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Resumo

As redes veiculares surgiram como uma tecnologia promissora para comunicação eficiente

de dados em sistemas de transporte e cidades inteligentes. Ao mesmo tempo, a pop-

ularização de dispositivos com sensores acoplados permitiu a obtenção de um grande

volume de dados com informações espaço-temporais provenientes de diferentes entidades.

Nesse contexto, enfrentamos uma quantidade significativa de dados de mobilidade ve-

icular (rastros de mobilidade) sendo registrada. Esses rastros fornecem oportunidades

sem precedentes para entender a dinâmica da mobilidade veicular e desenvolver soluções

baseadas em dados. Por exemplo, é posśıvel observar a natureza da topologia da rede ou

propor protocolos de roteamento analisando os movimentos históricos de véıculos em uma

cidade.

Neste trabalho, exploramos as aplicações práticas de rastros de mobilidade no de-

sign de redes veiculares. Começamos identificando as principais caracteŕısticas de rastros

de mobilidade veicular publicamente dispońıveis, utilizando uma lista de critérios e real-

izando uma caracterização. Também abordamos a questão de inconsistências nesses ras-

tros, propondo duas soluções que não apenas corrigem essas inconsistências, mas também

demonstram seu impacto no design de redes veiculares. Adicionalmente, propomos dois

frameworks para gerar rastros de mobilidade de ônibus de alta qualidade, os quais podem

ser inestimáveis na simulação de redes veiculares e em estudos de mobilidade urbana.

Além disso, buscamos identificar as peculiaridades da topologia de redes veiculares

obtidas a partir de rastros de mobilidade do mundo real. Para isso, realizamos várias

análises que mostram os pontos fortes e fracos de abordagens que consideram a perspectiva

dinâmica da rede. Revelamos e modelamos como a dinâmica da mobilidade impacta redes

veiculares compostas por ônibus e a formação de nuvens veiculares.

Por fim, desenvolvemos protocolos de roteamento que consideram caracteŕısticas

extráıdas da mobilidade dos véıculos no processo de roteamento de mensagens na rede. Por

meio de simulações baseadas em rastros de mobilidade realistas, mostramos a aplicabili-

dade e viabilidade desses protocolos em termos de latência, taxa de entrega e sobrecarga.

Palavras-chave: redes veiculares; mobilidade; mineração de dados; rastros de mobili-

dade; VANET.



Abstract

Vehicular networks have emerged as a promising technology for efficient data communi-

cation in transportation systems and smart cities. At the same time, the popularization

of devices with attached sensors has allowed obtaining a large volume of data with spa-

tiotemporal information from different entities. In this sense, we face a significant amount

of vehicular mobility data (mobility traces) being recorded. Those traces provide un-

precedented opportunities to understand the dynamics of vehicular mobility and provide

data-driven solutions. For instance, we can observe the nature of the network topology

or propose routing protocols by looking at the historical movements of vehicles in a city.

In this work, we delve into the practical applications of mobility traces in the de-

sign of vehicular networks. We start by identifying the key characteristics of publicly

available vehicular mobility traces, using a list of criteria and performing a characteriza-

tion. We also address the issue of inconsistencies in traces, proposing two solutions that

not only repair these inconsistencies but also demonstrate their impact on the design of

vehicular networks. Additionally, we propose two frameworks for generating high-quality

bus mobility traces, which can be invaluable in simulating vehicular networks and urban

mobility studies.

Moreover, we aim to identify the peculiarities of the vehicular network topology ob-

tained from real-world mobility traces. To this end, we perform several analyses showing

the strengths and weaknesses of these approaches that consider a dynamic network stand-

point. We reveal and model how mobility dynamics impact vehicular networks composed

of buses and the formation of vehicular clouds.

Last but not least, we develop routing protocols that consider characteristics ex-

tracted from vehicle mobility in the message-routing process on the network. Through

simulations based on realistic mobility traces, we show the applicability and viability of

these protocols in terms of latency, delivery rate, and overhead.

Keywords: vehicular networks; mobility; data mining; routing; mobility traces; VANET.
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Chapter 1

Introduction

The data communication network in which the primary nodes of the network are vehicles,

called vehicular networks (or, VANETs-Vehicular Ad Hoc Networks [36]), has received

much attention in recent years [148]. This is because vehicular networks play a central role

in the communication infrastructures of smart cities and urban environments. Moreover,

vehicular networks can integrate with other types of networks such as 5G cellular networks,

meeting diverse application requirements including security and infotainment. These

applications span from collision avoidance and wrong-way driving warnings to pedestrian

safety, urban sensing, and passenger comfort and entertainment [166].

Despite being very promising, VANETs present several challenges due to their

unique characteristics and operating environments. Some of the main challenges include:

high mobility, scalability, heterogeneity, interoperability, infrastructure installation, and

high cost for testing and deployment. In the past years, we have witnessed a number of

researches aimed at providing solutions encompassing wireless communication, network

protocols, security, mobility management, and system design tailored to the specific re-

quirements and constraints of VANETs [158]. However, some of these solutions make

strong assumptions or do not consider realistic vehicle mobility characteristics. For ex-

ample, vehicles have spatial and temporal movement patterns that have been neglected

in many researches.

In order to have robust and reliable solutions, it is essential to develop more real-

istic and scalable simulation frameworks, improve validation methodologies, standardize

simulation practices, and enhance the fidelity of models used in VANET simulations.

Likewise, it is important to propose new strategies for analyzing network topology and

new routing protocols that consider the nuances of vehicle mobility dynamics.
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1.1 Motivation

Vehicles and roads have become increasingly equipped with all sorts of sensors

that allow near real-time monitoring of the entire in-car system and road network. In this

scenario, a unique opportunity arises from exploiting this large flow of sensor-generated

data (i.e., big data) to extract knowledge and insights to optimize traditional solutions

by making vehicular networks intelligent. At the same time, data collected from sensors

can be applied to build realistic simulation scenarios and analyze the network.

From this point of view, there is a need to rethink the design of solutions for ve-

hicular networks, making them data-driven based on knowledge acquisition and decision

automation techniques. In this domain, there are different data sources [73], and for

reasons of a scope limitation, we will focus on mobility data sources. We will show how

data-driven solutions bring a new perspective to vehicular networks. We are dealing with

a type of network heavily influenced by the movement of the nodes and, therefore, consider

mobility to be pivotal information used to propose fair solutions and simulations. In ad-

dition, mobility data, also known as mobility traces, is increasingly available and is being

applied to different tasks in other domains such as estimation of route preferences [267],

identification of points of interest [189], detection of stay points [172], trajectory analy-

sis [299], and investigation of peoples’ interests and routines [211].

Figure 1.1: A road map for mobility trace analysis for vehicular networks.

Figure 1.1 illustrates a possible workflow to acquire novel knowledge based on mo-

bility traces of vehicles. Initially, the raw mobility trace is collected by different data
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sources, such as different types of vehicles, or collected from a specific type (e.g., taxis),

and submitted to a preprocessing step to remove or correct imperfections. This prepro-

cessing step aims to improve data quality to reduce potential errors in the obtained data.

For example, GPS receivers (GNSS data source) may erroneously record the vehicle po-

sitioning [35], such as a taxi location entirely outside a road in the middle of a block.

Those errors can negatively impact the knowledge discovery phase. Therefore, depending

on the type of mobility trace, a set of data processing techniques should be applied. In

the case of trajectories obtained by GPS receivers, techniques such as outlier removal,

map matching, and stay point detection should be adequate. Once the preprocessing step

has been completed, the output of this step is reliable data. After that, the knowledge

discovery step is to find out and model helpful knowledge and insights. Moreover, with

the target application in mind, it is crucial to identify which key characteristics should

be analyzed. The last step is to apply the knowledge obtained from mobility data to give

ideas and improve the services/applications of vehicular networks.

In this thesis, we study the design of vehicular networks from a data-driven per-

spective. In particular, we focus on GPS mobility traces and discuss how the hidden

knowledge from this type of data benefits various applications. Also, those traces can

provide a more accurate representation of vehicular mobility, bringing more realism to

VANET simulations.

1.2 Objectives

The main objective of this thesis is to investigate how the knowledge extracted

from mobility traces can be applied in the design of vehicular networks. The general

idea consists of capturing the intrinsic characteristics originated by vehicles’ mobility and

utilizing them to design solutions and validate vehicular networks. We divide our specific

objectives into four parts:

• We aim to analyze the quality of publicly available trajectory data and propose

solutions for improving this data to be used in vehicular networks.

• We intend to characterize the topology of vehicular networks based on realistic

mobility data.

• We aim to utilize raw data from the literature to create realistic scenarios for sim-

ulating vehicular networks through trajectory generation.
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• We plan to create routing protocols in vehicular networks that consider intrinsic

characteristics of vehicle mobility.

1.3 Contributions

We list the main contributions of this thesis in the following.

• Filling Gaps and Improving Mobility Traces in Vehicular Networks. We

present data-driven solutions to enhance the accuracy and reliability of vehicular

mobility traces. To address gaps in GPS mobility traces, we develop a method

that generates fine-grained trajectories, resulting in more trustworthy simulation

outcomes. Our findings demonstrate that such gaps can significantly alter network

topology graphs, thereby impacting performance evaluations. Additionally, recog-

nizing the unique mobility characteristics of buses compared to regular vehicles, we

propose a hybrid strategy combining historical mobility data and map information

to reconstruct bus trajectories. This approach increases the sampling rate between

consecutive GPS points, leading to more accurate mobility traces. Evaluations us-

ing realistic datasets show that our strategy outperforms state-of-the-art techniques

in multiple aspects.

• Comprehensive Analysis and Modeling of Vehicular Networks and Micro

Clouds. This work provides an in-depth exploration of vehicular network dynamics

and topology across diverse scenarios. First, we conduct a comprehensive temporal

analysis of vehicular networks, highlighting the strengths and limitations of current

approaches in characterizing and analyzing network topology. We demonstrate the

application of a model derived from temporal network theory to effectively capture

the dynamics of large-scale, realistic vehicular mobility traces.

Focusing on bus-based vehicular networks (BUS-VANETs), we analyze the impact

of spatiotemporal factors on network topology. Our study examines five key aspects:

network structure, components, nodes, contacts, and mobility patterns. This analy-

sis uncovers the unique characteristics of BUS-VANETs and identifies opportunities

to optimize their performance and leverage their distinct advantages.

Additionally, we explore the characteristics of vehicular micro clouds (VMCs)—clusters

of connected vehicles sharing computational resources. Our investigation includes an

analysis of fundamental metrics such as dwell time and inter-arrival time for station-

ary VMCs, supported by statistical modeling to identify the best-fitting theoretical
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distributions. For mobile VMCs, we apply a data mining approach to characterize

and reveal their behavior, offering valuable insights into this emerging paradigm.

• Two frameworks to generate bus mobility. In those contributions, we first

create a framework to generate public transportation mobility from timetables and

route information (GTFS data). From this first framework, we create bus mobility

for Dublin, Rome, Seattle, and Washington. Also, we propose an improved frame-

work, named G2S (GTFS to SUMO), for generating bus mobility scenarios based

on open-source tools and publicly available real-world data. From that, we develop

three bus mobility scenarios, called Vancouver Bus Mobility Scenarios (VBMS),

which consider official data from Greater Vancouver, Canada.

• Three routing protocols based on vehicular mobility. In this contribution,

we address an essential problem in VANETs: sending messages from a source ve-

hicle to a destination vehicle. First, we develop a mobility-aware opportunistic

routing protocol, named MOP, which considers individual vehicular mobility as a

determining factor for routing decisions. Second, we design a Bus Routing protocol

based on Community and Centrality Characteristics, named BR3C, which considers

social metrics extracted from the contacts between bus lines for decision-making.

Finally, we present a historical-based data forwarding strategy, named BR4C, for

delivering messages between bus lines. BR4C considers knowledge (Community,

Centrality, and Contact Characteristics) extracted from past encounters between

buses in historical mobility traces.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents and dis-

cusses design guidelines for building vehicular networks based on mobility traces. In Chap-

ter 3, we give an overview of mobility trace analysis for vehicular networks. Chapter 4

presents a methodology to evaluate mobility traces for vehicular networks. In Chapter 5,

we focus on reducing inconsistencies (i.e., gaps) in the sampling rates of vehicular mobility

traces. Chapter 6 introduces a hybrid method for improving bus trajectories based on

historical trajectory information and road network data. In Chapter 7, we examine the

strengths and weaknesses of current approaches in characterizing and analyzing vehicular

network topology. In Chapter 8, we reveal and model the characteristics of vehicular micro

clouds from a large-scale mobility trace. Chapter 9 presents a framework for generating

public transportation mobility and conducts a comprehensive analysis of the topology of
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BUS-VANETs. Chapter 10 presents a novel mobility-aware opportunistic routing protocol

for connected vehicles. Chapter 11 focuses on mobility generation and data dissemination

for bus-based vehicular networks. Chapter 12 summarizes the contributions of this thesis

and presents some research directions for future work.
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Chapter 2

From Mobility Data Source to

Knowledge: Design Guidelines and

Case Study for Vehicular Networks

In this Chapter, we present and discuss design guidelines related to the process of gen-

erating mobility traces, preprocessing these datasets, and obtaining knowledge to create

intelligent vehicular networks. We describe the main types of mobility data highlighting

their strengths and weaknesses. We classify the primary methods for obtaining knowledge

from mobility data. Also, we exemplify how these mobility traces and methods can be ap-

plied to vehicular networks by reviewing recent contributions. Furthermore, we illustrate

through a case study how to obtain knowledge from a specific type of mobility trace.

2.1 Introduction

Vehicular networks have received much attention in recent years. This is mainly

due to the fact that these networks are central to the communication infrastructures in

smart city scenarios. In such situations, in addition to the possibility of creating purely

vehicular networks, there is also the feasibility of integrating them with other types of

networks (e.g., 5G cellular network). Thus, the integration of all those networks satisfies

several requirements for various kinds of applications including security, infotainment,

collision avoidance, wrong-way driving warning, pedestrian safety, urban sensing, and

passenger comfort/entertainment.

We have witnessed a number of studies aimed at providing solutions for the ap-

plications listed above considering the characteristics of the vehicular communication

environment (e.g., the density of the nodes as a function of time and space, fragmented

network into several connected components). At the same time, vehicles and roads have

become increasingly equipped with plenty of sensors that allow near real-time monitoring
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of the entire in-car system and road network. In this sense, a unique opportunity arises

from the possibility of exploiting this large flow of sensor-generated data (i.e., big data)

to extract knowledge and insights to optimize traditional solutions by making vehicular

networks more intelligent.

From this point of view, there is a need to rethink the design of solutions for

vehicular networks, making them data-driven based on knowledge acquisition and decision

automation techniques. In this domain, there are different data sources [73], and for

reasons of scope limitation, we will focus on mobility data source. This will be enough to

show how data-driven solutions will bring a new perspective to vehicular networks. We

are dealing with a type of network that is heavily influenced by the movement of the nodes

and, therefore, consider the mobility give us crucial information to propose fair solutions.

In addition, mobility data, also known as mobility traces, is increasingly available and

is being applied to different tasks such as estimation of route preferences, identification

of points of interest, detection of stay points, trajectory analysis, and investigation of

peoples’ interests and routines.

Figure 1.1 illustrates a workflow to acquire new knowledge based on mobility traces

of vehicles. Initially, the raw mobility trace is collected by different data sources, such as

different types of vehicles all together or collected from a specific category (e.g., taxis) and

submitted to a preprocessing step to remove or correct imperfections. The purpose of this

preprocessing step is to improve data quality to reduce potential errors in the obtained

data. For example, GPS receivers may erroneously record the vehicle positioning, such

as a taxi location completely outside of a road in the middle of a block. Those errors

can negatively impact the knowledge discovery phase. Therefore, depending on the type

of mobility trace, a set of data processing techniques should be applied. In the case

of trajectories obtained by GPS receivers [38], techniques such as outlier removal, map

matching, and stay point detection should be adequate. Once the preprocessing step

has been successfully completed, the output of this step is a reliable data. After that,

the knowledge discovery step is to find out and model useful knowledge and insights

through network science, data mining, and machine learning methods given the defined

goals. Moreover, with the target application in mind, it is crucial to identify which key

characteristics should be analyzed. The last step is to apply the knowledge generated

from mobility data to give ideas and assist in decision making.

This Chapter presents design guidelines for intelligent vehicular networks from a

data-driven perspective. In particular, we focus on mobility traces and discuss how the

hidden knowledge from this type of data might be useful to reveal the network topology,

create data dissemination protocols, deploy infrastructure, optimize network management,

and gather data at the city level. More specifically, our contributions include:

• We propose a workflow to guide the design of intelligent vehicular networks from a

mobility trace standpoint, as presented in Figure 1.1.
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• We identify and classify the vehicular mobility traces, highlighting the advantages

and limitations of the employment of those traces to intelligent vehicular networks.

• We present the primary approaches for acquiring knowledge from mobility data.

Those approaches are based on three significant areas: network science, data mining,

and machine learning. We discuss them considering how to apply them in the vehic-

ular network context. Moreover, we exemplify what types of information/knowledge

can be obtained from those approaches.

• We indicate crucial applications in vehicular networks that can utilize the design

guidance discussed in our work. Also, we review some contributions from the liter-

ature discussing how they have been using mobility data for vehicular networks.

• To exemplify the applicability of the proposed workflow, we present a case study

where we model and predict the connectivity of vehicles with a base station using

real-world mobility data.

We organize all those contributions according to the following structure. Sec-

tion 2.2 contains a description and a comparison between the various types of mobility

data. Section 2.3 includes the methods for obtaining knowledge which we classify into

three broad classes: network science, data mining, and machine learning. In Section 2.3,

we discuss the applications in the domain of vehicular networks that take advantage of

the process discussed in this work. We give more details through a thorough literature

review. In Section 2.4, we present a case study. Finally, we conclude this Chapter in

Section 2.5.

2.2 Overview of Mobility Traces

We define a vehicular mobility trace as a set of data containing information about

the mobility of vehicles. As detailed below, such mobility trace can be obtained from

different data sources and it determines what eventually we can extract from the data.

For example, a type of data source provides information on individual vehicle movements;

another data source records information about the movement of vehicles as a group or

mobility flows. Regardless of the data source, there is always spatiotemporal information

about the mobile entities in the vehicular mobility trace. However, there are advantages

and limitations concerning their representativity, and some restrictions about the process

of collecting, preprocessing and storing each type of mobility trace. In this section, we
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present possible data sources to create a vehicular mobility trace and point out their key

characteristics.

We classify the major data sources of a vehicular mobility trace into six categories:

Survey, Schedule, Inductive loop, CCTV, GNSS, and Sensing-as-a-Service (SaaS).

Survey It is a traditional approach to collect personal mobility information.

In the context of vehicular mobility, people of a given house answer a list of ques-

tions about their origin, destination, estimated time of departure, travel frequency, main

travel routes, and so forth. In general, those surveys contain information about vehicle

mobility between regions/zones and are collected between long periods.

Schedule In this data source, the information is obtained from a pre-established sched-

ule of movement of vehicles. Generally, this data source is restricted to some types of

vehicles. For instance, buses that have a scheduled departure, arrival, stop points and

follow a fixed route of movement. Another example is a fleet of vehicles that is responsible

for making deliveries or collecting.

Road sensors Sensors installed on the roadside or along the streets might provide data

about vehicle density, traffic flows, and vehicle speed. For instance, an inductive loop is a

type of road sensor that consists of a technological infrastructure installed on the surface

of the roads to detect vehicles. It has been increasingly applied as a way to count vehicles

as well as monitor the traffic in the cities. Typically, this data source provides aggregate

information such as a number of vehicles passing through a road/lane and average speed

of them. In this case, we usually do not have detailed information about the mobility of

each vehicle, but rather on the flow of vehicles.

Closed-Circuit Television (CCTV) Another class of vehicle mobility data source is

the use of cameras installed along the roads. It allows to collect traffic information and

vehicle flow in real-time using computer vision techniques. It presents similar disadvan-

tages as road sensors like a high cost to install the infrastructure and the monitoring is

restricted to a limited number of roads or regions of a city.

Global Navigation Satellite System (GNSS) The popularization of geolocalization

devices has provided a new stage for collecting vehicular mobility. Thus, devices equipped

with a GNSS receiver (e.g., Global Positioning System - GPS) can record the geographic

positioning of vehicles during their movements and, afterwards, send that data to a server.

This data source provides a fine-grained positioning and almost real-time movement of a

given vehicle. In general, this type of data source is most commonly used by buses and

taxis, since private vehicles impose privacy restrictions. Also, it is sensitive to location

errors due to the quality of the GNSS receivers.
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Sensing-as-a-Service (SaaS) In addition to the data sources described above, there

are sensing platforms that provide general traffic information. This type of service uses

data fusion techniques to classify the traffic intensity and gives information on the level

of traffic in certain streets. For instance, Google Maps, Here Maps, and TomTom Traffic

provide information about the traffic conditions.

Table 2.2 presents a comparison of the vehicular mobility data sources in terms of

coverage area, update rate, mobility level, creation of infrastructure to gather data, and

privacy issues.

Data Source Coverage Real-time (near) Mobility level Data gathering Privacy issues
Survey Large No Flow Easy Yes
Schedule Large No Individual Easy No
Road sensors Small Possible Flow Complex No
CCTV Small Possible Flow Complex No
GNSS Large Possible Individual Complex Yes
SaaS Large Possible Flow Complex No

Table 2.1: Summary of key indicators of vehicular mobility traces from different data
sources.

2.3 Methods of Obtaining Knowledge

In this section, we point out the main methods to obtain knowledge from reliable

mobility data. In general, these methods involve how to create a model or use metrics to

improve solutions and services in vehicular networks.

2.3.1 Network Science

Network science is a multidisciplinary study area that involves the activities of

understanding and modeling a system based on network theory [107]. It has been applied

for analyzing a large number of system in several aspects. The main aspects that involve

mobility traces and vehicular networks are spatial, temporal and social. In this direction,

we present below a discussion of these aspects relating the fundamentals of network science

for analyzing the structure and evolution of vehicular networks.
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Data source Advantages Limitations
Survey Can be collected online or door-to-door; May

contain information of a large number of peo-
ple

Information may be inaccurate, dishonest, or
completely wrong; Granularity of mobility in-
formation is at region level; There is no infor-
mation about the positioning of a vehicle along
the time; Data might be outdated; There are
privacy issues to private cars

Schedule Low cost; Public vehicles have no privacy is-
sues; Availability of APIs and web crawlers for
data collection; Information obtained from of-
ficial transport organization

Restricted to limited number of vehicles
(fleet); Schedule times and routes may not
represent the reality; There is no information
about the positioning of a vehicle along the
time; Data might be outdated

Road sensors Monitoring of real-time traffic; There is no pri-
vacy issues; Provide information about the ve-
hicle flow, density of vehicles, and speed vehi-
cles

Area of coverage of the infrastructure is con-
ditioned to some roads; Availability of data is
restricted to the company responsible for the
monitoring; There is no information about the
positioning of a vehicle along the time; There
is a significant cost associate to installation

CCTV Monitoring of real-time traffic; Additional in-
formation can be extracted from videos using
computer vision; Provide information in terms
of vehicle flow

Generally restricted to controlled regions and
environments; Area of coverage of the infras-
tructure is conditioned to some roads; Avail-
ability of data is restricted to the company re-
sponsible for the monitoring; There is no in-
formation about the positioning of a vehicle
along the time; There is a significant cost as-
sociate to installation; Data as videos take a
lot of disk space; Might be privacy issues

GNSS Wide sensing coverage; There is data about
the positioning of a vehicle along the time;
Tracking vehicles more precisely in terms of
spatial and temporal dimension

Recruitment of volunteers to participate in
the data collecting; Due to privacy issues, the
available data are from bus and taxi traces;
Hard to collect a bigger scale w.r.t. cars, when
compared to number of vehicles in a city

SaaS Data without privacy restrictions; Wide sens-
ing coverage; Data is generally well formatted
like a XML or JSON; Monitoring in large scale
of the traffic in (near) real-time

The positioning of each vehicle is not provided
along the time; Depends on third party data
provision

Table 2.2: Summary of key advantages and limitations of vehicular mobility traces from
different data sources.

Spatial network Spatial networks are especially important for systems where space is

a relevant aspect to be observed. In this type of network, each node represents a spatial

abstraction (e.g., city regions and points of interest) and edges represent interactions

between these nodes. For instance, a possible modeling of vehicular mobility in spatial

networks is to associate the nodes to city regions and edges the origin and destination

flows of travel. After that, a set of mobility characteristics can be obtained such as density

of mobility flow, regions of greater topological centrality, and statistical distributions of

arrivals and departures.

Temporal network Temporal networks are structures that allow the analysis of the

dynamics of a system from a network perspective. In this case, network nodes and edges

may appear and disappear over time. In the context of vehicular networks, network nodes

may be vehicles and network edges may represent an overlap of vehicle communication

radii. In this model, we can analyze the dynamics of the vehicular network from a con-

nectivity standpoint. Moreover, temporal networks can reveal the role of nodes over time.
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Thus, we can identify which ones have the most considerable influence or are the most

affected, or the relationships there are among them.

Social network When we are looking at mobility, in addition to spatial and temporal

dimensions, the social aspect also comes into play, since vehicular mobility is often a

function of people’s social routines. Considering this fact, a thorough analysis of the

relationships between vehicles is fundamental. Generally, these relationships are achieved

by vehicles that meet or share routes over the days forming groups or communities. The

extraction of social features from mobility traces gives new opportunities to design routing

protocols and services in the domain of vehicular networks. From that and using the social

networking theory, it emerges the vehicular social networks, which may allow us to identify

the nature of encounters among vehicles.

2.3.2 Machine Learning

Machine learning is a subfield of artificial intelligence that has been applied to many

areas to automate decision making. In our context, machine learning algorithms play a

crucial role in transforming mobility information into useful knowledge using inferences

and prediction tasks [44] [247]. The following is a classification of methods according

to what is typically found in the machine learning literature [230]. Although there are

other methods based on reinforcement learning, online learning, semi-supervised learning

as well as deep learning that have leveraged existing learning methodologies [33], we have

discussed essential methods that are at the core of machine learning.

Supervised learning In this type of learning, the goal is to find a function that maps

a number of input samples to a corresponding set of output labels. An essential step

in supervised learning is the training phase that extracts knowledge from a training

dataset, which contains a significant number of training samples with their respective

labels. Therefore, it is critical to have a reliable and representative training dataset to

create a model with high generalizability. Using this kind of learning, a set of tasks can

be performed such as trajectory classification, trajectory prediction, prediction of traffic

situations, estimation of transition probability between regions, and inferring future lo-

cation. All of these activities can be very important to enhance solutions for vehicular

networks and can be obtained by using well-known algorithms such as support vector

machines, neural networks, bayesian classifiers, decision trees, and random forests [230].
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Unsupervised learning Unsupervised learning consists of learning from an unlabelled

dataset. This technique has been extensively used to reveal previously hidden patterns

by mainly identifying similarity relationships in the data. Thus, unsupervised learning

algorithms (e.g., K-means and hierarchical clustering) can cluster data based on their sim-

ilarity. Unsupervised learning methods have been widely applied in mobility data mining.

For example, in trajectory data mining, several studies have used trajectory clustering

algorithms (e.g., Ordering Points to Identify the Clustering Structure abbreviated to OP-

TICS) to find similar trajectory groups. This type of knowledge may be of paramount

importance for various applications in the context of vehicular networks such as resource

management and data dissemination.

2.3.3 Data Mining

In a few words, data mining consists of the discovery of useful knowledge from

machine learning methods and statistics tools [282]. That knowledge can be represented

by patterns and models that are hidden in the dataset under analysis. In the field of

mobility data, we discuss in the following the main methods ranging from exploratory

data analysis to pattern and anomaly detection.

Exploratory data analysis It consists of an essential step to find out the main char-

acteristics of a massive dataset. Exploratory analysis allows to summarize and extract

various data statistics using both statistical concepts (e.g., measures of dispersion, cor-

relation, distributions) and visualization techniques (e.g., box plot, histograms, scatter

plot, time series). When we are working with trajectory data and vehicle flow, these

methods are crucial to give us more general information about mobility such as average

travel distance, mobility entropy, travel time, number of trips by hour, frequency of trips,

and so forth. Thus, we have a clear view of the mobility data and be able to relate their

characteristics to the target applications in vehicular networks.

Pattern mining Pattern Mining is a topic that involves identifying hidden patterns in

the data. As we are dealing with mobility traces, these patterns are usually associated with

spatial and temporal aspects. Spatial because vehicle movements occur in a geographical

area and temporal because they are moving over time. From this perspective, we can list

the following tasks to obtain knowledge from mobility traces: detect periodic patterns

of movement; find out which roads and regions are most used, anomaly detection; and

identify individual and collective mobility profiles. To this end, methods involving graph
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(a) Density of GPS points (b) Coverage area by the BS

Figure 2.1: Location of the base station (BS)

pattern mining, clustering, sequence mining, and frequency patterns provide valuable

ideas. In the context of vehicular networks, the study of these patterns will provide

inputs for the design of data-driven solutions given the significant correlation between

mobility and connectivity.

2.4 Case Study

To make the case study more realistic, we used a dataset containing the actual

mobility of buses from Dublin, Ireland. This dataset has only one type of vehicle, but it is

enough to show the application of the workflow since it contains real mobility information

over the days. We selected data between business days from November 12, 2012 to

November 16, 2012. The vehicle positioning was recorded every 20 seconds, and each

record contains the time, latitude and longitude coordinates, as well as the vehicle and

line identification.

In this evaluation, we analyze the connectivity of vehicles to a BS based considering

real mobility data. The base station is located in a region that presents a concentration

of mobility, as can be seen in Figure 2.1a that shows the density of points throughout the

city, and Figure 2.1b shows the location of the base station. Considering IEEE 802.11p,

the connectivity between the base station and the vehicles occurs if the vehicles are within

the communication radius of the BS, which is around 250 meters.

Considering Figure 1.1, we initially preprocessed the dataset to extract outliers

and applied an approach1 to increase the record granularity from every 20 seconds to

every 1 second. After that, we identify for each 1 second which vehicles are within the

coverage radius of the BS. In the knowledge discovery process, we model the median

number of vehicles in the coverage area as a time series containing samples every 30

1Available online at https://wisemap.dcc.ufmg.br/urbanmobility/
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minutes. Figure 2.2 portrays the resulting time series. We can see that the time series

has a clear seasonal pattern that is equivalent to the city’s mobility routine. Besides, two

main peaks correspond to peak hours at around 8 am and 5 pm. Those hours contain

more buses traveling, and there are possible traffic jams.

Figure 2.2: Time series of the median amount of vehicles connected to the base station.

In addition to the exploratory observations of possible connections, we can take

advantage of this modeling and predict the median number of vehicles in the coverage

area. For that, we considered the first four days for training (between Nov 12 and Nov

15) and evaluated the prediction on the fifth day. As our objective here is to show the

workflow and not propose a new prediction method, we used a classic approach to obtain

the prediction of the time series. We applied the Seasonal Autoregressive Integrated

Moving Average (SARIMA) model according to the observed characteristics of the time

series. We obtained the parameters of the SARIMA model performing a grid search. To

evaluate the model, we used the Mean Squared Error (MSE). Looking at Figure 2.2, we

can see that the prediction (dashed line) adequately fits the observed data (solid line)

with the MSE equal to 3.105.

In this case study, we show that it is possible to characterize, model, and predict

the median number of vehicles in the coverage area of a base station using raw real-world

mobility data. This knowledge can be applied in different ways in the design of vehicular

networks, such as feasibility and load study at base stations, handover rate in the existence

of several base stations, and so forth.
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2.5 Chapter Remarks

In this Chapter, we have presented detailed design guidance for intelligent vehicu-

lar networks based on mobility traces. Initially, we have discussed types of mobility traces

and how their characteristics may impact the design of those networks. Next, we have

presented the fundamental methods for obtaining knowledge from mobility traces. More-

over, we have indicated crucial applications in the domain vehicular networks that take

advantage of the knowledge extracted from mobility traces. A case study was provided

to clarify the step-a-step to obtain knowledge from a particular type of mobility data.



36

Chapter 3

Mobility Trace Analysis for

Vehicular Networks: An Overview

Insights derived from vehicular mobility data have yielded promising results in appli-

cations and solutions for vehicular networks. For instance, observing vehicle mobility

we can get the dynamics of the network topology and identify the best candidates for

message dissemination. However, this requires multidisciplinary expertise that demands

distinct fundamentals from several areas such as communication networks, data mining,

and statistics. In this context, this chapter provides background information and presents

related work on data-driven solutions for vehicular networks.

3.1 Introduction

A mobility trace is a dataset that contains records about the positioning of mobile

entities along the time according to a reference system. For instance, using a Global

Navigation Satellite System and cellular networks we can obtain the positioning of entities

based on a constellation of satellites and towers of cellular communication, respectively.

In particular, as we are concerned with vehicular mobility, real-world traces represent

the best approximation of the actual mobility of vehicles. Therefore, these traces have

benefits ranging from the conception of more representative simulation scenarios to the

discovery of information to improve solutions for vehicular networks.

The literature presents some related studies that show an overview of efforts on data

analytic and communication networks. Yu et al. [277] present a tutorial on infrastructure

and network platforms to handle large volume data. Wang et al. [260] survey applications

of data analysis to understand disasters (e.g., earthquake, storms) in order to create mobile

networks, i.e., how the resources for network composition can be optimized considering the

results obtained from the analysis. Blondel et al. [25] and Naboulsi et al. [195] analyze data

about the communications conducted by users of cellular networks, highlighting the social,
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mobility and communication perspectives. He et al. [131] and Zheng et al. [298] discuss

how big data analytic techniques can be useful to optimize resources in cellular networks

for both the user and the carrier. In this way, as far as we know, this work presents the first

literature review on mobility trace analysis for vehicular networks, opening opportunities

for experts and newcomers to have a thorough understanding of solutions and research

gaps in this topic.

We organized the sections of this chapters as following. Section 3.2 presents, de-

scribes and compares the main publicly available vehicular mobility traces. Section 3.3

classifies the main aspects and characteristics observed in vehicular mobility traces, and

the methods used to characterize them. Section 3.4 analyzes proposals for vehicular

networks that apply the hidden knowledge in mobility trace to understand the network

topology, routing and dissemination, planning of infrastructure, and sensing of urban

scenarios. Finally, Section 3.5 contains our chapter remarks.

3.2 Vehicular Mobility Traces

In this section, we present a number of vehicular mobility traces and perform a

qualitative comparison among them. All of them are publicly available and can be divided

into real-world or synthetic traces. Real-world traces consist of positioning data recorded

by a location device (e.g., a GPS receiver). Because of privacy and security issues, most

of these traces describe the movements of anonymous taxis or buses. Synthetic traces

describe artificially generated movements of vehicles, based on external observations such

as origin-destination surveys, inductive-loop traffic detectors and camera images. For

both cases, the vehicular mobility is represented as trajectories and the set of trajectories

make up the trace1, as defined as follows. A trajectory is a temporal ordered sequence of

spatial points T = 〈p1, . . . , pn〉, where each point contains spatial coordinates (x, y) and

a timestamp (t), and, thus, pi = (x, y, t) for i = 1 . . . n. A vehicular mobility trace D =

{T 1, T 2, . . . , Tm} is a collection of trajectories T j, where m is the number of trajectories

and T j represents a trajectory j of a vehicle.

Ideally, the real-world traces should represent the actual mobility performed by the

vehicles. However, the composition of real-world traces is subject to several problems such

as inaccurate readings, outlier records, irregular sampling, ambiguity, and incompleteness.

In this sense, a challenge is to orchestrate a system for collecting, processing and storing

the vehicle mobility traces in order to maintain its data quality and privacy. In the

literature, there are some traces containing mobility information of vehicles in real-world

1We use the terms trace and dataset interchangeably in this work.
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scenarios, as discussed below. In general, those vehicular mobility traces are results of

academic research or provided by traffic control organization.

The first real-world traces that were made available in the literature were records

of bus mobility. The Seattle-Bus trace [147] contains records of 1,200 buses during a

period of approximately two weeks in Seattle, Washington, USA. This trace was obtained

using a tracking system that recorded the bus location with time granularity between 1

and 2 minutes. The records contain the following information: day, month, bus identifier,

route identifier and coordinates. The UMassDieselNet trace [48] is result of a vehicular

network where the nodes are buses. This vehicular network was developed by researchers

at the University of Massachusetts, Amherst. The network is composed of 30 buses that

circulate around the campus and the surrounding county during the Spring term of 2005.

Due to holidays and some occasions that cause traffic anomalies, the final trace consists

of 720 hours of recorded data. In addition to the GPS coordinates, the trace contains

information about connections and traffic volume of data between buses. Similarly, Do-

ering et al. [99] collected a vehicular mobility trace, named Chicago-Bus, from a real

system (Chicago Transport Authority Bus Tracker) in order to create a bus-based net-

work. The full version of the Chicago-bus trace contains records from November 2, 2009

to November 19, 2009 with a set of information about the trips and GPS coordinates.

The recording rate of each location is between 20 and 40 seconds and there are 1,600

active vehicles at rush hours.

More recently, it was possible to have access to new bus mobility traces that

present a larger scale in terms of numbers of vehicles, spatial coverage and duration. For

example, Beijing-Bus trace [287] contains the positioning of buses between the month of

March, 2013, in the city of Beijing, China. In this trace, each bus sent, every 20 seconds, a

record to the system containing the timestamp, bus identifier, bus line number, longitude,

latitude, speed, azimuth angle and next stop number. The Shenzhen-Bus trace [284]

contains records of 24 hours of buses information in real time from Shenzhen, China.

The sampling rate of sensing was two records per minute and each entry contains the

bus identifier, time, plate identifier, latitude, longitude and speed. The Shanghai-Bus

trace [291] contains the positioning of buses in the city of Shanghai, China. This dataset

contains information about 2,500 buses from February 24, 2007 to March 27, 2007. The

positioning sampling rate of each bus was done every minute and contains positioning

information and time, as well as speed and direction data. The Dublin-Bus [104] trace

is a dataset containing mobility information of 817 buses from January 1, 2013 to January

31, 2013 of the city of Dublin, Ireland. This trace provides spatiotemporal information

about the buses as well as points of congestion and bus stops. In addition to the bus

traces discussed above, currently, there are several cities that have open data services

and, therefore, provide bus mobility data available via API2.

2Application Programming Interface
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In addition to the bus traces, some taxi traces containing the mobility of the ve-

hicles was made available in the literature. The first was the SF-Taxi trace [218] which

contains records of 536 taxis from the city of San Francisco, USA during May 2018. Each

record has the vehicle id, longitude, latitude, timestamp, and status of occupancy. In

average, the sampling rate is 60 seconds, but the number of records by vehicle differs

significantly. For instance, the average number of records by vehicle is around 20,000.

However, while some vehicles have around 100 records in the database, others have al-

most 49,000. The Rome-Taxi trace [45] contains mobility information of 316 taxis from

February 1, 2014 to March 2, 2014 in Rome, Italy. Among the available vehicular real-

world mobility traces, this dataset has the lowest average sampling rate, i.e., 7 seconds.

Although the number of records by vehicles is unbalanced as well as in the SF-Taxi, each

taxi contributed, on average, with 69,000 records. However, some vehicles have hundreds

of records while others have tens of thousands.

The taxi traces of San Francisco and Rome have interesting information, but a

new perspective in terms of scale is presented when taxi mobility data from Chinese cities

are observed. The Shanghai-Taxi trace [142] has 4,316 taxis and is partially available

for the scientific community. This version consists of 6,075,587 records during a single

day in Shanghai, China. The collecting system was made of GPS devices installed in the

vehicles, which sent the position records, on average, every minute to a central database.

There is another Shenzhen-Taxi trace [70] of vehicular mobility that is also partially

available. This dataset has trajectory information of 13,799 taxis in Shenzhen, China and

a sampling rate of 30 seconds on average. In terms of scale, this dataset has the largest

number of vehicles found in real-world data, but its duration is only 9 days. The Beijing-

Taxi trace [280] describes the mobility of 10,357 vehicles during 7 days in February 2008

in the city of Beijing, China. The average sampling rate of this dataset is 177 seconds.

Like the datasets presented above, this data has an unbalance in the number of records

per vehicle.

Basically, the traces discussed so far are bus or taxi records. Thus, there is a lack of

privately owned car data or vehicular trace from real-world scenarios. In this sense, there

are some efforts that have generated vehicular mobility traces from other data sources

such as surveys, inductive-loop traffic detectors, and camera images. Although these

vehicular mobility traces are based on real data, they are artificially generated and hence

called synthetic traces. In general, synthetic traces have been mainly applied to create

simulations scenarios of vehicular networks.

The Canton of Zurich [197] is a synthetic trace that mimic the mobility of

vehicles of the city of Zurich, Switzerland. This trace represents the mobility of 260,000

vehicles during a typical workday and contains general information about positioning,

timestamp, and speed. The TAPASCologne trace [255] is another famous synthetic

vehicular mobility trace. This dataset is based on a set of general information like surveys
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of mobility and census data of citizens in Cologne, Germany. From that, the authors took

advantage of a mobility simulator, called SUMO, and a real road topology extracted

from OpenStreetMap to create a realistic vehicular traffic scenario. The available dataset

contains the positioning along the time of more than 688,000 vehicles during a typical

business day. Similar to the trace of Cologne, LuSTScenario trace consists of a synthetic

scenario of mobility of vehicles in the city of Luxembourg [75]. The trace consists of 24

hours of a working day period having the mobility of buses and private vehicles. In an

area of 156 km2, there is a traffic of 2,336 buses and up to 300,000 private cars. The

Bologna Ringway trace [20] simulates the mobility traffic of 22,000 vehicles in a region

of 25 km2 in Bologna, Italy. This dataset has the limitation in terms of duration since

it contains only 1 hour of mobility between 8 am and 9 am on a regular day. The data

are based on information from inductive-loop traffic detectors. The BerlinMOD [105]

synthetic dataset contains records of 2,000 vehicles driving on the road network of Berlin,

Germany. The records are generated at every 2 seconds and the mobility represents the

behavior of workers commuting between their homes and workplaces as well as some trips

in their leisure time.

For highway scenarios, the existing traces are generated from external observations

such as the rate of arrival of vehicles and density of vehicles on the highway. Bai et al. [15]

analyzed the traffic variation in segments of two well-known highways in Toronto, Canada

and Berkeley, USA namely the Gardiner Expressway and the I-80 Freeway, respectively.

The latter, the Berkeley trace, consists of trajectories of each vehicle in I-80 Freeway

every one-tenth of a second. A portion of this data can be obtained at the United States

Department of Transportation Website3. The available version has the trajectory of 2,490

vehicles during a period of observation of approximately one hour. Another interesting

trace of a vehicular mobility in a highway scenario is the Madrid trace [121]. The trace

contains realistic information from three highways (A6, M40, and M30) in the city of

Madrid, Spain. For the M30 highway, the trace represents the mobility of the vehicles

during a typical working day. While for the highways M40 and A6, the trace contains

records of sixteen subsets, each one with a duration of 30 minutes for different days and

hours. The sampling rate of the records is 500 milliseconds for a 10 km road segment.

Table 3.1 summarizes relevant characteristics of the traces discussed above. Based

on that, we can make point out the following considerations: (i) in general, the real-world

mobility traces are results of vehicular traffic in urban regions; (ii) real-world vehicular

mobility traces publicly available are of taxis and buses; (iii) the traces of taxis are

unbalanced, that is, the number of records per vehicle varies significantly. This can lead

to unrealistic analysis or biased conclusions; (iv) there are no mobility traces of long period

duration. Long duration traces are particularly interesting for cities that have variable

mobility throughout the year; (v) privacy, security, and incentive mechanisms are issues

3https://www.its.dot.gov/data
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Table 3.1: Properties of the traces described in Section 3.2.

