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RESUMO

Um grafo simples G é um par ordenado (V (G), E(G)), onde V (G) é dito o con-
junto de vértices do grafo G e E(G) é o conjunto de subconjuntos de dois elementos de
V (G), chamado conjunto de arestas do grafo G. A análise do multiconjunto obtido ao
se apagar um vértice de G, junto com as arestas incidentes a este vértice, de todas as for-
mas possíveis nos leva à conjectura de reconstrução. Esta conjectura nos diz que a partir
do multiconjunto supracitado podemos obter um grafo isomorfo ao grafo original, se o
grafo original possui pelo menos três vértices. Esta conjectura foi proposta em 1941, por
Kelly e por Ulam (veja [3]), e levou a diversos outros problemas de reconstrução, como
o problema de reconstrução por arestas apagadas. Neste trabalho abordamos variações
deste problema para grafos com sinais.

Seja X um grafo simples e finito. Ao associarmos as arestas deste grafo a uma
função g : E(X) → {+,−} que associa a cada aresta um sinal positivo ou negativo,
obtemos um grafo com sinal (G,X), onde X é o grafo subjacente associado e G é o
grafo com o mesmo conjunto de vértices que X que contém todas as arestas positivas de
(G,X). Chamamos Gc o grafo com o mesmo conjunto de vértices que X que contém
todas as arestas negativas de (G,X).

Nós denotamos por (G,X)∗ um grafo não rotulado que é isomorfo a (G,X) e por
(G,X)e o grafo obtido ao se trocar o sinal da aresta e. O multiconjunto {(G,X)∗e |
e ∈ E(G)} de grafos não rotulados é chamado baralho de aresta com sinal de (G,X).
Se um grafo com sinal é determinado, a menos de isomorfismo, a partir do baralho de
arestas com sinal, dizemos que o mesmo é reconstrutível. O problema de reconstrução
de grafos com sinais consiste em determinar quais grafos com sinais são reconstrutíveis.

Problema. Sejam (G,X) e (H,X) grafos com sinais com mais de seis arestas tais que
{(G,X)∗e | e ∈ E(G)} = {(H,X)∗e | e ∈ E(H)}. Então (G,X) ∼= (H,X)?

Podemos reescrever este problema como

Inspirados pelo problema de reconstrução original e principalmente pelo problema
de reconstrução por arestas apagadas apresentamos resultados relacionados ao problema



de reconstrução de grafos com sinais.

Dois importantes resultados relacionados ao problema de reconstrução para grafos
com sinais que serão apresentados neste trabalho estão listados a seguir. A prova destes
teoremas será apresentada no Capítulo 3.

Teorema 1. Seja (G,X) um grafo com sinal com mais de 2 arestas. Se o número de
arestas positivas é diferente do número de arestas negativas, então (G,X) é recon-
strutível.

Teorema 2. Seja (G,X) um grafo com sinal com mais de 2 arestas não reconstrutível.
Seja (H,X) ̸∼= (G,X) tal que {[(G,X)∗e] | e ∈ E(G)} = {[(H,X)∗e] | e ∈ E(G)}. Se o
número de arestas positivas de (G,X) é par, então (G,X) ∼= (Gc, X). Se o número de
arestas positivas de (G,X) é ímpar, então (H,X) ∼= (Gc, X).

Esta tese está dividida da forma a seguir. No Capítulo 1 apresentamos algumas
definições e notações em teoria de grafos, em especial é apresentada alguma terminolo-
gia sobre reconstrução de grafos por sinais. No Capítulo 2 apresentamos o problema de
reconstrução de grafos por sinais. No Capítulo 3 apresentamos alguns problemas enu-
merativos relacionados ao problema de reconstrução de grafos com sinais. No Capítulo 4
nós resolvemos o problema de reconstrução de grafos com sinais para algumas classes
de grafos, em especial para árvores, e no Capítulo 5 nós reconstruímos a sequência de
pares de graus de grafos com sinais e apresentamos um novo problema de reconstrução
de grafos com sinais.

Palavras chave: reconstrução de grafos; grafos com sinais.



ABSTRACT

Let G be a simple graph. Consider the multiset of all unlabelled graphs obtained
by deleting a vertex v of G together with all the edges incident with v. This multiset is
called the collection of vertex-deleted subgraphs of G. The Reconstruction Conjecture
asserts that every finite simple graph, with at least three vertices, is determined, up to
isomorphism, by its collection of unlabelled vertex-deleted subgraphs. This conjecture
was first formulated in 1941, by Kelly and Ulam (see [3]).

We will consider a variation of the reconstruction problem. Let X be a finite sim-
ple graph and let G be a spanning subgraph of X . We call (G,X) a signed graph with
underlying unsigned graph X , where we consider the edges of G to be the positive edges
of (G,X). We denote by (G,X)e the graph obtained by switching the sign on edge e.
The multiset {(G,X)∗e : e ∈ E(G)} is called the signed deck of (G,X). In this thesis
we study the problem of reconstructing signed graphs from their signed deck. We call
the problem the sign switching reconstruction problem. We begin by presenting some
enumerative results related to the reconstruction of signed graphs. The main result in
this part is an analogue of Lovász’s result that says that a signed graph that has different
number of positive and negative edges is sign switching reconstructible. Next we recon-
struct some special classes of graphs, in particular, we prove that trees are sign switching
reconstructible. In Chapter 5 we reconstruct the degree pair sequence of signed graphs
and present a new reconstruction problem related to signed graphs.

Keywords: graph reconstruction; signed graphs.
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Introduction

In this work all graphs are finite and simple. Let G be a graph. We denote the
number of vertices of G by v(G) and the number of edges of G by e(G). Consider the
multiset of all unlabelled graphs obtained by deleting a vertex v ofG together with all the
edges incident with v. This multiset is called the collection of vertex-deleted subgraphs
or the deck of G. The (vertex) reconstruction conjecture 0.0.1 was first formulated in
1941 by Kelly and Ulam (see [3]).

Conjecture 0.0.1 (Reconstruction conjecture). Every finite simple graph, with at least
three vertices, is determined, up to isomorphism, by its collection of unlabelled vertex-
deleted subgraphs.

A graphH with the same deck as that ofG is called a reconstruction ofG. If each
reconstruction of G is isomorphic to G, we say that G is reconstructible. We say that a
parameter or an invariant of G is reconstructible if the parameter or invariant takes the
same value for each reconstruction of G. Some important results in reconstruction are
next stated.

Lemma 0.0.2 (Kelly, 1957). For any two graphs F and G such that v(F ) < v(G), the
number of subgraphs of G that are isomorphic to F is reconstructible.

Theorem 0.0.3 (Kelly, 1957). The degree sequence of a graph with more than 2 vertices
is reconstructible.

Theorem 0.0.4 (Kelly, 1957). Trees with at least 3 vertices are reconstructible.

Theorem 0.0.5 (Kelly, 1957). Disconnected graphs with at least 3 vertices are recon-
structible.
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We know that some other classes of graphs are reconstructible, for example, the
regular graphs [12], the outerplanar graphs [9], graphs with at most nine vertices and
maximal planar graphs (see [5]). Many graph invariants are known to be reconstructible,
for example, the dichromatic polynomial, Tutte polynomial, the characteristic polyno-
mial [25], the number of Hamilton cycles, the degree of deleted vertex and the degrees
of its neighbours are reconstructible (see Bondy and Hemminger [3]).

In 1964, Harary proposed the edge reconstruction conjecture, analogous to the
vertex reconstruction conjecture 0.0.1, which conjecture is weaker than the vertex recon-
struction conjecture.

Consider the multiset of all unlabelled graphs obtained by deleting an edge e of G.
This multiset is called the collection of edge-deleted subgraphs or the edge deck of G.

Conjecture 0.0.6 (Edge reconstruction conjecture). A graph with at least four edges is
determined, up to isomorphism, by its collection of unlabelled edge-deleted subgraphs.

A graph H is called an edge reconstruction of G if H has the same edge deck as
G. We say that a graph G is edge reconstructible if all edge reconstructions of G are
isomorphic to G. We say that a parameter or an invariant of G is edge reconstructible if
the parameter or invariant takes the same value for all edge reconstructions of G.

It is known that if a graphG has at least 4 edges, then ifG is vertex reconstructible,
then it is also edge reconstructible, and if an invariant of G is vertex reconstructible, then
it is also edge reconstructible (see [10]). Additionally, bidegreed graphs [19], claw-free
graphs [6], chordal graphs [24], maximal planar graphs [8], and planar graphs with min-
imum degree 5 are edge reconstructible [13]. The end-vertex degrees of the deleted edge
for each graph in the edge deck are edge reconstructible, see the surveys of Bondy [2]
and Maccari et al. [15]. There are some important results about edge reconstruction,
Nash-Williams [20] give one of these important results.

Let G and H be graphs at the same vertex set and let F be a subgraph of G. We
define {G→ H}F := |{σ ∈ Sn | σ(G) ∩H = σ(F )}|.

Lemma 0.0.7 (Nash-Williams, 1978). Let G be a graph and let F be a spanning sub-
graph of G. If H is an edge reconstruction of G such that G ̸∼= H , then
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{G→ G}F − {G→ H}F = (−1)e(G)−e(F ) aut(G).

Other important results were presented by Lovász [14] and Müller’s [18], both
can be seen as consequences of Nash-Williams’ Lemma, but was found independently.
These results are presented in Theorems 0.0.8 and 0.0.9.

Theorem 0.0.8 (Lovász , 1972). A graph G is edge reconstructible if e(G) > 1
2

(
v(G)
2

)
.

Theorem 0.0.9 (Müller , 1977). A graph G is edge reconstructible if 2e(G)−1 > v(G)!.

Another problem about reconstruction was proposed in 1987 by Mnukhin [16] he
proved that orbits are reconstructible from its suborbits. Using this idea he also proved
that necklaces are reconstructible and presented another point of view of the edge recon-
struction problem and a generalisation of Nash-Williams’ Lemma.

In 1985, Stanley [22] proposed the vertex-switching reconstruction problem. Let
v be a vertex of G, the graph Gv, obtained from G by deleting all edges incidents to v
and adding edges joining v to every vertex not adjacent to v in G, is called a vertex-
switching. The multiset {G∗

v : v ∈ V (G)} of unlabelled graphs is called the switching
deck of G.

Conjecture 0.0.10 (Vertex-switching reconstruction conjecture). Every graph, with at
least five vertices is determined, up to isomorphism, by its switching deck.

A graph H with the same switching deck as that of G is called a switching recon-
struction of G. If each switching reconstruction of G is isomorphic to G, we say that G
is switching reconstructible. We say that a parameter or an invariant of G is switching
reconstructible if the parameter or invariant takes the same value for each switching re-
construction of G. In the results about switching reconstruction we will always consider
v(G) > 5.

It is known that regular graphs [7], triangle-free graphs [7], disconnected graphs
with at least two nontrivial components [7] are switching reconstructible. We also know
that some parameters are reconstructible, as the degree sequence [22]. In a more gen-
eral way Stanley [22] has shown that if v(G) ̸≡ 0 (mod 4), then G is vertex-switching
reconstructible.
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In this work we will consider the following variation of the reconstruction prob-
lems.

Let X be a finite set and let G be a group of permutations of X . Consider a k-
colouring of X , that is, a function f : X → {1, . . . , k}. We say that two colourings f
and g ofX are equivalent with respect toG if one of them can be obtained from the other
by an application a permutation in G, i.e., if there exists π ∈ G such that for all x ∈ X ,
we have g(x) = f(π(x)).

If the group is cyclic or dihedral, we obtain a necklace, and when k = 2, we think
of a necklace with 2 types of beads, red and green. This is the problem proposed by
Mnukhin [17].

Let X be the set of edges of a graph Γ, and k = 2, and let G be the automorphism
group of Γ. In this case, we think of Γ as a signed graph with + or - signs on its edges.

Associated with these structures, we define a reconstruction problem, where a deck
is obtained by switching the signs in a signed graph. This reconstruction problem is
presented in Chapter 2. The above variation of reconstruction problems have features of
both edge reconstruction problem and the switching reconstruction problem.

