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os sonhos, tem pelo menos a vantagem de existir.

Machado de Assis
A Mão e a Luva (1874)



RESUMO

Esta dissertação de mestrado visa estender a aplicabilidade dos métodos do tipo smoothed
point interpolation (SPIMs) para vigas deformáveis por cisalhamento. Esses métodos são
de uma famı́lia de métodos sem malha onde os conceitos de domı́nios de suavização e
formulação fraca-enfraquecida W2 são introduzidos; seu uso é possibilitado pela extensão
da forma fraca-enfraquecida em que se baseiam para as vigas objetos de estudo dessa
dissertação. Este trabalho foca em dois modelos de viga, a viga linear de Timoshenko e
um modelo geometricamente não linear. Dentre as possibilidades de divisões do domı́nio
nos métodos SPIM, as simulações numéricas foram realizadas utilizando a abordagem
baseada em arestas (ES-PIM). Além disso, as chamadas funções de forma αPIM foram
investigadas dentro deste framework. As simulações da viga Timoshenko foram executa-
das na plataforma INSANE (INteractive Structural ANalysis Environment), um projeto
de código aberto desenvolvido no Departamento de Estruturas da Universidade Federal
de Minas Gerais. Os resultados de várias malhas foram comparados com o método dos
elementos finitos (MEF) e com soluções anaĺıticas. A abordagem de SPIMs proposta
mostrou uma concordância muito boa com as soluções exatas para todos os exemplos de
condições de contorno e casos de carga testados. As simulações da viga geometricamente
não linear foram realizadas no MATLAB® , o código foi validado e os resultados foram
comparados àqueles dispońıveis na literatura. Conforme ilustrado neste trabalho, todas
as simulações realizadas para o modelo não linear mostraram uma boa concordância com
os resultados obtidos por outros autores. Por fim, as soluções numéricas fornecidas pelos
SPIMs são livres de travamento (shear-locking), ou seja, nenhum tratamento adicional
foi necessário para evitar o aparecimento da chamada rigidez espúria, como comumente
acontece durante as simulações de vigas deformáveis por cisalhamento realizadas pelo
método dos elementos finitos.

Palavras-chave: métodos sem malha; métodos de interpolação de pontos suavizados;
vigas deformáveis por cisalhamento; viga de Timoshenko; viga geometricamente exata



ABSTRACT

This master’s thesis aims to extend the applicability of the smoothed point interpola-
tion methods (SPIMs) to shear-deformable beams. These methods are from a family of
meshfree methods where the concepts of smoothing domains and weakened-weak W2 for-
mulation are introduced; their use is made possible by the extension of the weakened-weak
form that they are based on to the case of the target beam models. This work focuses
on two beam models, the linear Timoshenko beam and a geometrically nonlinear model.
Among the possibilities of domain tessellations in the SPIM methods, the numerical sim-
ulations were performed using the edge-based approach (ES-PIM). In addition to that,
the so-called αPIM shape functions were investigated within this framework. The sim-
ulations of the Timoshenko beam were executed in the INSANE (INteractive Structural
ANalysis Environment) platform, an open-source project developed at the Structural De-
partment of the Federal University of Minas Gerais. The results of several meshes were
compared with the finite element method (FEM) and analytical solutions. The proposed
SPIMs approach shown a very good agreement with the exact solutions for all examples of
boundary conditions and load cases. The simulations of the geometrically nonlinear beam
were executed in MATLAB® , the code was validated and the results were compared with
the ones available in the literature. As illustrated in this work, all simulations performed
for the nonlinear model shown a good agreement with the results obtained by other au-
thors. Finally, the numerical solutions provided by the SPIMs are locking free, i.e. no
additional treatment was necessary to avoid the spurious stiffer behaviour, as commonly
happens with FEM during the simulations of shear-deformable beams.

Key-words: meshfree methods; smoothed point interpolation methods (SPIMs); shear-
deformable beams; Timoshenko beam; geometrically exact beam
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CHAPTER 1

INTRODUCTION

The Finite Element Method (FEM) is the most traditional numerical method to solve
solid mechanics problems and requires a mesh to create a system of algebraic equations in
order to find the nodal unknown variables. Meshfree methods, on the other hand, allow
to assemble the system of algebraic equations without the need for a predefined mesh,
or using a mesh in a more flexible way (Liu, 2009). An important motivation for the
adoption of meshfree methods is to reduce the reliance on the use of “quality” meshes
that can be difficult or expensive to create for some practical problems (Liu, 2009).

Many meshfree methods are available in the existing literature: smoothed particle
hydrodynamics (SPH), element-free Galerkin (EFG) method, the meshless local Petrov-
Galerkin (MLPG) method, reproducing kernel particle method (RKPM), the point inter-
polation method (PIM), the finite point method, the finite difference method (FDM) with
arbitrary irregular grids, local point collocation methods and many others. A compre-
hensive discussion and applications of meshfree methods are available in Liu (2009). This
treatise focuses on the smoothed point interpolation methods (SPIMs). These methods
were developed by Liu and his research team (Liu, 2009), they use point interpolation
(PIM) and radial point interpolation (RPIM) shape functions and a smoothing technique
for the derivatives that appear in the weak form of the problem (see Liu (2009, 2010a,b),
Liu and Zhang (2013)). Such shape functions exhibit desirable properties for solid me-
chanics applications, such as: linear independence, partition of unity, and Kronecker delta
property. They suffer, however, from continuity issues, that do not allow them to fulfill the
consistency requirements of the standard Galerkin weak form. Hence, a gradient smooth-
ing technique is used by these methods in order to weaken this compatibility requirement,
resulting in a so-called weakened-weak form (Liu, 2008, 2009).

The main aim of this work is to widen the applicability of smoothed point interpolation
methods extending them to shear-deformable beam problems. In this treatise, two beam
models are considered. The first one is the well-known linear Timoshenko1 beam. As op-
posed to the Euler-Bernoulli model, this model takes into account the effect of transverse

1This theory was developed by Stephen Prokofievich Timoshenko and his co-author Paul Ehrenfest,
however the theory is widely known with the name of the former, instead of Timoshenko-Ehrenfest beam
theory or a similar name Elishakoff (2020). As usual, only the name Timoshenko will be used throughout
this work to refer to the model.
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shear deformation, and there is no direct relationship between the rotation and the deriva-
tive of the elastic curve. In addition to that, in the context of the finite element method
it requires only C0 continuity for the approximation function, while the Euler-Bernoulli
beam requires C1 continuity. A number of works investigated the application of meshfree
methods to solve the Timoshenko beam problem. Liu and Gu (2002) developed a formu-
lation of the local point interpolation method and local radial point interpolation method
for Timoshenko beam problems. Xiao and McCarthy (2003) proposed a meshless method
based on subdomain variational formulations and on a local Petrov–Galerkin approxima-
tion to solve the Timoshenko model. Panchore et al. (2016) solved a rotating Timoshenko
beam free vibration problem using the meshless local Petrov-Galerkin method. Roque
et al. (2011) applied the radial basis collocation method to the analysis of Timoshenko
nanobeams. Hale (2013) used a meshfree method derived from the element-free Galerkin
method for shear-deformable beams and plates.

The second model is the geometrically exact beam discussed by Simo (1985) and Simo
and Vu-Quoc (1986) based on the work of Reissner (1972) for plane static problems.
Despite being a three-dimensional model, the configurations of the beam are completely
described by the motion of the line of centroids and the rotation of its cross-sections. In the
first paper, the theory of the geometrically exact beam is derived for statics and dynamics
problems, while the second paper addresses the computational aspects employing the
finite element method, followed by many numerical simulations. A discussion concerning
the update procedure based on the use of quaternions parameters is also illustrated by
these authors. Their work was followed by a number of investigations devoted to improve
different aspects of the problem formulation and its computational treatment, (see, for
example, Geradin and Cardona (1988) and Mäkinen (2007)).

A number of papers also focused on the application of different numerical methods to
this model and other geometrically nonlinear beam models. Marino (2016) extended the
isogeometric collocation method to the geometrically nonlinear beam proposed by Simo
(1985). Tiago and Pimenta (2005) applied a meshfree method, similar to the element-free
Galerkin (EFG) method, to the geometrically exact analysis of spacial rods in the beam
model discussed in Pimenta and Campello (2003) which is an extension of the model
presented in Pimenta and Yojo (1993). He et al. (2019) used a class of meshfree methods
known as point interpolation methods (PIM) to solve the intrinsic beam theory proposed
by Hodges (1990).

In general, shear-deformable beams suffer from the so-called shear locking problem,
which leads to undesirable stiffer solutions. Different strategies were proposed in the
literature to overcome shear locking in finite element applications (see, e.g. the book by
Oñate (2013)). As it will be shown later in this work, the proposed meshfree method
exhibited a locking free behaviour, i.e. no additional treatment is necessary to avoid the
spurious stiffer behaviour that commonly occurs in FEM simulations of shear-deformable
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beams.

1.1 Objectives

The main goal of this master’s thesis is to extend the meshless methods belonging to
the family of smoothed point interpolation methods to shear-deformable beam problems,
being them: (i) the linear Timoshenko beam, and (ii) the geometrically nonlinear beam
proposed by Simo (1985) and Simo and Vu-Quoc (1986). This main goal, is composed by
the following specific objectives:

• Carry on a fundamental study on the shear-deformable beam theories object of this
work

• Derive a weakened-weak form for these models
• Discretise the beam models with smoothing domains and create SPIMs shape func-

tions
• Implement the beam models using the SPIMs
• For the linear beam: validate and compare the obtained results with the finite

element method and analytical solutions
• For the nonlinear beam: validate and compare the obtained results with those in

the existing literature

1.2 Outline

The content of this master’s thesis is organised in 8 chapters and five appendices. After
this introduction (Chapter 1), in Chapter 2 the target shear-deformable beam models
are introduced. In the first section, the basic concepts concerning the linear Timoshenko
beam are presented, while the second section addresses the overall theory regarding the
geometrically nonlinear beam (Simo, 1985, Simo and Vu-Quoc, 1986). The basic equations
and the linearisation procedure considered in the latter are briefly outlined.

A short discussion on the FEM discretisation of the one-dimensional applications ad-
dressed in this work is treated in Chapter 3. The isoparametric elements for linear and
quadratic shape functions are discussed.

In Chapter 4 the smoothed point interpolation methods are discussed considering two-
dimensional cases. The concepts regarding domain tessellation, smoothing operation and
weakened-weak form are recalled. Chapter 5 contains the main proposal of this work,
that is the extension of SPIM formulations to the beam problems object of this study,
reinterpreting the concepts illustrated in Chapter 4 for two-dimensional problems.

In Chapter 6 the numerical results concerning the Timoshenko beam are presented.
Simulations using three load cases and four boundary conditions were performed with
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both the finite element method and smoothed point interpolation methods. Analytical
solutions were used to enhance and complement the comparisons.

The numerical results regarding the geometrically exact beam are presented in Chap-
ter 7. The simulations encompass three classic examples, also presented in Simo and
Vu-Quoc (1986), to validate the code and illustrate the obtained results by comparisons
with the existing literature.

Finally, the main conclusions of this master’s thesis are addressed in Chapter 8. In
order to ease the reading, some demonstrations and complementary information are left
out from the main text and are detailed in the Appendices.

1.3 Tools

In this work, some essential tools were used. The implementation and numerical simula-
tions regarding the Timoshenko beam (see Chapter 6) were performed in INSANE 2, an
open-source software based on the object-oriented programming paradigm and developed
at the Structural Engineering Department of the Federal University of Minas Gerais. The
implementation and numerical simulations regarding the geometrically nonlinear beam
(see Chapter 7) were performed in MATLAB® . This text has been prepared in LATEX,
using the editor TeXMaker. The plots have been generated with the Tikz and Pgfplots
libraries. Other figures have been prepared and edited with Inkscape.

1.4 Notation

Some standard notations used in this work, especially in Chapter 2 are summarized here.
The symbol D ∈ E indicates the domain of a body embedded in the three-dimensional
Euclidean space. DS

i ⊂ D is referred to the smoothing domain and it is a subset of the
body domain. Dc

i ⊂ D is referred to as background cell domain and it is also a subset of
the body domain. In the spatial configuration, the lower case symbol x̄ represents vectors,
while the the lower case symbol x represents tensors. In the material configuration the
upper case symbol X̄ represents vectors, while the the upper case symbol X represents
tensors. The symbol R is referred to the rotation tensor in the three-dimensional space,
a two-point tensor. The standard tensor product is expressed by the symbol ⊗. The dot
product between vectors and the contraction between tensors are denoted by the symbol
·.

2INSANE stands for INteractive Structural ANalysis Environment System. For more information the
reader may refer to: http://www.insane.dees.ufmg.br.
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CHAPTER 2

SHEAR-DEFORMABLE BEAMS

In this chapter the two shear-deformable beam models treated on this
work are introduced. The first one is the well-known linear Timoshenko
beam, while the second is the geometrically exact beam model developed
by Simo (1985) and Simo and Vu-Quoc (1986). Although the last model
might undergoes large displacements due to its geometrically nonlinear
nature, only a linear elastic constitutive behaviour is considered.

2.1 Timoshenko beam

As opposite to the Euler-Bernoulli theory, the Timoshenko beam accounts for the shear
contribution on the deformation of the beam. The governing differential equations of the
Timoshenko beam rely on the following assumptions:

• the beam axis is initially straight
• there is no elongation along the x-axis
• there is no torsion around the x-axis
• there is a single bending plane, corresponding to one of the principal axes of the

cross-sections (i.e symmetrical plane bending)
• the deformations are small
• plane-cross sections that are initially orthogonal to the beam axis remain plane

during the deformation of the beam, although not orthogonal to the beam axis
The plane bending problem of the Timoshenko beam is illustrated in Fig. 2.1. The

domain of the problem is represented by D = [0, L], where L is the length of the beam,
while its boundary Γ := ∂D is represented by the end-points of the beam.
Its kinematics is characterised by the deflection v and by the rotation θ, both of them
functions of the coordinate x, and by the following deformation measures:

γ := ∂v

∂x
− θ, ω := ∂θ

∂x
(2.1)

referred to as shear and bending strains, respectively. In contrast with the Euler-Bernoulli
beam theory, the equations above do not establish a direct relationship between the
rotation θ and the derivative of the elastic curve ∂v/∂x.
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x

y

deformed configuration

Figure 2.1: Timoshenko beam model. Adapted from Öchsner and Merkel (2018).

The stress measures associated to these deformation measures are the shear force Q
and the bending moment M . Assuming a linear elastic material, this association is given
by the following constitutive equations:

Q = ksGAγ, M = EIω (2.2)

where E is the Young’s modulus, G the shear modulus, I the second moment of area of
the cross-section, A the area of the cross-section, and ks the shear correction factor.

Taking into account the assumptions of the model it is possible to show that the strong
form of the Timoshenko beam problem is expressed by the following differential equations:

∂

∂x
(EIω) +GAsγ = 0 (2.3)

∂

∂x
(GAsγ) = −qy(x) (2.4)

where qy is the distributed load in the bending plane of the beam and As = ksA is the shear
area of the cross-section. Equation 2.3 is the bending differential equation, while equation
2.4 is known as the shear differential equation. These equations are complemented by the
following essential and natural boundary conditions:

v = vΓ on Γv, θ = θΓ on Γθ (2.5)
Q = QΓ on ΓQ, M = MΓ on ΓM (2.6)

where the Γi, with i = v, θ, Q, M , are the parts of the boundary where the different
conditions are applied on.
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The strong form of the problem expressed in Eqs. (2.3) and (2.4) can be recasted in a
weak form1, that consists in finding the couple (v, θ) ∈ V(D) such that

a ((δv, δθ), (v, θ)) = f(δv, δθ), ∀(δv, δθ) ∈ V0(D) (2.7)

where a is a bilinear form, f a linear functional, and V(D) and V0(D) the spaces of trial
and test functions, respectively. The bilinear form a and the linear functional f appearing
in the equation above are expressed by

a ((δv, δθ), (v, θ)) :=
∫ L

0
δω EIω dx+

∫ L

0
δγ GAsγ dx (2.8)

f(δv, δθ) :=
∫ L

0
δv qy(x)dx+ (δv GAsγ)|L0 + (δθ EIω)|L0 (2.9)

where δγ and δω are given by

δγ := ∂δv

∂x
− δθ, δω := ∂δθ

∂x
(2.10)

The spaces of trial and test functions, V(D) and V0(D) are defined as

V(D) := {(v, θ) ∈ H(D) × H(D) | v = vΓ on Γv, θ = θΓ on Γθ} (2.11)
V0(D) := {(δv, δθ) ∈ H(D) × H(D) | δv = 0 on Γv, δθ = 0 on Γθ} (2.12)

where H(D) is the space of square integrable functions with square integrable first deriva-
tive over the domain D.

In possession of Eq. (2.8) and Eq. (2.9), it is possible to move towards a suitable
numerical method that makes use of a weak form, for instance, the finite element method.

2.2 Geometrically exact model

This section focuses on the geometrically exact shear-deformable model developed in Simo
(1985) (see also the paper Simo and Vu-Quoc (1986)), a three-dimensional beam model
where displacements and rotations are allowed without any restriction in magnitude. The
model will be presented in terms of:

• basic kinematics assumptions
• equations of motion
• deformation measures
• constitutive assumptions
The weak form of the problem and its linearisation will then be illustrated, using a

proper set of admissible variations. This is a three-dimensional approach and should be
1See in Appendix A how can the weak form can be derived from Eq. (2.3) and Eq. (2.4).
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regarded as a generalisation of the formulation originally developed by Reissner (1972)
for plane static problems. This theory is also referred as the Simo-Reissner beam theory.

2.2.1 Kinematics

The motion of a generic three-dimensional body is given by the following map

Φ : D × T → E : (p, t) 7→ Φ(p, t) ∈ E (2.13)

where T is the one-dimensional affine space of time instants, E is the affine environment
space, D is a three-dimensional continuum body in its reference configuration (D ⊂ E),
p is a point belonging to E , and t is the time instant belonging to T . The set Φ(D, t) is
the so-called current configuration of the body.

Due to its geometrical characteristics, the reference configuration D of a beam can be
assumed to be composed by two objects: a family of cross sections and a line of centroids
I. The cross-sections are orthogonal to the line of centroids, and the line of centroids is
constituted by the connection of all the centroids of the cross sections. For simplicity, in
this work the line of centroids in the reference configuration is assumed to be a straight
line, and the cross sections are assumed to be uniform; naturally, one could consider a
more complex model with non-uniform cross sections and a line of centroids with an initial
curvature in the reference configuration. In the current configuration the line of centroids
is a curve defined on the open interval I:

S ∈ I → φ0(S, t) ∈ R3 (2.14)

while the cross-sections are characterized by the following unit normal vector field

S ∈ I → n̄(S, t) ∈ R3 (2.15)

The motion of the beam is obtained by assuming the following constraints on the
general equation of motions presented in equation 2.13 Simo (1985):

• the cross-sections remain plane in the current (spatial) configuration (in other words,
warping effects are not allowed)

• the cross-sections remain undeformed in their plane during the deformation, i.e they
do not experience any change in shape or size

These assumptions mean that each cross-section may only rotate as a rigid body and it
does not remain necessarily normal to the deformed line of centroids φ0(S, t).

In order to express the equation of motion of the beam model, it is often useful to
introduce an orthonormal frame at each point of the curve S → φ0(S, t) which will be
referred to as moving or intrinsic frame: {t̄1(S, t), t̄2(S, t), n̄(S, t)}. This orthonormal
frame is such that
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t̄3(S, t) ≡ n̄(S, t) t̄3(S, t) = t̄1(S, t) × t̄2(S, t)
∥n̄(S, t)∥ = 1 n̄(S, t) · t̄Γ(S, t) = 0
∥t̄Γ(S, t)∥ = 1 t̄1(S, t) · t̄2(S, t) = 0
Γ = 1, 2, S ∈ I ⊂ R

(2.16)

The admissible configurations of the beam φ : A× I → R3 where A ⊂ R2 is compact
have the explicit form

φ(ξ1, ξ2, S) ≡ φ0(S, t) +
2∑

Γ=1
ξΓt̄Γ(S, t) (2.17)

where the first term, φ0(S, t), represents the motion of the points lying on the line of
centroids, while the other term represents the motion of the points of each cross-section
with respect to the centroid.

Initially, any cross-section of the beam belongs to a plane normal to Ē3. During the
motion, the cross-sections exhibit a rigid body motion; the rotational component of the
motion can be expressed in terms of an orthogonal transformation S → R(S, t) ∈ SO(3)2

such that

t̄I(S, t) = R(S, t)ĒI , I = 1, 2, 3 (2.18)

where R(S, t) maps the reference frame into the moving frame as shown in Figure 2.2. In
this context the moving frame is the reference frame rotated. The derivative of equation
2.18 results in

∂

∂S
t̄I(S, t) = ω(S, t)t̄I(S, t) (2.19)

where ω(S, t) is a skew-symmetric (spatial) tensor field for each S ∈ I, defined by

ω(S, t) ≡
[
∂R(S, t)
∂S

]
RT (S, t) (2.20)

The tensor ω(S, t) can be expressed in a matrix form relative to the moving frame as
follows

ω(S, t) = −


0 κ3(S, t) −κ2(S, t)

−κ3(S, t) 0 κ1(S, t)
κ2(S, t) −κ1(S, t) 0

 (2.21)

The axial vector3 field (S → ω̄(S, t) ∈ R3) associated with the skew-symmetric tensor
2This is the special orthogonal Lie group. See more in Geradin and Cardona (1988) and Appendix B.
3For every skew-symmetric tensor T exists an associated axial vector t̄ such that for all vectors x̄ the

following relation is verified: T · x̄ = t̄ × x̄. Note that the axial vector has the same number of degrees
of freedom than the skew-symmetric tensor, (see equation 2.23).
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A

A

unchanged cross sections 
under deformations

line of centroids

reference configuration

current configuration

cross-sections
centroids

Figure 2.2: Reference and current configurations in a three-dimensional representation; reference
frame {Ē1, Ē2, Ē3}; current frame {t̄1, t̄2, t̄3}; set of coordinates {X1, X2, X3}; global reference
system {ē1, ē2, ē3}.

relative to the moving frame is now introduced as

∂

∂S
t̄I(S, t) = ω(S, t)t̄I = ω̄(S, t) × t̄I(S, t), I = 1, 2, 3 (2.22)

The vector ω̄(S, t) is referred to the curvature of the beam. Now one can write the
following equation in a spatial representation

ω̄(S, t) = κ1(S, t)t̄1(S, t) + κ2(S, t)t̄2(S, t) + κ3(S, t)n̄(S, t) (2.23)

or in a material representation

Ω̄(S, t) ≡ κI(S, t)ĒI (2.24)

The spatial and material vector fields are related directly by the orthonormal transfor-
mation

ω̄(S, t) = R(S, t)Ω̄(S, t) (2.25)

The deformation gradient is denoted by F . This quantity distinguishes rigid body
motion (i.e. translation and rotation) from deformation. It maps all material line elements
(dX̄) in the reference configuration into all spatial line elements (dx̄) in the current
configuration. Using equations 2.17 and 2.22 one can show that for the beam model
treated here the deformation gradient assumes the form
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F =
2∑

Γ=1
t̄Γ ⊗ ĒΓ +

[
∂φ0

∂S
+ ω̄ × (φ− φ0)

]
⊗ Ē3 (2.26)

2.2.2 Stress measures and equilibrium equations

Beam models are characterized by two different stress measures, the internal forces and
internal couples. As in the standard beam theory, the stress measures of this geometrically
exact model can be defined in terms of integrals of one of the stress tensors over the beam
cross sections A(S, t).

As pointed out by Simo (1985), the internal forces are the resultant contact forces per
unit of reference length over the cross section, and in a Lagrangian description can be
represented in terms of the first Piola-Kirchhoff tensor as

f̄(S, t) ≡
∫

A
P (ξ, S, t)Ē3 dξ (2.27)

while the internal couples are the resultant of contact moment per unit of reference length
over the cross-section

m̄(S, t) =
∫

A
[φ(S, t) − φ0(S, t)] × P (ξ, S)Ē3 dξ (2.28)

The quantities f̄(S, t) and m̄(S, t) are spatial stress measures, i.e. stress measures
acting on the current configuration.

