
UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

Marlon Jesus Lizarazo Urbina

PARALLEL-GPU DGTD METHOD WITH A THIRD-ORDER LOCAL TIME

STEPPING SCHEME

Belo Horizonte

2025



Marlon Jesus Lizarazo Urbina

PARALLEL-GPU DGTD METHOD WITH A THIRD-ORDER LOCAL TIME

STEPPING SCHEME

Tese apresentada ao Programa de Pós-Graduação
em Engenharia Elétrica da Universidade Federal
de Minas Gerais, como requisito parcial à obtenção
do título de Doutor em Engenharia Elétrica.

Orientador: Prof. Dr. Elson José da Silva

Belo Horizonte

2025





UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Engenharia

COLEGIADO DO CURSO DE GRADUAÇÃO / PÓS-GRADUAÇÃO EM Engenharia Elétrica

FOLHA DE APROVAÇÃO

"Parallel-GPU DGTD Method With aThird-order Local Time Stepping Scheme"
 
 
 

Marlon Jesus Lizarazo Urbina
 
 
 

Tese de Doutorado submetida à Banca Examinadora designada pelo Colegiado do
Programa de Pós-Graduação em Engenharia Elétrica da Escola de Engenharia da
Universidade Federal de Minas Gerais, como requisito para obtenção do grau de Doutor em
Engenharia Elétrica.
 
Aprovada em 30 de abril de 2025.
 
Por:

 
Prof. Dr. Elson José da Silva

DEE (UFMG) - Orientador
 
 

Prof. Dr.(a) Ursula do Carmo Resende
Eng. Elétrica (CEFET-MG)

 
 

Prof. Dr. Marco Aurélio de Oliveira Schoeder
Eng. Elétrica (UFSJ)

 
 

Prof. Dr. Renato Cardoso Mesquita
DEE (UFMG)

 
 

Prof. Dr. Ricardo Luiz da Silva Adriano
DEE (UFMG)

 

Documento assinado eletronicamente por Elson Jose da Silva, Professor do Magistério
Superior, em 07/05/2025, às 17:54, conforme horário oficial de Brasília, com fundamento no
art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Folha de Aprovação 4157402         SEI 23072.223490/2025-39 / pg. 1



Documento assinado eletronicamente por Marco Aurélio de Oliveira Schroeder, Usuário
Externo, em 08/05/2025, às 09:04, conforme horário oficial de Brasília, com fundamento no
art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Ricardo Luiz da Silva Adriano, Professor do
Magistério Superior, em 12/05/2025, às 09:07, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Ursula do Carmo Resende, Usuária Externa, em
12/05/2025, às 09:08, conforme horário oficial de Brasília, com fundamento no art. 5º do
Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Renato Cardoso Mesquita, Professor do
Magistério Superior, em 12/05/2025, às 09:11, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

A autenticidade deste documento pode ser conferida no site
https://sei.ufmg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador
4157402 e o código CRC 45F543BA.

Referência: Processo nº 23072.223490/2025-39 SEI nº 4157402

Folha de Aprovação 4157402         SEI 23072.223490/2025-39 / pg. 2



Acknowledgments

O autor desta tese expressa seus agradecimentos:

A Dios, principalmente, por darme paciencia, fuerza y sabiduría para nunca

rendirme y así poder alcanzar mis objetivos.

A mis padres, Cleofelina Urbina y Luis Lizarazo, por su apoyo y amor incondicional

durante toda mi vida. Para ellos, mi mayor respeto y gratitud.

A mi hermano, Brayan Lizarazo, por su compañía y por los buenos momentos

que hemos compartido y los que aún viviremos en nuestro camino por este mundo.

A mis abuelos, Evencio Urbina y Aminta Bernal, por ser mis segundos padres y

brindarme todo su amor y cariño.

A mis tíos (Carmen, Yurley, Germán, Chuchin y Ana) y primos (Yurley An-

drea, Camilo, Santiago, Nikolita, Sofía, Steven, Carlos y Robinson) por todos los buenos

momentos, risas y su apoyo incondicional.

A María Africano, por acompañarme, apoyarme y, sobre todo, por siempre confiar

en mí.

A mis amigos que se convirtieron en mi familia en Brasil (José, Andrés, Luigy y

Diego), gracias por los buenos momentos, muchachos.

Ao meu orientador, o professor Elson José da Silva, pela paciência, pelos ensina-

mentos e pelo acompanhamento desde o mestrado até esta etapa.

Ao professor Ricardo Adriano, pelo apoio, pelos ensinamentos e por estar sempre

disposto a ajudar.

Aos meus colegas de laboratório, sempre dispostos a ajudar. Obrigado pelos

bate-papos e momentos de descontração.

Aos meus colegas de trabalho do IFMG - Campus Formiga, especialmente aos

professores Mário, Édio e Everthon. Obrigado pela amizade e pelos bons momentos.

Ao PPGEE, pela formação acadêmica e profissional proporcionada neste doutorado.

À CAPES, pela bolsa de estudo.



“Dada tu buena fortuna, debes hacer lo que puedas para mejorar la suerte de los demás.”



Resumo

O uso crescente de métodos numéricos para resolver problemas eletromagnéticos de grande

e multiescala tem impulsionado o desenvolvimento de estratégias para aumentar a eficiência

do método de Galerkin Discontinuo no Domínio do Tempo (DGTD), sem comprometer

a precisão. Este trabalho apresenta a combinação de duas dessas estratégias, visando

melhorar o desempenho do DGTD e reduzir o tempo de execução. A primeira estratégia

utiliza Unidades de Processamento Gráfico (GPUs) para acelerar os cálculos, aproveitando

sua baixa latência e alto paralelismo. A segunda emprega uma técnica de avanço no

tempo local (LTS), que permite que elementos da malha avancem de forma independente,

evitando as limitações de um passo de tempo global (GTS). O estudo começa com a

descrição das discretizações espacial e temporal do DGTD. Em seguida, é apresentada uma

introdução às GPUs, com destaque para suas principais características e uma proposta de

distribuição eficiente de dados para os cálculos. Depois, é introduzida uma abordagem LTS

baseada no método de Runge-Kutta de terceira ordem (RK3), mantendo a precisão com

polinômios do mesmo grau. Após o desenvolvimento das estratégias, elas são combinadas

em uma técnica numérica mais eficiente. Para validar a proposta, são resolvidos problemas

eletromagnéticos em duas e três dimensões. Testes iniciais em meios homogêneos, como

uma cavidade metálica preenchida com ar, demonstram a precisão e o desempenho das

estratégias que utilizam memória compartilhada e global da GPU, alcançando acelerações

de até 24× em comparação com implementações em CPU. Validações adicionais mostram

que o algoritmo LTS-RK3 preserva a precisão numérica ao mesmo tempo em que reduz

o tempo de simulação em até 52% em um problema de espalhamento eletromagnético,

quando comparado com a abordagem padrão GTS. Por fim, a estratégia combinada é

aplicada a problemas complexos e multiescala, como o espalhamento por uma esfera

multicamadas e a radiação de uma antena monopolo, alcançando reduções de tempo de

aproximadamente 78% e 55%, respectivamente. Esses resultados confirmam que o método

proposto melhora significativamente o desempenho computacional sem comprometer a

precisão, superando a implementação padrão com GTS.

Palavras-chave: computação paralela; DGTD; LTS; GTS; problemas eletromagnéticos

multiescala.



Abstract

The increasing use of numerical methods to solve large-scale and multiscale electromagnetic

problems has driven the development of various strategies to enhance the efficiency

of the Discontinuous Galerkin Time-Domain (DGTD) method without compromising

accuracy. This work presents the combination of two such strategies aimed at improving

the performance of the DGTD method and reducing execution time. The first strategy

leverages Graphics Processing Units (GPUs) to accelerate computations by exploiting

their low latency and high parallelism. The second employs a local time-stepping (LTS)

technique, which allows different mesh elements to advance in time independently, thus

avoiding the limitations imposed by a global time step (GTS). The study begins with

a description of the spatial and temporal discretizations of the DGTD method. This is

followed by an introduction to GPUs, highlighting their main characteristics and presenting

an efficient data distribution scheme for executing DGTD computations. An LTS approach

based on the third-order Runge-Kutta (RK3) method is then introduced, using a third-

order polynomial to maintain accuracy. After developing both strategies, they are combined

to form a more powerful and efficient numerical technique. To validate this approach,

two-dimensional and three-dimensional electromagnetic problems are solved. Initial tests

in homogeneous media, such as a metallic air-filled cavity, demonstrate the accuracy and

performance of both shared and global GPU memory strategies, achieving speedups of up

to 24× compared to CPU implementations. Further validation shows that the LTS-RK3

algorithm preserves numerical accuracy while reducing simulation time by up to 52% in

an electromagnetic scattering problem when compared to the standard GTS approach.

Finally, the combined strategy is applied to complex and multiscale problems, such as

scattering by a multilayer sphere and radiation from a monopole antenna, achieving time

reductions of nearly 78% and 55%, respectively. These results confirm that the proposed

method significantly enhances computational performance while maintaining accuracy,

outperforming the standard GTS implementation.

Keywords: parallel computing; DGTD; LTS; GTS; multiscale electromagnetic problems.
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1 Introduction

This chapter introduces the principles of the discontinuous Galerkin time domain

method and the state of art for different techniques used in the literature to improve its

computational efficiency. A brief review of some parallel-GPU and Local Time Stepping

(LTS) approaches for solving electromagnetic problems modeled by Maxwell’s equations is

presented.

1.1 Introduction to the DGTD Method and State of Art

Nowadays, the complexity of large-scale and multi-scale electromagnetic problems

requires different kinds of advanced computational methods to solve Maxwell’s equations.

In this sense, the Discontinuous Galerkin Time Domain (DGTD) method appears as a

popular, efficient, and accurate option to solve transient electromagnetic problems [1–4].

The DGTD method combines some advantages of other numerical methods such as the

Finite-Difference Time Domain (FDTD) [5], the Finite Element Method (FEM) [6], and the

Finite-Volume Time Domain (FVTD) [7]. As in the FDTD method, the DGTD presents

an interesting simplicity in its implementation, simple parallelization, and easy portability

to Graphics Processing Units (GPU). Moreover, the DGTD also has some advantages

of the FEM method such as the adaptability of unstructured meshes and high-order

spatial convergence. Finally, as in the FVTD method, the DGTD uses an approximation

to guarantee the continuity of the solution between neighboring elements, known as the

numerical flux. All these features make the DGTD an optimal alternative and a powerful

numerical technique for solving large-scale and multi-scale electromagnetic problems.

Unstructured meshes with high-order finite elements are used in the discontinuous

Galerkin spatial discretization. This allows accurate discretization of complex geometries

using elements of different sizes (h−adaptivity), and high-order convergence of the solution

can be obtained depending on the order of the basis functions (p−adaptivity). Furthermore,

the Discontinuous Galerkin (DG) method can be applied both in the Time Domain (TD)

and in the Frequency Domain (FD). The TD nature of this method offers many benefits

in electromagnetic problems when compared to its FD counterpart. Problems involving

the transient field effect of an arbitrary time signal excitation (e.g. scattering problems,

ultra-wideband antennas, photonic crystal guides) can be studied directly and efficiently.

In addition, since the DG method uses discontinuous basis functions, the resulting

mass matrix is block diagonal. This feature makes the DG method fully explicit and

inherently parallelizable when combined with explicit time step methods [8]. Despite the

DGTD success so far, the complexity of modern electromagnetic applications requires
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robust and efficient numerical methods, especially for large-scale and multi-scale problems.

These requirements are even more critical when simulations are performed in the temporal

domain. Recent hardware architectures such as multi-core CPUs and GPUs are widely

available for computing. Consequently, numerical methods with the potential for parallelism

that can be properly mapped to newer hardware architectures are also highly desirable.

In recent years, the interest in the use of multiple processors to accomplish difficult

tasks with high efficiency has increased. This is known as High-Performance Computing

(HPC) and basically refers to the practice of aggregating computing power in order to

obtain a higher performance than one could get out of a common computer or workstation.

This computing type is used to solve large-scale problems in science, engineering, and

business. More recently, high-performance computing has evolved significantly due to

the use of heterogeneous architectures, which refer to systems that use more than one

kind of processor or cores such as CPU + GPU systems. To support joint CPU + GPU

execution of an application, NVIDIA designed a programming model called Compute

Unified Device Architecture (CUDA) [9]. In this type of architecture, the CPU is used

for complex serial calculations, while the GPU is used for parallel computing tasks due

to its excellent performance and high energy efficiency. Therefore, the use of GPUs for

accelerated calculations has become increasingly popular in computational electromagnetic

simulations [8, 10, 11].

These features turn the GPU into a better candidate than the CPU to accelerate

the DGTD method. Emphasizing only contributions dealing with wave propagation

problems in the DGTD method, GPUs were considered for the first time for computational

electromagnetic applications in 2009 by Klockner et al. [12], where the development of

a parallel-GPU DGTD method to solve Maxwell’s equations in a 3D domain using an

unstructured mesh was described. They showed that with a single NVIDIA GTX 280 GPU

it was possible to accelerate the simulation time by a factor of 40 to 60 compared to serial

computing on a CPU. On the other hand, Cabel et al. [13] show the implementation of the

DGTD method to study human exposure to electromagnetic waves using a multi-GPU

scheme. In that work, the calculation of electromagnetic field components was divided into

three CUDA kernels, such as calculation of volume integrals, calculation of surface integrals,

and updating of field components. The results presented in [13] showed an acceleration

of a factor of 10 to 25 in the simulation time compared to the time spent by the CPU.

To achieve those contributions, the authors used the original CUDA programming model

based on the template mechanism of the C programming language. However, PyCUDA

is presented in 2013 as a practical and mature open-source toolkit that supports GPU

Run Time Code Generation (RTCG) [14]. As its name suggests, PyCUDA provides the

connection between the high-level Python programming language and the NVIDIA CUDA

compute architecture [15]. The GPU is optimally suited to the efficiency throughput while

the CPU is responsible just for control and communication. That is, both GPU and CPU
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work at a higher level of abstraction. Therefore, a Python GPU code has no problem

achieving the same performance potential as a C-controlled GPU code, but with the

advantage of reducing the effort on the part of the programmer [16].

In more recent works, it can be seen that the application of the GPU to accelerate

the DGTD method is still an area of great interest [8, 17–20]. This formulation has

been used in multiple applications, such as the analysis of electromagnetic problems of

electrically large objects [17, 19], instantaneous nonlinear effects on electromagnetic fields

due to the field-dependent medium permittivity [18], antenna simulations [8], Ground

Penetrating Radar (GPR) simulations [20], among others. However, from 2019 until now,

we can see a clear increase in the use of a methodology that combines GPU parallelism and

the possibility of using a time march with LTS [2,21–23]. This combination significantly

improves the computational efficiency of the DGTD method, especially when dealing with

multi-scale problems (e.g. electromagnetic scattering problems).

The DGTD method supports time integration schemes based on implicit or explicit

techniques, both approaches have advantages and disadvantages. For example, implicit

time integration methods are unconditionally stable, i.e., the numerical stability does not

depend on the time step. However, they require solving a linear equations system at each

time step which compromises the efficiency of the method. On the other hand, explicit

methods are considered simpler because no equations have to be solved to advance in

time. Explicit methods use the current solution evaluated in intermediary stages to obtain

the next time step solution. However, explicit methods are conditionally stable, which

means that the time step is subject to a Courant-Friedrichs-Lewy (CFL) condition to

maintain stability. This feature turns the explicit methods inefficient when dealing with

multi-scale problems because the time step is chosen according to the minimal element

size in the mesh to guarantee the stability CFL condition. In order to overcome these

limitations, two approaches have been adopted in the literature: the first approach tries to

combine the advantages of the implicit and explicit methods, but this scheme presents a

considerable loss in both accuracy and stability [24]. The second approach uses explicit

methods with local time stepping. These strategies based on LTS are most commonly used

because of their simplicity and good results. Many LTS strategies have been proposed to

improve the performance of the DGTD method in terms of computational efficiency. These

strategies allow different size elements, to march arbitrarily in time while maintaining

the stability of the solution. These LTS methods focus on two important aspects, which

strongly affect the accuracy and computational efficiency of the temporal integration: the

temporal integration method and the way the numerical flux is imposed.

The first LTS scheme to solve electromagnetic problems modeled by Maxwell’s

curl equations in the DGTD method was presented in 2006 by Piperno [24]. In that work,

the author presents an implicit-explicit formulation, where the implicit part is performed
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using the Verlet method [25] and the midpoint rule. Then, the explicit part uses the

well-known Leapfrog (LF) time scheme, which is a central difference method [26]. Piperno’s

work [24] demonstrated strong computational efficiency. However, the author clearly states

that the LTS scheme should not be used to achieve higher accuracy compared to the

global time step scheme. Montseny et al. [27] presented a recursive LF method in 2008.

This method eliminates the implicit part of [24] by using the second-order LF (LF2)

method in a recursive process. Cui et al [28] then proposed a new version of the Montseny

recursive LF2 scheme in 2018, which uses a better element distribution. They achieved an

improvement of almost 25% in the time simulation with a small loss of precision.