In Chapter 1 we give some definitions and notation in graph theory, in special
about reconstruction of signed graphs. In Chapter 2 we present the definition of the
problem of reconstruction of signed graphs. In Chapter 3 we will present some enumera-
tive problems about reconstruction of signed graphs, in Chapter 4 we will solve problem
of reconstruction of signed graphs for some classes of graphs and in Chapter 5 we will
reconstruct a parameter of signed graphs.
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Chapter 1

Basic definitions and notations

1.1 Definitions and notation

We follow Bondy [4] for most of the graph theoretic definitions. Here we give a
few selected definitions and fix the notation used in the thesis.

In this workG represent a simple graph, while V (G) denote the vertex set ofG and
E(G) the edge set of G. We can denote an edge of G by uv or {u, v}. Also, we consider
only finite simple graphs. The number of vertices in G is denoted by v(G), while e(G)
represent the number of edges in G. The degree of v in G, denoted by dG(v) or deg(v),
is the number of edges incidents to v in G. We denote by δ(G) = δ and ∆(G) = ∆

the minimum and maximum degree of G. A graph whose vertices only have exactly two
degrees, δ and ∆, is called a bidegreed graph.

We say that a graph F is a subgraph of G if V (F ) ⊆ V (G) and E(F ) ⊆ E(G).
The expression F ⊆ G means that F is a subgraph of G. The expression F ≤ G denote
that there is at least one subgraph of G that is isomorphic to F . The number of subgraphs
ofG that are isomorphic to F is represented by s(F,G). We say that a subgraph F ofG is
spanning if it have the same vertex set as G and E(F ) ⊆ E(G). We say that a subgraph
F of G is edge spanning if F is a spanning subgraph of G and has the same number
of isolated vertices as G. The symbol Kn represents a complete graph on n vertices.
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A complete graph on three vertices is often called a triangle. A graph which contains
no triangle is called triangle-free. An empty graph is one which no two vertices are
adjacent, the symbol ∅n represents the empty graph with n vertices, if the number of
vertices is clear we can omit the number n and only write ∅. The complement of a graph
G, denoted by G, is the graph with same vertex set of G and whose edges are the pair
of nonadjacent vertices of G. A star is a graph whose vertex graph can be partitioned
into two subsets, one of it with only one vertex. A star with n vertices of degree 1 is
denoted by K1,n. We say that a graph S is claw-free if there is no induced subgraph
of S that is isomorphic to K1, 3. A cycle is a graph whose vertices can be arranged in
a cyclic sequence, in such manner two vertices are adjacent if they are consecutive in
this sequence. The symbol Cn represents a cycle on n vertices. A chordless cycle is an
induced subgraph of G isomorphic to a cycle of length four or more. A chordal graph is
a graph that have no chordless cycles. We denote by G∪H the union o the graphs G and
H , whileG+H denote the disjoint union. If V = V (G) = V (H), the intersectionG∩H
of the graphs G and H is the graph with vertex set V and edge set E(G) ∩ E(H). A
connected graph without cycles is called a tree. A tree can be central or bicentral, that is
can have exactly one or two central vertices. If the tree is central, we define a branch of
a tree as a maximal subtree that contains a single edge incident with the centre such that
this vertex has degree 1 in this subtree. And we define a branch of a tree as a maximal
subtree that contains a single vertex of the centre such that this vertex has degree 1 in this
subtree, if the tree is bicentral.

Two graphs G and H are isomorphic if there exists a bijection ψ : V (G) → V (H)

such that u and v are adjacent in G if and only if ψ(u) and ψ(v) are adjacent in H . In this
case ψ is called an isomorphism; we denote the fact thatG is isomorphic toH byG ∼= H

or by G ∼=Sn H . An isomorphism of a graph to itself is called an automorphism. The
relation of isomorphism is an equivalence relation. We will denote a representative of an
isomorphism class by G∗. We define an unlabelled graph as this representative of the
isomorphism class.
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1.2 Definitions on signed graphs

Let X be a finite simple graph. Let g : E(X) → {+,−}. Let G be the spanning
subgraph of X consisting of all positive edges. We call (G,X) a signed graph with
underlying unsigned graph X . We will denote by Gc the complement of G in X , that
is, the spanning subgraph of X consisting of all negative edges. We denote by (Gc, X)

the signed graph obtained from (G,X) by switch the signs of all its edges. We say
that two signed graphs (G,X) and (H, Y ) are isomorphic if there is an isomorphism
f : V (X) → V (Y ) such that f(G) = H and f(Gc) = Hc we write (G,X) ∼= (H,Y ).
The isomorphism is an equivalence relation and divide the signed graphs into classes. We
will denote a representative of an isomorphism class by (G,X)∗. We define a unlabelled
signed graph as this representative of the isomorphism class.

Let Aut(G,X) represent the subgroup of Aut(X) which fixes (G,X), i.e., the
group with components {π ∈ Aut(X) : π(G) = G}. We define |Aut(G,X)| as the
cardinality of this subgroup.

We can generalise the definition of signed graphs to a general group of permuta-
tions of V . We will assume that all signed graphs under consideration have the same
vertex set V , but sometimes we will refer to the vertex set of (G,X) as V (G,X). Let
Γ be a group of permutations of V . For signed graphs (G,X) and (H,Y ) on the ver-
tex set V , we say that (G,X) is Γ-isomorphic to (H,Y ) if there is a permutation π

in Γ that is an isomorphism from (G,X) to (H,Y ). We write (G,X) ∼=Γ (H,Y ). If
(G,X) and (H,X) are Γ-isomorphic we can say that G is Γ-isomorphic to H . We write
G ∼=Γ H . The relation of Γ-isomorphism partitions all signed graphs on V into isomor-
phism classes. For a signed graph (G,X), we denote by (G,X)∗ a fixed representative of
the Γ-isomorphism class of (G,X), and by RΓ we denote the set of representative signed
graphs from all Γ-isomorphism classes. In the case where Γ = Aut(X) we say that G is
X-isomorphic to H if there is a permutation in Aut(X) that is an isomorphism from G

to H and write G ∼=X H . In this case RX denote the set of representative signed graphs
from all X-isomorphism classes, note that this is only the set of all representatives that
have underlying unsigned graph X .

Let F and G be spanning subgraphs of X . We say that (F,X) is a subgraph of
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(G,X), and represent this by (F,X) ⊆ (G,X), if there is an automorphism σ of X such
that σ(F ) ⊆ G. Let (F,X) and (G,X) be signed graphs. We define s(F,G)X to be the
number of spanning subgraphs F ′ of G such that (F ′, X) ∼= (F,X). We have

s(F,G)X = |{σ ∈ Aut(X) | σ(F ) ⊆ G}|/Aut(F,X).

We will denote by se(F,G) the number of subgraphs of G that are isomorphic to
F that contain a specified edge e of G, and by se(F,G)X the number of subgraphs of G
that are X-isomorphic to F and contain a specified edge e of G.

We say that (F, Y ) is a subgraph of (G,X) if Y is a subgraph of X and F is a
subgraph of G, and represent this by (F, Y ) ⊆ (G,X).

Let v1, v2, . . . , vn be the vertices of (G,X). Let d+(vi) be the degree of the vertex
vi in G and let d−(vi) be the degree of the vertex vi in Gc. We call the pair d(vi) =

(d+(vi), d
−(vi)) the degree pair of the vertex vi. We define the degree pair sequence

as the sequence of pairs

((d+(v1), d
−(v1)), (d

+(v2), d
−(v2)), . . . , (d

+(vn), d
−(vn))).

We define the sequence (d+(v1), d
+(v2), . . . , d

+(vn)) as the positive degree sequence
and the sequence (d−(v1), d−(v2), . . . , d−(vn)) as the negative degree sequence. When
the vertices are not ordered, the terms degree sequence, degree pair sequence, etc. refer
to the multiset of degrees or degree pairs.
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Chapter 2

Sign switching reconstruction problems

In this chapter we define the problem of reconstruction for signed graph and present
some counter examples for this reconstruction problem.

2.1 Problem definition

Denote by (G,X)e the graph obtained by switching the sign on e. When e is a
positive edge, we write (G − e,X) := (G,X)e, and when e is a negative edge, we
write (G + e,X) := (G,X)e. Let (G,X) and (H, Y ) be signed graphs. Suppose that
there is a bijection f : E(X) → E(Y ) such that for all e ∈ E(X), we have (G,X)e ∼=
(H, Y )f(e). We call f a sign switching hypomorphism from (G,X) to (H,Y ), and say
that (G,X) and (H,Y ) are sign switching hypomorphic. Since X and Y are required
to be isomorphic in the above definition, we may consider G and H to be spanning
subgraphs of the same underlying unsigned graph X; hence all isomorphisms between
(G,X)e and (H,X)f(e) are elements of Aut(X).

The above notions may be defined equivalently as follows.

The sign switching deck of (G,X), denoted by D(G,X), is the multiset of un-
labelled graphs {(G,X)∗e | e ∈ E(G)}. Each unlabelled graph (G,X)∗e in the sign
switching deck of (G,X) is called a card. Note that two graphs (G,X) and (H,X)
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have the same sign switching deck if and only if they are sign switching hypomorphic.
In this case (H,X) is called a sign switching reconstruction of (G,X). We say that
a given signed graph (G,X) is sign switching reconstructible if every sign switching
reconstruction of (G,X) is isomorphic to (G,X). Furthermore we say that an invariant
or a parameter of (G,X) is sign switching reconstructible if it takes the same value on
every sign switching reconstruction of (G,X). In Chapters 3 and 4, since we are working
only with sign switching reconstruction problems, we will omit the words sign switching
when we use the previous terms in referenced chapters. The following examples show
pairs of nonisomorphic signed graphs with the same sign switching deck.

Example 2.1.1. If X ∼= K1,2 or X ∼= K2 +K2, then (G,X) := (X,X) and (H,X) :=

(Gc, X) have the same sign switching deck, but are not isomorphic. See Figure 2.1.

Figure 2.1: Nonreconstructible signed graphs with e(X) = 2

Example 2.1.2. Let X ∼= C4. Let G be a subgraph of X isomorphic to K1,2+K1 and let
H be a subgraph of X isomorphic to K2 +K2. Then (G,X) and (H,X) have the same
sign switching deck, but are not isomorphic. See Figure 2.2.

Example 2.1.3. Let X ∼= K4. Let G be a subgraph of X isomorphic to K1,3 and let H
be a subgraph of X isomorphic toK3+K1. Then (G,X) and (H,X) have the same sign
switching deck, but are not isomorphic. See Figure 2.3.

Example 2.1.4. Let X ∼= K1,2 + K1,2. Let G be a subgraph of X isomorphic to K1,2

and let H be a subgraph of X isomorphic to K2+K2. Then (G,X) and (H,X) have the
same sign switching deck, but are not isomorphic. See Figure 2.4.

Example 2.1.5. Let X ∼= P4. Let G be a subgraph of X isomorphic to P2 and let H be
a subgraph of X isomorphic to P1 + P1. Then (G,X) and (H,X) have the same sign
switching deck, but are not isomorphic. See Figure 2.5.
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Figure 2.2: Nonreconstructible signed graphs with X ∼= C4

Figure 2.3: Nonreconstructible signed graphs with X ∼= K4

Figure 2.4: Nonreconstructible signed graphs with X ∼= K1,2 +K1,2

Figure 2.5: Nonreconstructible signed graphs with X ∼= P4

Remark 2.1.6. The above examples are related to the known examples of pairs of noni-
somorphic graphs with the same edge deck. The graphs K1,2+K1 and K2+K2 have the
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same edge deck; similarly the graphs K1,3 and K3 +K1 have the same edge deck. Here
we have a packing of these pairs in X .

These are the only examples of pairs of signed graphs with the same sign switching
deck that we know.

Remark 2.1.7. A signed graph (G,X) is sign switching reconstructible if and only if
(Gc, X) is also sign switching reconstructible, since (G,X) and (H,X) have the same
sign switching deck if and only if (Gc, X) and (Hc, X) have the same sign switching
deck, and (G,X) and (H,X) are isomorphic if and only if (Gc, X) and (Hc, X) are
isomorphic.

The graphs in Example 2.1.1 are the only examples of nonreconstructible signed
graphs for which the number of positive (or negative) edges is not a reconstructible pa-
rameter, which is shown in Lemma 2.1.8.

Lemma 2.1.8. Suppose that e(X) > 2 and suppose that (H,X) is a sign switching
reconstruction of (G,X).

