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Resumo

Na primeira parte desta tese, estudamos um problema modelo de p-Laplaciano
fracionário no espaço RN com dupla não linearidades críticas envolvendo um termo
crítico local de Sobolev junto com um termo crítico não local de Choquard fra-
cionário; o problema também inclui um termo homogêneo de Hardy; adicional-
mente, todas as não linearidades possuem singularidades. Ao estabelecer novos
resultados de imersões envolvendo normas de Morrey com peso no espaço homogê-
neo de Sobolev fracionário, fornecemos condições suficientes sob as quais existe uma
solução fraca não trivial para o problema por meio de métodos variacionais. Us-
ando as mesmas técnicas utilizadas para provar este resultado, também podemos
tratar problemas envolvendo termos duplamente críticos de Sobolev ou duplamente
críticos de Choquard.

Em seguida, estudamos outra variante do problema do p-Laplaciano fracionário
com termos de Sobolev-Choquard e um termo de acoplamento crítico. Mais pre-
cisamente, consideramos um sistema de equações de p-Laplaciano fracionário no
espaço RN com dupla não linearidades críticas envolvendo um termo crítico local
de Sobolev junto com um termo crítico não local de Choquard; o problema também
inclui um termo homogêneo de Hardy; além disso, todas as não linearidades en-
volvem singularidades; adicionalmente, o termo de acoplamento é crítico no sentido
das imersões de Sobolev. Para provar o resultado principal, usamos uma versão
da desigualdade de Caffarelli-Kohn-Nirenberg e um refinamento da desigualdade de
Sobolev que está relacionada ao espaço de Morrey, pois nosso problema envolve ex-
poentes duplamente críticos. Com a ajuda desses resultados, fornecemos condições
suficientes sob as quais existe uma solução fraca não trivial para o problema por
meio de métodos variacionais.

Por fim, consideramos uma equação p-Kirchhoff fracionária no espaço RN com
dupla não linearidades, envolvendo um termo subcrítico não local generalizado de
Choquard junto com um termo crítico local de Sobolev; o problema também inclui
um termo do tipo Hardy; adicionalmente, todos os termos têm pesos singulares
críticos. Focamos nossa atenção na existência de uma solução fraca não trivial para
a equação p-Kirchhoff fracionária no espaço RN . A possibilidade de um crescimento
mais lento da não linearidade torna mais difícil estabelecer uma condição de com-
pacidade; para isso, usamos a condição de Cerami. Os pontos cruciais em nosso
argumento são a limitação uniforme da parte da convolução e a falta de compaci-
dade das imersões de Sobolev.

Palavras-chave: p-Laplaciano fracionário; potenciais de Hardy; singularidades
com peso; equação de Sobolev-Choquard; equação p-Kirchhoff fracionária.



Abstract

In the first part of this dissertation thesis, we study a fractional p-Laplacian
model problem in the entire space RN featuring doubly critical nonlinearities in-
volving a local critical Sobolev term together with a nonlocal Choquard fractional
critical term; the problem also includes a homogeneous Hardy term; additionally, all
nonlinearities have singularities. By establishing new embedding results involving
weighted Morrey norms in the homogeneous fractional Sobolev space, we provide
sufficient conditions under which a weak nontrivial solution to the problem exists
via variational methods. By using the same techniques used to prove this result
we can also deal with problems involving double critical Sobolev or double critical
Choquard terms.

Next, we study another variant of the fractional p-Laplacian problem with
Sobolev-Choquard terms and a critical coupling term. More precisely, we consider
a fractional p-Laplacian system of equations in the entire space RN with doubly
critical singular nonlinearities involving a local critical Sobolev term together with
a nonlocal Choquard critical term; the problem also includes a homogeneous Hardy
term; moreover, all the nonlinearities involve singular critical weights; additionally,
the coupling term is critical in the sense of the Sobolev embeddings. To prove the
main result we use a version of the Caffarelli-Kohn-Nirenberg inequality and a re-
finement of Sobolev inequality that is related to Morrey space because our problem
involves doubly critical exponents. With the help of these results, we provide suf-
ficient conditions under which a weak nontrivial solution to the problem exists via
variational methods.

Finally, we consider a fractional p-Kirchhoff equation in the entire space RN

featuring double nonlinearities, involving a generalized nonlocal Choquard subcrit-
ical term together with a local critical Sobolev term; the problem also includes a
Hardy-type term; additionaly, all terms have critical singular weights. We focus our
attention on the existence of a nontrivial weak solution for fractional p-Kirchhoff
equation in the entire space RN . The possibility of a slower growth in the nonlinear-
ity makes it more difficult to establish a compactness condition; to do so, we use the
Cerami condition. The crucial points in our argument are the uniform boundedness
of the convolution part and the lack of compactness of the Sobolev embeddings.

Keywords: fractional p-Laplacian; Hardy potentials; weighted singularities; So-
bolev-Choquard equation; fractional p-Kirchhoff equation.



Sumário

0 Introduction and main results 10
0.1 The Sobolev-Choquard problems with Hardy term . . . . . . . . . . . . . . 10
0.2 The Sobolev-Choquard systems with Hardy term . . . . . . . . . . . . . . 13
0.3 The Sobolev-Kirchhoff problems with Hardy term . . . . . . . . . . . . . . 15

1 Fractional Sobolev-Choquard critical equation with Hardy term and
weighted singularities 19
1.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Some of the difficulties to prove the theorems . . . . . . . . . . . . . . . . 28
1.3 Method of proof and outline of the work . . . . . . . . . . . . . . . . . . . 30
1.4 Proof of Theorems 0.1 and 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Fractional Sobolev-Choquard critical systems with Hardy term and
weighted singularities 65
2.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2 Existence of solutions for auxiliary minimization problems . . . . . . . . . 67
2.3 Existence of Palais-Smale sequences . . . . . . . . . . . . . . . . . . . . . . 73
2.4 Proof of Theorems 0.3 and 0.4 . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 Fractional Kirchhoff equation with Sobolev-Choquard singular non-
linearities 83
3.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 The variational setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3 The geometry of the mountain pass theorem . . . . . . . . . . . . . . . . . 95
3.4 The compactness of the Cerami sequences . . . . . . . . . . . . . . . . . . 96

Conclusion 106
Summary of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Goals for the near future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Bibliography 108



10

Chapter 0

Introduction and main results

In this work we study some elliptic problems involving the fractional p-Laplacian opera-
tor in the entire space RN with double critical nonlinearities, in the sense of Sobolev and
Choquard, and also a Hardy potential; moreover, all nonlinearities have singularities. To
address the Sobolev-Choquard and Hardy critical terms that arise in these problems, we
must employ Morrey spaces to facilitate the analysis of Palais-Smale sequences. Morrey
spaces are particularly useful when the Sobolev embedding is not applicable; moreover,
these spaces complement the boundedness properties of the operators that cannot be
handled by Lebesgue spaces. Next, we consider a fractional p-Laplacian system where
the coupling term is critical in the sense of the Sobolev embeddings. Finally, we consider
a fractional p-Kirchhoff equation also featuring doubly critical nonlinearities, namely, a
generalized non-local subcritical Choquard term and local critical Sobolev term; the prob-
lem also includes a Hardy-type term; additionaly, all terms have critical singular weights.
The interest in these problems, which have been extensively studied by several authors,
is connected to its applications in modeling steady-state solutions of reaction-diffusion
problems arising in biophysics, in plasma physics, in the study of chemical reactions, in
elementary particle physics, and also in mathematical finance.

To prove the existence results for these classes of elliptic equations we have to deal
with a non-linear and non-local operator for which the method of harmonic extension
due to Caffarelli and Silvestre cannot be applied. Since we consider critical behavior
of multiple nonlinearities with singularities, we have to make a careful analysis of the
energy levels for which we can recover the compactness of the Palais-Smale or Cerami
sequences; additionaly, we have to deal with the asymptotic competition between the
critical nonlinearities and make sure that one does not dominate the other. So, to deal
with the associated difficulties in proving existence results, first we have to prove that
the extremals for the Sobolev and Stein-Weiss inequalities are attained; and we also
have to prove a refined version of the Caffarelli-Kohn-Nirenberg inequality and some new
embeddings involving the weighted Morrey spaces.

0.1 The Sobolev-Choquard problems with Hardy
term

In the present section, we consider the following fractional p-Laplacian equation in the
entire space RN featuring doubly critical nonlinearities, involving a local critical Sobolev
term together with a non-local Choquard critical term; the problem also includes a homo-
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geneous Hardy term; additionaly, all terms have critical singular weights. More precisely,
we deal with the problem

(−∆)s
p,θu− γ

|u|p−2u

|x|sp+θ
= |u|p∗

s(β,θ)−2u

|x|β
+ [Iµ ∗ Fδ,θ,µ(·, u)] (x)fδ,θ,µ(x, u)

u ∈ Ẇ s,p
θ (RN)

(1)

where 0 < s < 1; 0 < α, β < sp + θ < N ; 0 < µ < N ; 2δ + µ < N ; γ < γH with
the best fractional Hardy constant γH to be defined below; the Hardy-Sobolev and Stein-
Weiss upper critical fractional exponents (this latter also called Hardy-Littlewood-Sobolev
upper critical exponent) are respectively defined by

p∗
s(β, θ) = p(N − β)

N − sp− θ
and p♯

s(δ, θ, µ) = p(N − δ − µ/2)
N − sp− θ

.

Moreover, Iµ(x) = |x|−µ is the Riesz potential of order µ; the functions fδ,θ,µ, Fδ,θ,µ : RN ×
R → R are respectively defined by

fδ,θ,µ(x, t) = |t|p
♯
s(δ,θ,µ)−2t

|x|δ
and Fδ,θ,µ(x, t) = |t|p

♯
s(δ,θ,µ)

|x|δ
, (2)

that is, Fδ,θ,µ(x, t) = p♯
s(δ, θ, µ)

∫ |t|
0 fδ,θ,µ(x, τ) dτ ; and the term with convolution integral,

[Iµ ∗ Fδ,θ,µ(·, u)](x) :=
∫
RN

|u(y)|p♯
s(δ,θ,µ)

|x− y|µ|y|δ
dy ,

is known as Choquard type nonlinearity.
Intuitively, problem (1) is understood as showing the existence of a function u ∈

Ẇ s,p
θ (RN) such that

(−∆)s
p,θu− γ

|u|p−2u

|x|sp+θ
= |u|p∗

s(β,θ)−2u

|x|β
+
(∫

RN

|u(y)|p♯
s(δ,θ,µ)

|x− y|µ|y|δ
dy
) |u(x)|p♯

s(δ,θ,µ)−2u(x)
|x|δ

where the fractional p-Laplacian operator is defined for θ = θ1 + θ2, x ∈ RN , and any
function u ∈ C∞

0 (RN), as

(−∆)s
p,θu(x) := p.v.

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))
|x|θ1|x− y|N+sp|y|θ2

dy , (3)

and p.v. is the Cauchy’s principal value. This operator is the prototype of nonlinear
non-local elliptic operator and can also be defined on smooth functions by

(−∆)s
p,θu(x) := 2 lim

ε→0

∫
RN \Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x|θ1 |x− y|N+sp|y|θ2

dy .

This definition is consistent, up to a normalization constant C = C(N, s, θ), with the
usual definition of the linear fractional Laplacian operator (−∆)s for p = 2 and θ = 0.

Let us now introduce the spaces of functions that are meaningful to our consid-
erations. Throughout this work, we denote the norm of the weighted Lebesgue space
Lp(RN , |x|−λ) by

∥u∥Lp(RN ;|x|−λ) :=
(∫

RN

|u|p

|x|λ
dx
) 1

p
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for any 0 ⩽ λ < N and 1 ⩽ p < +∞.
We say that a Lebesgue measurable function u : RN → R belongs to the weighted

Morrey space Lp,γ+λ
M (RN , |x|−λ) if

∥u∥Lp,γ+λ
M (Rn,|x|−λ) := sup

x∈RN , R∈R+

{(
Rγ+λ−N

∫
BR(x)

|u|p

|x|λ
dx
) 1

p
}
< +∞,

where 1 ⩽ p < +∞; γ, λ ∈ R+, and 0 < γ + λ < N .
Our concerns involve the homogeneous fractional Sobolev-Slobodeckij space Ẇ s,p

θ (RN)
defined as the completion of the space C∞

0 (RN) with respect to the Gagliardo seminorm
given by

u 7→ [u]Ẇ s,p
θ

(RN ) :=
(∫∫

R2N

|u(x) − u(y)|p
|x|θ1 |x− y|N+sp|y|θ2

dxdy
) 1

p

,

i.e., Ẇ s,p
θ (RN) = C∞

0 (RN)[ · ]. We can equip the homogeneous fractional Sobolev space
Ẇ s,p

θ (RN) with the norm

∥u∥Ẇ s,p
θ

(RN ) :=
(∫∫

R2N

|u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy − γ
∫
RN

|u|p

|x|sp+θ
dx
) 1

p

:=
(

[u]p
Ẇ s,p

θ
(RN ) − γ∥u∥p

Lp(RN ;|x|−sp−θ)

) 1
p

.

Here, we assume that γ < γH , where the best fractional Hardy constant is defined by

γH := inf
u∈Ẇ s,p

θ
(RN )

u̸=0

[u]p
Ẇ s,p

θ
(RN )

∥u∥p
Lp(Rn;|x|−sp−θ)

.

This turns the space Ẇ s,p
θ (RN) into a Banach space; moreover, this space is uniformly

convex; in particular, it is reflexive and separable.
Our main goal in this work is to show that problem (1) admits at least one nontrivial

weak solution, by which term we mean a function u ∈ Ẇ s,p
θ (RN)\{0} such that

∫∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x|θ1|x− y|N+sp|y|θ2

dx dy − γ
∫
RN

|u|p−2uϕ

|x|sp+θ
dx

=
∫
RN

|u|p∗
s(β,θ)−2uϕ

|x|β
dx

+
∫∫

R2N

|u(x)|p♯
s(δ,θ,µ)−2u(x)ϕ(x)|u(y)|p♯

s(δ,θ,µ)−2u(y)ϕ(y)
|x|δ|x− y|µ|y|δ

dx dy

for any test function ϕ ∈ Ẇ s,p
θ (RN).

Now we define the energy functional I : Ẇ s,p
θ (RN) → R by

I(u) := 1
p

∫∫
R2N

|u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

dx dy − γ

p

∫
RN

|u|p

|x|sp+θ
dx

− 1
p∗

s(β, θ)

∫
RN

|u|p∗
s(β,θ)

|x|β
dx
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− 1
2p♯

s(δ, θ, µ)

∫∫
R2N

|u(x)|p♯
s(δ,θ,µ)|u(y)|p♯

s(δ,θ,µ)

|x|δ|x− y|µ|y|δ
dx dy .

For the parameters in the previously specified intervals, the energy functional I is well de-
fined and is continuously differentiable, i.e., I ∈ C1(Ẇ s,p

θ (RN);R); moreover, a nontrivial
critical point of the energy functional I is a nontrivial weak solution to problem (1).

Theorem 0.1. Problem (1) has at least one nontrivial weak solution provided that 0 <
s < 1; 0 < α, β < sp+ θ < N ; 0 < µ < N ; and γ < γH .

In this work we also consider the following variants of problem (1), namely one
problem with a Hardy potential and double Sobolev type nonlinearities,

(−∆)s
p,θu− γ

|u|p−2u

|x|sp+θ
=

2∑
k=1

|u|p∗
s(βk,θ)−2u

|x|βk

u ∈ Ẇ s,p
θ (RN);

(4)

and another one with a Hardy potential and double Choquard type nonlinearities,
(−∆)s

p,θu− γ
|u|p−2u

|x|sp+θ
=

2∑
k=1

[Iµk
∗ Fδk,θ,µk

(·, u)] (x)fδk,θ,µk
(x, u)

u ∈ Ẇ s,p
θ (RN).

(5)

The notion of weak solution to problems (4) and (5) can be defined in the same way as
that for problem (1), i.e., we multiply the differential equations by test functions and use
a kind of integration by parts. Then we recognize these expressions as the derivatives
of an energy functionals which, under the appropriate hypotheses on the parameters, are
continuously differentiables. This means that weak solutions to these problems are critical
points of the appropriate energy functionals. By adaptting the method used in the proof
of Theorem 0.1 we deduce the following result.

Theorem 0.2. Problems (4) and (5) have at least one nontrivial weak solution under
similar assumptions as in Theorem 0.1, i.e., 0 < s < 1; γ < γH ; 0 < αk, βk < sp+θ < N ;
and 0 < µk < N for k ∈ {1, 2}.

Remark 1. At this point let us mention that, in the past, other authors have attempted
to prove existence results for this class of fractional elliptic problems. To be precise, Li
& Yang [56] claimed to have established the existence of solution to problem (1) in the
case p = 2 for the fractional Laplacian, but without singularities in the operator, i.e.,
θ1 = θ2 = 0, and in the unweighted Choquard term, i.e., δ = 0, or in the unweighted
Sobolev term, i.e., β = 0. Their proofs rely on a related minimization problem. However,
we could not check the arguments on which the proof is based; see Yang & Wu [93,
inequality (2.8)]; Yang [92, inequality (3.2)]. In this way, we believe that their results in
these cases are still open problems; see De Nápoli, Drelichman & Salort [37].

0.2 The Sobolev-Choquard systems with Hardy
term

In the present section, we consider the following fractional p-Laplacian system of equations
in the entire space RN featuring doubly critical nonlinearities, involving a local critical
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Sobolev term together with a non-local Choquard critical term; the problem also includes
a homogeneous Hardy term; additionally, all terms have critical singular weights. More
precisely, we deal with the problem

(−∆)s
p,θu− γ1

|u|p−2u

|x|sp+θ
= [Iµ ∗ F (·, u)] (x)f(x, u) + |u|p∗

s(β,θ)−2u

|x|β
+ ηa

a+ b

|u|a−2u|v|b

|x|β

(−∆)s
p,θv − γ2

|v|p−2v

|x|sp+θ
= [Iµ ∗ F (·, v)] (x)f(x, v) + |v|p∗

s(β,θ)−2v

|x|β
+ ηb

a+ b

|u|a|v|b−2v

|x|β
(6)

where 0 < s < 1; 0 < α, β < sp + θ < N ; 0 < µ < N ; 2δ + µ < N ; η ∈ R+; γ1, γ2 < γH

with the best fractional Hardy constant γH to be defined below (without lost of generality,
to simplify the notation we can consider the only parameter γ = γ1 = γ2).

For simplicity, hereafter we denote the Cartesian product space of two Banach spaces
W = Ẇ s,p

θ (RN) × Ẇ s,p
θ (RN), endowed with the norm

∥(u, v)∥W :=
(

∥u∥p

Ẇ s,p
θ

(RN ) + ∥v∥p

Ẇ s,p
θ

(RN )

)1/p

.

Intuitively, solving problem (6) is understood as showing the existence of a pair
(u, v) ∈ W\{0, 0} such that

(−∆)s
p,θu− γ

|u|p−2u

|x|sp+θ
=
(∫

RN

|u|p
♯
s

|x− y|µ|y|δ
dy
) |u|p

♯
s−2u

|x|δ
+ |u|p∗

s−2u

|x|β
+ ηa

a+ b

|u|a−2u|v|b

|x|β

(−∆)s
p,θv − γ

|v|p−2v

|x|sp+θ
=
(∫

RN

|v|p
♯
s

|x− y|µ|y|δ
dy
) |v|p

♯
s−2v

|x|δ
+ |v|p∗

s−2v

|x|β
+ ηb

a+ b

|u|a|v|b−2v

|x|β

where the fractional p-Laplacian operator is defined for θ = θ1 + θ2 and x ∈ RN .
Our main goal in this work is to show that problem (6) admits at least one weak

solution, by which term we mean a function (u, v) ∈ W such that∫∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ1(x) − ϕ1(y))
|x|θ1|x− y|N+sp|y|θ2

dxdy

+
∫∫

R2N

|v(x) − v(y)|p−2(v(x) − v(y))(ϕ2(x) − ϕ2(y))
|x|θ1|x− y|N+sp|y|θ2

dxdy

−γ1

∫
RN

|u|p−2uϕ1

|x|sp+θ
dx− γ2

∫
RN

|v|p−2vϕ2

|x|sp+θ
dx

=
∫∫

R2N

|u(x)|p♯
s−2|u(y)|p♯

su(x)ϕ1(x)
|x|δ|x− y|µ|y|δ

dxdy

+
∫∫

R2N

|v(x)|p♯
s−2|v(y)|p♯

sv(x)ϕ2(x)
|x|δ|x− y|µ|y|δ

dxdy

+
∫
RN

|u|p∗
s(β,θ)−2uϕ1(x)

|x|β
dx+

∫
RN

|v|p∗
s(β,θ)−2vϕ2(x)

|x|β
dx

+
∫
RN

ηa|u|a−2uϕ1|v|b

|x|β
dx+

∫
RN

ηb|u|a|v|b−2vϕ2

|x|β
dx

for any pair of test functions (ϕ1, ϕ2) ∈ W . Now we define the energy functional I : W → R
by

I(u, v) = 1
p

[∫∫
R2N

|u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy +
∫∫

R2N

|v(x) − v(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy
]
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− γ1

p

∫
RN

|u|p

|x|sp+θ
dx− γ2

p

∫
RN

|v|p

|x|sp+θ
dx

− 1
2p♯

s(δ, θ, µ)

[∫∫
R2N

|u(x)|p♯
s |u(y)|p♯

s

|x|δ|x− y|µ|y|δ
dxdy +

∫∫
R2N

|v(x)|p♯
s |v(y)|p♯

s

|x|δ|x− y|µ|y|δ
dxdy

]
− 1
p∗

s

[∫
RN

|u|p∗
s

|x|β
dx+

∫
RN

|v|p∗
s

|x|β
dx
]

− 1
p∗

s

∫
RN

η|u|a|v|b

|x|β
dx. (7)

For the parameters in the previously specified intervals, the energy functional I is
well defined and is continuously differentiable, i.e., I ∈ C1(Ẇ s,p

θ (RN);R); moreover, a
nontrivial critical point of the energy functional I is a nontrivial weak solution to prob-
lem (6).

Theorem 0.3. Problem (6) has at least one nontrivial weak solution provided that 0 <
s < 1; 0 < α, β < sp+ θ < N ; 0 < µ < N ; a+ b = p∗

s(β, θ); η ∈ R+ and γ1, γ2 < γH .

In this work we also consider the following variants of problem (6), namely one
problem with a Hardy potential and double Sobolev type nonlinearities,

(−∆)s
p,θu− γ1

|u|p−2u

|x|sp+θ
=

2∑
k=1

|u|p∗
s−2u

|x|β
+ ηa

a+ b

|u|a−2u|v|b

|x|βk

(−∆)s
p,θv − γ2

|v|p−2v

|x|sp+θ
=

2∑
k=1

|v|p∗
s−2v

|x|βk
+ ηb

a+ b

|u|a|v|b−2v

|x|βk

(8)

and another one with a Hardy potential and double Choquard type nonlinearities,
(−∆)s

p,θu− γ1
|u|p−2u

|x|sp+θ
=

2∑
k=1

[Iµk
∗ Fδ,θ,µk

(·, u)] (x)fδ,θ,µk
(x, u) + ηa

a+ b

|u|a−2u|v|b

|x|βk

(−∆)s
p,θv − γ2

|v|p−2v

|x|sp+θ
=

2∑
k=1

[Iµk
∗ Fδ,θ,µk

(·, v)] (x)fδ,θ,µk
(x, v) + ηb

a+ b

|u|a|v|b−2v

|x|βk

(9)

The notion of weak solution to problems (8) and (9) can be defined in the same
way as that for problem (6), i.e., we multiply the differential equations by a pair of test
functions and use a kind of integration by parts. Then we recognize these expressions
as the derivatives of an energy functional which, under the appropriate hypotheses on
the parameters, is continuously differentiable. This means that weak solutions to these
problems are critical points of the appropriate energy functional. By adaptting the method
used in the proof of Theorem 0.3 we deduce the following result.

Theorem 0.4. Problems (8) and (9) have at least one nontrivial weak solution under
similar assumptions as in Theorem 0.3, i.e., 0 < s < 1; 0 < αk, βk < sp + θ < N ;
0 < µk < N ; a+ b = p∗

s(βk, θ); η ∈ R+ and γ1, γ2 < γH for k ∈ {1, 2}.

0.3 The Sobolev-Kirchhoff problems with Hardy
term

In the present section, we consider the following fractional p-Kirchhoff equation in the en-
tire space RN featuring doubly nonlinearities, involving a generalized non-local Choquard
subcritical term together with a local critical Sobolev term; the problem also includes a
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Hardy-type term; additionaly, all terms have critical singular weights. More precisely, we
deal with the problem

m(∥u∥p
W s,p

θ
(RN ))

[
(−∆)s

p,θu+ V (x) |u|p−2u

|x|α
]

= |u|p∗
s(β,θ)−2u

|x|β
+ λ

[
Iµ ∗ Fδ,θ,µ(·, u)

|x|δ

]
(x)fδ,θ,µ(x, u)

|x|δ
(10)

where 0 < s < 1; 0 < α < N − µ; 0 < β < sp + θ < N ; 0 < µ < N ; 2δ + µ < N ;
p∗

s(β, θ) = p(N −β)/(N − sp− θ). The function m : R+
0 → R+ is a Kirchhoff function; the

potential function V : RN → R+ is continuous; the nonlinearity f : R → R is continuous
and define F (s) =

∫ s
0 f(t)dt; the funtion Iµ : RN → R is defined by Iµ(x) = |x|−µ and is

called the Riesz potential. The fractional p-Laplacian operator is defined for θ = θ1 + θ2,
x ∈ RN , and any function u ∈ C∞

0 (RN).
Let us now introduce the spaces of functions that are meaningful to our consid-

erations. Throughout this work, we denote the norm of the weighted Lebesgue space
Lp

V (RN , |x|−η) by

∥u∥Lp
V (RN ;|x|−η) :=

(∫
RN

V (x)|u|p

|x|η
dx
) 1

p

for any 0 ⩽ η < N and 1 ⩽ p < +∞.
We can equip the homogeneous fractional Sobolev space W s,p

V,θ(RN) with the norm

∥u∥W s,p
V,θ

(RN ) = ∥u∥W :=
(∫∫

R2N

|u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy +
∫
RN

V (x)|u|p

|x|α
dx
) 1

p

:=
(

[u]pW s,p
θ

(RN ) + ∥u∥p
Lp

V (RN ;|x|−α)

) 1
p

.

The embedding W s,p
V,θ(RN) ↪→ Lν

V (RN , |x|−α) is continuous for any ν ∈ [p, p(N−β)
N−ps−θ

] and
0 < α < N − µ, namely there exists a positive constant Cν such that

∥u∥Lν
V (RN ,|x|−α) ⩽ Cν∥u∥W for all u ∈ W s,p

V,θ(RN). (11)

The potential function V : RN → R+ verifies the following assumption

(V ) V is continuous and there exists V0 > 0 such that infRN V ⩾ V0.

Moreover, we assume that the nonlinearities f, F : RN ×R → R verify the hypotheses

(F1) F ∈ C1(R,R).

(F2) There exist constants

p♭
s(δ, µ) := (N − δ − µ/2)p

N
< q1 ⩽ q2 <

(N − δ − µ/2)p
N − sp− θ

=: p♯
s(δ, θ, µ)

and c0 > 0 such that for all t ∈ R,

|f(t)| ⩽ c0(|t|q1−1 + |t|q2−1).

(F3) lim
|u(x)|→∞

F (u(x))
|x|δ|u(x)|pξ

= ∞ uniformly with respect to x ∈ RN where ξ ∈ [1, 2p♭
s(δ, µ)/p).
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(F4) There exist constants r0 ⩾ 0, κ > N − β

ps+ θ − β
and c1 ⩾ 0 such that for |t| ⩾ r0,

|F (t)|
|x|δ

κ

⩽ c1|t|κpF(t), F(t) := 1
pξ

f(t)
|x|δ

t− 1
2
F (t)
|x|δ

⩾ 0.

With respect to the Kirchhoff function m : R+
0 → R+ we make the following assump-

tions.

(m1) m is a continuous function and there exists m0 > 0 such that inft⩾0 m(t) = m0.

(m2) There exists ξ ∈ [1, 2p♭
s(δ, µ)/p) such that m(t)t ⩽ ξM(t) for all t ⩾ 0, where

M(t) =
∫ t

0 m(τ)dτ .

A typical example is m(t) = a + bξtξ−1 for t ⩾ 0, where a ⩾ 0, b ⩾ 0, a + b > 0,
ξ ∈ (1, 2p♭

s(δ, µ)/p) if b > 0 and ξ = 1 if b = 0; this is called non-degenerate when a > 0
and b ⩾ 0 and is called degenerate if a = 0 and b > 0.

Our main goal in this work is to show that problem (10) admits at least one nontrivial
weak solution, by which term we mean a function u ∈ W s,p

V,θ(RN) such that

m(∥u∥p
W )

[∫∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x|θ1|x− y|N+sp|y|θ2

dx dy +
∫
RN

V (x)|u|p−2uϕ

|x|α
dx
]

=
∫
RN

|u|p∗
s(β,θ)−2uϕ

|x|β
dx+ λ

∫
RN

(
Iµ ∗ Fδ,θ,µ(u)

|x|δ
)
fδ,θ,µ(u)

|x|δ
ϕdx

for any test function ϕ ∈ W s,p
V,θ(RN).

Now we define the energy functional I : W s,p
V,θ(RN) → R by

I(u) := 1
p
M(∥u∥p

W ) − 1
p∗

s(β, θ)

∫
RN

|u|p∗
s(β,θ)

|x|β
dx

− λ

2

∫∫
R2N

Fδ,θ,µ(u(x))Fδ,θ,µ(u(y))
|x|δ|x− y|µ|y|δ

dx dy

=: Φ(u) − Ξ(u) − λΨ(u). (12)

For the parameters in the previously specified intervals, the energy functional I is well de-
fined and is continuously differentiable, i.e., I ∈ C1(W s,p

V,θ(RN);R); moreover, a nontrivial
critical point of the energy functional I is a nontrivial weak solution to problem (10).

The main result is stated as follows.

Theorem 0.5. Let 0 < µ < ps + θ < N ; suppose (V ), (m1)–(m2) and (F1)–(F4) hold.
Then problem (10) has a nontrivial weak solution for any λ > 0.

Overview
The present thesis is organized as follows. In Chapter 1, we prove Theorems 0.1 and 0.2;
before that, we present a brief historical background of the problems, mainly over the
fractional Laplacian, the Riesz potential, the Choquard equation, the fractional Sobolev
spaces, the Stein-Weiss inequality (also known as Hardy-Littlewood-Sobolev inequality),
and the Morrey spaces. We also discuss the variational setting for the problems together
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with some preliminary results such as the Caffarelli-Kohn-Nirenberg, and we mention
some related works on fractional elliptic operators. Next, we describe some of the diffi-
culties to prove our first two theorems: we emphasize the nonlocality of the operator, the
estimates of the mixed terms, the structure of the Palais-Smale sequences and mainly the
auxiliary minimization problems and the asymptotic competition between the two critical
nonlinearities; next, comes the outline of the proof, where we define the Brézis-Nirenberg
critical level below which we can guarantee that the Palais-Smale sequences have strongly
convergent subsequences in the Sobolev spaces. Finally, we present the proofs of the
Theorems 0.1 and 0.2.

Chapter 2 is devoted to the proof of Theorems 0.3 and 0.4. We begin this chapter
with a brief historical background including, among other things, the fractional Laplacian,
the Choquard equation, and some words about systems of fractional elliptic equations.
Next, we establish the existence of solutions for some auxiliary problems, namely, that
the best Choquard and Sobolev constants are attained, similarly to what have been done
in the previous chapter. Then, we study the existence of Palais-Smale sequences and
present some analysis with the mountain pass level on the Brézis-Nirenberg critical level
below which we can guarantee that the Palais-Smale sequences have strongly convergent
subsequences in the Sobolev spaces. Finally, we conclude the proof of Theorems 0.3
and 0.4.

In Chapter 3, we prove Theorem 0.5. We begin the chapter again with a brief
historical background including Kirchhoff type problems; the kinds and varieties of po-
tential functions; some comments about Palais-Smale and Cerami conditions; the types of
frequently used nonlinearities; the Ambrosetti-Rabinowitz condition; some words about
subcritical growth and Cerami conditions; the degraded oscillations and the resonant
nonlinearities. Next, we introduce the variational setting of the problem, we present the
doubly weighted Stein-Weiss inequality, and we ensure the well-definiteness of the en-
ergy functional; the geometry of the mountain pass theorem and the compactness of the
Cerami sequences comes next and we conclude the chapter with the proof of Theorem 0.5.

In the final chapter, we briefly summarize this thesis and ennuntiate some open
problems.

Notation. For ρ ∈ R+, we define Bρ(x) := {y ∈ RN : |x − y| < ρ}, the open ball
centered at x with radius ρ. The constant ωN denotes the volume of the unit ball in
RN . The arrows → and ⇀ denote the strong convergence and the weak convergence,
respectively. Given the functions f, g : RN → R, we recall that f = O(g) if there is a
constant C ∈ R+ such that |f(x)| ⩽ C|g(x)| for all x ∈ RN ; and f = o(g) as x → x0
if limx→x0 |f(x)|/|g(x)| = 0. The pair r and r′ denote Hölder conjugate exponents, i.e.,
1/r+1/r′ = 1 or r+ r′ = rr′. The positive and negative parts of a function ϕ are denoted
by ϕ± := max{±ϕ, 0}. Moreover: tz := t(u, v) = (tu, tv) for all (u, v) ∈ W and t ∈ R;
(u, v) is said to be nonnegative in RN if u ⩾ 0 and v ⩾ 0 in RN ; (u, v) is said to be
positive in RN if u > 0 and v > 0 in RN . Finally, C ∈ R+ denotes a universal constant
that may change from line to line; when it is relevant, we will add subscripts to specify
the dependence of certain parameters.
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Chapter 1

Fractional Sobolev-Choquard critical
equation with Hardy term and
weighted singularities

1.1 Historical background
Reasons for the recent interest in this class of nonlinear elliptic problems reside in the
merits of the subject itself and also in the number and variety of phenomena occurring in
real-world applications that can be modeled by these equations. For example, fractional
and non-local differential operators arise in a quite natural way in many different problems
that involve long-range interactions, such as anomalous diffusion, dislocations in crystals,
water waves, phase transitions, stratified materials, semipermeable membranes, flame
propagation, non-Newtonian fluid theory in a porous medium, financial mathematics,
phase transition phenomena, population dynamics, minimum surfaces, game theory, image
processing, etc. In particular, there are some remarkable mathematical models involving
the fractional p-Laplacian, such as the fractional Schrödinger equation, the fractional
Kirchhoff equation, the fractional porous medium equation, etc. For more information,
see the excelent survey papers by Di Nezza, Palatucci & Valdinoci [39], Moroz & Van
Schaftingen [68] and Mukherjee & Sreenadh [85] and the references they contain.

We can also mention the diversity of tools used in their study, mainly critical point
theory and variational and topological methods.

The fractional Laplacian

There are many equivalent definitions of the fractional Laplacian. In our case, on the
Euclidean space RN of dimension N ⩾ 1, for θ = θ1 + θ2 and the above specified intervals
for the parameters, we define the non-local elliptic p-Laplacian operator with the help of
the Cauchy’s principal value integral as

(−∆)s
p,θu(x) := p.v.

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))
|x|θ1|x− y|N+sp|y|θ2

dy

:= 2 lim
ε→0

∫
RN \Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x|θ1 |x− y|N+sp|y|θ2

dy

for x ∈ RN and any function u ∈ C∞
0 (RN). The usual definition of the fractional p-

Laplacian carries a normalizing constant dependent on N , s, p, and θ in front of the
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integral. This constant is irrelevant for our purposes; so, for the sake of clarity, we
omit it in the definition and in the formulation of the results. The limit operator (up
to a suitable normalizing constant) as s → 1− and θ1 = θ2 = 0 is the so called p-
Laplacian defined as ∆pu(x) = ∇ · (|∇u(x)|p−2∇u(x)). Also, if p = 2 and θ1 = θ2 = 0,
then the usual notation is (−∆)su and the definition is consistent, up to a normalizing
constant, to the fractional Laplacian defined by the Fourier multiplier F [(−∆)su(x)](ξ) =
2π|ξ|2sF [u(x)](ξ) for x, ξ ∈ RN . In this formula, F [u(x)](ξ) =

∫
RN exp(−2πix · ξ)u(x) dx

denotes the Fourier transform of u ∈ S(RN), Schwartz’s space of rapid decaying functions
defined by S(RN) := {g ∈ C∞ : supx∈RN |xη∂κg(x)| < +∞} where the supremum is taken
over the multi-indices κ, η ∈ NN

0 .
Consider the integral functional defined by

u 7→ E(u) := 1
p

∫
RN

∫
RN

|u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

dx dy .

The Gâteaux derivative of the functional E at u in the direction φ, also called the first
variation of the functional, is computed as

d
dτ [E(u+ τφ)]

∣∣∣∣
τ=0

= 1
p

∫
RN

∫
RN

d
dτ

[ |u(x) − u(y) + τ(φ(x) − φ(y))|p
|x|θ1 |x− y|N+sp|y|θ2

]
dx dy

∣∣∣∣
τ=0

=
∫
RN

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))
|x|θ1 |x− y|N+sp|y|θ2

dx dy .

This implies that (−∆)s
p,θu is the gradient vector field ∇E(u), i.e., ∇E(u) = (−∆)s

p,θu;
hence, (−∆)s

p,θu(x) is interpreted as a nonlinear generalization of the usual Laplacian
operator. For a variety of interesting problems, their results and the progress of research
on the fractional operator, see e.g., Di Nezza, Palatucci & Valdinoci [39]; Molica Bisci,
Rădulescu & Servadei [66], Kwaśnicki [54]; Kuusi & Palatucci [53]; del Teso, Castro-Gómez
& Vázquez [38], and Lischke et al. [62].