Currently, the most used time integration schemes applied in the DG scheme are

based on the explicit Runge-Kutta (RK) methods [29,30]. These methods are extremely

useful because they provide a high order of approximation as well as the capacity to march

in time with a large time step. There are many LTS strategies based on RK methods, for

example, Trajan et al. [31] proposed an LTS scheme based on the Second-order RK (RK2)

method to solve the shallow water equations in 2012. The results show that the LTS-RK2

scheme maintains the second-order convergence of the common RK2 and provides an

interesting speed-up. Angulo et al. [32] proposed the Causal Path Local Time Stepping

(CPLTS) method in 2014, applied in two different time integration methods, the LF2 and

the Fourth-order Low-Storage RK (LSRK4). These methods were tested in electromagnetic

problems and the results show a reduction in the numerical dissipation and dispersion

when compared to the Montseny approach. Ashbourne [33] presented an efficient and

precise RK LTS implementation in 2016, applicable to both RK3 and RK4 methods. The

study employs interpolations matching the approximation order of the time integration

methods (i.e., third-order interpolation for RK3 and fourth-order interpolation for RK4)

to maintain continuity of the time solution across elements advancing with different time

step sizes.

The benefits of applying GPU parallel computing and LTS schemes within the DG

method have been demonstrated independently and in isolation. However, the combination

of these techniques offers a more efficient numerical approach. Recent literature highlights

two significant works that explore this integration in electromagnetic simulations (parallel-

GPU DG method with LTS): The first study, presented by Shi et al. in 2019 [8], introduced a

Hybridized DGTD method (HDGTD). This method combines the Interior Penalty Galerkin

Discontinuous approach (IPDG) based on the Helmholtz equation with the standard DGTD

method based on Maxwell’s curl equations. The implementation also utilized an LF2 LTS

scheme that applies a simple linear interpolation to ensure temporal continuity. However,

the use of first-order interpolation limits the method’s accuracy. A subsequent study by

Ban et al. in 2020 [22] improved the HDGTD method by incorporating universal matrices,

reducing memory usage and minimizing data exchange between the GPU and CPU. Despite

this enhancement, the LTS scheme continued to rely on the LF2 method with first-order
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interpolation for time continuity. Recent advancements in hybrid parallel strategies have

further exploited the DGTD method’s parallel capabilities through supercomputing and

Message Passing Interface (MPI) algorithms. For instance, in [23], a unified MPI+MPI

algorithm achieved a parallel efficiency of 94% using 6400 cores. This work employed an

LTS scheme based on Montseny’s method [27], which offers a second-order approximation

through a recursive LF2 approach. In another study, Li et al. [34] introduced the Minimum

Number of Roundtrips (MNR) strategy to optimize communication topology across 16,000

supercomputer nodes. Despite achieving a parallel efficiency of 73.8%, this work relied on

Montseny’s method with first-order interpolation. Later, Li et al. [35] proposed a Minimal

Roundtrip (MRT) strategy to balance communication loads in the DGTD method. This

approach halved inter-processor communication time, yet it continued to use a second-order

LTS scheme based on Montseny’s method.

As can be seen, research on the parallelism of the DGTD-LTS method has advanced

significantly, leveraging both CPU and GPU acceleration. However, a clear limitation

persists in the reliance on LTS schemes restricted to LF2 with first-order interpolation. To

address this gap, this work introduces an alternative approach to the parallel-GPU DGTD

method with LTS schemes for solving electromagnetic problems. The proposed method

employs high-order interpolations to ensure the continuity of the time solution. This

parallel-GPU implementation was performed considering NVIDIA recommendations [15]

to ensure optimal GPU performance. Additionally, the LTS scheme is based on the efficient

Third-order Runge–Kutta (RK3) method [33]. The proposed LTS strategy incorporates

third-order interpolations to ensure continuity between elements of different classes while

maintaining the same precision order as the standard RK3 method.

1.2 Motivation and Contributions

1.2.1 Motivation

In recent years, various Discontinuous Galerkin Time Domain (DGTD) methods

for solving Maxwell’s equations have been developed. Among them, one of the most widely

adopted and efficient approaches was introduced by Hesthaven et al. in 2002 [36]. As

previously discussed, this method incorporates several advantages characteristic of other

well-known numerical techniques, such as FEM, FDTD, and FVTD. To address large-scale

and multi-scale electromagnetic problems, numerous modifications have been proposed

in the literature to enhance the computational efficiency of the DGTD method. These

enhancements often aim to accelerate computational operations by leveraging the low

latency of GPUs or implementing an LTS scheme. The LTS approach ensures that each

element advances in time based on its local size rather than being constrained by the

smallest element in the computational domain. Both strategies are extensively documented
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and have demonstrated significant improvements in performance. Furthermore, hybrid

methods combining GPU acceleration with LTS schemes have been explored [8,22], offering

further computational gains. However, despite their effectiveness, these approaches often

employ the LF2 time integration method and linear interpolation for coupling solutions

across elements with varying time step sizes, which can compromise the accuracy of the

method.

This work is motivated by the need to explore alternative implementations of a

GPU-parallelized DGTD method with an LTS scheme that preserves high accuracy through

the use of advanced interpolation techniques. As highlighted earlier, several LTS approaches

based on the Runge-Kutta (RK) family of methods can be applied to this framework. One

promising candidate is the causal path LTS scheme based on the LSERK4 method. This

scheme offers fourth-order accuracy with low storage requirements. However, the need

to compute five intermediate stages per time step can reduce its efficiency compared to

other methods. Another alternative is the LTS RK4 scheme, which relies on the standard

fourth-order Runge-Kutta (RK4) method [33]. While this approach maintains fourth-order

accuracy and reduces the number of intermediate stages to four, it demands significant

memory storage and suffers from a limited stability region. Finally, the LTS RK3 scheme,

based on the standard third-order Runge-Kutta (RK3) method [33], provides a compelling

alternative. It requires the computation and storage of only three intermediate stages per

time step, resulting in lower memory demands. Although it has a slightly lower order of

accuracy, the LTS RK3 scheme benefits from a broader stability region. Considering these

factors, we have selected the LTS RK3 method as the most suitable approach for our

study. Additionally, this method employs an efficient third-order interpolation to ensure

continuity of the time solution between elements with differing time step sizes, further

enhancing the accuracy and performance of the proposed DGTD framework.

1.2.2 Contributions

The main contribution of this thesis lies in the integration of two advanced

acceleration strategies based on parallel-GPU computation and a high-order LTS scheme

within the framework of the DGTD method. This combination is specifically designed

to address the challenges of solving multi-scale electromagnetic problems efficiently and

accurately. To realize this goal, several key steps were undertaken during the development

of this work. These steps, which form the core of the methodology, are summarized below:

• Proposal of efficient parallel-GPU algorithms for handling element-wise operations

and matrix-vector multiplications, which form the core of the CUDA kernels proposed

in this work. These algorithms were developed following NVIDIA’s recommendations

to maximize the utilization of GPU capabilities.
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• Proposal of an efficient LTS RK3 implementation for GPUs, designed to handle

various levels of refinement while ensuring continuity between different element classes

through the use of third-order polynomials. The final version of this implementation

is capable of solving complex and multi-scale 2D and 3D electromagnetic problems,

demonstrating its scalability and robustness in addressing challenging scenarios.

• Proposal of a novel DGTD method combining efficient GPU algorithms with the

LTS RK3 scheme and third-order interpolation. The proposed DGTD method was

rigorously validated by solving a range of 2D and 3D benchmark electromagnetic

problems, demonstrating its accuracy, efficiency, and robustness across different

scenarios.

• Proposal of the novel parallel-GPU DGTD with LTS method as an efficient and

accurate powerful numerical technique for solving complex multi-scale electromagnetic

problems.

Furthermore, the individual contributions mentioned above were instrumental

in the development of the following journal paper, which was successfully accepted and

subsequently published:

• Lizarazo, M.J.; Silva, E.J. A Parallel-GPU DGTD Algorithm with a Third-Order

LTS Scheme for Solving Multi-Scale Electromagnetic Problems. Mathematics 2024,

12, 3663. https://doi.org/10.3390/math12233663 [37]

1.3 Thesis Organization

This work is organized into six chapters, including this one. Chapter 2 contains

the principles of the DGTD method for solving Maxwell’s equations. Spatial and time

discretizations are described. Chapter 3 is devoted to the basic concepts of NVIDIA GPUs

and the optimal data distribution to ensure the best GPU performance for the DGTD

method. In chapter 4 the LTS RK3 method along with its modified implementation to be

executed in the GPU are presented. The results of the parallel-GPU DGTD method, the

DGTD with the LTS RK3 scheme, and the combination of both are presented in chapter

5. Finally, chapter 6 presents the conclusions and future research work.
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2 The Discontinuous Galerkin Time Domain Method for Solving Maxwell’s

Equations

The DGTD method was proposed in the 1970s by Reed and Hill [38] to solve the

linear neutron transport equation. This method is currently used in many areas of science

due to its high-order convergence and simple implementation. It has successfully been used

to solve a lot of differential equations in some areas as aerodynamics [39], nano-optical

problems [40], elastodynamics [41,42], and quantum mechanics [43]. In the last years, some

DGTD versions to solve Maxwell’s equation have been proposed, one of the most popular

and efficient was proposed in 2002 by Hesthaven and Warburton [36]. This chapter presents

the modeling of Maxwell’s equations using the DGTD method in non-dispersive dielectric

media and some numerical integration schemes based on the Runge-Kutta methods are

described [44].

2.1 Maxwell’s Equations

The partial differential equations system that models the phenomena of wave

propagation and wave interaction with objects is known as Maxwell’s equations. These

equations can be expressed as follows:

∇× E = −∂B
∂t

(2.1a)

∇× H =
∂D

∂t
+ J (2.1b)

∇ · D = ρ (2.1c)

∇ · B = 0 (2.1d)

where Eqs. 2.1a and 2.1b are known as Faraday’s law of induction and Ampère’s law,

respectively. Whereas Eqs. 2.1c and 2.1d are the Gauss’ laws for electricity and magnetism,

respectively. E and H are the electric and magnetic field intensities, respectively. D and

B are the electric and magnetic flux densities. D is also called the electric displacement,

and B, the magnetic induction. The electric and magnetic flux densities D, B are related

to the field intensities E, H by the so-called constitutive relations. In a homogeneous and

isotropic medium, they take the form:
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D = ε0εrE (2.2a)

B = µ0µrH (2.2b)

where ε0 is the electric permittivity, µ0 is the magnetic permeability of vacuum. εr and µr

are the relative electric permittivity and magnetic permeability of the medium, respectively.

Considering a dielectric medium µr = 1 without currents J = 0 and substituting

Eq. 2.2 in 2.1, the Maxwell curl equations can be represented as:

∇× E = −µ0
∂H

∂t
(2.3a)

∇× H = ε
∂E

∂t
(2.3b)

where ε = ε0εr.

These curl equations can be divided into their respective vector components by

applying the curl operation in Cartesian coordinates. The application of this curl operator

yields three scalar equations both Faraday and Ampère laws, that is, a set of six scalar

equations are needed to solve a 3D problem in cartesian coordinates. On the other hand,

the non-variation in one spatial direction (e.g. ẑ-direction) must be considered when

handling 2D problems. This non-variation implies that all partial derivatives of the fields

with respect to ẑ are eliminated. The set of six scalar equations which represent the field

components of the Maxwell’s equations in Cartesian coordinates is given by:

µ0
∂Hx

∂t
= −∂Ez

∂y
+
∂Ey

∂z
(2.4a)

µ0
∂Hy

∂t
= −∂Ex

∂z
+
∂Ez

∂x
(2.4b)

µ0
∂Hz

∂t
= −∂Ey

∂x
+
∂Ex

∂y
(2.4c)

ε
∂Ex

∂t
=
∂Hz

∂y
− ∂Hy

∂z
(2.4d)

ε
∂Ey

∂t
=
∂Hx

∂z
− ∂Hz

∂x
(2.4e)

ε
∂Ez

∂t
=
∂Hy

∂x
− ∂Hx

∂y
(2.4f)
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Considering the non-variation in the ẑ-direction, the set of three scalar equations

which represent the Transversal Magnetic to z (TMz) mode of Maxwell’s equations in 2D

is:

µ0
∂Hx

∂t
= −∂Ez

∂y
(2.5a)

µ0
∂Hy

∂t
=
∂Ez

∂x
(2.5b)

ε
∂Ez

∂t
=
∂Hy

∂x
− ∂Hx

∂y
(2.5c)

As can be seen in Eq. 2.5 the field components only vary spatially in the x-y

coordinates, that is, a variation in the ẑ plane vanishes allowing the analysis of 2D problems.

It is important to remark that there is another mode called Transverse Electric (TE) which

can be used to analyze 2D problems. These two modes TM and TE do not have any field

component in common. Therefore, they can coexist without influencing each other.

2.2 Conservation Form

The conservation form is used to simplify the representation of Maxwell’s equation.

This formulation is very useful because Eq. 2.3 can be summarized into just one equation

considering the unknown fields and fluxes as a vector. Also, media information is represented

as a matrix. The conservation form of Maxwell’s equation is given by:

Q
∂q

∂t
+∇ · F(q) = S (2.6)

where Q is the material matrix with the media information:

Q =

[
µ 0

0 ε

]
(2.7)

The state vector q is given by:

q =

[
H

E

]
(2.8)

The flux term F(q) can be represented as:

Fi(q) =

[
−ei × E

ei × H

]
(2.9)
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With F(q) =
[
Fx(q), Fyq), Fz(q)

]T
. Here ei signifies the three Cartesian unit

vectors, where i = x, y, z and S =
[
SE, SH

]T
represent sources, currents, and terms

introduced by the scattered field formulation. In this work, the source term is set to S = 0

for simplicity.

Rewriting the set of Eq. 2.4 in the conservation form:

Q =




µ0 0 0 0 0 0

0 µ0 0 0 0 0

0 0 µ0 0 0 0

0 0 0 ε 0 0

0 0 0 0 ε 0

0 0 0 0 0 ε




;q =




Hx

Hy

Hz

Ex

Ey

Ez




;∇ · F(q) =




−∂Ez

∂y
+ ∂Ey

∂z

−∂Ex

∂z
+ ∂Ez

∂x

−∂Ey

∂x
+ ∂Ex

∂y
∂Hz

∂y
− ∂Hy

∂z
∂Hx

∂z
− ∂Hz

∂x
∂Hy

∂x
− ∂Hx

∂y




Now, Rewriting the set of Eq. 2.5 in the conservation form:

Q =



µ0 0 0

0 µ0 0

0 0 ε


 ;q =



Hx

Hy

Ez


 ;∇ · F(q) =




−∂Ez

∂y
∂Ez

∂x
∂Hy

∂x
− ∂Hx

∂y




2.3 Local Variational Form

In the DG formalism, the domain Ω is represented by a set of non-overlapping

elements, K, typically tetrahedrons for tridimensional problems or triangles for bidimen-

sional problems, which are organized in an unstructured manner in order to geometrically

conform the computational domain.

Ω =
K⋃

k=1

Ωk (2.12)

Now, let us consider only a single element of the computational domain. The

aim is to find a numerical approximation qh of q. For the DG spatial discretization, each

element is discontinuous with respect to others. It means that the variational form must

be local, therefore, the weak form is obtained by multiplying Eq. 2.6 by a regular test

function Lj(r, t) which minimizes the residue. Finally, we integrate over the element Ωk.
∫

Ωk

[
Q∂tqh(r, t) +∇ · F(qh)

]
Lj(r, t)dΩ = 0 (2.13)

Now, let us apply Gauss’s theorem over Eq. 2.13 to obtain the local statement:
∫

Ωk

[
Q∂tqh(r, t)Lj(r, t)− F(qh) · ∇Lj(r, t)

]
dΩ = −

∫

ΓΩk

n̂ · F(qh)Lj(r, t)dΓ (2.14)
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where e is the interface between elements Ωk1 and Ωk2 .

Moreover, there are many possibilities for choosing the numerical flux such as

centered, upwind, and penalized. All of them use a penalization parameter, α, that has

an impact on the precision and stability of the solution [47]. The centered flux (α = 0)

considers the interface solutions of the local and neighbor elements in order to calculate an

average value between both solutions [48]. The upwind flux (α = 1) is usually employed

due to its precision and robustness. It introduces into the scheme some upwind terms that

come from the solution of the Riemann problem [49]. Finally, the penalized flux uses a

similar formulation of the upwind flux but considers a decimal penalization parameter

(0 < α < 1). According to [50], the upwind flux is the most used due to the maximum

attenuation of non-physical modes. This means that the effects of spurious modes are

controlled.