1. If G or Gc is the empty subgraph of X , then (G,X) ∼= (H,X).

2. We have e(G) = e(H) and e(Gc) = e(Hc).

3. If f : E(X) → E(X) is a sign switching hypomorphism from (G,X) to (H,X),
then for all e ∈ E(X), the edges e and f(e) have the same sign.

Proof. 1. Since e(X) > 2, we have e(G) = 0 and e(Gc) = e(X) if and only if
each graph in the sign switching deck has exactly one positive edge and e(X)− 1

negative edges. In this case (G,X) is obtained by switching the sign on the unique
positive edge in any graph in the sign switching deck. The same argument works
when e(G) = e(X) and e(Gc) = 0.

2. Now we assume that both e(G) and e(Gc) are positive. In this case, D(G,X)

contains exactly e(G) graphs with e(G)− 1 positive edges and e(Gc) + 1 negative
edges, and e(Gc) graphs with e(G) + 1 positive edges and e(Gc) − 1 negative
edges. Therefore, e(G) and e(Gc) are reconstructible, i.e., e(G) = e(H) and
e(Gc) = e(Hc).
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3. Suppose, for contradiction, that e ∈ E(G) and f(e) ∈ E(Hc). Then we have
(e(G)−1, e(Gc)+1) = (e(H)+1, e(Hc)−1), which implies that e(G) = e(H)+2

and e(Gc) = e(Hc)− 2, which contradicts the second part.

We will write m = e(G) and mc = e(Gc). We define the multisets

D+(G,X) := {(G,X)e | e ∈ E(G)} = {(G+ e,X) | e ∈ E(G)}

and

D−(G,X) := {(G,X)e | e ∈ E(Gc)} = {(G− e,X) | e ∈ E(Gc)},

henceD(G,X) = D+(G,X)∪D−(G,X), which is a multiset union. We callD+(G,X)

the positive sign switching deck of (G,X) and we call D−(G,X) the negative sign
switching deck of (G,X).

Lemma 2.1.9. Suppose that e(X) > 2. ThenD−(G,X) is sign switching reconstructible.

Proof. We have that m and mc are sign switching reconstructible, then the number of
signed graphs in D−(G,X) is also sign switching reconstructible. Since D(G,X) =

D+(G,X) ∪ D−(G,X) is a disjoint union, thus D−(G,X) is sign switching recon-
structible.

We will say that a signed graph is D−-reconstructible, when the signed graph is
reconstructible fromD−(G,X), and we will say that a signed graph isD-reconstructible,
when the signed graph is reconstructible from D(G,X). For any result that is valid for
D−, there is an analogous result for D+. We now have the following formulation of the
sign switching reconstruction problem.

Problem 2.1.10 (Suggested by Ilia Krasikov). Suppose that e(X) > 6. If (H,X) is a
sign switching reconstruction of (G,X), then is (G,X) ∼= (H,X)?

Adding isolated vertices to X does not make any difference to the sign switch-
ing reconstructibility, hence we will consider only signed graphs such that there are no
isolated vertices in X and e(X) > 2.
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Chapter 3

Enumerative methods for sign
switching reconstruction

In this chapter, we assume that (G,X) is a graph to be reconstructed from its
sign switching deck, and (H,X) is one of its reconstructions. We will present some
enumerative methods related to the problem of sign switching reconstruction. These
enumerative methods give us analogues of Kelly, Nash-Williams, Lovász and Müller’s
results. An important result in this chapter is related to the parity of the edges of G. We
prove that if e(G) is even, then (G,X) ∼= (Gc, X), and if e(G) is odd, then (H,X) ∼=
(Gc, X).

3.1 Kelly’s lemma for sign switching reconstruction

Recall that se(F,G) is the number of subgraphs of G that are isomorphic to F that
contain a specified edge e of G, and se(F,G)X is the number of subgraphs of G that are
X-isomorphic to F that contain a specified edge e of G.

Lemma 3.1.1 (First version of Kelly’s Lemma for signed graphs). Let (F,X) and (G,X)

be signed graphs. Suppose that e(F ) < e(G). Then

1. s(F,G)X is reconstructible from D−(G,X), and hence also from D(G,X);
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2. se(F,G)X is reconstructible from D−(G,X), and hence also from D(G,X).

Proof. The proof of this lemma is similar to the proof of Kelly’s lemma for edge recon-
struction. Let F ′ be a subgraph of G that is X-isomorphic to F . If e is a positive edge
not in F ′, then F ′ is a subgraph of G− e, and is X-isomorphic to F . Therefore,

s(F,G)X =

∑
e∈E(G) s(F,G− e)X

e(G)− e(F )
,

which is reconstructible from D−(G,X). Now s(F,G)X is also reconstructible from
D(G,X), since D−(G,X) is reconstructible from D(G,X) when e(X) > 2 from
Lemma 2.1.9.

Now s(F,G)X − s(F,G − e)X is reconstructible from D−(G,X), and also from
D(G,X) when e(X) > 2, which implies the second part.

Proposition 3.1.2. The positive degree sequence is D−-reconstructible if m > 3. More-
over, for each graph (G− e,X) in D−(G,X), where e := v1v2 of G, the unordered pair
(multiset) {d+v1 , d

+
v2
} is D−-reconstructible.

Proof. The positive degree sequence and the pair of degrees of the end points of e are de-
termined as in edge reconstruction (see Lemma 1.3 in Greenwell and Hemminger [11]).

Corollary 3.1.3. WhetherG is an edge spanning subgraph ofX is determined byD−(G,X).

Proof. From Lemma 1.3 of Greenwell and Hemminger [11] we have that the number of
isolated vertices is edge reconstructible. This implies we can determine whether G is an
edge spanning subgraph of X from D−.
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3.2 Lemmas of Nash-Williams, Lovász and Müller for
sign switching reconstruction

Now we prove a result analogous to Nash-Williams’ lemma (Lemma 0.0.7) with
techniques from Alon et al [1]. For that, we use the following notation.

Notation. Let F, S, T be spanning subgraphs of X , where F ⊆ S. We define

{S → T}F := {σ ∈ Aut(X) | σ(S) ∩ T = σ(F )},
|S → T |F := |{S → T}F |, (3.1)

|F → T | := |{σ ∈ Aut(X) | σ(F ) ⊆ T}| = |Aut(F,X)|s(F, T )X . (3.2)

From Equations 3.1 and 3.2, we have

∑
F ′|F⊆F ′⊆S

|S → T |F ′ =
∑

F ′|F⊆F ′⊆S

|{σ ∈ Aut(X) | σ(S) ∩ T = σ(F ′)}|

= |{σ ∈ Aut(X) | σ(F ) ⊆ T}|
= |F → T |. (3.3)

Lemma 3.2.1 (Nash-Williams’s lemma for signed graphs). Let (H,X) be a reconstruc-
tion of (G,X) such that (G,X) ̸∼= (H,X). Let F be a spanning subgraph of G. We
have

|G→ G|F − |G→ H|F = (−1)e(G)−e(F )|Aut(G,X)|. (3.4)

Proof. From Equations 3.2 and 3.3, we obtain∑
F ′|F⊆F ′⊆G

|G→ H|F ′ = |Aut(F,X)|s(F,H)X .
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Applying Möbius inversion formula, we obtain

|G→ H|F =
∑

F ′|F⊆F ′⊆G

(−1)e(G)−e(F )|Aut(F ′, X)|s(F ′, H)X .

Hence

|G→ G|F−|G→ H|F =
∑

F ′|F⊆F ′⊆G

(−1)e(G)−e(F )|Aut(F ′, X)| (s(F ′, G)X − s(F ′, H)X) .

(3.5)
By Lemma 3.1.1, we have s(F ′, G)X − s(F ′, H)X = 0 for all proper subgraphs F ′

of G. We have s(G,G)X = 1 and s(G,H)X = 0 (since (H,X) is a nonisomorphic
reconstruction of (G,X)). Hence

|G→ G|F − |G→ H|F = (−1)e(G)−e(F )|Aut(G,X)| (s(G,G)X − s(G,H)X) .

= (−1)e(G)−e(F )|Aut(G,X)|.

Corollary 3.2.2. If e(G) − e(F ) is even, then |G → G|F is positive, which implies that
there exists (G′, X) ∼= (G,X) such that G′ ∩ G = F . Similarly, if e(G) − e(F ) is odd,
then |G → H|F is positive, which implies that there exists (H ′, X) ∼= (H,X) such that
H ′ ∩G = F .

Remark 3.2.3. Lemma 3.2.1 and Corollary 3.2.2 are valid forD−(G,X). But, if we have
D(G,X), then we have a similar result for Gc.

Now, as corollaries, we have results similar to the results of Lovász and Müller
(Corollaries 3.2.4 and 3.2.10 respectively).

Corollary 3.2.4 (Lovász’s lemma for signed graphs). Let (G,X) be a signed graph.

1. If m > mc, then (G,X) is reconstructible from D−(G,X).

2. If m ̸= mc, then (G,X) is reconstructible from D(G,X).

Proof. 1. Let (G,X) be such that m > mc. We take F as an empty subgraph of G.
Now for any spanning subgraph T of X , we have |G → T |F = |G → T c|. Since



32

m > mc, taking T to be G or H , we have |G → Gc| = |G → Hc| = 0, which
contradicts Equation 3.4 since the right side of Equation 3.4 is nonzero. Hence
(G,X) is reconstructible from D−(G,X).

2. If D(G,X) is given and m ̸= mc, then if m > mc then we apply part 1 to (G,X),
and if m < mc then we apply part 1 to (Gc, X). Thus (G,X) is reconstructible
from D(G,X).

The next result is an immediate consequence of Corollary 3.2.4, but it can be
proved in a constructive way using a technique of a proof presented by Alon (see Stan-
ley [22]).

Corollary 3.2.5. If e(X) is odd, then (G,X) is reconstructible from D(G,X).

Remark 3.2.6. From now on, we will assume that m = mc when we are considering the
problem of reconstruction from D(G,X), and we will assume that m ≤ mc when we are
considering the problem of reconstruction from D−(G,X).

Corollary 3.2.7. Suppose that (G,X) is notD-reconstructible. Ifm is odd, then (H,X) ∼=
(Gc, X), and if m is even, then G ∼=X Gc.

Proof. We take F to be an empty subgraph of G, and apply Equation 3.4. We have

|G→ G|F − |G→ H|F = |G→ Gc| − |G→ Hc| = (−1)m|Aut(G,X)|.

If m is odd, then |G → Hc| is positive, and since we have assumed that m = mc, we
have (H,X) ∼= (Gc, X). Similarly, if m = mc is even, then |G → Gc| is positive, hence
G ∼=X Gc.

Remark 3.2.8. IfG is edge reconstructible, thenH ∼=Sn G, which implies thatGc ∼=Sn G,
but Gc may not be X-isomorphic to G.

Corollary 3.2.9. Let (G,X) be a signed graph, with m even. Suppose that (G,X) is
not D-reconstructible. If a vertex has degree pair (k, l), then there is another vertex in
(G,X) with degree pair (l, k) or k = l.
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Proof. Since m is even, we have G ∼=X Gc. Let u be a vertex of degree pair (k, l), then
there is an isomorphism π ∈ Aut(X) such that π(G) = Gc and π(u) = v, where the
degree pair of v is (l, k) or u remains fixed by π. In the last case k = l.

Corollary 3.2.10 (Müller’s result for signed graphs). Let (G,X) be a signed graph. If
2m−1 > |Aut(X)|, then (G,X) is reconstructible from D−(G,X).

Proof. We will apply Corollary 3.2.2 to all proper subgraphs A of G such that m− e(A)

is even. There are 2m−1 such subgraphs. Thus there are at least 2m−1 copies of G,
i.e., signed graphs (G′, X) ∼= (G,X), such that G′ ∩ G = A. But there are precisely
|Aut(X)|

|Aut(G,X)| signed graphs isomorphic to (G,X). So, if 2m−1 > |Aut(X)|
|Aut(G,X)| , then (G,X)

is reconstructible from D−(G,X). In particular, if 2m−1 > |Aut(X)|, then (G,X) is
reconstructible from D−(G,X).

3.3 Kelly’s Lemma for signed graphs

The main goal of this section is to prove a version of Kelly’s Lemma related to
the number of subgraphs isomorphic to (F, Y ). This version says that the number of
subgraphs of (G,X), with less than m edges, X-isomorphic to a given signed graph
(F, Y ) is reconstructible. With this result we will be able to prove that some special class
of signed graphs are reconstructible. This version of Kelly’s Lemma is an analogue of
a result of Ellingham and Royle [7], we will prove this result by using a similar tech-
nique of the paper of Ellingham and Royle [7]. First, we will need some definitions. In
this section, we will consider all graphs to be on the same vertex set V , unless stated
otherwise.