As pointed out by Simo (1985), it is often more convenient to use a material form of
the beam model in applications. Material stress measures belong to the reference config-
uration, and can be obtained from the spatial measures through a pull-back operation,
performed with the rotation tensor R(S, t):

N̄ (S, t) = RT (S, t)f̄(S, t)
(2.29)

M̄ (S, t) = RT (S, t)m̄(S, t)

Taking into account the representation in components of the stress measures in the
current moving frame, the following representation is obtained

f̄ = fit̄i and m̄ = mit̄i (2.30)

It can be shown that these components are the same in both the current and reference
frames. One can demonstrate that the beam stress measures must satisfy the following
linear and angular momentum balance equations
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∂f̄

∂S
+ q̄f̄ = 0 (2.31)

∂m̄

∂S
+ ∂φ0

∂S
× f̄ + q̄m̄ = 0 S ∈ I (2.32)

where q̄f̄ is the (applied) force per unit of reference arc length and q̄m̄ is the (applied)
moment per unit of reference arc length.

2.2.3 Internal power and conjugated strain measures

In the target three-dimensional beam model, the internal power is expressed by

P =
∫

A×I
P : Ḟ dξdS (2.33)

Taking into account equation 2.26, it can be shown that the internal power can be
expressed in terms of the spatial stress measures f̄(S, t) and m̄(S, t), and of the spatial
strain measures γ̄(S, t) and ω̄(S, t), as

P =
∫

I
[f̄ ·

▽
γ̄ + m̄ ·

▽
ω̄]dS (2.34)

The beam strain measure γ̄(S, t), conjugated with the stress measure f̄(S, t) in the
sense of the internal power, is expressed by

γ̄(S, t) ≡ ∂φ0(S, t)
∂S

− n̄(S, t) (2.35)

the vector γ̄(S, t) takes into account axial and shear deformations, while the strain mea-
sure ω̄(S, t) is the one defined in equation 2.23, and takes into account bending and
torsional deformations.

Both strain measures appear in equation 2.33 in terms of the objective derivative
defined as (see Appendix B.2)

(▽·) = ∂

∂t
(·) − w̄ × (·) (2.36)

Like for the stress measures, a material counterpart of the strain measures can be
introduced. The pull-back of γ̄ is the material vector

Γ̄(S, t) ≡ RT ∂φ0(S, t)
∂S

− Ē3(S) (2.37)

while the pull-back of ω̄(S, t) is the one expressed in equation 2.25. Using the material
stress and strain measures, the internal power can be expressed as

P ≡
∫

I
[N̄ · ˙̄Γ + M̄ · ˙̄Ω]dS (2.38)



§2.2 Shear-deformable beams 32

2.2.4 Constitutive equations

The constitutive equation presented in this section is limited to the elastic case. This is
not a limitation of the model, but a simplification adopted in the context of this work;
other constitutive models for hyperelastic or elasto-plastic materials, for example, could
be introduced in the beam model of Simo (1985). Let us define a stored energy function
in a material description, Ψ(S, Γ̄, Ω̄), such that

N̄ = ∂Ψ(S, Γ̄, Ω̄)
∂Γ̄

, M̄ = ∂Ψ(S, Γ̄, Ω̄)
∂Ω̄

, S ∈ I (2.39)

Therefore, the material version of the constitutive law can be represented by
 N̄ (S, t)
M̄ (S, t)

 = C

 Γ̄(S, t)
Ω̄(S, t)

 (2.40)

where the tangent constitutive tensor assumes the form

C =


∂2Ψ
∂Γ̄∂Γ̄

∂2Ψ
∂Γ̄∂Ω̄

∂2Ψ
∂Γ̄∂Ω̄

∂2Ψ
∂Ω̄∂Ω̄

 (2.41)

In this treatise our attention will be confined to the Saint-Venant–Kirchhoff material.
This is a common assumption in beams that may experience arbitrarily large rotations,
but small strains. In addition to that, the material is assumed to be homogeneous and
isotropic. For a particular case where the beam axis coincides with the cross-sectional
centroids and the cross-sectional axis is parallel to the principal axis of inertia, the tensor
C is constant and diagonal, as follows

C =
 C1 0

0 C2

 (2.42)

That being said, the material version of the constitutive law can be rewritten as

N̄ (S, t) = C1Γ̄(S, t) (2.43)

M̄ (S, t) = C2Ω̄(S, t) (2.44)

In the reference configuration the constitutive operators C1 and C2 take the form

C1 =


GA1 0 0

0 GA2 0
0 0 EA

 (2.45)
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C2 =


EI1 0 0

0 EI2 0
0 0 GJt

 (2.46)

where E,G are the elastic modulus and shear modulus respectively, EA is the axial
stiffness, EI1, EI2 are the principal bending stiffnesses relative to the cross-section along
the principal directions, GA1, GA2 are the shear stiffnesses with respect to the cross-
section in principal directions. Note that A1 and A2 include the shear factor ks, and GJt

is the torsional stiffness with Jt = I1 + I2.
The rate forms of equations 2.43 and 2.44 are often needed for computational appli-

cations (Simo, 1985); in order to obtain these forms, the time derivative combined with
the chain rule is used (Simo, 1985). The result for the material description is presented
as follows


˙̄N (S, t)
˙̄M (S, t)

 = C


˙̄Γ(S, t)
˙̄Ω(S, t)

 (2.47)

All equations of this section presented in a material form can be recasted in the spatial
form. The rate form of the spatial version is obtained similarly with the material version
case by taking the time derivative combined with the chain rule. For the stored energy
function ψ(S, γ̄, ω̄), one can write

f̄ = ∂ψ(S, γ̄, ω̄)
∂γ̄

, m̄ = ∂ψ(S, γ̄, ω̄)
∂ω̄

, S ∈ I (2.48)

Similarly, equations for the spatial description are presented as follows


▽

f̄
▽
m̄

 = c


▽
γ̄
▽
ω̄

 (2.49)

c =


∂2ψ

∂γ̄∂γ̄

∂2ψ

∂γ̄∂ω̄

∂2ψ

∂γ̄∂ω̄

∂2ψ

∂ω̄∂ω̄

 (2.50)

In the spatial version 2.43, 2.44 and 2.42 are represented as follows

f̄(S, t) = c1γ̄(S, t) (2.51)

m̄(S, t) = c2ω̄(S, t) (2.52)
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c =
 c1 0

0 c2

 (2.53)

where the constitutive operators c1 and c2 obey the following relation

c1 = R(S, t)C1R
T (S, t) (2.54)

c2 = R(S, t)C2R
T (S, t) (2.55)

2.2.5 Beam configuration and admissible variations

In the previous sections the three-dimensional beam model developed by Simo (1985) was
presented. The present section is devoted to the concepts of configuration and admissible
variations of the beam, which are essential to obtain the weak form of the beam model
and the subsequent numerical formulation 4. In this model the current configuration of
the three-dimensional beam is expressed in terms of the position of the line of centroids
and the rotation of the cross-sections. The set of all possible configurations of the beam
can then be expressed as

C = {(φ0,R)|φ0 : S → R3,R : S → SO(3)} (2.56)

Due to the presence of the special orthogonal group SO(3), the space of configurations
is a nonlinear differentiable manifold, rather than a linear space as in standard beam
theories. An admissible variation is a superposed change of configuration that allows
to obtain a perturbed configuration of the beam, compatible with the applied boundary
conditions, and expressed by Cε = (φ0ε,Rε), with ε > 0. The perturbed motion of the
line of centroids and the rotation of the cross-sections are given by

φ0ε(S, t) = φ0(S, t) + εη̄0(S, t) (2.57)

Rε(S, t) = exp[εθ(S, t)]R(S, t) (2.58)

The form of Equation 2.57 is compatible with the fact that the line of centroids belongs
to a subset of the affine space E , which is a linear space. On the other hand equation 2.58
belongs to the nonlinear space SO(3), therefore a perturbed configuration is achieved by
means of the concept of compound rotations. Equation 2.58 is termed as left translation
map; alternatively, the perturbed configuration could be given by the right-application of

4As will be shown in chapter Chapter 5, for the smoothed point interpolation methods the starting
point to develop the weakened-weak formulation can be the weak form.
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an incremental rotation operator, a right translation map, which is represented as follows5

Rε(S, t) = R(S, t) exp[εΘ(S, t)] (2.59)

It is important to highlight that Rε(S, t) remains orthogonal and therefore the equa-
tion above is a suitable orientation of the moving frame. The superposed infinitesimal
displacement and rotation can be written in terms of their components as follows

η̄0(S, t) = η0i(S, t)ei θ(S, t) = θijei ⊗ ej (2.60)

One can recall that every skew-symmetric tensor is associated with an axial vector,
that is to say, for a θ(S, t) ∈ so(3) 6 exists an associated axial vector θ̄(S, t) ∈ R3 such
that the following equality stands for a given vector h̄

θh̄ = θ̄ × h̄ for any h̄ ∈ R3 (2.61)

In some situations it is convenient to use the axial vector instead the skew-symmetric
tensor. Let us define a set of kinematically admissible variations TφC as

TφC ≡ {η̄(S, t) ≡ (η̄0(S, t), θ̄(S, t))}
(2.62)

η̄(S, t) ∈ R3 × R3|η̄0 ≡ θ̄ = 0 on ∂Dc

∂Dc is where the essential boundary conditions are evaluated. By taking the directional
derivatives below, it can be shown that η̄0 and θ̄ are kinematically admissible variations
of the beam configuration:

Dφ0 · η̄0 := ∂φ0ε

∂ε

∣∣∣∣∣
ε=0

= η̄0(S, t) (2.63)

DR · θ := ∂Rε

∂ε

∣∣∣∣∣
ε=0

= θ(S, t)R(S, t) (2.64)

As pointed out by Simo and Vu-Quoc (1986), in a geometric perspective the super-
posed infinitesimal rotation θ(S, t) defines an incremental tangent field onto the current
configuration given by R(S, t) such that a subsequent configuration is obtained by simply
considering the exponential mapRn+1 = exp[θ]Rn. Recalling equation 2.59 an equivalent
update procedure is obtained byRn+1 = Rn exp[Θ]. For a broader discussion about finite
rotations applied to nonlinear beams, see Argyris (1982), Geradin and Cardona (1988)

5See Appendix B.
6Lie algebra for all skew-symmetric tensors. See Appendix B.



§2.2 Shear-deformable beams 36

and Moreira (2009).

2.2.6 Linearisation of the strain measures

In the previous section, a linearisation of the beam configuration has been performed
using the concept of directional derivative, resulting in the space of admissible variations
(equations 2.57 and 2.58). The same linearisation can be propagated to the other relevant
quantities of the beam model, namely the stress and strain measures.

The linearisation of the strain measures can be achieved by means of the spatial in-
finitesimal rotation θ or using its material counterpart Θ, (equations 2.58 and 2.59). Here,
we will present the results of the linearisation procedure using the spatial infinitesimal
rotation only. Equivalent equations can be obtained making use of the material infinites-
imal rotation as presented in equation 2.59. In order to obtain the linearisation of ω(S, t)
and Ω(S, t) one can start with their perturbed expressions

ωε = ∂Rε

∂S
RT

ε , Ωε = RT
ε

∂Rε

∂S
(2.65)

and proceed with the linearisation by applying the directional derivative, resulting in

Dω · θ := ∂ωε

∂ε

∣∣∣∣∣
ε=0

= ∂θ

∂S
+ θω − ωθ (2.66)

DΩ · θ := ∂Ωε

∂ε

∣∣∣∣∣
ε=0

= RT ∂θ

∂S
R (2.67)

Table 2.1 illustrates the linearised strain measures using both, the spatial and material
rotation increments (θ and Θ).
For further details on the mathematical procedure used to obtain equations 2.66, 2.67
and those of Table 2.1, the reader may refer to Appendix B.3.

2.2.7 Weak form of balance equations

In what follows, attention will be focused on obtaining a weak form for the beam problem
restricted to the static case7. Let us consider an arbitrary admissible variation η̄(S, t) ≡
(η̄0(S, t), θ̄(S, t)) ∈ TφC as presented in equation 2.62. Starting from the equations 2.31
and 2.32 and using the admissible variations as test functions in a weighted residual
procedure (see Appendix B.4), a functional G(φ, η̄) can be introduced, in its spatial
version

7The original model presented by Simo (1985) and Simo and Vu-Quoc (1986) also accounts for dynamic
effects.
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SPATIAL STRAIN MEASURES

(Dγ̄ · η̄0) = ∂η̄0

∂S
− θ̄ × n̄

Via spatial rotation increment
(Dω̄ · θ̄) = ∂θ̄

∂S
+ θ̄ × ω̄

(Dγ̄ · η̄0) = ∂η̄0

∂S
−R(Θ̄ × Ē3)

Via material rotation increment
(Dω̄ · Θ̄) = R

∂Θ̄
∂S

MATERIAL STRAIN MEASURES

(DΓ̄ · η̄0) = RT

(
∂η̄0

∂S
− θ̄ × ∂φ0

∂S

)
Via spatial rotation increment

(DΩ̄ · θ) = RT ∂θ̄

∂S

(DΓ̄ · η̄0) = −ΘRT ∂φ0

∂S
+RT ∂η̄0

∂S
Via material rotation increment

(DΩ̄ · Θ) = ∂Θ̄
∂S

+ Ω̄ × Θ̄

Table 2.1: Summary table of the strain measures

G(φ, η̄) :=
∫

[0,L]

{
f̄ ·

[
∂η̄0

∂S
− θ̄ × ∂φ0

∂S

]
+ m̄ · ∂θ̄

∂S

}
dS −

∫
[0,L]

(q̄f̄ · η̄0 + q̄m̄ · θ̄) dS (2.68)

and in its material version

G(φ, η̄) :=
∫

[0,L]

{
N̄ ·RT

[
∂η̄0

∂S
− θ̄ × ∂φ0

∂S

]
+ M̄ ·RT ∂θ̄

∂S

}
dS

−
∫

[0,L]
(q̄f̄ · η̄0 + q̄m̄ · θ̄) dS

(2.69)

The weak form of the beam problem consists then into find a configuration φ ∈ C such
that G = 0,∀η̄ ∈ TφC.

In order to apply a numerical method to the beam model developed in this work it is
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convenient to express equation 2.68 (or 2.69) in a matrix form. To achieve this goal we
will introduce the following notation

Σ =
 N̄

M̄

 , σ =
 f̄

m̄

 ≡ ΠΣ (2.70)

where

Π :=
 R 0

0 R

 (2.71)

where Σ and σ are the material and spatial vectors of resultant stresses and stress couples
respectively. Let us define now the matrix differential operator ξ, such that

ξT :=


∂

∂S
1 [φ′

0×]

0
∂

∂S
1

 (2.72)

In equation 2.72 (·)′ is the differentiation with respect to S; 1 = Diag[1, 1, 1] is the identity
matrix, (∂/∂S)1 is a diagonal operator defined in equation 2.74, and [φ′

0×] is the skew
symmetric matrix associated with axial vector φ′

0 = φ′
0iei, as follows

[φ′
0×] :=


0 −φ′

03 φ′
02

φ′
03 0 −φ′

01

−φ′
02 φ′

01 0

 (2.73)

∂

∂S
1 := Diag

[
∂

∂S

∂

∂S

∂

∂S

]
(2.74)

The relations defined previously allow us to rephrase equation 2.68 ( or 2.69) in a
compacted format as follows

G(φ, η̄) =
∫

[0,L]
[(ξT (S, t)η̄(S, t)) · σ(S, t) − η̄(S, t) · q(S, t)] dS (2.75)

where q carries the applied forces and moments as

qT := {q̄f̄ , q̄m̄}T (2.76)

In order to obtain a solution algorithm for the geometrically nonlinear beam problem,
the weak form must be linearised. In this work, the proofs of some equations concerning
the target model are neglected. A comprehensible treatise with all demonstrations of
spatial and material equations versions involved in the geometrically exact model can be
find in Simo and Vu-Quoc (1986), Gori (2014) and Lozzo (2010).

The linearisation procedure of the functional G(φ, η̄) is achieved by considering its



§2.2 Shear-deformable beams 39

tangent approximation at the configuration φ = φ̂ (see (Wriggers, 2008, p. 96)) as follows8

L[G(φ̂, η̄)] = G(φ̂, η̄) +DG(φ̂, η̄) · ∆φ (2.77)

As already seen in this work the directional derivative is used to obtain the required
results in above equation. Taking into account the last term in equation 2.77 results in

DG(φ̂, η̄) · ∆φ = ∂G(φ̂ε, η̄)
∂ε

∣∣∣∣∣
ε=0

(2.78)

where ∆φ ≡ (u0,ψ) ∈ TφC is an admissible variation.
Now, we proceed to obtain the linear part of equation 2.75. To achieve this goal we

note that the linearised internal force can be expressed as

DΣ · ∆θ̄ = Ĉ

 DΓ̄ · u
DΩ̄ ·ψ

 = ĈΠ̂T ξ̂T ∆φ (2.79)

where the quantities Σ̂, Π̂ and ξ̂ are the representation of Σ, Π and ξ for the configuration
φ = φ̂, and Ĉ is the material tangent elastic tensor presented in 2.42. In addition to that,
the following relation should be highlighted

 DΓ̄ · u
DΩ̄ · θ̄

 = Π̂T ξ̂T

 u0

ψ

 ≡ Π̂T ξ̂T ∆φ (2.80)

The linearisation of the functional G(φ̂, η̄) is composed by three parts. The first one is
the material part of the tangent stiffness matrix due to the linearisation procedure applied
to the internal forces Σ. The second is the geometric part of the tangent stiffness matrix
obtained by means of the linearisation of the operator [ξΠ], which was defined previously.
In other words one can write

DG(φ̂, η̄) · ∆φ = DMG(φ̂, η̄) · ∆φs +DGG(φ̂, η̄) · ∆φs +DLG(φ̂, η̄) · ∆φs (2.81)

the sub-indices M and G refer, respectively, to the material and geometric part of the
tangent stiffness matrix, while the sub-index L refers to the load stiffness, and in ∆φs the
sub-index s refers to spatial. The terms from equation 2.81 can be expressed as follows

DMG(φ̂, η̄s) · ∆φ =
∫

[0,L]
(ξ̂T η̄) · (ĉξ̂T ∆φs) dS (2.82)

DGG(ϕ̂, η̄s) · ∆φ =
∫

[0,L]
(β̂η̄s) · (b̂β̂∆φs) dS (2.83)

8For a broader and more formal overview regarded to the linearisation procedure, see Marsden and
Hughes (1994).
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DLG(ϕ̂, η̄s) · ∆φ =
∫

[0,L]
η̄s · (l̂∆φs) dS (2.84)

where β̂ is the matrix differential operator

β̂ :=


∂

∂S
1 0

0
∂

∂S
1

0 1

 (2.85)

b̂ is the geometric stiffness matrix

b̂ :=


0 0 [−f̄×]
0 0 [−m̄×][
f̄×

]
0 [f̄ ⊗ φ′

0 − (f̄ · φ′
0)1]

 (2.86)

the operator l̂ is defined as

l :=
 0 [−q̄fl

f̄
(S, t)×]

0 [−q̄fl
m̄(S, t)×]

 (2.87)

the sub-index fl appearing in Eq. (2.87) is referring to a follower load. The term ĉ :=
Π̂ĈΠ̂T is the spatial form of the elastic tensor. We recall again that the quantities with
a hat sign (̂·) stand for the configuration φ = φ̂.

Due to the nonlinear character of the geometrically exact model, in this master’s thesis
the Newton method is used to solve the equilibrium equations using the material version
of the involved quantities. Therefore, aiming the further implementation, it is preferable
to represent the linearised weak form components in their material version.

Taking into account Eq. (2.77) the first portion of the linearised form is represented
in its material version as

G(φ̂, η̄) =
∫

[0,L]
[(ΞT (S, t)η̄(S, t)) · Σ(S, t) − η̄(S, t) ·Q(S, t)]dS (2.88)

where Q gathers the external loads, forces and moments, applied on the beam

Q(S, t) :=
 Q̄f (S, t)
Q̄m(S, t)

 ≡

 q̄fx
f (S, t)

RT (S, t)q̄fx
m (S, t)

+
 q̄fl

f (S, t)
RT (S, t)q̄fl

m(S, t)

 (2.89)

the sub-indices in above equation have the following meaning: f = forces, m = moments,
fx = fixed and fl = follower. As discussed in Simo (1985), this model also allows follower
applied loads.

The material tangent stiffness of the linearised form can be represented as
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DMG(φ̂, η̄) · ∆φ =
∫

[0,L]
(Ξ̂T η̄) · (ĈΞ̂T ∆φM)dS (2.90)

where the kinematic operator is introduced as

Ξ̂T :=

 R
T (S, t) ∂

∂S
1 [RT (S, t)φ′

0×]

0
∂

∂S
1 + Ω(S, t)

 (2.91)

The geometric tangent stiffness is the part of the tangent operator given by the lin-
earisation of the rotation and the kinematic operators. In a material form it assumes the
following representation

DGG(φ̂, η̄) · ∆φ =
∫

[0,L]
(β̂η̄) · (B̂β̂∆φG)dS (2.92)

where the following quantities are defined

B :=


0 0 −R(S, t)[N̄ (S, t)×]
0 0 0[

N̄ (S, t)×
]
RT (S, t) [−M̄ (S, t)×] [A]

 (2.93)

with the sub-matrix represented [A] by

[A] := N̄ (S, t) ⊗
(
RT (S, t)∂φ0(S, t)

∂S

)
− N̄ (S, t) ·

(
RT (S, t)∂φ0(S, t)

∂S

)
+M̄ (S, t) ⊗ Ω̄(S, t) − M̄(S, t) · Ω̄(S, t)

(2.94)

Lastly, the material version of the load stiffness can be represented as follows

DLG(φ̂, η̄) · ∆φ =
∫

[0,L]
η̄ · (L̂∆φL)dS (2.95)

where the operator L(S, t) appearing in above equation is introduced as

L :=
 0 −

[
qfl

f (S, t)×
]
R(S, t)

0 −
[
RT (S, t)qfx

m (S, t)×]
]  (2.96)

where the sub-indices fx and fl refer to a fixed and a follower load respectively.
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CHAPTER 3

FINITE ELEMENT METHOD

This chapter addresses the basic aspects of the finite element discretisa-
tion oriented to the target beam models, considering linear and quadratic
elements. At the end of this chapter, a brief discussion about the shear-
locking issue is also presented.

3.1 Preliminaries

In the finite element method, the problem domain is discretised in a finite number of
subdomains called elements. In typical one-dimensional beam elements, a local coordinate
system is usually defined with the x axis oriented along the beam axis. If the beam length
is L, the following domain discretisation is created:

D ∈ [0 L] ≃
Neℓ⋃
e=1
Deℓ

e with Deℓ
i

⋂
Deℓ

j = ∅,∀i, j = 1, . . . , Neℓ (3.1)

where Neℓ is the number of elements, Deℓ
e ∈ [0 Le] is the element domain, and Le is the

element length. In finite element implementations, the so-called isoparametric formulation
is usually adopted. In this case, a natural coordinate system is defined such that the local
coordinate x and the natural coordinate ξ (see Fig. 3.1) are related by the following
expression:

ξ(x) = 2x− Le

Le

(3.2)

x
Le0

local natural

ξ
+1−1

[0 Le] → [−1 1]

Figure 3.1: Local and natural coordinate systems representation

Within each element, the field variables can be interpolated through the shape func-
tions obtained from the natural coordinate system. The Lagrange polynomials are usually
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employed to obtain the isoparametric shape functions:

Ni =
h∏

j=1∧j ̸=i

ξj − ξ

ξj − ξi

(3.3)

where h is the number of element nodes, which is also referred to the element incidence.
The terms ξi and ξj are the values of the natural coordinate ξ on the nodes i and j

respectively.
Using Eq. (3.3) it is possible to obtain different orders of approximation, depending

on the number of nodes of each element. Two-nodes elements results in the linear shape
functions depicted in Fig. 3.2, while three-nodes elements results in the quadratic shape
functions illustrated in Fig. 3.3.

ξ
+1−1

1

1 2

N1 = 1
2(1 − ξ)

(a)

ξ
+1−1

1

1 2

N2 = 1
2(1 + ξ)

(b)

Figure 3.2: Linear FEM shape functions

ξ
+1−1

1

1 2 3

N1 = 1
2ξ(ξ − 1)

(a)

ξ
+1−1

1

1 2 3

N2 = (1 − ξ2)

(b)

ξ

+1−1

1

1 2 3

N2 = 1
2ξ(ξ + 1)

(c)

Figure 3.3: Quadratic FEM shape functions

Due to the transformation between the local and natural coordinate systems, it is
necessary to obtain the determinant of the Jacobian1 and its inverse, this is necessary for
the use of the numerical integration commonly employed in FEM implementations. For
beam applications, they are easily determined from Eq. (3.2):

1This is the Jacobian matrix that commonly appears in coordinate system transformations.
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|J | = ∂x

∂ξ
= Le

2 , |J |−1 = ∂ξ

∂x
= 2
Le

(3.4)

3.2 Discretisation

In the finite element method the field variables are approximated in terms of nodal values
and shape functions. In what follows, the discretisation of the target beam models is
briefly discussed considering the isoparametric formulation.