Hesthaven and Warburton presented a numerically stable and convergent scheme

using the upwind flux [36]. It is given by:

n̂ ·
[
F(qh)− F∗(q−,q+)

]
=

1

2




Z̄−1

(
n̂ ×

[
−Z+∆H + αn̂ ×∆E

])

Ȳ −1
(
n̂ ×

[
Y +∆E + αn̂ ×∆H

]) (2.17)

where ∆E = E− − E+ and ∆H = H− −H+. Z± and Y ± are respectively, the impedance

and the conductance of the media:

Z± =

√
µ±

ε±
, Y ± =

1

Z±
=

√
ε±

µ±

Z̄ and Ȳ are their sums:

Z̄ = Z+ + Z− , Ȳ = Y + + Y −

In Eq. 2.17 the superscript ” + ” refers to field values from the neighbor element

while superscript ” − ” refers to field values from local element. The tangential field

components are represented by the normal component of the flux. Hence, the objective

of the right-hand side in Eq. 2.17 is to enforce the continuity of the tangential field

components across the face of the elements. Expanding Eq. 2.17 and using the vector

identity a × (b × c) = (a · c)b − (a · b)c, the six scalar flux components for Maxwell’s

equations in 3D are given by:
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n̂·
[
F(qh)− F∗(q−,q+)

]
=

1

2





Ȳ −1
(
nyY

+∆Ez − nzY
+∆Ey − α

[
∆Hx − ndotH · nx

])

Ȳ −1
(
nzY

+∆Ex − nxY
+∆Ez − α

[
∆Hy − ndotH · ny

])

Ȳ −1
(
nxY

+∆Ey − nyY
+∆Ex − α

[
∆Hz − ndotH · nz

])

Z̄−1
(
−nyZ

+∆Hz + nzZ
+∆Hy − α

[
∆Ex − ndotE · nx

])

Z̄−1
(
−nzZ

+∆Hx + nxZ
+∆Hz − α

[
∆Ey − ndotE · ny

])

Z̄−1
(
−nxZ

+∆Hy + nyZ
+∆Hx − α

[
∆Ez − ndotE · nz

])

(2.18)

where ndotH = nx∆Hx + ny∆Hy + nz∆Hz and ndotE = nx∆Ex + ny∆Ey + nz∆Ez.

Finally, the Eq 2.18 can be represented in the 2D TMz case as:

n̂ ·
[
F(qh)− F∗(q−,q+)

]
=

1

2





Ȳ −1
(
nyY

+∆Ez − α
[
∆Hx − ndotH · nx

])

Ȳ −1
(
−nxY

+∆Ez − α
[
∆Hy − ndotH · ny

])

Z̄−1
(
−nxZ

+∆Hy + nyZ
+∆Hx − α∆Ez

) (2.19)

2.3.2 Boundary conditions

The correct imposition of Boundary Conditions (BC) is mandatory to solve

partial differential equations (e.g. Maxwell’s equations). This is important because bad

BC imposition can lead to the divergence of the solution or to the convergence to a wrong

solution. In this work, BCs are crucial to model the wave propagation of electromagnetic

fields in a finite computational domain. Previously, it was explained that numerical flux

can be used to connect adjacent elements, but it also serves to directly implement basic

boundary conditions in weak form, just by modifying the jumps in the factors ∆E and

∆H.

2.3.2.1 Perfect electric conductor (PEC)

The PEC condition requires that the tangential component of the electric field

must be null and the tangential magnetic field component to be continuous.

n̂ × E = 0 (2.24)

In our case to implement the PEC boundary condition, we use the same mirror

principle used in [36]. To the electric field we assigned E+ = −E−. Thus, on a PEC
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boundary ∆E = 2E−. On the other hand, we assigned H+ = H− to the magnetic field

and consequently, ∆H = 0.

2.3.2.2 Perfect magnetic conductor (PMC)

The PMC condition is the reciprocal of the PEC one, accordingly:

n̂ × H = 0 (2.25)

As in the PEC boundary conditions, for the PMC we use H+ = −H− and

E+ = E−. Finally, to the PMC case: ∆H = 2H− and ∆E = 0.

2.3.2.3 Silver-Muller absorbing (SMA)

The first order SMA boundary condition provides an ideally null reflection co-

efficient for normal incidence because it is based on assuming that fields outside the

computational domain propagate as normal plane waves to the interface [51].

√
ε0
µ0

n̂ × E + n̂ ×
(
n̂ × H

)
= 0 (2.22)

To implement this condition, it is enough to ensure that the tangential components

of the electric and magnetic fields are null. It means that ∆E = 2E− and ∆H = 2H− on

boundary nodes. This absorbing boundary condition is useful when the object that interacts

with the waves is far enough from the boundary. However, its absorbing characteristics

rapidly degrade with the variation of the incident angle [52].

2.3.3 Perfectly matched layers

The Perfectly Matched Layers (PML) technique is widely recognized as the most

effective method for truncating open-space domains in electromagnetic simulations. This is

largely due to its independence from factors such as frequency, wave polarization, and angle

of incidence, which makes it a versatile and robust solution for absorbing outgoing waves.

The fundamental concept of PML involves introducing a lossy dielectric layer of specific

thickness at the truncated boundaries of the simulation domain. This layer is designed to

facilitate the gradual attenuation of outgoing waves, ensuring that their amplitude decreases

nearly to zero before they reach the simulation boundary. The seamless impedance matching

at the interface ensures that reflections back into the computational domain are minimized,

preserving the accuracy of the simulation. In practical implementations, the Uniaxial

Perfectly Matched Layer (UPML) is a common variant that extends the PML approach

by utilizing anisotropic media. This formulation typically requires fewer auxiliary variables
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and is computationally cheaper than the Convolutional Perfectly Matched Layer (CPML)

because it does not involve memory-intensive convolutions. The governing equations of

the PML are derived from Maxwell’s equations. For time-harmonic fields in the frequency

domain, the general form of Maxwell’s equations in the UPML medium is expressed as [53]:

∇×E = −jωµ0ΛH (2.23a)

∇×H = jωεΛE (2.23b)

where the metric tensor Λ can be defined as:

Λ =



(SySz)/Sx 0 0

0 (SxSz)/Sy 0

0 0 (SxSy)/Sz


 (2.24)

with the UPML parameters for i = x, y, z as:

Si = 1 + σi/jω (2.25)

The conductivity parameter have a gradual increase in the PML region as σi =

σi
max(d

i/dimax), where di denotes the distance from the PML surface and dimax is the

thickness of the PML. According to [54], the σi
max can be calculated as:

σi
max =

0.8(v + 1)

∆d
√
ε0µ0

(2.26)

where ∆d is the cell size in the PML region and v is a constant usually chosen to be 2 or 3.

Finally, the Eqs. 2.23a and 2.23b are expanded and converted to the time domain,

yielding the next system of differential equations:

µ0
∂H

∂t
= −∇× E −P − µ0Λ1H (2.27a)

∂P

∂t
= −Λ2P + µ0Λ3H (2.27b)

ε
∂E

∂t
= ∇× H − Q − εΛ1E (2.27c)

∂Q

∂t
= −Λ2Q + εΛ3E (2.27d)
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where P and Q are auxiliary differential equations needed in the UPML formulation and

the diagonal tensors Λ1,Λ2,Λ3 are given by:

Λ1 = diag[σz + σy − σx, σx + σz − σy, σy + σx − σz] (2.28a)

Λ2 = diag[σx, σy, σz] (2.28b)

Λ3 = diag[(σy − σx)(σz − σx), (σz − σy)(σx − σy), (σz − σz)(σy − σz)] (2.28c)

2.3.4 Sources

The introduction of sources in solving electromagnetic problems is crucial because

they influence the behavior and characteristics of the electromagnetic fields involved.

Sources can be broadly categorized into two types: far and near [6]. Far sources, often

treated as plane waves, simplify the analysis by assuming that the wavefronts are essentially

parallel and the amplitude is constant over the region of interest. Near sources, on the

other hand, require a more detailed and complex analysis as they produce fields that vary

significantly with distance and direction. These sources are critical in applications like

antenna design, where the spatial variation of the fields must be precisely understood and

controlled. The properly imposition and modeling of these kind of sources ensure accurate

solutions to electromagnetic problems. In this work, far sources have been introduced by

making use of the Total-Field/Scattered-Field (TF/SF) formulation [55] and near sources

are imposed by introducing surface electric and magnetic currents [6, 56].

2.3.4.1 Total-field/scattered-field formulation

The TF/SF formulation is widely used in scattering problems to incorporate

incident fields as plane waves. This technique is widely used in FDTD simulations because

it allows the division of electromagnetic fields into two components, the total field and the

scattered field. This division is possible due to the linearity of Maxwell’s equation [57]. The

TF/SF formulation can be incorporate in the DGTD method by dividing the computational

domain into two zones: the Total-Field Zone (TFZ) and the Scattered-Field Zone (SFZ).

Then, the interface between these two zones is used to introduce the incident fields in a

weak manner by modifying the flux terms in Eq. 2.17. Figure 2 illustrates the interface

between the TFZ and SFZ where the incident field is imposed.

As can be seen in Figure 2, both the TFZ and the SFZ have elements with at

least one face lying to the TFZ/SFZ interface. Assuming that within the TFZ a known

waveform is propagating, Einc and Hinc, while in the SFZ the total field is zero, the flux
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Einc = V inc(t)
1

ρ · ln(lb/la)
ρ̂, Hinc = V inc(t)

1

ρ · η · ln(lb/la)
ϕ̂ (2.36)

where η is the intrinsic impedance of the coaxial waveport with la and lb being the inner

and outer radii of the concentric conductors.

As can be seen in Figure 5, this antenna feed model increases the size of the

computational domain due to the discretization of the coaxial cable, while increasing the

memory and computation requirements. However, this is offset by the rapid absorption of

the reflected waves by the PML, considerably reducing the number of time steps to obtain

accurate results. In terms of implementation cost, the coaxial waveport presents a higher

level of complexity compared with the delta-gap and magnetic frill models due to the

need of the TF/SF formulation to inject the incident fields. Although the TF/SF method

may be straightforward for experienced users of numerical methods such as FDTD [65]

and FEM [6], novice users of the DGTD method may encounter some difficulties in its

implementation and therefore opt for other simplified models.

2.4 Galerkin Semi-discretized Form

Suppose that the local solution can be represented in the following form:

qk
h =

Np∑

i=1

qi(ri, t)Li(r) =

Np∑

n=1

q̂nψn(r) (2.37)

where Li and ψn determine a nodal and modal local basis, respectively.

According to [4], the nodal and modal coefficients can be related as follows:

qnodal = V q̂modal (2.38)

This matrix, V , is known as a generalized Vandermonde matrix, Vij = ψj(ri).

Its function is to establish the connection between the modes q̂ and the nodal values q.

Now, we choose the interpolating Lagrange polynomial as the function Li to approximate

the exact solution. It is well known that this polynomial basis has the Kronecker delta

property:

Li(rj) =

{
1, i = j

0, i ̸= j
(2.39)

Lagrange polynomials are formed by the linear combination of monomials and

can be represented in general by [57]:

Li(rj) =

k+l+m≤N∑

k,l,m=0

aik,l,mx
kylzm (2.40)
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2.4.4 Mass and stiffness matrices

Considering only a local element Ωk, the spatial discretization of the left-hand

side of Eq. 2.16 can be represented by:

∫

Ωk

[
Q∂tqh(r, t) +∇ · F(qh)

]
Lj(r, t)dΩ =

∫

Ωk

[
Qk∂tq

k
h +∇ · F(qk

h)
]
Lk
jdΩ (2.48)

The approximation of each variable in the system is made using basis functions

such that: ukh =
∑Np

i=1 u
k,i
t L

k
i (r), where Np is the number of the unknown variables for each

element. Coefficients depend on time and the basis functions of space. Therefore, using

expansion by basis functions in Eq. 2.48, we obtain:

∫
Ωk

(
µk
0∂tH

k
x + ∂yE

k
z − ∂zE

k
y

)
Lk
jdΩ = µk

0M
k∂tH

k
x + [Sk,y]TEk

z − [Sk,z]TEk
y

∫
Ωk

(
µk
0∂tH

k
y + ∂zE

k
x − ∂xE

k
z

)
Lk
jdΩ = µk

0M
k∂tH

k
y + [Sk,z]TEk

x − [Sk,x]TEk
z

∫
Ωk

(
µk
0∂tH

k
z + ∂xE

k
y − ∂yE

k
x

)
Lk
jdΩ = µk

0M
k∂tH

k
z + [Sk,x]TEk

y − [Sk,y]TEk
x

∫
Ωk

(
εk∂tE

k
x − ∂yH

k
z + ∂zH

k
y

)
Lk
jdΩ = εkMk∂tE

k
x − [Sk,y]THk

z + [Sk,z]THk
y

∫
Ωk

(
εk∂tE

k
y − ∂zH

k
x + ∂xH

k
z

)
Lk
jdΩ = εkMk∂tE

k
y − [Sk,z]THk

x + [Sk,x]THk
z

∫
Ωk

(
εk∂tE

k
z − ∂xH

k
y + ∂yH

k
x

)
Lk
jdΩ = εkMk∂tE

k
z − [Sk,x]THk

y + [Sk,y]THk
x

(2.49)

where Hk
x,H

k
y,H

k
z ,E

k
x,E

k
y,E

k
z are vectors with dimension Np × 1, they contain the field

component for each nodal value. Moreover, electric permittivity εk and magnetic per-

meability µk
0 have the same dimension Np × 1 with the information about the media in

element k. On the other hand, Mk and S
k are known as mass and stiffness matrices,

respectively. Their dimensions are equal to Np ×Np.

M
k
i,j =

∫
Ωk
Lk
iL

k
jdΩ

S
k,x
i,j =

∫
Ωk
∂xL

k
iL

k
jdΩ

S
k,y
i,j =

∫
Ωk
∂yL

k
iL

k
jdΩ

S
k,z
i,j =

∫
Ωk
∂zL

k
iL

k
jdΩ

(2.50)

Taking into account that V was built using an orthonormal basis, the mass matrix

can be calculated as follows:

M
k = Jk(V V T )−1 (2.51)

where Jk is the jacobian of the element k. In addition, since the DG method uses

discontinuous basis functions, the resulting mass matrix is block diagonal. Now, the

differentiation matrices Dr,Ds, and Dt are introduced to calculate the stiffness matrices [4].
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These differentiation matrices are operators that transform point values, u(r), to derivatives

at the same points (e.g. u
′

h = Druh).

∂
∂x

= ∂r
∂x
Dr +

∂s
∂x
Ds +

∂t
∂x
Dt,

∂
∂y

= ∂r
∂y
Dr +

∂s
∂y
Ds +

∂t
∂y
Dt,

∂
∂z

= ∂r
∂z
Dr +

∂s
∂z
Ds +

∂t
∂z
Dt

where Dr, Ds, and Dt calculate derivatives in the 3D reference space (r, s, t). They can be

calculated as follows:

Vr,(i,j) =
∂ψj(ri, si, ti)

∂r

Vs,(i,j) =
∂ψj(ri, si, ti)

∂s

Vt,(i,j) =
∂ψj(ri, si, ti)

∂t

Considering the relations Dr = VrV
−1, Ds = VsV

−1, and Dt = VtV
−1 [4]. The

expressions for the stiffness matrices are given by:

S
k,x = ( ∂r

∂x
Dr +

∂s
∂x
Ds +

∂t
∂x
Dt)(V V

T )−1

S
k,y = ( ∂r

∂y
Dr +

∂s
∂y
Ds +

∂t
∂y
Dt)(V V

T )−1

S
k,z = (∂r

∂z
Dr +

∂s
∂z
Ds +

∂t
∂z
Dt)(V V

T )−1

(2.52)

In addition, the mass and stiffness matrices are related by [4]:

Sr = MDr

Ss = MDs

St = MDt

(2.53)

Finally, the spatial discretization of the left-hand side of the strong variational

formulation given by Eq. 2.16 can be obtained by substituting Eq. 2.53 into Eq. 2.49.

µk
0∂tH

k
x = −DyE

k
z +DzE

k
y +M

−1fluxterm(H
k
x)

µk
0∂tH

k
y = −DzE

k
x +DxE

k
z +M

−1fluxterm(H
k
y)

µk
0∂tH

k
z = −DxE

k
y +DyE

k
x +M

−1fluxterm(H
k
z)

εk∂tE
k
x = DyH

k
z −DzH

k
y +M

−1fluxterm(E
k
x)

εk∂tE
k
y = DzH

k
x −DxH

k
z +M

−1fluxterm(E
k
y)

εk∂tE
k
z = DxH

k
y −DyH

k
x +M

−1fluxterm(E
k
z)

(2.54)

The term fluxterm(q
k) located on the right-hand side of Eq. 2.54 refers to the

spatial discretization of the flux for each field component. These terms will be discussed in
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the next subsection. On the other hand, the first two terms of the right-hand side of Eq.

2.54 are known as volume terms. They are responsible for calculating the derivatives of

the field components inside each element k. Considering that the differentiation matrices

have dimension Np × Np, the field derivatives are calculated by using a matrix-vector

multiplication for each element. This matrix-vector multiplication is considered an easy-

parallelizable operation.