The Riesz potential

On the Euclidean space RN of dimension N ⩾ 1, for 0 < µ < N and for each point x ∈
RN\{0}, we set Iµ(x) = |x|−µ. The Riesz potential of order µ of a function f ∈ L1

loc(RN)
is defined as

[Iµ ∗ f ](x) :=
∫
RN

f(y)
|x− y|µ

dy,

where the convolution integral is understood in the sense of the Lebesgue integral. The
usual definition of this potential carries a normalizing constant dependent on N and
µ in front of the integral. This constant is chosen to ensure the semigroup property,
Iµ ∗ Iν = Iµ+ν for µ, ν ∈ R+ such that µ + ν < N but it is not considered in this work
to simplify the formulation of the results. The Riesz potential Iµ : Lq(RN → Lr(RN) is
well-defined whenever 1 < q < N/(N − µ) and 1/q − 1/r = (N − µ)/N

The Choquard equation

On the Euclidean space RN of dimension N ⩾ 1 and for x ∈ RN , the equation

−∆u+ V (x)u = (Iµ ∗ |u|q)|u|q−2u
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was introduced by Choquard in the case N = 3 and q = 2 to model one-component
plasma. It had appeared earlier in the model of the polaron by Frölich and Pekar, where
free electrons interact with the polarisation that they create on the medium. When
V (x) ≡ 1, the groundstate solutions exist if 2♭ := 2(N −µ/2))/N < q < 2(N −µ/2)/(N −
2s) := 2♯ due to the mountain pass lemma or the method of the Nehari manifold, while
there are no nontrivial solution if q = 2♭ or if q = 2♯ as a consequence of the Pohozaev
identity. The Choquard equation is also known as the Schrödinger-Newton equation in
models coupling the Schrödinger equation of quantum physics together with Newtonian
gravity. This equation is related to several other partial differential equations with non-
local interactions. In general, the associated Schrödinger-type evolution equation i∂tψ =
∆ψ +

(
Iµ ∗ |ψ|2

)
ψ is a model for large systems of atoms with an attractive interaction

that is weaker and has a longer range than that of the nonlinear Schrödinger equation.
Standing wave solutions of this equation are solutions to the Choquard equation. For more
information on the various results related to the non-fractional Choquard-type equations
and their variants see Moroz & Van Schaftingen [68].

The fractional Sobolev spaces

In the last years, for pure mathematical research and concrete real-world applications,
the fractional p-Laplacian operator has been studied on the fractional Sobolev space
Ẇ s,p

θ (RN). It is the natural fractional counterpart of the homogeneous Sobolev space
D1,p

0 (Ω), defined as the completion of the space C∞
0 (RN) with respect to the norm u 7→

(
∫
RN |∇u|p dx)1/p. Additionally, in the same way that D1,p

0 (RN) is the natural setting
for studying variational problems of the type inf{(1/p)

∫
Ω |∇u|p dx −

∫
Ω fu dx}, supple-

mented with Dirichlet boundary conditions (in the absence of regularity assumptions on
the boundary ∂Ω), the space Ẇ s,p

θ (RN) is the natural framework for studying minimiza-
tion problems containing functionals of the type

u 7→ 1
p

∫∫
R2N

|u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

dx dy −
∫

Ω
fu dx ,

in the presence of non-local Dirichlet boundary conditions, i.e., the values of u prescribed
on the whole complement RN\Ω, which takes into account long range interactions.

The dual space of Ẇ s,p
θ (RN) is denoted by Ẇ s,p

θ (RN)′ or by Ẇ s,−p
θ (RN).

The Stein-Weiss inequality

Here we recall a generalization of the Hardy-Littlewood-Sobolev, also called the doubly
weighted inequality or the Stein-Weiss inequality. See, e.g., Stein & Weiss [86]; Lieb &
Loss [59, Theorem 4.3]; Yuan, Rădulescu, Chen and Wen [95, Proposition 1], and Han,
Lu & Zhu [48].

Proposition 1.1 (Doubly weighted Hardy-Littlewood-Sobolev inequality). Let 1 < r, t <
+∞ and 0 < µ < N with 1/t + µ/N + 1/r = 2; let f ∈ Lt(RN) and h ∈ Lr(RN). Then
there exists a sharp constant C(N,µ, r, t), independent on f and h, such that∣∣∣∣∣

∫∫
R2N

f(x)h(y)
|x− y|µ

dxdy
∣∣∣∣∣ ⩽ C(N,µ, r, t)∥f∥Lt(RN )∥h∥Lr(RN ). (1.1)

This inequality was introduced by Hardy and Littlewood in R1 and generalized by
Sobolev to RN . However, none of them is in its sharp form; namely, neither the sharp
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constant C(N,µ, r, t) nor the extremal function such that the inequality (1.1) holds with
the sharp constant was known. For a special case when r = t = 2N/(2N − µ), Lieb [58]
gave the sharp version of inequality (1.1), i.e., the inequality with the best constant

C(t, N, µ, r) = C(N,µ) = π
µ
2

Γ(n
2 − µ

2 )
Γ(n− µ

2 )

{Γ(n
2 )

Γ(n)

}−1+ µ
n

and showed that its extremals, functions for which the inequality (1.1) is valid with the
smallest constant C(N,µ, r, t), are such that f is a constant multiple of the function h,
which must be of the form

h(x) = A

(ϵ2 + |x− a|2)N−µ/2

for some parameters A ∈ C, ϵ ∈ R\{0}, and a ∈ RN . For the general case when r ̸= t,
neither the sharp constant C(N,µ, r, t) nor the extremals are known yet.

Proposition 1.2 (Doubly weighted Stein-Weiss inequality). Let 1 < r, t < +∞, 0 < µ <
N , and η+κ ⩾ 0 such that µ+η+κ ⩽ N , η < N/r′, κ < N/t′ and 1/t+ (µ+η+κ)/N +
1/r = 2; let f ∈ Lt(RN) and h ∈ Lr(RN). Then there exists a constant C(N,µ, r, t, η, κ),
independent on f and h, such that∣∣∣∣∣

∫∫
R2N

f(x)h(y)
|x|η|x− y|µ|y|κ

dxdy
∣∣∣∣∣ ⩽ C(N,µ, r, t, η, κ)∥f∥Lt(RN )∥h∥Lr(RN ). (1.2)

The sharp constant in the Stein-Weiss inequality (1.2) is still unknown as far as we
are aware of, even in the special case when r = t.

Corollary 1.3. Let 0 < s < 1; 0 ⩽ α < sp + θ < N ; 0 < µ < N ; given a function u ∈
Ẇ s,p

θ (RN) consider Proposition 1.2 with η = κ = δ; 2δ+µ ⩽ N ; t = r = N/(N−δ−µ/2);
and f(x) = h(x) = |u(x)|p♯

s(δ,θ,µ). Then f, h ∈ L
N

N−δ−µ/2 (RN) and
∫∫

R2N

|u(x)|p♯
s(δ,θ,µ)|u(y)|p♯

s(δ,θ,µ)

|x|δ|x− y|µ|y|δ
dxdy ⩽ C(N, δ, θ, µ)

(∫
RN

|u|p∗
s(0,θ)dx

) 2(N−δ−µ/2)
N

(1.3)

In general, for η = κ = δ and t = r, the map

u 7→
∫∫

R2N

|u(x)|q|u(y)|q
|x|δ|x− y|µ|y|δ

dx dy

is well-defined if

p♭
s(δ, µ) := p(N − δ − µ/2)

N
< q <

p∗
s(0, θ)(N − δ − µ/2)

N
=: p♯

s(δ, θ, µ).

Consider the integral functional defined by

u 7→ J(u) := 1
qr

∫
RN

(∫
RN

|u(x)|q|u(y)|r
|x|η|x− y|µ|y|κ

dy
)

dx .

The Gâteaux derivative of the functional J at u in the direction φ, also called the first
variation of the functional, is computed as

d
dτ [J(u+ τφ)]

∣∣∣∣
τ=0

= 1
qr

∫
RN

(∫
RN

d
dτ

[ |u(x) + τφ(x)|q|u(y) + τφ(y)|r
|x|η|x− y|µ|y|κ

]
dy
)

dx
∣∣∣∣
τ=0
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= 1
q

∫
RN

(∫
RN

|u(x)|q|u(y)|r−2u(y)φ(y)
|x|η|x− y|µ|y|κ

dy
)

dx

+ 1
r

∫
RN

(∫
RN

|u(x)|q−2u(x)φ(x)|u(y)|r
|x|η|x− y|µ|y|κ

dy
)

dx .

The Stein-Weiss inequality provides quantitative information to characterize the in-
tegrability for the integral operators present in the energy functional. It is intrinsically
determined by their weighted scaling invariance; however, the appearance of the Stein-
Weiss convolution integral generates the lack of translation invariance. The study of this
inequality have aroused an increasing interest by many authors due to its application in
partial differential equations; in particular, in the study of the regularity properties of
solutions. They are crucial in the analysis developed in this work.

The Morrey spaces

The study of Morrey spaces is motivated by many reasons. Initially, these spaces were
introduced by Morrey in order to understand the regularity of solutions to elliptic partial
differential equations. Regularity theorems, which allow one to conclude higher regularity
of a function that is a solution of a differential equation together with a lower regularity
of that function, play a central role in the theory of partial differential equations. One
example of this kind of regularity theorem is a version of the Sobolev embedding theorem
which states that W j+m,p(Ω) ⊂ Cj,λ(Ω) for 0 < λ ⩽ m−N/p, where j ∈ N and Ω ⊂ RN

is a Lipschitz domain.
Morrey spaces can complement the boundedness properties of operators that Lebesgue

spaces can not handle. In line with this, many authors study the boundedness of various
integral operators on Morrey spaces. The theory of Morrey spaces may come in useful
when the Sobolev embedding theorem is not readily available. The main results about
Morrey spaces are summarized as follows.

Let Ω ⊂ Rn be a bounded domain (i.e., an open and connected set); let 1 ⩽ p ⩽ +∞
and γ ⩾ 0. The Morrey spaces, denoted by Lp,γ

M (Ω), are the collection of all functions
u ∈ Lp(Ω) such that

∥u∥Lp,γ
M (Ω) := sup

x∈Ω, 0<R<diam(Ω)

{(
Rγ−N

∫
Ω∩BR(x)

|u|p dx
)1/p}

< +∞,

where diam(Ω) is the diameter of the subset Ω ⊂ RN .

Lemma 1.4. 1. The map u 7→ ∥u∥Lp,γ
M (Ω) defines a norm on the Morrey space Lp,γ

M (Ω),
making it into a normed vector space.

2. The Morrey space Lp,γ
M (Ω) is a Banach space.

Lemma 1.5. 1. For 1 ⩽ p < +∞ we have Lp,N
M (Ω) = Lp(Ω), i.e., Lp,N

M (Ω) and
Lp(Ω) are continuously embedded in each other.

2. For 1 ⩽ p < +∞ we have L∞(Ω) ↪→ Lp,0
M (Ω).

3. For 1 ⩽ p < +∞ and λ < 0 we get Lp,λ
M (Ω) = {0}.

4. For 1 ⩽ p ⩽ q < +∞ and λ, µ ⩾ 0 with γ/p ⩽ µ/q it holds Lq,µ
M (Ω) ↪→ Lp,γ

M (Ω).
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Remark 2. Lemma 1.5 suggests that for fixed 1 ⩽ p < +∞ the Morrey space Lp,γ
M (Ω)

with 0 ⩽ γ ⩽ N provides a certain scaling of the spaces between Lp(Ω) and L∞(Ω). Also,
taking p = q in Lemma 1.5–4, we have Lp,γ2

M (Ω) ↪→ Lp,γ1
M (Ω) whenever γ1 ⩽ γ2, just like

for finite Lp spaces.

In general, the Morrey space Lp,γ+λ
M (RN , |x|−λ) is the collection of all measurable

functions u ∈ Lp(RN , |y|−λ) such that

∥u∥Lp,γ+λ
M (Rn,|x|−λ) := sup

x∈RN , R∈R+

{(
Rγ+λ−N

∫
BR(x)

|u|p

|x|λ
dx
) 1

p
}
< +∞,

where 1 ⩽ p < +∞; γ, λ ∈ R+, and 0 < γ + λ < N .

Lemma 1.6. The following fundamental properties are true.

1. Lpρ(RN , |y|−ρλ) ↪→ Lp,γ+λ(RN , |y|−λ) for ρ = N
γ+λ

> 1.

2. For any p ∈ (1,+∞), we have Lp,γ+λ(RN , |y|−λ) ↪→ L1, γ
p

+ λ
p (RN , |y|−

λ
p ).

3. For 1 ⩽ p < +∞ and γ + λ = N , we have

Lp,N
M (RN , |y|−λ) = Lp(RN , |y|−λ),

i.e., Lp,N
M (RN , |y|−λ) and Lp(RN , |y|−λ) are continuously embedded in each other.

Moreover, if we assume that s ∈ (0, 1) and 0 < α < sp+ θ < N , then we have

4. For 1 ⩽ q < p∗
s(α, θ) and r = α

p∗
s(α,θ) , it holds

Ẇ s,p
θ (RN) ↪→ Lp∗

s(α,θ)(RN , |y|−α) ↪→ L
q,

(N−sp−θ)q
p

+qr

M (RN , |y|−pr) (1.4)

and the norms in these spaces share the same dilation invariance.

5. For any q ∈ [1, p∗
s(0, θ)), Ẇ

s,p
θ (RN) ↪→ Lp∗

s(0,θ)(RN) ↪→ Lq,
(N−sp−θ)q

p (RN).

Proof. 1. Since

∥u∥Lp,γ+λ(RN ) = sup
R>0,x∈RN

{
Rγ+λ−N

∫
BR(x)

|u(y)|p
|y|λ

dy
} 1

p

< + ∞,

by Hölder’s inequality[
Rγ+λ−N

∫
BR(x)

|u(y)|p
|y|λ

dy
] 1

p

⩽ R
γ+λ−N

p

[∫
BR(x)

|u(y)|pρ

|y|λρ
dy
] 1

pρ

·
[∫

BR(x)
1ρ′dy

] 1
pρ′

= R
γ+λ−N

p

[∫
BR(x)

|u(y)|pρ

|y|λρ
dy
] 1

pρ

·R
N

pρ′

= R
γ+λ−N

p
+ N

pρ′

[∫
BR(x)

|u(y)|pρ

|y|λρ
dy
] 1

pρ

.

Taking γ+λ−N
p

+ N
pρ′ = 0, then

γρ+ λρ−Nρ+Nρ−N = 0 ⇒ ρ(γ + λ) = N ⇒ ρ = N

γ + λ
.

Therefore, Lpρ(RN , |y|−ρλ) ↪→ Lp,γ+λ(RN , |y|−λ) for ρ = N
γ+λ

> 1.
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2. We know that

∥u∥
L

1,
γ
p + λ

p (RN )
= sup

R>0,x∈RN

R γ+λ
p

−N
∫

BR(x)

|u(y)|p

|y|
λ
p

dy


1
p

,

by Hölder’s inequality

R
γ+λ

p
−N

∫
BR(x)

|u(y)|
|y|

λ
p

dy ⩽ R
γ+λ

p
−N

∫
BR(x)

|u(y)|p

|y|
λ
p

·p
dy
 1

p

·
[∫

BR(x)
1p′
] 1

p′

= R
γ+λ

p
−N

∫
BR(x)

|u(y)|p

|y|
λ
p

·p
dy
 1

p

·R
N
p′

= R
γ+λ

p
−N+ N(p−1)

p

[∫
BR(x)

|u(y)|p
|y|λ

dy
] 1

p

= R
γ+λ−N

p

[∫
BR(x)

|u(y)|p
|y|λ

dy
] 1

p

=
[
Rγ+λ−N

∫
BR(x)

|u(y)|p
|y|λ

dy
] 1

p

Therefore, for any p ∈ (1,+∞), we have Lp,γ+λ(RN , |y|−λ) ↪→ L1, γ
p

+ λ
p (RN , |y|−

λ
p ).

3. Take γ + λ = N , then, for s ∈ (0, 1) and 0 < α < sp+ θ < N , we have

∥u∥Lp,γ+λ(RN ) = ∥u∥Lp,N (RN ) = sup
R>0,x∈RN

{∫
BR(x)

|u(y)|p
|y|λ

dy
} 1

p

⩽

(∫
RN

|u(y)|p
|y|λ

dy
) 1

p

.

4. For any q ∈ [1, p∗
s(α, θ)), we have u ∈ Lq, N−sp−θ

p
q+qr(RN , |y|−qr) if

∥u∥
L

q,
N−sp−θ

p q+qr(RN ,|y|−qr)
= sup

R>0,x∈RN

{
R

N−sp−θ
p

q+qr−N
∫

BR(x)

|u(y)|q
|y|qr

dy
} 1

q

< +∞.

By Hölder’s inequality,
(
R

N−sp−θ
p

q+qr−N
∫

BR(x)

|u(y)|q
|y|qr

dy
) 1

q

⩽ R
N−sp−θ

p
+r− N

q

∫
BR(x)

|u(y)|q
p∗

s(α,θ)
q

|y|qr
p∗

s(α,θ)
q

dy


q

p∗
s(α,θ)

·
(∫

BR(x)
1dy

) p∗
s(α,θ)−q

p∗
s(α,θ) · 1

q

= R
N−sp−θ

p
+r− N

q

(∫
BR(x)

|u(y)|p∗
s(α,θ)

|y|rp∗
s(α,θ) dy

) q
p∗

s(α,θ)

·R
N(p∗

s(α,θ)−q)
p∗

s(α,θ) · 1
q

Taking r = α
p∗

s(α,θ) , then

N − sp− θ

p
+ r − N

q
+ N(p∗

s(α, θ) − q)
p∗

s(α, θ)
· 1
q
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= N − sp− θ

p
+ α

p∗
s(α, θ)

− N

q
+ N(p∗

s(α, θ) − q)
p∗

s(α, θ)
· 1
q

= p∗
s(α, θ)q(N − sp− θ) + pqα−Npp∗

s(α, θ) +Np(p∗
s(α, θ) − q)

pp∗
s(α, θ)q

= p∗
s(α, θ)q(N − sp− θ) − pq(N − α)

pp∗
s(α, θ)q

= N − sp− θ

p
− (N − α)
p∗

s(α, θ)

= N − sp− θ

p
− (N − α)(N − sp− θ)

p(N − α) = 0.

Therefore,

Lp∗
s(α,θ)(RN , |y|−α) ↪→ Lq, N−sp−θ

p
·q+qr(RN , |y|−α).

5. Consequence of the previous item for α = 0.

For more properties of Lebesgue spaces, integral inequalities and boundedness prop-
erties of the operators in generalized Morrey spaces, see Sawano [78].

The variational setting

The variational structure of problem (1) as well as that of problems (4) and (5) can be
established with the help of several inequalities. To ensure the well-definiteness of the
energy functional, first we deal with the Hardy potential with a singularity.

Lemma 1.7 (Fractional Hardy inequality). Let s ∈ (0, 1) and N > sp+ θ. Then the best
fractional Hardy constant γH is attained, where

γH := inf
u∈Ẇ s,p

θ
(RN )

u̸=0

[u]p
Ẇ s,p

θ
(RN )

∥u∥p
Lp(Rn;|x|−sp−θ)

.

Proof. See Abdellaoui & Bentifour [2, Lemma 2.7]; see also Franck & Seiringer [45].

Next, we use the following versions of the fractional Hardy-Sobolev and Caffarelli-
Kohn-Nirenberg inequalities; see Nguyen & Squassina [72, Theorem 1.1]; see also Abdel-
laoui & Bentifour [1].

Lemma 1.8. Let N ⩾ 1, p ∈ (1,+∞), s ∈ (0, 1), 0 ⩽ α ⩽ sp + θ < N, θ, θ1, θ2, β ∈ R
be such that θ = θ1 + θ2. If 1/p∗

s(α, θ) − α/Np∗
s(α, θ) > 0, then there exists a positive

constant C(N,α, θ) such that
(∫

RN

|u|p∗
s(α,θ)

|x|α
dx
) p

p∗
s(α,θ)

⩽ C(N,α, θ)
∫∫

R2N

|u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy (1.5)

for all u ∈ Ẇ s,p
θ (RN).



27

We note that the norm ∥ · ∥ is comparable with the Gagliardo seminorm [ · ]Ẇ s,p
θ

(RN )
as stated in the next result.

Corollary 1.9. Under the hypotheses of Lemma 1.8, if γ < γH then(
1 − γ+

γH

) ∫∫
R2N

|u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy

⩽ ∥u∥p ⩽
(

1 + γ−

γH

) ∫∫
R2N

|u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy, (1.6)

where γ± = max{±γ, 0}.

Using inequality (1.3) from Lemma 1.3 together with Hölder’s inequality and Lemma 1.8
we can deduce another useful inequality.

Corollary 1.10. Under the hypotheses of Lemma 1.8 we have

∫∫
R2N

|u(x)|p♯
s(δ,θ,µ)|u(y)|p♯

s(δ,θ,µ)

|x|δ|x− y|µ|y|δ
dxdy ⩽ C(N, δ, µ)∥u∥2p♯

s(δ,θ,µ)
Ẇ s,p

θ
(RN ). (1.7)

Based on the embeddings (1.4) we establish the following improved weighted frac-
tional Caffarelli-Kohn-Nirenberg inequality.

Lemma 1.11 (Fractional Caffarelli-Kohn-Nirenberg inequality). Let s ∈ (0, 1) and 0 <
β < sp + θ < N . Then there exists C = C(N, s, β) > 0 such that for any ζ ∈ (ζ̄ , 1) and
for any q ∈ [1, p∗

s(β, θ)), it holds

(∫
RN

|u(y)|p∗
s(β,θ)

|y|β
dy
) 1

p∗
s(β,θ)

⩽ ∥u∥ζ

Ẇ s,p
θ

∥u∥1−ζ

L
q,

N−sp−θ
p q+qr(RN ,|y|−qr)

(1.8)

for all u ∈ Ẇ s,p
θ (RN), where ζ̄ = max{p/p∗

s(β, θ), (p∗
s(0, θ) − 1)/p∗

s(β, θ)} > 0 and r =
β/p∗

s(β, θ).

Related works on fractional elliptic operators

Problems with one or two nonlinearities involving the p-Laplacian and the fractional p-
Laplacian have been studied by many authors. Filippucci, Pucci & Robert [42] proved
that there exists a positive solution for a p-Laplacian problem with critical Sobolev and
Hardy–Sobolev terms, i.e., problem (4) with s = 1, p = 2, θ1 = θ2 = 0, β1 = 0 and no
singularity in the Hardy potential. As is well known, to show existence results it is natural
to consider variants of Lions’s concentration–compactness principle for critical problems.
However, due to the non-local feature of the fractional p-Laplacian, it is difficult to use the
concentration–compactness principle directly, since one needs to estimate commutators of
the fractional Laplacian and smooth test functions. A possible strategy, which is known
as s-harmonic extension, is to transform the non-local problem in RN into a local problem
in RN+1

+ with Neumann boundary condition, as performed by Caffarelli & Silvestre [23].
Since that, many interesting results in the classical elliptic problems have been extended
to the setting of the fractional Laplacian. For example, Ghoussoub & Shakerian [47]
considered problem (4) with p = 2, θ1 = θ2 = 0, β1 = β2 = 0 and no singularity in the
Hardy potential; Chen [27] also studied problem (4) and extended this result to the case
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p = 2, θ1 = θ2 = 0 but with β1 ̸= 0 and β2 ̸= 0. In both papers, the authors combined
the s-harmonic extension with the concentration-compactness principle to investigate the
existence of solutions for a doubly critical problem involving the fractional Laplacian.
Assunção, Miyagaki & Silva [14] considered problem (4) with no singularity in the Hardy
potential, that is, θ1 = θ2 = 0 and β1 ̸= 0 and β2 ̸= 0. Li & Yang [56] studied problem (1)
involving the fractional Laplacian with a Hardy potential and two nonlinearities, one of
Sobolev type and the other of Choquard type. More precisely, they considered problem (1)
with p = 2, θ1 = θ2 = 0. The proof of the existence result is achieved in the setting of
Morrey spaces to avoid the use of the concentration-compactness principle. They also
studied problems (4) and (5) in the case p = 2, θ1 = θ2 = 0 and the proof follows basically
the same steps. They claim to have considered also the cases α = 0 or β = 0; however,
their proof is based on a flawed argument; see Remark 1. Recently, Su [87] considered
the general p and θ1 = θ2 = 0 and proved existence, decaying and regularity results for
problem problem (1) with a general condition 0 < sp < N and θ1 = θ2 = 0.

Our contribution to the problem

Inspired by the previously mentioned papers, we mainly extend the results by Li &
Yang [56]. We consider the general fractional p-Laplacian with p > 1 and θ = θ1 + θ2 not
necessarily zero. By establishing new embedding results involving weighted Morrey norms
in the homogeneous fractional Sobolev space, we provide sufficient conditions under which
a weak nontrivial solution to the problem exists via variational methods.

1.2 Some of the difficulties to prove the theorems
In the process of proving Theorem 0.1, there are several technical and substantial diffi-
culties.

The non-locality of the operator

First, we mention that the procedure based upon the Caffarelli & Silvestre approach
through s-harmonic extension can overcome the difficulty of the non-locality of the op-
erator only in the case p = 2 for the fractional Laplacian operator (−∆)s; still, the
method is more complicated and less straightforward. See Ghoussoub & Shakerian [47]
and Chen [30]. So, we have to study our problem in the non-local context.

Estimatives of mixed terms

Second, the truncation technique adopted by Filipucci, Pucci & Robert [42] is not suit-
able when we work in the homogeneous Sobolev space Ẇ s,p

θ (RN) to consider the non-
local operator (−∆)s

p,θ. More precisely, for local problems, e.g., problem (4) in the
case s = 1, it is useful to prove an inequality of the type | |∇(ϕuk)|p − |ϕ∇uk| | ⩽
Cp(|uk∇ϕ|p + |ϕ∇uk|p−1|uk∇ϕ|) for a test function ϕ and a bounded sequence {uk}k∈R
in a suitable Sobolev space. This inequality, together with the fact that the gradient
of a function with compact support also has compact support, allows one to prove that∫
RN |∇(ϕuk)|p dx =

∫
RN |ϕ∇uk|p dx + o(1) as k → +∞. Based on this estimate, coupled

with a careful analysis and some refined estimates, the concentration properties of weakly
null Palais-Smales sequences can be obtained, which is crucial to obtain the existence of
nontrivial solution to the problem. Recall that the Palais-Smale condition is a substitute
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for compactness in some calculus of variations problems. Inequalities of this type are im-
portant in dealing with problems involving local differential operators; e.g., to investigate
the existence of extremals for the related inequalities by the concentration-compactness
principle. However, for the problems we consider in this work, there does not seem to
exist a similar estimate like this for the fractional p-Laplacian operator (−∆)s

p,θ.

The structure of Palais-Smale sequences

Third, since we consider problems with critical nonlinearities in the entire space RN , the
compactness of the corresponding Palais-Smale sequences can not hold for any energy
level c > 0 since the problem is invariant under the scaling u(x) 7→ λ(N−sp−θ)/pu(λx). In
fact, towards a contradiction, assume that the compactness of the corresponding (PS)c

sequence holds for some c > 0, and let {uk}k∈N ⊂ Ẇ s,p
θ (RN) be a (PS)c sequence, i.e.,

I(uk) → c and I ′(uk) → 0 as k → +∞. Then, up to a subsequence, we may assume
that uk → u strongly in Ẇ s,p

θ (RN) as k → +∞. Define the new sequence {vk}k∈N ⊂
Ẇ s,p

θ (RN) by vk(x) = λ(N−sp−θ)/puk(λx); then it is easy to check that {vk}k∈N ⊂ Ẇ s,p
θ (RN)

is also a (PS)c sequence and vk ⇀ 0 weakly in Ẇ s,p
θ (RN). But this implies that vk → 0

strongly in Ẇ s,p
θ (RN), which contradicts the hypothesis c > 0. This means that, once we

have established the mountain pass geometry, it does not yield critical points but only
Palais-Smale sequences. Therefore, it very important to understand the behavior of these
sequences.

The auxiliary minimization problems

Fourth, we have to show that the best constants in two auxiliary minimization problems
are attained; this is a crucial step in our work. More precisely, we consider a minimization
problem involving the Choquard convolution integral

Sµ(N, s, p, θ, γ, α) = inf
u∈Ẇ s,p

θ
(RN )\{0}

∥u∥p

Q♯(u, u)
p

2p
♯
µ(α,θ)

(1.9)

where the quadratic form Q♯ : Ẇ s,p
θ (RN) × Ẇ s,p

θ (RN) → R is defined by

Q♯(u, v) =
∫∫

R2N

|u(x)|p♯
s(δ,θ,µ)|v(y)|p♯

s(δ,θ,µ)

|x|δ|x− y|µ|y|δ
dxdy.

We also consider another minimization problem involving the Sobolev term,

Λ(N, s, p, θ, γ, β) = inf
u∈Ẇ s,p

θ
(RN )\{0}

∥u∥p(∫
RN

|u|p∗
s(β,θ)

|x|β
dx
) p

p∗
s(β,θ)

. (1.10)

To simplify the notation, hereafter we simply denote Sµ = Sµ(N, s, p, θ, γ, α) and Λ =
Λ(N, s, p, θ, γ, β). To show that Sµ and Λ are attained we have to proof a version of
the Caffarelli-Kohn-Nirenberg’s inequality, which estimates the norm of a function in the
critical weighted Sobolev space and the norm of the same function in the fractional Sobolev
and Morrey spaces; see Lemma 1.11. In our setting, that is, 1 < p < +∞, we have to
use a version of the Caffarelli-Silvestre extension as given by del Teso, Castro-Gómez &
Vázquez [38, Theorem 3.1].

Additionaly, we have to consider the fractional Hardy type potential, which is related
to the best constant in the fractional Hardy inequality.
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The asymptotic competition

Finally, as it was already mentioned by Filippucci, Pucci & Robert [42] and in several
other papers, we observe here the main difficulty is that there is an asymptotic competition
between the energy carried by two critical nonlinearities. If one dominates the other, then
there is vanishing of the weakest one and we obtain solution of an equation with only one
critical nonlinearity. Therefore the crucial step in the proof is to avoid the dominance of
one term over the other. To overcome this difficulty, we choose the Palais-Smale sequence
at suitable energy level and make a careful analysis of the concentration; afterwards, we
show that there is a balance between the energies of the two nonlinearities mentioned
above, and therefore none can dominate the other. Moreover, we can make the full use of
conformal invariance of problem (1) under the above defined scaling and we recover the
solution to the problem in the critical case.

1.3 Method of proof and outline of the work
The method adopted in previous works, such as Filippucci, Pucci & Robert [42], Yang
& Wu [93], is not applicable to problem (1). For this reason, we develop a new tool
which is based on the weighted Morrey space. To be more precise, we discover the
embeddings (1.4).

Now we give an outline of the proof of Theorem 0.1. We already know that weak
solutions to problem (1) correspond to critical points of the energy functional I defined
on the homogeneous Sobolev space Ẇ s,p

θ (Rn). Moreover, this functional has the appropri-
ate geometry to use the mountain pass theorem; see Ambrosetti & Rabinowitz [12] and
Willem [90]. However, since in our problem we consider doubly critical nonlinearities,
this theorem does not yield critical points but only Palais-Smale sequences. Thus, we re-
quire the mountain pass level of the Palais-Smale sequences (PS)c to verify the condition
c < c∗ for some suitable threshold level c∗. This is crucial in ruling out the vanishing of
the sequence.

After showing that the minimizers of Sµ and Λ are attained, we can prove that the
mountain pass level verifies the required inequality c < c∗, where

c∗ := min
{(1

p
− 1

2p♯
s(δ, θ, µ)

)
S

2p
♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p

µ ,
(1
p

− 1
p∗

s(β, θ)

)
Λ

p∗
s(β,θ)

p∗
s(β,θ)−p

}
. (1.11)

Moreover, the (PS)c sequence {uk}k∈N ⊂ Ẇ s,p
θ (RN) verifies the conditions

lim
k→+∞

I(uk) = c < c∗ and lim
k→+∞

I ′(uk) = 0 strongly in Ẇ s,p
θ (RN). (1.12)

This sequence is bounded; so, up to the passage to a subsequence we may assume that
uk ⇀ u weakly in Ẇ s,p

θ (RN) for some u ∈ Ẇ s,p
θ (RN). But it may occur that u ≡ 0.

To show that this does not occur, denote

d1 := lim
k→+∞

∫
RN

|uk|p∗
s(β,θ)

|x|β
dx and d2 := lim

k→+∞

∫∫
R2N

|uk(x)|p♯
s(δ,θ,µ)|uk(y)|p♯

µ(δ,θ,µ)

|x|δ|x− y|µ|y|δ
dx dy .

By the definitions of Sµ and Λ together with the properties of the Palais-Smale sequence,
we can prove that

d
p

p∗
s(β,θ)

1

(
Λ − d

p∗
s(β,θ)−p

p∗
s(β,θ)

1

)
⩽ d2 and d

1
p

♯
s(δ,θ,µ)

2

(
Sµ − d

p
♯
s(δ,θ,µ)−1

p
♯
s(δ,θ,µ)

2

)
⩽ d1.
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And since 0 < c < c∗, we can also deduce that

Λ − d
p∗

s(β,θ)−p

p∗
s(β,θ)

1 > 0 and Sµ − d

p
♯
s(δ,θ,µ)−1

p
♯
s(δ,θ,µ)

2 > 0.

Thus, d1 ⩾ ε0 > 0 and d2 ⩾ ε0 > 0 for some ε0 ∈ R+; indeed, if d1 = 0 and d2 = 0, then
c = 0, which is a contradiction.

Using the embeddings (1.4) and the improved Sobolev inequality (1.8), we deduce
that, for k ∈ N large enough,

0 < C2 ⩽ ∥uk∥Lp,N−sp−θ+pr
M (RN ,|y|−pr) ⩽ C1,

where r = α/p∗
s(α, θ). For k ∈ N large enough, we may find sequences {λk}k∈N ⊂ R+ and

{xk}k∈N ∈ RN such that

λ
(N−sp−θ+pr)−N
k

∫
Bλk

(xk)

|uk(y)|p
|y|pr

dy > ∥uk∥p

Lp,N−sp−θ+pr
M (RN ,|y|−pr)

− C

2k ⩾ C̃ > 0.

And with the help of these two sequences we can define another sequence {vk}k∈N ⊂
Ẇ s,p

θ (RN) defined by the scaling

vk(x) = λ
(N−sp−θ)/p
k uk(λkx).

This new sequence verifies the condition ∥vk∥ = ∥uk∥ ⩽ C and up to the passage to a
subsequence we may assume that vk ⇀ v weakly in Ẇ s,p

θ (RN) for some v ∈ Ẇ s,p
θ (RN) and

vk → v a.e. in RN , up to the passage to a subsequence, as k → +∞. Again, it may occur
that v ≡ 0; however, the sequence {vk}k∈N is of a very structured form and we can prove
that v ̸≡ 0.

To do this, we consider the sequence {x̃k}k∈N ⊂ RN defined by x̃k = xk/λk and show
that it is bounded; then, we can find R ∈ RN

+ such that the ball B(0, R) contains all
unitary balls centered in x̃k for k ∈ N; moreover,∫

BR(0)

|vk(x)|p
|x|pr+θ

dx ⩾ C1 > 0.

Additionaly, we can show that |x|−r− θr
spuk → |x|−r− θr

spu in Lp
loc(RN); therefore,

∫
BR(0)

|v(x)|p
|x|pr+θ

dx ⩾ C1 > 0,

and we deduce that v ̸≡ 0.
Again, the boundedness of the sequence {vk}k∈N in Ẇ s,p

θ (RN) implies the bound-
edness of the sequence {|vk|p∗

s(β,θ)−2vk}k∈N in L
p∗

s(β,θ)
p∗

s(β,θ)−1 (RN , |x|−β), and this implies that
|vk|p∗

s(β,θ)−2vk ⇀ |v|p∗
s(β,θ)−2v weakly in L

p∗
s(β,θ)

p∗
s(β,θ)−1 (RN , |x|−β). For any ϕ ∈ Ẇ s,p

θ (RN),
with the help of the embedding Ẇ s,p

θ (RN) ↪→ Lp∗
s(α,θ)(RN , |x|−α) and a variant of the

Brézis-Lieb lemma, we can show that

lim
k→∞

∫
RN

[Iµ ∗ Fα(·, vk)] (x)fα(x, vk)ϕ(x)dx =
∫
RN

[Iµ ∗ Fα(·, v)] (x)fα(x, v)ϕ(x)dx.
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We still need to check that the sequence {vk}k∈N ⊂ Ẇ s,p
θ (RN) ↪→ Lp∗

s(α,θ)(RN , |x|−α)
is also a (PS)c sequence for the energy functional I at the level c < c∗. To do this, we
notice that the norms in Ẇ s,p

θ (RN) and Lp∗
s(α,θ)(RN , |x|−α) are invariant under the special

scaling used,

∥vk∥p

Ẇ s,p
θ

(RN ) = ∥uk∥p

Ẇ s,p
θ

(RN ) and ∥vk∥p∗
s(α,θ)

Lp∗
s(α,θ) = ∥uk∥p∗

s(α,θ)
Lp∗

s(α,θ) .

Thus, we have limk→+∞ I(vk) = c. Moreover, for all ϕ ∈ Ẇ s,p
θ (RN), we also have

ϕk(x) = λ
(N−sp−θ)/p
k ϕ (x/λk) ∈ Ẇ s,p

θ (RN). And from the strong convergence I ′(uk) → 0 in
Ẇ s,p

θ (RN)′, we can deduce that ⟨I ′(v), ϕ⟩ = limk→+∞⟨I ′(vk), ϕ⟩ = limk→+∞⟨I ′(uk), ϕ⟩ = 0.
Hence, v is a nontrivial weak solution of 1.

To conclude the proof, it remains to show the crucial step that the quantities Sµ and
Λ, defined in (1.9) and (1.10), respectively, are attained. To this end, we need some kind
of compactness. These problems can be solved in a direct way using the embeddings (1.4)
and the improved Sobolev inequality (1.8).

1.4 Proof of Theorems 0.1 and 0.2
Preliminary results

In this section, we give some preliminary results that will be usefull in the proof of
Theorem 0.1.

We begin by stating a result about local convergence.

Lemma 1.12. Let s ∈ (0, 1) and 0 < r < s + θ
p
< N

p
. If {uk} is a bounded sequence in

Ẇ s,p
θ (RN) and uk ⇀ u in Ẇ s,p

θ (RN), then as k → +∞,

uk

|x|r+ θr
sp

→ u

|x|r+ θr
sp

in Lp
loc(RN).

Proof. Since uk ⇀ u in Ẇ s,p
θ (RN), we have

uk → u in Lq
loc(RN) (1 ⩽ q ⩽ p∗

s(0, θ)) and uk → u a.e. on RN .

From Lemma 1.7, we have∫
RN

|uk|p

|x|sp+θ
dx ⩽ Cs,N

∫∫
R2N

|vk(x) − vk(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy.