Recall that RΓ is the set of representative from all Γ-isomorphism classes of signed
graphs. We say that two signed graphs (A, Y ) and (B,Z) are switching equivalent if
there exists E ⊆ E(Y ) such that (A, Y )E ∼=Γ (B,Z), where (A, Y )E is the graph ob-
tained by switching the signs of all edges in E. Switching equivalence is an equivalence
relation on the set of signed graphs on V . Note that Γ-isomorphism is a finer relation
on the the set of signed graphs on V . We take the switching equivalence class of a
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graph (F, Y ) to mean the set of representatives of isomorphism classes of graphs that are
switching equivalent to (F, Y ).

In this thesis, we assume that Γ = Aut(X).

We define

i((F, Y )
Γ→ (G,X)) := |{(B,Z) | (B,Z) ⊆ (G,X) and (B,Z) ∼=Γ (F, Y )}|

S1((A, Y )
Γ→ (B,Z)) := |{e ∈ E(Y ) | (A, Y )e ∼=Γ (B,Z)}| and

t((F, Y )
Γ→ (G,X)) :=

∑
e∈E(X)

i((F, Y )
Γ→ (G,X)e).

Lemma 3.3.1. For any signed graph (F, Y ) such that e(Y ) = k, we have

t((F, Y )
Γ→ (G,X)) = (e(X)− k)i((F, Y )

Γ→ (G,X))

+
∑

(B,Z)∈RΓ

S1((B,Z)
Γ→ (F, Y ))i((B,Z)

Γ→ (G,X)). (3.6)

Proof. We will count the number of ways in which a signed graph that is Γ-isomorphic
to (F, Y ) can appear as a subgraph of some graph in D(G,X). Suppose that (B,Z) ⊆
(G,X) is Γ-isomorphic to (F, Y ). If an edge e not in (B,Z) is switched, then (B,Z)

appears as a subgraph in (G,X)e, and continues to be Γ-isomorphic to (F, Y ). There are
e(X)− k such edges. Thus we have the first term.

A signed graph that is Γ-isomorphic to (F, Y ) may also be obtained by switching
the sign of an edge of a subgraph (B,Z) of (G,X) in S1((B,Z)

Γ→ (F, Y )) ways, thus
we obtain the second term.

Let {(F1, Y )∗, (F2, Y )∗, . . . , (Fl, Y )∗} be the switching equivalence class of a graph
(F, Y ). Without loss of generality, we have assumed that the representative elements
in this class have the same underlying unsigned graph Y . We will write the Equa-
tion 3.6 for each graph in this class, and obtain a linear system in variables i((Fj, Y )∗

Γ→
(G,X)), (1 ≤ j ≤ l). We can turn our attention to a switching equivalence class, be-
cause S1((B,Z)

Γ→ (F, Y )) = 0 if (B,Z) and (F, Y ) are not in the same switching
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equivalence class. Let M = (mij) be a matrix with entries defined by

mij = S1((Fj, Y )∗
Γ→ (Fi, Y )∗);

we call it the sign switching matrix of (F, Y ). Now the equation in Lemma 3.3.1 can
be rewritten as

t = ((e(X)− k)I +M)i,

where t := (t((F1, Y )∗
Γ→ (G,X)), . . . , t((Fl, Y )∗

Γ→ (G,X)))t and i := (i((F1, Y )∗
Γ→

(G,X)), . . . , i((Fl, Y )∗
Γ→ (G,X)))t. If the matrix (e(X)− k)I +M is invertible, then

the variables i((Fj, Y )∗
Γ→ (G,X)), (1 ≤ j ≤ l) are uniquely determined.

Proposition 3.3.2. Let (F, Y ) be a graph such that e(Y ) = k. The system t = ((e(X)−
k)I +M)i has unique solution if and only if k − e(X) is not an eigenvalue of M .

Proof. We have (e(X) − k)I +M is not invertible if and only if 0 is an eigenvalue of
(e(X)− k)I +M if and only if k − e(X) is an eigenvalue of M .

Let (A1, Y ), (A2, Y ), . . . , (AK , Y ) be all the labeled signed graphs with underly-
ing unsigned graph Y , where k := e(Y ) and K := 2k. We define A = (aij) as

aij =

{
1, if (Aj, Y )e = (Ai, Y ) for some e edge of (Aj, Y )

0, otherwise.

Furthermore A is a K ×K matrix. This matrix has exactly k 1’s in each row and in each
column.

Definition 3.3.3. A k-cube is a graph whose vertices are the partition of a k-set into two
subsets. Two partitions are adjacent if their common refinement contains a set of size
one.

Lemma 3.3.4. A is the adjacency matrix of a graph isomorphic to the k-cube.

Proof. Each signed graph with underlying unsigned graph Y is represented by a binary
string with 0 entries corresponding to negative edges and 1 entries corresponding to pos-
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itive edges. Now aij = 1 if and only if the corresponding binary strings are adjacent
points of the k-cube.

Corollary 3.3.5 (See Stanley [23]). The eigenvalues of A are θj = k − 2j with multi-
plicity

(
k
j

)
, for 0 ≤ j ≤ k.

Consider the partition of {(A1, Y ), (A2, Y ), . . . , (AK , Y )} into isomorphism classes
with respect to Γ; we denote the isomorphism classes by (C1, Y ), (C2, Y ), . . . , (CL, Y ).
Let P be the matrix L × K with rows indexed by the isomorphism classes (Ci, Y ) and
columns indexed by the signed graphs (Aj, Y ) such that

pij =

{
1, if (Aj, Y ) ∈ (Ci, Y )

0, otherwise.

Lemma 3.3.6. We have PA =MP . Therefore any eigenvalue ofM is also an eigenvalue
of A.

Proof. We will consider the ij entry of each matrix. First consider (PA)ij:

(PA)ij =
K∑
l=1

pil alj.

We have pil = 1 if and only if (Al, Y ) ∈ (Ci, Y ) and alj = 1 if and only if (Aj, Y )e =

(Al, Y ) for some e edge of (Aj, Y ). So (PA)ij counts the number of ways to switch the
sign on some edge of (Aj, Y ) to obtain a graph in the isomorphism class (Ci, Y ).

(MP )ij =
K∑
l=1

mil plj.

We have plj = 1 if and only if (Aj, Y ) ∈ (Cl, Y ) and mil = S1((Cl, Y )∗
Γ→ (Ci, Y )∗).

So (MP )ij counts the number of ways to switch the sign on some edge of (Aj, Y ) to
obtain a graph in the isomorphism class (Ci, Y ). Therefore, MP = PA.
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Let λ be an eigenvalue of M associated to the left eigenvector vt. We have

vtPA = vtMP

= vtλP

= vtPλ.

Thus we found that vtP is a left eigenvector of A corresponding to λ.

In Theorem 3.3.7 we present an other proof of Corollary 3.2.5, that say that if e(X)

is odd, then (G,X) is reconstructible.

Theorem 3.3.7. If e(X) ̸≡ 0 (mod 2), then (G,X) is reconstructible.

Proof. Let (H,X) be a sign switching reconstruction of (G,X) not isomorphic to (G,X).
So (G,X) ∈ (Ci, Y ) and (H,X) ∈ (Cj, Y ) for some i ̸= j. Hence two columns of M
are identical and 0 is an eigenvalue of M . Since the eigenvalues of M are of the form
e(X)− 2j we conclude that e(X) ≡ 0 (mod 2).

Theorem 3.3.8 (Kelly’s Lemma for signed graphs). Given signed graphs (G,X) and
(F, Y ) such that e(Y ) < e(X)/2, then the number of subgraphs of (G,X) that are
Γ-isomorphic to (F, Y ) is reconstructible.

Proof. We have e(X)/2 > k =⇒ e(X) > 2k, then

k − e(X) < k − 2k = −k. (3.7)

Let λ be an eigenvalue of M . From Lemma 3.3.6 we obtain λ is also an eigenvalue of
the matrix A, and from Corollary 3.3.5 we have λ = k − 2j, for some 0 ≤ j ≤ k. So,
we have

−k ≤ λ ≤ k. (3.8)

From Expressions 3.7 and 3.8 λ ̸= k − e(X), and so k − e(X) is not an eigenvalue of
M . So, the number of subgraphs of (G,X) isomorphic to (F, Y ) is reconstructible, from
Proposition 3.3.2.
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In Corollary 3.3.9 we present other proof for Corollary 3.2.4.

Corollary 3.3.9. If m ̸= mc, then (G,X) is reconstructible.

Proof. Suppose without lose of generality that m < mc. By Lemma 3.3.8, subgraphs
(F, Y ) such that e(Y ) = m are reconstructible from D(G,X); in particular, (G,X) is
reconstructible.

Theorem 3.3.10. If X has n vertices and more than 2(n−1) edges, then the degree pair
sequence is reconstructible.

Proof. Let (G,X) be a signed graph such that e(X) > 2(n − 1). We will look at the
degree pair sequence of (G,X) as a multiset of degree pairs. We can see each degree pair
as a star (F,K1,l), with l ≤ n−1. We have e(K1,l) ≤ n−1 and e(X)/2 > n−1. We have
all subgraphs (F,K1,l) such that e(K1,l) ≤ n−1 are reconstructible by Lemma 3.3.8, thus
we can count the number of all stars of the form (F,K1,l), and then we can reconstruct
the degree pair sequence of (G,X).
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Chapter 4

Reconstructing special classes of signed
graphs

4.1 Reconstructing (G,X) when X is disconnected

The main result of this section is that if X is disconnected and has more than
4 edges, then (G,X) is sign switching reconstructible. We divide the proof in three
parts: when e(X) = 2m > 2 and each component of X has fewer than m edges
(Proposition 4.1.1); when e(X) = 2m > 4 and a unique component of X has at
least m edges (Proposition 4.1.2); when e(X) = 2m > 4 and X has two compo-
nents each with m edges (Proposition 4.1.3). These propositions, together with all
small counter examples to sign switching reconstruction, which we have listed in Ex-
amples 2.1.1, 2.1.2, 2.1.3, 2.1.4,2.1.5 imply the main result.

Proposition 4.1.1. If a signed graph (G,X) is such that X is disconnected and all com-
ponents of X have fewer than m > 1 edges, then it is sign switching reconstructible.

Proof. Let A1, A2, . . . , Ak be the components of (G,X). Suppose, without lose of gen-
erality, that e(A1) ≤ e(A2) ≤ . . . ≤ e(Ak). From Lemma 3.3.8 we can reconstruct the
number of components isomorphic to Ak. Let
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• c(Ai) be the number of components of (G,X) that are isomorphic to Ai;

• s(Ai) be the number of subgraphs of (G,X) that are isomorphic to Ai;

• s(Ai, Aj)Γ be the number of subgraphs of Aj that are Γ-isomorphic to Ai.

We have that
c(Ak−1) = s(Ak−1)− c(Ak)s(Ak−1, Ak)Γ.

From Lemma 3.3.8 this number is reconstructible. In a general way, we can calculate
the number of components isomorphic to each Ai, i = 1, 2, . . . , k − 1, using a recursive
equation

c(Ai) = s(Ai)−
l=k−1∑
l=i

c(Al+1)s(Ai, Al+1)Γ,

and Lemma 3.3.8. We can count the quantity s(Ai, Al+1)Γ from the deck. Therefore the
number c(Ai) is reconstructible and (G,X) is reconstructible.

Proposition 4.1.2. If a signed graph (G,X) is such that X is disconnected and has a
unique component with at least m > 2 edges, then it is sign switching reconstructible.

Proof. LetA be the unique largest component with a positive edges and b negative edges,
where a+ b ≥ m.

First we claim that if (G,X) is not sign switching reconstructible, then a > 0 and
b > 0. Suppose to the contrary that (G,X) is not sign switching reconstructible and A
has all positive or all negative edges. Since m > 2, by Lemma 3.2.1, we can replace
2 edges of A to obtain a graph (G′, X) isomorphic to (G,X); moreover the replacing
edges are not in A. This implies that in (G′, X) all edges of the largest component do not
have the same sign, which is a contradiction.