Now, for the TMz mode the system of equations shown in 2.54 is reduced to:

µk
0∂tH

k
x = −DyE

k
z +M

−1fluxterm(H
k
x)

µk
0∂tH

k
y = DxE

k
z +M

−1fluxterm(H
k
y)

εk∂tE
k
z = DxH

k
y −DyH

k
x +M

−1fluxterm(E
k
z)

(2.55)

2.4.5 Flux discretization

Until now, the computation of the local matrices of the right-hand side of the

strong variational formulation of Maxwell’s curl equations has been discussed. However, to

complete the semi-discretized form we have to explain how to discretize the flux term of

Eq. 2.16. So, considering that the surface integral is split into four individual components,

each of type:

∫

ΓΩk

n̂ ·
[
F(qh)− F∗(q−,q+)

]
LjdΓ =

Nfp∑

i=1

n̂ ·
[
F(qk

h)− F∗(q−,q+)
] ∫

face

Lk
iL

k
jdΓ (2.56)

where Nfp is the number of nodes in each face. In the 3D case Nfp = (N + 1)(N + 2)/2.

Assuming that all tetrahedrons have straight sides and the outwardly directed

normal vector, n̂, is constant on each face. The mass face matrices can be represented by:

M
k,face
i,j =

∫

face

Lk
iL

k
jdΓ (2.57)

Note that the mass face matrix can be calculated using the 2D vandermonde

matrix, V 2D, which corresponds to a two-dimensional interpolation on the face element.

Thus, the mass face matrix can be represented as:

M
k,face
i,j = Jface(V 2D(V 2D)T )−1 (2.58)

where Jface is the Jacobian for each face.
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The information inside each one of the four mass face matrices is organized into a

new matrix, Ak, with dimension Np × 4Nfp. Therefore, the right-hand side of Eq. 2.16

can be rewriting as:

∫

ΓΩk

n̂ ·
[
F(qh)− F∗(q−,q+)

]
LjdΓ = A

kn̂ ·
[
F(qk

h)− F∗(q−,q+)
]

(2.59)

The right-hand side of Eq. 2.59 represents the terms fluxterm(qk) mentioned in

the previous subsection. Finally, substituting Eq. 2.18 into Eq. 2.59 and replacing the result

into Eq. 2.54, the complete semi-discretized form of the strong variational formulation

represented by Eq. 2.16 is given by:

∂tH
k
x = (−DyE

k
z +DzE

k
y + LIFT Pk

Hx
)/µk

0

∂tH
k
y = (−DzE

k
x +DxE

k
z + LIFT Pk

Hy
)/µk

0

∂tH
k
z = (−DxE

k
y +DyE

k
x + LIFT Pk

Hz
)/µk

0

∂tE
k
x = (DyH

k
z −DzH

k
y + LIFT Pk

Ex
)/εk

∂tE
k
y = (DzH

k
x −DxH

k
z + LIFT Pk

Ey
)/εk

∂tE
k
z = (DxH

k
y −DyH

k
x + LIFT Pk

Ez
)/εk

(2.60)

where LIFT = M
−1
A

k is a matrix with dimensionNp×4Nfp and Pk
Hx
,Pk

Hy
,Pk

Hz
,Pk

Ex
,Pk

Ey
,Pk

Ez

are vectors with dimension 4Nfp × 1.

Pk
Hx

Pk
Hy

Pk
Hz

Pk
Ex

Pk
Ey

Pk
Ez

=
1

2





Ȳ −1
(
nyY

+∆Ez − nzY
+∆Ey − α

[
∆Hx − ndotH · nx

])

Ȳ −1
(
nzY

+∆Ex − nxY
+∆Ez − α

[
∆Hy − ndotH · ny

])

Ȳ −1
(
nxY

+∆Ey − nyY
+∆Ex − α

[
∆Hz − ndotH · nz

])

Z̄−1
(
−nyZ

+∆Hz + nzZ
+∆Hy − α

[
∆Ex − ndotE · nx

])

Z̄−1
(
−nzZ

+∆Hx + nxZ
+∆Hz − α

[
∆Ey − ndotE · ny

])

Z̄−1
(
−nxZ

+∆Hy + nyZ
+∆Hx − α

[
∆Ez − ndotE · nz

])

(2.61)

Note that the vectors Pk
Hx
,Pk

Hy
,Pk

Hz
,Pk

Ex
,Pk

Ey
,Pk

Ez
can be calculated by using

simple parallelizable element-wise arithmetic operations. Once these vectors have been

calculated, they must be multiplied by matrix LIFT. This matrix-vector multiplication

can also be parallelized. In addition, the set of equations representing the TMz mode in

2D can be derived from Eq. 2.60, eliminating the variations in the ẑ plane. So, we get:

∂tH
k
x = (−DyE

k
z + LIFT Pk

Hx
)/µk

0

∂tH
k
y = (DxE

k
z + LIFT Pk

Hy
)/µk

0

∂tE
k
z = (DxH

k
y −DyH

k
x + LIFT Pk

Ez
)/εk

(2.62)
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where

Pk
Hx

Pk
Hy

Pk
Ez

=
1

2





Ȳ −1
(
nyY

+∆Ez − α
[
∆Hx − ndotH · nx

])

Ȳ −1
(
−nxY

+∆Ez − α
[
∆Hy − ndotH · ny

])

Z̄−1
(
−nxZ

+∆Hy + nyZ
+∆Hx − α

[
∆Ez

]) (2.63)

It is important to remark that the LIFT matrix in the 2D case, shown in Eq. 2.62,

must be calculated in a different way than in the 3D case. Thus, considering that the

computational domain for 2D problems is represented by straight-side triangular elements,

the right-hand side of Eq. 2.16 is split into three individual components, each of type:

∫

ΓΩk

n̂ ·
[
F(qh)− F∗(q−,q+)

]
Lk
jdΓ =

Nfp∑

i=1

n̂ ·
[
F(qk

h)− F∗(q−,q+)
] ∫

edge

Lk
iL

k
jdΓ (2.64)

where Nfp is the number of nodes in each edge. In the 2D case Nfp = N + 1.

The mass edge matrices can be represented by:

M
k,edge
i,j =

∫

edge

Lk
iL

k
jdΓ (2.65)

Note that the mass edge matrix can be calculated using the 1D vandermonde

matrix, V 1D, which corresponds to a one-dimensional interpolation on the edge element.

Thus, the mass edge matrix can be represented as:

M
k,edge
i,j = Jedge(V 1D(V 1D)T )−1 (2.66)

where Jedge is the Jacobian for each edge.

Once the mass edge matrices are calculated, the contribution of each one is

organized into a new matrix, Ak, with dimension Np × 3Nfp. Finally, the LIFT matrix for

the 2D case is calculated by using LIFT = M
−1
A

k. This LIFT matrix has a Np × 3Nfp

dimension.

2.5 Time Integration Methods

As can be noticed, the emphasis so far has been on spatial discretization and semi-

discrete representation. However, it is fundamental to consider the numerical integration

in the time domain to complete the full DGTD scheme. There are many approaches that

can be used in time discretization [32, 69,70]. These works present different kinds of time
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integration methods and their principal features. Although there are so many approaches,

basically we can divide them into two large groups: Explicit and Implicit methods.

Explicit methods compute the system state at a future time step based on the

currently known state. They are widely used due to their ease of implementation and ability

to produce accurate results. However, their stability is limited, as they require a sufficiently

small time step to prevent divergence. Considering a differential equation y = F (y, t),

an explicit method could express the system in a future time as yn+1 = yn +∆tF (yn, tn)

where ∆t is known as time step and its calculation will be discussed later.

On the other hand, implicit methods calculate the state of the system at a future

time using the currently known state of the system and the same future state. This means

that it is necessary to solve a system of equations to calculate the future state at each

time interval. At first glance, implicit methods may seem more complex to program and

take a long time to calculate. However, a sufficiently large time step, high stability, and

high convergence are interesting features that can be used. For example, implicit methods

are very used to solve non-linear problems where it is difficult to predict a future from the

past state. Considering again a differential equation y = F (y, t), the future state into an

implicit method are defined as yn+1 = yn +∆tF (yn+1, tn+1).

As mentioned before, the use of orthonormal polynomials as basis functions

produces block-diagonal mass matrices. This feature allows a couple between DG and fully

explicit integration methods. Considering that explicit methods have a low computational

cost and easier implementation when compared with implicit methods, explicit approaches

such as leapfrog (LF) and Runge-Kutta methods are widely used to discretize the time

domain into DG method [28, 36, 56, 71, 72]. In this work we focus on the use of explicit

high order RK methods for integration in the temporal dimension.

2.5.1 Runge Kutta methods

Numerical methods to solve ordinary differential equations can be divided into

two categories: single-step and multi-step. Into the single-step methods can be found the

RK which only needs the current value to calculate the next time solution. On the other

hand, multi-step methods use many previous values to advance to the next time solution.

In this section we explain the RK methods and why they are considered a single-step

method. Firstly, consider the next differential equation:

d

dt
y = y′ = f(y, t), t > t0 (2.67)

y(t0) = y0

where y = (y1, y2, ..., yn)
T is the vector of unknowns and f : Rn × R → R

n
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The general s-stage RK method [73] for the ordinary differential equation system

of Eq. 2.67 can be defined as:

yn+1 = yn +∆t
s∑

i=1

bif(ϕi, tn + ci∆t) (2.68)

and

ϕi = yn +∆t
s∑

j=1

aijf(ϕj, tn + cj∆t), 1 ≤ i ≤ s (2.69)

where s is the number of stages and its number depends on the order approximation of

the method, ϕi are the intermediate stages, and ∆t is the time step defined on the interval

tn → tn+1. RK methods also can be represented by the known Butcher notation [74].

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs

Table 1 – Butcher tableau for RK methods.

Coefficients aij, bi and ci are calculated by using a Taylor series expansion. However,

for each order of the RK method (eg, second, third, fourth) the number of unknown

coefficients is larger compared to the number of equations. This means that some unknowns

must be specified a priori in order to determine the remaining parameters. Consequently,

there are an infinite number of n-order RK methods [73]. Despite a large number of options

for the RK methods, all of them are represented by the combination of the intermediate

stages and the current time solution. As can be seen in Eq. 2.68, the next time step solution

yn+1 is calculated based on the sum of the intermediate stages multiplied by constant

values aij, bi and ci. It implies that every RK method can be implemented by using basic

element-wise arithmetic operations such as sums and multiplications. This feature turns

the RK methods very interesting candidates for parallel implementations.

2.5.2 Third-order Runge Kutta method (RK3)

The application of the Taylor series expansion in order to obtain a system of

equations for the RK3 method results in a set of six equations with eight unknowns [73]. So,

as mentioned before, there are several possible versions that would yield exactly the same

results if the solution to the Ordinary Differential Equation (ODE) were cubic, quadratic,

linear, or constant. Table 2 shows a Butcher notation of RK3 methods in function of a β

parameter. It is important to remark that the constant value β must be chosen considering:
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ci =
s∑

j=1

aij, i = 1, ..., s (2.70)

0 0 0 0
2
3

2
3

0 0
2
3

2
3
− 1

4β
1
4β

0
1
4

3
4
− β β

Table 2 – Butcher tableau for a third order RK family methods.

In order to satisfy Eq. 2.70, we choose β = 3/8. Modifications are shown in Table

3. Thus, the system of equation for the three-stage explicit RK3 method is given by:

yn+1 = yn +∆t
1

4
(f(yn, tn) +

3

2
f(ϕ2, tn +

2

3
∆t) +

3

2
f(ϕ3, tn +

2

3
∆t)) (2.71)

ϕ2 = yn +
2

3
f(yn, tn)∆t

ϕ3 = yn +
2

3
f(ϕ2, tn)∆t

0 0 0 0
2
3

2
3

0 0
2
3

0 2
3

0
1
4

3
8

3
8

Table 3 – Butcher tableau for a third order RK family methods.

Note that in Eq. 2.71 the term f(yn, tn) appears in the equation for ϕ2, which

appears in the equation for ϕ3. This recurrence behavior makes RK methods efficient for

computer calculations [73].

2.5.3 Fourth-order Runge Kutta method (RK4)

The fourth-order approximation is known as the most popular RK method. As

in the third-order approach, there are several versions due to the number of equations is

smaller than the number of unknowns. However, the most commonly used form and also

called the classical fourth-order RK4 method is given by:
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yn+1 = yn +∆t
1

6
(f(yn, tn) + 2f(ϕ2, tn +

1

2
∆t) + 2f(ϕ3, tn +

1

2
∆t) + f(ϕ4, tn +∆t)) (2.72)

ϕ2 = yn +
2

3
f(yn, tn)∆t

ϕ3 = yn +
2

3
f(ϕ2, tn)∆t

ϕ4 = yn +
2

3
f(ϕ3, tn)∆t

RK3 and RK4 methods are widely used for time integration into the DGTD

method. These methods present good results due to their high order of approximation.

However, it can be noticed that depending on the approximation order the number of

intermediate arrays grows up. Considering that these arrays must be stored during the

calculation of the solution at each time step, there would be a limitation in terms of

memory, especially when dealing with large-scale problems. Therefore, the low-storage

version was proposed to avoid this memory drawback.

2.5.4 Low-Storage Explicit Runge Kutta fourth order (LSERK4) method

The LSERK4 method is presented as an alternative to the common RK methods.

[72,75,76]. This method is one of the most used in high-order DG schemes because it does

not need to compute and evaluate derivatives, and also, produces low dispersion and low

dissipation errors [47]. As in all time-stepping methods, the aim is to find the solution

in the time step tn+1 taking as a reference the solution at the first time step tn, starting

with the given initial condition. Then, considering the Eq. 2.67 and applying the LSERK4

method we have:

p0 = yn

i ∈ [1, ...5] :




ϕi = aiϕ(i−1) +∆tf(p(i−1), tn + ci∆t)

pi = p(i−1) + biϕi

yn+1 = y5

(2.73)

where yn and yn+1 are initial and final solution, respectively. They are separated by the

time step ∆t. Coefficients ai, bi and ci can be found in [4].

As can be seen in Eq. 2.73, this method requires only two arrays ϕi and pi that are

modified themselves for each one of its five stages. Contrary to the common RK methods,

the low-storage approach reduces memory usage significantly. However, the additional

stage can make this method less interesting due to the added computational cost.
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2.5.5 Conditional stability and time step

All of the previously discussed time integration methods are considered explicit

and therefore subject to conditional stability, also known as the Courant-Friedrichs-Lewy

(CFL) condition. When the time step ∆t exceeds a critical value, the solution is subject

to unphysical exponential growth. To avoid this issue, traditional approaches relate the

size of the time step directly with the quality of the mesh [57]. One interesting approach

was found in [4], where the time step is calculated with the minimum distance between

the nodes into the smallest element in mesh,

∆t ≤ C∆dminmin
{
rkin/c

k
}

(2.74)

where rkin is the radius of the incircle or insphere of the k element. ∆dmin is the smallest

distance between two nodes on the edges of the reference element. This length depends on

the polynomial order N as ∆dmin ∝ N−2. ck is the maximum speed of light in k, and C is

a constant factor of order 1.

This time step value guarantees and maintains the stability of the scheme. How-

ever, considering only the smallest mesh element implies an important restriction that

compromises the efficiency of the method. Especially when dealing with multi-scale prob-

lems where the size of the smallest and largest elements presents a very large discrepancy.

Many approaches based on multi-rate methods have been proposed in the literature to

avoid this time-step restriction [27,32,33,77]. These approaches utilize local time stepping

(LTS), a technique that divides the mesh elements into classes or groups, with each class

assigned a distinct time step determined by the smallest element within it. This method

allows for more efficient time integration by adapting the time step locally rather than

applying a uniform value across the entire domain. A more detailed explanation of local

time stepping will be provided in Chapter 4.

2.6 Chapter Conclusions

This chapter presents the Discontinuous Galerkin Time-Domain (DGTD) method

for solving Maxwell’s equations in non-dispersive dielectric media. It begins with a review

of Maxwell’s equations in their vector and scalar forms, covering both three-dimensional

and two-dimensional (TMz and TE) configurations. The conservation form and local

variational formulation of the equations are introduced, with numerical fluxes used to

handle discontinuities across element interfaces. Various boundary conditions are discussed,

including PEC, PMC, and absorbing layers such as PML. The implementation of elec-

tromagnetic sources is also addressed, using techniques like TF/SF, delta-gap, magnetic

frill, and coaxial waveport models. Spatial discretization is described in detail, employing
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orthonormal polynomial bases with attention to nodal distribution and the derivation of

mass and stiffness matrices. Time integration is performed using explicit Runge-Kutta

schemes, including low-storage variants, with a discussion on stability constraints. Overall,

the chapter provides a comprehensive formulation and implementation strategy for the

DGTD method.
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3 Parallel Computing with GPUs

This chapter contains the basic concepts of GPU and its main features. First, the

use of NVIDIA GPUs as parallel computing hardware along with its programming model

will be discussed. Then, the differences between the GPU and the CPU will be exposed

to understand the characteristics of heterogeneous computing. Finally, the hierarchical

structures present in the GPU will be explained and discussed.