For any compact set Ω ⋐ RN , using Hölder’s inequality we have

∫
Ω

|uk − u|p

|x|pr+ θr
s

dx =
∫

Ω

|uk − u|
p(s−r)

s
+ pr

s

|x|pr+ θr
s

dx

⩽

∫
Ω

(
|uk − u| pr

s

|x|pr+ θr
s

) s
r

dx


r
s [∫

Ω

(
|uk − u|

p(r−s)
s

) s
s−r

dx
] s−r

s

=
[∫

Ω

|uk − u|p

|x|sp+θ
dx
] r

s [∫
Ω

|uk − u|pdx
](1− r

s )
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⩽ C
[∫

Ω
|uk − u|pdx

](1− r
s )
.

This means that

lim
k→+∞

∫
Ω

|uk − u|p

|x|pr+ θr
s

dx = 0,

that is, as k → +∞
uk

|x|r+ θr
sp

→ u

|x|r+ θr
sp

in Lp
loc(RN).

This concludes the proof of the lemma.

Next, we state a variant of the classic Brézis–Lieb lemma that will be useful to prove
a similar result for the convolution terms.

Lemma 1.13 (A variant of Brézis–Lieb lemma). Let r > 1, q ∈ [1, r] and δ ∈ [0, Nq/r).
Assume that {wk} is a bounded sequence in Lr(RN , |x|−δr/q) and wk → w a.e. on RN .
Then,

lim
k→∞

∫
RN

∣∣∣∣∣ |wk|q

|x|δ
− |wk − w|q

|x|δ
− |w|q

|x|δ

∣∣∣∣∣
r
q

dx = 0 (1.13)

and

lim
k→∞

∫
RN

∣∣∣∣∣ |wk|q−1wk

|x|δ
− |wk − w|q−1(wk − w)

|x|δ
− |w|q−1w

|x|δ

∣∣∣∣∣
r
q

dx = 0 (1.14)

Proof. For the case δ = 0, one can refer to [82, Lemma 2.3]; here we focus on the case
δ > 0. Fixing ϵ > 0 small, there exists C(ϵ) > 0 such that for all a, b ∈ R and q ⩾ 1, we
have

||a+ b|q − |a|q| ⩽ ϵ|a|q + C(ϵ)|b|q.

Recalling that (a + b)p ⩽ 2p−1(ap + bp) for a, b ⩾ 0 and p ⩾ 1 and using the previous
inequality, we obtain

||a+ b|q − |a|q|
r
q ⩽ (ϵ|a|q + C(ϵ)|b|q)

r
q ⩽ ϵ̃|a|r + C̃(ϵ)|b|r, (1.15)

Taking a = (wk − w)/|x|δ/q and b = w/|x|δ/q in inequality (1.15), we obtain

|fN,ϵ| :=
(∣∣∣∣∣ |wk|q

|x|δ
− |wk − w|q

|x|δ
− |w|q

|x|δ

∣∣∣∣∣
r
q

− ϵ̃

(
|wk − w|

|x|
δ
q

)r)+

⩽

∣∣∣∣∣ |wk|q

|x|δ
− |wk − w|q

|x|δ

∣∣∣∣∣
r
q

+
∣∣∣∣∣ w

|x|δ/q

∣∣∣∣∣
r

− ϵ̃

(
|wk − w|

|x|
δ
q

)r

⩽ ϵ̃

(
|wk − w|

|x|
δ
q

)r

+ C̃(ϵ)
∣∣∣∣∣ w

|x|δ/q

∣∣∣∣∣
r

+
∣∣∣∣∣ w

|x|δ/q

∣∣∣∣∣
r

− ϵ̃

(
|wk − w|

|x|
δ
q

)r

⩽

∣∣∣∣∣ w

|x|δ/q

∣∣∣∣∣
r

+ C̃(ϵ)
∣∣∣∣∣ w

|x|δ/q

∣∣∣∣∣
r
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=
(
1 + C̃(ϵ)

) ∣∣∣∣∣ w

|x|δ/q

∣∣∣∣∣
r

.

Now using Lebesgue Dominated Convergence theorem, we have∫
RN

|fN,ϵ|dx → 0 as k → ∞.

Therefore, we get ∣∣∣∣∣ |wk|q

|x|δ
− |wk − w|q

|x|δ
− |w|q

|x|δ

∣∣∣∣∣
r
q

⩽ |fN,ϵ| + ϵ̃

(
|wk − w|

|x|
δ
q

)r

,

which gives

lim sup
k→∞

∫
RN

∣∣∣∣∣ |wk|q

|x|δ
− |wk − w|q

|x|δ
− |w|q

|x|δ

∣∣∣∣∣
r
q

dx ⩽ ϵ̃ sup
k∈N

∫
RN

|wk − w|r

|x|
δr
q

dx < ∞.

Further, letting ϵ → 0 we conclude (1.13).
The limit (1.14) can be proved in the same way. In fact, fixing ϵ > 0 small, there

exists C(ϵ) > 0 such that for all a, b ∈ R and q ⩾ 1, we have∣∣∣|a+ b|q−1(a+ b) − |a|q−1a
∣∣∣ ⩽ ϵ|a|q + C(ϵ)|b|q.

Using the previous inequality, we obtain∣∣∣|a+ b|q−1(a+ b) − |a|q−1a
∣∣∣ r

q ⩽ (ϵ|a|q + C(ϵ)|b|q)
r
q ⩽ ϵ̃|a|r + C̃(ϵ)|b|r, (1.16)

where ϵ̃ = 2
r
q

−1ϵ
r
q and C̃(ϵ) = 2

r
q

−1C(ϵ)
r
q . Now we can adapt the same arguments already

used to conclude (1.14)

Also recall that pointwise convergence of a bounded sequence implies weak converge.

Lemma 1.14. Let Ω ⊂ RN be a domain, q ∈ (1,∞) and {uk}k∈N be a bounded sequence
in Lq(Ω). If uk → u almost everywhere on Ω as k → ∞, then uk ⇀ u weakly in Lq(Ω).

Proof. See Willem [90, Proposition 5.4.7].

Lemma 1.15 (Weak Young inequality). Let n ∈ N, µ ∈ (0, N), p̂, r̂ > 1 and 1
p̂
+ µ

N
= 1+ 1

r̂
.

If v ∈ Lp̂(RN), then Iµ ∗ v ∈ Lr̂(RN) and

(∫
RN

|Iµ ∗ v|r̂
) 1

r̂

⩽ C(N,µ, p̂)
(∫

RN
|v|p̂

) 1
p̂

, (1.17)

where Iµ(x) = |x|−µ. In particular, we can set r̂ = Np̂
N−(N−µ)p̂ for p̂ ∈

(
1, N

N−µ

)
.

Proof. See Lieb & Loss [59, Section 4.3]

We will use the Lemmas 1.13, 1.14 and 1.15 to prove the next result, which is a
generalization of Moroz & Van Schaftingen [67, Lemma 2.4].
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Lemma 1.16 (Another variant of Brézis–Lieb lemma). Let N ∈ N, µ ∈ (0, N), N−δ−µ/2
N−β

⩽

q < ∞ and let {uk}k∈N be a bounded sequence in L
(N−β)q

N−δ−µ/2 (RN). If uk → u a.e. on RN as
k → ∞, then

lim
k→∞

∫
RN

[(
Iµ ∗ |uk|q

|x|δ

)
|uk|q

|x|δ
−
(
Iµ ∗ |uk − u|q

|x|δ

)
|uk − u|q

|x|δ

]
=
∫
RN

(
Iµ ∗ |u|q

|x|δ

)
|u|q

|x|δ
.

(1.18)

Proof. For every k ∈ N, one has∫
RN

[(
Iµ ∗ |uk|q

|x|δ

)
|uk|q

|x|δ
−
(
Iµ ∗ |uk − u|q

|x|δ

)
|uk − u|q

|x|δ

]
dx

=
∫
RN

(
Iµ ∗ |uk|q

|x|δ

)
|uk|q

|x|δ
dx−

∫
RN

(
Iµ ∗ |uk − u|q

|x|δ

)
|uk|q

|x|δ
dx

−
∫
RN

(
Iµ ∗ |uk|q

|x|δ

)
|uk − u|q

|x|δ
dx+

∫
RN

(
Iµ ∗ |uk − u|q

|x|δ

)
|uk − u|q

|x|δ
dx

+ 2
∫
RN

(
Iµ ∗ |uk|q

|x|δ

)
|uk − u|q

|x|δ
dx− 2

∫
RN

(
Iµ ∗ |uk − u|q

|x|δ

)
|uk − u|q

|x|δ
dx

=
∫
RN

(
Iµ ∗

(
|uk|q

|x|δ
− |uk − u|q

|x|δ

))
|uk|q

|x|δ
dx−

∫
RN

(
Iµ ∗

(
|uk|q

|x|δ
− |uk − u|q

|x|δ

))
|uk − u|q

|x|δ
dx

+ 2
∫
RN

(
Iµ ∗

(
|uk|q

|x|δ
− |uk − u|q

|x|δ

))
|uk − u|q

|x|δ
dx

=
∫
RN

[
Iµ ∗

(
|uk|q

|x|δ
− |uk − u|q

|x|δ

)](
|uk|q

|x|δ
− |uk − u|q

|x|δ

)
dx

+ 2
∫
RN

[
Iµ ∗

(
|uk|q

|x|δ
− |uk − u|q

|x|δ

)](
|uk − u|q

|x|δ

)
dx.

By Lemma 1.13 with r = 2(N−β)q
2N−2δ−µ

, one has

|uk − u|q

|x|δ
− |uk|q

|x|δ
→ |u|q

|x|δ
in L

2(N−β)
2N−2δ−µ (RN),

as k → +∞. Using this convergence and Lemma 1.15 with p̂ = 2(N−β)
2N−2δ−µ

and r̂ = 2(N−β)
µ−2δ−2β

,
we have

Iµ ∗
(

|uk − u|q

|x|δ
− |uk|q

|x|δ

)
→ Iµ ∗ |u|q

|x|δ
in L

2(N−β)
2N−2δ−µ (RN).

Finally, by Lemma 1.14 we deduce that∣∣∣∣∣ |uk − u|q

|x|δ

∣∣∣∣∣⇀ 0 in L
2(N−β)

2N−2δ−µ (RN),

as k → ∞, and we reach the conclusion.

Lemma 1.17. Let s ∈ (0, 1), 0 ⩽ α < sp+ θ < N, µ ∈ (0, N) and 2δ+µ < N . If {uk}k∈N
is a bounded sequence in Ẇ s,p

θ (RN) and uk ⇀ u in Ẇ s,p
θ (RN), then we have

lim
k→∞

Q♯(uk, uk) = lim
k→∞

Q♯(uk − u, uk − u) +Q♯(u, u).
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Proof. Consider s ∈ (0, 1), 0 < sp+ θ < N and 2δ + µ < N . For p ⩾ 2, we have

p♯
s(δ, θ, µ) := p(N − δ − µ/2)

N − sp− θ
>
p(N − δ − µ/2)

N

= p− (2δ + µ)/2
N

>
p(N −N/2)

N
⩾ 1.

For 1 < p < 2, we use the above specified intervals and we also impose the additional
condition δ + µ/2 < sp+ θ < N ; therefore, in this case we also have p♯

s(δ, θ, µ) > 1.
Taking q = p♯

s(δ, θ, µ) in Lemma 1.16, we obtain

(N − β)q
N − δ − µ/2 = N − β

N − δ − µ/2p
♯
s(δ, θ, µ) = N − β

N − δ − µ/2
p(N − δ − µ/2)
N − sp− θ

= p∗
s(β, θ).

Since {uk}k∈N ∈ Ẇ s,p
θ (RN) and uk ⇀ u in Ẇ s,p

θ (RN), the embedding Ẇ s,p
θ (RN) ↪→

Lp∗
s(β,θ)(RN , |x|−β) in the Lemma 1.8 implies that

(∫
RN

|uk|p∗
s(β,θ)

|x|β
dx
) p

p∗
s(β,θ)

⩽ C
∫
RN

∫
RN

|uk(x) − uk(y)|p
|x|θ1 |x− y|N+sp|y|θ2

dydx ⩽ C.

Therefore, uk, u ∈ Lp∗
s(β,θ)(RN , |x|−β) and as k → +∞,

uk

|x|
β

p∗
s(β,θ)

→ u

|x|
β

p∗
s(β,θ)

a.e. on RN .

Consequently, Lemma 1.16 gives the desired equality.

Lemma 1.18. Let s ∈ (0, 1), 0 ⩽ α, β < sp+ θ < N and µ ∈ (0, N) and let {uk}k∈N be a
bounded sequence in Lp∗

s(α,θ)(RN , |x|−α). If uk → u a.e. on RN as k → +∞, then for any
ϕ ∈ Lp∗

s(α,θ)(RN , |x|−α), we have

lim
k→∞

∫
RN

[Iµ ∗ Fα(·, uk)] (x)fα(x, uk)ϕ(x)dx =
∫
RN

[Iµ ∗ Fα(·, u)] (x)fα(x, u)ϕ(x)dx,
(1.19)

where Fα and fα were introduced in (2).

Proof. Using ϕ = ϕ+ −ϕ−, it is enough to prove our lemma for ϕ ⩾ 0. Denote ũk = uk −u
and observe that

∫
RN

[Iµ ∗ Fα(·, u)] (x)fα(x, u)ϕ(x)dx

=
∫
RN

[
Iµ ∗ |u(x)|p♯

s(δ,θ,µ)

|x|δ
] |u(x)|p♯

s(δ,θ,µ)−2 · u(x)
|x|δ

ϕ(x)dx

=
∫
RN

Iµ ∗ |u(x)|p♯
s(δ,θ,µ)

|x|δ

 |u(x)|p♯
s(δ,θ,µ)−2 · u(x)

|x|δ
ϕ(x)dx

+
∫
RN

Iµ ∗ |ũ(x)|p♯
s(δ,θ,µ)

|x|δ

 |ũ(x)|p♯
s(δ,θ,µ)−2 · ũ(x)

|x|δ
ϕ(x)dx
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−
∫
RN

Iµ ∗ |ũ(x)|p♯
s(δ,θ,µ)

|x|δ

 |ũ(x)|p♯
s(δ,θ,µ)−2 · ũ(x)

|x|δ
ϕ(x)dx

+
∫
RN

Iµ ∗ |u(x)|p♯
s(δ,θ,µ)−2 · u(x)

|x|δ

 |ũ(x)|p♯
s(δ,θ,µ)

|x|δ
ϕ(x)dx

−
∫
RN

Iµ ∗ |ũ(x)|p♯
s(δ,θ,µ)

|x|δ

 |u(x)|p♯
s(δ,θ,µ)−2 · u(x)

|x|δ
ϕ(x)dx

=
∫
RN

Iµ ∗

 |u(x)|p♯
s(δ,θ,µ)

|x|δ
− |ũ(x)|p♯

s(δ,θ,µ)

|x|δ

 |u(x)|p♯
s(δ,θ,µ)−2 · u(x)

|x|δ
ϕ(x)dx

+
∫
RN

Iµ ∗

 |u(x)|p♯
s(δ,θ,µ)−2 · u(x)

|x|δ
− |ũ(x)|p♯

s(δ,θ,µ)−2 · ũ(x)
|x|δ

 |ũ(x)|p♯
s(δ,θ,µ)

|x|δ
ϕ(x)dx

+
∫
RN

Iµ ∗ |ũ(x)|p♯
s(δ,θ,µ)

|x|δ

 |ũ(x)|p♯
s(δ,θ,µ)−2 · ũ(x)

|x|δ
ϕ(x)dx (1.20)

Now we apply Lemma 1.13 with q = p♯
s(δ, θ, µ) and r = α/p∗(β, θ), by taking

(wk, w) = (uk, u). We find that, as k → +∞,∣∣∣∣∣∣ |uk|p
♯
s(δ,θ,µ)

|x|δ
− |uk − u|p

♯
s(δ,θ,µ)

|x|δ
− |u|p

♯
s(δ,θ,µ)

|x|δ

∣∣∣∣∣∣ → 0 in L
N−β

N−δ−µ/2 (RN),

i.e., as k → +∞,∣∣∣∣∣∣ |uk|p
♯
s(δ,θ,µ)

|x|δ
− |uk − u|p

♯
s(δ,θ,µ)

|x|δ

∣∣∣∣∣∣ → |u|p
♯
s(δ,θ,µ)

|x|δ
strongly in L

N−β
N−δ−µ/2 (RN). (1.21)

Analogously applying the same reasoning to (wk, w) = (ukϕ
1/p♯

s(δ,θ,µ), uϕ1/p♯
s(δ,θ,µ)), we

obtain

∣∣∣∣ |ukϕ
1

p
♯
s(δ,θ,µ) |p

♯
s(δ,θ,µ)−2 · ukϕ

|x|δ
− |ukϕ

1
p

♯
s(δ,θ,µ) − uϕ

1
p

♯
s(δ,θ,µ) |p

♯
s(δ,θ,µ)−2 · (ukϕ

1
p

♯
s(δ,θ,µ) − uϕ

1
p

♯
s(δ,θ,µ) )

|x|δ

− |uϕ
1

p
♯
s(δ,θ,µ) |p

♯
s(δ,θ,µ)−2uϕ

1
p

♯
s(δ,θ,µ)

|x|δ
∣∣∣∣ → 0,

in L
r

p
♯
s(δ,θ,µ) (RN) = L

N−β
N−δ−µ/2 (RN), i.e.,∣∣∣∣∣∣ |uk|p

♯
s(δ,θ,µ)−2 · ukϕ

|x|δ
− |uk − u|p

♯
s(δ,θ,µ)−2(uk − u)ϕ

|x|δ

∣∣∣∣∣∣ → |u|p
♯
s(δ,θ,µ)−2uϕ

|x|δ

strongly in L
N−β

N−δ−µ/2 (RN).
Now, we apply Lemma 1.15 with the choices p̂ = p∗

s(β,θ)
p♯

s(δ,θ,µ)
= N−β

N−δ−µ/2 and

1
r̂

= 1
p̂

+ µ

N
− 1 = N − δ − µ/2

N − β
+ µ

N
− 1 = µ/2 − δ − µβN + β

N − β
,
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i.e., r̂ = p♯
s(δ,θ,µ)N−p∗

s(β,θ)(N−µ)
p∗

s(β,θ)N = N−β
µ/2−δ−µβN+β

, together with limits (1.21). We obtain

∫
RN

∣∣∣∣∣∣Iµ ∗

 |uk|p
♯
s(δ,θ,µ)

|x|δ
− |uk − u|p

♯
s(δ,θ,µ)

|x|δ
− |u|p

♯
s(δ,θ,µ)

|x|δ

∣∣∣∣∣∣
N−β

µ/2−δ−µβN+β

dx


µ/2−δ−µβN+β

N−β

⩽ C(N,µ, p̂)

∫
RN

∣∣∣∣∣∣ |uk|p
♯
µ(α,θ)

|x|δ
− |uk − u|p

♯
s(δ,θ,µ)

|x|δ
− |u|p

♯
s(δ,θ,µ)

|x|δ

∣∣∣∣∣∣
N−β

N−δ−µ/2

dx


N−δ−µ/2

N−β

→ 0 strongly in L
N−β

µ/2−δ−µβN+β (RN)

as k → +∞. Therefore,

Iµ ∗

 |uk|p
♯
s(δ,θ,µ)

|x|δ
− |ũk|p

♯
s(δ,θ,µ)

|x|δ

 → Iµ ∗ |u|p
♯
s(δ,θ,µ)

|x|δ
strongly in L

N−β
µ/2−δ−µβN+β (RN) (1.22)

as k → +∞.
In the same way we can obtain

Iµ ∗

 |uk|p
♯
µ(δ,θ,µ)−2ukϕ

|x|δ
− |ũk|p

♯
s(δ,θ,µ)−2ũkϕ

|x|δ

 → Iµ ∗ |u|p
♯
s(δ,θ,µ)−2uϕ

|x|δ
strongly in L

N−β
µ/2−δ−µβN+β (RN)

(1.23)

as k → +∞.
Since uk ⇀ u weakly in Lp∗

s(β,θ)(RN , |x|−δ) as k → +∞, we also have
|uk|p

♯
s(δ,θ,µ)−2ukϕ ⇀ |u|p

♯
s(δ,θ,µ)−2uϕ

|uk − u|p
♯
s(δ,θ,µ) ⇀ 0 ⇒ |ũk|p

♯
s(δ,θ,µ) ⇀ 0 in L

N−β
µ/2−δ−µβN+β (RN , |x|−δ)

|ũk|p
♯
s(δ,θ,µ)−2ũkϕ ⇀ 0

(1.24)

Combining (1.22), (1.23) and (1.24) we have

lim
k→∞

∫
RN

[
Iµ ∗

(
|uk|p

♯
s(δ,θ,µ)

|x|δ − |ũk|p
♯
s(δ,θ,µ)

|x|δ

)](
| |uk|p

♯
s(δ,θ,µ)−2ukϕ

|x|δ − |ũk|p
♯
s(δ,θ,µ)−2ũkϕ

|x|δ

)
dx

=
∫
RN

(
Iµ ∗ |u|p

♯
s(δ,θ,µ)

|x|δ

)
|u|p

♯
s(δ,θ,µ)−2uϕ

|x|δ dx ,

lim
k→∞

∫
RN

[
Iµ ∗

(
|uk|p

♯
s(δ,θ,µ)

|x|δ − |ũk|p
♯
s(δ,θ,µ)

|x|δ

)]
|ũk|p

♯
s(δ,θ,µ)−2ũkϕ

|x|δ dx = 0,

lim
k→∞

∫
RN

[
Iµ ∗

(
|uk|p

♯
s(δ,θ,µ)−2ukϕ

|x|δ − |ũk|p
♯
s(δ,θ,µ)−2ũkϕ

|x|δ

)]
|ũk|p

♯
s(δ,θ,µ)

|x|δ dx = 0.

(1.25)

By Hölder’s inequality together with Lemma 1.15 we obtain∣∣∣∣∣∣
∫
RN

Iµ ∗ |ũk|p
♯
s(δ,θ,µ)

|x|δ

 |ũk|p
♯
s(δ,θ,µ)−2ũkϕ

|x|δ

∣∣∣∣∣∣

⩽

∣∣∣∣∣∣∣∣∣
∫

RN

Iµ ∗ |ũk|p
♯
s(δ,θ,µ)

|x|δ


N−β

µ/2−δ−µ/βN+β


µ/2−δ−µβN+β

N−β

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣∣∣

∫RN

 |ũk|p
♯
s(δ,θ,µ)−1ϕ

|x|δ


p∗

s(β,θ)

p
♯
s(δ,θ,µ)


p

♯
s(δ,θ,µ)
p∗

s(β,θ)

∣∣∣∣∣∣∣∣∣∣∣
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⩽ C

∫
RN

 |ũk|p
♯
s(δ,θ,µ)

|x|δ


N−β

µ/2−δ−µβN+β


µ/2−δ−µβN+β

N−β

·

∣∣∣∣∣∣∣∣∣∣∣

∫RN

 |ũk|p
♯
s(δ,θ,µ)−1ϕ

|x|δ


p∗

s(β,θ)

p
♯
s(δ,θ,µ)


p

♯
s(δ,θ,µ)
p∗

s(β,θ)

∣∣∣∣∣∣∣∣∣∣∣

= C

[∫
RN

|ũk|p∗
s(α,θ)

|x|δ

]µ/2−δ−µβN+β
N−β

·

∣∣∣∣∣∣∣∣∣∣∣

∫RN

 |ũk|p
♯
s(δ,θ,µ)−1ϕ

|x|δ


p∗

s(β,θ)

p
♯
s(δ,θ,µ)


p

♯
s(δ,θ,µ)
p∗

s(β,θ)

∣∣∣∣∣∣∣∣∣∣∣
= ∥|ũk|∥

1
p

♯
s(δ,θ,µ)

Lp∗
s(α,θ)(RN ,|x|−δ) ·

∥∥∥∥|ũk|p
♯
s(δ,θ,µ)−1ϕ

∥∥∥∥
L

p∗
s(β,θ)

p
♯
s(δ,θ,µ) (RN ,|x|−δ)

⩽ C
∥∥∥∥|ũk|p

♯
s(δ,θ,µ)−1ϕ

∥∥∥∥
L

p∗
s(β,θ)

p
♯
s(δ,θ,µ) (RN ,|x|−δ)

. (1.26)

In the last inequality, we used the assumption that {ũk}k∈N is a bounded sequence in
Lp∗

s (RN , |x|−α) and the fact that the parameters in Lemma 1.13, the variant of Brézis-
Lieb lemma, are in the admissible range.

On the other hand, using q = p♯
s(δ, θ, µ) in Lemma 1.14, we have

|ũk|p
♯
s(δ,θ,µ) ⇀ 0 weakly in L

p∗
s(β,θ)

p
♯
s(δ,θ,µ) (RN , |x|−δ)

as k → +∞; but this is equivalent to

|ũk| ⇀ 0 weakly in Lp∗
s(β,θ)(RN , |x|−δ)

as k → +∞ which, in turn, is equivalent to

|ũk|
p∗

s(β,θ)(p
♯
s(δ,θ,µ)−1)

p
♯
s(δ,θ,µ) ⇀ 0 weakly in L

p
♯
s(δ,θ,µ)

p
♯
s(δ,θ,µ)−1 (RN , |x|−δ),

as k → +∞. Consequently,

∥∥∥∥|ũk|p
♯
s(δ,θ,µ)−1ϕ

∥∥∥∥
L

p∗
s(β,θ)

p
♯
s(δ,θ,µ) (RN ,|x|−δ)

=


∫
RN

|ũk|
p∗

s(β,θ)(p
♯
s(δ,θ,µ)−1)

p
♯
s(δ,θ,µ) ϕ

p∗
s(β,θ)

p
♯
s(δ,θ,µ)

|x|δ


p

♯
s(δ,θ,µ)
p∗

s(β,θ)

→ 0.

Thus, from (1.26), we obtain

lim
k→∞

∫
RN

Iµ ∗ |ũk|p
♯
s(δ,θ,µ)

|x|δ

 |ũk|p
♯
s(δ,θ,µ)−2ũkϕ

|x|δ
= 0. (1.27)

Passing to the limit in (1.20), from (1.25) and (1.27) we reach

lim
k→∞

∫
RN

[Iµ ∗ Fα(·, uk)] (x)fα(x, uk)ϕ(x)dx

= lim
k→∞

∫
RN

Iµ ∗

 |uk(x)|p♯
s

|x|δ
− |ũk(x)|p♯

s

|x|δ

 |uk(x)|p♯
s−2 · uk(x)
|x|δ

ϕ(x)dx



40

+ lim
k→∞

∫
RN

Iµ ∗

 |uk(x)|p♯
s−2 · uk(x)
|x|δ

− |ũk(x)|p♯
s−2 · ũk(x)
|x|δ

 |ũk(x)|p♯
s

|x|δ
ϕ(x)dx

+ lim
k→∞

∫
RN

Iµ ∗ |ũk(x)|p♯
s(δ,θ,µ)

|x|δ

 |ũk(x)|p♯
s(δ,θ,µ)−2 · ũk(x)

|x|δ
ϕ(x)dx

=
∫
RN

Iµ ∗ |u|p
♯
s

|x|δ

 |u|p
♯
s−2u

|x|δ
ϕ

=
∫
RN

[Iµ ∗ Fα(·, u)] (x)fα(x, u)ϕ(x)dx.

The lemma is proved.

Proof of Lemma 1.11

To prove the Caffarelli-Kohn-Nirenberg’s inequality stated in Lemma 1.11, first we have
to deal with the generalization of the extension problem. The main goal here is to write
a formula that extends, to the nonlinear setting, the extension obtained by Caffarelli &
Silvestre in the linear setting. More precisely, for 0 < s < 1 and 1 < p < +∞, and
0 < sp+ θ < N , consider the extension problem[(−(∆x)s

p,θ]u(x, z) + 1 − sp− θ

z
uz(x, z) + uzz(x, z) = 0 x ∈ RN , z ∈ R+

u(x, 0) = g(x) x ∈ RN .
(1.28)

The solution of this problem can be obtained by the convolution

u(x, z) =
∫
RN
P (x− ξ, z)g(ξ) dξ

where the Poisson kernel P is given, up to a multiplicative constant, by

P (x, z) := ysp+θ

(|x|2 + y2)N+sp+θ
2

.

By means of these formulas, we define Es,p,θ[g](x, z) := u(x, z), called the extension op-
erator. This operator allows one to give a representation formula for the fractional p-
Laplacian; see del Teso, Castro-Gómez & Vázquez [38, Theorem 3.1].

Proposition 1.19. Let 0 < s < 1, 1 < p < +∞, 0 < sp + θ < N , x0 ∈ RN . Suppose
that u ∈ C2(RN) is a continuously bounded function. If 1 < p < 2/(2 − s− θ/p), assume
additionally that ∇u(x0) ̸= 0. Then the fractional p-Laplacian operator (−∆)s

p,θ can be
represented by

(−∆)s
p,θu(x0) = lim

z→0

Es,p,θ[|u(x0) − u(·)|p−2(u(x0) − u(·))](x0, z)
zsp+θ

. (1.29)

Now we state an estimate by Sawyer & Wheeden [79, Theorem 1]; see also Mucken-
houpt & Wheeden [70, Theorem D].

Lemma 1.20. Suppose that 0 < s̃ < N, 1 < p̃ ⩽ q̃ < +∞, 0 < s̃p̃ + θ̃ < N, p̃′ = p̃
p̃−1 and

that V and W are nonnegative measurable functions on RN , N ⩾ 1. If, for some σ > 1,

|Q|
s̃
N

+ 1
q̃

− 1
p̃

(
1

|Q|

∫
Q
V σdy

) 1
q̃σ
(

1
|Q|

∫
Q
W (1−p̃′)σdy

) 1
p̃′σ

⩽ Cσ (1.30)
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for all cubes Q ⊂ RN , then for any functions f ∈ Lp̃(RN ,W (y)), we have
(∫

RN
|Es̃,p̃,θ̃[f ](y)|q̃V (y)dy

) 1
q̃

⩽ CCσ

(∫
RN

|f(y)|p̃W (y)dy
) 1

p̃

, (1.31)

where C = C(p̃, q̃, N) and Es,p,θ is the extension operator denotes the Riesz potential of
order s̃, namely

Es̃,p̃,θ̃f(x) =
∫
RN

f(y)
|x− y|N−s̃

dy. (1.32)

Proof of Lemma 1.11. For g ∈ Lp(R, |x|−α), we define the operator

Es,p,θ[g](x) :=
∫
RN

|g(y)|p−2g(y)
|x|θ1|x− y|N−sp|y|θ2

dy . (1.33)

If

g(x) := (−∆)s
p,θu(x)

:= 2 lim
ε→0

∫
RN \Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x|θ1|x− y|N+sp|y|θ2

dy dx

then

u(x) = Es,p,θ[g](x) = Es,p,θ[(−∆)s
p,θu(x)]. (1.34)

First, we take s̃ = s, p̃ = p, max{p, p∗
s(0, θ) − 1} < q̃ < p∗

s(α, θ), σ = 1
p∗

s(0,θ)−q̃
> 1

and

W (y) ≡ 1, V (y) := |u(y)|p∗
s(α,θ)−q̃

|y|α

in Lemma 1.20. Then, the left side of inequality (1.30) becomes

|Q|
s
N

+ 1
q̃

− 1
p

(
1

|Q|

∫
Q
V σdy

) 1
q̃σ

= |Q|
s
N

+ 1
q̃

− 1
p

(
1

|Q|

∫
Q

∣∣∣∣ |u(y)|p∗
s(α,θ)−q̃

|y|α
∣∣∣∣ 1

p∗
s(0,θ)−q̃ dy

) p∗
s(0,θ)−q̃

q̃

.

(1.35)

Secondly, we verify that this expression is bounded by a constant dependent only on
the parameter σ. To do this, we consider an arbitrary fixed x ∈ RN and, without loss of
generality, we can substitute the cube Q ⊂ RN with an open ball BR(x). For the chosen
parameters, we define t := q̃

p∗
s(α,θ) ; then, 0 < [p∗

s(α, θ) − q̃]σ < 1 and tσα
1−[p∗

s(α,θ)−q̃]σ < N .
Using Hölder’s inequality, we deduce that

R−N
∫

BR(x)
V σdy = R−N

∫
BR(x)

|u(y)|(p∗
s(α,θ)−q̃)σ

|y|ασ
dy

= R−N
∫

BR(x)

1
|y|tσα

· |u(y)|(p∗
s(α,θ)−q̃)σ

|y|(1−t)ασ
dy

⩽ R−N

∫
BR(x)

1
|y|

tασ
1−[p∗

s(α,θ)−q̃]σ
dy
1−[p∗

s(α,θ)−q̃]σ

·
(∫

BR(x)

|u|
|y|r

dy
)[p∗

s(α,θ)−q̃]σ

,
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where r := (1−t)α
p∗

s(α,θ)−q̃
= α

p∗
s(α,θ) . To evaluate the first integral on the right-hand side of the

previous inequality we use the integration in polar coordinates formula and we obtain

R−N
∫

BR(x)
V σdy

⩽ R−N

(∫ R

0
w̃

N−1− tασ
1−[p∗

s(α,θ)−q̃]σ dw̃
)1−[p∗

s(α,θ)−q̃]σ

·
(∫

BR(x)

|u|
|y|r

dy
)[p∗

s(α,θ)−q̃]σ

= R−N
(
CR

N− tασ
1−[p∗

s(α,θ)−q̃]σ

)1−[p∗
s(α,θ)−q̃]σ

·
(∫

BR(x)

|u|
|y|r

dy
)[p∗

s(α,θ)−q̃]σ

= CR−tασ−N [p∗
s(α,θ)−q̃]σ

(∫
BR(x)

|u|
|y|r

dy
)[p∗

s(α,θ)−q̃]σ

.

This implies that

{
R−N

∫
BR(x)

V σdy
} 1

q̃σ

⩽

CR−tασ−N [p∗
s(α,θ)−q̃]σ

(∫
BR(x)

|u|
|y|r

dy
)[p∗

s(α,θ)−q̃]σ


1
q̃σ

.

Now we multiply both sides of this inequality by Rs+ N
q̃

− N
p to get

Rs+ N
q̃

− N
p

{
R−N

∫
BR(x)

V σdy
} 1

q̃σ

⩽ Rs+ N
q̃

− N
p

CR−tασ−N [p∗
s(α,θ)−q̃]σ

(∫
BR(x)

|u|
|y|r

dy
)[p∗

s(α,θ)−q̃]σ


1
q̃σ

⩽ C

R(s+ N
q̃

− N
p )q̃σ ·R−tασ−N [p∗

s(α,θ)−q̃]σ
(∫

BR(x)

|u|
|y|r

dy
)[p∗

s(α,θ)−q̃]σ


1
q̃σ

= C

{
R(s+ N

q̃
− N

p )q̃σ 1
[p∗

s(α,θ)−q̃]σ ·R
−tασ−N [p∗

s(α,θ)−q̃]σ
[p∗

s(α,θ)−q̃]σ

∫
BR(x)

|u|
|y|r

dy
} [p∗

s(α,θ)−q̃]σ
q̃σ

= C

{
R(s+ N

q̃
− N

p ) q̃
p∗

s(α,θ)−q̃ ·R
−tα−N [p∗

s(α,θ)−q̃]
p∗

s(α,θ)−q̃

∫
BR(x)

|u|
|y|r

dy
} p∗

s(α,θ)−q̃

q̃

= C

{
R(s+ N−tα

q̃
− N

p ) q̃
p∗

s(α,θ)−q̃ ·R−N
∫

BR(x)

|u|
|y|r

dy
} p∗

s(α,θ)−q̃

q̃

.

A simple computation shows that(
s+ N − tα

q̃
− N

p

)
q̃

p∗
s(α, θ) − q̃

= N − sp

p
+ r;

hence,

Rs+ N
q̃

− N
p

{
R−N

∫
BR(x)

V σdy
} 1

q̃σ

⩽ C

{
R

N−sp
p

+r−N
∫

BR(x)

|u|
|y|r

dy
} p∗

s(α,θ)−q̃

q̃

= C∥u∥
p∗

s(α,θ)−q̃

q̃

L
1,

N−sp
p +r(RN ,|y|−r)

:= Cσ
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Using (1.33) and (1.34) and inequality (1.31) in Lemma 1.20, we obtain
∫
RN

|u(y)|p∗
s(α,θ)

|y|α
dy =

∫
RN

|u(y)|q̃ |u(y)|p∗
s(α,θ)−q̃

|y|α
dy

=
∫
RN

|Es,p,θ[g](y)|q̃V (y)dy

⩽ (CCσ)q̃∥g∥q̃
Lp(RN )

= C∥u∥p∗
s(α,θ)−q̃

L
1,

N−sp
p +r

M (RN ,|y|−r)
∥g∥q̃

Lp(RN )

⩽ C∥u∥p∗
s(α,θ)−q̃

L
1,

N−sp
p +r

M (RN ,|y|−r)
∥u∥q̃

Ẇ s,p
θ

(R).

Finally, we choose p ∈ [1, p∗
s(α, θ)) and define ζ := q̃

p∗
s(α,θ) ; for the parameters in the

specified intervals we deduce that max
{

p
p∗

s(α,θ) ,
p∗

s(α,θ)−1
p∗

s(α,θ)

}
< ζ < 1. Hence, for every

function u ∈ Ẇ s,p
θ (RN), it holds the inequality
(∫

RN

|u(y)|p∗
s(α,θ)

|y|α
dy
) 1

p∗
s(α,θ)

⩽ ∥u∥1−ζ

L
q̃,

N−sp
p q̃+q̃r(RN ,|y|−q̃r)

∥u∥ζ

Ẇ s,p
θ

.

This concludes the proof of Lemma 1.11.

Lemma 1.21. (Theorem 1 in [73]) Let s ∈ (0, 1), N > sp+θ and p∗
s(0, θ) = pN

N−sp−θ
. Then

there exists a constant C = C(N, s) such that for any max
{

p
p∗

s(0,θ) ,
p∗

s(0,θ)−1
p∗

s(0,θ)

}
< ζ < 1 and

for any 1 ⩽ q < p∗
s(0, θ),

∥u∥Lp∗
s(0,θ)(RN ) ⩽ C∥u∥ζ

Ẇ s,p
θ

(RN )∥u∥1−ζ

L
q,

N−sp
p q(RN )

(1.36)

for all u ∈ Ẇ s,p
θ (RN).