Now suppose that a > 0 and b > 0. Then there are precisely a cards in which the
largest component has a − 1 positive edges and b + 1 negative edges, precisely b cards
in which the largest component has a + 1 positive edges and b − 1 negative edges, and
precisely 2m− (a + b) cards in which the largest component has a positive edges and b
negative edges. Thus the component A is uniquely determined.
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Other components of (G,X) are now uniquely determined in a similar way of the
proof of Proposition 4.1.1, where the recursive equation is

c(Ai) = s(Ai)−
l=k−2∑
l=i

c(Al+1)s(Ai, Al+1)Γ − s(Ai, A)Γ.

Proposition 4.1.3. If a signed graph (G,X) is such that X is disconnected with exactly
two m-edge components, with m > 2, then it is sign switching reconstructible.

Proof. First we claim that if (G,X) is not sign switching reconstructible, then we do not
have a component with all positive or all negative edges. Suppose to the contrary that
(G,X) is not sign switching reconstructible and a component A has all positive edges.
Since m > 2, by Lemma 3.2.1, we can replace two edges of A to obtain a graph (G′, X)

isomorphic to (G,X); moreover the replacing edges are not in A. This implies that in
(G′, X) we do not have a component with all positive or all negative edges, which is a
contradiction.

Let A and B be components of (G,X). We associate to A an ordered pair (a, b),
where the first term is the number of positive edges of A, while the second term is the
number of negative edges of A. We have that the ordered pair associated to B is (b, a).
Thus the multiset of ordered pairs associated to the graph (G,X) is {(a, b), (b, a)}. The
multiset of sets associated with the deck have the following sets

{(a−1, b+1), (b, a)}; {(a+1, b−1), (b, a)}; {(a, b), (b−1, a+1)}; {(a, b), (b+1, a−1)}.

Without loss of generality, suppose that 0 < a ≤ b. Thus a−1 and b+1 are, respectively,
the smaller and the larger number in this multiset. So we can identify a and b. We have
some cases

Case (1). a = b. The multiset of sets associated with the deck will have the following
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sets

{(a−1, a+1), (a, a)}; {(a+1, a−1), (a, a)}; {(a, a), (a−1, a+1)}; {(a, a), (a+1, a−1)}.

And the graphs with associated ordered pair (a, a) are isomorphic to the two components
of (G,X), then we can identify (G,X). So, (G,X) is sign switching reconstructible.

Case (2). a+1 = b. The multiset of sets associated with the deck will have the following
sets

{(a− 1, a+ 2), (a+ 1, a)}; {(a+ 1, a), (a+ 1, a)}; {(a, a+ 1), (a, a+ 1)};
{(a, a+ 1), (a+ 2, a− 1)}.

In the card that have an associated set {(a− 1, a+2), (a+1, a)}, we have that the graph
with associated ordered pair (a + 1, a) is isomorphic to a component of (G,X). In the
card that have an associated set {(a, a+ 1), (a+ 2, a− 1)}, we have that the graph with
associated ordered pair (a, a+ 1) is isomorphic to a component of (G,X). Thus we can
identify (G,X). So (G,X) is sign switching reconstructible.

Case (3). a ̸= b, a + 1 ̸= b. The multiset of sets associated with the deck will have the
following sets

{(a−1, b+1), (b, a)}; {(a+1, b−1), (b, a)}; {(a, b), (b−1, a+1)}; {(a, b), (b+1, a−1)}.

The graphs with associated ordered pairs (a, b) and (b, a) are the components of (G,X).
Thus we can identify (G,X). So (G,X) is sign switching reconstructible.

Remark 4.1.4. If m ≤ 2, the only possible disconnected graph are Example 2.1.4 or
Example 2.1.1.

Theorem 4.1.5. A signed graph (G,X) such that X is disconnected and m > 4 is sign
switching reconstructible.

Proof. For 1 < m ≤ 2, looking at the Examples 2.1.1, 2.1.2, 2.1.4 and 2.1.5 we can see
the unique disconnected graphs with 1 < m ≤ 2 are that in Example 2.1.1 and 2.1.4.
Now the result follows from Propositions 4.1.1, 4.1.2, 4.1.3 for all m > 4.
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4.2 Reconstructing (G,X) when X is a tree

Now we will prove that if X is a tree, then (G,X) is reconstructible, see Theo-
rem 4.2.2. We will divide the proof in two cases: the case when X is bicentral (i.e.,
the centre consists of two adjacent vertices), and the case when X is central (i.e., the
centre consists of a single vertex). First we will prove that if X is a star, then (G,X) is
reconstructible.

Proposition 4.2.1. Let (G,X) be a signed graph. If X is a star, then (G,X) is recon-
structible.

Proof. Suppose that X ∼= K1,2m, then G ∼= K1,m. We have m cards in the deck such
that G ∼= K1,m−1. If we change a negative edge to positive in one of this cards we obtain
(G,X). Thus (G,X) is reconstructible.

Theorem 4.2.2. Let (G,X) be a signed graph. If X is a tree, then (G,X) is recon-
structible.

Proof. Suppose that X is a bicentral tree. Let e be the central edge. Without lose of
generality, suppose that e is a positive edge. We have 2m− 1 cards in which e is positive
and 2m− 1 > 1, and a unique card (G,X)e in which e is negative. The original graph is
obtained by switching edge e in (G,X)e.

Now suppose thatX is central. Since we have proved that (G,X) is reconstructible
if X is a star, in Proposition 4.2.1, we assume that X is central with central vertex v, and
has at least one edge not adjacent to the centre. Suppose that the degree pair of the
central vertex is (a, b). Let A1, . . . , Aa be the branches of (G,X) that have a positive
edge incident to v. Let B1, . . . , Bb be the branches of (G,X) that have a negative edge
incident to v.

We reconstruct the degree pair (a, b) of v as follows. We have a > 0 and b > 0

if and only if there are three types of cards present in the deck - cards in which v has
degree pair (a − 1, b + 1), cards in which v has degree pair (a, b), and cards in which v
has degree pair (a + 1, b − 1), and in this case (a, b) is uniquely determined. The other
case is when the degree pair of v is either (a, 0) or (0, b). Since we have assumed that
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X is not a star, the degree pair of v is (a, 0) if and only if there are exactly two types
of cards present in the deck - cards in which v has degree pair (a, 0) and cards in which
v has degree pair (a − 1, 1). In this case the degree pair (a, 0) is uniquely determined.
Similarly, if the degree pair of v is (0, b), it is uniquely determined.

Now we consider the following cases.

Case (1). a > 1 and b > 1. Each card in which v has degree pair (a−1, b+1) is obtained
by switching a positive edge incident with v. Each such card contains a − 1 branches
that have a positive edge incident with v; all these branches are the original branches of
(G,X). We construct a multiset S of all such branches from all cards in which v has
degree pair (a − 1, b + 1). Each original branch Ai appears exactly a − 1 times in S
(and when considered up to isomorphism, a multiple of a− 1 times). Hence the multiset
of branches Ai, i = 1, . . . , a is uniquely determined from S. By a similar argument we
obtain allBi looking at the cards such that the central vertex has degree pair (a+1, b−1).

Case (2). a = 1 and b > 1. We can obtain all branches B1, . . . , Bb as in Case (1). Now
we consider the unique card (G,X)e in which all edges incident with v are negative.
This card must be obtained by switching e which is in A1. From the multiset branches of
(G,X)e, we remove the branches B1, . . . , Bb. Now A1 is obtained by switching the sign
on the edge incident with v in the remaining branch.

Case (3). a > 1 and b = 1. The proof is analogous to the Case (2).

Case (4). a = 0 and b > 1. The branches B1, . . . , Bb are obtained as in Case (1) by
considering all cards in which v has degree pair (1, b− 1).

Case (5). a > 1 and b = 0. The proof is analogous to the Case (4).

Case (6). a = 1 and b = 1. When one of the branches has more than m edges, the proof
proceeds similar to Proposition 4.1.2, and when both branches have m edges, the proof
is similar to the proof of Proposition 4.1.3.

With these cases, the proof when X is a central tree is completed.
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4.3 Reconstructing (T,X) when T is a spanning tree of
X

In this section, we assume that (T,X) is a signed graph, where T is a spanning
tree of X . The main result is that except when T is K1,3, the signed graph (T,X) is
reconstructible. Note that in the Examples 2.1.2 and 2.1.5 the tree K1,2 is not spanning.

We will first present some definitions given by Sheehan and Clapham [21] for edge
reconstruction.

Definition 4.3.1. Let G be a graph. Let 1 ≤ k ≤ e(G). We say that G is k-free if, for
every subset A of E(G) such that |A| = e(G) − k, there exists an automorphism ϕ of
Kn such that E(G) ∩ E(ϕ(G)) = A. Let E ⊆ E(G) such that |E| = k. If there exists
F ⊆ E(G) such that G− E + F ∼=Sn G, then we say that the set E is replaceable, and
that F is a replacing set of E. Thus a graph G is k-free if and only if every subset of
E(G) of size k is replaceable. A graph is even-free if it is k-free, for all k even.

Nash-Williams’ Lemma 0.0.7 implies that if G is not edge reconstructible, then G
is even-free.

The proof that (T,X) is reconstructible, if T is a spanning tree, depends on the
following result of Sheehan and Clapham [21].

Theorem 4.3.2 (Sheehan and Clapham, 1992). Apart from paths, the only 2-free trees
are those in Figure 4.1.

Trees were proved to be reconstructible (hence also edge reconstructible) by Kelly [12]
(see 0.0.4). The result of Sheehan and Clapham 4.3.2 says, as an application of Nash-
Williams’ Lemma 0.0.7, that all trees except paths and those in the Figure 4.1 are edge
reconstructible. We use the same approach to show that if T is a spanning subtree of X ,
then (T,X) is sign switch reconstructible.

We now give analogous definitions for signed graphs.

Definition 4.3.3. Let (G,X) be a signed graph. Let 1 ≤ k ≤ e(G). We say that (G,X)

is k-free if, for every A ⊆ E(G) such that |A| = e(G)−k, there exists an automorphism
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Figure 4.1: Two-free trees

ϕ of X such that E(G) ∩ E(ϕ(G)) = A. Equivalently, (G,X) is k-free if for every
E ⊆ E(G) such that |E| = k, there exists F ⊆ E(Gc), called the replacing set of E,
such that (G − E + F,X) ∼= (G,X). A signed graph is even-free if is k-free for all k
even.

From Nash-Williams’ Lemma 3.2.1, if (G,X) is not reconstructible, then for every
E ⊆ E(G) of even cardinality, there exists F ⊆ E(Gc) such that (G,X) ∼= (G − E +

F,X) and for every E ⊆ E(G) of odd cardinality, there exists F ⊆ E(Gc) such that
(G−E+F,X) ∼= (H,X). But ifG is edge reconstructible, then we know thatG ∼=Sn H ,
hence for every E ⊆ E(G) there exists F ⊆ E(Gc) such that G− E + F ∼=Sn G. Then
we have the following corollary.

Corollary 4.3.4. If (G,X) is not reconstructible then for every E ⊆ E(G) of even
cardinality, there exists F ⊆ E(Gc) such that (G,X) ∼= (G − E + F,X) and for every
E ⊆ E(G) of odd cardinality, there exists F ⊆ E(Gc) such that (G − E + F,X) ∼=
(H,X). If G is edge reconstructible, then G− E + F ∼=Sn G, in both cases.

Proposition 4.3.5. Let T be a spanning tree of X . If (T,X) is 2-free, then T is 2-free.
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Proof. This follows from the fact that Aut(X) is a subgroup of Sn.

We observe that if T is not spanning we cannot guarantee that Aut(X) is a sub-
group of Sn. We also have the following observations.

Remark 4.3.6. It follows from Proposition 4.3.5 that if T is a spanning tree of X and
(T,X) is 2-free, then T must be a path or one of the trees presented in Figure 4.1.
We know that (K1, 3, K4) is not sign switching reconstructible, therefore, it is 2-free.
Therefore, to prove that (T,X) is reconstructible whenever T is a spanning subtree of
X , we only need look at paths and the other 12 trees in Figure 4.1.