3.1 GPU: A Brief Introduction

In the early days of GPUs, they were used exclusively as graphics acceleration

hardware. However, this has changed with the rise of interest in parallel computing. The

main objective of parallel computing is nothing more than to improve the speed of our

applications using all the resources provided by the GPU. In this sense, parallel computing

can be defined as a way of doing several calculations simultaneously, considering the

principle that a large and complex problem can be divided into several smaller and easier

problems. Now, GPUs can be seen as a general-purpose processors for floating-point

operations. In other words, a piece of hardware designed to do many arithmetic operations

taking advantage of its multiple cores. GPUs present an improvement in performance when

compared to CPUs due to the low latency and high bandwidth. Latency can be defined as

the time it takes for an operation to start and complete, and is frequently expressed in

microseconds. Bandwidth is defined as the amount of data that can be processed per unit

of time and is often expressed in gigabytes/sec [9].

Although GPUs offer numerous advantages over conventional processor architec-

tures, several factors must be carefully considered. One key consideration is the sensitivity

of GPU code to hardware changes. This sensitivity becomes evident when components such

as clock rates, bus widths, and memory sizes are modified. Additionally, GPUs provide

multiple implementation strategies, some of which are more efficient than others. As a

result, it is not uncommon to observe variations in execution times between codes that

theoretically perform the same task [16]. In this work, we focus on the hardware of NVIDIA

GPUs, making it essential to introduce key concepts related to the Compute Unified Device

Architecture (CUDA). CUDA is a parallel computing platform and programming model

developed by NVIDIA to solve complex computational problems efficiently. It enables

parallel computing through standard programming languages such as C, C++, Fortran,

and Python [9].
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A CUDA program is divided into two parts: the host code that runs on CPU and

the device code that runs on GPU. In this work, the host code is written using standard

Python language and, the device code is written using CUDA C. The functions defined

by the programmer in CUDA C are called kernels. These kernels are executed in parallel

N times by N different CUDA threads simultaneously. Once the kernel is launched, the

problem data is mapped to the threads, which are responsible for executing a particular

function depending on the kernel instructions. These threads are grouped into blocks that

at the same time form a grid. Therefore, it is the responsibility of the programmer to

guarantee a good distribution or organization of threads depending on the problem. For

that, it is necessary to know the hierarchy structure of threads and memory [9].

In principle is common to think that all threads are executed at the same time

when the kernel is invoked. However, we should consider the hardware perspective to

achieve the best performance. The GPU architecture is composed of an array of Streaming

Multiprocessors (SM) which are the components designed to support the concurrent

execution of hundreds of threads. Once a kernel is launched, the blocks in the program are

distributed among all the available SMs for execution. Then, each SM divides the blocks

into groups of 32 threads called warps. All threads in a warp execute the kernel instructions

at the same time. However, even if all threads in a warp start the execution at the same

time, it is possible that some threads have different behavior due to its independent

execution path. This is the principal difference between SIMD and SIMT architectures.

Because SIMD requires that all elements execute together in a unified synchronous form.

3.3 Threads: Hierarchy Structure

A thread can be defined as the smallest sequence of programmed instructions

that can be managed independently. In a CUDA program, each thread has its own

data, instructions address and register state. Every thread can be indexed using a three-

dimensional vector, i.e, threads can be accessed using a 1D, 2D or 3D index. This index is

used for calculating memory address locations and also for taking control decisions. In

the hierarchical structure, threads are the first component, followed by blocks and finally

grids. A block is defined as a set of threads where the maximum number per block is 1024.

These blocks also can be organized using a three-dimensional vector which forms a grid.

The number of blocks that composes a grid is defined by the data quantity of the program

or by the number of SMs of the GPU. Figure 10 shows the two level thread hierarchy

divided into block of threads and grid of blocks.
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calculated (i.e. terms Pq from Eq. 2.63). Second, the element volume integral kernel where

the fields inside every element are calculated (i.e. the right-hand side terms rhsq from Eq

2.62). This kernel also can be found in the literature as element local differentiation [17].

Third, the time integration kernel where the field components are updated in time by using

a high order method, usually leapfrog (LF) or Runge-Kutta (RK) approaches (i.e. use the

rhsq terms calculated before and apply Eq. 2.68). These three CUDA kernels require an

optimal thread distribution in order to guarantee a good GPU performance. The thread

distribution methodology for each kernel will be discussed in the next sections with more

details. The procedure of the GPU-DGTD-GTS method is summarized in the Algorithm

1. Note that the value of s depends directly on the order of approximation of the time

integration RK method. The input arrays needed in the Algorithm 1 are summarized in

Table 4. These input arrays were calculated on the host and then stored on the device for

use in the kernels. In addition, the geometric factors mentioned in Table 4 are terms that

depend on the shape of each element and they are used in the transformation from the

reference to the local element.

Table 4 – List of inputs arrays for algorithm 1.

Array Dimension Description
q Nfc ×Np ×K Fields components
GV K ×Dim2 Geometric factors for the volume kernel
GS K ×Nfaces × (Dim+ 1) Geometric factors for the surface kernel

LIFT Np ×Nfaces ×Nfp Matrix for the surface integration
Dm Np ×Np ×Dim Differentiation matrices

Fluxind K ×Nfp × 2 Global index for local and neighbor element

The termsNfc andDim shown in Table 4 represent the number of field components

and the spatial dimension, respectively. The other terms will be discussed in the next

section. One of the most critical problems of the GPU-DGTD-GTS method in terms of

consuming time is the data exchange between host and device. However, this operation is

essential and cannot be omitted, as the field components must be updated at each time

step to ensure accurate computation and maintain the data dependencies necessary for

subsequent processing. Additionally, this data transfer is also important for post-processing

tasks, which are typically handled on the CPU side. Therefore, it is recommended to

minimize it as much as possible. This problem is not only present in the DGTD but also in

other time-dependent methods such as FDTD and FETD [13]. Finally, most works in the

literature recommend using shared memory as much as possible for computing calculations

due to its lower latency and higher bandwidth [8, 17,19].
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Algorithm I: GPU-DGTD-GTS method

1 procedure PAR_MAXWELL(q,GV ,GS,LIFT,Dm,Fluxind)

2 Initialize all variables // Create update matrices Pq, rhsq
3 Calculate the time step value ∆t

4 Copy data from the CPU to GPU

5 Define number of time steps Nts

6 for k=0 until Nts do // time loop

7 for l=0 until s do // RK s stages

8 <surface_integral_Kernel> //Calculate Pq

9 <volume_integral_Kernel> // Calculate rhsq
10 <time_integration_Kernel> // Update q

11 endfor

12 Copy data from the GPU to CPU

13 endfor

14 return q

15 end

3.5.1 The surface integral kernel

As can be seen in Algorithm 1, the surface integral kernel is the first step in our

parallel-GPU DGTD program. This kernel is used to calculate the terms Pq shown in

Eq. 2.63. In order to organize the data, we developed a routine, in which the number of

threads and blocks are calculated depending on the number of elements and Degrees of

Freedom (DOF) in the mesh. This routine uses the principle of one thread for each node

in an element. Before starting with the program description, we would like to introduce

some parameters that will be very useful later. K is the number of elements in the

computational domain. Np is the number of DOF for each field component in each element.

This parameter is obtained depending on the polynomial order N . The number of DOF in

each element face is called Nfp. Finally, Nfaces is the number of faces in each element, e.g.,

for 2D problems with triangle discretization Nfaces = 3. The decomposing task into an

appropriate set of blocks depends directly on the problem and the polynomial order used.

However, there are some strategies that can be interesting in order to take advantage of

the hardware specifications. Remembering that the minimum execution unit on the GPU

is a warp composed of 32 threads, we try to organize the number of threads into a block

as a multiple of 32. According to the authors in [17], it is a good idea to choose a number

of threads per block between 64 and 128. Thus, considering the hardware specifications

we made a routine that find the smallest number of elements per block, Kf , to ensure the

least amount of wasted memory. The routine to calculate the number of threads per block

and the number of blocks used in the element surface integral kernel is summarized as
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follows:

• Step 1: Calculate the total number of threads needed in the problem. Note that the

number of DOF for each flux component in each element is equal to Nfp ∗Nfaces.

Thus the total number of DOF for each flux component in the surface integral kernel

is given by:

Nthreads = Nfp ∗Nfaces ∗K (3.1)

• Step 2: Calculate the number of blocks necessary in the problem.

Blocksflux = ceil(
Nthreads

128
) (3.2)

The function ceil returns the smallest integer greater than Nthreads/128.

• Step 3: Calculate the number of elements per block.

Kf = floor(
128

Nfp ∗Nfaces

) (3.3)

The function floor returns the largest integer not greater than 128/(Nfp ∗Nfaces).

• Step 4: Calculate the number of threads used in each block

Threadsflux = Nfp ∗Nfaces ∗Kf (3.4)

• Step 5: Verify if the threads and blocks distribution is correct

while(Threadsflux ∗Blocksflux < Nthreads) (3.5)

If true, go to Step 6. Else, go to step 7.

• Step 6: Add one more block

Blocksflux = Blocksflux + 1 (3.6)

• Step 7: Calculate the number of elements that must be added to complete the

distribution

Kfpad = Threadsflux ∗Blocksflux −K (3.7)

• Step 8: Modify the flux components size using a padding process (add some zeros to

match the new domain size). Thus, the total number of elements in the computational

domain is increased to match the DOF distribution. It can be seen in Figure 12.

KfNew = K +Kfpad (3.8)
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calculating the number of threads and blocks used in the element volume integral kernel is

summarized as follows:

• Step 1: Calculate the total number of threads needed in the problem

Nvthreads = Np ∗K (3.9)

• Step 2: Set the parameter Np as the number of threads used in the x direction.

Moreover, it is necessary to calculate the number of threads into the y direction which

represents the number of elements Kv in each block. Therefore, each block is formed

by a set of Np threads in x dimension and Kv threads in y dimension. The value of

the parameter Kv is calculated considering the NVIDIA recommendations [15].

Kv = floor(
128

Np

) (3.10)

• Step 3: Calculate the number of blocks needed in the problem

Blocksvolume = ceil(
Nvthreads

128
) (3.11)

• Step 4: Verify if the threads and blocks distribution is correct

while(Np ∗Kv ∗Blocksvolume < Nvthreads) (3.12)

If true, go to Step 5. Else, go to step 6.

• Step 5: Add one more block

Blocksvolume = Blocksvolume + 1 (3.13)

• Step 6: Calculate the number of elements that must be added to complete the

distribution

Kvpad = Blocksvolume ∗Kv −K (3.14)

• Step 7: Modify the field components size using a padding process (add some zeros

to match the new domain size). Therefore, the total number of elements in the

computational domain is increased in order to match the DOF distribution. It can

be seen in Figure 14.

KvNew = K +Kvpad (3.15)
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As in the previous kernel, this procedure provides an optimal DOF distribution

for 2D blocks represented by (Np, Kv, 1) and Blocksvolume. This means that during the

execution of the volume integral kernel, each block will use a number of Np ×Kv threads

while the grid will use a number Blocksvolume blocks. This block configuration is very used

in literature in order to hand with matrix operations [17]. As we mentioned before, this

kernel was developed using both shared and global memory. However, due to the complexity

of the matrix-matrix multiplication program, the use of shared memory provides better

results in terms of computational efficiency when compared with global memory. The

results of this kernel using both shared and global memory are discussed in chapter 5.

Finally, the procedure for calculating the right-hand side of Eq. 2.62 is summarized in

Algorithm 3. As in the surface kernel, the dimensions of the input arrays in this algorithm

are modified by applying the padding process as shown in Figure 14.

Algorithm III: volume integral kernel (Shared memory)

1 procedure VOL_KERNEL(q,Gv,Dm,LIFT , Pq,rhsq)

2 for each block of elements Blocksvolume do

3 Send arrays q, Gv,Dm, to shared memory

4 for each element Kv of each block Blocksvolume do

5 Load geometric factor from Gv

6 Load field components from q

7 Load differentiation matrices from Dm

8 Compute the volume terms of Eq. 2.62 and store in rhsq

9 endfor

10 Get rhsq from shared memory and store in global memory

11 Send arrays rhsq, LIFT,Pq to shared memory

12 for each element Kv of each block Blocksvolume do

13 Load flux field components from Pq

14 Load LIFT matrix

15 Load rhsq
16 Compute the surface terms of Eq. 2.62 and store in a temporal array

17 Update rhsq using rhsq = rhsq+ temporal array

18 endfor

19 Get rhsq from shared memory and store in global memory

20 endfor

21 return rhsq

22 end
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CPUs and GPUs are discussed within the context of heterogeneous computing. The chapter

then explores CUDA’s thread and memory hierarchies, emphasizing strategies for efficient

data handling and thread distribution to maximize performance. These concepts are

applied to the implementation of the Discontinuous Galerkin Time-Domain (DGTD)

method on GPUs, which is decomposed into three main CUDA kernels: surface integral,

volume integral, and time integration. The chapter concludes with a detailed analysis

of each kernel, presenting optimal thread-block configurations and discussing trade-offs

involving latency, memory usage, and hardware limitations.
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4 Local Time Stepping

The semi-discrete formulation of the DGTD method offers simplicity in implemen-

tation and flexibility in using explicit high-order time integration methods. These features

open up the possibility of choosing a local time step that guarantees the stability of a set

of elements, according to their geometrical size. This approach is clearly advantageous in

terms of computational efficiency since each set of elements can advance in time using the

maximum stable time step specific to its characteristics, rather than being constrained by

a global time step dictated by the smallest element in the mesh. The literature contains

numerous studies exploring the use of Runge-Kutta (RK) methods with local time-stepping

procedures [31–33,79]. Among these, the works of Krivodonova [79] and Trahan et al. [31]

stand out as pioneering contributions to the development of LTS schemes for second-order

RK methods (RK2). The primary distinction between these works lies in how the continuity

of the solution across different classes of elements is maintained. Krivodonova [79] employs

a second-order interpolating polynomial to enforce continuity, while Trahan et al. [31]

utilize a linear combination of current and previous values to achieve the same goal.

In 2014, Angulo et al. [32] introduced the causal path LTS method for the Low-

Storage Explicit RK fourth-order method (LSERK4). This method enforces solution

continuity across element classes through recurrent application of the integration scheme,

eliminating the need for previous solutions or interpolations. This approach effectively

controls errors related to dispersion and dissipation, though its computational efficiency is

limited by the need to compute five intermediate stages. In 2016, Ashbourne proposed an

efficient LTS method for third- and fourth-order RK methods (RK3 and RK4) [33]. This

method relies on third- and fourth-order interpolating polynomials to enforce solution

continuity across different element classes. According to the author, both schemes perform

well in terms of error and convergence rates. However, the RK4 LTS scheme reduces the

stability region, necessitating smaller time steps to ensure convergence. Considering the

features of these LTS methods, the LTS RK3 method emerges as the most favorable option,

balancing efficiency, precision, and stability. Consequently, this chapter focuses on the

formulation of the LTS RK3 method, as described in [33], and its application to the DGTD

method. Finally, the chapter explores the integration of the parallel-GPU DGTD method

with the LTS scheme (GPU-DGTD-LTS).
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4.1 RK3 with LTS

Let us assume that we would like to numerically solve the system of two ordinary

differential equations given by:

x′ = f(x, y) (4.1a)

y′ = g(x, y) (4.1b)

where x = x(t) and y = y(t).

Moreover, suppose that solutions x and y can be advanced in time with a different

time step. That means, x uses a time step size ∆t while y advance with a time step ∆t/K,

K ∈ N. This approximation is based on approaches presented in [33,79] where the authors

show an efficient way to apply an LTS strategy to the Runge-Kutta methods. The strategy

is divided into two basic steps: First, the solution with large time step, x, advances in time

using an approximation of the inner stages of y. Second, solution y is achieved by using a

polynomial approximation of solution x. These approximation use values of both current

and previous time levels in order to obtain a solution that is at least as accurate as the

local error of the Runge-Kutta stages. An interpolating polynomial χ(t) is created once

solution x has been advanced one time step. This interpolating polynomial approximates

the solution x(t) on the time interval [tn, tn+1] and must be at least as accurate as the

Runge-Kutta scheme used (e.g, a third-order interpolating polynomial should be used for

the RK3 method). Note that the y solution needs of K sub time steps to advance from tn

to tn+1, so, both the interpolating polynomial and its derivatives are essential to calculate

the inner stages of x.

This LTS strategy is based on the family of a three-stage, RK3 method shown

in chapter 2. Specifically, we will focus on the RK3 method with the parameter β = 3/8

which result in the system of Eqs 2.71. First, we assume that both solutions x and y are

known at time tn. Next, considering that this approximation depends on previous values.

We assume that the previous values were stored in the previous time level. These previous

values are called f(xn−1, yn−1) and g(xn−1, yn−1). Note that to advance from tn−1 to tn, it

is necessary to choose a time step size that satisfies the CFL condition. For convenience,

we use the time step of the y solution which can be considered as a "global time step"

because it was chosen using the smallest element in the mesh. In order to advance the x

solution from tn to tn+1 we have to approximate the inner or intermediates stages of y.

