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Resumo

Compreender o comportamento dos usuários em plataformas de e-commerce é funda-

mental para aprimorar a experiência do cliente e identificar atividades anômalas, como

interações realizadas por bots. Este estudo realizou uma análise exploratória de dados

(EDA) abrangente, examinando informações de navegação e revelando diferenças signi-

ficativas em atributos de sessão, padrões de transição e dinâmicas comportamentais. Esses

insights oferecem uma base sólida para o estudo sistemático de comportamentos leǵıtimos

e anômalos em contextos de compras online.

Como etapa complementar à análise exploratória, utilizamos um modelo de One-

Class Support Vector Machine (OC-SVM) para detectar anomalias nos dados de sessão.

Um subconjunto de exemplos rotulados foi usado para ajustar os hiperparâmetros e se-

lecionar as configurações ideais do modelo, reforçando a validade dos padrões comporta-

mentais identificados na EDA.

Com o uso do Fβ-Score, onde β = 0.5, como métrica de desempenho, os exper-

imentos mostraram que os kernels lineares e polinomiais de baixa ordem apresentaram

bons resultados no equiĺıbrio entre precisão e recall. Os resultados indicaram que sessões

anômalas tendem a exibir padrões de navegação dominados por transições “altamente

prováveis”, refletindo o poder discriminativo das features projetadas.

Posteriormente, o modelo otimizado foi aplicado para prever as classes de sessões

anteriormente não rotuladas, ampliando o conjunto de dados com novas classificações. Es-

sas previsões permitiram uma análise mais profunda das diferenças entre comportamentos

anômalos e leǵıtimos, revisitando análises-chave e explorando novos insights no conjunto

de dados expandido. Essa etapa complementar destaca o valor prático dos achados da

EDA no suporte à detecção de anomalias em e-commerce.

Este estudo reforça a importância de uma exploração robusta de dados na detecção

de anomalias, demonstrando como uma EDA bem estruturada pode informar o design e a

interpretação de modelos. Os resultados fornecem insights valiosos sobre o comportamento

dos usuários e oferecem uma abordagem sistemática para a detecção de bots em ambientes

de e-commerce.

Palavras-chave: cadeia de Markov; classificadores de uma classe; detecção de bots;

e-commerce.



Abstract

Understanding user behavior on e-commerce platforms is crucial for enhancing customer

experience and identifying anomalous activities, including bot interactions. This research

conducts a comprehensive exploratory data analysis (EDA) to examine navigation data,

revealing significant differences in session attributes, transition patterns, and behavioral

dynamics. These insights create a foundation for systematically studying legitimate and

anomalous user behaviors in online shopping contexts.

As a complementary step to the exploratory analysis, we utilized a One-Class

Support Vector Machine (OC-SVM) to detect anomalies in session data. A subset of

labeled examples guided the fine-tuning process, enabling the selection of optimal model

configurations and reinforcing the validity of the behavioral patterns identified in the

EDA.

Using the Fβ-Score with β = 0.5 as a performance metric, the experiments high-

lighted that linear and low-degree polynomial kernels performed well in balancing preci-

sion and recall. The results indicated that anomalous sessions tend to exhibit navigation

patterns dominated by “highly likely” transitions, reflecting the engineered features’ dis-

criminative power.

Subsequently, the optimized model was used to predict the classes of previously un-

labeled sessions, extending the dataset with new classifications. These predictions enabled

a deeper examination of the distinctions between anomalous and legitimate behaviors by

revisiting key analyses and exploring additional insights within the newly labeled dataset.

This complementary step underscores the practical value of the EDA findings in support-

ing anomaly detection in e-commerce contexts.

This research underscores the importance of robust data exploration in anomaly

detection, demonstrating how well-structured EDA can inform model design and inter-

pretation. The findings provide valuable insights into user behavior and offer a systematic

approach to bot detection in e-commerce environments.

Keywords: Markov chain; one class classifiers; one class SVM; bot detection; e-commerce.
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Chapter 1

Introduction

Over the past years, the Internet has experienced exponential growth, leading to an

unprecedented increase in the number of individuals connected to the digital environment.

However, as technology and internet access mechanisms have evolved, the volume of

invalid traffic has significantly increased. This type of traffic, often driven by automated

scripts and non-legitimate users, poses challenges for e-commerce platforms by distorting

engagement metrics, impacting performance, and introducing potential security risks.

