
UNIVERSIDADE FEDERAL DE MINAS GERAIS

SCHOOL OF ENGINEERING

POSTGRADUATE PROGRAM IN STRUCTURAL ENGINEERING

Lucas de Siqueira Paes Teixeira

COMPARATIVE STUDY OF STRATEGIES FOR CREEP

SIMULATION IN THE CALCULATION OF SECOND-ORDER

EFFECTS IN REINFORCED CONCRETE COLUMNS

Belo Horizonte/MG

2025



Lucas de Siqueira Paes Teixeira

COMPARATIVE STUDY OF STRATEGIES FOR CREEP

SIMULATION IN THE CALCULATION OF SECOND-ORDER

EFFECTS IN REINFORCED CONCRETE COLUMNS

Thesis submitted to the Postgraduate Program
in Structural Engineering at the School of
Engineering of the Universidade Federal
de Minas Gerais (Federal University of
Minas Gerais), in a partial fulfillment of the
requirements for the degree of “Master in
Structural Engineering”.

Advisor: Prof. Dr. Leandro Lopes da Silva

Co-advisor: Prof. Dr. Juliano dos Santos
Becho

Belo Horizonte/MG

2025





UNIVERSIDADE FEDERAL DE MINAS GERAIS

ATA DA DEFESA DE DISSERTAÇÃO DE MESTRADO EM ENGENHARIA DE
ESTRUTURAS Nº: 413 DO ALUNO LUCAS DE SIQUEIRA PAES TEIXEIRA

Às 14:00 horas do dia 23 do mês de maio de 2025, reuniu-se em ambiente híbrido, na Escola de
Engenharia da Universidade Federal de Minas Gerais - UFMG, a Comissão Examinadora indicada
pelo Colegiado do Programa em 25 de abril de 2025, para julgar a defesa da Dissertação de
Mestrado intitulada "Estudo Comparativo de Diferentes Estratégias para Simulação da
Fluência no Cálculo dos Efeitos de Segunda Ordem em Pilares de Concreto Armado", cuja
aprovação é um dos requisitos para a obtenção do Grau de MESTRE EM ENGENHARIA DE
ESTRUTURAS na área de ESTRUTURAS.
 
Abrindo a sessão, o Presidente da Comissão, Prof. Dr. Leandro Lopes da Silva , após dar a
conhecer aos presentes o teor das Normas Regulamentares passou a palavra ao candidato para
apresentação de seu trabalho. Seguiu-se a arguição pelos examinadores, com a respectiva
defesa do candidato. Logo após, a Comissão se reuniu, sem a presença do candidato e do
público, para julgamento e expedição do resultado final. Foram atribuídas as seguintes indicações:
 
( X ) Aprovado

(    ) Reprovado

 
O resultado final foi comunicado publicamente ao aluno pelo Presidente da Comissão.
 
Nada mais havendo a tratar, o Presidente encerrou a reunião e lavrou a presente ata, que será assinada por
todos os membros participantes da Comissão Examinadora e pelo aluno.

Comissão Examinadora:

Prof. Dr. Leandro Lopes da Silva - DEES - UFMG (Orientador)
Prof. Dr. Juliano dos Santos Becho - DEES - UFMG
Prof. Dr. Marcelo Greco - DEES - UFMG
Prof. Dr. Roberto Caldas de Andrade Pinto - UFSC
 
A aprovação do aluno na Defesa da Dissertação de Mestrado não significa que o mesmo tenha cumprido
todos os requisitos necessários para obtenção do DIPLOMA de Mestre em Engenharia de Estruturas.
 
Para ciência do aluno:
 
1. Atesto que as alterações solicitadas pela Comissão Examinadora serão cumpridas no prazo determinado
pela banca de ATÉ 60 dias corridos.
 
2. Atesto estar ciente que a versão corrigida da dissertação deverá ser entregue ao Repositório Institucional

Ata de defesa de Dissertação/Tese 4213574         SEI 23072.230153/2025-06 / pg. 1



da UFMG, conforme orientações disponíveis em: https://repositorio.ufmg.br/custom/instructions.jsp
 
 
Ciente: Lucas de Siqueira Paes Teixeira
 Aluno

 
 
Belo Horizonte, 23 de maio de 2025
 
Este documento não terá validade sem a assinatura do Coordenador do Programa de Pós-Graduação.
Após a Homologação da Defesa pelo Colegiado do Programa, este documento será assinado pela
Coordenação e disponibilizado ao aluno.

Documento assinado eletronicamente por Leandro Lopes da Silva, Professor do
Magistério Superior, em 23/05/2025, às 16:12, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Juliano dos Santos Becho, Professor do
Magistério Superior, em 23/05/2025, às 16:14, conforme horário oficial de Brasília, com
fundamento no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Marcelo Greco, Professor do Magistério
Superior, em 23/05/2025, às 16:14, conforme horário oficial de Brasília, com fundamento no
art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Roberto Caldas de Andrade Pinto, Usuário
Externo, em 26/05/2025, às 08:45, conforme horário oficial de Brasília, com fundamento no
art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Felicio Bruzzi Barros, Subcoordenador(a), em
26/05/2025, às 10:18, conforme horário oficial de Brasília, com fundamento no art. 5º do
Decreto nº 10.543, de 13 de novembro de 2020.

A autenticidade deste documento pode ser conferida no site
https://sei.ufmg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador
4213574 e o código CRC 26854E06.

 

Referência: Processo nº 23072.230153/2025-06 SEI nº 4213574

Ata de defesa de Dissertação/Tese 4213574         SEI 23072.230153/2025-06 / pg. 2



ACKNOWLEDGMENTS

To my mother, for her unconditional love, affection, guidance, motivation, unwavering support,

and for always believing in me.

To my girlfriend, for her care, encouragement, and for sharing these days with me.

To my advisor, Prof. Dr. Leandro Lopes da Silva, for his guidance, patience, availability,

and invaluable insights. His expertise and encouragement were fundamental in shaping this

research.

To my co-advisor, Prof. Dr. Juliano dos Santos Becho, for his patience and for providing the

foundation for my understanding of the creep phenomenon.

To my therapist, Victor Polignano, for his guidance, balance, an invaluable support throughout

this journey.

To my colleagues and friends in the Program, who shared this journey with me. To the DEES-

Conectados group, for the moments of fun that made this path lighter.

To my friends outside the Program, whom I know I can always count on.

To the professors and staff of DEES and PROPEEs, for their excellence in academic and

administrative services.

To the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for its financial

support.



"And in the end, the love you take

is equal to the love you make."

(Lennon & McCartney)



RESUMO

TEIXEIRA, L. S. P. Estudo comparativo de diferentes estratégias para simulação da

fluência no cálculo dos efeitos de segunda ordem em pilares de concreto armado. 2025.
Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia de Estruturas,
Universidade Federal de Minas Gerais, Minas Gerais, 165 p., 2025.

Este estudo analisa diferentes estratégias para a simulação da fluência no cálculo dos efeitos
de segunda ordem em pilares de concreto armado, visando comparar diferentes métodos com-
putacionais e avaliar seu desempenho na previsão de momentos ao longo do tempo. Diversas
abordagens foram avaliadas, desde metodologias simplificadas até mais avançadas. O Método
do Pilar-Padrão com Rigidez Aproximada e Excentricidade Adicional mostrou-se aplicável para
cálculos simplificados, embora conservador. O Método do Pilar-Padrão acoplado a diagramas
momento-normal-curvatura, incorporando os efeitos da fluência via deslocamento da curva
tensão-deformação, mostrou-se uma alternativa intermediária eficiente, mas apresentou incon-
sistências em casos específicos. O Método Semi-Geral acoplado a diagramas momento-normal-
curvatura, apesar de utilizar a mesma consideração para a fluência, revelou-se ineficiente e
inviável para aplicações de projeto, por combinar resultados excessivamente conservadores
com maior custo computacional. O Método Geral acoplado a diagramas momento-normal-
curvatura, considerando os efeitos da fluência via deslocamento da curva tensão-deformação,
representou a não-linearidade física e geométrica com alta precisão, mas exigiu implementação
computacional. Uma variação desse método, incorporando o modelo reológico de Kelvin-Voigt,
apresentou resultados promissores, porém necessita de melhor calibração dos parâmetros. Por
fim, o Método Geral acoplado a diagramas momento-normal-curvatura, baseado na nova
proposição de diagrama tensão-deformação para análise não linear introduzida na NBR 6118
(2023), resultou em valores de momentos significativamente menores, exigindo investigação
adicional. Os resultados confirmam que maiores índices de esbeltez levam a efeitos da fluência
mais pronunciados, especialmente quando os momentos tracionam a mesma face. Além disso,
foram identificadas discrepâncias entre a NBR 6118 (2023) e normas internacionais, destacando
a necessidade de ajustes na norma brasileira. Pesquisas futuras devem aprimorar os modelos
numéricos e validá-los por meio de ensaios experimentais para aumentar sua confiabilidade em
aplicações práticas.

Palavras-chave: fluência; efeitos de segunda ordem; pilares de concreto armado; análise não-
linear; métodos computacionais.



ABSTRACT

TEIXEIRA, L. S. P. Comparative study of strategies for creep simulation of second-order

effects in reinforced concrete columns. 2025. Master’s Thesis - Postgraduate Program in
Structural Engineering, Federal University of Minas Gerais, Minas Gerais, 165 p., 2025.

This study analyzes different strategies for creep simulation in the calculation of second-
order effects in reinforced concrete columns, aiming to compare computational methods and
assess their performance in predicting long-term moments. Several approaches were evalu-
ated, ranging from simplified to advanced methodologies. The Standard Column Method with
Approximate Stiffness and Additional Eccentricity proved applicable for quick calculation,
though conservative. The Standard Column Method coupled with moment-axial force-curvature
diagrams, incorporating creep effects via the extended stress-strain curve, emerged as an
efficient intermediate alternative, but showed inconsistencies in specific cases. The Semi-
General Method coupled with moment-axial force-curvature diagrams, despite using the same
creep consideration, proved inefficient and impractical for design applications, as it combines
overly conservative results with higher computational cost. The General Method coupled with
moment-axial force-curvature diagrams, considering creep effects through the extended stress-
strain curve, fully accounted for physical and geometric nonlinearities with high precision but
requires computational implementation. A variation of this method, incorporating the Kelvin-
Voigt rheological model, showed promising results but requires further parameter calibration.
Finally, the General Method coupled with moment-axial force-curvature diagrams, based on
the new stress-strain diagram for nonlinear analysis introduced by NBR 6118 (2023), produced
significantly lower moment values, requiring further investigation. The results confirm that
higher slenderness ratios lead to more pronounced creep effects, particularly when moments
induce tension on the same face. Additionally, discrepancies between NBR 6118 (2023) and
updated international standards highlight the need for adjustments in the Brazilian code. Further
research should refine numerical models and validate them against experimental results to
enhance their reliability in practical applications.

Keywords: creep; second-order effects; reinforced concrete columns; nonlinear analysis; com-
putational Methods.
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εcu Ultimate compressive strain in concrete

εs Strain in passive reinforcement steel

εsu Reinforcement steel strain at failure

εKV Creep strain in the most compressed edge of concrete calculated by the

Kelvin-Voigt rheological model

εyd Design yield strain of reinforcement steel

ε2u Specific strain at a concrete fiber located at a distance a2u from the most

compressed edge of the section

ϕ Creep coefficient

ϕa Rapid creep coefficient

ϕ f Irreversible delayed creep coefficient

ϕ f ∞ Final value of the irreversible delayed creep coefficient

ϕd Reversible delayed creep coefficient



ϕd∞ Final value of the reversible delayed creep coefficient

ϕe f Effective creep coefficient

ϕKV Creep coefficient calculated by the Kelvin-Voigt rheological model

ϕ1c Coefficient dependent on ambient relative humidity and concrete consis-

tency

ϕ2c Coefficient dependent on the fictitious thickness of the element

η Viscosity coefficient

ηc Factor accounting for the brittleness of concrete

∆tef,i Period during which the average daily ambient temperature can be assumed

constant
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1 INTRODUCTION

The design of reinforced concrete structures begins with integrating architectural considera-

tions and structural conception. Following this, the conceived structure undergoes Structural

Analysis, a critical phase involving the idealization of the structure’s behavior. This process

includes the evaluation of stresses, strains, and displacements within the structure, aiming to

determine the internal forces and reactions, as well as the resulting deformations (MARTHA,

2017). Structural analysis serves as a foundation for designing safe and functional components

that meet the demands of their intended use.

Traditionally, simplified calculations and manual methods employ Linear Structural Analysis,

which assumes an undeformed configuration and linear material behavior governed by Hooke’s

Law. This approach neglects material degradation and real equilibrium effects in the deformed

configuration. While practical for approximations, this linear approach does not capture the full

complexity of structural behavior.

In contrast, Nonlinear Structural Analysis encompasses Physical and Geometrical Nonlinear-

ities, enabling a more realistic representation of structural behavior. Historically, the com-

putational effort for nonlinear analyses posed significant challenges. However, advances in

computing power, structural modeling, and the widespread availability of engineering software

have made such analyses increasingly feasible. Kimura (2018) observes that nearly all modern

reinforced concrete building designs account for some form of nonlinearity through simplified

or refined approaches.

Physical Nonlinearity refers to the non-linear material behavior of structural components. For

reinforced concrete, material properties evolve under applied loads, leading to a nonlinear

response. This behavior is primarily attributed to the heterogeneity and cracking of concrete. On

the other hand, Geometrical Nonlinearity arises from deformations in the geometry of structural

elements under load. This is particularly relevant in Second-Order Analysis, where the structure

is analyzed in its deformed state, capturing the Second-Order Effects.

According to Kimura (2018), considering physical and geometrical nonlinearities significantly

influences the calculation of displacements and internal forces in a structure. The NBR 6118

(2023) standard mandates the consideration of physical nonlinearity in reinforced concrete

structures, both in global analysis and in the analysis of column-type elements. Analyzing

elements such as reinforced concrete columns becomes particularly complex in this context.

Due to their predominantly vertical structure, these components are susceptible to instabil-

ity phenomena, which result in significant geometrical nonlinearity in addition to physical
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nonlinearity (CASAGRANDE, 2016). The significance of considering these nonlinearities is

magnified in modern structures characterized by increased heights. Moreover, time-dependent

deformations such as Shrinkage and Creep become more pronounced.

Shrinkage is defined as the phenomenon of deformations in concrete caused by the loss of

chemically unbound water during its production process. When water migrates out of a porous,

non-rigid body, contraction occurs. In concrete, this type of water movement can be observed

from its fresh state to more advanced ages (NEVILLE, 2016).

Creep, defined as the progressive deformation of concrete under sustained load, is influenced

by environmental conditions, material properties, and structural dimensions (SOUZA, 2012).

While creep imparts ductility to concrete, it also introduces challenges such as excessive

deflections, stability issues, and stress redistribution, especially in tall columns (BALLIM;

FANOURAKIS, 2003).

Despite the extensive literature on creep mechanics, practical methodologies for its incorpora-

tion in structural design remain underexplored. Simplified methods, such as the Approximate

Method of Additional Eccentricity (ecc), dominate practical applications due to their relative

simplicity. More refined approaches include using an extended stress-strain curve or rheological

models (e.g., Kelvin-Voigt). These approaches focus on incorporating creep effects into the

design process.

In parallel, the calculation of second-order effects typically relies on simplified methodologies,

such as the Standard Column Method, which identifies the most stressed section of the column

and, through simplifications, establishes expressions for calculating second-order effects. Con-

versely, the Semi-General Method and General Method provide a more rigorous representation

of geometrical and physical nonlinearities.

Nevertheless, combining methods for creep simulation with second-order analysis significantly

increases computational complexity and modeling challenges, underscoring the need for more

integrated and efficient design solutions.

This dissertation aims to conduct a comparative study of various strategies for simulating

creep in the calculation of second-order effects in reinforced concrete columns. By examining

methods ranging from simplified approaches to advanced mathematical models, this research

seeks to address gaps in the current practice, providing insights into their applicability and

limitations. The methodologies evaluated include:

• Standard Column Method with Approximate Stiffness κ and Additional Eccentricity (ecc);

• Standard Column Method coupled with M, N, 1/r diagrams, considering creep effects
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through the extended stress-strain curve;

• Semi-General Method coupled with M, N, 1/r diagrams, considering creep effects through

the extended stress-strain curve;

• General Method coupled with M, N, 1/r diagrams, considering creep effects through the

extended stress-strain curve;

• General Method coupled with M, N, 1/r diagrams, considering creep effects through the

extended stress-strain curve based on the Kelvin-Voigt rheological model;

• General Method coupled with M, N, 1/r diagrams, based on the new stress-strain diagram

for nonlinear analysis introduced in NBR 6118 (2023) and considering creep effects

through the extended stress-strain curve.

1.1 JUSTIFICATION

The accurate design of reinforced concrete structures is a cornerstone of modern engineering,

where safety, functionality, and cost-effectiveness are critical. Among the challenges in struc-

tural analysis, creep behavior in slender columns has attracted increasing attention due to its

significant impact on structural performance over time. The time-dependent nature of creep

alters internal force distributions and amplifies second-order effects, particularly in tall and

slender columns where geometric and material nonlinearities are pronounced.

According to Casagrande (2016), and as confirmed by this study, the extensive literature on

creep primarily addresses the fundamental mechanisms and their influence on concrete from

a material perspective. However, studies on practical methodologies applicable to structural

design remain scarce. This gap highlights the need for research that bridges the divide between

theoretical studies and actionable design tools.

While many simplified approaches exist for structural analysis, they often fail to capture

the complexities of creep behavior. Current design practices predominantly rely on methods

such as the Approximate Method of Additional Eccentricity and Standard Column Method,

which, despite their simplicity, involve assumptions that may limit their accuracy. Alternatively,

more advanced approaches, like the General Method, or methods incorporating rheological

models (e.g., Kelvin-Voigt), offer a more precise understanding but demand more significant

computational resources and expertise.

A comprehensive comparative study of these methodologies is essential to address critical gaps

in design practices:

1. The need to balance computational simplicity with the accuracy required for increasingly

slender and complex structural elements.

2. The lack of guidelines for effectively integrating advanced creep simulation methods into
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routine design.

3. The implications of inaccurately modeled creep behavior on the structure’s safety, ser-

viceability, and long-term performance.

The study’s significance extends to both academic and professional domains. Academically,

it advances the understanding of time-dependent behaviors in reinforced concrete columns,

particularly the effects of creep. Professionally, it provides insights that could refine current

codes of practice, such as the NBR 6118 (2023), and enhance the design of more efficient and

sustainable structures.

Thus, this research contributes to bridging the gap between simplified and advanced design

methodologies, fostering the development of practical solutions that align with the demands of

modern structural engineering.

1.2 OBJECTIVES

This work conducts a comparative study of strategies for simulating creep in the calculation of

second-order effects in reinforced concrete columns, aiming to compare computational methods

and assess their accuracy in predicting long-term moments.

To support and achieve the proposed general objective, the following specific objectives will be

pursued:

• Conduct a review of normative strategies and those described in the literature for simu-

lating creep in reinforced concrete columns;

• Develop algorithms for implementing the different methods identified for simulating

creep in the calculation of second-order effects in reinforced concrete columns;

• Propose models and simulations to serve as subjects of study;

• Establish metrics and compare results obtained through the different methods and struc-

tural models evaluated;

• Assess the applicability of simplified parameters proposed in standards and literature,

discussing their limitations and their impact on creep simulation;

• If necessary, propose practical solutions to achieve more reliable results in the creep

analysis in reinforced concrete columns.

1.3 DISSERTATION STRUCTURE

Chapter 2 explores the various types of deformation that affect concrete, their classification,

and their significance in structural performance. Additionally, it defines the creep behavior, its

causes, and its effects. Chapter 3 examines the verification and design of reinforced concrete
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columns, focusing on the calculation of second-order effects. It presents the stress-strain

diagrams of materials and the methods used to compute second-order effects. Chapter 4

discusses different strategies for creep simulation found in the literature. Chapter 5 describes

the methodology, detailing the numerical formulation and implementations performed. Chapter

6 presents the results of the numerical examples analyzed and compares the outcomes obtained.

Finally, Chapter 7 provides the conclusions and suggestions for future research.
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2 CONCRETE DEFORMATIONS

Every stress applied to a material results in a corresponding deformation, although deformations

may occur even without external stresses due to environmental conditions. Deformations,

whether immediate or time-dependent, play a critical role in the performance and durability

of concrete structures.

Like many other structural materials, concrete exhibits elastic behavior under certain conditions.

A material is considered perfectly elastic when the strain occurs and disappears immediately

with the application and removal of stress. However, perfect elasticity does not necessarily

imply a linear stress-strain relationship (NEVILLE, 2016). For concrete, this relationship is

typically nonlinear, especially under high-stress levels.

When subjected to sustained loads, concrete undergoes creep, in which strains increase grad-

ually over time. Furthermore, regardless of external forces, concrete experiences shrinkage,

a volumetric contraction caused by drying, or other chemical factors. According to Neville

(2016), the magnitudes of shrinkage and creep are often comparable to the elastic strains ob-

served under typical stress levels. Therefore, all these types of deformations must be considered

in structural analysis to ensure accurate and reliable design.

This chapter explores the various types of deformations affecting concrete, their classification,

and their significance in structural performance. Additionally, it defines shrinkage and the creep

behavior, its causes, and its effects.

2.1 TYPES OF DEFORMATIONS

Like any material, concrete exhibits three fundamental deformation types under applied loads:

elastic, viscous, and plastic. These deformation types can occur independently or in combi-

nations, such as elastoplastic or viscoelastic behavior, and the combinations can be compli-

cated further by factors such as aging, thixotropy, or strain hardening (NEVILLE; DILGER;

BROOKS, 1983).

Elastic deformation represents an immediate and reversible response, which vanishes upon

unloading. For a linear elastic behavior, the stress-strain relationship is described by Hooke’s

Law

σ = Eε. (2.1)
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Viscous deformation, characteristic of ideal fluids, is defined by a strain rate directly propor-

tional to the applied stress. This deformation is irreversible and evolves over time (NEVILLE;

DILGER; BROOKS, 1983).

Plastic deformation results from permanent changes in the internal structure of a solid material.

Unlike elastic deformation, it does not reverse upon unloading, and no proportionality exists be-

tween the applied stress and the resulting strain or strain rate (NEVILLE; DILGER; BROOKS,

1983).

Another type of deformation described in the literature is delayed elasticity. In this case,

the deformation develops at a decreasing rate and is entirely reversible because the energy

responsible for this behavior is stored within the material (NEVILLE; DILGER; BROOKS,

1983).

Regarding the behavior of concrete subjected to sustained loads within the typical range of

working stresses, Hansen (1958 apud NEVILLE; DILGER; BROOKS, 1983, p. 14) categorizes

concrete deformations as shown in Table 2.1.

Table 2.1 – Types of Deformation.

Deformation Instantaneous Time-dependent

Recoverable Elastic Delayed elastic
Irrecoverable Plastic Viscous
Adapted from Neville, Dilger and Brooks (1983).

In this context, creep is a time-dependent and partially reversible phenomenon, often described

as a combination of elastic and viscous deformation (a more detailed discussion on this topic

can be found in Section 2.3).

In addition to deformations resulting from external loads, concrete undergoes drying-induced

contraction, which leads to shrinkage. Thus, the deformations in concrete can be categorized as

shrinkage, thermal deformation, instantaneous deformation, and creep.

2.2 SHRINKAGE

Shrinkage is defined as the phenomenon of concrete deformation caused by the loss of chemi-

cally unbound water during its production process. Contraction occurs when water moves out

of a porous body that is not entirely rigid. In concrete, this water movement is observed from

the fresh state to advanced ages (NEVILLE, 2016).

Plastic shrinkage occurs when water evaporates from the surface of concrete while still in a

plastic state. The intensity of plastic shrinkage depends on the amount of water lost, which, in
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turn, is influenced by factors such as temperature, ambient relative humidity, and wind speed

(NEVILLE, 2016).

Autogenous shrinkage, on the other hand, takes place after the setting process. This type of

shrinkage results from water being withdrawn from the capillary pores due to the hydration of

unhydrated cement within the concrete. This internal contraction of the cementitious system

occurs within the concrete mass. According to Neville (2016), the contraction of the cement

paste is restrained by the rigid skeleton of already-hydrated cement paste and by aggregate

particles, resulting in shrinkage of a considerably smaller magnitude. Thus, as noted by the

author, there is no need to differentiate it from drying shrinkage in concrete.

Drying shrinkage occurs when water exits concrete exposed to unsaturated air. A portion of

this water loss is irreversible and must be distinguished from the reversible movement of water

caused by alternating exposure to dry and wet environments. The volume change in concrete

during drying is not equivalent to the volume of water removed. The loss of free water occurs

initially and causes little to no shrinkage. As drying continues, adsorbed water is removed, and

the volume change in the unrestricted hydrated cement paste is approximately equal to removing

a single molecular layer of water from the surface of all gel particles (NEVILLE, 2016). This

type of shrinkage is one of the primary causes of cracking, which can significantly impact the

durability of concrete (KALINTZIS, 2000 apud KATAOKA, 2010, p. 28).

Factors influencing shrinkage include the water-cement ratio and the content and properties of

the aggregate. Regarding the shrinkage of hydrated cement paste, it increases with a higher

water-cement ratio. This happens because a higher ratio results in more evaporable water in

the paste and facilitates faster water migration toward the element’s surface. However, the most

significant influence comes from the aggregate, which restrains the extent of shrinkage that can

occur (NEVILLE, 2016). Additionally, chemical admixtures can increase or decrease shrinkage,

depending on their specific properties.

2.3 CREEP

Creep is defined as the phenomenon of increasing deformations in concrete over time when

subjected to and induced by constant sustained stress.

In its most general form, the strain-time curve for a material undergoing creep follows the

pattern illustrated in Figure 2.1. This diagram was initially proposed by Thurston (1895 apud

BECHO, 2020, p. 13).

At time zero, the strain is predominantly elastic, although it may include a non-elastic compo-

nent. Subsequently, creep progresses through three distinct stages. During the primary creep
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Figure 2.1 – General form of the strain-time curve for a material subjected to creep.
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Adapted from Neville, Dilger and Brooks (1983).

stage, the creep rate decreases over time. For materials with a minimum creep rate, the

secondary creep stage corresponds to the steady-state creep, characterized by a constant creep

rate (NEVILLE; DILGER; BROOKS, 1983). The tertiary creep stage – which may or may not

occur depending on the type of material, the level of applied stress, and the temperature – is

defined by a progressively increasing creep rate (BECHO, 2020).