Proof. The proof of this result follows the same steps of the previous proof and is omitted.

Solving the minimization problems (1.9) and (1.10)

In this section, we deal with a crucial step in the proof of the Theorem 0.1. More pre-
cisely, we solve the minimization problems (1.9) and (1.10). Using the embeddings of
the fractional Sobolev space into the weighted Lebesgue space and the Morrey space in
Lemma 1.6 together with the Caffarelli-Kohn-Nirenberg’s inequality in Lemma 1.11, we
can prove the existence of minimizers for

Sµ(N, s, γ, α) = inf
u∈Ẇ s,p

θ
(RN )\{0}

∥u∥p

Q♯(u, u)
p

2p
♯
µ(δ,θ,µ)

(1.37)

where the quadratic form Q♯ : Ẇ s,p
θ (RN) × Ẇ s,p

θ (RN) → R is defined by

Q♯(u, v) :=
∫∫

R2N

|u(x)|p♯
s(δ,θ,µ)|v(y)|p♯

s(δ,θ,µ)

|x|δ|x− y|µ|y|δ
dxdy (1.38)
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and

Λ(N, s, γ, β) = inf
u∈Ẇ s,p

θ
(RN )\{0}

∥u∥p(∫
RN

|u|p∗
s(β,θ)

|x|β dx
) p

p∗
s(β,θ)

. (1.39)

We can derive the following results:

Proposition 1.22. For s ∈ (0, 1) the best constants Sµ(N, s, γ, α) and Λ(N, s, γ, β) verify
the following items.

1. If 0 < α < sp + θ < N, µ ∈ (0, N) and γ < γH , then Sµ(N, s, γ, α) is attained in
Ẇ s,p

θ (RN);

2. If 0 < β < sp+ θ < N and γ < γH , then Λ(N, s, γ, β) is attained in Ẇ s,p
θ (RN);

3. If N > sp + θ, µ ∈ (0, N) and 0 ⩽ γ < γH , then Sµ(N, s, γ, 0) is attained in
Ẇ s,p

θ (RN);

4. If N > sp+ θ and 0 ⩽ γ < γH , then Λ(N, s, γ, 0) is attained in Ẇ s,p
θ (RN).

Proof. 1. If 0 < α < sp + θ < N and γ < γH , let {uk}k∈N ⊂ Ẇ s,p
θ (RN) be a

minimizing sequence of Sµ(N, s, γ, α) such that

Q♯(uk, uk) = 1, ∥uk∥p → Sµ(N, s, γ, α) (1.40)

as k → +∞. Recall that r = α
p∗

s(α,θ) . The embeddings (1.4) and the Caffarelli-Kohn-
Nirenberg’s inequality (1.8) imply that

∥uk∥
L

q,
N−sp−θ

p q+qr

M (RN ,|y|−pr)
⩽ C∥uk∥Lp∗

s(α,θ)(RN ,|y|−α)

⩽ C1∥uk∥ζ

Ẇ s,p
θ

(RN )∥uk∥1−ζ

L
q,

N−sp−θ
p q+qr

M (RN ,|y|−pr)
.

Therefore,

∥uk∥
L

q,
N−sp−θ

p q+qr

M (RN ,|y|−pr)
⩽ C1∥uk∥Ẇ s,p

θ
(RN ).

On the other hand, using Caffarelli-Kohn-Nirenberg’s inequality once again, together with
the inequality (1.3) and the properties (1.40), we get

∥uk∥1−ζ

L
q,

N−sp−θ
p q+qr

M (RN ,|y|−pr)
⩾ C

∥uk∥Lp∗
s(α,θ)(RN ,|y|−α)

∥uk∥ζ

Ẇ s,p
θ

(RN )

⩾ C
(Q♯(uk, uk))

N
(2N−µ)p∗

s(α,θ)

∥uk∥ζ

Ẇ s,p
θ

(RN )

= C
1

∥uk∥ζ

Ẇ s,p
θ

(RN )

.

By the boundedness of {uk}k∈N in Ẇ s,p
θ (RN), we deduce that

∥uk∥
L

q,
N−sp−θ

p q+qr

M (RN ,|y|−pr)
⩾ C2.
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Putting these results together, we have

C2 ⩽ ∥uk∥
L

q,
N−sp−θ

p q+qr

M (RN ,|y|−pr)
⩽ C1. (1.41)

For any k ∈ N large enough, we may find λk > 0 and xk ∈ RN such that

λ−sp−θ+pr
k

∫
Bλk(xk)

|uk(y)|p
|y|pr

dy > ∥uk∥p

Lp,N−sp−θ+pr
M (RN ,|y|−pr)

− C3

2k ⩾ C4 > 0

for constants C3, C4 ∈ R+.
Our goal is to pass to the limit as k → +∞ in the minimizing sequence. To do this,

we create another sequence that will help us to control the radius and the centers of these
balls. Let

vk(x) = λ
N−sp−θ

p

k uk(λkx)

be the appropriate scaling for the class of problems that we consider and define x̃k := xk

λk
.

Then, using the change of variables y = λkx with dy = λN
k dx, we have

∫
B1(x̃k)

|vk(x)|p
|x|pr

dx =
∫

B1

(
xk
λk

)
(
λ

N−sp−θ
p

k |uk(λkx)|
)p

|x|pr
dx

=
∫

B1

(
xk
λk

) λN−sp−θ
k |uk(λkx)|p

|x|pr
dx

=
∫

B1

(
xk
λk

) λN−sp−θ
k

|uk(y)|p∣∣∣ y
λk

∣∣∣pr
dy
λN

k

=
∫

B1

(
xk
λk

) λ−sp−θ+pr
k

|uk(y)|p
|y|pr

dy

=
∫

Bλk
(xk)

λ−sp−θ+pr
k

|uk(y)|p
|y|pr

dy ⩾ C > 0. (1.42)

Now we claim that Sµ(N, s, γ, α) is invariant under the previously defined dilation.
In fact, Q♯(vk, vk) = 1. To show this property, we use the change of variables x̄ = λkx

and ȳ = λky, we have

Q♯(vk, vk) =
∫∫

R2N

|vk(x)|p♯
s(δ,θ,µ)|vk(y)|p♯

s(δ,θ,µ)

|x|δ|x− y|µ|y|δ
dxdy

=
∫∫

R2N

|λ
N−sp−θ

p

k uk(λkx)|p♯
s(δ,θ,µ)|λ

N−sp−θ
p

k uk(λky)|p♯
s(δ,θ,µ)

|x|δ|x− y|µ|y|δ
dxdy

=
∫∫

R2N
λ

N−sp−θ
p

·2p♯
s(δ,θ,µ)

k

|uk(x̄)|p♯
s(δ,θ,µ)|uk(ȳ)|p♯

s(δ,θ,µ)∣∣∣ x̄
λk

∣∣∣δ ∣∣∣∣ x̄
λk

− ȳ
λk

∣∣∣∣µ ∣∣∣ ȳ
λk

∣∣∣δ
dx̄
λN

k

dȳ
λN

k

=
∫∫

R2N
λ

N−sp−θ
p

·2p♯
s(δ,θ,µ)+2δ+µ−2N

k

|uk(x̄)|p♯
s(δ,θ,µ)|uk(ȳ)|p♯

s(δ,θ,µ)

|x̄|δ|x̄− ȳ|µ|ȳ|δ
dx̄dȳ
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=
∫∫

R2N

|uk(x̄)|p♯
s(δ,θ,µ)|uk(ȳ)|p♯

s(δ,θ,µ)

|x̄|δµ(α)|x̄− ȳ|µ|ȳ|δµ(α) dx̄dȳ

= Q♯(uk, uk) = 1,

where we used the fact that

N − sp− θ

p
· 2p♯

s(δ, θ, µ) + 2δ + µ− 2N

= N − sp− θ

p
· 2p(N − δ − µ/2)

N − sp− θ
+ 2δ + µ− 2N

= 2N − 2δ − µ+ 2δ + µ− 2N = 0.

Furthermore, ∥vk∥p → Sµ(N, s, γ, α). In fact, we know that {uk}k∈N is a minimizing
sequence for Sµ(N, s, γ, α). Using the same change of variables x̄ = λkx and ȳ = λky, we
obtain

∥vk∥p =
∫∫

R2N

|vk(x) − vk(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy − γ
∫
RN

|vk(x)|p
|x|sp+θ

dx

=
∫∫

R2N

(
λ

N−sp−θ
p

k |uk(λkx) − uk(λky)|
)p

|x|θ1|x− y|N+sp|y|θ2
dxdy − γ

∫
RN

λN−sp−θ
k |uk(λkx)|p

|x|sp+θ
dx

=
∫∫

R2N
λN−sp−θ

k

|uk(x̄) − uk(ȳ)|p

λ−θ1|x̄|θ1λ−N−sp
k |x̄− ȳ|N+spλ−θ2 |ȳ|θ2

dx̄
λN

k

dȳ
λN

k

− γ
∫
RN

λN−sp−θ
k |uk(x̄)|p

λ−sp−θ
k |x̄|sp+θ

dx̄
λN

k

=
∫∫

R2N

|uk(x̄) − uk(ȳ)|p
|x̄|θ1|x̄− ȳ|N+sp|ȳ|θ2

dx̄dȳ − γ
∫
RN

|uk(x̄)|p
|x̄|sp+θ

dx̄

= ∥uk∥p.

And since ∥uk∥p → Sµ(N, s, γ, α) as k → +∞, we deduce that ∥vk∥p → Sµ(N, s, γ, α) as
k → +∞.

In this way, the sequence {vk}k∈N ⊂ Ẇ s,p
θ (RN) is also a minimizing sequence for

Sµ(N, s, γ, α) such that we have

Q♯(vk, vk) = 1, ∥vk∥p → Sµ(N, s, γ, α). (1.43)

From inequality (1.42) together with Hölder’s inequality,

0 < C ⩽
∫

B1(x̃k)

|vk(x)|p
|x|pr

dx

⩽

(∫
B1(x̃k)

1dx
)1− p

p∗
s(α,θ)

∫
B1(x̃k)

(
|vk(x)|p

|x|pr

) p∗
s(α,θ)

p

dx


p

p∗
s(α,θ)

⩽ C

(∫
B1(x̃k)

|vk(x)|p∗
s(α,θ)

|x|α
dx
) p

p∗
s(α,θ)

.
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Therefore,
(∫

B1(x̃k)

|vk(x)|p∗
s(α,θ)

|x|α
dx
) p

p∗
s(α,θ)

⩾ C > 0. (1.44)

We claim that the sequence {x̃k} ⊂ RN of the centers of the balls is bounded. We
argue by contradiction and suppose that |x̃k| → +∞ as k → +∞; then for any x ∈ B1(x̃k),
we have |x| ⩾ |x̃k| − 1 for k ∈ N large enough. By Hölder’s inequality, we obtain
∫

B1(x̃k)

|vk(x)|p∗
s(α,θ)

|x|α
dx ⩽

∫
B1(x̃k)

|vk(x)|p∗
s(α,θ)

(|x̃k| − 1)α
dx

= 1
(|x̃k| − 1)α

∫
B1(x̃k)

|vk(x)|p∗
s(α,θ)dx

⩽
1

(|x̃k| − 1)α

(∫
B1(x̃k)

1dx
) p∗

s(0,θ)−p∗
s(α,θ)

p∗
s(0,θ)

(∫
B1(x̃k)

(
|vk(x)|p∗

s(α,θ)
) p∗

s(0,θ)
p∗

s(α,θ) dx
) p∗

s(α,θ)
p∗

s(0,θ)

⩽
C

(|x̃k| − 1)α

(∫
B1(x̃k)

|vk(x)|p∗
s(0,θ)dx

) p∗
s(α,θ)

p∗
s(0,θ)

⩽
C

(|x̃k| − 1)α

(∫
RN

|vk(x)|p∗
s(0,θ)dx

) p∗
s(α,θ)

p∗
s(0,θ)

= C

(|x̃k| − 1)α
∥vk(x)∥p∗

s(α,θ)
Lp∗

s(0,θ) .

From this inequality, together with the embeddings in Lemma 1.6–(4), we deduce that
∫

B1(x̃k)

|vk(x)|p∗
s(α,θ)

|x|α
dx ⩽

C

(|x̃k| − 1)α
∥vk(x)∥p∗

s(0,θ)
Lp∗

s(α,θ)

⩽
C

(|x̃k| − 1)α
∥vk(x)∥p∗

s(α,θ)
Ẇ s,p

θ
(RN )

⩽
C

(|x̃k| − 1)α
→ 0 (k → +∞)

where we used the boundedness of the minimizing sequence {vk}k∈N ⊂ Ẇ s,p
θ (RN). This

is a contradiction with inequality (1.44) and this implies that the sequence {x̃k} ⊂ RN is
bounded.

From inequality (1.42) and the boundedness of the sequence {x̃k} ⊂ RN of the centers
of the balls, we may find R > 0 such that BR(0) contains all balls of center x̃k and radius
1; moreover, with ∫

BR(0)

|vk(x)|p
|x|pr

dx ⩾ C1 > 0. (1.45)

Since ∥vk∥ = ∥uk∥ ⩽ C for k ∈ N large enough, there exists a function v ∈ Ẇ s,p
θ (RN)

such that

vk ⇀ v in Ẇ s,p
θ (RN), vk → v a.e. on RN , (1.46)
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as k → +∞, up to subsequences. According to Lemma 1.12, we have
uk

|x|r
→ u

|x|r
in Lp

loc(RN);

hence, ∫
BR(0)

|v(x)|p
|x|pr

dx ⩾ C1 > 0,

and we deduce that v ̸≡ 0.
We may verify by Lemma 1.17 that

1 = Q♯(vk, vk) = Q♯(vk − v, vk − v) +Q♯(v, v) + o(1). (1.47)

By definition (1.37), by weak convergence vk ⇀ v in Ẇ s,p
θ (RN) together with Brézis-Lieb’s

lemma and by the estimate (1.47), we have

Sµ(N, s, γ, α) = lim
k→∞

∥vk∥p

= ∥v∥p + lim
k→∞

∥vk − v∥p

⩾ Sµ(N, s, γ, α)(Q♯(v, v))
p

p
♯
s(δ,θ,µ)

+ Sµ(N, s, γ, α)
(

lim
k→∞

Q♯(vk − v, vk − v)
) p

p
♯
s(δ,θ,µ)

⩾ Sµ(N, s, γ, α)
(
Q♯(v, v) + lim

k→∞
Q♯(vk − v, vk − v)

) p

p♯(δ,θ,µ)

= Sµ(N, s, γ, α),

where in the last but one passage above we used the inequality

(a+ b)q ⩽ aq + bq, (1.48)

valid for all a, b ∈ R∗
+ and q > 1. So we have equality in all passages, that is,

Q♯(v, v) = 1, lim
k→∞

Q♯(vk − v, vk − v) = 0, (1.49)

since v ̸≡ 0. It turns out that, since

Sµ(N, s, γ, α) = ∥v∥p + lim
k→∞

∥vk − v∥p,

then

Sµ(N, s, γ, α) = ∥v∥p and lim
k→∞

∥vk − v∥p = 0.

Finally, by inequality∫∫
R2N

||u(x)| − |u(y)||p
|x|θ1 |x− y|N+sp|y|θ2

dxdy ⩽
∫∫

R2N

|u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy

we deduce that |v| ∈ Ẇ s,p
θ (RN) is also a minimizer for Sµ(N, s, γ, α); so we can assume

that v ⩾ 0. Thus, Sµ(N, s, γ, α) is achieved by a non-negative function in the case
0 < α < sp+ θ and γ < γH .
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2. For 0 < β < sp + θ < N and γ < γH , let {uk}k∈N ⊂ Ẇ s,p
θ (RN) be a minimizing

sequence for Λ(N, s, γ, β) such that
∫
RN

|uk|p∗
s(α,θ)

|x|α
dx = 1, ∥uk∥p → Λ(N, s, γ, β)

as k → +∞.
Now we claim that Λ(N, s, γ, β) is invariant under the previously defined dilation.

Let vk(x) = λ
N−sp−θ

p

k uk(λkx) and x̃k = xk

λk
as in the previous case. In this way, the

sequence {vk}k∈N ⊂ Ẇ s,p
θ (RN) is also a minimizing sequence for Λ(N, s, γ, β) such that

we have ∫
RN

|vk|p∗
s(β,θ)

|x|β
dx = 1, ∥vk∥p → Λ(N, s, γ, β). (1.50)

In fact, using variable change x̄ = λkx, for every k ∈ N we have

∫
RN

|vk|p∗
s(β,θ)

|x|β
dx =

∫
RN

|λ
N−sp−θ

p

k uk(λkx)|p∗
s(β,θ)

|x|β
dx

=
∫
RN

λN−β
k |uk(λkx)|p∗

s(β,θ)

|x|β
dx

=
∫
RN

λN−β
k uk(x̄)p∗

s(β,θ)

λ−β
k |x̄|β

dx̄
λN

k

=
∫
RN

|uk|p∗
s(β,θ)

|x̄|β
dx̄ = 1.

We have already shown that ∥vk∥ = ∥uk∥ for every k ∈ N. Hence, ∥vk∥p → Λ(N, s, γ, β).
We claim that the sequence {x̃k} ⊂ RN is bounded and the proof follows the same

steps already presented. From this boundedness and inequality (1.42), we may find R > 0
such that BR(0) contains all the unitary balls B1(x̃k) centered in x̃k and∫

BR(0)

|vk(x)|p
|x|pr

dx ⩾ C1 > 0. (1.51)

Since ∥vk∥ = ∥uk∥ ⩽ C, there exists a v ∈ Ẇ s,p
θ (RN) such that

vk ⇀ v in Ẇ s,p
θ (RN), vk → v a.e. on RN , (1.52)

as k → +∞, up to subsequences. According to Lemma 1.12, we have
vk

|x|r
→ v

|x|r
in Lp

loc(RN),

as k → +∞, where r = β
p∗

s(β,θ) . Therefore,

∫
BR(0)

|v(x)|p
|x|pr

dx ⩾ C1 > 0,

and we deduce that v ̸≡ 0.
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We may verify by Lemma 1.13 that, if q = p∗
s(β, θ) and δ = β, then

1 =
∫
RN

|vk|p∗
s(β,θ)

|x|β
dx =

∫
RN

|vk − v|p∗
s(β,θ)

|x|β
dx+

∫
RN

|v|p∗
s(β,θ)

|x|β
dx+ o(1).

By definition (1.39) and by weak convergence vk ⇀ v in Ẇ s,p
θ (RN), we deduce that

Λ(N, s, γ, β) = lim
k→∞

∥vk∥p

= ∥v∥p + lim
k→∞

∥vk − v∥p

⩾ Λ(N, s, γ, β)
(∫

RN

|v|p∗
s(β,θ)

|x|β
dx
) p

p∗
s(β,θ)

+ Λ(N, s, γ, β)
(

lim
k→∞

∫
RN

|vk − v|p∗
s(β,θ)

|x|β
dx
) p

p∗
s(β,θ)

⩾ Λ(N, s, γ, β)
(∫

RN

|v|p∗
s(β,θ)

|x|β
dx+ lim

k→∞

∫
RN

|vk − v|p∗
s(β,θ)

|x|β
dx
) p

p∗
s(β,θ)

= Λ(N, s, γ, β)

where we used the inequality (1.48). So we have equality in all passages, that is,∫
RN

|v|p∗
s(α,θ)

|x|β
dx = 1, lim

k→∞

∫
RN

|vk − v|p∗
s(α,θ)

|x|β
dx = 0, (1.53)

since v ̸≡ 0. It turns out that, since

Λ(N, s, γ, β) = ∥v∥p + lim
k→∞

∥vk − v∥p,

then

Λ(N, s, γ, β) = ∥v∥p and lim
k→∞

∥vk − v∥p = 0.

As in the previous case, we deduce that |v| ∈ Ẇ s,p
θ (RN) is also a minimizer for

Λ(N, s, γ, β) is achieved by a non-negative function in the case 0 < β < sp + θ and
γ < γH .

3. In the case α = 0 and 0 ⩽ γ < γH , we were inspired by the method introduced by
Filippucci et. al [42] and Dipierro et. al. [40]. Let {uk}k∈N ⊂ Ẇ s,p

θ (RN) be a minimizing
sequence for Sµ(N, s, γ, 0). Without loss of generality, we can choose this sequence such
that

Q♯(uk, uk) = 1, Sµ(N, s, γ, 0) ⩽ ∥uk∥p < Sµ(N, s, γ, 0) + 1
k
. (1.54)

Indeed, by definition (1.37), if we normalize Q♯(uk, uk) = 1, then

Sµ(N, s, γ, 0) ⩽ ∥uk∥p

(Q♯(uk, uk))
p

2p
♯
µ(0,θ)

⩽ ∥uk∥p < Sµ(N, s, γ, 0) + 1
k

for k ∈ N large enough. By inequality∫∫
R2N

||uk(x)|∗ − |uk(y)|∗|p
|x|θ1|x− y|N+sp|y|θ2

dxdy ⩽
∫∫

R2N

|uk(x) − uk(y)|p
|x|θ1 |x− y|N+sp|y|θ2

dxdy, (1.55)
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where |uk|∗ is the symmetric decreasing rearrangement of |uk|, we deduce that |uk|∗ ∈
Ẇ s,p

θ (RN) is also a minimizer for Sµ(N, s, γ, α); so we can assume that uk ⩾ 0.
Furthermore,

1 = Q♯(|uk|, |uk|) ⩽ Q♯(|uk|∗, |uk|∗) (1.56)

and ∫
RN

|uk|p

|x|sp+θ
dx ⩽

∫
RN

||uk|∗|p

|x|sp+θ
dx (1.57)

Denoting wk := |uk|∗, we have that vk is radially symmetric and decreasing. Since 0 ⩽
γ < γH , by the definition of Sµ and by inequalities (1.55), (1.56) and (1.57), we deduce
that

Sµ ⩽ Sµ, rad := inf
wk∈Ẇ s,p

θ
(RN )\{0}

∫∫
R2N

|wk(x)−wk(y)|p
|x|θ1 |x−y|N+sp|y|θ2 dxdy − γ

∫
RN

|wk|p
|x|sp+θ dx

Q♯(wk, wk)
p

2p
♯
µ(0,θ)

⩽

∫∫
R2N

|wk(x)−wk(y)|p
|x|θ1 |x−y|N+sp|y|θ2 dxdy − γ

∫
RN

|wk|p
|x|sp+θ dx

Q♯(wk, wk)
p

2p
♯
µ(0,θ)

⩽

∫∫
R2N

|uk(x)−uk(y)|p
|x|θ1 |x−y|N+sp|y|θ2 dxdy − γ

∫
RN

|uk|p
|x|sp+θ dx

Q♯(uk, uk)
p

2p
♯
µ(0,θ)

=
∫∫

R2N

|uk(x) − uk(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy − γ
∫
RN

|uk|p

|x|sp+θ
dx

= ∥uk∥p < Sµ(N, s, γ, 0) + 1
k
,

for k ∈ N large enough, where in the last passage we used inequality (1.54). Therefore,
{wk}k∈N ⊂ Ẇ s,p

θ (RN) is a minimizing sequence of Sµ(N, s, γ, 0) and {∥wk∥}k∈N ⊂ R is a
uniformly bounded sequence. Noticing that Q♯(wk, wk) ⩾ 1, the embeddings

Ẇ s,p
θ (RN) ↪→ Lp∗

s(0,θ)(RN) ↪→ Lp,N−sp
M (RN),

together Lemma 1.21 and the Caffarelli-Kohn-Nirenberg’s inequality (1.8) imply that

∥wk∥
L

q,
N−sp−θ

p q

M (RN )
⩽ C∥wk∥Lp∗

s(0,θ)(RN ,|y|−α)

⩽ C∥wk∥ζ

Ẇ s,p
θ

(RN )∥wk∥1−ζ

L
q,

N−sp−θ
p q

M (RN )
.

Therefore,

∥wk∥
L

q,
N−sp−θ

p q

M (RN )
⩽ C1∥wk∥Ẇ s,p

θ
(RN ).

On the other hand, using Caffarelli-Kohn-Nirenberg’s inequality once again, together
with the inequality (1.3) and the properties (1.40), we get

∥wk∥1−ζ

L
q,

N−sp−θ
p q

M (RN )
⩾ C

∥wk∥Lp∗
s(0,θ)(RN )

∥wk∥ζ

Ẇ s,p
θ

(RN )
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⩾ C
(Q♯(wk, wk))

N
(2N−µ)p∗

s(0,θ)

∥wk∥ζ

Ẇ s,p
θ

(RN )

= C
1

∥wk∥ζ

Ẇ s,p
θ

(RN )

.

By the boundedness of the sequence {wk}k∈N in Ẇ s,p
θ (RN) and the previous inequality,

we deduce that there exists a positive constant C2 > 0 such that

∥wk∥
L

q,
N−sp−θ

p q

M (RN )
⩾ C2.

Putting these results together, we have

C2 ⩽ ∥uk∥
L

q,
N−sp−θ

p q

M (RN )
⩽ C1.

Using this inequality, we may find λk > 0 and xk ∈ RN such that

λ−sp−θ
k

∫
Bλk

(xk)
|wk(y)|pdy > ∥wk∥p

Lp,N−sp−θ
M (RN )

− C

2k ⩾ C > 0.

Letting vk(x) = λ
N−sp−θ

p

k wk(λkx) and x̃k = xk

λk
, we see that {vk}k∈N ⊂ Ẇ s,p

θ (RN) is also a
minimizing sequence of Sµ(N, s, γ, 0) and satisfies∫

B1(x̃k)
|vk(x)|pdx ⩾ C > 0. (1.58)

In fact, using the change of variables y = λkx, we obtain∫
B1(x̃k)

|vk(x)|pdx =
∫

B1(x̃k)

∣∣∣∣∣λN−sp−θ
p

k wk(λkx)
∣∣∣∣∣
p

dx

=
∫

B1(x̃k)
λN−sp−θ

k |wk(λkx)|pdx

=
∫

B1

(
yk
λk

) λN−sp−θ
k |wk(y)|p dy

λN
k

=
∫

B1

(
yk
λk

) λ−sp−θ
k |wk(y)|pdy

=
∫

B1(ỹk)
λ−sp−θ

k |wk(y)|pdy ⩾ C > 0.

Furthermore,

∥vk∥p =
∫∫

R2N

|vk(x) − vk(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy − γ
∫
RN

|vk(x)|p
|x|sp+θ

dx

=
∫∫

R2N

(
λ

N−sp−θ
p

k |wk(λkx) − wk(λky)|
)p

|x|θ1|x− y|N+sp|y|θ2
dxdy − γ

∫
RN

λN−sp−θ
k |wk(λkx)|p

|x|sp+θ
dx.

Using the change of variables x̄ = λkx and ȳ = λky, we obtain

∥vk∥p =
∫∫

R2N
λN−sp−θ

k

|wk(x̄) − wk(ȳ)|p

λ−θ1|x̄|θ1λ−N−sp
k |x̄− ȳ|N+spλ−θ2|ȳ|θ2

dx̄
λN

k

dȳ
λN

k
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− γ
∫
RN

λN−sp−θ
k |wk(x̄)|p

λ−sp−θ
k |x̄|sp+θ

dx̄
λN

k

=
∫∫

R2N

|wk(x̄) − wk(ȳ)|p
|x̄|θ1 |x̄− ȳ|N+sp|ȳ|θ2

dx̄dȳ − γ
∫
RN

|wk(x̄)|p
|x̄|sp+θ

dx̄

= ∥wk∥p.

Since ∥vk∥ = ∥wk∥ ⩽ C, there exists v ∈ Ẇ s,p
θ (RN) such that vk ⇀ v in Ẇ s,p

θ (RN) weakly
as k → +∞ up to subsequences.

Now, we need to prove v ̸≡ 0. For this purpose, we will consider separatelly the cases
where {x̃k}k∈N unbounded and {x̃k}k∈N bounded.

Case (1). If {x̃k}k∈N ⊂ RN is an unbounded sequence, we assume that |x̃k| → +∞ up
to a subsequence. Since the sequence {vk(x)}Ẇ s,p

θ
(RN ) is radially symmetric and decreasing,

from inequality (1.58), for all k ∈ N we have that∫
B2(0)

|vk(x)|pdx ⩾
∫

B1(0)
|vk(x+ x̃k)|pdx =

∫
B1(x̃k)

|vk(x)|pdx ⩾ C > 0.

Since the embedding Ẇ s,p
θ (RN) ↪→ Lp

loc(RN) is compact, we have∫
B2(0)

|v(x)|pdx ⩾ C > 0.

So, in the unbounded case we have v ̸≡ 0.
Case (2). If {x̃k}k∈N ⊂ RN is a bounded sequence, from (1.58) we may find R > 0

such that ∫
BR(0)

|vk(x)|pdx ⩾ C > 0,

and from this inequality we deduce that∫
BR(0)

|v(x)|pdx ⩾ C > 0.

Thus, in the bounded case we also have v ̸≡ 0.

4. The proof of this item is similar to the last item and is omitted.

Existence of Palais-Smale sequence

We shall now use the minimizers of Sµ = Sµ(N, s, p, θ, α) and Λ = Λ(N, s, p, θ, γ, β)
obtained in Proposition 1.22 to prove the existence of a nontrivial weak solution for
equation (1). Recall that the energy functional associated to (1) is

I(u) = 1
p

∫∫
R2N

|u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy − γ

p

∫
RN

|u|p

|x|sp+θ
dx

− 1
p∗

s(β, θ)

∫
RN

|u|p∗
s(β,θ)

|x|β
dx− 1

2p♯
s(δ, θ, µ)

∫∫
R2N

|u(x)|p♯
s(δ,θ,µ)|u(y)|p♯

s(δ,θ,µ)

|x|δ|x− y|µ|y|δ
dxdy,

(1.59)
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for all u ∈ Ẇ s,p
θ (RN). The fractional Sobolev and fractional Hardy-Sobolev inequalities

imply that I ∈ C1(Ẇ s,p
θ (RN),R) and that

⟨I ′(u), ϕ⟩ =
∫∫

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))
|x|θ1 |x− y|N+sp|y|θ2

dxdy − γ
∫
RN

|u|p−2uϕ

|x|sp+θ
dx

−
∫
RN

|u|p∗
s(β,θ)−2u(x)ϕ

|x|β
dx+

∫∫
R2N

|u(x)|p♯
s(δ,θ,µ)|u(y)|p♯

s(δ,θ,µ)

|x|δ|x− y|µ|y|δ
dxdy.

Note that a nontrivial critical point of I is a nontrivial weak solution to equation (1).
Recall that a Palais-Smale sequence for the energy functional I at the level c ∈ R is

a sequence {uk}k∈N ⊂ Ẇ s,p
θ (RN) such that

lim
k→+∞

I(uk) = c and lim
k→+∞

I ′(uk) = 0 strongly in Ẇ s,p
θ (RN)′. (1.60)

This sequence is refered to as a (PS)c sequence.
Now we state a result that ensures the existence of a Palais-Smale sequence for the

energy functional.

Proposition 1.23. Let s ∈ (0, 1), 0 < α, β < sp + θ < N, µ ∈ (0, N) and γ < γH . Con-
sider the functional I : Ẇ s,p

θ (RN) → R defined in (1.59) on the Banach space Ẇ s,p
θ (RN).

Then there exists a (PS)c sequence {uk} ⊂ Ẇ s,p
θ (RN) for I at some level c ∈ (0, c∗),

where

c∗ := min
{(1

p
− 1

2p♯
s(δ, θ, µ)

)
S

2p
♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p

µ ,
(1
p

− 1
p∗

s(β, θ)

)
Λ

p∗
s(β,θ)

p∗
s(β,θ)−p

}
. (1.61)

To prove Proposition 1.23 we need the following version of the mountain pass theorem
by Ambrosetti and Rabinowitz [12].

Lemma 1.24. (Montain Pass Lemma) Let (E, ∥ · ∥) be a Banach space and let I ∈
C1(E,R) a functional such that the following conditions are satisfied:

(1) I(0) = 0;

(2) There exist ρ > 0 and r > 0 such that I(u) ⩾ ρ for all u ∈ E with ∥u∥ = r;

(3) There exist v0 ∈ E such that lim
t→+∞

sup I(tv0) < 0. Let t0 > 0 be such that
∥t0v0∥ > r and I(t0v0) < 0; define

c := inf
g∈Γ

sup
t∈[0,1]

I(g(t)),

where

Γ :=
{
g ∈ C0([0, 1], E) : g(0) = 0, g(1) = t0v0

}
.

Then c ⩾ ρ > 0, and there exists a (PS)c sequence {uk} ⊂ E for I at level c, i.e.,

lim
k→+∞

I(uk) = c and lim
k→+∞

I ′(uk) = 0 strongly in E ′.

The proof of Proposition 1.23 follows from the next two lemmas.
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Lemma 1.25. The functional I verifies the assumptions of Lemma 1.24.

Proof. Clearly, we have I(0) = 0. We now verify the second assumption of Lemma 1.24.
Recalling the definition (1.38) of the quadratic form Q♯ and using inequality (1.3), for any
u ∈ Ẇ s,p

θ (RN) we obtain

I(u) = 1
p

∥u∥p − 1
p∗

s(β, θ)

∫
RN

|u|p∗
s(β,θ)

|x|β
dx− 1

2p♯
µ(α, θ)

Q♯(u, u)

⩾
1
p

∥u∥p − C1∥u∥p∗
s(β,θ) − 1

2p♯
µ(α, θ)

Q♯(u, u)

⩾
1
p

∥u∥p − C1∥u∥p∗
s(β,θ) − C2∥u∥2p♯

s(δ,θ,µ).

Since s ∈ (0, 1), 0 < α, β < sp + θ < N and µ ∈ (0, N), we have that p∗
s(β, θ) > p

and 2p♯
s(δ, θ, µ) > p∗

s(α, θ) > p. Therefore, there exists r > 0 small enough such that

inf
∥u∥=r

I(u) > 0 = I(0),

so item (2) of Lemma 1.24 are satisfied.
For u ∈ Ẇ s,p

θ (RN) and t ∈ R+, we have

I(tu) = tp

p
∥u∥p − tp

∗
s(β,θ)

p∗
s(β, θ)

∫
RN

|u|p∗
s(β,θ)

|x|β
dx− t2p♯

µ(α,θ)

2p♯
s(δ, θ, µ)

Q♯(u, u);

since 2p♯
s(δ, θ, µ) > p∗

s(α, θ) > p, we deduce that

lim
t→+∞

I(tu) = −∞ for any u ∈ Ẇ s,p
θ (RN).

Consequently, for any fixed v0 ∈ Ẇ s,p
θ (RN), there exists tv0 > 0 such that ∥tv0v0∥ > r and

I(tv0v0) < 0. Thus, item (3) of Lemma 1.24 is satisfied.

From Lemma 1.25 above, we guarante by Lemma 1.24 the existence of a Palais-Smale
sequence {uk} ⊂ Ẇ s,p

θ (RN) such that

lim
k→+∞

I(uk) = c and lim
k→+∞

I ′(uk) = 0 strongly in Ẇ s,p
θ (RN)′.

Moreover, by the definition of c we deduce that c ⩾ ρ > 0. Therefore c > 0 for all function
u ∈ Ẇ s,p

θ (RN) \ {0}.

Lemma 1.26. Let µ ∈ (0, N) and 0 < α < sp + θ. Then, there exists a function
u ∈ Ẇ s,p

θ (RN) \ {0} such that the level c of the functional I satisfies 0 < c < c∗, where c∗

is defined as in (1.61).

Proof. Using (1) and (2) in Proposition 1.22, we obtain the minimizers Uγ,α ∈ Ẇ s,p
θ (RN)

for Sµ(N, s, γ, α) and Vγ,β ∈ Ẇ s,p
θ (RN) for Λ(N, s, γ, β), respectively. Thus, there exist a

function v0 ∈ Ẇ s,p
θ (RN) defined by

v0(x) =


Uγ,α(x), if 2p♯

s(δ, θ, µ) − p

2pp♯
s(δ, θ, µ)

Sµ(N, s, γ, α)
2p

♯
µ(α,θ)

2p
♯
µ(α,θ)−p ⩽ sp−β

p(N−β)Λ(N, s, γ, β)
N−β
sp−β

Vγ,β(x), if 2p♯
s(δ, θ, µ) − p

2pp♯
s(δ, θ, µ)

Sµ(N, s, γ, α)
2p

♯
µ(α,θ)

2p
♯
µ(α,θ)−p > sp−β

p(N−β)Λ(N, s, γ, β)
N−β
sp−β
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and a positive number t0 > 0 such that ∥t0v0∥ > r and I(t0v0) < 0. We can define

c := inf
g∈Γ

sup
t∈[0,1]

I(g(t)),

where

Γ :=
{
g ∈ C0([0, 1], Ẇ s,p

θ (RN)) : g(0) = 0, g(1) = t0v0
}
.

Clearly, we have that c > 0. For the case where v0(x) = Uγ,α(x), we can deduce that

0 < c <
2p♯

s(δ, θ, µ) − p

2pp♯
s(δ, θ, µ)

Sµ(N, s, γ, α)
p

♯
s(δ,θ,µ)

p∗
µ(α,θ)−1 .

In fact, for all t ⩾ 0, by the definition of the functional I, we have that

I(tv0) = I(tUγ,α) ⩽ tp

p
∥Uγ,α∥p − t2p♯

s(δ,θ,µ)

2p♯
s(δ, θ, µ)

Q♯(Uγ,α, Uγ,α) =: f1(t).

It is easy to see that

f ′
1(t) = tp−1∥Uγ,α∥p − t2p♯

s(δ,θ,µ)−1Q♯(Uγ,α, Uγ,α)

= tp−1
[
∥Uγ,α∥p − t2p♯

s(δ,θ,µ)−pQ♯(Uγ,α, Uγ,α)
]
.