Trace Type Vehicle Type City Area/Length Vehicles Duration Availability

Seatle-Bus
[147]

Real-World bus Seattle 100 km2 1,200 17 days fully

UMassDieselNet
[48]

Real-World bus Amherst 388 km2 30 60 days fully

Canton of Zurich
[197]

Synthetic
public and
private cars

Zurich 65,000 km2 260,000 24 hours fully

Zurich
[18]

Synthetic private cars Zurich 9 km2 420 33 min fully

SF-Taxi
[218]

Real-World taxi San Francisco 121 km2 536 31 days fully

Berkeley
[15]

Synthetic private cars Berkeley – – 72 hours partially

BerlinMOD
[105]

Synthetic private cars Berlin 891 km2 2,000 28 days fully

Chicago-Bus
[99]

Real-World bus Chicago 606 km2 1,971 18 days partially

Beijing-Taxi
[281]

Real-World taxi Beijing 16,808 km2 10,357 7 days fully

Shanghai-Taxi
[142]

Real-World taxi Shanghai 3,150 km2 4,316 90 days partially

Dublin-Bus
[104]

Real-World bus Dublin 225 km2 817 31 days fully

TAPASCologne
[255]

Synthetic private cars Cologne 400 km2 688,536 24 hours fully

Shenzhen-Taxi
[70]

Real-World taxi Shenzhen 2,050 km2 13,799 9 days partially

Rome-Taxi
[45]

Real-World taxi Rome 1,285 km2 316 28 days fully

LuSTScenario
[75]

Synthetic
public and
private cars

Luxembourg 156 km2 300,000 24 hours fully

Bologna Ringway
[20]

Synthetic private cars Bologna 25 km2 22,000 1 hour fully

Shenzhen-Bus
[284]

Real-World bus Shenzhen 2,050 km2 13,032 24 hours fully

Beijing-Bus
[287]

Real-World bus Beijing 1,120 km2 2,515 31 days partially

Madrid
[121]

Synthetic private cars Madrid 10 km 92,274 24 hours fully

Shanghai-Bus
[291]

Real-World bus Shanghai 3,150 km2 2,500 30 days partially

that should be better investigated by the community for greater availability of real data.

3.3 Characterization

The data characterization consists of an exploratory analysis of the main charac-

teristics of a dataset [127]. For this purpose, the analysis aims to maximize perceptions

of the dataset by describing central tendency and variability that occur in the data [254].

In addition, it checks for assumptions, determines relationships between variables, finds

outliers and anomalies, among other understandings hidden in the data.

In this section, we present several characteristics identified in the literature about

the characterization of vehicular mobility traces. Since our focus is vehicular networks,
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the aspects discussed here are related to mobility, connectivity and social behavior, as

depicted in Figure 3.1. In this sense, data characterization provides valuable insights to

understand the individual and collective behaviors as well as the interaction between the

vehicles.

Vehicular
Mobility
Traces

Mobility

- Travel distance
- Radius of gyration
- Entropy
- Mobility profile 
- Origin and destination mobility 

Connectivity
- Contact duration

- Inter-contact time

- Topology

Social
Social ties - 
Centrality -

Social groups -

Figure 3.1: Aspects and characteristics observed in vehicular mobility traces

3.3.1 Descriptive statistics

A common need when we are working with a large data volume is to summarize

it so that it can give us a data overview, using tables, graphics and numerical values. In

this direction, we can apply several techniques of descriptive statistics such as measures

of central tendency, frequency tables, measures of dispersion, and graphics (e.g., bar-

plot, histogram) [113]. In this direction, we can describe the essential information of

the data under analysis. Therefore, the quantitative data analysis in combination with

data visualization techniques are a powerful approach for obtaining an overview of the

vehicular mobility traces. For instance, a histogram can be used to visualize the values

that are accumulated in time intervals and the heatmap can be used to reveal the average

incidence of registration over time and space.

3.3.2 Mobility

Mobility is a key feature in people’s daily lives, and the understanding of human

movements reveals more than just their locations. In this way, knowing how, why and
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when these movements occur have the potential to clarify several questions in the design

of vehicular networks such as network overhead and dynamic topology. In this way, this

section presents several metrics of individual and collective mobility of entities used in

the design of applications and services in vehicular networks.

3.3.2.1 Travel distance

It is an metric to describe the displacement of an entity [47]. The mobility of

vehicles is characterized by the movements between certain places and the time of pause

at each place. The displacement (∆r) of a vehicle consists of the traveled distance between

two pauses. Therefore, the displacement is defined as ∆r = |x2−x1|, where x1 and x2 are

the geographical positions of two consecutive places where the vehicle stops and spends

time. Liang et al. [175] verified that the traveling displacements between pairs of origin

and destination using the Beijing taxi trace tend to follow an exponential distribution.

In a more detailed study, Cai et al. [49] verified, using the taxi mobility trace from

Beijing, that for trips less than 48 kilometers the displacement distribution follows a

power-law distribution, while for trips equal or greater than 48 kilometers the displacement

distribution follows a exponential decay. However, depending on the data source and the

mobility patterns associated with the data, other distributions for the displacement can

be observed, as discussed in [6].

3.3.2.2 Radius of gyration

It quantifies the dynamics of a person’s mobility relative to the center of mass of

their movement [119]. The radius of gyration is rg =
√

1/n
∑n

i=1(pi − pcenter )2, where

n is the number of places visited by a given person, pi is the ith place and pcenter is

the center of mass of the displacement of the person, obtained as pcenter = 1
n

∑n
i=1 pi.

The result of pi − pcenter is the distance between a visited place pi and the center of

mass pcenter . A small radius indicates that the mobile entity (e.g., vehicle, person) moves

locally with short trips, while a large radius indicates that it moves with longer journeys.

Pappalardo et al. [212] proposed a new interpretation for the radius of gyration assigning

weights to the places visited. They analyzed the recurrent mobility in a vehicular trace

and figured out the existence of classes of individual mobility based on this metrics.
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3.3.2.3 Entropy

Entropy is another metric that has been used to measure the mobility dynamics

of individuals. Cotta et al. [80] analyzed in details the use of entropy instead of radius of

gyration for understanding the individual mobility. They transformed the spatial region

into a grid and from there they extracted the spread of mobility based on Shannon’s

entropy [231]. For that, they defined the following equation: H = −
∑

i(
|Ci|
C

log2
|Ci|
C

),

where Ci represents the grid cells with i = 1, 2, ..., n, |Ci| the number of points in each cell

Ci and C the number of points equal to
∑

i |Ci|. Similarly, Zhang et al. [291] introduced

entropy as a metric to quantify the individual mobility of taxis in the forwarding of

messages in a vehicular network.

3.3.2.4 Mobility profiles

It refers to the movement history analysis of entities in order to establish pat-

terns of regular behavior. Trasarti et al. [253] studied the concept of collective vehicle

data mobility profiles to create a carpooling system. Similarly, Celes et al. [62] used the

individual mobility profiles to aid in the routing of messages in vehicular networks. Pap-

palardo et al. [212] employed vehicular traces to show the existence of two frequency-based

mobility profiles. They have named returners individuals who recur to a few places and

explorers those whose mobility can not be reduced to a few places. In vehicular networks,

the understanding the mobility routines and profiles of entities brings benefits to the mo-

bility management based on predictive patterns and the improvement of the quality of

services.

3.3.2.5 Origin-Destination mobility

It deals with the spatial characterization of the points which the vehicles start a

movement and finish it [51]. For example, displacement between cities, neighborhoods,

and points of interest. Silva et al. [236] characterized the origin and destination of the

vehicles of the city of Cologne, Germany, using a dataset with trajectories of more than

180,000 vehicles. They partitioned the city into cells of size 1 km2 and used a subset of
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data with two hours of information. They showed that the departures (vehicles’ origin

cells) tend to be equally distributed throughout the city, while that the arrivals (vehicles’

destination cells) are concentrated in the central region of the city. They attributed this

behavior to a subset of data that they had used in their analysis. Particularly, they

observed the data only in a specific period of the morning (from 6 am to 8 am). In this

period, several residents move from home to workplace, i.e., from the suburban regions to

downtown. That characterization study was applied to the design of content replication

strategies to vehicular networks [235].

3.3.3 Connectivity

Connectivity aspects consist of characterizing the connections to understand when

they occur, their duration, and how often they are, among other peculiarities that are

important to understand the structure and properties of vehicular networks.

3.3.3.1 Contact duration (or link duration)

The duration of the contact is the time interval in which two nodes of the network

are able to communicate because they are within the radius of communication of each

other. The longer the contact time between a pair of vehicles, more data can be transmit-

ted between them. Li et al. [173] observed using a taxi mobility trace that the distribution

of the duration of the contacts behaves like an exponential distribution in its first part

(corresponds to 80% of the total distribution). They justify that the high mobility of the

vehicles results in a faster decaying in the distribution of the contact duration.

3.3.3.2 Inter-contact time

The time between contacts represents the time interval between two consecutive

contacts of the same vehicles. This characteristic directly influences the design of op-

portunistic networks in terms of maximizing the success of message transmission in the
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shortest possible time. Zhu et al. [302] carried out an extensive empirical data analysis of

a vehicular taxi mobility and observed a tail distribution of the inter-contact time.

3.3.3.3 Topology

It consists of the arrangement of network elements (e.g., nodes, connections). Ex-

ploring the mobility traces generated by network entities to understand the dynamics of

the topology is extremely useful in designing new protocols and services. In order to

characterize the topology of vehicular networks, most of the studies have adopted met-

rics from the theory of complex networks [27]. For example, Naboulsi and Fiore [194]

characterized in detail the connectivity in a vehicular network originated from a day of

mobility. That kind of analysis allows us to answer if the network formed during the day

is dense or sparse, how the network connectivity varies over time and regions of the city,

among other properties. These observations are obtained from metrics that evaluate the

connected components, the edge persistence, network diameter, reachability of the nodes,

and others. For instance, in the analysis of the TAPASCologne trace, they noted that

before earlier morning the network is quite sparse and there are some components with

a small number of vehicles. Between 7 am and 8 am there is an impact on the topol-

ogy when giant components are formed by thousands of vehicles and other medium-size

components are formed by dozens of vehicles, which are explained by the peak hours.

This effect disappears and returns in the afternoon peak time around 6 pm. It is worth

noting that the largest components appear it the center of the city, where vehicle traffic

is dense. There are other studies that performed a similar analysis of the topology of

vehicular networks, but investigated additional aspects such as availability, connectivity,

and reliability [286][139][92].

3.3.4 Social

It is natural for the human behavior to establish social bonds that express affinity

and relationships between individuals in daily life. These social relationships can be

inferred from the network connectivity between the personal devices of each individual,

since those devices have become ubiquitous. Similarly, this perspective can be extended

to vehicular networks [201]. The concepts described in this section are directly related to
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the definition of vehicular social networks, which are characterized by considering social

aspects that exist in the field of vehicular networks [222, 257]. In this direction, the

vehicular social knowledge is crucial in the development of novel solutions for several

applications in vehicular networks. Some characteristics that describe the social context

observed from the contacts between vehicles are social ties, centrality, and social groups.

3.3.4.1 Social ties

The social tie is the basic information to characterize the strength of a relationship

between individuals. For instance, De Melo et al. [97] proposed a strategy to separate

social and random relationships. They modeled the network formed by contacts between

individuals as a graph that varies over time and from there identified which contacts were

occasional, friends, bridges, or acquaintances. They observed, among other results, that

the network of contacts formed from the SF-Taxi trace has mostly non-social properties,

since the network is more like a random network.

3.3.4.2 Centrality

According to the complex network theory, network nodes have different structural

importance [27]. In this way, the centrality quantifies the relevance of the nodes, high-

lighting those that have the highest degree of centrality, and, consequently, the best nodes

to be used as hubs in the solutions. There are different centrality netrics: eigenvector,

harmonic, closeness, betweenness, degree, and Katz centrality are the most widely used in

the literature. Cunha et al. [91] selected the best relay vehicles to broadcast data messages

based on degree centrality. Using this approach, they reduced the number of retransmis-

sions in a vehicular network. Naboulsi and Fiore [194] used betweenness centrality to

identify the most important nodes in connected components of vehicular networks and

explain their importance in the spatio-temporal dynamics of the network.
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3.3.4.3 Social groups

In several types of networks such as social, complex and mobile, there are nodes

that are more interconnected with each other, forming a cluster of nodes named com-

munities [209] or groups [205]. For example, a social network can be the reflection of

interactions between people according to their phone call data [132] or encounters [7].

The algorithms proposed in [209] and [122] are the most effective and known in the lit-

erature for detecting communities when such networks are represented as static graphs.

Nguyen et al. [199] proposed a similar approach for detecting communities in graphs

with a dynamic occurrence of nodes and edges. Zhang et al. [288] considered a network

comprised of buses as the backbone of vehicular networks. They created a community-

based backbone based on the contacts between buses and developed a routing scheme

that operates on this backbone.

3.3.5 Methods for data characterization

The ability to identify the aspects described above is strongly related to the appli-

cation of methods and algorithms in the domain of statistics, data mining and machine

learning. Thus, the rest of this section presents a brief introduction to these methods and

algorithms.

Clustering: It is an unsupervised method (does not require a learning training process-

ing phase) to group data samples and, mainly, classify them according to their character-

istics. The clustering algorithms seek to partition the samples into groups (or clusters) in

which the samples belonging to each group have a greater similarity. There are different

types of grouping algorithms that depending on the data and application may be more

appropriate in a given situation such as density-based, partitioning-based, hierarchical,

and spectral clustering [128].

Correlation: It is a technique to investigate the relationship between two continuous

variables. The commonly applied measures to measure correlation are the Pearson and

Spearman correlations. For example, Centellegher et al. [64] investigated the correlation

between the number of short messages and telephone calls made by the user and verified

that there is a strong relation of the use of the mobile phone for these two variables.
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Regression: Linear regression allows the exploration and estimation of an expected

quantitative value of a variable (Y ) from the values of other variables (X) [145]. It is said

to be linear because there is a linear relationship between Y and X1, X2, . . ., Xp. Another

type of regression is the logistic regression that differs from the linear one mainly because

the response variable is categorical.

Frequent Patterns: It consists of detecting recurring items, subsequences or structures

in a dataset [2]. Finding frequent patterns in the data can be useful for both checking

associations and relationships, and for assisting in the tasks of indexing, classifying and

grouping data.

Temporal Series: In general, it refers to the data representation as a function of

time [232]. Analysis of time series encompasses a set of techniques that can be applied to

extract statistics, anomalies and other characteristics of the data. For example, by time

series analysis, we can check trends, seasonalities and outliers in the data.

3.4 Applications

In recent years, several real-world and synthetic vehicular mobility traces have

become publicly available, which led to their study in order to better know better their

properties, and, thus, offer appropriate solutions for vehicular networks. In this section,

we review solutions that use the knowledge from those datasets to understand the network

topology and provide solutions for routing and message dissemination, content replication,

infrastructure deployment and vehicular sensing.

3.4.1 Understanding the network topology

Connectivity and structural behavior of the network have a decisive role in the

conception of application and services for vehicular networks. In this direction, many re-

searchers have studied the hidden knowledge from vehicular mobility traces to understand

the network topology. Table 3.2 presents a brief analysis of network topology of vehicular

mobility traces.
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Table 3.2: Brief analysis of network topology of vehicular mobility traces. For the wireless
model the abbreviations UD and O means Unit Disc and Obstacle, respectively.

Reference Trace Wireless
model

Radius
(m)

Metrics Main findings

(Pallis et al., 2009) [210] Canton of
Zurich

UD 50, 100 Connectivity,
Centrality,
and Social
groups

There is no evidence of small world
features; There is a giant com-
ponent; Apparently, vehicles with
higher degrees have longer dura-
tion connections.

(Zhu et al., 2011) [303] Shanghai-
Taxi

UD 50, 100 Inter-
contact
time

In the inter-contact time distribu-
tion, the tail presents an exponen-
tial decay.

(Monteiro et al. , 2012) [187] Highway I-
80

UD 250 Connectivity,
Node de-
gree, and
Clustering
coefficient

They showed that vehicular net-
works are not scale-free networks;
They showed that the clustering
coefficient is independent from the
vehicle density.

(Li et al.,2013) [173] Shanghai-
Taxi and
Beijing-
Taxi

UD 50, 100,
200

Contact
duration

They revealed statistical proper-
ties of contact duration, which con-
sist of an exponential distribution
up to a specific value and a power
law tail behavior after this value.

(Naboulsi and Fiore, 2013) [193] TAPASCologneUD 50, 100,
200

Connected
Compo-
nents and
Centrality

The vehicular network is highly
partitioned; Occurrence of large
components connected in specific
locations and at certain times of
the day; To overcome that, they
suggested the use of store-carry
and forward mechanism and Road-
side units.

(Chen et al. , 2014) [70] SF-Taxi
and
Shenzhen-
Taxi

UD 100, 200,
300, 400,
500, 600

Connected
compo-
nents
(Stability
and Loca-
tion)

The vehicular network topology
consists of a significant number
of connected components of small
size.

(Cunha et al., 2014) [93] Canton of
Zurich and
SF-Taxi

UD 100 Connectivity
and Cen-
trality

For Zurich: There is the presence
of small world phenomenon; De-
gree centrality follows the power
law; There are indications of com-
munities and similar interest. For
SF-Taxi: They could not find so-
cial properties.

(Glacet et al., 2015) [117] Bologna
Ring-
way and
TAPAS-
Cologne

O [0:250] Connected
compo-
nents and
Node de-
gree

They have shown how to store-
carry-and-forward mechanisms can
be useful to overcome the fragmen-
tation problems of the vehicular
network.

(Gramaglia et al., 2016) [121] Madrid UD 50, 100,
200

Connectivity,
Small-
World
prop-
erty, and
Scale-free
property

They observed that large con-
nected component are typically un-
available; large connected compo-
nents have duration of tens of sec-
onds at most; short-lived links, no
evidence of small world features in
highway vehicular networks.

(Cunha et al., 2016) [92] SF-Taxi,
Rome-
Taxi, and
Shanghai-
Taxi

UD 100 Contact
duration,
Inter-
contact
time, and
Network
capacity

They discussed how the granular-
ity of the traces impact the analy-
sis of the topology of vehicular net-
works.

(Hou et al., 2016) [139] Shanghai-
Taxi

UD 600 Connected
Compo-
nents

They revealed that the connectiv-
ity is extremely impacted by the
speed of vehicles.

(Naboulsi and Fiore, 2017) [194] TAPASCologne
and Can-
ton of
Zurich

UD 50, 100,
200

Connected
Compo-
nents and
Centrality

The network is highly-fragmented
depending on space and time; The
road network is one of the factors
that impact on the topology of the
vehicular network; No evidence of
scale-free or small world behavior.

(Qiao et al., 2017) [220] Beijing-
Taxi

UD 300 Connectivity,
Centrality,
and Reach-
ability

The vehicular network is highly-
fragmented in thousands of small
cliques; Store-carry-and-forward
mechanism is highly recommended
is this scenario.

(Cotta et al., 2017) [80] Rome-Taxi UD 200 Entropy
and Radius
of gyration

They revealed that the shape of
trajectory impacts directly on both
the node connectivity and network
connectivity.

(Santos et al., 2021) [225] TAPASCologne,
Highway
datasets

UD 100 Degree,
Closeness,
Between-
ness

They revealed that the aggregated
modeling does not capture topo-
logical temporal information.
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Contact duration and inter-contact time between moving vehicles are key metrics

to design vehicular mobility models and routing schemes. Zhu et al. [303] conducted an

investigation to characterize the time between contacts of taxi. Their findings indicated

that the tail distribution of the time between contacts behaves like an exponential dis-

tribution. As result, they claimed that taxis meet frequently. Using the Shanghai-Taxi

and Beijing-Taxi, Li et al. [173] observed that the distribution of contact duration follows

an exponential distribution in its first part (corresponds to 80% of the total distribution)

and the second part decays as a power law distribution.

On the other hand, in order to understand the general and specific structures of

the topology of a vehicular network, several studies have adopted the theory of com-

plex networks. Pallis et al. [210] studied how the vehicular network topology evolves

along the time, observing metrics traditionally applied to complex networks. Also, Mon-

teiro et al. [187] used the theory of complex networks to investigate the structure of

vehicular networks by looking at the following characteristics: shortest path length, node

degree, and clustering coefficient. They discussed those characteristics to the vehicle den-

sity in a highway scenario. Naboulsi and Fiore [193] modeled the connectivity of vehicles

from TAPASCologne traces as a set of graphs defined each second and investigated the

spatiotemporal variation on the topology. Their main concerns were to check the avail-

ability and evolution of the links between vehicles over daytime. Using the background

of complex networks, they analyzed the Cologne trace in three different levels: network,

component and node. At the end, they pointed out two main observations: the network

is consistently and extremely partitioned; the density of the network depends on the time

of day and geographic region.

The results presented in [193] were restricted to a single vehicular mobility trace,

and in [194] they extended their analysis to the Zurich trace. In their comparison of

the two traces, they observed how the network topology changes depend on the city

characteristics and how synthetic traces generated from oversimplified mobility models

did not represent a realistic vehicular network topology.

Cunha et al. [93] evaluated vehicular networks under a social perspective. The

authors evaluated the Canton of Zurich vehicular mobility trace considering centrality

metrics such as vehicle density, node degree, edge persistence, closeness centrality and

cluster coefficient. They concluded that those metrics provide pertinent information about

the topology and can be used as known in the elaboration of new protocols. Moreover,

they observed that the taxi mobility in SF-Taxi trace does not present social behavior.

This result is expected since this trace has taxi movements. Using SF-taxi and Shenzhen-

Taxi, Chen et al. [70] investigated the dynamics of vehicular networks as a function of time

and space. Their analysis revealed that the topology in vehicular networks consists of a

significant number of components made up of few vehicles. Similar results were observed

in [194], but using another dataset and different methodology.
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Some studies have focused on understanding explicitly the relationship between

the topology of a vehicular network and the mobility of vehicles. Glacet et al. [117] ap-

plied a theory based on graph evolution to explain the connectivity of vehicular networks.

They showed the importance of the store-carry-and-forward technique for cases in which

the network is sparse. Hou et al. [139] analyzed some datasets to identify the relation-

ship between vehicular connectivity and mobility of vehicles. They observed how the

mobility of vehicles creates and destroys the links. Their findings provided an important

understanding between connectivity and mobility, mainly in terms of how the connected

components changed in size as a function of their speed. Cunha et al. [92] compared the

network topology obtained from both original and calibrated4 vehicular mobility traces.

They showed that original vehicular mobility traces form network topologies that dif-

fer from real ones. Thus, they concluded that using calibrated vehicular mobility traces

is more appropriate because such gaps in the original traces impacted classical network

metrics for topology analysis. Cotta et al. [80] investigated how the mobility affects the

network connectivity. For that, they showed how the shape of vehicles’ trajectories can

give different interpretations of network connectivity. They concluded that the trajectory

spread increases the connectivity of a single vehicle to the others (single-hop communica-

tion), while the depth of the trajectories increases the existence of links from one vehicle

to another one (multi-hop communication).

The analyses conducted in [193], [120], [117], [121], and [194] are concentrated in

synthetic mobility vehicular traces. Qiao et al. [220] revelead the temporal structural fea-

tures of a vehicular network based on Beijing-Taxi. Their time-extended model captures

the temporal properties, consequently, provide a better understanding when designing

protocols. However, it presents a significant computational cost in relation to the other

methodologies described above.

Observing highway scenarios, Gramaglia et al. [121] investigated the connectivity

using a synthetic trace based on highways of Madrid, Spain. Their modeling followed

the approach used by Naboulsi and Fiore in [193], i.e., it consisted of instantaneous

connectivity. They observed that the radius of communication is a determining factor in

network connectivity, a fact already reported in previous studies. They also reported that

in the investigated conditions the network does not have scale-free properties. In [225], the

authors investigated the topology between vehicles from a temporal perspective. For that,

they applied the knowledge from temporal graphcs and temporal measures on VANETs.

4An original vehicular mobility trace without temporal and spatial gaps [237].
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3.4.2 Routing and dissemination

Routing and data dissemination are key topics in communication networks and

have been well explored in the literature of vehicular networks [224]. However, the anal-

ysis of vehicular mobility traces has provided new opportunities for discovering novel

solutions in those topics. The knowledge, mainly social and mobility aspects, extracted

from the traces, has provided satisfactory results in terms of end-to-end delay reduction,

increment of delivery rate, and network overhead reduction. The combination of data-

driven approaches and opportunistic routing has brought promising results, as discussed

below. Table 3.3 shows an overview of routing and data dissemination on vehicular mo-

bility traces.

Some studies follow the strategy of opportunistic contacts in combination with

mobility and social aspects. Zhu et al. [301] analyzed three large traces and observed two

relevant peculiarities: contacts between pairs of vehicles are highly correlated as a function

of time, and; the contact graph contains a social structure. Based on this information, they

proposed a scheme, called ZOOM, which considers social and contact levels in the routing

process. ZOOM makes the inference of future contacts by applying the list of past contacts

using a Markov chain. In addition, it also considers the betweenness centrality. Based on

those pieces of information, when two vehicles meet, they compare their metrics and the

vehicle with a shorter estimated delay to the destination acts as a relay. Quin et al. [221]

extended ZOOM for mobile advertising in vehicular communication scenarios. Looking at

contacts and social characteristics, they proposed a strategy to select a subset of vehicles

with the role of initial disseminator for mobile advertising.

Zhang et al. [291] proposed a geocast scheme for an urban scenario, named Geo-

MobCon. GeoMobCon considers the collective mobility pattern and individual mobility,

in addition to the historical contact with the destination region. Using Shanghai-Bus and

Shaghai-Taxis, the authors extracted two mobility patterns: collective and individual.

The collective mobility pattern is based on traffic volume behavior between regions of

the city. The individual mobility pattern captures the regularity of movements of each

vehicle. Based on that knowledge, the routing strategy consists initially in forwarding the

message from the source vehicle to the target region using an optimal path (sequence of

the regions) on the collective mobility patterns. Thus, as each vehicle knows its individual

mobility, the vehicles cooperate in directing the message on the optimal path by means

of multi-hop communications. GeoMobCon is a continued version of GeoMob [290], since

the previous version does not consider contact information between vehicles and regions.

Meanwhile, vehicle trajectories and destination prediction have been used to create

a new class of routing protocols. Celes et al. [62] proposed a routing protocol considering

the daily movements of vehicles. The routing process combines the information about
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Table 3.3: Overview of routing and dissemination based on vehicular mobility traces.

Reference
Routing
scheme

Trace
Knowledge for

routing decision
Comments

(Zhu et al., 2013) [301] Unicast
Shanghai-Taxi
Shanghai-Bus
Shenzhen-Taxi

Inter-contact time
Centrality

Their opportunistic forwarding al-
gorithm depends on past contacts
in order to improve prediction and
random mobility compromises the
proposal.

(Celes et al., 2013) [62] Geocast Borlange Individual trajectories Their assumption is that vehicles
have daily mobility routines.

(Jiang et al., 2014) [152] Geocast Shanghai-Taxi Individual trajectories Privacy issues: Vehicles share
travel information when they meet
themselves.

(Wang et al., 2014) [263] Unicast Suzhou-Taxi
Traffic flow

Individual trajectories
Information can be outdated and
infrastructure-based solution.

(Zhu et al., 2014) [304] Unicast
Shanghai-Taxi
Shanghai-Bus
Shenzhen-Taxi

Individual trajectories Their solution presents some con-
cerns related to: division of grids,
application of historical data, and
privacy issues.

(Zhang et al., 2014) [290] Geocast
Shanghai-Taxi
Shanghai-Bus

Traffic flow
Individual trajectories

Their approach considers different
levels of mobility. Depends on past
trajectories to determine the mo-
bility pattern.

(Jeong et al., 2015) [146] Unicast
Synthetic from

Manhattan
mobility model

Traffic statistics
Individual trajectories

Traffic statistics must be provided
by a navigation service provider.
Privacy issues related to trajecto-
ries of vehicles.

(Jiang et al., 2015) [153] Multicast Shanghai-Taxi Individual trajectories When they meet, the vehicles share
their trajectories.

(Qin et al., 2016) [221] Multicast
Shanghai-Taxi
Shanghai-Bus
Shenzhen-Taxi

Inter-contact time
Centrality

Depends on past contacts in or-
der to improve prediction and
random mobility compromises the
proposal.

(He et al., 2016) [130] Geocast
Shanghai-Taxi
Shanghai-Bus

Traffic flow They use fixed relay nodes to share
information reducing the delivery
delay and increasing the delivery
probability.

(Zhang et al., 2016) [291] Geocast
Shanghai-Taxi
Shanghai-Bus

Traffic flow
Individual trajectories

Contact history
Their approach considers different
levels of mobility. Depends on past
trajectories to determine the mo-
bility pattern. Vehicles maintain
their contact history information
with each region of the city.

(Zhang et al., 2016) [286] Geocast Beijing-Bus Individual trajectories This approach may suffer in case of
outdated information. Moreover,
it is focused on bus mobility.

(Chiou et al., 2016) [74] Multicast
Synthetic from

GraphWalk
mobility model

Individual trajectories Their solution requires the deploy-
ment of stationary node at inter-
section places.

(Li et al., 2017) [174] Unicast
SF-Taxi

Shanghai-Taxi
Individual trajectories

Social groups
Privacy issues: Vehicles share trav-
eling information when they meet.
Community structure to character-
ize social aspect.

(Cunha et al., 2017) [90] Geocast

Synthetic from
Manhattan

mobility model
TAPASCologne

Node degree
Clustering coefficient

Their solutions have satisfactory
results in high-density vehicle sce-
narios, but they are compromised
in sparse scenarios.

(Zhang et al., 2017) [288] Unicast
Beijing-Bus
Dublin-Bus

Community This approach needs to regularly
update the backbone and detect
communities.

(Celes et al., 2018) [54] Unicast BerlinMOD Individual trajectories This solution assumes that the ve-
hicles have mobility routines.

(Naouri et al., 2024) [196] Unicast Private Bus Dataset Individual trajectories This solution considers the bus mo-
bility for content dissemination us-
ing predefined and temporal pat-
tern of bus lines.
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the history of trajectories and a store-carry-and-forward method. For that, they applied

a clustering algorithm to identify individual trajectory patterns and used this knowledge

in geocast communication in sparse vehicular networks. Jiang et al. [152] also designed

a mechanism for geocast in vehicular networks which considers the vehicles trajectories.

They assumed that the most adequate vehicles to forward a content to a target region are

those that have their trajectory intersecting the region. This way, they used the vehicles

trajectories to estimate encounters, and, consequently, predict the path to forward the

contents. Wang et al. [263] devised a routing algorithm for vehicular communication that

considers the traffic flows of the road networks. They applied a data mining process

to model the vehicular traffic flows in intersections and roads in Suzhou, China. Their

approach differs from others in the literature because they considered the trajectories of

all vehicles to predict the traffic flows. Zhu et al. [304] proposed routing algorithms for

sparse vehicular networks that took advantage of mobility regularity of vehicles to predict

trajectories. Through extensive simulation using three datasets, they demonstrated that

predicted trajectories are useful in the data delivery decision-making.

Jeong et al. [146] introduced a data forwarding based on travel prediction for light-

traffic vehicular networks, which takes advantage of shared individual trajectory to predict

pairwise contacts between vehicles. Their solution has the support of a traffic control

center that receives the individual trajectories and based on traffic statistics stipulates the

best path for message routing. Jiang et al.[153] proposed a scheme using trajectories for

multicast routing in sparse vehicular networks. The main idea behind the scheme consists

of predicting the encounters between vehicles using the trajectories shared between them.

Chiou et al. [74] proposed a routing protocol called eTGMD for vehicular delay tolerant

networks where there is an infrastructure-to-vehicle communication. This protocol is

suitable for situations in which an application running on a server wants to send a message

to a specific set of vehicles. The application sends the message to the selected stationary

nodes so that when the vehicles can receive it, those nodes send it. The protocol assumes

that stationary nodes are deployed at road intersections and that the server knows the

trajectories of the target vehicles. Thus, the server selects the promising stationary nodes

considering the traffic density and the trajectory of the target vehicles, so that the message

is transmitted in time of the encounter of the vehicles with the static nodes.

Bus systems have also been adopted to support routing due to their spatial coverage

features and temporal regularity. He et al. [130] proposed a data dissemination solution

to minimize the message delivery delay in geocast scenario. First, they divided Shanghai,

China, into regions. After that, they identified hot-spots with higher density of vehicles in

each region and extracted statistics of movement of vehicles between those regions using

the Shanghai-Bus and Shanghai-Taxi traces. In each hot-spot, they installed a Throwbox5

as data router and using the vehicle traffic flow they selected the best communication route

5A stationary access point.
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to forward the message to destination. Zhang et al. [286] proposed a geocast routing

mechanism called Vela that benefits from the composition of a network obtained from the

bus trajectory mining. The authors mined a set of bus trajectories from Beijing to capture

travel time patterns in the road segments and meeting patterns of buses on those road

segments. This way, Vela considers those historical spatio-temporal relationships between

buses on the same road segments to perform routing. Zhang et al. [288] proposed to create

backbones in vehicular networks using the itineraries of bus. Their approach has two main

components: a backbone based on social information and a data dissemination mechanism

over the backbone. The first component, the backbone, is a structure of communication

created offline based on social communities between buses. The second component is a

mechanism in which the routing process considers inter-community and intra-community

levels. Through simulation, they showed that their solution outperformed the existing

solutions in terms of delivery latency and delivery ratio.

More recently, Li et al. [174] investigated how route information and the commu-

nity structure can be combined for unicast routing in vehicular networks. From this,

they created a routing algorithm that uses this information with infrastructure support.

Through simulations, their results showed that this new strategy outperforms ZOOM in

all evaluated cases. This proposal has issues of privacy-preserving because the vehicles

share trajectories when they meet. Cunha et al. [90] proposed a scheme where all vehicles

that are within a region of interest should receive messages originated by a particular

vehicle or road-side unit. Each vehicle, through beacon messages, has local knowledge of

the network, that is, has neighbors connectivity information by means of metrics such as

clustering coefficient and node degree. They used this information as metrics to determine

when and what vehicles would be the relays in the dissemination. Through simulation,

they demonstrated that their solutions work better in dense scenarios than sparse sce-

narios. More recently, Celes et al. [54] proposed a protocol for sparse vehicular network

scenarios which consider the knowledge obtained from patterns of mobility. They initially

detect patterns of individual mobility from trajectories and then create a protocol that

routes messages based on encounters between those individual mobility patterns. Al-

though they used synthetic data to validate the protocol, the results were quite promising

in terms of delivery rate and very attractive in relation to overhead reduction.

In addition to the dissemination of data, another area that has been emerging

recently in vehicular networks is the delivery of contents [234]. This task involves, in ad-

dition to algorithms to disseminate, the choice of node replicator to form a content delivery

network (CDN) that will serve consumers in the most appropriate way. Silva et al. [235]

explored the knowledge of vehicular mobility to choose potential content replicators in a

vehicular network. For this, the mobility pattern is obtained from a mobility model [236]

that defines how vehicles move in terms of source-destination regions. This model was

developed based on a realistic vehicle mobility traces: the TAPASCologne. Based on



3.4. Applications 57

this model, they can figure out the contacts of the vehicles along the whole region of the

network at certain instants of time, and, thus, choose good replicators that are able to

deliver content to all vehicles efficiently and with low redundancy. The results showed

that it was possible to cover practically the entire network more efficiently, in terms of

network resources, than the epidemic spread. In [196], the authors proposed, BusCache,

a traffic-aware message delivery system for BUS-VANETs. They consider the predefined

trajectories and temporal patterns as essential characteristics for routing contents on the

network.

3.4.3 Infrastructure planning

A vehicular network consists of vehicles and road stations (Roadside Units, or only

RSUs). RSUs represent access points that make up the communication infrastructure and

are extremely relevant to maintain network coverage and ensure the quality of services.

With this, a fundamental question arises: where to install RSUs? Considering that the

cost of installation and maintenance is high, it may not be feasible to deploy RSUs within

100% of the network coverage area. On the other hand, important regions that are not

covered by RSUs may face times of disconnection, depending on the density of the network.

Therefore, it essential to conduct a study to know in which regions to implement the RSUs

in order to balance cost and benefit. This problem has also been addressed by researchers

in recent years, and they have applied the knowledge from vehicular mobility dataset

in their proposals, as presented below. Table 3.4 shows an overview on infrastructure

planning based on vehicular mobility traces.

Table 3.4: Overview of infrastructure planning based on vehicular mobility traces.

Reference Trace
Knowledge for

infrastructure deployment
Goal

(Xiong et al., 2013) [273] Canton of Zurich
Traffic flow

between regions
Deployment of RSU

(Cheng et al., 2015) [71]
Synthetic data from
Ottawa’s downtown

Geometry of road networks,
Mobility patterns

Deployment of RSU

(Silva et al., 2015) [233] TAPASCologne

Concentration of vehicles
along the urban area,
Traffic flow between
adjacent locations

Deployment of RSU

(Yan et al., 2017) [274]
Shenzhen-Bus
Shenzhen-Taxi

Vehicle speed,
Daily visit frequency at

Point-of-Interest

Deployment of
charging lanes

(Moura et al., 2018) [191]
Canton of Zurich
TAPASCologne

Centrality,
Communities

Deployment of RSU

(Ghosh et al., 2023) [116] Google Maps traffic database Centrality Deployment of RSU

Xiong et al. [273] proposed a mobility-centric RSU deployment called RoadGate.

Their solution is based on time-stable mobility patterns between regions of the city. By
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analyzing vehicular mobility traces, they observe those patterns and create a graph model

where the weight edges represent the traffic intensity. From that, they proposed a greedy

solution to the problem of finding the best places for installing RSUs. Cheng et al. [71]

proposed a strategy for RSU deployment called GeoCover. Their solution considered as-

pects of the mobility patterns of vehicles, road network topology, and resource restrictions.

The main idea behind GeoCover is to discover mobility patterns and, then, identify which

are the roads that must be covered by the infrastructure. They formulated a coverage

problem considering budget constraints and quality. Their result shows that traffic-based

deployment covers most of the communications.

Silva et al. [233] explored the vehicular mobility trace of Cologne, Germany, to

evaluate where to deploy RSUs. Their solution proposes the division of the road net-

work into similar partitions, and considers the mobility rate between those partitions to

choose those that tend to be more positively impacted with the implementation of RSUs.

Moura et al. [191] used the intrinsic knowledge extracted from the traces of vehicles, like

communities and centrality, to optimize an evolutionary algorithm that provides a solu-

tion to the problem of RSU deployment. In [116], the authors proposed a optimal RSU

deployment based on complex network analysis and live traffic data for the identification

of the potential influential junctions.

More recently, vehicular mobility traces have also been used to propose solutions

of other types of infrastructure such as recharge lane. Yan et al. [274] proposed a solution

called CatCharger to identify the best places to create wireless charging lanes, observing

intrinsic information in the traffic flow patterns. Initially, they observed in a vehicular

mobility trace some traffic attributes at intersections such as frequency of vehicles and

vehicle speed. They used those traffic attributes to select the candidate intersections

to receive recharge points, while maintaining acceptable levels of energy assurance of

displacement between recharge points. Using the vehicular mobility traces of Shenzhen,

China, they demonstrated that CatCharger outperforms a method of random placement

and a method that maximally covers traffic flows.

3.4.4 Urban sensing and monitoring

The proliferation of devices with attached sensors has allowed effectively monitor-

ing the cyber-physical world using mobile crowdsensing and participatory sensing [238].

Similarly, vehicles represent entities with a fundamental role for sensing in the domain

of cities. In this scenario, vehicular networks are a powerful network with nodes capable

of transmitting, collecting, and storing data [261]. Table 3.5 shows an overview of urban
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sensing and monitoring based on vehicular mobility traces6. The following contributions

are proposals that explore vehicular mobility for urban sensing.

Table 3.5: Overview of urban sensing and monitoring based on vehicular mobility traces.

Reference Trace
Knowledge for

sensing and monitoring

(Stanica et al., 2013) [242] TAPASCologne Centrality

(Zhao et al., 2015) [297]
Beijing-Taxi

Shanghai-Taxi
Individual trajectories

(Khan et al., 2016) [161] TAPASCologne Mobility entropy

(Bonola et al., 2016) [28] Rome-Taxi Individual trajectories

(Wang et al., 2016) [264] Shou-Taxi Mobility patterns

(Cruz et al., 2018) [86] Rio-Bus Individual trajectories

(Ji et al., 2023) [149] Chengdu, China, with 27,144 trips Individual trajectories

In a scenario of vehicle sensing networks, a challenge is to upload the collected data

to the monitoring center due to bandwidth constraints and cost. In order to collect floating

car data (FCD) by moving vehicles, Stanica et al. [242] proposed an approach to select

a set of vehicles to receive data such as localization data, speed, direction of travel and

time information from other vehicles in a region. Their approach reduces the overload

in the cellular network by offloading the data using vehicle-to-vehicle communication.

Centrality metrics are computed by vehicles to decide which ones will have the role of

receiving the data sensed by neighboring cars in each region. Zhao et al. [297] presented

an algorithm for selecting a set with the minimum number of vehicles in order to reach an

acceptable coverage quality. To validate the sensing coverage, they proposed a study to

quantify the coverage of the mobility of vehicles and observed it using the Shanghai-Taxi

and Beijing-taxi traces. They designed a framework to select the best vehicles depending

on the following features: vehicle selection, incentive mechanism, and coverage level. In

the same direction, Khan et al. [161] designed an approach to select the best set of vehicles

for sensing based on mobility patterns. The selection considers coverage constraints and

collection time. The method is compared to social-based solutions and presents a superior

performance.

Bonola et al. [28] analyzed opportunistic communication in a taxi mobility scenario

in Rome, Italy, for urban sensing. They observed the role of vehicles as data mule and

established metrics for statistical assurance of the sensed data. Wang et al. [264] intro-

duced a new method to predict routes of taxis of Shou, China, considering the objective

of retrieving information from specific road segments. For that, they mine vehicular mo-

bility traces to identify individual mobility patterns and collective taxi behavior. From

that, they created a vehicle-to-vehicle communication scheme to propagate the sensed

data. More recently, Cruz et al. [86] investigated the spatial coverage of mobile sensor

network based on mobility of buses. They proposed a model to find a set of buses that

maximize the sensing coverage of a city. In their model, they considered the individual

6The Shou-Taxi trace is not publicly available and Rio-Bus can be obtained by an API from
http://www.data.rio/.
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trajectories and the street segments to identify this subset of buses. Their results showed

that 18% of the fleet of buses cover at least 94% of the monitored total area. In [149],

the authors proposed a linear integer programs based on bus fleets. They considered a

dataset containing 167 bus lines in Chengdu, China, with 27,144 trips.

3.5 Chapter Remarks

Vehicular mobility traces are records of positioning of vehicles. Many researchers

have adopted publicly available vehicular mobility data to evaluate routing protocols.

However, they have neglected the use of these data as a source of knowledge to pro-

pose new solutions. We advocate that the analysis of vehicular mobility traces is a very

promising way to discover hidden knowledge about the vehicular mobility. Moreover, the

insights obtained in this analysis have played a fundamental role in the proposal of so-

lutions for vehicular networks. From this perspective, in this chapter, we presented the

main publicly available vehicular mobility traces, the main issues for processing and char-

acterization of these traces. Furthemore, we discussed the methods used to characterize

and model mobility data, and we reviewed a number of applications for vehicular networks

that can benefit from the hidden knowledge extracted from these datasets. This chapter

presented the most advanced studies in the analysis of vehicular mobility traces as well

as provided guidelines for the proposition of mobility-driven solution in the domain of

vehicular networks.
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Chapter 4

Mobility Data Assessment for

Vehicular Networks

The adoption of mobility traces is extremely relevant both to obtain a meaningful un-

derstanding of mobility and to create realistic simulation scenarios [31]. However, those

traces may have different features that lead to conclusions inconsistent with reality and,

consequently, impact the performance of proposed solutions. In this Chapter, we present

a methodology to evaluate mobility traces considering their spatial and temporal aspects.

4.1 Introduction

Simulation has been widely adopted in the last years to validate solutions for

vehicular networks [106]. However, we have observed that several relevant aspects to the

design of simulation have been neglected and, consequently, influenced the reliability of

the obtained results [37]. Besides the lack of details that compromise the replicability of

results [53], the simulation scenarios are often limited and do not represent the expected

behaviors in a real-world vehicular network.

One of the main aspects that must be addressed in the design of the simulation is

to characterize the mobility of vehicles. Usually, in the scenarios adopted by the VANET

research community, the mobility is obtained from the shortest path between random

origin and destination points for each vehicle on a grid-map or a map extracted from

an available service such as the OpenStreetMap1. However, this approach may present

inconsistencies that lead to a bias in the results. For example, in some cases, the scenarios

created by researchers form small-scale networks without variations of node density over

time and space as well as do not represent the realistic behavior of vehicular mobility

in a given city. In this sense, the conception of scenarios that serve as a benchmark is

extremely useful for consistent validation of results and state-of-the-art advancement.

1http://www.openstreetmap.org
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Vehicle positioning records based on actual mobility data have been a promising

alternative to this scenario-generation mode described above. These records are position

data collected by a GPS (Global Positioning System) device or synthetic data created

from real information (e.g., surveys, urban data). However, these positioning registers may

have several imperfections that may still compromise simulations and topology analysis in

vehicular networks. Therefore, the data quality directly impacts the representativeness of

the vehicular network created from the mobility of vehicles. In this sense, it is fundamental

to know the various quality requirements that must be covered in order to achieve a

reliability of the obtained results in a given study.