According to a Wired research [21], around 40% of all online web traffic is invalid, making

it crucial to develop mechanisms to detect their activities and prevent damage. This is in

line with the “Dead Internet Theory”, which suggests that bots and AI-generated content

are increasingly dominating the online interactions [1]. Su et al. [34] considers bots to be

one of the most severe threats to Internet security in recent years as when compared with

other malware like viruses and worms; bot behavior can be very stealthy, making their

detection extremely difficult.

Every day, web bots are responsible for generating a substantial amount of web

traffic and are used for the most varied purposes. The most prevalent bots are search

engine crawlers, which routinely access web pages to construct and update extensive search

indexes [4, 15]. From a cybersecurity perspective, they can be classified into malicious

and benign bots, depending on how they operate on the Internet.

Benign bots typically perform tasks like website indexing and monitoring. They

are expected to inform the server of their identity by including the bot’s name in the

user agent of each HTTP request and to comply with the rules outlined in the robots.txt

file—a text file stored in the root directory of a website that specifies which pages can

be crawled. Usually, benign bots are operated by search engines and SEO (search engine

optimization) agencies and should be allowed to crawl the data necessary to improve the

website’s performance.

Although benign bots often serve beneficial purposes, their presence can still pose

challenges for the website’s maintainers. Excessive crawling by search engine bots, for

instance, can lead to increased server load, bandwidth consumption, and potential perfor-

mance degradation. Moreover, the substantial bandwidth usage, particularly on content-

rich websites, may impact loading speeds for legitimate users, adversely affecting the



15

overall user experience. Furthermore, the presence of benign bots can add noise to the

website analytics data, making it difficult to accurately interpret user behavior and po-

tentially leading to erroneous conclusions. In practice, many robots are camouflaged and

may be detected on the server only by more sophisticated methods.

Otherwise, malicious bots pose a multifaceted threat, as they can be utilized for

a diverse array of purposes, ranging from data scraping and credential stuffing to orches-

trating large-scale cyberattacks. In [34], the authors investigate how malicious actors

can exploit crowdsourcing platforms to manipulate search engine rankings by providing

detailed instructions on how to perform queries that bypass the detection mechanisms.

According to the 2023 Imperva Bad Bot Report [13], bots were responsible for

47.2% of the internet traffic in 2022. This number highlights the alarming prevalence

of malicious bot activities across the digital landscape, emphasizing the urgent need for

proactive cybersecurity measures to safeguard online platforms.

E-commerce portals are highly susceptible to both malicious and benign bot ac-

tivities. Storing sensitive personal and financial data makes these platforms attractive

targets for unauthorized operations. Additionally, product catalog data is often exploited

by crawler agents for purposes like price comparison or content scraping for use by compet-

ing businesses [25]. According to a Distil Network Report [14], almost two-thirds (61.8%)

of attacks that targeted online retailers were classified as automated threats, highlighting

the potential of these automated agents on major online platforms.

E-commerce platforms comprise multiple interdependent components, ranging from

user authentication and payment systems to databases, web applications, and network in-

frastructure. Each of these components is vulnerable to numerous cyber attacks [26], that

can be exploited by malicious actors, posing a significant threat to the confidentiality,

integrity, and availability of sensitive data and transaction processes. As the e-commerce

landscape continues to evolve, the sophistication and prevalence of cyber threats also in-

crease. This makes it imperative to acknowledge and proactively address potential risks

associated with malicious activities.

Even benign bots like search engine crawlers periodically scrape websites, increas-

ing the system’s workload. While these activities are not inherently harmful, they still

consume cloud resources without providing direct benefits to the e-commerce platform.

This can lead to increased workloads and operational costs. Moreover, if traffic data gen-

erated by these automated agents is not properly filtered, it can distort interpretations

of user preferences and behaviors, leading to flawed analytics and misguided decision-

making. Therefore, the first step in mitigating the impact of both benign and malicious

bot activities is to distinguish their behavior from legitimate user interactions—without

initially focusing on specific bot types. Effectively identifying and managing bot traf-

fic, whether harmful or not, is crucial for maintaining accurate analytics and optimizing

resource usage in e-commerce operations.
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Recent studies have investigated different approaches to bot detection in e-commerce.