Under normal stress levels typical of concrete structures, primary creep cannot be distinguished

from secondary creep, and tertiary creep does not occur (NEVILLE; DILGER; BROOKS,

1983). The strain-time curve for concrete under these conditions is depicted in Figure 2.2.

The curve shown in Figure 2.3 represents the creep behavior of a concrete element under

sustained loading in conditions of 100% relative humidity. Under these conditions, there is

no moisture exchange with the ambient (hygral equilibrium), and creep is referred to as basic

creep (NEVILLE; DILGER; BROOKS, 1983).

Similar to shrinkage, creep is influenced by water loss from the concrete; however, in this

case, the movement of water is induced by the applied constant stress. When an element loses

moisture while under load, creep and shrinkage are assumed to act simultaneously. In this

context, creep is determined as the difference between the total time-dependent strain and the

shrinkage of a similar unloaded element maintained under the same environmental conditions

over the same period. It is important to note that creep and shrinkage are not independent

phenomena; therefore, the superposition principle cannot be applied. Creep resulting from the
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Figure 2.2 – General form of the strain-time curve for concrete subjected to normal levels of
sustained stress.
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Figure 2.3 – Creep behavior of a concrete element loaded under hygroscopic equilibrium with
the environment.
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exposure of concrete structures to drying is referred to as drying creep (OLIVEIRA, 2011).

Figure 2.4 graphically illustrates the different types of strain discussed.

When the sustained load is removed, the strain decreases immediately by an amount equal to

the elastic deformation at the same age, typically smaller than the elastic strain experienced

during loading. This instantaneous recovery is followed by a gradual reduction in strain, known

as creep recovery, as illustrated in Figure 2.5. It is important to note that creep recovery is

incomplete, and creep is not a fully reversible phenomenon. As a result, any period of sustained
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Figure 2.4 – Deformation of a loaded concrete element exposed to drying.
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load, even as short as a single day, leads to a residual strain (NEVILLE, 2016).

Figure 2.5 – Instantaneous and creep recovery.
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Analyzing the curve in Figure 2.5, creep consists of a partially reversible viscoelastic deforma-

tion and an irreversible plastic deformation (NEVILLE, 2016).

In viscoelastic behavior, the solid material exhibits an immediate elastic response under load

and an additional time-dependent elastic response, which is slow and damped (with a decreasing

creep rate) (BECHO, 2020).

Viscoelastic behavior can be either linear or nonlinear with respect to stress. In linear behavior,

the material’s response depends only on time (BECHO, 2020). For concrete, however, the

response depends on both time and the stress level, which is classified as nonlinear behavior.
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2.3.1 Mechanisms of Creep

According to Neville (2016), the mechanisms underlying creep in concrete remain controversial

and uncertain. The author states that creep occurs in the hydrated cement paste and is associated

with the internal movement of adsorbed or intercrystalline water, referred to as internal perco-

lation. However, variations in creep behavior at high temperatures suggest that, under such

conditions, water ceases to influence the process, and the gel itself becomes subject to creep

deformation.

Neville (2016) further explains that because creep occurs in mass concrete, external percolation

of water is not essential for the progression of basic creep, although it may play a role in

drying creep. Internal water percolation from adsorbed layers to voids within the material is

still possible. Even under immersion in water, capillary voids remain unfilled due to hydrostatic

pressure, allowing internal percolation to occur under various storage conditions. An indirect

indication of the role of these voids is the relationship between creep and the strength of the

hydrated cement paste. This suggests that creep may be a function of the relative amount of

voids, particularly gel pores, which appear to control strength and creep. In this case, voids

might be connected to the internal percolation process. The water-cement ratio and the degree

of hydration inherently influence the volume of voids (NEVILLE, 2016).

The strain-time curve reveals a decreasing slope over time, indicating a potential change in the

creep mechanism. Neville (2016) hypothesizes that after several years under sustained load,

the thickness of adsorbed water layers may become so reduced that no further reduction occurs

under the same stress level. Nevertheless, creep has been observed to persist even after 30 years.

This long-term behavior suggests that the slow component of creep may arise from causes other

than percolation. However, deformation requires evaporable water, pointing to mechanisms

such as viscous flow or slippage between gel particles. These mechanisms are consistent with

the temperature dependence of creep and also explain its largely irreversible nature.

Rüsch (1981 apud KATAOKA, 2010, p. 29) supports the idea that creep in concrete should

be attributed to water migration induced by external loads. This includes the movement of

adsorbed water within the gel structure and the effect of capillary stresses. Under load, the

stress is distributed through both the solid skeleton and the water present in pores.

In addition, Mehta and Monteiro (2008) state that, although other factors also contribute to

creep in concrete, the loss of physically adsorbed water under sustained pressure appears to be

the most significant cause, highlighting the critical role of water in the creep process.

Neville (2016) also states that, in general, the role of microcracking in creep is minimal and

is likely limited to concrete loaded at very early ages or under high stress-strength ratios
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exceeding 0.6. Conversely, Mehta and Monteiro (2008) emphasize that the nonlinear stress-

strain relationship in concrete, particularly under stress levels exceeding 30 to 40% of its

ultimate stress, demonstrates the influence of microcracks in the interfacial transition zone

between the aggregate and the cement paste to the creep phenomenon. Additionally, they

highlight that the increased creep deformation observed when concrete is simultaneously

exposed to drying conditions is caused by additional microcracking in the interfacial transition

zone due to drying shrinkage.

Finally, Mehta and Monteiro (2008) also discuss the role of delayed elastic response in creep.

According to the authors, since the cement paste and aggregate are bonded, the stress in the

cement paste gradually decreases as the load is progressively transferred to the aggregate.

With this transfer load, the aggregate undergoes elastic deformation, further contributing to the

overall creep behavior. However, according to Neville (2016), the role of aggregates is primarily

to restrict deformation, while the hydrated cement paste undergoes creep.

2.3.2 Factors Influencing Creep

In practice, creep in concrete is influenced by various factors that interact simultaneously.

According to Mehta and Monteiro (2008), the interrelationships among these factors are highly

complex and not easily understood. However, specific influences are more evident and will be

discussed individually in the following sections.

2.3.2.1 Influence of Aggregates

Neville (2016) emphasizes that the role of aggregates in concrete is primarily to restrict

deformation, as common aggregates do not undergo creep under the stresses present in concrete.

Thus, creep is a function of the volumetric content of cement paste in the concrete, although

this relationship is not linear. Figure 2.6 illustrates the relationship between concrete creep and

aggregate content, where g represents the volumetric aggregate content and c denotes the creep

of concrete.

The grading, maximum size, and shape of aggregate have been identified as factors influencing

creep. However, their primary influence lies in their direct or indirect effect on the aggregate

content (NEVILLE, 1964 apud NEVILLE, 2016, p. 471).

Specific physical properties of aggregates also impact concrete creep, with the modulus of

elasticity playing a particularly significant role. Higher modulus provides greater restraint to

the potential creep of the hydrated cement paste. Aggregate porosity also influences creep,

possibly because highly porous aggregates typically have a lower modulus of elasticity or

because porosity directly affects moisture movement within the concrete (NEVILLE, 2016).
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Figure 2.6 – Relation between creep c after 28 days under load and aggregate content g for wet-
stored specimens loaded at the age of 14 days to a stress-strength ratio of 0.50.

Source: Neville (1964 apud NEVILLE, 2016, p. 471).

The graph in Figure 2.7 shows the influence of different aggregate types on creep magnitude.

After 20 years of storage at 50% relative humidity, concrete made with sandstone exhibited

creep twice as high as that of concrete made with limestone.

Figure 2.7 – Creep of concretes of fixer proportions but made with different aggregates, loaded
at the age of 28 days, and stored in air at 21 °C and relative humidity of 50%.

Source: Troxell, Raphael and Davis (1958 apud NEVILLE, 2011).

An even more significant variation in deformation was reported by Rüsch, Kordina and Hilsdorf



Chapter 2. CONCRETE DEFORMATIONS 36

(1963 apud NEVILLE, 2016, p.473). After 18 months under sustained loading at 65% relative

humidity, the maximum creep was five times greater than the minimum value. The aggregates,

ranked in ascending order of creep, were basalt; quartz; gravel, marble and granite; and

sandstone.

According to Neville (2016), there is no fundamental difference in creep behavior between

normal-weight and lightweight aggregates. The higher creep observed in concretes made

with lightweight aggregates is primarily due to these aggregates’ lower modulus of elasticity.

Generally, structural quality lightweight aggregate concrete’s creep is comparable to concrete

made with conventional aggregates. Furthermore, since lightweight aggregate concrete typically

exhibits more elastic deformation than regular concrete, the ratio of creep to elastic deformation

is smaller (NEVILLE, 1970 apud NEVILLE, 2016, p. 473).

2.3.2.2 Influence of Stress and Strength

As discussed by Neville (1960 apud NEVILLE, 2016, p. 473), creep is directly proportional to

the applied stress within the range of stresses typically encountered in service structures. This

proportionality is assumed in most creep models. Similarly, creep recovery is also proportional

to the applied stress (YUE; TAERWE, 1992 apud NEVILLE, 2016, p. 473).

Concrete strength plays a significant role in influencing creep behavior. Within a broad range,

creep is inversely proportional to the strength of the concrete at the time of the application of the

load (NEVILLE, 1959a apud NEVILLE, 2016, p. 473). As illustrated in Figure 2.8, creep can be

expressed as a linear function of the stress-strength ratio. In the analysis of Neville (2016), while

acknowledging the importance of the water-cement ratio, the author emphasizes that for the

same stress-strength ratio, creep is mainly independent of the water-cement ratio. Additionally,

he disregards age as an isolated factor, highlighting instead its impact on increasing the strength

of concrete over time.

2.3.2.3 Influence of Properties of Cement

According to Neville (2016), the type of cement influences creep primarily by affecting the

strength of concrete when the load is applied. Therefore, any comparison of creep in concrete

produced with different types of cement must account for how the cement type impacts

the concrete’s strength at the moment of loading. Based on this principle, concretes made

with various types of Portland cement or high-alumina cement exhibit similar creep behavior

(NEVILLE; KENINGTON, 1960 apud NEVILLE, 2016, p.475 and NEVILLE, 1958 apud

NEVILLE, 2016, p.475), although the rate of strength development plays a role, as described

below.

The fineness of cement influences early-age strength development and, consequently, impacts
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Figure 2.8 – Creep of mortar specimens cured and stored continuously at different humidities.

Source: Neville (1959b apud NEVILLE, 2011).

creep. However, fineness itself does not appear to be a direct factor in creep (NEVILLE, 2016).

The change in concrete strength under sustained load is crucial to evaluating the statement that

the type of cement does not significantly influence creep. For the same stress-strength ratio at

the time of loading, creep is smaller when there is a more significant relative increase in strength

after the load is applied (NEVILLE; STAUNTON; BONN, 1966 apud NEVILLE, 2016, p. 475).

According to the authors, for constant applied stress at an early loading age, creep increases in

the following order: rapid-hardening cement, ordinary Portland cement, and low-heat cement.

Similarly, Mehta and Monteiro (2008), argue that when a specific aggregate and mix design are

used, the type of cement can influence concrete strength at the moment of loading, affecting

creep. They note that when concrete is loaded at early ages, mixes made with ordinary Portland

cement typically show higher creep than those containing high-early-strength cement.

It is important to emphasize that the rate of strength gain significantly affects creep. Different

cementitious materials, with varying hydration rates and strength development characteristics

while the concrete is under load, produce distinct impacts on creep behavior (NEVILLE, 2016).

Finally, concrete made with expansive cement exhibits more creep than that produced with

Portland cement alone (RUSSELL, 1978 apud NEVILLE, 2016, p. 476).
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2.3.2.4 Influence of Ambient Relative Humidity

As noted by Neville (2016), the relative humidity of the air is among the most significant

external factors affecting creep. Generally, lower relative humidity results in higher creep

for a given concrete. This relationship is illustrated in Figure 2.9, which shows the impact

of relative humidity on creep for specimens cured at 100% and subsequently exposed to

different conditions. Under these conditions, significant variations in shrinkage are observed

among the specimens during the early stages following the application of sustained loads. The

corresponding creep rates also differ during this period but tend to converge at later ages.

Figure 2.9 – Creep of concrete cured in fog for 28 days, then loaded and stored at different
relative humidities.

Source: Troxell, Raphael and Davis (1958 apud NEVILLE, 2011).

Drying under load enhances the creep of concrete, resulting in what is referred to as additional

drying creep. The effect of relative humidity is significantly reduced or absent in specimens

before being subjected to loading (NEVILLE, 1959b apud NEVILLE, 2016, p. 478). Therefore,

it is not the relative humidity itself that directly influences creep but rather the drying process,

which leads to drying creep.

It is also worth noting that concretes with higher shrinkage tend to exhibit higher creep

(L’HERMITE, 1960 apud NEVILLE, 2016, p. 478). This correlation does not imply that the two

phenomena share the exact cause but rather that they may be linked to similar characteristics of

the hydrated cement paste structure.

2.3.2.5 Influence of the Geometry of the Concrete Element

According to Mehta and Monteiro (2008), the resistance to water transport from the interior

of the concrete to the atmosphere controls the rate of water loss, as the distance traveled

by the expelled water during creep plays a critical role. Similarly, Neville (2016) states that
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creep decreases as the size of the concrete element increases since drying conditions are more

pronounced at the surface than within the element’s interior.

To simplify the representation of size and shape parameters, it is helpful to define a single

quantity expressed as the fictitious thickness hfic, which is calculated as the cross-sectional area

divided by half the perimeter exposed to the atmosphere

hfic = 2Ac/u. (2.2)

In general, creep is reduced as the fictitious thickness increases. This relationship is evident

from the curves shown in Figure 2.10, where it can also be observed that the shape of the

element has a relatively minor influence on creep behavior.

Figure 2.10 – Relation between ratio of creep to elastic strain and volume-surface ratio.

Source: Hansen and Mattock (1966 apud NEVILLE, 2011).

2.3.2.6 Other Influences

According to Mehta and Monteiro (2008), the curing conditions of a concrete element can

significantly impact creep deformations, making them considerably different in practice com-

pared to laboratory tests conducted under constant humidity. Drying cycles can intensify

microcracking in the interfacial transition zone between the aggregate and the cement paste,

thereby increasing creep. For the same reason, it is often observed that fluctuations in ambient
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humidity between two limits result in more creep than under constant humidity within the same

range.

Mehta and Monteiro (2008) also point out that temperature can have two contrasting effects

on creep. Suppose a concrete element is exposed to elevated temperatures as part of the curing

process before loading. In that case, its strength will increase, reducing creep deformations

compared to similar concrete stored at lower temperatures. Conversely, exposure to high

temperatures during the loading period can increase creep.

2.3.3 Effects of Creep

Creep influences strains, displacements, and stress distribution, but these effects vary depending

on the structure being analyzed (NEVILLE, 1957 apud NEVILLE, 2016, p. 492).

Creep in plain concrete does not inherently impact its strength. However, under extremely high-

stress levels, creep can accelerate the attainment of the ultimate strain that leads to failure. This

phenomenon occurs only when the sustained load exceeds 85 to 90% of the static ultimate load

applied rapidly (NEVILLE, 1959a apud NEVILLE, 2016, p. 492).

According to Ballim and Fanourakis (2003), creep in concrete exhibits both advantageous and

disadvantageous aspects. It is beneficial because it imparts some ductility to the material and

relieves stress from shrinkage-induced strain, thermal variations, or foundation movements.

In all concrete structures, creep alleviates internal stresses caused by non-uniform shrinkage,

which helps to minimize cracking (NEVILLE, 2016).

On the other hand, creep often leads to excessive deflections in service conditions, potentially

resulting in structural instability, cracking, significant loss of straightness in tall columns, and

loss of prestress (BALLIM; FANOURAKIS, 2003).

In reinforced concrete columns, creep causes a load transfer from the concrete to the rein-

forcement, which can lead to the yielding of the reinforcement even under low stress levels. In

eccentrically loaded columns, creep increases displacements, potentially leading to the ultimate

limit state of instability. Furthermore, creep and shrinkage can cause differential shortening

between columns (CARREIRA; BURG, 2000 apud OLIVEIRA, 2011, p. 30).
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3 VERIFICATION AND DESIGN OF COLUMNS

According to NBR 6118 (2023), Columns are linear structural elements with a straight axis,

typically oriented vertically, where compressive axial forces predominate. These elements

play a crucial structural role as they transfer loads from beams and slabs to the foundations.

Consequently, columns are generally subjected to combined axial forces (compression) and

bending moments. Bending is classified as uniaxial when the moment acts along a single

principal axis of the cross-section or biaxial if the moment has components along both principal

axes. As stated by Casagrande (2016), the design of columns is a complex task due to their

susceptibility to instability, cumulative second-order effects, and creep.

This chapter explores the verification and design of reinforced concrete columns, focusing on

calculating second-order effects. It begins by presenting the stress-strain diagrams of concrete

and steel, which provide the foundation for understanding the nonlinear behavior of these

columns. Following this, the concept of second-order effects is introduced, and the slenderness

ratio and the limiting slenderness ratio are discussed, as well as how these parameters are used

to classify columns. Finally, the methods for calculating second-order effects are detailed, from

simplified to advanced approaches.

3.1 MECHANICAL PROPERTIES OF REINFORCED CONCRETE

Understanding the mechanical properties of the materials is essential for analyzing and de-

signing reinforced concrete structures. These properties describe the material’s behavior under

various loading conditions and are critical for predicting the performance of structural ele-

ments. This session focuses on the stress-strain relationships of concrete and steel, laying the

groundwork for understanding material behavior under applied loads and supporting subsequent

analyses and design methodologies.

3.1.1 Stress-Strain Diagram of Concrete

The stress-strain diagram of concrete illustrates its behavior under loading. In this work, the

diagram for compression is emphasized, as the tensile contribution of concrete is typically ne-

glected. This analysis focuses on the material’s immediate response to applied loads, excluding

time-dependent effects such as creep and shrinkage. The stress-strain relationship of concrete is

nonlinear and varies with the material’s strength class.

The idealized stress-strain diagram illustrated in Figure 3.1 can be used for analyses in the

ultimate limit state.
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Figure 3.1 – Idealized Stress-Strain Diagram.
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Therefore, according to the figure, the following expression describes the stress-strain relation-

ship

σc = 0.85ηc fcd

[

1−
(

1− εc

εc2

)n]

for 0 f εc f εc2,

σc = 0.85ηc fcd for εc2 f εc f εcu,

(3.1)

where

σc is the compressive stress in concrete;

ηc is a factor accounting for the brittleness of concrete, whose value is defined by

ηc = 1.0 for fck f 40MPa,

ηc =

(

40
fck

)1/3

for fck > 40MPa;
(3.2)

fck is the characteristic compressive strength of concrete;

fcd is the design compressive strength of concrete, calculated by

fcd =
fck

γc
, (3.3)

when the verification is performed at 28 days or later. The partial safety factor for concrete

strength, γc, typically has a value of 1.4 for normal combinations;

εc is the compressive strain in the concrete;

εc2 is the specific compressive strain in the concrete at the onset of the plastic plateau, whose

value is defined by
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εc2 = 2.0‰ for fck f 50MPa,

εc2 = 2.0‰+0.085‰ · ( fck −50)0.53 for fck > 50MPa;
(3.4)

εcu is the ultimate compressive strain in the concrete, whose value is defined by

εcu = 3.5‰ for fck f 50MPa,

εcu = 2.6‰+35‰ · [(90− fck)/100]4 for fck > 50MPa;
(3.5)

n is calculated by

n = 2 for fck f 50MPa,

n = 1.4+23.4[(90− fck)/100]4 for fck > 50MPa;
(3.6)

In nonlinear structural analysis, the 2023 version of NBR 6118 introduced the option of using

a stress-strain diagram for short-term uniaxial compression, as represented in Figure 3.2. This

diagram was already included in earlier versions of the Eurocode.

Figure 3.2 – Stress-Strain Diagram for nonlinear analysis.
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Therefore, according to the figure, the following stress-strain relationship for nonlinear analysis

may be used

σc

fcm
=

kη −η2

1+(k−2)η
(3.7)

where

fcm is the mean value of compressive strength of concrete, calculated by
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fcm = fck +8 (MPa); (3.8)

k is calculated by

k =
1.05Ecm|εc1|

fcm
(3.9)

where

Ecm is the mean value of modulus of elasticity of concrete, calculated by

Ecm = 22 ·103
(

fcm

10

)0,3

(MPa); (3.10)

εc1 is the compressive strain in concrete at the peak stress, calculated by

εc1 =
0.7 fcm

0.31

1000
f 2.8‰; (3.11)

η is calculated by

η =
εc

εc1
. (3.12)

Expression (3.7) is valid for 0 < |εc|< |εcu1|. εcu1 is the nominal ultimate strain for this stress-

strain diagram. Its value is defined by

εcu1 = εcu = 3.5‰ for fck f 50MPa,

εcu1 =
2.8+27[(98− fcm)/100]4

1000
for fck > 50MPa.

(3.13)

3.1.2 Stress-Strain Diagram of Steel

According to NBR 6118 (2023), for calculations in the serviceability and ultimate limit states,

the simplified diagram shown in Figure 3.3 can be used for steels with or without a yield plateau.

In this diagram, the curve is linear until the yield stress is reached, beyond which a well-defined

yield plateau is formed. This bilinear diagram has been considered to simulate the behavior of

steel under axial stresses, both in tension and compression.

Therefore, according to the figure, the following stress-strain relationship may be used

σs = Esεs for 0 f εs f εyd,

σs = fyd for εyd f εs f εsu,
(3.14)

where
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Figure 3.3 – Stress-Strain Diagram for passive reinforcement steel.
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Adapted from NBR 6118 (2023).

σs is the stress in the passive reinforcement steel;

Es is the modulus of elasticity of steel, assumed to be equal to 210GPa;

εs is the strain in the passive reinforcement steel;

fyd is the design yield strength of reinforcement, calculated by

fyd =
fyk

γs
(3.15)

where

fyk is the characteristic yield strength of reinforcement;

γs is the partial safety factor for reinforcing steel, which typically has a value of 1.15

for normal combinations;

εyd is the design yield strain of reinforcement steel, calculated by

εyd =
fyd

Es
; (3.16)

εsu is the reinforcement steel strain at failure.

3.2 SECOND-ORDER EFFECTS IN REINFORCED CONCRETE COLUMNS

NBR 6118 (2023) define Second-Order Effects as those effects that are superimposed on

the results of a first-order analysis - where the structure is analyzed in its initial geometric

configuration - when equilibrium analysis is performed considering the deformed configuration

of the structure. According to the Brazilian standard, second-order effects, which must be

determined considering the nonlinear behavior of materials (physical nonlinearity), can be
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disregarded whenever they do not result in an increase exceeding 10% in the reactions and

relevant internal forces within the structure.

A key parameter influencing the magnitude of second-order effects is the column slenderness,

typically quantified by the slenderness ratio. Below, the definition of this geometric property

is provided, along with a discussion of the approaches recommended by NBR 6118 (2023) for

determining local second-order effects.

3.2.1 Slenderness Ratio

The slenderness ratio, denoted as λ , represents the relationship between the dimensions of the

cross-section and the height of the element while accounting for the boundary conditions of the

column (CASAGRANDE, 2016). This parameter is calculated using the expression

λ =
ℓe

i
(3.17)

where

ℓe is the effective length of the column. For columns assumed to be supported at both ends,

the effective length is taken as the smaller of the two values (Figure 3.4)

ℓe f







ℓ0 +h

ℓ
(3.18)

here

ℓ0 represents the distance between the inner faces of the structural elements, assumed

to be horizontal, that provide support to the column;

h denotes the height of the column’s cross-section in the direction being analyzed, as

measured within the structural plane under consideration;

ℓ is the distance between the axes of the structural elements to which the element is

supported;

For columns that are fixed at the base and free at the top, the effective length ℓe is equal

to 2ℓ;

i is the radius of gyration, determined by the equation

i =

√

I
A

(3.19)

where I is the moment of inertia and A is the cross-sectional area.
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Figure 3.4 – Effective length of a column.

Source: Scadelai (2004).

3.2.2 Limiting Slenderness Ratio

NBR 6118 (2023) defines a limiting slenderness ratio, λ1, below which the consideration of

local second-order effects can be disregarded. This simplification is based on the premise that

such effects can be neglected when their magnitude is less than 10% of the first-order response.

According to NBR 6118 (2023), the value of λ1 depends on several factors, with the most

significant being:

• the relative first-order eccentricity e1/h at the columns end where the absolute value of

the first-order moment is largest;

• the boundary conditions at the end of the isolated columns segment;

• the shape of the first-order moment diagram.

The limiting slenderness ratio, λ1, can be calculated using the following equation

35 f λ1 =
25+12.5(e1/h)

αb
f 90 (3.20)

where αb depends on the boundary conditions at the column ends and the shape of the first-order

moment diagram.

For columns with pinned supports at both ends and no significant transverse loads
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αb = 0.6+0.4
MB

MA
g 0.4 (3.21)

here, MA and MB are the first-order moments at the column ends. For non-sway structures, these

moments are obtained from a first-order analysis, while for sway structures, they correspond

to the total moments (first-order + global second-order). The value of MA should be taken as

the largest absolute moment, and MB is positive if it generates tension on the same face as MA;

otherwise, it is negative.

For columns with significant transverse loads along their height, columns with moments smaller

than the minimum moment, or cantilever columns

αb = 1.0. (3.22)

The minimum moment, which accounts for local imperfections in the column, should be

calculated according to NBR 6118 (2023):

M1d,min = Nd(0.015+0.03h) (3.23)

where Nd is the design axial force h is the total height of the cross-section in the considered

direction, expressed in meters.

3.2.3 Classification of Columns According to the Slenderness Ratio

According to NBR 6118 (2023), the applicability of the recommended methods for calculating

second-order effects depends on the slenderness ratio of the column. While the classification

presented below is not explicitly included in the standard, it is frequently found in the literature.

It is a practical framework for categorizing columns based on their slenderness ratio. This

classification guides the selection of the appropriate calculation method in compliance with

normative requirements.