This can be done using the scheme shown below:
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ϕ
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∆tf(xn, yn) (4.2a)

ϕ
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∆tg(xn, yn) (4.2b)
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∆tf(ϕ
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∆t2

(
g(xn, yn)− g(xn−1, yn−1)
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(4.2d)
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(
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(4.2e)

The intermediate stages for the RK3 method can be seen in Eq. 4.2. However, the

term ϕ
(y)
3 presents a little difference compared with its counterpart term ϕ

(x)
3 . According

to [33,79] the final RK stage of y can be approximated by using Taylor series expansion:

ϕ
(y)
3 = yn +

2

3
∆tf

(
xn +

2

3
∆tf(xn, yn), yn +

2

3
∆tg(xn, yn)

)
(4.3a)

ϕ
(y)
3 = yn +

2

3
∆tg(xn, yn) +

4

9
∆t2(gxf + gyg)(xn, yn) (4.3b)

Note that the term g(xn, yn) presents in Eq. 4.3b is known, so, we only need to

find an approximation for the term (gxf + gyg)(xn, yn). According to [33], this term can

be considered as

(gxf + gyg)(x(t), y(t)) =
d

dt
g(x(t), y(t)) (4.4)

Finally, this derivative can be calculated by using the backward difference method.

It can be done using the stored values from the previous time step.

d

dt
g(x(t), y(t)) =

g(xn, yn)− g(xn−1, yn−1)

∆t/K
(4.5)

Once the solution xn has advanced to xn+1, it is necessary to construct a third-

degree polynomial, χ(t), which interpolates the solution x along the interval [tn, tn+1].

Considering that to construct a n order polynomial we have to know n + 1 points, we

require four points to create our approximation. These points are given by:
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χ(tn) = xn (4.6a)

χ
′

(tn) = f(xn, yn) (4.6b)

χ
′

(tn + 2∆t/3) =
(
f(ϕ

(x)
2 , ϕ

(y)
2 ) + f(ϕ

(x)
3 , ϕ

(y)
3 )

)
/2 (4.6c)

χ(tn+1) = xn+1 (4.6d)

Considering these four points the third-degree polynomial can be expressed by [33]:

χ(t) = xn + (t− tn)f(xn, yn) + (t− tn)
2

(
xn+1 − xn −∆tf(xn, yn)

∆t2
−∆tϑ

)

+(t− tn)
3ϑ, tn ≤ t ≤ tn+1 (4.7)

where ϑ is a parameter calculated under the assumption that |x(t)− χ(t)| = O(∆t4) for

all interval tn ≤ t ≤ tn+1. According to [33] this is satisfied when:

ϑ =
1

2∆t+ 3(∆t/K)

(
2
xn+1 − xn −∆tf(xn, yn)

∆t2
− f(xn, yn)− f(xn−1, yn−1)

(∆t/K)

)
(4.8)

Now, we have to advance the y solution through the sub time steps tn,k =

tn + k∆t/K, k = 0, 1, ...,K. In this notation, we use the term yn,k to denote the value

of y at time tn,k. Therefore, we set yn,0 = yn and yn,K = yn+1.In addition, let consider

ϕ
(x)
i,k , ϕ

(y)
i,k , i = 2, 3, as the intermediate RK stages at the fractional step k. Based on these

considerations, the scheme to advance from yn,k to yn,k+1 are presented as follows:

xn,k = χ(tn,k) (4.9a)
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The Eq. 4.9 shows all standard steps of the RK3 method for the y solution. However,

there are some terms as χ
′

(tn,k) and χ
′′

(tn,k) which must be discussed with more details.

According to [33], we can consider that f(x(tn,k), y(tn,k)) = x
′

(tn,k) = χ
′

(tn,k) +O(∆t3).

Moreover, the third RK stage of the x solution in a Taylor series about tn,k yields

ϕ
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)
f

(
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(4.10a)
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(4.10b)

Observe that the term (fxf + fyg)(xn,k, yn,k) can be approximated similarly as

in Eq 4.4 by using the backward difference method. Finally, the proof that this scheme

provides a third-order approximation is shown in [33].

4.2 Discontinuous Galerkin Method with LTS

The DG method along with the RK time integration scheme was discussed in

chapter 2. As mentioned before, the most common DG implementation presents a system

of ordinary differential equations solved by using a global time step method. Although this

strategy presents good results in terms of precision, this approach presents an important

limitation because the stability of the method depends on the smallest element in the

mesh. Thus, the LTS strategy shown in the previous section can be used to alleviate this

limitation.

This LTS strategy is relatively straightforward, first, we define the reference time

step ∆t which is calculated considering the largest element in mesh with size r. Then,

elements are grouped into a "class" based on their size relative to the maximum element

size. Finally, element k with size rk will be store into class(i) whenever satisfy the condition

r/2i+1 ≤ rk < r/2i. Elements store in class(i) will advance with time step ∆t/2i+1.

Additionally, the elements are organized depending on which class they are in and which

class the neighbor elements are in. A neighbor element is defined as an element that shares

an edge or a face in two or three dimensions, respectively. Inside the classes, elements are

organized as follows: large boundary elements that have at least one neighboring element

that belongs to a smaller element class. Small boundary elements that have at least one

neighboring element that belongs to a larger element class. Interior elements which all

neighboring elements belong to the same class. Figure 15 illustrates the boundary interface

Γt between elements of different classes. Note that the elements on the left side are larger
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by using Eq. 4.2b which can be rewritten as:

ϕsi,G
2 = usi

n +
2

3
∆tf si(un) (4.11)

where the term G denotes that these values will be used as physical boundaries applying

the principle of ghost cells.

Next, the third intermediate stage for the large element class can be calculated by

using Eq. 4.2c. Additionally, the third intermediate stage for the small element class is

given by Eq. 4.2d which can be rewritten as:

ϕsi,G
3 = usi

n +
2

3
∆tf si(un) +

4

9
∆t2

(
f si(un)− f si(un−1)

∆t/2

)
(4.12)

Note that previous values stored at the time tn−1 and the time step of the smaller

class elements are used in Eq. 4.12. These values are fundamentals to apply the backward

difference method. Finally, all intermediate stages are substituted in Eq. 4.2e and now

large elements can advance from tn to tn+1.

Once the large elements have advanced in time, a third-order interpolation poly-

nomial must be calculated to use it as a boundary condition along the large element

interface. This polynomial is used to calculate the intermediate stages of large interface

elements during the time-marching process of small elements. Rewritten the Eq. 4.7, the

interpolating polynomial is given by:

χli(t) = uli
n + (t− tn)f

li(un) + (t− tn)
2

(
uli
n+1 − uli

n −∆tf li(un)

∆t2
−∆tϑli

)

+(t− tn)
3ϑli (4.13)

ϑli =
1

2∆t+ 3(∆t/2)

(
2
uli
n+1 − uli

n −∆tf li(un)

∆t2
− f li(un)− f li(un−1)

∆t/2

)
(4.14)

for tn ≤ t ≤ tn+1.

The advancing process is very similar for the small class elements. However, in

this case the time step is divided into K levels. These sub time step levels are defined by

tn,k = tn + k∆t/K, k = 0, 1, ...,K. Considering that small elements will advance with a

time step ∆t/2, the number of sub time step levels K is equal to 2. The ghost values on

the large interface elements are given by:

uli,Gn,k = χli(tn,k) (4.15)
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These ghost values are necessary to calculate the intermediate stages of the

RK3 method. Substituting Eq. 4.15 into Eq. 4.9b and rewriting some terms we have the

coefficients for the second intermediate stage on the large elements interface:

ϕli,G
2 = χli(tn,k) +

2

3

(
∆t

2

)
χ′li(tn,k) (4.16)

Then, we apply Eq. 4.9c to calculate the second intermediate stage on small class

elements. At this point we are ready to find the third and last intermediate stage, so, based

on Eq. 4.9d the ghost coefficients for the third intermediate stage on the large element

interface are given by:

ϕli,G
3 = χli(tn,k) +

2

3

(
∆t

2

)
χ′li(tn,k) +

4

9

(
∆t

2

)2

χ′′li(tn,k) (4.17)

This ghost coefficient and the values of the third intermediate stage for the small

class elements calculated by using Eq. 4.9e complete the computations of the whole

intermediate stages of the RK3 method. Finally, these intermediate stages are substituting

in Eq. 4.9f and the small class elements have been advanced from tn to tn +∆t/2. This

process must be repeated in small elements until complete the total number of sub time

steps K.

Until now, this LTS method has been presented considering a problem that

involves only two levels of refinement (e.g., elements with size r and r/2). However,

this LTS method can be extended to consider multiple levels of refinement [33]. Let us

consider a computational domain that, after a preprocessing stage, has been divided into

three different element classes, and the interface elements between these classes have

been identified. An illustration of this scheme is shown in Figure 16. Furthermore, the

corresponding time step values were chosen as ∆t,∆t/2 and ∆t/4 from the class with the

largest time step to the class with the smallest time step, respectively. Once the time step

values are defined, the time-marching process is performed recursively, starting from the

class with the largest time step to the class with the smallest, as described in Algorithm V.
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In principle, this LTS method looks more complex than the standard RK3 method

due to the use of interpolations to calculate the intermediate stages on large boundary

elements. However, it can be noticed that the number of intermediate stages is the same

as the standard RK3, and additional evaluations of the function f(u) are not required.

The extra storage of some values in the element interfaces can be considered a possible

drawback. For example, we need to store the values of un, and f(un),f(un−1) on all

interface elements and un+1 on all large interface elements. These previous time values are

stored only in the elements located at the interfaces between different classes. According

to [33], the total number of elements in the mesh is usually greater than the number of

elements in the interfaces. Therefore, the memory requirements of this LTS method are

not considered excessive. The memory requirements of both the LTS RK3 method and its

classical counterpart are shown in Table 5.

Table 5 – Third-order RK memory requirements for classical and LTS scheme.

Classical RK3 LTS RK3
Number of equations NEquations NEquations

Number of elements K K
DOF Np Np

Number of stages 3 3
Interface elements 0 Nie

Large interface elements 0 Nlie

4.3 The parallel-GPU DGTD Method with LTS

According to the previous section 3.5, the execution of the DGTD method on

graphic processors can be done in a straightforward way by using the CUDA programming

model. Basically, we should be concerned with the organization of the threads in each

block and the type of memory that will be used to do the calculations. This thread

organization will depend specifically on the problem and some parameters such as the

number of elements and the polynomial order of basis functions. Additionally, the type of

memory that will be used depends on the operation that will be done. Operations with a

high complexity will be performed in shared memory, whereas other operations will be

performed in global memory. The execution of the DGTD method in a graphics processor

is interesting to improve the computational efficiency of the method while maintaining the

accuracy of the solution.

Moreover, section 4.2 shows another strategy widely used in the literature to

improve computational efficiency known as local time step. Contrary to the parallel-GPU

implementation, this LTS method does not guarantee the same precision of the solution

and therefore it should not be used as a strategy to obtain better accuracy. This means that

the LTS method should be seen as a way to accelerate the computation [24]. In this work,
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we choose an LTS method based on the RK3 method that, even losing a little precision,

maintains the convergence and order of approximation of its classical counterpart. This

loss of precision is caused by using interpolations in the middle of the time integration

process.

Both parallel-GPU DGTD and DGTD with LTS are interesting modifications

that improve the performance of the classical DGTD in terms of computational efficiency.

However, these strategies have been presented as individual and separate methods so far.

From this perspective, this work finds a way to combine these two modifications of the

DGTD method in order to obtain a more powerful numerical technique. As mentioned

before in chapter 1, there are a few works that explore the combination of the DGTD

with GPU and LTS [8, 22]. Although these works presented very interesting results in

the solved problems, they use an LTS scheme based on the second-order leapfrog method

and a simple linear interpolation that may compromise the accuracy of the solution. This

linear interpolation is given by:

un+k/p =

(
1− k

p

)
un +

(
k

p

)
un+1 (4.18)

where un+k/p represents the solution at the intermediate time tn+k/p, (k = 1, ..., p− 1).

The Eq. 4.18 shows the expression used to calculate the intermediate solution

between elements of different time step classes. Note that this interpolation only uses

values from the solution at time tn, un and tn+1, un+1. Therefore, it can be considered a

linear interpolation which introduces a loss of precision in the implementation. According

to authors [8, 22], this LTS method based on LF2 method and linear interpolation ensures

simple implementation and is very convenient for GPU. However, in this work we will show

that an LTS method with a third-order interpolation that guarantees the same convergence

and order of approximation as the RK3 method can also be done in the GPU in an easy

way.

First, we start with the definition of the reference time step ∆t which depends

directly on the size of the largest element in the mesh. This ∆t value will be our base

to define all element classes in our method. Then, small elements will be organized into

other classes depending on their size relative to the maximum element size. These other

elements will advance in time depending on their class number class(i) with a time step of

∆t/2i+1. Note that no modification of the method shown in section 4.2 has been presented

so far. However, this element class organization is just the beginning of our proposal.

Once the elements are grouped into their respective classes, we start with the

second part of our method. For the sake of convenience will be considered only two element

classes. The class(0) contains all elements which will advance with a time step ∆t and the

class(1) whose elements will advance with a time step ∆t/2. It is important to remark
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that elements in class(1) are smaller than in class(0). Now, it is time to consider the

DOF distribution into the GPU. It will be done based on the same routines presented in

section 3.5. The number of DOF distributions that must be done depends directly on the

number of element classes in a factor of DOFD = Nclasses + 1. That is, we must create a

DOF distribution for each class and one more for the entire computational domain. This

additional DOF distribution is needed to start Algorithm V, which needs that all elements

advance in time in a global time step from tn−1 to tn. Therefore, this last DOF distribution

can be calculated using exactly the same routines presented in section 3.5.

Now, the DOF distribution for the other two classes (Nclasses) needs to be discussed

in more detail. When the computational domain is split into two classes, many new

parameters must be considered. For class(0) we can extract for example Kc0 which

contains the information of the interior elements and Ki
c0 which contains the information

of the large interface elements. These parameters also can be extracted for the class(1),

we called them Kc1 and Ki
c1. Considering that these parameters are different for each class,

it is necessary to create a DOF distribution for each class individually. However, we can

notice that even with different DOF distributions, there are some parameters that remain

constant, for example, the number of nodes in each element Np and the number of nodes

in each edge Nfp. This feature makes the routines presented in section 3.5 very suitable

for reuse with few changes.

Suppose that we are going to make the DOF distribution for the class(0) into

the GPU. According to Algorithm 1, the first CUDA kernel that will be executed is the

element surface integral kernel. This kernel is responsible for surface integration. We begin

by calculating the number of threads needed in the problem by using Eq. 3.1. Note that

in this case, the parameter K which represents the total number of elements in the mesh

has to be modified by Kc0, this is:

Nthreads,c0 = Nfp ∗Nfaces ∗Kc0 (4.19)

Once the total number of threads necessary into the element surface integral

kernel for the class(0) is known, we calculate the number of threads in each block and

the number of blocks. This process can be performed using the same routine presented

in subsection 3.5.1, but, considering the Eq. 4.19 as Step 1. Due to the use of the same

routine, we will find the same number of threads per block as in the global case. However,

the difference appears when the total number of blocks for the element surface integral

kernel is calculated. This is due to the fact that the number of elements in class(0), Kc0,

differs from the total number of elements in mesh, K. At the end of this routine, we

obtain the parameter Threadflux,c0 and Blocksflux,c0 which will be considered for the DOF

distribution in the kernel. As mentioned before, this DOF distribution ensures a simple

and optimal data distribution that can be handled easily in the global memory using a 1D
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threads and blocks distribution represented by (Threadsflux,c0, 1, 1) and (Blockflux,c0, 1, 1)

respectively.

Now it is time to calculate the DOF distribution for the volume integral kernel.

Contrary to the surface kernel, the volume kernel has many complex operations based

on matrix-matrix multiplications which are used to compute the spatial derivatives of

field components. For the volume kernel, the number of DOF per element is equal to Np.

Therefore, the total number of threads necessary in this kernel can be calculated using Eq.

3.9 but modifying the parameter K by Kc0. This is:

Nvthreads,c0 = Np ∗Kc0 (4.20)

Once the total number of threads in the volume kernel is determined, the next step

is to calculate the number of threads per block and the number of blocks. This calculation

follows the same routine described in subsection 3.5.2, but with Eq. 4.20 used as Step 1. At

the end of this routine, a 2D block organization is established, with a thread distribution

of (Np, Kv, 1) and a total of Blocksvolume,c0 blocks in the grid. This DOF distribution can

also be applied to the time integration kernel described in subsection 3.5.3. At this stage,

the DOF distribution for the elements in class(0) is complete. Notably, the same routines

outlined in section 3.5 are used here with minimal modifications. This represents a key

advantage of our proposed method, as the routines for DOF distributions are recursive

and reusable. For the DOF distribution of class(1), the same process is applied, with the

sole change being the substitution of the parameter Kc0 with Kc1.