3.2.1 Timoshenko beam

For the Timoshenko beam model, the deflection v and rotation θ within each element are
interpolated as

v ≃
h∑

i=1
N v

i (ξ)dv
i , θ ≃

h∑
i=1

N θ
i (ξ)dθ

i (3.5)

where the index i indicates the ith node of the element incidence, N v
i and N θ

i are the
shape functions used to interpolate the nodal values dv

i and dθ
i of deflections and rotations,

respectively. The superscripts v and θ are just to emphasise that different shape functions
can be adopted to approximate different nodal variables.

The shear and bending strains appearing in Eq. (2.1) can be expressed as

ω = ∂θ

∂x
= ∂ξ

∂x

∂θ

∂ξ
≃ ∂ξ

∂x

h∑
i=1

∂N v(ξ)
∂ξ

dθ
i (3.6)

γ = ∂v

∂x
− θ ≃ ∂ξ

∂x

h∑
i=1

∂N v(ξ)
∂ξ

dv
i −

h∑
i=1

N θ(ξ)dθ
i (3.7)

Recalling that dξ/dx = 2/Le, the above strain measures can be recasted in the following
array

{ε(ξ)} :=
 ω(ξ)
γ(ξ)

 = 2
Le

h∑
i=1


0 ∂N θ

i (ξ)
∂ξ

∂N v
i (ξ)
∂ξ

−N θ
i (ξ)Le

2


 dv

i

dθ
i

 =
h∑

i=1
[B]i(ξ){di} (3.8)

The constitutive law can also be recasted in a matrix form as2:
2Here the constitutive matrix has been represented as a constant term. However, the case of variable

properties along the beam axis can be easily obtained by considering a constitutive matrix that is constant
within a single element (i.e. piecewise constant along the beam axis).
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M
Q

 = [E]{ε}; [E] :=
EI 0

0 GAs

 (3.9)

where the constitutive matrix [E] has been introduced. Finally, the bilinear form of
Eq. (2.8) can be expressed as

a ((δv, δθ), (v, θ)) =
∫ 1

−1

(
εT (ξ)[E]ε(ξ)

)
|J | dξ (3.10)

where |J | is the determinant of the jacobian matrix. The representation in terms of shape
functions and nodal parameters results in an algebraic system representing the behaviour
of the whole discrete model:

[K] {X} = {R} (3.11)

where [K] is the global stiffness matrix of the system, {X} the nodal parameters vector
collecting all the nodal parameters {di}, and {R} the vector of nodal dual parameters
(i.e. nodal forces and moments). The stiffness matrix [K] can be evaluated starting from
the stiffness matrix [Keℓ] of the single elements

[Keℓ] =
∫ 1

−1
[B(ξ)]T [E] [B(ξ)]|J | dξ (3.12)

where the matrix [B(ξ)] is composed by the submatrices [Bi(ξ)] as

[B(ξ)] = ([B1(ξ)] . . . [Bi(ξ)] . . . [Bh(ξ)]) (3.13)

In Eq. (3.12) the stiffness matrix gathers the contributions of the shear and bending
strains. However, it is also common to split Eq. (3.12) revealing the contributions of the
shear and bending strains separately:

[Kb] =
∫ 1

−1
[Bb(ξ)]T [Eb] [Bb(ξ)] |J | dξ [Ks] =

∫ 1

−1
[Bs(ξ)]T [Es] [Bs(ξ)] |J | dξ (3.14)

where the subscript b refers to bending, while the subscript s refers to shear. In the above
equation the following relations can be identified

[B] =
 [Bb]

[Bs]

 = 2
Le

h∑
i=1


0 ∂N θ

i (ξ)
∂ξ

∂N v
i (ξ)
∂ξ

−N θ
i (ξ)Le

2

 (3.15)

and
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[E] =
 [Eb] [0]

[0] [Es]

 =
EI 0

0 GAs

 (3.16)

3.2.2 Geometrically exact beam

As shown in Section 2.2, the geometrically exact beam is charaterised by the position of
the line of centroids and the rotation of the cross-sections:

C ≡ (φ0,R) (3.17)

In this beam model, the local coordinate system is defined by the variable S, i.e. the
relation between the local and natural charts are expressed as

ξ(S) = 2S − Le

Le

(3.18)

Using the isoparametric shape functions previously defined, the line of centroids is
interpolated through its nodal values as follows

φ0(ξ) ≃
h∑

i=1
Nφ0

i (ξ) dφ0
i (3.19)

where the index i indicates a node i in the element incidence, dφ0
i gathers the nodal values

of the line of centroids, and the operatorNφ0
i (ξ) collects the shape functions used in the in-

terpolation. Again, the superscript φ0 is just to emphasise that the shape functions can be
different depending of the quantity to be approximated, in this case, the line of centroids.
It is worth noting that φ0(S, t) is composed by three values φ0(S, t) = [φ01, φ02, φ03],
therefore the shape functions of a particular incidence node can be expressed in the fol-
lowing matrix form

φ0(ξ) =


Nφ0

i (ξ) 0 0
0 Nφ0

i (ξ) 0
0 0 Nφ0

i (ξ)



dφ01

i

dφ02
i

dφ03
i

 (3.20)

The derivative of the line of centroids is necessary to compute the shear deformation,
taking into account the natural coordinates, this derivative is expressed by

∂φ0(ξ)
∂S

= ∂Nφ0
i

∂S
dφ0

i = ∂Nφ0
i

∂ξ

∂ξ

∂S
dφ0

i (3.21)

where
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∂Nφ0
i

∂S
=


Nφ0

i (ξ) 0 0
0 Nφ0

i (ξ) 0
0 0 Nφ0

i (ξ)

 ∂ξ

∂S
(3.22)

The configuration increments are interpolated through their nodal values, as follows

η̄ ≃
h∑

i=1
Ni,S η̄i ≡

h∑
i=1

 Ni(ξ) 0
0 Ni(ξ)

 η̄0i

θ̄i

 (3.23)

∆φ ≃
h∑

i=1
Ni,S ∆φi ≡

h∑
i=1

 Ni(ξ) 0
0 Ni(ξ)

 ū0i

ψ̄i

 (3.24)

while the derivatives of the above expressions with respect to S can be written as

∂η̄

∂S
≃

h∑
i=1
Ni,S η̄i ≡

h∑
i=1

 Ni,S(ξ) 0
0 Ni,S(ξ)

 η̄0i

θ̄i

 (3.25)

∂∆φ
∂S

≃
h∑

i=1
Ni,S ∆φi ≡

h∑
i=1

 Ni,S(ξ) 0
0 Ni,S(ξ)

 ū0i

ψ̄i

 (3.26)

With this framework, it is possible to show that Eq. (2.77) assumes the following material
representation

L[G(φ, η̄] =
∫ 1

−1

[
NT (ξ)Q(ξ) −

(
ΞT (ξ)N (ξ)

)T
Σ(ξ)

]
dξ

+
∫ 1

−1

[(
ΞT (ξ)N (ξ)

)T
C
(
ΞT (ξ)N (ξ)

)]
dξ

+
∫ 1

−1

[
(βN (ξ))T BT (ξ) (βN (ξ))

]
dξ

−
∫ 1

−1
NT (ξ)L(ξ)N (ξ) dξ

(3.27)

All quantities appearing in Eq. (3.27) are defined in Section 2.2. In an implementation
perspective, the integrals above are commonly solved using the Gaussian quadrature. For
linear shape functions two integration points are employed to integrate the shape functions
exactly, while three integration points are used for quadratic shape functions.

3.3 Shear locking effect

In this section the shear-locking phenomenon will be presented and briefly discussed. The
following ideas are oriented to the Timoshenko beam, however they are valid for other
models that share the same principles.

The finite element method applied to the Timoshenko beam model using linear shape
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functions for the displacement v(x) and the rotation θ(x) is considered the simplest el-
ement for this model. However when the beam is arbitrarily thin, that is to say, the
length-to-thickness ratio become large, the resultant displacements are much smaller than
the exact ones, in other words, the element used in the discretisation is overly stiff (Wang
et al., 2000). This phenomenon arises due to the inconsistency of the interpolation used
in v(x) and θ(x) (Wang et al., 2000), and it is a well-known issue named as shear-locking
(Bathe, 1996). In fact, this is a common numerical behaviour in shear-deformable beams.

Many authors proposed a way to overcome the shear locking in finite element appli-
cations. The two most common acceptable approaches are (Reddy, 2010)

• Reduced integration technique, consisting in a reduced integration for the evaluation
of the transverse shear stiffness coefficients

• Consistent interpolation, that consists in the use of an approximation of v(x) and
θ(x) in a way that dv/dx and θ(x) possess the same polynomial degree

In addition to that, the shear locking can also be avoided using the assumed shear strain
technique, which consists into assuming “a priori” a polynomial transverse shear strain
field compatible to the model field variables (Oñate, 2013).

Hale (2013) demonstrated that shear locking problem remains in meshfree methods
by contrasting the Timoshenko beam theory using the finite element method with the
same model solved by a meshfree method. In addition, the shear locking behaviour is
sensible to the discretisation parameters in meshfree methods, consequently this is a key
information necessary to design locking-free meshfree method (Hale, 2013, p. 85). The
meshfree methods used in Hale (2013) can be considered descendants of the element-free
Galerkin method of Belytschko et al. (1995). The papers of Tiago and Pimenta (2005)
and Marino (2016) cited in Chapter 1 are addressed to nonlinear beam models and the
formulation approached in these works are locking free.

In order to overcome this problem, in all FEM numerical simulations throughout this
work, the reduced integration technique is adopted for both, linear and geometrically
nonlinear beam models. It is worth mentioning that the shear locking problem appears
also in plate and shell models, however such discussion is not a matter to this work.
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CHAPTER 4

SMOOTHED POINT INTERPOLATION METHODS

In this chapter the main concepts of the smoothed point interpolation
methods are recalled. A vast and detailed information regarding the
theory and applications of these methods can be found in Liu (2009)
and Liu and Zhang (2013).

After introducing the meshfree methods and some basic aspects of them in Chapter 1,
in this chapter the smoothed point interpolation methods (SPIMs) are presented. While
the proposed SPIM model for shear-deformable beams is one-dimensional (Chapter 5),
SPIM models are first introduced considering a more general two-dimensional case, that,
due to its practical graphical representation, allows for a better illustration of the for-
mulation. All this section is based primarily on the work of Liu (2009) and his research
team.

As it will be pointed out in the following, SPIMs strategies are based on:
• shape functions obtained with the point interpolation and radial point interpolation

methods
• different support nodes selection strategies
• different techniques for the domain tessellation
• a smoothing operation for the field variables derivatives
Similarly to the finite element method, field variables are approximated in terms of

nodal values and shape functions; however, the concept of elements and its incidence,
are replaced by the concepts of smoothing domains and support nodes. In addition to
that PIM shape functions can be build including nodes beyond the integration cells, on
the contrary of FEM shape functions that are constructed using only the nodes of the
elements (Liu, 2009).

4.1 PIM shape functions

The point interpolation method (PIM) is one of the shape function construction strategies
that can be adopted within the family of smoothed point interpolation methods, and
makes use of polynomial basis functions. Other strategies are represented by the radial
point interpolation method (RPIM) Wang and Liu (2000, 2002), Liu (2009) and the radial
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point interpolation method with polynomial reproduction (RPIMp) Liu (2009). In the
following, for brevity, only the PIM strategy will be illustrated; for a broader presentation,
including radial basis functions and radial basis functions with polynomial reproduction,
the reader may refer to Liu (2009). Let u(p) be a field variable in the problem domain
D with a number of scattered field nodes. The following series representation is used to
approximate the function for a point of interest p:

uh(p) =
n∑

i=1
pi(p)ai = pT (p)a (4.1)

where pT (p) is the basis function of monomials, n is the number of support nodes selected
in a local support domain, ai is the coefficient for the monomial pi(p), and the vector a
is expressed as follows

a = [a1, a2, . . . , an]T (4.2)

In the vicinity of p the coefficients ai are constants; only when the support nodes
associated with p change, the coefficients are updated. As explained by Liu (2009),

“[...], in any finite discretization of the problem domain with nonduplicated
nodes, uh(p) is consistent in finite local domains where these support nodes
do not change. The order of the consistency depends on the polynomial basis
functions used.” (Liu, 2009, p. 61).

In general, the monomial pi(p) is chosen in a top-down approach from the Pascal
triangle shown in Figure 4.1 particularised for a 2D case.

1

x y

x2 y2xy

x3 y3x2y xy2

x4 y4x3y xy3x2y2

x5 y5x4y xy4x3y2 x2y3

Figure 4.1: Pascal triangle of monomials, 2D case.

This process leads to a complete basis of the desired order. In Table 4.1 the basis used
for 1D, 2D and 3D problems are presented.

At each point p, the unknown coefficient ai can be obtained by imposing the interpo-
lation condition of equation 4.1 at the n support nodes in the vicinity of p. For a generic
node i it is possible to write
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Dimension Polynomial basis
1D pT (x) = {1, x, x2, x3, x4, . . . , xn}

2D pT = pT (x, y) = {1, x, y, xy, x2, y2, . . . , xn, yn}

3D pT = pT (x, y, z) = {1, x, y, z, xy, yz, zx, xyz, x2, y2, z2, . . . , xn, yn, zn}

Table 4.1: Complete polynomial basis for order n

ui = pT (pi)a i = 1, 2, . . . , n (4.3)

where ui is the nodal value of u at p = pi.
The above equation can be rewritten in matrix form as follows:

ds = PQa (4.4)

where ds is a vector containing the nodal values of the field variable at the n support
node

ds = {u1, u2, . . . , un}T (4.5)

and PQ is the moment matrix, expressed by

PQ =


pT (p1)
pT (p2)

...
pT (pn)

 (4.6)

that for a 2D problem assumes the form

PQ =


1 x1 y1 x1y1 x2

1 y2
1 . . .

1 x2 y2 x2y2 x2
2 y2

2 . . .
... ... ... ... ... ... ...
1 xn yn xnyn x2

n y2
n . . .

 (4.7)

Assuming the matrix PQ to be non-singular, it is possible to write the vector a as

a = P−1
Q ds (4.8)

Entering Equation 4.8 into Equation 4.1, results in

uh(p) =
n∑

i=1
ϕi(p)ui = φ(p)ds (4.9)

where φ(p) is a matrix of PIM shape functions ϕi(p) defined by
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φ(p) = pT (p)P−1
Q = [ϕ1(p), ϕ2(p), . . . , ϕn(p)] (4.10)

All the functions involved in the shape functions are polynomials, therefore their
derivatives can be obtained without further complications; for the ℓth derivative

φℓ
i(p) = [pℓ(p)]TP−1

Q (4.11)

As long as the moment matrix is invertible and linear terms are included in the basis
(Table 4.1), it can be shown Liu (2009) that the PIM shape functions

• are linearly independent;
• possess the delta Kronecker property;
• form a partition of unity:

n∑
i=1

ϕi(p) = 1;
• possess the linear reproduction property;
• present compact support (as long as they are constructed using compact support

domains);
• are not compatible, meaning that they may present discontinuities when passing

from a support domain to another
The moment matrix PQ presented earlier might be singular for a certain node distribu-

tion on the support domain 1. In order to avoid singularities some support nodes selection
schemes have been proposed, for instance: T-schemes, K-nearest neighbors (KNN) algo-
rithms with irregularly distributed nodes and radial basis for shape function creation.

4.2 Smoothing operation

In order to solve the issue of lack compatibility of PIM and RPIM shape functions, Liu
Liu (2010a,b) proposed the use of a weakened-weak form where the continuity requirement
is reduced. In a short description, this is a form obtained after performing the smoothing
operation over the smoothing domains (see Section 4.3). For a comprehensive treatment
to this matter the reader is referred to Liu (2009, 2010a,b).

Let us consider the derivative of a field variable f at a point x ∈ Ds
k, next we replace

its derivative by the smoothed derivative defined2 in equation 4.12:

fi,j(x) ≈ f̃i,j(pk) :=
∫
DS

k

fi,j(ξ)W̃ (pk − ξ)dV, x ∈ DS
k (4.12)

constant within a smoothing domain, where W̃ is a smoothing function and where pk is
the centre of the smoothing domain. If the field variable f is continuous, the Green’s
divergence theorem can be applied, resulting in

1The existence of the inverse of the moment matrix depends not only on the node distribution, but
also on the coordinate system.

2See Liu (2009, 2010a,b), Liu and Zhang (2013).
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f̃i,j(pk) =
∫

∂DS
k

(
fi(ξ) ⊗ nk

j (ξ)
)
W̃ (pk − ξ)dS −

∫
DS

k

fi(ξ) ⊗ W̃,j(pk − ξ)dV (4.13)

in above equation n̄k is the unitary outward normal on the boundary ∂DS
k . The smoothing

function W̃ is usually assumed to be the following Heaviside type function as follows

W̃ (pk − ξ) :=
 1/Ak if ξ ∈ DS

k

0 if ξ /∈ DS
k

(4.14)

where Ak =
∫
Ds

k
dV is the area of the smoothing domain associated with the point at k,

∂DS
k is the boundary of the smoothing domain associated with k. Substituting equation

4.14 in 4.13 leads to

f̃i,j(pk) = 1
Ak

∫
∂DS

k

fi(ξ) ⊗ nk
j (ξ)dS (4.15)

This derivative is constant within the smoothing domain DS
k . As pointed out by Liu

(2009) this approximation is not rigorous in theory, because the possibility of discontin-
uous field variables; however it is possible to implement and no differentiation of field
variables is required. Hence it is assumed to be valid for both continuous and discontin-
uous field variables, i.e. whether the application of Green’s theorem in Eq. (4.12) is licit
or not.

4.3 Domain tessellation

At the beginning of Chapter 4, it has been pointed out that SPIMs strategies are based
on peculiar tessellations of the problem domain in a set of smoothing domains. Focusing
on 2D problems, this section illustrates three different strategies for domain tessellation,
a node-based, an edge-based and a cell-based strategy, that results in the node-based
smoothed point interpolation method (NS-PIM), edge-based smoothed point interpola-
tion method (ES-PIM), and cell-based smoothed point interpolation method (CS-PIM),
respectively. The first step consists in the discretisation of the domain D in a set of, non-
overlapping, Ne background cells Dc

i (i = 1, 2, 3, . . . , Ne) whose vertices correspond to a
set of Nn scattered nodes. The shape of these cells can be generic, however a triangular
shape is generally used, due to the availability of efficient triangulation algorithms and
due to the fact that the triangular cells can also be used for support nodes selection (Liu,
2009). The entire problem domain is tessellated in such way that ∪n

i=1D
S
i = D stands;

in other words, the problem domain is completely covered by the smoothing domains.
In the NS-PIM, each smoothing domain is associated to a node of the background tri-

angulation. Node-based smoothing domains can be created by the equal-shared or Voroni
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strategies; however, only the former is illustrated in this section. With this technique,
the generic smoothing domain DS

i , associated to the ith node, is generated by connecting
the mid-edge points to the centroids of the surrounding triangular cells sharing this same
node, as illustrated in Figure 4.2a.

In the ES-PIM each smoothing domain is associated to an edge of the background
triangulation. The jth smoothing domain is obtained by connecting the nodes at the ends
of the edge j with the centroids of the two triangular cells that share the same edge j, as
illustrated in Figure 4.2b.

In the CS-PIM the triangular backgrounds cells usually constructed for 2D applica-
tions are used as smoothing domains. In other words after dividing the problem domain in
triangles there is no need of an additional operation to construct the smoothing domains,
as illustrated in Figure 4.2c.

(a) Node-based (b) Edge-based (c) Cell-based

Node

Background cell centroid

Integration point

Background cells

Integration domain

Highlighted int. domain

Figure 4.2: Two-dimensional smoothing domains

For all tessalation procedures the smoothing domains follow the no-sharing rule3 and
they are non-overlapping. As already pointed out, the problem domain is usually divided
into a set of Ns smoothing domains using the triangulation as reference. However for
two-dimensional applications quadrilateral background cells are also practical for imple-
mentations, as shown in Gori (2018).

4.4 Weakened-weak form

The theory and fundamentals regarding the weakened-weak (W2) formulation, as well as
the applications in solid mechanics problems, were established in the papers Liu (2010a)
and Liu (2010b). This formulation is applicable to any problems where the standard
formulation is also applicable. In order to illustrate the overall idea, first a classic weak
form of an elasticity problem is considered:

a(w̄, ū) = f(w̄) (4.16)
3According to Liu (2009), the no-sharing rule means that the boundaries of smoothing domains do not

share any finite portion with interfaces of the surrounding triangular cells. This property is fundamental
for the numerical integration of SPIMs models.
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The bilinear form a(w̄, ū) and the linear functional f(w̄) appearing in expressions above
are

a(w̄, ū) :=
∫
D
ε(w̄) ·

(
Ê · ε(ū)

)
dV (4.17)

f(w̄) :=
∫

∂D
w̄ · t̄ dS +

∫
D
w̄ · b̄V dV (4.18)

where ū and w̄ are, respectively, the trial and test functions, t̄ is the vector of prescribed
tractions, b̄V the vector of body forces, ε the deformation tensor, and Ê the elastic
constitutive tensor.

Through the use of the smoothing operation introduced in Section 4.2 the weakened-
weak form of a classic generic problem in elasticity is obtained by replacing the strain
tensor ε with its smoothed version ε̃, i.e. by replacing the derivatives of the displacement
field by the smoothed derivative defined in Eq. (4.15).

Within each smoothing domain the strain field is assumed to be constant, hence the
domain integral

∫
D can be transformed in a summation over the NS smoothing domains

composing the discrete model. Therefore the bilinear form of Eq. (4.17) is converted into
a smoothed bilinear form as follows

ã(w̄, ū) =
∫
D
ε̃(w̄) ·

(
Ê · ε̃(ū)

)
dS ≡

NS∑
i=1

Ak

[
ε̃(w̄(pk)) ·

(
Ê · ε̃(ū(pk))

)]
(4.19)

4.5 Voigt notation and discretisation

Aiming to solve problems with discrete numerical methods, the bilinear form of Eq. (4.17)
is here discretised and recasted in the Voigt notation. In order to illustrate the idea of
the smoothing operation, a plane stress case is considered. In this case the strains can be
represented in matrix form as follows

{ε(ū)} = [L]{ū} =


εxx

εyy

εxy

 =


∂x 0
0 ∂y

∂y ∂x


 ux

uy

 (4.20)

Combining the strains representation of Eq. (4.20) together with the bilinear form of
Eq. (4.17) in a finite element method setting, it is possible to show that the stiffness
matrix of a particular element [K]eℓ can be written as

[K]eℓ =
∫
Deℓ

[B(p)]T [E(p)][B(p)] dV (4.21)

where p is a point belonging to the element domain, and Deℓ represents the element
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domain. The matrix [B(p)] =
[
B1(p) ... BNeℓ

(p)
]

is formed by Neℓ submatrices, such
that

{ε(p)} =
N∑

i=1
[Bi(p)]{di} =


∂xNi(p) 0

0 ∂yNi(p)
∂yNi(p) ∂xNi(p)


 dxi

dyi

 (4.22)

where Neℓ is the number of element nodes, and Ni(p) is the shape function of the ith
element node.