• Short columns: λ < λ1: Local second-order effects can be neglected;

• Moderately slender columns: λ1 < λ f 90: Local second-order effects can be analyzed

using approximate methods based on the Standard Column approach;

• Slender columns: 90 < λ f 140: Local second-order effects can be analyzed using

the Standard Column method combined with M,N,1/r; the consideration of creep is

mandatory;
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• Very slender columns: 140 < λ f 200: Second-order effects must be analyzed using the

General Method. The consideration of creep is mandatory.

NBR 6118 (2023) does not allow columns with slenderness ratios greater than 200, except in

lightly compressed columns, where the axial force is less than 0,10 fcdAc. For columns with a

slenderness ratio exceeding 140, local second-order effects must be amplified by an additional

factor, which is determined as

γn1 = 1+
λ −140

140
g 1. (3.24)

3.3 CALCULATION OF SECOND-ORDER EFFECTS IN COLUMNS

This section focuses on the mathematical approaches and methods used to calculate second-

order effects in reinforced concrete columns. Building on the theoretical concepts previously

discussed, the presented methodologies range from simplified techniques to more advanced

methods, highlighting their assumption, procedures, and applications.

3.3.1 Approximate Method of the Standard Column

As highlighted by Carvalho and Pinheiro (2009), approximate methods based on the Standard

Column aim to identify the most critical section of the columns and, through simplifications,

derive expressions for calculating second-order effects. This method applies to columns with

a constant cross-section, including uniform reinforcement along their entire length (FUSCO,

1981).

According to Fusco (1981), the Standard Column is a cantilever column with an effective

length of ℓe = 2ℓ, as illustrated in Figure 3.5. The method assumes a curvature distribution

that produces a deflection a at the free end of the column, given by

a =
ℓe

2

10

(

1
r

)

(3.25)

where 1/r is the curvature at the section of maximum deflection.

In the standard column model, the maximum deflection is linearly related to the curvature of

the column, as shown in Eq. (3.25). The curvature is approximated as the second derivative

of the elastic curve equation, which is assumed to follow a sinusoidal function (CARVALHO;

PINHEIRO, 2009). Accordingly, the elastic curve of the column’s axis is expressed as
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Figure 3.5 – Standard Column.
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Adapted from Fusco (1981).

y(x) =−asin

(

π

ℓe
x

)

. (3.26)

Assuming small displacements, the curvature (1/r) can be represented as the second derivative

of the elastic curve

1
r
=

d2y
dx2 = a

(

π

ℓe

)2

sin

(

π

ℓe
x

)

. (3.27)

By evaluating the curvature at x = ℓe/2, which corresponds to the base section, and approx-

imating π2 ∼= 10, Eq. (3.25) is obtained. In this method, the second-order eccentricity (e2) is

assumed to be equal to the deflection a

e2 =
ℓe

2

10

(

1
r

)

. (3.28)
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3.3.1.1 Standard Column Method with Approximate Curvature

According to NBR 6118 (2023), this method applies exclusively to columns with λ f 90, having

a constant cross-section and the same symmetrically distributed reinforcement along their entire

length.

In this approach, geometric nonlinearity is handled approximately by assuming a sinusoidal

deformation of the column, as outlined earlier in this section. Physical nonlinearity is accounted

for using an approximate expression for the curvature at the critical cross-section (NBR 6118,

2023).

The maximum total internal moment in the column, Md,tot , is determined at an intermediate

section and can be expressed as the sum of the first-order and second-order moments

Md,tot = M1 +M2 = αbM1d,A +Nde2 g M1d,A (3.29)

where M1d,A is the design value of the first-order moment, MA.

By substituting e2 from Eq. (3.28) into Eq. (3.29), the following equation is obtained

Md,tot = αbM1d,A +Nd
le

2

10

(

1
r

)

g M1d,A. (3.30)

The equation that defines the curvature for combined axial load and bending can be written as

1
r
=

(εc + εs)

(ν +0.5)h
(3.31)

where h represents the height of the cross-section in the analyzed direction, and ν is the

dimensionless axial force, defined as

ν =
Nd

Ac fcd
. (3.32)

In this approximate method, it is conservatively assumed that the curvature should take the

highest possible value. Consequently, the concrete and steel strains are considered equal to their

ultimate limit state values (CARVALHO; PINHEIRO, 2009).

For concretes with fck f 50MPa, the maximum strain value is
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εc = εcu = 3.5‰. (3.33)

For CA-50 steels with a yield strength of fyk = 500MPa and γs = 1.15, the yield strain is

calculated according to Eq. (3.16)

εs = εyd =
fyd

Es
=

500/1.15
210000

= 2.07‰. (3.34)

The expression for critical curvature adopted in NBR 6118 (2023) is obtained by substituting

Eqs. (3.33) and (3.34) into Eq. (3.31)

1
r
=

0.005
h(ν +0.5)

f 0.005
h

. (3.35)

3.3.1.2 Standard Column Method with Approximate Stiffness κ

Similar to the Standard Column Method with Approximate Curvature, this approach is restricted

to columns with λ f 90, featuring a constant rectangular cross-section and symmetrical

reinforcement uniformly distributed along the axis (NBR 6118, 2023).

In this method, geometric nonlinearity is approximated by assuming a sinusoidal deformation

of the column, while physical nonlinearity is addressed through an approximate expression for

stiffness (NBR 6118, 2023).

The maximum total internal moment, Md,tot , is calculated as a function of the dimensionless

stiffness κ using the equation

Md,tot =
αbM1d,A

1− λ 2

120κ/ν

g M1d,A. (3.36)

The dimensionless stiffness κ is approximated by

κaprox = 32

(

1+5
Md,tot

hNd

)

ν . (3.37)

It is important to note that Eqs. (3.36) and (3.37) are interdependent, requiring an iterative

solution process. According to NBR 6118 (2023), convergence is typically achieved after two or
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three iterations. Nevertheless, the standard provides a direct formulation specifically applicable

to rectangular sections, expressed as

aM2
d,tot +bMd,tot + c = 0 (3.38)

where



























a = 5h,

b = h2Nd −
Ndl2

e

320
−5hαbM1d,A,

c =−Ndh2αbM1d,A.

(3.39)

The final moment, MSd,tot is obtained by solving the quadratic equation (3.38), taking the

positive root

MSd,tot =
−b+

√
b2 −4ac

2a
. (3.40)

3.3.1.3 Standard Column Method Coupled with M,N,1/r Diagrams

This method can be applied to columns with λ f 140. Physical nonlinearity is considered

more rigorously compared to the previously discussed approaches, but still approximately, by

determining the curvature of the critical section using specific M,N,1/r diagrams. Geometrical

nonlinearity is also treated approximately, assuming a sinusoidal column deformation.

The methodology is similar to the Standard Column Method with Approximate Stiffness

(Subsection 3.3.1.2), but replaces κaprox with κsec (secant stiffness), which is calculated as

κsec =
(EI)sec

Ach2 fcd
(3.41)

where (EI)sec represents the slope of the secant line in the M,N,1/r diagram (Figure 3.6). The

construction of this diagram is discussed further. Once κsec is determined, it is substituted into

κ in Eq. (3.36) to calculate the maximum total internal moment in the column, Md,tot .

It is important to note that applying this method requires detailed information about the

reinforcement layout, which is necessary for constructing the M,N,1/r diagram.
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3.3.1.3.1 M,N,1/r Diagrams

According to NBR 6118 (2023), the effect of physical nonlinearity can be accounted for by

constructing a material relationship known as the moment-axial force-curvature (M,N,1/r)

diagram. This relationship represents the response of the reinforced concrete cross-section

under the combined action of a constant axial force and a progressively increasing bending

moment, considering the actual strains of both concrete and steel (CASAGRANDE, 2016).

This relationship allows for evaluating the nonlinear behavior of reinforced concrete cross-

sections, incorporating the physical nonlinearity of both steel and concrete (RIBEIRO, 2011).

Therefore, the construction of this relationship must be performed for each cross-section, with

the reinforcement layout known, and for the specific value of the applied axial force.

The standard also recommends the use of a safety formulation, where the material diagram

M,N,1/r is built using forces that have been pre-factored by γ f /γ f 3, where γ f is the partial

safety factor for actions, given by γ f = γ f 1 · γ f 2 · γ f 3, and which has a value of 1,4 for normal

combinations of permanent and variable actions. The results of the analysis should then be

further amplified by the remaining portion of the safety factor, γ f 3, the component of the

partial safety factor γ f , which accounts for deviations arising from construction processes and

approximations made in the design with respect to load effects, equal to 1,1. Additionally, the

deformability of the elements should be determined based on idealized stress-strain diagrams

for concrete and steel, with the peak stress of the concrete taken as 1,10 fcd . The graphical

representation of the moment-curvature relationship is illustrated in Figure 3.6.

Figure 3.6 – Moment-curvature relationship.
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Adapted from NBR 6118 (2023).



Chapter 3. VERIFICATION AND DESIGN OF COLUMNS 55

For application within the Standard Column Method coupled with M,N,1/r diagrams, the curve

AB can be linearized for safety purposes as a straight line, representing the secant stiffness,

(EI)sec.

The dashed curve, which is constructed using the design values of the strengths of both concrete

and steel, is used to determine the design bending resistance MRd corresponding to the design

axial resistance NRd (at the maximum point), allowing the identification of point B. On the other

hand, the solid line is used to calculate deformations.

As noted by Casagrande (2016), constructing the moment-axial force-curvature diagram, which

is necessary for the application of the Standard Column Method coupled with M,N,1/r dia-

grams as well as the General Method discussed later, is a labor-intensive and complex process

that involves iterative calculations and successive approximations. Although these calculations

are too extensive to be performed manually, they can be automated using specialized software.

3.3.2 General Method

The General Method involves a second-order analysis through an appropriate discretization

of the column. This method considers physical nonlinearity by successively evaluating the

actual M,N,1/r relationship for each section, while geometric nonlinearity is considered in

a non-approximate manner by progressively increasing the initial applied moments during each

iteration of the displacement calculations. While this method is mandatory for columns with

λ g 140, it can also be applied to columns of any slenderness ratio when higher accuracy is

desired.

In applying the General Method, the column is first discretized by dividing its length into

smaller elements. This approach allows for considering varying characteristics along the col-

umn, such as changes in cross-section or reinforcement layout. The response of each segment

is calculated individually, taking into account their interactions, with the accuracy of the results

depending on the number of divisions used.

According to Borges (1999), the principle of this method is to determine, for each segment

under load, a stable deformed position that corresponds to an equilibrium state between internal

forces and external actions. This is achieved while maintaining compatibility among curvatures,

strains, and the neutral axis position and satisfying the materials’ constitutive equations.

As highlighted by Ribeiro (2011), the General Method provides greater accuracy in the results,

both in terms of the physical and geometric nonlinear behavior of structural elements. However,

accounting for nonlinear behavior requires iterative methods, often based on incremental

loading, progressive eccentricity increases, or variations in deflection.
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Casagrande (2016) emphasizes that the precision and comprehensiveness of the General Method

are accompanied by significant complexity. The author notes that historically, this method was

restricted to academic environments or applied in cases of extreme necessity. However, its

adoption has increased, driven by advancements in computational processing capabilities.
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4 CREEP SIMULATION

Creep is the phenomenon of increasing deformations in concrete over time when subjected to

sustained loads, as discussed in Section 2.3.

The following sections present a variety of strategies for incorporating creep effects, as found

in the literature. In particular, these strategies can be applied in conjunction with the methods

for calculating second-order effects in reinforced concrete columns, as described in Section 3.3.

It is important to note that NBR 6118 (2023) mandates the consideration of creep in the analysis

of second-order effects in columns with slenderness ratios λ > 90. On the other hand, EN 1992-

1-1 (2004) allows creep effects to be disregarded only when the following three conditions are

met:

• ϕ(∞, t0)f 2,

• λ f 75,

• e1 g h,

where ϕ is the creep coefficient, as defined in the following section.

4.1 CREEP COEFFICIENT ϕ

The strategies outlined in NBR 6118 (2023) for considering creep effects are simplified

approaches relying on the creep coefficient ϕ(t∞, t0), which is independent of the applied stress.

However, more advanced methods go beyond using the creep coefficient and incorporate full

creep compliance functions to better capture time-dependent effects. The creep coefficient’s

primary advantage is its simplicity, as it describes creep effects using a single parameter

(WESTERBERG, 2008).

4.1.1 Creep Coefficient ϕ according to NBR 6118 (2023)

For elements subjected to stresses below 0.5 fc and in cases where high precision is not

necessary, ϕ(t∞, t0) can be approximately obtained through linear interpolation using Table 4.1.

This table, provided by NBR 6118 (2023), presents creep coefficient values as a function of

average ambient humidity and the fictitious thickness of the element hfic, calculated using Eq.

2.2. The table values apply to concrete at temperatures ranging from 10 °C to 20 °C, but the

standard allows their use for temperatures between 0 °C and 40 °C. These values apply to

concrete produced with ordinary Portland cement.
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Table 4.1 – Upper characteristic values of the creep coefficient ϕ(t∞, t0).

Average Ambient Humidity (%) 40 55 75 90

Fictitious Thickness (cm) 2Ac/u 20 60 20 60 20 60 20 60

ϕ(t∞, t0)
Concrete Classes

C20 to C45
t0

days

5 4.6 3.8 3.9 3.3 2.8 2.4 2.0 1.9

30 3.4 3.0 2.9 2.6 2.2 2.0 1.6 1.5

60 2.9 2.7 2.5 2.3 1.9 1.8 1.4 1.4

ϕ(t∞, t0)
Concrete Classes

C50 to C90

5 2.7 2.4 2.4 2.1 1.9 1.8 1.6 1.5

30 2.0 1.8 1.7 1.6 1.4 1.3 1.1 1.1

60 1.7 1.6 1.5 1.4 1.2 1.2 1.0 1.0

Adapted from NBR 6118 (2023).

For conditions differing from those outlined above, specific creep coefficient values ϕ(t∞, t0)

must be determined according to the calculation procedures described in Annex A of NBR

6118 (2023).

This calculation procedure was also employed in a comparative study that evaluates the values

presented in Table 4.1, given that NBR 6118 (2023) does not explicitly specify the origin of

these values. The results of this study are provided in Appendix A.

In the detailed procedure presented in the Annex of the Brazilian standard, the creep strain εcc

comprises two components: rapid and delayed. The rapid strain, εcca, is irreversible and occurs

within 24 hours after load application. Conversely, the delayed strain consists of two parts: the

irreversible delayed strain, εcc f , and the reversible delayed strain, εccd (NBR 6118, 2023). Thus,

the creep strain εcc can be expressed as the sum of the three components

εcc = εcca + εcc f + εccd. (4.1)

The total creep strain, εcc, can also be calculated by multiplying the immediate strain εc by the

creep coefficient ϕ

εcc = ϕεc. (4.2)

Thus, the total strain in concrete, expressed as the sum of the immediate strain and the creep

strain, can be written solely in terms of the immediate strain and the creep coefficient
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εc,total = εc + εcc = (1+ϕ)εc. (4.3)

Similarly, the creep coefficient ϕ can be expressed as the sum of its rapid, irreversible delayed,

and reversible delayed components

ϕ = ϕa +ϕ f +ϕd. (4.4)

For calculating the individual components of ϕ , under service-levels stresses, NBR 6118 (2023)

adopts the following assumptions:

a) Creep strain εcc varies linearly with applied stress;

b) When stress increments are applied at different times, the corresponding creep effects are

additive;

c) Rapid deformation results in constant strain over time, and ϕa depends on the ratio of

concrete strength at loading to its final strength;

d) The reversible delayed strain coefficient ϕd depends solely on load duration; it’s indepen-

dent of concrete age at loading;

e) The irreversible delayed strain coefficient ϕ f depends on ambient relative humidity U ,

concrete consistency at placement, fictitious thickness hfic, and the concrete’s fictitious

age at load application (t0) and at the time considered (t);

f) Irreversible delayed strain curves for varying loading ages can be derived from one

another by parallel shifts along the strain axis.

According to NBR 6118 (2023), the creep coefficient ϕ(t, t0) is defined as

ϕ(t, t0) = ϕa +ϕ f ∞[β f (t)−β f (t0)]+ϕd∞βd (4.5)

where

• t or t0 is the fictitious age of the concrete at the time of interest, expressed in days,

calculated by

t = α ∑
i

Ti +10
30

∆tef,i (4.6)

where

α is a coefficient dependent on the hardening rate of the cement. In the absence of

experimental data, NBR 6118 (2023) allows the use of the following values: 1
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for slow-hardening Portland cement (CP III and CP IV), 2 for normal-hardening

Portland cement (CP I and CP II), and 3 for rapid-hardening Portland cement (CP

V-ARI),

Ti is the average daily ambient temperature, expressed in degrees Celsius (°C),

∆tef, i is the period, expressed in days, during which the average daily ambient tempera-

ture, Ti, can be assumed constant;

• ϕa is the rapid creep coefficient determined by the expression

ϕa = 0.8

[

1− fc(t0)
fc(t∞)

]

for 20MPa f fck f 45MPa,

ϕa = 1.4

[

1− fc(t0)
fc(t∞)

]

for 50MPa f fck f 90MPa,
(4.7)

where fc(t0)
fc(t∞)

is the function representing the strength growth of the concrete over time;

• ϕ f ∞ is the final value of the irreversible delayed creep coefficient calculated by

ϕ f ∞ = ϕ1cϕ2c for 20MPa f fck f 45MPa,

ϕ f ∞ = 0.45ϕ1cϕ2c for 50MPa f fck f 90MPa,
(4.8)

where

ϕ1c is the coefficient dependent on the ambient relative humidity U , expressed as a

percentage (%), and the consistency of the concrete, as shown in Table 4.2,

ϕ2c is the coefficient dependent on the fictitious thickness hfic of the element

ϕ2c =
42+h
20+h

(4.9)

Table 4.2 – Typical numerical values for determining creep.

Environment Humidity U (%)

Creep ϕ1c
1

γ 2
Slump (cm)

0 - 4 5 - 9 10 - 15

In water – 0.6 0.8 1.0 30.0

In a very humid
environment directly

above water
90 1.0 1.3 1.6 5.0

Outdoors, in general 70 1.5 2.0 2.5 1.5

In a dry environment 40 2.3 3.0 3.8 1.0

1 ϕ1c = 4.45−0.035U for slump between 5 to 9 cm and U f 90%
2 γ = 1+ exp(−7.8+0.1U) for U f 90%

Adapted from NBR 6118 (2023).
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where h is the weighted fictitious thickness

h = γhfic, (4.10)

expressed in centimeters, with γ defined in Table 4.2;

• β f (t) or β f (t0) is the coefficient related to irreversible delayed strain as a function of

concrete age, obtained from the expression

β f (t) =
t2 +At +B
t2 +Ct +D

(4.11)

where

A = 42h3 −350h2 +588h+113,

B = 768h3 −3060h2 +3234h−23,

C =−200h3 −13h2 +1090h+183,

D = 7579h3 −31916h2 +35343h+1931,

(4.12)

where h is the weighted fictitious thickness, calculated using Eq. (4.10), expressed in

meters. For values of h outside the range (0.05f hf 1.6), the extreme values are adopted;

• ϕd∞ is the final value of the reversible delayed creep coefficient, which is considered equal

to 0.4;

• βd(t) is the coefficient related to reversible delayed strain as a function of the elapsed

time (t − t0) after loading, calculated as

βd(t) =
t − t0 +20
t − t0 +70

. (4.13)

Equation (4.5), already present in the CEB-FIP Model Code 1978 (CEB-FIP, 1978 apud

MOLA; PELLEGRINI, 2012), has been widely used in creep modeling for concrete structures.

However, it may no longer fully reflect the advancements in understanding the material’s

viscoelastic behavior. The study by Mola and Pellegrini (2012) explores the evolution of creep

models, emphasizing the refinements introduced in the fib Model Code 2010 (FIB, 2012 apud

MOLA; PELLEGRINI, 2012) compared to its predecessors. The Brazilian standard, however,

still relies on the methodology of CEB-FIP Model Code 1978 (CEB-FIP, 1978 apud MOLA;

PELLEGRINI, 2012), which presents significant limitations, such as the assumption of an

instantaneous creep deformation immediately after loading. According to Mola and Pellegrini

(2012), while this simplification facilitated the use of separate aging and non-aging formulation,

it neglected nonlinear aspects of creep and it does not explicitly differentiate between basic

creep and drying creep.

The work of Mola and Pellegrini (2012) demonstrates that more recent models, such as

the present in the fib Model Code 2010 (FIB, 2012 apud MOLA; PELLEGRINI, 2012),
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address these inconsistencies by adopting a more refined formulation that distinguishes creep

components and better accounts for environmental variables and concrete strength evolution.

Their results indicate that using older models can lead to discrepancies in structural analysis,

particularly in elements where creep plays a crucial role, highlighting the need for Brazilian

standards to incorporate more advanced formulations.

In addition, many other methodologies for calculating the creep coefficient can be found in the

literature.

4.1.2 Effective Creep Coefficient ϕe f

Typically, the creep coefficient is considered under the deformations caused by the total applied

load on the structure. However, since applied loads generally include short- and long-term

components, only long-term components influence all aspects of creep. To address this, the

creep coefficient ϕ is reduced to account for the proportion of long-term bending moments in

a given load combination (WESTERBERG, 2008). This reduction results in an effective creep

coefficient ϕe f , as proposed by EN 1992-1-1 (2004),

ϕe f = ϕ
MSg

Md
(4.14)

where MSg is the first-order moment due to the quasi-permanent load combination (SLS), and

Md is the first-order design moment (ULS).

4.2 APPROXIMATE METHOD OF ADDITIONAL ECCENTRICITY ecc

In the simulation of local second-order effects in columns, NBR 6118 (2023) allows for an

approximate consideration of creep effects through the additional eccentricity ecc, which is

computed as

ecc =

(

Msg

Nsg
+ ea

)(

2.718
ϕNsg

Ne−Nsg −1

)

(4.15)

where

• Ne is the Euler critical load, calculated as

Ne =
10EciIc

ℓe
2 ; (4.16)

• ea represents the eccentricity due to local imperfections, as defined in NBR 6118 (2023);
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• Msg e Nsg are the applied bending moment and axial force, respectively, due to the quasi-

permanent load combination;

• ϕ is the creep coefficient;

• Eci is the initial tangent modulus of elasticity of concrete, calculated, when tests are not

performed, using equations

Eci = αE ·5600
√

fck for fck f 50MPa,

Eci = 21.5 ·103αE

(

fck

10
+1.25

)1/3

for fck > 50MPa,
(4.17)

where αE is a parameter dependent on the nature of the aggregate, whose value is defined

as

– αE = 1.2 for basalt and diabase;

– αE = 1.0 for granite and gneiss;

– αE = 0.9 for limestone;

– αE = 0.7 for sandstone;

• Ic is the moment of inertia of the concrete section;

• ℓe is the effective length of the column, as defined in Eq. (3.18).

The additional eccentricity ecc should be incorporated into the total eccentricity as an immediate

effect that adds to the first-order eccentricity e1. This eccentricity will be used with approximate

methods based on the standard column model to calculate second-order effects.

4.3 EXTENDED STRESS-STRAIN CURVE METHOD

The Extended Stress-Strain Curve Method is considered a more rigorous approach than the

Approximate Method of Additional Eccentricity, although it remains a simplified method. Quast

(1978 apud CASAGRANDE, 2016) was the first to propose this method. In Brazil, Fusco (1981)

is recognized as one of the key figures in disseminating this approach.

The method is based on the assumption that the creep strain εcc is obtained by multiplying the

immediate strain of concrete εc by the creep coefficient ϕ , as given by Eq. (4.3)

εc,total = εc + εcc = (1+ϕ)εc. (4.3)

As a result, the stress-strain curve shifts parallel to the εc axis by a factor of ϕ , as illustrated in

Figure 4.1.

This method is included in EN 1992-1-1 (2004), although it is not currently adopted in the

Brazilian standard. The Eurocode allows adopting this strategy within the General Method in
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Figure 4.1 – Extended stress-strain curve due to the consideration of creep effects.
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the absence of a more refined model, employing the effective creep coefficient ϕe f and utilizing

the stress-strain diagram for nonlinear analysis, as illustrated in Figure 3.2. International studies,

such as Westerberg (2008), follow the same approach. However, Brazilian studies, typically

based on Fusco (1981), apply the same strategy differently, implementing it on the idealized

stress-strain diagram (Figure 3.1) and introducing the shift based on the creep coefficient ϕ

(exactly as illustrated in Figure 4.1).

Westerberg (2008) highlights certain limitations of this approach, as neither the extended stress-

strain curve nor the creep coefficient accurately represents the fundamental behavior of creep

for the following reasons:

1. The creep coefficient is defined for stresses within the elastic range. When used to shift

the stress-strain curve, it is applied to the entire curve, even beyond the peak stress, which

lacks physical significance.

2. Concrete stress evolves over time due to creep, as deflections increase and stress re-

distributes from concrete to reinforcement. This redistribution varies across the cross-

section, leading to localized stress increases or reductions.

3. The primary advantage of using the creep coefficient is its main limitation: Westerberg

(2008) question whether it is genuinely possible to describe a complex phenomenon –

affected by varying load levels and combinations – using a single parameter.

The author argues that, given these limitations, the accuracy of the extended stress-strain curve

approach is debatable, although such a curve does not necessarily require a strict physical

interpretation. Westerberg (2008) concludes that, despite its simplifications, this method is an

effective and sufficiently accurate approach for practical engineering applications.
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4.3.1 Standard Column Method Coupled with M,N,1/r Diagrams Incorporating Creep

For more comprehensive models that characterize column behavior, creep simulation strategies

are integrated with methods used for second-order effect calculations.

Thus, when applying the Standard Column Method Coupled with M,N,1/r diagrams, creep

can be incorporated through the extended stress-strain diagram, which is used to construct the

M,N,1/r diagrams. By applying the concepts introduced in the preamble of this subsection, it

is possible to derive the M,N,1/r diagram with creep effects incorporated

(

1
r

)

total
=

εs + εc,total

d
∴

(

1
r

)

total
=

εs +(1+ϕ)εc

d
. (4.18)

Once the M,N,1/r diagram incorporating creep is obtained, the Standard Column Method can

be applied, as presented in Subsection 3.3.1.3, leading to the secant stiffness κsec according to

Eq. (3.41).

4.3.2 General Method Coupled with M,N,1/r Diagrams Incorporating Creep

The M,N,1/r diagram incorporating creep can also be used with the general method for second-

order effects calculations. However, instead of employing a secant stiffness, as presented in the

previous subsection, this approach considers the current material state, including creep effects,

in an incremental iterative process.