So, f ′
1(t̃) = 0 for

t̃ =
(

∥Uγ,α∥p

Q♯(Uγ,α, Uγ,α)

) 1
2p

♯
s(δ,θ,µ)−p

, (1.62)

and this is a point of maximum for f1. Additionally, this maximum value is

f1(t̃) =

(
∥Uγ,α∥p

Q♯(Uγ,α,Uγ,α)

) p

2p
♯
s(δ,θ,µ)−p

p
∥Uγ,α∥p −

(
∥Uγ,α∥p

Q♯(Uγ,α,Uγ,α)

) 2p
♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p

2p♯
s(δ, θ, µ)

Q♯(Uγ,α, Uγ,α)

=
(

∥Uγ,α∥p

Q♯(Uγ,α, Uγ,α)

) p

2p
♯
s(δ,θ,µ)−p ∥Uγ,α∥p

p
−
(

∥Uγ,α∥p

Q♯(Uγ,α, Uγ,α)

) 2p
♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p Q♯(Uγ,α, Uγ,α)

2p♯
s(δ, θ, µ)

= ∥Uγ,α∥
p2

2p
♯
s(δ,θ,µ)−p

+p

pQ♯(Uγ,α, Uγ,α)
p

2p
♯
s(δ,θ,µ)−p

− ∥Uγ,α∥
2pp

♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p

2p♯
s(δ, θ, µ)Q♯(Uγ,α, Uγ,α)

2p
♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p

−1

= ∥Uγ,α∥
2pp

♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p

pQ♯(Uγ,α, Uγ,α)
p

2p
♯
s(δ,θ,µ)−p

− ∥Uγ,α∥
2pp

♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p

2p♯
s(δ, θ, µ)Q♯(Uγ,α, Uγ,α)

p

2p
♯
s(δ,θ,µ)−p

=
[

1
p

− 1
2p♯

s(δ, θ, µ)

]
∥Uγ,α∥

2pp
♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p

Q♯(Uγ,α, Uγ,α)
p

2p
♯
s(δ,θ,µ)−p

=
[

2p♯
s(δ, θ, µ) − p

2pp♯
s(δ, θ, µ)

]
∥Uγ,α∥

2pp
♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p

Q♯(Uγ,α, Uγ,α)
p

2p
♯
s(δ,θ,µ)−p
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=
[

2p♯
s(δ, θ, µ) − p

2pp♯
s(δ, θ, µ)

] ∥Uγ,α∥p

Q♯(Uγ,α, Uγ,α)
p

2p
♯
s(δ,θ,µ)


2p

♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p

=
[

2p♯
s(δ, θ, µ) − p

2pp♯
s(δ, θ, µ)

]
Sµ(N, s, γ, α)

2p
♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p .

Therefore,

sup
t⩾0

I(tUγ,α) ⩽ sup
t⩾0

f1(t) = 2p♯
s(δ, θ, µ) − p

2pp♯
s(δ, θ, µ)

Sµ(N, s, γ, α)
2p

♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p (1.63)

The equality does not hold in (1.63); otherwise, we would have that sup
t⩾0

I(tUγ,α) =

sup
t⩾0

f1(t). Let t1 > 0 be the point where sup
t⩾0

I(tUγ,α) is attained. We have

f1(t1) − t
p∗

s(β,θ)
1
p∗

s(β, θ)

∫
RN

|Uγ,α|p∗
s(β,θ)

|x|β
dx = f1(t̃)

which means that f1(t1) > f1(t̃), since t1 > 0. This contradicts the fact that t̃ is the
unique maximum point for f1. Thus, we have strict inequality in (1.63), that is,

sup
t⩾0

I(tUγ,α) < sup
t⩾0

f1(t) =
2p♯

µ(α, θ) − p

2pp♯
µ(α, θ)

Sµ(N, s, γ, α)
2p

♯
µ(α,θ)

2p
♯
µ(α,θ)−p . (1.64)

Therefore, 0 < c <
2p♯

µ(α,θ)−p

2pp♯
µ(α,θ)

Sµ(N, s, γ, α)
2p

♯
µ(α,θ)

2p
♯
µ(α,θ)−p .

Similarly, for the case of v0(x) = Vγ,β(x), we can verify that

sup
t⩾0

I(tVγ,β) < sp− β

p(N − β)Λ(N, s, γ, β)
N−β
sp−β . (1.65)

In fact, for all t ⩾ 0, by functional I definition we have that

I(tv0) = I(tVγ,β) ⩽ tp

p
∥Vγ,β∥p − tp

∗
s(β,θ)

p∗
s(β, θ)

∫
RN

|u|p∗
s(β,θ)

|x|β
dx := g1(t).

It is easy to see that

g′
1(t) = tp−1∥Vγ,β∥p − tp

∗
s(β,θ)−1

∫
RN

|u|p∗
s(β,θ)

|x|β
dx

= tp−1
[
∥Vγ,β∥p − tp

∗
s(β,θ)−p

∫
RN

|u|p∗
s(β,θ)

|x|β
dx
]
.

So, g1(t̃) = 0 for

t̃ =

 ∥Vγ,β∥p∫
RN

|u|p∗
s(β,θ)

|x|β dx


1

p∗
s(β,θ)−p

,
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and this is a point of maximum for g1. Additionally, this maximum value is

g1(t̃) =

 ∥Vγ,β∥p∫
RN

|u|p
∗
s(β,θ)

|x|β
dx


p

p∗
s(β,θ)−p

p
∥Vγ,β∥p −

 ∥Vγ,β∥p∫
RN

|u|p
∗
s(β,θ)

|x|β
dx


p∗

s(β,θ)
p∗

s(β,θ)−p

p∗
s(β, θ)

∫
RN

|u|p∗
s(β,θ)

|x|β
dx

=

 ∥Vγ,β∥p∫
RN

|u|p∗
s(β,θ)

|x|β dx


p

p∗
s(β,θ)−p

∥Vγ,β∥p

p
−

 ∥Vγ,β∥p∫
RN

|u|p∗
s(β,θ)

|x|β dx


p∗

s(β,θ)
p∗

s(β,θ)−p ∫
RN

|u|p∗
s(β,θ)

|x|β dx
p∗

s(β, θ)

= ∥Vγ,β∥
p2

p∗
s(β,θ)−p

+p

p ·
(∫

RN
|u|p∗

s(β,θ)

|x|β dx
) p

p∗
s(β,θ)−p

− ∥Vγ,β∥
pp∗

s(β,θ)
p∗

s(β,θ)−p

p∗
s(β, θ) ·

(∫
RN

|u|p∗
s(β,θ)

|x|β dx
) p∗

s(β,θ)
p∗

s(β,θ)−p
−1

= ∥Vγ,β∥
pp∗

s(β,θ)
p∗

s(β,θ)−p

p ·
(∫

RN
|u|p∗

s(β,θ)

|x|β dx
) p

p∗
s(β,θ)−p

− ∥Vγ,β∥
pp∗

s(β,θ)
p∗

s(β,θ)−p

p∗
s(β, θ) ·

(∫
RN

|u|p∗
s(β,θ)

|x|β dx
) p

p∗
s(β,θ)−p

=
[

1
p

− 1
p∗

s(β, θ)

] ∥Vγ,β∥p(∫
RN

|u|p∗
s(β,θ)

|x|β dx
) p

p∗
s(β,θ)


p∗

s(β,θ)
p∗

s(β,θ)−p

=
[
p∗

s(β, θ) − p

p · p∗
s(β, θ)

] ∥Vγ,β∥p(∫
RN

|u|p∗
s(β,θ)

|x|β dx
) p

p∗
s(β,θ)


p∗

s(β,θ)
p∗

s(β,θ)−p

= sp+ θ − β

p(N − β)

 ∥Vγ,β∥p(∫
RN

|u|p∗
s(β,θ)

|x|β dx
) p

p∗
s(β,θ)


N−β

sp+θ−β

= sp+ θ − β

p(N − β) Λ(N, s, γ, β)
N−β

sp+θ−β .

Therefore,

sup
t⩾0

I(tVγ,β) ⩽ sup
t⩾0

g1(t) = sp+ θ − β

p(N − β) Λ(N, s, γ, β)
N−β

sp+θ−β . (1.66)

The equality does not hold in (1.66), otherwise, we would have that sup
t⩾0

I(tVγ,β) =

sup
t⩾0

g1(t). Let t1 > 0, where sup
t⩾0

I(tVγ,β) is attained. We have

g1(t1) − t
2p♯

s(δ,θ,µ)
1

2p♯
s(δ, θ, µ)

Q♯(Vγ,α, Vγ,α) = g1(t̃)

which means that g1(t1) > g1(t̃), since t1 > 0. This contradicts the fact that t̃ is the
unique maximum point for g1(t). Thus

sup
t⩾0

I(tVγ,β) < sup
t⩾0

g1(t) = sp+ θ − β

p(N − β) Λ(N, s, γ, β)
N−β

sp+θ−β . (1.67)
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Therefore, 0 < c < sp+θ−β
p(N−β) Λ(N, s, γ, β)

N−β
sp+θ−β .

From the definition (1.61) of c∗ and from inequalities (1.64) and (1.67), we have

0 < c < c∗ := min
2p♯

s(δ, θ, µ) − p

2pp♯
s(δ, θ, µ)

Sµ(N, s, γ, α)
2p

♯
s(δ,θ,µ)

2p
♯
s(δ,θ,µ)−p ,

sp+ θ − β

p(N − β) Λ(N, s, γ, β)
N−β

sp+θ−β

 .
The lemma is proved.

Proof of Proposition 1.23. Follows immediately from Lemmas 1.25 and 1.26.

Proposition 1.27. Let s ∈ (0, 1), N > sp + θ, α = 0 < β < sp + θ or β = 0 < α <
sp + θ, µ ∈ (0, N) and 0 ⩽ γ < γH . Consider the functional I defined in (1.59) on the
Banach space Ẇ s,p

θ (RN). Then there exists a (PS) sequence {uk} ⊂ Ẇ s,p
θ (RN) for I at

some c ∈ (0, c∗), i.e.,

lim
k→+∞

I(uk) = c and lim
k→+∞

I ′(uk) = 0 strongly in Ẇ s,p
θ (RN)′,

where c∗ is defined in (1.61).

Proof. The proof is similar to that of Proposition 1.23. Since 0 ⩽ γ < γH , using items
(3) and (4) in Proposition 1.22, we obtain a minimizer Uγ,0 ∈ Ẇ s,p

θ (RN) for Sµ(N, s, γ, 0)
and Vγ,0 ∈ Ẇ s,p

θ (RN) for Λ(N, s, γ, 0). The rest is standard.

Conclusion of the proof of Theorem 0.1

The existence of a solution will follow from the proof of the Theorem 0.1.

Proof of Theorem 0.1. Suppose that s ∈ (0, 1), 0 < α, β < sp+ θ, µ ∈ (0, N) and γ < γH .
Let {uk}k∈N ⊂ Ẇ s,p

θ (RN) be a Palais-Smale sequence (PS)c as in Proposition 1.23,
i.e.,

I(uk) → c, I ′(uk) → 0 strongly in Ẇ s,p
θ (RN)′ as k → +∞.

Then

I(uk) = 1
p

∥uk∥p − 1
p∗

s(β, θ)

∫
RN

|uk|p∗
s(β,θ)

|x|β
dx− 1

2p♯
s(δ, θ, µ)

Q♯(uk, uk) = c+ o(1) (1.68)

and

⟨I ′(uk), uk⟩ = ∥uk∥p −
∫
RN

|uk|p∗
s(β,θ)

|x|β
dx−Q♯(uk, uk) = o(1). (1.69)

From (1.68) and (1.69), if 2p♯
s(δ, θ, µ) ⩾ p∗

s(β, θ) > p, we have

c+ o(1)∥uk∥ = I(uk) − 1
p∗

s(β, θ)
⟨I ′(uk), uk⟩

= 1
p

∥uk∥p − 1
p∗

s(β, θ)

∫
RN

|uk|p∗
s(β,θ)

|x|β
dx− 1

2p♯
s(δ, θ, µ)

Q♯(uk, uk)

− 1
p∗

s(β, θ)
∥uk∥p + 1

p∗
s(β, θ)

∫
RN

|uk|p∗
s(β,θ)

|x|β
dx+ 1

p∗
s(β, θ)

Q♯(uk, uk)
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= p∗
s(β, θ) − p

p · p∗
s(β, θ)

∥uk∥p +
(

1
p∗

s(β, θ)
− 1

2p♯
s(δ, θ, µ)

)
Q♯(uk, uk)

⩾
p∗

s(β, θ) − p

p · p∗
s(β, θ)

∥uk∥p.

From (1.68) and (1.69), if p∗
s(β, θ) > 2p♯

s(δ, θ, µ) > p, we have

c+ o(1)∥uk∥ = I(uk) − 1
2p♯

s(δ, θ, µ)
⟨I ′(uk), uk⟩

= 1
p

∥uk∥p − 1
p∗

s(β, θ)

∫
RN

|uk|p∗
s(β,θ)

|x|β
dx− 1

2p♯
s(δ, θ, µ)

Q♯(uk, uk)

− 1
2p♯

s(δ, θ, µ)
∥uk∥p + 1

2p♯
s(δ, θ, µ)

∫
RN

|uk|p∗
s(β,θ)

|x|β
dx+ 1

2p♯
s(δ, θ, µ)

Q♯(uk, uk)

= 2p♯
s(δ, θ, µ) − p

p · 2p♯
s(δ, θ, µ)

∥uk∥p +
(

1
2p♯

s(δ, θ, µ)
− 1
p∗

s(β, θ)

)∫
RN

|uk|p∗
s(β,θ)

|x|β
dx

⩾
2p♯

s(δ, θ, µ) − p

p · 2p♯
s(δ, θ, µ)

∥uk∥p.

Thus, {uk}k∈N is bounded Ẇ s,p
θ (RN), so from the estimate (1.69) there exists a subse-

quence, still denoted by {uk}k∈N ⊂ Ẇ s,p
θ (RN), such that

∥uk∥p → b,
∫
RN

|uk|p∗
s(β,θ)

|x|β
dx → d1, Q♯(uk, uk) → d2,

as k → +∞; additionally,

b = d1 + d2.

By the definitions of Λ(N, s, γ, β) and Sµ(N, s, γ, α), we get

d
p

p∗
s(β,θ)

1 Λ(N, s, γ, β) ⩽ b = d1 + d2, d

1
p

♯
s(δ,θ,µ)

2 Sµ(N, s, γ, α) ⩽ b = d1 + d2.

From the first inequality we have d
p

p∗
s(β,θ)

1 Λ(N, s, γ, β) − d1 ⩽ d2, that is

d
p

p∗
s(β,θ)

1

(
Λ(N, s, γ, β) − d

p∗
s(β,θ)−p

p∗
s(β,θ)

1

)
⩽ d2. (1.70)

And from the second inequality we have d
1

p
♯
s(δ,θ,µ)

2 Sµ(N, s, γ, α) − d2 ⩽ d1, that is,

d

1
p

♯
s(δ,θ,µ)

2

Sµ(N, s, γ, α) − d

p
♯
s(δ,θ,µ)−1

p
♯
s(δ,θ,µ)

2

 ⩽ d1. (1.71)

Claim 1. We have

Λ(N, s, γ, β) − d
p∗

s(β,θ)−p

p∗
s(β,θ)

1 > 0, Sµ(N, s, γ, α) − d

p
♯
s(δ,θ,µ)−1

p
♯
s(δ,θ,µ)

2 > 0.
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Proof. In fact, since c+ o(1)∥uk∥ = I(uk) − 1
p
⟨I ′(uk), uk⟩, we have

I(uk) − 1
p

⟨I ′(uk), uk⟩ = 1
p

∥uk∥p − 1
p∗

s(β, θ)

∫
RN

|uk|p∗
s(β,θ)

|x|β
dx− 1

2p♯
µ(α, θ)

Q♯(uk, uk)

− 1
p

∥uk∥p + 1
p

∫
RN

|uk|p∗
s(β,θ)

|x|β
dx+ 1

p
Q♯(uk, uk)

=
(

1
p

− 1
p∗

s(β, θ)

)∫
RN

|uk|p∗
s(β,θ)

|x|β
dx+

(
1
p

− 1
2p♯

µ(α, θ)

)
Q♯(uk, uk)

= c+ o(1)∥uk∥.

Passing to the limit as k → +∞, we get(
1
p

− 1
p∗

s(β, θ)

)
d1 +

(
1
p

− 1
2p♯

µ(α, θ)

)
d2 = c; (1.72)

so,

d1 ⩽

(
1
p

− 1
p∗

s(β, θ)

)−1

c = p(N − β)
sp+ θ − β

c, d2 ⩽

(
1
p

− 1
2p♯

µ(α, θ)

)−1

c = 2pp♯
s(δ, θ, µ)

2p♯
s(δ, θ, µ) − p

c.

Using these upper bounds for d1, d2 and the fact 0 < c < c∗, we have

Λ(N, s, γ, β) − d
p∗

s(β,θ)−p

p∗
s(β,θ)

1

⩾ Λ(N, s, γ, β) −
[
p(N − β)
sp+ θ − β

c

] p∗
s(β,θ)−p

p∗
s(β,θ)

> Λ(N, s, γ, β) −
[
p(N − β)
sp+ θ − β

c∗
] p∗

s(β,θ)−p

p∗
s(β,θ)

⩾ Λ(N, s, γ, β) −
[
p(N − β)
sp+ θ − β

· (sp+ θ − β)
p(N − β) Λ(N, s, γ, β)

N−β
(sp+θ−β)

] p∗
s(β,θ)−p

p∗
s(β,θ)

= Λ(N, s, γ, β) − Λ(N, s, γ, β) = 0.

Similarly,

Sµ(N, s, γ, α) − d

p
♯
s(δ,θ,µ)−1

p
♯
s(δ,θ,µ)

2

⩾ Sµ(N, s, γ, α) −
[

2pp♯
s(δ, θ, µ)

2p♯
s(δ, θ, µ) − p

c

] p
♯
s(δ,θ,µ)−1

p
♯
s(δ,θ,µ)

> Sµ(N, s, γ, α) −
[

2pp♯
s(δ, θ, µ)

2p♯
s(δ, θ, µ) − p

c∗
] p

♯
s(δ,θ,µ)−1

p
♯
s(δ,θ,µ)

⩾ Sµ(N, s, γ, α)
 2pp♯

s(δ, θ, µ)
(2p♯

s(δ, θ, µ) − p)
· (2p♯

s(δ, θ, µ) − p)
2pp♯

s(δ, θ, µ)
Sµ(N, s, γ, α)

p
♯
s(δ,θ,µ)

p
♯
s(δ,θ,µ)−1


p

♯
s(δ,θ,µ)−1

p
♯
s(δ,θ,µ)

= Sµ(N, s, γ, α) − Sµ(N, s, γ, α) = 0.

This concludes the proof of the claim.
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Following up, inequalities (1.70) and (1.71) imply, respectively, thatΛ(N, s, γ, β) −
(
p(N − β)
sp+ θ − β

c

) p∗
s(β,θ)−p

p∗
s(β,θ)

 d p
p∗

s(β,θ)
1

⩽

[
Λ(N, s, γ, β) − d

p∗
s(β,θ)−p

p∗
s(β,θ)

1

]
d

p
p∗

s(β,θ)
1 ⩽ d2

and Sµ(N, s, γ, α) −
(

2pp♯
s(δ, θ, µ)

2p♯
s(δ, θ, µ) − p

c

) p
♯
s(δ,θ,µ)−1

p
♯
s(δ,θ,µ)

 d
1

p
♯
s(δ,θ,µ)

2

⩽

Sµ(N, s, γ, α) − d

p
♯
s(δ,θ,µ)−1

p
♯
s(δ,θ,µ)

2

 d 1
p

♯
s(δ,θ,µ)

2 ⩽ d1.

If d1 = 0 and d2 = 0, then (1.72) implies that c = 0, which is in contradiction with
c > 0. Therefore, d1 > 0 and d2 > 0 and we can choose ϵ0 > 0 such that d1 ⩾ ϵ0 > 0 and
d2 ⩾ ϵ0 > 0; moreover, there exists a K > 0 such that

∫
RN

|uk|p∗
s(β,θ)

|x|β
dx > ϵ0

2 , Q♯(uk, uk) > ϵ0

2

for every k > K. Then the inequality (1.3), the embeddings (1.4), and the improved
Sobolev inequality (1.8) imply that there exists C1, C2 > 0 such that

0 < C2 ⩽ ∥uk∥Lp,N−sp−θ+pr
M (RN ,|y|−pr) ⩽ C1,

where r = α
p∗

s(α,θ) . For any k > K, we may find λk > 0 and xk ∈ RN such that

λ
(N−sp−θ+pr)−N
k

∫
Bλk

(xk)

|uk(y)|p
|y|pr

dy > ∥uk∥p

Lp,N−sp−θ+pr
M (RN ,|y|−pr)

− C

2k ⩾ C̃ > 0.

Now we define the sequence {vk}k∈N ⊂ Ẇ s,p
θ (RN) by vk(x) = λ

N−sp−θ
p

k uk(λkx). As we have
already shown, ∥vk∥ = ∥uk∥ ⩽ C for every k ∈ N; so, there exists a v ∈ Ẇ s,p

θ (RN) such
that, after passage to subsequence, still denoted in the same way,

vk ⇀ v in Ẇ s,p
θ (RN)

as k → +∞. In a fashion similar to the proof of Proposition 1.22-(1), we can prove that
v ̸≡ 0.

In addition, the boundedness of the sequence {vk}k∈N ⊂ Ẇ s,p
θ (RN) implies that the

sequence {|vk|p∗
s(β,θ)−2vk}k∈N ⊂ L

p∗
s(β,θ)

p∗
s(β,θ)−1 (RN , |x|−β) is bounded also. In fact, by embed-

dings (1.4), we obtain

∫
RN

∣∣∣|vk|p∗
s(β,θ)−2 · vk

∣∣∣ p∗
s(β,θ)

p∗
s(β,θ)−1

|x|β
dx =

∫
RN

∣∣∣|vk|p∗
s(β,θ)−1

∣∣∣ p∗
s(β,θ)

p∗
s(β,θ)−1

|x|β
dx
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=
∫
RN

|vk|p∗
s(β,θ)

|x|β
dx < C.

Then, after passage to subsequence, still denoted in the same way, we deduce that

|vk|p∗
s(β,θ)−2vk ⇀ |v|p∗

s(β,θ)−2v in L
p∗

s(β,θ)
p∗

s(β,θ)−1 (RN , |x|−β) (1.73)

as k → +∞.
For any ϕ ∈ Lp∗

s(α,θ)(RN , |x|−α), Lemma 1.18 implies that

lim
k→∞

∫
RN

[Iµ ∗ Fα(·, vk)] (x)fα(x, vk)ϕ(x)dx =
∫
RN

[Iµ ∗ Fα(·, v)] (x)fα(x, v)ϕ(x).dx.
(1.74)

Since Ẇ s,p
θ (RN) ↪→ Lp∗

s(α,θ)(RN , |x|−α), (1.74) holds for any ϕ ∈ Ẇ s,p
θ (RN).

Finally, we need to check that {vk}k∈N ⊂ Ẇ s,p
θ (RN) is also a (PS)c sequence for the

functional I at energy level c. For this, the norms in Ẇ s,p
θ (RN) and Lp∗

s(α,θ)(RN , |x|−α)
are invariant under the special dilatation vk = λ

N−sp−θ
p

k uk(λkx). In fact

∥vk∥p

Ẇ s,p
θ

(RN ) =
∫∫

R2N

|vk(x) − vk(y)|p
|x|θ1 |x− y|N+sp|y|θ2

dxdy

=
∫∫

R2N

∣∣∣∣∣λN−sp−θ
p

k uk(λkx) − λ
N−sp−θ

p

k uk(λky)
∣∣∣∣∣
p

|x|θ1 |x− y|N+sp|y|θ2
dxdy

=
∫∫

R2N

λN−sp−θ
k |uk(λkx) − uk(λky)|p

|x|θ1 |x− y|N+sp|y|θ2
dxdy

=
∫∫

R2N

λN−sp−θ
k |uk(x̄) − uk(ȳ)|p

λ−θ1
k |x̄|θ1|x̄− ȳ|N+spλ−θ2

k |ȳ|θ2λ−N−sp
k

dx̄
λN

k

dȳ
λN

k

=
∫∫

R2N

|uk(x̄) − uk(ȳ)|p
|x̄|θ1 |x− y|N+sp|ȳ|θ2

dx̄dȳ

= ∥uk∥p

Ẇ s,p
θ

(RN )

and

∥vk∥p∗
s(α,θ)

Lp∗
s(α,θ) =

∫
RN

|vk(x)|p∗
s(α,θ)

|x|α

=
∫
RN

λ
N−sp−θ

p
p∗

s(α,θ)
k |uk(λkx)|p∗

s(α,θ))
|x|α

dx

=
∫
RN

λN−α
k |uk(λkx)|p∗

s(α,θ))
|x|α

dx

=
∫
RN

λN−α
k |uk(x̄)|p∗

s(α,θ))
λ−α

k |x̄|α
dx̄
λN

=
∫
RN

|uk(x̄)|p∗
s(α,θ)

|x̄|α
dx̄

= ∥uk∥p∗
s(α,θ)

Lp∗
s(α,θ) .
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Thus, we have

lim
k→+∞

I(vk) = c.

Moreover, for all ϕ ∈ Ẇ s,p
θ (RN), we have ϕk(x) = λ

N−sp−θ
p

k ϕ (x/λk) ∈ Ẇ s,p
θ (RN). From

I ′(uk) → 0 in Ẇ s,p
θ (RN)′ as k → +∞, we can deduce that

lim
k→+∞

⟨I ′(vk), ϕ⟩ = lim
k→+∞

⟨I ′(uk), ϕ⟩ = 0.

Thus (1.73) and (1.74) lead to

⟨I ′(v), ϕ⟩ = lim
k→+∞

⟨I ′(vk), ϕ⟩ = 0.

Hence v is a nontrivial weak solution to problem 1.

Proof of Theorem 0.2. The proof follows the same steps of the proof of Theorem 0.1. Here
we only remark that for problem (4) with a Hardy potential and double Sobolev type
nonlinearities we have to define the value below which we can recover the compactness of
the Palais-Smale sequences by

c∗ := min
k∈{1,2}

{
sp+ θ − βk

p(N − βk) Λ(N, s, γ, βk)
N−βk

sp+θ−βk

}
.

Similarly, for problem (5) with a Hardy potential and double Choquard type nonlinearities
we have to define the corresponding number by

c∗ := min
k∈{1,2}

2p♯
s(δk, θ, µk) − p

2pp♯
s(δk, θ, µk)

Sµk
(N, s, γ, α)

2p
♯
s(δk,θ,µk)

2p
♯
s(δk,θ,µk)−p

 .
The details are omitted.
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Chapter 2

Fractional Sobolev-Choquard critical
systems with Hardy term and
weighted singularities

2.1 Historical background
The fractional Laplacian

There are many equivalent definitions of the fractional Laplacian. In our case, on the
Euclidean space RN of dimension N ⩾ 1, for θ = θ1 + θ2 and the above specified intervals
for the parameters, we define the non-local elliptic p-Laplacian operator with the help of
the Cauchy’s principal value integral as in (3).

For problems with two nonlinearities involving the Laplacian operator, see Filipucci,
Pucci & Robert [42]. For similar problems involving the fractional Laplacian, see Servadei
& Valdinoci [81], Ghoussoub & Shakerian [47], Chen & Squassina [30] Chen [27, 28],
Assunção, Silva & Miyagaki [14]. For a survey paper on the subject of fractional Sobolev
spaces, see Di Nezza, Palatucci & Valdinoci [39]; see also Molica Bisci, Rădulescu &
Servadei [66].

The Choquard equation

On the Euclidean space RN of dimension N ⩾ 1 and for x ∈ RN , the equation −∆u +
V (x)u = (Iµ ∗ |u|q)|u|q−2u was introduced by Choquard in the case N = 3 and q = 2
to model a certain approximation to Hartree-Fock theory of one-component plasma and
to describe a electron trapped in its own hole. Also in this situation it finds physical
significance in the work by Frölich and Pekar on the description of the quantum mechanics
of a polaron at rest. When V (x) ≡ 1, the groundstate solutions exist if 2♭ := 2(N −
µ/2))/N < q < 2(N − µ/2)/(N − 2s) := 2♯ due to the mountain pass lemma or the
method of the Nehari manifold, while there are no nontrivial solution if q = 2♭ or if q = 2♯

as a consequence of the Pohozaev identity.
In general, the associated Schrödinger-type evolution equation i∂tψ = ∆ψ +

(
Iµ ∗

|ψ|2
)
ψ is a model for large systems of atoms with an attractive interaction that is weaker

and has a longer range than that of the nonlinear Schrödinger equation. Standing wave
solutions of this equation are solutions to the Choquard equation. For more information
on the various results related to the non-fractional Choquard-type equations and their



66

variants see Moroz & Van Schaftingen [68] and Mukherjee & Sreenadh [71].

The Morrey spaces

The study of Morrey spaces is motivated by many reasons. Initially, these spaces were
introduced by Morrey in order to understand the regularity of solutions to elliptic partial
differential equations. Regularity theorems, which allow one to conclude higher regularity
of a function that is a solution of a differential equation together with a lower regularity
of that function, play a central role in the theory of partial differential equations. One
example of this kind of regularity theorem is a version of the Sobolev embedding theorem
which states that W j+m,p(Ω) ⊂ Cj,λ(Ω) for 0 < λ ⩽ m−N/p, where j ∈ N and Ω ⊂ RN

is a Lipschitz domain.
Morrey spaces can complement the boundedness properties of operators that Lebesgue

spaces can not handle. In line with this, many authors study the boundedness of various
integral operators on Morrey spaces. The theory of Morrey spaces may come in useful
when the Sobolev embedding theorem is not readily available. For more information on
Morrey spaces, see Gantumur [46] and Sawano [78].

Systems of fractional elliptic equations

The subject of two or more fractional elliptic equations have been widely studied in recent
years. We devote this section on briefly glimpsing the results that have already been
proved in the context of existence, non-existence, uniqueness and multiplicity of solutions
to systems of fractional elliptic equations.

Liu & Wang [63] gave a sufficient condition on large coupling coefficients for the exis-
tence of a nontrivial ground state solution in a system of nonlinear Schrödinger equation;
they also considered bound state solutions. Chen & Deng [29] investigated the existence
of two nontrivial solutions to the fractional p-Laplacian system involving concave-convex
nonlinearities via the Nehari method. Chen [25] obtained the existence of infinitely many
nonnegative solutions for a class of the quasilinear Schrödinger system in RN in the Lapla-
cian setting and investigate the multiplicity of solutions for a p-Kirchhoff system driven by
a non-local integro-differential operator with zero Dirichlet boundary data. Xiang, Zhang
& Rădulescu [91] studied the multiplicity of solutions for a p–Kirchhoff system driven
by a non-local integro-differential operator with zero Dirichlet boundary data. Chen &
Squassina [30] used Nehari manifold techniques to obtain the existence of multiple solu-
tions to a fractional p–Laplacian system involving critical concave-convex nonlinearities.
Fiscella, Pucci & Saldi [43], using several variational methods, dealt with the existence
of nontrivial nonnegative solutions of Schrödinger–Hardy systems driven by two possibly
different fractional p–Laplacian operators. The main features of this paper is the presence
of the Hardy term and the fact that the nonlinearities do not necessarily satisfy the Am-
brosetti–Rabinowitz condition. Wang, Zhang & Zhang [89] are interested in a fractional
Laplacian system in the whole space RN , which involves critical Sobolev-type nonlinear-
ities and critical Hardy-Sobolev-type nonlinearities. Yang [94] considered the existence
of nontrivial weak solutions to a doubly critical system involving fractional Laplacian in
RN with subcritical weight. More recently, Lu & Shen [64] studied a critical fractional p-
Laplacian system with homogeneous nonlinearity; they used a concentration compactness
principle associated with fractional p-Laplacian system for the fractional order Sobolev
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spaces in bounded domains, which is significantly more difficult to prove than in the case
of a single fractional p-Laplacian equation and is of independent interest.

Most of the existing results have been developed for systems with two equations.
For a general system, Lin & Wei [60, 61] studied a system with several coupled nonlinear
Schrödinger equations in the whole space up to three dimensions which has some appli-
cations in nonlinear optics. The existence of ground state solutions may depend on the
coupling constants that model the interaction between the components of the system. If
a constant is positive, the interaction is attractive; otherwise, it is repulsive. When all the
constants are positive and some associated matrix is positively definite, they proved the
existence of a radially symmetric ground state solution; however, if all the constants are
negative, our if one of them is negative and the matrix is positively definite, there is no
ground state solution. They also obtained the existence of a bound state solution which
is non-radially symmetric in the three dimensional case.

Our contribution to the problem and some of its difficulties

The present work is motivated by Assunção, Miyagaki & Siqueira [13], Wang, Zhang &
Zhang [89] and Yang [94]. Our existence result can be regarded as an extension and
improvement of the corresponding existence results in these works. More precisely, we
will extend the result in [13] to a system of coupled equations in RN with the general
fractional p-Laplacian with p > 1 and θ = θ1 + θ2 not necessarily zero. Moreover, we use
a refinement of Sobolev inequality that is related to Morrey space because our problem
involves doubly critical exponents. As one can expect, the non-locality of the fractional
p-Laplacian makes it more difficult to study. In our case, one of the main difficulties when
dealing with this problem is the lack of compactness of Sobolev embedding theorem for
the critical exponent. Therefore, we have to develop a precise analysis of the level of the
Palais-Smale sequences obtained with the application of the mountain pass theorem and
study their behavior concerning strong convergence of one of its scaled subsequences.

2.2 Existence of solutions for auxiliary minimization
problems

We begin this section by introducing two important and sharp Rayleigh-Ritz constants.
The first one is related to the Gagliardo seminorm, the Hardy term, and a convolution
involving the upper Stein-Weiss exponent,

S♯ := inf
(u,v)∈W \{0}

∥(u, v)∥p
W

(Q♯(u, v))
p

2p
♯
s(δ,θ,µ)

, (2.1)

where the quadratic form Q♯ : W → R is given by

Q♯(u, v) :=
∫∫

R2N

|u(x)|p♯
s(δ,θ,µ)|u(y)|p♯

s(δ,θ,µ) + |v(x)|p♯
s(δ,θ,µ)|v(y)|p♯

s(δ,θ,µ)

|x|δ|x− y|µ|y|δ
dx dy . (2.2)

The second one is related to the Gagliardo seminorm, ther Hardy term, and the norm
in the critical weighted Lebesgue space, that is, the Sobolev constant,

S∗ := inf
(u,v)∈W \{0}

∥(u, v)∥p
W

(Q∗(u, v))
p

p∗
s(β,θ)

, (2.3)
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where the quadratic form Q∗ : W → R is given by

Q∗(u, v) :=
∫
RN

|u(x)|p∗
s(β,θ) + |v(x)|p∗

s(β,θ) + η|u(x)|a|v(x)|b
|x|β

dx . (2.4)

For general p ̸= 2, the explicit formula for the extremal functions for the p-fractional
Sobolev inequality is not known yet, though it is conjectured that it is of the form

U(x) = C

(1 + |x|
p

p−1 )
N−sp

p

up to translation and scaling. However, there is a result about the asymptotic behavior
of U , as seen in Brasco, Mosconi & Squassina [20] and Mosconi, Perera, Squassina &
Yang [69].

One of the first major difficulties that we encounter is the lack of an explicit formula
for a minimizer of the quantity S∗. There is a conjecture about the minimizers which
states that they have the form

U(x) = c

[1 + (|x− x0|/ε))
p

p−1 ]
N−sp

p

where C ̸= RN , x0 ∈ RN , and ε ∈ R+. This conjecture was proved by Lieb [58] in the
case p = 2; however, for p ̸= 2 it is not even known if these functions are minimizers. To
overcome this difficulty, we will work with some asymptotic estimates for minimizers re-
cently obtained by Brasco, Mosconi & Squassina [21]; see also Mosconi, Perera, Squassina
& Yang [69].

Proposition 2.1. For s ∈ (0, 1) the best constants S♯ and S∗ verify the following items.

1. If 0 < α < sp+ θ < N, µ ∈ (0, N) and γ < γH , then S♯ is attained in W ;

2. If 0 < β < sp+ θ < N and γ < γH , then S∗ is attained in W .

Proof. 1. If 0 < α < sp+ θ < N and γ < γH , let {(uk, vk)}k∈N ⊂ W be a minimizing
sequence of S♯ such that

Q♯(uk, vk) = 1, ∥(uk, vk)∥p → S♯ (2.5)

as k → +∞. Recall that r = α
p∗

s(α,θ) . In the same way that we argued in (1.41) on
the page 45, the embeddings (1.4) and the Caffarelli-Kohn-Nirenberg’s inequality (1.8)
enables us to find C1, C2 > 0 such that

C1 ⩽ ∥uk∥
L

q,
N−sp−θ

p q+qr

M (RN ,|y|−pr)
⩽ C2. (2.6)

For any k ∈ N large enough, we may find λk > 0 and xk ∈ RN such that

λ−sp−θ+pr
k

∫
Bλk(xk)

|uk(y)|p
|y|pr

dy > ∥uk∥p

Lp,N−sp−θ+pr
M (RN ,|y|−pr)

− C

2k ⩾ C > 0

for constants C ∈ R+.
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Our goal is to pass to the limit as k → +∞ in the minimizing sequence. To do this,
we adapt the Levy’s concentration principle; more precisely, we create another sequence
that will help us to control the radius and the centers of these balls. Let

ũk(x) = λ
N−sp−θ

p

k uk(λkx) and ṽk(x) = λ
N−sp−θ

p

k vk(λkx)

be the appropriate scaling for the class of problems that we consider. Then, in the same
way as we do in the equation (1.42) on the page 45, we have∫

B1

(
xk
λk

) |ũk(x)|p
|x|pr

dx ⩾ C > 0 and
∫

B1

(
xk
λk

) |ṽk(x)|p
|x|pr

dx ⩾ C > 0. (2.7)

Now we claim that S♯ is invariant under the previously defined dilation.
In fact, Q♯(ũk, ṽk) = 1. To show this property, we use the change of variables x̄ = λkx

and ȳ = λky, we have

Q♯(ũk, ṽk) =
∫∫

R2N

|uk(x)|p♯
s|uk(y)|p♯

s

|x|δ|x− y|µ|y|δ
dxdy +

∫∫
R2N

|vk(y)|p♯
s|vk(y)|p♯

s

|x|δ|x− y|µ|y|δ
dxdy

=
∫∫

R2N
λ

N−sp−θ
p

2p♯
s

k,1
|uk(λkx)|p♯

s |uk(λk,1y)|p♯
s

|x|δ|x− y|µ|y|δ
dx dy

+
∫∫

R2N
λ

N−sp−θ
p

2p♯
s

k

|vk(λkx)|p♯
s|vk(λky)|p♯

s

|x|δ|x− y|µ|y|δ
dx dy

=
∫∫

R2N

|uk(x̄)|p♯
s|uk(ȳ)|p♯

s

|x̄|δ|x̄− ȳ|µ|ȳ|δ
dx̄dȳ +

∫∫
R2N

|vk(x̄)|p♯
s|vk(ȳ)|p♯

s

|x̄|δ|x̄− ȳ|µ|ȳ|δ
dx̄dȳ

= Q♯(uk, vk) = 1.