Remark 4.3.7. Let (T,X) be a signed graph such that T has more than 3 edges. Suppose
that (T,X) is not reconstructible. From Corollary 3.2.7 it follows that if T has even
number of edges, then T c ∼=X T . If T has odd number of edges, then we claim that
T ∼=Sn T c. In fact, by Lemma 3.2.1, (T c, X) is the nonisomorphic reconstruction of
(T,X), and from Theorem 0.0.4, trees are vertex reconstructible, hence they are also
edge reconstructible, therefore, T ∼=Sn T

c.

Lemma 4.3.8. If T is isomorphic to a path, then (T,X) is reconstructible.

Proof. Suppose that vertices of X are labelled 1, 2, . . . , n so that 1 to n appear consecu-
tively on T . Suppose that (T,X) is not reconstructible.

If n = 3, then there is no signed graph (T,X) such that T is a spanning path. If
n = 4, then we have a unique possible signed graph (T,X) such that T is a path. So
(T,X) is reconstructible. Now we assume that n > 4.

Hence every edge set of T has a replacing set. The only replacing edge of {1, 2} is
{1, n}, hence {1, n} is an edge of T c. The only replacing edge set of {{1, 2}, {2, 3}} is
{{1, 3}, {2, n}}; similarly, the only replacing edge set of {{n− 2, n− 1}, {n− 1, n}} is
{{n− 2, n}, {1, n− 1}}. Hence {1, 3} and {1, n− 1} are also edges of T c. This shows
that the degree of 1 in T c is 3, which is a contradiction since we know that T c must be a
path.

We now prove that if T is one of the trees in Figure 4.1, other than K1,3, then
(T,X) is reconstructible. For most of the trees in Figure 4.1, the reconstructibility of
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(T,X) follows from the existence of an edge that cannot be replaced, as shown in the
following proposition.

Proposition 4.3.9. If T is isomorphic to one of the trees (3)–(6), (8)–(13) of Figure 4.1,
then (T,X) is reconstructible.

Proof. By Corollary 4.3.4 and Remark 4.3.7, if (H,X) is a reconstruction of (T,X),
then H ∼=Sn T . Hence, if (T,X) is not reconstructible, then for every E ⊆ E(T ), there
is a replacing set F ⊆ E(T c) such that T −E+F ∼=Sn T . We show that each of the trees
(3)–(6) and (8)–(13) of Figure 4.1 contains an edge e that does not have a replacing edge
(even with respect to Sn), i.e., there is no edge f such that T − e + f ∼=Sn T . To verify
this, consider edge e = {2, 3} in (3), edge e = {3, 6} in (4), edge e = {3, 7} in (5), edge
e = {3, 7} in (6), edge e = {3, 7} in (8), edge e = {1, 2} in (9), edge e = {3, 7} in (10),
edge e = {2, 7} in (11), edge e = {3, 8} in (12) and edge e = {4, 9} in (13).

Proposition 4.3.10. If T is isomorphic to (2) in Figure 4.1, then (T,X) is reconstructible.

Proof. To simplify our counts we will suppose T is equal (2). We will first look at the
edges of T that have unique replacement. The only replacing edge of {1, 2}, {2, 3}
and {2, 5} are respectively {1, 3}, {2, 4} and {3, 5}. The edge {3, 4} have two possible
replacing edge: {1, 4} and {4, 5}, but in both cases we have that T ′ is isomorphic to P4.
A contradiction with Remark 4.3.7.

Lemma 4.3.11. Let (T,X) be a signed graph that is not sign switching reconstructible,
and such that T is a tree with even number of edges. If there is only one vertex u of
degree k in T , then there is only one vertex v of degree k in T c. Moreover, if u and v are
distinct, then they cannot be adjacent.

Proof. From Corollary 3.2.7 there is a π ∈ Aut(X) such that π(G) = Gc. Since u and v
are the unique vertices of degree k in G and Gc respectively, we have that π(u) = v and
π(v) = u. Suppose that u and v are distinct vertices. If there is an edge uv in (T,X),
then π(uv) = vu, a contradiction with the fact that π(G) = Gc.

Proposition 4.3.12. If T is isomorphic to (7), in Figure 4.1, then (T,X) is recon-
structible.
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Proof. To simplify our counts we will suppose T is equal (7). We will first look at the
edges of T that have unique replacement. The only replacing edge of {1, 2}, {3, 7}
and {5, 6} are respectively {1, 7}, {4, 7} and {1, 6}. Suppose that (T,X) is not re-
constructible, this implies that (T,X) is 2-free. We will try to replace the edge set
{{4, 5}, {5, 6}}. We have three possible replacing sets {{1, 5}, {4, 6}}, {{1, 6}, {5, 7}}
and {{1, 5}, {6, 7}}. If {4, 6} is an edge in T ′, then we have a cycle in T ′, a contradic-
tion with Remark 4.3.7. If {5, 7} or {6, 7} is an edge in T ′, then we have a vertex of
degree 3 in T that is adjacent in X to a vertex of degree 3 in T ′, a contradiction with
Lemma 4.3.11. Thus (T,X) is reconstructible.

Lemma 4.3.8 and Propositions 4.3.9, 4.3.10 and 4.3.12 implies Theorem 4.3.13.

Theorem 4.3.13. If T is a spanning tree not isomorphic to K1, 3, then (T,X) is recon-
structible.
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Chapter 5

Sign switching vertex reconstruction

In this chapter we will present a new reconstruction problem. Results related to
this problem will be useful to prove that the degree sequence of a signed graph is recon-
structible, in the sense of reconstructibity presented in Chapter 2.

5.1 Problem definition

Denote by (G−v,X) the signed graph obtained by changing the sign of all positive
edges incident to vertex v to negative. Let (G,X) and (H, Y ) be signed graphs. Suppose
that there is a bijection f : V (X) → V (Y ) such that for all v ∈ V (X), we have (G −
v,X) ∼= (H − f(v), Y ). We call f a negative vertex hypomorphism from (G,X) to
(H, Y ). We say that (G,X) and (H, Y ) are negative vertex hypomorphic. SinceX and
Y are required to be isomorphic in the above definition, we may consider G and H to be
spanning subgraphs of the same underlying graph X; hence all isomorphisms between
(G − v,X) and (H − f(v), X), are elements of Aut(X). The above notions may be
defined equivalently as follows. We define the multiset

V D−(G,X) := {(G− v,X)∗ | v ∈ V (X)}.
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We call V D−(G,X) the negative vertex deck of (G,X). Note that two graphs (G,X)

and (H,X) have the same negative vertex deck if and only if they are negative vertex
hypomorphic. In this case (H,X) is called a negative vertex reconstruction of (G,X).
We say that a given signed graph (G,X) is negative vertex reconstructible if every
negative vertex reconstruction of (G,X) is isomorphic to (G,X). Furthermore we say
that an invariant or a parameter of (G,X) is negative vertex reconstructible if it takes
the same value on every negative vertex reconstruction of (G,X).

The above notions are similar to the operation of vertex deletion, vertex hypomor-
phism, vertex deck, and so on. But note that we do not have any deletions of vertices. In
(G− v,X) we have that v ∈ V (G− v) = V (X) and v is a isolated vertex in G− v. The
notions of positive vertex hypomorphism, positive vertex deck V D+(G,X), and so on
are similarly defined, where we switch the sign of the negative edges to positive at each
vertex.

We define V D(G,X) := V D−(G,X)⊎V D+(G,X) and call V D(G,X) the sign
vertex deck of (G,X). If two signed graphs (G,X) and (H,X) have the same sign
vertex deck, then we say that (H,X) is a sign vertex reconstruction of (G,X). We
say that a given signed graph (G,X) is sign vertex reconstructible if every sign vertex
reconstruction of (G,X) is isomorphic to (G,X).

Remark 5.1.1. The vertex deck of G is obtained from V D−(G,X), so every property of
G that is vertex reconstructible is also negative vertex reconstructible. In particular, the
positive degree sequence is reconstructible from V D−(G,X) if (G,X) has more than
2 vertices. Similarly, the negative degree sequence is reconstructible from V D+(G,X)

if (G,X) has more than 2 vertices. Also, the neighbourhood positive degree sequence.
(See Theorem 0.0.3.)

Problem 5.1.2 (sign vertex reconstruction problem). Is (G,X) reconstructible from the
sign vertex deck, up to isomorphism?

Example 5.1.3. Let X ∼= K1,1. The two signed graphs (G,X) and (H,X), with
G ∼= K1,1 and H ∼= ∅, have the same sign vertex deck. We have that V D+(G,X) =

{(H,X)∗, (H,X)∗}, since switching positive edges to negative will change the sign of
the unique edge in (G,X); V D+(H,X) = {(H,X)∗, (H,X)∗}, since switching positive
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edges to negative leaves the graph unchanged; V D−(G,X) = {(G,X)∗, (G,X)∗}, since
switching negative edges to positive leaves the graph unchanged; and V D−(H,X) =

{(G,X)∗, (G,X)∗}, since switching negative edges to positive change the sign of the
unique edge in (H,X). But (G,X) ̸∼= (H,X). We do not know any other pair of
nonisomorphic signed graphs that have the same signed vertex deck.

Proposition 5.1.4. If X has isolated vertices then (G,X) is both positive and negative
vertex reconstructible.

Proof. If X has isolated vertices then (G,X) is the graph in V D+(G,X) that has the
least number of positive edges, which is the same as the graph in V D−(G,X) that has
the most number of positive edges.

Proposition 5.1.5. Given the sign vertex deck of (G,X), we can obtain the negative and
the positive vertex deck.

Proof. Consider a vertex v of X . If v is isolated in G, then (G − v,X) = (G,X);
otherwise, (G − v,X) has fewer positive edges than (G,X). Similarly, if v is isolated
in Gc, then (G + v,X) = (G,X); otherwise, (G + v,X) has more positive edges than
(G,X). We order the graphs in V D(G,X) in the increasing order of the number of
positive edges. In this order, the first v(X) graphs constitute the negative vertex deck
V D−(G,X) and the last v(X) graphs constitute the positive vertex deck V D+(G,X).

Corollary 5.1.6. If X has isolated vertices, then (G,X) is reconstructible.

Proof. Suppose that X has isolated vertices. From Proposition 5.1.4 we can reconstruct
(G,X) from V D−(G,X) and from V D+(G,X). Since Proposition 5.1.5 says that we
can recognise both positive and negative vertex deck, then (G,X) is reconstructible.

Proposition 5.1.7. If G has isolated vertices and v(X) > 2, then (G,X) is recon-
structible from V D−(G,X).

Proof. Since the positive degree sequence of (G,X) is reconstructible from V D−(G,X)

(see Remark 5.1.1), we can determine if G has isolated vertices or not. If G has isolated



53

vertices, then the graph in V D− that has the same number of positive edges as G is
(G,X).

From this point, we will only consider signed graphs with more than 2 vertices,
and assume that neither X nor G has isolated vertices.

Let (F, Y ) be a signed graph. We denote by v•(F ) the number of isolated vertices
in F .

Lemma 5.1.8. Let (F,X) and (G,X) be signed graphs. If v(F )− v•(F ) < v(G), then
we can construct the quantity

s(F,G)X := |{σ ∈ Aut(X) | σ(F ) ⊆ G}|.

Proof. The proof is similar to the proof of Lemma 0.0.2. Let (H,X) be a reconstruction
of (G,X). Then

s(F,G)X =

∑
v s(F,G− v)X +

∑
v s(F,G+ v)X

v(X)− (v(F )− v•(F ))

=

∑
v s(F,H − f(v))X +

∑
v s(F,H + f(v))X

v•(F )

= s(F,H)X .

5.2 Reconstructing the degree pair sequence from the
negative vertex deck

The positive and negative degree sequences are individually reconstructible from
V D−(G,X) and V D+(G,X), respectively (see Remark 5.1.1); moreover for every
card (G − v,X) in V D−(G,X), we can compute d+(v), and similarly, for every card
(G + v,X) in V D+(G,X), we can compute d−(v) (see Remark 5.1.1). But computing
d−(v) for every card (G − v,X) in V D−(G,X) does not seem obvious. We can easily
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reconstruct d(v) if for every card (G − v,X) we have a unique isolated vertex in G, in
this case v is this isolated vertex of G. But, if G has two or more isolated vertices we
cannot immediate recognize v. Our goal in this section is to compute the degree pair
sequence of (G,X), i.e., the multiset {d(v) = (d+(v), d−(v)) | v ∈ V (G,X)} given
V D−(G,X).