4.4 MATHEMATICAL MODELS WITH ANALYTICAL INCORPORATION OF THE TIME

VARIABLE

Mathematical models incorporating the time variable analytically aim to provide a more realistic

representation of the viscoelastic behavior of materials, including concrete. In general, creep

phenomena can be described by expressions of the form

ε(t,σ ,T ) = σJ(t,σ ,T ) (4.19)

where σ is the applied stress, ε(t,σ ,T ) is the creep strain as a function of time, stress, and

temperature, and J(t,σ ,T ) is the specific creep function or creep compliance function.

The predominant approaches in the literature for modeling creep include empirical formula-

tions, primarily represented by Findley’s Power Law, integral, and differential formulations.
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Findley’s Power Law is widely used and has demonstrated satisfactory accuracy in predicting

the creep behavior of polymeric materials and polymer matrix composites (Sá, 2007 apud

BECHO, 2020). Other empirical equations can also be found in the literature, such as Norton’s

Equation and Nadai’s Equation; however, they are not directly relevant to the scope of this study

and will not be explored in detail.

According to Becho (2020), the integral formulation is the most widely used in the literature to

represent viscoelastic behavior. In this approach, strain is expressed in terms of applied stresses

through a time-integral relation

ε (t) = J0σ +
∫ t

0
Jt(t − τ)

dσ(τ)

dτ
dτ (4.20)

where

σ is the applied stress,

τ is an auxiliary time variable,

t represents the elapsed time after loading,

J0 is the time-independent creep function,

Jt(t) is the time-dependent creep function.

In this approach, accurately determining the viscoelastic behavior requires defining appropriate

creep functions and material parameters that reflect experimentally observed viscoelastic be-

havior. In such cases, exponential functions or functions derived from rheological models based

on the Prony series are typically used (BECHO, 2020).

An alternative widely used approach to describe viscoelastic behavior is the differential formu-

lation, given by

σ +R1
dσ

dt
+ · · ·+Rn

dnσ

dtn = Q0ε +Q1
dε

dt
+ · · ·+Qn

dnε

dtn (4.21)

where the parameters Rn and Qn are material properties that depend on time, temperature,

and stress levels. These parameters can also be determined from rheological models, which

characterize time-dependent material behavior. These rheological models provide a physical

interpretation of the mathematical formalism described by differential equations, such as (4.21).

According to Becho (2020), rheological relationships – transient equations that relate stress and

strain – differ from constitutive relationships in that they explicitly account for time-dependent

effects, which are crucial for the numerical description of viscoelastic materials.
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Becho (2020) further states that rheological models representing mechanical behavior consist

of elastic elements (springs), viscous elements (dashpots), plastic elements (solid friction), or

combinations of two or more elements. These elements can be either linear or nonlinear and

can be combined to ensure the resulting physical behavior accurately represents the material’s

mechanical response.

As presented in Chapter 2, creep can be described as a viscoelastic behavior. Materials with that

kind of behavior exhibit both instantaneous elastic deformation and delayed elastic deformation

(viscoelastic strain) over time, as illustrated in Figure 2.3 in Section 2.3, where the viscoelastic

strain represents the creep component.

4.4.1 Rheological Models for Viscoelastic Behavior

The rheological behavior of viscoelastic materials is commonly represented by mechanical

models consisting of elastic and viscous elements, where the constitutive equation follows the

general form of Eq. (4.21) (ARGYRIS; DOLTSINIS; SILVA, 1991). These elements can be

represented as shown in Figure 4.2, where the relationships between stress and strain in a one-

dimensional form can be expressed as

σ e = Eε for elastic elements,

σ v = η
∂ε

∂ t
= ηε̇ for viscous elements,

(4.22)

where E and η are the elastic modulus and viscosity coefficient, respectively.

Figure 4.2 – Representation of elastic and viscous elements.

σ

(a) Elastic element.

η
σ

(b) Viscous element.

Adapted from Argyris, Doltsinis and Silva (1991).

These equations can also be extended to tensorial form, as demonstrated in Becho (2020), to

account for three-dimensional effects and coupling phenomena.

Finally, these elements can be combined in different ways to represent viscoelastic material

behavior. In such combinations, elements connected in series experience the same stress while

their deformation adds up. On the other side, elements arranged in parallel share the same

deformation, with the total stress being distributed among them.
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The simplest and most commonly used models in the literature for describing viscoelastic

behavior in solid materials include the Kelvin-Voigt Model, the Boltzmann Model, and the

Zener Model. All of these models are derived from the generalized Maxwell and Kelvin-Voigt

models (BECHO, 2020).

4.4.1.1 Maxwell Rheological Model

The Maxwell element consists of a series combination of an elastic element (spring) and a

viscous element (dashpot) (Figure 4.3a). The generalized Maxwell model consists of a parallel

assembly of multiple Maxwell elements, along with an additional spring to account for residual

stress σ = G(ε) (Figure 4.3b) (ARGYRIS; DOLTSINIS; SILVA, 1991).

Figure 4.3 – Maxwell models.
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(a) Maxwell element.
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(b) Generalized Maxwell Model.

Adapted from Argyris, Doltsinis and Silva (1991).

The constitutive equation of the Maxwell Model is expressed by the differential equation

ε̇ =
σ

η
+

σ̇

E
. (4.23)

This equation indicates that the strain rate depends on the applied stress and its rate of change.

When a constant stress σ0 is applied to the Maxwell Model, the differential equation simplifies

to

ε(t) =
σ0

E
+

σ0

η
t. (4.24)

In this model, the material undergoes an immediate elastic deformation given by σ0/E. The

strain increases linearly over time at a rate of σ0/η , meaning there is no asymptotic deformation
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limit. As a result, the Maxwell Model does not accurately represent the long-term creep behavior

of concrete, as the strain grows indefinitely over time, as illustrated in Figure 4.4.

Figure 4.4 – Creep strain-time curve based on the Maxwell model.�

t
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4.4.1.2 Kelvin-Voigt Rheological Model

In contrast, a parallel combination of an elastic and a viscous element consists of a Kelvin-Voigt

solid (Figure 4.5a). The generalized Kelvin-Voigt model is composed of a series combination

of multiple Kelvin-Voigt solids, along with an additional spring that provides time-independent

elasticity εe = εe(σ) (Figure 4.5b) (ARGYRIS; DOLTSINIS; SILVA, 1991).

Figure 4.5 – Kelvin-Voigt models.

η

(a) Kelvin-Voigt solid.

E1

�1

E2

�2

E�

��
�1 �2 ���0

(b) Generalized Kelvin-Voigt Model.

Adapted from Argyris, Doltsinis and Silva (1991).

The constitutive equation of the Kelvin-Voigt model is described by the differential equation

σ = Eε +ηε̇. (4.25)

When a constant stress σ0 is applied to the Kelvin-Voigt model, solving the differential equation

leads to the expression governing the creep behavior of the model

ε(t) =
σ0

E

(

1− e
−E
η t

)

. (4.26)
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Differentiating Eq. (4.26) with respect to time yields the strain rate for the Kelvin-Voigt model

ε̇(t) =
σ0

η
e
−E
η t . (4.27)

Thus, in this model, the material does not exhibit an immediate elastic deformation upon

stress application. Over time, the strain increases asymptotically, as illustrated in Figure 4.6,

approaching σ0/E as t tends to infinity. This model accurately represents the creep behavior of

concrete, as it describes a damped elastic response (viscoelastic behavior).

Figure 4.6 – Creep strain-time curve based on the Kelvin-Voigt model.�
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Adapted from Becho (2020).

4.4.1.3 Boltzmann Rheological Model

The Boltzmann rheological model can be represented as the series combination of a spring and

a Kelvin-Voigt solid, as depicted in Figure 4.7. It describes an instantaneous elastic response

followed by a damped elastic behavior (viscoelastic response) (BECHO, 2020). This model

can be seen as a particular case of the generalized Kelvin-Voigt model, consisting of a single

Kelvin-Voigt solid connected in series with a spring.

The constitutive equation of the Boltzmann Model is expressed by the differential equation

σ =
E1E2

E1 +E2
ε +

ηE1

E1 +E2
ε̇ − η

E1 +E2
σ̇ . (4.28)

When a constant stress σ0 is applied to the Boltzmann model, solving the differential equation

leads to the expression governing the creep behavior of the model
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Figure 4.7 – Boltzmann rheological model.
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Adapted from Becho (2020).

ε(t) =

(

σ0

E1
− E1 +E2

E2E1
σ0

)

e
−E2

η t +
E1 +E2

E2E1
σ0. (4.29)

Differentiating Eq. (4.29) with respect to time yields the strain rate for the Boltzmann model

ε̇(t) =
σ0

η
e
−E2

η t =
E1

η
ε0e

−E2
η t . (4.30)

Thus, the material undergoes an immediate elastic deformation equal to σ0/E1 in this model.

Over time, the deformation increases asymptotically, as illustrated in Figure 4.8, approaching

σ0(E1 +E2)/E2E1 as t becomes sufficiently large.

Figure 4.8 – Creep strain-time curve based on the Boltzmann model.�
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Adapted from Becho (2020).

This model can describe the entire strain-time behavior of concrete, including the instantaneous

elastic strain upon load application and the viscoelastic strain due to creep.
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4.4.1.4 Zener Rheological Model

Finally, the Zener rheological model can be represented as a parallel combination of a spring

and a Maxwell element, as illustrated in Figure 4.9. Similar to the Boltzmann model, this

model can describe an instantaneous elastic response followed by a damped elastic behavior

(viscoelastic response) (BECHO, 2020). It can also be regarded as a particular case of the

generalized Maxwell model, consisting of a single Maxwell element in parallel with a spring.

Figure 4.9 – Zener rheological model.
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Adapted from Becho (2020).

The constitutive equation of the Zener model is expressed by the following differential equation

σ = E2ε +
η(E1 +E2)

E1
ε̇ − η

E1
σ̇ . (4.31)

When a constant stress σ0 is applied to the Zener model, solving the differential equation leads

to the expression governing the creep behavior of the model

ε(t) =

(

σ0

E1 +E2
− σ0

E2

)

e
−E1E2

η(E1+E2)
t
+

σ0

E2
. (4.32)

Differentiating Eq. (4.32) with respect to time yields the strain rate for the Zener model

ε̇(t) =
E1

2σ0

η(E1 +E2)
2 e

−E1E2
η(E1+E2)

t
=

E1
2

η(E1 +E2)
ε0e

−E1E2
η(E1+E2)

t
. (4.33)

Thus, the material undergoes an immediate elastic deformation equal to σ0/(E1 +E2) in this

model. Over time, the strain increases asymptotically, as shown in Figure 4.10, approaching

σ0/E2 as t becomes sufficiently large. Similarly to the Boltzmann model, this model can

describe the entire strain-time behavior of concrete, including the instantaneous elastic strain

upon load application and the viscoelastic strain due to creep.
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Figure 4.10 – Creep strain-time curve based on the Zener model.�
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Adapted from Becho (2020).

4.4.2 Application of Rheological Models to Creep Simulation in Concrete

In this study, the elastic response of concrete was modeled using the idealized equation provided

by NBR 6118 (2023), as expressed in Eq. (3.1), to ensure a nonlinear instantaneous response.

To account for creep effects, the delayed response over time was incorporated using the Kelvin-

Voigt model, represented by Eq. (4.26). This model was chosen because it accurately describes

the creep behavior of concrete while excluding the instantaneous elastic response, which is

already accounted for separately.

Similar to the Extended Stress-Strain Curve Method (Subsection 4.3), these rheological models

for creep simulation can also be integrated into strategies for modeling local second-order

effects in columns, as described in Subsection 3.3.
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5 METHODOLOGY

Assessing second-order effects in reinforced concrete columns requires a robust computational

methodology capable of incorporating material nonlinearities and time-dependent deforma-

tions. This study employs a numerical approach to simulate the structural behavior of columns

subjected to axial force and bending moment, considering different strategies for creep model-

ing and second-order analysis.

To achieve this, a computational implementation was developed to apply established calculation

methods in a systematic and automated manner, enabling the feasibility of using incremental

iterative processes. The methodology is structured to ensure that both immediate and long-term

responses of the structure are captured. Implementing iterative numerical procedures allows for

a comparative evaluation of different modeling strategies, providing insights into their influence

on design accuracy.

This chapter details the numerical formulation, implementation procedures, and methodologies

adopted for second-order analysis and creep simulation.

5.1 CONSTRUCTION OF M,N,1/r DIAGRAMS

The construction of M,N,1/r diagrams represents a fundamental stage in applying the method-

ologies proposed in this study. These diagrams provide a numerical representation of the

nonlinear behavior of reinforced concrete cross-sections subjected to a combined axial force

(N) and bending moment (M), allowing material nonlinearity to be considered in the second-

order analysis.

By capturing the moment-curvature relationship, the diagrams serve as input data for the

subsequent methods used to evaluate second-order effects. This approach ensures that the

physical nonlinearity of materials – particularly the nonlinear stress-strain relationship of

concrete and steel – is incorporated into the structural response, enhancing the accuracy of

the analysis.

The methodology presented here is based on the approach developed by Paula (1988). However,

several modifications have been introduced to update the formulation in accordance with more

recent versions of NBR 6118, including the 2023 revision. These updates ensure the numerical

model remains aligned with the latest normative recommendations.

The developed algorithm determines the ultimate bending moment capacity of a given re-
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inforced concrete section as a function of the curvature induced by bar deformations in the

analyzed section for a fixed axial force value (PAULA, 1988).

5.1.1 Study of the Neutral Axis-Curvature Relationship

To begin the analysis, the plane cross-section hypothesis is assumed to be valid. This assumption

states that plane cross-sections, initially flat before loading, remain plane until failure, leading

to a linear strain distribution across the section. As a result, strains at any given point are directly

proportional to their distance from the neutral axis.

Considering the validity of this hypothesis, the maximum permissible curvature of a reinforced

concrete cross-section in its deformed configuration (as illustrated in Figure 5.1) can be

expressed as

1
r
=

−εcu + εsu

d
, (5.1)

which, in its dimensionless form, is given by

h
r
=

−εcu + εsu

d/h
(5.2)

where d represents the distance from the most compressed edge to the centroid of the most

tensioned reinforcement layer. This distance can be written in terms of the cross-section height

h and the distance from the centroid of the reinforcement to the nearest edge d′ as

d = h−d′, (5.3)

which, in its dimensionless form, is

d
h
= 1− d′

h
. (5.4)

Defining the dimensionless parameter

δ =
d′

h
(5.5)

and substituting it into Eq. (5.6), the curvature expression becomes
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h
r
=

−εcu + εsu

1−δ
. (5.6)

Figure 5.1 – Maximum allowable strains in a reinforced concrete section.
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Adapted from Paula (1988).

In these equations, the value of the ultimate compressive strain of concrete εcu is considered

negative (compression), while the value of the ultimate strain of steel εsu is positive (tension).

To define a generic strain distribution for a cross-section, it is necessary – besides assuming

a linear strain distribution – to adopt a curvature value that does not exceed the maximum

limit established in Eq. (5.1). In this formulation, the neutral axis depth is represented by the

dimensionless coefficient βx, defined as

βx =
x
h

(5.7)

where βx is assumed to vary within the range ]−∞,+∞[, and x represents the neutral axis depth,

measured as the distance from the most compressed fiber of the section to the neutral axis, as

oriented in Figure 5.1.

5.1.2 Strain Compatibility

Figure 5.2 illustrates the strain distribution in a reinforced concrete cross-section, along with

the coordinate system considered in this study.

Based on the strain compatibility condition, the following relationship holds:
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Figure 5.2 – Generic strain diagram of a reinforced concrete section.
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−εc

x
=

ε

y− y0
=

εs

h−d′− x
=

ε2u

a2u − x
(5.8)

where

εc represents the specific strain at the most compressed edge of the concrete section;

εs represents the specific strain in the tensioned reinforcement;

ε represents the specific strain in a generic fiber located at a distance y from the section’s

centroid;

y is the distance of a generic fiber from the centroid of the section;

y0 is the distance from the neutral axis to the centroid of the section; note that if the neutral

axis is located above the centroid, y0 assumes a negative value;

ε2u represents the specific strain at a concrete fiber located at a distance a2u =
εcu−εc2

εcu
h from

the most compressed edge of the section.

The strain compatibility equation (5.8) allows expressing the strain ε at a generic fiber in terms

of different reference strains:

1. In terms of the concrete strain

ε =−(y− y0)

x
εc; (5.9)

2. In terms of the reinforcement strain
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ε =
(y− y0)

h−d′− x
εs; (5.10)

3. In terms of the strain at the fiber located at a2u from the most compressed edge

ε =
(y− y0)

a2u − x
ε2u. (5.11)

Additionally, by assuming small displacements, where tan(1/r) ∼= 1/r, the strains εc2, εs and

ε2u can be expressed as functions of the cross-section curvature 1/r

εc =−x
1
r
, (5.12)

εs =
1
r
(h−d′− x), (5.13)

ε2u =
1
r
(a2u − x). (5.14)

By substituting any of the expressions (5.12), (5.13), or (5.14) into (5.9), (5.10) or (5.11),

respectively, the strain in a generic fiber ε can be expressed as a function of the curvature

1/r

ε =
1
r
(y− y0). (5.15)

Considering Figure 5.2, the position of the centroidal axis relative to the neutral axis can be

expressed as

y0 = x− h
2
. (5.16)

By substituting Eq. (5.16) into Eq. (5.15) and using the dimensionless parameter βx (Eq. (5.7))

as well as the dimensionless position of the generic fiber

βy =
y
h
, (5.17)

we obtain
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ε =
h
r

(

βy +
1
2
−βx

)

. (5.18)

Defining

β0 = βy +
1
2

(5.19)

and substituting into Eq. (5.18), the final expression for the strain at a generic fiber is

ε =
h
r
(β0 −βx) . (5.20)

This equation allows strain computation at any fiber within the cross-section for a given

curvature and neutral axis position.

5.1.3 Study of the Variation Range of the Parameter βx

As previously discussed in Subsection 5.1.1, the variation range of the neutral axis depth

parameter βx theoretically extends from −∞ to ∞. However, this range must be restricted to

prevent the ultimate strain limits from being exceeded. This is achieved by defining admissible

boundary values for βx, as detailed in the following analysis.

Three distinct ranges are defined for βx:

a) βx f 0;

b) 0 < βx f 1;

c) βx > 1.

Each of these cases is analyzed for a given cross-section curvature 1/r.

a) Case βx f 0 - Fully Tensioned Section

The entire section is in tension for βx f 0. The lower limit of βx is determined by the

ultimate strain of the steel εsu, as illustrated in Figure 5.3.

The position of the fiber that defines the strain limit condition for this case (the fiber of

the most tensioned reinforcement) can be expressed in dimensionless form as

βy =
y
h
=

h/2−d′

h
=

1
2
−δ . (5.21)

By substituting this expression into Eq. (5.19), we obtain
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Figure 5.3 – Strain distribution in a fully tensioned section.
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β0 = 1−δ . (5.22)

To ensure that the ultimate strain limit of the steel is not exceeded, the expression defining

the strain of a generic fiber within the section, given by Eq. (5.20), must satisfy the

inequality

ε =
h
r
(β0 −βx)f εsu. (5.23)

Substituting Eq. (5.22) into Eq. (5.23), the lower limit of the variation range for βx,

denoted as βxi, is obtained as

βxi = 1−δ − εsu

h/r
. (5.24)

b) Case 0 < βx f 1 - Partially Compressed Section

For 0 < βx f 1, an upper limit for βx is defined based on the ultimate compressive strain

in the concrete fiber located at the most compressed edge, given by εc = εcu, as illustrated

in Figure 5.4. Since the section is partially compressed, this condition ensures that the

strain distribution remains within the permissible deformation limits.

The position of the fiber that defines the strain limit condition, εc = εcu, is given by the

dimensionless parameter

βy =−1
2
. (5.25)

Substituting this expression into Eq. (5.19) results in
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Figure 5.4 – Strain distribution in a partially compressed section.
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β0 = 0. (5.26)

To ensure that the ultimate compressive strain limit in the most compressed concrete fiber

does not exceed εc = εcu, the strain expression must satisfy the inequality

ε =
h
r
(β0 −βx)g εcu. (5.27)

By substituting Eq. (5.26) into Eq. (5.27), the first upper limit of the variation range for

βx, denoted here as βxs1, is obtained as

βxs1 =
−εcu

h/r
(5.28)

c) Case βx > 1 - Fully Compressed Section

For βx > 1, a second upper limit for βx arises, which is determined by the ultimate com-

pressive strain in the concrete fiber located at a distance a2u from the most compressed

edge. This strain, denoted as ε2u = εc2, establishes an additional constraint to ensure that

the section remains within the permissible deformation limits, as illustrated in Figure 5.5.

The position of this critical fiber within the cross-section is given by

βy =
εcu −2εc2

2εcu
. (5.29)

By substituting this expression into Eq. (5.19), we obtain

β0 = 1− εc2

εcu
. (5.30)

To satisfy the compressive strain condition, the expression governing the strain of a

generic fiber, given by (5.20), must adhere to the inequality
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Figure 5.5 – Strain distribution in a fully compressed section.
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ε =
h
r
(β0 −βx)g εc2. (5.31)

By substituting Eq. (5.30) into Eq. (5.31), the second upper limit for the variation of βx,

denoted here as βxs2, is given by

βxs2 =
−εc2

h/r
+

a2u

h
=

−εc2

h/r
+1− εc2

εcu
. (5.32)

From the analysis performed, it can be concluded that the choice of Eq. (5.28) or Eq. (5.32) to

determine the upper limit of the parameter βx, denoted as βxs, depends on which compressive

strain limit is reached first.

5.1.4 Equilibrium Equations – Rectangular section

Assuming the validity of the plane cross-section hypothesis, assigning a value to the curvature

1/r, and defining the neutral axis depth through the dimensionless parameter βx within limits

discussed in Subsection 5.1.3, the strain at any generic fiber within the cross-section of a

reinforced concrete member can be computed using Eq. (5.20). Consequently, the distribution

of resisting stress can be determined by applying the stress-strain relationships presented in

Section 3.1. From the calculated stress values, the resisting internal forces of the cross-section

can be determined and subsequently used in the equilibrium equations.

For a rectangular cross-section with the neutral axis perpendicular to the symmetry plane of the

member, considering combined axial force and bending moment, the resisting axial force (NR)

and the resisting bending moment (MR) can be expressed as
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NR = Rcc +
n

∑
i=1

Rsi, (5.33)

MR = Mcc +
n

∑
i=1

Rsiysi, (5.34)

where n is the number of reinforcement bars, and Rcc and Mcc are the resultants of the stresses

in the compressed concrete section associated with the axial force and bending moment,

respectively

Rcc =
∫

Ac

σc dA, (5.35)

Mcc =
∫

Ac

yσc dA. (5.36)

Considering the stresses in the reinforcement (σsi) and the cross-sectional area of each rein-

forcement bar (Asi), the resultant of the stresses in the reinforcement can be expressed using

summations

n

∑
i=1

Rsi =
n

∑
i=1

σsiAsi, (5.37)

n

∑
i=1

Rsiysi =
n

∑
i=1

ysiσsiAsi. (5.38)

Substituting these into the equilibrium equations yields

NR = Rcc +
n

∑
i=1

σsiAsi, (5.39)

MR = Mcc +
n

∑
i=1

ysiσsiAsi. (5.40)

Expressing the area integrals as functions of the variable y allows rewriting the above equations

as
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NR =
∫ y0

−h/2
bwσc dy+

n

∑
i=1

σsiAsi, (5.41)

MR =
∫ y0

−h/2
bwyσc dy+

n

∑
i=1

ysiσsiAsi. (5.42)

These expressions allow for evaluating the internal resisting axial force (NR) and bending

moment (MR) in a reinforced concrete section with defined geometry and material properties.

5.1.5 Dimensionless Equilibrium Equations

To simplify the computation of the integrals presented in Eqs. (5.41) and (5.42), they are divided

into two components. In this analysis, the stress distribution in concrete is considered according

to the idealized stress-strain diagram, as illustrated in Figure 3.1. These integrals are separated

as follows:

• The first component, with integration limits y1 and y2, corresponds to the rectangular

portion of the stress-strain diagram;

• The second component, with integration limits y2 and y3, corresponds to the curved

portion of the diagram.

The integration limits are illustrated in Figure 5.6. These equilibrium equations are obtained by

substituting σc with the corresponding expression in Eq. (3.1). Following this procedure, the

resisting axial force (NR) and resisting bending moment (MR) are given by

NR =−
∫ y2

y1

0.85ηc fcdbwdy−0.85ηc fcdbw

∫ y3

y2

[

1−
(

1− εc

εc2

)n]

dy+
n

∑
i=1

σsiAsi, (5.43)

MR =−
∫ y2

y1

0.85ηc fcdbwydy−0.85ηc fcdbw

∫ y3

y2

[

1−
(

1− εc

εc2

)n]

ydy+
n

∑
i=1

yiσsiAsi. (5.44)

It is convenient to express the above equations independently of the cross-section dimensions

h and bw, and the design stress fcd to facilitate the study of reinforced concrete sections. This

is achieved by defining the dimensionless calculation limits, obtained using Eq. (5.17), and

by introducing dimensionless resisting axial force (νR) and dimensionless resisting bending

moment (µR), given by
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Figure 5.6 – Stress distribution in partially compressed concrete.
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νR =
NR

bwh fcd
, (5.45)

µR =
MR

bwh2 fcd
. (5.46)

5.1.5.1 Derivation of the Dimensionless Resisting Axial Force Expression

Dividing Eq. (5.43) by bwh fcd and substituting the integration limits y1, y2 and y3 with their

respective dimensionless counterparts β1, β2 and β3, calculated using Eq. (5.17), while setting

dy/h = dβy, results in

νR =−0.85ηc

∫ β2

β1

dβy −0.85ηc

∫ β3

β2

[

1−
(

1− εc

εc2

)n]

dβy +
1

bwh fcd

n

∑
i=1

σsiAsi. (5.47)

By substituting εc using the compatibility equation (5.18), the expression takes the form

νR =−0.85ηc

∫ β2

β1

dβy −0.85ηc

∫ β3

β2

[

1−
(

1− h
r

(βy −βx +1/2)
εc2

)n]

dβy+

+
ω

fyd

n

∑
i=1

σsinsi. (5.48)
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where ω is the mechanical reinforcement ratio given by

ω =
fydAs

fcdAc
; (5.49)

and nsi is defined as the ratio between the area of a single reinforcement bar and the total

reinforcement area, given by

nsi =
Asi

As
. (5.50)

The definite integral presented above was solved analytically by performing the arithmetic

operations, integration, and limit evaluation. The analytical solution, which allows for the

calculation of the resisting axial force in a reinforced concrete section in dimensionless terms

for a given curvature and neutral axis depth, was directly implemented in the Java-based

computational program.