In order to achieve the weakened-weak form to be used in one of the SPIMs, the
smoothing operation can be applied to the strain field resulting in a smoothed strain field

{ε̃(ū(pk)} = 1
Ak

∫
∂DS

k

[
L̃n(ξ)

]
[ū(ξ)] dS (4.23)

In the expression above, the matrix [L] that gathers the derivatives is transformed accord-
ing to Eq. (4.15) into the matrix [L̃n], that gathers the components of the unit normal
vector n̄. After performing the smoothing operation the strains in Eq. (4.20) are rewritten
as follows4


ε̃xx

ε̃yy

ε̃xy

 = 1
Ak

∫
∂DS

k


n(k)

x (ξ) 0
0 n(k)

y (ξ)
n(k)

y (ξ) n(k)
x (ξ)


 ux(ξ)
uy(ξ)

 dS (4.24)

Assuming that the constitutive operator E is constant within each smoothing domain
and recalling that the strains are also constant, the integral above can be replaced by a
summation over the smoothing domains, as follows

ã(w̄, ū) =
S∑

k=1
Ak (ε̃(w̄(pk)) · (E · ε̃(ū(pk)))) (4.25)

Using PIM and/or RPIM shape functions ϕi(x) the field variable ū can be approxi-
mated as

ū ≃
∑
i∈Sd

[ϕi(x)] {di} (4.26)

where {di} gathers the nodal parameters at the node i, and Sd is the support domain of
the point x ∈ D. At this point it is possible to express the smoothed strains in terms of
the smoothed strain-displacement matrix

{ε̃(ū(pk)} =
∑
i∈Sd

[
B̃i(pk)

]
{di} (4.27)

4Instead of the concept of element, in SPIM the concept of smoothing domains takes place.
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where matrix
[
B̃i(pk)

]
assumes the following form for a plane stress state

[
B̃i(pk)

]
= 1
Ak

∫
∂DS

k

[
L̃n(ξ)

]
[ϕi(ξ)] dS

= 1
Ak

∫
∂DS

k


n(k)

x (ξ)ϕi(ξ) 0
0 n(k)

y (ξ)ϕi(ξ)
n(k)

y (ξ)ϕi(ξ) n(k)
x (ξ)ϕi(ξ)



=


ϕ̃i,x(pk) 0

0 ϕ̃iy(pk)
ϕ̃i,y(pk) ϕ̃i,x(pk)



(4.28)

where the smoothed derivatives are expressed as

ϕ̃i,ℓ(pk) = 1
Ak

∫
∂DS

k

n
(k)
ℓ (ξ)ϕi(ξ) dS, ℓ = x, y (4.29)

In contrast with a finite element application, in the present method the stiffness matrix
is computed for each smoothing domain

[K(pk)]Sd
= Ak[B̃(pk)]T [E(pk)][B̃(pk)] (4.30)

where [B̃i(pk)] is a submatrix computed for a particular node of the support domain Sd

at the point pk and [B̃(pk)] = [ B̃1(pk) ... B̃N(pk) ], and N is the number of support
nodes.

4.6 Support node selection

As pointed out in the previous section, the creation of PIM, RPIM and RPIMp approxi-
mations at a given point depends on a certain number n of nodes in the neighbourhood
of p, the so-called support nodes. While there exist different strategies for support nodes
selection, in the present section only the so-called T-schemes will be illustrated.

As it will be illustrated in the following sections, SPIMs strategies are based on peculiar
domain tessellations, built on triangular background cells (in 2D problem); as pointed out
by Liu (2009), the same triangular cells can be used for the selection of support nodes.
T-schemes stands for triangular cell-based node selection schemes and as explained in
Liu (2009) they “have been found most practical, robust, reliable, and efficient for local
supporting node selection”; in addition to that, PIMs works particularly well with these
schemes for node selection. Liu (2009) presented five T-schemes, which are T3-scheme,
T6/3-scheme, T6-scheme, T4-scheme and T2L-scheme. However, only the first two will
be presented, which are illustrated in Figures 4.3 and 4.4. In general, given a point of
interest p, its home cell is the background cell where the point of interest belongs to. If
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this cell has no edge on the boundary of the problem domain it is termed as interior cell,
otherwise boundary cell. A cell which shares one edge with the home cell is termed as
neighbouring cell.

• T3-scheme: The same number of nodes is chosen for an interior home cell or for a
boundary home cell. PIM linear shape functions can be created using this method-
ology. As the name suggests, in a T3-scheme three nodes are selected to compose
the support domain.

• T6/3-scheme: given a point of interest six nodes are selected, three from the home
cell and the others from the remote vertices of the three cells at the neighbourhood.
For a boundary home cell only three nodes are used, which are the vertices of the
home cell that hosts the point p.

Figures 4.3 and 4.4 presents the visual idea for both T-schemes presented.

Node

Support node

Point of interestInterior cell

Boundary cell

Figure 4.3: Support nodes selection via T3-scheme (2D case).

Node

Support node

Point of interestInterior cell

Boundary cell

Figure 4.4: Support nodes selection via T6/3-scheme (2D case).

4.7 αPIM shape functions

In general SPIM models are able to offer a softer behaviour, in contrast with linear PIM
that is able to reproduce the linear finite element method, which is often stiffer when
compared to the exact solution. Using a scaling factor α ∈ [0 1] Liu et al. (2013) proposed
the so called αPIM shape functions that combine the softer and stiffer models into an
intermediary behaviour according to the α value, potentially improving the convergence
to the analytical solution.

The procedure create the αPIM shape functions, starts with two sets of nodal PIM
shape functions S(I) and S(II) available for a point of interest p:
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Φ(I)(p) = [ ϕ(I)
1 (p) ϕ

(I)
2 (p) . . . ϕ(I)

n (p) ] (4.31)

Φ(II)(p) = [ ϕ(II)
1 (p) ϕ

(II)
2 (p) . . . ϕ(II)

n (p) ] (4.32)

These two sets does not have to be identical, however it is required that S(I) and S(II)

possess some shared nodes. A function u at a point p can be interpolated using the nodes
of the set of shape functions S(I)

u(p) =
In∑

i=1
ϕ

(I)
i (p)ui (4.33)

or the nodes of the set S(II)

u(p) =
IIn∑
i=1

ϕ
(II)
i (p)ui (4.34)

where In and IIn are, respectively, the number of support nodes in the two sets of S(I) and
S(II). These sets of shape functions can be combined to approximate the field variable u
as follows

u(p) = α

(
In∑

i=1
ϕ

(I)
i (p)ui

)
+ (1 − α)

(
IIn∑
i=1

ϕ
(II)
i (p)ui

)
(4.35)

where α ∈ [0, 1]. The equation above can be recasted as follows

u(p) = α

(
In∑

i=1
ϕ

(I)
i (p)ui

)
+ (1 − α)

(
IIn∑
i=1

ϕ
(II)
i (p)ui

)

=
∑

i∈S(I)∩S(II)

[
αϕ

(I)
i (p) + (1 − α)ϕ(II)

i (p)]ui

]
+

∑
i∈S(I)\S(II)

αϕ
(I)
i (p)ui +

∑
i∈S(II)\S(I)

(1 − α)ϕ(II)
i ui(p)

(4.36)

therefore

u(p) =
∑

i∈S(α)

ϕ
(α)
i (p)ui = Φ(α)(p)d (4.37)

For convenience the following set is termed as αPIM shape functions

Φ(α)(p) = [ ϕ(α)
1 (p) ϕ

(α)
2 (p) . . . ϕ

(α)
n(α)(p) ] (4.38)

where n(α) is the number of nodes in the set of S(α) = S(I) ∪ S(II), with
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ϕ
(α)
i (p) =


αϕ

(I)
i (p) + (1 − α)ϕ(II)

i (p) ∀i ∈ S(I) ∩ S(II)

αϕ
(I)
i (p) ∀i ∈ S(I) \ S(II)

(1 − α)ϕ(II)
i (p) ∀i ∈ S(II) \ S(I)

(4.39)

Liu et al. (2013) used a cell-based smoothed alpha radial point interpolation method
(CS-αRPIM) approach, aiming to obtain better results by combining the “condensed
RPIM (RPIM-Cd) shape functions and the linear PIM shape functions, where the former
often leads to a “softer” CS-RPIM model, and the latter a “stiffer” linear CS-RPIM
model (which is the same as linear FEM), compared to the exact one.” A motivation to
use αPIM shape functions is trying to control the stiffness/softness of the solution and
obtain results closer to the exact one. In Liu et al. (2013) the authors proposed a way
to estimate an alpha value that produces a solution “close” to exact one (see Liu et al.
(2013)). The reader is referred to Liu et al. (2013) and Liu and Zhang (2013) to obtain
more information regarding the numerical examples of 2D and 3D using CS-αRPIM.
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CHAPTER 5

ONE-DIMENSIONAL SPIM FOR SHEAR-DEFORMABLE BEAMS

In Chapter 4, the smoothed point interpolation methods were intro-
duced and illustrated for 2D applications. In this chapter, the SPIM
will be extended to shear-deformable beams, hence a one-dimensional
SPIM is discussed. As pointed out in Chapter 1, this work targets two
models: (i) the linear Timoshenko beam, and (ii) the geometrically ex-
act shear-deformable beam developed by Simo (1985) and Simo and
Vu-Quoc (1986). To the knowledge of the author, this is the first ap-
plication of smoothed point interpolation methods to shear-deformable
beams (linear and nonlinear).

5.1 PIM shape functions

In Chapter 4 the PIM shape function generation was illustrated for 2D case, at this point
the process will be particularised for 1D applications. Among the possibilities of shape
functions creation (Chapter 4), this work focuses on PIM shape functions; later on this
concept is also extended to the so-called αPIM shape functions (Section 5.7).

As already pointed out in the previous chapter, the interpolation of a field variable is
represented at each point x as the following series representation (here a generic scalar
field variable u is considered)

u(x) ≃
∑
i∈Sd

pi(x) ai = {p(x)}T {a} (5.1)

where the terms pi(x) are a set of monomials evaluated at x (see Table 4.1), each one
associated to a coefficient ai, and Sd is the set of support nodes. The set of monomials
forms a polynomial basis, that depends on the number n of support nodes at x

{p(x)}T =
(
1 x x2 . . . xn−1

)
(5.2)

Similarly to the 2D case, the unknown coefficients ai are evaluated by imposing the
interpolation condition u(xi) = du

i , of the series representation, at each node of the support
domain, resulting in the following matrix expression:
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{du} = [P]{a} (5.3)

where {du} = (u1 . . . un)T is the vector of nodal parameters of the field variable u while
[P] is the moment matrix expressed by

[P] =


{p(x1)}T

...
{p(xn)}T

 (5.4)

Assuming the moment matrix to be invertible, the coefficients can be calculated as
{a} = [P]−1{du}. Once replaced into Eq. (5.1), it is possible to express the shape
functions ϕu

i as

ϕu
i (x) = pj(x)[P]−1

ji (5.5)

It is worth to note that, contrary to the 2D case, the fact the all the nodes lies on the
same straight line does not result in a singular moment matrix, as long as there are no
duplicated nodes Liu (2009).

In general, in order to evaluate meshfree shape functions at a certain interest point,
the numerical inversion of the moment matrix must be computed. With PIM shape func-
tions however, it is possible to obtain analytical expressions, that can be used directly to
evaluate the value of the shape functions at the interest points, avoiding the matrix inver-
sion operation. In this work, PIM shape functions will be evaluated for support domains
containing 2, 3, or 4 nodes; the process to obtain the shape functions are illustrated in
Appendix C, where these functions are also plotted. In following equations, the shape
functions obtained using two and three support nodes are represented, respectively

Φ(L2)(x) =
[
x2 − x

x2 − x1

x− x1

x2 − x1

]
(5.6)

Φ(L3)(x) =
[

(x− x2)(x− x3)
(x1 − x2)(x1 − x3)

− (x− x1)(x− x3)
(x1 − x2)(x2 − x3)

(x− x1)(x− x2)
(x1 − x3)(x2 − x3)

]
(5.7)

5.2 Smoothing operation

The first step of this strategy consists in the tessellation of the problem domain into
a set of NS non-overlapping smoothing domains DS

k , with k = 1, . . . , NS; more details
will be provided in Section 5.3 for the one-dimensional approach. The second step is
the smoothing operation Liu (2008). At each point x ∈ DS

k the derivative f,x of a generic
function f(x) is replaced by a smoothed derivative f̃,x constant within a smoothing domain,
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defined as

f,x ≃ f̃,x :=
∫
DS

k

fx(ξ) W̃ (xk − ξ) dx, x ∈ DS
k (5.8)

where xk is the centre of DS
k , and W̃ is a smoothing function, similarly to the 2D case, it

is usually assumed to be the following Heaviside-type function:

W̃ (xk − ξ) :=
 1/ℓk ξ ∈ DS

k

0 ξ /∈ DS
k

(5.9)

where ℓk =
∫
DS

k
dx is the length of the smoothing domain. For the 2D case it was the

area Ak of the smoothing domain. If the function f(x) is continuous, Green’s divergence
theorem can be applied, and the domain integral

∫
DS

k
can be replaced by

f̃,x = 1
ℓk

f(ξ) n(k)
x (ξ)

∣∣∣
Γk:=∂DS

k

(5.10)

where n(k)
x is the unitary outward normal on the boundary Γk := ∂DS

k . It’s worth it to
note that, while in more general 2D and 3D SPIM models a unit normal vector would
appear in Eq. (5.10), here n(k)

x is a scalar, assuming values −1 or +1, when pointing in the
negative and positive directions of the x-axis. It is important to highlight again that the
application of Green’s theorem is used whether it is licit or not, since Eq. (5.10) requires
no differentiation of f(x), opening the possibility to use PIM and RPIM incompatible
functions for the approximation.

5.2.1 Timoshenko beam

Analogous to the 2D case shown in Chapter 4, the smoothing operation is applied to the
shear γ(x) and bending ω(x) strains, recalled here in the following

{ε(x)} =
 ω(x)
γ(x)

 =


∂θ(x)
∂x

∂v(x)
∂x

− θ(x)

 (5.11)

At each point x of a certain smoothing domain DS
k , γ = γ(x) and ω = (x) are replaced

by the smoothed shear strain γ̃ = γ̃(xk) and by the smoothed curvature ω̃ = ω̃(xk) that
depend on the value of the field variables at the centre xk of the smoothing domain DS

k ,
and that are defined by

γ(x) ≃ γ̃(xk) =
∫
DS

k

(
∂v(ξ)
∂x

− θ(ξ)
)
W̃ (xk − ξ) dx, x ∈ DS

k (5.12)

ω(x) ≃ ω̃(xk) =
∫
DS

k

∂θ(ξ)
∂x

W̃ (xk − ξ) dx, x ∈ DS
k (5.13)
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Applying the integration by parts associated to the Green’s divergence theorem, equations
above become

γ̃(xk) = v(ξ) W̃ (xk − ξ) n(k)
x (ξ)

∣∣∣
Γk

−
∫
DS

k

v(ξ) ∂W̃ (xk − ξ)
∂x

dx−
∫
DS

k

θ(ξ) W̃ (xk − ξ) dx
(5.14)

ω̃(xk) = θ(ξ) W̃ (xk − ξ) n(k)
x (ξ)

∣∣∣
Γk

−
∫
DS

k

θ(ξ) ∂W̃ (xk − ξ)
∂x

dx (5.15)

Assuming the same Heaviside-type smoothing function illustrated in Eq. (5.9), Eqs. (5.14)
and (5.15) reduce to

γ̃(xk) = 1
ℓk

v(ξ) n(k)
x (ξ)

∣∣∣∣
Γk

− θ̃(xk) (5.16)

ω̃(xk) = 1
ℓk

θ(ξ) n(k)
x (ξ)

∣∣∣∣
Γk

(5.17)

where θ̃(xk) is a smoothed version of the rotation θ, constant over the smoothing domain
DS

k , and defined as1

θ̃(xk) := 1
ℓk

∫
DS

k

θ(ξ) dx (5.18)

As it can be observed in Eqs. (5.16) and (5.17), with the application of Green’s di-
vergence theorem, all the domain integrals where the field variables appeared in terms of
their derivatives have been transformed into a function evaluation on the boundary of each
smoothing domain. However, due to the presence of the field variable θ, the smoothed
shear strain γ̃(xk) (Eq. (5.16)) still contains a domain integral (Eq. (5.18)), which re-
quires a special treatement for the construction of a Timoshenko weakened-weak form.
This problem is not new to SPIM strategies, and more in general to methods that require
strain smoothing operations (e.g. for nodal integration), and has been already dealt with
for axisymmetric problems Chen et al. (2002), Tootoonchi and Khoshghalb (2016) and
for the micropolar continuum theory Gori et al. (2019). According to the results available
in the literature, two approaches can be followed. Tootoonchi and Khoshghalb (2016)
considered axisymmetric problems with the application of the cell-based smoothed point
interpolation method (see Chapter 4). The strain terms depending on the field variable
were treated by the authors by performing a numerical integration of the domain integral,
using integration points inside each smoothing domain. Applying this approach to the
smoothed Timoshenko shear strain of Eq. (5.16) would require to perform the numerical

1Based on the idea of defining a function by an integral as presented in Eq. (5.8)
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integration of Eq. (5.18), in order to evaluate the smoothed rotation. Chen et al. (2002)
instead, proposed a nodal integration strategy for Galerkin meshfree methods applied to
geometrical non-linearities and elasto-plasticity. The case of axisymmetric problems was
briefly mentioned, stating that the strain terms containing the field variable should be
evaluated nodally. Within this approach the following approximation should be intro-
duced

θ̃(xk) = θ(xk) (5.19)

which consists in approximating the smoothed field variable appearing in Eq. (5.16) with
its value at the centre xk of each smoothing domain. The latter approach was also con-
sidered by Gori et al. (2019) for the application of the SPIM strategy to the micropolar
continuum theory. Just like the Timoshenko shear strain, one of the micropolar defor-
mation measures contains a field variable (i.e. the microrotation of the material points),
besides the derivatives of other field values (i.e. the displacements of the material points).
In the present work the approach by Chen et al. (2002) and by Gori et al. (2019) has
been preferred on the one by Tootoonchi and Khoshghalb (2016), since it led to a more
simple treatement of the shear strain measure, also from a computational point of view.
Then, replacing Eq. (5.19) into Eq. (5.16), the smoothed Timoshenko shear strain can be
expressed as

γ̃(v(xk)) = 1
ℓk

v(ξ) n(k)
x (ξ)

∣∣∣∣
Γk

− θ(xk) (5.20)

Introducing Eqs. (5.17) and (5.20) into the weak form of the Timoshenko beam allows
to obtain the so-called weakened-weak form, with a reduced requirement of continuity
for the trial and test functions. More details are provided in Section 5.4.1, where the
discretisation of the weakened-weak form with PIM shape functions is also discussed.

5.2.2 Geometrically exact beam

Following the same principles discussed before, the smoothing operation is applied to the
strain measures of the geometrically exact beam. Since the implementation constructed2

to solve the nonlinear model deals only with material quantities, the smoothing operation
is performed taking into account only the material strain measures. In what follows, the
expressions of the material curvature and shear strains are recalled

Ω(S, t) = RT (S, t)ω(S, t)R(S, t) = RT (S, t)∂R(S, t)
∂S

(5.21)

2For this master’s thesis purposes. In general, it is also possible to implement a code taking into
account the spatial configuration of the beam during its motion.
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Γ̄(S, t) = RT (S, t)γ̄(S, t) = RT (S, t)∂φ0(S, t)
∂S

− ∂E3(S) (5.22)

Similarly3 to the Timoshenko beam case, at each point x of a certain smoothing
domain4 DS

k , Γ̄ = Γ̄(S) and Ω = Ω(S) are replaced by the smoothed shear strain ˜̄Γ =˜̄Γ(xk) and by the smoothed curvature Ω̃ = Ω̃(xk) that depend on the value of the field
variables at the centre xk of the smoothing domain DS

k . First, the smoothed curvature is
introduced as

Ω̃(xk) =
∫
DS

k

Ω W̃ (xk − ξ)dξ =
∫
DS

k

[
RT (ξ)∂R(ξ)

∂S

]
W̃ (xk − ξ) dξ (5.23)

Assuming the weight function to be the one defined in Eq. (5.9) results in

Ω̃(xk) = 1
ℓk

∫
DS

k

Ω dξ = 1
ℓk

∫
DS

k

[
RT (ξ)∂R(ξ)

∂S

]
dξ (5.24)

In the expression above, the presence of the rotation tensor premultiplying its deriva-
tive, does not allow for a straightforward application of the Green’s theorem, aiming to
transform the domain integral into a boundary integral. For this purpose, Eq. (5.24)
is simplified by assuming the rotation tensor (though not its derivative) to be constant
within each smoothing domain, and equal to the value corresponding to the centre of the
smoothing domain. This is somehow similar to the procedure illustrated in Eq. (5.18)
and adopted for the Timoshenko beam. With this assumption, the term RT (ξ) can be
removed from the domain integral, resulting in

Ω̃(xk) = RT (xk)
ℓk

∫
DS

k

∂R(ξ)
∂S

dξ (5.25)

Now it is possible to apply the Green’s theorem to the integral of Eq. (5.25), resulting in
the following expression of the smoothed curvature tensor:

Ω̃(xk) = RT (xk)
ℓk

[
R(ξ) n(k)

S (ξ)
]∣∣∣∣∣

Γk

(5.26)

Likewise, the smoothing operation is applied to the shear strain measure Γ̄(S)

Γ̄(S) ≃ ˜̄Γ(xk) =
∫
DS

k

[
RT (ξ)∂φ0(ξ)

∂S
− ∂E3(ξ)

]
W̃ (xk − ξ) dξ (5.27)

In agreement with the procedure performed for the material curvature, the rotation ten-
sor RT (ξ) appearing in Eq. (5.27) is assumed to be constant, and equal to the value
corresponding to the centre of the smoothing domain, resulting in

3The variable t is omitted in the following equations.
4The letter S appearing in DS

k to represent the smoothing domain should not be confused with the
variable S employed in the geometrically exact beam formulation.
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˜̄Γ(xk) = RT (xk)
ℓk

∫
DS

k

[
∂φ0(ξ)
∂S

− ∂E3(ξ)
]
dξ (5.28)

and then in

˜̄Γ(xk) = RT (xk)
ℓS

∫
DS

k

∂φ0(ξ)
∂S

dξ − ∂̃E3(ξ) (5.29)

with ∂̃E3(ξ) =
∫
DS

k
∂E3(ξ) dξ. The smoothing vector will be approximated to the vector

itself ∂̃E3(S) ≈ ∂E3(S), therefore

˜̄Γ(xk) = RT (xk)
ℓk

[
φ0(ξ) n(k)

S (ξ)
]∣∣∣∣∣

Γk

− ∂E3(S) (5.30)

5.3 Domain tessellation

In a one-dimensional problem, as beam-like structures, there are two possible tessellations,
that can be seen as degenerations of the ones depicted in Figs. 4.2a to 4.2c. The first one
is a node-based tessellation, analogous to the one of the two-dimensional case depicted
in Fig. 4.2a. The other is a degeneration of both the edge- and cell-based tessellations of
the two-dimensional case.

The node-based one-dimensional tessellation has already been used in the literature
by Liu and his co-authors (Cui et al., 2008, Liu, 2009, Du et al., 2018), for the static and
dynamic analysis of Euler-Bernoulli beams. As illustrated in Fig. 5.1, the beam axis is
divided into a set of background cells, whose end-points are the nodes of the discretisation.
The smoothing domainDS

k associated to the node xk (the centre of the smoothing domain
where to evaluate the rotation θ appearing in Eq. (5.20)) is delimited by the mid-points
of the background cells adjacent to xk. These mid-points are then the boundary Γk of the
smoothing domain, and serve as integration points to evaluate the smoothed deformation
measures of the beam problems. While this holds for the internal smoothing domains,
the ones at the end-points of the beam are delimited by a mid-point and by a node, i.e.
one of the integration points corresponds to a node (Fig. 5.1).

y

x

smoothing domain k

xk

background cell

boundary smoothing domain

integration point

node

background cell midpoint

Figure 5.1: Node-based one-dimensional smoothing domain
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This work also proposes the use of an edge-based one-dimensional tessellation. As
the node-based tessellation depicted in Fig. 5.1, the edge-based tessellation illustrated in
Fig. 5.2 is obtained as a degeneration of the corresponding two-dimensional tessellation
(though in this case, both the edge- and cell-based cases degenerate to the same one-
dimensional tessellation). The beam axis is divided into the same background cells already
adopted for the node-based case. Each smoothing domain DS

k is now associated to the
mid-point xk of a background cell (that is also the centre of the smoothing domain where
to evaluate the rotation θ appearing in Eq. (5.20)), and its boundary Γk is represented
by the two nodes that constitute the end-points of the background cell. These two nodes
also serve as integration points for the evaluation of the smoothed deformation measures.
In this case, there is no distinction between internal and boundary smoothing domains.

y

x

Edge

integration point

node

background cell midpoint

background cell
smoothing domain

boundary smoothing domain

k

xk

Figure 5.2: Edge-based one-dimensional smoothing domain

As illustrated in Section 4.3, for the same background cells dividing the problem
domain, it is possible to create different smoothing domains strategies in SPIM.

5.4 Weakened-weak form

With the concept of smoothing operation in hands, it is possible to obtain the weakened-
weak form of the target beam models.