Theorem 5.2.1. The degree pair sequence of (G,X) is reconstructible from its negative
vertex deck. More than this, for each v ∈ V (G,X) we can compute d(v).

Proof. Let n(k, l) denote the number of vertices in V (G,X) such that d(v) = (k, l).

1. We have n(0, l) = 0 for all l since G is spanning.

2. Now we compute n(1, k) for all k. For each vertex v in V (G,X) that has degree
pair (1, k) for some k, there is a card (G − v,X) containing a vertex with degree
pair (0, k + 1). Moreover, for each card (G − v,X), we know d+(v) in (G,X).
Now consider a card (G−v,X) such that d+(v) = 1 in (G,X). If there is a unique
vertex in the card with positive degree 0, say with degree pair (0, l), then that vertex
must be v, in which the degree pair of v is (1, l−1). If there are two vertices a and
b in the card, both with positive degree 0, then, since G has no isolated vertices,
there must be a negative edge ab in (G−v,X), and (G,X) is uniquely constructed
by switching the sign on ab from negative to positive. It is not possible for there
to be more than 2 vertices in (G − v,X) of positive degree 0. Thus by looking
at all cards in V D−(G,X), we can either construct (G,X) uniquely or know all
vertices of degree (1, k) for all k.

3. Now we compute n(k, l) for all k > 1 and l. For each vertex v in (G,X) that has
degree pair (k, l) for some k > 1 and some l, there is a card (G− v,X) containing
a vertex with degree pair (0, k+ l). Moreover, for each card (G− v,X), we know
d+(v) in (G,X). Now consider a card (G− v,X) such that d+(v) = k in (G,X).
If there is a unique vertex in the card with positive degree 0, say with degree pair
(0, q), then that vertex must be v, in which the degree pair of v is (k, q − k).
Suppose that there are two or more vertices in the card with positive degree 0.
Thus the positive degree of these vertices only can be k or 1 in (G,X). Let a and



55

b be two of these vertices, such that d(a) = (0, k + l) and d(b) = (0, i). Suppose
that (H,X) is a reconstruction of (G,X) that is not isomorphic to (G,X). Since
the positive degree sequence is reconstructible, we have that d(a) = (1, k + l − 1)

and d(b) = (k, i− k). Then

(1, k + l − 1) = (1, i− 1)

k + l = i.

We know k and i from the positive degree sequence, and thus l is known. So we
know d(v).

5.3 Constructing the negative vertex deck from the neg-
ative sign switching deck

In this section, we assume that (G,X) is a graph to be D−-reconstructed, and
(H,X) is one of its reconstructions.

Theorem 5.3.1. If (G,X) is reconstructible from V D−(G,X) and e(X) > 6, then
(G,X) is reconstructible from D−(G,X).

Proof. Note thatD−(G,X) hasm signed graphs. We will look at the set {(G−e−v,X) |
e ∈ E(G), v ∈ V (X)}. This set has mn graphs, saying H1, H2, . . . , Hmn, consider that
this graphs are ordering by a decreasing order of edges. Furthermore, V D−(G,X) ⊂
{(G− e− v,X) | e ∈ E(G), v ∈ V (X)} Note that ((G− e)− v,X) = (G− u,X) if
and only if e is incident to the vertex u, so H1 is in V D−(G,X). If Hi ̸⊂ Hj for any Hj

then Hi is also in V D−(G,X).

Corollary 5.3.2. Let (G,X) be a signed graph such that G and Gc are edge spanning
and all reconstructions (H,X) are such that H and Hc are edge spanning. Then the
degree pair sequence is reconstructible from D−(G,X). More than this, for each v ∈
V (G,X) we can compute d(v).
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Lemma 5.3.3. The only pair of graphs (H,X) and (G,X) such that H and Hc are edge
spanning and G is not edge spanning are the graphs in the Example 2.1.2.

Proof. There is a vertex v in (H,X) such that the degree pair of v is (0, k), for some k.
Thus v has degree (0, k) in all graphs in D−(G,X). But this vertex has degree (l, k),
with l ̸= 0 in (G,X), then it only can occur in Example 2.1.2.

Lemma 5.3.4. The only pair of graphs (H,X) and (G,X) such that H and Hc are edge
spanning and Gc is not edge spanning are the graphs in the Example 2.1.2.

Proof. Since Hc is not edge spanning there is a vertex v of degree pair (k, 0) for some k.
Let ei, i = 1, . . . j be all the positive edges incident to v. The vertex v has degree pair
(k − 1, 0) in (H,X)ei , for any i = 1, . . . , j. Let fi, i = 1, . . . l be all the others positive
edges in (H,X). We have that v has degree pair (k, 0). Since (G,X) and (H,X) have
the same deck the edges fi, i = 1, . . . l can not occurs. Then H ∼= K1,m for some m.
Furthermore G and Gc are edge spanning subgraphs such that v has degree (k − 1, 0) in
all graphs in the deck, then there is only two positive edges and the only possible pair of
graphs are in the Example 2.1.2.

Theorem 5.3.5. If (G,X) is such that G is k-regular and G is edge spanning, then
(G,X) is reconstructible from V D−(G,X).

Proof. Since G is k-regular and from Remark 5.1.1 the positive degree sequence is re-
constructible, then any reconstruction (H,X) is such that H is also k-regular. We will
look at (G−

v , X), it is a signed graph with n−k vertices of positive degree k and a vertex
with positive degree zero. We can identify the vertex of degree zero, that is, the vertex
v, and so reconstruct the signed graph. For this we only need join the vertex v to each
vertex of positive degree n− k with a positive edge. The proof when Gc is k-regular and
spanning is analogous.
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5.4 Results for positive deck

The results of Sections 5.2 and 5.3 can be obtained for V D+(G,X) in an analogous
way.

The reconstruction of the degree pair sequence from the positive deck is analogous
to the degree pair sequence from the negative deck. We also have that if (G,X) is such
that G is k-regular, then (G,X) is reconstructible from V D+(G,X).

Corollary 5.4.1. The degree pair sequence is reconstructible from D(G,X).

Theorem 5.4.2. Let (G,X) be a signed graph such that m is even, G is edge spanning,
Gc is edge spanning and (G,X) ̸∼= (K2 +K2, C4). Let (H,X) be such that (G,X) and
(H,X) are sign switching hypomorphic. Suppose (G− e+ f,X) ∼= (H,X). Let v1 and
v2 be vertices incident to the edge e and u1 and u2 be vertices incident to the edge f . If
the degree pair of v1 and v2 are (k, l) and (i, j) respectively, then the degree pair of u1
and u2 are (k − 1, l + 1) and (i− 1, j + 1) respectively.

Proof. Suppose that there is a reconstruction (H,X) such that (G−e+f,X) ∼= (H,X),
e ̸= f . Let v1 and v2 be vertices incident to the edge e and u1 and u2 be vertices
incident to the edge f . Suppose that the degree pair of v1 and v2 are (k, l) and (i, j)

respectively. Thus the degree of v1 and v2, in (G−e+f,X) ∼= (H,X), are (k−1, l+1)

and (i − 1, j + 1) respectively. From Corollary 3.2.9 the degree pair of u1 and u2, in
(G − e + f,X) ∼= (H,X), are (k, l) and (i, j). And thus the degree pair u1 and u2, in
(G,X), are (k − 1, l + 1) and (i− 1, j + 1).

Theorem 5.4.3. Let (G,X) be a non reconstructible signed graph such that G and Gc

are edge spanning and (G,X) ̸∼= (K2 + K2, C4). Let (H,X) be such that (G,X) and
(H,X) are sign switching hypomorphic, that is a bijection f : E(X) → E(X) such that
f(E(G)) = E(H) and for all e ∈ E(G) we have (G− e,X) ∼= (H − f(e), X) and for
all e ∈ E(X) \ E(G) we have (G + e,X) ∼= (H + f(e), X) and (G,X) ̸∼= (H,X).
Let e be an edge of (G,X). Let v1 and v2 be the end vertices of e and u1 and u2 be the
end vertices incident to the edge f(e). We have that {d(v1), d(v2)} = {d(u1), d(u2)},
where d(vi) is the degree pair of the vertex vi in (G,X) and d(ui) is the degree pair of
the vertex ui in (H,X), i = 1, 2.
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Proof. Let (p, q) and (r, s) be the degree pair of the endvertices of e. The pair {p, r}
is known, since the positive degree sequence is reconstructible (see Proposition 3.1.2).
Also, the degree pair sequence of (G,X) is known (see Corollary 5.4.1). We will look at
the degree pair sequence as a multiset. Suppose without lose of generality that e ∈ E(G).
We have two cases.

Case (1). p = r. There is i and j such that (p, i) and (p, j) are in the degree pair sequence
of (G,X) but are not in the degree pair sequence of (G− e,X). Thus the degree pair of
the endvertices of e are (p, i) and (p, j). Since (G − e,X) ∼= (H − f(e), X), we have
that {d(v1), d(v2)} = {d(u1), d(u2)} = {(p, i), (p, j)}.

Case (2). p ̸= r. Suppose, without lose of generality that p < r. There is i such that
exactly one degree pair (p − 1, i) is new in (G − e,X). Thus one of the degrees of the
endvertices of e is (p, i − 1). There is j such that exactly one (r, j) disappear from the
degree pair sequence of (G,X). Thus the other degree of the endvertices of e is (r, j).
Since (G − e,X) ∼= (H − f(e), X), we have that {d(v1), d(v2)} = {d(u1), d(u2)} =

{(p, i− 1), (r, j)}.

Theorem 5.4.4. Let (G,X) be a signed graph such thatG andGc are edge spanning and
(G,X) ̸∼= (K2+K2, C4). Let (H,X) be such that (G,X) and (H,X) are sign switching
hypomorphic. Let f : E(X) → E(X) be like in Theorem 5.4.3. Then (G−e+f(e), X) ∼=
(H,X) for all e ∈ E(G). Let v1 and v2 be vertices incident to the edge e and u1 and u2
be vertices incident to the edge f(e). If the degree pair of v1 and v2 in (G,X) are (k, l)

and (i, j) respectively, then the degree pair of u1 and u2 in (G,X) are (k− 1, l+ 1) and
(i− 1, j + 1) respectively.

Proof. We have that (G − e,X) ∼= (H − f(e), X), for all e ∈ E(G), then (G − e +

f(e), X) ∼= (H − f(e) + f(e), X), for all e ∈ E(G). Since v1 and v2 are (k, l) and
(i, j) in (G,X), looking at (H,X) ∼= (H− f(e)+ f(e), X) we obtain that u1 and u2 has
degree (k − 1, l + 1) and (i− 1, j + 1) respectively in (G,X).
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5.5 Reconstructing (G,X) when G is bidegreed

In this section, we assume that (G,X) is a signed graph to be reconstructed from
the sign switching deck and such that G is bidegreed. We set ∆ = ∆(G) and δ = δ(G).
Our goal in this section is prove that (G,X) is reconstructible, if G and Gc are edge
spanning. In order to prove this we will prove that if (G,X) is not reconstructible the
only possible positive edges have endvertices with positive degree ∆.

Lemma 5.5.1. Let (G,X) be a signed graph such that G is bidegreed. Let (H,X) be its
sign switching reconstruction. Suppose thatG andGc are edge spanning, then ∆ = δ+1.

Proof. Let (G,X) be a signed graph such that G is bidegreed; G and Gc are edge span-
ning. From Remark 3.2.8 Gc is also bidegreed. Let (H,X) be a sign switching recon-
struction of (G,X) such that (G,X) ̸∼= (H,X). Let (G − e + f,X) ∼= (H,X). From
Theorem 5.4.4 if the end vertices of e has degree pairs (k, l) and (i, j) in (G,X), then
the end vertices of f has degree pairs (k− 1, l+ 1) and (i− 1, j + 1) in (G,X), since G
and Gc are bidegreed we have ∆ = δ + 1.

From this point we will assume that G and Gc are edge spanning subgraphs of
(G,X).

Proposition 5.5.2. If there is a positive edge uv in (G,X) such that d+(u) = d+(v) = δ,
then (G,X) is sign switching reconstructible.

Proof. Let e = uv be a positive edge in (G,X). Consider (G − e,X). Since G is
bidegreed, there are only two vertices u and v with positive degree δ − 1. To obtain
(G,X) we only need switch the sign of uv.

Proposition 5.5.3. If there are positive edges uv and vw such that d+(u) = d+(w) = δ

and d+(v) = ∆, then (G,X) is sign switching reconstructible.