5.1.5.2 Derivation of the Dimensionless Resisting Bending Moment Expression

Dividing Eq. (5.44) by bwh2 fcd and substituting the integration limits y1, y2 and y3 with their

respective dimensionless counterparts β1, β2 and β3, calculated using Eq. (5.17), results in

µR =−0.85ηc

∫ β2

β1

βydβy −0.85ηc

∫ β3

β2

[

1−
(

1− εc

εc2

)n]

βydβy+

+
1

bwh2 fcd

n

∑
i=1

yiσsiAsi. (5.51)

By substituting εc using the compatibility equation (5.18), the expression takes the form

µR =−0.85ηc

∫ β2

β1

βydβy −0.85ηc

∫ β3

β2

[

1−
(

1− h
r

(βy −βx +1/2)
εc2

)n]

βydβy+

+
ω

fyd

n

∑
i=1

σsiβsinsi. (5.52)

Similarly, the definite integral was solved analytically, performing arithmetic operations, inte-

gration, and limit evaluation. The analytical solution for computing the dimensionless resisting

bending moment in a reinforced concrete section for a given curvature and neutral axis depth

was directly implemented in the Java-based computational program.
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5.1.5.3 Definition of Dimensionless Integration Limits

Considering the variation intervals of the parameter βx defined in Subsection 5.1.3, the dimen-

sionless integration limits β1, β2, and β3 are now analyzed, as shown in Figure 5.6.

To determine the dimensionless values of the ordinates that define the integration limits, the

starting point of the rectangular stress distribution phase in the diagram is established as

β1 =−1
2
. (5.53)

Additionally, compressive stresses in concrete remain uniformly distributed until the fiber

located at a distance a2u from the most compressed edge reaches the strain εc2. Therefore, the

maximum permissible ordinate y2, which marks the end of the rectangular compression stress

distribution in concrete, is given by

y2s = y1 +a2u. (5.54)

Since y1 =−h/2 and a2u =
εcu−εc2

εcu
h, it follows that

y2s =−h
2
+

εcu − εc2

εcu
h. (5.55)

In dimensionless form, this expression becomes

β2s =−1
2
+

εcu − εc2

εcu
. (5.56)

Since only the integral within the section is relevant, the minimum permissible value for the

dimensionless ordinate β2 is defined as

β2i =−1
2
. (5.57)

Thus, the dimensionless parameter β2 varies within the range

−1
2
f β2 f−1

2
+

εcu − εc2

εcu
. (5.58)



Chapter 5. METHODOLOGY 88

The value of β2 can be computed using the expression

β2 =
εc2

h/r
+βx −

1
2
, (5.59)

which is derived by imposing ε = εc2 in Eq. (5.18). It is important to emphasize that the values

of β2 obtained using this equation must respect the limits defined in Eq. (5.58).

The third integration limit, β3, which defines the end of the stress distribution diagram,

corresponds to the position of the fiber with zero strain. Therefore, to obtain a general expression

for this limit, it is sufficient to impose zero strain in the compatibility equation (5.18), leading

to

β3 = βx −
1
2
, (5.60)

where the minimum allowable value is

β3i =−1
2
. (5.61)

For βx > 1 (fully compressed section), the dimensionless limit β3 exceeds the section bound-

aries. However, since only the integral within the section is relevant, the maximum permissible

variation of the integration limit is set as

β3s = 1/2. (5.62)

For βx f 0 (fully tensioned section), the dimensionless integration limits must nullify the stress

integral in the concrete section since the concrete tensile strength is not considered. This is

easily achieved by assigning the minimum values to the integration limits β1, β2 and β3. As a

result, the resisting axial force is provided solely by the reinforcement in the cross-section.

5.1.6 Algorithm for Computing the Bending Moment-Axial Force-Curvature Diagram

(µ,ν ,h/r)

The computation of the bending moment-axial force-curvature diagram for a given reinforced

concrete section subjected to a prescribed axial force requires determining, for each assigned

curvature 1/r, the neutral axis depth that generates an internal dimensionless axial force νR

equal (or approximately equal) to the prescribed design dimensionless axial force νfix
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νfix = νR. (5.63)

One way to solve this problem is by applying an iterative numerical method for solving

nonlinear equations, where the objective is to determine the dimensionless neutral axis depth βx

that satisfies the equilibrium condition. In this study, the False Position Method was chosen due

to its ease of implementation, guaranteed convergence when the function is continuous within

an interval [a,b] satisfying f (a) f (b) < 0, and faster convergence compared to the Bisection

Method (RUGGIERO; LOPES, 1996).

Once the neutral axis depth βx is determined, the dimensionless internal bending moment µR is

computed.

Given a fixed design dimensionless axial force νfix, the following steps outline the procedure

for constructing the diagram:

1. Define the Curvature Increment

For iteration i with an incremental dimensionless curvature step ∆i, compute the dimen-

sionless curvature of the section as

(h/r)i = (h/r)i−1 +∆i. (5.64)

2. Establish the Neutral Axis Depth Interval

Define the lower and upper limits for the neutral axis depth (βx) based on the analysis in

Subsection 5.1.3.

2.1 Lower limit of βx

The lower limit of βx is given by

βxi = 1−δ − εsu

h/r
(5.24)

where δ = d′
h .

2.2 Upper limit of βx

The upper limit is initially given by

βxs1 =
−εcu

h/r
. (5.28)

If this expression returns a value greater than 1, the upper limit of βx is adjusted

using

βxs2 =
−εc2

h/r
+1− εc2

εcu
. (5.32)
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3. Compute the Resisting Axial Forces ν1 and ν2

Compute the dimensionless internal axial forces, ν1 and ν2, corresponding to the lower

and upper limits of βx using the analytical solution of Eq (5.48).

4. Verify if νfix Lies Within the Interval (ν1 < νfix < ν2)

Using the equilibrium equation

νfix = νR (5.63)

the function

f (βx) = νfix −νR(βx) (5.65)

was defined, which equals zero when equilibrium is reached.

For νfix to be within the interval, the following condition must hold

f (βxi) · f (βxs)< 0. (5.66)

If f (βxi) · f (βxs) > 0, equilibrium is impossible, as the resistance limits are exceeded. In

this case, equilibrium cannot be achieved for any value of βx at this curvature, and the

procedure moves to the next curvature increment (return to Step 1).

5. Apply the False Position Method

Solve for βx using the False Position Method to determine the neutral axis depth that

satisfies equilibrium ( f (βx) = 0 in Eq. (5.65)).

6. Compute the Dimensionless Resisting Bending Moment µR

Calculate µR using the analytical solution of Eq. (5.52).

7. Store Results and Iterate for Next Curvature Value

Store the bending moment value for the current curvature step and return to Step 1 for the

next curvature increment (h/r)i.

In this study, the diagram is constructed twice. The first instance is carried out for the ultimate

strength of concrete σcd set as 0.85ηc fcd to determine the resisting moment MRd corresponding

to the axial force NRd . This configuration represents the condition in which the strains in either

the steel or concrete reach their limit values (dashed curve in Figure 3.6) (CASAGRANDE,

2016).

The second curve is constructed for the safety formulation presented by NBR 6118 (2023), with

σcd = 1.1 fcd and NRd/γ f 3. This curve is used in the application of the General Method to obtain

point B, as illustrated in Figure 3.6. From this point, the secant stiffness (EI)sec corresponding

to the slope of line AB is determined, and its dimensionless representation κsec is computed for

application in the Standard Column Method.
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For the program to construct the M,N,1/r diagrams, the following input data are required:

the concrete strength, the steel strength, the cross-section dimensions including the areas and

positions of the reinforcement layers, and the design axial force Nd for which the diagram is to

be generated.

5.1.7 M,N,1/r Diagrams Using the New Stress-Strain Diagram for Nonlinear Analysis

introduced in NBR 6118 (2023)

EN 1992-1-1 (2004) and the new version of NBR 6118 (2023) recommend the use of the stress-

strain diagram for nonlinear analysis, as described by Eq. (3.7) and illustrated in Figure 3.2,

in the application of the General Method. To apply this approach, it is necessary to construct

M,N,1/r diagrams using this stress-strain relationship for nonlinear analysis.

The algorithm for constructing these M,N,1/r diagrams follows the same steps as previously

described, with the only difference being the expressions used to compute the resisting axial

forces and bending moments in dimensionless form, particularly regarding the calculation of

the resultant compressive force in the concrete.

To adapt the stress-strain formulation, the stress σc is isolated in Eq. (3.7)

σc

fcm
=

kη −η2

1+(k−2)η
(3.7)

where η is expressed as

η =
εc

εc1
. (5.67)

Substituting Eq. (5.67) into Eq. (3.7) results in

σc = fcmεc

[
(kεc1 − εc)

εcεc1k+ εc1
2 −2εcεc1

]

. (5.68)

The equilibrium equations, initially described in Eqs. (5.43) and (5.44), are reformulated for the

new stress-strain diagram as follows

NR =−bw fcm

∫ y3

y1

fcmεc

[
(kεc1 − εc)

εcεc1k+ εc1
2 −2εcεc1

]

dy+
n

∑
i=1

σsiAsi (5.69)
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MR =−bw fcm

∫ y3

y1

fcmεc

[
(kεc1 − εc)

εcεc1k+ εc1
2 −2εcεc1

]

ydy+
n

∑
i=1

yiσsiAsi (5.70)

Expressing these equations in dimensionless form by dividing Eq. (5.69) by bwh fcd and Eq.

(5.70) by bwh2 fcd , and substituting εc using the compatibility equation (5.18), results in

νR =− f cm
f cd

∫ β3

β1

h
r

(

βy −βx +
1
2

){ [
kεc1 − h

r

(
βy −βx +

1
2

)]

[
h
r

(
βy −βx +

1
2

)
εc1k+ εc1

2 −2h
r

(
βy −βx +

1
2

)
εc1

]

}

dβy+

+
ω

fyd

n

∑
i=1

σsinsi. (5.71)

µR =− f cm
f cd

∫ β3

β1

h
r

(

βy −βx +
1
2

){ [
kεc1 − h

r

(
βy −βx +

1
2

)]

[
h
r

(
βy −βx +

1
2

)
εc1k+ εc1

2 −2h
r

(
βy −βx +

1
2

)
εc1

]

}

βydβy+

+
ω

fyd

n

∑
i=1

σsiβsinsi. (5.72)

The integrals for the idealized stress-strain diagram presented in Eqs. (5.48) and (5.52) were

solved analytically, and their results were implemented. However, these integrals in Eqs. (5.71)

and (5.72) become particularly complex in this case, making an analytical solution impractical.

To address this, numerical integration using Simpson’s Rule was employed through the Apache

Commons Math Library, implemented in Java.

Thus, the procedure for constructing M,N,1/r diagrams using this nonlinear stress-strain dia-

gram follows the same methodology described in Subsection 5.1.6, with the only modification

being the substitution of the expressions used for computing the dimensionless resisting axial

forces νR and bending moments µR with the numerical integration results from Eqs. (5.71) and

(5.72).

5.2 METHODS FOR SECOND-ORDER ANALYSIS

This section presents the methodology implemented in the Java-based computational program

for evaluating second-order effects in reinforced concrete columns. The approach is based on

the theoretical concepts introduced in Section 3.3 and focuses on two numerical strategies: the

Standard Column Method and the General Method, both coupled with M,N,1/r diagrams. The

following subsections detail the formulation and computational procedures for each method.
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5.2.1 Standard Column Method Coupled with M,N,1/r Diagrams

Implementing the Standard Column Method consists primarily of directly applying the equa-

tions presented in Section 3.3.

To compute the maximum total internal moment, which includes second-order effects, the

following expression is used

Md,tot =
αbM1d,A

1− λ 2

120κ/ν

g M1d,A. (3.36)

In this case, the dimensionless secant stiffness κsec is extracted from the M,N,1/r diagram,

as illustrated in Figure 3.6. In the computational implementation, the moment and curvature

coordinates of the cross-section at Point B are stored during the construction of the diagram.

Since the program is formulated in its dimensionless form, the dimensionless secant stiffness is

directly obtained by the ratio

κsec =
(µRd/γ f 3)

(h/r)B
(5.73)

where (h/r)B represents the dimensionless curvature value corresponding to the moment

µRd/γ f 3.

For consistency, since the safety formulation is applied in constructing the M,N,1/r diagram to

obtain the secant stiffness, the design axial force and moment values used in Eq. (3.36) should

also be divided by γ f 3.

5.2.2 General Method Coupled with M,N,1/r Diagrams

In the General Method, various strategies are found in the literature. The two most commonly

adopted approaches are the Finite Difference Method and Mohr’s Analogy, although the Finite

Element Method can also be applied. In this study, the Finite Difference Method was chosen

due to its simplicity of implementation.

The methodology presented here is based on the approach presented by Araújo (1993), adapted

for a bi-supported column subjected to axial loading without the application of transverse loads

along its height. The algorithm combines incremental and iterative processes, which enable

considering nonlinear effects.
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5.2.2.1 Equilibrium Equations

This section presents the equilibrium equations for the column illustrated in Figure 5.7,

subjected to an axial force P and bending moments Ma and Mb at its ends. The axial force

P is assumed to be constant along the column’s axis.

Figure 5.7 – Deformed axis of the column.
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Adapted from Araújo (1993).

Upon the application of loads, the column experiences an incremental transverse displacement

W (x) as illustrated in Figure 5.7, where the positive directions for rotations and transverse

displacements are also indicated.

Ensuring moment equilibrium with respect to end b results in

Ral +Ma −Mb = 0, (5.74)

from which the reaction force Ra is obtained as

Ra =
(Mb −Ma)

l
. (5.75)

The bending moment M at a generic cross-section along the column’s axis is given by

M = Ma +PW +Rax. (5.76)

Substituting the expression for Ra, we obtain

M = Ma

(

1− x
l

)

+Mb
x
l
+PW. (5.77)
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Defining

Mm = Ma

(

−x
l

)

+Mb

(x
l

)

(5.78)

the bending moment expression simplifies to

M = Mm +PW (5.79)

where Mm represents the contribution of nodal moments and PW corresponds to the geometric

nonlinearity contribution.

Assuming a linear elastic behavior for the material and considering the plane section hypothesis

and moderate rotations, the bending moment M at any cross-section of the column can be

described as

M =−k
d2W
dx2 =−kW ′′ (5.80)

where k is the flexural stiffness of the section, and W ′′ represents an approximate value for the

curvature 1/r of the column’s axis.

By equating Eqs. (5.79) and (5.80), we obtain

Mm +PW =−kW ′′. (5.81)

This equation represents the differential equilibrium equation of the column’s axis, considering

only geometric nonlinearity, as the stiffness k is assumed to be constant.

5.2.2.2 Finite Difference Method

The solution to the equilibrium equation (5.81) is obtained using the Finite Difference Method.

This method consists of discretizing the continuous system into a discrete system composed of

a geometric mesh, reducing the number of variables in the problem to a finite set, as illustrated

in Figure 5.8 (HOLANDA; SILVA, 2021).

According to Castro (2001), the Finite Difference Method is one of the most widely used

techniques for obtaining approximate solutions to differential equation systems. In this method,
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Figure 5.8 – Finite difference mesh.

Source: Holanda and Silva (2021).

the derivatives that appear in the boundary condition definitions are approximated using finite

differences, which involve the values of the unknown function at a set of equally spaced points,

commonly referred to as discretization nodes.

The deformed shape of the column’s axis is approximated using polynomial functions, allowing

an expression for the curvature W ′′ to be obtained in terms of the displacements at various cross-

sections.

Figure 5.9 illustrates the discretization of the column’s axis into n equally spaced cross-sections

from end a to end b.

Figure 5.9 – Discretization of the column’s axis.

�ÿ ��
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Adapted from Araújo (1993).

The distance ∆l between two consecutive cross-sections is given by

∆l =
l

n−1
(5.82)

where n is the number discretization nodes.

By fitting a quadratic polynomial to the displacements indicated in Figure 5.10, the following

expressions for curvature at various cross-sections are obtained
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W ′′
1 =

2(W2 −θa∆l)

∆l2 ; (5.83)

W ′′
i =

Wi−1 −2Wi +Wi+1

∆l2 , i = 2 to n−1; (5.84)

W ′′
n =

2(Wn−1 +θb∆l)

∆l2 . (5.85)

Equations (5.83) to (5.85) are demonstrated in Appendix B.

Figure 5.10 – Coordinate system origin for each case.
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(a) Case A: support on the left.
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(b) Case B: intermediate nodes.
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(c) Case C: support on the right.

Adapted from Araújo (1993).

By applying the differential equilibrium equation (5.81) to all sections and substituting W ′′ with

its finite difference approximations, a system of n linear algebraic equations with n unknowns

is obtained in the form

Mm +P0W = KW (5.86)

where Mm is an n-element column vector, dependent on nodal moments.

Defining the auxiliary vectors

ψa =












1

1−ξ

1−2ξ
...

0












and ψb =












0

ξ

2ξ
...

1












(5.87)

where ξ = ∆l/l, it follows that
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Mm = Maψa +Mbψb. (5.88)

The matrix P0, a square matrix (n×n) which accounts for second-order effects, is given by

P0 = PI (5.89)

where

I(i, j) =







0, if i ̸= j;

1, if i = j;

0, if i = j = 1;

0, if i = j = n.

(5.90)

For consistency, since the safety formulation is applied in constructing the M,N,1/r diagram

to obtain the secant stiffness, the design nodal moment values Ma and Mb, and the design axial

force P0 should also be divided by γ f 3.

The column vector W, containing the unknown displacements, is given by

W =

















θa

W2
...

Wi
...

Wn−1

θb

















(5.91)

The matrix K, which accounts for the flexural stiffness of the beam, is square (n× n). The

assembly of the stiffness matrix K can be derived from the moment-displacement relationships

obtained from Eqs. (5.83) to (5.85), associated with Eq. (5.86):

M1 =− 2k

∆l2 (W2 −θa∆l) =− 2k

∆l2W2 +
2k

∆l2 ∆lθa (5.92)
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M2 =−k
(W1 −2W2 +W3)

∆l2 =
2k

∆l2W2 −
k

∆l2W3 (5.93)

Mi =−k
(Wi−1 −2Wi +Wi+1)

∆l2 =− k

∆l2Wi−1 +
2k

∆l2Wi −
k

∆l2Wi+1 (5.94)

Mn−1 =−k
(Wn−2 −2Wn−1 +Wn)

∆l2 =− k

∆l2Wn−2 +
2k

∆l2Wn−1 (5.95)

Mn =− 2k

∆l2 (Wn−1 +θb∆l) =− 2k

∆l2Wn−1 −
2k

∆l2 ∆lθb (5.96)

These equations can be written in matrix form as

















M1

M2
...

Mi
...

Mn−1

Mn

















︸ ︷︷ ︸

M

=
2k

∆l2

















∆l −1 0 0 0 0 0

0 1 −1/2 0 0 0 0

0
. . .

...
... 0 0 0

0 · · · −1/2 1 −1/2 · · · 0
...

...
...

...
...

. . . 0

0 0 0 0 −1/2 1 0

0 0 0 0 0 −1 −∆l

















︸ ︷︷ ︸

K

















θa

W2
...

Wi
...

Wn−1

θb

















︸ ︷︷ ︸

W

(5.97)

The stiffness matrix K is computed considering the stiffness of the reinforced concrete cross-

section in the uncracked state. This stiffness is given by

k = EcIc +Es

n

∑
i=1

Isi (5.98)

where Ic and Isi represent, respectively, the moment of inertia of the concrete cross-section and

the moment of inertia of a generic reinforcement layer i with respect to the barycenter of the

homogenized cross-section.

To homogenize the cross-section, the equivalent concrete area corresponding to the reinforce-

ment layer is computed as

Ac,eq = n ·As (5.99)
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where n is the ratio between the elastic modulus of steel and the secant modulus of deformation

of concrete, defined by

n =
Es

Ecs
. (5.100)

The elastic modulus of steel Es can be assumed as 210GPa, while the secant modulus of

deformation of concrete Ecs is given by

Ecs = αiEci (5.101)

where αi is calculated as

αi = 0.8+0.2
fck

80
f 1.0 (5.102)

with fck in MPa, and Eci computed using Eq. (4.17).

An equation was developed to compute the depth xG of the barycenter of a generalized

homogenized section, based on the geometric relationships established in Figure 5.11 and the

homogenization equation Eq. (5.99).

Figure 5.11 – Typical cross-section with coordinate axes for developing the section homoge-
nization equations.

�
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The barycenter depth xG is given by
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xG =

{

bh2

2 +(1−n) [As2(d′′−h)−As1d′]
}

[bh− (1−n)(As1 +As2)]
. (5.103)

Thus, for the cross-section illustrated in Figure 5.11, the moments of inertia of the concrete

section and reinforcement layers with respect to the barycenter of the homogenized section are

calculated, respectively, as

Ic =
bh3

12
+bh(h/2− xG)

2 (5.104)

Is = As1(xG −d′)2
+As2(h− xG −d′′)2

. (5.105)

5.2.2.3 Algorithm for the General Method

Figure 5.12 symbolically represents the moment-deflection relationship (M−W) for a slender

reinforced concrete column, given a specified axial force P. It also illustrates the iterative

process employed in the modified Newton-Raphson method, which determines the final bending

moments in the column. The iterative procedure is outlined in the following steps:

Figure 5.12 – Iterative Scheme of the Moment-Deflection Diagram.

M

W
1

K K

M
1

W
2

δW
1

δM
1

W = ?

M

W

Adapted from Araújo (1993).

1. Compute the First Approximation of Displacements
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The first approximation W1 for the displacements is obtained from the equation

M = KW1. (5.106)

This system is solved using Crout decomposition with partial pivoting, which proved to

be more efficient than Cholesky decomposition for the analyzed cases.

2. Compute the Curvatures Using Finite Differences

Using finite difference approximations, the curvatures at the cross-sections of the column

are computed based on the displacements in W1. These curvatures are calculated as

W ′′
1 =

2(W2 −θa∆l)

∆l2 ; (5.83)

W ′′
i =

Wi−1 −2Wi +Wi+1

∆l2 , i = 2 to n−1; (5.84)

W ′′
n =

2(Wn−1 +θb∆l)

∆l2 . (5.85)

3. Compute Internal Moments Using the M,N,1/r Diagram

The corresponding internal moments M1 are obtained for each computed curvature by

referencing the M,N,1/r diagram.

4. Compute the Imbalance Vector

The imbalance vector δM1, representing the difference between external and internal

moments, is given by

δM1 = (M+PW1)−M1. (5.107)

5. Compute the Displacement Correction δW1

The required displacement correction δW1 is determined by solving the system

δM1 = KδW1. (5.108)

This system is again solved using Crout decomposition.

6. Update the Displacements

The updated displacements set W2 is obtained as

W2 = W1 +δW1. (5.109)

7. Iterative Convergence Verification

The iterative process continues until the following convergence criteria are satisfied for a

generic iteration j

∣

∣

∣

∣

∣

δW i
j

W i
j

∣

∣

∣

∣

∣

f tolerance, (i = 1 to n) (5.110)
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and simultaneously,

||δMj||
||M|| f tolerance. (5.111)

A tolerance value of 0,02 was adopted. In Eq. (5.110), W i
j represents the displacement

at cross-section i computed in iteration j. In Eq. (5.110), the notation || || denotes the

vector norm.

Unlike the Standard Column Method, which determines only the maximum moment of the

column, the General Method allows for the computation of the moment distribution across all

considered cross-sections.

For applying the General Method, the M,N,1/r diagrams are pre-generated and may be

constructed using either an idealized stress-strain diagram (diagram from Eq. 3.1 – Figure 3.1)

or the stress-strain diagram for nonlinear analysis (diagram from Eq. 3.7 – Figure 3.2), with or

without considering creep effects.

5.2.3 Semi-General Method Coupled with M,N,1/r Diagrams

A variation of the General Method, the Semi-General Method, was also developed and analyzed

based on Casagrande (2016). In this approach, instead of scanning the M,N,1/r in Step 3 of

the previously described algorithm, only the secant stiffness from the diagram, as illustrated in

Figure 3.6, is used.

Thus, the moments, in dimensionless form, are given by

µ = κsec ·
(

h
r

)

. (5.112)

This adjustment simplifies the method by eliminating the need for a full nonlinear search in the

M,N,1/r diagram while still incorporating physical nonlinearity through the secant stiffness.

This approach reduces computational complexity and is easier to apply in practical cases;

however, it provides a less precise consideration of physical nonlinearity than the complete

General Method. Despite being computationally simpler, it still depends on the precomputed

M,N,1/r diagrams, which can be a limiting factor in its application.

5.3 METHODS FOR CONSIDERING CREEP EFFECTS

This section presents the methodology implemented in the Java-based computational program

for considering creep effects in reinforced concrete columns. The approach is based on the

theoretical concepts introduced in Chapter 4 and focuses on two numerical strategies: the
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Extended Stress-Strain Curve and the Extended Stress-Strain Curve with ϕ Calculated by

the Kelvin-Voigt Rheological Model. The following subsections detail the formulation and

computational procedures for each approach.

5.3.1 Extended Stress-Strain Curve

The adopted strategy is directly based on the theoretical concepts of the method presented in

Subsection 4.3.

In the implementation, when defining a concrete type with an idealized stress-strain diagram

(diagram from Eq. 3.1 – Figure 3.1), the program incorporates creep effects by multiplying the

strain values εc2 and εcu by (1+ϕ), as described in Eq. (4.3) and illustrated in Figure 4.1. The

same approach is applied when using the stress-strain diagram for nonlinear analysis (diagram

from Eq. 3.7 – Figure 3.2), where the strains εc1 and εcu1 are also multiplied by (1+ϕ). The

equations governing the stress-strain diagrams remain unchanged, but they are applied using

these adjusted strain values, resulting in an extended stress-strain diagram incorporating creep

effects.