For example, [30] analyzed session-based differences between bots and humans in web

stores, employing unsupervised learning techniques to identify anomalous behaviors. Suchacka

et al. [35] introduced real-time detection methods using sequential analysis and neural net-

works to enhance early identification of bots. Additionally, [21] highlighted the broader

implications of bot activity in corrupting online ecosystems, emphasizing the need for

robust detection mechanisms to mitigate these threats.

While these studies have advanced the field of bot detection, many rely heavily

on session-level features or focus predominantly on static data from web server logs.

This approach can miss temporal and behavioral patterns that emerge during navigation.

To address this, the present study leverages navigation event data to extract valuable

features such as session duration, sequence probabilities, transition frequencies, and access

origins. By modeling the behavior of legitimate agents, informed by the insights from our

analysis, our approach provides a robust framework for distinguishing between malicious

and legitimate activities.

A common challenge reported in related studies is the lack of labeled data, which

often limits the ability to validate solutions in realistic scenarios. Our study addresses

this issue by thoroughly characterizing both invalid and legitimate activities through an

extensive behavioral analysis, providing a solid foundation for modeling these behaviors.

By extracting the pages accessed during navigation and ordering them chronologically,

we reconstructed the agents’ navigation paths within a session. This allowed us to model

their behavior using a probabilistic approach—computing page transition probabilities

and leveraging Continuous Time Markov Chains (CTMCs) to capture these patterns.

Beyond offering a structured representation of user and bot behaviors, our ap-

proach enables the creation of synthetic datasets that preserve key statistical properties

of real-world navigation patterns. These datasets can be instrumental in training and

evaluating models when labeled data is scarce. Additionally, by leveraging CTMCs, we

provide a dynamic framework that can be adapted to different e-commerce environments,

facilitating the detection of evolving bot strategies. We believe these findings contribute

significantly to the field, supporting future research in bot detection, anomaly detection,

and user behavior modeling.

1.1 Motivation

In today’s digital landscape, bot activities are increasingly prevalent, mimicking

human behavior in various domains. While automation offers certain advantages, we
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believe it’s crucial to preserve the authenticity and dynamic nature of human interactions.

In many contexts, genuine human engagement is essential for fostering trust, driving

innovation, and ensuring ethical and equitable outcomes.

E-commerce provides a prime example of this critical need. Understanding the

nuanced behaviors and preferences of real shoppers is fundamental to successful online

businesses. Events like search queries, click patterns, and purchase histories offer invalu-

able insights into consumer needs and desires. These insights inform crucial business

decisions, from product development and marketing strategies to customer service and

personalized recommendations.

The proliferation of bots can significantly distort valuable data. Malicious agents

can manipulate search results, artificially inflate website traffic, and even engage in fraud-

ulent transactions. This not only undermines the integrity of online businesses but also

misleads businesses into catering to non-existent or even harmful demands.

Therefore, it is imperative to develop robust methods for detecting and mitigating

the impact of bot activities in e-commerce. By accurately identifying and filtering out

bot-generated data, businesses can gain a more accurate and reliable picture of their true

customer base. This, in turn, enables them to make informed decisions, enhance customer

experiences, and ultimately achieve greater success in the competitive online marketplace.

1.2 Specific objectives

Given the importance of modeling legitimate user behavior and understanding how

malicious agents act in e-commerce environments, the purpose of this study is to explore

features that can highlight the differences between bot and legitimate users. As a guide

for the development of this study, we raise the following research questions:

Q1: Is there any significant difference between user and bot navigation patterns?

Q2: Can machine learning techniques designed for modeling “normal” data and trained

on the user labeled data alone identify bots’ activities as anomalous?

Q3: What are the most relevant features extracted from the navigation data that best

discriminate between legitimate users and bots?

Q4: How do Continuous Time Markov Chains (CTMCs) contribute to the characteri-

zation and detection of anomalous navigation behaviors?
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1.3 Overview of this work

We extract new features from raw data and use a Continuous Time Markov Chain

models for modeling user behavior and then estimating the likelihood that a given se-

quence of events occurs. Analyzing the distribution of those features allowed us to under-

stand better outliers in that context, which in turn led us to conduct additional experi-

ments with a new, valuable feature: the frequency of most common transitions for each

observed sequence.

Our study is performed on a new dataset, generously provided by VTEX 1—a

leading global e-commerce platform supporting a diverse range of merchants—, which

offers a rich and representative sample of real e-commerce interactions. To safeguard

the confidentiality of the participating merchants, all identifying information has been

anonymized.