5.4.1 Timoshenko beam

The weakened-weak form of the Timoshenko beam problem can be obtained from the
standard weak form of Eq. (2.7), by replacing the deformation measures γ and ω with the
corresponding smoothed deformation measures γ̃ and ω̃. This substitution results in the
following smoothed bilinear form

ã ((δv, δθ), (v, θ)) =
∫ L

0
δ̃ω EI ω̃ dx+

∫ L

0
δ̃γ GAs γ̃ dx (5.31)

Recalling that the smoothed shear and bending strains defined in Section 5.2.1 are
constant within each smoothing domain DS

k , and also assuming the constitutive terms
EI and GAs to be constant within each smoothing domain, the domain integral

∫ L
0 can
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be transformed in a summation over the NS smoothing domains composing the discrete
model, resulting in the following expressions for the smoothed bilinear form

ã ((δv, δθ), (v, θ)) =
NS∑
i=1

lk
(
δ̃ω(xk) EI ω̃(xk)

)
+

NS∑
i=1

lk
(
δ̃γ(xk) GAs γ̃(xk)

)
(5.32)

The weakened-weak form of the Timoshenko beam can then be expressed as follows:
find the set (v, θ) ∈ Vh(D) such that

ã ((δv, δθ), (v, θ)) = f(δu, δθ), ∀(δv, δθ) ∈ V0
h(D) (5.33)

where Vh(D) and V0
h(D) are, respectively, the spaces of trial and test functions, defined

as

Vh(D) := {(v, θ) ∈ G(D) × G(D) | v = vΓ on Γv, θ = θΓ on Γθ} (5.34)
V0

h(D) := {(δv, δθ) ∈ G(D) × G(D) | δv = 0 on Γv, δθ = 0 on Γθ} (5.35)

In the expressions above, G(D) indicates a special space of square integrable functions,
well-suited for PIM shape function, and referred to as G-space in the literature of smoothed
methods (see the papers by Liu Liu (2010a,b) for further details).

5.4.2 Geometrically exact beam

As pointed out in Section 2.2.7, the weak form of the beam problem consists then into
find a configuration φ ∈ C such that G = 0,∀η̄ ∈ TφC, with

TφC ≡ {η̄(S, t) ≡ (η̄0(S, t), θ̄(S, t))} (5.36)

The linearised weak form of the geometrically exact beam is recalled in the following

L[G(φ, η̄)] = G(φ̂, η̄) +DG(φ̂, η̄) · ∆φ

=
∫

[0,L]
[(ΞT η̄) · Σ − η̄ ·Q]dS +

∫
[0,L]

(Ξ̂T η̄) · (ĈΞ̂T ∆φM)dS

+
∫

[0,L]
(β̂η̄) · (B̂β̂∆φG)dS +

∫
[0,L]

η̄ · (L̂∆φL)dS

(5.37)

where the terms appearing above are defined in Section 2.2.7.
Similarly with what was made for the Timoshenko model, considering that the smoothed

strains defined in Section 5.2.2 are constant within each smoothing domain DS
k , and also

assuming the constitutive terms in Eq. (2.45) and Eq. (2.46) to be constant within each
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smoothing domain, the domain integral
∫

[0,L] can be transformed in a summation over the
NS smoothing domains composing the discrete model, resulting in the weakened-weak
form of the geometrically exact model

L̃[G(φ, η̄)] = G̃(φ̂, η̄) + D̃G(φ̂, η̄) · ∆φ (5.38)

5.5 Discretisation

Focusing on SPIMs applications, in what follows the discretisation procedure for the target
beam models is presented.

5.5.1 Timoshenko beam

In SPIMs, the field variables are approximated in terms of nodal values and shape func-
tions, as in the finite element method. In the Timoshenko beam model, the deflection v

and rotation θ are then approximated as

v(x) ≃
∑
i∈Sd

ϕv
i (x) dv

i , θ(x) ≃
∑
i∈Sd

ϕθ
i (x) dθ

i (5.39)

where the index i indicates a node xi in the support domain Sd, i.e. the set of nodes in
the neighbourhood of the point x, ϕv

i (x) and ϕθ
i (x) are meshless shape functions used to

interpolate the nodal values dv
i and dθ

i of deflections and rotations, respectively.
In order to obtain a discretised weakened-weak form, the approximated deflection and

rotation appearing in Eq. (5.39) are introduced in the smoothed deformation measures of
Eqs. (5.16) and (5.17), resulting in the following expressions:

γ̃(xk) = 1
lk

∑
i∈Sd

(
ϕv

i (ξ) n(k)
x (ξ)

)∣∣∣
Γk

dv
i −

∑
i∈Sd

ϕθ
i (xk) dθ

i (5.40)

ω̃(xk) = 1
lk

∑
i∈Sd

(
ϕθ

i (ξ) n(k)
x (ξ)

)∣∣∣
Γk

dθ
i (5.41)

By introducing the following smoothed derivatives of the shape function

ϕ̃v
i,x(xk) := 1

lk

(
ϕv

i (ξ) n(k)
x (ξ)

)∣∣∣
Γk

, ϕ̃θ
i,x(xk) := 1

lk

(
ϕθ

i (ξ) n(k)
x (ξ)

)∣∣∣
Γk

(5.42)

the discretised deformation measures of Eqs. (5.40) and (5.41) can be recasted as
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γ̃(xk) =
∑
i∈Sd

ϕ̃v
i,x(xk) dv

i −
∑
i∈Sd

ϕθ
i (xk) dθ

i (5.43)

ω̃(xk) =
∑
i∈Sd

ϕ̃θ
i,x(xk) dθ

i (5.44)

By collecting the deformation measures in the following array

{ε̃(xk)} :=
ω̃(xk)
γ̃(xk)

 =
∑
i∈Sd

 0 ϕ̃θ
i,x(xk)

ϕ̃v
i,x(xk) −ϕθ

i (xk)

dv
i

dθ
i

 =
∑
i∈Sd

[B̃i(xk)]{di} (5.45)

and the constitutive terms in the following matrix5

[E] :=
EI 0

0 GAs

 (5.46)

the bilinear form of Eq. (5.32) can be recasted as

ã ((δu, δθ), (u, θ)) =
NS∑
i=1

lk
(
{δ̃ε(xk)}T [E] {ε̃(xk)}

)
(5.47)

The representation in terms of shape functions and nodal parameters results in an
algebraic system representing the behaviour of the whole discrete model

[K] {X} = {R} (5.48)

where [K] is the global stiffness matrix of the system, {X} the nodal parameters vector
collecting all the nodal parameters {di}, and {R} the vector of nodal dual parameters
(i.e. nodal forces and moments). The stiffness matrix [K] can be evaluated through the
contribution of each smoothing domain DS

k

[K(xk)]Sd = lk [B̃(xk)]T [E] [B̃(xk)] (5.49)

where the matrix [B̃(xk)] is composed by the submatrices [B̃i(xk)] as

[B̃(xk)] =
(
[B̃1(xk)] . . . [B̃i(xk)] . . . [B̃N(xk)]

)
(5.50)

where N is the number of nodes in the support domain Sd at the point xk.
5Similarly to finite element applications, the case of variable properties along the beam axis can be

obtained by considering a constitutive matrix that is constant within a single smoothing domain (i.e.
piecewise constant along the beam axis).
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5.5.2 Geometrically exact beam

In the geometrically exact model, we recall that the configuration of the beam is repre-
sented through the position of the line of centroids and the rotation of the cross-sections

C ≡ (φ0,R) (5.51)

The rotation operation R is not directly interpolated through its nodal values, hence
attention will be directed to the line of centroids that can be approximated as follows

φ0(S, t) ≃
∑
i∈Sd

ϕφ0
i (S) dφ0

i , (5.52)

where the index i indicates a node xi in the support domain Sd, ϕφ0
i (S, t) is the (PIM)

shape function used to interpolate the nodal values of the line of centroids, and dφ0
i

is vector that gathers these nodal values of the line o centroids. It is worth noting
that φ0(S, t) is composed by three values φ0(S, t) = [φ01, φ02, φ03], therefore the shape
functions of a particular support node can be represented in the following matrix

ϕφ0
i (S, t) =


ϕφ0

i (S, t) 0 0
0 ϕφ0

i (S, t) 0
0 0 ϕφ0

i (S, t)

 with dφ0
i =


dφ01

i

dφ02
i

dφ03
i

 (5.53)

In order to evaluate the derivatives of the line of centroids, the derivatives of the shape
functions are replaced by their smoothed version

∂ϕφ0
i (S, t)
∂S

=



∂ϕφ0
i (S, t)
∂S

0 0

0 ∂ϕφ0
i (S, t)
∂S

0

0 0 ∂ϕφ0
i (S, t)
∂S



≡


ϕ̃φ0

i,S(S, t) 0 0
0 ϕ̃φ0

i,S(S, t) 0
0 0 ϕ̃φ0

i,S(S, t)


(5.54)

the components of above matrix are computed in same way as presented in Eq. (5.42).
In this work, all derivatives of the shape functions are transformed into their smoothed
versions to approximate the target quantities

∂ϕi

∂S
:= ϕ̃i,S (5.55)

The configuration increments are approximated through their nodal values, as follows
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η̄ ≃
∑
i∈Sd

ϕi(xk)η̄i ≡
∑
i∈Sd

 ϕi(xk) 0
0 ϕi(xk)

 η̄0i

θ̄i

 (5.56)

∆φ ≃
∑
i∈Sd

ϕi(xk)∆φi ≡
∑
i∈Sd

 ϕi(xk) 0
0 ϕi(xk)

 ū0i

ψ̄i

 (5.57)

while the derivatives of above expressions with respect to S can be written as

∂η̄

∂S
≃
∑
i∈Sd

ϕ̃i,Sη̄i ≡
∑
i∈Sd

 ϕ̃i,S 0
0 ϕ̃i,S

 η̄0i

θ̄i

 (5.58)

∂∆φ
∂S

≃
∑
i∈Sd

ϕ̃i,S∆φi ≡
∑
i∈Sd

 ϕ̃i,S 0
0 ϕ̃i,S

 ū0i

ψ̄i

 (5.59)

In this framework, it is possible to show that Eq. (5.38) assumes the following material
representation

L̃[G(φ, η̄] = ℓk

[
ϕT (xk)Q−

(
ΞTϕ(xk)

)T
Σ
]

+ ℓk

[(
ΞT (xk)ϕ(xk)

)T
C
(
ΞT (xk)ϕ(xk)

)]
+ ℓk

[
(β(xk)ϕ(xk))T BT (xk) (β(xk)ϕ(xk))

]
− ℓk

[(
ϕT (xk)L(xk)ϕ(xk)

)]
(5.60)

all quantities appearing in L̃[G(φ, η̄] are defined in Section 2.2.

5.6 Support nodes strategies

The approximation of the field variables illustrated in SPIM takes into account, for each
point, a certain number of support nodes, the so-called support domain Sd at that point.
While there are different techniques for the choice of the support nodes at each interest
point, SPIM strategies usually rely on the same background cells used to build the domain
tessellation. In the two-dimensional tessellation depicted in Section 4.3, for example,
support domains are usually assembled using background triangular cells, with the so-
called T-schemes (see, for example, the book by Liu and Zhang (2013)); the support
domain of a point lying in a certain cell can be assembled considering the three nodes of
that cell (T3-scheme), and eventually three additional nodes from the neighbouring cells
(T6-scheme).

As discussed in Section 5.3, Liu and his co-authors (Cui et al., 2008, Liu, 2009, Du
et al., 2018), already investigated a one-dimensional SPIM strategy for the static and
dynamic analysis of Euler-Bernoulli beams. In their studies they focused on linear shape
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functions, built using only two nodes at each integration point. In the present work, two
different approaches are considered.

The first one, referred to as L2-scheme, is analogous to the one already adopted in the
aforementioned papers. Within this approach, illustrated in Fig. 5.3, the support domain
at each integration point on the boundary of a smoothing domain is built using two nodes.
For internal node-based domains, since each integration point corresponds to the centroid
of a background cell, the two nodes are the end-points of the cell (Fig. 5.3a); it is worth
noting that the two integration points of each smoothing domain will have two different
support domains (the left and right supports indicated in Fig. 5.3a). The exception of a
smoothing domain lying on the end-point of the beam is treated as illustrated in Fig. 5.3a,
considering the same two nodes for both integration points. For the edge-based strategy,
as illustrated in Fig. 5.3b, since each smoothing domain corresponds to a background
cell, each integration point will receive the same support nodes, namely the nodes at the
end-points of the cell.

As indicated in Eq. (5.45), it is necessary to evaluate the approximation function also
at the centre of each smoothing domain, due to the presence of the “field variables” in the
deformation measures6. The support domain at the centre of each smoothing domain will
be built as the union of the left and right supports of the same smoothing domain; it is
worth noting that, due to this choice, the centre of internal node-based smoothing domain
will present three support nodes, while the other configurations will be characterised by
two nodes.

y

x

right support

integration point

node

support node

left support left support

right support

(a) NSPIM
y

x

right support

integration point

node

support node

left support left support

right support

(b) ESPIM

Figure 5.3: L2-schemes for support domains

6The rotation θ(x) in the Timoshenko beam and the rotation tensor R(S, t) for the geometrically
exact model, for instance.
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The second approach, referred to as L3/2-scheme, is a variation of the previous L2-
scheme, that aims to widen the size of the support domains. As it can be observed in
Fig. 5.4, at each integration point, the support domain is built considering three nodes,
except for the integration points at the beam boundaries, that receive only two nodes
(hence the name L3/2-scheme). For node-based smoothing domains, as illustrated in
Fig. 5.4a, at each integration point these three nodes are choosen considering the same
two nodes of the L2-scheme (i.e. the two nodes of the background cell which the integration
point belongs to), with the additional node of the neighbouring background cell at the
opposite side of the smoothing domain centre. In edge-based smoothing domains, as
depicted in Fig. 5.4b, the three nodes of the support domain are the nodes belonging to
the two background cells connected through the integration point. The support domain
at the centre of each smoothing domain will still be built as the union of the left and right
supports of the same smoothing domain. Internal node-based smoothing domains will
receive five support nodes at their centre, while internal edge-based smoothing domains
will receive four nodes. Smoothing domains lying on the boundary will receive three
support nodes at their centre, for both node- and edge-based strategies.
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left support left support

right support

(a) NSPIM
y
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right support

integration point

node

support node

left support left support

right support

(b) ESPIM

Figure 5.4: L3/2-schemes for support domains

In the current beam model, the shape functions must be evaluated at the end-points
and at the centre of each smoothing domain. The value of the shape functions at the
end-points is used to solve the boundary integral appearing in the expressions of the
smoothed strain measures (Eqs. (5.40) and (5.41)), while the value at the centre is used
for the rotation term appearing the expression of the smoothed shear strain (Eq. (5.40)).
It is worth noting that it is not necessary to apply the analytical expressions of the PIM
shape functions each time that their values are needed. Indeed, since PIM shape functions
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possess the Kronecker delta property, they assume values of 0 or 1 at the nodes, and must
be explicitly evaluated only at the integration points that do not lie on a node, i.e. the
end-points of node-based smoothing domains and the centre of edge-based smoothing
domains. The cost needed to evaluate the shape functions for each smoothing domain is
then comparable to the cost of a two-nodes finite element.

5.7 αPIM shape functions

In Section 4.7 the concept of αPIM shape function was introduced. Since it is possible to
obtain analytical solutions for the one-dimensional Timoshenko beam, in this section, the
αPIM notion is particularised for this case. However, the overall idea is independent of
the model, it suffices to satisfy the conditions that was discussed in Section 4.7 (see also
Liu et al. (2013)).

As it will be shown in Chapter 6, simulations performed with L2 and L3/2 schemes
provide different bounds to the analytical solution. One-dimensional SPIM models that
adopt the L2-scheme reproduce the behaviour of two-nodes finite elements, i.e. a be-
haviour that is stiffer than the analytical solution. On the other hand, when the L3/2-
scheme is adopted, the resulting behaviour is softer than the analytical solution. Since the
analytical solution is bounded by these two numerical schemes, it is possible to adopt the
so-called α-PIM shape functions discussed by Liu and Zhang (2013), in order to achieve
a better convergence to the analytical solution.

The starting point is two sets of support nodes, S(I)
d and S

(II)
d , at the same interest

point x, used to build two different sets PIM shape functions

Φ(I)(x) =
(
ϕ

(I)
1 (x) ϕ

(I)
2 (x) . . . ϕ

(I)
NI

(x)
)

(5.61)

Φ(II)(x) =
(
ϕ

(I)
1 (x) ϕ

(I)
2 (x) . . . ϕ

(I)
NII

(x)
)

(5.62)

where NI and NII are, respectively, the number of nodes of S(I)
d and S(II)

d . While the two
sets may have a different number of nodes, they must have some shared nodes.

In the present work, these two sets will be build using, at each interest point, the L2
and L3/2 schemes, where the L2 support domain is always contained in the L3/2 support
domain, S(L3/2)

d ⊇ S
(L2)
d .

The corresponding shape functions ϕ(L2)
i (x) and ϕ

(L3/2)
i (x) can be used to obtain dif-

ferent approximations of the field variables of the Timoshenko beam7

7In Eqs. (5.63) and (5.64), for simplicity, no distinction has been made for shape functions approxi-
mating the deflection and the rotation fields.
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v(L2)(x) =
∑

i∈S
(L2)
d

ϕ
(L2)
i (x) dv

i , θ(L2)(x) =
∑

i∈S
(L2)
d

ϕ
(L2)
i (x) dθ

i (5.63)

v(L3/2)(x) =
∑

i∈S
(L3/2)
d

ϕ
(L3/2)
i (x) dv

i , θ(L3/2)(x) =
∑

i∈S
(L3/2)
d

ϕ
(L3/2)
i (x) dθ

i (5.64)

Since the approximated fields of Eqs. (5.63) and (5.64) result in different bounds to
the analytical solution they can be combined in order to obtain a better convergence to
the analytical solution

v(x) = α

 ∑
i∈S

(L2)
d

ϕ
(L2)
i (x) dv

i

+ (1 − α)
 ∑

i∈S(L3/2)

ϕ
(L3/2)
i (x) dv

i

 (5.65)

θ(x) = α

 ∑
i∈S

(L2)
d

ϕ
(L2)
i (x) dθ

i

+ (1 − α)

 ∑
i∈S

(L3/2)
d

ϕ
(L3/2)
i (x) dθ

i

 (5.66)

The variable α ∈ [0, 1] appearing in the expressions above indicates how the two
different approximations are blended. Eqs. (5.65) and (5.66) can be recasted as follows

v(x) =
∑

i∈S(α)

ϕ
(α)
i (x) dv

i , θ(x) =
∑

i∈S(α)

ϕ
(α)
i (x) dθ

i (5.67)

where each ϕ
(α)
i (x) is an αPIM shape function, defined as

ϕ
(α)
i (x) =


αϕ

(L2)
i (x) + (1 − α)ϕ(L3/2)

i (x) ∀i ∈ S(L2) ∩ S(L3/2)

αϕ
(L2)
i (x) ∀i ∈ S(L2) \ S(L3/2)

(1 − α)ϕ(L3/2)
i (x) ∀i ∈ S(L3/2) \ S(L2)

(5.68)

5.8 Numerical simulations

Although it is possible to employ radial basis functions and use a node-based PIM ap-
proach when using SPIM methods, the numerical simulations performed in this master’s
thesis focused on the polynomial basis functions, and the edge-based technique for the
domain tessellation, i.e. the smoothing domains are created adopting this strategy. There-
fore, in the following two chapters addressed to the numerical simulations, whenever the
SPIMs are mentioned, above delimitation is implied. Additionally, regarding the geo-
metrically exact beam code, the resulting nonlinear system of equations is treated by a
Newton-like algorithm with load control.
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CHAPTER 6

NUMERICAL SIMULATIONS: TIMOSHENKO BEAM

The present chapter is devoted to the simulations regarding the linear
Timoshenko model. Classic beam boundary conditions were chosen to
validate the proposed SPIM application. Numerical results using the
αPIM shape functions are also presented.

6.1 Preliminaries

The simulations are illustrated for four boundary conditions: pinned-pinned, fixed-fixed,
fixed-pinned and fixed-free each of them with three load cases, an uniformly distributed
load, a point force load, and a linearly distributed load. The parameters adopted for the
numerical simulations are: Young’s modulus E = 2 · 1011N/m2, Poisson’s ratio ν = 0.3,
beam length L = 10 m, form factor k = 5/6 and rectangular cross section with a fixed
thickness of b = 0.2 m. The slenderness ratio (h/L) was varied according to the values
in table 6.1. The load values chosen for the simulations are also presented in this table.
Due to the distinct (h/L) ratios, the load values had to be adjusted in order to avoid very
small displacements or very large ones. As the cantilever beam is more flexible compared
to the other beams, the values of table 6.1 were divided by ten to perform its simulations.

h/L P [N ] q [N/m] qi − qf [N/m]
0.10 350000 35000 50000-10000
0.50 45000000 4500000 5000000-1000000
1.00 100000000 10000000 50000000-10000000

Table 6.1: Slenderness ratio

In order to compare the proposed strategy with a consolidated method, the FEM
model of the Timoshenko beam was also simulated. Aiming to avoid the shear locking
problem, the reduced integration technique was adopted for the finite element simulations.

With the intention of performing comparisons of the numerical results with the exact
ones, the analytical expressions for the Timoshenko beam were derived. The general pro-
cedure to obtain these analytical expressions is described in Appendix D and encompasses
all boundary conditions and load cases.
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The error of all simulations was estimated with equation 6.1 in the following

e =


Nn∑
i=1

(vref
i − vnum

i )2 +
Nn∑
i=1

(θref
i − θnum

i )2

Nn∑
i=1

(vref
i )2 +

Nn∑
i=1

(θref
i )2



1
2

(6.1)

where vref
i and θref

i are the reference solutions for the displacements and rotations at a
node i, respectively, while vnum

i and θnum
i gather the numerical solutions for the displace-

ment and rotation for a node i, respectively, and Nn is the total number of field nodes
used in the problem domain discretisation.

The simulations of the present chapter are organised in the following two sections. In
Section 6.2 the results are presented in terms of (i) displacements and rotations along
the beam axis and (ii) error norm computed with Eq. (6.1). In the first analysis, a mesh
with 5 equally spaced nodes is shown for each load case varying the values of h/L ratio
exhibited in Table 6.1, while in the second analysis the error is computed using nine
meshes, where the nodes discretisation are ranging from 5 to 53 nodes equally spaced by
6 plus an additional mesh with 95 nodes. In this case, the L2-scheme, L3/2-scheme and
the linear FEM are compared.

In Section 6.3 the application of the αPIM is illustrated. A procedure to estimate
an adequate alpha value is proposed, and its results are added to the error comparisons
performed in Section 6.2. The variation of the error while the alpha parameter is changed
is also shown.

6.2 L2 and L3/2 simulations

In what follows, the results of deflections and rotations using both L2 and L3/2 schemes
are shown for all boundary conditions (see Fig. 6.1). The correspondent analytical so-
lutions are also presented. As already pointed out, three load cases are used in the
simulations: a point force load, an uniformly distributed load and a linearly distributed
load over the beam, as illustrated in Fig. 6.1. In Figs. 6.2 to 6.13, each page corresponds
to the results of a particular load case associated with a boundary condition.
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Figure 6.1: Beam boundary conditions and load cases
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Figure 6.2: Simply supported beam: force load results
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Figure 6.3: Simply supported beam: uniformly distributed load results
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Figure 6.4: Simply supported beam: linearly distributed load results
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Figure 6.5: Fixed-pinned beam: force load results
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Figure 6.6: Fixed-pinned beam: uniformly distributed load results
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(f) h/L = 1.00

Figure 6.7: Fixed-pinned beam: linearly distributed load results
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(f) h/L = 1.00

Figure 6.8: Cantilever beam: force load results
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(f) h/L = 1.00

Figure 6.9: Cantilever beam: uniformly distributed load results
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(f) h/L = 1.00

Figure 6.10: Cantilever beam: linearly distributed load results
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Figure 6.11: Fixed-fixed beam: force load results
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Figure 6.12: Fixed-fixed beam: uniformly distributed load results
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Figure 6.13: Fixed-fixed beam: linearly distributed load results
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As can be observed in the previous plots, the numerical solutions showed a good
agreement with the exact one. In terms of deflections, the L2-scheme exhibited a lower
bound solution, while the L3/2-scheme exhibited an upper bound solution. Moreover, the
numerical solutions provided for the force load case recover the exact rotation obtained
from the analytical expressions for all boundary conditions, except for the fixed-pinned
beam. Additionally, it is worth mentioning that the numerical solutions in terms of
deflections tend to be closer to the exact solution when the slenderness ratios (h/L)
increase, in other words, the results obtained with the h/L = 1.00 are better than the
results obtained with h/L = 0.10. However, this tendency did not occur with the rotation
results. Other than that the proposed SPIM models are locking-free, i.e. no additional
treatment was necessary to avoid the spurious stiffer behaviour, as commonly happens
with FEM during the simulations of shear-deformable beams. In Fig. 6.14 the results
of displacements and rotations of the simply supported beam for the force load case are
illustrated with a mesh with 11 nodes and the slenderness ratio of h/L = 0.10. The linear
finite elements were simulated with 2 integration points. In fact, in this scenario the stiffer
behaviour of the FEM simulation is clearly observed, in other words the displacement are
smaller than expected, and the accuracy of the rotations are also affected.
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Figure 6.14: Shear locking behaviour

In the sequel, the simulations of the error (see Eq. (6.1)) are shown in Figs. 6.15
to 6.18. The L2 and L3/2 schemes are compared with the results of the linear finite
element method using several meshes. As already pointed out, the reference solutions
used in Eq. (6.1) are the analytical solutions of the Timoshenko beam.
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Figure 6.15: Error norm simulations for the simply supported beam
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(f) Constant load: h/L = 1.00
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(g) Linear load: h/L = 0.10
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(i) Linear load: h/L = 1.00

Figure 6.16: Error norm simulations for the fixed-pinned beam
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Figure 6.17: Error norm simulations for the fixed-free beam



§6.2 Numerical simulations: Timoshenko beam 97

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−8

−6

−4

−2

0

log(number of nodes)

lo
g
(e
rr
o
r)

L2Scheme

L3-2Scheme

FEM-2Noded

(a) Force load: h/L = 0.10

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−10

−8

−6

−4

−2

log(number of nodes)

lo
g
(e
rr
o
r)

L2Scheme

L3-2Scheme

FEM-2Noded
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(c) Force load: h/L = 1.00
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(d) Constant load: h/L = 0.10
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(e) Constant load: h/L = 0.50
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(f) Constant load: h/L = 1.00
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(g) Linear load: h/L = 0.10
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(h) Linear load: h/L = 0.50
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(i) Linear load: h/L = 1.00

Figure 6.18: Error norm simulations for the fixed-fixed beam

From the error results shown above, one can observe that the L2-scheme simulations
exactly reproduce the linear finite element results with one integration point. The L3/2-
scheme exhibited the highest errors over all, except for the uniform (Figs. 6.15d to 6.15f)
and linear (Figs. 6.15g to 6.15i) loads in the simply supported beam. Both the linear
FEM and the L2 and L3/2 schemes exhibited the same rate of convergence.