Proof. Suppose that (G,X) is not sign switching reconstructible. From Corollary 4.3.4
(G,X) is 2-free and thus {uv, vw} has a replacing set. We have that d+(u) = d+(w) =

δ− 1 and d+(v) = ∆− 2 in (G−uv− vw,X). There is no e and f such that (G−uv−
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vw+ e+ f,X) ∼= (G,X), since there is no e and f such that (G− uv− vw+ e+ f,X)

and (G,X) have the same degree pair sequence. A contradiction. Thus (G,X) is sign
switching reconstructible.

Proposition 5.5.4. If there are positive edges uv and vw such that d+(u) = δ and
d+(v) = d+(w) = ∆, then (G,X) is sign switching reconstructible.

Proof. If there is a vertex u′ ̸= u such that d+(u′) = δ and u′v is a positive edge
in (G,X), then (G,X) is reconstructible from Proposition 5.5.3. Thus suppose that
there is no such u′. Then each vertex z ̸= u that is a neighbour of v in G is such that
d+(z) = ∆. Suppose that (G,X) is not sign switching reconstructible and let (H,X)

be its sign switching reconstruction. Let A be the set of all edges incident to v. From
Corollary 4.3.4 we have a set of edges B such that (G − A + B,X) ∼= (G,X) or
(G − A + B,X) ∼= (H,X). From Corollary 5.4.1 we have that (G − A + B,X) have
the same degree pair sequence as (G,X). Since d+(u) = δ, looking at (G− A+ B,X)

we obtain that d(v) = (∆, δ). But d(v) = (δ,∆) in (G − A + B,X) and all z that is a
neighbour of v in G is such that d+(z) = δ in (G − A + B,X). A contradiction with
Corollary 5.4.1 that say the degree pair sequence is sign switching reconstructible.

From Propositions 5.5.3 and 5.5.4 we can see that if there is a positive edge uv in
(G,X) such that d+(u) = δ and d+(v) = ∆, then (G,X) is reconstructible.

Theorem 5.5.5. If G is bidegreed, then (G,X) is sign switching reconstructible.

Proof. Suppose that (G,X) is not sign switching reconstructible. From Propositions 5.5.2,
5.5.3 and 5.5.4, there is no edge e such that at least one of its endvertices have positive
degree δ. Thus the unique degree in G is ∆. It is a contradiction with the fact that G is
bidegreed and edge spanning.
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Conclusion

In this chapter we will summarise the main results obtained in this thesis and make
some comments about some natural questions that arise from these results.

In Chapter 3 we proved that a signed graph that has a different number of positive
and negative edges is reconstructible. In the same chapter we proved that if (G,X) is not
sign switching reconstructible, and (H,X) is a reconstruction not isomorphic to (G,X),
then:

1. if the number of edges of G is even then (G,X) ∼= (Gc, X);

2. if the number of edges of G is odd then (H,X) ∼= (Gc, X), which implies that
when the number of edges of G is odd, (G,X) has at most one sign switching
reconstruction that is not isomorphic to (G,X).

Is it true that if (G,X) is not sign switching reconstructible, then it has a unique sign
switching reconstruction not isomorphic to (G,X)?

We considered the sign switching reconstruction problem when either G or X be-
longs to some special class of graphs. In Chapter 4 we proved that (G,X) is sign switch-
ing reconstructible ifG is a tree, and in Chapter 5 we proved that (G,X) is sign switching
reconstructible if G is regular or bidegreed. Moreover, we showed that (G,X) is sign
switching reconstructible when X is a tree or a disconnected graph. But the question
remains open when X is regular or bidegreed, or when G is disconnected.

There are other questions related to special classes of graphs. Since outerplanar
graphs, chordal graphs and claw-free graphs are known to be edge reconstructible, we
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would like to solve the sign switching reconstruction problem when either G or X is
outerplanar or chordal or claw-free. Similarly, since triangle-free graphs are vertex-
switching reconstructible, it is natural to ask what happens when G or X is triangle-free.

It seems that neither the edge reconstructibility proofs nor the vertex-switching
reconstruction proofs work in a straight-forward way for sign switching reconstruction.
This may be because the sign switching reconstruction problem resembles both the edge
reconstruction problem and the vertex-switching reconstruction problem. Our proofs of
Kelly’s lemma is based on the technique used by Ellingham and Royle for a result on
vertex-switching reconstruction, while our version of Nash-Williams’s lemma is similar
to the corresponding result for edge reconstruction. On the other hand the known results
for edge reconstruction and for vertex-switching reconstruction are quite different.

We have another problem related to the reconstruction of (G,X) when G is dis-
connected. This problem is related to the reconstructibility of the degree pair sequence,
proved in Chapter 5. In Theorem 3.3.10 we proved that the degree pair sequence is
reconstructible, if e(X) > 2(v(X)− 1).

Remark 5.5.6. If (G,X) has n vertices and X has at most 2(n− 1) edges, then G or Gc

is disconnected or a tree.

We have proved that if G is a spanning tree, then (G,X) is sign switching recon-
structible. Thus if we proved that G disconnected implies (G,X) reconstructible, we
would have a simpler proof of the reconstructibility of the degree pair sequence.

In Chapter 5 we presented problems of reconstruction of signed graphs related to
the vertex reconstruction problem, in particular we formulated the sign vertex reconstruc-
tion problem. Such a problem may be solved for some special class of graphs.

The following variation of Stanley’s vertex switching reconstruction problem is
also of interest. Let (G,X)v be the signed graph obtained by switching the sign of all
edges incident to the vertex v. Consider the multiset {(G,X)∗v | v ∈ V (G,X)}.

Problem 5.5.7. Is (G,X) reconstructible from {(G,X)∗v | v ∈ V (G,X)}, up to isomor-
phism?

We can ask about the reconstructibility of (G,X) from {(G,X)∗v | v ∈ V (G,X)}
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when G or X are contained in some special class of graphs. We can also ask about the
reconstructibility of the degree pair sequence in this case.



64

Bibliography

[1] N. Alon, Y. Caro, I. Krasikov, and Y. Roditty. Combinatorial reconstruction prob-
lems. J. Combin. Theory Ser. B, 47(2):153–161, 1989.

[2] J. A. Bondy. A graph reconstructor’s manual. In Surveys in combinatorics, 1991
(Guildford, 1991), volume 166 of London Math. Soc. Lecture Note Ser., pages 221–
252. Cambridge Univ. Press, Cambridge, 1991.

[3] J. A. Bondy and R. L. Hemminger. Graph reconstruction—a survey. J. Graph
Theory, 1(3):227–268, 1977.

[4] J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate Texts in
Mathematics. Springer, New York, 2008.

[5] M. N. Ellingham. Recent progress in edge reconstruction. Congressus Numeran-
tium, 62(3):20, 1988.

[6] M. N. Ellingham, L. Pyber, and X. Yu. Claw-free graphs are edge reconstructible.
J. Graph Theory, 12(3):445–451, 1988.

[7] M. N. Ellingham and G. F. Royle. Vertex-switching reconstruction of subgraph
numbers and triangle-free graphs. J. Combin. Theory Ser. B, 54(2):167–177, 1992.

[8] S. Fiorini and J. Lauri. The reconstruction of maximal planar graphs. I. Recognition.
J. Combin. Theory Ser. B, 30(2):188–195, 1981.

[9] W. B. Giles. The reconstruction of outerplanar graphs. J. Combin. Theory Ser. B,
16(3):215–226, 1974.



65

[10] D. L. Greenwell. Reconstructing graphs. Proceedings of the American Mathemati-
cal Society, 30(3):431–433, 1971.

[11] D. L. Greenwell and R. L. Hemminger. Reconstructing graphs. In The Many Facets
of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968),
pages 91–114. Springer, Berlin, 1969.

[12] P. J. Kelly. A congruence theorem for trees. Pacific J. Math., 7:961–968, 1957.

[13] J. Lauri. Edge-reconstruction of planar graphs with minimum valency 5. J. Graph
Theory, 3(3):269–286, 1979.

[14] L. Lovász. A note on the line reconstruction problem. J. Combinatorial Theory Ser.
B, 13:309–310, 1972.

[15] A. Maccari, O. Rueda, and V. Viazzi. A survey on edge reconstruction of graphs.
J. Discrete Math. Sci. Cryptography, 5(1):1–11, 2002.

[16] V. B. Mnukhin. Reconstruction of the k-orbits of a permutation group. Mat. Za-
metki, 42(6):863–872, 911, 1987.

[17] V. B. Mnukhin. The reconstruction of oriented necklaces. J. Combin. Inform.
System Sci., 20(1-4):261–272, 1995.

[18] V. Müller. The edge reconstruction hypothesis is true for graphs with more than
n · log2n edges. J. Combinatorial Theory Ser. B, 22(3):281–283, 1977.

[19] W. J. Myrvold, M. N. Ellingham, and D. G. Hoffman. Bidegreed graphs are edge
reconstructible. J. Graph Theory, 11(3):281–302, 1987.

[20] C. St. J. A. Nash-Williams. The reconstruction problem. In Lowell W. Beineke and
Robin J. Wilson, editors, Selected topics in graph theory, pages 205–236. Academic
Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1978.

[21] J. Sheehan and C. R. J. Clapham. These are the two-free trees. In Annals of Discrete
Mathematics, volume 51, pages 309–313. Elsevier, 1992.



66

[22] R. P. Stanley. Reconstruction from vertex-switching. J. Combin. Theory Ser. B,
38(2):132–138, 1985.

[23] R. P. Stanley. Algebraic Combinatorics: Walks, Trees, Tableaux, and More.
Springer, New York Heidelberg Dordrecht London, 2013.

[24] B. D. Thatte. Some results on the reconstruction problems. p-claw-free, chordal,
and P4-reducible graphs. J. Graph Theory, 19(4):549–561, 1995.

[25] W. T. Tutte. All the king’s horses. A guide to reconstruction. In Graph theory and
related topics (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977), pages 15–33.
Academic Press, New York, 1979.



67

Index

X-isomorphic, 21
Γ-isomorphic, 21
k-cube, 35

adjacent partitions, 35
automorphism of graphs, 20

branch, 20

card, 23
chordless cycle, 20
complement of a graph, 20
cycle, 20

deck
negative vertex, 51
edge, 16
negative sign switching, 27
positive sign switching, 27
sign switching, 23
sign vertex, 51

degree, 19
degree pair, 22
degree pair sequence, 22

edge reconstructible, 16
edge reconstruction, 16
edge spanning, 19

graph
k-free, 45
bidegreed, 19
chordal, 20
claw-free, 20
empty, 20
even-free, 45
triangle-free, 20
unlabelled, 20

isomorphism of graphs, 20
isomorphism of signed graphs, 21

negative degree sequence, 22
negative vertex hypomorphic, 50
negative vertex hypomorphism, 50
negative vertex reconstructible, 51
negative vertex reconstruction, 51

positive degree sequence, 22

replaceable set, 45
replacing set, 45, 46

sign switching hypomorphic, 23
sign switching hypomorphism, 23
sign switching matrix, 35
sign switching reconstructible, 24



68

sign switching reconstruction, 24
sign vertex reconstructible, 51
sign vertex reconstruction, 51
signed graph, 21

k-free, 45
even-free, 46

star, 20
subgraph, 19

spanning, 19
subgraph of a signed graph, 21
switching equivalence class, 33
switching equivalent, 33

triangle, 20

underlying unsigned graph, 21
unlabelled signed graph, 21


	Introduction
	Basic definitions and notations
	Definitions and notation
	Definitions on signed graphs

	Sign switching reconstruction problems
	Problem definition

	Enumerative methods for sign switching reconstruction
	Kelly's lemma for sign switching reconstruction
	Lemmas of Nash-Williams, Lovász and Müller for sign switching reconstruction
	Kelly’s Lemma for signed graphs

	Reconstructing special classes of signed graphs
	Reconstructing (G,X) when X is disconnected
	Reconstructing (G,X) when X is a tree
	Reconstructing (T,X) when T is a spanning tree of X

	Sign switching vertex reconstruction
	Problem definition
	Reconstructing the degree pair sequence from the negative vertex deck
	Constructing the negative vertex deck from the negative sign switching deck
	Results for positive deck
	Reconstructing (G,X) when G is bidegreed

	Conclusion
	Bibliography
	Index