Furthermore, ∥(ũk, ṽk)∥p → S♯. In fact, we know that {(ũk, ṽk)}k∈N is a minimizing
sequence for S♯. Using the same change of variables x̄ = λkx and ȳ = λky, we obtain

∥(ũk, ṽk)∥p =
∫∫

R2N

|uk(x) − uk(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy +
∫∫

R2N

|vk(x) − vk(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy

− γ1

∫
RN

|uk|p

|x̄|sp+θ
dx− γ2

∫
RN

|vk|p

|x̄|sp+θ
dx̄

=
∫∫

R2N
λN−sp−θ

k,1
|uk(λkx) − uk(λky)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy

+
∫∫

R2N
λN−sp−θ

k

|vk(λkx) − vk(λky)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy

− γ1

∫
RN
λN−sp−θ

k

|uk|p

|x|sp+θ
dx− γ2

∫
RN
λN−sp−θ

k,2
|vk|p

|x|sp+θ
dx

=
∫∫

R2N

|uk(x̄) − uk(ȳ)|p
|x̄|θ1|x̄− ȳ|N+sp|ȳ|θ2

dx̄dȳ +
∫∫

R2N

|vk(x̄) − vk(ȳ)|p
|x̄|θ1|x̄− ȳ|N+sp|ȳ|θ2

dx̄dȳ

− γ1

∫
RN

|uk|p

|x̄|sp+θ
dx− γ2

∫
RN

|vk|p

|x̄|sp+θ
dx̄

= ∥(uk, vk)∥p.

And since ∥(uk, vk)∥p → S♯ as k → +∞, we deduce that ∥(ũk, ṽk)∥p → S♯ as k → +∞.
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In this way, the sequence {(ũk, ṽk)}k∈N ⊂ W is also a minimizing sequence for S♯

such that we have

Q♯(ũk, ṽk) = 1, ∥(ũk, ṽk)∥p → S♯. (2.8)

Consider {x̃k} = {xk

λk
}, from inequality (2.7) together with Hölder’s inequality

0 < C ⩽
∫

B1(x̃k)

|ũk(x)|p
|x|pr

dx

⩽

(∫
B1(x̃k)

1dx
)1− p

p∗
s(α,θ)

∫
B1(x̃k)

(
|ũk(x)|p

|x|pr

) p∗
s(α,θ)

p

dx


p

p∗
s(α,θ)

⩽ C

(∫
B1(x̃k)

|ũk(x)|p∗
s(α,θ)

|x|α
dx
) p

p∗
s(α,θ)

.

Therefore, (∫
B1(x̃k)

|ũk(x)|p∗
s(α,θ)

|x|α
dx
) p

p∗
s(α,θ)

⩾ C > 0. (2.9)

We claim that the sequence {x̃k} ⊂ RN of the centers of the balls is bounded. We
argue by contradiction and suppose that |x̃k| → +∞ as k → +∞; then for any x ∈ B1(x̃k),
we have |x| ⩾ |x̃k| − 1 for k ∈ N large enough. By Hölder’s inequality, we obtain∫

B1(x̃k)

|ũk(x)|p∗
s(α,θ)

|x|α
dx ⩽

1
(|x̃k| − 1)α

∫
B1(x̃k)

|ũk(x)|p∗
s(α,θ)dx

⩽
C

(|x̃k| − 1)α

(∫
B1(x̃k)

|ũk(x)|p∗
s(0,θ)dx

) p∗
s(α,θ)

p∗
s(0,θ)

⩽
C

(|x̃k| − 1)α
∥ũk(x)∥p∗

s(α,θ)
Lp∗

s(0,θ)

⩽
C

(|x̃k| − 1)α
∥uk(x)∥p∗

s(α,θ)
Ẇ s,p

θ
(RN )

⩽
C

(|x̃k| − 1)α
→ 0 (k → +∞)

where we used the boundedness of the minimizing sequence {ũk}k∈N ⊂ Ẇ s,p
θ (RN). This

is a contradiction with inequality (2.9) and this implies that the sequence {x̃k} ⊂ RN is
bounded.

From inequality (2.7) and the boundedness of the sequence {x̃k} ⊂ RN of the centers
of the balls, we may find R > 0 such that BR(0) contains all balls of center x̃k and radius
1; moreover, with ∫

BR(0)

|ũk(x)|p
|x|pr

dx ⩾ C1 > 0. (2.10)

Since ∥(ũk, ṽk)∥ = ∥(uk, vk)∥ ⩽ C for k ∈ N large enough, there exists a function pair
(ũ, ṽ) ∈ W such that

(ũk, ṽk) ⇀ (ũ, ṽ) weakly in Ẇ s,p
θ (RN) × Ẇ s,p

θ (RN) (2.11)
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(ũk, ṽk) → (ũ, ṽ) a.e. on RN × RN , (2.12)

as k → +∞, up to subsequences. According to Lemma 1.12, we have(
ũk

|x|r
,
ṽk

|x|r
)

→
(
ũ

|x|r
,
ṽ

|x|r
)

in Lp
loc(RN) × Lp

loc(RN);

hence, ∫
BR(0)

|ũ(x)|p
|x|pr

dx ⩾ C1 > 0,

and we deduce that ũ ̸≡ 0. Similarly we can get ṽ ̸≡ 0.
We can verify in the same way as we did in (1.17) that

1 = Q♯(ũk, ṽk) = Q♯(ũk − ũ, ṽk − ṽ) +Q♯(ũ, ṽ) + o(1). (2.13)

By a Brézis-Lieb’s lemma, we obtain

∫
RN

(
Iµ ∗ |ũk − ũ|

|y|δ
p♯

s) |ũk − ũ|
|x|δ

p♯
s

dx+
∫
RN

(
Iµ ∗ |ũ|

|y|δ
p♯

s) |ũ|
|x|δ

p♯
s

dx

=
∫
RN

(
Iµ ∗ |ũk|

|y|δ
p♯

s) |ũk|
|x|δ

p♯
s

dx+ o(1), (2.14)

and
∫
RN

(
Iµ ∗ |ṽk − ṽ|

|y|δ
p♯

s) |ṽk − ṽ|
|x|δ

p♯
s

dx+
∫
RN

(
Iµ ∗ |ṽ|

|y|δ
p♯

s) |ṽ|
|x|δ

p♯
s

dx

=
∫
RN

(
Iµ ∗ |ṽk|

|y|δ
p♯

s) |ṽk|
|x|δ

p♯
s

dx+ o(1), (2.15)

Therefore, by definition (2.1), by weak convergence (ũk, ṽk) ⇀ (ũ, ṽ) in Ẇ s,p
θ (RN) ×

Ẇ s,p
θ (RN) together with the Brézis–Lieb lemma and by the estimate (2.13), we have

S♯ = lim
k→∞

∥(ũk, ṽk)∥p

= ∥(ũ, ṽ)∥p + lim
k→∞

∥(ũk − ũ, ṽk − ṽ)∥p

⩾ S♯(Q♯(ũ, ṽ))
p

p
♯
s + S♯

(
lim

k→∞
Q♯(ũk − ũ, ṽk − ṽ)

) p

p
♯
s

⩾ S♯
(
Q♯(ũ, ṽ) + lim

k→∞
Q♯(ũk − ũ, ṽk − ṽ)

) p

p♯

= S♯,

where in the last but one passage above we used the inequality

(a+ b)q ⩽ aq + bq, (2.16)

valid for all a, b ∈ R∗
+ and 0 < q < 1. So we have equality in all passages, that is,

Q♯(ũ, ṽ) = 1, lim
k→∞

Q♯(ũk − ũ, ṽk − ṽ) = 0, (2.17)
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since ũ, ṽ ̸≡ 0. It turns out that, since

S♯ = ∥(ũ, ṽ)∥p + lim
k→∞

∥(ũk − ũ, ṽk − ṽ)∥p,

then

S♯ = ∥(ũ, ṽ)∥p and lim
k→∞

∥(ũk − ũ, ṽk − ṽ)∥p = 0.

Finally, by inequality∫∫
R2N

||ũ(x)| − |ũ(y)||p
|x|θ1|x− y|N+sp|y|θ2

dxdy +
∫∫

R2N

||ṽ(x)| − |ṽ(y)||p
|x|θ1|x− y|N+sp|y|θ2

dxdy

⩽
∫∫

R2N

|ũ(x) − ũ(y)|p
|x|θ1 |x− y|N+sp|y|θ2

dxdy +
∫∫

R2N

|ṽ(x) − ṽ(y)|p
|x|θ1 |x− y|N+sp|y|θ2

dxdy

we deduce that (|ũ|, |ṽ|) ∈ W is also a minimizer for S♯; so we can assume that ũ ⩾ 0, ṽ ⩾
0. Thus, S♯ is achieved by a non-negative function in the case 0 < α < sp+θ and γ < γH .

2. For 0 < β < sp + θ < N and γ < γH , let {(uk, vk)}k∈N ⊂ W be a minimizing
sequence for S∗ such that

Q∗(uk, vk) = 1, ∥(uk, vk)∥p → S∗ (2.18)

as k → +∞.
Now we claim that S∗ is invariant under the previously defined dilation. Let

ũk(x) = λ
N−sp−θ

p

k uk(λkx), ṽk(x) = λ
N−sp−θ

p

k vk(λkx)

and x̃k = xk

λk
as in the previous case. In this way, the sequence {(ũk, ṽk)}k∈N ⊂ W is also

a minimizing sequence for S∗ such that we have

Q∗(uk, vk) = 1, ∥(uk, vk)∥p → S∗

We have already shown that ∥(ũk, ṽk)∥ = ∥(uk, vk)∥ for every k ∈ N. Hence,
∥(ũk, ṽk)∥p → S∗.

We claim that the sequence {x̃k} ⊂ RN is bounded and the proof follows the same
steps already presented. From this boundedness and inequality (1.42), we may find R > 0
such that BR(0) contains all the unitary balls B1(x̃k) centered in x̃k and

∫
BR(0)

|vk(x)|p
|x|pr

dx ⩾ C1 > 0. (2.19)

Since ∥vk∥ = ∥uk∥ ⩽ C, there exists a v ∈ Ẇ s,p
θ (RN) such that

vk ⇀ v in Ẇ s,p
θ (RN), vk → v a.e. on RN , (2.20)

as k → +∞, up to subsequences. According to Lemma 1.12, we have
vk

|x|r
→ v

|x|r
in Lp

loc(RN),
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as k → +∞, where r = β
p∗

s
. Therefore,

∫
BR(0)

|v(x)|p
|x|pr

dx ⩾ C1 > 0,

and we deduce that v ̸≡ 0.
We may verify by Lemma 1.13 that, if q = p∗

s(β, θ) and δ = β, then

1 =
∫
RN

|vk|p∗
s

|x|β
dx =

∫
RN

|vk − v|p∗
s

|x|β
dx+

∫
RN

|v|p∗
s

|x|β
dx+ o(1).

By definition (1.39) and by weak convergence (ũk, ṽk) ⇀ (ũ, ṽ) in Ẇ s,p
θ (RN) × Ẇ s,p

θ (RN),
we deduce that

S∗ = lim
k→∞

∥(ũk, ṽk)∥p

= ∥(ũ, ṽ)∥p + lim
k→∞

∥(ũk − ũ, ṽk − ṽ)∥p

⩾ S∗(Q∗(ũ, ṽ))
p

p∗
s + S∗

(
lim

k→∞
Q∗(ũk − ũ, ṽk − ṽ)

) p
p∗

s

⩾ S∗
(
Q∗(ũ, ṽ) + lim

k→∞
Q∗(ũk − ũ, ṽk − ṽ)

) p
p∗

s

= S∗

where we used the inequality (2.16). So we have equality in all passages, that is,

Q∗(ũ, ṽ) = 1, lim
k→∞

Q∗(ũk − ũ, ṽk − ṽ) = 0, (2.21)

since ũ, ṽ ̸≡ 0. It turns out that, since

S∗ = ∥(ũ, ṽ)∥p + lim
k→∞

∥(ũk − ũ, ṽk − ṽ)∥p,

then

S∗ = ∥(ũ, ṽ)∥p and lim
k→∞

∥(ũk − ũ, ṽk − ṽ)∥p = 0.

As in the previous case, we deduce that |(ũ, ṽ)| ∈ W is also a minimizer for S∗ is
achieved by a non-negative function in the case 0 < β < sp+ θ and γ < γH .

2.3 Existence of Palais-Smale sequences
We shall now use the minimizers of S♯ and S∗ obtained in Proposition 2.1 to prove the
existence of a nontrivial weak solution for equation (6). Recall the definition (7) of the
energy functional associated to problem (6). The fractional Sobolev and fractional Hardy-
Sobolev inequalities imply that I ∈ C1(W,R) and that

⟨I ′(u, v), (ϕ1, ϕ2)⟩

=
∫∫

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ1(x) − ϕ1(y))
|x|θ1 |x− y|N+sp|y|θ2

dxdy
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+
∫∫

R2N

|v(x) − v(y)|p−2(v(x) − v(y))(ϕ2(x) − ϕ2(y))
|x|θ1|x− y|N+sp|y|θ2

dxdy

− γ1

∫
RN

|u|p−2uϕ1

|x|sp+θ
dx− γ2

∫
RN

|v|p−2vϕ2

|x|sp+θ
dx

−
∫∫

R2N

|u(x)|p♯
s−2|u(y)|p♯

su(x)ϕ1(x)
|x|δ|x− y|µ|y|δ

dxdy −
∫∫

R2N

|v(x)|p♯
s−2|v(y)|p♯

sv(x)ϕ2(x)
|x|δ|x− y|µ|y|δ

dxdy

−
∫
RN

|u|p∗
s−2u(x)ϕ1

|x|β
dx−

∫
RN

|v|p∗
s−2v(x)ϕ2

|x|β
dx

+
∫
RN

ηa|u|a−2uϕ1|v|b

|x|β
dx+

∫
RN

ηb|u|a|v|b−2vϕ2

|x|β
dx.

Note that a nontrivial critical point of I is a nontrivial weak solution to equation (6).
Recall that a Palais-Smale sequence for the energy functional I at the level c ∈ R is

a sequence {(uk, vk)}k∈N ⊂ W such that

lim
k→+∞

I(uk, vk) = c and lim
k→+∞

I ′(uk, vk) = 0 strongly in W ′. (2.22)

This sequence is referred to as a (PS)c sequence.
Now we state a result that ensures the existence of a Palais-Smale sequence for the

energy functional.

Proposition 2.2. Let s ∈ (0, 1), 0 < α, β < sp + θ < N, µ ∈ (0, N) and γ < γH .
Consider the functional I : W → R defined in (7) on the Banach space W . Then there
exists a (PS)c sequence {(uk, vk)} ⊂ W for I at some level c ∈ (0, c∗), where

c∗ := min
{(1

p
− 1

2p♯
s(δ, θ, µ)

)
S

♯
2p

♯
s

2p
♯
s(δ,θ,µ)−p ,

(1
p

− 1
p∗

s(β, θ)

)
S

∗ p∗
s(β,θ)

p∗
s(β,θ)−p

}
. (2.23)

To prove Proposition 1.23 we need the following version of the mountainpass theorem
by Ambrosetti and Rabinowitz [12].

Lemma 2.3. (Montain Pass Lemma) Let (W, ∥ · ∥) be a Banach space and let I ∈
C1(W,R) a functional such that the following conditions are satisfied:

(1) I(0, 0) = 0;

(2) There exist ρ > 0 and r > 0 such that I(u, v) ⩾ ρ for all u, v ∈ Ẇ s,p
θ (RN) with

∥(u, v)∥ = r;

(3) There exist e ∈ W with ∥e∥ > r such that I(e) < 0; define

c := inf
g∈Γ

sup
t∈[0,1]

I(g(t)),

where

Γ :=
{
g ∈ C0([0, 1], Ẇ s,p

θ (RN)) : g(0) = 0, g(e) < 0
}
.

Then c ⩾ ρ > 0, and there exists a (PS)c sequence {(uk, vk)} ⊂ W for I at level c, i.e.,

lim
k→+∞

I(uk, vk) = c and lim
k→+∞

I ′(uk, vk) = 0 strongly in W ′.
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The proof of Proposition 1.23 follows from the next two lemmas.

Lemma 2.4. The functional I verifies the assumptions of Lemma 2.3.

Proof. Clearly, we have I(0, 0) = 0. We now verify the second assumption of Lemma 2.3.
Recalling the definition (2.4) of the quadratic form Q∗ and using inequality (1.7), for any
(u, v) ∈ W we obtain

I(u, v) = 1
p

[∫∫
R2N

|u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy +
∫∫

R2N

|v(x) − v(y)|p
|x|θ1|x− y|N+sp|y|θ2

dxdy
]

− γ1

p

∫
RN

|u|p

|x|sp+θ
dx− γ2

p

∫
RN

|v|p

|x|sp+θ
dx

− 1
2p♯

s

[∫∫
R2N

|u(x)|p♯
s|u(y)|p♯

s

|x|δ|x− y|µ|y|δ
dxdy +

∫∫
R2N

|v(x)|p♯
s|v(y)|p♯

s

|x|δ|x− y|µ|y|δ
dxdy

]
− 1
p∗

s

[∫
RN

|u|p∗
s

|x|β
dx+

∫
RN

|v|p∗
s

|x|β
dx+

∫
RN

η|u|a|v|b

|x|β
dx
]

⩾
1
p

∥(u, v)∥p
W − C

2p♯
s

[
∥u∥2p♯

s

Ẇ s,p
θ

(RN ) + ∥v∥2p♯
s

Ẇ s,p
θ

(RN )

]
− 1
p∗

s

Q∗(u, v)

⩾
1
p

∥(u, v)∥p
W − C

2p♯
s

[
∥u∥p

Ẇ s,p
θ

(RN ) + ∥v∥p

Ẇ s,p
θ

(RN )

] 2p
♯
s

p − 1
p∗

s

Q∗(u, v)

⩾
1
p

∥(u, v)∥p
W − C1∥(u, v)∥2p♯

s − C2∥(u, v)∥p∗
s .

Since s ∈ (0, 1), 0 < α, β < sp + θ < N and µ ∈ (0, N), we have that p∗
s(β, θ) > p

and 2p♯
s > p∗

s(α, θ) > p. Therefore, there exists r > 0 small enough such that

inf
∥(u,v)∥=r

I(u, v) > ρ,

so item (2) of Lemma 2.3 are satisfied.
For (u, v) ∈ W and t ∈ R+, we have

I(tu, tv) = tp

p
∥(u, v)∥p − t2p♯

s

2p♯
s

Q♯(u, v) − tp
∗
s

p∗
s

Q∗(u, v);

since 2p♯
s > p∗

s(α, θ) > p, we deduce that

lim
t→+∞

I(tu, tv) = −∞ for any (u, v) ∈ W.

Consequently, for any fixed e ∈ W , there exists te > 0 such that ∥tee∥ > r and I(tee) < 0.
Thus, item (3) of Lemma 1.24 is satisfied.

From Lemma 2.4 above, we guarante by Lemma 2.3 the existence of a Palais-Smale
sequence {(uk, vk)} ⊂ W such that

lim
k→+∞

I(uk, vk) = c and lim
k→+∞

I ′(uk, vk) = 0 strongly in W ′.

Moreover, by the definition of c we deduce that c ⩾ ρ > 0. Therefore c > 0 for all function
(u, v) ∈ W \ {(0, 0)}.
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Lemma 2.5. Suppose that µ ∈ (0, N) and that 0 < α < sp + θ. Then there exists
(u, v) ∈ W \ {(0, 0)} such that c ∈ (0, c∗), where c∗ is defined in (2.23).

Proof. Using Proposition 2.1, we obtain the minimizers (u1, v1) ∈ W for S♯ and (u2, v2) ∈
W for S∗, respectively. Thus, there exist a function (e1, e2) ∈ W defined by

(e1, e2) =


(u1, v1), if 2p♯

s−p

2pp♯
s
Sµ(N, s, γ, α)

2p
♯
µ(α,θ)

2p
♯
µ(α,θ)−p ⩽ sp−β

p(N−β)Λ(N, s, γ, β)
N−β
sp−β

(u2, v2), if 2p♯
s(δ, θ, µ) − p

2pp♯
s

Sµ(N, s, γ, α)
2p

♯
µ(α,θ)

2p
♯
µ(α,θ)−p > sp−β

p(N−β)Λ(N, s, γ, β)
N−β
sp−β

such that ∥(e1, e2)∥ > r and I(e1, e2) < 0. We can define

c := inf
g∈Γ

sup
t∈[0,1]

I(g(t)),

where

Γ :=
{
g ∈ C0([0, 1], Ẇ s,p

θ (RN)) : g(0) = 0, g(e1, e2) < 0
}
.

Clearly, we have that c > 0. For the case where e = (u1, v1), we can deduce that

0 < c <
2p♯

s − p

2pp♯
s

Sµ(N, s, γ, α)
p

♯
s

p∗
µ(α,θ)−1 .

In fact, for all t ⩾ 0, by the definition of the functional I, we have that

I(tu1, tv1) ⩽
tp

p
∥(u1, v1)∥p − t2p♯

s

2p♯
s

Q♯(u1, v1) =: f1(t).

It is easy to see that

f ′
1(t) = tp−1∥(u1, v1)∥p − t2p♯

s−1Q♯(u1, v1)

= tp−1[∥(u1, v1)∥p − t2p♯
s−pQ♯(u1, v1)].

So, f ′
1(t̃) = 0 for

t̃ =
(

∥(u1, v1)∥p

Q♯(u1, v1)

) 1
2p

♯
s−p

, (2.24)

and this is a point of maximum for f1. Besides of that, this maximum value is

f1(t̃) =
[

1
p

− 1
2p♯

s

]
∥(u1, v1)∥

2pp
♯
s

2p
♯
s−p

Q♯(u1, v1)
p

2p
♯
s−p

=
[

2p♯
s − p

2pp♯
s

]
S

♯
2p

♯
s

2p
♯
s−p .

Therefore,

sup
t⩾0

I(tu1, tv1) ⩽ sup
t⩾0

f1(t) = 2p♯
s − p

2pp♯
s(δ, θ, µ)

S

2p
♯
s

2p
♯
s−p

♯ (2.25)
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The equality does not hold in (2.25); otherwise, we would have that sup
t⩾0

I(tu1, tv1) =

sup
t⩾0

f1(t). Let t1 > 0 be the point where sup
t⩾0

I(tu1, tv1) is attained. We have

f1(t1) − t
p∗

s(β,θ)
1
p∗

s(β, θ)
Q∗(u1, v1) = f1(t̃)

which means that f1(t1) > f1(t̃), since t1 > 0. This contradicts the fact that t̃ is the
unique maximum point for f1. Thus, we have strict inequality in (2.25), that is,

sup
t⩾0

I(tu1, tv1) < sup
t⩾0

f1(t) =
2p♯

µ(α, θ) − p

2pp♯
µ(α, θ)

S
♯

2p
♯
µ(α,θ)

2p
♯
µ(α,θ)−p . (2.26)

Therefore, 0 < c <
2p♯

µ(α,θ)−p

2pp♯
µ(α,θ)

S
♯

2p
♯
µ(α,θ)

2p
♯
µ(α,θ)−p .

Similarly, for the case of e = (u2, v2), we can verify that

sup
t⩾0

I(tu2, tv2) <
sp− β

p(N − β)Λ(N, s, γ, β)
N−β
sp−β . (2.27)

In fact, for all t ⩾ 0, by functional I definition we have that

I(tu2, tv2) ⩽
tp

p
∥(u2, v2)∥p − tp

∗
s

p∗
s

Q∗(u, v) := g1(t).

It is easy to see that

g′
1(t) = tp−1∥(u2, v2)∥p − tp

∗
s−1Q∗(u, v)

= tp−1
[
∥(u2, v2)∥p − tp

∗
s−pQ∗(u, v)

]
.

So, g1(t̃) = 0 for

t̃ =
(

∥(u2, v2)∥p

Q∗(u, v)

) 1
p∗

s−p

,

and this is a point of maximum for g1. Besides of that, this maximum value is

g1(t̃) =
[

1
p

− 1
p∗

s

]∥(u2, v2)∥p

Q
∗ p

p∗
s


p∗

s
p∗

s−p

= sp+ θ − β

p(N − β) S
∗ N−β

sp+θ−β .

Therefore,

sup
t⩾0

I(tu2, tv2) ⩽ sup
t⩾0

g1(t) = sp+ θ − β

p(N − β) S
∗ N−β

sp+θ−β . (2.28)

The equality does not hold in (2.28), otherwise, we would have that sup
t⩾0

I(tu2, tv2) =

sup
t⩾0

g1(t). Let t1 > 0, where sup
t⩾0

I(tu2, tv2) is attained. We have

g1(t1) − t2p♯
s

1

2p♯
s

Q♯(u2, v2) = g1(t̃)
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which means that g1(t1) > g1(t̃), since t1 > 0. This contradicts the fact that t̃ is the
unique maximum point for g1(t). Thus

sup
t⩾0

I(tu2, tv2) < sup
t⩾0

g1(t) = sp+ θ − β

p(N − β) S
∗ N−β

sp+θ−β . (2.29)

Therefore, 0 < c < sp+θ−β
p(N−β)S

∗ N−β
sp+θ−β .

From the definition (2.23) of c∗ and from inequalities (2.26) and (1.67), we have

0 < c < c∗ := min
{(1

p
− 1

2p♯
s

)
S

♯
2p

♯
s

2p
♯
s−p ,

(1
p

− 1
p∗

s

)
S

∗ p∗
s

p∗
s−p

}
.

The lemma is proved.

Proof of Proposition 2.2. Follows immediately from Lemmas 2.4 and 2.5.

2.4 Proof of Theorems 0.3 and 0.4
The existence of a solution will follow from the proof of the Theorem 0.3.

Proof of Theorem 0.3. Suppose that s ∈ (0, 1), 0 < α, β < sp+ θ, µ ∈ (0, N) and γ < γH .
Let {(uk, vk)}k∈N ⊂ W be a Palais-Smale sequence (PS)c as in Proposition 2.2, i.e.,

I(uk, vk) → c, I ′(uk, vk) → 0 strongly in W ′ as k → +∞.

Then

I(uk, vk) = 1
p

∥(uk, vk)∥p − 1
2p♯

s

Q♯(uk, uk) − 1
p∗

s

Q∗(uk, vk) = c+ o(1) (2.30)

and

⟨I ′(uk, vk), (uk, vk)⟩ = ∥(uk, vk)∥p −Q♯(uk, vk) −Q∗(uk, vk) = o(1). (2.31)

From (2.30) and (2.31), if 2p♯
s ⩾ p∗

s > p, we have

c+ o(1)∥(uk, vk)∥ = I(uk, vk) − 1
p∗

s

⟨I ′(uk, vk), (uk, vk)⟩

= 1
p

∥(uk, vk)∥p − 1
2p♯

s

Q♯(uk, vk) − 1
p∗

s

Q∗(uk, vk)

− 1
p∗

s

∥(uk, vk)∥p + 1
p∗

s

Q♯(uk, vk) + 1
p∗

s

Q∗(uk, vk)

= p∗
s − p

p · p∗
s

∥(uk, vk)∥p +
(

1
p∗

s

− 1
2p♯

s

)
Q♯(uk, vk)

⩾
p∗

s − p

p · p∗
s

∥(uk, vk)∥p.

Again from (2.30) and (2.31), if p∗
s > 2p♯

s > p, we have

c+ o(1)∥(uk, vk)∥ = I(uk, vk) − 1
2p♯

s

⟨I ′(uk, vk), (uk, vk)⟩
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= 1
p

∥(uk, vk)∥p − 1
2p♯

s

Q♯(uk, uk) − 1
p∗

s

Q∗(uk, vk)

− 1
2p♯

s

∥(uk, vk)∥p + 1
2p♯

s

Q♯(uk, uk) + 1
2p♯

s

Q∗(uk, vk)

= 2p♯
s − p

p · 2p♯
s

∥(uk, vk)∥p +
(

1
2p♯

s

− 1
p∗

s

)
Q∗(uk, vk)

⩾
2p♯

s − p

p · 2p♯
s

∥(uk, vk)∥p.

Thus, {(uk, vk)}k∈N ⊂ W is a bounded sequence; so from the estimate (2.31) there exists
a subsequence, still denoted by {(uk, vk)}k∈N ⊂ W , such that

∥(uk, vk)∥p → b, Q∗(uk, vk) → d1, Q♯(uk, uk) → d2,

as k → +∞; additionally,

b = d1 + d2.

By the definitions of S♯ and S∗, we get

d
p

p∗
s

1 S∗ ⩽ b = d1 + d2, d

1
p

♯
s

2 S♯ ⩽ b = d1 + d2.

From the first inequality we have d
p

p∗
s

1 S∗ − d1 ⩽ d2, that is

d
p

p∗
s

1

(
S∗ − d

p∗
−p

p∗
s

1

)
⩽ d2. (2.32)

And from the second inequality we have d
1

p
♯
s

2 S♯ − d2 ⩽ d1, that is,

d

1
p

♯
s

2

(
S♯ − d

p
♯
s−1

p
♯
s

2

)
⩽ d1. (2.33)

Claim 2. We have

S∗ − d
p∗

s−p

p∗
s

1 > 0, S♯ − d

p
♯
s−1

p
♯
s

2 > 0.

Proof. In fact, since c+ o(1)∥(uk, vk)∥ = I(uk, vk) − 1
p
⟨I ′(uk, vk), (uk, vk)⟩, we have

I(uk, vk) − 1
p

⟨I ′(uk, vk), (uk, vk)⟩ = 1
p

∥(uk, vk)∥p − 1
2p♯

µ(α, θ)
Q♯(uk, uk) − 1

p∗
s

Q∗(uk, vk)

− 1
p

∥(uk, vk)∥p + 1
p
Q♯(uk, uk) + 1

p
Q∗(uk, vk)

=
(

1
p

− 1
2p♯

µ(α, θ)

)
Q♯(uk, uk) +

(
1
p

− 1
p∗

s

)
Q∗(uk, vk)

= c+ o(1)∥(uk, vk)∥.

Passing to the limit as k → +∞, we get(
1
p

− 1
p∗

s

)
d1 +

(
1
p

− 1
2p♯

µ(α, θ)

)
d2 = c; (2.34)
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so,

d1 ⩽

(
1
p

− 1
p∗

s

)−1

c = p(N − β)
sp+ θ − β

c, d2 ⩽

(
1
p

− 1
2p♯

µ(α, θ)

)−1

c = 2pp♯
s

2p♯
s − p

c.

Using these upper bounds for d1, d2 and the fact 0 < c < c∗, we have

S∗ − d
p∗

s−p

p∗
s

1 ⩾ S∗ −
[
p(N − β)
sp+ θ − β

c

] p∗
s−p

p∗
s

> S∗ −
[
p(N − β)
sp+ θ − β

c∗
] p∗

s−p

p∗
s

⩾ S∗ −
[
p(N − β)
sp+ θ − β

· (sp+ θ − β)
p(N − β) S∗ N−β

(sp+θ−β)

] p∗
s−p

p∗
s

= S∗ − S∗ = 0.

Similarly,

S♯ − d

p
♯
s−1

p
♯
s

2 ⩾ S♯ −
[

2pp♯
s

2p♯
s − p

c

] p
♯
s−1

p
♯
s

> S♯ −
[

2pp♯
s

2p♯
s − p

c∗
] p

♯
s−1

p
♯
s

⩾ S♯

 2pp♯
s

(2p♯
s − p)

· (2p♯
s − p)

2pp♯
s

S
♯

p
♯
s

p
♯
s−1


p

♯
s−1

p
♯
s

= S♯ − S♯ = 0.

This concludes the proof of the claim.

Following up, inequalities (2.32) and (2.33) imply, respectively, thatS∗ −
(
p(N − β)
sp+ θ − β

c

) p∗
s−p

p∗
s

 d p
p∗

s
1 ⩽

[
S∗ − d

p∗
s−p

p∗
s

1

]
d

p
p∗

s
1 ⩽ d2

and S♯ −
(

2pp♯
s

2p♯
s − p

c

) p
♯
s−1

p
♯
s

 d
1

p
♯
s

2 ⩽

S♯ − d

p
♯
s−1

p
♯
s

2

 d 1
p

♯
s

2 ⩽ d1.

If d1 = 0 and d2 = 0, then (2.34) implies that c = 0, which is in contradiction with
c > 0. Therefore, d1 > 0 and d2 > 0 and we can choose ϵ0 > 0 such that d1 ⩾ ϵ0 > 0 and
d2 ⩾ ϵ0 > 0; moreover, there exists a K ∈ N such that

Q∗(uk, vk) > ϵ0

2 , Q♯(uk, uk) > ϵ0

2
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for every k > K. The embeddings (1.4), and the improved Sobolev inequality (1.8) imply
that there exist C1, C2 > 0 such that

0 < C2 ⩽ ∥uk∥Lp,N−sp−θ+pr
M (RN ,|y|−pr) ⩽ C1,

where r = α
p∗

s(α,θ) . For any k > K, we may find λk > 0 and xk ∈ RN such that

λ
(N−sp−θ+pr)−N
k

∫
Bλk

(xk)

|uk(y)|p
|y|pr

dy > ∥uk∥p

Lp,N−sp−θ+pr
M (RN ,|y|−pr)

− C

2k ⩾ C̃ > 0.

Now we define the sequence {ũk}k∈N ⊂ Ẇ s,p
θ (RN) by ũk(x) = λ

N−sp−θ
p

k uk(λkx) and the
sequence {ṽk}k∈N ⊂ Ẇ s,p

θ (RN) by ṽk(x) = λ
N−sp−θ

p

k vk(λkx). As we have already shown,
∥ũk∥ = ∥uk∥ ⩽ C and ∥ṽk∥ = ∥vk∥ ⩽ C for every k ∈ N; so, there exist u ∈ Ẇ s,p

θ (RN)
and v ∈ Ẇ s,p

θ (RN) such that, after passage to subsequence, still denoted in the same way,

ũk ⇀ u in Ẇ s,p
θ (RN) and ṽk ⇀ v in Ẇ s,p

θ (RN)

as k → +∞. In a fashion similar to the proof of Proposition 1.22-(1), we can prove that
u ̸≡ 0 and v ̸≡ 0.

In addition, the boundedness of the sequences {ũk}k∈N ⊂ Ẇ s,p
θ (RN) and {ṽk}k∈N ⊂

Ẇ s,p
θ (RN) implies that the sequences {|ũk|p∗

s−2ũk}k∈N ⊂ L
p∗

s
p∗

s−1 (RN , |x|−β) and {|ṽk|p∗
s−2ṽk}k∈N ⊂

L
p∗

s
p∗

s−1 (RN , |x|−β) are bounded too. In fact, by embeddings (1.4), we obtain

∫
RN

∣∣∣|ũk|p∗
s−2 · ũk

∣∣∣ p∗
s

p∗
s−1

|x|β
dx =

∫
RN

|ũk|p∗
s

|x|β
dx < C.

and

∫
RN

∣∣∣|ṽk|p∗
s−2 · ṽk

∣∣∣ p∗
s

p∗
s−1

|x|β
dx =

∫
RN

|ṽk|p∗
s

|x|β
dx < C.

Then, after passage to subsequence, still denoted in the same way, we deduce that

|ũk|p∗
s−2ũk ⇀ |u|p∗

s−2u in L
p∗

s
p∗

s−1 (RN , |x|−β) (2.35)

and

|ṽk|p∗
s−2ṽk ⇀ |v|p∗

s−2v in L
p∗

s
p∗

s−1 (RN , |x|−β) (2.36)

as k → +∞.
For any ϕ1, ϕ2 ∈ Lp∗

s(α,θ)(RN , |x|−α), Lemma 1.18 implies that

lim
k→∞

∫
RN

[Iµ ∗ Fα(·, ũk)] (x)fα(x, ũk)ϕ1(x)dx =
∫
RN

[Iµ ∗ Fα(·, u)] (x)fα(x, u)ϕ1(x)dx
(2.37)

and

lim
k→∞

∫
RN

[Iµ ∗ Fα(·, ṽk)] (x)fα(x, ṽk)ϕ2(x)dx =
∫
RN

[Iµ ∗ Fα(·, v)] (x)fα(x, v)ϕ2(x)dx.
(2.38)
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Since Ẇ s,p
θ (RN) ↪→ Lp∗

s(α,θ)(RN , |x|−α), (2.37) and (2.38) hold for any ϕ1, ϕ2 ∈ Ẇ s,p
θ (RN).

Finally, we need to check that {ũk}k∈N ⊂ Ẇ s,p
θ (RN) and {ṽk}k∈N ⊂ Ẇ s,p

θ (RN) are also
a (PS)c sequence for the functional I at energy level c. Do to this, we note that the norms
in Lp∗

s(α,θ)(RN , |x|−α) are invariant under the special dilatation ũk = λ
N−sp−θ

p

k uk(λkx) and
ṽk = λ

N−sp−θ
p

k vk(λkx). In fact

∥ũk∥p∗
s(α,θ)

Lp∗
s(α,θ) =

∫
RN

λ
N−sp−θ

p
p∗

s(α,θ)
k |uk(λkx)|p∗

s(α,θ))
|x|α

dx =
∫
RN

|uk(x̄)|p∗
s(α,θ)

|x̄|α
dx̄ = ∥uk∥p∗

s(α,θ)
Lp∗

s(α,θ)

and

∥ṽk∥p∗
s(β,θ)

Lp∗
s(β,θ) =

∫
RN

λ
N−sp−θ

p
p∗

s(β,θ)
k |vk(λkx)|p∗

s(β,θ))
|x|β

dx =
∫
RN

|vk(x̄)|p∗
s(β,θ)

|x̄|β
dx̄ = ∥vk∥p∗

s(β,θ)
Lp∗

s(β,θ) .

Besides of that, we have

∫
RN

η|ũk(x)|a|ṽk(x)|b
|x|β

dx =
∫
RN

ηλ
N−sp−θ

p
(a+b)

k |uk(λkx)|a|vk(λkx)|b
|x|β

dx =
∫
RN

η|uk(x̄)|a|vk(x̄)|b
|x̄|β

dx̄.

Thus, we have

lim
k→+∞

I(ũk, ṽk) = c.