For the force load case the difference of the L2 and L3/2 error results were similar
in all boundary conditions. For the other load cases, the cantilever beam shown the
highest differences, while the fixed-pinned beam shown the lower ones. Furthermore, for
the simply supported and fixed-fixed beams the difference of error results were similar for
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all load cases.
In general, the error for each simulation shown a descendent behaviour with the in-

creasing of the slenderness ratios (h/L), which is in accordance with the results of deflec-
tions shown previously, i.e. in general, the errors obtained using h/L = 0.10 are higher
than the errors using h/L = 1.00.

6.3 αPIM simulations

As shown in Section 6.2, the exact solution of the Timoshenko beam is bounded by
the SPIM numerical results using the L2 and L3/2 schemes. Hence the alpha PIM shape
function presented in Section 5.7 can be used to combine these schemes aiming to improve
the outcome.

6.3.1 Alpha calibration

In order to obtain the αPIM results, a proper alpha parameter should be chosen. First,
several simulations were performed varying the alpha values from 0.1 to 0.9 aiming to
reveal the variation of the deflections when compared to the exact solution. In Figs. 6.20
to 6.23, the variation of the exact deflection at x = 5 m is depicted for each load case
and boundary condition (left plots) using a mesh with 11 nodes and a slenderness ratio
of h/L = 0.10. One can observe that the displacements vary linearly with the alpha
parameter. During this research work, it was found that this is true for all points where a
displacement is a non-zero value and this is valid for all meshes, boundary conditions and
slenderness ratios. It is clear (see Figs. 6.20 to 6.23 and Eq. (5.68)) that the L2-scheme
produces the same results of αPIM when α = 1.0 (stiffer solution), while the L3/2-scheme
is equivalent to αPIM for α = 0.01 (softer solution).

Hence, knowing the exact value of the displacement at x = 5 m, the “optimal” alpha
parameter can be estimated by fitting the displacement values in a linear function y =
ax + b ≡ a · α + b = v and seeking for an α = αest. value such that a · α + b = vexact, see
Fig. 6.19. Therefore α can be estimated, for a particular position i, as shown in Eq. (6.2).
In theory, a simulation using αest. might lead to a result very close to vexact at x = 5 m,
and hopefully to better results in an overall perspective.

1It could be the contrary depending of the defined order of the shape functions settled in Eq. (5.68).
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Figure 6.19: Alpha variation using L2 and L3/2 schemes

In order to standardize the procedure of estimating alpha, the displacement at x = 5 m
was used to “calibrate” the alpha values for all cases of this chapter, i.e. the results of
L2 and L3/2 schemes at x = 5 m and the correspondent displacement exact values, were
defined as the input parameters in Eq. (6.2) for all meshes2 and boundary conditions.
Twelve meshes were used to map the variation of alpha. The same meshes presented in
Section 6.2 to compute the error were used, plus two additional meshes containing 191
and 383 nodes. The outcome of this process is detailed in Figs. 6.20 to 6.23 (right plots).
From these plots, one can observe that each discretisation possesses its own “optimal”
alpha based on the displacement at x = 5 m. Moreover, a single plot means that each
slenderness ratio produced the same results. In Appendix E the calibrated alpha values
are shown quantitatively for each case.

2The meshes were chosen to guarantee that there is always a node placed in x = 5 m.
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Figure 6.20: Alpha analysis for the simply supported beam
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Figure 6.21: Alpha analysis for the fixed-pinned beam
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Figure 6.22: Alpha analysis for the cantilever beam
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Figure 6.23: Alpha analysis for the fixed-fixed beam
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From the graphical representation of the alpha values, the following considerations
can be drawn: (i) for each boundary condition and load case, αest. exhibits a convergent
behaviour with the discretisation, with a small variation from the coarsest to the most
refined mesh, (ii) within each boundary condition αest. does not vary too much with the
load case, except for the simply supported beam where the results for the force load are
quite different from the ones obtained with the uniform and linear loads.

In general, the calibrated alpha parameter varied according to the boundary condi-
tion, load case and discretisation. On the other hand, it appeared to be less sensitive to
variations of the slenderness ratio. It does not varied with the slenderness ratio (h/L),
except for the fixed-pinned beam for the distributed load cases (Fig. 6.21d and Fig. 6.21f)
and the cantilever beam with a linearly distributed load (Fig. 6.22f). The convergence
behaviour were similar for all boundary conditions, except for the cantilever beam, where
the pattern of the plots slightly changed. Moreover, for the symmetric boundary con-
ditions, pinned-pinned and fixed-fixed, the obtained alpha values for the uniformly and
linearly distributed load cases were the same.

6.3.2 Error simulations

Using the estimated alpha values obtained in Section 6.3.1, a set of simulations were
performed with the αPIM shape functions. The error values were computed, and added
to the plots shown in Figs. 6.15 to 6.18. Finite element simulations with three nodes
elements were also performed, however, only the error results of the simply supported
beam case are shown (Fig. 6.24). As illustrated in the following, the αPIM shapes improve
the results of L2 and L3/2 schemes considerably, however even these improved solutions
are no match for the quadratic Timoshenko FEM model. This conclusion is extended to
the other boundary conditions, therefore, the quadratic FEM was left out of the other
cases. As already pointed out in Chapter 5, the computational cost of αPIM and the linear
FEM are comparable, since it is truly necessary to evaluate the shape functions only at
the center of the smoothing domains. The error results including the αPIM simulations
are shown Figs. 6.24 to 6.27.

In order to analyse the error results in another perspective, the variation of the error
with the alpha parameter was evaluated using a slenderness ratio of h/L = 0.10 for all
load cases and boundary conditions. In this scenario, the results of the 2-noded FEM
model are straight lines for each mesh. Two type of plots are shown: (i) the errors
obtained simply using Eq. (6.1), and (ii) the errors obtained disregarding the rotations in
Eq. (6.1). The outcome is presented in Figs. 6.28 to 6.39.
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Figure 6.24: Error norm simulations for the simply supported beam



§6.3 Numerical simulations: Timoshenko beam 106

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10

−8

−6

−4

−2

0

log(number of nodes)

lo
g
(e
rr
o
r)

L2Scheme

L3-2Scheme

FEM-2Noded

Alpha

(a) Force load: h/L = 0.10

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−12

−10

−8

−6

−4

−2

log(number of nodes)

lo
g
(e
rr
o
r)

L2Scheme

L3-2Scheme

FEM-2Noded

Alpha

(b) Force load: h/L = 0.50

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−12

−10

−8

−6

−4

−2

log(number of nodes)

lo
g
(e
rr
o
r)

L2Scheme

L3-2Scheme

FEM-2Noded

Alpha

(c) Force load: h/L = 1.00

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10

−8

−6

−4

−2

log(number of nodes)

lo
g
(e
rr
o
r)

L2Scheme

L3-2Scheme

FEM-2Noded

Alpha

(d) Constant load: h/L = 0.10

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−12

−10

−8

−6

−4

−2

log(number of nodes)

lo
g
(e
rr
o
r)

L2Scheme

L3-2Scheme

FEM-2Noded

Alpha

(e) Constant load: h/L = 0.50

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−12

−10

−8

−6

−4

−2

log(number of nodes)

lo
g
(e
rr
o
r)

L2Scheme

L3-2Scheme

FEM-2Noded

Alpha

(f) Constant load: h/L = 1.00

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−10

−8

−6

−4

−2

log(number of nodes)

lo
g
(e
rr
o
r)

L2Scheme

L3-2Scheme

FEM-2Noded

Alpha

(g) Linear load: h/L = 0.10

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−12

−10

−8

−6

−4

−2

log(number of nodes)

lo
g
(e
rr
o
r)

L2Scheme

L3-2Scheme

FEM-2Noded

Alpha

(h) Linear load: h/L = 0.50

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
−12

−10

−8

−6

−4

log(number of nodes)

lo
g
(e
rr
o
r)

L2Scheme

L3-2Scheme

FEM-2Noded

Alpha

(i) Linear load: h/L = 1.00

Figure 6.25: Error norm simulations for the fixed-pinned beam
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Figure 6.26: Error norm simulations for the fixed-free beam
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(c) Force load: h/L = 1.00
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(f) Constant load: h/L = 1.00
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(i) Linear load: h/L = 1.00

Figure 6.27: Error norm simulations for the fixed-fixed beam
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Figure 6.28: Error convergence for a simply supported beam: force load
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Figure 6.29: Error convergence for a simply supported beam: uniformly distributed load
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Figure 6.30: Error convergence for a simply supported beam: linearly distributed load
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Figure 6.31: Error convergence for a fixed-pinned beam: force load
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Figure 6.32: Error convergence for a fixed-pinned beam: uniformly distributed load
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Figure 6.33: Error convergence for a fixed-pinned beam: linearly distributed load
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Figure 6.34: Error convergence for a cantilever beam: force load
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Figure 6.35: Error convergence for a cantilever beam: uniformly distributed load
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Figure 6.36: Error convergence for a cantilever beam: linearly distributed load
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Figure 6.37: Error convergence for a fixed-fixed beam: force load
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Figure 6.38: Error convergence for a fixed-fixed beam: uniformly distributed load
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Figure 6.39: Error convergence for a fixed-fixed beam: linearly distributed load
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As can be observed in Figs. 6.24a to 6.27g, in general, the use of the alpha parameter
resulted in a significant improvement of the error level, though the rate of convergence
remained unchanged. When rotations are not considered in equation 6.1, as shown in
Figs. 6.28 to 6.39, even better results can be achieved3. There are however two exceptions
to this general observation.

First, for the uniform (Figs. 6.24d to 6.24f) and linear (Figs. 6.24g to 6.24i) loads in
the simply supported beam, the αPIM shape resulted in a convergence rate higher than
the one exhibited by the other approximations. Second, for the uniform (Figs. 6.26d
to 6.26f) and linear (Figs. 6.26g to 6.26i) loads in the cantilever beam, the improvement
of the error due to the use of the αPIM function was smaller that the one obtained in
the other configurations. This behaviour in the cantilever beam can be explained by the
following considerations: (i) the rotation results of the L2 and L3/2 schemes bound the
analytical solution from the same side (Figs. 6.9d to 6.9f and Figs. 6.10d to 6.10f), (ii) the
displacement obtained with the L2-scheme (Figs. 6.9a to 6.9c and Figs. 6.10a to 6.10c)
are already a good approximation of the exact solution, i.e. there is not too much space
for improvement by the αPIM function, (iii) the deflection corresponding to the linear
load (Figs. 6.10a to 6.10c) is not bounded by the L2 and L3/2 schemes all along the beam
length.

It is worth mentioning that it is not mandatory to find an “optimal” alpha value to
achieve better error results than L2 and L3/2 schemes results, because the improvement
occurs within a certain interval and not only for a specific alpha value.

6.4 Main conclusions

The main conclusions that can be drawn from the simulations presented in this chapter
are addressed in the following:
General: (i) the proposed ES-PIM model showed a good agreement with the exact
solution (ii) the L2-scheme models exactly reproduce the results of the linear FEM with
one integration point; (iii) the αPIM shape improves the results of L2 and L3/2 schemes
considerably without introducing significant computational costs (iv) however even these
improved solutions are no match for the quadratic Timoshenko FEM model.
Alpha parameter: (i) all calibrated alpha parameters for the force load case converged
to approximately α = 0.666 for all boundary conditions, while the distributed load cases
did not show this same pattern; (ii) for the fixed-fixed beam the range of alpha values for
the force load and the distributed load cases are similar, in the sense that they are confined
between 0.63 − 0.68; (iii) in addition to that, the calibrated alpha parameters converged
to different values when varying the ratio h/L for the fixed-pinned distributed load cases;

3Which is not a surprisingly outcome, since the alpha parameter was calibrated using a displacement
value.



§6.4 Numerical simulations: Timoshenko beam 122

(iv) for the cantilever beam with distributed loads the alpha parameter impacted less
on the improvement of the results; (v) Moreover, for the pinned-pinned and fixed-fixed
beams the estimated alpha values of the linearly and uniformly distributed load were the
same, while the fixed-pinned and fixed-free beams exhibited a different behaviour.
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CHAPTER 7

NUMERICAL SIMULATIONS: GEOMETRICALLY EXACT BEAM

In this chapter the results regarding the geometrically exact model are
illustrated. Simulations of three classical problems from the literature
are performed. Comparisons of the present SPIM results with other
authors results are also presented. All examples of this chapter can be
found in Simo and Vu-Quoc (1986). In our implementation the conver-
gence criteria of all examples is based on the unbalanced forces vector.

In what follows, the numerical results of three examples are illustrated for the L2 and
L3/2 schemes. Since, in general, there is no analytical solutions available for nonlinear
problems, the alpha PIM is simulated aiming to verify its behaviour when compared to the
other two methods. The linear FEM was also simulated, however, as identified previously
in this work, its results are the same as the L2-scheme, therefore they have been omitted.

7.1 Pure bending of a cantilever beam

This example consists of an initially straight cantilever beam under a concentrated mo-
ment applied at its tip, as shown in Fig. 7.1. This example is the same performed in Simo
and Vu-Quoc (1986).

The beam is characterised by a unit length, L = 1 mm, and by the following geometric
and material parameters (see Eq. (2.45) and Eq. (2.46))

Figure 7.1: Pure bending cantilever beam
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A = 1 mm2 I1 = 1 mm4

A1 = 1 mm2 I2 = 1 mm4 E = G = 2 N/mm2

A2 = 1 mm2 Jt = 2 mm4

(7.1)

Since the bending deformation is constant along the beam, it follows that the exact
solution must be coincident with an arc of a circle. One can show that the analytical
solutions for the displacement components at the beam tip are given by the following
equations1:

uY = L− r sin θ = L− L

θ
sin θ (7.2)

uZ = r − r cos θ = L

θ
(1 − cos θ) (7.3)

where L is the beam length, and the rotation is given by θ = (M · L)/EI.
The discretisation of the model is equivalent to the one adopted in Simo and Vu-Quoc

(1986), i.e. 6 equally-spaced nodes where considered along the beam length, resulting in
5 smoothing domains. The bending moment (M = 8πN mm) is applied in one step, and
the convergence is achieved in three iterations for both, L2 and L3/2 schemes.

The expected closed form configuration is achieved, hence the numerical results agree
with the analytical solution, as shown in Figure 7.2. Due to the magnitude of the bending
moment the beam wind around itself twice. In Table 7.1, the unbalanced forces vector
norm is compared with the values obtained by Simo and Vu-Quoc (1986), showing that
the L2 and L3/2 schemes simulations are consistent with those results.
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Figure 7.2: Closed form configuration

In order to observe the evolution of the displacements, a bending moment of M =
4πN mm is applied in 10 load steps for both the L2 and L3/2 schemes. The results are
illustrated in Fig. 7.3.

When a moment of M = 4πN mm is applied at the tip of the beam, the exact solution
consists in a closed form configuration, i.e. the tip coincides with the constrained beam

1See Lozzo (2010), for example.
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Load step Iteration ∥p∥L2 ∥p∥L3/2 ∥p∥ (Simo and Vu-Quoc, 1986)

1
1 2.51 × 10+1 2.51 × 10+1 2.51 × 10+1

2 2.83 × 10+1 2.83 × 10+1 4.25 × 10+1

3 1.64 × 10−13 6.78 × 10−14 4.41 × 10−14

Table 7.1: Norm of the unbalanced forces vector
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(b) L3/2-scheme results

Figure 7.3: Deformed configurations

end. In what follows, the convergence to the exact solution is analysed by computing the
distance d = ∥pf − pi∥ between the two beam ends for five meshes: 4, 5, 6, 9 and 11
nodes.

In Table 7.2 the coordinates Y and Z of the beam tip and the distance d between the
beam ends are shown, while in Table 7.3 the linear FEM results are presented. As can be
observed in these tables, the values of d are nearly constant. The L2 and L3/2 schemes
produced a similar outcome. For the first mesh, with only 4 nodes, the beam ends are
already very close. In Fig. 7.4 the results are illustrated graphically.

Number of nodes
L2-scheme L3/2-scheme

Y [mm] Z [mm] d [mm] Y [mm] Z [mm] d [mm]
4 1.98E-06 3.82E-05 3.83E-05 2.91E-07 3.82E-05 3.82E-05
5 -3.85E-10 1.05E-16 3.85E-10 -3.85E-10 -5.72E-17 3.85E-10
6 -3.71E-10 -9.19E-17 3.71E-10 -3.71E-10 -6.54E-16 3.71E-10
9 -3.56E-10 -7.79E-17 3.56E-10 -3.56E-10 -8.23E-17 3.56E-10
11 -3.53E-10 1.05E-16 3.53E-10 -3.53E-10 -4.30E-16 3.53E-10

Table 7.2: Tip position convergence: SPIM results

Additional results are illustrated in Fig. 7.5, where the displacements of the tip in the
Y and Z directions are compared with the analytical solution (see equations 7.2 and 7.3),
considering 20 load steps and an applied moment M = 4πN mm. As it can be observed,
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Number of nodes
FEM linear

Y [mm] Z [mm] d [mm]
4 1.98E-06 3.82E-05 3.83E-05
5 -3.85E-10 -1.19E-16 3.85E-10
6 -3.71E-10 -2.93E-17 3.71E-10
9 -3.56E-10 1.24E-16 3.56E-10
11 -3.53E-10 2.32E-16 3.53E-10

Table 7.3: Tip position convergence: FEM results
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(b) 5 nodes
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Figure 7.4: Convergence analysis
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the numerical results are in good agreement with the exact solution.
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Figure 7.5: Displacements of the beam tip

7.2 Buckling of a hinged right-angle frame

This example is a hinged right-angle frame2 subjected to a fixed load or a follower load.
The same input data presented in Simo and Vu-Quoc (1986) are adopted in this work.
Each component of the frame is discretised in 5 smoothing domains.

The frame is characterised by each component having a length L = 120 mm, and the
following geometric and material parameters

A = 6 mm2 I1 = 2 mm4

A1 = 6 mm2 I2 = 2 mm4 E = 7 200 000 N/mm2

A2 = 6 mm2 Jt = 4 mm4 G = 2 770 000 N/mm2

(7.4)

The distance a that defines the point of application of the load (Fig. 7.6) is equal to
1/5L.

In this work, during the simulations the load was incremented up to the buckling load3.
The L2 and L3/2 schemes were analysed considering two cases for the load P = 1000 N
applied to the structure: a fixed load, that remains vertical all along the analysis, and
a follower load, that remains orthogonal to the beam axis as it deforms. During the
simulations, the tolerance for the norm of the unbalanced forces vector was 1 · 10−5.

2Some authors refer it as the Lee’s frame, due to the work of Lee et al. (1968) where this frame was
first studied and analytical solutions provided.

3Due to the limitations of the load control based algorithm used in these simulations, several tests
were necessary to determine the buckling load. As a result, different load steps and load increment sizes
were employed depending of the load type and number of support nodes (L2 or L3/2 schemes) selected
to build the shape functions.
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Figure 7.6: Hinged right-angle frame under a force load

Fig. 7.7 and Fig. 7.8 illustrate the results in terms of deformed configurations, obtained
with the two load cases, for both the L2 and L3/2 schemes. The load-displacement
diagrams are depicted in Fig. 7.9; as it can be observed, the two schemes provided similar
results, with the L3/2 schemes characterised by lower values of the buckling load. The
analytical solution of the buckling load for this problem for a fixed load is available in Lee
et al. (1968), and corresponds to P = 18.552(EI/L2) = 18 552 N. Table 7.4 provides a
comparison of the buckling load obtained with the L2 and L3/2 schemes, and the values
available in Simo and Vu-Quoc (1986).

The behaviour of the SPIM discussed for the Timoshenko beam is propagated for the
geometrically nonlinear model, (i) the L2-scheme reproduces the linear FEM; (ii) the L3/2
is softer than the L2-scheme (or linear FEM). In other words, the buckling load achieved
for the simulation with the L2-scheme is bigger than the L3/2-scheme outcome.

Load L2-scheme Simo (1986) ∆ [%] L3/2-scheme Simo (1986) ∆ [%]
fixed 19550 18532 5.49 17880 18532 -3.52

follower 39250 35447 10.73 33580 35447 -5.27

Table 7.4: Load buckling values

In order to illustrate the effect of the αPIM shape function, the fixed and follower
load cases were simulated for a value of α = 0.50. The deformed shapes produced by the
load P = 14 000 N are illustrated in Fig. 7.10. As observed in previous results the alpha
PIM produces an intermediate solution bounded by the L2 and L3/2 schemes solutions,
i.e. the alpha application is somehow capable of “regulate” the stiffness of the numerical
model.
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Figure 7.7: Fixed load
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Figure 7.8: Follower load
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Figure 7.9: Load-displacement diagram
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Figure 7.10: Comparison

7.3 Cantilever 45-degree bend

In this example, a 45-degree bent cantilever beam is considered. The same input data
simulated in Simo and Vu-Quoc (1986) are adopted. This structure was first studied in
Bathe and Bolourchi (1979). Its initial configuration is depicted in Fig. 7.11.

Figure 7.11: 45-degree bent cantilever beam

The beam geometry follows a circle with radius 100 mm and angle of 45◦ in a X-Y
plane, and it is characterised by the following geometric and material parameters

A = 1 mm2 I1 = 0.00833mm4

A1 = 0.833 mm2 I2 = 0.00833mm4 E = 10 000 000 N/mm2

A2 = 0.833 mm2 Jt = 0.16667mm4 G = 5 000 000 N/mm2

(7.5)

The beam is discretised in 8 smoothing domains. A point force load of P = 600 N
is applied at its tip in the Z direction. In Simo and Vu-Quoc (1986) this load value is
reached in three load steps with the following load factors: 0.50, 0.75 and 1.00. For these
particular load steps the L3/2-scheme did not achieved convergence. Aiming to perform
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a comparison with the results commonly presented in the literature, a tiny perturba-
tion equal to 0.00394 was added to these three load factors. In this new scenario, the
convergence was reached, and the displacement results could be compared.

In Fig. 7.12 the displacements in each axis direction are represented in detail up to
a load value of P = 3000 N. Both, L2 and L3/2 results are consistent with the same
plot shown Simo and Vu-Quoc (1986). A perspective view of the deformed configurations
due to the loads P = 300 N, P = 450 N and P = 600 N are illustrated in Fig. 7.13a
and Fig. 7.13b for the L2 and L3/2 schemes respectively. In Fig. 7.14 the results for
P = 600 N are compared with a αPIM simulation with α = 0.10. As observed in previous
applications, in this case the L3/2 model is softer than the L2 model, and the αPIM is
bounded by both.
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Figure 7.12: Tip displacements
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Figure 7.13: Deformed shapes for 3 load cases: P = 300 N, P = 450 N and P = 600 N
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Figure 7.14: Comparison of L2, L3/2 and alpha PIM results for P = 600 N
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In Table 7.5 the results of X, Y and Z nodes positions are compared with different
results available in the literature. As it can be observed, the results obtained with the
proposed SPIM strategy are in good agreement with the ones obtained by other authors.