In this Chapter, we propose a methodology for the evaluation of mobility data aim-

ing at the construction of realistic simulation scenarios and topology analysis of vehicular

networks. In this sense, based on the vehicle trajectories we observed a set of mobility and

trajectory features that are relevant to a simulation and analysis and which reflect typical

characteristics of a vehicular network such as constrained and predictable mobility, vari-

able network density, frequent disconnections, dynamic topology, and others. With this

methodology, we can identify in advance the representativeness of each mobility data and

compare different datasets based on criteria that are expected in-vehicle communication

scenarios.

This work aims to provide a methodology to help researchers to decide which

traces are most appropriate to employ in their studies on vehicular networks as well as to

verify the quality of new mobility traces. Therefore, the contributions of this work can

be summarized as follows:

• We define a quality assessment methodology to validate and improve both vehicular

mobility traces and simulation scenarios created from this kind of data. It is a

methodology to assess available and new mobility traces to services, applications,

and routing in vehicular networks.

• We point out some takeaways based on our propose methodology and the vehicular

mobility traces investigated in this work.

We define and implement a common assessment methodology. It is a methodol-

ogy to assess available and new mobility traces to services, applications, and routing in

vehicular networks. Moreover, we compare popular vehicular mobility traces regarding

quality, spatial, temporal, and connectivity features.

The rest of this Chapter is organized as follows. We discuss the motivation in Sec-

tion 4.1. Section 4.2 presents the related work and points out our contributions w.r.t. the

literature. Section 4.3 presents the key definitions used in this Chapter. Section 4.4 de-

scribes the details about our methodology, presenting the main publicly available mobility

traces and criteria for evaluation of vehicular trace. Moreover, we present a discussion
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about our methodology for these traces. Finally, Section 4.5 contains the conclusion of

this Chapter.

4.2 Related work

Some studies in the literature have investigated aspects of mobility in the project

of simulation and analysis of vehicular networks. Fiore et al. [111] investigated the im-

pacts of vehicular mobility modeling on the vehicular network simulations. They verified

the realism of vehicular mobility models (e.g., stochastic models, traffic steam models,

car-following models) and analyzed the impacts of those models on the performance of an

ad-hoc routing protocol. They concluded that car-following models with intersection man-

agement have more realism than the other ones and are more suitable for the simulation

of vehicular networks.

While in [111] the objective was to analyze the impact of the mobility model,

Schwamborn et al. [227] analyzed the impact of the road network structure on forwarding

algorithms for opportunistic networks. Therefore, they chose a mobility model and created

from it four map-based scenarios from OpenStreetMap for four cities: Berlin, where the

road network has grown historically; Moscow, where the road network is partly circular;

San Francisco, where the road network is planned as a grid-like structure; and Tokyo,

where the road topology is very dense of streets. They concluded that the inter-contact

time between vehicles is not significantly impacted in those road networks. However, the

contact duration distribution differs mainly in Tokyo. Moreover, the number of contacts

and re-encounters are much less in Tokyo when compared to other cities.

Bai et al. [14] proposed a framework, called IMPORTANT, to investigate the im-

pact of several mobility models on the performance of MANET routing protocols. To

this end, they used classical mobility models such as Random Waypoint, Group Mobil-

ity, Freeway and Manhattan as well as well-known protocols named DSR, AODV, and

DSDV. They observed that the protocol performance may vary significantly across mo-

bility models, consequently the performance rankings of protocols may vary depending

on the mobility model used in the simulation. Although they showed interesting insights,

their work focuses on mobile ad-hoc networks.

More recently, Naboulsi and Fiore [194] investigated the topology of vehicular

network using mobility traces. They observed how the city characteristics also influence

the network topology and how synthetic traces generated from simplistic mobility models

can lead to unrealistic topology.

Our work differs from the related ones in different perspectives. To the best of
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our knowledge, this is the first work dealing with quality aspects of mobility data in the

context of vehicular networks and investigate how these aspects impact the analysis and

simulation of vehicular networks. In addition, some of the related work is directed to

mobile ad-hoc networks, so that the vehicular networks have particularities that must be

treated specifically.

4.3 Preliminaries

In this section, we present some definitions that are used throughout this Chapter.

We define trajectory as a sequence of spatiotemporal waypoints T = 〈p1, . . . , pn〉, where

pi = (x, y, t) for i = 1 . . . n; x and y are spatial coordinates; and t is a timestamp,

pi.t < pi+1.t for i = 1 . . . n − 1. A vehicular mobility trace D = {T 1, T 2, . . . , Tm} is a

collection of trajectories T j, where m is the number of trajectories and T j represents a trip

j performed by a vehicle. Finally, given the trajectory T of a vehicle and the threshold θ,

a gap occurs when the spatial distance ∆s between two consecutive points of T is greater

than θ, i.e., ∆s = d(pi, pi+1) > θ.

We model the vehicular network topology as a set of contact graphs, creating a

graph for each instant t. Therefore, G(t) = (V (t), E(t)) is the contact graph at time t.

V (t) = {vi(t)} is a set of vertices vi(t), where each one represents a vehicle i traveling in

the road scenario at time t, and E(t) = {eij(t)|vi(t), vj(t) ∈ V, i 6= j} is the set of edges

eij(t) representing the communication link between the vehicle i and vehicle j at time t.

Moreover, we define the Connected Component (CC) and Giant Connected Component

(GCC). The first one is a subgraph of an undirected graph where there is a path between

any two pairs of vertices. For vehicular networks, CC represents that a source vehicle can

forward a message through multiple hops to a destination vehicle. The concept of GCC

is interesting to know how much of the network is connected to a single large component.

4.4 Methodology and Discussion

In this section, we present a qualitative analysis of some vehicular mobility traces

publicly available in the literature. In addition, we present our methodology for evaluating

traces based on the following quality criteria: granularity, positioning errors, variability
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Table 4.1: Example of the sampling rate in the Shenzhen-Taxi and TAPASCologne traces

Shenzhen Taxi TAPASCologne
Vehicle ID Time Vehicle ID Time Vehicle ID Time Vehicle ID Time
22393 18:04:26 22381 18:04:01 1357640 06:00:00 1482384 06:00:00
22393 18:04:34 22381 18:04:31 1357640 06:00:01 1482384 06:00:01
22393 18:04:44 22381 18:05:02 1357640 06:00:02 1482384 06:00:02
22393 18:04:54 22381 18:05:32 1357640 06:00:03 1482384 06:00:03
22393 18:05:02 22381 18:06:02 1357640 06:00:04 1482384 06:00:04
22393 18:05:12 22381 18:06:32 1357640 06:00:05 1482384 06:00:05
22393 18:05:22 22381 18:07:02 1357640 06:00:06 1482384 06:00:06
22393 18:05:32 22381 18:07:32 1357640 06:00:07 1482384 06:00:07

and volume of mobility data, and spatiotemporal observation window, as described be-

low. At the same time, we discuss how those criteria can be applied to the traces of

Table 3.1 and provide significant takeaways in terms of the evaluation of vehicular mobil-

ity data. We define the criteria considering how mobility data reflects connectivity [43]

and, consequently, the design of vehicular networks. Thus, granularity and positioning

errors involve questions of evaluating data reliability, while the variability, volume, and

window of observation involve questions of representativeness of behaviors.

4.4.1 Overview of publicly vehicular mobility traces

Table 3.1 presents the main properties of traces discussed in this section. As result,

we can make some interesting notes: (i) real-world traces publicly available are strictly

of buses and taxis; (ii) most of real-world traces record mobility in urban scenarios;

(iii) synthetic traces are more suitable than real-world ones for studies considering a

large number of vehicles, considering that they mimic the real behavior (this is an open

problem); and (iv) since many cities have seasonal mobility during the year, there are no

traces that represent vehicle mobility during a long period. In general, the availability

of both real-world traces and information used to produce synthetic traces are subject to

lack of incentive mechanism, industrial secrecy, security, and privacy.

We will discuss the criteria in the following, based on just some traces. The traces

have similarities so that the criteria and discussions presented here can be analyzed and

applied to other traces as well.
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Figure 4.1: Original trajectory segment of Vehicle 22223 from Shenzhen taxi data (this
figure is best viewed in colors)

Figure 4.2: Improved trajectory segment of the vehicle 22223 from Shenzhen taxi data
(this figure is best viewed in colors)

4.4.2 Granularity

The advent of geolocation technologies has allowed the registration of the vehicles’

positioning during their movements. However, due to technical constraints such as com-

munication and storage issues, these positioning records are created from time to time.

Thus, this variation of sampling granularity causes two main problems: vehicles’ position-

ing is made at different times and the sampling rate introduces some gaps on a vehicle’s

trajectory.

The first problem refers to the fact that the records are not created at the same

instant of time for all vehicles of the system. For example, consider that two vehicles are

moving closer to each other at the same time interval and let us assume that their GPS

devices record their positioning every 20 seconds and 30 seconds, respectively. Thus, if

we try to construct the contact graph directly from the trajectories of these vehicles, we

will observe that the number of contacts will be smaller than those actually occurring.
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Table 4.1 shows the records of vehicles of two traces. In the Shenzhen-Taxi trace this

type of problem occurs, whereas in TAPASCologne the records were computed at the

same instant of time.

The second problem related to granularity is the real representation of the move-

ment of vehicles. We know the movement of vehicles in a space is continuous in relation

to time, but the data represents a discretization of the movement. Therefore, depending

on the granularity of the records, the movement obtained from the raw trajectories of

a vehicle may not accurately represent the mobility performed by this vehicle. For ex-

ample, if we record the positioning of a vehicle every 1 minute, depending on the speed,

it is complex to estimate the actual mobility performed by this vehicle when there is a

number of route options between two points. One option would be to take the shortest

path, but in many situations, this is not true. The second problem has a direct impact

on several factors that are relevant to vehicular networks, such as the computation of the

contact graph and the determination of the main routes chosen by the vehicles. Figure 4.1

illustrates this case and we can see that there are gaps. Therefore, this can complicate

the reconstruction of the trajectory of the vehicles from the raw data.

These two problems can directly impact the analysis and design of solutions to

vehicular networks leading to results inconsistent with reality. In this sense, we advise

researchers to ascertain the quality of the granularity of the trajectories in vehicular

mobility traces, especially if they are using data collected from the real world. If these

problems are observed, an alternative is to apply techniques of filling the gaps, as proposed

in [63]. In this case, the authors proposed a method based on the history of trajectories

to reduce the gaps in vehicular mobility traces. Figure 4.2 presents the result of the

application of this technique to the raw trajectory shown in Figure 4.1. In addition

to filling the gaps, the points were inserted every 1 second on the improved trajectory.

Therefore, with this new representation we can observe with more reliability the properties

of the mobility, similar to the TAPASCologne shown in Table 4.1.

4.4.3 Positioning errors

In addition to the granularity issues, another factor that directly impacts the qual-

ity of vehicle mobility data is positioning errors. The occurrence of these errors is often

inherent in the sensing process and can be caused by both the sensor itself and by external

elements such as tunnels and urban canyons that make it difficult to capture the signal

through the sensors.

In this case, this type of error leads to misleading interpretations of the vehicles’
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mobility. For example, it is complex to correctly estimate the lane on which a vehicle is

moving. Still, these errors can be of a few meters so that some points are in different

streets, making difficult the reconstruction of the route of the vehicles.

Positioning errors can be seen as noise that impacts the design of vehicular networks

in various ways. For example, in topology analysis from the contact graph, these errors

can introduce non-existent contacts. Therefore, directly affecting the inter-contact time

distribution and contact duration distribution that are fundamental in the protocol design

for vehicular networks based on opportunistic communication [34]. In addition, such errors

can compromise the performance of trajectory reconstruction algorithms. Therefore, we

recommend that mobility data be submitted either to filter techniques (e.g., Kalman and

Particle) [167] or Map Matching [183] methods. Figure 4.1 shows a trajectory that has

two points that are probably positioning errors (points outside the road). We have used

the map matching algorithm [183] to remove these inappropriate points

4.4.4 Variability and volume of mobility data

We know that the mobility of vehicles is restricted to the road topology and they

follow speed restrictions and traffic signaling. Despite these common characteristics, we

can observe different types of vehicles in an urban context such as buses, taxis, private

vehicles and so on. In this sense, each vehicle has its own mobility characteristics. For

example, buses have a deterministic mobility based on established routes, whereas taxis

have a greater variability of behavior. In addition, the movement of these two kinds of

vehicles has different stop-and-go patterns. These features directly impact the network

topology.

In addition to the variability of vehicle types, the amount of recorded data is a

critical factor in the quality of a vehicular mobility trace. When we refer to the volume in

this domain, we are concerned with the number of vehicles, the duration of the trajectories,

the duration of the whole trace (e.g., days, months, years), number of trajectories per day,

and so on.

Both the variability and the volume of the data are fundamental criteria in the

modeling and evaluation of solutions for vehicular networks. Firstly, because of the real

representativeness of the various behaviors and elements of the system. Second, because

of the scale that must operate a vehicular network with thousands of vehicles in a city

domain. In this sense, simulation scenarios with a maximum of hundreds of vehicles can

present bias and not demonstrate the completeness of the solutions.

To illustrate these observations, we have selected the two traces that have the
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Figure 4.3: TAPASCologne. Number of vehicles (|V (t)|) in the network over time. Ratio
between number of vehicles in the giant connected component (|VGCC(t)|) and the number
of vehicles in the network (|V (t)|) over time (this figure is best viewed in colors)

largest number of vehicles from Table 3.1. For both traces, we create a contact graph for

every second, as defined in Section 4.3 with a fixed communication radius equal to 100

meters. As the duration of both traces is 24 hours, we have a total of 86,400 graphs for each

trace. Therefore, we preprocess the data to avoid granularity problems and positioning

errors. When we look at Figures 4.3 and 4.4, we can see the variation of the number of

vehicles throughout the day in both cities, especially we see peaks in the |V (t)|-curve in

rush hours. In addition, we observe the ratio among the number of vehicles of the giant

component connected in relation to the number of cars in the network every second. For

the LUSTScenario trace, throughout the day, the number of vehicles of the giant connected

component reaches a value of 42% of the vehicles of the network. For TAPASCologne,

throughout the day, the number of vehicles of the largest connected component reaches

the value 33% of the vehicles of the network. In addition of showing the relevance of

granularity, the absence of positioning errors, variability and volume, these results show

important directions in terms of knowledge of network topology dynamics, such as the

network is highly partitioned in small components (often isolated vehicles).

4.4.5 Spatial and temporal observation window

Mobility in the urban domain is dynamic in terms of time and space [54]. This

means that depending on the time and space being observed we can see different mobility
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Figure 4.4: LUSTScenario. Number of vehicles (|V (t)|) in the network over time. Ratio
between number of vehicles in the giant connected component (|VGCC(t)|) and the number
of vehicles in the network (|V (t)|) over time (this figure is best viewed in colors)

behaviors. In this sense, there are significant variations in terms of windows that must be

observed in the mobility data and considered in simulations and design of solutions for

vehicular networks, such as: mobility at peak time differs from mobility at other hours;

mobility can be targeted to certain regions depending on the time of the day; there is a

commuting behavior and so on. All of these observations must be taken into account and

we must still know that there are particularities depending on the city where the data

was collected or generated.

To illustrate the investigation of the spatial and temporal observation windows in

a mobility trace, we plot the intensity of arrivals and departures over a day in Cologne

(TAPASCologne trace), as shown in Figure 4.5. We can see that in the downtown region,

there is a high concentration of points, showing a natural behavior of movement in this

city, i.e., vehicles leave the peripheral zones toward the center of the city. To assess how

this impacts a vehicular network, we have selected two regions of 9 km2 and investigated

the duration of the contacts between vehicles within them. In addition, for each area, we

investigated different time windows in order to observe the impact of peak hours. These

time windows were defined based on Figure 4.3, where we have four significant variations

of the number of vehicles: 6h–8h, 11h–13h, 16h–18h, and 9h–23h.

Figures 4.6a and 4.6b show the Empirical Cumulative Density Function (ECDF)

of the contacts duration for the two regions. In general, we can observe that the duration

of the contacts in the downtown region is greater than in the peripheral region, especially

in the rush hours (6h–8h and 16h–18h). For instance, for the downtown and peripheral

regions, the maximum duration of 75% of the contacts is 13 and 8 seconds, respectively.

In addition, we can see that depending on the time window, we have a variation of the
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Figure 4.5: Density of points during one day (this figure is best viewed in colors)

duration of contacts, especially in rush hours. These observations can be justified mainly

by the increase of vehicles on the streets and, consequently, the occurrence of traffic jams

as well as a decrease in the speed of movement. We advocate that this type of analysis

is relevant both to the design and validation of solutions in vehicular networks. First,

from this type of analysis we can identify signatures of the behavior of a region during a

time interval and, consequently, design context-aware communication solutions. Second,

to identify whether the traces have characteristics that represent the heterogeneity of

mobility in cities. In this direction, it is important to emphasize that scenarios of vehicular

mobility with random destinations may not represent the real behavior of mobility in a

city.

(a) Downtown region (b) Peripheral region

Figure 4.6: Contact duration in downtown and peripheral regions (this figure is best
viewed in colors)
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4.5 Chapter Remarks

In this chapter, we discussed several aspects of the quality of vehicle mobility traces

that have the potential to impact the simulation, analysis and design of vehicular networks.

We proposed a methodology containing different criteria that should be observed when

using vehicular mobility traces: granularity, positioning errors, variability and volume

of mobility data, and spatial and temporal observation window. Although it is not an

exhaustive list of criteria, we have shown through data analysis that the identified criteria

are relevant. As future work, we plan to implement a framework to automate the topics

discussed in this work. In addition, we plan to investigate how the various types of

vehicular network protocols behave in this variety of scenarios that can be obtained from

vehicle mobility data.



73

Chapter 5

Filling the gaps of vehicular mobility

traces

Simulation is the most frequently adopted approach for evaluating protocols and algo-

rithms for Vehicular Ad hoc Networks (VANETs) and Delay-Tolerant Networks (DTNs).

Usually, simulation tools use mobility traces to build the network topology based on the

existing contacts between mobile nodes. However, quality of the traces, in terms of spa-

tial and temporal granularity of each entry in the logfile, is a key factor that impacts the

network topology directly. Therefore, the reliability of the results depends strongly on the

accurate representation of the real network topology by the vehicular mobility model. We

show that five widely adopted existing real vehicular mobility traces present gaps, leading

to fallible outcomes. In this Chapter, we propose a solution to fill those gaps, leading to

more fine-grained traces, which lead to more trustworthy simulation results. We propose

and evaluate a data-based solution using clustering algorithms to fill the gaps of real-world

traces. In addition, we also present the evaluation results that compare the communica-

tion graph of the original and the calibrated traces using network metrics. The results

reveal that the gaps do indeed induce network topologies differing from reality, decreasing

the quality of the evaluation results. To contribute to the research community, we have

made the calibrated traces publicly available, so that other researchers may adopt them

to improve their evaluation results.

5.1 Introduction

Simulation is the most frequently adopted approach for evaluating protocols and

algorithms for Vehicular Networks (VANETs) [123, 156]. The performance evaluation of

VANET solutions presents a considerable challenge to researchers, given the particular

characteristics of this kind of network, such as its highly dynamic topology and large-scale

nature. Conducting real experiments using ordinary vehicles is a very expensive and time-



5.1. Introduction 74

consuming approach, particularly when a large-scale evaluation is required. In addition,

there is no publicly available, large-scale testbed that can be readily used by researchers.

Moreover, it is unlikely that a large-scale testbed will be available in the near future,

due to involved deployment and maintenance costs. Simulation, on the other hand, is a

cost-effective, large-scale, timely approach widely adopted by researchers. However, the

reliability of the simulation results depends on the vehicular mobility models to represent

the network topology.

The adopted vehicular mobility model plays a key role on the reliability of the

simulation results [160, 129, 110, 111]. Existing simulation tools use mobility models to

build scenarios in which vehicles move and communicate with each other. The mobility

model is responsible for determining the position of vehicles at each moment in time; this

information is used to build the network topology. In other words, unrealistic mobility

models lead to unrealistic network topologies, and, therefore, to unreliable evaluation

results [17]. Hence, it is very important to adopt realistic vehicular mobility models when

evaluating VANET solutions.

One possible strategy for achieving this goal is to use records of real vehicular

positions over time (i.e., traces). The availability of traces in recent years has led the

research community to investigate methods for modeling vehicles and their connectivity.

To this end, some studies started characterizing the mobility traces. In [12], the authors

characterized the taxi trace from Rome, and analyze an epidemic dissemination protocol

using this trace as the mobility model. The studies presented in [69, 79, 135] characterized

the network topology and connectivity metrics of the taxi trace from San Francisco.

Furthermore, the taxi trace of Shanghai was used to study mobility patterns [141, 140,

165, 289], network topology, and connectivity metrics [137, 297, 300]. Similarly, the trace

from Beijing was also explored in mobility characterization studies [115, 270].

Those characterizations and analyses have led to important findings about mobility

patterns, helping to define novel solutions related to communication and dissemination

protocols for VANETs and DTNs. However, most VANET and DTN performance eval-

uations rely on vehicle contacts. It turns out that the network graph representing those

contacts is built based on the mobility traces, which may present gaps in space and time

(i.e., long periods or distances between two consecutive entries of a given vehicle). Further-

more, such gaps lead to missing contacts, since all interactions that might have happened

among vehicles during successive entries will not be present in the trace. Consequently,

an incomplete graph denoting the network topology will not correctly represent the real

contacts among vehicles. In other words, the existence of gaps leads to contact graphs

that differ from reality. Hence, it turns out that finding and eliminating such gaps to

build a high-fidelity mobility model is a key aspect for guaranteeing the reliability of the

results. Nevertheless, this problem is not tackled properly in the literature, since most

solutions focus on adding a straight path between two sparse points, instead of building
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a fine-grained trajectory between them.

In this Chapter, we find and fill existing gaps appropriately by performing a pro-

cess referred to as calibration [299]. Calibration consists of filling the gaps in raw mobility

traces, leading to fine-grained traces. First, we demonstrate the existence of gaps in avail-

able traces. After that, we propose and evaluate a cluster-based solution to fill the gaps,

following the methodology proposed in [244]. Our solution relies on the existing trajectory

points, obtained from the trace itself, that are organized into clusters to represent anchor

points used in the calibration. Therefore, our approach is flexible enough to be adopted

in different real traces, since there is no need for looking at a map or any further infor-

mation. In fact, we demonstrate this by applying our solution to calibrate five existing,

widely adopted taxi traces in different scenarios [45, 218, 249, 279, 70]. We consider taxi

traces in our study because they are real, publicly available, and widely adopted in the

literature. However, our solution is general enough to be applied to any vehicular mobil-

ity trace. The results reveal that the gaps fo indeed lead to different network topology

graphs, directly affecting the results of the performance evaluation. To cooperate with

the research community, we made the calibrated traces publicly available at [268].

The key contributions of this Chapter are summarized as follows:

• We develop a solution to reduce, or even eliminate, gaps in real-world vehicular

traces. Our solution for filling the gaps in vehicular mobility traces is divided into

two stages. The first extracts a reference system from the vehicles’ historical GPS

trajectory dataset. The second stage applies a calibration method, using a subset

of points of the previously built reference system;

• We validate our proposed solution by intentionally adding gaps to a fine-grained

trace and comparing the calibrated results with those of the original. The results

reveal that our calibration method leads to calibrated trajectories that are near the

original ones;

• We compare our solution and the one proposed in [244]. The results reveal that

our calibration approach accurately fills gaps in vehicular mobility traces, obtaining

spatio-temporal results better than the baseline;

• We analyze how the gaps affect the communication network. For this, we show

that existing gaps in the original traces available in the literature lead to unrealistic

network topologies, which are improved with our calibration method;

• We conduct simulation experiments to assess the impact of applying the calibrated

trace to a real vehicular network protocol in a realistic VANET scenario (IEEE

802.11p);
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• We find and eliminate gaps of five widely adopted real vehicular mobility traces. To

contribute to the research community, the calibrated traces are publicly available

to other researchers, who can use them in their research studies.

The remainder of this chapter is organized as follows. Section 5.2 discusses related

work. Section 5.3 presents a detailed description of the vehicular mobility traces used

in this Chapter. Section 5.4 offers some essential background information, and confirms

the existence of gaps in those real mobility traces. Section 5.5 introduces our calibration

method for filling the gap. Section 5.6 compares our proposal to the state-of-the-art

solution. Section 5.7 discusses the evaluation results comparing the communication graph

of the original and the calibrated traces. Section 5.8 analyzes the impact of calibrated

traces on vehicular networking, comparing the calibrated traces and the original ones in

a realistic simulation scenario. Finally, Section 5.9 concludes this chapter.

5.2 Related Work

The actual movement of vehicles is inherently a continuous-time function, but it

is sampled at a discrete time due to different issues such as storage limitation and the

ease in working with discrete data, including the availability of techniques to work in the

discrete domain. Moreover, the sampling rate is generally low, and consequently, details

of the movement are lost. There are a number of studies on how to reconstruct the

vehicle’s movement from trajectories sampled at a low rate. In this section, we present

the related works that have focused on the techniques used for this purpose, highlighting

their strengths and weaknesses.

Before reconstructing a trajectory, depending on how we want to reconstruct it

and the quality of the data, we need to deal with many preprocessing issues [167] such as

filtering to remove invalid points; trajectory compression to reduce the size of a trajectory

while maintaining its significant portion; and map matching to associate each trajectory to

a corresponding projection in the legitimate road network. Those preprocessing techniques

have a fundamental role in the treatment of raw trajectories, but they are not enough to

transform raw trajectories into meaningful trajectories. That is, we need to perform other

techniques to obtain an approximate form of the actual movement, since the methods

described above do not directly address sampling issues.

The straightforward idea for reconstructing vehicle trajectories is to apply inter-

polation in between consecutive records. In the literature, many interpolation methods

have been proposed for different applications, such as linear interpolation [252], nearest-
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neighbor interpolation [276], and piecewise cubic spline interpolation [170]. The linear

interpolation [252], when applied to trajectories, computes straight lines between two

consecutive records. However, this method is not suitable for certain urban scenarios

with curved paths between each pair of consecutive records, since drivers do not always

travel in a straight line. In [136], the authors evaluated the difference between real human

trajectories and the ones obtained through cellphone data using these interpolation meth-

ods, showing that trajectories obtained from interpolation are far from the actual path.

To overcome this problem, in [178], the authors proposed an interpolation method based

on the shortest path between consecutive GPS points using the road network. However,

the assumption of the shortest path between points may not be sufficient, since it does

not represent vehicles’ movements. In [135] the authors interpolated adjacent points with

the objective of finding an intermediary point between them. To this end, they averaged

samples one minute backward and one minute forward to estimate the position of a mo-

bile entity in each period. As previously mentioned, this simple approach works when the

mobile entity travels following a straight line. However, it fails when the entity turns its

direction at an intersection, a very common mobility pattern when it comes to vehicles.

With the objective of reconstructing trajectories more accurately, in [244], the

authors introduced a methodology composed of two components: a reference system

and a calibration method. The reference system was built from a set of anchor points

independent of the current trajectory. The calibration method used the reference system

to find points to be inserted along the trajectory, making it more complete. The authors

evaluated and presented results of different strategies of their methodology, as discussed

in the following.

The proposed model relies on four types of anchor points obtained from different

kinds of external resources: space-based, data-based, PoI-based, and feature-based an-

chors. Space-based anchors are centroid points of the cells retrieved from dividing the

map into a grid. Data-based anchors are points from historical trajectories. PoI-based

anchors are centroid points from a set of semantic locations (e.g., restaurant, hotel, shop-

ping). Feature-based anchors are important points in trajectory data, named features,

such as turning points. Each type of anchor point has strengths and drawbacks when used

to build a reference system. However, the most relevant factors are the computational

cost and how the reference system contributes to the quality of the calibration. Table 5.1

shows the computational cost of the basic operations using different anchor points. The

results shown in [244] reveal that the feature-based approach contributes significantly to

the quality of the calibration, when compared to the others.

The anchor points form the reference system to be used in the calibration method.

In [244], the authors presented two calibration methods: geometry-based and model-

based. Table 5.2 compares the time complexity of both calibration methods. The

geometry-based method runs faster than the model-based one. However, the model-based
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Table 5.1: Computational complexity to create a reference system for each anchor point
type.

Algorithm Resource Input Complexity
Space-based None n-

dimensional
grid

O(n)

Data-based Trajectories n-sample
points

O(1)

PoI-based PoI dataset n-PoI
points

O(n2)

Feature-based Trajectories n-sample
points and
k is the
number of
reported
points

O(n
√
n+ nk)

Table 5.2: Time complexity of proposed calibration methods in [244].

Algorithm Complexity
Geometry-based O(NTNalogNa), where Na is the

number of anchor points close to
the gap and NT is the size of the
trajectory.

Model-based O(NT |PP |2), where NT is the size
of the trajectory and |PP | is the
average number of paths connect-
ing two consecutive anchor points
of calibrated trajectories.

is the most robust method for reconstructing the input trajectory, since it considers the

correlation between anchor points.

The following drawbacks motivate us to develop the current work. First, a detailed

algorithm for building a reference system is not presented in [244]. Also, its geometry-

based calibration method is faster than the model-based method, but ignores the relation-

ship between anchor points in the reference system, leading to an inaccurate calibration.

In addition, the taxi trace mentioned and used in their work is not described; in other

words, it is not possible to reproduce their results. Finally, the calibrated data is not

publicly available.

Our work goes further and proposes algorithms to calibrate incomplete trajectory

data, and makes calibrated traces available to the research community. Furthermore,

our geometry-based calibration method performs better than [244], since it considers

the relationships between the points in the reference system. Therefore, researchers can

easily reproduce our results, apply our solution to other traces, and download the already
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calibrated traces from five different cities. Most importantly, we envision more realistic

performance evaluation results of VANET and DTN solutions.

5.3 Vehicular Mobility Traces

The vehicular mobility traces available in the literature can be classified as syn-

thetic or real. The synthetic traces are built by mobility generator tools considering

particular characteristics of the city, such as population, neighborhood (i.e., residential,

commercial, industrial), and other aspects collected by the city managers. The most well-

known synthetic mobility traces are from Cologne [255] and Zurich [197]. Since synthetic

traces present a high granularity in terms of space and time, there is no need to fill their

gaps. Moreover, this kind of trace will be very useful in our research, as it will work as

the ground truth to validate our calibration method.

The real mobility traces are the ones generated by real vehicles equipped with

GPS-enabled devices. Usually, the real mobility traces represent the mobility of taxis,

since it is easier to perform this kind of experiment in vehicles of this category than in

ordinary vehicles [62]. We have selected five real mobility traces from Section 3.2 to use

in this Chapter: Rome, San Francisco, Shanghai, Beijing, and Shenzhen (see Table 3.1).

The selection was motivated by their use in the literature and their geographical locations,

which represent three different parts of the world, namely Europe, North America, and

Asia. Each trace was created from a different source and uses a different format. To

facilitate their adoption and use, we formatted all entries as tuples 〈id, timestamp, lat,

long〉, where id is the vehicle’s unique identifier, timestamp is the date and time of the

entry in the format yyyy-mm-dd hh:mm:ss, and lat and long are the latitude and longitude,

respectively, in the WGS84 coordinate system format. In the following, we describe the

main details of each trace.

5.4 Identifying the Gaps

The completeness of the topology graph is a key factor for the performance evalu-

ation of VANETs. In fact, contacts among vehicles that occurred in reality, but were not

considered due to gaps in the trajectories of the traces, affect the evaluation of algorithms
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and protocols, since data exchange depends on these contacts. The formal definition of

gap is introduced in Definition 2, where d(·, ·) is the distance between two coordinates.

Definition 1 (Trajectory) A trajectory is defined as a sequence of spatio-temporal points

T = 〈p1, . . . , pn〉, where pi = (x, y, t) for i = 1 . . . n, and x, y are spatial coordinates, t is

a timestamp, and pi.t < pi+1.t.

Definition 2 (Gap) Given the trajectory T of a vehicle and the threshold θ, a gap occurs

when the spatial distance ∆s between two consecutive points of T is greater than θ, i.e.,

∆s = d(pi, pi+1) > θ.

To measure the expressiveness of the gaps in the existing original traces, we eval-

uate the distance between every two consecutive entries. Figure 5.1 depicts the Comple-

mentary Cumulative Distribution Function (CCDF) of the distances between every two

consecutive points for all original traces. As indicated by the third quartile (red vertical

line), 25% of two consecutive points are 66.7 m, 446.7 m, 163.3 m, 767.6 m, and 278.4 m

apart for Rome, San Francisco, Shanghai, Beijing, and Shenzhen, respectively. Consider-

ing those gaps and assuming a transmission range of 100 m [72], many existing contacts

will be missed for the network topology graph built from the original traces. This clearly

demonstrates the need for a method to calibrate the original traces with the objective of

filling the existing gaps. In the next section, we describe and validate our approach for

solving this problem.

5.5 Filling the Gaps

Our approach for filling the gaps in vehicular mobility traces is divided into two

stages. The first stage extracts a reference system from the vehicles’ historical GPS

trajectory dataset. The second stage applies a calibration method, using a subset of

anchor points of the previously built reference system. In the following, we describe both

steps.
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(a) Rome (b) San Francisco (c) Shanghai

(d) Beijing (e) Shenzhen

Figure 5.1: Complementary Cumulative Distribution Function (CCDF) of the distances
between two adjacent points. These plots reveal that a significant number of entries
present a distance between points that could affect the network topology.

Algoritmo 5.1: – Reference System based on Clustering

Input: The historical of vehicles trajectories (raw data) and number of clusters (k)
Output: Reference System (RefSys), a set of centroid points.

1: procedure ClusteringGpsPoints
2: Clusters ← applyClustering(raw data, k)
3: RefSys ← getCentroids(Clusters)
4: end procedure

5.5.1 Cluster-Based Reference System

The reference system consists of a set of points resulting from a clustering process

that uses historical trajectories. Each point, called centroid, represents a cluster of GPS

points in close proximity to one another, recorded by all vehicles in the trace. Since

GPS points represent real trajectories, it is reasonable to assume that each centroid is a

potential location for a new point in a trajectory. In other words, it is very likely that a

centroid represents a correct point in a road that vehicles travel through. Here, we adopt

the k-means clustering method [179] for partitioning the data into k clusters, according

to the density of GPS points; then, we obtain the centroid point of each cluster to form

the reference system.

Algorithm 5.1 shows the basic steps to obtain the reference system. Initially, the
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(a) Original GPS points (b) Anchor points based on a
feature

(c) Anchor points based on a
clustering approach

Figure 5.2: Part of the reference system created from the Cologne dataset. (a) Original
GPS data from the downtown area of the Cologne dataset. (b) Example of a reference
system created using a method based on a feature (turning points) [244]. (c) Example of
a reference system created using our clustering approach.

k-means method partitions the data into k groups, according to the density of points

(Line 2). Then, we obtain the centroid of each group and add it to the reference system

(Line 3).

When using k-means, we need to choose an appropriate value of k. Thus, to

overcome this problem, we apply the elbow method [251], which finds the minimum value

of k that seems to give the smallest error. In other words, if we increase the value k,

the error will not decrease significantly, meaning it is not worthwhile to do so. For the

datasets used in this Chapter, we find an average value of 20% of the total number

of points. Regarding the computational complexity, the running time of the k-means

clustering method is given as O(nkdi), where n is the number of samples, d is the number

of dimensions (two dimensions in our case, namely latitude and longitude), k is the number

of clusters, and i is the number of iterations needed until the convergence of the clustering

process is reached.

As mentioned in Section 5.2, in [244], the authors proposed four methods to ex-

tract a reference system based on GPS data points. Here, we propose a novel cluster-based

approach that outperforms those methods, considering the cost-benefit in terms of com-

putational cost (see Table 5.1) and how the reference system contributes to the quality

of the calibration. Figure 5.2 depicts the reference systems obtained using the best cost-

effectiveness method from [244] (namely, feature-based) and our cluster-based approach.

Our approach leads to a finer calibration, since it does not consider only turning points, as

can be seen in Figures 5.2b and 5.2c. In addition, in road topologies where the presence of

turning points are uncommon (such as highways), a method that considers only turning

points will not work properly. However, the maps used in Figure 5.2 are for the purposes

of visualization only, and are not used by the algorithms.
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5.5.2 Calibration Method

In this stage, we perform the calibration following a geometric-based approach,

which is an improvement to the base method described in [244]. More specifically, when

there is a gap in a trajectory T , we obtain the reference system of the region, and then

select the centroid points between the endpoints of the gap.

The calibration method receives the following parameters as input: T , a set of

n consecutive points with spatio-temporal information; RefSys, the reference system ob-

tained from Algorithm 5.1; min d, the threshold to consider the existence of a spatial

gap; and time d, the threshold to consider a temporal interval between two consecutive

coordinates. As a result, we have a new trajectory T ′ with the original points from T and

a set of calibrated points added to fill the existing gaps in T .

Algorithm 5.2 describes the calibration method. For each sequence of two points

in T , we first check if there is a gap between them according to input parameters (Lines

4–8). If this is the case, we perform the calibration. Initially, we detect the set of centroid

points from the reference system near the corresponding gap. For this, the bounding box

function finds the point halfway (midpoint) between the two end-points of the gap, and

returns to the circle with its center in this midpoint (Line 9). Then, we obtain all centroid

points from the reference system with coordinates inside the circle, and store them in C

(Line 10). Next, we iteratively find the nearest point a∗ ∈ C to the centroid that satisfies

the angular condition (Lines 14–15). The angular condition (Line 15) guarantees that

only centroids in the same direction of the trajectory are considered, in order to avoid the

selection of points in the opposite direction. If this is the case, we insert a∗ in L between

pp and pn. Next, we remove a∗ from C and repeat this last sequence of steps while C is

not empty (Lines 13–23). Finally, we insert the calibrated points of L into T ′.

The algorithm described in [244] does not consider the relationship between the

inserted points. In our solution, presented in Algorithm 5.2, we consider the relationship

for choosing each new centroid based on the distance from the last selected centroid (Line

14).

In addition to inserting the calibrated points given the spatial gap, it is important

to obtain their timestamp to accurately represent the trajectory. Thus, before adding a∗

to L (Line 16), we compute an estimated time for the temporal occurrence of the centroid

a∗ using Equation 5.1 [244], where d(·, ·) is the distance between two coordinates:

a∗.t = pp.t+
(pn.t− pp.t) · d(pp, a

∗) ·
∣∣∣−−→ppa∗ · −−→pppn∣∣∣

d(pp, pn) ·
∣∣∣−−→ppa∗∣∣∣ · |−−→pppn| . (5.1)

Regarding the computational complexity, the running time of Algorithm 5.2 de-

pends on the length of T and the number of centroid points in C for each calibrated gap.
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Algoritmo 5.2: – Calibration Method

Input: Trajectory (T = [P1, P2, . . . , Pn]), Reference System (RefSys), minimum spatial
distance (min d), and temporal distance (time d)
Output: A new trajectory (T ′) without gaps.

1: procedure Calibrate
2: T ′ ← T [1]
3: for i← 2 to length(T ) do
4: pp ← T [i− 1] . pp is the previous point
5: pn ← T [i] . pn is the next point
6: d← distance(pp, pn)
7: t← interval(pp, pn)
8: if d > min d and t < time d then
9: bb coord ← bounding box(pp, pn)

10: C ← subset(RefSys, bb coord)
11: Initialize an empty list L
12: a′ ← pp
13: while C is not empty do
14: a∗ ← arg mina∈C d(a, a′)

15: if 6 (
−−→
a′a∗,−−→pppn) < π

2
then

16: Add a∗ to L
17: a′ ← a∗

18: end if
19: Remove a∗ from C
20: end while
21: Insert the centroids in L into T ′

22: else
23: Insert pn in T ′

24: end if
25: end for
26: return T ′

27: end procedure

As Nc is the average number of centroids for a gap and NT is the length of the trajectory,

it follows that the complexity is O(NTN
2
c ). Given that the number of centroids is not

high because of the adopted elbow method, and that this is an offline process that aims

to calibrate the traces only once, this complexity seems to be very reasonable.

5.6 Validation

In this section, we perform trajectory similarity analysis to validate the impact of

our method on low-sampling-rate trajectories. The goals of this validation are twofold.
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(a) Spatial coverage (b) Size of the trajectories (c) Duration of the trajecto-
ries

Figure 5.3: Characterization of the sampled dataset from Cologne. These plots reveal
the spatio-temporal heterogeneity in the subset of trajectories obtained from the Cologne
dataset.

The first is to qualitatively evaluate the trajectories after calibration, highlighting visual

differences in the shape. The second goal is to compare the calibrated trajectories with

those of the original using similarity measures.

In this validation, we first randomly select (with a uniform distribution without re-

placement) 1000 trajectories from different vehicles from the Cologne dataset. Figure 5.3

shows a characterization in terms of spatial and temporal features of these selected trajec-

tories. Figure 5.3a shows the spatial coverage of the selected trajectories. We can observe

that many urban roads are in red, indicating the presence of trajectories over different

parts of the city (i.e., downtown, highways and peripheral areas). The intensity of red

represents a high incidence of points in the same roads; this behavior is more common

in the central area and in roads crossing the city. The size of the selected trajectories,

depicted in Figure 5.3b, varies from a few meters to about 35 kilometers. Approximately

70% of the selected trajectories have a size smaller than 10 km, as expected in urban sce-

narios and observed in the original Cologne dataset [255]. Some trajectories have a size

greater than 10 km representing commuters crossing the city. Intrinsically, the size of the

trajectories impacts the duration of the displacement, as can be seen in Figure 5.3c, where

we can observe that approximately 60% of the trajectories last less than 10 minutes.

5.6.1 Qualitative Validation

For each of the selected trajectories, we apply a sampling process that retrieves

records every 10, 20, 30, 60, and 100 seconds, generating gaps in the fine-grained data1.

Thus, T is an original trajectory with sampling rate every 1 s and Tx, where x ∈ {10, 20, 30, 60, 100},
1These values are defined based on granularity of vehicular mobility traces described in Table 3.1.
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is a trajectory with sampling rate x obtained from T. For instance, Figure 5.4 depicts the

original trajectory of a vehicle and Figures 5.5a, 5.5c, 5.5e, 5.5g, and 5.5i are sampled

trajectories of the same vehicle. We may see that this sampling intentionally causes gaps

in the trajectory.

Figure 5.4: Example of an original trajectory of vehicle #134 with sampling rate of 1 s.

To validate our calibration method, we apply it to the sampling trajectories (i.e.,

with hand-generated gaps) to fill their gaps. Considering that the chosen trajectory

presents interesting peculiarities such as straight segments, curvatures and a long distance

path, we may see in qualitative terms that the calibrated trajectories are very similar to

the original ones. Even when the gaps are large (e.g., for T60 and T100), the calibration

method accurately reconstructs the trajectories, leading to fine-grained traces.

By using historical trajectories and applying a clustering approach, we detected

potential candidate points to be inserted into the trajectories. In the reference system

approaches proposed in the literature and described in Section 5.2, the anchor points are

sparsely or irregularly distributed, except for the data-based strategy. However, the data-

based approach has a high degree of redundancy in the data when there is a large number

of records. In addition, our calibration method considers the relationship between anchor

points, as can be seen in Figures 5.5b, 5.5d, 5.5f, 5.5h, and 5.5j, where the calibrated

trajectories have a very similar shape to the original ones (Figure 5.4), whereas they

respect the road topology.

5.6.2 Quantitative Validation

Until now, we have discussed the quality of the trajectory obtained by our calibra-

tion method. Going further, we also consider a quantitative measure that defines how a
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(a) T10 (b) T10 – calibrated

(c) T20 (d) T20 – calibrated

(e) T30 (f) T30 – calibrated

(g) T60 (h) T60 – calibrated

(i) T100 (j) T100 – calibrated

Figure 5.5: Calibration method applied to gaps with different sizes. These plots reveal
that our calibration approach could accurately fill gaps in mobility traces considering
qualitative aspects.
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(a) DTW (b) EditDist

Figure 5.6: Comparison of the original and calibrated traces in terms of two trajectory
distance measures: DTW and EditDist.

calibrated trajectory is similar to the original one, and, thus, provides a higher reliability

of results. In this sense, we compare the original and calibrated traces by adopting two

existing trajectory similarity measures, as described in the following:

• DTW (Dynamic Time Warping) [22]: DTW is a similarity measure that explores the

matching points between trajectories. This measure presents a good performance

with different sizes of trajectories and different sampling rates. However, it is highly

affected by outliers, since each point in the original trajectory should have at least

one associate point in the calibrated trajectory.