Moreover, for all ϕ1, ϕ2 ∈ Ẇ s,p
θ (RN), we have ϕ1,k(x) = λ

N−sp−θ
p

k ϕ1 (x/λk) ∈ Ẇ s,p
θ (RN) and

ϕ2,k(x) = λ
N−sp−θ

p

k ϕ2 (x/λk) ∈ Ẇ s,p
θ (RN). From I ′(uk, vk) → 0 in W ′ as k → +∞, we can

deduce that

lim
k→+∞

⟨I ′(ũk, ṽk), (ϕ1, ϕ2)⟩ = lim
k→+∞

⟨I ′(uk, vk), (ϕ1, ϕ2)⟩ = 0.

Thus (2.35), (2.36), (2.37) and (2.38) lead to

⟨I ′(u, v), (ϕ1, ϕ2)⟩ = lim
k→+∞

⟨I ′(ũk, ṽk), (ϕ1, ϕ2)⟩ = 0.

Hence (u, v) is a nontrivial weak solution to problem 6.

Proof of Theorem 0.4. The proof follows the same steps of the proof of Theorem 0.3. Here
we only remark that for problem (8) with a Hardy potential and double Sobolev type
nonlinearities we have to define the value below which we can recover the compactness of
the Palais-Smale sequences by

c∗ := min
k∈{1,2}

{(1
p

− 1
p∗

s

)
S∗(N, s, γ, βk)

p∗
s(βk,θ)

p∗
s(βk,θ)−p

}
.

Similarly, for problem (9) with a Hardy potential and double Choquard type nonlinearities
we have to define the corresponding number by

c∗ := min
k∈{1,2}

{(1
p

− 1
2p♯

s(δ, θ, µk)

)
S♯(N, s, γ, βk)

2p
♯
s(δ,θ,µk)

2p
♯
s(δ,θ,µk)−p

}
.

The details are omitted.



83

Chapter 3

Fractional Kirchhoff equation with
Sobolev-Choquard singular
nonlinearities

3.1 Historical background
The study of non-local problems driven by the fractional and non-local operators has
received a tremendous popularity because of their intriguing structure and the great ap-
plication in the number and variety of phenomena occurring in real-world applications
that can be modeled by these equations such as optimization, finance, phase transi-
tion phenomena, anomalous diffusion, dislocations in crystals, quantum mechanics, game
theory, water waves, phase transitions, stratified materials, semipermeable membranes,
population dynamics. For more information on non-local and fractional problems, see
the excelent survey papers by Di Nezza, Palatucci & Valdinoci [39] and Moroz & Van
Schaftingen [68]; see also the book by Molica Bisci, Rădulescu & Servadei [66].

The Choquard equation

On the Euclidean space RN , the equation

−∆u+ V (x)u = (Iµ ∗ |u|q)|u|q−2u (x ∈ RN)

was introduced by Choquard in the case N = 3 and q = 2 to model one-component
plasma. It had appeared earlier in the model of the polaron by Frölich and Pekar, where
free electrons interact with the polarisation that they create on the medium. A remarkable
feature in the Choquard nonlinearity is the appearance of a lower nonlinear restriction,
usually called the lower critical exponent 2♭ > 1, that is, the nonlinearity is superlinear.
When V (x) ≡ 1, the groundstate solutions exist if 2♭ := 2(N − µ/2))/N < q < 2(N −
µ/2)/(N − 2s) := 2♯ due to the mountain pass lemma or the method of the Nehari
manifold, while there are no nontrivial solution if q = 2♭ or if q = 2♯ as a consequence of
the Pohozaev identity.

In general, the associated Schrödinger-type evolution equation i∂tψ = ∆ψ +
(
Iµ ∗

|ψ|2
)
ψ is a model for large systems of atoms with an attractive interaction that is weaker

and has a longer range than that of the nonlinear Schrödinger equation. Standing wave
solutions of this equation are solutions to the Choquard equation. For more information
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on the various results related to the non-fractional Choquard-type equations and their
variants see Moroz & Van Schaftingen [68].

Kirchhoff type problems

Kirchhoff type problems have been widely studied in recent years. After Lions has pre-
sented an abstract functional framework to use for Kirchhoff type equations, this prob-
lem has been widely studied in extensive literature. Alves, Corrêa & Figueiredo [7] in-
vestigated the existence of positive solutions to the class of non-local boundary value
problems of the Kirchhoff type with the classical Laplace operator. For other papers
involving the Kirchhoff type problems with the classical Laplace operator see Chen &
Li [26] and Figueiredo [41]. For the p-Laplacian case, Colasuanno & Pucci [32] estab-
lished the existence of infinitely many solutions for Dirichlet problems involving the p-
polyharmonic operators on bounded domains. For the fractional Kirchhoff problem, Fis-
cella & Valdinoci [44] proposed a stationary fractional Kirchhoff variational problem which
takes into account the non-local aspect of the tension arising from non-local measurements
of the fractional length of the string. It was pointed out in Pucci, Xiang & Zhang [75]
that equations like −

(
a+b

∫
RN |∇u|2 dx

)
∆u+u = kf(u)+ |u|2∗−2u in the whole space RN

can be applied to describe the growth and movement of a specific species. Song & Shi [84]
considered a class of degenerate fractional p-Laplacian equation of Schrödinger–Kirchhoff
with critical Hardy–Sobolev nonlinearities. The main feature and difficulty of this article
is the fact that the Kirchhoff term could be zero at zero, that is, the problem equation
is degenerate. The degenerate case was studied by Autuori, Fiscella & Pucci in [16], by
introducing a new technical approach based on the asymptotic property of the critical
mountain pass level; they established the existence and the asymptotic behavior of non-
negative solutions to the problem. Furthermore, the existence of a solution for different
critical fractional Kirchhoff problems set on the whole space RN is given by Liang &
Shi [57]. More recently, Chen [28] establish the existence of solutions to the fractional
p-Kirchhoff type equations with a generalized Choquard nonlinearities without assuming
the Ambrosetti Rabinowitz condition.

The kinds and varieties of potential functions

Several hypotheses have been used on the potential function included in the class of
elliptical problems. For example, Berestycki & Lions [19] considered the case in which the
potential function V : RN → R is constant. Afterwards, Pankov [74] studied a problem
with V ∈ L∞ being a periodic function with unit period in each variable, that is, V (x +
z) = V (x) for all x ∈ RN and with z ∈ ZN ; for other articles about problems with
periodic potentials, see Coti-Zelati & Rabinowitz [83] and Kryszewski & Szulkin [52].
Zhu & Yang [51] studied problems with an asymptotic potential V at a positive constant,
i.e., there is V∞ ∈ R+ such that |V (x) − V∞| → 0 when |x| → +∞ and V (x) ⩽ V∞ for all
x ∈ RN . For the case where the potential V is strictly positive and the Lebesgue measure
of the set {x ∈ RN : V (x) ⩽ M} is finite for all M ∈ R+, see Bartsch & Wang [18].
Costa [33] and Miyagaki [65] studied the case of a coercive potential V : RN → R, that is,
lim|x|→+∞ V (x) = +∞. For the case of a radial potential V : RN → R, i.e., V (x) = W (r)
such that W : R∗

+ → R and r = |x| for all x ∈ RN , see Alves, de Morais Filho & Souto [8].
Alves & Souto [5, 6] considered a continuous, non-negative potential function V which
can vanish at infinity, that is, V (x) → 0 when |x| → ∞; for other problems involving this
kind of potential, see Alves, Assunção & Miyagaki [9] and Alves & Assunção [10].
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Palais-Smale and Cerami conditions

Let B be a Banach space such that J : B → R is a C1 functional defined on B and
(un) is a sequence in B. The Palais-Smale condition (PS)c at level c means that if the
sequence {un}n∈N is such that J(un) → c and J ′(un) → 0 as n → +∞, then {un}
has a convergent subsequence. The Cerami condition (C)c at level c means that if the
sequence{un}n∈N is such that J(un) → c and (1 + ∥un∥)J ′(un) → 0 as n → +∞, then
c ∈ R is a critical value of J . With the above conditions it is possible to show that if
a sequence {un}n∈N verifies the Palais-Smale condition (PS)c, then it also verifies the
Cerami condition (C)c; for more details see Costa [34]. That the Cerami condition (C)c

does not imply the Palais-Smale condition (PS)c can be seen by the function z : R2 → R
defined by z(x, y) = ln(1 + x2) − ln(1 + y2); this function verifies the Cerami condition
(C)0 but does not verify the Palais-Smale condition (PS)0, for the level set z−1(0) is
|x| = |y|; see Robinson [77]. A Cerami sequence can produce a critical point even when
a (PS) sequence does not. A condition similar to (C)c was introduced by Cerami and
was applied to the search for critic points of a functional on an unbounded Riemannian
manifold. It should be mentioned that this weakening of the Palais-Smale condition
seems essential in the study of variational problems in the strong resonance case because
in general the Palais-Smale condition is not satisfied. For more information on these kinds
of compactness conditions see the following comments about the nonlinearities.

Some types of frequently used nonlinearities

Several interesting questions arise when we consider the nonlinearities that appear in
the study of partial differential equations. For example, inspired by Harrabi [49], con-
sider the general prototype equation −∆u = f(x, u) where x ∈ Ω with Ω ⊂ RN a
bounded, open subset. We look for weak solutions in the Sobolev space H1

0 (Ω) :=
{w ∈ H1(Ω) : w = 0 on Ω}. As usual, a weak solution to this problem is any function
u ∈ H1

0 (Ω) such that ⟨u, v⟩H1
0 (Ω) =

∫
Ω f(x, u)v dx for every function v ∈ H1

0 (Ω); here,
the inner product is defined by ⟨u, v⟩H1

0 (Ω) :=
∫

Ω uv dx. It is well known that a function
u ∈ H1

0 (Ω) is a weak solution to this problem if, and only if, it is a critical point of the
Euler-Lagrange energy functional defined by J(u) = (1/2)∥u∥2

H1
0 (Ω) −

∫
Ω F (x, u) dx where

F (x, s) =
∫ s

0 f(x, t) dt.
One can ask whether the differential equations have any nontrivial solutions; one can

also ask whether it is possible to give a lower bound to the number of solutions by using
some topological facts related to the nonlinearity f : Ω × R → R (e.g., if it is odd in the
first variable). For example, see Amann & Zehnder [11] or Castro & Lazer [24].

For general operators, the blow up argument can be used to get existence of positive
solution when the nonlinearity f has an assymptotical behavior like f(s) = |s|q−2s at
infinity with 1 < q < 2∗ = 2N/(N − 2).

Most results use some hypotheses on the nonlinearity f to make variational methods
work. For example, f ∈ C(Ω × R;R) satisfying the large subcritical growth condition,

(h1) there exist C0 ∈ R+ and s0 ∈ R+ such that |f(x, s)| ⩽ C|s|2∗−1 for every |s| ⩾ s0
and for every x ∈ Ω.

Under hypothesis (h1) the energy functional is well defined in the Sobolev space
H1

0 (Ω) and belongs to C1(H1
0 (Ω);R). If we impose some more additional conditions on

the nonlinearity f , for example if f(x, s) = a(x)g(s) where a ∈ C0,α(Ω) and g ∈ C0,α
loc (R),
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then it is possible to prove that any weak solution to the problem belongs to the space
C2(Ω).

The use of critical point theory needs a compactness condition, usually the Palais-
Smale (PS) condition or the Cerami (C) condition. Our main goal in this brief survey
is to revise the required standard assumptions used to get one these conditions. See
Clément, Figueiredo & Mitidieri [31] or Ramos & Rodrigues [76].

In great part of the literature the (PS) condition is proved by using standard assump-
tions. Mainly, the Ambrosetti-Rabinowitz condition, the (AR) condition in short, which
supposes the existence of ξ ∈ R with ξ > 2 and s0 ∈ R+ such that sf(x, s) ⩾ ξF (x, s) for
|s| > s0 and x ∈ Ω.

Another typical hypothesis is the subcritical polynomial growth condition,

(h2) there exist C ∈ R+ and q ∈ R such that 1 ⩽ q < 2∗ such that |f(x, s)| ⩽ C(|s|q−1+1)
for every x ∈ Ω and for every s ∈ R.

Under the (AR) condition and hypothesis (h2), the Euler-Lagrange energy functional
associated to the differential equation verifies the (PS) condition.

The Ambrosetti-Rabinowitz condition revisited

The major difficulty in the use of the (PS) condition consists often in proving the bounded-
ness of any Palais-Smale sequence {un}n∈N ⊂ H1

0 (Ω). In contrast, for the (AR) condition
one has (ξ/2 − 1)∥u∥2 ⩽ C0(∥u∥ + 1). However, the (AR) condition is too restrictive and
one requires instead the strong superlinear condition,

(h3) there exists C ∈ R+ and q ∈ R with q = ξ − 1 > 0 such that |f(x, s)| ⩾ C(|s|q − 1)
for every x ∈ Ω and for every s ∈ R.

In the particular case of the Sobolev space H1
0 (Ω), many new existence results have been

obtained when (AR) is relaxed by condition (h3). Therefore, some mild oscillations of the
nonlinearity f can be allowed. See de Figueiredo & Yang [36] and Jeanjean [50].

However, condition (h3) is also violated by many nonlinearities, as for example,
f(s) = as or f(s) = as ln(s) at infinity with a ∈ R+. Some special attention has been
given to the value ξ = 2 to introduce weaker condition than (AR) and no longer require
the strong superlinear condition. For example,

(h4) there exist c ∈ R+ and s0 ∈ R+ such that c|f(x, s)|2N/(N+2m) ⩽ sf(x, s) − 2F (x, s)
for every |s| > s0 and for every x ∈ Ω.

The key ingredient in this approach is the Riesz-Fréchet representation theorem, which
permits one to write J ′(un) as a variational equation by supposing the existence of
vn ∈ H1

0 (Ω) such that J ′(un)ϕ = ⟨vn, ϕ⟩H1
0 (Ω) for every ϕ ∈ H1

0 (Ω) and |J ′(un)|(H1
0 (Ω))′ =

|vn|H1
0 (Ω). Thus, un − vn could be seen as a weak solution in H1

0 (Ω) of the equation
⟨un − vn, ϕ⟩H1

0 (Ω) =
∫

Ω f(x, un(x))ϕ dx for every ϕ ∈ H1
0 (Ω). Another new aspect in this

argument is the use of the Lesbesgue space theory to show the boundedness of the se-
quence {un}n∈N ⊂ H1

0 (Ω). To accomplish this, a regularity result due to Agmon, Douglis
& Nirenberg [3] can be useful.

Notice that from condition (h1), C0|f(x, s)|2∗
⩽ |sf(x, s)|; and from the (AR) con-

dition, 0 < (1 − 2/ξ)sf(x, s) ⩽ sf(x, s) − 2F (x, s) for every |s| > s0 and for every
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x ∈ Ω. Hence, condition (h4) is weaker than the (AR) condition. On the other hand, if
F (x,±s0) > 0, then condition (h4) implies condition (h1).

From condition (h4) it follows that
∫

Ω |f(x, un)|2∗ = O(∥u∥ + 1) for Palais-Smale se-
quences. So, it seems that condition (h4) is an optimal condition ensuring the boundedness
of the sequence.

The function fα(s) = s[g(|s|)]α where g(s) = ln(ln(· · · ln |s|)) verifies condition (h4)
for every α ∈ R+; however, it does not verify the strong superlinear condition (h3).
Moreover, f(s) = as does not verify condition (h4); however, f(s) = as − |s|α−1s with
(2∗ − 1)−1 ⩽ α < 1 and f(s) = as + s[ln(|s| + 2)]−α′ with α′ ∈ R+ verify condition (h4)
but not condition (h3).

Subcritical polynomial growth condition revisited

Upon verifying the boundedness of the (PS) sequences, the use of the compactness of the
embedding H1

0 (Ω) ↪→ Lq(Ω) together with condition (h2) allows one to prove that if the
sequence {un}n∈N ⊂ H1

0 (Ω) is bounded, then f(x, un) has a convergent subsequence in
L2N/(N+2)(Ω). This means that the operator K(u)v =

∫
Ω f(x, u)v dx is compact. But this

condition is not satisfied when the nonlinearity is very close to critical growth, as in the
example fα(s) = |s|4/(N−2)s/ lnα(|s|+2) for α ∈ R+. However, the operator K is compact
for fα, which means that condition (h2) is only a sufficient condition. One way to weaken
this condition is to substitute it with the condition

(h5) lims→+∞ f(x, s)/|s|2∗−1 = 0 uniformly with respect to x ∈ Ω.

The operator K is still compact under this assumption. Moreover, the condition (h5)
seems to be nearly optimal because if f(s) = |s|4/(N−2)s at infinity, then K is no longer
compact.

Since many existence results are based on the fact that the (PS) condition is satisfied,
most cases require the (AR) condition as well as the subcritical polynomial growth. Thus,
after verifying (PS) condition under hypotheses (h4) and (h5), it is possible to improve
some classical existence results having the minimax structure. For example, let λ1 be the
lowest eigenvalue of the self-adjoint (−∆)u = f(x, u) problem with Dirichlet condition.
Then the energy functional has a nontrivial critical point by the mountain pass theorem
if lims→+∞ f(x, s) > λ1 uniformly in Ω and lims→0 f(x, s)/s < λ1 uniformly in Ω.

Consider now the function f(s) = |s|4/(N−2)s/ lnq+q′(|s|) + [|s|4/(N−2)s/ lnq(|s|)][γ +
sin(ln(|s|))], defined for |s| > 1, where q ∈ R+ and 0 < q′ < 1. It can be shown that there
exists a constant γ ∈ R such that for γ > γ, then f verifies the (AR) condition; and if
γ < γ, then f does not verify neither the (AR) nor the (h4) conditions. However, if γ = γ
and if q′ < min{1, q(N − 2)/(N + 2)}, then f does not verify neither the (AR) nor the
(h2) conditions but verifies both conditions (h4) and (h5). This shows some improvements
brought by these conditions.

Subcritical polynomial growth and Cerami conditions

Consider again our prototype equation −∆u = f(x, u) in the bounded, open domain
Ω ⊂ RN with a variational structure; the energy functional J : H1

0 (Ω) → R associated to
this problem can be defined by J(u) = (1/2)∥u∥2 −

∫
f(x, u(x)) dx.
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If the Cerami condition is verified and since ∥J ′(un)∥(H1
0 (Ω))′∥un∥ → 0 as n → +∞,

then every Cerami sequence satisfies 2J(un) − J ′(un)un = O(1), contrarily to the Palais-
Smale sequences, where one only has 2J(un) − J ′(un)un = O(∥un∥ + 1). For instance,
in case f(s) = a(x)s + b|s|α−1s or f(s) = a(x)s + b log(|s| + 1) where a ∈ C(Ω;R) is a
continuous, positive function with b, α ∈ R and 0 < α < 1, the energy functional verifies
the Cerami condition.

The use of the Cerami condition with the sequence {un}n∈N ⊂ H1
0 (Ω) usually goes

as follows. A common assumption used by some authors is that H(x, s) = 2F (x, s) −
sf(x, s) ⩾ −w1(x) for x ∈ Ω and t ∈ R, where w1 ∈ L1(Ω) and that H(x, s) → +∞
a.e. as |s| → +∞; it is possible to prove that ∥un∥2 − ⟨f(·, un), un⟩ → 0 as n → +∞
and this implies that

∫
Ω H(x, un) dx ⩽ K for some constant K ∈ R . Then, towards a

contradiction, it is assumed that the sequence {∥un∥}n∈N ⊂ R is unbounded, i.e., ∥un∥ →
+∞ as n → +∞. Another sequence is now created by defining ũn(x) := un(x)/∥un∥;
therefore, ∥ũn∥ = 1 and, up to passage to a subsequence, we have ũn ⇀ ũ weakly inH1

0 (Ω),
ũn → ũ strongly in L2(Ω), and ũn → ũ a.e. in Ω; moreover, it can be showed that ũ ̸≡ 0.
If we denote Ω0 := {x ∈ Ω: ũ(x) ̸= 0} and Ω1 := Ω\Ω0, then |un(x)| = ∥un∥ũn(x) → +∞
as n → +∞ for every x ∈ Ω0 and∫

Ω0∪Ω1
H(x, un(x)) dx ⩾

∫
Ω0
H(x, un(x)) dx−

∫
Ω1
w1(x) dx → +∞.

But this contradicts the boundedness of the lefthand side integral previously mentioned.
Therefore, the Cerami sequence {un}n∈N ⊂ H1

0 (Ω) must be bounded and we obtain some
compactness to work with in the proof of the existence result.

The crucial element in this argument is the estimate ∥un∥2 − ⟨f(·, un), un⟩ → 0
as n → +∞. If we had been dealing with a Palais-Smale sequence all the time, we
could only conclude that ∥un∥2 − ⟨f(·, un), un⟩ = o(∥un∥) which would only imply that∫

Ω H(x, un) dx = o(∥un∥). This would not contradict the estimate
∫

Ω H(x, un(x)) dx →
+∞ as n → +∞ and the argument would not go through. For more details, see
Schechter [80].

Degraded oscillation case

Consider the nonlinearity with a very sparsed oscilation, for example, f(s) = γsp +
sp(1 + sin(log(s+ 2))) if s ⩾ 0 and f(s) = 0 if s < 0. Then f satisfies the subcrit-
ical polynomial growth condition at infinity for every γ ⩾ 0. Moreover, there exists
γ ∈ R+ such that if γ > γ then f verifies the (AR) condition and if 0 < γ ⩽ γ
then f verifies only the strong superlinear condition. However, if γ = 0 then f does
not even verify the condition lims→+∞ f(s)/s = +∞ uniformly with respect to x ∈ Ω
since f(exp(exp((2n− 1/2)π − 2))) = 0. This case is referred to as the degraded os-
cillation case. Under the strong superlinear condition together using the assumption
lims→+∞[sf ′(s) − pf(s)]/sp = 0 and some additional conditions it is possible to prove the
existence of at least one positive solution. For example, f(s) = sp(1+sin(log(log(s+ 2))))
is an instance for this situation. However the last condition is too restrictive; for example,
the function f(s) = γsp + sp sin(log(s+ 2)) for s ⩾ 0 with γ > 1 does not verify it.

The case of resonant nonlinearities.

Other kind of question is related to resonant nonlinearities. More precisely, consider
an asymptotically linear function, that is, lim|t|→+∞ t−1f(t) = α where α ∈ R is finite;
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then we can write f(t) = αt − g(t) with lim|t|→∞ t−1g(t) = 0 where g : R → R. As
usual, we denote by λ1 < λ2 < · · · < λk < · · · the sequence of eigenvalues of the self-
adjoint realization in L2(Ω) of the Laplacian operator with Dirichlet boundary condition.
We say that the problem is resonant at infinity if α = λk for some positive integer
k ∈ N. Depending on the growth of the function g at infinity we have different degrees
of resonance; that is, the smaller the g, the stronger the resonance. To quantify these
degrees of resonance, we can consider some situations:

(l1) limt→+∞ g(t) = ℓ+ ̸= 0 and limt→−∞ g(t) = ℓ− ̸= 0: this weak resonance was first
considered by Landesman & Lazer [55];

(l2) lim|t|→+∞ g(t) = 0 and limt→+∞
∫ t

0 g(s) ds = ±∞: this mild resonance was first
considered by Ahmad, Lazer & Paul [4];

(l3) lim|t|→+∞ g(t) = 0 and lim|t|→+∞
∫ t

0 g(s) ds = β where β ∈ R is finite: this strong
resonance at infinity was considered by Thews [88];

(l4) lim|t|→+∞ tg(t) = 0, limt→+∞
∫ t

−∞ g(s) ds = 0, this integral being well-defined and
non-negative for every t ∈ R: this strong resonance at infinity was considered by
Bartolo, Benci & Fortunato [17].

In general terms, the existence results mentioned are proved through the application
of deformation lemmas whose proofs, in turn, rely on a weakened version of the well-known
Palais-Smale condition introduced by Cerami.

To conclude, we mention that when the variational approach can not be employed,
the question of existence of solutions may be dealt with via topological methods. In this
case, the proof of existence of solutions is essentially reduced to deriving a priori estimates
for all possible solutions and in general needs that the domain Ω ⊂ RN be convex or a
ball. However, certain behavior of the nonlinearity at infinity is still necessary.

For these and several other existence results above mentioned, see the interesting
paper by Harrabi [49].

Our contribution to the problem

Motivated by the above papers, our results improve upon previous work in the following
ways: we focus our attention on the existence of a nontrivial weak solution for fractional
p-Kirchhoff equation in the entire space RN , which causes a difficulty due to lack of com-
pactness for Sobolev theorem; moreover, the problem also includes a non-local Choquard
subcritical term and a critical Hardy-type term; additionally, we consider singularities
in the fractional p-Laplacian with θ = θ1 + θ2 not necessarily zero and we also add a
critical Sobolev nonlinearity. The possibility of a slower growth in the nonlinearity makes
it more difficult to establish a compactness condition. In fact, we will not prove the usual
Palais-Smale condition, but rather a less restrictive version often credited to Cerami.
Our argument has two crucial points: the first one is to prove a uniform boundedness of
the convolution part |Iµ ⋆ F | < +∞, which gives a lot of help when we choose Cerami
sequences; the second one to treat the lack of compactness of the Sobolev embeddings.
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3.2 The variational setting
Here we recall a generalization of the Hardy-Littlewood-Sobolev, also called the doubly
weighted inequality or the Stein-Weiss inequality. It provides quantitative information to
characterize the integrability for the integral operators present in the energy functional
and is crucial in the analysis developed in this work. See Stein & Weiss [86]; Lieb [58]
and Lieb & Loss [59, Theorem 4.3].

Proposition 3.1 (Doubly weighted Stein-Weiss inequality). Let 1 < r, t < +∞, 0 < µ <
N , and η+κ ⩾ 0 such that µ+η+κ ⩽ N , η < N/r′, κ < N/t′ and 1/t+ (µ+η+κ)/N +
1/r = 2; let f ∈ Lt(RN) and h ∈ Lr(RN). Then there exists a constant C(N,µ, r, t, η, κ),
independent on f and h, such that∣∣∣∣∣

∫
RN

∫
RN

f(x)h(y)
|x|η|x− y|µ|y|κ

dxdy
∣∣∣∣∣ ⩽ C(N,µ, r, t, η, κ)∥f∥Lt(RN )∥h∥Lr(RN ). (3.1)

Corollary 3.2. Let 0 < s < 1; 0 ⩽ α < sp + θ < N ; 0 < µ < N ; given a function
u ∈ Ẇ s,p

θ (RN) consider Proposition 3.1 with η = κ = δ; 2δ + µ ⩽ N and t = r =
N/(N − δ − µ/2). Then f, h ∈ L

N
N−δ−µ/2 (RN) and∫

RN

∫
RN

|f(x)||h(y)|
|x|δ|x− y|µ|y|δ

dxdy ⩽ C(N, δ, θ, µ)∥f∥Lt(RN )∥h∥Lt(RN ). (3.2)

In general, for η = κ = δ and t = r, the map

u 7→
∫
RN

∫
RN

|u(x)|q|u(y)|q
|x|δ|x− y|µ|y|δ

dx dy

is well defined if

p♭
s(δ, µ) := p(N − δ − µ/2)

N
< q <

p∗
s(0, θ)(N − δ − µ/2)

N
=: p♯

s(δ, θ, µ).

The constant p♭
s(δ, µ) is termed as the lower critical exponent and p♯

s(δ, θ, µ) is termed
as the upper critical exponent in the sense of Hardy-Littlewood-Sobolev inequality.

The variational structure of problem (10) can be established with the help of several
results. To ensure the well-definiteness of the energy functional, we use the following
result.

Lemma 3.3. Let (V ) and (m1) hold. Then the functional Φ defined in (12) is of class
C1(W s,p

V,θ(RN),R) and

⟨Φ′(u), φ⟩ =m(∥u∥p
W )
[ ∫∫

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))
|x|θ1|x− y|N+ps|y|θ2

dxdy

+
∫
RN
V (x) |u(x)|p−2u(x)φ(x)

|x|α
dx
]
,

for all u, φ ∈ W s,p
V,θ(RN). Moreover, Φ is weakly lower semi-continuous in W s,p

V,θ(RN).

Proof. Let {un}n ⊂ W and u ∈ W satisfy un → u strongly in W as n → ∞. Without
loss of generality, we assume that un → u a.e. in RN . Then the sequence{ |un(x) − un(y)|p−2(un(x) − un(y))

|x|θ1/p′ |x− y|(N+sp)/p′|y|θ2/p′

}
n

is bounded in Lp′(R2N), (3.3)
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as well as in R2N

Un(x, y) := |un(x) − un(y)|p−2(un(x) − un(y))
|x|θ1/p′ |x− y|(N+sp)/p′|y|θ2/p′

→ |u(x) − u(y)|p−2(u(x) − u(y))
|x|θ1/p′ |x− y|(N+sp)/p′|y|θ2/p′ := U(x, y).

Thus, the Brezis–Lieb lemma implies

lim
n→∞

∫∫
R2N

|Un(x, y) − U(x, y)|p′dxdy

= lim
n→∞

∫∫
R2N

(|Un(x, y)|p′ − |U(x, y)|p′)dxdy

= lim
n→∞

∫∫
R2N

( |un(x) − un(y)|p
|x|θ1|x− y|N+sp|y|θ2

− |u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

)
dxdy. (3.4)

The fact that un → u strongly in W yields that

lim
n→∞

∫∫
R2N

( |un(x) − un(y)|p
|x|θ1 |x− y|N+sp|y|θ2

− |u(x) − u(y)|p
|x|θ1|x− y|N+sp|y|θ2

)
dxdy = 0. (3.5)

Moreover, the continuity of m implies that

lim
n→∞

m([un]pW s,p
θ

(RN )) = m([u]pW s,p
θ

(RN )). (3.6)

From (3.4) it follows that

lim
n→∞

∫∫
R2N

|Un(x, y) − U(x, y)|p′dxdy = 0. (3.7)

Similarly, the sequence
{
V 1/p′(x)|un(x)|p−2un(x)

|x|α/p′

}
n

is bounded in Lp′(R2N), (3.8)

as well as in R2N

Kn(x, y) := V 1/p′(x)|un(x)|p−2un(x)
|x|α/p′ → V 1/p′(x)|u(x)|p−2u(x)

|x|α/p′ := K(x, y).

Thus, the Brezis–Lieb lemma implies

lim
n→∞

∫
RN

|Kn(x, y) −K(x, y)|p′dx

= lim
n→∞

∫
RN

(|Kn(x, y)|p′ − |K(x, y)|p′)dx

= lim
n→∞

∫
RN

(
V (x)|un(x)|p

|x|α
− V (x)|u(x)|p

|x|α
)

dx. (3.9)

The fact that un → u strongly in W yields that∫
RN

(
V (x)|un(x)|p

|x|α
− V (x)|u(x)|p

|x|α
)

dx = 0. (3.10)
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From (3.9) it follows that

lim
n→∞

∫
RN

|Kn(x, y) −K(x, y)|p′dx = 0. (3.11)

From Hölder inequality, we have
∫∫

R2N

|un(x) − un(y)|p−2(un(x) − un(y))(ϕ(x) − ϕ(y))
|x|θ1|x+ y|N+sp|y|θ2

dxdy

+
∫
RN

V (x)|un(x)|p−2un(x)ϕ(x)
|x|α

dx

=
∫∫

R2N

|un(x) − un(y)|p−2(un(x) − un(y))

|x|
θ1
p′ |x+ y|

N+sp
p′ |y|

θ2
p′

· ϕ(x) − ϕ(y)
|x|

θ1
p |x+ y|

N+sp
p |y|

θ2
p

dxdy

+
∫
RN

(V (x))
1
p′ |un(x)|p−2un(x)

|x|
α
p′

· (V (x))
1
pϕ(x)

|x|
α
p

dx

⩽
(∫∫

R2N

|un(x) − un(y)|p
|x|θ1|x+ y|N+sp|y|θ2

dxdy
) 1

p′
·
(∫∫

R2N

|ϕ(x) − ϕ(y)|p
|x|θ1|x+ y|N+sp|y|θ2

dxdy
) 1

p

+
(∫

RN

V (x)|un|p

|x|α
dx
) 1

p′
·
(∫

RN

V (x)|ϕ|p

|x|α
dx
) 1

p

.

Similarly, we can obtain the previous result for u.
Combining (3.6), (3.7) and (3.11) with the Hölder inequality, we have

∥Φ′(un) − Φ′(u)∥W ′ = sup
ϕ∈W, ∥ϕ∥W =1

|⟨Φ′(un) − Φ′(u), ϕ⟩| → 0

as n → +∞. Hence Φ ∈ C1(W,R). Finally, that the map v 7→ [v]pW s,p
θ

(RN ) is lower semi-
continuous in the weak topology of W s,p

V,θ(RN) and M is nondecreasing and continuous
on R+

0 , so the u 7→ M([u]pW s,p
θ

(RN )) is lower semi-continuous in the weak topology of
W s,p

V,θ(RN).

One of the main difficulties of this work is to prove the weak strong continuity of the
term involving the weighted Sobolev critical exponent. To accomplish this goal, we use
the following result.

Lemma 3.4. The functional Ξ defined in (12) as well as Ξ′ are weakly strongly continuous
on W s,p

V,θ(RN).

Proof. See Lemma 1.11; see also Assunção, Miyagaki & Siqueira [15, Lemma 1.7].

Lemma 3.5. Assume ( (F2)) holds, then there exists K > 0 such that∣∣∣∣Iµ ∗ F (v)
|x|δ

∣∣∣∣ ⩽ K for v ∈ W s,p
V,θ(RN). (3.12)

Proof. By the assumptions (F2) and (V ) and using (11), we have
∣∣∣∣Iµ ∗ F (v)

|x|δ
∣∣∣∣ =

∣∣∣∣∣
∫
RN

F (v)
|x|δ|x− y|µ

dy
∣∣∣∣∣
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⩽

∣∣∣∣∣
∫

|x−y|⩽1

F (v)
|x|δ|x− y|µ

dy
∣∣∣∣∣+

∣∣∣∣∣
∫

|x−y|⩾1

F (v)
|x|δ|x− y|µ

dy
∣∣∣∣∣

⩽c0

∫
|x−y|⩽1

|v|q1 + |v|q2

|x|δ|x− y|µ
dy + c0

∫
|x−y|⩾1

|v|q1 + |v|q2

|x|δ
dy

=c0

∫
|x−y|⩽1

|v|q1 + |v|q2

|x|δ|x− y|µ
dy + c0

∫
|x−y|⩾1

V0|v|q1 + V0|v|q2

V0|x|δ
dy

⩽c0

∫
|x−y|⩽1

|v|q1 + |v|q2

|x|δ|x− y|µ
dy + c0

V0

∫
|x−y|⩾1

V (y)|v|q1 + V (y)|v|q2

|x|δ
dy

⩽c0

∫
|x−y|⩽1

|v|q1 + |v|q2

|x|δ|x− y|µ
dy + C(∥v∥q1

W + ∥v∥q2
W )

⩽c0

∫
|x−y|⩽1

|v|q1 + |v|q2

|x|δ|x− y|µ
dy + C.

For the first term in the last line above, choosing t1 ∈
(

N−ps−θ
N−δ−µ/2 ,

p(N−β)
(N−ps−θ)q1

)
and

t2 ∈
(

N−ps−θ
N−δ−µ/2 ,

p(N−β)
(N−ps−θ)q2

)
, using Hölder inequality and the assumption (V ), we obtain

∫
|x−y|⩽1

|v|q1 + |v|q2

|x|δ|x− y|µ
dy

⩽

(∫
|x−y|⩽1

|v|q1t1

|x|δt1
dy
) 1

t1
(∫

|x−y|⩽1
|x− y|−

µt1
t1−1 dy

) t1−1
t1

+
(∫

|x−y|⩽1

|v|q2t2

|x|δt2
dy
) 1

t2
(∫

|x−y|⩽1
|x− y|−

µt2
t2−1 dy

) t2−1
t2

=
(∫

|x−y|⩽1

V0|v|q1t1

V0|x|δt1
dy
) 1

t1
(∫

|x−y|⩽1
|x− y|−

µt1
t1−1 dy

) t1−1
t1

+
(∫

|x−y|⩽1

V0|v|q2t2

V0|x|δt2
dy
) 1

t2
(∫

|x−y|⩽1
|x− y|−

µt2
t2−1 dy

) t2−1
t2

= 1
V

1/t1
0

(∫
|x−y|⩽1

V (x)|v|q1t1

|x|δt1
dy
) 1

t1
(∫

|x−y|⩽1
|x− y|−

µt1
t1−1 dy

) t1−1
t1

+ 1
V

1/t2
0

(∫
|x−y|⩽1

V (x)|v|q2t2

|x|δt2
dy
) 1

t2
(∫

|x−y|⩽1
|x− y|−

µt2
t2−1 dy

) t2−1
t2

Let 0 < α < N − µ, we choose q1t1 = p, q2t2 = p and δt1 = α, δt2 = α, so using (11), we
have ∫

|x−y|⩽1

|v|q1 + |v|q2

|x|δ|x− y|µ
dy

⩽ C (∥v∥q1
W + ∥v∥q2

W )
(∫

r⩽1
r

N−1− µt1
t1−1 dy

) t1−1
t1 +

(∫
r⩽1

r
N−1− µt2

t2−1 dy
) t2−1

t2


⩽ C.
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Lemma 3.6. Let (V ) and (F1)–(F2) hold. Then the functional Ψ defined in (12) as well
as Ψ′ are weakly strongly continuous on W s,p

V,θ(RN).

Proof. Let {un} be a sequence in W s,p
V,θ(RN) such that un ⇀ u in W s,p

V,θ(RN) as n → ∞.
Then {un} is bounded in W s,p

V,θ(RN), and then there exists a subsequence denoted by itself,
such that

un → u in Lq1(RN , |x|−δ) ∩ Lq2(RN , |x|−δ), and un → u a.e. in RN as n → ∞,

and by [22, Theorem 4.9] there exists ℓ ∈ Lq1(RN , |x|−δ) ∩ Lq2(RN , |x|−δ) such that

|un(x)|
|x|δ

⩽ ℓ(x) a.e. in RN .

First, we show that Ψ is weakly strongly continuous on W s,p
V,θ(RN). Since F ∈ C1(R,R),

we see that F (un)
|x|δ → F (u)

|x|δ as n → ∞ for almost all x ∈ RN , and so
(

Iµ ∗ F (un)
|x|δ

)
F (un)

|x|δ →(
Iµ ∗ F (u)

|x|δ

)
F (u)
|x|δ as n → ∞ for almost all x ∈ RN . From Lemma 3.5 and (F2), we have

∣∣∣∣(Iµ ∗ F (un)
|x|δ

)
F (un)
|x|δ

∣∣∣∣ ⩽ Kc0

( |un(x)|q1

q1|x|δ
+ |un(x)|q2

q2|x|δ
)

∈ L1(RN).