As previously discussed in Subsection 4.3, Brazilian studies typically use the creep coefficient

ϕ . In contrast, international studies and design codes commonly employ the effective creep

coefficient ϕe f , calculated using Eq. (4.14). The effective creep coefficient ϕe f accounts for

the proportion of long-term bending moments in a given load combination, considering that

only long-term components fully influence creep behavior. This study adopted the effective

creep coefficient ϕe f as the standard approach, providing a more comprehensive and accurate

analysis.

These extended stress-strain diagrams can be directly used in the construction of M,N,1/r

diagrams, following the algorithm described in Subsection 5.1.6. This enables the generation

of M,N,1/r diagrams incorporating creep effects, allowing for a more refined second-order

analysis of reinforced concrete columns.

5.3.2 Extended Stress-Strain Curve with ϕ Calculated by the Kelvin-Voigt Rheological

Model

Several approaches were explored to incorporate creep effects by rheological models into

the implemented methods, particularly in the M,N,1/r diagram construction and the General

Method. A straightforward approach that integrates well with the existing methods is the

computation of a creep coefficient ϕKV using the Kelvin-Voigt Model, as described below.

1. Perform the Equilibrium Calculation Using the General Method
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The standard General Method is executed first, following the conventional equilibrium

formulation.

2. Compute the Immediate Strain ε0 at the Most Compressed Fiber

The immediate strain ε0 at the most compressed fiber of each cross-section is determined

using the compatibility equation

ε0 =
h
r

(

βy +
1
2
−βx

)

. (5.18)

3. Determine the Stress at the Most Compressed Fiber

Using the stress-strain diagram, the stress at the most compressed fiber is computed based

on the previously determined strain. After calculating the stress, the ratio between quasi-

permanent moments and design moments is applied, as in the calculation of the effective

creep coefficient ϕe f in Eq. (4.14).

4. Compute the Creep Strain Using the Kelvin-Voigt Model

The creep strain at the most compressed fiber is obtained using the governing equation

for creep behavior in the Kelvin-Voigt Model

εKV =
σ0

E

(

1− e
−E
η t

)

. (4.26)

A time period of 50 years (18250 days) was adopted for the analysis.

5. Compute the Creep Coefficient ϕKV

The creep coefficient for each node of the discretization is calculated as

ϕKV =
εKV

ε0
. (5.113)

6. Modify the Stress-Strain Diagram to Incorporate Creep Effects

The stress-strain diagram is adjusted by shifting the strain values by a factor of (1+ϕKV )

to generate the extended stress-strain curve that accounts for creep effects by the Kelvin-

Voigt Model.

7. Reprocess the General Method

Finally, the General Method is rerun using the updated stress-strain diagram, incorporat-

ing the newly computed creep effects into the analysis. This reevaluation uses a M,N,1/r

diagram specific to each cross-section instead of a single generalized diagram.

In this procedure, a more comprehensive creep coefficient is computed, which depends on

the applied stress and is specific to each cross-section. As a result, this approach leads to

an extended stress-strain diagram and a unique M,N,1/r diagram for each analyzed section,

ensuring that the nonlinear behavior is accurately captured for each individual cross-section.

To apply Eq. (4.26), it is necessary to define the parameters E and η . These parameters were

calibrated based on experimental data collected by Wassin (2002 apud OLIVEIRA, 2017, p. 95).
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In that study, Oliveira (2017) reproduced the experimental data and fitted the response using

the Boltzmann rheological model. Using the relationships provided in Becho (2020), which

connect the parameters of the Boltzmann and Kelvin-Voigt models, the following conversion

expressions were adopted

EKV =
EB

1 EB
2

EB
1 +EB

2
, (5.114)

ηKV = ηB
EKV

EB
2
. (5.115)

Based on these expressions, the calibrated parameters for the Kelvin-Voigt model were defined

as

E = 4.48GPa,

η = 360GPa ·days.
(5.116)
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6 RESULTS AND DISCUSSION

This chapter presents numerical examples of reinforced concrete columns analyzed using

different computational approaches, as described in the Methodology (Chapter 5). The objective

is to evaluate the effectiveness and accuracy of various creep modeling strategies in predicting

second-order effects, providing a comparative assessment of the selected methods.

Four case studies are considered: the first three are based on Casagrande (2016), who conducted

a similar comparative study comparing different creep simulation methods. These cases serve as

a benchmark for validating the models developed in this research. By reproducing Casagrande’s

examples, the accuracy and consistency of the implemented models are assessed, enabling a

direct comparison among the different calculation approaches.

The fourth example, adapted from Pastore (2020), examines the influence of column slenderness

on creep effects. In this case, a single cross-section is analyzed while varying the column height.

This allows for an evaluation of how different creep modeling strategies respond to increasing

slenderness, providing further insight into the applicability and limitations of each approach.

Each example is structured with detailed analyses of the methods used, followed by a com-

parative discussion of the results. The findings contribute to understanding the discrepancies

between calculation strategies and their impact on the structural response of reinforced concrete

columns.

Before presenting the numerical examples, the calculation of the creep coefficient ϕ used

throughout the analyses is introduced. This value is obtained using the full procedure described

in Annex A of NBR 6118 (2023).

6.1 CALCULATION OF THE CREEP COEFFICIENT ACCORDING TO THE COMPLETE

PROCEDURE FROM ANNEX A OF NBR 6118 (2023)

The creep coefficient ϕ adopted in the analyses is calculated based on the complete procedure

described in Annex A of NBR 6118 (2023), as detailed in Subsection 4.1.1. This procedure

involves a series of assumptions regarding material properties, environmental conditions, and

loading history.

According to NBR 6118 (2023), the creep coefficient ϕ(t, t0) is defined as
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ϕ(t, t0) = ϕa +ϕ f ∞[β f (t)−β f (t0)]+ϕd∞βd. (4.5)

Initially, the final age is assumed as t = ∞. For the calculation of the fictitious age t0, it is

assumed that the load is applied after 30 days, that normal-hardening Portland Cement (CP I

or CP II) is used (α = 2), and that the average ambient temperature during the period is 20 °C.

Thus,

t0 = α ∑
i

Ti +10
30

∆tef,i = 2 · 20+10
30

30 = 60. (6.1)

For the instantaneous creep coefficient, it is assumed, based on NBR 6118 (2023), that after 28

days, the concrete has already reached its final strength. Therefore, fc(t0) = fc(t∞), so

ϕa = 0,8

[

1− fc(t0)
fc(t∞)

]

= 0. (6.2)

The final value of the irreversible delayed creep coefficient ϕ f ∞ is computed in terms of the

coefficients ϕ1c and ϕ2c.

ϕ1c is a coefficient dependent on the ambient relative humidity U and the concrete consistency.

For slump values between 5 and 9 cm and U f 90%, it can be calculated as

ϕ1c = 4.45−0.035U. (6.3)

Assuming an ambient relative humidity of 70%, this coefficient is computed as

ϕ1c = 4.45−0.035U = 2.0. (6.4)

ϕ2c is a coefficient dependent on the fictitious thickness hfic of the element, given by

ϕ2c =
42+h
20+h

(6.5)

where h is the weighted fictitious thickness, defined as

h = γhfic, (4.10)
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expressed in centimeters.

From Table 4.2, for outdoor exposure conditions (U = 70%), γ is defined as 1,5. The fictitious

thickness is computed as

hfic =
2Ac

u
=

2 ·20 ·60
2 · (20+60)

= 15cm. (6.6)

Thus, the weighted fictitious thickness is calculated as

h = γhfic = 1.5 ·15 = 22.5cm. (6.7)

From this, ϕ2c is computed as

ϕ2c =
42+h
20+h

=
42+22.5
20+22.5

= 1.52. (6.8)

Therefore, the final value of the irreversible delayed creep coefficient is given by

ϕ f ∞ = ϕ1cϕ2c = 2.0 ·1.52 = 3.04. (6.9)

For t = ∞, it is assumed that β f (t) = 1. Meanwhile, β f (t0) is computed as

β f (t) =
t2 +At +B
t2 +Ct +D

= 0.48, (6.10)

where the terms A, B, C and D are calculated using Eqs. (4.12), based on the weighted fictitious

thickness in meters.

The final value of the reversible delayed creep coefficient ϕd∞ is considered equal to 0.4.

Finally, the coefficient βd(t), associated with reversible delayed strain, is computed as a function

of the elapsed time (t − t0) after loading

βd(t) =
t − t0 +20
t − t0 +70

(4.13)

which assumes a value of 1.0 when t = ∞.
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Thus, the creep coefficient is calculated as

ϕ(t, t0) = ϕa +ϕ f ∞[β f (t)−β f (t0)]+ϕd∞βd = 0+3.04[1−0.48]+0.4 ·1.0 = 1.98. (6.11)

The adopted value for the creep coefficient is ϕ = 2.0.

6.2 EXAMPLE 1 - COLUMN UNDER AXIAL COMPRESSION

The first example in this study reproduces Example 1 from Casagrande (2016). In this case,

all the methods proposed by the author are implemented, considering models both without and

with creep effects. The analyzed methods include:

• The Standard Column Method with Approximate Stiffness κ ,

• The Standard Column Method coupled with M,N,1/r diagrams,

• The Semi-General Method coupled with M,N,1/r diagrams, and

• The General Method coupled with M,N,1/r diagrams.

In the Standard Column Method with Approximate Stiffness κ , creep effects are considered

through the additional eccentricity ecc. For the remaining methods, which utilize M,N,1/r

diagrams, creep effects - when included - are accounted for through the extended stress-strain

curve approach.

An additional analysis is conducted for this example, not included in Casagrande (2016), where

the General Method coupled with M,N,1/r diagrams is applied while incorporating creep

effects through the Kelvin-Voigt rheological model.

This first example considers a simply supported rectangular column with an equivalent length

of ℓe = 3.0m, subjected to a design axial force of NSd = 2100kN, as illustrated in Figure 6.1.

The material properties are defined as follows:

• Concrete: fck = 30MPa;

• Steel: fyk = 500MPa and an elastic modulus of E = 210GPa;

• Creep coefficient: ϕ = 2.0.

No initial bending moments are considered in this example. Only the minimum moments

prescribed by NBR 6118 (2023) are taken into account.

Casagrande (2016) considered combined bending and axial loading only in the least favorable

direction, corresponding to the higher slenderness ratio. The slenderness ratios for the rectan-
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Figure 6.1 – Initial data for Example 1.
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gular cross-section are calculated as

λx =
√

12 · ℓe

h
=
√

12 · 300
20

= 52, (6.12)

λy =
√

12 · ℓe

h
=
√

12 · 300
60

= 17. (6.13)

Thus, bending moments are assumed to act along the x-direction with cross-section dimensions:

• Height h = 20cm,

• Width bw = 60cm, and

• Slenderness ratio λ = 52.

The minimum moment is determined as

M1d,min = NSd(0.015+0.03h) = 2100(0.015+0.03 ·0.2) = 44.1kNm

∴ M1d,min = 4410kNcm. (6.14)

To verify whether second-order effects must be considered, the parameters αb and λ1 are

evaluated. For this case, the value of αb is assumed to be 1.0, as the column is subjected to

moments lower than the minimum required.

The λ1 parameter is then calculated as
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λ1 =
25+12.5(e1/h)

αb
=

25+12.5
(

0/2100
20

)

1.0
= 25 < 35 ∴ λ1 = 35 (6.15)

Since λ1 < λ < 90, the column is classified as moderately slender, meaning that second-

order local effects can be evaluated using approximate methods based on the Standard Column

approach. Furthermore, creep effects are not mandatory for this case, according to NBR 6118

(2023).

6.2.1 Standard Column Method with Approximate Stiffness κ

The total bending moment, Md,tot , in the standard column method with approximate stiffness κ

is determined directly using the parameters a, b and c, as described in Subsection 3.3.1.2. These

parameters are computed as



























a = 5h = 5 ·20 = 100,

b = h2Nd −
Ndl2

e

320
−5hαbM1d,A = 202 ·2100− 2100·3002

320 −5 ·20 ·1 ·4410 =−191625,

c =−Ndh2αbM1d,A =−2100 ·202 ·1 ·4410 =−3704.4×106.

(6.16)

Thus, the total bending moment can be computed using Eq. (3.40)

Md,tot =
−b+

√
b2 −4ac

2a
= 7119kNcm. (6.17)

Since this is a straightforward application of formulas, this result is identical to that obtained by

Casagrande (2016).

6.2.2 Standard Column Method with Approximate Stiffness κ and Additional Eccentric-

ity ecc

The additional creep-induced eccentricity is determined according to NBR 6118 (2023), using

Eq. (4.15)

ecc =

(

Msg

Nsg
+ ea

)(

2.718
ϕNsg

Ne−Nsg −1

)

. (4.15)

The term MSg/NSg represents the eccentricity resulting from the applied structural loads in the

quasi-permanent combination. Under typical design conditions, these internal forces would be
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obtained from a global structural analysis considering this loading condition. However, due to

the lack of detailed information regarding the acting loads, Casagrande (2016) assumed that

25% of the total load corresponds to short-term effects.

NSgk = 0.75 · Nd

1.4
= 0.75 · 2100

1.4
= 1125kN, (6.18)

NSqk = 0.25 · Nd

1.4
= 0.25 · 2100

1.4
= 375kN. (6.19)

For the quasi-permanent load combination, the applied axial force is determined as

NSg = NSgk +ψ2 ·NSqk = 1125+0.3 ·375 = 1237.5kN. (6.20)

A residential building was assumed, and therefore the combination factor ψ2 = 0.3 was adopted.

Next, the accidental eccentricity is computed as

θ1 =
1

100
√
ℓe

=
1

100
√

3.0
=

1
173.2

> θ1max =
1

200
∴ θ1 = θ1max =

1
200

(6.21)

ea = θ · ℓe

2
=

1
200

300
2

= 0.75cm. (6.22)

The initial tangent modulus of elasticity of concrete, Eci, is calculated assuming αE = 1.0

(granite or gneiss aggregate)

Eci = αE ·5600
√

fck = 1.0 ·5600
√

30 = 30672MPa = 3067.2kN/cm2. (6.23)

The cross-section moment of inertia is obtained as

Ic =
0.6 ·0.23

12
= 4×10−4 m4 = 40×103 cm4. (6.24)

Thus, the Euler critical load Ne is computed using Eq. (4.16)

Ne =
10EciIc

ℓe
2 =

10 ·3067.2 ·40×103

3002 = 13632kN. (6.25)
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Finally, the additional creep-induced eccentricity ecc is determined as

ecc =

(

0
1237.5

+0.75

)

(

2.718
2·1237.5

13632−1237.5 −1
)

= 0.166cm. (6.26)

The additional bending moment Mcc is given by

Mcc = NSd · ecc = 2100 ·0.166 = 349kNcm. (6.27)

Thus, the total bending moment considering creep effects is obtained as

Md = 7119+349 = 7468kNcm. (6.28)

Casagrande (2016) obtained a total moment of 7530kNcm. The slight discrepancy between the

results arises from the author using the secant modulus of elasticity Ecs instead of the initial

tangent modulus Eci.

Based on this bending moment value, Casagrande (2016) carried out the reinforcement design

for the cross-section. To compare the results, the same reinforcement configuration was adopted,

consisting of two layers of 5 bars with a diameter of 20.00 mm, as illustrated in Figure 6.1.

6.2.3 Standard Column Method Coupled with M,N,1/r Diagrams (Without Creep)

This method is implemented directly in the developed computational program, starting with

constructing the M,N,1/r diagrams. The diagrams presented in Figure 6.2 depict the moment-

curvature relationships obtained for both design values and the safety formulation, comparing

them with the curves from Casagrande (2016).

The curves obtained from the computational program and those from Casagrande (2016) for

design values are completely superimposed, indicating a strong agreement between the results.

However, a discrepancy is observed in the curves corresponding to the safety formulation, where

a separation occurs.

The dimensionless secant stiffness κ calculated by the program was 66.506, while Casagrande

(2016) obtained 71.093. Finally, the program computed a final bending moment at the critical

section of Md,tot = 5889kNcm, whereas Casagrande (2016) obtained Md,tot = 5947kNcm. This

difference was anticipated due to the divergence between the diagrams in the safety formulation.
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Figure 6.2 – M,N,1/r diagrams for Example 1, without creep effects.
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6.2.4 Standard Column Method Coupled with M,N,1/r Diagrams Considering Creep

Effects Through the Extended Stress-Strain Curve

In this case, before constructing the M,N,1/r diagram, the stress-strain curve is shifted by the

value of the creep coefficient. As previously discussed, and following the approach adopted by

Casagrande (2016), this study employs the effective creep coefficient ϕe f , calculated as

ϕe f = ϕ
MSg

Md
(4.14)

where

MSg = NSg · e1d,min = 1237.5 ·0.021 = 25.99kNm = 2599kNcm (6.29)

and

Md = M1d,min = 4410kNcm. (6.30)

Thus, the effective creep coefficient is given by

ϕe f = ϕ
MSg

Md
= 2.0 · 2599

4410
= 1.18. (6.31)
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With the computed value of ϕe f , the construction of the M,N,1/r diagrams proceeds, as

illustrated in Figure 6.3.

Figure 6.3 – M,N,1/r diagrams for Example 1, with creep effects.
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Similar to the analysis without creep effects, the curves obtained by the computational program

and those from Casagrande (2016), are perfectly aligned for the design values, while a discrep-

ancy is observed for the safety formulation. In this case, the difference appears only in the final

phase of the curves, where a separation occurs.

The dimensionless secant stiffness κ calculated by the program was 42.367, while Casagrande

(2016) obtained 47.431. Finally, the program computed a final bending moment at the critical

section of Md,tot = 7281kNcm, whereas Casagrande (2016) obtained Md,tot = 7199kNcm.

Once again, this difference was expected, resulting from the divergence between the diagrams

in the safety formulation.

6.2.5 Semi-General Method Coupled with M,N,1/r Diagrams (Without Creep)

Following the methodology previously outlined, the Semi-General Method is applied without

considering creep effects in the construction of the M,N,1/r diagrams.

This method allows for determining bending moments at each node considered in the anal-

ysis. Consequently, the entire moment distribution curve along the height of the column can

be compared, as illustrated in Figure 6.4. Despite the differences in the moment-curvature

relationships discussed earlier, and the distinct methodological approaches – since Casagrande
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(2016) employs the Mohr Analogy, whereas this study adopts the finite difference method – the

results converged consistently along the entire column length.

6.2.6 Semi-General Method Coupled with M,N,1/r Diagrams Considering Creep Ef-

fects Through the Extended Stress-Strain Curve

The Semi-General Method is applied with the M,N,1/r diagrams, incorporating creep effects

through the extended stress-strain curve in its formulation. The complete moment distribution

curve along the height of the column is shown in Figure 6.5.

This curve exhibits noticeable differences in the results, with larger deviations occurring in

regions where second-order effects are more pronounced. This discrepancy can be attributed to

greater divergence in the moment-curvature relationship when creep is incorporated, especially

in the final portion of the diagram, which may affect the secant stiffness. Additionally, as

previously mentioned, Casagrande (2016) adopts a different methodology, based on Mohr’s

analogy.

Figure 6.4 – Moment distribution diagram for
Example 1, analyzed using the
Semi-General Method without
creep effects.
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Figure 6.5 – Moment distribution diagram
for Example 1, analyzed using
the Semi-General Method with
creep effects.
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6.2.7 General Method Coupled with M,N,1/r Diagrams (Without Creep)

Following the methodology previously outlined, the General Method – expected to be a more

comprehensive and accurate approach – is applied without considering creep effects in the
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construction of the M,N,1/r diagrams.

This method also enables determining bending moments at each node considered in the analysis.

As a result, the entire moment distribution curve along the height of the column can be

compared, as illustrated in Figure 6.6.

Despite the differences in the moment-curvature relationships discussed earlier, and the distinct

methodological approaches, the results consistently converged along the entire column length.

6.2.8 General Method Coupled with M,N,1/r Diagrams Considering Creep Effects

Through the Extended Stress-Strain Curve

The General Method is applied with the M,N,1/r diagrams, incorporating creep effects through

the extended stress-strain curve in its formulation.

The complete moment distribution curve along the height of the column is presented in Figure

6.7. As observed in the General Method without creep effects, the results showed consistent

agreement with those reported by Casagrande (2016) along the entire column length.

Figure 6.6 – Moment distribution diagram for
Example 1, analyzed using the
General Method without creep
effects.
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Figure 6.7 – Moment distribution diagram for
Example 1, analyzed using the
General Method with creep ef-
fects.
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6.2.9 General Method Coupled with M,N,1/r Diagrams Considering Creep Effects

Through the Kelvin-Voigt Rheological Model

Finally, the application of an additional method, not presented by Casagrande (2016), is

performed. This approach consists of the General Method coupled with M,N,1/r, but with

creep effects computed using the Kelvin-Voigt rheological model.

By applying the method, the creep coefficient ϕKV obtained from the Kelvin-Voigt formulation

at each analysis node, can be determined. The distribution of these coefficients is depicted in

Figure 6.8.

Figure 6.8 – Distribution of creep coefficients according to the Kelvin-Voigt Rheological Model
for Example 1.
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From Figure 6.8, it can be observed that the creep coefficients decrease as second-order effects

become more significant. Furthermore, the magnitude of the obtained creep coefficients is

significantly higher than the effective creep coefficient ϕe f = 1.18 used in the previous analyses.

The complete moment distribution curve along the height of the column is presented in Figure

6.9. Due to the higher creep coefficients obtained in this approach, the bending moments

calculated here are considerably greater than those obtained in the previous General Method

analysis.
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Figure 6.9 – Moment distribution diagram for Example 1, analyzed using the General Method
with creep effects evaluated by the Kelvin-Voigt Rheological Model.
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6.2.10 Comparison of Results

Table 6.1 compares the results obtained using the developed computational program and those

from Casagrande (2016). The table shows that the results are very close, which validates the

implementations developed in this study.

Analyzing the results in Table 6.1, it is observed that simplified methods tend to produce higher

bending moment values, leading to a conservative approach in terms of safety. The Standard

Column Method with approximate stiffness κ proved to be the most conservative among them.

On the other hand, the Standard Column Method coupled with M,N,1/r diagrams yielded

results very close to those of the General Method. In contrast, the Semi-General Method showed

less accuracy, producing results further from the General Method, mainly when creep effects

were considered.

Table 6.2 presents a comparison between the results of the methods without creep effects and

those including creep effects, allowing for an evaluation of the increase in bending moments

due to the inclusion of this phenomenon.
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Table 6.1 – Comparison between the results obtained by Casagrande (2016) and the developed
program for Example 1.

Method
Md,tot calculated by

Casagrande (2016) [kNcm]

Md,tot calculated

by the program [kNcm]

Percentage

difference

Methods without creep

Standard Column

with κ approximated
7119 7119 + 0.00%

Standard Column

coupled with

M,N,1/r diagrams

5947 5889 - 0.98%

Semi-General Method

coupled with

M,N,1/r diagrams

6126 6167 + 0.67%

General Method

coupled with

M,N,1/r diagrams

5899 5962 + 1.07%

Methods with creep

Standard Column

with κ approximated

and additional eccentricity

7530 7468 - 0.82%

Standard Column

coupled with

M,N,1/r diagrams

with creep incorporated

7199 7281 + 1.14%

Semi-General Method

coupled with

M,N,1/r diagrams

with creep incorporated

7474 7910 + 5.83%

General Method

coupled with

M,N,1/r diagrams

with creep incorporated

7282 7284 + 0.03%

Table 6.2 – Comparison between the results for Example 1 obtained by the program without
and with creep effects.

Method

Md,tot

without creep

[kNcm]

Md,tot

with creep

[kNcm]

Percentage

difference

Standard Column

with κ approximated
7119 7468 + 4.90%

Standard Column

coupled with M,N,1/r diagrams
5889 7281 + 23.64%

Semi-General Method

coupled with M,N,1/r diagrams
6167 7910 + 28.26%

General Method

coupled with M,N,1/r diagrams
5962 7284 + 22.17%

From the results presented in the table, an increase of over 20% in bending moments is observed
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due to the inclusion of creep effects. Given that the column has a slenderness ratio of λ = 52

in the analyzed direction, and considering that NBR 6118 (2023) mandates the consideration

of creep effects only for columns with λ > 90, these results suggest that the current regulatory

recommendation may be inadequate. In this specific case, creep effects should be considered

according to EN 1992-1-1 (2004), since among the three conditions established by the Eurocode

under which creep may be disregarded (as described in Chapter 4), the criterion related to first-

order eccentricity is not satisfied.

Finally, Figure 6.10 presents a graphical comparison of the results obtained from the analyzed

methods, considering creep effects. This includes the General Method coupled with M,N,1/r

diagrams, with creep effects computed using the Kelvin-Voigt rheological model.

Figure 6.10 – Comparison of the maximum moment values obtained from the methods
considering creep effects.
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Analyzing the results in the figure, it is observed that the maximum bending moment obtained

using creep effects computed via the Kelvin-Voigt model is significantly higher than that of

the other methods, even exceeding the Semi-General Method by a considerable margin. It is

approximately 20% greater than the General Method with ϕe f = 1.18. This result was expected

due to the higher creep coefficients obtained, as illustrated in Figure 6.8.
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6.3 EXAMPLE 2 - COLUMN SUBJECTED TO COMBINED BENDING WITH OPPOSITE

FACE TENSION AT THE ENDS

The second example in this study reproduces Example 2 from Casagrande (2016). In this case,

greater emphasis is placed on methods that account for creep effects, as this is a key focus of the

present study. Among the methods that do not consider creep effects, only the General Method

is analyzed in this example. Furthermore, the Semi-General Method is no longer considered, as

it was deemed inefficient.

For the methods also analyzed by Casagrande (2016), a comparison of results is performed.

In addition to the methods proposed by the author, the General Method with creep effects

computed using the Kelvin-Voigt rheological model is also conducted. The analyzed methods

are:

• The Standard Column Method with Approximate Stiffness κ considering creep effects

through the additional eccentricity ecc ,

• The Standard Column Method coupled with M,N,1/r diagrams considering creep effects

through the extended stress-strain curve,

• The General Method coupled with M,N,1/r diagrams (without creep),

• The General Method coupled with M,N,1/r diagrams, considering creep effects through

the extended stress-strain curve,

• The General Method coupled with M,N,1/r diagrams, considering creep effects through

the extended stress-strain curve based on the Kelvin-Voigt rheological model.