• EditDist (Edit Distance) [68]: This measure is relatively unaffected by the presence

of outliers, because there is a parametric threshold (ε) that associates each point

in the original trajectory to a point in the calibrated trajectory. However, if the

trajectories have different sizes, the EditDist is increased.

In this way, those measures allow us to compare the original and calibrated trajec-

tories considering outliers, differences in the size of the trajectories, and different gran-

ularities. It is worth mentioning that, when the calibrated trajectory is identical to the

original trajectory, the value obtained for each measure is exactly zero.

In this validation experiment, we compute the similarity measures between the

original and calibrated trajectories for each of the 1000 trajectories initially chosen from

the Cologne trace. Thus, we generate the gaps in the original trajectories with different

sampling rates (i.e., 10, 20, 30, 60, and 100), then we calibrate each trajectory using

our proposed method and the solution from [244], and finally we compare the calibrated

and original versions. We compute the distance of the trajectories normalized by the

trajectory length. It is important to know that the reference system was constructed

from the original Cologne dataset.

Figure 5.6 presents the results for the metrics DTW (Figure 5.6a) and EditDist

(Figure 5.6b). For both measures, the distances between the original and calibrated

traces are close to zero, meaning that the calibration method could accuratelly fill the
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(a) Sampling 10s (b) Sampling 20s (c) Sampling 30s

(d) Sampling 60s (e) Sampling 100s

Figure 5.7: Complementary Cumulative Distribution Function (CCDF) of the distances
between two adjacent points.

gaps. The results show that the calibrated trajectories are very similar to the original

ones. We stated that the calibration increases the granularity of the trajectories without

entering outliers during the process. This can be seen in the case shown in Figures 5.5b,

5.5d, 5.5f, 5.5h in relation to Figure 5.4. The high quality of the results is obtained

because the calibration process uses historical data and applies the clustering method to

summarize them in an anchor point. In addition, higher sampling rates generally result

in greater distances, since large gaps are more difficult to fill, as expected. However, even

for T100, the results are very promising.

When we compare our calibration method with the work in [244], we can see that

they exhibit a similar behavior regarding EditDist (Figure 5.6b). The reason is that both

methods do not influence the size of the calibrated trajectory and the possible outliers in

the calibrated trajectories. For the DTW measure, our method generates more similar-

to-the-original trajectories, mainly when the sampling rate is less than 60 seconds; this

happens because there are fewer outliers in our calibrated trajectories.

The aforementioned measures reflect only spatial aspects of the traces. To evaluate

them considering a spatio-temporal perspective, we assess the distance and the time

between the consecutive points of a trajectory. In Figure 5.7, we have as ground truth the

CCDF of the set of trajectories, with points every 1 s. As expected, both methods reduce

the distance between consecutive points (gaps), as can be observed when comparing the

CCDFs of the calibrated trajectories with the ground truth. Similarly, in Figure 5.8, the

time between consecutive points is analyzed by considering the ECDF of the trajectories
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(a) Sampling 10s (b) Sampling 20s (c) Sampling 30s

(d) Sampling 60s (e) Sampling 100s

Figure 5.8: Empirical Cumulative Distribution Function (ECDF) of the time between two
adjacent points. The blue dashed line represents the reference point of 1s of the original
trajetories, and the red longdashed line represents the reference point of the sampling
rate.

calibrated with the two methods. In this case, our approach significantly reduces the

sampling to approximately 1. As we can see, 90% of the time interval between consecutive

points has less than 3 seconds. Our approach is significantly better for all analyzed cases

because it considers a reference system that has well-distributed anchor points in the road

segments, whereas the baseline only uses turning points.

In summary, the validation results reveal that our calibration approach could ac-

curately fill gaps in mobility traces. In the next section, we apply our calibration method

to five real mobility traces, and compare the calibrated versions with the original ones in

terms of network connectivity.

5.7 Network Connectivity Evaluation

Having introduced our calibration method and validated it using the Cologne

dataset, we must evaluate how possible interactions that appear in both real and cal-

ibrated traces lead to connectivity and topology in vehicular networks. An important

issue here is how they differ from each other and lead to different results. This is a fun-
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damental aspect if we want to understand the behavior of protocols and algorithms for

VANETs. For this, we randomly select a day in each of the real vehicular mobility trace-

sas , and then apply the calibration method presented in Section 5.5 for all trajectories

of this day in each trace. The outcome of this process therefore consists of two subsets

(original and calibrated traces) for each vehicular mobility trace.

To investigate the impact of the calibration, we need to compare the communi-

cation graph of the original and the calibrated traces. The goal is to show how the

gaps presented in the original traces lead to unrealistic communication graphs, which are

improved with our calibration method. Results were obtained assuming a transmission

range of 100 m [72]. Thus, any pair of vehicles that are, at most, 100 m apart are able to

establish a communication link and, therefore, communicate. The communication topol-

ogy graphs for each of the five traces, either original or calibrated, were built considering

an entire period of 24 hours. Despite being a simple communication model, this strategy

allows us to assess the impact of filling the gaps in the traces, which is the objective of

this work, and avoids factors that may influence the assessment process, such as signal

propagation and collisions. These factors are not within the scope of this work, but are

part of future work, as discussed in Section 5.9.

5.7.1 Global Connectivity

An important aspect when it comes to the communication graph is to determine

whether or not the graph is connected. We investigate the number of connected com-

ponents and their size. These two metrics are able to summarize the connectivity of a

communication graph, so that the first metric refers to the level of the network fragmenta-

tion, and the second one describes how the largest component is dominant over the whole

network.

The global connectivity [79] measures the largest connected component of the com-

munication graph. Therefore, the higher this value, the more connected a graph is. Ta-

ble 5.3 presents the number of connected components and the size of the largest compo-

nent. It is clear that the communication graph becomes more connected after the traces’

calibration. The number of connected components decreases over 50% for all traces, with

highlights for Beijing that decrease by 78%. This indicates that the gaps in the origi-

nal traces cause fragmentation in the communication graph. Using the method proposed

here, we obtained a less fragmented network primarily for the case of a trace with low

granularity, as it is the case of Beijing. In addition, the calibration method contributes to

increase the size of the largest component. This is evident from the calibration because it
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Table 5.3: Global connectivity.

Metric Trace Original Calibrated

Number of
connected com-
ponents

Rome 7 3
San Francisco 2 1

Shanghai 297 141
Beijing 3,624 780

Shenzhen 27 12

Size of the
largest com-
ponent

Rome 281 285
San Francisco 496 497

Shanghai 3,994 4,161
Beijing 6,203 9,293

Shenzhen 10,844 10,859

creates opportunities for new connections, particularly for trajectories with low sampling

rates.

These results reveal that the original graphs miss important contacts that help

increase the network connectivity. Moreover, these traces have been widely adopted in

different studies of vehicular networks, and, thus, the calibrated traces will definitely

increase the reliability of such investigations.

5.7.2 Transient Connectivity

The reach of a vehicle is the total number of vehicles to which it is transiently

connected [79]. By transiently connected, we mean that a vehicle may not have a direct

link with another vehicle, but can reach it through other vehicles in future contacts.

This is an important metric in DTNs, since data may be delivered opportunistically

to the final destination by future connections. Figure 5.9 presents the Complementary

Cumulative Distribution Function (CCDF) of the 2-hop reachability for all vehicles, that

is, the proportion of other vehicles one can reach within two hops.

For all traces, the calibration method leads vehicles to reach more vehicles within

two hops of distance. Again, this is due to the missing contacts existing in the original

traces. Regarding the San Francisco trace, it should be noted that all vehicles in the

calibrated trace reached all others within two hops, as indicated by the unique blue dot

in Figure 5.9b, since the probability of all vehicles to reach all others within two hops is

1.

These results have the potential for significant consequences in the evaluation of

routing protocols that consider the delivery rate and overhead, as discussed in Section 8.
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(a) Rome (b) San Francisco (c) Shanghai

(d) Beijing (e) Shenzhen

Figure 5.9: CCDF of the 2-hop reachability of all vehicles. The calibration method
increases the number of vehicles reached in two hops.

For instance, a striking difference was noted between the reachability of the original traces

and the reachability of the calibrated traces, as can be seen in Figures 5.9c and 5.9d. In

both cases, the percentage of vehicles reached in two hops increases considerably when

using the calibrated trace, thereby increasing the coverage of vehicles in the network.

5.7.3 Network Density

The network density, represented by the vehicle’s degree, is also an important

communication metric that affects how a message is disseminated throughout the net-

work [144]. Figure 5.10 depicts the Complementary Cumulative Distribution Function

(CCDF) of the number of contacts of all vehicles for the original and calibrated traces. It

can be noted that the vehicle’s degree increases with the calibration method, due to the

new contacts created after filling the existing gaps.
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(a) Rome (b) San Francisco (c) Shanghai

(d) Beijing (e) Shenzhen

Figure 5.10: CCDF of the number of contacts for each vehicle. It is possible to see how
the contacts increase after the calibration.

(a) Rome (b) San Francisco (c) Shanghai

(d) Beijing (e) Shenzhen

Figure 5.11: CCDF of the link lifetime for all contacts. The calibration makes links to
last for longer periods than in the original traces.
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5.7.4 Link Lifetime

The link stability is measured in terms of the lifetime of pairwise links [144]. This

metric plays an important role when building communication paths for routing protocols.

Here, the link lifetime is consider as the total time a vehicle is in communication range

with another one, until the time they move away from each other and are no longer in

contact.

Figure 5.11 depicts the Complementary Cumulative Distribution Function (CCDF)

of all pairwise link duration. It can be seen that links in the original traces last mostly

for just 1 second, while in the calibrated traces, many links last for significantly longer

periods. This result is due to the calibration method that increases the traces’ granularity

by inserting new points, thus enabling the contacts between vehicles to have a longer

duration. Therefore, in addition to increasing the number of contacts, the calibration

method also improves the traces in terms of the stability of contacts.

5.7.5 Path Length

The path length is the number of hops between two vehicles [144]. The average

path length is calculated by averaging the shortest paths between all pairs of vehicles.

Table 5.4 presents the average path length for the communication graphs built from the

original and calibrated traces. It can be noted that the average path length is lower for

the calibrated traces, due to the fact that more contacts lead to more possible paths,

allowing shortest paths between a pair of vehicles.

Table 5.4: Average path length.

Metric Trace Original Calibrated

Average Path Length

Rome 2.42 1.95
San Francisco 2.35 1.38

Shanghai 4.20 2.89
Beijing 5.52 2.81

Shenzhen 2.23 1.74
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Table 5.5: IEEE 802.11p configuration parameters.

Parameter Value
Transmission Technique OFDM
Modulation Mode BPSK
Coding Rate 1

2

Data Rate 3 Mbps
Data bits per OFDM symbol 24
Frame Body 4095 bytes
Frame Header 34 bytes
PLCP Header 5 bytes + 6 bits of Tail
Preamble 32µs
Signal Field 8µs
Symbol duration 8µs

5.7.6 IEEE 802.11p Capacity

The objective here is to demonstrate how the network capacity is affected by the

existing gaps in the original traces. To this end, we assume vehicles communicate by

adopting the IEEE 802.11p protocol standard [150], which was configured as described in

Table 5.5.

Based on the configured parameters, we compute how many frames could be trans-

mitted during a contact lasting for T seconds. We assume the full capacity of the frame’s

body, which is 4,095 bytes, and the lower data rate expected for the IEEE 802.11p, which

is 3 Mbps. Therefore, the total data required to transmit one frame is 4,095 × 8 + 34 ×
8 + 5 × 8 + 6 = 33,078 bits, which can be represented in 33,078

24
= 1, 379 symbols. Given

that each symbol requires 8µs and additional 40µs for the preamble and signal field, the

total amount of time required to transmit a frame is 11,072µs, or approximately 0.011 s.

Thus, it is possible to transmit
⌊

T
0.011

⌋
frames during a contact lasting for T seconds.

Figure 5.12 presents the Complementary Cumulative Distribution Function (CCDF)

of the capacity of each communication link established between a pair of vehicles. Because

of the gaps in the original traces, the network capacity is not represented with accuracy

as well. The calibrated traces could represent better the real network capacity that is

imprecise in the original traces.
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Figure 5.12: CCDF of the capacity of each link established between a pair of vehicles.

5.8 Impact of calibrated traces on vehicular

networking

Having evaluated and discussed how the interactions appear in both original and

calibrated traces with respect to connectivity and topology in vehicular networks, we are

now interested in understanding the effects of the calibration in realistic vehicular network

scenarios. As mentioned above, the focus of the previous analysis was to understand how

the different topologies obtained from the traces differ in terms of network connectivity. To

this end, we employed a connectivity graph model and disregarded details of the protocol

stack. In this section, we suggest a networking application and analyze the results for

both the original and the calibrated traces using a vehicular protocol stack that considers

issues such as medium access, collision and channel error.

More specifically, we address the problem of multi-hop dissemination in an instan-

taneous network topology, where packets are routed through the network using multiple

hops between the origin and destination vehicles, considering the dynamics of the exist-

ing connections over time. For each scenario, all vehicles in the network transmit 64-byte

packets at a communication rate of 2,048 kbps to half the vehicles selected as sinks, re-

flecting an application with probe vehicles (e.g., taxis and patrol cars) acting as mobile

sensors for sensing the urban scenario, and sending data to mobile sink vehicles [103].

To simulate the vehicular mobility and the protocol stack, we use the Network Sim-
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(a) Rome (b) San Francisco (c) Shanghai

(d) Beijing (e) Shenzhen

Figure 5.13: Comparison of the average throughput along the simulation time between
the original and calibrated traces.

ulator 3 (NS-3)2, a well-known discrete-event network simulator. Its current version has

important modules for the VANET simulation: the Nakagami propagation model, mobil-

ity module, and network with support to IEEE 802.11p [150] and IEEE 1609/WAVE [188]

standards. Additionally, we use a well-known routing protocol, called AODV [216], for

message forwarding. It is important to note that NS-3 “moves” objects by using a lin-

ear interpolation, i.e., its “calibration method” uses linear segments between consecutive

positions of objects.

The metric evaluated in our simulations was the throughput, which represents

the number of packets received by the destination vehicles at every second. This metric

allows us to understand how the instantaneous topologies obtained from both calibrated

and original traces differ in a vehicular communication scenario. Figure 5.13 depicts the

variation of the average throughput over time for calibrated and original traces. All results

represent the average, considering 95% confidence interval from 15 simulation runs. Our

evaluation considers a simulation time of 1000 s starting at 10:00 am in each city.

Figure 5.13a shows the average throughput for the traces of Rome. It shows a

similar pattern, but with a higher throughput for the calibrated data. In this case, as the

average granularity of the original trace is 7 s, we get a slightly different instantaneous

communication topology from the two traces. However, the throughput is greater in the

calibrated trace because the contacts are longer, resulting in greater network capacity.

This confirms the results of the link lifetime in Figure 5.11a, where the calibration makes

2https://www.nsnam.org/
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links last for longer periods than in the original traces.

For the San Francisco traces, as depicted in Figure 5.13b, we have a significant

distinction in the behavior obtained for the two traces. The reason for this difference

can be explained by the fact that the original trace is represented by the interpolation

between long gaps, since the average granularity of the original data is 60 s. The results

around 250 s are similar because the intensity of mobility of the vehicles is reduced in

that period. At this moment, we see another importance of the calibration, because when

we perform a linear interpolating between distant points, the path made by the vehicle

during the simulation may be quite different from the actual one.

Figure 5.13c depicts the results for the calibrated and original traces of Shang-

hai. We can see that the average throughput changes discreetly over time for the two

traces. This occurs because vehicles have more intense movement at the beginning of the

simulation. However, when we use a mobility visualization tool3, many vehicles remain

static during the simulation, compromising the routing of packets. These results confirm

the plot observed in Figure 5.11c, where the link lifetime is short and the probability of

having a link lifetime for a long period is extremely low.

As expected, the size of the gaps affects the instantaneous topology of vehicular

networks. As a matter of fact, the average throughput of the Beijing dataset, shown in

Figure 5.13d, indicates that the gaps in the original trace, with average granularity of

177 s, directly influence the topology, and, consequently, the performance of the protocol.

Obviously, the interpolation method used to construct the mobility in the simulator causes

non-realistic results, when we have larger gaps.

Figure 5.13e depicts the results of the average throughput for the calibrated and

original traces of Shenzhen. We can see that the throughput using the calibrated trace is

higher during the simulation. This reflects the influence of the global connectivity and link

lifetime discussed in Section 5.7. Although the average granularity of the original trace is

60 s, at certain times, the throughput presents similar results. This occurs because most

vehicles travel through a set of major highways with a straight shape. For these cases,

interpolation does not compromise as much as in scenarios with curvilinear trajectories.

Furthermore, for all traces presented in this section, we can see that Shenzhen exhibits

the highest average throughput. Clearly, this is related to the link lifetime, as shown in

Figure 5.11e.

The results discussed in this section show that large gaps in real vehicular mobil-

ity traces lead to unrealistic topologies, when not calibrated or calibrated using a linear

interpolation, affecting the performance evaluation of routing protocols. Indeed, the in-

terpolation method used by simulators, when applied to traces with large gaps, introduces

significant bias, particularly when there is no road map associated with the vehicles’ move-

ments. The method introduced in this work improves the quality of the traces, leading

3https://www.nsnam.org/wiki/NetAnim
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to more realistic scenarios, and, consequently, increasing the reliability of the evaluation

results.

5.9 Chapter Remarks

This chapter shows that existing real vehicular mobility traces present gaps that

lead to network topologies differing from reality, and, consequently, to an unreliable per-

formance evaluation. To tackle this problem, we have proposed and validated a solution to

find and fill gaps by adopting a cluster-based reference system and a calibration method.

The results revealed that our approach is able to accurately fill the gaps. Moreover, we

have observed that the network topologies built from the calibrated traces differ signifi-

cantly from the original ones. To address this, we have presented the evaluation results

that compare the communication graph of the original and the calibrated traces for five

real-world traces. Our results provide a clear distinction between the communication

graphs from the original and calibrated traces.

The literature indicates that the Cologne trace constitutes the most complete ve-

hicular mobility trace. Despite having a high granularity, the Cologne trace is a synthetic

trace and has a duration of 24 hours. On the other hand, the application of the cali-

bration method to real vehicular mobility traces improves their quality, leading to more

trustworthy simulation results. To contribute to the research community, we made the

calibrated traces publicly available for the five different cities.

As future work, there are some interesting issues to investigate. We plan to fine-

tune the calibration solution to avoid adding calibrated points outside roads caused by

GPS errors in the traces. It is important to evaluate other clustering algorithms, as well as

other strategies for building the reference system. We aim to evaluate other state-of-the-

art protocols for vehicular networks considering aspects of communication, and evaluate

the impact of our proposal in the simulations of these protocols.
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Chapter 6

Improving Bus Mobility Data for

Bus-Based Urban Vehicular

Networks

In addition to being one of the primary means of transport, with the advent of sensing and

communication technologies, buses belonging to the public transport system have gained

a new role in urban centers. They have been applied as a powerful vehicular network that

covers an entire city, called BUS-VANET. For the design and validation of solutions for this

type of network, the nodes’ mobility information is essential. For instance, data from the

buses’ GPS trajectories can be used to understand the dynamics of encounters between

them. This knowledge can be applied to design applications and services for different

users, besides providing the necessary information to properly manage this important

public transport solution. However, real-world trajectories have several imperfections. In

particular, GPS trajectories are heterogeneous, asynchronous, and typically contain a low

sample rate. These characteristics impose certain limitations on the use of this dataset in

the design of solutions for a BUS-VANET. In this Chapter, we propose a hybrid method of

calibrating trajectories based on historical information of trajectories and a road network

to overcome these problems. We showed that our method surpasses the state-of-the-art

techniques in several perspectives through evaluation with realistic data.

6.1 Introduction

Understanding urban mobility plays a key role in designing solutions for smart

cities [192] [7] [204] [200]. Among the existing mobile entities in the urban space, buses

and, more broadly, the public transport system (PTS) can provide important information

and resources from different perspectives. A PTS can form a powerful urban sensing

infrastructure as proposed in [108]. Another perspective refers to using PTS as a wireless
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(a) 150 seconds (b) 90 seconds (c) 30 seconds (d) 1 second

Figure 6.1: A trajectory represented in different sampling rates from the bus Line 1 in
the Luxembourg dataset.

ad hoc network taking advantage of the spatiotemporal dimension of bus mobility, creating

a vehicular network based on buses.

A bus-based vehicular network, also known as BUS-VANET [154], is an inter-

vehicle communication network where the primary nodes are buses. A BUS-VANET

might be homogeneous when the network nodes are only buses or might be heterogeneous

where there is connectivity with ordinary vehicles, road-side units or cellular networks.

In the latter case, the BUS-VANET operates as a communication backbone. When com-

pared to traditional vehicular network architectures [89], a BUS-VANET has the following

advantages from the standpoint of the nodes’ mobility [57]: buses follow predictable routes

at scheduled time intervals; they are not so sensitive to security and privacy flaws; they

usually have a wide coverage and are well-distributed throughout a urban area; they typ-

ically have routes between regions throughout most of the 24 hours of a day; their speed

range is short as compared to ordinary vehicles; generally the trips are between stations

and follow main streets so that the communication contacts are recurrent and favor the

functioning of techniques such as store-carry-and-forwarding and opportunistic commu-

nication; and tend to provide Internet access to their users mainly when we consider a

scenario of a smart city.

Considering those characteristics, researchers have proposed data dissemination

protocols [65], content offloading [265], and urban sensing mechanisms [86] that run on

BUS-VANETs. For instance, both Zhang et al. [286] and Chaib et al. [65] have proposed

routing protocols that consider the contacts between buses of different lines and the travel

distance based on the pre-established routes, respectively. To validate the solutions, those

studies generally use either synthetic mobility data (e.g., trajectories) that often does not

represent the reality or real-world mobility data containing problems, as discussed in the

following, which need to be corrected for use in this domain.

We are interested in dealing with real-world mobility data that unfortunately con-

tains problems with respect to representativeness and realism. In particular, our work

focus on increasing the sampling frequency of the vehicle positioning [208]. In general,

the trajectories obtained by GPS (Global Positioning System) receivers are heterogeneous

and have a low sampling rate. As an illustration, consider a bus mobility data (or bus mo-
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bility trace) containing the bus positioning records over time, such as latitude, longitude,

and timestamp. As an illustration, Figure 6.1 depicts the representation of the vehicle’s

trajectory at different sampling rates. The higher the value the further apart the sampling

points are of a moving bus. Obviously, the representation in Figure 6.1d is more suitable

to be used in studies of vehicular networks, since the network is highly dynamic. There-

fore, we can have a better understanding of the network topology in vehicle-to-vehicle or

vehicle-to-infrastructure communications scenarios.

The acquisition of a dataset with a high-frequency sampling rate, as in Figure 6.1d,

can be impracticable due to restrictions existing during the recording, uploading, and

storage of the data points. In this sense, the calibration of a bus dataset appears as an

alternative in the stage of data preprocessing. Calibration is a technique that transforms

heterogeneous trajectories with low sampling frequency into trajectories that represent

the movement more precisely and, thus, that better resembles the reality. In the domain

of vehicular networks, where there is a strong relationship between vehicle mobility and

connectivity, this technique has a fundamental role in accurately reconstructing vehicles’

movement, thus avoiding the production of misleading information when using real-world

trajectories.

Currently, there are some calibration methods, but they are based on a general-

purpose strategy that does not consider particularities of a transportation mode. Bedogni et al. [19]

proposed a map-based method for calibration that inserts points based on the shortest

path distance between consecutive points. This assumption is not valid for buses, as they

have fixed routes. Celes et al. [63] created a calibration method that takes into account

historical mobility without using maps. However, as shown in [19], the results of this

calibration become compromising as the sampling frequency decreases. In this Chapter,

we design a calibration method that considers the particularities of the bus mobility. In

this direction, our contributions include:

• a novel calibration method that reconstructs GPS bus trajectories, increasing its

sampling rate between consecutive points. We show the superiority of our method

over state-of-the-art techniques by performing extensive experiments with a realistic

bus mobility dataset. To certify the impact of the solution, we consider different

sampling values during the tests.

• a hybrid strategy that uses both historical mobility data and map information to

obtain a representation of the actual bus mobility. We show that this strategy

advances the state-of-the-art. To the best of our knowledge, our approach is the

first one aimed at calibrating bus mobility data using this hybrid strategy.

• a thorough validation based on similarity measures that compare calibrated and

original trajectories. This approach allows us to show that the proposed method
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generates calibrated trajectories with consistent characteristics of the original move-

ment, such as shape, size, and original points of the real trajectory.

The rest of this Chapter is organized as follows. Section 6.2 presents and discusses

the related work and points out the motivations for the design of a novel calibration

method that advances the state of the art. Section 6.3 introduces the proposed method

through a detailed description. Section 6.4 evaluates our method by comparing it with

existing solutions, and shows how the calibration impacts the design of a vehicular network

for buses. Finally, Section 6.5 presents the conclusions and future directions.

6.2 Related work

Vehicle movement data is represented as a discrete sequence of locations recorded

at a given sampling rate. For example, a vehicle path defined as a set of GPS points can

be generated every 60 seconds. However, this representation can introduce certain incon-

sistencies in the modeling and analysis of mobility for many applications. For instance, in

the study of topology in vehicular networks, it is necessary to have a representation very

close to the real one to identify the communication between vehicles, since the topology

is highly dynamic [194, 55]. An option would be to generate the data more frequently,

but this becomes impractical. In this sense, the calibration process appears as an alter-

native to reconstruct the real movement of vehicles from low sampling rate trajectories.

We present the calibration algorithms in the literature according to two categories: data-

based calibration and map-based calibration. Although there are other alternatives, such

as linear interpolation [135, 220], the methods described below stand out in the literature.

Data-based calibration. Su et al. [245] proposed a trajectory calibration frame-

work that consists of two steps: generation of the reference system and trajectory cali-

bration. In the first step, they create a reference system using existing data in the city,

such as points of interest, historical trajectory data, turning points extracted from past

trajectories. Those data generated from the reference system are called anchors and are

applied as resources for calibrating the sampled trajectories. In the second step, they

proposed a geometric method and another Bayesian model. Based on their results, the

geometric approach is faster than the model-based method. However, the model-based

one produces better results, mainly because it considers the relationship between anchors.

With that in mind, Silva et al. [237] and Celes et al. [63] improved the approach proposed

in [245]. They also used an anchor scheme based on historical data and created a geomet-

ric calibration method that considers the relationship between anchors. They performed
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a set of evaluations demonstrating how calibrated trajectories impact the study of the

topology of vehicular networks formed by taxis. Their results reveal that low-sampling

trajectories induce topologies not consistent with reality.

Map-based calibration. In this category, the researchers consider a map as the

primary resource. Therefore, the main idea is to use information from the road network

to trace routes between the points of the sampled trajectory. The authors’ assumption to

reconstruct the trajectories is based on the idea that vehicles tend to follow the shortest

path between two consecutive points. In this direction, Liu et al. [177] proposed a calibra-

tion method that interpolates in-between points considering the direction of the vehicles,

road connectivity, and intersections between streets. Similarly, Bedogni and Fiore [19]

used the OpenStreetMap (OSM) to recreate the trajectories considering the intersections

of the shortest path between consecutive points of a trajectory. The authors validated

the methods using GPS data from private vehicles and taxi.

In summary, data-based methods take advantage of historical vehicle mobility to

reconstruct routes, while map-based methods take advantage of the road network to

perform the same task. In this sense, our work aims to combine the strength of those

methods by creating a hybrid approach to calibrate bus mobility data, while overcoming

the limitations presented by them [296]. To the best of our knowledge, our approach is the

first one aimed at calibrating bus mobility data using this hybrid strategy. Data-based

methods have limitations in representing the shape of the trajectory, requiring additional

pre-processing steps, as they do not know the road topology features. Map-based methods

assume that the vehicle takes the shortest path between two consecutive points. Although

this assumption is reasonable for private cars and taxis, it is not always valid for buses.

Bus mobility must follow fixed routes.

6.3 Hybrid method for calibrating bus trajectories

In this section, we describe our hybrid method for calibrating bus trajectories.

First, we present some definitions and the general framework of the method. Next, we

describe each module in detail.



6.3. Hybrid method for calibrating bus trajectories 106

6.3.1 Preliminaries and Framework

Broadly speaking, a trajectory (T ) is represented by a temporally ordered sequence

of GPS data points (latitude, longitude and time) from a vehicle trip. The set of trajecto-

ries of one or more vehicles is called Dataset and can be expressed as D = {T i}Ni=1, where

N is the number of trajectories in D. Below, we formally define this.

Definition 3 (Sample point). A sample point p is a tuple containing the positioning

information x and y (longitude and latitude, respectively), the sample registration times-

tamp (t), the bus identifier (busID), and the bus line identifier (lineID) that the bus is

performing. Therefore, p = (x, y, t, busID, lineID).

Definition 4 (Trajectory). A trajectory is a finite ordered sequence of sample points,

i.e., T i = [pi1, p
i
2, ..., p

i
|T i|], where T i is the i-th trajectory in D, |T i| is the number of points

in T i, and pj−1.t < pj.t for 1 < j ≤ |T i|.

Definition 5 (Road network). A road network is represented as a graph where the vertices

are the intersections, curves and terminal points while the edges are the street segments

obtained from a real-world map like OpenStreetMap.

Figure 6.2 provides a diagram of our framework. Initially, the raw trajectories

collected by the GPS monitoring system are stored in a database, and before being used go

through a preprocessing step. This task consists of manipulating the original trajectories

in order to make them more reliable for modeling and analysis, avoiding errors or bias.

In order to achieve that, we need to remove outliers, duplicate and inconsistent points,

as well as treat missing data. In addition, we make the transformation of some data

types in order to ease the computational process in the following steps. For example, the

transformation of time in datetime format (YYYY-mm-dd H:M:S) to a real number in

epoch time format.

The bus trajectories consist of sample points. Although these sample points con-

tain the line identifier, we do not explicitly have the directions of the line and the actual

path. In this sense, the following tasks deal with these issues. As described in detail below,

the task named discovering line directions will detect the points of origin/destination

of each trip of the bus as well as will discover which trajectories represent (called repre-

sentative trajectories) each direction of the line. Next, in the task named identifying

anchor points, we use the representative trajectories, which are reliable historical data,

and integrate with the road network to identify the anchor points. These anchor points

identify the path to be followed by the buses. They work as a support to calibrate the

trajectories.
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Figure 6.2: Framework for calibrating bus trajectories

Finally, in the task named calibrating trajectories, we obtain a set of sampled

trajectories that have gone through a preprocessing task and associate them with the

anchor points, obtaining a set of calibrated trajectories with a high sampling rate. Next,

we present the details of the process of discovering the directions of a given bus line,

identify anchor points and calibrate trajectories.

6.3.2 Discovering line directions

In general, publicly available bus mobility data contains positioning information,

timestamp, bus identifier, and line identifier. However, in many cases, each bus line has

movements in two directions, with the origin and destination points reversed for each

direction. The calibration method proposed in this work has a set of reference points

that must be in the same direction as the sampled trajectory that needs to be calibrated.

Therefore, in this section, we present a method for detecting the starting and ending

points of the trips. Furthermore, we reveal which subset of trajectories from D represents

the directions of the bus line under analysis.

The algorithm to identify the origin and destination points receives as input D

and the value vlineID of the bus line in analysis. From this, we obtain the sets O
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and E that contain the origin and destination points from the trajectories of the line

vlineID. Therefore, O = {pi1 : ∀T i ∈ D ∧ pi1.lineID = vlineID} and E = {pi|T i| : ∀T i ∈
D ∧ pi|T i|.lineID = vlineID}. After that, we apply a clustering algorithm, called DB-

SCAN [226], on the sets O and E. DBSCAN considers the density of points to detect

clusters. Thus, {X, Y } ← DBSCAN(O) and {Z,W} ← DBSCAN(E) where DBSCAN

receives the sets of origin and destination points and returns the two clusters of points

with more samples for O and E. The sets X, Y , Z, and W contain the significant points

of origin and destination. However, we still need to identify a location that is represen-

tative for each cluster. We might obtain that location looking at the sample closest to

the centroid (cX) of X by applying lX = argmink∈X d(k, cX) (analogously to Y , Z, W )

where d(, ) is the spatial distance between two points. Finally, the last step consists of

identifying in {lX , lY } and {lZ , lW} the points with the greatest distance between them1.

Thus, they are the origin and destination points of each direction.

After obtaining the points of origin and destination of each direction for a given

bus line, our next objective is to determine from D the representative trajectories for

this route. For that, we define the following expression: Γ = {τ : ∀T i ∈ D, pi1.lineID =

vlineID ∧ d(pstart, p
i
1) ≤ threshold ∧ d(pend, p

i
|T i|) ≤ threshold}. The set Γ contains all

trajectories with a line identifier equal to vlineID from pstart to pend. Besides, the threshold

filters the trajectories with beginning and ending points close to pstart and pend, respec-

tively. As a last step, we run a trajectory clustering algorithm that receives the Γ as

input and returns the cluster with the largest number of number of similar trajectories.

This cluster contains the representative trajectories. The other existing clusters contain

anomalous trajectories that occur in situations that bus drivers deviate from the route.

We adapted the trajectory clustering methodology proposed by Besse et al. [23] to return

the densest cluster.

6.3.3 Identifying anchor points

The anchor points are geographic coordinates that are obtained from the represen-

tative trajectories in combination with the road network. They define the exact route to

be followed by the line bus and the direction under analysis. Two resources are needed

to identify the anchor points: the road network and the set of representative trajectories.

From this, a mapping of each point of the representative trajectories to the nearest street

segment is made. Figure 6.3 illustrates the process of mapping the points of the repre-

1If all points are close, both directions have similar points of origin and destination (e.g., circular
routes).
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sentative trajectories for a street segment. The point pa is projected in s4 because the

distance between them is the smallest among the segments superimposed on a radius r.

The s4 has four incidences and the others none.

Figure 6.3: Mapping a point to nearest street segment

The sequence of consecutive segments that, from the start point of the trajectories

to the destination point, contains more incident points defines the bus route. To obtain

this sequence of segments, we begin by identifying in which segment is the starting point

and in which segment is the destination point. Next, from the first segment, the neigh-

boring segment with the highest incidence value is attached to the route, and so on until

finding the segment of the destination point. As this iteration occurs, it stores the end-

points of these segments. The endpoints form the set of ordered point anchors between

the origin and destination of the route, as depicted in Figure 6.4. Figure 6.5 shows the

anchor points resulting from this task for Bus Line 1. It is worth mentioning that there

are more anchor points in the curves as they are decisive in maintaining the shape of the

trajectory.

Figure 6.4: Route discovery process

6.3.4 Calibrating trajectories

The last task of the framework is to calibrate the sampled trajectories. This process

inserts points in the trajectory, increasing its granularity. The calibration receives the

sampled trajectories and a set of anchor points. For instance, considering the sampled

trajectory shown in Figure 6.1a and the anchor points shown in Figure 6.5, our goal is to

return the trajectory shown in Figure 6.1d
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Figure 6.5: Example of anchor points

Our method is hybrid because it is aware of both the map and the anchors obtained

from historical data. In this way, we can find the exact path that must be between

two consecutive points of the sampled trajectory. Consider a sampled trajectory T i =

[pi1, p
i
2, ..., p

i
|T i|] and the points pij−1 ∈ T i and pij ∈ T i. As described in [177], we can

observe three cases for those points:

• Case 1: pij−1 and pij are on the same street segment, that is, there are no anchor

points between them.

• Case 2: pij−1 and pij are on a consecutive segment pair, that is, there is only one

anchor between them.

• Case 3: pij−1 and pij are on segments not connected to each other, that is, there is a

path between them passing through two or more anchors points.

Based on these cases, we can compute the distance between pij−1 and pij, as defined

by Equation 6.1.

∆s =


d(pij−1, p

i
j), for Case 1

d(pij−1, A0) + d(A0, p
i
j), for Case 2

d(pij−1, A0) +
∑m

k=1 d(Ak−1, Ak)+

d(Am, p
i
j), for Case 3


, (6.1)

where d(, ) is the spatial distance between two points and (A0, A1, . . ., Am) are the anchor

points between pij−1 and pij.

Considering that the vehicle moves between points with constant speed, we can

obtain the speed between two points by making ∆v = ∆s/(pij.t − pij−1.t). After that, it

is enough to calculate the spacing between points that will be inserted in the trajectory,

given by ω = ∆v × SAMPLING-TIME. We define the SAMPLING-TIME equal to 1

second in our experiments. Given this general view, the algorithm consists of iterating

over T i, checking the above cases for consecutive points and inserting new points according

to ω using a linear interpolation.
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6.4 Performance Evaluation

In this section, we present the main findings of the calibration method proposed in

this work compared with the state-of-the-art. Next, we detail the complete methodology

for preparing the workload, the baseline algorithms, and measures.

6.4.1 Setup

Dataset. Bus datasets usually have low-sampling trajectories; in other words,

they contain trajectories with 30 seconds or more between two consecutive sample points.

In this sense, using this type of data directly to evaluate calibration methods is not ade-

quate because we do not have a real representation of the trajectories at a high sampling

frequency (i.e., ground truth). An alternative is to use realistic datasets that mimic the

mobility of buses in a city.

We obtained a realistic dataset from the LuST scenario [76]. LuST is a realistic

scenario containing a microscopic-level mobility of cars and buses from Luxembourg. It

was created based on official mobility information. LuST scenario has similar charac-

teristics to the city routine during a day, such as mobility patterns and traffic jams. In

the context of bus mobility, this scenario represents bus lines according to the origin and

destination points, route, and bus stops. The bus trajectories we extract from LuST have

a bus positioning record every 1 second.

Altogether we use data from 11 bus lines. The obtained trajectories (named original

trajectories) have a sampling time of 1 second, and we have manually increased this

sampling time to 30, 60, 90, 120, 150, 180 seconds in each one. For example, Figure 1

shows an example of a trajectory in this process. In this way, we create a sampled workload

(called sampled trajectories). We applied those sampled trajectories to the calibration

methods and assessed how similar the calibrated trajectories and the original trajectories

are. The original trajectories, sampled trajectories, and the calibrated trajectories follow

a representation as established in Definition 2.

Baselines. As previously described, our calibration method consists of a hybrid

approach that combines ideas from data-based and map-based methods. To assess our

proposal, we implemented the two principal references that follow the strategies described

in Section 2. For data-based calibration, we follow the algorithm proposed in [63]. It

contains a parameter called eps that reflects the density of historical points used in the

calibration process. After the previous evaluation, we adopted the value of eps equal to 2
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and 5. When eps = 2, there is a more significant amount of historical points (named data-

based eps = 2) than eps = 5 (named data-based eps = 5). For map-based calibration, we

follow the approach proposed in [19]. We used the road network from the OpenStreetMap2

to implement the map-based calibration, as defined in the original work. Our method used

the same road network to create the anchor points.

Furthermore, as our method and the data-based need historical data to create

anchor points, we divided the sampled trajectories for each bus line into two subsets. A

subset with 70% of trajectories to create the anchor points and another one with 30% of

trajectories to evaluate. This strategy avoids bias in the calibration process.

Measures. To evaluate the effectiveness of the calibration methods, we adopted

the following metrics that compare the similarity of trajectories [240]: SSPD, DTW, EDR,

and LCSS, which are explained below. In this way, we obtain the value of these measures

for each calibrated trajectory, and the corresponding to its original one. In summary, these

measures compare trajectories according to the spatial distance between their points. It is

worth mentioning that, for all of them, identical trajectories have a value equal to 0. Each

similarity measure deals differently with different trajectory sizes, presence of outliers, and

different granularity values. Therefore, we chose these measures because they evaluate

the similarity of trajectories from different perspectives, as described below. For more

details on those measures, see [243].

• SSPD (Symmetrized Segment-Path Distance) [23]: This measure verifies the tra-

jectory as a whole so that it is more permissible to have some variations between

the compared trajectories. It considers features such as the spatial distance and

divergence between these trajectories as well as the total length.

• DTW (Dynamic Time Warping) [22]: A measure that works based on the matching

between points of the two trajectories under analysis. Therefore, since all points of

the original trajectory, including outliers, require to be matched to another one in

the calibrated trajectory, this measure is profoundly impacted by the presence of

outliers.

• LCSS (Longest Common SubSequence) [243]: Unlike DTW, LCSS does not require

matching between pairs. It obtains the similarity between two trajectories by ob-

serving the size of the largest subsequence of points between them. It has as a

parameter a threshold to consider two points of the trajectories compared as equal.

If the corresponding points of the two trajectories are less than the threshold apart,

they are considered equal. This approach makes this measure robust to noise.

• EDR (Edit Distance on Real sequence) [68]: It estimates the difference between two

sequences of points, similar to LCSS. It is also robust to the existence of outliers, as

2https://www.openstreetmap.org/
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it controls with a threshold the association between points of the trajectories being

compared. Thus, EDR and LCSS do not require that all points of the trajectories

meet a match. However, both may suffer from trajectories of different lengths or

distinct sampling rates.

Besides the measures mentioned above, we also measure the execution time of the

methods to calibrate the sampled trajectories.

6.4.2 Analysis and Discussion

The graphics presented in this section are obtained from the calibration process

using the data-based method, the map-based method, and the hybrid method on the

test dataset described early. In all graphics, the values represent the measured distance

divided by the trajectory length.

According to the SSPD, the hybrid method presents better findings regardless of

the sampling time of the sampled trajectories, as despicted in Figure 6.6. This reflects

that the calibration using a hybrid method allows the inserted points to recover essential

properties such as the shape of the trajectory while maintaining the trajectories’ length

without significant variation. In general terms, the data-based eps = 2 has the second-best

performance. The value of eps reveals to be decisive in the performance of the data-based

strategy. This is because the lower the eps, the more historical data are used in the

construction of the data-based reference system and, consequently, more information is

used in the calibration process. The map-based inserts new points, changing the shape

and length of the trajectories. In particular, this is because the principle of this method

is to follow the shortest path between two points on the trajectory, but this assumption

is not always valid for buses.
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Figure 6.6: SSPD
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Figure 6.7 shows the evaluation of the trajectories calibrated for the DTW. This

measure has as the main characteristic the matching between points of the compared

trajectories. Thus, making it sensitive to the presence of outliers. The hybrid method

and the map-based method have an input parameter that controls the sampling time for

1 second of the calibrated trajectory. While the data-based does not make this control of

the sampling time for the insertion of new points, this introduces data in the calibrated

trajectory that generates a lot of noise. In general, the hybrid method shows a high

similarity between original and calibrated trajectories when we check DTW.
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Figure 6.7: DTW

Figures 6.8 and 6.9 for the EDR and LCSS, respectively, have a relative equivalence.

It makes sense because both measures have similar characteristics. If we look in numerical

terms on the y-axis, the values are close to 0. It is because these two measures are robust

to outliers, and thus, the outliers inserted in the calibrated trajectories are not being

considered as when evaluated in Figure 4. Even so, the hybrid method continued to

perform better than the other methods.
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Figure 6.8: EDR

In Figure 6.10, we evaluated the average execution time for each method to cali-

brate the sampled trajectories. We can see that a data-based method that uses a consid-

erable amount of historical information is quite expensive. Although the hybrid method

uses historical data, it exhibits a performance compatible with the map-based. It is be-

cause historical data is used only once per bus line, and only when generating the anchor
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points in each direction. Thus, the anchor points are a significantly smaller set of points

representing the intersections and curves extracted in the overlap with the road network.
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Figure 6.9: LCSS

There is an increase in the measured values for all methods, as the sampling time

increases. However, for the hybrid method, this increase is not so significant regardless of

the measure. It shows that the hybrid method is robust to variations in the sampling time

of the trajectories. Comparing the data-based and the map-based methods exclusively,

we observed that the data-based method performs better when the sampling time is low,

and as this time increases, the map-based has a better result. Another critical fact is

the time of execution of the map-based method is better during the experiments. Those

observations show that a hybrid approach with the insights of the two existing methods

brings interesting results and good performance of execution time.
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Figure 6.10: Execution time

Figure 6.11 shows a comparison between two quite different trajectories. The AVL

— 25 line is a very long and has several curves passing through several streets, while the

NBSKMS line is a night line with no significant variation. Our objective is to show how

the calibration methods are impacted by the shape of the trajectories. In particular, we

evaluate SSPD and DTW because they are sensitive to variations in the trajectory shape

as well as sensitive to noise.