Load level [N]
L2-scheme Geradin and Cardona (1988) Bathe and Bolourchi (1979) Simo and Vu-Quoc (1986)

X Y Z X Y Z X Y Z X Y Z
300 21.12 59.39 40.21 22.14 58.64 40.35 22.50 59.20 39.50 22.33 58.84 40.08
450 17.04 53.16 48.53 18.38 52.11 48.59 - - - - - - - - - 18.62 52.32 48.39
600 13.89 48.27 53.52 15.55 47.04 53.50 15.90 47.20 53.40 15.79 47.23 53.37

Load level [N]
L3/2-scheme Geradin and Cardona (1988) Bathe and Bolourchi (1979) Simo and Vu-Quoc (1986)

X Y Z X Y Z X Y Z X Y Z
300 20.10 58.40 42.92 22.14 58.64 40.35 22.50 59.20 39.50 22.33 58.84 40.08
450 16.20 51.97 50.78 18.38 52.11 48.59 - - - - - - - - - 18.62 52.32 48.39
600 13.29 46.98 55.48 15.55 47.04 53.50 15.90 47.20 53.40 15.79 47.23 53.37

Table 7.5: Position X[mm], Y [mm] and Z [mm] of the beam tip
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CHAPTER 8

CONCLUSION

The main goal of this master’s thesis was to extend the application of smoothed point
interpolation methods to two shear-deformable beam theories, namely the linear Timo-
shenko beam theory and the geometrically-exact beam proposed in Simo (1985), Simo
and Vu-Quoc (1986). This application was made possible by the extension of the concept
of weakened-weak form proposed by Liu (2009) to these beam models. The concept of
αPIM shape function proposed by Liu et al. (2013) was also considered, as a mean to
improve the convergence of these methods. Comprehensive simulations were performed
with the Timoshenko beam model, considering different boundary conditions, different
load conditions, and different slenderness ratios. The simulations obtained with the L2
and L3/2 schemes were in good agreement with the analytical solutions, with convergence
properties similar to the linear FEM. They also pointed out that the L2 and L3/2 schemes
provide, in general, different bounds to the analytical solution; while the L2-scheme pro-
vided a lower bound to the solution in terms of deflections (like the linear FEM), the
L3/2-scheme provided an upper bound to the deflection. This property allowed to take
advantage of the concept of αPIM shape function already introduced by Liu et al. (2013).
With this concept the approximation was built as a blend of the L2 and L3/2 schemes,
resulting in an improved convergence.

Numerical simulations were also performed with the geometrically exact model, con-
sidering three classic problems from the literature on this topic. The results were in good
agreement with the ones from the literature. It is worth noting that the behaviour of
the L2 and L3/2 schemes observed in the linear model was also observed in the nonlinear
case, in the sense that the two schemes provided different bounds to the solution, the
L3/2-scheme showing a softer behaviour with respect to the L2-scheme.

In terms of implementations, the SPIMs applications of the INSANE software now
accounts for the Timoshenko beam model, where the proposed nodes support selection
schemes can be used in future applications. Regarding the nonlinear implementation, the
present MATLAB® code can be improved to widen the simulation possibilities aiming to
comprehend more complex load cases, structures and behaviours.

With the advent of this master’s thesis, and aiming future developments, the following
research topics are suggested as branches of the present work:
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• Extend the Timoshenko SPIMs implementation to plane and spatial frames in IN-
SANE

• Test the applicability of the node-based smoothed point interpolation methods for
the proposed beam models

• Investigate the use of shape functions constructed using radial basis functions with
or without polynomial reproduction

• Investigate the performance of the αPIM in more complex structures, such as, con-
tinuous beams, plane frames and spatial frames

• Derive a procedure to estimate the alpha values without the need for an analytical
solution

• Extend the proposed strategies to dynamic problems
• Investigate the performance of the SPIMs in physically nonlinear beam models
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Oñate, E. (2013), Structural analysis with the finite element method. Linear statics: vol-
ume 2: beams, plates and shells, Springer Science & Business Media.

Panchore, V., Ganguli, R. and Omkar, S. (2016), ‘Meshless local petrov-galerkin method
for rotating timoshenko beam: a locking-free shape function formulation’, CMES-
COMPUTER MODELING IN ENGINEERING & SCIENCES vol. 108(4), 215–237.

Pimenta, P. and Campello, E. (2003), ‘A fully nonlinear multi–parameter rod model
incorporating general cross-section in–plane changes and out-of-plane warping’, Latin
American Journal of Solids and Structures pp. 119–140.

Pimenta, P. M. and Yojo, T. (1993), ‘Geometrically exact analysis of spatial frames’,
Applied Mechanics Reviews vol. 46(11S), S118–S128.

Reddy, J. (2010), An introduction to the finite element method, Vol. 1221, McGraw-Hill
New York.



§.0 BIBLIOGRAPHY 140

Reissner, E. (1972), ‘On one-dimensional finite-strain beam theory: the plane problem’,
Journal of Applied Mathematics and Physics (ZAMP) vol. 23.

Roque, C., Ferreira, A. and Reddy, J. (2011), ‘Analysis of timoshenko nanobeams with
a nonlocal formulation and meshless method’, International Journal of Engineering
Science vol. 49(9), 976–984.

Simo, J. (1985), ‘A finite strain beam formulation. the three-dimensional dynamic prob-
lem. part i’, Computer Methods in Applied Mechanics and Engineering vol. 49(1), 55–70.
URL: https://linkinghub.elsevier.com/retrieve/pii/0045782585900507

Simo, J. and Vu-Quoc, L. (1986), ‘A three-dimensional finite-strain rod model. Part II:
Computational Aspects’, Computer Methods in Applied Mechanics and Engineering .

Tiago, C. and Pimenta, P. (2005), Geometrically exact analysis of space frames by a
meshless method, in ‘Proceedings of the ECCOMAS Thematic Conference on Meshless
Methods, Lisboa, Portugal’.

Tootoonchi, A. and Khoshghalb, A. (2016), A cell-based smoothed point interpolation
method for flow-deformation analysis of saturated porous media, in ‘VII European
Congress on Computational Methods in Applied Sciences and Engineering’, Crete Is-
land, Greece.

Wang, C., Reddy, J. N. and Lee, K. (2000), Shear deformable beams and plates: Relation-
ships with classical solutions, Elsevier.

Wang, J. and Liu, G. (2000), Radial point interpolation method for elastoplastic problems,
in ‘ICSSD 2000: 1 st Structural Conference on Structural Stability and Dynamics’,
pp. 703–708.

Wang, J. and Liu, G. (2002), ‘A point interpolation meshless method based on ra-
dial basis functions’, International Journal for Numerical Methods in Engineering vol.
54(11), 1623–1648.

Wriggers, P. (2008), Nonlinear finite element methods, Springer Science & Business Media.

Xiao, J. and McCarthy, M. (2003), ‘Meshless analysis of timoshenko beams based on
a locking-free formulation and variational approaches’, Computer methods in applied
mechanics and engineering vol. 192(39-40), 4403–4424.



141

Appendices



142

APPENDIX A

WEAK FORM OF THE TIMOSHENKO BEAM MODEL

In what follows, the derivation of the weak form of the Timoshenko beam is achieved by
a weighted residual procedure, starting from the model governing differential equations
(Eq. (2.3) and Eq. (2.4)):

∂

∂x
(EIω) +GAsγ = 0 (A.1)

∂

∂x
(GAsγ) = −qy(x) (A.2)

Proposition A.1. The strong form of the problem depicted in Eqs. (A.1) and (A.2) can
be recasted in the following weak form:

∫ L

0

∂δθ

∂x
EI

∂θ

∂x
dx+

∫ L

0

(
∂δv

∂x
− δθ

)
GAs

(
∂v

∂x
− θ

)
dx =

∫ L

0
δvqy(x)dx+

[
δvGAs

(
∂v

∂x
− θ

)]∣∣∣∣∣
L

0
+
(
δθEI

∂θ

∂x

)∣∣∣∣∣
L

0

(A.3)

Proof.
First of all, the shear differential equation (Eq. (A.2)) is multiplied by a deflection weight

function δv and integrated over the domain as follows∫ L

0
δv

[
∂

∂x

[
GAs

(
∂v

∂x
− θ

)]
+ qy(x)

]
dx = 0 (A.4)

The weighted residual procedure performed in this work uses trial functions that satisfy the es-
sential boundary conditions of the problem. The trial function defined above, δv, must be equal
to v at the boundaries of the problem domain.

If GAs is constant in equation A.4, the above equation can be recasted as follows∫ L

0
δv

[
GAs

(
∂2v

∂x2 − ∂θ

∂x

)
+ qy(x)

]
dx = 0 (A.5)

Performing an integration by parts of both the expressions in the round brackets leads to∫ L

0
δvGAs

∂2v

∂x2 dx = δvGAs
∂v

∂x

∣∣∣∣L
0

−
∫ L

0

∂δv

∂x
GAs

∂v

∂x
dx (A.6)
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−
∫ L

0
δvGAs

∂θ

∂x
dx = − (δvGAsθ)|L0 +

∫ L

0

∂δv

∂x
GAsθdx (A.7)

Next, the bending differential (equation A.1) is multiplied with a rotation weight function δθ(x)
and integrated over the domain (for a constant EI)∫ L

0
δθ

[
EI

∂2θ

∂x2 + GAs ·
(

∂v

∂x
− θ

)]
dx = 0 (A.8)

Again, performing an integration by parts of the first expression in above equation leads to∫ L

0
δθEI
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now equation A.8 can be rewritten as follows(
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Summation of equations A.6, A.7, A.10 and
∫ L

0 δvqy(x)dx (from Eq. (A.4)), results in
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(A.11)

Rearranging above equation the weak form of the searched beam model is achieved
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APPENDIX B

COMPOUND ROTATIONS

B.1 Introduction to rotations in three dimensions

Let us consider the rotation operator R introduced in equation 2.18. It belongs to the
Lie group of proper orthogonal linear transformations and satisfies the following

R : R3 → R3

(B.1)
RTR = RRT = I; detR = 1

This group contemplates all rotations about the origin of the three-dimensional Euclidean
space under the operation of composition. Frequently, it is denoted by SO(3) which
stands for special orthogonal group in the three-dimensional space. The SO(3) group is
characterized by the following properties Argyris and Poterasu (1993)

• R1R2 = R3 ∈ SO(3), ∀R1,R2 ∈ SO(3)
• ∃R−1 such that RR−1 = R−1R = I

• R1(R2R3) = (R1R2)R3, ∀R1,R2,R3 ∈ SO(3)
• ∃ I ∈ SO(3) such that IR = RI = R, ∀R ∈ SO(3)
In addition, we quote the work of (Gallier and Quaintance, 2020, p. 16)

“The inventors of Lie groups and Lie algebras (starting with Lie!) regarded
Lie groups as groups of symmetries of various topological or geometric objects.
Lie algebras were viewed as the “infinitesimal transformations” associated with
the symmetries in the Lie group. For example, the group SO(n) of rotations is
the group of orientation-preserving isometries of the Euclidean space En. The
Lie algebra so(n;R) consisting of real skew symmetric n × n matrices is the
corresponding set of infinitesimal rotations. The geometric link between a Lie
group and its Lie algebra is the fact that the Lie algebra can be viewed as the
tangent space to the Lie group at the identity. There is a map from the tangent
space to the Lie group, called the exponential map. The Lie algebra can be
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considered as a linearisation of the Lie group (near the identity element), and
the exponential map provides the “delinearisation”, i.e., it takes us back to
the Lie group.”

Let us consider a point P defined by its position vector ā. Next, consider another
point P ′ represented by its position vector b̄. Figure B.1 illustrates the referred quantities.

P P'

Oi
j

k = v
α α

a b

r
s

t

Figure B.1: Vector Rotation.

The vector b̄ can be achieved by a rotation of the vector ā. First, based on the
quantities illustrated in Figure B.1 the vector b̄ can be described by a vectorial summation,
as follows

b̄ = ā+ r̄ + s̄+ t̄ (B.2)

then, using Figure B.1 and geometric observations the vectors r̄, s̄ and t̄ can be expressed
in terms of ā, v̄ and θ. Hence, equation B.2 can be rewritten in the form

b̄ = ā+ sin θ(v̄ × ā) + (1 − cos θ)(v̄ × (v̄ × ā)) (B.3)

finally b̄ can be expressed as

ā = Rb̄ (B.4)

where the quantity R in equation B.4 is the rotation tensor and it assumes the form (see
Moreira (2009))

R = I + sin θV + (1 − cos θ)V 2 (B.5)

in above equation, V is a skew-symmetric tensor and v̄ is the correspondent axial vector.
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Considering θ the skew-symmetric tensor and θ̄ its associated axial vector with ∥θ̄∥ =
θ, equation B.5 can be expressed as

R = I + sin θ
θ
θ + 1

2

[
sin(θ/2)
θ/2

]2

θ2 (B.6)

An expansion in power of series of the trigonometric quantities in equation B.6 leads
to

R = I + θ + 1
2!θ

2 · · · = exp(θ) (B.7)

Equation B.7 is the exponential representation of rotations or the exponential map.
Let us consider equation 2.18 again which is a map from the reference configuration

to the current configuration by means of R and can be physically interpreted as a rigid
body rotation from a frame to another. Now, consider an incremental rotation applied to
the current configuration {tI}. This incremental rotation can be described in two ways,
as follows Geradin and Cardona (1988)

• Via a left translation: left-application of an incremental rotation operator R(r) to
the actual rotation R

R′ = R(ℓ)R

(B.8)
t̄′ = R(ℓ)tI = R(ℓ)RĒI

• Via a right translation: right-application of an incremental rotation operator R(r)

to the actual rotation R

R′ = RR(r)

(B.9)
t̄′ = R(r)ĒI

The left and right rotation operators can be represented by an exponential map similar
to the relation shown in equation B.7. Let us consider θ as a spatial skew-symmetric tensor
and Θ as a material skew-symmetric tensor, then, one can write

R(ℓ) = exp(θ), θ ∈ so(3) (B.10)
R(r) = exp(Θ), Θ ∈ so(3) (B.11)
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The compound rotation is defined as a rotation obtained from a combination of two
other rotations in the sense of equation B.8 or alternatively by equation B.9.

Given a known rotation R and a spatial, θ̄, or a material, Θ̄, incremental rotation
vector, corresponding to the spatial rotation R(ℓ) = exp(θ) and to the material rotation
R(r) = exp(Θ) respectively, the description of the new compound rotation tensor, Rc, is
obtained from the left or the right translation map as follows

Rc = exp(θ)R (B.12)
Rc = R exp(Θ) (B.13)

where θ̄ is the axial vector associated with the spatial skew-symmetric tensor θ and Θ̄
is the axial vector associated with the material skew-symmetric tensor Θ. In addition to
that, one can demonstrate that the following relation stands

θ̄ = RΘ̄ (B.14)

B.2 Corotated Rate

We highlight that while the spatial and the material strain measures are related through
the rotation operator,1 R(S, t), the time derivatives of these quantities do not follow the
same relation, in other words

∂γ̄

∂t
(S, t) ̸= R(S, t)∂Γ̄(S, t)

∂t
(B.15)

∂ω̄

∂t
(S, t) ̸= R(S, t)∂Ω̄(S, t)

∂t
(B.16)

instead, the material quantities from above equations, on the right hand side, are related
to the spatial quantities as follows

▽
γ̄(S, t) = R(S, t)∂Γ̄(S, t)

∂t
(B.17)

▽
ω̄(S, t) = R(S, t)∂Ω̄(S, t)

∂t
(B.18)

where the corotated rate is defined in the following

▽
γ(S, t) = ∂γ̄(S, t)

∂t
− w̄(S, t) × γ̄(S, t) (B.19)

1See equation 2.25 and compare equations 2.35 and 2.37.
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▽
ω̄(S, t) = ∂ω̄(S, t)

∂t
− w̄(S, t) × ω̄(S, t) (B.20)

and for an arbitrarily vectorial quantity

▽
(·) = ∂(·)

∂t
− w̄ × (·) (B.21)

As pointed out by Simo (1985) the physical significance of equation B.21 is that it
computes the rate of change of the quantity (·) relative to an observer which moves with
the spatial frame t̄I . Note that the spin w̄ of the moving frame is subtracted from the
time derivative and therefore the observer does not experiment rotations.

B.3 Linearisation procedure

This appendix is devoted to demonstrate how to obtain some of the results of the lin-
earisation procedure presented in section 2.2.6. The variables (S, t) of the quantities are
omitted by convenience. All linearisations of this section is performed using the spatial ro-
tation increment. However they could be achieved using the material rotation increment.
Before proceeding with the linearisation, let us define the following perturbed quantities
for the left (or spatial) translation map in the following

Rε := exp(εθ)R (B.22)
RT

ε := RT exp(−εθ) (B.23)

Proposition B.1. The linearisation of the spatial curvature tensor is given by (equation
2.66)

Dω · θ := ∂ωε

∂ε

∣∣∣∣∣
ε=0

= θ′ + θω − ωθ (B.24)

Proof. Let us consider the perturbed spatial curvature tensor

ωε = ∂Rε

∂S
RT

ε

taking the directional derivative results in

∂ωε

∂ε

∣∣∣∣
ε=0

=
[

∂

∂S

(
∂Rε

∂ε

)
RT

ε + ∂Rε

∂S

∂RT
ε

∂ε

]∣∣∣∣∣
ε=0

using equations B.22 and B.23, leads to,

∂ωε

∂ε

∣∣∣∣
ε=0

= ∂(θR)
∂S

RT + ∂R

∂S
(−RTθ)
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=
(

∂θ

∂S
R

)
RT +

(
θ

∂R

∂S

)
RT − ∂R

∂S
RTθ

recalling that RRT = I and (∂R/∂S)RT = ω (equation 2.20) we obtain

∂ωε

∂ε

∣∣∣∣
ε=0

= θ′ + θω − ωθ

The symbol (·)′ represents the derivative of the quantity (·) relative to S.

Proposition B.2. The linearisation of the material curvature tensor is given by (equation
2.67)

DΩ · θ := ∂Ω̄ε

∂ε

∣∣∣∣∣
ε=0

= RTθ′R (B.25)

Proof. Let us consider the following perturbed material curvature tensor

Ωε = RT
ε

∂Rε

∂S

taking the directional derivative

∂Ωε

∂ε

∣∣∣∣
ε=0

= ∂RT
ε

∂ε

∂Rε

∂S
+RT

ε

(
∂

∂ε

∂Rε

∂S

)
the derivative relative to S of the perturbed rotation tensor is

∂Rε

∂S
= ∂

∂S
[exp(εθ)R] = ∂exp(εθ)

∂S
R+ exp(εθ)∂R

∂S

= ε
∂θ

∂S
exp(εθ)R+ exp(εθ)∂R

∂S

using equations B.22 and B.23 we obtain

∂Ωε

∂ε

∣∣∣∣
ε=0

= −RTθexp(−εθ)∂Rε

∂S
+RT exp(−εθ)

[
θ′exp(εθ)R

+ εθ′θexp(εθ)R+ θexp(εθ)∂R

∂S

]
making ε = 0 and analysing the terms above, results in

∂Rε

∂S

∣∣∣∣
ε=0

= ∂R

∂S
−RTθexp(−εθ)

∣∣∣
ε=0

= −RTθ RT exp(−εθ)
∣∣∣
ε=0

=

RT [θ′exp(εθ)R+ εθ′θexp(εθ)R + θexp(εθ)∂R

∂S

]∣∣∣∣
ε=0

= θ′R+ θ∂R

∂S

finally we obtain the searched equation

∂Ωε

∂ε

∣∣∣∣
ε=0

= −RTθ
∂R

∂S
+RT

(
θ′R+ θ∂R

∂S

)
= RTθ′R
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Proposition B.3. The linearisation of the material version of the shear and axial defor-
mations is given by (table 2.1)

(DΓ̄ · η̄0) := ∂Γ̄ε

∂ε

∣∣∣∣∣
ε=0

= RT

(
∂η̄0

∂S
− θ̄ × ∂φ0

∂S

)
(B.26)

Proof. Let us consider the perturbed material version of the shear and axial deformations

Γ̄ε = RT
ε

∂φ0ε

∂S
− Ē3

and the following results

φ0ε = φ0 + εη̄0 → ∂φ0ε

∂S
= ∂φ0

∂S
+ ε

∂η̄0
∂S

ε=0−−→ ∂φ0
∂S

RT
ε = RT exp[−εθ] ε=0−−→= RT

taking the derivative of Γ̄ε with respect to ε and using the above results leads to

∂Γ̄ε

∂ε

∣∣∣∣∣
ε=0

=
[

∂RT
ε

∂ε

∂φ0ε

∂S
+RT

ε

∂

∂ε

∂φ0ε

∂S

]∣∣∣∣∣
ε=0

= −RTθ
∂φ0
∂S

+RT ∂η̄0
∂S

therefore

∂Γ̄ε

∂ε

∣∣∣∣∣
ε=0

= RT
(

∂η̄0
∂S

− θ̄ × ∂φ0
∂S

)
where θ̄ is the axial vector associated with the skew-symmetric tensor θ.

Proposition B.4. The linearisation of the spatial version of the bending and torsional
strain measures is given by (table 2.1)

(Dω̄ · θ̄) := ∂ω̄ε

∂ε

∣∣∣∣∣
ε=0

= ∂θ̄

∂S
+ θ̄ × ω̄ (B.27)

Proof. With the aid of equation B.24 one can write

(Dω · θ)h ≡ ∂(ωεh)
∂ε

∣∣∣∣
ε=0

= θ′h+ [θω − ωθ]h

where [·, ·] is the Lie bracket commutator of two skew-symmetric matrices. Now, let us consider
the following equation for a given vector h

[θ,ω]h := [θω − ωθ]h = (θ̄ × ω̄) × h ∀h ∈ R3

Considering θ̄ the correspondent axial vector of the skew-symmetric tensor θ leads to the relation
θ′h = θ̄′ × h. Taking these results and the Lie bracket identity into account we obtain
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(Dω̄ · θ̄) × h =
(

∂θ̄

∂S
+ θ̄ × ω̄

)
× h ∀h ∈ R3

above equation is precisely the one of proposition B.4.

B.4 Weak form of momentum balance

The goal of this section is demonstrate how to achieve equation 2.68 presented in section
2.2.7. We recall that η̄ ∈ TφC vanishes at the boundary (see equation 2.62).