Our primary challenge in this study stems from the absence of fully-labeled data,

which complicates the validation and evaluation processes. To label highly-likely bot

activities, we relied on outputs from a basic Web Application Firewall (WAF) mechanism,

capable of detecting only a limited subset of malicious behaviors. Conversely, we assumed

that all users who completed a purchase at any point during the observed period are

legitimate users.

After conducting the aforementioned labeling process, we extracted new attributes,

particularly from the URLs and timestamp data available in the raw dataset in order to

create new features. By introducing these features, we progressively enhanced the dataset,

applying different aggregation techniques and adding new dimensions. Although the raw

data holds significance, it is insufficient on its own to support an in-depth analysis of

user and bot behaviors. The labeling process and feature engineering collectively guided

our analysis, which is extensively detailed in Chapter 5. We believe these findings offer

substantial value and hold potential to assist researchers in this field.

1.4 Outline

Next, we briefly summarize the structure of this study. Chapter 2 introduces prior

studies focused on detecting anomalous behavior in the e-commerce context through var-

ious Machine Learning strategies, including Supervised, Semi-supervised, and Unsuper-

1https://vtex.com.br
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vised Learning approaches (respectively in Sections 2.1, 2.2, and 2.3). Chapter 3 provides

an overview of the core concepts and techniques underlying the methodology adopted in

this research.

Chapter 4 details the Data and Experimental Setup. Section 4.1 describes the data

collection process and the sampling strategies adopted, which were tailored to suit different

analytical scopes. Section 4.2 presents the collected raw data and provides a summary of

key metrics for individual merchants. Section 4.3 discusses the data pre-processing steps,

including data validation, labeling strategies, and feature augmentation.

Chapter 5 explores the results of the Exploratory Data Analysis (EDA), delving

into event data and the distinctions in behaviors between users and bots, derived from

both raw and manually engineered features. Model Design implementation details are

presented in Chapter 6. Study outcomes are presented in Chapter 7, which includes the

evaluation of the proposed method and its effectiveness in detecting bot activities. Finally,

Chapter 8 summarizes the key findings of this research, discusses the limitations of the

proposed method, and outlines potential avenues for future work.
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Chapter 2

Related Work

Bot detection in e-commerce and web environments is an ongoing challenge due to the in-

creasing sophistication of automated agents that mimic legitimate user behavior. As bots

become more advanced, their detection becomes more difficult, requiring new methods

and technologies to keep abreast of threats. Bot detection techniques generally fall into

three major categories: supervised learning, semi-supervised learning, and unsupervised

learning. Each approach has its own set of advantages and limitations, and understanding

these distinctions is crucial for selecting the appropriate method based on the available

data and the specific requirements of the task at hand.

Supervised learning approaches have been widely used in bot detection due to

their ability to leverage labeled data for model training. However, a major challenge lies

in the availability of accurate labeled datasets, as acquiring labeled data often requires

manual intervention and domain expertise, which is both time-consuming and costly [35,

11]. This limitation has prompted the exploration of semi-supervised learning techniques,

which aim to reduce the dependency on labeled data by combining a small amount of

labeled instances with a larger pool of unlabeled data [40, 15]. Such methods have shown

promising results, particularly when the cost of obtaining labeled data is prohibitively

high or when labeling is impractical.

Unsupervised learning, on the other hand, provides a powerful approach to bot

detection, especially when labeled data is scarce or unavailable [3]. This approach fo-

cuses on identifying patterns, anomalies, or clusters within the data without requiring

prior knowledge of the labels. Unsupervised methods, such as anomaly detection and

clustering, have been effectively applied to detect bot activity based on behavioral irreg-

ularities or unusual patterns in user interactions [27, 42]. Moreover, the development of

hybrid methods that combine unsupervised learning with supervised or semi-supervised

components has further enhanced the detection accuracy, making unsupervised learning

a valuable tool for large-scale detection systems.

In this chapter, we provide a comprehensive review of the literature on bot detec-

tion, organized according to these three learning paradigms. We discuss various method-

ologies, their applications, and the challenges they address. Specifically, the chapter is

divided into three sections: Supervised Learning, Semi-supervised Learning, and Unsu-
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pervised Learning. Each section will explore key works in the field, highlighting the

advantages of each approach and the contexts in which they have been successfully ap-

plied.