Analyzing Figures 6.12 and 6.13, we can see that the methods have a similar

performance for the NBSKMS line. Since this line is a straight path on an avenue,
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(a) AVL—25 (b) NBSKMSNightbus

Figure 6.11: Original bus trajectories from AVL— 25 and NBSKMSNightBus.

the methods do not introduce errors during the calibration. However, when we look at

the AVL — 25 line, we can see that the hybrid method continues to perform well and

consistently regardless of the sampling time. The shape of the AVL — 25 line makes the

other methods to introduce errors. For example, for larger values of sampling time, the

map-based method introduces errors for seeking the shortest paths, deviating the vehicle

from the expected route. Meanwhile, the hybrid method is robust to that. It uses the

concept of anchors that keep the vehicle moving along the pre-established route.
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Figure 6.12: SSPD
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6.5 Chapter Remarks

In this chapter, we presented a method to calibrate GPS bus trajectories. Although

there are some calibration methods in the literature, all of them are directed to calibrate

ordinary vehicles’ trajectories. As shown previously, they do not perform well to calibrate

bus GPS trajectories. Our method follows a hybrid approach that used both historical

information and the road network, considering the mobility characteristics of buses as

pre-established routes. Through an experiment with realistic data, we showed that our

method surpasses the existing ones, regardless of the sampling rate.

As future work, we plan to improve the method by incorporating contextual infor-

mation such as actual traffic conditions, bus stop points, traffic lights, and variation in

acceleration. Besides, we want to show how these calibrated trajectories impact the de-

sign of the vehicular network based on buses. In particular, on the network topology and

in the composition of routing protocols based on contact and social information between

vehicles.
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Chapter 7

On the Temporal Analysis of

Vehicular Networks

Vehicular networks are seen as the key communication solution for intelligent transporta-

tion systems. An essential task for the development of solutions for vehicular networks

is to understand aspects related to their communication topology along the time, mainly

because it is directly impacted by vehicular mobility. In this sense, a natural question

that arises is how can we model the communication topology in order to have a real

representation of network connectivity? Particularly, this question becomes even more

complex when we consider the dynamic behavior of mobility over time. In the literature,

there are some efforts that aim to model the topology of a vehicular network to better

understand its dynamics. However, we note that current approaches have limitations in

the temporal perspective leading to the loss of important information. In this chapter,

we show the strengths and weaknesses of current approaches in the characterization and

analysis of vehicular network topology. In addition, we present how a model derived from

the temporal network theory can be applied to capture the dynamics of a large-scale

realistic vehicular mobility trace.

7.1 Introduction

The understanding of the mobility dynamics of vehicles from the point of view

of communication among them is fundamental to design proper solutions for vehicular

networks. For instance, depending on the network connection patterns we can see if it is

more appropriate to use a protocol that follows a store-carry-and-forward approach than a

multi-hop protocol. In this context, some efforts have been made to temporarily analyze

the behavior of the topology in vehicular networks. In order to have a reliable under-

standing, vehicular mobility traces are commonly adopted which have records of vehicle

positioning over time. However, depending on the characteristics of those traces or the
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temporal representation model, some relevant information can be lost and consequently

the quality of the topology analysis can be compromised.

In [93, 70, 139], and [220], taxi traces are used for topology analysis. However, these

traces used have different sampling rates ranging from a few seconds to minutes between

consecutive records [63]. Thus, the construction of the network topology is impaired

because the positioning of the vehicles is not always recorded throughout the observation

period. Moreover, the approaches of mapping the vehicular mobility to a temporal model

of the topology present advantages and disadvantages that have not been evaluated.

In this work, we address the issue of temporal analysis of vehicular networks. From

a realistic large-scale vehicular mobility trace containing vehicle records every second,

we analyze the temporal topology of a vehicular network. Particularly, we perform the

characterization and a deep analysis of current approaches regarding temporal topology

using a reference scenario evidencing their strengths and weaknesses. In addition, we

confirm results obtained in the literature on network fragmentation and show numerically

the highly dynamic nature of connections. Finally, we present how a model derived from

the temporal network theory can be applied to capture the dynamics of a large-scale

realistic vehicular mobility trace.

The remaining this chapter is organized as follows. Section 7.2 presents the related

work. Section 7.3 presents the methodology applied in this work. We describe in detail

the trace used in the analysis. We present the topology models used in the temporal

analysis and the metrics for understanding the topology. Section 7.4 presents the details

about the analysis performed as well as the characterizations and the deep discussion on

the numerical results. Section 7.5 presents our conclusion and future work.

7.2 Related Work

In recent years, the availability of vehicular mobility traces has allowed researchers

to investigate and understand many aspects that should be considered in the design of

vehicular networks [237]. In particular, to analyze the topology dynamics several efforts

have been made considering different network representations. In this area, graphs have

been widely used, where the vertices (or nodes) represent vehicles and the edges represent

the availability of a communication link between them. However, as described below,

what differentiates such representations is how these graphs are composed and analyzed.

A straightforward approach to representing the topology, considering the mobility

of the vehicles, is to create a contact graph of vehicles during an observation time. Ba-

sically, the resulting graph represents the aggregation of encounters that occurred during
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that period in such a way that there will be an edge between two vertices if there was at

least one contact between them during that time window. Cunha et al. [93] adopted this

approach to study the social properties of vehicular networks using metrics from complex

network theory. Also, this type of modeling can be applied to analyze the graph con-

nectivity when it is aimed to analyze the duration of contacts and inter-contact time of

vehicles [92].

Alternatively, another approach is to analyze the topology of vehicular networks

at particular moments in time. In this case, the network is represented as a set of static

graphs, representing snapshots, that are analyzed individually, one at a time. Using this

approach, Pallis et al. [210] analyzed the structure and evolution of a vehicular network

based on a realistic mobility trace. They sampled the vehicular mobility trace using a

five-minute interval and examined the network characteristics using connectivity metrics.

Similarly, other studies [193, 194] analyzed network characteristics every second using

complex network theory metrics. Chen et al. [70] characterized the topology from a

spatial and temporal point of view using a taxi vehicular trace that has the positioning of

the vehicles every 30 seconds. Hou et al. [139] discretized a taxi vehicular trace at every

10 minutes in a 24-hour period to create the network topology, that is, they obtained 144

snapshots of the topology. After that, they modeled how mobility impacts the network

connectivity.

In the literature, there are a few studies that consider the temporal constraints in

the analysis of the vehicular network topology. Glacet et al. [117] introduced this perspec-

tive considering the network as a sequence of static graphs in which they considered the

temporal relationship between them and observed the temporal evolution of the network.

Qiao et al. [220] applied a time-extended model to characterize the temporal topology of

a vehicular network obtained from a taxi mobility trace.

The studies mentioned above employ basically three different strategies to analyze

the topology of a vehicular network. One of our objectives in this work is to present a de-

tailed analysis of these approaches. Thus, we consider in our methodology and evaluation

some critical points of these strategies: graphs obtained from the aggregation of con-

tacts in an observation window do not consider the order these contacts; modeling using

instantaneous graphs neglects the timing between graphs when analyzing them individu-

ally; the proposals that determine the temporal topology are important contributions to

understand the structure of the network, but fail to show the advantages in relation to

the other approaches. In this direction, we perform the characterization and analysis of

these approaches using a reference scenario evidencing their strengths and weaknesses.
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7.3 Methodology

In this section, we describe the methodology applied to our temporal analysis of

the topology of vehicular networks. Initially, we describe the vehicle mobility trace used

to conduct our analysis (Section 7.3.1). Next, we present the network models that will be

used to analyze the topology (Section 7.3.2). Finally, we present the metrics employed to

analyze the models (Section 7.3.3).

7.3.1 Vehicular Mobility Trace

With the popularization of positioning devices, a number of vehicular mobility

traces have been made available. For example, it is common to find traces of taxi and bus

with the positioning of vehicles along the time. They have been used in the analysis and

simulation of vehicular networks to obtain more realistic results [63]. However, these traces

present some problems that may compromise the reliability of results, such as irregular

sampling rates, outliers, and inconsistency. An alternative is to use realistic traces that

allow real representation of vehicular mobility without worrying about the details of data

preprocessing. For this reasons, we have adopted a well-known and appropriate trace to

address vehicular mobility analysis, called TAPASCologne [255].

The TAPASCologne1 trace contains records of 24-hour vehicular mobility in the

city of Cologne, Germany. The trace represents a typical working day, with data in an

area of 400 km2 and the positioning of vehicles is obtained every second. It is a result of

the combination of resources and state-of-the-art tools such as census data, surveys, road

topology from OpenStreetMap2, and microscopic vehicular mobility simulated with the

software Simulation of Urban Mobility (SUMO)3. This trace has important characteristics

for temporal analysis of vehicular networks that are not present in the available taxi traces:

it is a fine-grained trace, relevant characteristic to analyze topology dynamics; It has a

variable density in time and space; it is a large-scale trace representing significantly the

mobility behavior of a city.

1TAPASCologne trace: http://kolntrace.project.citi-lab.fr/
2OpenStreetMap: https://www.openstreetmap.org/
3http://sumo.dlr.de/index.html
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(a) Aggregate graph (b) Instantaneous graph (c) Time-varying graph

Figure 7.1: Graphical representation of network models.

7.3.2 Network models

The network models used in this work are defined in this subsection. The aggregate

graph model and the instantaneous graph model are commonly used in the literature for

topology analysis of vehicular networks, as discussed in the Section 7.2. The time-varying

graph4 model can be seen in detail em [134] and [52].

Aggregate Graph The vehicular network topology can be modeled as a graph resulting

from the aggregation of the vehicle contacts during a period of observation. GAG = (V,E)

is a graph, where V represents the set of vehicles vi and E represents the set of edges eij.

In GAG, eij ∈ E is an edge between two vehicles vi and vj if there has been at least one

contact between them at any time during the period of observation.

Instantaneous Graph The vehicular network topology can be modeled as set of graphs

sampled with a fixed frequency at each time instant t. GIG = (V (t), E(t)) is the instanta-

neous graph at time t. V (t) = {vi(t)} is a set of vertices vi(t), where each one represents a

vehicle i traveling in the road scenario at time t, and E(t) = {eij(t)|vi(t), vj(t) ∈ V, i 6= j}
is the set of edges eij(t) representing the communication link between the vehicle i and

vehicle j at time t.

Time-Varying Graph (TVG) The vehicular network topology can be modeled as a

temporal graph, where the vertices and edges appear and disappear over the time. In this

case, the vertices represent the vehicles, edges represent the link communication between

the vehicles, and the weights of the edges represent the moment or interval of connectivity

between vehicles. GTV G = (V,E) is a time-varying graph, where V represent all vehicles

4The terms time-varying graph and temporal graph are used interchangeably in this Chapter
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of the network and the set E represents the connectivity between two vehicles. eij ∈ E
can be represent by a set of triples C = {(i, j, t)}, where the triple is a contact from

the vehicle i and vehicle j at time t or eij ∈ E can be represent by a set quadruples

C = {(i, j, tbegin, tend)}, where the quadruple is a contact from the vehicle i and vehicle j

between time tstart and tend.

Figure 7.1 present a graphical representation of the models. In this example, a

set of 6 vertices belongs to the network and the observation time is 3 units of time. In

the aggregated graph all the contacts occurred during this period are observed as a static

graph. In the instant graph, the modeling is done independently for each unit of time.

Finally, in the time-varying graph, the edges are labeled with the moments that a contact

occurred.

7.3.3 Metrics

This section contains the definition of all metrics used in this work. Before defining

the metrics, we present the definitions of connected components and largest connected

components that are two other structures used in our analysis.

Connected Component (CC) It is a subgraph of an undirected graph where there

is a path between any two pairs of vertices. In the context of vehicular networks, this

structure represents that a source vehicle can route a message through multiple hops

to a destination vehicle. More specifically, we are interested in finding out the number

of related components, because through this we will know how much the network is

partitioned.

Largest Connected Component (LCC) It is the largest connected component. This

structure is interesting to know how much of the network is connected to a single large

component. We represent the size of the largest component connected by SLCC .

Diameter The diameter is the greatest length of the shortest paths between any two

vertices. In vehicular networks, this metric can refer to the upper bound of the maximum

number of hops between any vehicles of a connected component.

Node Degree The degree of the vertex is obtained by the number of edge incident

on it. In the context of vehicular networks, this metric reveals how much the vehicles
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are connected to each other. In this way, we can have an estimate of the density of the

connected components.

Clustering Coefficient It measures how much the vertices in a graph tend to cluster

together [266]. In vehicular networks, this metric reveals how much a click tends to occur

in the vicinity of a vehicle. This metric is interesting because it addresses how the vehicles

are connected to each other.

Temporal distance Temporal distance τij between i and j is the shortest time it takes

to reach j from i along temporal paths. This concept is also known as duration or latency

in the domain of temporal graphs. A temporal path consists of a path in the temporal

graph following the temporal constraints of the edges.

Set of influence It consists of nodes that are reached temporarily from a given node

in a time window of observation. In the context of vehicular networks, this is interesting

to understand the process of dissemination in a dynamic topology.

7.4 Network Topology Analysis

In order to characterize the connectivity dynamics of a realistic network we model

the topology according to the three graph definitions presented in Section 7.3.2. In addi-

tion, as previously described, we adopted the TAPASCologne vehicular mobility trace in

the analysis. Although we did some analysis of the whole trace, we focused on a 15 minute

period (10:00 to 10:15) of the trace to detail the discussion between the approaches. In

relation to the wireless communication model, we adopted a commonly applied strategy

in the literature that consists of establishing a fixed communication radius (in our case

100 meters) between the vehicles following a model of a unit disk graph, according to the

802.11p protocol [151].

Figure 7.2a is a time series of the number of vehicles present in the network every

second. On average, every second, 4134 vehicles are moving. We can observe the existence

of two peaks due to the time of rush hours, and in the largest of them, the number of

vehicles in the network can reach approximately 15000. Figure 7.2b shows a time series of

the number of connections present in the network every second. We can observe a curve

shape similar to that observed in the number of nodes but differentiated proportionally.
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Figure 7.2: 24-hour vehicular mobility trace TAPASCologne, Germany.

7.4.1 Aggregate Graph Analysis

For this analysis, we adopted the aggregate graph model described in Section 7.3.2

and computed the following metrics: number of components, number of nodes in the

largest connected component, diameter, average degree, average clustering coefficient,

and average closeness centrality. During the 15 minute period, we identified the contacts

and constructed the aggregate graph. From this, we observed a component connected

with 9235 vehicles. This represents almost 98% of the vehicles that traveled during the

observation period. At this point, we can already see a disadvantage of this approach. As

the composition of the graph is basically in accordance with the occurrence of contacts

during the observation period, without considering time constraints, it is a tendency to

compose a large component as that period increases.

In Table 7.1 we show the metrics of the aggregate graph. We can notice the presence

of 200 components (most of them of a single vehicle) and a specific component has almost

every vehicle. Some metrics were computed in this giant component because it represents

almost the entire network, that is, removing the vehicles that had no contact with any

other. The diameter that is an interesting value for multi-hop routing has a value of 10.

However, the metric is computed over a static graph, that is, that multi-hop path does

not follow a temporal ordering and consequently a certain contact that occurred should

not be considered anymore. By observing the edge number, the number of vertices, and

the average degree of the vertices we can conclude that the graph is sparse. This also

implies in the centrality so that the value obtained is only 0.27 for which the maximum

is 1.

We believe that aggregate graphs are better suited for analyzing metrics where the

time factor is not determinant and the network topology does not change constantly over

time. In this way, you can get information such as the number of contacts, which pairs

of nodes are in the network.
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Table 7.1: Metrics for the aggregate graph.

Metric Value
Number of nodes 9445
Number of edges 192035

Number of components 200
Number of nodes in the largest component 9235

Diameter 10
Average degree 41

Average clustering coefficient 0.2769
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Figure 7.3: 24-hour vehicular mobility trace TAPASCologne, Germany.

7.4.2 Instantaneous Graph Analysis

For this analysis, we adopted the instantaneous graph model described in Sec-

tion 7.3.2 and computed the following metrics: number of components, number of nodes

in the largest connected component, diameter, average degree, average clustering coef-

ficient, and average closeness centrality. Figure 7.3a shows the number of components

connected for each second during the 24-hour period. In relation to Figure 7.3 we can

observe that, regardless of the time of day, the network has a considerable number of

components, with the exception of 00:00 am to 05:00 am that there are few vehicles in the

network. This result confirms the conclusion observed in [194] which states that the vehic-

ular network is highly fragmented into thousands of components unable to communicate

with each other.

In order to validate how much the network is partitioned, we define the following

factor for each instant graph GIG(t): St = SLCC/N , where SLCC is the size of the largest

connected component in GIG(t) and N is the number of nodes in GIG(t). Intuitively,

depending on the value of St we can observe two interesting situations about network

connectivity. The value of St varies between 0 and 1. When St tends to 0, the network is

more partitioned. On the other hand, if St tends to 1, the network is more connected.
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Figure 7.3b shows the frequency of St for all 86400 instantaneous graphs. In this

way, we show that the network is highly partitioned. In this case, since St values are

closer to 0, a store-carry-and-forward approach is more appropriate for routing. If the

density of St was concentrated close to 1, a multi-hop routing approach would be more

appropriate.

In order to understand how the number of vehicles in the network, the number

of edges, the number of components connected, and the size of the largest connected

component are related, we adopted the Pearson’s correlation. Figure 7.4 depicts the

results obtained from the correlation. We can note a significant relationship between

the number of vehicles in the network, the number of edges, and the size of the largest

connected component. However, the number of connected components has low correlation

with the other variables. This confirms the invariability of the number of components, in

other words, the network remains partitioned over the time.

In this study, we can observe several characteristics of the network topology that

are not captured in the aggregate graph model. To further clarify the differences between

the two approaches, we selected the same 15 minutes used in the aggregate graph analysis.

In particular, we use the same metrics, but now we computed each one in the instantaneous

graphs obtained every second during the observation period of 15 minutes.

Similarly to aggregate graph analysis, we also observed the largest connected com-

ponent in the instantaneous graph analysis. Figure 7.5a shows the number of vehicles

in the largest component every second. We can notice that at certain times the size of

the largest component goes from almost 100 nodes to 30 nodes in just a few seconds of

difference. Similar behavior is also observed in the other metrics as shown in the Fig-

ures 7.5b, 7.5c, and 7.5d. This behavior is justified by the fact that the observation period

is not rush hour so that vehicles move more freely. So, this shows a recurring behavior in
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Figure 7.5: Analysis of the largest connected component in the instantaneous graph.
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Figure 7.6: Analysis of temporal distance and Size of set of influence.

the network since the rush hour period focuses on 4 hours divided into two intervals.

In summary, this modeling shows another relevant characteristic in the vehicular

networks: highly dynamic. However, although we can visualize network fragmentation

and dynamics, this model still does not capture the relationships between each instanta-

neous graph.
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7.4.3 Time-varying graph analysis

The previous approaches presented and discussed above do not consider the tem-

poral relationship between the vertices. In the model of an aggregate graph, the temporal

notion is lost when creating an edge to each contact and in the analysis, the task does not

consider the order of occurrence. In the instant graph model, despite having the temporal

notion of network evolution, there is no relationship strategy between the snapshots. In

this context, a temporal graph [134] and [52] model emerges as an interesting approach

to capture the dynamics of network connectivity.

Considering the same observation window of 15 minutes we compute the temporal

distance according to the proposed method in [250]. Figure 7.6a shows the temporal

distance between the vehicles in the network. For each vehicle, we obtain the temporal

distance from the moment it enters the network to all other vehicles. If there is no

temporal path, it is assumed that the temporal distance is infinite. The average temporal

distance between vehicles is approximately 470 seconds. We can observe that 75% of the

temporal distance is greater than or equal to 305 seconds. Although the instantaneous

graph model shows that the network is highly partitioned, by means of the time-varying

graph model we have a real estimate of the temporal separability between the vehicles

using the metric called temporal distance.

Using the temporal path between the nodes we can identify the reachability of each

one by means of the set of influence. According to Figure 7.6b, we can note that there

are around 200 vehicles reaching a significant amount of other vehicles. This analysis is

interesting because it determines which vehicles are the best for dissemination and also

opens questions for new investigations on the mobility pattern of these vehicles and when

they enter the network.

Despite some issues related to the complexity of algorithms, this model of time-

varying graphs presents interesting perspectives for the analysis of mobile network topol-

ogy. For example, to check how much information can be disseminated in a network of

contacts or to determine which portion of the network will be reachable from a node

through a series of contacts. From this, other metrics can be derived now considering the

time domain.
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7.5 Chapter Remarks

Understanding topology is a fundamental task to provide efficient solutions in

the domain of vehicular networks. In this chapter, we presented a deep analysis of the

approaches to topology modeling of vehicular networks, discussing their strengths and

weaknesses. In addition, we took advantage of this study to extend the current charac-

terizations by providing new results on network fragmentation and network dynamics.

This work has promising future directions. The first is to replicate and extend the

methodology to other fine-grained vehicular mobility traces [63]. Also, we are interested

in apply other wireless communication models and check the impact of the communication

radius. Finally, to advance the understanding of the temporal topology we aim to cover

other aspects and metrics of time-varying graphs.
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Chapter 8

Revealing and Modeling Vehicular

Micro Clouds Characteristics in a

Large-Scale Mobility Trace

In recent years, we have witnessed the viability of applying cloud computing concepts

to the domain of vehicular networks. A basic component of this infrastructure derived

from the merge of cloud computing and vehicular networks is a Vehicular Micro Cloud

(VMC), also known as vehicular cloudlets. A VMC is a cluster of connected vehicles

that share computational resources. Despite being the focus of many studies in recent

years, we still do not have a clear understanding of the characteristics of VMCs in large-

scale urban scenarios. In this Chapter, we investigate some fundamental characteristics

of stationary and mobile VMCs obtained from a realistic vehicular mobility trace. We

characterize the dwell time and the inter-arrival time in stationary VMCs. Also, using

statistical modeling, we identify theoretical distributions that best fit these metrics. For

mobile VMCs, we reveal how they occur throughout the city along the day, discussing

evolution and lifetime aspects.

8.1 Introduction

The idea of employing cloud computing concepts over vehicular networks has

proven to be entirely plausible in recent years. This tendency to apply cloud comput-

ing in this domain enhances computational resources for vehicles such as network con-

nectivity [32], storage [41], sensing capabilities, and computational power [39] [126] [83].

Consequently, this strategy emerges as one of the main building blocks in intelligent

transportation systems, allowing the existence of a robust infrastructure for services that

require high computational demand [82] [106]. Although very promising, the application

of these concepts is not trivial and presents several difficulties. For instance, vehicular
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mobility characteristics impose new challenges for the composition of vehicular clouds

compared to conventional clouds [207].

In this sense, we are particularly interested in studying how vehicular mobility im-

pacts the formation, maintenance, and management of Vehicular Micro Clouds (VMC). A

vehicular micro cloud [101] (also known as vehicular cloudlets [125]) is a group of vehicles

that share computing resources among themselves, bringing computing and storage ca-

pacity to the edge of the network. Analyzing this relationship between vehicular mobility

and the VMC structure allows us to extract intrinsic characteristics that are fundamental

for both the generation of simulation models and the design of solutions.

Currently, there are some research efforts in this direction, but they have some lim-

itations that motivate us to investigate other perspectives. For instance, Zhang et al. [292]

presented an analysis of vehicular traffic characteristics in implementing a vehicular

cloudlet within a road segment. Xiao et al. [271] analyzed the characteristics of ve-

hicular cloudlets obtained from the mobility of taxis. Higuchi et al. [133] investigated

the existence of vehicular micro clouds, observing some minutes of a vehicular mobility

dataset. Those studies have different limitations. The first focus only on a road segment.

The second considers only the mobility of a single type of vehicle (i.e., taxis). The third

focuses only on observing a short period. In this way, our work extends and advances the

study VMCs by using a daily analysis of a realistic large-scale vehicular mobility trace of

a large urban region that contains positioning data of different types of vehicles such as

private vehicles, buses, and delivery vehicles.

In this Chapter, we provide a characterization, modeling, and analysis of stationary

and mobile VMCs. We list below the main contributions of this work.

• We investigate the spatio-temporal influence of mobility on the dwell time (residency

time) and the inter-arrival time of vehicles in stationary VMCs. Those two metrics

have been widely used in the past to generate simulation models as well as impact the

design and performance evaluation of vehicular cloud solutions. We also identify and

model the theoretical distribution that best fits the empirical distributions obtained

from the mobility trace and discuss how its parameters vary with time and space

(Section 8.4.1).

• We reveal and characterize mobile VMCs using a data mining methodology for

clusters of mobile objects. We observe the number of moving VMCs and their

lifetime in the traces throughout the day; the degree of stability of those groups of

vehicles; and which regions of the city have more births and deaths (Section 8.4.2).
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8.2 Related work

Vehicular micro clouds (VMC) have been classified as stationary and mobile [39] [207] [101].

The stationary VMC refers to a fixed clouds in a given geographic region. For instance,

they are deployed in parking lots and road intersections. The mobile VMC consists of

clouds formed by vehicles moving close together. We adopted this terminology in our

study and during this literature review.

Many researchers have studied the deployment of VMC in places where vehicles

are parked for a certain time. For example, Arif et al. [13] analyzed the availability

of computational resources in a stationary cloud installed in an international airport

parking lot. Dressler et al. [102] investigated the benefits and drawbacks of vehicular

clouds formed by vehicles parked along the streets. In general, this type of cloud has more

similarities in mobility with conventional clouds since cars tend to remain stationary for an

extended period. Differently, our work focuses on stationary clouds installed at controlled

intersections with traffic lights. This scenario is more challenging and still subject to

discoveries. A cloud installed at the junction of roads tends to form more dynamic clouds

than those existing in parking lots due to the constant joining and leaving of vehicles.

More recently, Xiao et al. [271] has investigated how congestion at road intersec-

tions can be used in the composition of VMC. To do so, they used taxi mobility traces and

characterized how VMCs behave from traces. Also, Higuchi et al.[133] investigated how

VMC are formed by observing vehicle positioning data. They concluded that the com-

ponents could exist in many locations, especially in heavy traffic situations during peak

hours. Although they made the first study on VMC analysis in a large-scale scenario with

different kinds of vehicles, their methodology is quite limited. The first limitation refers

to the analysis period, which consists of only two 10-minute periods—not demonstrating

mobility effects throughout the day. The second limitation is that their analysis was done

in an aggregate way; that is, they considered all the components resulting from a period

of 10 minutes. However, due to the vehicles’ high mobility, the network topology is quite

dynamic, which compromises an aggregate analysis.

Hou et al. [138] introduced a overview on vehicular fog computing highlighting

the role of moving vehicles and parked vehicles as an infrastructure. He studied the

capacity of clouds in terms of computing and communication, using taxi mobility traces.

Wang et al. [259] measured the ability of mobile VMC to afford cloud computing service,

also using traces from taxi. The use of traces with only one type of mobile entity (in

this case, taxis) motivates us to investigate these cloud’s characteristics in more realistic

mobility scenarios.

Those studies present relevant contributions to the analysis of the characteristics

of VMCs in its various aspects. However, our work brings new advancements that aim
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Figure 8.1: Some characteristics of the vehicular mobility trace and LuST scenario.

to fill gaps in the characterization and understanding of VMCs: we use a large-scale

realistic trace that contains the mobility of different types of vehicles; we perform a

spatio-temporal characterization of mobility’s impact on stationary VMCs’ composition,

showing how theoretical distributions can model their characteristics; and we reveal how

mobile VMC behaves throughout the city for a day.

8.3 Vehicular Mobility Trace

The vehicular mobility trace we employ has been generated from the Luxembourg

Sumo Traffic (LuST) Scenario [76]. LuST Scenario is built with official data from Lux-

embourg City and contains realistic vehicular mobility of a typical workday. Vehicular

mobility is based on the road topology obtained from OpenStreetMap and information

on traffic demand/mobility patterns. The scenario also encompasses different types of

mobile entities, such as private cars, buses, and delivery vehicles. Vehicular mobility fol-

lows city traffic regulations such as street direction, speed limits, and traffic lights. We

generated a vehicular mobility trace (granularity 1 second) from LuST Scenario that con-

tains the following information: latitude, longitude, timestamp, speed, vehicle identifier.

In summary, the trace contains the 24-hour mobility representation of 288,250 trips in a

typical business day over an area of 155.95 km2 with arterial/local roads and a highway.

Figure 8.1a shows the time series of the number of running vehicles throughout the day.

We can see three peaks that reflect rush hours during the morning, noon, and evening.
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8.4 Analysis and Discussion

In this section, we present the main outcomes from the analysis of vehicular micro

clouds (VMC) in a realistic large-scale vehicular mobility trace.

8.4.1 Stationary Vehicular Micro Clouds

In this first set of analysis, we consider a scenario where the VMCs are stationary.

A stationary VMC consists of a vehicular cloud fixed in a specific geographic region.

A classic case of stationary VMC is a cloud formed by vehicles stopped in a parking

lot. In this work, we study a more challenging and still not fully clarified scenario in

the literature on stationary VMC. We investigate the behavior of cloud formation at

intersections throughout the city. In particular, our focus is on controlled intersections

with traffic lights. We have two motivations to investigate the existence of clouds at

this type of junction. First, there is a tendency for vehicles to stop on streets crossing

a controlled intersection. Second, road intersections of higher traffic intensity has traffic

lights.

Figure 8.1b shows the position of the intersections with traffic lights that we con-

sider in this work. There is an access point with a communication radius of 150 meters

from the junction center at each intersection. Below we present the analysis for the dwell

times and the inter-arrival times in stationary vehicular micro clouds using the trace

generated.

Dwell time. It is the amount of time that a vehicle remains in a VMC. This metric

is fundamental both for the generation of simulation scenarios and in designing solutions

for vehicular clouds. Looking at this metric, we can observe several behaviors such as:

if there is a difference in the resident time of each vehicle; whether there is a difference

in vehicle dwell times depending on the location of the VMC; and whether there is a

difference in vehicle dwell times depending on the hour of the day.

We first evaluate how the vehicle dwell time in each cloud varies across the city.

For that, we calculate the median vehicle dwell times in each VMC. We obtain that

the minimum median is 2, the maximum median is 80, and the average median is 38.

Figure 8.2a and Figure 8.2b show the boxplot of the 30 highest and lowest median values,

respectively. In more detail, we plot the spatial positioning of these VMCs to find out how

close these top 30 are to each other. We observe that the 30 highest median values are

concentrated in Downtown, whereas the 30 lowest values are positioned in more peripheral
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(a) 30 highest median dwell times
per stationary VMC.

(b) 30 lowest median dwell times
per stationary VMC

Figure 8.2: Dwell times for stationary vehicular micro clouds.

(a) 30 highest median dwell times
per stationary VMC

(b) 30 lowest median dwell times
per stationary VMC

Figure 8.3: (a) Density (#veh/km) of traffic. (b) 30 VMCs positioning with highest
median dwell times (Zoom in Downtown). Blue points are stationary VMCs.

regions.

As green, amber, and red times in traffic lights are preset and similar, we show

that this spatial variability in the dwell time can be related to the irregular density of

vehicles throughout the city. Figure 8.3a shows the average vehicle density per kilometer.

We can see that vehicle density occurs more in Downtown and on the high-speed roads

around the city. As there are no traffic lights on these roads, the VMCs with the highest

median dwell time are in Downtown (see Figure 8.3b).

As we already know, the median dwell time changes depending on the VMC po-

sitioning; our next investigation is to reveal how is the dwell time in a VMC along the

day. For that, we selected two VMCs from Figure 8.2. The VMC-28504 at Downtown

and the VMC-4818 at a peripherical region. Figure 8.4 shows the distribution of vehicle

dwell times at each hour of the day. The average dwell time on VMC-28504 is around 60
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Figure 8.4: CDF of dwell time at specific stationary vehicular micro clouds. The Evening
at 28504 and Evening at 4818 have similar behavior than Morning at 28504 and Evening
at 4818, respectively.

seconds, while the average stay on VMC-4818 is about 20. We can note that for VMC-

28504 that between intervals between 8h-10h and 18h-20h, the dwell time is longer than

others. For other hours, the distributions are very homogeneous, especially during the

afternoon. Looking at Figure 8.1a again, we see a more significant number of vehicles

running in those intervals. As the VMC-28504 is in the city’s central region, it is subject

to vehicle congestion during peak hours. For VMC-4818, we see that throughout the day,

there is minimal variability about the dwell time.

The previous characterizations and analysis indicate that the empirical distribu-

tion shown in Figure 8.4 follows the same law to describe the vehicle dwell time in a

stationary VMC. In this sense, we evaluate the theoretical distribution of each of the

197 VMCs. We consider three candidate theoretical distributions: Weibull, Normal, and

Exponential. Therefore, we study the best fitting using Maximum Likelihood Estimation

(MLE) for each theoretical distribution and used Kolmogorov-Smirnov Statistic to eval-

uate the goodness of fitness of the parameters obtained by MLE. For 84% of VMCs the

Weibull distribution provides the best fit. If we inspect the probability density function

of Weibull distribution, we can see that it is governed by the parameters scale (λ) and
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Figure 8.5: Distributions of the fitted shape and scale parameters for dwell time.

shape (k), as shown in the Equation 8.1.

fX(x;λ, k) =


k

λ

(x
k

)k−1

exp
(
−(x/λ)k

)
x ≥ 0

0 x < 0

(8.1)

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution.

When the shape is between 0 and 1, the Weibull distribution tends to behave similarly to

an Exponential distribution. On the other hand, when the shape is between 3 and 4, the

distribution matches a normal curve. Figure 8.5 depicts the CDF (Cumulative Density

Function) for the fitted scale and shape parameters. We observe that the dwell time is

56 or less on 75% of the VMCs. In Figure 8.5b, we see the CDF of shape parameter.

The graphics reveals that 68% of cases the 1 < k < 2. It means that in those cases, the

Weibull distribution grows to a peak rapidly, then declines over time.

Inter-arrival time. It is the amount of time between two consecutive vehicle arrivals

at a stationary VMC. This metric is also essential in generating simulation models and

is used as knowledge for solutions in vehicular clouds. We follow the same step-by-step

applied by us in the study of the dwell time detailed previously. We investigate the impact

of the location of stationary VMCs on the inter-arrival time and analyze the metrics on

each cloud throughout the day.

We first rank the VMCs according to the median values of the inter-arrival times.

Figure 8.6a and Figure 8.6b show the 30 highest median values and the 30 lowest me-

dian values, respectively. We plot the position of those VMCs on the map, as shown

in Figure 8.7. The minimum median value is 1 second, the maximum median value is

12 seconds, and 75% of the 197 VMCs has a median value not greater than 5 seconds.

Figure 8.7a shows the positioning of the VMCs presented in Figure 8.6b. Obviously, the

lowest inter-arrival times are found in the city’s central area. On the other hand, the

longest inter-arrival time is mainly in peripheral regions (see Figure 8.7b).

Beyond that spatial perspective, we also see how the inter-arrival time varies

throughout the day at each stationary VMC. In particular, we select VMC-28504 and
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(a) 30 highest median inter-
arrival time

(b) 30 lowest median inter-arrival
time

Figure 8.6: Inter-arrival times for stationary vehicular micro clouds.

(a) (b)

Figure 8.7: a) Positioning of the 30 lowest median inter-arrival time VMC. (b) Positioning
of the 30 highest median inter-arrival time VMC. Best view in colors.

VMC-4818 again, which are in Downtown and the periphery, respectively. Analyzing the

inter-arrival time at VMC-28504, we observe that in the average peak hours, it is approx-

imately 2 seconds, and in 90% of cases, it has values equal to 3 seconds or less. Looking

at the distribution aggregate throughout the day, we observe that in 95% of cases, the

inter-arrival time is no longer than 8 seconds. On the other hand, VMC-4818 has sig-

nificantly different values. Even at peak times, the average is approximately 16 seconds,

and in 90% of cases, it has values equal to 43 seconds or less. Looking at the distribution

aggregate throughout the day, we observe that in 95% of cases, the time between arrivals

is no longer than 135 seconds. Figure 8.8 show those distributions of VMC-28504 and

VMC 4818 for inter-arrival time.

We again apply the methodology to identify the theoretical distribution described

above. According to Kolmogorov-Smirnov Statistic, we note that almost all static VMCs

follow a Weibull distribution (see Equation 1). In Figure 8.9, we plot the CDFs of the
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Figure 8.8: CDF of inter-arrival time at specific stationary vehicular micro clouds. The
Evening at 28504 and Evening at 4818 have similar behavior than Morning at 28504 and
Evening at 4818, respectively.
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Figure 8.9: Distributions of the fitted shape and scale parameters.

shape and scale parameters estimated by MLE. We observe that the inter-arrival time,

considering the scale, is less than or equal to 5 seconds for 50% of the stationary VMCs

(see Figure 8.9a). Also, we note that the parameter scale in 90% of the cases is less than

or equal to 1 (see Figure 8.9b); it means that Weibull distribution decreases exponentially.
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Figure 8.10: a) Number of mobile VMC along the day. (b) Dynamic of mobile VMC
evolution along the day.

8.4.2 Mobile Vehicular Micro Clouds

In our context, a mobile VMC consists of a group of vehicles that move together,

sharing resources through vehicle-to-vehicle communication. These groups are dynam-

ically arranged according to the vehicle’s communication radius, i.e., vehicles close to

each other form a mobile VMC. In order to detect and track mobile VMCs, we apply

a data mining methodology for discovering clusters of objects in spatio-temporal data

described in [157]. We assume that the vehicle’s communication radius is equal to 150

meters, and the minimum number of vehicles that make up a mobile VMC is 2. We are

interested in revealing the following characteristics: the number of moving clouds in the

traces throughout the day; the lifetime of mobile clouds throughout the day; the degree

of stability of these groups of vehicles; and which regions of the city have more births and

deaths.

Number of mobile VMC per second. Figure 8.10a shows the time series of the

number of mobile VMC throughout the day. When we analyze Figures 8.10a and 8.1a

simultaneously, we can see that the number of clouds is more significant when fewer

vehicles are running, such as at 10h and 16h approximately. While at rush hours, the

number of clouds is less. We can explain it due to with more vehicles in transit, the VMCs

have more cars, and therefore, the vehicular network is less fragmented. The average of

clusters throughout the day is 176, as shown in Figure 8.10a.

Dynamic of mobile VMC evolution per second. To evaluate the cloud’s evolution

over time, we assess how the cloud structure change for each second. We classify these

changes into five categories: Birth, when a new cloud is formed; Growth, when the cloud

receives new vehicles; Contraction, when vehicles leave the cloud; Death, when a cloud

ceases to exist; and Unchanged, when the cloud remains the same for two consecutive

seconds. Looking at Figure 8.10b, we can see that the largest number of Births is between

7h and 9h as well as between 17h and 20h, which are precisely the rush hour period. Those
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Figure 8.11: Density of Births and Deaths.

periods are also the intervals that happen more deaths. It is worth mentioning that the

vast majority of clusters remain unchanged between consecutive seconds. In the context

of clouds, this last result is important for us to know about possible exchange of context

and tasks between vehicles.

Geographic density of Births and Deaths. We also investigate which regions of

the city have the highest number of births and deaths of the clouds. Figure 8.11 shows

the density of those metrics between 6h-7h and the whole day. The color density varies

from Blue (less incidence) to Yellow (more incidence). We evaluate other times, but due

to space, they were omitted. Comparing Figures 8.11a and 8.11c, we can see that the

births are more concentrated on the city’s edges, while deaths occur both on the edges

and in the central region. Some places have both high rates of births and deaths. It

is because of vehicle mobility characteristics, such as vehicle speed and traffic density,

mainly on highways. There are more deaths in the central region because a significant

part of the vehicles is destined for this region between 6h-7h. When we evaluate the

whole day, Fig. 8.11b and 8.11d show births and deaths happen more on the highways

that surround the city.

Lifetime. Lifetime consists of the amount of time between the VMC’s birth and death.

Throughout the day, 803,333 mobile VMC are identified, with 75% of those mobile VMCs

having a lifetime of no more than 15 seconds, and for 95% of those cases, the lifetime is

68 seconds or less. Figure 8.12 shows the CDF of the lifetime of the mobile VMCs per

hour. We can see that the time of day has a smooth impact on the lifetime. We aim to

investigate how other factors such as speed and direction of vehicles impact the mobile
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Figure 8.12: Lifetime of mobile VMCs. Lifetime at evening is similar to morning.

VMC’s lifetime.

8.5 Chapter Remarks

In this Chapter, we presented a study about the characteristics of VMCs obtained

from a large-scale trace. For stationary VMCs, we observed that the dwell time and the

inter-arrival time vary according to the stationary VMC positioning. VMC positioned

at the central region has a long dwell time and a short inter-arrival time, while the

peripheral region is exactly the opposite. For both metrics, considering each place’s

analysis throughout the day, the values only vary significantly during peak hours. We

model both metrics using a Weibull distribution with variable parameters depending on

the region. In the mobile VMC, we reveal that the number of mobile VMCs is lower

at peak times, because they are higher in terms of the number of vehicles. Besides, the

period that most mobile VMCs are born is in rush hours, especially on highways. On the

other hand, the vast majority of VMCs remain unchanged for two consecutive seconds.

Throughout the day, the highways show more occurrences of birth and deaths of mobile

VMC.

For future work, we aim to extend the methodology used in this work to different

radii of communication to assess its impact on the composition of VMCs as well as different

weekdays. Also, we aim to investigate how different types of vehicles (e.g., buses [58],

private cars) contribute to each of the mentioned metrics.
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Chapter 9

Generating and Analyzing Mobility

Traces for Bus-based Vehicular

Networks

One of the main issues in the design of vehicular networks is understanding vehicles’ mo-

bility, which is determined by their type. In this Chapter, we investigate how the mobility

of buses influences the structure of a bus-based vehicular network. In this direction, we

present a comprehensive analysis of bus mobility in vehicular networks. We generate

bus mobility traces using official data from public transport agencies of four different

cities. Our generated traces reveal crucial characteristics of bus-based vehicular networks

obtained from them. In particular, we uncover details about the network topology and

how spatiotemporal aspects impact it by analyzing five factors: network, component,

node, contact, and mobility. In addition, with the information gained from our analysis,

we perform experiments to assess practical aspects of the design of routing protocols in

bus-based intelligent vehicular networks.

9.1 Introduction

In recent years, vehicular networks (VANETs) have stood out as one of the key

alternatives for data communication for several applications in Intelligent Transportation

Systems (ITS) [87]. However, although very promising, one of the main challenges in the

design of vehicular networks is to address the dynamic nature of the network caused by

the high mobility and uneven distribution of vehicles. In this context, we have seen in the

literature some studies that propose vehicular network architectures that consider buses

as particular nodes to provide better availability of data communication [269, 182, 155].

Buses can play a crucial role in data communication on a vehicular network because

they have unique mobility characteristics that differ significantly from private vehicles and
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taxis [57]. From a spatial standpoint, buses belonging to public transport follow predefined

routes that interconnect different regions in a city. From a temporal perspective, bus

routes have a schedule with estimated times for starting and reaching bus stops throughout

the day. We can also highlight other inherent features in the mobility of buses, such as

stop-and-go movement and reduced average speed. In addition, it is worth noting that

privacy issues are not as critical as those seen in other types of vehicles.

Bus mobility has been applied to vehicular networks in several proposals, and we

can divide them into two categories: routing protocols [100, 286, 288, 246] and hybrid

architecture [269, 182, 155]. Routing protocols take advantage of bus mobility to provide

efficient mechanisms for data dissemination using only buses. While in hybrid architec-

tures, buses from public transport form a communication backbone that establishes the

core of a vehicular network made up of different types of vehicles. We advance the state

of the art by providing a comprehensive analysis of the structure of vehicular networks

obtained from bus mobility data from different cities for both cases. In this perspec-

tive, previous studies in the literature investigated the network topology obtained from

taxi mobility data [89, 92, 139, 220] or synthetic data that mimic the mobility of private

cars [210, 194, 55]. As discussed earlier, those types of mobility have different aspects

from those seen in bus mobility.

This Chapter focuses on understanding vehicular network topological characteris-

tics when the nodes are buses. In this direction, we investigate a set of questions: how

do the bus mobility properties impact the topology of a bus-based vehicular network?

How does network connectivity vary across the city? How does network connectivity vary

throughout the day? What are the connectivity patterns concerning time and space?

How can such connectivity characteristics impact data communication on a bus-based

vehicular network? How are all these issues observed different cities worldwide?

To answer those questions is fundamental to use large-scale bus mobility data from

public transport systems. There are currently some GPS mobility traces from buses, but

they need a significant preprocessing effort to make them suitable for our study [60]. GPS

data presents many quality problems [56], such as outliers, low sample rate, duplicate

points, and missing points. To work around these issues, we created a framework to

generate bus mobility data from a GTFS (General Transit Feed Specification) file1. GTFS

data have become increasingly popular, and we can use this description to generate bus

mobility from several cities worldwide.