Proposition B.5. The spatial version of the weak form of momentum balance is given
by

G(φ, η̄) :=
∫

[0,L]

{
f̄ ·

[
∂η̄0

∂S
− θ̄ × ∂φ0

∂S

]
+ m̄ · ∂θ̄

∂S

}
dS −

∫
[0,L]

(q̄f̄ · η̄0 + q̄m̄ · θ̄)dS (B.28)

Proof. Let us consider equations 2.31 and 2.32 again

∂f̄

∂S
+ q̄f̄ = 0

∂m̄

∂S
+ ∂φ0

∂S
× f̄ + q̄m̄ = 0 S ∈ I

and the arbitrary admissible variation:

η̄(S, t) ≡ (η̄0(S, t), θ̄(S, t)) ∈ TφC

Multiplying equations above by η̄(S, t) as a weighted residual procedure (integrating over the
domain) we obtain

G(φ, η̄) :=
∫

[0,L]

[(
∂f̄

∂S
+ q̄f̄

)
· η̄0 +

(
∂m̄

∂S
+ ∂φ0

∂S
× f̄ + q̄m̄

)
· θ̄
]

dS = 0 (B.29)

Let us rewrite the first term on the right hand side of equation B.29 in the following∫ L

0

[(
∂f̄

∂S
+ q̄f̄

)
· η̄0

]
dS =

∫ L

0

[
∂f̄

∂S
· η̄0

]
dS +

∫ L

0

[
q̄f̄ · η̄0

]
dS

performing the integration by parts of the first term on the right hand side in equation above
leads to ∫ L

0

[
∂f̄

∂S
· η̄0

]
dS =�����:0

[f̄ · η̄0]|L0 −
∫ L

0

[
f̄ · ∂η0

∂S

]
dS

therefore we can write
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∫ L

0

[(
∂f̄

∂S
+ q̄f̄

)
· η̄0

]
dS =

∫ L

0

[
q̄f̄ · η̄0

]
dS −

∫ L

0

[
f̄ · ∂η̄0

∂S

]
dS (B.30)

Now, let us consider the second term on the right hand side of equation B.29 and rewritte it
as follows

∫ L

0

[(
∂m̄

∂S
+ ∂φ0

∂S
× f̄ + q̄m̄

)
· θ̄
]

dS =∫ L

0

[
∂m̄

∂S
· θ̄
]

dS +
∫ L

0

[
q̄m̄ · θ̄

]
dS +

∫ L

0

[(
∂φ0
∂S

× f̄
)

· θ̄
]

dS

taking the integration by parts of the first term on the right hand side of above equation, we have∫ L

0

[
∂m̄

∂S
· θ̄
]

dS =������:0
[m̄ · θ̄0]|L0 −

∫ L

0

[
m̄ · ∂θ̄

∂S

]
dS

therefore we obtain

∫ L

0

[(
∂m̄

∂S
+ ∂φ0

∂S
× f̄ + q̄m̄

)
· θ̄
]

dS = −
∫ L

0

[
m̄ · ∂θ̄

∂S

]
dS

+
∫ L

0

[
q̄m̄ · θ̄

]
dS +

∫ L

0

[(
∂φ0
∂S

× f̄
)

· θ̄
]

dS

recalling the properties of the scalar triple product (or mixed product), the following equally
stands (

∂φ0
∂S

× f̄
)

· θ̄ = f̄ ·
(
θ̄ × ∂φ0

∂S

)
therefore

∫ L

0

[(
∂m̄

∂S
+ ∂φ0

∂S
× f̄ + q̄m̄

)
· θ̄
]

dS = −
∫ L

0

[
m̄ · ∂θ̄

∂S

]
dS

+
∫ L

0

[
q̄m̄ · θ̄

]
dS +

∫ L

0

[
f̄ ·
(
θ̄ × ∂φ0

∂S

)]
dS (B.31)

substituting equations B.30 and B.31 in equation B.29 and rearranging the terms, we obtain
B.28.
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APPENDIX C

PIM SHAPE FUNCTIONS EXPRESSIONS

Following the procedures described in Chapter 4 and Chapter 5, it is possible to obtain
analytical solutions for the one-dimensional SPIM shape functions aiming to reduce the
computation costs, hence improving the performance of the implementation.

C.1 Shape Functions

As shown in Section 5.1, the SPIM shape functions are obtained by the product between
the matrix of polynomials and the inverse of the moment matrix :

Φ(x) = pT (x)P−1
Q (C.1)

We recall that the moment matrix is constructed by enforcing the polynomial basis to
be satisfied at each support node. For a support domain with two support nodes (linear
shapes) the following procedure leads to the searched shape functions. The starting point
is to obtain the matrix of polynomials and the moment matrix :

pT (x) = [ 1 x ], PQ =
 1 x1

1 x2

 (C.2)

hence, the inverse of the moment matrix is

P−1
Q =

 x2 −x1

−1 1

 1
x2 − x1

(C.3)

performing the matrix multiplication of Eq. (C.1) results in

Φ(x) = pT (x)P−1
Q = [ 1 x ]

 x2 −x1

−1 1

 1
x2 − x1

(C.4)

therefore the linear shape functions can be written as

Φ(x) =
[
x2 − x

x2 − x1

x− x1

x2 − x1

]
(C.5)
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Similarly, for a support domain with three support nodes (quadratic shapes) the fol-
lowing procedure leads to the searched shape functions. The matrix of polynomials and
the moment matrix are the following

pT (x) = [ 1 x x2 ], PQ =


1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

 (C.6)

the inverse of the moment matrix is

P−1
Q =


− x2x3

(x2 − x3)
x1x3

(x1 − x3)
− x1x2

(x1 − x2)
(x2 + x3)(x2 − x3) −(x1 + x3)(x1 − x3) (x1 + x2)(x1 − x2)

(x3 − x2) (x1 − x3) (x2 − x1)

 1
det[PQ] (C.7)

where

det[PQ] = 1
(x2 − x1)(x1 − x3)(x2 − x3)

(C.8)

Hence, performing the matrix multiplication of Eq. (C.1) results in

Φ(x) =
[

(x− x2)(x− x3)
(x1 − x2)(x1 − x3)

− (x− x1)(x− x3)
(x1 − x2)(x2 − x3)

(x− x1)(x− x2)
(x1 − x3)(x2 − x3)

]
(C.9)

Lastly, for a support domain with four support nodes (cubic shapes), following the
principles described above leads to the searched shape functions:

Φ(x) = pT (x)P−1
Q =

[
ϕ1(x) ϕ2(x) ϕ3(x) ϕ4(x)

]
(C.10)

with the components of Eq. (C.10) explicit represented as follows

ϕ1(x) = (x− x2)(x− x3)(x− x4)
(x1 − x2)(x1 − x3)(x1 − x4)

(C.11)

ϕ2(x) = − (x− x1)(x− x3)(x− x4)
(x1 − x2)(x2 − x3)(x2 − x4)

(C.12)

ϕ3(x) = (x− x1)(x− x2)(x− x4)
(x1 − x3)(x2 − x3)(x3 − x4)

(C.13)

ϕ4(x) = − (x− x1)(x− x2)(x− x3)
(x1 − x4)(x2 − x4)(x3 − x4)

(C.14)

In Figure C.1 the shape functions are represented graphically for each set of support
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nodes containing two, three and four nodes in it.

x2x1

1

(a)

x3x2x1

1
1

1

(b)

x4x3x2x1

1
1 1

1

φ1(x)

φ2(x)

φ3(x)

φ4(x)

(c)

Figure C.1: SPIM shape functions

In order to illustrate the discontinuities of PIM shape functions, a beam with four
evenly distributed nodes is considered in Fig. C.2a. A node-based tessellation (see Sec-
tion 5.3) is constructed giving rise to four smoothing domains. For the boundary smooth-
ing domains, the two extreme nodes are chosen to compose the nodes of the support
domain, while for interior smoothing domains, three nodes are selected as support nodes,
which are the center node and the nodes from the left and right sides of the smoothing
domain. This process can be referred as mixed linear-quadratic interpolation (Liu and
Zhang, 2013). After constructing all shape functions for each smoothing domain, the
outcome is shown in Fig. C.2a. The dotted vertical lines are delimiting the node-based
smoothing domains, and the discontinuities can be identified on the smoothing domain
boundaries. In Fig. C.2b, for the same domain discretisation, the shape function corre-
sponding to the node x2 is illustrated for the edge-based approach. Different from the
node-based tessellation, in this case the discontinuities are within the smoothing domains.
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x4x3x2x1

1
1 1

1

φ1(x)

φ2(x)

φ3(x)

φ4(x)

(a) Node-based

x4x3x2x1

1
1 1

1

φ2(x)

integration point

node
background cell midpoint

(b) Edge-based

Figure C.2: Shape functions discontinuity example

The procedure illustrated above to obtain the analytical shape functions was performed
through the MATLAB® software.
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APPENDIX D

ANALYTICAL SOLUTIONS FOR THE TIMOSHENKO BEAM

In this appendix, a methodology1 to derive the analytical solutions for the Timoshenko
beam is presented. These analytical solutions were used to enhance the numerical sim-
ulations analysis shown in Chapter 6. In the following, a homogeneous prismatic beam
is considered, as a consequence the Young’s modulus E, the shear modulus G, and the
inertia moment I are constants.

D.1 Distributed loads

In order to obtain the searched expressions, first of all the problem governing differential
equations (Eq. (2.3) and Eq. (2.4)) are recalled:

∂

∂x

(
EI

∂θ

∂x

)
+GAs

(
∂v

∂x
− θ

)
= 0 (D.1)

∂

∂x

(
GAs

(
∂v

∂x
− θ

))
= −qy(x) (D.2)

with the aid of Fig. 2.1 and under the kinematics, equilibrium and constitutive assump-
tions of the model, one can show that the following relations are valid for the Timoshenko
beam theory (see Öchsner and Merkel (2018)).

∂Qy

∂x
= qy,

∂M

∂x
= −Qy (D.3)

M = EI
∂θ

∂x
, Qy = −ksGAγ (D.4)

where Qy and M are the applied shearing forces and bending moments, respectively,
A is the beam cross-section area, As = ksA is the shearing area, and ks is the shearing
factor. Substituting equations D.3 and D.4 in the problem governing differential equations
(Eq. (D.1) and Eq. (D.2)) results in

1The procedure shown in this appendix was based on the work of Fleischfresser (2012).



§D.1 Analytical solutions for the Timoshenko beam 158

EI
∂2θ

∂x2 −GAsθ +GAs
∂v

∂x
= 0 (D.5)

EI
∂3θ

∂x3 = qy (D.6)

above equations can be recasted in a compacted form as follows

EIθ′′ −GAsθ +GAsv
′ = 0 (D.7)

EIθ′′′ = qy (D.8)

next, equation D.8 is integrated successively

EIθ′′ = qyx+ C1

EIθ′ = qy

2 x
2 + C1x+ C2

EIθ = qy

6 x
3 + C1

2 x2 + C2x+ C3

(D.9)

therefore the rotations can be expressed as

θ = 1
EI

(
qy

6 x
3 + C1

2 x2 + C2x+ C3

)
(D.10)

With the aid of equations D.10, Equation D.7 can be rewritten as

GAsv
′ = GAs

EI

(
qy

6 x
3 + C1

2 x2 + C2x+ C3

)
− EI (qyx+ C1) (D.11)

integrating above equation results in

GAsv = GAs

EI

(
qy

24x
4 + C1

6 x3 + C2

2 x2 + C3x
)

−
(
qy

2 x
2 + C1x

)
+ C4 (D.12)

therefore the displacements can be expressed as

v = 1
EI

(
qy

24x
4 + C1

6 x3 + C2

2 x2 + C3x
)

− 1
GAs

(
qy

2 x
2 + C1x− C4

)
(D.13)

Taking into account the boundary conditions shown in Fig. D.1, the following equations
for shearing forces, bending moments, rotations and displacements, in the following, can
be used to determine the unknown constants C1, C2, C3 and C4:

EIθ′′ = −Qy = (qyx+ C1) (D.14)
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EIθ′ = M =
(
qy

2 x
2 + C1x+ C2

)
(D.15)

θ = 1
EI

(
qy

6 x
3 + C1

2 x2 + C2x+ C3

)
(D.16)

v = 1
EI

(
qy

24x
4 + C1

6 x3 + C2

2 x2 + C3x
)

− 1
GAs

(
qy

2 x
2 + C1x− C4

)
(D.17)

Figure D.1: Beam boundary conditions

Equations Eqs. (D.14) to (D.17) were derived for an uniformly distributed load, however
the procedure is analogous for any type of distributed load over the beam span. It suffices
to substitute qy for the desired q(x) at the beginning of the process. For instance, let us
consider a linearly distributed load defined by q(x) = ax + b. Equation D.8 is rewritten
with the new load function, and it is integrated successively:

EIθ′′ =
(
a

2x
2 + bx

)
+ C1

EIθ′ =
(
a

6x
3 + b

2x
2
)

+ C1x+ C2

EIθ =
(
a

24x
4 + b

6x
3
)

+ C1

2 x2 + C2x+ C3

(D.18)

therefore the rotations can be expressed as

θ = 1
EI

[(
a

24x
4 + b

6x
3
)

+ C1

2 x2 + C2x+ C3

]
(D.19)

with the aid of equations D.19, Equation D.7 can be rewritten as
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GAsv
′ = GAs

EI

[(
a

24x
4 + b

6x
3
)

+ C1
2 x2 + C2x+ C3

]
−
[(
a

2x
2 + bx

)
+ C1

]
(D.20)

integrating above equation results in

GAsv = GAs

EI

[(
a

120x
5 + b

24x
4
)

+ C1
6 x3 + C2

2 x2 + C3x

]

−
[(
a

6x
3 + b

2x
2
)

+ C1x

]
+ C4

(D.21)

therefore the displacements can be expressed as

v = 1
EI

[(
a

120x
5 + b

24x
4
)

+ C1
6 x3 + C2

2 x2 + C3x

]

− 1
GAs

[(
a

6x
3 + b

2x
2
)

+ C1x− C4

] (D.22)

Besides being more complex, the equations Eq. (D.19) and Eq. (D.22) possess the same
number of unknown constants as the uniformly distributed load, hence the same boundary
conditions illustrated in Fig. D.1 can be used to determine these constants. In order to
illustrate the methodology shown above, the following example is considered.
Example 1: Derive the analytical solutions of rotations and displacements for the simply
supported beam shown in Fig. D.2.

Figure D.2: Simply supported beam: distributed load case

Solution:
Based in Fig. D.1, if x = 0, then M = 0. Entering these values in equation D.15

leads to C2 = 0 . At the same point v = 0, hence from equation D.17 results in C4 = 0 .
Another boundary conditions is in x = L, where M = 0. Substituting these values in
equation D.15 results in
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qy

2 L
2 + C1L = 0 → C1 = −qyL

2
The last condition is if x = L, then v = 0. Substituting these values in equation D.17
and using the known constants (C1, C2 and C4) leads to:

0 = 1
EI

[
qy

24L
4 +

(
−qyL

2

) 1
6L

3 + C3L
]

− 1
GAs

[
qy

2 L
2 +

(
−qyL

2

)
L
]

0 = 1
EI

[
qy

24L
4 − qy

12L
4 + C3L

]
+ 0

0 = 1
EI

[
− qy

24L
4 + C3L

]
→ C3 = qyL

3

24

Finally, substituting the constants C1, C2, C3 and C4 in equations D.16 and D.17 results
in the following analytical expressions for the rotations and displacements:

θ = qy

24EI
(
4x3 − 6x2 + L3

)
(D.23)

v = qy

24EI
(
x4 − 2Lx3 + 3L3x

)
+ qy

2GAs

(
−x2 + Lx

)
(D.24)

D.2 Force loads

In this section, a methodology to obtain the analytical expressions of rotations and dis-
placements for a force load case is illustrated. A generic force load applied in a point a at
the beam span is considered. The procedure to obtain the searched expressions is a little
different from the distributed load cases. First, from D.7 and D.8, the starting problem
differential equations are rewritten as

Qy = GAs (v′ − θ) (D.25)

EIθ′′ = −Qy (D.26)

In this type of problem, due to the applied load at a particular position within the beam
span, two analysis are necessary. The first one is performed before the load position, while
the second on is performed after it. Hence, the number of unknown constants naturally
increase. However, taking advantage of the continuity of the beam, a set of new conditions
can be established to overcome this inconvenient. Aside from the ones shown in Fig. D.1,
the following conditions can be used at the point a
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θ′
1(a) = θ′

2(a) from the conituity of bending moments

θ1(a) = θ2(a) from the conituity of rotations

v1(a) = v2(a) from the conituity of displacements

(D.27)

where the sub-index 1 indicates the patch before the load position a, while the sub-index
2 refers to the patch after it.
Example 2: Derive the analytical solutions for the rotations and displacements of the
cantilever beam shown in Fig. D.3.

Figure D.3: Cantilever beam: force load case

Solution:
Before the load P : x ∈ [0 a]
First, equation D.26 is integrated successively:

EIθ′
1 = −Q1yx+ C1

EIθ1 = −Q1y

2 x2 + C1x+ C2
(D.28)

when x = 0, θ1 = 0, hence from equation above C2 = 0 .
Now, equation D.25 is rearranged and integrated:

v′
1 = −Q1y

2EI x
2 + C1

EI
x+ Q1y

GAs

v1 = −Q1y

6EI x
3 + C1

2EI x
2 + Q1y

GAs

x+ C3

(D.29)

again, when x = 0, v1 = 0, hence from equation above C3 = 0 .
After the load P : x ∈ [a L]
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Similarly, equation D.26 is integrated successively:

EIθ′
2 = −Q2yx+ C4

EIθ2 = −Q2y

2 x2 + C4x+ C5
(D.30)

When x = L, θ′
2 = 0, hence from the first equation above C4 = Q2yL . However, Q2 must

be zero in the second patch, therefore Q2 = C4 = 0 and Q1 = P . Therewith, equation
D.26 becomes simply:

v′
2 = C5

EI
(D.31)

integrating above equation results in

v2 = C5

EI
x+ C6 (D.32)

In order to obtain the remaining constants, the conditions of continuity in x = a can be
used.
First, the bending moments are equal in x = a:

θ′
1(a) = θ′

2(a) → 1
EI

(−Q1ya+ C1) = 0 ∴ C1 = Pa (D.33)

next, the rotations are equal in x = a:

θ1(a) = θ2(a) → − P

2EI a
2 + Pa

EI
a = C5

EI
∴ C5 = P

2 a
2 (D.34)

now, the displacements are equal in x = a:

v1(a) = v2(a) → − P

6EI a
3 + Pa

2EI a
2 + P

GAs

a = Pa2

2EI a+ C6

∴ C6 = − P

6EI a
3 + P

GAs

(D.35)

Finally, the expressions for rotations and displacements are obtained after substituting
the constants in the correspondent equations. As result, the rotations and displacements
are the following expressions defined by parts:

θ(x) =



1
EI

(
−P

2 x
2 + Pax

)
x ∈ [0 a]

P

2EI a
2 x ∈ [a L]

(D.36)
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v(x) =



P

6EI (−x3 + 3ax2) + P

GAs

x x ∈ [0 a]

Pa2

6EI (3x− a) + Pa

GAs

x ∈ [a L]

(D.37)

Based on the procedures shown throughout this appendix, the analytical expressions
for the rotations and displacements regarding the Timoshenko beam model, were obtained
for the point force, uniformly distributed and linearly distributed load cases applied in all
boundary conditions shown in Fig. D.1.
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APPENDIX E

ALPHA TABLES

In the following tables, the plots shown in Figs. 6.20 to 6.23 (right plots) are represented
through their numerical values, i.e. the actual values of the estimated alpha parameters
according to the number of nodes. In all tables which alpha varies with the slenderness
ratio (h/L) are explicit indicated.

E.1 Simply supported beam

Mesh Alpha Mesh Alpha
5 0.625730994152046 41 0.661912308501584
11 0.646799116997489 47 0.662540119296967
17 0.654520917680695 53 0.663021465283246
23 0.657920310947208 95 0.664659959295801
29 0.659832953718178 191 0.665676197431680
35 0.661059190444920 383 0.666186733535444

Table E.1: Force load

Mesh Alpha Mesh Alpha
5 0.317333333333325 41 0.342274292189959
11 0.352750809062166 47 0.341271694335000
17 0.350459879480149 53 0.340467694849007
23 0.347489046122188 95 0.337494552471722
29 0.345234366979236 191 0.335457286161415
35 0.343554799357901 383 0.334438272729140

Table E.2: Uniformly distributed load
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Mesh Alpha Mesh Alpha
5 0.317333333333314 41 0.342274292163100
11 0.352750809060498 47 0.341271694492765
17 0.350459879476329 53 0.340467694988065
23 0.347489046119782 95 0.337494562185642
29 0.345234366987607 191 0.335457506136241
35 0.343554799329244 383 0.334436300026086

Table E.3: Linearly distributed load

E.2 Fixed-fixed beam

Mesh Alpha Mesh Alpha
5 0.625730994152047 41 0.661912308480469
11 0.646799116997752 47 0.662540119133596
17 0.654520917678483 53 0.663021465999079
23 0.657920310979023 95 0.664659977706902
29 0.659832953689419 191 0.665676822272606
35 0.661059190114914 383 0.666177675219863

Table E.4: Force load

Mesh Alpha Mesh Alpha
5 0.658666666666668 41 0.671137146063260
11 0.676375404530718 47 0.670635847066161
17 0.675229939739555 53 0.670233848346730
23 0.673744523084864 95 0.668747303720630
29 0.672617183431079 191 0.667729641249653
35 0.671777399293255 383 0.667206820633372

Table E.5: Uniformly distributed load

Mesh Alpha Mesh Alpha
5 0.658666666666671 41 0.671137146065082
11 0.676375404530735 47 0.670635847070440
17 0.675229939739634 53 0.670233848411683
23 0.673744523085746 95 0.668747304316187
29 0.672617183430300 191 0.667729653519156
35 0.671777399287819 383 0.667206517158981

Table E.6: Linearly distributed load
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E.3 Cantilever beam

Mesh Alpha Mesh Alpha
5 0.690821256038911 41 0.669250646304116
11 0.676767676770099 47 0.668915884126875
17 0.673052362751302 53 0.668657910816459
23 0.671335200723898 95 0.667771188137824
29 0.670345842252864 191 0.667214436541085
35 0.669702489460423 383 0.666948465566915

Table E.7: Force load

Mesh Alpha Mesh Alpha
5 0.787198669991778 41 0.779921253175297
11 0.784424683374650 47 0.779660799296509
17 0.782520972726283 53 0.779456595934448
23 0.781428168212960 95 0.778731473171188
29 0.780737633119671 191 0.778257912978723
35 0.780264689515928 383 0.778021247737339

Table E.8: Uniformly distributed load

Mesh Alpha Mesh Alpha
5 0.839309567981347 41 0.839594131903283
11 0.842642261618775 47 0.839367000403874
17 0.841621379459191 53 0.839186501860373
23 0.840830300899719 95 0.838529529030538
29 0.840281656121307 191 0.838088021425181
35 0.839888058248994 383 0.837864491567394

Table E.9: Linearly distributed load: h/L = 0.10

Mesh Alpha Mesh Alpha
5 0.833560282587747 41 0.833748017805211
11 0.837037524520309 47 0.833503716698985
17 0.835930913373028 53 0.833309593595937
23 0.835078310120062 95 0.832603104317794
29 0.834487704333950 191 0.832127882542743
35 0.834064202223725 383 0.831885281301689

Table E.10: Linearly distributed load: h/L = 0.50
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Mesh Alpha Mesh Alpha
5 0.812608349026056 41 0.812379336449734
11 0.816627085297122 47 0.812066959650932
17 0.815179297442153 53 0.811818795514927
23 0.814082748445449 95 0.810915896641854
29 0.813325818688778 191 0.810308746327780
35 0.812783769574460 383 0.809999946268061

Table E.11: Linearly distributed load: h/L = 1.00

E.4 Fixed-pinned beam

Mesh Alpha Mesh Alpha
5 0.633414596283830 41 0.662809138555847
11 0.650508025770618 47 0.663318831311630
17 0.656800835009432 53 0.663709551121989
23 0.659565897853724 95 0.665039148077435
29 0.661120301876204 191 0.665863854105215
35 0.662116372762056 383 0.666271303816654

Table E.12: Force load

Mesh Alpha Mesh Alpha
5 0.588530667935364 41 0.599742143907526
11 0.606168164415925 47 0.599169816777263
17 0.604535846110522 53 0.598712093375434
23 0.602758370125353 95 0.597027524796216
29 0.601444257525700 191 0.595880158791093
35 0.600475943184836 383 0.595294333099830

Table E.13: Uniformly distributed load: h/L = 0.10

Mesh Alpha Mesh Alpha
5 0.549286408764475 41 0.562577864595384
11 0.569594915918963 47 0.561941716884377
17 0.567871921699315 53 0.561432602144949
23 0.565919281990305 95 0.559556609262005
29 0.564466279965028 191 0.558276848924293
35 0.563392689189962 383 0.557628532728131

Table E.14: Uniformly distributed load: h/L = 0.50
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Mesh Alpha Mesh Alpha
5 0.473930326500457 41 0.491299892006021
11 0.499439523812470 47 0.490541467022039
17 0.497550055351868 53 0.489933862895325
23 0.495263543939139 95 0.487690854330726
29 0.493544998874189 191 0.486156971449634
35 0.492269899726791 383 0.485395934750166

Table E.15: Uniformly distributed load: h/L = 1.00

Mesh Alpha Mesh Alpha
5 0.632453306615516 41 0.646138200106682
11 0.651626784129163 47 0.645607882510319
17 0.650446342157357 53 0.645182321519640
23 0.648888530685320 95 0.643606600030137
29 0.647701246403728 191 0.642526080159721
35 0.646814882950922 383 0.641971261374838

Table E.16: Linearly distributed load: h/L = 0.10

Mesh Alpha Mesh Alpha
5 0.588066859793833 41 0.603766059616003
11 0.609946108348508 47 0.603165335193207
17 0.608636830173392 53 0.602683185692452
23 0.606878581330575 95 0.600897362768277
29 0.605535708247047 191 0.599672120097625
35 0.604532374275632 383 0.599047697176292

Table E.17: Linearly distributed load: h/L = 0.50

Mesh Alpha Mesh Alpha
5 0.501611729984496 41 0.520992868539790
11 0.528531795156330 47 0.520256722766794
17 0.526954605245675 53 0.519665829166083
23 0.524805032412456 95 0.517476935476974
29 0.523160863467894 191 0.515974399414162
35 0.521931806383839 383 0.515224051030151

Table E.18: Linearly distributed load: h/L = 1.00
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