Finally, we have to handle the calculation of the third-order polynomial interpolat-

ing represented by Eq. 4.13 and used in the calculation of intermediate stages of the LTS

RK3 method. We try to reuse the same function created for the LTS algorithm executed on

the CPU. However, this implementation requires the data exchange between the CPU and

GPU for each time step and as mentioned before, this situation must be avoided as much

as possible. The other alternative is the creation of one more CUDA kernel, which will be

responsible for these calculations. At first glance, Eqs. 4.13 and 4.14 can be seen as complex

operations due to the large number of terms involved. However, these equations can be

represented by elementary operations that include simple arithmetic operations between

vectors and constants. Additionally, it is easy to see that the interpolating polynomial χli

will have a size of Np ×Ki
c0. Therefore, the same DOF distribution shown in subsection

3.5.2 can be reused to organize the threads and blocks in this kernel. Figure 21 shows the

DOF distribution for the different element classes 0 and 1. The DOF distribution for the

kernel which calculates the interpolating polynomial is also shown. Note that the thread

organization for both the surface and volume kernel are very similar for the two classes.

They differ just in the number of blocks executed in the grid during the execution of each

kernel. This difference between the number of blocks used for each element class is due to
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Algorithm VI: GPU-DGTD-LTS method

1 procedure PAR_LTS_MAXWELL(q,GV ,GS,LIFT,Dm,Fluxind)

2 Extract class(0) information from inputs //Calculate q0,GV 0,GS0,Fluxind0

3 Extract class(1) information from inputs //Calculate q1,GV 1,GS1,Fluxind1

4 Initialize variables // Create update matrices Pq0, rhsq0 ,Pq1, rhsq1

5 Calculate the time step values for class(0), ∆t0, and class(1), ∆t1
6 Copy data from the CPU to GPU

7 Define number of time steps Nts // Calculated using ∆t0

8 for k = 0 until Nts do // time loop

9 for l = 0 until 2 do // RK3 for class(0)

10 <surface_integral_Kernel_C0> // Calculate Pq0

11 <volume_integral_Kernel_C0> // Calculate rhsq0

12 <time_integration_Kernel_C0> // Update q0

13 endfor

14 Update q using q0

15 Calculate the interpolating polynomial χ to advance in class (1)

16 for j = 0 until 1 do // 2 refinement levels

17 for l=0 until 2 do // RK3 for class(1)

18 <surface_integral_Kernel_C1> // Calculate Pq1

19 <volume_integral_Kernel_C1> // Calculate rhsq1

20 <time_integration_Kernel_C1> // Update q1

21 endfor

22 endfor

23 Update q using q1

24 Copy data from the GPU to CPU

25 endfor

26 return q

27 end

4.4 Chapter Conclusions

This chapter presents the formulation and implementation of a Local Time

Stepping (LTS) strategy to improve the computational efficiency of the Discontinuous

Galerkin Time-Domain (DGTD) method. It begins by exploring LTS schemes for Runge-

Kutta (RK) methods, particularly focusing on a third-order LTS RK3 method that

balances stability, accuracy, and performance. The LTS scheme enables different groups

of mesh elements to evolve with distinct time steps based on their size, overcoming the

limitations of global time step approaches that are constrained by the smallest elements.
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The chapter details the mathematical foundation of the LTS RK3 method, including

the use of third-order interpolating polynomials to preserve continuity across element

interfaces. It further extends the scheme to the DGTD method, describing how elements

are categorized into time step classes and how ghost cells are used for data exchange

between classes. Finally, the chapter integrates the LTS method with GPU-based parallel

computing, proposing an efficient hybrid scheme (GPU-DGTD-LTS). This implementation

leverages CUDA kernels with customized Degrees of Freedom (DOF) distributions per

element class and incorporates interpolation kernels to maintain third-order temporal

accuracy. The approach significantly reduces the number of time steps for larger elements,

offering substantial speedups while preserving the overall accuracy of the DGTD method.
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5 Numerical Results

5.1 Numerical Tests on GPU

This section provides some two-dimensional numerical results to show the perfor-

mance of the parallel-GPU DGTD method. Two wave propagation problems in homoge-

neous and heterogeneous media will be analyzed to evaluate the benefits of applying the

DOF distribution proposed in Chapter 3. Additionally, a comparison between the global

and shared memories in terms of time execution will be shown. These two-dimensional

problems were chosen based on [80]. Results in this section were obtained by using the

LSERK4, shown in subsection 2.5.4, as the time integration method. This method is widely

used due to the low storage requirements and high order of approximation. However, the

demand to compute 5 intermediate stages makes the LSERK4 less efficient in terms of

computational time. Numerical tests were executed in the GPU NVIDIA GTX 1650-4GB

and the CPU RYZEN 7 5800H with 16 GB of RAM. The computational domains used

in the simulations were created using the GMSH mesh generator [81]. Table 6 shows the

principal features of this graphic card. Finally, to evaluate the accuracy of the numerical

scheme on the GPU, we compute the difference between the exact solution, let say E, and

the approximate solution Eh using the L2 norm given by.

er =

√∫

Ω

(E − Eh)2

E
dΩ (5.1)

Table 6 – Graphic card features

Name GTX 1650
Compute capability 7.5

Clock rate 1485 MHz
Global memory 4 GB

Bandwidth 128.1 GB/s
Number of multiprocessor 14

CUDA cores 896
Shared memory per multiprocessor 64 KB

Registers per multiprocessor 65536
Max threads per block 1024
Max threads per warp 32
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5.1.1 Benchmark problem: metallic air-filled cavity

In the first test problem, we consider the metallic air-filled cavity also known as

the rectangular waveguide. This problem consists of searching the determining modes in

a rectangular waveguide by using elementary wave functions [82]. Generally, the modes

in a rectangular waveguide are classified as TM to z and TE to z, this means, no Hz or

no Ez components respectively. Considering the walls of the waveguide as PEC material,

the tangential components of the electric field, Ez, must be vanished at the boundary of

the domain. The computational domain Ω is a 2×2 m2 square centered at the origin. The

material inside the waveguide is considered vacuum εr = µr = 1. In order to validate the

GPU code, we use the exact time domain solution for the TMz mode which is given by:

Hx(x, y, t) = −πn
ω

sin(mπx) cos(nπy) sin(ωt) (5.2a)

Hy(x, y, t) =
πm

ω
cos(mπx) sin(nπy) sin(ωt) (5.2b)

Ez(x, y, t) = sin(mπx) sin(nπy) cos(ωt) (5.2c)

where ω is known as the resonance frequency given by:

ω = π
√
m2 + n2, (m,n) ≥ 0 (5.3)

Considering the solution at the time t = 0 and m = n = 1. The initial values of

the field components are expressed as:

Hx(x, y, 0) = 0 (5.4a)

Hy(x, y, 0) = 0 (5.4b)

Ez(x, y, 0) = sin(πx) sin(πy) (5.4c)

In this problem, two strategies were considered: the first one is the common serial

CPU-DGTD with GTS (CPU-DGTD-GTS) method and the second one is the modified

GPU-DGTD-GTS method. In the GPU strategy, the execution time of the CUDA program

using both global and shared memory will be compared as mentioned in section 3.5.2.

Simulations have been performed on a refined non-uniform grid whose characteristics

are summarized in Table 7. Additionally, this table shows the global time step ∆t which

guarantees the stability of all elements in the mesh and the order of the polynomial basis

functions N for the spatial integration.

Table 8 shows the numerical results of simulations in terms of global L2 error,

execution time, and speed-up of the parallel strategies compared with the serial implemen-

tation. As can be seen, there is a substantial difference in execution time when serial and
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Table 7 – Mesh parameters used in the metallic cavity problem

N 3
Number of vertices 9340
Number of elements 18358

Np 10
DOF 183580
∆t 2.56 ps

parallel schemes are compared. For example, the first GPU + Global memory strategy

provides a computational gain of over 92% in terms of time spent when compared to

its serial counterpart. On the other hand, the GPU + Shared memory implementation

improves the computational gain even more, achieving a computational time reduction of

more than 96%. This test confirms the advantage of shared memory in terms of latency

compared to global memory, as discussed in Chapter 3. Shared memory is only used in the

volume kernel, which calculates the spatial derivative of the electromagnetic fields through

matrix-matrix operations.

It is worth noting that although the GPU parallel implementations involve a

CPU-based preprocessing stage before kernel execution, its contribution to the total

runtime is minimal. This preprocessing stage includes initializing all variables, copying

data between the CPU and GPU, and calculating parameters required by the GPU kernels,

as described in Algorithm 1. Specifically, the CPU preprocessing takes approximately 11.6

seconds for the CPU-only version and 13 seconds for the GPU-based implementations.

When compared to the total execution times (3120 seconds for the CPU, and 221 and

130 seconds for the GPU implementations), these preprocessing times are negligible and

do not significantly affect the reported speed-up values. In addition, the error presented

by both GPU implementations is very similar compared to the serial value, with just a

difference of 1× 10−8, as expected. All errors were calculated at time t = 33.3 ns. Note

that the error for both GPU implementations is exactly the same, which is logical since

all the calculations have been performed in the same way, with the only difference being

the type of memory used to manipulate the data.

Figure 22 shows the field distribution for the TMz components Ez,Hx, and Hy

after 12936 time steps. It can be seen that both CPU and GPU + Shared memory

implementations provide similar results with a small difference in terms of global L2 error

according to Table 8. This small difference in accuracy can be considered negligible when

compared with the computational gain, achieving a speed-up 24 times better than the CPU

implementation. This first benchmark problem was considered with the aim of testing both

GPU implementations and comparing which strategy is better than the other. According

to the results, we can say that both GPU implementations are interesting in terms of

accuracy and computational time reduction. However, it is clear that the use of shared





5.1. NUMERICAL TESTS ON GPU 91

5.1.2 L-shaped photonic crystal guide

In order to test our GPU implementation on a complex two-dimensional problem,

we chose the L-shaped photonic guide. This problem is considered of high complexity

because involves a large number of scatterers and it is usually represented by large

structures. The photonic crystal characterization is based on the construction of band

diagrams. These structures can be studied if we know their symmetry properties, that

is, we can understand the electromagnetic properties of the system only by knowing the

symmetry properties. Basically, a bidimensional photonic crystal consists of a square

lattice of parallel infinite dielectric rods in the air. This structure can be seen in Figure

23, where a is the lattice constant and ra is the radius of the scatterers. Additionally, in

Figure 23 we consider a system with continuous translational symmetry in the ẑ direction,

that is, the system is invariant under any translation in a given direction. On the other

hand, for the xy plane, the system has discrete translational symmetry, which means,

the structure is invariant to a translation over a distance that is multiple of a certain

length. According to Figure 23, the basic photonic crystal structure is filled with scatterers

separately by a constant distance. However, it is necessary to insert the so-called defects

in the crystal lattice to build some engineering applications. For instance, the photonic

crystal in Figure 23 can be altered, removing or changing the characteristics of a dielectric

column, creating waveguides that could be based on other devices such as logic gates [83].

Finally, applying some defects in the previous structure, we construct the same L-shaped

photonic crystal guide used in [77], see Figure 24. The lattice constant a = 0.57µm and the

rods are assumed to have a circular cross-section of radius ra = 0.114µm. The dielectric is

chosen to have a refractive index η ≈ 3.4 (εr = 11.5), appropriate for Silicon (Si). This

crystal has a complete band gap for TM polarization between frequencies 0.35 and 0.42

(ωa/2πc). The incident pulse is placed in the left input of the waveguide and is given by:

Ez(x, y, t) = E0cos
(πy
d

)
cos(2πfmt)e

−( t−t0
2σ )

2

(5.5)

where d = 2(a − ra) is the waveguide length, σBW = 5 × 10−14 s is a parameter which

define the pulse bandwidth, fm = 2× 1014 Hz is the central frequency and t0 = 2.5× 10−13

s.

Table 9 – Mesh parameters used in the L-shaped photonic crystal guide problem

N 5
Number of vertices 6078
Number of elements 12107

Np 21
DOF 254247
∆t 2.14 ps
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5.3 Numerical Tests Combining GPU and LTS

This section aims to demonstrate the correct implementation of our proposed

parallel GPU-DGTD with LTS (GPU-DGTD-LTS) method, described in section 4. This

new approach, which forms the core contribution of this thesis, leverages the high bandwidth

and low latency of GPUs combined with the efficient time-stepping distribution provided by

the LTS method. This integration ensures more efficient time progression and, consequently,

enhances the overall computational efficiency of the method. The numerical results in this

section aim to demonstrate two key aspects of the implementation. First, the proposed

GPU-DGTD-LTS method is evaluated as an accurate and efficient numerical technique for

solving multi-scale electromagnetic problems. Second, the impact of the interpolation order

used to ensure continuity between classes in the LTS algorithm is highlighted as crucial

for achieving accurate results. To validate these aspects, two test problems are analyzed,

comparing the validated GPU-DGTD-GTS method with the proposed GPU-DGTD-LTS

approach. The first test revisits the benchmark problem of a metallic air-filled cavity

to verify accuracy and convergence rate, providing a straightforward case for evaluating

the performance of the GPU-DGTD-LTS implementation. The second test focuses on

the scattering by a conducting sphere, a more complex problem involving a multi-scale

discretization. This case is used to assess the robustness of the proposed method in handling

intricate electromagnetic scenarios.

5.3.1 Benchmark problem: metallic air-filled cavity

In this case, the metallic air-filled cavity problem have been solved by using the

same setup as in the previous subsection. That is, we use the same set of five successively

refined meshes described in Table 11 and the elements have been organized into two classes.

The simulation was carried out during 33.33 ns and the order of the basis function is

two. In the GPU thread distribution, this order impacts the number of threads due to

the variables Nfp and Np. As previously mentioned in Chapter 3, the number of threads

remains constant while the number of blocks depends on the number of elements. In this

case, the values Kf and Kv are set to 14 and 21, respectively. Thus, the number of threads

in the surface kernel is Nfaces ×Nfp ×Kf = 3× 3× 14 = 126, and in the volume kernel, it

is Np ×Kv = 6× 21 = 126.

Comparisons in terms of the global error using the L2 norm and the convergence

rate between the GPU-DGTD-GTS and GPU-DGTD-LTS methods can be seen in Figure

32. This figure also illustrates the results of the LTS scheme using both linear and cubic

interpolation in order to show the impact of high-order interpolation on the accuracy

of the method. As can be seen in Figure 32, the GPU-DGTD-GTS method ensures a

convergence rate of 2.84, as expected from the RK3 method. On the other hand, the
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5.3.2 Scattering by a PEC sphere

This test problem is studied with the purpose of evaluating the accuracy and

efficiency of the proposed GPU-DGTD-LTS method when dealing with near-field and far-

field quantities in an electromagnetic scattering problem. In this case, a PEC sphere inside

a vacuum background is illuminated by an x-polarized incident plane wave propagating in

the ẑ direction. The computational domain Ω is composed of a r1 = 0.5 m radius PEC

sphere bounded by a cube with a side length of Ωa = 3 m centered at the point (0,0,0).

Figure 33 shows a cross-sectional view of the geometry in the xz plane when y = 0. The

problem is truncated using a PML absorbing boundary condition with a thickness of 0.5

m in the x̂, ŷ and ẑ directions. The incident x-polarized plane wave propagating in the ẑ

direction was inserted by using the TF/SF formulation and was modeled using the same

expression as in Eq. 5.6 with f = 300 MHz and τ = 0.33 ns.

0

PML

Total field

Scattered field

1

Plane
wave

Huygens
Surface

NF/FF
Interface

0

Figure 33 – Cross-sectional view of the xz plane for the PEC sphere problem.

The tetrahedral mesh is composed of 116249 elements of a second-degree polyno-

mial order. This mesh was generated considering a maximum edge size factor h = λ/20,

where λ is the wavelength, which depends on the speed of light and the central frequency.

In this test problem, three different classes were used for the time stepping scheme. The

number of elements in Class(0), Class(1), and Class(2) is 54549, 4465, and 57235, respec-

tively. The time step values ∆t0 = 7.8 ps, ∆t1 = 3.9 ps, and ∆t2 = 1.95 ps were calculated

for each class considering Eq. 2.74 with C = 1. Finally, the simulation was performed for

17 ns.