In this Chapter, we summarize the main contributions as follows:

• We create a framework to generate public transportation mobility from timetables

and route information (GTFS data). The framework’s output is a set of fine-grained

trajectories containing the latitude and longitude of buses every second. Due to

1GTFS data is a dataset containing public transportation schedules and is provided by public trans-
port agencies.
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a lack of publicly available benchmarking data, we made available the generated

datasets used in our analyses and experiments.

• We perform a comprehensive analysis of the instantaneous topology of bus-based

vehicular networks (BUS-VANETs) generated from the bus mobility traces of four

cities. Our analysis is divided into four levels: network-level analysis, component-

level analysis, node-level analysis, and contact-level analysis. Through those analy-

ses, we reveal the unique peculiarities of a BUS-VANET and point out how we can

take advantage of this type of network.

• We conduct simulations to investigate the BUS-VANET characteristics and how

they influence packet dissemination using the bus mobility traces generated in this

work.

We organize this chapter as follows. Section 9.2 discusses the literature and points

out differences between the related work and ours. Section 9.3 describes our framework

for generating bus mobility traces from GTFS data and discusses their characteristics.

Section 9.4 presents our methodology, defining the metrics and network model. Section 9.5

discusses the network topology obtained from the bus mobility traces. Section 9.6 deepens

our analysis with the study of packet dissemination protocols in BUS-VANETs using

these traces. Section 9.7 present how our contributions can be applied in other studies.

Section 9.8 contains our chapter remarks.

9.2 Related work

In this section, we revise the literature classifying the related studies into two

groups: generating realistic mobility traces and vehicular network topology analysis.

9.2.1 Generating realistic mobility traces

In our domain, mobility traces are a set of trajectories representing the vehicles’

movements. They are both used for vehicular network simulations [124] and to extract

intrinsic knowledge from mobility aspects [59] [60]. Initially, mobility traces were obtained

from mobility models (e.g., random waypoint and Manhattan mobility models, and geo-
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graphic information map) [111] [18]. In this case, the mobility is created based on generic

assumptions such as origin and destination are set randomly, and the vehicles follow the

shortest path. The trace obtained from generic mobility models is oversimplified and

does not correctly represent real-world vehicular mobility’s spatial, temporal, and social

aspects.

To bring more realism to vehicular mobility scenarios, some studies take advantage

of information from official data sources to generate mobility traces. In this direction,

Uppor et al. [255] introduced the first large-scale traces, named TAPASCologne, repre-

senting the mobility of private cars. Their dataset contains more than 700,000 trips of

vehicles during 24 hours in Cologne, Germany. They used data (e.g., road topology, traffic

demand, and traffic flow between urban areas) and open-source simulation tools to create

the TAPASCologne dataset. Using a similar methodology, Codeca et al. [75] built the

LuST Scenario for simulating vehicular mobility for the City of Luxembourg. They gen-

erated the mobility of cars and buses based on official city data and mobility simulators.

Those same authors proposed MoST, a realistic multimodal scenario for the Principality

of Monaco [77].

In another direction, with the advancement of location technologies, some studies

have focused their efforts on collecting real-world mobility data from GPS positioning. For

instance, Braccialle et al. [46] made available a mobility trace containing the positioning

of 320 taxis over 30 days in Rome, Italy. For each taxi, the latitude and longitude are

recorded, on average, every 7 seconds. Piorkowski et al. [217] also collected a taxi mobility

traces of around 500 vehicles during 30 days in San Francisco, USA. Kong et al. [162]

explored a taxi GPS trace from Beijing to generate a realistic dataset representing the

social aspects of mobility. If, on the one hand, this type of trace represents the vehicle’s

actual movement, on the other hand, it requires a rigorous preprocessing process [63].

Although these studies mentioned earlier introduce relevant aspects about the gen-

eration of vehicular traces, they refer to private cars and taxis. Bus mobility datasets have

gained more popularity recently with the interest of transportation companies in providing

better services to customers. The first publicly available traces consist of datasets contain-

ing a reduced number of trips. For example, UMassDieselNet [48] is a dataset containing

the mobility of 30 buses in Amherst, MA, USA. Transportation companies also generate

this kind of trace using Automatic Vehicle Location (AVL) systems. Jetcheva et al. [147]

created a dataset containing the bus positioning that use AVL based on odometry and

signpost transmitters. More recently, there are datasets containing the mobility of buses

collected by GPS as presented in [99] and [98]. This type of trace needs a preprocessing

step to improve the quality of the captured data and increase the granularity [58]. In some

cases, the time between two consecutive locations of a vehicle is in the order of minutes.

Our work differs from the above in several aspects. First, we generate bus mobility

traces from transport public agencies’ official schedule data (i.e., GTFS). Second, our
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framework generates high granularity trajectories (i.e., 1 sec) with a real representation of

the bus mobility. Third, from the official data provided by agencies, our framework creates

trajectories that precisely mimic the characteristics of bus mobility, such as temporal

variability, spatial fluctuation, and trajectories on different types of roads, to mention a

few. The work of Pereira et al. [215] have a similar goal, i.e., converting GTFS data to

mobility traces. However, their strategy to reconstruct trajectories is based on spatial

resolution. Our strategy is based on temporal resolution, allowing us to create high-

sampling rate trajectories traces (i.e., 1 sec), providing the buses positioning at each

instant of time. In this way, the traces generated by our framework do not require

significant additional processing. They can be applied to analyze and simulate BUS-

VANETs. Irigon and Cornelius [96] also explore the problem of generating mobility

scenarios for BUS-VANETs. However, they focus more on aspects related to routing

protocols. Our work focuses on developing scenarios for topology analysis and designing

routing protocols.

9.2.2 Network topology analysis

Recently, we have seen that it is increasingly common for studies in the literature

to apply vehicular mobility traces in the design of vehicular networks. One of the pri-

mary motivations for researchers to use this approach is the universalization of devices

that collect and send vehicle positioning data over time. Considering different types of

vehicles in an urban scenario, we present below the primary studies on topology analysis

in vehicular networks obtained from traces from taxis, private cars, and buses.

Regarding taxi mobility traces, Cunha et al. [89] analyzed whether the vehicular

network obtained from the mobility of 320 taxis in Rome had social properties. In another

study, Cunha et al. [92] examined how contacts between vehicles happen over time and

space in Rome, San Francisco, and Shenzhen. By observing the dynamics of the contacts,

Hou et al. [139] statistically modeled the patterns of contacts between taxis in Shanghai.

Qiao et al. [220] investigated the topological structure of a vehicular network using a

temporal graph.

Considering the mobility obtained from private cars, some proposals have used

synthetic data generated from government agencies’ official information. The need to

create this data is due to the difficulties of having private car data publicly available

because of security and privacy issues. Pallis et al. [210] investigated the evolution of the

structure of a vehicular network using a trace from Zurich. In the same direction, Naboulsi

and Fiore [194] characterized the topology of a vehicular network using the well-known
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Figure 9.1: GTFS structure.

mobility trace of Cologne, Germany.

Several studies consider the mobility of buses as a resource for the design of routing

protocols [100] [286] [288] [246], but none of them carried out a detailed analysis of the

topology. Doering et al. [100] used two mobility traces to analyze bus mobility charac-

teristics: trip distances, travel time, and density of points. Still, they did not focus on

the connectivity aspects observed from mobility. Zhang et al. [286] modeled the contacts

between buses, and based on that, they proposed a geocast routing protocol. Zhang et

al. [288] proposed a routing protocol based on social contacts between bus lines. Sun et

al. [246] took advantage of bus density along the roads to optimize a data dissemination

approach. Finally, Ahmed and Kanhere [3] performed a characterization of bus mobility

in a public transport system. Despite having similarities with our work, we conduct a

more comprehensive topology analysis at four levels. In addition, previous studies used

only a single trace with an observation record every 30 seconds.

All these studies mentioned above present relevant findings for the analysis of con-

nectivity in vehicular networks. However, there is still a gap in the understanding of when

the network nodes are buses. First, bus mobility differs significantly from the mobility

of other vehicles, so it requires particular emphasis. Second, the proposals considering

bus mobility concentrated on specific situations without providing a comprehensive per-

spective on the topic. Therefore, this work presents and discusses the strengths and

weaknesses of BUS-VANETs from the network topology perspective.

9.3 Generating realistic bus mobility traces

We propose the generation of bus mobility using GTFS data. GTFS data is widely

available across cities around the world and has been used by transportation companies
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as a format for making data available to inform users about bus information through

mobile and web-based applications. It contains the spatiotemporal information of buses,

such as arrival time at the bus stops and routes. However, this information is still of low

granularity and includes imprecise information on the movement of buses. To overcome

this limitation, we designed and implemented a framework to generate GPS-like data

representing the positioning of buses every t seconds. With the resulting dataset, we can

build and analyze BUS-VANETs, identify practical aspects when designing their routing

protocols and uncover fine-grained network dynamics. Using traces of taxis, Celes et

al. [237] and Gramaglia et al. [63] concluded that this data representation allows observing

the real effects of mobility on network connectivity.

9.3.1 Preliminaries

Before introducing the data generation algorithm, we will briefly describe the

generic structure of GTFS. The complete specification defines seventeen tables, some

are mandatory, and others are optional. Figure 9.1 shows the set of tables that are

mandatory in the GTFS specification. Additionally, we include the shapes table, despite

being optional, has been increasingly present in the data provided by transit agencies.

The public transport system establishes routes with one or more trips. The defined trips

occur according to a service id that determines which days of the week that service oper-

ates. Each trip has spatial information represented in the shapes table and the temporal

information contained in the stop times table. The relationship between the stop times

and stop tables determines the time when a bus reaches a bus stop.

To create a bus mobility dataset of a city, we reconstruct every trip using the

spatiotemporal information from the following tables: trips, shapes, calendar, stop times

and stops. We generate the bus mobility from a specific day in the calendar table. From

that, we can obtain all trip identifiers running on this selected day. Next, we use the

spatial information from the shapes and spatiotemporal from stop tables (stop times and

stops). Thus, we generate the actual bus mobility using Algorithm 9.1, which is the core

of our framework. The additional programming code of our framework are functions to

read/write files and format data types. Below, we have basic definitions.

Definition 1. (Shape point): A shape point (sp) is a spatial location containing lon-

gitude (shape pt lon) and latitude (shape pt lat) coordinates. Additionally, an sp has a

shape pt sequence and a shape dist traveled identifiers. The shape pt sequence is the i-th

position of sp in a sequence and shape dist traveled is the traveled distance between the

first shape point and the i-th sp. Thus, sp = (shape pt lat, shape pt lon, shape pt sequence,
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Algoritmo 9.1: Generating bus trajectories.

1: procedure generate(trip id, rate)
2: rp← get shape(trip id)
3: bspList← get stop points(trip id)
4: anchors← merge(shape, stop points)
5: T ← [ ]
6: for i ← 2 to length(bspList) do
7: bsp p← bspList[i− 1] . previous point
8: bsp c← bspList[i] . current point
9: S ← subset(anchors, bsp p, bsp c)

10: distances← get distances(S)
11: spatial dist←sum(distances)
12: temporal dist← bsp c.arrival− bsp p.departure
13: v ← spatial dist/temporal dist
14: ∆s← v × rate
15: t← bsp p.departure
16: T ← T.append(S[1])
17: for j ← 2 to length(S) do
18: m← distances[j − 1]/∆s
19: for k ← 1 to m do
20: p′ ← interpolation(S[j − 1], S[j], k)
21: t← t+ rate
22: p′.t← t
23: T = T.append(p′)
24: end for
25: end for
26: end for
27: T ← T.append(bspList[length(bspList)])
28: return(T )
29: end procedure

shape dist traveled).

Definition 2. (Route shape): A route shape (rp) is a finite ordered sequence of shape

points. It represents the path that bus travels must follow. We describe a rp as rp =

[sp1, sp2, . . . , sp|rp|]. The route shape has no time information as it only determines the

path of the bus line.

Definition 3. (Bus stop point): It is a location part of a bus route for passengers to

get on or off a bus. Its formal definition is a tuple as bsp = (bsp id, stop lon, stop lat,

arrival time, departure time, shape dist traveled).

Definition 4. (Trajectory): A trajectory is a finite temporal ordered sequence of GPS

points. It represents the actual movement of buses. Thus, T = [p1, p2, . . . p|T |], where

pi = (x, y, t) and x, y are the longitude and latitude, respectively. Also, t is a timestamp

and pi−1.t < pi.t for 0 < i ≤ |T |.
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9.3.2 Generating bus trajectories

Algorithm 9.1 has as input a trip identifier (trip id) and a sampling rate (rate).

The output is the trajectory for the trip id. We add points between consecutive bus stop

points, considering the original route shape for each trip. First, we get the route shape

of the corresponding trip id passed as an argument (Line 2). We also take the bus stop

points from the current trip id (Line 3). We call the merge function with these two lists

of points (Line 4), which merges the two lists by considering the order of the points based

on the shape dist traveled parameter. It is important because the points obtained on the

route shape do not have temporal information; only the bus stop points have this type

of information. In Lines 6 to 23, new points are added between two consecutive bus stop

points, considering those anchor points that define the buses’ exact path. Set S contains

the subset of anchors between two consecutive bus stop points, including the current ones.

We calculate the distance between each successive point of S (Line 10), it is represented

by the vector distances, and obtain the total distance to be constructed (Line 11). In

addition, we calculate the travel time between the bus stops (Line 12) and compute the

speed considering space and time (Line 13). Finally, we calculate the distance that a new

point is added based on the multiplication of the speed (meters per second) and the rate

(in seconds) (Line 14).

The final part of the algorithm is the insertion of new points (Lines 17-23). The

variable m contains the number of new points to be inserted between consecutive points

of S. The new points (p′) are inserted through interpolation (Line 20) and added to the

final trajectory T (Line 23).

Due to the nature of the data representation in the shape.txt file, which consists

of marking points at the changes of directions along the route, we apply a strategy based

on linear interpolation as follows. Let aj−1 and aj (or S[j − 1] and S[j], respectively,

in Line 20) be the anchor points that delimit a gap. Our goal is to insert new data

points between them, increasing the granularity of the route. This new set of inserted

points we call synthetic ones. Also, we convert all geographic coordinates to euclidean

space. Therefore, d(aj, aj−1) is the euclidean distance between aj and aj−1. Our algorithm

consists of inserting a synthetic point as a function of k for 1 ≤ k ≤ m from the anchor

point aj−1 based on the following equations:

pxk = axj−1 +
k

d(aj, aj−1)
(axj − axj−1) (9.1)

pyk = ayj−1 +
k

d(aj, aj−1)
(ayj − a

y
j−1) (9.2)
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(a) Dublin (b) Rome (c) Seattle (d) Washington

Figure 9.2: Spatial distribution of routes in Dublin, Rome, Seattle, and Washington. The
colors represent different bus routes.

Table 9.1: General information of the selected days from GTFS data.

City Date #Routes #Trips

Dublin 2019-06-19 107 6673
Rome 2019-11-18 333 32961
Seattle 2019-03-11 209 12770
Washington 2019-09-23 241 14080

where pk = (pxk, p
y
k) is a new inserted point. To have a route with high granularity, in

each iteration, k is incremented by 1 unit until it reaches the length of the gap. Thus,

this same process is applied to all gaps in the route.

Many cities worldwide make public transport scheduling and itinerary data publicly

available. We chose four cities from different parts of world with different scale of public

transport system (Dublin, Rome, Seattle, and Washington) and collected the GTFS from

the TransitFeeds2 repository. In general, the data provided by a transportation agency

has three schedules: schedule for weekdays, schedule for Saturdays, and schedule for

Sundays and holidays. We randomly selected a weekday for each city and generated the

bus mobility. Table 9.1 shows the selected days and the number of trips/routes. We can

see that these cities have different number of trips along the day. This observation is

important because it enables us to evaluate vehicular networks of varying scales.

When we look into the generated mobility traces, we can see that they have specific

peculiarities related to public transport in each city. Bus mobility has a well-defined

spatial distribution throughout the day. We can see in Figure 9.2 that regardless of the

city, the bus routes cover all its regions, obviously following the road network.

We also describe the main spatiotemporal features of our generated bus mobility

traces. Figure 9.3a shows a scatter plot between the travel distance and trip duration.

We can see that buses from public transport in Dublin have a longer average travel time

than those in other cities (see the boxplot on the right). The average travel time to other

cities is similar. On the other hand, the average travel distance is shorter in Rome and

2https://transitfeeds.com/
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(a) Travel distance versus
Trip duration

(b) CDF of number of trips
per route direction

(c) Number of transit buses (d) Percentage of trips start-
ing on time intervals for ev-
ery route direction

Figure 9.3: General features of bus mobility traces from Dublin, Rome, Seattle, and
Washington.

Washington. In Seattle, we can note that the travel distances are much greater than those

observed in other cities. Regarding the number of buses in transit throughout the day

(see Figure 9.3c), we can see the increase in this variable at certain times, called rush

hours. For example, during the rush hours in Seattle and Washington, the number of

buses is almost 50% higher than the value observed in the interval between peaks. On the

other hand, there is only a slight increase in buses during rush hours in Dublin and Rome.

Looking at Figures 9.3b and 9.3d, we can see that in Rome, we have a high number of trips

per route direction and that the frequency of trips starting is more significant than in other

cities. Figure 9.3d shows that the beginning of trips is mainly concentrated between 0 and

15 minutes or between 15 and 30 minutes. It is typical behavior of public transportation

systems, and the difference between the traces represents the particularities of each city.
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9.3.3 Synthetic datasets vs. real-world datasets

Although real datasets offer an accurate representation of mobility, collecting,

transmitting, and storing data can be expensive and time-consuming. In addition, this

workflow can be complex with the larger system scale, so several problems impact the

data quality. Also, they are restricted to only a few cities, subject to protection laws,

containing various imperfections due to this data collection process. Also, the available

datasets present low granularity and asynchronous records. Below, we discuss more of

those issues.

Granularity. It refers to the time between two consecutive records of a bus positioning.

Due to technical limitations (e.g., storage and communication), the records are registered

in a specific time interval (i.e., sampling rate). This sampling rate variation might intro-

duce two problems: (i) each bus uses its clock to register the records, therefore creating

asynchronous data; and (ii) the existence of long spatial gaps between two records, mak-

ing the mobility reconstruction process difficult. Those issues can lead to inconsistent

solutions if the data obtained cannot accurately represent the mobility of buses.

Positioning errors. It refers to errors arising from bus positioning. Typically, such

errors can occur in urban canyons, tunnels, or miscommunications with the localization

system. This type of error can introduce noise that directly impacts the interpretation of

bus mobility.

Volume and Variability. It refers to the amount of stored data that captures the

various nuances of mobility in terms of spatial coverage and different periods throughout

the year. The data available in the literature are just a snapshot of mobility, making it

difficult to design solutions that generalize the different situations that occur in everyday

life.

In this direction, the generation of synthetic datasets is paramount to mitigate

these problems arising from obtaining data. However, the trajectory generation process

must follow models and reliable data to obtain characteristics consistent with the spa-

tiotemporal attributes of bus mobility. The fact that we use GTFS data as input to our

framework, which is widely known and made available by transport agencies, allows the

generation of bus mobility that mimics reality and circumvents the problems mentioned

above.
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9.4 Methodology

This section presents the methodology we apply to analyze the bus mobility traces

of vehicular networks. We describe how we have modeled the vehicular network from

these mobility traces and define the evaluation metrics used in this work.

9.4.1 Network Model

We model the network as a set of time-ordered instantaneous connectivity graphs.

We represent an instantaneous connectivity graph as an undirected graphG(t) = (V (t), E(t))

for each instant t. V (t) = {vi(t)} means the set of vertices (nodes) vi(t), representing

every bus i contained in the trace in timestamp t. Besides, E(t) = {eij(t)} represents the

network connectivity at timestamp t. Each edge eij(t) means a connectivity link between

buses vi(t) and vj(t) at time t. To sum up, Vi and Ei represent buses and their connec-

tivity contacts at time t, respectively. A connectivity contact is a favorable circumstance

for the buses to exchange messages, considering a radius of communication R.

We adopt this model because it allows us to analyze and interpret the network

structure at each instant t. Therefore, as a result we have a set of snapshots of the

network represented as graphs, qualifying us to investigate the structure and evolution

of the network over time and space. In addition, this modeling creates the conditions

to analyze the existence of network components, making it possible to study network

fragmentations. A component (C) is a subgraph of G(t) where there is a path between

any two nodes. In our context, this structure represents a possibility of communication

between two buses via direct or multiple hops at time t.

We use a unit disc model as the signal propagation model. In this model, buses

can communicate with each other if they are within a distance at most R. Although this

model is simplistic, it has been widely applied from a theoretical perspective. As dis-

cussed in [194] and [121], a unit disk model is significantly less computationally expensive

than deterministic (e.g., ray-tracing technique) and stochastic models, especially in the

scenarios we are analyzing with thousands of graphs containing hundreds/thousands of

nodes. To illustrate several situations, we perform our study using different values of R.
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9.4.2 Metrics

This subsection presents the metrics used to analyze the BUS-VANETs obtained

from the bus mobility traces. The following metrics are independent of protocols:

Component: It is a subgraph of an instantaneous connectivity graph. As there

is a path between any two nodes of a component, this structure is relevant to observing

the feasibility of bus communication using multiple hops. Also, we can have an idea of

network fragmentation by looking at the number of components. A single bus component

is named singleton (or isolate node).

Component Size: This metric refers to the number of vertices of C. It is also

important to reveal the heterogeneity of the components formed in the network. As we

are interested in the spatiotemporal perspective, we also analyze how the size of the

components is influenced by time and space.

Number of Components: The number of connected components identified in a

graph. More components mean more fragmentation of the vehicular network. Therefore,

the topology analysis involving the size of the components and the number of components

allows us to assess the network’s fragmentation and dynamics.

Largest Connected Component (LCC): It indicates the largest component of

an instantaneous connectivity graph.

Component’s Location: It represents the geographic positioning of a component

and is given by the average of the positions of the nodes belonging to the component.

Contact duration: It refers to the time interval in which bus pairs are within

each other’s communication radius and can exchange data.

Dissemination ratio: It is the number of buses that received a data packet

divided by the number of buses in transit during a simulation.

9.5 Network topology analysis

This section presents the network topology analysis for four BUS-VANETs ob-

tained from the traces described in Section 9.3. We apply the methodology presented

in Section 9.4, where the communication radius to the network model is 100 m, 300 m,

and 500 m. Also, we divide our analysis into four perspectives, as shown in the fol-

lowing subsections: network-level analysis, component-level analysis, node-level analysis,

and contact-level analysis. Those perspectives provide a clear overview of the network’s
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characteristics in different cities worldwide.

9.5.1 Network-level analysis

This type of network tends to be highly fragmented into many components. Al-

though this has been verified using mobility data from taxis [92], private cars [194], or

even in several scenarios such as highways [121] and urban centers [55], no study in the

literature shows how this characteristic happens in a BUS-VANET with bus mobility data

from different cities. In addition to verifying this characteristic in BUS-VANETs, we are

also concerned with characterizing the fragmentation level by quantifying the heterogene-

ity of components throughout the day. In this sense, we investigate two primary metrics:

the number of components and component size.

We plot the Cumulative Distribution Function (CDF) of the number of components

for the four traces, aggregated for all instantaneous graphs (i.e., snapshots) along the day,

in Figures 9.4a, 9.5a, 9.6a, and 9.7a. Also, we show the number of components as a time

series in Figure 9.8. For instance, when we look at Figure 9.4a for the communication

radius of 100 m, we can see three phases. The first one, left of point A, concentrates the

snapshots with some components less than or equal to 100, i.e., 90% of the snapshots have

hundreds of components. The second phase, marked by values between points A and B,

concentrates 25% of the snapshots, with components varying from 100 to 280. The third

phase, right of point B, has 65% of the snapshots with components ranging between 280

and 462 (maximum for this case).

Looking at the time series in Figure 9.8a, we can see how these three phases happen

throughout the day. The first phase reflects the early morning and late-night hours when

fewer vehicles are around the city. The number of components does not vary by increasing

the communication radius. The second phase consists of the periods before the first peak

hour and the hours after the second peak hour. We see an increase or decrease in the

number of vehicles around the city in this case. The third phase contains a significant part

of the mass probability. This phase concentrates the snapshots with many components,

having the first and second peak hours and the interval between them. We can observe

similar behavior for all traces regardless of the communication radius values. Seattle

and Washington have more similar behavior, as we can see in Figures 9.6a, 9.7a, 9.8c,

and 9.8d. On the other hand, Rome has some peculiarities, especially when the R equals

300 m and 500 m. Looking at Figures 9.5a and 9.8b, we can see that for those values of

communication radius the variation in network fragmentation is not so significant for most

of the day. Two characteristics that contribute to this behavior are: the number of vehicles
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Figure 9.4: Network fragmentation and component size along the day for Dublin trace.

at peak and off-peak times is not as different as in the other traces; the organization of

the routes, and the road network structure.

We are also interested in revealing the heterogeneity of the network. In this

way, we observe the component size distribution throughout the day, as shown in Fig-

ures 9.4b, 9.5b, 9.6b, and 9.7b. We can see that more than 82% of the components of

any of the networks are formed by only a single bus when the communication radius is

equal to 100 m. For Seattle and Washington, singleton components occur in 91% of cases.

There is an increase in the size of the components when we increase the radius, especially

in Rome. However, we can also note that most components are no larger than ten buses.

On the other hand, as discussed later, we still verify the existence of components with

a significant number of buses. Still, on singleton components, Figure 9.9 shows the re-

lationship between the number of isolate nodes and the number of nodes in the network

(ρ). The number of isolated buses in this network is significant throughout the day, with

a slight reduction in peak hours.

Takeaways. Even though the buses have pre-established schedules and well-defined

routes, the BUS-VANET is highly partitioned. When we look at the results presented

by Naboulsi and Fiore [194] and Gramaglia et al. [121], we show that a BUS-VANET is

even more partitioned than a VANET formed by ordinary vehicles in an urban scenario

or on a highway. In this direction, it is essential to propose communication solutions that

consider store-carry-and-forwarding mechanisms to efficiently disseminate data in this net-

work. Also, since there is no instantaneous end-to-end communication path, extracting

the contacts’ predictability from mobility patterns is crucial to replicate messages towards

the destination nodes. This approach recalls those used in delay-tolerant networks. An-

other critical point is that many solutions [53] [56] proposed in the literature for VANET

consider low-scale scenarios forming a dense network or highway scenarios. In this sense,

such solutions need to be adapted to address the topology challenges of a BUS-VANET.
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Figure 9.5: Network fragmentation and component size along the day for Rome trace.
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Figure 9.6: Network fragmentation and component size along the day for Seattle trace.

A B

0.0

0.2

0.4

0.6

0.8

1.0

100 101 102 103

Number of components

C
D

F

100m

300m

500m

(a) Number of components

0.0

0.2

0.4

0.6

0.8

1.0

100 101 102 103

Component size

C
D

F

100m

300m

500m

(b) Component size

Figure 9.7: Network fragmentation and component size along the day for Washington
trace.
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(a) Dublin (b) Rome

(c) Seattle (d) Washington

Figure 9.8: Number of components along the day.

(a) Dublin (b) Rome

(c) Seattle (d) Washington

Figure 9.9: Time series for ρ. ρ is the number of isolated nodes divided by the number of
nodes.



9.5. Network topology analysis 162

9.5.2 Component-level analysis

Due to the variability found in the component size, we need to show more details

about those elements that form the network core. In particular, large components play

a crucial role in multi-hop communication in vehicular networks. We examine how the

size of the largest connected component (LCC) varies with the total number of nodes and

how the LCC changes over space and time.

Figures 9.10, 9.11, 9.12, and 9.13 show the LCC size as a function of the total

number of vehicles on the network for Dublin, Rome, Seattle, and Washington. When R

equals 100 m (see Figures 9.10a, 9.11a, 9.12a, and 9.13a), we can see that the LCC size does

not increase significantly as the number of buses grows. On the other hand, the number of

components increases considerably with the number of buses in the network. We can say

that buses are entering the network and creating singletons or small-sized components.

However, the behavior changes significantly when the communication radius is 300 m and

500 m.

For R = 300 m, up to a certain threshold in the number of vehicles (for Dublin,

Rome, Seattle, and Washington is around 150, 500, 250, and 300, respectively), the size

of the LCC has a slight variation. However, we can see a positive correlation for all traces

from those values. For R = 500 m, those threshold values are reduced, but we can see

that linear behavior between the metrics persists. We can observe that the communication

radius value directly implies the number of network components. In addition, we highlight

the linearity from a certain threshold between the metrics of the number of vehicles with

the LCC size.

We examine the spatiotemporal dynamics of the LCC. We observe that the LCC

is geographically stationary throughout the day in those cities. That behavior is because

the bus routes and schedules follow a pre-established and repetitive demand. Also, we

verify how the LCC size fluctuates over the day, as shown in Figures 9.14, 9.15, 9.16,

and 9.17. We can also observe smaller components along certain roads, especially in

Dublin and Seattle. For Rome and Washington, spatial dispersion of components is more

regular across the city due to the road network structure and the configuration of bus

routes. On the temporal aspect, we see the relationship between the LCC size and the

total number of buses, including changes in buses’ volume in rush hours, as we see in

Figures 9.14d, 9.15d, 9.16d, and 9.17d.

Takeaways. As we quantify the impact of the communication radius on the formation

of the LCC, we make sure that the greater the number of nodes, the greater the number of

components, mainly due to singleton components or components with a small number of

buses. Furthermore, we observe the existence of LCCs that cover a significant portion of

the network along the time, especially for R = 500 m, showing that it is possible to have
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(a) R = 100m (b) R = 300m (c) R = 500m

Figure 9.10: Scatter plots of the LCC size versus the network size for Dublin trace. Colors
mean the number of components.

(a) R = 100m (b) R = 300m (c) R = 500m

Figure 9.11: Scatter plots of the LCC size versus the network size for Rome trace. Colors
mean the number of components.

(a) R = 100m (b) R = 300m (c) R = 500m

Figure 9.12: Scatter plots of the LCC size versus the network size for Seattle trace. Colors
mean the number of components.

a multi-hop communication in specific network components. Regarding the geographic

positioning of the components, the LCC is located in a particular location due to the

mobility characteristics of the buses. Based on those observations, aiming to achieve

a more significant number of buses, we endorse employing the store-carry-and-forward

mechanism combined with infrastructure in strategic points of intersections of the bus

routes. Also, it is essential to direct messages to the LCC, which is positioned in a

specific region of the city.
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(a) R = 100m (b) R = 300m (c) R = 500m

Figure 9.13: Scatter plots of the LCC size versus the network size for Washington trace.
Colors mean the number of components.
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(d) Temporal evolution of LCC

Figure 9.14: Dublin.
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(a) Spatial distribution of the compo-
nents at 8:30

(b) Spatial distribution of the compo-
nents at noon

(c) Spatial distribution of the compo-
nents at 17:00
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(d) Temporal evolution of LCC

Figure 9.15: Rome.

9.5.3 Node-level analysis

Another level of connectivity analysis is to investigate the individual degree of

connectivity of buses every second. We compute the Cumulative Distribution Function

(CDF) and Complementary Cumulative Distribution Function (CCDF) of the node de-

gree in all instantaneous graphs obtained throughout the day. When we look at Fig-

ures 9.18a, 9.19a, 9.20a, and 9.21a, as expected, as the radius value increases, there is a

tendency for nodes to have more neighbors. However, we still notice a significant number

of nodes with a zero degree in all those bus-vehicular networks, confirming the existence

of isolated nodes as shown in Figures 9.4b, 9.5b, 9.6b, and 9.7b. Even for R = 500 m, 75%

of nodes have seven neighbors or less for Dublin and Rome, while 75% of nodes have three
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(a) Spatial distribution of the compo-
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(b) Spatial distribution of the compo-
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(c) Spatial distribution of the compo-
nents at 17:00
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(d) Temporal evolution of LCC

Figure 9.16: Seattle.

neighbors or less for Seattle and Washington. This demonstrates how these networks are

partitioned into clusters of a few vehicles. We can observe that there is heterogeneity

concerning the node degree. For example, for Dublin, we can see that while the vast

majority of nodes have a low degree (less than 7), there are some in those with up to 80

neighbors (see Figure 9.18b). We can justify this by the particularities of bus movement,

as some points in the city form bus clusters.

Another essential behavior revealed in our analysis is that those BUS-VANETs

originated by our traces are not scale free in terms of node degree. We obtain this con-

clusion by observing the CCDF of the degree distribution in Figures 9.18b, 9.19b, 9.20b,

and 9.21b. We can see that the distribution does not follow a power-law distribution [4]

for any R values in any city. Naboulsi and Fiore [194] and Gramaglia et al. [121] identified

that urban and highway vehicular networks, respectively, are not scale free, and now we
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(a) Spatial distribution of the compo-
nents at 8:30

(b) Spatial distribution of the compo-
nents at noon

(c) Spatial distribution of the compo-
nents at 17:00
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(d) Temporal evolution of LCC

Figure 9.17: Washington.

reveal that BUS-VANETs are neither.

Takeaways. This type of network is heterogeneous in terms of the degree of the nodes.

Although most nodes have a low degree, we found a subset of nodes with a very significant

degree. This latter type of node is essential in the design of communication protocols as

they are decisive in broadcasting messages among buses.
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Figure 9.18: Node degree distribution in Dublin.
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Figure 9.19: Node degree distribution in Rome.
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Figure 9.20: Node degree distribution in Seattle.
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Figure 9.21: Node degree distribution in Washington.
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9.5.4 Contact-level analysis

In addition to the characteristics already evaluated of a vehicular network, we

believe it is also essential to analyze contacts’ behavior between buses. We focus on the

duration of the contacts, which refers to the time interval that bus pairs are within each

other’s communication radius and can exchange data. We saw earlier that this type of

network is highly partitioned and dynamic throughout the day. Therefore, understanding

the contact duration is essential in designing vehicle-to-vehicle communication solutions.

Figure 9.22 shows the CDF for the contact duration of the four cities. Our first

observation is the growth in contact duration between buses when we increase the commu-

nication radius value. Besides that, the contact duration distribution ranges from a few

seconds to some minutes regardless of communication radius. It is completely justifiable

in scenarios where the nodes have high mobility and pre-established schedule movement.

When we set the communication radius to 100 meters, we can see that 90% of the cases

have a maximum of 84 seconds in Dublin (see Fig. 9.22a). For the other cities, in 90% of

cases, the duration is around 60 seconds (see Fig. 9.22b, 9.22c, and 9.22d). On the other

hand, when the radius is 500 meters, 75% of the contacts have a contact duration greater

than one minute for all cities (see Fig. 9.22).

Takeaways. We see that the duration of contacts for those cities has quite similar

distributions. Therefore, our finding shows that this phenomenon is determined more by

bus mobility features than other factors like the city’s characteristics (e.g., road network

structure). We list the bus mobility features that contribute to this observed behavior:

buses follow pre-established routes and similar schedules, the average speed of the buses,

and the buses have intersections of movements at bus stops. In addition, the contact

duration distribution observed in this analysis shows that buses can transfer a significant

amount of information, mainly when the communication radius is equal to 300m or 500m.

9.5.5 Mobility-level analysis

This section focuses on the relationship between the bus system and the street

network. We classify the importance of the streets at the same time that we highlight the

primary connections on the bus routes. In this way, we create two graphs: one represent-

ing the street network where intersections are nodes and streets are edges, and another

obtained from the bus routes where the nodes are the bus stops, and the edges are a path

between them. Finally, we extract the closeness and betweenness centralities [185] from
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(a) Dublin (b) Rome

(c) Seattle (d) Washington

Figure 9.22: Contact duration distribution.

the street and bus system graphs, respectively. As our study involves mobility, these two

metrics indicate how the bus system’s structure overlaps with the street network. First,

closeness centrality will give us a view of the most relevant nodes regarding reachability

across city regions. Second, the betweenness centrality over the bus system tells us the

primary connections in the bus system.

Figure 9.23a shows that the highest closeness values (yellow color) are in the central

area of Dublin. When we look at Figure 9.23b, we can see a spatial correlation between the

betweenness of the bus system and the closeness values of the street network. The points

of greater betweenness are either in the central region or on the main roads connecting

peripheral areas to the city center. Similar behavior is observed in Washington, as shown

in Figures 9.26a and 9.26b.

As the city’s topological structure directly impacts closeness values, we can see

slightly different behavior for Rome and Seattle than the cities mentioned above. In

Seattle, the nodes with the highest closeness extend throughout the city (see Figure 9.25a),

while in Rome, the nodes with the highest closeness are close to the ring motorway that

encircles the city (see Figure 9.25b). On betweenness centrality, bus traffic in Seattle

follows the same pattern as other cities: high density in downtown and in the streets that

connect the center to the suburbs (see Figure 9.25b). On the other hand, nodes with high

betweenness in Rome are distributed throughout the city and mainly in the inner part of

the ring motorway (see Figure 9.24b).

Takeaways. We can observe a spatial correlation between the street network’s closeness

centrality analysis and the bus system’s betweenness centrality analysis. However, this
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(a) Closeness centrality on
the street network.

(b) Betweenness centrality
on bus system.

Figure 9.23: Relationship between street network structure and bus mobility in Dublin.

(a) Closeness centrality on
the street network.

(b) Betweenness centrality
on bus system.

Figure 9.24: Relationship between street network structure and bus mobility in Rome.

(a) Closeness centrality on
the street network.

(b) Betweenness centrality
on bus system.

Figure 9.25: Relationship between street network structure and bus mobility in Seattle.

relationship can be influenced by some particularities of some cities, such as specific

road structures and functional regions. Furthermore, the study presented in this section

confirms the impact of mobility on the network connectivity topology. To have a clear idea

of that, it is enough for us to verify that there is a similarity between Figures 9.14-9.17

and 9.23-9.26.
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(a) Closeness centrality on
the street network.

(b) Betweenness centrality
on bus system.

Figure 9.26: Relationship between street network structure and bus mobility in Washing-
ton.
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Figure 9.27: Epidemic dissemination ratio during rush hour.

9.6 Data dissemination

In the previous section, we conducted an empirical study to analyze the networks’

instantaneous topology obtained from the traces. Our goal now is to analyze the im-

pact of bus mobility on data dissemination. For this purpose, we simulate an epidemic

dissemination of a message in each BUS-VANET obtained from the traces presented in

Section 9.3. An application for this type of dissemination is to provide information on

software updates or traffic conditions status through the whole network.

Based on Figure 9.3c, we run our simulations in a rush and off-peak scenarios for
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Figure 9.28: Epidemic dissemination ratio during the off-peak hour.

each trace. In our simulations, the rush scenario corresponds to the period between 8 am

and 9 am, and the off-peak scenario corresponds to the period between 12 pm to 1 pm. We

import those scenarios to ONE simulator [159], a well-known opportunistic networking

environment simulator. The ONE simulator provides all the conditions to evaluate the

traces experimentally employing routing protocols with store-carry-and-forward commu-

nication. This type of communication is essential for fragmented network scenarios, as

revealed in Section 9.5. Also, we set the bus transmission speed to 6 Mb/s based on the

IEEE 802.11p specification [10] and assigned the communication radius to 100 meters,

300 meters, and 500 meters. Our empirical analysis (see Section 9.5.2) observed that

the largest connected component is almost geographically stationary throughout the day.

Moreover, the bus lines that make up this component extend throughout the city, forming

a delay-tolerant communication backbone. From that observation, we define that the mes-

sage source is a node in the largest connected component and the message dissemination

starts in the first minute of simulation.

Figures 9.27 and 9.28 show the dissemination ratio for rush and off-peak hours in

Dublin, Rome, Seattle, and Washington. Looking at those figures, we can make general

observations. First, when we increase the communication radius, the dissemination ra-

tio grows. This is because the network with a smaller communication radius is highly

fragmented, resulting in a longer time for the content to be delivered to the various com-

ponents of the network. Second, the dissemination ratio is generally slightly higher at

rush hour. Looking at Figure 9.3c, we see that the number of buses in transit during peak

hours is higher than during the off-peak hours, especially in Seattle and Washington,
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increasing the possibilities of dissemination throughout the whole network.

For Dublin, when we compare the behavior of the dissemination ratio curves, we

see that in the rush hour scenario, the percentage of buses reached is slightly higher than

in the off-peak hour scenario. For a rush hour with R = 100 m, in 10 minutes, only 30%

of buses receive the message, and in 60 minutes, approximately 95% of buses receive the

message. When we consider those same time intervals, the percentage of buses that receive

the packet for R = 500 m is 60% and 98%, respectively. We have verified some results

obtained in Section 9.5, which show that we have more significant components when we

have a larger radius. Therefore, the efficiency of disseminating the message increases.

In the case of Rome, we see that 80% of buses are reached in 10 minutes and, in 60

minutes, approximately 98% of buses receive the packet when R = 500 m. However, when

R = 100 m, the dissemination ratio is much slower. This is due to the topology charac-

teristics resulting from the mobility of buses in the Rome trace. For instance, Figure 9.15

shows the formation of many components distributed throughout the city, and when the

communication radius is large enough, the network connectivity is dense. On the other

hand, when R = 100 m, the network becomes highly disconnected. Therefore, the effec-

tiveness of the dissemination is basically through store-carry-and-forward communication

to forward the message to the components.

When we analyze the dissemination ratio in Seattle and Washington, we see similar

peculiarities to those observed in the two traces above. Since the network is even more

partitioned and most of the components are singleton, it takes more time to disseminate

the message across the network. For instance, in Seattle, with R = 500 m, 50% of buses

receive the message in 10 minutes during rush hour, and only 40% of buses receive the

message in the same time interval during the off-peak hours. For Washington, with R =

500 m, only 20% of buses receive the packet during the off-peak hours. In addition to these

findings, we can see how LCC can contribute to disseminating data in a BUS-VANET

scenario. For instance, as the dissemination of the message starts at the LCC, we see

in Figures 9.27 and 9.28 that there is a burst in the dissemination rate, mainly in the

trace of Rome. These results confirm our analyses observed in Section 9.5, especially in

Figures 9.10-9.17.

9.7 Broad applicability

In this section, we discuss how our contributions can be applied in other studies.

We demonstrated the applicability of the datasets for vehicular networks, consid-

ering empirical topology analysis, and the simulation and validation of routing protocols.
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These datasets and the framework can also be helpful for studies related to urban mobil-

ity. For example, for studying and planning public transport [262] in terms of creating

routes, deploying bus stops, and spatiotemporal coverage of the system. Also, designers

can use the resources to analyze the accessibility of public transport [293] or to expand

current systems. In addition, such data may also be relevant for research on multimodal

urban mobility and integration with other means of transport [5]. Researchers interested

in epidemiological diseases can merge data and create epidemic models to understand and

control pandemic situations [219]. Our datasets and framework can be used by researchers

to study the estimation and control of air pollution levels with the insertion of an emission

model [169].

In addition to the results presented in this work for vehicular networks, our con-

tributions can impact other areas. First, there is a large availability of GTFS data, so

researchers can create new mobility datasets using the framework. In addition, the com-

munity can enhance our system with its modules and models since our work is open

source. Second, this approach to synthetic data generation avoids creating an entire sens-

ing infrastructure that involves a high cost and time. In this way, such an approach

allows rapid prototyping of ideas and models, allowing researchers to focus on the core

of research problems and avoiding dealing with the steps of obtaining, preprocessing, and

manipulating GPS data.

9.8 Chapter Remarks

Buses from the public transport system can play a fundamental role in the data

dissemination in ITS. First, buses have an almost deterministic schedule. Second, bus

lines generally cover many regions of the cities. Third, buses have unique mobility char-

acteristics that differ significantly from other types of vehicles. Due to these and other

properties, the mobility of buses on a city scale draws our attention to the design of

BUS-VANETs.

We presented a framework for generating bus mobility traces from GTFS. First,

we introduced and discussed the process of generating mobility. Also, we created mobility

data for four cities and characterized them. Those traces present different properties in

terms of scale, spatial, and temporal dimensions. Our traces have high granularity and

precisely represent the bus lines’ routes based on the schedule made available by the

agencies.

Our topology analysis comprised of four levels revealed essential characteristics

of BUS-VANETs obtained from the mobility traces. Our comprehensive study revealed
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that the network is highly partitioned but with predictable clusters in specific city places,

where we observed time-invariant behaviors. We quantified how the rush hours impact

the size and number of components in different cities. We showed how the size of the

communication radius influences spatially and temporally the connectivity throughout

the city. In addition, we showed the distribution of the duration of the contacts. We

pointed out a set fundamental considerations in the design of BUS-VANETs. Finally, we

performed experiments that consider the insights from our analysis to demonstrate the

potential of bus mobility in data dissemination.