By Lebesgue dominated convergence theorem, we get∫
RN

(
Iµ ∗ F (un)

|x|δ
)
F (un)
|x|δ

dx →
∫
RN

(
Iµ ∗ F (u)

|x|δ
)
F (u)
|x|δ

dx as n → ∞,

which implies that Ψ(un) → Ψ(u) as n → ∞. Thus Ψ is weakly strongly continuous on
W s,p

V,θ(RN).
Next, we prove that Ψ′ is weakly strongly continuous on W s,p

V,θ(RN). Since un(x) →
u(x) as n → ∞ for almost all x ∈ RN , f(un)

|x|δ → f(u)
|x|δ for almost all x ∈ RN as n → ∞.

Then (
Iµ ∗ F (un)

|x|δ
)
f(un)
|x|δ

→
(

Iµ ∗ F (u)
|x|δ

)
f(u)
|x|δ

a.e. in RN , as n → ∞.

By (F2) and Hölder inequality, we have that for any φ ∈ W s,p
V,θ(RN),

∫
RN

∣∣∣∣(Iµ ∗ F (un)
|x|δ

)
f(un)
|x|δ

φ(x)
∣∣∣∣dx

⩽ c0K
∫
RN

|
( |un|q1−1

|x|δ
+ |un|q2−1

|x|δ
)
φ(x)|dx

= c0K
[∫

RN

|un|q1−1

|x|δ(q1−1)/q1

|φ(x)|
|x|δ/q1

dx+
∫
RN

|un|q2−1

|x|δ(q2−1)/q2

|φ(x)|
|x|δ/q2

dx
]

⩽ c0K
[(∫

RN

( |un|q1−1

|x|δ(q1−1)/q1

) q1
q1−1

dx
) q1−1

q1
(∫

RN

( |φ(x)|
|x|δ/q1

)q1

dx
) 1

q1

+
(∫

RN

( |un|q2−1

|x|δ(q2−1)/q2

) q2
q2−1

dx
) q2−1

q2
(∫

RN

( |φ(x)|
|x|δ/q2

)q2

dx
) 1

q2
]

= c0K
(

∥un∥q1−1
Lq1 (RN ,|x|−δ)∥φ∥Lq1 (RN ,|x|−δ) + ∥un∥q2−1

Lq2 (RN ,|x|−δ)∥φ∥Lq2 (RN ,|x|−δ)

)
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⩽ c0K
(
Cq1∥ℓ(x)∥q1−1

Lq1 (RN ,|x|−δ) + Cq2∥ℓ(x)∥q2−1
Lq2 (RN ,|x|−δ)

)
∥φ∥W .

Then by Lebesgue dominated convergence theorem, we obtain

∥Ψ′(un) − Ψ′(u)∥(
W s,p,θ

V (RN )
)′

= sup
∥φ∥

W
s,p,θ
V

(RN )
=1

|⟨Ψ′(un) − Ψ′(u), φ⟩|

= sup
∥φ∥

W
s,p,θ
V

(RN )
=1

∫
RN

∣∣∣∣(Iµ ∗ F (un)
|x|δ

)
f(un)
|x|δ

φ(x) −
(

Iµ ∗ F (u)
|x|δ

)
f(u)
|x|δ

φ(x)
∣∣∣∣dx

→ 0 as n → ∞.

Therefore, we get that Ψ′(un) → Ψ′(u) in
(
W s,p

V,θ(RN)
)′

as n → ∞. This completes the
proof.

3.3 The geometry of the mountain pass theorem
In this section, we will prove our main result. First, we introduce the following definition.

Definition 3.7. For c ∈ R, we say that I satisfies the (C)c condition if for any sequence
{un} ⊂ W s,p

V,θ(RN) with

I(un) → c, ∥I ′(un)∥(1 + ∥un∥W ) → 0,

there is a subsequence {un} such that {un} converges strongly in W s,p
V,θ(RN).

We will use the following mountain pass theorem to prove our result.

Lemma 3.8 (Theorem 1 in [35]). Let E be a real Banach space, I ∈ C1(E,R) satisfies
the (C)c condition for any c ∈ R, and

(i) There are constants ρ, α > 0 such that I|∂Bρ ⩾ α.
(ii) There is an e ∈ E\Bρ such that I(e) ⩽ 0.

Then,
c = inf

γ∈Γ
max
0⩽t⩽1

I(γ(t)) ⩾ α

is a critical value of I, where

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

We first show that the energy functional I satisfies the geometric structure.

Lemma 3.9. Assume that (V ), (m1)–(m2) and (F1)–(F3) hold. Then
(i) There exists α, ρ > 0 such that I(u) ⩾ α for all u ∈ W s,p

V,θ(RN) with ∥u∥W = ρ.
(ii) I(u) is unbounded from below on W s,p

V,θ(RN).

Proof. (i) From Lemma 3.5 and (m1)–(m2), (F2), we have

I(u) =1
p
M(∥u∥p

W ) − 1
p∗

s(β, θ)

∫
RN

|u|p∗
s(β,θ)

|x|β
dx
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− λ

2

∫
RN

∫
RN

Fδ,θ,µ(u(x))Fδ,θ,µ(u(y))
|x|δ|x− y|µ|y|δ

dx dy

⩾
1
pξ
m(∥u∥p

W )∥u∥p
W − ∥u∥p∗

s(β,θ)
W − λc0K

2

∫
RN

( |u|q1

q1
+ |u|q2

q2

)
dx

⩾

[
m0

pξ
− ∥u∥p∗

s(β,θ)−p
W − λc0K

2

(
Cq1

q1 ∥u∥q1−p
W + Cq2

q2 ∥u∥q2−p
W

)]
∥u∥p

W .

Since q2 ⩾ q1 > p and p∗
s(β, θ) > p, the claim follows if we choose ρ small enough.

(ii) Rewriting the inequality of (m2) in the form of m(t)/M(t) ⩽ ξ/t, after integra-
tion, we deduce that there is a constant C ∈ R+ such that

M(t) ⩽ Ctξ for all t ⩾ 1. (3.13)

By the assumption (F3), we can take that t0 such that F (t0) ̸= 0, we find∫
RN

(
Iµ ∗ F (t0χB1)

|x|δ
)
F (t0χB1)

|x|δ
dx = F (t0)2

∫
B1

∫
B1

1
|x|δ|x− y|µ|y|δ

dxdy > 0,

where Br denotes the open ball centered at the origin with radius r and χB1 denotes the
standard indicator function of set B1. By the density theorem, there will be v0 ∈ W s,p

V,θ(RN)
with ∫

RN

(
Iµ ∗ F (v0)

|x|δ
)
F (v0)
|x|δ

dx > 0.

Define the function vt(x) = v0(x
t
), then, using the change of variables x/t = x̄ and y/t = ȳ,

we have

I(vt) =1
p
M(∥vt∥p

W ) − 1
p∗

s(β, θ)

∫
RN

|vt|p
∗
s(β,θ)

|x|β
dx− λ

2

∫∫
R2N

F (vt(x))F (vt(y))
|x|δ|x− y|µ|y|δ

dxdy

⩽
1
p
C∥vt∥pξ

W − 1
p∗

s(β, θ)

∫
RN

|vt|p
∗
s(β,θ)

|x|β
dx− λ

2

∫∫
R2N

F (vt(x))F (vt(y))
|x|δ|x− y|µ|y|δ

dx̄dȳ

=1
p
C

[
tN−ps−θ

∫∫
R2N

|v0(x̄) − v0(ȳ)|p
|x|θ1|x− y|N+sp|y|θ2

dx̄dȳ + tN−sp−θ
∫
RN

V (tx̄)|v0|p

|x̄|sp+θ
dx̄
]ξ

− tN−β

p∗
s(β, θ)

∫
RN

|v0|p
∗
s(β,θ)

|x̄|β
dx̄− t2(N−δ−µ/2)λ

2

∫∫
R2N

F (v0(x))F (v0(y))
|x|δ|x− y|µ|y|δ

dx̄dȳ,

for sufficiently large t. Therefore, we have that I(vt) → −∞ as t → ∞ since 1 ⩽ ξ <
2(N−δ−µ/2)

N
gives that 2(N−δ−µ/2) > Nξ > (N−ps−θ)ξ. Furthermore, since β < sp+θ,

then N − β > N − sp − θ. Hence we obtain that the functional I is unbounded from
below.

3.4 The compactness of the Cerami sequences
Next, we prove the important result that the Cerami sequences for the energy functional
are bounded.

Lemma 3.10. Assume that (V ), (m1)–(m2) and (F1)–(F4) hold. Then (C)c−sequence
of I is bounded for any λ > 0.
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Proof. Suppose that {un} ⊂ W s,p
V,θ(RN) is a (C)c−sequence for I(u), that is,

I(un) → c, ∥I ′(un)∥W (1 + ∥un∥W ) → 0,

which shows that

c = I(un) + o(1), ⟨I ′(un), un⟩ = o(1) (3.14)

where o(1) → 0 as n → +∞. We now prove that {un} is bounded in W s,p
V,θ(RN). We argue

by contradiction. Suppose that the sequence {un} is unbounded in W s,p
V,θ(RN), then we

may assume that

∥un∥W → ∞, as n → +∞. (3.15)

Let ωn(x) = un

∥un∥W
, then ωn ∈ W s,p

V,θ(RN) with ∥ωn∥W = 1. Hence, up to a subsequence,
still denoted by itself, there exists a function ω ∈ W s,p,θ

V (RN) such that

ωn(x) → ω(x) a.e. in RN , and ωn(x) → ω(x) a.e. in Lr(RN) (3.16)

as n → ∞, for p ⩽ r < Np
N−ps−θ

.
Let Ω1 = {x ∈ RN : ω(x) ̸= 0}, then

lim
n→∞

ωn(x) = lim
n→∞

un(x)
∥un∥W

= ω(x) ̸= 0 in Ω1,

and (3.15) implies that

|un| → ∞ a.e. in Ω1. (3.17)

So from the assumption (F3) and Lemma 3.5, we have

lim
n→∞

(
Iµ ∗ F (un(x))

|x|δ

)
F (un(x))

|x|δ

|un(x)|pξ
|ωn(x)|pξ = ∞, for a.e. x ∈ Ω1. (3.18)

Hence, there is a constant C such that(
Iµ ∗ F (un)

|x|δ

)
F (un(x))

|x|δ

|un(x)|pξ
|ωn(x)|pξ − C

∥un∥pξ
W

⩾ 0. (3.19)

By (3.14) we have that

c = I(un) + o(1)

= 1
p
M(∥un∥p

W ) − 1
p∗

s(β, θ)

∫
RN

|un|p∗
s(β,θ)

|x|β
dx

− λ

2

∫
RN

∫
RN

Fδ,θ,µ(un(x))Fδ,θ,µ(un(y))
|x|δ|x− y|µ|y|δ

dx dy + o(1). (3.20)

Using this estimate, together with (m1)–(m2) and the embeddingW s,p
V,θ(RN) ↪→ Lp∗

s(β,θ)(RN , |y|−β),
we find

max
{1

2 ,
1

λp∗
s(β, θ)

}(∫
RN

(
Iµ ∗ F (un)

|x|δ
)
F (un)
|x|δ

dx+
∫
RN

|un|p∗
s(β,θ)

|x|β
dx
)
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⩾
1
2

∫
RN

(
Iµ ∗ F (un)

|x|δ
)
F (un)
|x|δ

dx+ 1
λp∗

s(β, θ)

∫
RN

|un|p∗
s(β,θ)

|x|β
dx

= 1
pλ
M(∥un∥p

W ) − c

λ
+ o(1)

λ

⩾
1
ξpλ

m(∥un∥p
W )∥un∥p

W − c

λ
+ o(1)

λ

⩾
m0

ξpλ
∥un∥p

W − c

λ
+ o(1)

λ

→ ∞, as n → ∞. (3.21)

We claim that meas(Ω1) = 0. Indeed, if meas(Ω1) ̸= 0. From (3.18) and (3.19), we have

+∞ =
∫

Ω1
lim inf

n→∞

(
Iµ ∗ F (un(x))

|x|δ

)
F (un(x))

|x|δ

|un(x)|pξ
|ωn(x)|pξdx

+
∫

Ω1
lim inf

n→∞

|un|p∗
s(β,θ)

|x|β|un(x)|pξ
|ωn(x)|pξdx−

∫
Ω1

lim sup
n→∞

C

∥un∥pξ
W

dx

⩽
∫

Ω1
lim inf

n→∞


(

Iµ ∗ F (un(x))
|x|δ

)
F (un(x))

|x|δ

|un(x)|pξ
|ωn(x)|pξ + |un|p∗

s(β,θ)

|x|β|un(x)|pξ
|ωn(x)|pξ − C

∥un∥pξ
W

 dx

and by Fatou’s lemma,

⩽ lim inf
n→∞

∫
Ω1


(

Iµ ∗ F (un(x))
|x|δ

)
F (un(x))

|x|δ

|un(x)|pξ
|ωn(x)|pξ + |un|p∗

s(β,θ)

|x|β|un(x)|pξ
|ωn(x)|pξ − C

∥un∥pξ
W

 dx

= lim inf
n→∞

∫
Ω1


(

Iµ ∗ F (un)
|x|δ

)
F (un)

|x|δ

∥un∥pξ
W

+ |un|p∗
s(β,θ)

|x|β∥un∥pξ
W

− C

∥un∥pξ
W

 dx

and by (3.13),

⩽ lim inf
n→∞

∫
Ω1

(C(Iµ ∗ F (un)
|x|δ

)
F (un)

|x|δ

M(∥un∥p
W ) + C|un|p∗

s(β,θ)

|x|βM(∥un∥p
W )

)
dx− lim inf

n→∞

∫
Ω1

C

∥un∥pθ
W

dx

⩽ lim inf
n→∞

∫
RN

(C(Iµ ∗ F (un)
|x|δ

)
F (un)

|x|δ

M(∥un∥p
W ) +

C |un|p∗
s(β,θ)

|x|β

M(∥un∥p
W )

)
dx

=C
p

lim inf
n→∞

∫
RN

(
Iµ ∗ F (un)

|x|δ

)
F (un)

|x|δ + |un|p∗
s(β,θ)

|x|β

1
p
M(∥un∥p

W ) dx

and by (3.20),

=C
p

lim inf
n→∞

∫
RN

((
Iµ ∗ F (un)

|x|δ

)
F (un)

|x|δ + |un|p∗
s(β,θ)

|x|β

)
dx

λ
2
∫
RN

(
Iµ ∗ F (un)

|x|δ

)
F (un)

|x|δ dx+ 1
p∗

s(β,θ)
∫
RN

|un|p∗
s(β,θ)

|x|β dx+ c− o(1)
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⩽
C

p
lim inf

n→∞

∫
RN

((
Iµ ∗ F (un)

|x|δ

)
F (un)

|x|δ + |un|p∗
s(β,θ)

|x|β

)
dx

max
{

λ
2 ,

1
p∗

s(β,θ)

}(∫
RN

(
Iµ ∗ F (un)

|x|δ

)
F (un)

|x|δ dx+
∫
RN

|un|p∗
s(β,θ)

|x|β dx
)

+ c− o(1)
.

(3.22)

So by (3.21) and (3.22), we get the contradiction

+∞ ⩽
C

pmax
{

λ
2 ,

1
p∗

s(β,θ)

} .
This shows that meas(Ω1) = 0. Hence ω(x) = 0 for almost all x ∈ RN . The convergence
in (3.16) means that

ωn(x) → 0 a.e. in RN , and ωn(x) → 0 a.e. in Lr(RN) as n → ∞, (3.23)

for p ⩽ r < Np
N−ps−θ

.
Using (3.14), (m2), p∗

s(β, θ) > p and ξ ⩾ 1, we get

c+ 1 ⩾I(un) − 1
pξ

⟨I ′(un), un⟩

=1
p
M(∥un∥p

W ) − 1
pξ
m(∥un∥p

W )∥un∥p
W

+
( 1
pξ

− 1
p∗

s(β, θ)

) ∫
RN

|un|p∗
s(β,θ)

|x|β
dx

+ λ
∫
RN

(
Iµ ∗ F (un)

|x|δ
)( 1

pξ

f(un)
|x|δ

un − 1
2
F (un)
|x|δ

)
dx

⩾
( 1
pξ

− 1
p∗

s(β, θ)

) ∫
RN

|un|p∗
s(β,θ)

|x|β
dx

+ λ
∫
RN

(
Iµ ∗ F (un)

|x|δ
)( 1

pξ

f(un)
|x|δ

un − 1
2
F (un)
|x|δ

)
dx

⩾λ
∫
RN

(
Iµ ∗ F (un)

|x|δ
)( 1

pξ

f(un)
|x|δ

un − 1
2
F (un)
|x|δ

)
dx

=λ
∫
RN

(Iµ ∗ F (un))F(un)dx, (3.24)

for n large enough.
For a, b ⩾ 0, let us define

Ω∗
n(a, b) :=

{
x ∈ RN : a ⩽

|un(x)|
|x|β/(p∗

s(β,θ)−p) ⩽ b
}

Ωi
n(a, b) :=

{
x ∈ RN : a ⩽

|un(x)|
|x|δ/(qi−p) ⩽ b

}
(i ∈ {1, 2}).

From (m1) and (m2), we have that

M(∥un∥p
W ) ⩾ 1

ξ
m(∥un∥p

W )∥un∥p
W ⩾

m0

ξ
∥un∥p

W . (3.25)
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This inequality, together with (3.15) and (3.20) yields that

0 < λ

2p ⩽ lim sup
n→∞

∫
RN

(
Iµ ∗ F (un)

|x|δ

)
F (un)

|x|δ dx

M(∥un∥p
W )

= lim sup
n→∞

∫
RN

(
Iµ ∗ F (un)

|x|δ

)
F (un)

|x|δ

M(∥un∥p
W ) dx

= lim sup
n→∞

(∫
Ω1

n∩Ω2
n∩Ω∗

n(0,r0)
+
∫
RN \Ω1

n∩Ω2
n∩Ω∗

n(0,r0)

) (Iµ ∗ F (un)
|x|δ

)
F (un)

|x|δ

M(∥un∥p
W ) dx. (3.26)

To simplify the notation, we denote Ω = Ω1
n ∩ Ω2

n ∩ Ω∗
n(0, r0). On the one hand, by

Lemma 3.5, (3.25), (F2), and (3.23), we obtain

∫
Ω

(
Iµ ∗ F (un)

|x|δ

)
F (un)

|x|δ

M(∥un∥p
W ) dx ⩽

∫
Ω

K |F (un)|
|x|δ

M(∥un∥p
W )dx

⩽
Kξ

m0

∫
Ω

|F (un)|
|x|δ

∥un∥p
W

dx

⩽
c0Kξ

m0

∫
Ω

1
|x|δ

(
|un|q1

q1∥un∥p
W

+ |un|q2

q2∥un∥p
W

)
dx

+ ξ

m0

∫
Ω

|un|p∗
s(β,θ)

|x|β∥un∥p
W

dx

= c0Kξ

m0

∫
Ω

1
|x|δ

(
|un|q1−p|un|p

q1∥un∥p
W

+ |un|q2−p|un|p

q2∥un∥p
W

)
dx

+ ξ

m0

∫
Ω

|un|p∗
s(β,θ)−p|un|p

|x|β∥un∥p
W

dx

= c0Kξ

m0

∫
Ω

1
|x|δ

(
|un|q1−p

q1
|ωn|p + |un|q2−p

q2
|ωn|p

)
dx

+ ξ

m0

∫
Ω

|un|p∗
s(β,θ)−p

|x|β
|ωn|pdx

⩽
c0Kξ

m0

(
rq1−p

0
q1

+ rq2−p
0
q2

)∫
Ω

|ωn|pdx

+ ξ

m0
r

p∗
s(β,θ)−p

0

∫
Ω

|ωn|pdx

→ 0, as n → ∞. (3.27)

On the other hand, using Hölder inequality, (3.23), (3.24) and (F4), we find

∫
RN \Ω

∣∣∣∣Iµ ∗ F (un)
|x|δ

∣∣∣∣F (un)
|x|δ

M(∥un∥p
W ) dx

⩽
ξ

m0

∫
RN \Ω

∣∣∣∣Iµ ∗ F (un)
|x|δ

∣∣∣∣F (un)
|x|δ

∥un∥p
W

dx
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= ξ

m0

∫
RN \Ω

∣∣∣∣Iµ ∗ F (un)
|x|δ

∣∣∣∣F (un)
|x|δ

|un|p
|ωn(x)|pdx

⩽
ξ

m0

∫RN \Ω


∣∣∣∣Iµ ∗ F (un)

|x|δ

∣∣∣∣F (un)
|x|δ

|un|p


κ

dx


1
κ (∫

RN \Ω
|ωn(x)|

κp
κ−1 dx

)κ−1
κ

⩽
ξ

m0
c

1
κ
1

(∫
RN \Ω

∣∣∣∣Iµ ∗ F (un)
|x|δ

∣∣∣∣κF(un)dx
) 1

κ
(∫

Ωn(r0,∞)
|ωn(x)|

κp
κ−1 dx

)κ−1
κ

⩽
ξ

m0
c

1
κ
1 K

κ−1
κ

(∫
RN \Ω

∣∣∣∣Iµ ∗ F (un)
|x|δ

∣∣∣∣F(un)dx
) 1

κ
(∫

RN \Ω
|ωn(x)|

κp
κ−1 dx

)κ−1
κ

⩽
ξ

m0
c

1
κ
1 K

κ−1
κ

(
c+ 1
λ

) 1
κ

(∫
RN \Ω

|ωn(x)|
κp

κ−1 dx
)κ−1

κ

→ 0, as n → ∞. (3.28)

Here we used the fact that κp
κ−1 ∈ (p, p(N−β)

N−ps−θ
) if κ > N−β

ps+θ−β
. Thus, we get a contradiction

from (3.26)-(3.28). The proof is complete.

Lemma 3.11. Assume that (V ), (m1)–(m2) and (F1)–(F4) hold. Then the functional I
satisfies (C)c−condition for any λ > 0.

Proof. Suppose that {un} ⊂ W s,p
V,θ(RN) is a (C)c−sequence for I, from Lemma 3.10, we

have that {un} is bounded in W s,p
V,θ(RN), then if necessary to a subsequence, we have

un ⇀ u in W s,p
V,θ(RN), un → u a.e. in RN ,

un → u in Lq1(RN , |x|−δ) ∩ Lq2(RN , |x|−δ), (3.29)
|un|
|x|δ

⩽ ℓ(x) a.e. in RN , for some ℓ(x) ∈ Lq1(RN , |x|−δ) ∩ Lq2(RN , |x|−δ).

For simplicity, let φ ∈ W s,p
V,θ(RN) be fixed and denote by Bφ the linear functional on

W s,p
V,θ(RN) defined by

Bφ(v) =
∫∫

R2N

|φ(x) − φ(y)|p−2(φ(x) − φ(y))
|x|θ1|x− y|N+ps|y|θ2

(v(x) − v(y))dxdy

for all v ∈ W s,p
V,θ(RN). By Hölder inequality, we have

∫∫
R2N

|φ(x) − φ(y)|p−2(φ(x) − φ(y))
|x|θ1 |x− y|N+ps|y|θ2

(v(x) − v(y))dxdy

=
∫∫

R2N

|φ(x) − φ(y)|p−1

|x|θ1−θ1/p|x− y|(N+ps)−(N+ps)/p|y|θ2−θ2/p

(v(x) − v(y))
|x|θ1/p|x− y|(N+ps)/p|y|θ2/p

dxdy

⩽
(∫∫

RN

( |φ(x) − φ(y)|p−1

|x|θ1−θ1/p|x− y|(N+ps)−(N+ps)/p|y|θ2−θ2/p

) p
p−1

dxdy
) p−1

p

(∫∫
RN

( (v(x) − v(y))
|x|θ1/p|x− y|(N+ps)/p|y|θ2/p

)p

dxdy
) 1

p

⩽ [φ]p−1
s,p,θ[v]s,p,θ ⩽ ∥φ∥p−1

W ∥v∥W ,
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for all v ∈ W s,p
V,θ(RN). Hence, (3.29) gives that

lim
n→∞

(
m(∥un∥p

W ) −m(∥u∥p
W )
)
Bu(un − u) = 0, (3.30)

since
{
m(∥un∥p

W ) −m(∥u∥p
W )
}

n
is bounded in R.

Since I ′(un) → 0 in (W s,p
V,θ(RN))′ and un ⇀ u in W s,p

V,θ(RN), we have

⟨I ′(un) − I ′(u), un − u⟩ → 0 as n → ∞.

That is,

o(1) =⟨I ′(un) − I ′(u), un − u⟩
=m(∥un∥p

W )∥un − u∥p
W −m(∥u∥p

W )∥un − u∥p
W

−
∫
RN

|un|p∗
s(β,θ)un(un − u)

|x|β
dx+

∫
RN

|u|p∗
s(β,θ)u(un − u)

|x|β
dx

− λ
∫
RN

(
Iµ ∗ F (un)

|x|δ
)
f(un)
|x|δ

(un − u)dx+ λ
∫
RN

(
Iµ ∗ F (u)

|x|δ
)
f(u)
|x|δ

(un − u)dx

=m(∥un∥p
W )
(
Bun(un − u) +

∫
RN

V (x)|un|p−2un(un − u)
|x|α

dx
)

−m(∥u∥p
W )
(
Bu(un − u) +

∫
RN

V (x)|u|p−2u(un − u)
|x|α

dx
)

−
∫
RN

(|un|p∗
s(β,θ)−2un − |u|p∗

s(β,θ)−2u)(un − u)
|x|α

dx

− λ
∫
RN

[(
Iµ ∗ F (un)

|x|δ
)
f(un)
|x|δ

−
(

Iµ ∗ F (u)
|x|δ

)
f(u)
|x|δ

]
(un − u)dx

=m(∥un∥p
W )
(
Bun(un − u) +

∫
RN

V (x)|un|p−2un(un − u)
|x|α

dx
)

−m(∥u∥p
W )
(
Bu(un − u) +

∫
RN

V (x)|u|p−2u(un − u)
|x|α

dx
)

+m(∥un∥p
W )Bu(un − u) −m(∥un∥p

W )Bu(un − u)

+m(∥un∥p
W )V (x)|u|p−2u(un − u)

|x|α
dx−m(∥un∥p

W )V (x)|u|p−2u(un − u)
|x|α

dx

−
∫
RN

(|un|p∗
s(β,θ)−2un − |u|p∗

s(β,θ)−2u)(un − u)
|x|α

dx

− λ
∫
RN

[(
Iµ ∗ F (un)

|x|δ
)
f(un)
|x|δ

−
(

Iµ ∗ F (u)
|x|δ

)
f(u)
|x|δ

]
(un − u)dx

=m(∥un∥p
W )
[
Bun(un − u) −Bu(un − u)

]
+
(
m(∥un∥p

W ) −m(∥u∥p
W )
)
Bu(un − u)

+m(∥un∥p
W )

∫
RN

V (x)(|un|p−2un − |u|p−2u)(un − u)
|x|α

dx

+ [m(∥un∥p
W ) −m(∥u∥p

W )]
∫
RN

V (x)|u|p−2u(un − u)
|x|α

dx
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−
∫
RN

(|un|p∗
s(β,θ)−2un − |u|p∗

s(β,θ)−2u)(un − u)
|x|α

dx

− λ
∫
RN

[(
Iµ ∗ F (un)

|x|δ
)
f(un)
|x|δ

−
(

Iµ ∗ F (u)
|x|δ

)
f(u)
|x|δ

]
(un − u)dx. (3.31)

From Lemma 3.2, we have∫
RN

[(
Iµ ∗ F (un)

|x|δ
)
f(un)
|x|δ

−
(

Iµ ∗ F (u)
|x|δ

)
f(u)
|x|δ

]
(un − u)dx → 0, as n → ∞. (3.32)

Moreover, using Hölder inequality, we have
∫
RN

V (x)|u|p−2u(un − u)
|x|α

dx

=
∫
RN

(V (x))(p−1)/p|u|p−1

|x|α(p−1)/p

(V (x))1/p|un − u|p

|x|α/p
dx

⩽
(∫

RN

((V (x))(p−1)/p|u|p−1

|x|α(p−1)/p

) p
p−1

dx
) p−1

p
(∫

RN

((V (x))(1)/p|un − u|
|x|α/p

)p

dx
) 1

p

=
(∫

RN

V (x)|u|p

|x|α
dx
) p−1

p
(∫

RN

V (x)|un − u|p

|x|α
dx
) 1

p

. (3.33)

From inequality above and (3.29), we obtain

[m(∥un∥p
W ) −m(∥u∥p

W )]
∫
RN

V (x)|u|p−2u(un − u)
|x|α

dx → 0, as n → ∞. (3.34)

From (3.30)-(3.34) and (m1), we obtain

lim
n→∞

m(∥un∥p
W )

([
Bun(un − u) −Bu(un − u)

]
+
∫
RN

V (x)(|un|p−2un − |u|p−2u)(un − u)
|x|α

dx
)

= 0.

Since m(∥un∥p
W )[Bun(un − u) −Bu(un − u)] ⩾ 0 and V (x)(|un|p−2un−|u|p−2u)(un−u)

|x|α ⩾ 0 for all
n by convexity, (m1) and (V1), we have

lim
n→∞

[
Bun(un − u) −Bu(un − u)

]
= 0,

lim
n→∞

∫
RN

V (x)(|un|p−2un − |u|p−2u)(un − u)
|x|α

dx = 0. (3.35)

Let us now recall the well-known Simon inequalities. There exist positive numbers cp and
Cp, depending only on p, such that

|ξ − η|p ⩽


cp(|ξ|p−2ξ − |η|p−2η)(ξ − η) for p ⩾ 2,

Cp

[
(|ξ|p−2ξ − |η|p−2η)(ξ − η)

]p/2
(|ξ|p + |η|p)(2−p)/2 for 1 < p < 2,

(3.36)

for all ξ, η ∈ RN . According to the Simon inequality, we divide the discussion into two
cases.
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Case p ⩾ 2: From (3.35) and (3.36), as n → ∞, we have

[un − u]pW s,p
θ

(RN ) =
∫∫

R2N

|un(x) − u(x) − un(y) + u(y)|p
|x|θ1 |x− y|N+ps|y|θ2

dxdy

=
∫∫

R2N

|(un(x) − un(y)) − (u(x) − u(y))|p
|x|θ1|x− y|N+ps|y|θ2

dxdy

⩽cp

∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y)) − |u(x) − u(y)|p−2(u(x) − u(y))
|x|θ1 |x− y|N+ps|y|θ2

×
(
un(x) − u(x) − un(y) + u(y)

)
dxdy

=cp

[
Bun(un − u) −Bu(un − u)

]
= o(1),

and

∥un − u∥p
Lp

V (RN ,|x|−α) =
∫
RN

V (x)|un − u|p

|x|α
dx

⩽ cp

∫
RN

V (x)(|un|p−2un − |u|p−2u)(un − u)
|x|α

dx = o(1).

Consequently, ∥un − u∥W = ([un − u]pW s,p
θ

(RN ) + ∥un − u∥p
Lp

V (RN ,|x|−α))
1
p → 0 as n → ∞.

Case 1 < p < 2: taking ξ = un(x) − un(y) and η = u(x) − u(y) in (3.36), as n → ∞, we
have

[un − u]pW s,p
θ

(RN ) =
∫∫

R2N

|un(x) − u(x) − un(y) + u(y)|p
|x|θ1 |x− y|N+ps|y|θ2

dxdy

=
∫∫

R2N

|(un(x) − un(y)) − (u(x) − u(y))|p
|x|θ1|x− y|N+ps|y|θ2

dxdy

⩽Cp

[∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y)) − |u(x) − u(y)|p−2(u(x) − u(y))
|x|θ1|x− y|N+ps|y|θ2

×
(
un(x) − u(x) − un(y) + u(y)

)] p
2
( |un(x) − un(y)|p + |u(x) − u(y)|p)

|x|θ1 |x− y|N+ps|y|θ2

) 2−p
2

dxdy

=Cp

[
Bun(un − u) −Bu(un − u)

]p/2
([un]pW s,p

θ
(RN ) + [u]pW s,p

θ
(RN ))

(2−p)/2

⩽Cp

[
Bun(un − u) −Bu(un − u)

]p/2
([un]p(2−p)/2

W s,p
θ

(RN ) + [u]p(2−p)/2
W s,p

θ
(RN ))

⩽C
[
Bun(un − u) −Bu(un − u)

]p/2
= o(1).

Here we used the fact that [un]W s,p
θ

(RN ) and [u]W s,p
θ

(RN ) are bounded, and the elementary
inequality

(a+ b)(2−p)/2 ⩽ a(2−p)/2 + b(2−p)/2 for all a, b ⩾ 0 and 1 < p < 2.

Moreover, by Hölder inequality and (3.35), as n → ∞,

∥un − u∥p
Lp

V (RN ,|x|−α) =
∫
RN

V (x)|un − u|p

|x|α
dx

⩽ Cp

∫
RN
V (x)

[(|un|p−2un − |u|p−2u)(un − u)
|x|α

]p/2
( |un|p + |u|p

|x|α
)(2−p)/2

dx
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⩽ Cp

(∫
RN

V (x)(|un|p−2un − |u|p−2u)(un − u)
|x|α

dx
)p/2

×
(∫

RN

V (x)(|un|p + |u|p)
|x|α

dx
)(2−p)/2

⩽ Cp

(
∥un∥p(2−p)/2

Lp
V (RN ,|x|−α) + ∥u∥p(2−p)/2

Lp
V (RN ,|x|−α)

)
×
(∫

RN

V (x)(|un|p−2un − |u|p−2u)(un − u)
|x|α

dx
)p/2

⩽ C

(∫
RN

V (x)(|un|p−2un − |u|p−2u)(un − u)
|x|α

dx
)p/2

→ 0.

Thus ∥un − u∥W = ([un − u]pW s,p
θ

(RN ) + ∥un − u∥p
Lp

V (RN ,|x|−α))
1
p → 0 as n → ∞. The proof

is complete.

Proof of Theorem 0.5. By Lemma 3.9 we show the geometry of the functional I associated
with the problem (10). Furthermore, by Lemmas 3.10 and 3.11 we show that the Cerami
sequences for the functional are limited and that the functional I verifies the Cerami
condition, respectively. Therefore, we obtain that there exists a critical point of functional
I, so problem (10) has a nontrivial weak solution for any λ > 0.
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Conclusion

Summary of this work

In this work we studied some class of partial differential elliptic equations involving the
fractional p-Laplacian operator.

We studied a fractional p-Laplacian model problem in the entire space RN featuring
doubly critical nonlinearities involving a local critical Sobolev term, a nonlocal Choquard
fractional critical term, and a homogeneous Hardy term; all nonlinearities have singular
critical weights. We established new embedding results involving weighted Morrey norms
in the homogeneous fractional Sobolev space; and we provided sufficient conditions under
which a weak nontrivial solution to the problem exists via variational methods. With
this knowledge, we formulated similar problems with double critical Sobolev and double
critical Choquard terms and discovered that the same technique could be applied to prove
existence results for these classes of problems.

Next, we considered a fractional p-Laplacian system of equations in the entire space
RN with doubly critical singular nonlinearities, a local critical Sobolev term together,
a nonlocal Choquard critical term, and a homogeneous Hardy term; all nonlinearities
have singular critical weights; additionally, the coupling term is critical in the sense of
the Sobolev embeddings. Since the problem involves doubly critical exponents, our proof
made use of a version of the Caffarelli-Kohn-Nirenberg inequality and a refinement of
Sobolev inequality that is related to Morrey space. We proved our existence theorem
using these results and variational methods. Again, we notice that the same technique
could be used to prove some variants of this problem.

Finally, we considered a fractional p-Kirchhoff equation in the entire space RN fea-
turing double nonlinearities, a generalized nonlocal subcritical Choquard term limited by
both the lower and the upper critical Stein-Weiss exponents, a local critical Sobolev term,
and a Hardy-type term; additionaly, all terms have critical singular weights. With respect
to the compactness condition, we had to use Cerami sequences because in our problem
there is a possibly slower growth in the nonlinearities. In this way, we could deal with
the lack of compactness of the Sobolev embeddings through a uniform boundedness of
the convolution part.

Goals for the near future

In this section we list some open problems related to the fractional p-Laplacian operator.
We begin by mentioning that there is an increasing and ever growing literature devoted to
the study of improved versions of the Sobolev-Gagliardo-Nirenberg and Caffarelli-Kohn-
Nirenberg type inequalities as a subject with their own interest.

1. We can consider the existence of ground state solutions to fractional p-Laplacian
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problems with doubly critical nonlinearity in the sense of Stein-Weiss and involving both
the lower and the upper critical exponents, defined respectively by p♭

s(δ, θ, µ) = p(N − δ−
µ/2)/N and p♯

s(δ, θ, µ) = p(N − δ − µ/2)/(N − sp− θ).

2. We can consider the existence of solutions to doubly critical coupled systems
involving fractional p-Laplacian in RN with Hardy-Sobolev terms and Choquard term, all
of them with singular weights.

3. This work deals only with the case sp+θ < N , called subconformal case. Recently,
there appeared some papers dealing with the case sp = N (and θ1 = θ2 = 0), called
conformal case. Therefore, it seems possible to consider versions of problem (1) also in
the conformal case sp+ θ = N .

4. Li & Yang [56] considered, among other things, an existence result to problem (1)
in the case p = 2, θ1 = θ2 = 0 and α = 0. Their result rely on the proof of a related
inequality in the paper by Yang [92]; see also Yang & Wu [93]. However, we could not
check the arguments given by these authors; particularly [92, inequality (3.2)] and [93,
inequality (2.8)]. So, it does not seem possible to perform the argument using the refined
Sobolev inequality with the Morrey norm in the presence of weights in the case α = 0.
In fact, in this case the Morrey space coincides with the weighted Lebesgue space and
we cannot argue as in the case α ̸= 0. For this reason, we believe that the analysis of
problem (1) in the case α = 0 still must be done. Perhaps the proof of the existence result
can be achieved in the context of Besov norm as pointed out by De Nápoli, Drelichman
& Salort [37]. They proved the existence of minimizers of the Stein-Weiss inequality only
for p = 2 but, in turn, they managed to deal with any α in an open interval containing
the origin. Hence, the analysis of the problem for α = 0 still needs to be done even in the
case p = 2 and θ = θ1 + θ2 ̸= 0.
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