isolated complete intersection
singularity - or simply an ICIS. With that kind of definition (in particular, in the case
where X is an ICIS) we can proceed with a work similar to what we made in Section 3.2,
comparing the numbers µBR and τBR. In the case of the Bruce-Roberts number of ω with
respect to an ICIS X, some results were shown in [49], in which they used our definition
given in Definition 2.0.1 (and first presented in [6]).
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Right after Theorem 2.1.3, we state that µBR(ω,X) is a topological invariant under
homeomorphisms of (Cn, 0) that fix (X, 0), which follows from the topological invariance
of both IndGSV(ω;X, 0) and µ0(ω). That result was also illustrated in Examples 2.3.4 and
2.3.5. Naturally, we wonder if the Bruce-Roberts Tjurina number τBR(ω,X, V ) is also
an invariant. We guess that it is better to approach the analytical invariance instead of
the topological invariance, since the number in question is a generalization of the Tjurina
number, but more investigations in that line are still required.

In Corollary 3.2.5 , we present a relation between the Bruce-Roberts and the Bruce-
Roberts Tjurina numbers of a 1-form with respect to a curve X (and V , in the case of
Tjurina), which says that their quotient is limited by the number rf (ω(ΘX). Naturally, a
question that arises is whether it is possible to have an upper bound that does not depend
of X, or V , as mentioned in Remark 3.2.7, since

µ0(V )

τ0(V )
<

4

3
.

That result, named the Dimca-Greuel inequality, answers this question when it comes to
a reduced complex analytic curve. The attempt to reach a similar result gave us Example

3.2.6 that, coincidentally or not, limited
µBR(ω,X)

τBR(ω,X, V )
by

4

3
too. The idea is to investigate

in what other cases we can have the same (or lower) upper bound, making changes not
only on X, or V , but maybe doing some deformations in ω as well.
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