As future directions, we aim to enrich the traces generated with contextual vari-

ables such as traffic density, traffic restrictions, and abnormal situations. Also, from the

topology analysis standpoint, we intend to point out how the differences between the

mobility represented by GPS traces and GTFS-based data can impact the design of this

type of network.
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Chapter 10

MOP: A Novel Mobility-Aware

Opportunistic Routing Protocol for

Connected Vehicles

In this Chapter, we address a fundamental problem in vehicular networks, which consists

of sending messages from a source vehicle to a destination vehicle. This problem becomes

even more complex in the absence of fixed infrastructure or any other controlling entity.

Although there are some solutions in the literature to work around this problem, they

can cause significant network overhead and generate an amount of redundant data. In

this regard, we develop a routing protocol that considers individual vehicular mobility as

a determining factor for routing decisions. Through simulations using realistic vehicular

mobility trace [29], we have observed that our strategy considerably decreases network

overhead and the number of hops between source and destination while maintaining sim-

ilar values for delivery ratio and latency.

10.1 Introduction

Vehicular networks have become one of the leading data communication solutions

for smart city scenarios and intelligent transport systems. The vehicle-based communi-

cation infrastructure enables the design of plenty of applications ranging from security,

advertising, sensing to entertainment. One of the primary requirements for such appli-

cations concerns the data routing mechanism. For example, safety applications adopt

broadcast mechanism, while non-safety applications generally use geocast/unicast [224].

Several studies found in the literature about vehicular networks have focused on

proposing routing protocols for broadcast and geocast scenarios [40]. Meanwhile, there

is a lack of attention to unicast routing solutions especially when the destination is a

particular mobile node, and not a set of vehicles [42]. Unicast is a routing scheme in
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which a single source sends a message to a single destination [214] [38]. This task is not

straightforward (more notably for situations that the target is mobile and the commu-

nication uses a broadcast medium) because of the characteristics of vehicular networks

such as high vehicle mobility causing a dynamic network and varying network density

over space/time impacting sparse scenarios with network fragmentations [88] [16].

Traditional unicast solutions are based on either network topology or vehicle po-

sitioning. Topology-based solutions consider a routing table in the packet routing pro-

cess, while position-based solutions consider source, intermediate, and destination posi-

tions [88]. However, due to the highly dynamic feature of the network such solutions are

not suitable for situations where the packet destination is a mobile node. In this sense,

an alternative is to use concepts from opportunistic networks.

In opportunistic networks, the forwarding route between the source node and the

destination node is dynamically established as intermediate nodes can be opportunistically

chosen as the next hop [190]. A classic strategy is to disseminate packets on the network

epidemically. Another approach is to look at the contact history of network nodes [66].

At this point, a critical factor is to determine which nodes will be chosen in the routing

process to increase the delivery rate and reduce both network overhead and latency. Also,

opportunistic communication in combination with high-rate data transmission between

vehicles facilitates the design of delay-tolerant content delivery applications such as non-

critical updates of applications and video advertisements, enabling offloading of traffic

demand from cellular network [206] [203].

In this Chapter, considering a vehicular ad hoc network where vehicles cooperate

opportunistically to deliver messages to the destination vehicle, we aim to investigate

individual vehicular mobility as essential information to select the best message carriers.

In this direction, our specific objectives are:

• We characterize the individual mobility using the radius of gyration and mobility

entropy metrics to verify whether there is the variability of mobility of network

nodes. Based on that, we can investigate the role of this heterogeneity in data

dissemination.

• In Cotta et al. [80], the authors numerically showed the relation of those mobility

metrics to network connectivity. In this work, we go further by proving the ap-

plicability of those metrics as knowledge for routing decisions in vehicular network

through a Mobility-aware Opportunistic routing Protocol, named MOP.

• We evaluate our solution over a unicast scenario in a realistic vehicular network

where opportunistic mobility metrics-based routing yields promising results in terms

of delivery rate, latency, number of hops, and overhead.
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We organize this Chapter as follows. In Section 10.2, we present the related work

and point out the gaps that we are filling in our research. Section 10.3 comprises the

characterization of a realistic vehicular mobility trace where we investigate the mobility

metrics. Based on this characterization, we present our protocol in Section 10.4. In

Section 10.5, we describe our simulation scenario, present, and discuss the results in

terms of delivery probability, latency, number of hops, and latency. Finally, we point out

our final remarks and future work in Section 10.6.

10.2 Related Work

In recent years, routing in opportunistic mobile networks has drawn a lot of at-

tention. In particular, in challenging scenarios of highly dynamic mobility where there

is no end-to-end path between a source node and destination node, a range of routing

protocols has been proposed to maximize the delivery rate and decrease end-to-end delay.

One concept widely applied by these protocols is the store-carry-and-forward. The store-

carry-and-forward scheme is fundamental in the context of opportunistic networks. It has

been the basis for creating various protocols in both traditional mobile ad hoc networks

and vehicular networks [21]. In this scheme, network nodes receive the message, keep it

in custody while they move, and forward it to a destination node or an intermediate node

that is more likely to deliver the message to the destination node. A critical factor is to

identify which intermediate nodes will be in charge as disseminators

Vahdat and Becker [256] proposed a flooding-based protocol, called Epidemic, in

which messages are replicated on the network without any control. This protocol achieves

a high delivery rate but significantly increases network overhead. To circumvent this issue

of epidemic-like message replication, Spyropoulos et al. [241] created the Spray and Wait

(SAW). This protocol has two phases: the spray phase and the wait phase. The first phase

replicates the messages in a controlled manner and the second one tries to deliver the

messages to the destination node opportunistically. This protocol significantly reduces

network overhead because a threshold limits the number of copies of the messages on

the network. These protocols do not consider any knowledge to select replicator nodes.

Lindgren et al. [176] proposed a routing protocol based on the probabilities of meeting

the network nodes. This protocol finds this knowledge to eliminate unnecessary message

creation and replication.

In addition to these purely opportunistic protocols, some studies found in the

literature have used the knowledge of mobility to assist in the packet forwarding process.

Leontiadis and Mascolo [168] used the trajectories of vehicles and the opportunistic nature
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of meeting them in the design of a vehicle network protocol called GeoOpps, where the

destination node is static. Thus, replication of messages occurs for carrier nodes that are

moving toward the destination node. Soares et al. [239] developed a protocol by mixing the

idea of trajectory direction information from GeoOpps with a message copying strategy

from Spray and Wait. So he created the GeoSpray, a multi-copy version of GeOpps. Other

protocols have used vehicle mobility knowledge to assist in the dissemination for geocast

in vehicular networks, i.e., routing messages to a specific location. Zhang et al. [291]

developed a protocol that utilizes individual mobility information and vehicle flow mobility

between regions of a city. This way, when a message is created it is directed to a destination

region according to the historical mobility information. Similarly, Chen and Shen[67]

studied the same problem of forwarding messages to a specific location, and using the

concept of data spread across regions, they proposed a protocol called GreedyFlow.

We can observe that these studies use both mobility knowledge and opportunis-

tic routing to make a considerable advance in data dissemination in vehicular networks.

However, they have some limitations. The data dissemination using purely opportunistic

approaches causes a high network overload. Classic protocols such as Epidemic, Spray

and Wait, and Prophet have significantly compromised performance in large-scale vehic-

ular scenarios. Strategies that use mobility are directed to geocast or unicast message

routing with the destination node being static. In this sense, we present in this Chapter

a study that investigates the potential of using individual vehicular mobility information

in combination with opportunistic routing targeting unicast scenarios. Our proposal con-

siders scenarios where the destination node is mobile and aims to reduce the overload of

the network.

10.3 Characterization

In this section, we present the characterization of the mobility of a realistic large-

scale vehicular mobility trace. The main objective of this characterization is to verify

if there is the variability of individual mobility of network nodes and, if true, we can

investigate the role of this heterogeneity in data dissemination.
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10.3.1 Vehicular mobility trace

For both characterization and evaluation of the vehicular network protocol, we used

a realistic mobility trace that contains 1642 buses moving during 18 days of November

2009 in the city of Chicago, United States of America [99]. The information contained

in the data set is vehicle identifier, latitude, longitude, and timing of the positioning

(timestamp). We apply a preprocessing step to reduce imperfections and increase vehicle

trajectory accuracy as described in [63] [56].

10.3.2 Mobility Metrics

As we are interested in quantifying individual vehicular mobility, we have identified

in the literature two relevant metrics that can directly impact opportunistic communica-

tion. The following is the definition of these metrics.

Radius of Gyration This metric aims to quantify the vehicle’s mobility in relation to

its center of mass of movement [118]. The equation 10.1 gives the radius of gyration of

each vehicle.

rg =

√√√√ 1

n

n∑
i=1

(pi − pcenter )2 (10.1)

where n is the number of spatial positions (x, y), pi is the ith spatial position and pcenter

is the center of mass obtained as pcenter = 1
n

∑n
i=1 pi. The idea behind this metric is that

a small radius of gyration means vehicles move locally through short journeys, while a

high radius of gyration means vehicles travel long distances.

Mobility Entropy Entropy is another metric that can be used to quantify the spatial

dynamics of a vehicle. To identify the mobility entropy of a vehicle we initially partitioned

the city as a grid. From that, we calculated Shannon’s entropy using the equation 10.2

to obtain the mobility spread of a vehicle.

H = −
∑
j

(
|Cj|
C

log2

|Cj|
C

) (10.2)

where Cj are the grid cells with j = 1, 2, ...,m, |Cj| the number of points in each cell Cj

and C the number of points equal to
∑

j |Cj|.
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(a) Radius of gyration (b) Mobility entropy (c) Spearman’s correlation
between radius of gyration
and mobility entropy

Figure 10.1: Mobility metrics characterization.

10.3.3 Analysis

In this analysis, we independently analyze each of the mobility metrics by observing

their cumulative density function, and then we investigate the correlation between them.

Figure 10.1a shows the CDF of the radius of gyration. We can observe that the maximum

radius of gyration is 10km, and the median is approximately 4.5km. Besides, it should

be noted that 75% of vehicles 5.4km or less. Furthermore, 50% of the values are between

3.5km and 5.4km. These results represent a scenario of bus mobility in a city; then we

have two situations: vehicles going from the peripheral region to downtown (and vice-

versa); and vehicles that cross the whole city. Therefore, there is variability in the radius

of gyration in which some vehicles have higher displacement values, making it suitable for

application in the data dissemination process.

Figure 10.1b shows the distribution of individual mobility entropy of the vehicles.

On average, entropy is around 1.2. Also, we can observe that 25% of vehicles have entropy

between 1.3 and 1.7. Therefore, as for the radius of gyration, there is heterogeneity in

individual vehicular mobility when we also look at entropy. Based on these results, we

can assume that vehicles with a high radius of gyration and entropy values are better

message replicators, since they are more likely to find other nodes on the network, thus

preventing the message from staying on locally mobile nodes. To assess whether there

is a relationship between these two metrics, we use Spearman’s correlation, as shown in

Figure 10.1c. Although there is a strong correlation between them with a R = 0.82, this

correlation is not perfect. For this reason, we use both the radius of gyration and entropy

in decision making for routing as evaluated in Section 10.5.
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10.4 MOP: A Mobility-Aware Opportunistic

Routing Protocol

In this section, we describe our Mobility-aware Opportunistic routing Protocol

(MOP). As shown in Section 10.3, mobility metrics can be used as prior knowledge to

select the best replicating nodes. This type of strategy is interesting because it avoids

uncontrolled data dissemination as it occurs in some opportunistic routing protocols [66].

Also, our protocol only requires each node to compute its own mobility metric indepen-

dently. Therefore, we do not need to have complete knowledge of the network structure

or share information (e.g., trajectory) that compromises privacy.

The idea behind the proposed protocol is to disseminate messages only to repli-

cator vehicles that have the largest spatial metric values. This version of the protocol

is for opportunistic unicast routing, i.e., a message originating from a source vehicle is

forwarded to the destination vehicle opportunistically. In this sense, the protocol has as

main characteristics:

• intermediate nodes, also known as replicators, can replicate messages on the network

using the store-carry-and-forward scheme.

• the forwarding decision is based on the Algorithm 11.1. In this Chapter, we use

two mobility metrics (MM) to determine whether message forwarding should occur:

radius of gyration and mobility entropy.

• this protocol allows multiple copies of the message originated by the source vehicle

to be transmitted on the network to increase the chance of delivering it to the

destination vehicle.

We define encounter/contact as a situation where vehicle communication radii

overlap, allowing data exchange. When two vehicles meet, they identify each other and

check if they contain any message in the buffer that the destination is the vehicle in

contact; if so, they send the message. Another relevant situation is the replication of

messages contained in the buffer, but the vehicle in contact is not the destination of the

messages.By observing the algorithm 11.1, when two vehicles meet they can exchange the

following information: a summary vector (SV) with metadata about the messages they

contain in their buffers and the value of their mobility metric (MM).In this work, the

mobility metrics used can be the radius of gyration as defined in the Equation 10.1 or

the mobility entropy as set in the Equation 10.2. If the vehicle i identifies that MMj is

greater than MMi, then it sends to vehicle j the messages contained in its buffer that
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Algoritmo 10.1: MOP - Message replication when vehicle i encounters vehicle j

1: sendMetadata(SVi, MMi)
2: receiveMetadata(SVj, MMj)
3: if MMi < MMj then
4: MS ← SVi − SVj
5: L← []
6: for m ∈MS do
7: L.appendMessage(m)
8: end for
9: sendMessages(L)

10: else
11: receiveMessages()
12: end if

vehicle j does not have (it is represented by MS). Otherwise, they only receive messages

from vehicle j.

10.5 Performance Evaluation

10.5.1 Simulation Setup

We use a well-known opportunistic network simulator called The ONE [159] to

evaluate the performance of our protocol. Following the 802.11p [10] specifications, we

set the radius of communication to 500m and the vehicle’s transmission speed to 6Mbps.

Also, each vehicle’s buffer size is 2,000MB, and when the limit is reached, the oldest

messages are discarded from the buffer.

We have selected a subset of 3 hours (from 7 to 10 a.m. on a Monday) from the

vehicular mobility trace presented in Section 10.3. The messages originate in the first hour

of simulation from a random source node to a random destination node. The messages

are generated at a rate of 1 message every 30s and with 512kbits of size. To assess the

impact of protocol operation on the network scale, we simulated the network with 500,

1000, and 1500 vehicles. It is noteworthy that for all results, we have the average with a

confidence interval of 95%, and each configuration was performed 30 times with different

seeds.

Considering that current solutions that use mobility information are more directed

to geocast applications as discussed in Section 10.2, we compare our proposal with three
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other well-known protocols. They were originally proposed for opportunistic networks

and can be applied to the unicast scenario under evaluation, they are: Epidemic [256],

Spray and Wait [241], and Prophet [176]. The Epidemic protocol does not have initial

parameters, and the implementation follows that presented in [256]. Spray and Wait has

two basic parameters: threshold value for message copy control and the replication mode.

We set the threshold to 10 and the replication mode to binary. Prophet uses contact

history to assist in the routing decision and has initial parameters related to the delivery

predictability. We assign the following values to these parameters pinit = 0.75, α = 0.25,

and γ = 0.98, as specified in [176]. In addition, we evaluated two versions of the proposed

protocol. One version considering the radius of gyration (named MOP-RG) and the other

based on mobility entropy (named MOP-Entropy).

10.5.2 Results

The first metric analyzed was the probability of delivery. It is the result of the

number of messages delivered divided by the total number of messages created. Figure 10.2

shows the results of the probability of delivery in relation to the number of vehicles in the

network. All protocols deliver more messages as the number of vehicles on the network

increases. The Epidemic is the upper bound to the probability of delivery, delivering

almost 100% of the generated messages. MOP-Entropy outperforms MOP-RG because the

information from mobility using entropy is more granular regarding space and therefore

identifies more faithfully the spread of the vehicle movement. It is noteworthy that the

trend is that for higher the number of vehicles, the more likely it is to deliver using MOP,

possibly reaching Prophet and Epidemic. This observation is particularly interesting

because the proposed protocol only uses individual mobility information without requiring

initial parameters or prior contact information between nodes.

The second metric investigated was overhead. Overhead is calculated as (NR −
ND)/ND where NR is the number of messages relayed and ND is the number of messages

delivered. Figure 10.3 shows the overhead results in relation to the number of vehicles

in the network. Although Spray and Wait protocol has the lower overhead, it delivers

very few messages, as noted in Figure 10.2. MOP-RG and MOP-Entropy have similar

behavior and present much more interesting results than Epidemic and Prophet. Both

versions of MOP need to replicate far fewer messages to achieve a delivery probability

similar to that performed by other protocols.

The third metric analyzed was latency. Latency consists of the time between

the moment the message is generated by the source node and the moment the message
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Figure 10.2: Delivery probability x Number of vehicles

Figure 10.3: Overhead x Number of vehicles

is delivered to the destination node. Figure 10.4 shows the latency results in relation

to the number of vehicles in the network. Clearly, as the number of vehicles on the

network increases, the message delivery time decreases. For lower vehicle density, the

protocols present statistically equivalent results, except for the Epidemic that always has

lower latency. The Prophet and the Epidemic have less latency because they do more

uncontrolled message replication. MOP-RG and MOP-Entropy control the replication by

mobility metrics, so messages stay in the vehicle buffer longer until they opportunistically

find the destination node or intermediate nodes with more higher mobility metric.

The fourth metric evaluated was the number of hops. This metric consists of
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Figure 10.4: Latency x Number of vehicles

Figure 10.5: Number of hops x Number of vehicles

the number of hops a message has had between the source node and the destination

node. Figure 10.5 shows the results of the number of hops in relation to the number

of vehicles in the network. In general, the number of hops in MOP-RG and MOP-

Entropy is small compared to other protocols. This is because replications are restricted

to intermediate nodes that have higher value mobility metrics and as seen in Section 10.3

there is heterogeneity that allows a limited number of possible hops between source and

destination.

Based on the results presented, we can see that both versions of the MOP proto-

col have a promising cost-benefit compared to the other protocols. Delivery probability
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reaches high values, network overhead is considerably lower, latency is equivalent for

specific configurations, and the number of hops is significantly lower.

10.6 Chapter Remarks

In this Chapter, we presented a mobility-aware routing protocol that takes ad-

vantage of information derived from individual vehicular mobility to assist in the routing

decision. Given a scenario where source vehicles send messages to destination vehicles, we

evaluated how our proposal behaves in a large-scale network. Furthermore, we compared

our proposal with well-known protocols from the literature. The results show that both

versions of the protocol, using either radius of gyration or mobility entropy, showed a

promising cost benefit when we looked at the probability of delivery, overhead, number

of hops, and latency.

We envision some directions for this work. For example, we can extend the assess-

ment of what other mobility metrics can be used. In addition, we plan to evaluate other

scenarios containing different types of mobility to investigate the impact of this on the

proposed protocol.
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Chapter 11

Mobility Generation and Data

Dissemination for Bus-Based

Vehicular Networks

This Chapter addresses two essential building blocks in designing of bus-based vehicular

networks: simulation model for bus mobility and data forwarding. As mentioned early,

mobility simulation models allow researchers to test and evaluate their ideas in various

complex situations that would be impractical in real life, considering time and cost. How-

ever, creating simulation models that capture the multiple nuances of real-world mobility

is not a trivial task and has still been investigated in many studies. In this direction,

we introduce the G2S, a simulation model framework for generating bus mobility, on top

of a well-known simulator (SUMO), based on official data. As result, we provide three

realistic simulation scenarios with distinct traffic demands for different days based on

GTFS data from Greater Vancouver, Canada. From a data forwarding standpoint, we

present two routing protocols. A novel routing protocol named BR3C, which aims to

forward messages between bus lines for data dissemination. BR3C (Bus Routing protocol

based on Community and Centrality Characteristics) considers social metrics extracted

from the contacts between bus lines for decision-making. Also, we present a historical-

based data forwarding strategy, named BR4C, for delivering messages between bus lines.

Our solution considers knowledge (Community, Centrality, and Contacts Characteristics)

extracted from past encounters between buses in historical mobility traces to assist the

delivery of messages. BR4C reduces delivery latency and has a delivery ratio higher than

state-of-the-art.
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11.1 Introduction

We have witnessed in recent years the advance in technologies involving Intelligent

Transportation Systems (ITS) [87]. In this context, vehicular networks have stood out as

one of the primary data communication solutions. However, one of the critical aspects

of designing this type of network is the dynamics of vehicle mobility. In addition, it is

even more complicated in the urban scenario because there are different types of mobility

patterns subject to various movement restrictions [59]. In this sense, understanding the

dynamics of different kinds of mobility is essential to proposing powerful solutions [60].

Particularly, we are concerned with focusing on designing vehicular networks formed by

buses in the public transport system. Thus, we aim to address two fundamental per-

spectives: the composition of realistic mobility scenarios to assist in the design of other

solutions and in disseminating data between the various bus lines that make up the ve-

hicular network.

On generating bus mobility, we found some works in the literature on simulation

scenarios and mobility modeling [24, 75, 78, 180, 58]. However, this research topic still

presents several opportunities as it is impacted by many factors such as space, social, time,

type of mobile entities, and cultural aspects. We can find in the literature some scenarios

that involve bus mobility that consider some of these factors. For instance, Codeca et

al. [75] introduced a mobility scenario for the city of Luxembourg and Monaco [78]. Bieker

et al. [24] created three scenarios imitating bus mobility in neighborhoods of Bologna,

Italy. More recently, Lobo et al. [180] proposed a simulation scenario from Ingolstadt,

Germany. We realized that despite these contributions, some nuances of bus mobility

have not yet been captured in the generation of simulation scenarios [57]. We can number

a few: the variability of the number of buses does not consider rush hours; the duration

of the scenarios is short; the mobility coverage area is limited to only some parts of the

cities; bus traffic demand does not consider different days of the week such as weekends

and working days.

Although some tools help generate mobility (e.g., SUMO [163]), building a scenario

that circumvents such problems requires much effort and time. In addition, the generated

scenarios must meet quality requirements that cover several realistic characteristics, and

only using the default settings of such tools is not enough. In this direction, this work

introduces a framework for generating bus traffic demand on top of SUMO, presenting

results compatible with the ground truth regarding the trajectories’ shape, size, and

duration. At the same time, the scenarios generated from this framework have unique

and relevant characteristics regarding the number of buses, spatial movement area, and

schedule.

When those issues are considered in designing an ITS solution, we can evaluate
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data communication protocols in more realistic scenarios. From a data communication

point of view, our work focuses on the problem of forwarding messages from buses to

any bus belonging to a destination bus line [171]. Although we can find some routing

solutions for this problem [171, 228, 114, 288], we introduce novel routing protocols that

consider the contact history between bus lines and social characteristics obtained from a

more realistic network structure to increase the delivery rate while decreasing the latency.

Consequently, we consider these features and used them as decision metrics in the design

of BR3C and BR4C. We sum up our contributions as:

• We introduce the G2S (GTFS to SUMO) framework for generating bus mobility

scenarios based on open-source tools and publicly available real-world data. Our

main goal is to create large-scale scenarios covering the whole city and with mobility

features not observed in the existing ones in the literature, as mentioned previously.

Also, those scenarios must have spatial and temporal fidelity to real-world behav-

ior. In this direction, we develop three bus mobility scenarios, called Vancouver

Bus Mobility Scenarios (VBMS), considering official data from Greater Vancouver,

Canada.

• Zhang et al. [285] demonstrated how a community-based approach could be ade-

quate for forwarding messages between bus lines. In this work, we propose a routing

protocol called BR3C that combines two social features (community and node cen-

trality). As a result, BR3C significantly reduces delivery latency while maintaining

delivery rate values consistent with state-of-the-art solutions.

• Additionally, we provide an improved solution for BR3C, named BR4C. In this case,

we consider the past contacts between buses to create a probabilistic model to com-

pute the path routing of messages on the network. As a result, BR4C significantly

reduces delivery latency while increasing the message delivery rate on the network.

• We present an original approach to validate realistic bus scenarios using GTFS data.

Our solution uses qualitative and quantitative metrics to evaluate and compare bus

mobility synthetic data.

• We provide the scenarios and data created in this work in order to collaborate with

the community to have benchmarks for research in urban computing and vehicular

networks.

We organize the rest of this Chapter as follows. In Section 11.2, we provide a

comprehensive overview on bus mobility scenario generation and routing protocols for

bus-based vehicular networks. We point out the main existing limitations and highlight

the main differences in our proposal. In Section 11.3, we present in detail our method-

ology of creating bus mobility scenarios. Section 11.4 introduce and describe the BR3C
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protocol. Section 11.5 presents the BR4C routing protocol design. Section 11.6 presents

the validation of scenarios generated by G2S. Section 11.7 shows a comparative analy-

sis of generated scenarios with the existing ones. Section 11.8 analyzes the performance

evaluation of protocols. Section 11.9 contains the conclusions and future work.

11.2 Related Work

Our work has two directions: bus mobility scenario generation and routing proto-

cols for bus-based vehicular networks that complements and validates the first one. We

divide this section into these two branches and discuss the main points concerning existing

studies in the literature.

11.2.1 Bus mobility scenarios

As a common practice, researchers and practitioners built up vehicular mobility

scenarios for many years using synthetic data obtained from mobility models [53]. In

this direction, several simulation scenarios were created using naive assumptions about

vehicular mobility such as random origin and destination, homogeneous road topology

(e.g., grid-like), and all roads with similar traffic properties [112]. However, more recently,

we have witnessed simulation scenarios containing more realistic features. The main

reasons behind this are the advancement of positioning techniques for obtaining and

collecting data, the availability of official data, and the existence of publicly available

simulation tools. This section describes these scenarios and points out the main differences

from the one proposed in this work.

One of the first vehicular simulation scenarios, named TAPASCologne, using real-

world data was proposed in [255]. The authors created a 24-hours vehicular mobility

scenario simulating 1.2 million of individual trips. For that, they considered official data

(e.g., home and workplaces statistics, point of interest, schedule of work, and leisure

times) from people in Cologne, Germany. Then, they created the daily mobility using an

Origin/Destination matrix on top of a 400km2 map from the OpenStreetMap1. Although

it is still one of the largest scenarios available to the public, TAPASCologne contains cer-

1OpenStreetMap. http://www.openstreetmap.org
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tain imperfections and needs a significant effort to make it suitable for vehicular network

simulations.

Bieker et al. [24] designed a suite of three scenarios from subareas in Bologna, Italy.

Those scenarios were named as Andrea Costa (Acosta) scenario, Pasubio scenario, and

Andrea Costa and Pasubio Joined scenario. Those scenarios are small-scale and present

a short duration (i.e., 1 hour). Also, in terms of area, the largest of them has an area of

4.15km2. Their mobility is constituted by private cars and public bus transport. Also,

using official data from Bologne, Bedogni et al. [20] created a scenario named Bologna

Ringway, covering an area of 25km2 and with traffic of approximately 22,000 vehicles dur-

ing a morning peak hour. Finally, Caiati et al. [50] extended this last scenario representing

the mobility of vehicles for an entire day.

Codeca et al. [75] built a realistic vehicular mobility scenario with buses and private

cars in Luxembourg City. They made some changes to the original structure obtained from

OpenStreetMap. For example, there are no restrictions on streets or lanes for each type of

vehicle. The scenario has 38 bus lines with 2,336 trips along the day. They also proposed

a multimodal simulation scenario, MoST [78], with the mobility of people, bicycles and

motorcycles in addition to cars and buses. To differentiate from the previously presented

studies, Lobo et al. [180] created a scenario from Ingolstadt, Germany. This city has

peculiar characteristics that significantly influence the traffic, such as high rate of car use,

industrial city with companies operating 24 hours a day in well-defined shifts, a large

company dominates the city’s economy, incoming traffic represents a portion significant

of the local traffic. They modeled car and bus traffic over an entire day and validated

it using official data. More recently, Rapelli et al. [223] presented a scenario, named

TuST, from the city of Turin, Italy. TusT is a huge scenario containing around 2,200,000

trips representing the mobility of private vehicles obtained from real data of origin and

destination.

Sun et al. [248] proposed a framework (Transit-Gym) for simulating bus transit

systems. The main idea behind Transit-Gym is a domain-specific language combined with

a set of tools. Sen et al. [229] proposed BTE-SIM to speed up traffic simulations. Celes et

al. [61] introduced a framework to generate bus mobility based on GTFS data. However,

the approach to creating the bus routes and the contextual information/tools completely

differs from this work.
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11.2.2 Routing protocols for Bus-based VANETs

Using a bus transit system (BTS) as a data communication infrastructure has

attracted much attention in the last decade. Zhang et al. [294] presented one of the first

studies on Bus-based VANETs. They used a mobility dataset of 40 buses on a university

campus to analyze connectivity between buses and verify the performance of epidemic

routing. After that, several proposals have investigated topology and communication

issues of a Bus-based VANET in urban scenarios.

From a data communication standpoint, a critical problem is building optimized

strategies to forward messages from one bus line to another. In this direction, Sede et

al. [228] designed a line-to-line routing protocol based on the following strategy: a BTS is

modeled as a graph where the vertices represent the bus lines and edges are created based

on communication contact between buses belonging to different lines. The edge weight is

the decision factor determining the routing of messages in the network. In their case, the

edge weight is the contact time between the buses of each pair of bus lines. R2R [171] and

Op-Hop [114] used approaches similar to the one described above. Nonetheless, R2R and

Op-Hop considered the frequency and probability of contacts as edge weights, respectively.

In another direction, inspired by social relationships, Zhang et al. [285] investigated

social ties between bus lines and proposed a routing protocol based on the concept of

communities. They observed the history of contacts among buses and designed a BTS as a

social network. Then, they classified the bus lines in communities and forwarded messages

through multiple hops over bus lines using inter-community and intra-community routing.

In addition to these protocols aimed at routing between bus lines, other protocols

exploited the mobility of buses for other forms of dissemination, such as Geocasting [286],

forwarding messages from buses and cars to RSUs (Road-Side Units) [65], and data for-

warding at street intersections [295]. Although these other studies have a different focus,

they demonstrated the relevance and possibilities of using the bus system infrastructure

to disseminate messages in the urban scenario.

In this work, we introduce two novel routing protocols for Bus-based VANETs.

First, we combine the concept of community as described in [285] with the node centrality

idea. Centrality is a widely explored topic in network science and is a promising way for

routing decisions in delay-tolerant networks (DTN) [95, 143]. Second, we observe the

mobility to extract contact patterns between bus lines and combine them with the above

features to create another routing strategy.
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Table 11.1: Qualitative comparison of bus mobility scenarios. VBMS scenarios are con-
tributions of this work.

Scenario City Area Duration
Number of
bus stops

Number of
bus routes

Number of
bus trips

Acosta [24] Bologna, Italy 2.45 km2 1 h 35 8 157
Pasubio [24] Bologna, Italy 2.45 km2 1 h 25 10 112
Joined [24] Bologna, Italy 4.15 km2 1 h 56 14 176
LuST [75] Luxembourg city 156.00 km2 1 day 561 38 2240
MoST [78] Principality of Monaco 63.47 km2 10 h 181 24 933
InTAS [180] Ingolstadt, Germany 150.68 km2 1 day 405 172 1578
VBMS-Weekday Greater Vancouver, Canada 4830.86 km2 1 day 8611 892 22510
VBMS-Saturday Greater Vancouver, Canada 4830.86 km2 1 day 8225 612 16659
VBMS-Sunday Greater Vancouver, Canada 4830.86 km2 1 day 7889 583 14541

11.2.3 Discussion

The works mentioned above, Section 11.2.1, have brought several contributions to

the domain of scenario generation. However, we still note the need to build up new sce-

narios for mobility research because of the following reasons: to generalize the solutions,

and it is always essential to obtain results from scenarios with different mobility char-

acteristics; only some of the scenarios mentioned above have public transport mobility;

the public transport represented in these scenarios has a set of limitations, as presented

throughout this Chapter. To illustrate some of these limitations, consider Table 11.1. It

presents the list of scenarios that have bus mobility. Acosta, Pasubio, and Joined are sim-

ple scenarios regarding time, space, and the number of trips. MoST, InTAS, and LuST

illustrate public transport in small cities, and they contain only a few thousand trips

representing bus traffic. This Chapter describes our methodology and provides three

large-scale bus mobility from Greater Vancouver, Canada. The main difference among

them is the traffic demand corresponding to the mobility on weekdays, Saturdays, and

Sundays. As described in Table 11.3, our scenarios represent the mobility in a large area

during a whole day. Also, they have a much higher number of trips than in the existing

scenarios.

About routing protocols, we can see when we see the Table 11.2 that our propos-

als bring new domain information for decision making. BLER, R2R and Op-HOP only

consider contact information between buses. On the other hand, CBS takes advantage of

the community concept. We propose two new protocols that consider information that

intelligently combine contact, community and centrality information. It is worth noting

that although we use more domain information, this does not have a negative impact

since knowledge of community and centrality are derived from contacts between buses.
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Table 11.2: Information considered in the routing protocols. BR3C and BR4C are con-
tributions of this work.

Contact Community Centrality
BLER [228] 3

R2R [171] 3

Op-Hop [114] 3

CBS [285] 3

BR3C 3 3

BR4C 3 3 3

11.3 G2S: Framework for Bus Mobility Generation

In this section, we present one of our contributions: a novel framework, named G2S,

to generate bus simulation scenarios. Our main requirement in designing the framework

is to use freely available data and tools, facilitating the replication and extension of our

approach and the scenarios. As our objective is to represent the mobility of buses in a city,

we have identified that the primary resources for creating realistic scenarios and models

are: the city road map, the timetable, pre-established routes, and mobility simulator. In

this sense, we carried out a thorough study to identify the fundamental data sources,

simulation tools, and methods for integrating these resources. Next, we present the step-

by-step, detailing each of these features and how they are integrated to compose bus

mobility simulation. To illustrate the use and application of this framework, the whole

process is based on Greater Vancouver, Canada. Additionally, it is worth mentioning that

our framework is built on top of well-known urban mobility simulator, named SUMO [163],

and based on the conditions established by SUMO’s workflow as described in [181].

Figure 11.1 depicts an overview of G2S. The framework contains three modules:

data sources, processing, and simulation. Data sources include the map, public transport

information, and the location of traffic lights. Processing consists of tasks that generate

mobility and transform the data into the simulator format. Finally, the simulation is the

step to run the simulation scenario generated during the processing and to obtain the

results. Below, we describe those modules.

11.3.1 Data sources module

We describe the data sources used to create the scenarios in our framework below.

All these resources present a high quality and are made publicly available by renowned
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Figure 11.1: An overview of G2S: a framework for bus mobility generation.

entities in their respective areas.

OpenStreetMap (OSM). It is a digital street map provided by OpenStreetMap Foun-

dation, which aims to create a collaborative and free editable map. The final product

results from a rigorous editing process and verification by specialist users (e.g., mappers,

GIS professionals, engineers) that use aerial imagery, geolocation devices, and so on to

provide an accurate and up-to-date map. The project has more than 16 years and has

been applied by many companies around the world. As a result, the OSM presents a high

level of detail equivalent to that shown in proprietary maps such as Google Maps and

Microsoft Bing Maps, especially in large cities. OSM contains multiple features such as

points of interest, street layout, building geometry, and public transport information.

Traffic lights. Traffic lights are part of traffic control. In addition, we consider that

intersections can be traffic signs and without signaling. In this way, we cover different

situations at intersections, similar to what happens in cities. Information on traffic sig-

naling at intersections is obtained from OSM. Figure 11.3a shows the spatial positioning

of those traffic lights. We can observe that there is a higher traffic light density in the

central region of the city. Altogether there are 2039 intersections controlled by traffic

lights. In our model, the traffic light cycle is determined by the map converter module in

the Processing step. Initially, all traffic light times are predetermined. However, to make

the scenarios with real characteristics, we employed detectors at controlled intersections

in order to adjust the time according to traffic conditions.

GTFS data. A General Transit Feed Specification (GTFS) is a set of files made avail-

able by a public transport company. It contains information about public transport op-

erations in a city, such as trips, schedules, bus stops, rates, and routes. The organization

of this dataset is in text files, and because it has a well-established standardization, it

can be interoperably consumed by application developers. This Chapter uses GTFS data

provided by TransLink2, the company that operates the public transit in Greater Van-

2Translink: https://www.translink.ca/



11.3. G2S: Framework for Bus Mobility Generation 198

(a) Original bus transit
map. Source: https:

//www.translink.ca

(b) Selected area from OSM (c) Extracted road topology

Figure 11.2: Bus transit map from TransLink and generated road topology from Greater
Vancouver.

couver, Canada. In addition to using this data to feed TransLink’s online travel planner3,

TransLink makes this data freely available for use by application developers. Further-

more, this agency delivers a new version of the data every week. Also, they perform some

occasional changes in case of unexpected situations in the city. In general, there are three

schedule patterns: Weekdays, Saturdays, Sundays and holidays.

11.3.2 Processing module

In the previous section, we described how to build up and obtain all essential

resources (road map, bus stops, traffic signs). Our next goal consists in how to generate

bus mobility and related elements. This step has four crucial subtasks: create the road

network, create routes, add bus stops, and define schedules.

Create the road network. A road network is an essential component in the composi-

tion of a vehicular mobility scenario. It represents the set of road segments and junctions

through which vehicles will pass along their trips. In our case, a essential task is to define

the area that covers the roads used by the public transport system. For this, we selected

the minimum and maximum geocoordinates from shape.txt file contained in the GTFS

data. This file contains the spatial information, in geospatial coordinates, of all the bus

routes of the transportation system in Greater Vancouver. From that, we extracted from

OpenStreetMap the coverage area of the mobility of buses.

Figure 11.2a shows the spatial coverage of the bus routes according to data pro-

vided by TransLink4. From there, we exported the area defined by the geocoordinates

3TransLink’s online travel planner: https://www.translink.ca/trip-planner
4https://www.translink.ca/schedules-and-maps/transit-system-maps

https://www.translink.ca
https://www.translink.ca
https://www.translink.ca/trip-planner
https://www.translink.ca/schedules-and-maps/transit-system-maps
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in OSM, as shown in Figure 11.2b, according to those values: lonmin = −131.693128,

latmin = 48.623493, lonmax = −122.212486, latmax = 55.353839. We downloaded from

the OSM repository5 a XML data containing the connections (road segments) and nodes

(intersections) based on WGS84 format. Furthermore, this XML file has additional infor-

mation such as number of vehicles allowed by road, the type of roads, number of lanes,

traffic lights, speed limit, etc. The next step consists to convert the XML representation

to a SUMO network file. We used the netconvert6 software that does this step while pro-

vides several improvements to the network topology. The product of this transformation

is a SUMO network that represents a directed graph where the nodes are the junctions

and the edges are the road segments. In addition, each edge has a set of lanes, traffic at

junctions can be controlled by traffic lights or control regulations.

Although OSM has acceptable data and netconvert performs several improvements,

we still need to make manual adjustments on the SUMO network. First, the OSM data

might have disagreement with the reality, then we have to perform some changes such

as updating the lane directions or changing the number of lanes of the roads. Moreover,

the automatic transformation from OSM to SUMO network might to introduce some

inconsistencies like define wrong direction of car flow or merging closely intersections

or roads. In this sense, we spent a significant time inspecting and manually modifying

the network generated using the netedit7 tool. This tool allowed visual adjustment and

correction of problems in the network structure. Figure 11.2c shows the SUMO network

obtained from this process described above.

Create routes. The public transport system is composed of bus lines. In general, each

bus line has at least two bus routes, one in each direction. In some cases, a bus route

may have multiple routes that are active depending on the context (e.g., day of the week,

time of day). Information about the path (i.e., bus routes) that buses must follow can be

obtained from OpenStreetMap or from GTFS data.

In practical terms, the simplest way to obtain this data would be through OSM.

The route data in the OSM is represented by a sequence of road segments and as the

SUMO network is also obtained from the OSM, then it is enough to directly map the

value of the segment in the OSM to the value of the segment in the SUMO network. This

approach is one of two default methodologies8 in the SUMO suite. However, it has some

downsides. First, for many cities in the world, the bus route data in OSM is not mapped

or is only partially mapped. Second, the mapped routes can easily become outdated or

not as specified by the transport agency. This is due to the fact that it is not an official

5Downloading OSM data: https://wiki.openstreetmap.org/wiki/Downloading_data
6Netconvert: https://sumo.dlr.de/docs/netconvert.html
7NetEdit: https://sumo.dlr.de/docs/Netedit/index.html
8The another approach implemented is to create routes with the shortest path between two bus

stops. However, we disregard this strategy, as we do not find it consistent with reality due to the fact
that the routes are determined by the agencies and do not necessarily follow the shortest path. More
information: https://sumo.dlr.de/docs/Tutorials/GTFS.html

https://wiki.openstreetmap.org/wiki/Downloading_data
https://sumo.dlr.de/docs/netconvert.html
https://sumo.dlr.de/docs/Tutorials/GTFS.html
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data source. Third, even for mapped bus lines not all route variations of that line are

contained in the data. To circumvent the limitations, we present below a new approach

for creating routes that uses the GTFS data made available by the transport agencies.

This our approach has two building blocks: calibration and map matching.

Calibration. The route data available in GTFS is a sequence of ordered geo-

graphic points (i.e., latitude and longitude) representing the path to be follow by the

buses and is stored in a shape.txt file. Thus, this file contains the following mandatory in-

formation about the routes: identifier, a sequence of geographic points, and the sequential

identifier of the points. Despite being quite informative, this data is still inappropriate to

be applied directly to create a route in the SUMO. The main problem is the gaps between

two consecutive points that make up the available routes. For instance, Figure 11.4a

shows the gaps present in the route. For that case, the average length is 82.41, standard

deviation is 96.16, and the largest gap is 782.76.

In this sense, calibration appears as an alternative to reduce gaps and increase the

granularity of routes. As discussed in [63], there are several calibration strategies. In

the shape.txt file, the bus route are represented by a sequence of turning points (named

here as anchor points). Based on that, it is possible to apply a linear interpolation

algorithm as follows. Given a route R = (a1, a2, ..., an), where ai = (axi , a
y
i ) with 1 ≤ i ≤ n.

We name ai = (axi , a
y
i ) as anchor point with axi and ayi being the longitude and latitude,

respectively. Let ai and ai+1 be the anchors points between a gap and our main aim is to

fill this gap by inserting artificial points on it. This set of artificial points we named as

synthetic ones. Furthermore, we transform all coordinates from a geographic coordinate

system to a Euclidean 2-space. Let d(ai, ai+1) be the distance between ai and ai+1 and

compute as d(ai, ai+1) =
√

(axi − axi+1)2 + (ayi − a
y
i+1)2. From that, our algorithm inserts

synthetic point a distance j from the anchor point ai considering the following equations:

pxj = axi +
j

d(ai, ai+1)
(axi − axi+1), (11.1)

pyj = ayi +
j

d(ai, ai+1)
(ayi − a

y
i+1), (11.2)

where pj = (pxj , p
y
j ) is a new synthetic point. In order to obtain a high-granularity route, for

each round, j is added by 1 unit considering the value of d(ai, ai+1), i.e., 1 ≤ j < d(ai, ai+1).

Therefore, we run this algorithm to the n − 1 gaps of R. Figure 11.4b shows the result

obtained when on top of the route shown in Figure 11.4c. As we can see, we have a

calibrated route with all the nuances of the movement being represented by the data.

Map matching. A SUMO route consists of a sequence of road segments that a

bus travels between the origin and destination. Therefore, our next objective is mapped

the calibrated routes to a SUMO route representation. For that, we apply a well-known

task in the preprocessing of trajectories called map matching [60]. Fortunately, the SUMO
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suite has a map matching implementation9 that maps a route represented by points onto

a set of corresponding road segments in the SUMO network. However, it requires the

trajectory to be mapped to be of high granularity. As the previous calibration step

significantly improves the granularity of the routes, we can use this implementation and

have the sequence of segments that make up the route. Figure 11.4c shows what the result

of this process looks like, showing the route overlap in the SUMO network.

Add bus stops. Bus stops are also basic element for simulating bus mobility. Based

on SUMO design, each bus stop has a common length and a given position on a lane.

GTFS data contains the stops.txt file with all the latitude and longitude values of the bus

stops. In this sense, we mapped and inserted the bus stops to the nearest edge based on

SUMO network while also considering the bus routes that pass through each bus stop.

Figure 11.3b shows a snapshot of bus stops in Vancouver.