The supervised learning approach remains dominant in bot detection research, with

several studies focusing on the application of machine learning algorithms, such as decision

trees, SVMs, and neural networks, to identify malicious activities based on labeled data

[23, 34, 9]. However, the reliance on labeled data presents a significant challenge, which is

where semi-supervised learning approaches have come into play, offering a middle ground

by reducing the need for labeled data while still achieving high accuracy [7, 8]. In contrast,

unsupervised learning methods are increasingly popular for their ability to detect novel

bot behaviors without the need for labeled training sets, making them particularly useful

for real-time bot detection in dynamic environments [38, 20].

By examining the latest advancements in each of these areas, this chapter aims to

provide a detailed understanding of the state-of-the-art techniques and their applications

in the field of bot detection.

2.1 Supervised Learning Bot Detection

Supervised learning approaches in bot detection require labeled data, where bot

and legitimate activities are accurately identified and annotated. However, the acquisition

of such labeled data is often resource-intensive, requiring manual intervention and domain

expertise for validation.

Suchacka et al. [35] utilized publicly available databases, incorporating IP ad-

dresses, user agents, and browser information to generate labeled samples. A neural

network with a logistic output was then trained to classify HTTP requests as either bot

or human-generated. Similarly, Goseva-Popstojanova et al. [11] employed a honeypot

system to collect and classify malicious activities using a combination of three classifiers:

SVM, decision trees, and PART. Nguyen et al. [23] proposed Lino, a honeypot system sim-

ulating vulnerable web pages, to trap web crawlers and collect features for classification

using machine learning methods such as SVM and decision trees.

Su et al. [34] manually annotated collected data and introduced an Activity Factor

Graph Model (AFGM), which incorporates behavior, user, and item-related information

to predict spamming activities, specifically “Add to favorites”. In contrast, Daya et

al. [9] employed graph-based features like Betweenness Centrality and Local Clustering

Coefficient to train classification models with labels generated by clustering methods.

Alahmadi et al. [2] explored the use of a Markov Chain model to represent bot net-
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work behavior. By extracting high-level features and training a classifier, they successfully

categorized bot activities and identified specific bot families. Kruegel et al. [17] also pro-

posed an anomaly detection system that utilizes Bayesian analysis to examine web server

logs, comparing HTTP query patterns to program-specific profiles for detecting web-based

attacks.

In botnet detection, Narang et al. [22] combined clustering techniques with super-

vised machine learning algorithms, such as Random Forest and Decision Trees, to detect

peer-to-peer (P2P) botnets.

Rasti et al. [28] discuss the application of deep learning methods, particularly recur-

rent neural networks (RNN), for enhancing bot detection in e-commerce platforms, where

sequential behaviors are vital for accurate classification. Similarly, Liu et al. [18] applied

ensemble learning, integrating decision trees, SVM, and neural networks, to improve the

robustness and accuracy of bot detection systems, particularly in web applications where

adversarial behaviors are often complex.

2.2 Semi-supervised Learning Bot Detection

Semi-supervised learning techniques are particularly useful when labeled data is

scarce. These methods combine a small amount of labeled data with a larger set of un-

labeled data to improve model performance. Xu et al. [40] proposed a semi-supervised

approach using Expectation Maximization (EM) to identify suspicious Bot IP addresses

(BIPs). By assuming that features follow a mixture of Gaussian distributions, they clas-

sified IPs based on their likelihood of being bot-related. In [15], semi-supervised learning

methods were applied to distinguish between automated and genuine user activity in

search engines.

Issues related to imbalanced datasets are addressed by Chawla et al. [7], who in-

troduced techniques for generating synthetic minority class samples through interpolation

between samples and their nearest neighbors in feature space. Robertson et al. [29] pro-

posed an anomaly detection system that combines unsupervised learning to profile normal

server behavior with supervised heuristics to classify anomalies as either bot-generated or

legitimate.

Chwalinski et al. [8] combined clustering techniques to group similar HTML se-

quences, detecting attackers based on unlikely transitions within clusters. Similarly,

Rovetta et al. [30] adopted clustering algorithms such as k-means and Graded Possibilistic

c-Means for unsupervised grouping, followed by supervised labeling to classify legitimate

and malicious activities in the e-commerce domain. Haq et al. [33] applied a hybrid ap-
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proach combining k-means clustering with the J48 decision tree classifier, achieving high

detection accuracy in a comparison to standalone methods.

Tran et al. [37] introduced deep semi-supervised learning methods, particularly fo-

cusing on autoencoders, to detect bots with minimal labeled data in e-commerce settings.