The column in this example is based on the column from Example 1, but with its height modified

to ℓe = 4.0m. It is subjected to first-order bending moment diagrams, as illustrated in Figure

6.11b, in addition to a design axial force of NSd = 2100kN, as shown in Figure 6.11a.

The material properties are defined as follows:

• Concrete: fck = 30MPa;

• Steel: fyk = 500MPa and an elastic modulus of E = 210GPa;

• Creep coefficient: ϕ = 2.0.

With this modification in height, the slenderness ratio is given by

λ =
√

12 ·
ℓe

h
=
√

12 ·
400
20

= 69. (6.32)

To determine whether second-order effects should be considered, the parameters αb, e1 and λ1

are evaluated. For this case, αb is calculated as
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Figure 6.11 – Initial data for Example 2.
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Adapted from Casagrande (2016).

αb = 0.6+0.4
MB

MA
= 0.6+0.4

−3500
10000

= 0.46 > 0.4. (6.33)

The first-order eccentricity is obtained as

e1 =
10000
2100

= 4.76cm. (6.34)

The λ1 parameter is then computed as

λ1 =
25+12.5(e1/h)

αb
=

25+12.5
(

4.76
20

)

0.46
= 60.82 > 35 ∴ λ1 = 60.82 (6.35)

Since λ1 < λ < 90, the column is moderately slender, meaning that second-order local effects

can be evaluated using approximate methods based on the Standard Column approach. Further-

more, creep effects are not mandatory for this case, according to NBR 6118 (2023).

6.3.1 Standard Column Method with Approximate Stiffness κ and Additional Eccentric-

ity ecc

The total bending moment, Md,tot , in the standard column method with approximate stiffness κ

is determined directly using the parameters a, b and c, as described in Subsection 3.3.1.2. These

parameters are computed as
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

























a = 5h = 5 ·20 = 100,

b = h2Nd −
Ndl2

e

320
−5hαbM1d,A = 202 ·2100− 2100·4002

320 −5 ·20 ·0,46 ·10000 =−670000,

c =−Ndh2αbM1d,A =−2100 ·202 ·0,46 ·10000 =−3.864×109.

(6.36)

Thus, the total bending moment is computed using Eq. (3.40)

Md,tot =
−b+

√
b2 −4ac

2a
= 10411kNcm. (6.37)

Since this calculation directly applies formulas, the result is identical to that obtained by

Casagrande (2016).

The additional creep-induced eccentricity is determined according to NBR 6118 (2023), using

Eq. (4.15)

ecc =

(

Msg

Nsg
+ ea

)(

2.718
ϕNsg

Ne−Nsg −1

)

. (4.15)

As in the previous example, assuming that 25% of the total load corresponds to short-term

effects, the sustained axial force is given by

NSg = 1237.5kN. (6.38)

Next, the accidental eccentricity is computed as

θ1 =
1

100
√
ℓe

=
1

100
√

4.0
=

1
200

= θ1max (6.39)

ea = θ ·
ℓe

2
=

1
200

400
2

= 1.0cm. (6.40)

The initial tangent modulus of elasticity of concrete, Eci, is calculated as

Eci = αE ·5600
√

fck = 1,0 ·5600
√

30 = 30672MPa = 3067.2kN/cm2. (6.41)
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The cross-section moment of inertia is obtained as

Ic =
0.6 ·0.23

12
= 4×10−4 m4 = 40×103 cm4. (6.42)

Thus, the Euler critical load Ne is computed using Eq. (4.16)

Ne =
10EciIc

ℓe
2 =

10 ·3067.2 ·40×103

4002 = 7668kN. (6.43)

Finally, the additional creep-induced eccentricity ecc is determined as

ecc =

(

2709.6
1237.5

+1.0

)

(

2.718
2·1237.5

7668−1237.5 −1
)

= 1.50cm. (6.44)

The additional bending moment Mcc is given by

Mcc = NSd · ecc = 2100 ·1,50 = 3150kNcm. (6.45)

Thus, the total bending moment considering creep effects is obtained as

Md = 10411+3150 = 13561kNcm. (6.46)

Casagrande (2016) obtained a total moment of 14243kNcm. Again, the discrepancy between

the results arises from the author using the secant modulus of elasticity Ecs instead of the initial

tangent modulus Eci.

Based on this bending moment value, Casagrande (2016) carried out the reinforcement design

for the cross-section. To compare the results, the same reinforcement configuration was adopted,

consisting of two layers of 9 bars with a diameter of 20.00 mm, as illustrated in Figure 6.11a.

6.3.2 Standard Column Method Coupled with M,N,1/r Diagrams Considering Creep

Effects Through the Extended Stress-Strain Curve

In this case, before constructing the M,N,1/r diagram, the stress-strain curve is shifted by

the value of the creep coefficient. Following the approach adopted by Casagrande (2016), this

study employs the same effective creep coefficient, ϕe f = 1.18, as determined in the previous

example.
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With the effective creep coefficient defined, the construction of the M,N,1/r diagrams proceeds,

as illustrated in Figure 6.12.

Figure 6.12 – M,N,1/r diagrams for Example 2, with creep effects.
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Similar to the previous example, the curves obtained by the computational program and those

from Casagrande (2016), are perfectly aligned for the design values. However, a discrepancy is

observed in the safety formulation, where a separation occurs in the final phase of the curves.

The dimensionless secant stiffness κ calculated by the program was 54.944, while Casagrande

(2016) obtained 56.514. Finally, the program computed a final bending moment at the critical

section of Md,tot = 10011kNcm, whereas Casagrande (2016) obtained Md,tot = 10901kNcm.

Once again, this difference was anticipated, as it results from the divergence between the

diagrams in the safety formulation.

6.3.3 General Method Coupled with M,N,1/r Diagrams (Without Creep)

In this case, the General Method is applied without considering creep effects in constructing

the M,N,1/r diagrams. The M,N,1/r diagrams obtained are shown in Figure 6.13. For both

formulations, the curves are almost perfectly aligned.

This method allows for determining bending moments at each node considered in the analysis.

The entire moment distribution curve along the column height is illustrated in Figure 6.14. In

this case, the results consistently converged along the entire column length.
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Figure 6.13 – M,N,1/r diagrams for Example 2, without creep effects.
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Figure 6.14 – Moment distribution diagram for Example 2, analyzed using the General Method
without creep effects.
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6.3.4 General Method Coupled with M,N,1/r Diagrams Considering Creep Effects

Through the Extended Stress-Strain Curve

The General Method is then applied with the M,N,1/r diagrams, incorporating creep effects

through the extended stress-strain curve in its formulation.

The complete moment distribution curve along the column height is presented in Figure 6.15.

In this case, only minor discrepancies were observed in the results.

Figure 6.15 – Moment distribution diagram for Example 2, analyzed using the General Method
with creep effects.
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6.3.5 General Method Coupled with M,N,1/r Diagrams Considering Creep Effects

Through the Kelvin-Voigt Rheological Model

Finally, the General Method coupled with M,N,1/r diagrams, but with creep effects computed

using the Kelvin-Voigt rheological model is evaluated.

Applying this method, the creep coefficient ϕKV , obtained from the Kelvin-Voigt formulation at

each node, can be determined. The distribution of these coefficients is shown in Figure 6.16.

The complete moment distribution curve along the column height is presented in Figure 6.17.
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Figure 6.16 – Distribution of creep coefficients according to the Kelvin-Voigt Rheological
Model for Example 2.
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Figure 6.17 – Moment distribution diagram for Example 2, analyzed using the General Method
with creep effects evaluated by the Kelvin-Voigt Rheological Model.
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From Figure 6.16, it can be observed that the computed creep coefficients decrease as the

bending moments in the nodes increase. Moreover, the magnitude of the obtained values is

again significantly higher than the effective creep coefficient ϕe f = 1.18, used in the previous

analyses.

Due to the higher creep coefficients obtained in this approach, the bending moments computed

here are greater than those obtained in the previous General Method analysis. However, the

difference is smaller than that observed in Example 1.

6.3.6 Comparison of Results

All results obtained were close to those reported by Casagrande (2016); therefore, this compar-

ison will not be the primary focus of this analysis.

The evaluation of the General Method coupled with M,N,1/r diagrams, both without and

with creep consideration, revealed an increase in bending moments from Md,tot = 9508kNcm

to Md,tot = 10140kNcm. This represents a 6.65% increase, less significant than the increase

observed in Example 1.

Table 6.3 presents a comparative analysis of the results obtained using different methods

considering creep effects, showing the percentage difference relative to the General Method

coupled with M,N,1/r diagrams.

Table 6.3 – Comparison between different methods considering creep effects for Example 2.

Method
Md,tot

[kNcm]

Percentage

difference

Standard Column with κ approximated

and additional eccentricity
13561 + 33.74%

Standard Column coupled with M,N,1/r diagrams

with creep incorporated
10011 - 1.27%

General Method coupled with M,N,1/r diagrams

with creep incorporated
10140 –

General Method coupled with M,N,1/r diagrams

with creep calculated by the Kelvin-Voigt Model
10354 + 2.11%

Analyzing the results in Table 6.3, it is observed that the Standard Column Method with

approximate stiffness κ proved to be the most conservative method, as it resulted in significantly

higher bending moments compared to the General Method. On the other hand, the Standard

Column Method coupled with M,N,1/r diagrams produced results very close to those of the

General Method, even yielding slightly lower values.

Finally, the General Method with creep calculated using the Kelvin-Voigt model resulted in a

bending moment closer to that obtained with the General Method using ϕe f = 1.18 than in the
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previous example. Still, it remained more conservative than the reference method.

6.4 EXAMPLE 3 - COLUMN SUBJECTED TO COMBINED BENDING WITH SAME

FACE TENSION AT THE ENDS

The third example in this study reproduces Example 3 from Casagrande (2016). As in the

previous example, greater emphasis is given to methods considering creep effects. Among the

methods that do not consider creep effects, only the General Method is analyzed in this case.

Furthermore, the Standard Column Method with approximate stiffness κ and the Semi-General

Method were no longer considered, as they were deemed, respectively, highly conservative and

inefficient.

For the methods also analyzed by Casagrande (2016), a comparison of results is performed.

In addition to the methods proposed by the author, the General Method coupled with M,N,1/r

diagrams with creep effects computed using the Kelvin-Voigt rheological model and the General

Method coupled with M,N,1/r, using the new stress-strain diagram for nonlinear analysis

introduced in NBR 6118 (2023), are also conducted. The analyzed methods are:

• The Standard Column Method coupled with M,N,1/r diagrams considering creep effects

through the extended stress-strain curve,

• The General Method coupled with M,N,1/r diagrams (without creep),

• The General Method coupled with M,N,1/r diagrams, considering creep effects through

the extended stress-strain curve,

• The General method coupled with M,N,1/r diagrams, considering creep effects through

the extended stress-strain curve based on the Kelvin-Voigt rheological model,

• The General Method coupled with M,N,1/r diagrams, using the stress-strain diagram for

nonlinear analysis, considering creep effects through the extended stress-strain curve.

The column in this example is based on the column from the Example 1, with an equivalent

length of ℓe = 3,0m, but subjected to a first-order bending moment diagram, as illustrated in

Figure 6.18b, in addition to a design axial force of NSd = 2100kN, as shown in Figure 6.18a.

The material properties are defined as follows:

• Concrete: fck = 30MPa;

• Steel: fyk = 500MPa and an elastic modulus of E = 210GPa;

• Creep coefficient: ϕ = 2.0.

The slenderness ratio is the same as in Example 1
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Figure 6.18 – Initial data for Example 3.
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(b) First-order bending moment diagram.

Adapted from Casagrande (2016).

λ =
√

12 ·
ℓe

h
=
√

12 ·
300
20

= 52. (6.47)

To determine whether second-order effects should be considered, the parameters αb, e1 and λ1

are evaluated. For this case, αb is calculated as

αb = 0.6+0.4
MB

MA
= 0.6+0.4

7000
10000

= 0.88 > 0.4. (6.48)

The first-order eccentricity is obtained as

e1 =
10000
2100

= 4.76cm. (6.49)

The λ1 parameter is then computed as

λ1 =
25+12.5(e1/h)

αb
=

25+12.5
(

4.76
20

)

0.88
= 31.79 < 35 ∴ λ1 = 35. (6.50)

Since λ1 < λ < 90, the column is moderately slender, meaning that second-order local effects

can be evaluated using approximate methods based on the standard column approach. However,

in this example, only more refined methods are considered. Furthermore, creep effects are not

mandatory for this case, according to NBR 6118 (2023).
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6.4.1 Standard Column Method Coupled with M,N,1/r Diagrams Considering Creep

Effects Through the Extended Stress-Strain Curve

In this case, before constructing the M,N,1/r diagram, the stress-strain curve is shifted by the

value of the creep coefficient. Following the approach adopted by Casagrande (2016), this study

employs the same effective creep coefficient, ϕe f = 1.18, as determined in the first example.

With the effective creep coefficient defined, the construction of the M,N,1/r diagrams proceeds.

Since the cross-section and axial force remain unchanged, the diagrams obtained are identical

to those from Example 2 (see Figure 6.12).

The dimensionless secant stiffness κ calculated by the program was also 54.944, while Casagrande

(2016) obtained 56.514. Finally, for this example, the program computed a final bending

moment at the most critical section of Md,tot = 12644kNcm, whereas Casagrande (2016)

obtained Md,tot = 13040kNcm. Once again, this difference was expected, resulting from the

discrepancies between the diagrams in the safety formulation.

6.4.2 General Method Coupled with M,N,1/r Diagrams (Without Creep)

In this case, the General Method is applied without considering creep effects in constructing

the M,N,1/r diagrams. The M,N,1/r diagrams obtained are identical to those from Example

2 (see Figure 6.13).

This method allows for determining bending moments at each node considered in the analysis.

The entire moment distribution curve along the column height is illustrated in Figure 6.19.

Due to the differences in the moment-curvature relationships discussed earlier, the results

exhibited slight variations. Furthermore, as observed in Figure 6.19, the critical nodes in each

analysis are not the same. However, it can be noted that the bending moments at heights of

90 cm and 120 cm are very close in both curves.

6.4.3 General Method Coupled with M,N,1/r Diagrams Considering Creep Effects

Through the Extended Stress-Strain Curve

The General Method is then applied with the M,N,1/r diagrams, incorporating creep effects

through the extended stress-strain curve in its formulation.

The complete moment distribution curve along the column height is presented in Figure 6.20.

Once more, due to the differences in the moment-curvature relationships, the results showed

slight variations.
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Figure 6.19 – Moment distribution diagram
for Example 3, analyzed us-
ing the General Method without
creep effects.
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Figure 6.20 – Moment distribution diagram
for Example 3, analyzed using
the General Method with creep
effects.

1294112406

0

30

60

90

120

150

180

210

240

270

300

330

6000 8000 10000 12000 14000

L
	[c
m
]

M	[kNcm]

Values from Casagrande (2016)

Values from the program

6.4.4 General Method Coupled with M,N,1/r Diagrams Considering Creep Effects

Through the Kelvin-Voigt Rheological Model

The General Method coupled with M,N,1/r diagrams, but with creep effects computed using

the Kelvin-Voigt rheological model is evaluated.

Applying this method, the creep coefficient ϕKV , obtained from the Kelvin-Voigt formulation at

each analysis node, can be determined. The distribution of these coefficients is shown in Figure

6.21.

Again, from Figure 6.21, it can be observed that the computed creep coefficients decrease as

the bending moments in the nodes increase. Moreover, the magnitude of the obtained values

remains significantly higher than the effective creep coefficient ϕe f = 1.18, used in the previous

analyses.

The complete moment distribution curve along the column height is presented in Figure 6.22.

Despite the higher creep coefficients obtained in this approach, the bending moments computed

here are close those obtained in the previous General Method analysis. This result indicates
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better convergence between this method and the General Method across all analyzed examples.

Figure 6.21 – Distribution of creep coeffi-
cients according to the Kelvin-
Voigt Rheological Model for
Example 3.
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Figure 6.22 – Moment distribution diagram
for Example 3, analyzed using
the General Method with creep
effects evaluated by the Kelvin-
Voigt Rheological Model.
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6.4.5 General Method Coupled with M,N,1/r Diagrams Using the Stress-Strain Dia-

gram for Nonlinear Analysis and Considering Creep Effects Through the Extended

Stress-Strain Curve

Finally, the General Method was tested using the stress-strain diagram for nonlinear analysis

(diagram from Eq. 3.7 – Figure 3.2) in constructing M,N,1/r diagrams.

In this case, for simplicity, only the diagram for safety formulation was constructed, as

illustrated in Figure 6.23, where the obtained curve can be compared with those derived from the

idealized curve-rectangle stress-strain diagram (diagram from Eq. 3.1 – Figure 3.1), obtained

both by the program and by Casagrande (2016). Analyzing the figure, it can be observed that

the newly obtained curve is considerably stiffer than those obtained previously.

Applying the General Method, the moment distribution along the column height is obtained, as

shown in Figure 6.24.
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Figure 6.23 – M,N,1/r diagrams for safety formulation for Example 3, with creep effects.
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Figure 6.24 – Moment distribution diagram for Example 3, analyzed using the General Method
coupled with M,N,1/r using the stress-strain for nonlinear analysis with creep
effects.
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Comparing the curves, it becomes evident that the bending moments obtained are significantly

lower than those computed using the General Method coupled with M,N,1/r diagrams which

employed the idealized curve-rectangle stress-strain diagram.

6.4.6 Comparison of Results

All results obtained for the same methods applied by Casagrande (2016) were closely aligned

with those reported by the author.

The evaluation of the General Method coupled with M,N,1/r diagrams, both without and

with creep consideration, revealed an increase in bending moments from Md,tot = 11093kNcm

to Md,tot = 12406kNcm. This represents a 11.8% increase, which is considered significant.

However, NBR 6118 (2023) does not mandate the consideration of creep effects for columns

with this slenderness ratio.

Table 6.4 presents a comparative analysis of the results obtained using different methods that

account for creep effects, showing the percentage difference relative to the General Method

coupled with M,N,1/r diagrams.

Table 6.4 – Comparison between different methods considering creep effects for Example 3.

Method
Md,tot

[kNcm]

Percentage

difference

Standard Column coupled with

M,N,1/r diagrams with creep incorporated
12644 + 1.92%

General Method coupled with

M,N,1/r diagrams with creep incorporated
12406 –

General Method coupled with M,N,1/r diagrams

with creep calculated by the Kelvin-Voigt Model
12571 + 1.33%

General Method coupled with

M,N,1/r diagrams using stress-strain

for nonlinear analysis with creep incorporated

10560 - 14.88%

Analyzing the results in Table 6.4, it is observed that the Standard Column Method coupled with

M,N,1/r diagrams produced results very close to those of the General Method. Similarly, the

General Method with creep calculated using the Kelvin-Voigt model also resulted in a moment

value very close to that of the General Method with ϕe f = 1.18.

The most significant discrepancy, as previously noted, was observed in the General Method

coupled with M,N,1/r constructed using the stress-strain diagram for nonlinear analysis (dia-

gram from Eq. 3.7 – Figure 3.2), which resulted in substantially lower bending moment values

compared to other methods. This may indicate that this stress-strain diagram for nonlinear

analysis is unsuitable for this application, or that using the idealized curve-rectangle stress-strain
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diagram leads to overly conservative results. Determining which model is the most accurate still

requires experimental validation.

6.5 EXAMPLE 4 - COLUMN SUBJECTED TO COMBINED BENDING WITH OPPOSITE

FACE TENSION AT THE ENDS AND VARYING SLENDERNESS RATIO

The final example was initially based on the study by Pastore (2020); however, several mod-

ifications were made. In her research, the author conducted a comparative analysis of 9.720

simulations, varying multiple parameters such as cross-section dimensions, slenderness ratio,

reinforcement ratio, axial force, bending moments, the angle of moment application (as the

author studied biaxial bending), and the consideration or omission of creep effects.

A simplified version of this approach is adopted for the present example, where variations in

calculation methods and slenderness values (by altering the column length) are introduced while

maintaining the same cross-section, axial force and initial moments. The methods analyzed in

this case are:

• The Standard Column Method coupled with M,N,1/r diagrams considering creep effects

through the extended stress-strain curve,

• The General Method coupled with M,N,1/r diagrams (without creep),

• The General Method coupled with M,N,1/r diagrams, considering creep effects through

the extended stress-strain curve.

The cross-section considered is the same as in the previous examples (20× 60)cm2, while the

column height is varied for each case analyzed. The reinforcement ratio was set at ρ = 4%,

resulting in a reinforcement area of As = 24cm2 on each face, as illustrated in Figure 6.25a.

The number of reinforcement bars was not specified to correspond to standard commercial

diameters; instead, the exact calculated reinforcement area was used in the implementation.

The columns were subjected to an axial force of NSd = 900kN and bending moments, where

the minimum moment was applied at one end, while a moment twice as large was applied at the

other end, creating tension on the opposite face, as illustrated in Figure 6.25b. The minimum

moment is calculated as

M1d,min = NSd(0.015+0.03h) = 900(0.015+0.03 ·0.2) = 18.9kNm

∴ M1d,min = 1890kNcm. (6.51)
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Figure 6.25 – Initial data for Example 4.
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The material properties are defined as follows:

• Concrete: fck = 35MPa;

• Steel: fyk = 500MPa and an elastic modulus of E = 210GPa;

• Creep coefficient: ϕ = 2.0.

To determine whether second-order effects should be considered, the parameters αb, e1 and λ1

are evaluated. For this case, αb is calculated as

αb = 0.6+0.4
MB

MA
= 0.6+0.4

−1890
3780

= 0.4. (6.52)

The first-order eccentricity is computed as

e1 =
3780
900

= 4.2cm. (6.53)

The λ1 parameter is then determined as

λ1 =
25+12.5(e1/h)

αb
=

25+12.5
(

4.2
20

)

0.4
= 69 > 35 ∴ λ1 = 69. (6.54)

The slenderness ratios analyzed were defined based on Pastore (2020) and the column classifi-

cation presented in Subsection 3.2.3, approximating the values to multiples of 40 to ensure the

same discretization for all cases:
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• ℓe = 400cm: λ = λ1 = 69

• ℓe = 520cm: λ = 90

• ℓe = 680cm: λ = 118

• ℓe = 840cm: λ = 145

Pastore (2020) considered the characteristic value of the creep coefficient ϕ in her study.

However, as previously discussed, the effective creep coefficient ϕe f = 1.18 is used in this

analysis.

6.5.1 Case 1: λ = λ1 = 69

In this case, the column has a length of 400cm and a slenderness ratio of λ = λ1 = 69,

which represents the threshold between short and moderately slender columns. According to

NBR 6118 (2023), for short columns, local second-order effects can be neglected, whereas for

moderately slender columns, these effects can be evaluated using approximate methods based

on the Standard Column approach.

For this example, these approximate methods based on the Standard Column approach, such as

the Standard Column with approximate stiffness κ , are not considered. Instead, the Standard

Column coupled with M,N,1/r diagrams with creep incorporated is applied directly.

6.5.1.1 Standard Column Method Coupled with M,N,1/r Diagrams Considering Creep Ef-

fects Through the Extended Stress-Strain Curve

As previously described, the application of this method begins with the construction of M,N,1/r

diagrams. The diagram constructed for this column is shown in Figure 6.26.

Figure 6.26 – M,N,1/r diagrams obtained by the program for Example 4 with creep effects.
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It is important to highlight that this diagram applies to all cases analyzed with creep for this

example and, for all cases, the same stiffness value of κ = 46.30 can be used.

For this first case, the program computed a final bending moment at the critical section of

Md,tot = 1978kNcm.

6.5.1.2 General Method Coupled with M,N,1/r Diagrams (Without Creep)

The application of this method also begins with the construction of M,N,1/r diagrams. The

diagram constructed for this column, without creep effects, is shown in Figure 6.27.

Figure 6.27 – M,N,1/r diagrams obtained by the program for Example 4 without creep effects.
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It is important to note that this diagram applies to all cases analyzed without creep for this

example.

The moment distribution curve along the column height is shown in Figure 6.28.

6.5.1.3 General Method Coupled with M,N,1/r Diagrams Considering Creep Effects Through

the Extended Stress-Strain Curve

Finally, this method also begins with constructing the M,N,1/r diagrams, obtaining the same

diagram presented in Figure 6.26. The complete moment distribution along the column height

is shown in Figure 6.28
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Figure 6.28 – Moment distribution diagrams for the Case 1 of Example 4, analyzed using
different methods.
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6.5.2 Case 2: λ = 90

In this case, the column has a length of 520cm and a slenderness ratio of λ = 90, representing

the threshold between moderately slender columns and slender columns. For this slenderness

ratio, the calculation of local second-order effects is mandatory. Additionally, from this value

onward, it becomes compulsory that the analysis be conducted at least using the Standard

Column Method coupled with M,N,1/r diagrams and that creep effects must be considered.

6.5.2.1 Standard Column Method Coupled with M,N,1/r Diagrams Considering Creep Ef-

fects Through the Extended Stress-Strain Curve

As previously described, the application of this method begins with the construction of M,N,1/r

diagrams. The diagram constructed for this column is identical to the one from the previous

case, presented in Figure 6.26.

For this second case, the program computed a final bending moment at the critical section of

Md,tot = 2513kNcm.
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6.5.2.2 General Method Coupled with M,N,1/r Diagrams (Without Creep)

The M,N,1/r diagram constructed for this column, without creep effects, is shown in Figure

6.27. The moment distribution curve along the column height is shown in Figure 6.29.

6.5.2.3 General Method Coupled with M,N,1/r Diagrams Considering Creep Effects Through

the Extended Stress-Strain Curve

For this case, the same M,N,1/r diagram with creep effects is obtained (see Figure 6.26). The

complete moment distribution along the column height is shown in Figure 6.29.

Figure 6.29 – Moment distribution diagrams for the Case 2 of Example 4, analyzed using
different methods.
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6.5.3 Case 3: λ = 118

In this case, the column has a length of 680cm and a slenderness ratio of λ = 118, representing

an intermediate value within the range for columns classified as slender. For this slenderness

ratio, the calculation of second-order effects is mandatory and, as in the previous case, it is

required that the analysis be conducted at least using the Standard Column Method coupled

with M,N,1/r diagrams while also considering creep effects.
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6.5.3.1 Standard Column Method Coupled with M,N,1/r Diagrams Considering Creep Ef-

fects Through the Extended Stress-Strain Curve

The M,N,1/r diagram constructed for this column is identical to the one from the previous

cases, presented in Figure 6.26. For this case, the program computed a final bending moment at

the critical section of Md,tot = 4740kNcm.