To illustrate the importance of high-order interpolations in an LTS scheme, the E

field was sampled at a critical point in the domain and compared to the standard GTS
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5.4.1 Scattering by a multilayer dielectric sphere

In order to show the performance of our proposal in more complex and multi-scale

problems, we chose to study scattering by a multilayer dielectric sphere [6]. This problem is

ideal for exploring the flexibility of the DGTD method in handling complex geometries and

unstructured meshes. The multi-scale nature of this problem enabled us to leverage the

proposed GPU-DGTD-LTS method with third-order interpolation, dividing the problem

into several classes based on the size of the elements or the electromagnetic parameters

of the media. It significantly improved the computational efficiency, especially in regions

that required a fine spatial resolution. The problem consisted of four concentric spheres,

with the innermost sphere modeled as a PEC material and the remaining spheres modeled

as dielectric materials. The geometry of the problem is depicted in Figure 39, where a

cross-sectional view of the xz plane can be seen when y = 0. The computational domain

Ω is bounded by a cube with a side length of Ωa = 3 m centered at (0, 0, 0). The PML

boundary condition was used, with a thickness of 0.5 m in all directions, that is, the real

computational domain was 23 m3. The region outside the multilayer sphere was assumed to

be a vacuum, with µr1 = εr1 = 1. The materials in the multilayer regions were assumed to

be linear, isotropic, and non-magnetic, with relative permittivity of εr2 = 2, εr3 = 3, and

εr4 = 4. The radii of the spheres, from the innermost to the outermost, were r1 = 0.3 m,

r2 = 0.4 m, r3 = 0.5 m, and r4 = 0.6 m, respectively. The incident x-polarized plane wave

propagating in the ẑ direction was inserted by using the TF/SF formulation and was

modeled using the same expression as in Eq. 5.6 with f = 300 MHz and τ = 0.33 ns.
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Figure 39 – Cross-sectional view of the xz plane for the multilayer sphere problem.
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As in the PEC sphere problem, the accuracy of the method was verified by

calculating the RCS at 300 MHz in the E-plane and the H-plane. These results were

compared with those of the analytical solution, the standard GPU-DGTD-GTS method,

and the second-order FDTD method [58], as shown in Figures 40 and 41. The FDTD

method was included in this analysis because its computational simplicity and accurate

results make it a common choice for solving electromagnetic scattering problems in the

time-domain. Figures 40 and 41 confirm that the proposed GPU-DGTD-LTS method with

third-order interpolation provides excellent results when compared with the analytical

solution and its GTS counterpart. On the other hand, although the FDTD results show

good agreement with those of the analytical solution, there are small discrepancies, which

may be related to the significant restriction of dealing with cube-based space partitioning

making it difficult to accurately represent the curvatures in the problem. It is important

to remark that the FDTD results were obtained under conditions similar to those of the

DGTD case but using a fine grid discretization of ∆x = ∆y = ∆z = λ/100. The results in

terms of the execution time, the relative error of the RCS, and the speed-up for the DGTD

and FDTD implementations are shown in Table 15. The results in terms of the execution

time show a very interesting improvement for the LTS case, achieving a reduction of

almost 78% when compared with the standard GPU-DGTD-GTS method. Similarly to

the previous problem, the error values with the GPU-DGTD-LTS method show a slight

loss of precision compared to those of its GTS counterpart while maintaining the same

order of accuracy. Furthermore, the error values for the FDTD implementation are almost

twice as large as those for the DGTD. This can be attributed to the inability to accurately

represent the curvatures in the problem even if a fine grid model is used. Finally, the

execution time and speed-up results for the FDTD method were not included in this table

because there is no direct comparison between them and the DGTD algorithms described.

Table 15 – Results for the scattering by a multilayer sphere problem.

Method Time (s) E-Planeerror H-Planeerror Speed-Up
GPU-DGTD-GTS 18780 0.0049 0.0044 -
GPU-DGTD-LTS 4150 0.0051 0.0047 4.52

FDTD - 0.011 0.0081 -

5.4.2 Quarter-wave monopole antenna

This problem evaluates the three antenna feed models described in subsection

2.3.4 by comparing their accuracy and simulation time in addressing a quarter-wave

monopole antenna problem. The comparison involves determining the input admittance

using time-domain waveforms of sampled voltage and current [58]. The FFT is then applied

to these waveforms to compute input admittance across a broad frequency range. For all

models, the mesh was discretized with a maximum edge size of h = λ/20, and a refinement
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factor of two was applied near the feed and antenna regions to ensure precise geometric

representation. A second-order polynomial basis was employed in all simulations, and the

simulations were run until the waveform amplitudes stabilized at values near 10−7. Finally,

the excitation’s time-dependent voltage function was modeled using a Gaussian waveform,

expressed as:

V inc(t) = exp((t− t0)/σ)
2 (5.7)

where t0 = 0.26 ns is a time delay applied to the Gaussian pulse and σ = 0.083 ns is a

time constant.

The geometry of the quarter-wave monopole antenna consists of a PEC cylinder

centered at the origin, with a radius of la = 3.75 mm and a height of 180 mm. The antenna

is mounted on a ground plane and oriented along the ẑ axis. To truncate the computational

domain, PML absorbing boundary conditions are applied. For the delta-gap feed model, the

surface magnetic current defined in Eq. 2.33 is applied to a cylindrical gap region of length

∆ = 3.6 mm, located between the ground plane and the antenna, as illustrated in Figure

3. This gap is considered part of the monopole’s total height. By imposing the surface

magnetic current across the gap, the input admittance can be calculated by dividing the

total voltage across the gap by the current flowing through it. Since the delta-gap feed

model is implemented as a hard source, the total voltage is determined using the same

incident voltage expression provided in Eq. 5.7. The computational domain is discretized

using a tetrahedral mesh consisting of 41495 elements organized in two classes. Class(0)

and Class(1) contain 78.4% and 21.6% of the elements, respectively. The time step values

used in the time-marching process were defined as ∆t0 = 1.24 ps and ∆t1 = 0.62 ps These

time step values were calculated using Eq. 2.74 with C = (1/2). Figure 42 presents the

time-domain waveforms for the total voltage and current sampled during the simulation,

along with the computed input admittance of the monopole antenna for a frequency range

of 0 to 2.5 GHz.

The simulation was conducted for approximately 34τa, where τa represents the

time it takes for an electromagnetic wave to traverse the monopole length in air. As shown

in Figure 42b, the sampled current requires this duration for its energy to decay nearly to

zero, as reflected waves are neglected in this feed model. While this approach results in a

slow transient response, thereby extending the simulation time, the delta-gap feed model

remains popular due to its simplicity and reliable performance [63]. This is evident in the

strong agreement between the input admittance results and the reference values obtained

from the frequency-domain FEM solver in ANSYS HFSS, as depicted in Figure 42c.

The magnetic frill approach, on the other hand, is implemented by applying

the surface magnetic current defined in Eq. 2.35 to a coaxial aperture with inner and







5.4. APPLICATION IN SOLVING COMPLEX MULTI-SCALE ENGINEERING PROBLEMS 113

to the delta-gap model, without increasing implementation complexity. Additionally, the

input admittance results align well with the HFSS reference values, showing no notable

differences in amplitude compared to the delta-gap approach. This confirms that both

feed models are accurate and effective for solving this antenna problem, as illustrated in

Figure 43c.

Finally, the most realistic antenna feed model is implemented by extending the

computational domain with a cylindrical section representing the coaxial waveport and

the PML absorption region, as depicted in Figure 5. The air-filled coaxial waveport is

divided into two sections, separated by the TF/SF interface. The physical section consists

of a 30 mm coaxial line where incident fields propagate toward the antenna, while the

5 mm PML region absorbs reflected waves. The coaxial waveport has inner and outer radii

of la = 3.75 mm and lb = 12 mm, respectively. The dominant TEM mode is introduced

into the coaxial line by identifying the front-side and back-side nodes of the TF/SF

interface and injecting the incident electric and magnetic fields, Einc and Hinc, as defined

in Eq. 2.36. Once the TEM mode is established, the input admittance is calculated by

dividing the current flowing between the coaxial waveport and the antenna by the total

voltage at the coaxial aperture. These time-domain quantities are evaluated at the coaxial

aperture to enable direct comparison with other feed models. The computational domain

for this model is discretized into a tetrahedral mesh with 48353 elements organized in

two classes. Class(0) and Class(1) contain 67.9% and 32.1% of the elements, respectively.

The marching time simulation is carried out using the time step values ∆t0 = 1.24 ps

and ∆t1 = 0.62 ps. Notably, this feed model increases the number of mesh elements by

approximately 14% compared to the delta-gap approach and 13% compared to the magnetic

frill model, as additional discretization is required for the coaxial line. Consequently, this

approach is more computationally and memory-intensive than the other feed methods.

The time-domain waveforms for total voltage and current, as well as the input admittance

results across the frequency range of 0–2.5 GHz, are shown in Figure 44.

As illustrated in Figures 44a and 44b, the coaxial waveport feed model demon-

strates remarkable efficiency in attenuating time-domain waveforms, primarily due to the

PML absorption region positioned at the end of the cylindrical coaxial line. Both voltage

and current waveforms decay to zero within approximately 15τa, corresponding to a 56%

and 40% reduction in simulation time compared to the delta-gap and magnetic frill feed

models, respectively. This significant time saving highlights the efficiency of the coaxial

waveport model. However, these benefits come with an increased computational cost due

to the higher number of mesh elements required to implement this approach. Therefore,

the trade-off between reduced simulation time and increased computational demand must

be carefully considered when assessing the overall efficiency and feasibility of this model for

specific applications. Finally, as shown in Figure 44c, the input admittance values obtained

using the coaxial waveport feed model exhibit excellent agreement with the reference





5.5. CHAPTER CONCLUSIONS 115

computation time by approximately 55% across all configurations, demonstrating consistent

and significant performance gains. This efficiency underscores the practical advantages

of the GPU-DGTD-LTS approach for tackling multi-scale engineering problems, such as

antenna simulations, establishing it as a robust and effective numerical technique.

Table 16 – Time simulation results for the monopole antenna problem.

Method
Time execution (s)

Delta-gap Magnetic frill Coaxial waveport
GPU-DGTD-GTS 3384 2472 2016
GPU-DGTD-LTS 1526 1104 912

5.5 Chapter Conclusions

This chapter presents an extensive numerical validation of the proposed GPU-

accelerated Discontinuous Galerkin Time-Domain (DGTD) method, including its extension

with a Local Time Stepping (LTS) strategy. A series of two- and three-dimensional

benchmark problems is solved to evaluate the method’s accuracy, convergence rate, and

computational performance. Initial tests in homogeneous media, such as a metallic air-filled

cavity, demonstrate the accuracy and efficiency of both shared and global GPU memory

strategies. Further validation includes the simulation of wave propagation in photonic

crystal waveguides and scattering from perfectly electric conducting (PEC) and coated

cylinders, highlighting the method’s robustness and its ability to capture both near- and

far-field phenomena. The LTS algorithm, based on a third-order Runge–Kutta scheme

with polynomial interpolation, preserves numerical accuracy while reducing simulation

time. Additionally, the combination of GPU parallel computing with the RK3-LTS scheme

and third-order interpolation (GPU-DGTD-LTS) proves to be an accurate and efficient

approach for solving complex and multi-scale electromagnetic problems.

Numerical results also demonstrate the impact of the interpolation order used

to maintain continuity between different classes of elements, showing that high-order

interpolation preserves solution accuracy without incurring significant computational costs.

The final section applies the proposed method to realistic engineering problems, including a

multilayer dielectric sphere and a monopole antenna with various feed models, demonstrat-

ing the method’s practicality, scalability, and suitability for high-fidelity electromagnetic

modeling in complex geometries.
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6 Conclusions and Future Research

6.1 Conclusions

This work presents a comprehensive analysis of the DGTD method, focusing ini-

tially on two-dimensional problems while also extending its application to three-dimensional

cases. Various strategies were implemented to enhance its computational efficiency without

significantly compromising accuracy.

• The first strategy involves leveraging graphical processing units (GPUs) to execute

computational operations in parallel. GPUs offer low latency and high bandwidth,

making them ideal for accelerating numerical simulations. To maximize GPU per-

formance, the distribution of threads was carefully tailored for each CUDA kernel

following NVIDIA’s recommended best practices. Moreover, the interplay between

global and shared memory was extensively explored to identify the optimal con-

figuration during program execution. During the development of this work, it was

observed that shared memory is essential when the number of operations per kernel

is substantial. For example, shared memory was employed in the volume kernel,

where matrix-matrix multiplications are required to compute the field derivatives.

Conversely, global memory was utilized for the surface and time integration ker-

nels, as these primarily involve simpler element-wise operations. Furthermore, the

methodology was successfully adapted to solve three-dimensional problems, demon-

strating the scalability and robustness of the DGTD method in handling complex,

high-dimensional scenarios.

Performance results from the metallic cavity problem indicate a substantial reduction

in execution time when comparing serial and parallel implementations. The GPU +

Global memory strategy achieves a speed-up of over 14, while the GPU + Shared

memory implementation further improves efficiency, providing an impressive speed-

up of 24, all compared to the CPU implementation. This confirms the advantage

of shared memory in reducing latency compared to global memory. Additionally,

the L-shaped waveguide problem was used to further validate the robustness and

efficiency of the GPU + Shared memory implementation for handling high-order

spatial discretization, achieving a computational improvement of nearly 41 times

over the CPU implementation.

• The second strategy explored in this work is the use of the LTS RK3 method combined

with a third-order interpolation technique to improve computational efficiency. This

approach leverages the discontinuity between elements in the DGTD method and the
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varying element sizes in an unstructured mesh. By assigning different local time steps

to different regions of the computational domain, the LTS RK3 method optimizes

time integration while maintaining numerical accuracy.

First, the benchmark metallic cavity problem is analyzed with a computational

domain divided into two classes, demonstrating that the LTS RK3 method with

third-order interpolation maintains the convergence rate and accuracy while reducing

execution time by 40% compared to its GTS counterpart. Next, the method is

validated for a complex, multi-scale electromagnetic scattering problem by increasing

the number of class divisions to three. This confirms that the previous restriction

on the number of classes was overcome, enabling the division of the domain into

multiple classes, as discussed in Chapter 4. Finally, numerical results show that the

LTS RK3 method achieves the same order of accuracy as the GTS approach while

reducing execution time by 52%.

• After discussing the GPU and LTS strategies, we present our proposed approach,

which integrates the LTS RK3 method with third-order interpolation, executed on

a GPU platform. This approach combines the efficient distribution of local time

steps across different element classes in the mesh with the low latency and high

bandwidth of GPU acceleration. The synergy of these two strategies results in a

powerful numerical technique that significantly enhances computational efficiency

while maintaining high accuracy. Initially, the proposed GPU-DGTD-LTS method was

tested with two key objectives. First, to demonstrate that it is both an accurate and

efficient numerical technique for solving multi-scale electromagnetic problems. Second,

to evaluate the impact of interpolation order on ensuring continuity between classes

in the LTS algorithm. Numerical results from the metallic cavity and PEC sphere

problems show that the GPU-DGTD-LTS method with third-order interpolation

achieves speed-ups of 1.46 and 2.42, respectively. Additionally, these results confirm

that high-order interpolation in an LTS scheme is not merely a formality but a

necessity, as lower-order interpolation compromises accuracy.

Once validated, the GPU-DGTD-LTS method with third-order interpolation was

applied to two realistic and complex electromagnetic problems to assess its robustness

and efficiency. The first case involved the scattering of a multilayer dielectric sphere,

where the computational domain was divided into four classes to fully exploit the

potential of the LTS scheme. Numerical results showed a speed-up of 4.52 compared

to the standard GPU-DGTD-GTS, with negligible loss of precision, demonstrating

the effectiveness of the proposed method. Additionally, the method was tested on a

complex antenna problem, where the multi-scale nature of the computational domain

required sophisticated numerical techniques capable of handling large discrepancies

in element sizes within the mesh. The results showed strong agreement with the
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frequency-domain solver ANSYS HFSS, further demonstrating that the GPU-DGTD-

LTS method with third-order interpolation is a reliable and efficient approach for

solving such problems. In conclusion, the proposed method provides a robust, scalable,

and efficient tool for addressing complex multi-scale 2D and 3D electromagnetic

problems, paving the way for its application in a wide range of engineering and

scientific fields.

6.2 Future Research

The methods developed in this thesis could be expanded in many research aspects

that can be addressed in future works. Suggestions for future work are as follows:

• Development of new GPU algorithms integrating the multi-GPU capability such

as MPI+GPU and the LTS RK3 scheme to further accelerate the time execution

in numerical simulation. The main challenge for a MPI+GPU hybrid parallelism

technique is to reach a good parallel scalability for the final implementation. To do this,

a domain partition strategy for data parallelism on a multi-GPU platform is required.

This domain partition is typically made employed the graph partitioning algorithms

Metis and ParMetis in conformal meshes [35], [23] or by using automatic load

balancing schemes in non-conformal meshes [2]. Once the load-balanced partitions

are found, they are sent to different devices (GPU cores) to perform the calculations.

However, these partitions are not completely independent, as neighboring partitions

need to share data with each other to complete the calculations. Therefore, proper

communication between neighboring partitions is essential to avoid latency issues

and not restrict the scalability of the algorithm.

• A key direction for future research is conducting a more extensive study to validate the

proposed method in complex, large-scale scenarios, such as those encountered in the

simulation of antenna arrays. These scenarios pose significant challenges due to their

high demands on memory and computational time, which necessitate the development

and integration of more sophisticated techniques to manage the computational

domain effectively. One important area of focus is the introduction of advanced

boundary conditions tailored to the specific needs of large-scale simulations. For

instance, the implementation of periodic boundary conditions could be particularly

beneficial for simulating periodic antenna arrays, where the repetitive structure of the

array can be leveraged to reduce computational overhead. By accurately modeling

the electromagnetic interactions within and across unit cells of the array, periodic

boundary conditions can enable efficient and precise simulations of large-scale systems

without requiring the explicit inclusion of every element in the domain.
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