Define schedules. The process described above gives us a spatial representation of the

routes of the buses. The next step in generating traffic demand is to define the departure

and arrival times of buses at the bus stops. The SUMO provides tools for designers to

define configuration parameters and thus generate fictitious traffic. However, as we aim to

create realistic scenarios, our traffic demand is based on the GTFS data made available

by the transport agency. Looking at the files trips.txt and stop times.txt, we get the

values to automate the generation of the mobility of the buses using a Scheduler python

script. The trips.txt file contains the identifier of all trips that occur in a day, while

the stop times.txt file contains the time information of the departure and arrival of buses

at each bus stop. In this way, traffic demand follows a real-world schedule rather than

fictitious information or information based on some statistical distribution (e.g., uniform,

random).

The mobility model in SUMO follows a microscopy approach, i.e., the dynamics

of each vehicle is modeled individually. In this way, each bus carries out its journey fol-

lowing the microscopy mobility standards, respecting traffic conditions and traffic control

elements. As we are dealing with buses, vehicles must stop at each bus stop along the

journey. As we do not have the information about the time of stay of the buses at the bus

stops, we defined that the stopping time is at least 10 seconds at each stop. This value is

considered to be acceptable given the average number of stops along the trip.

9MapTrace:https://github.com/eclipse/sumo/blob/main/tools/sumolib/route.py

https://github.com/eclipse/sumo/blob/main/tools/sumolib/route.py
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(a) Traffic lights (Red dots) (b) Bus stops (Yellow dots)

Figure 11.3: Traffic lights and bus stops projected on SUMO network.

(a) Route 268443 from line 2
from GTFS.

(b) Calibrated route 268443 (c) Map matched route
268443 on SUMO

Figure 11.4: Representation of bus routes on OSM and SUMO.

11.3.3 Simulation module

Our framework builds bus mobility on top of SUMO and based on the conditions

established by SUMO’s workflow as described in [181]. SUMO (Simulation of Urban

MObility) [163] is a software suite for simulating urban mobility. It is a solid project

started in 2001, and to this day, it remains in constant evolution. Currently, version 1.14.1

is free and open-source under the Eclipse Public License V210. SUMO is state-of-the-art

for reproducing urban mobility with buses, cars, and pedestrians. It enables microscopic

traffic simulation so that each moving entity and its dynamics can be modeled individually.

Besides, it has easy integration with network simulators. Thus, this simulator can provide

us with several possibilities of case studies with scenarios created on top of it.

The previous modules provide the essential resources for running bus mobility:

SUMO road network and bus mobility specification. Additionally, we define a configura-

tion file containing the features of simulation such as duration, filename of files, etc. The

output can be values of mobility from vehicles (e.g, trip distance, speed, trip duration)

and a file with the GPS-like traces of vehicles.

10SUMO: http://sumo.dlr.de

http://sumo.dlr.de
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(a) Contact graph from bus
lines

(b) Bus lines communities (c) Bus lines betweenness

Figure 11.5: Knowledge extracted from Bus lines network.

11.4 BR3C Routing Protocol Design

This section presents the Bus Routing Protocol based on Community and Central-

ity Characteristics (BR3C). The idea behind this protocol is to take advantage of social

vehicular network concepts [283] to create an efficient solution for forwarding messages

between bus lines. In this direction, we consider the definitions of communities and cen-

trality in the BR3C project to deal with situations of intermittent connection and network

dynamics in Bus-based VANETs.

11.4.1 Creating Contact Graph

A contact is an opportunity to transfer data between two buses according to their

communication radius (R). As our goal is to forward messages between bus lines, we model

the vehicular network as a contact graph G = (V,E), where V means the bus lines and E

means the relationship among bus lines. A new edge eu,v is added to E whether there is

a contact between buses from two different bus lines u and v, for u, v ∈ V . Additionally,

each edge eu,v has weight w(eu,v) that represents the strength of the relationship between

u and v. We define that the edge weight w(eu,v) is a function of the number of contacts

between buses from u and v. Therefore, w(eu,v) = 1/fu,v for fu,v represents the number

of contacts between buses from u and v.

Fig. 11.5a depicts the contact graph captured from an hour of mobility of the trace

generated in Section 11.3. This trace contains the trajectories of buses every 1 second,

and the contacts are obtained considering the R equal to 500m. Overall, G has 204

vertices (i.e., bus lines) and 1919 edges. We can see that the graph is connected with the
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exception of two vertices (280 and 281). These vertices represent bus lines that run on

Bowen Island Ecological Reserve and do not really interact with other lines. Still looking

at the graph in detail, we can see that there is a higher density of edges between some

bus lines forming possible groups.

11.4.2 Community Analysis on Contact Graph

In our work, a community represents a group of bus lines with a certain degree

of relationship to each other. The factor that determines the strength of a relationship

is the number of contacts between buses on different lines. Although the definition of

community is simple, finding the best partitioning of a graph into communities is not an

easy task. To deal with this, the notion of modularity (Q) [198] is used in the community

detection process. Mathematically, modularity is represented as follows:

Q =
1

(2m)

∑
uv

[
Auv −

kukv
(2m)

]
δ(cu, cv) (11.3)

where A is the adjacency matrix of G and Auv is weight of the edge when there is an

edge between u and v, and 0 otherwise. cu and cv represent the communities of u and v,

respectively. δ(cu, cv) is equal to 1 if u and v are in the same community, and 0 otherwise.

Moreover, m = 1
2

∑
uv Auv and ku =

∑
v Auv. Q varies between -1 and 1, representing

the density of edges inside communities in relation to edges between communities. Q =

1 refers to a strong community partitioning and are rare, then Q greater than 0.3 is

considered an acceptable community partitioning.

We applied a sophisticated non-parametric algorithm for community detection

named Louvain [26] to detect communities on our contact graph described earlier max-

imizing the modularity. Figure 11.5b depicts the visual result of the partitioning. The

algorithm detected six communities and Q = 0.65. Also, we can observe a spatial as-

sociation between communities and routes of those bus lines. For instance, the brown

community consists of the bus lines that run through the city center. The light blue

community represents bus lines from Surrey region. The dark blue community represents

bus line from Richmond. Furthermore, we note that there are some bus lines (i.e., nodes)

working as bridge between communities. In order to reveal these bus lines, we explore

the centrality of the vertices on the contact graph.
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11.4.3 Centrality Analysis on Contact Graph

Centrality consists of computing the importance of a node in the network struc-

ture [164]. There are many centrality measures (e.g., degree, closeness, betweenness).

Based on features of our problem, we observed that the betweenness centrality has poten-

tial applicability for routing message in Bus-based VANETs. We compute the betweenness

centrality of each node v based on Eq. 11.4.

bc(v) =
∑
s,t∈V

σ(s, t|v)

σ(s, t)
(11.4)

where V is the set of nodes, σ(s, t|v) is the number of weighted shortest paths where there

is the node v, and σ(s, t) is the number of weighted shortest (s, t)−path.

The intuition is that node with large betweenness value works as bridge nodes and

are fundamental in multi-hop message forwarding. In our context, those nodes are exactly

bus lines that connect regions and are important to establish the network connectivity.

For instance, Fig. 11.5c illustrates the betweenness centrality of nodes by intensity of

color. We see that the lines 555, 430, 160, and 351 have a high betweenness centrality

and are essential in covering many parts of the city. Based on these analyses, we can

see that the centrality of nodes brings new knowledge that is not captured when we look

only at communities. Observing the centrality of vertices brings new knowledge that is

impossible to capture by looking only at the communities.

11.4.4 BR3C Forwarding

The last phase of the BR3C design consists of using the knowledge obtained in the

analysis of communities and centrality as decision metrics for the forwarding of messages.

Community and centrality have been used separately for vehicular social networks. [283].

Inspired by successful delay-tolerant network protocols [95, 143], BR3C combines those

features in the forwarding policy. First, we collect those features observing the mobility

during a certain interval. As the bus schedule and routes undergo few variations, these

characteristics are well established throughout the day. Therefore, these features are

stored by the buses in advance. Next, when a bus i meets a bus i, we run the Algorithm

11.1, which describes the message replication process.

Each message m created targets a bus line and each bus lines has an associated

community as described above. Therefore, bus i send a copy of m to bus j based on the
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Algoritmo 11.1: BR3C - When bus i encounters bus j

1: for m ∈ i.msgCollection do
2: if m.LineDest = j.BusLine then
3: send(m, j); continue;
4: end if
5: if i.BusLine = j.BusLine then
6: send(m, j); continue;
7: end if
8: destCommunity ← m.community;
9: if destCommunity 6= i.community then

10: if destCommunity = j.community OR
i.bc < j.bc then

11: send(m, j);
12: end if
13: else
14: if destCommunity = j.community AND

i.bc < j.bc then
15: send(m, j);
16: end if
17: end if
18: end for

following rules: if the destination of m is the bus route of j; if both buses i and j belong to

the same bus line; when j belongs to the message’s destination community or the centrality

of j is greater than that of i; otherwise when i and j belong to the same community as

the destination of message m and the centrality of j is greater than that of bus i. In this

way, this strategy allows considering the centrality to forward messages directly to bus

lines that serve as interconnections between communities or have significant relevance for

contacting other lines. On the contrary, the community-based protocol proposed by [285],

named CBS, does not consider this particularity.

Algorithm 11.1 illustrates the process in detail. In general terms, the forwarding of

messages through bus lines that have a higher betweenness centrality value or when it finds

a bus belonging to the message’s destination community. When a message reaches a bus

belonging to the destination community, forwarding takes place within the community.

To get a general idea of the most relevant bus lines and communities in the message

forwarding process, overlap the graphs shown in Figs. 11.5b and 11.5c and notice the

organization of the communities and the distribution of betweenness centrality values.
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11.5 BR4C Routing Protocol Design

BR4C (Bus Routing Protocol based on Contact, Community and Centrality Char-

acteristics) is an evolution of BR3C. We introduce the contact history between bus lines

as a criterion for making the routing decision. BR3C is completely opportunistic and

the routing is based on the characteristics of communities and the centrality of the bus

lines. On the other hand, in BR4C, we add the contact history as a feature and based on

that we compute the most likely path for forwarding messages between bus lines. In this

section, we describe the BR4C design.

11.5.1 Modelling contacts as probabilistic graph

Similar to BR3C, we create a graph based on the contact between bus from different

lines. In this way, we model the vehicular network as a contact graph G = (V G, EG),

where V G means the bus lines and EG means the relationship among bus lines. An edge

eGu,v is added to EG whether there is a contact between buses from two different bus lines

u and v during a time interval, for u, v ∈ V G. Additionally, each edge eGu,v has weight

w(eGu,v) that represents the number of contacts between the bus lines u and v. From that,

we create a directed probabilistic graph H = (V H , EH), where the V H is a copy from V G

and for edge each eGu,v ∈ EG, we add two directed edge in EH as eHu,v and eHv,u. The w(eHu,v)

represents the probability of a bus from line u to meet a bus from line v and is obtained

by Equation 11.5.

w(eHu,v) =
w(eGu,v)∑

k∈N(u) w(eGu,k)
(11.5)

where N(u) represents the list of neighbors of u.

11.5.2 Computing the optimal line-to-line routing path

Given a bus from a source line (sl) the origin of a message, our objective is to

forward this message by multiple hops to any bus belonging to the destination bus line
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(dl). Then, looking at the probabilistic graph H we can identify multiple possible paths

(Ri
sl,dl

, for the ith path) and obtain their probabilities using the Equation 11.6.

P (Ri
sl,dl

) =
∏

w(eHu,v), e
H
u,v ∈ Ri

sl,dl
(11.6)

Then, there is a set S(sl, dl) = {R1
sl,dl

, R2
sl,dl

, ..., Rn
sl,dl
} of all possible paths to

forward a message from sl to dl. However, the most likely path based on probabilities

should be chosen. The optimal path can be obtained from Equation 11.7.

arg max
R∈S(sl,dl)

P (Rsl,dl) (11.7)

As described in [202], we can develop the Equation 11.7 using the Equation 11.6 and

by applying the logarithm-likelihood property until we reach the 11.8. Algorithmically,

we can obtain it computing the line-to-line routing path using a shortest path algorithm

(e.g, Dijkstra), after we assign each edge weight w(eHu,v) to −log w(eHu,v).

arg max
R∈S(sl,dl)

P (Rsl,dl) = arg max log(
R∏
w(eHv,w))

= arg max
R∑

log(w(eHv,w)).

(11.8)

11.5.3 BR4C Forwarding

BR4C forwarding consists of sending a copy of the message between bus lines

following the computed line-to-line path 11.5.2. The message generated by the bus on

the source line (sl) stores the multi-hop path to the destination line (dl). We use this

information in the forwarding process. The algorithm 11.2 describes the steps that occur

when two buses i and j meet each other. The significant difference between this algorithm

to BR3C is the rows 6-10. In this case, the most likely path is obtained on row 6. Next,

it is verified which position i occupies in the path (row 7) and if j belongs to the next

bus line defined in the path, the message is sent to j. BR4C also incorporates knowledge

of communities and node centrality as described in BR3C. In addition to the most likely

path established by the contact history, we took advantage of the network structure

(community and centrality) to forward messages opportunistically, thus increasing the

chances of delivering the messages.
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Algoritmo 11.2: BR4C - When bus i encounters bus j

1: for m ∈ i.msgCollection do
2: if m.LineDest = j.BusLine then
3: send(m, j); continue;
4: end if
5: if i.BusLine = j.BusLine then
6: send(m, j); continue;
7: end if
8: path← m.getPath();
9: index← path.indexOf(i.BusLine);

10: if index < path.size()− 1 then
11: if path.get(index+ 1) = j.BusLine then
12: send(m, j); continue;
13: end if
14: end if
15: destCommunity ← m.community;
16: if destCommunity 6= i.community then
17: if destCommunity = j.community OR

i.bc < j.bc then
18: send(m, j);
19: end if
20: else
21: if destCommunity = j.community AND

i.bc < j.bc then
22: send(m, j);
23: end if
24: end if
25: end for

11.6 Validating Simulation Scenarios Generated by

G2S

The validation of our bus simulation model consists of verifying the similarity

between the data generated by the simulation model and the expected behavior in the

real world. In this work, GTFS data represents the ground-truth behavior. In this

sense, as described in [94], our validation follows on analyzing the scatter plot, correlation

coefficient (r), Root-Mean-Square Error (RMSE) of trip length and trip duration both

in the simulation model and in the GTFS data. In this sense, we consider the following

metrics:

• Trip length: It is the distance traveled between origin and destination. From

simulation, this value is reported by SUMO and represents the length of the trip.
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Figure 11.6: Scatterplot of trip length from GTFS data and Simulation for VBMS-
Weekday scenario using SUMO default methodology and G2S.
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Figure 11.7: Scatterplot of trip duration from GTFS data and Simulation for VBMS-
Weekday scenario using SUMO default methodology and G2S.
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Figure 11.8: Scatterplot of trip length from GTFS data and Simulation for VBMS-
Saturday scenario using SUMO default methodology and G2S.
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Figure 11.9: Scatterplot of trip duration from GTFS data and Simulation for VBMS-
Saturday scenario using SUMO default methodology and G2S.
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Figure 11.10: Scatterplot of trip length from GTFS data and Simulation for VBMS-
Sunday scenario using SUMO default methodology and G2S.
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Figure 11.11: Scatterplot of trip duration from GTFS data and Simulation for VBMS-
Sunday scenario using SUMO default methodology and G2S.
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From GTFS data, this value is obtained computing the sum of haversine distance

between consecutive pairs of geographic coordinates from the shape.txt for each trip

in the trips.txt.

• Trip duration: It refers to the total time a bus has taken between origin and

destination. SUMO reports this value as results of simulation. As ground-truth, for

each trip in the stop times.txt file, we compute the time between the moment the

vehicle leaves the first bus stop and arrives at the last one.

Those two metrics show us the consistency between what is observed in the simula-

tion and what is expected according to the GTFS data. The trip length of the buses show

us how much the trips generated in the simulation are spatially similar to those estab-

lished in the actual data. Meanwhile, the trip duration reveals how much the simulation

model’s trips are temporally similar to what is established by the transit agency. Also,

it is worth noting that the simulation model is subject to circumstances of the generated

traffic, such as traffic jams, dwell time at traffic lights, dwell time at bus stops, etc.

Figures 11.6 and 11.7 show the scatterplots for those two metrics using both

methodologies. Each trip is represented as a point whose x-y axes refer to the values

obtained from GTFS data and simulation. The best case occurs when the point is on the

dashed line, meaning that the values obtained are equal. As the objective is to bring the

simulation model closer to the real data, therefore, when the difference between the mea-

surements is small, the better is the quality of the scenario generated by the framework.

To quantify this difference, we adopted the Pearson correlation and RMSE. In terms of

data visualization, points on or close to dashed line are the expected results.

Figure 11.6 shows the trip length values for the VBMS-Weekday. We show ad-

ditional figures on VBMS-Saturday and VBMS-Sunday in the Figures 11.8, 11.9, 11.10,

and 11.11. When we look at Figure 11.6a, although some points are on the dashed line,

we can see many trips have inconsistent values measured by simulation and the expected

from the GTFS data. Thus, we can highlight two cases: some trips are longer in SUMO

than the expected value in the data; and on the other hand a few trips are shorter than in

the data. The first case is mainly due to the fact that some trips obtained from OSM are

imperfect, so these trips are repaired through a route adjustment algorithm that some-

times leaves the trips longer than expected. For the second case, some trips available in

the OSM are incomplete or poorly formatted, not allowing an adequate transformation

for SUMO. In this way, some trips during the simulation are shorter than expected values.

On the other hand, Figure 11.6b shows how the trips generated by G2S are almost all of

similar size when comparing simulation results and expected data. The reason behind this

is the fact that our methodology uses the shape data of the routes and applies calibration

and map matching, ensuring a reliable process for creating the routes.
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Table 11.3: Quantitative analysis of bus generation scenario methodologies.

Trip length Trip duration
Correlation (r) RMSE Correlation (r) RMSE

Default GTFS2SUMO Default GTFS2SUMO Default GTFS2SUMO Default GTFS2SUMO
Weekday 0.89 0.99 3.87 0.14 0.95 0.98 5.23 3.69
Saturday 0.88 0.99 4.08 0.13 0.95 0.97 5.47 4.14
Sunday 0.89 0.99 4.12 0.12 0.94 0.97 5.74 3.88
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Figure 11.12: General features of bus mobility from Acosta, Pasubio, Joined, LuST,
MoST, InTAS, and Vancouver scenarios.

As said above we use the Pearson correlation and RMSE to quantify the perfor-

mance of those methodologies in terms of trip length and trip duration. Table 11.3 shows

the values obtained from these metrics in three configurations: weekday, Saturday, and

Sunday. In our evaluation, one methodology is better than another the closer the corre-

lation is to 1 and the RMSE is close to 0. As we can see, G2S presents better results for

all cases evaluated, which strengthens the perceptions visually observed in Figures 11.6

and 11.7.

11.7 Comparative Analysis with existing Scenarios

The validation presented above shows how G2S bus mobility scenarios are com-

patible with the data provided by a transport agency. In this way, we showed how the
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generated simulation data is reliable when compared to the real data. As mentioned

earlier, the scenarios are instances of bus mobility in Greater Vancouver and are named

VBMS-Weekday, VBMS-Saturday, and VBMS-Sunday. In this section, we assess how the

scenarios created by our framework differ from existing ones in the literature. To do so, we

identified which studies discussed in Section 11.2 that have bus mobility and performed

the comparison based on four metrics:

• Traffic Demand: Traffic demand represents the amount of buses running in the

city over time.

• Schedule: It consists of the time between consecutive bus departures on the same

route.

• Trip length: It is the distance traveled by the bus between the first bus stop and

the last one.

• Trip duration: It consists of the travel time between the first and last bus stops.

Those metrics assess all those scenarios from a spatial, temporal, and traffic de-

mand perspective. Through them, we can clearly understand the scope and represen-

tativeness of these scenarios for simulating the mobility of buses. The related scenarios

are Acosta [24], Pasubio [24], Joined [24], LuST [76], MoST [78], and InTAS [180]. A

deep description on those scenarios can be found in Section 11.2 and Table 11.1. It is

worth mentioning that those scenarios are projected to the SUMO platform and are also

publicly available.

Looking at Figure 11.12a, we can see that VBMS-Weekday, VBMS-Saturday, and

VBMS-Sunday scenarios have traffic demand quite different from the available scenarios.

We can see that the behavior of the curves reveals that the number of buses throughout

the day has a more expected behavior for a public transportation systems. We can observe

that there is a fluctuation in the number of buses traveling throughout the day, revealing

the intervention of peak hours on weekdays and a greater volume of buses in the afternoon

on weekends.

On the other hand, if we look at the other scenarios, we can observe that they

do not present these behaviors, in order to create characteristics that are inconsistent

with reality. They fail on several factors such as reduced number of buses in transit

simultaneously; there is no significant fluctuation in the number of buses throughout the

day; representing mobility for just one day. On the other hand, the proposed scenarios

cover all these weaknesses. VBMS-Weekday reproduces the presence of rush hours in

which the number of buses increases by around 40% of the value between peaks. In

addition, VBMS-Saturday and VBMS-Sunday have different behavior than business day.

There is a greater volume of buses in transit during afternoon, and the number of buses

is slightly higher on Saturday.
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Figure 11.12b shows the values about the bus departure schedule. Acosta, Pa-

subio, Joined, and MoST scenarios for almost 100% of cases there is a trip departing

at most every 15 minutes. For LuST, around 75% of cases are between 15 and 30 min-

utes. Such results reveal the lack of variability in the schedules, showing the absence

of criteria to determine values according to reality. On the other hand, InTAS, VBMS-

Weekday, VBMS-Saturday, and VBMS-Sunday reproduce more realistic schedules. InTAS

and VBMS-Weekday satisfactorily imitate the behavior of bus departure times on week-

days. For instance, in VBMS-Weekday 51% of trips start in the range between 0 and 15

minutes, while that 36% of trips start in the range between 15 and 30 minutes. When we

look at VBMS-Saturday and VBMS-Sunday, we can see that there is an increase in the

percentage of trips that are between 15 and 30 minutes apart. VBMS-Saturday has 38%

of trips in the 0 and 15 minutes range and 46% of trips in the interval between 15 and

30 minutes. VBMS-Sunday has 36% of trips in the range 0 and 15 minutes, 47% of trips

in the range between 15 and 30 minutes, and 6% of trips in the range between 45 and

60 minutes. This behavior makes sense because buses tend to have a higher departure

frequency during weekdays, while on weekends, the frequency of bus departures tends to

decrease.

Figures 11.12c and 11.12d reveal the results for trip length and trip duration, re-

spectively. Acosta, Pasubio, Joined are limited scenarios in terms of trip length and trip

duration. In addition, they only have one hour of simulation in a very small area. There-

fore, they are well short of representing real urban mobility behaviors. Although LuST,

MoST, InTAS show improvements for these metrics, they still represent the mobility of

small-scale scenarios. The upper limits of trips length and trip duration for most trips

are 10 km and 30 minutes, respectively. On the other hand, VBMS scenarios generate

a heterogeneous set of trajectories with a significant variability in the amplitude of the

evaluated metrics, demonstrating a real-world behavior. For instance, the median trip

length in the scenario VBMS is around 11 km, and the median trip duration is around 33

minutes. These results demonstrate that the scenarios proposed in this paper contribute

to the research on bus mobility by introducing unique realistic features not observed in

other scenarios in the literature.

11.8 Performance evaluation of routing protocols

To evaluate the performance of BR3C and BR4C, we exported mobility data from

VBMS-Weekday, VBMS-Saturday, and VBMS-Sunday scenarios and imported it into the

ONE simulator [159]. We adopted this simulator because it has the necessary requirements
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Figure 11.13: Performance evaluation for routing protocols for Weekday in function of
delivery ratio, delivery latency, and number of hops.
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Figure 11.14: Performance evaluation for routing protocols for Saturday in function of
delivery ratio, delivery latency, and number of hops.
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Figure 11.15: Performance evaluation for routing protocols for Sunday in function of
delivery ratio, delivery latency, and number of hops.
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to simulate Bus-based VANETs: store-carry-forward communication, trace-driven mobil-

ity model, and network parameter settings based on IEEE 802.11p (transmission speed

equal to 6 Mb/s and communication radius equal to 500 m). As baselines, we compare our

protocols to R2R [171], Op-Hop [114], and CBS [285] protocols. R2R is a seminal pro-

tocol for bus data dissemination, Op-Hop also considers probabilistic encounters among

the buses, and CBS is the state-of-the-art for the problem.

All our experiments are based on the approach presented in [285]. It means we

obtained the knowledge to design the protocols in the first simulation hour (7 am–8 am).

For instance, in the BR3C, we use this hour to obtain the knowledge graphs presented in

Fig. 11.5. Next, from 8 am, we configured the simulator to generate 500 messages every

second, where the origin and destination bus lines were randomly chosen. The following

hours of the mobility trace are used in the operation of the protocols and time-to-live of

messages is throughout the simulation period.

To validate the protocols and give a fair comparison we adopted the following

metrics:

• Delivery ratio: It is the relative amount between the messages delivered to the

destination bus line and the total number of messages.

• Delivery latency: It is the time interval taken to deliver a certain message to the

destination bus line.

• Number of hops: It consists of the number of buses that carry a delivered message

between the origin and destination.

Figure 11.13a shows the delivery ratio along the simulation period. BR4C has the

highest delivery ratio at the end of the simulation, delivering 98% of the messages. BR3C,

Op-Hop, and CBS have equivalent values between 90% and 92%. Nonetheless, BR4C and

BR3C deliver messages in less time than other protocols. This behavior is clearly observed

in Figure 11.13b, where we can see the delivery latency distribution. This figure shows that

BR4C and BR3C reach almost 96% of delivered messages in 100 minutes. We also have

observed the number of hops; Figure 11.13c shows that BR4C, BR3C, and Op-Hop need

fewer hops than the CBS to deliver messages. Overall, BR4C and BR3C present the best

performance considering those metrics. BR4C is still better than BR3C because, beyond

the community and centrality characteristics, it also considers the encounter probability

between buses from different bus lines.

We can see that BR4C delivers 12% more messages than the second best protocols

(BR3C and CBS) for bus mobility on Saturday (see Figure 11.14a) and 13% on Sunday

(see Figure 11.15a). Regarding the delivery latency, CBS still takes longer to deliver

messages, while BR4C and BR3C provide in less time than the others (see Figure 11.14b

and Figure 11.15b). Also, we can see that the protocols proposed in this work have an
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adequate number of hops since they deliver more in less time than the other protocols

(see Figure 11.14c and Figure 11.15c). These metrics reveal that the proposed protocols

have more satisfactory performance. We can justify this behavior due to the various

delivery possibilities in the forwarding. The contact history provides the most likely

path; the communities reveal the relationships between the bus lines and the centrality

shows which bus lines bridges that interconnect the clusters.

As we evaluated several scenarios (Weekday, Saturday, and Sunday), we could also

verify the sensitivity of the protocols with different types of mobility. Overall, we observed

that Op-Hop and R2R suffer significant variability in the delivery rate for weekdays and

weekends. On the other hand, the BR4C and BR3C, in addition to presenting the best

general results, do not suffer significant variability in these scenarios. Furthermore, we can

see that the bus schedule on weekends directly impacts the delay in delivering messages

for all protocols. However, BR4C and BR3C still deliver more messages in less time.

11.9 Chapter Remarks

In this Chapter, we addressed two crucial directions in the design of vehicular

networks based on buses: generation of bus mobility scenarios and data dissemination.

On the bus mobility scenarios, we presented a methodology for creating bus mobility

scenarios based on real-world data and simulation tools. As an instantiation of this

methodology, we created three bus mobility scenarios for Greater Vancouver, Canada.

These scenarios represent the dynamics of thousands of bus trips over different days of

the week. To this end, we take advantage of real-world publicly available data for designing

those scenarios, such as the road network obtained from OpenStreetMap, official data from

bus stops and traffic lights, and travel schedules provided by the transportation authority.

Furthermore, all these datasets have been adapted to be used in SUMO, a well-known

mobility simulator. We evaluated our scenarios from two perspectives—the first in relation

to official data provided by the transport agency. In a second perspective, we compare

our scenarios with others commonly used in literature. Our evaluation showed that our

scenarios have high compatibility with official data as we observed that the proposed

scenarios have unique features not observed in the existing ones.

In this sense, the proposed scenarios spatially cover an entire city, representing a

complete bus transport system. They have variability in the number of buses in transit

throughout the day, especially during rush hours. Furthermore, they represent the mo-

bility of an entire day to different days of the week. To the best of our knowledge, the

scenarios introduced in this article bring spatial, temporal, and traffic demand character-
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istics not observed in any other work. In this direction, we aim to make publicly available

all generated scenarios to contribute to the community and allow possible adaptations

since our methodology is based on a well-known mobility simulator.

We envision several future directions in this topic. For instance, some aspects of

traffic demand need further investigation, such as the time spent by buses at stopping

points and congestion control. Another research direction is to explore several case studies

that can be analyzed from scenarios such as vehicular networks, pollutant emission, and

transport system planning.

On data dissemination, we introduced two novel routing protocols, BR3C and

BR4C, for bus-based vehicular networks. Those protocols consider characteristics ob-

tained from the mobility dynamics of buses, such as contact histories, communities, and

centrality. We used the scenarios proposed in this work to validate those protocols. We

observed that by combining contact patterns and social characteristics in the design of

protocols, we increased the delivery ratio while reducing the delivery time in forwarding

messages. As developments, we plan to incorporate a policy to add access points into

these protocols and assess how this impacts the design of Bus-based VANETs.
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Chapter 12

Conclusion and Future Work

12.1 Contribution Summary

In this thesis, we addressed how vehicle trajectory data can be explored to assist

in designing vehicular networks. Initially, general design guidance for vehicular networks

based on mobility traces is proposed, defining the main steps from data acquisition to

application. We discussed several aspects of the quality of vehicle mobility traces that

can impact the simulation, analysis, and design of vehicular networks. In this direction, we

introduced a methodology with various criteria (granularity, positioning errors, variability

and volume of mobility data, and spatial and temporal observation window) that should be

observed when using vehicular mobility traces. Also, we proposed two solutions to improve

the granularity of mobility traces publicly available in the literature to have a more faithful

representation of the real vehicle movements. The results revealed that our approaches

can accurately fill the gaps in vehicle trajectories and create realistic mobility for VANET

simulation and analysis. Beyond that, we proposed two frameworks for generating bus

mobility simulation scenarios from GTFS data. The proposed scenarios spatially cover an

entire city, representing a complete bus transport system. These frameworks are flexible

enough to create mobility for different cities worldwide.

Regarding network topology, we showed the strengths and weaknesses of current

approaches in the characterization and analysis of vehicular network topology. Based on

this characterization, we expanded our analyses to understand the topology dynamics of

vehicular networks formed by buses. Also, we investigated some fundamental characteris-

tics of stationary and mobile Vehicular Mobility Clouds (VMCs) obtained from large-scale

vehicular mobility traces. We analyzed and modeled the dwell time and the inter-arrival

time for stationary VMCs. For mobile VMCs, we revealed how they occur throughout

the city throughout the day, considering evolution and lifetime aspects.

Also, we proposed three routing protocols. First, we developed an opportunistic

routing protocol named MOP, which considers individual vehicular mobility as a deter-

mining factor for routing decisions. In particular, MOP considers two mobility metrics
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to determine whether message forwarding should occur: radius of gyration and mobility

entropy. The other two protocols, BR3C and BR4C, aim at vehicular networks formed

by buses. In this case, both protocols use historical mobility data to extract social met-

rics (Community, Centrality, and Contact Characteristics) that assist in the message-

forwarding strategy on the network. Through simulations using the scenarios developed

in this thesis, we show that these protocols reduce delivery latency and have a delivery

ratio higher than state-of-the-art.

12.2 Future Research Directions

The main goal of this thesis was to address mobility trace analysis in the design

of vehicular networks. This objective was achieved through studies on data quality, gen-

eration of mobility data, topology analysis, and routing protocol design. However, we

envision several research directions that can be explored, as described below.

Data collection and incentive mechanism. The popularity of vehicles equipped

with satellite tracking devices has been of fundamental importance for Intelligent Trans-

portation Systems. Localization data plays a crucial role in understanding mobility and

decision-making. However, obtaining such data on a large scale is not simple and has

several requirements, such as quality, privacy, and cost. Therefore, a big challenge is to

create an infrastructure for collecting, processing, and storing vehicular mobility traces

that maintain data quality and privacy. The adoption of techniques from crowdsensing

and participatory sensing is a powerful alternative for large-scale data collection but has

several associated challenges, as described in [238].

In addition to the challenges of collecting, processing, and storing data, data col-

lected by new studies need to cover the limitations of publicly available data sets. Sec-

tion 3.2 presents these datasets and discusses their main limitations. Therefore, we need

datasets that contain records of many vehicles over a long period. Although there are

synthetic datasets, there is a lack of real traces with thousands of vehicles (mainly of

different types such as buses, taxis, and private cars) for months or even years. Moreover,

another opportunity is to obtain other types of data, such as traffic flow data of the roads.

Obtaining vehicular mobility data, particularly from private vehicles, is highly

complex due to privacy and security conditions. Therefore, in addition to collecting

quality data, it is necessary to maintain the security of information and the privacy of

people. Moreover, it is important to create secure mechanisms that encourage people to

contribute their data while maintaining data quality requirements, economic feasibility,

coverage area, and large scale, among other factors.
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Data enrichment and data fusion. The vast amounts of spatial and temporal

data on human activities captured by information and communication technologies enable

us to analyze mobility patterns and extract knowledge about human movements. In

general, the mobility data obtained from sensors consists of traces. Besides, additional

data such as acceleration, speed, and direction can also be captured. The data set sensors

capture is called raw data, which can provide valuable insights into several aspects of

vehicular networks, as discussed in this thesis. However, studies on semantic annotation of

trajectories offer a new and promising perspective of data interpretation [275, 213]. In this

scenario, raw data can be enriched semantically, leading to unprecedented opportunities

in urban mobility analysis.

In our domain, semantic enrichment is the process of adding contextual information

to complement raw data. For example, consider a scenario where people move around a

city. Instead of just having geographical positioning records (e.g., latitude and longitude)

over time, we can have information about which streets were traveled during the route

and their characteristics, which points of interest were visited, means of transportation,

social gatherings, and events attended. From a citywide perspective, contextual informa-

tion provides valuable knowledge of the movement of people, such as where they moved

(e.g., the places), when (e.g., during which events), how (e.g., using which transportation

means), and what for (e.g., activity). Lifting the mobility analysis to the semantic level

provides new possibilities for understanding moving people’s behaviors. Moreover, cross-

domain and traditional data fusion techniques can leverage the knowledge obtained from

datasets of different sources in different domains. In this way, the semantic enrichment

and data fusion techniques may provide powerful insights and enhance studies of city

dynamics and ITS.

Mobility generation. We aim to enrich the traces generated with contextual

variables, such as traffic density, traffic restrictions, and abnormal situations. We pro-

pose to incorporate those contextual variables to devise machine learning models. For

instance, Generative Adversarial Networks (GANs) have gained much popularity for var-

ious applications, especially for generating realistic images of objects and people [1]. Sim-

ilarly, some researchers have investigated the use of GAN for vehicle trajectory genera-

tion [109, 184, 272]. For instance, Xiong et al. [272] introduced a GAN-based model with

semantic information for simulating urban mobility. We plan to create a model that con-

siders the mobility restrictions established by each bus line in addition to the contextual

variables mentioned above. Notably, this goal is challenging since GAN-based models

generally adopt a grid partitioning approach to space and mapping to the nearest streets

to generate trajectories. Furthermore, we will have to deal with the problem of generating

trajectories with high granularity. This other feature is a limitation of current methods

due to the constraints of computational efficiency.

Smart mobility. Enabling smart mobility is a fundamental task in the context
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of smart cities. In this scenario, vehicular networks and intelligent transport systems

play a crucial role in providing innovative solutions that increase transport safety and

reduce pollution levels in large centers while enhancing the life quality of citizens [87].

All these aspects can be better investigated when we look at the history of the mobility

of mobile entities in a city. From this perspective, we believe that analyzing vehicular

mobility traces and other mobility data types is essential to finding solutions compatible

with a city’s reality. Notice that each city has its own peculiarities and will probably call

for particular solutions that must consider several factors such as routine, culture, and

weather conditions.

In this context, traces can provide information about the city’s dynamics, especially

when merged with other data sources, to offer solutions that optimize resources and

efficiently use urban transportation. Therefore, we have key opportunities and challenges

related to carpooling, car-shared mobility, traffic control, detection and management of

traffic incidents, and multimodal transport.

Information-centric networking. Recently, information-centric networking (ICN)

emerged as a powerful networking solution for vehicular networks [11, 81]. Host-centric

communication in vehicular networks has several challenges due to their highly dynamic

topology, resulting in the difficulty of establishing end-to-end connectivity to obtain the

content. On the other hand, the ICN paradigm allows the establishment of the commu-

nication path between producers and consumers based on the search for the name of the

content instead of using the server address [84]. Basically, the consumer node transmits an

interest packet searching for specific content along the network. The vehicle that contains

a copy of the requested content forwards it to the consumer. Therefore, the communica-

tion consists of obtaining the content by searching for its name in the network instead of

requesting a specific server.

Although this approach has several advantages, it also has some challenges that

must be overcome, such as routing and forwarding and in-network caching. For instance,

Boukerche et al. [30], Coutinho et al. [85], and Yu et al. [278] proposed protocols to deal

with the interest broadcast storm problem which may occur when a requisition for particu-

lar content is performed on the network. Modesto and Boukerche [186] performed a study

to investigate the temporary storage of contents, known as caching, in information-centric

vehicular networks. Through simulations and analysis of popular caching mechanisms,

they observed that mobility is paramount in-network caching. Based on those studies,

the analysis of mobility traces brings new opportunities for both routing and caching. In

routing, the study of mobility traces provides fundamental knowledge for the design of

protocols that are sensitive to collisions, selective flooding techniques, and rules for packet

prioritization. For caching, the study of mobility traces provides knowledge to optimize

in-network caching and facilitates the design of novel caching policies.

Mobility-centric data dissemination. Considering data dissemination and
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routing, the analysis of vehicular mobility traces brings new opportunities for efficient

communication despite the high mobility of the nodes and the dynamic topology of vehic-

ular networks. When we look at mobility patterns, we can observe recurring behaviors in

the network and, thus, propose new solutions based on this knowledge. Observing these

mobility behaviors becomes even more challenging and exciting in the context of vehicular

networks since such networks tend to operate mainly in urban scenarios. In this context,

we have various types of vehicles with deterministic and non-deterministic mobility, and

they provide diverse facets in the topology modeling.

Mobility-centric data dissemination consists of using the underlying knowledge

from vehicular mobility traces to assist in routing. For instance, the best message repli-

cators are based on target vehicles, target areas, and types of message/content. Hence,

it is essential to propose new solutions that consider cloud infrastructure [258], mobility

patterns, and movement prediction of vehicles [8, 9] to combine with the idea of oppor-

tunistic forwarding and trajectory-based routing. In addition, from the vehicular mobility

traces, we can investigate several aspects that are recurrent in the topology of vehicular

networks and predict the behavior of these aspects.
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bility trace for realistic large-scale simulation of bus-based dtns. In ACM workshop

on CHANTS, pages 71–74, 2010.

[100] Michael Doering and Lars Wolf. Opportunistic vehicular networking: Large-scale

bus movement traces as base for network analysis. In Proc. IEEE HPCS, pages

671–678, 2015.

[101] Falko Dressler et al. Virtual edge computing using vehicular micro clouds. In ICNC,

pages 537–541. IEEE, 2019.

[102] Falko Dressler, Philipp Handle, and Christoph Sommer. Towards a vehicular cloud-

using parked vehicles as a temporary network and storage infrastructure. In Pro-

ceedings of the ACM WiMobCity, pages 11–18, 2014.

[103] R. Du, C. Chen, B. Yang, N. Lu, X. Guan, and X. Shen. Effective urban traffic mon-

itoring by vehicular sensor networks. IEEE Transactions on Vehicular Technology,

64(1):273–286, Jan 2015.

[104] Dublinked. Data from dublin city council (insight project),, 2013.
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notti, and Albert-László Barabási. Returners and explorers dichotomy in human

mobility. Nature communications, 6, 2015.

[213] Christine Parent, Stefano Spaccapietra, Chiara Renso, Gennady Andrienko, Na-

talia Andrienko, Vania Bogorny, Maria Luisa Damiani, Aris Gkoulalas-Divanis, Jose



Bibliography 244

Macedo, Nikos Pelekis, et al. Semantic trajectories modeling and analysis. ACM

Computing Surveys (CSUR), 45(4):42, 2013.

[214] H. Peng, Le Liang, X. Shen, and G. Y. Li. Vehicular communications: A network

layer perspective. IEEE Transactions on Vehicular Technology, 68(2):1064–1078,

Feb 2019.

[215] Rafael H. M. Pereira et al. gtfs2gps: Converting Transport Data from GTFS Format

to GPS-Like Records, 2021. R package version 1.4-1 — For new features, see the

’Changelog’ file.

[216] C. Perkins, E. Belding-Royer, and S. Das. Rfc 3561 ad hoc on-demand distance

vector (aodv) routing. Technical report, RFC, United States, 2003.

[217] Michal Piorkowski et al. Crawdad data set epfl/mobility (v. 2009-02-24). CRAW-

DAD wireless network data archive, 2009. https://crawdad.org/epfl/mobility/

20090224.

[218] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser.

CRAWDAD Dataset EPFL/mobility (v. 2009-02-24). Downloaded from

http://crawdad.org/epfl/mobility/20090224, February 2009.

[219] Xinwu Qian, Lijun Sun, and Satish V Ukkusuri. Scaling of contact networks for

epidemic spreading in urban transit systems. Scientific reports, 11(1):1–12, 2021.

[220] Liqiang Qiao, Yan Shi, and Shanzhi Chen. An empirical study on the temporal

structural characteristics of vanets on a taxi gps dataset. IEEE Access, 5:722–731,

2017.

[221] Jun Qin, Hongzi Zhu, Yanmin Zhu, Li Lu, Guangtao Xue, and Minglu Li. Post:

Exploiting dynamic sociality for mobile advertising in vehicular networks. IEEE

Transactions on Parallel and Distributed Systems, 27(6):1770–1782, 2016.

[222] Azizur Rahim, Xiangjie Kong, Feng Xia, Zhaolong Ning, Noor Ullah, Jinzhong

Wang, and Sajal K Das. Vehicular social networks: A survey. Pervasive and Mobile

Computing, 2017.

[223] Marco Rapelli, Claudio Casetti, and Giandomenico Gagliardi. Vehicular traffic sim-

ulation in the city of turin from raw data. IEEE Transactions on Mobile Computing,

2021.

[224] Mukesh Saini, Abdulhameed Alelaiwi, and Abdulmotaleb El Saddik. How close

are we to realizing a pragmatic vanet solution? a meta-survey. ACM Computing

Surveys (CSUR), 48(2):29, 2015.

https://crawdad.org/epfl/mobility/20090224
https://crawdad.org/epfl/mobility/20090224


Bibliography 245

[225] Fillipe Santos, Andre LL Aquino, Edmundo RM Madeira, and Raquel S Cabral.

Temporal complex networks modeling applied to vehicular ad-hoc networks. Journal

of Network and Computer Applications, 192:103168, 2021.

[226] Erich Schubert et al. Dbscan revisited, revisited: why and how you should (still)

use dbscan. ACM Transactions on Database Systems, 42(3):1–21, 2017.

[227] Matthias Schwamborn and Nils Aschenbruck. On modeling and impact of geo-

graphic restrictions for human mobility in opportunistic networks. In IEEE MAS-

COTS, pages 178–187, 2015.

[228] Michel Sede et al. Routing in large-scale buses ad hoc networks. In 2008 IEEE

WCNC, pages 2711–2716, 2008.

[229] Rishav Sen, Toan Tran, Seyedmehdi Khaleghian, Philip Pugliese, Mina Sartipi,

Himanshu Neema, and Abhishek Dubey. Bte-sim: Fast simulation environment for

public transportation. In 2022 IEEE International Conference on Big Data (Big

Data), pages 2886–2894. IEEE, 2022.

[230] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From

theory to algorithms. Cambridge university press, 2014.

[231] Claude Elwood Shannon. A mathematical theory of communication. ACM SIG-

MOBILE Mobile Computing and Communications Review, 5(1):3–55, 2001.

[232] Robert H Shumway and David S Stoffer. Time series analysis and its applications:

with R examples. Springer Science & Business Media, 2010.

[233] Cristiano M Silva, Andre LL Aquino, and Wagner Meira. Deployment of roadside

units based on partial mobility information. Computer Communications, 60:28–39,

2015.
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