6.5.3.2 General Method Coupled with M,N,1/r Diagrams (Without Creep)

The M,N,1/r diagram constructed for this column, without creep effects, is shown in Figure

6.27. The moment distribution curve along the column height is shown in Figure 6.30.

6.5.3.3 General Method Coupled with M,N,1/r Diagrams Considering Creep Effects Through

the Extended Stress-Strain Curve

For this case, the same M,N,1/r diagram with creep effects is obtained (see Figure 6.26). The

complete moment distribution along the column height is shown in Figure 6.30

Figure 6.30 – Moment distribution diagrams for the Case 3 of Example 4, analyzed using
different methods.

3616 3764

4740

0
40
80
120
160
200
240
280
320
360
400
440
480
520
560
600
640
680
720

-2000-1000 0 1000 2000 3000 4000 5000

L
	[c
m
]

M	[kNcm]

First-order

General Method without creep

General Method with creep

Standard Column Method with creep



Chapter 6. RESULTS AND DISCUSSION 146

6.5.4 Case 4: λ = 145

In this case, the column has a length of 840cm, more than twice the length of the first analyzed

case, and a slenderness ratio of λ = 145. This slenderness ratio value is slightly above the

lower limit of the range for very slender columns. For this case, the calculation of second-order

effects is mandatory, and the analysis must be conducted using the General Method while also

considering creep effects.

6.5.4.1 Standard Column Method Coupled with M,N,1/r Diagrams Considering Creep Ef-

fects Through the Extended Stress-Strain Curve

The M,N,1/r diagram constructed for this column is identical to the one from the previous

cases and is presented in Figure 6.26.

According to NBR 6118 (2023), this method is not applicable to the analysis of this column,

as the slenderness exceeds the limit of λ > 140. For this case, the program computed a final

bending moment at the critical section of Md,tot = −38615kNcm, clearly demonstrating the

complete inadequacy of this method for columns with such high slenderness.

6.5.4.2 General Method Coupled with M,N,1/r Diagrams (Without Creep)

The M,N,1/r diagram constructed for this column, without creep effects, is shown in Figure

6.27. The moment distribution curve along the column height is shown in Figure 6.31.

6.5.4.3 General Method Coupled with M,N,1/r Diagrams Considering Creep Effects Through

the Extended Stress-Strain Curve

For this case, the same M,N,1/r diagram with creep effects is obtained (see Figure 6.26). The

complete moment distribution along the column height is shown in Figure 6.31

The increase in bending moments due to second-order effects, particularly when considering

creep, is significantly greater than in the other cases, resulting in higher intermediate moments

than those at the ends.
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Figure 6.31 – Moment distribution diagrams for the Case 4 of Example 4, analyzed using
different methods.
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6.5.5 Comparison of Results

Initially, the results for each case are compared in Table 6.5, which presents the percentage

difference of the Standard Column Method relative to the General Method, both considering

creep effects in the construction of the M,N,1/r diagrams.

Analyzing the results presented in Table 6.5, it is evident that the Standard Column Method

coupled with M,N,1/r diagrams yielded poor results, even for lower slenderness values. In the

first two cases, it produced significantly lower results than the General Method, which could

represent a potential risk in structural design. These results may indicate that certain inherent

simplifications in the Standard Column Method are unsuitable for this example. Furthermore,

in Case 3, the Standard Column Method became highly conservative. Finally, in Case 4, where

NBR 6118 (2023) does not permit the use of this method, it produced completely unrealistic

results, confirming that it is inapplicable for very slender columns.

Table 6.6 presents the percentage increase in bending moments due to creep effects, comparing

the largest internal moment values in each application of the General Method coupled with

M,N,1/r.
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Table 6.5 – Comparison between different methods considering creep effects – maximum
internal bending moments for Example 4.

Cases Methods Md,tot [kNcm] Percentage Difference

Case 1

λ = 69

Standard Column Method 1978 - 40.83%

General Method 3343 -

Case 2

λ = 90

Standard Column Method 2513 - 28.95%

General Method 3537 -

Case 3

λ = 118

Standard Column Method 4740 + 25.93%

General Method 3764 -

Case 4

λ = 145

Standard Column Method -38615 - 893.89%

General Method 4864 -

Table 6.6 – Comparison of maximum internal bending moments for the General Method with
and without creep effects – Example 4.

Cases
Md,tot without creep

[kNcm]

Md,tot with creep

[kNcm]

Percentage

Difference

Case 1

λ = 69
3292 3343 + 1.55%

Case 2

λ = 90
3459 3537 + 2.25%

Case 3

λ = 118
3616 3764 + 4.09%

Case 4

λ = 145
3757 4864 + 29.46%

The analysis of Table 6.6 aligns with expectations and observations from the moment distribu-

tion diagrams: the greater the slenderness ratio, the more significant the impact of creep effects.

In this example, considering creep effects in the analysis becomes indispensable, especially

for very slender columns. However, the other examples produced in this study, showed that

for different loading conditions, creep effects can become essential even for lower slenderness

ratios, particularly in cases where bending moments at both ends tension the same face.
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7 CONCLUSIONS

The present study aimed to conduct a comparative analysis of different strategies for creep

simulation in calculating second-order effects in reinforced concrete columns. Given the signif-

icant influence of time-dependent deformations on the structural behavior of slender elements,

accurately modeling creep effects is essential to ensure the safety and serviceability of concrete

structures.

Various methods were evaluated throughout this research, highlighting their advantages and

limitations in predicting long-term displacements and internal force redistribution. The results

contribute to the ongoing discussion regarding the reliability of different creep models and

emphasize the importance of considering these effects in nonlinear structural analysis.

The analysis of different columns with varying slenderness ratios confirmed the expected trends,

demonstrating that the higher the slenderness, the more pronounced the creep effects, making

their consideration crucial in structural analysis. Additionally, it was observed that creep effects

are more significant when the applied moments induce tension on the same face, leading to

more pronounced second-order moments. This occurs because, when the column is subjected

to moments that cause tension on opposite faces, the displacements and the moment values in

the intermediate cross-sections are reduced due to the reversal of effects. However, when the

moments act tensioning the same face, the entire length of the column is subjected to high

displacement and moment values. Consequently, it was found that considering creep effects can

be essential even for columns with slenderness ratios lower than 90, especially in these cases

where moments act on the same face. This result aligns with findings from previous studies,

such as those by Casagrande (2016) and Pastore (2020), both of whom recommend considering

creep effects even for lower slenderness ratios. Casagrande (2016), in particular, highlights the

imprudence of the Brazilian standard regarding creep, as it only provides the most simplified

approach – the Approximate Method of Additional Eccentricity (ecc) – and employs a simplified

and non-conservative criterion for creep consideration when compared to EN 1992-1-1 (2004)

provisions.

The comparison between different methods confirmed that, as expected, simplified approaches

tend to be more conservative; however this is not a general rule and may vary depending on

the specific case and modeling assumptions. The Standard Column Method with approximate

stiffness κ and additional eccentricity (ecc) proved to be applicable and valuable for quick

manual calculations but may yield overly conservative results.

The Standard Column Method coupled with M,N,1/r diagrams emerged as an intermediate
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approach that is generally efficient. However, it performed poorly in Example 4, requiring

further scrutiny. This method considers geometric nonlinearity approximately and accounts for

physical nonlinearity through stiffness values obtained from constructed M,N,1/r diagrams.

Due to the complexity of generating these diagrams, the method is not trivial to apply, making

it feasible for practical use but demanding careful assessment in specific cases.

Conversely, the Semi-General Method coupled with M,N,1/r diagrams proved inefficient and

unsuitable for practical design applications. Despite its complexity, given the need to construct

M,N,1/r diagrams, it still resulted in overly conservative predictions.

The General Method coupled with M,N,1/r diagrams, on the other hand, demonstrated robust

performance, though it requires computational implementation, adding a certain degree of

complexity. However, once implemented, it provides results that fully account for physical

and geometric nonlinearity within seconds when analyzing isolated columns. Nevertheless, its

complete validation should be performed through comparisons with experimental results, which

were not undertaken in this study.

A method proposed in this study consists of the General Method coupled with M,N,1/r

diagrams and creep effects modeled using the Kelvin-Voigt rheological model. This method

appears promising, as it yielded comparatively poor results for the first example but provided

satisfactory outcomes for Examples 2 and 3. However, the model parameters may not have been

well-calibrated in this application. Further research is needed to refine this approach, mainly

through experimental data to define the model parameters. An interesting feature of this method

is that it allows calculating a specific creep coefficient value for each discretization node, based

on its specific current stress.

Finally, the General Method coupled with M,N,1/r diagrams based on the new stress-strain

diagram for nonlinear analysis introduced in NBR 6118 (2023) produced moment values

significantly lower than the other methods. In this preliminary analysis, it was observed that

NBR 6118 (2023) does not explicitly address the use of this diagram for constructing M,N,1/r

diagrams, nor for considering creep effects. The standard only specifies its application in

nonlinear analysis. On the other hand, EN 1992-1-1 (2004) explicitly incorporates this diagram

for shifting the stress-strain curve to account for creep effects. Additionally, the formulation

used to compute the creep coefficient in the Eurocode differs from that adopted in NBR 6118

(2023), which may contribute to discrepancies in the estimated creep effects. Further in-depth

studies on this subject are recommended.

Examining how creep effects were incorporated in these methodologies, it was observed that

all methods coupled with M,N,1/r diagrams accounted for creep by shifting the stress-strain

diagram. This approach appears to yield reliable results and is widely adopted internationally,



Chapter 7. CONCLUSIONS 151

despite not being explicitly included in the Brazilian standard. However, multiple variations

of this method exist, depending on the choice of stress-strain diagrams, the formulation used

to compute the creep coefficient, and whether the characteristic or effective creep coefficient

is considered. Regarding this last aspect, using the effective creep coefficient seems more

appropriate and is widely recognized in the literature, as permanent loads should induce creep

effects.

Regarding creep coefficients, a comparison between values obtained from the Kelvin-Voigt

rheological model and those calculated according to NBR 6118 (2023) revealed significant

discrepancies. As previously discussed, the Kelvin-Voigt model used in this study requires

better validation through comparisons with experimental results. Additionally, the formulation

for creep coefficient calculation in NBR 6118 (2023) is based on the CEB-FIP (1978) approach.

However, as noted by Mola and Pellegrini (2012), this international code has undergone at

least two updates regarding creep coefficient computation, indicating that the Brazilian standard

should revise this topic and possibly update its formulation.

7.1 SUGGESTIONS FOR FUTURE RESEARCH

Several research directions can be explored based on this study to further advance scientific

knowledge in this field. Initially, it is suggested that future studies investigate these methods

under a broader range of model characteristics, such as varying cross-section geometries,

reinforcement configurations, and multi-story column systems. Additionally, columns with

fck > 50MPa should be analyzed, as high-strength concrete requires specific considerations,

particularly in its nonlinear stress-strain behavior. Furthermore, a global structural analysis that

considers creep effects holistically across the structure is recommended.

Refined methodologies should also be implemented. One promising approach is the devel-

opment of methods that incorporate time-dependent behavior in more detail, considering the

timing of incremental load applications. Alternative rheological models should be further

investigated, particularly Boltzmann’s and Kelvin-Voigt’s models, which are the most used

ones for concrete in the literature. Additionally, exploring new creep models and incorporating

shrinkage effects could provide a more comprehensive analysis, as shrinkage effects evolve over

time and influence long-term deformations. A model that integrates both creep and shrinkage

could enhance the accuracy of structural predictions.

Another recommended study is a comparative analysis that applies a single method – such as the

General Method coupled with M,N,1/r diagrams incorporating creep effects via the extended

stress-strain curve – using different creep coefficient formulation from European, American, and

Brazilian standards, as well as other formulations found in the literature (see Almeida (2006)).
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Finally, it is crucial to emphasize the need for experimental research on creep, particularly in re-

inforced concrete columns. This study has identified a significant gap in the literature regarding

experimental validation, which, if addressed, could lead to considerable advancements in the

field. However, this remains challenging, as experimental creep testing is inherently complex

and time-consuming.
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APPENDIX A – EVALUATION OF THE CREEP COEFFICIENT ϕ:

COMPARISON BETWEEN TABULATED DATA IN NBR 6118 (2023)

AND THE DETAILED CALCULATION PROCEDURE

This appendix presents a comparative study between the creep coefficient values shown in Table

A.1, which were extracted from the table provided in NBR 6118 (2023), and those obtained

using the detailed calculation procedure outlined in the same standard.

As highlighted in Subsection 4.1.1, for elements subjected to stresses below 0,5 fc and

when high precision is not required, ϕ(t∞, t0) can be approximately obtained through linear

interpolation using Table A.1. This table, presents creep coefficient values as a function of

the average ambient humidity and the fictitious thickness of the element hfic, calculated using

Eq. 2.2. The values apply to concrete temperatures ranging from 10 ◦C to 20 ◦C; however the

standard allows their use for temperatures between 0 ◦C and 40 ◦C. These values are intended

for concrete produced with ordinary Portland cement.

Table A.1 – Upper characteristic values of the creep coefficient ϕ(t∞, t0). Same as Table 4.1.

Average Ambient Humidity (%) 40 55 75 90

Fictitious Thickness (cm) 2Ac/u 20 60 20 60 20 60 20 60

ϕ(t∞, t0)
Concrete Classes

C20 to C45
t0

days

5 4.6 3.8 3.9 3.3 2.8 2.4 2.0 1.9

30 3.4 3.0 2.9 2.6 2.2 2.0 1.6 1.5

60 2.9 2.7 2.5 2.3 1.9 1.8 1.4 1.4

ϕ(t∞, t0)
Concrete Classes

C50 to C90

5 2.7 2.4 2.4 2.1 1.9 1.8 1.6 1.5

30 2.0 1.8 1.7 1.6 1.4 1.3 1.1 1.1

60 1.7 1.6 1.5 1.4 1.2 1.2 1.0 1.0

Adapted from NBR 6118 (2023).

However, NBR 6118 (2023) does not explicitly state the origin of these values. Therefore, this

comparative study was conducted by recalculating the values in this table according to the

detailed calculation procedure also outlined in Subsection 4.1.1.
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A.1 VERIFICATION OF TABULATED VALUES THROUGH DETAILED CALCULA-

TION

To reproduce the table values, the detailed calculation procedure was implemented in SMath

Solver, a free computer algebra system (CAS) designed for symbolic and numerical computa-

tions, with a user-friendly interface similar to engineering notebooks.

The average ambient humidity (U), fictitious thickness (hfic), and initial loading time (t0)

were varied for specific temperature values (T ). The formulation considered ordinary Portland

cement (α = 2, as defined in Subsection 4.1.1) and a slump range of 5 to 9 cm to allow the use

of the equation provided in the notes of Table 4.2 for calculating ϕ1c. This study was limited to

concretes with compressive strength fck < 50MPa.

The Brazilian standard states that the table was developed for temperature values between 10 ◦C

and 20 ◦C. However, the formulation requires a specific temperature value. Simulations were

performed for temperatures of 10 ◦C, 15 ◦C, and 20 ◦C. Only minor variations were observed

between the results at these different temperatures, but the values obtained for T = 10◦C were

closest to those in Table A.1. These computed values are presented in Table A.2.

Table A.2 – Creep coefficient ϕ(t∞, t0) values obtained using the detailed calculation procedure
for T = 10◦C.

Average Ambient Humidity (%) 40 55 75 90

Fictitious Thickness (cm) 2Ac/u 20 60 20 60 20 60 20 60

ϕ(t∞, t0)
Concrete Classes

C20 to C45

t0
days

5 4.4 3.8 3.8 3.2 2.7 2.4 1.9 1.8

30 3.1 2.9 2.6 2.5 2.0 1.9 1.5 3.5

60 2.6 2.6 2.3 2.3 1.7 1.8 1.4 2.7

The percentage difference between the values in Table A.2 and those in Table A.1 is shown in

Table A.3.

Table A.3 – Percentage difference between the values in Table A.2 and those in Table A.1.

Average Ambient

Humidity (%)
40 55 75 90

Fictitious

Thickness (cm)
20 60 20 60 20 60 20 60

t0
days

5 -3.4% +0.3% -3.8% -2.0% -2.9% -0.0% -3.9% -4.4%

30 -8.4% -2.9% -9.1% -4.9% -10.9% -6.0% -8.9% +135.6%

60 -8.8% -1.9% -9.7% -1.6% -8.5% -1.4% -2.2% +95.1%
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In general, the values converged well for a fictitious thickness of 60 cm, particularly for an

initial loading time of t0 = 5 days. However, significant discrepancies were found for an ambient

humidity of 90%, a fictitious thickness of 60 cm, and initial loading time of t0 = 30 and 60 days.

Overall, the computed values were lower, aligning with the standard’s statement that the table

values represent upper characteristic values, ensuring a conservative approach. However, in the

cases with high discrepancies at 90% humidity, the computed values were higher, potentially

leading to underestimated structural designs.

It is not possible to precisely determine the causes of these discrepancies, as the methodology

used by the standard to define the values in Table A.1 is not explicitly provided. Nevertheless,

caution is recommended when using these values, particularly for an ambient humidity of 90%.

For other conditions, the variations in results were minor, making the table values generally

conservative.

A.2 EVALUATION OF THE TABLE FOR BRAZILIAN ENVIRONMENTAL CONDI-

TIONS

According to INMET (2025), the average temperature in Belo Horizonte in 2024 was approxi-

mately 23 °C, with some Brazilain cities experiencing even higher temperatures.

Table A.1 is specified in NBR 6118 (2023) as being applicable to temperatures between 10 ◦C

and 20 ◦C, though the standard allows its use for temperatures ranging from 0 ◦C and 40 ◦C.

However, results obtained using the formulation at 25 ◦C, presented in Table A.4, indicate grater

discrepancies. The percentage differences, shown in Table A.5, reveal deviation of up to 20%

even for humidity levels below or equal to 75%.

Table A.4 – Creep coefficient ϕ(t∞, t0) values obtained using the detailed calculation procedure
for T = 25◦C.

Average Ambient Humidity (%) 40 55 75 90

Fictitious Thickness (cm) 2Ac/u 20 60 20 60 20 60 20 60

ϕ(t∞, t0)
Concrete Classes

C20 to C45

t0
days

5 4.2 3.6 3.5 3.1 2.6 2.3 1.9 1.7

30 2.7 2.7 2.3 2.3 1.8 1.8 1.4 2.7

60 2.3 2.4 2.0 2.1 1.6 1.7 1.3 3.2

Thus, it is evident that more precise calculation methods are essential when determining

creep coefficients, particularly for higher ambient temperatures, as commonly found in Brazil.

The table values must be used with extreme caution for humidities of 90%, as significant

discrepancies were observed.
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Table A.5 – Percentage difference between the values in Table A.4 and those in Table A.1.

U (%) 40 55 75 90

hfic (cm) 20 60 20 60 20 60 20 60

t0
days

5 -9.7% -4.6% -9.8% -6.5% -7.9% -3.7% -7.4% -9.6%

30 -19.6% -10.1% -19.7% -11.4% -19.0% -10.2% -13.3% +81.2%

60 -21.8% -10.1% -21.9% -9.1% -18.0% -6.6% -7.5% +127.3%

For other conditions, the variations were less pronounced, making the tabulated values generally

conservative. However, more refined calculation procedures should be preferred whenever

greater accuracy is required.
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APPENDIX B – DERIVATION OF CURVATURE EXPRESSIONS

USING THE FINITE DIFFERENCE METHOD

This appendix presents the mathematical derivation of the curvature expressions used in

the Finite Difference Method, specifically Eqs. (5.83) to (5.85). The derivation follows the

displacement assumptions and the coordinate system definition established in Figure B.1.

Figure B.1 – Coordinate system origin for each case. Same as Figure 5.10.
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(a) Case A: support on the left.
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(b) Case B: intermediate nodes.
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�� �
(c) Case C: support on the right.

Adapted from Araújo (1993).

To provide a comprehensive approach, the expressions are derived using two different method-

ologies:

1. Quadratic Polynomial Approximation: a second-degree polynomial function is fitted to

the displacement field, allowing for an explicit expression for curvature in terms of nodal

displacements;

2. Taylor Series Expansion: the function is expanded using a Taylor series, which provides

an alternative finite difference approximation for the second derivative (curvature).

Both approaches lead to the same final expressions, reinforcing the validity of the adopted

formulation.

B.1 QUADRATIC POLYNOMIAL APPROXIMATION

The derivation begins with the definition of a second-degree polynomial to describe the elastic

line equation (deflection equation):

W (x) = a0 +a1x+a2x2. (B.1)

From this expression, its derivatives are obtained, which correspond, respectively, to the rotation

equation (W ′) and the curvature equation (W ′′)
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W ′(x) = a1 +2a2x, (B.2)

W ′′(x) = 2a2. (B.3)

Using these expressions, each case’s boundary conditions are evaluated, as illustrated in Figure

B.1.

a) Case A: Support on the Left

As illustrated in Figure B.1a, the deflection at the support is zero, thus

W (0) = 0 ∴ a0 = 0. (B.4)

The rotation at the support is equal to θa

W ′(0) = θa ∴ a1 = θa. (B.5)

The deflection at node 2 (x = ∆l) is defined as W2, which allows solving for a2

W (∆l) =W2 → θa∆l +a2∆l2 =W2 ∴ a2 =
W2 −θa∆l

∆l2 . (B.6)

Finally, after defining the parameters, the curvature expression for node 1 Eq. (5.83) is

obtained

W ′′

1 =W ′′(0) = 2a2 ∴ W ′′

1 =
2(W2 −θa∆l)

∆l2 . (B.7)

b) Case B: Intermediate Nodes

Based on Figure B.1b, three expressions for the deflection at different positions are

defined

W (−∆l) =Wi−i = a0 −a1∆l +a2∆l2 (B.8)

W (0) = a0 =Wi (B.9)

W (∆l) =Wi−i = a0 +a1∆l +a2∆l2 (B.10)

Substituting (B.9) into Eqs. (B.8) and (B.10), we obtain the system:







Wi −a1∆l +a2∆l2 =W (−∆l)

Wi +a1∆l +a2∆l2 =W (∆l)
(B.11)
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Solving for a2, we obtain

a2 =
Wi−1 −2Wi +Wi+1

2∆l2 . (B.12)

Finally, after defining a2, the curvature expression for an intermediate node i Eq. (5.84)

is derived

W ′′

i =W ′′(0) = 2a2 ∴ W ′′

i =
Wi−1 −2Wi +Wi+1

∆l2 (B.13)

c) Case C: Support on the Right

As illustrated in Figure B.1c, the deflection at the support is zero, thus

W (0) = 0 ∴ a0 = 0. (B.14)

The rotation at the support is equal to θb

W ′(0) = θb ∴ a1 = θb. (B.15)

The deflection at node n−1 (x =−∆l) is defined as Wn−1, which allows solving for a2

W (−∆l) =Wn−1 → −θb∆l +a2∆l2 =Wn−1 ∴ a2 =
Wn−1 +θb∆l

∆l2 . (B.16)

Finally, after defining the parameters, the curvature expression for node n Eq. (5.85) is

obtained

W ′′

n =W ′′(0) = 2a2 ∴ W ′′

n =
2(Wn−1 +θb∆l)

∆l2 ; (B.17)

B.2 TAYLOR SERIES EXPANSION

The curvature equations can also be derived using Taylor series approximations, following the

methodology presented in Holanda and Silva (2021).

A function can be expanded into a Taylor series to approximate its behavior around a given

point using its derivatives. The Taylor series expansion expresses a function as an infinite sum

of polynomial terms, where each term is derived from the function’s derivatives evaluated at a

specific reference point.

Mathematically, if a function f (x) is sufficiently smooth and differentiable at x = a, it can be

written as

f (x) = f (a)+ f ′(a)(x−a)+
f ′′(a)(x−a)2

2!
+ · · ·+

f (n−1)(a)(x−a)n−1

(n−1)!
+Rn. (B.18)
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From this equation, the function can be expressed at incremental positions as follows

f (x+∆x) = f (x)+ f ′(x)∆x+ f ′′(x)
∆x2

2
+ . . . ; (B.19)

f (x−∆x) = f (x)− f ′(x)∆x+ f ′′(x)
∆x2

2
− . . . . (B.20)

Based on Eqs. (B.19) and (B.20), the expressions for the deflections at the previous and

subsequent cross-sections can be written as

W (x+∆x) =W (x)+W ′(x)∆x+W ′′(x)
∆x2

2
; (B.21)

W (x−∆x) =W (x)−W ′(x)∆x+W ′′(x)
∆x2

2
. (B.22)

Using these equations, the boundary conditions are evaluated for each case:

a) Case A: Support on the Left

Setting x = 0 with boundary conditions W (0) = 0, W ′(0) = θa, and W (∆x) = W2 in Eq.

(B.21), we obtain

W2 = θa∆x+W ′′(0)
∆x2

2
. (B.23)

Defining W ′′(0) = W ′′

1 and rearranging the terms, the expression for curvature at node 1

Eq. (5.83) is obtained

W ′′

1 =
2(W2 −θa∆l)

∆l2 . (5.83)

b) Case B: Intermediate Nodes

Setting x = 0 with boundary conditions W (0) =Wi, and W (∆x) =Wi+1 in Eq. (B.21), we

obtain

Wi+1 =Wi +W ′(0)∆x+W ′′(0)
∆x2

2
. (B.24)

Similarly, setting x = 0 with boundary conditions W (0) =Wi, and W (−∆x) =Wi−1 in Eq.

(B.22), we obtain

Wi−1 =Wi −W ′(0)∆x+W ′′(0)
∆x2

2
. (B.25)
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Solving the system formed by Eqs. (B.24) and (B.25), and defining W ′′(0) = W ′′

i , we

obtain the curvature expression for an intermediate node i

W ′′

i =
Wi−1 −2Wi +Wi+1

∆l2 . (5.84)

c) Case C: Support on the Right

Setting x = 0, with boundary conditions W (0) = 0, W ′(0) = θb, and W (−∆x) =Wn−1 in

Eq. (B.22), we obtain

Wn−1 =−θb∆x+W ′′(0)
∆x2

2
. (B.26)

Defining W ′′(0) = W ′′

n and rearranging the terms, the expression for curvature at node n

(5.85) is obtained

W ′′

n =
2(Wn−1 +θb∆l)

∆l2 . (5.85)
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