This approach leverages unsupervised pre-training of neural networks to learn representa-

tions that are later fine-tuned with labeled data. Zhang et al. [41] explored a graph-based

semi-supervised learning framework for bot detection, showing its effectiveness in large-

scale network environments where conventional methods often struggle.

2.3 Unsupervised Learning Bot Detection

Unsupervised learning methods are increasingly popular for bot detection when

labeled data is difficult or costly to obtain. These methods detect anomalies or clusters

within data without predefined labels, identifying rare events or patterns that deviate

significantly from the norm.

Anomaly detection, a form of unsupervised learning, focuses on identifying in-

stances that differ significantly from normal data points [3]. While initially used for noise

filtering, anomaly detection is now widely used for uncovering rare or malicious events.

In e-commerce, unsupervised learning techniques can be employed for customer segmen-

tation, grouping users based on behavior and characteristics. Rajput et al. [27] demon-

strated the effectiveness of K-Means clustering in segmenting e-commerce customers by

their communication preferences, improving marketing and customer retention efforts.

Wang et al. [38] utilized clickstream similarity graphs to capture user behaviors, applying

clustering techniques to identify distinct behavioral patterns.

In bot detection, unsupervised techniques can effectively identify anomalous user

behavior. Rovetta et al. [30] explored a generative approach for characterizing bot

sessions, using clustering methods such as K-means and Graded Possibilistic c-Means

(GCPM). Their results showed the effectiveness of unsupervised learning in bot detec-

tion, outperforming some traditional supervised models. Similarly, Daya et al. [9] used

clustering methods and graph-based features to distinguish between benign and malicious

traffic, which were then used to train a classification model.

Zhao et al. [42] present a novel unsupervised learning framework that integrates

clustering and anomaly detection for detecting bot behavior in financial transactions.

Their approach leverages density-based spatial clustering methods to identify patterns

in high-dimensional data, which is crucial for detecting fraud in financial networks. Lu

et al. [20] also proposed a hybrid unsupervised approach combining density-based spa-
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tial clustering and outlier detection to classify bot behavior in social media platforms,

demonstrating its efficacy in handling large-scale datasets.

In this study, we adopt unsupervised learning methods, specifically a One-Class

Support Vector Machine (OC-SVM), to detect anomalous behavior in e-commerce nav-

igation data. This approach addresses the challenges of environments where accurately

labeled data for bot detection is scarce or unreliable, as highlighted in studies such as

[30, 35]. Unlike these works, which rely on labeled data or semi-supervised approaches

to generate it, our methodology models legitimate user behavior directly. By doing so,

it eliminates the dependency on extensive labeled datasets and instead leverages features

derived from a comprehensive exploratory data analysis (EDA). This strategy enables

the detection of subtle deviations from normal behavior, providing a scalable and robust

solution for bot detection in e-commerce contexts.
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Chapter 3

Technical Background

This chapter provides the theoretical background essential for understanding the methods

employed in this study. By leveraging probabilistic models, such as Continuous-Time

Markov Chains, we capture the temporal dynamics of user navigation and transitions

between states. These insights, combined with the anomaly detection capabilities of One-

Class Support Vector Machines, enable the identification of deviations from legitimate

user behavior. Together, these approaches provide a robust framework for distinguishing

bots from genuine users in e-commerce environments.

3.1 One-Class Classification

In scenarios involving severely imbalanced datasets, traditional binary or multi-

class classification methods often result in a bias toward the majority class, making it

challenging to accurately model and detect instances of the minority class. This imbal-

ance is particularly problematic when the minority class is of greater interest, such as

in fraud and anomaly detection, or rare event prediction. For instance, in the case of

abnormal behavior detection in web navigation, normal user navigation patterns vastly

outnumber anomalous behaviors such as bot activity or system faults. In such cases,

anomaly detection becomes critical, and it is here that one-class classification (OCC)

algorithms prove to be effective.

One-class classification methods are specifically designed for situations where the

focus is on learning a model of the normal class, and the goal is to identify any deviations

from this normal behavior as anomalies or outliers. These models do not rely on labeled

instances of the abnormal class but instead learn the characteristics of the normal class,

typically by modeling the distribution of normal data points [36]. Once the model is

trained, any data point that falls outside the learned distribution is flagged as an anomaly.

This approach is particularly advantageous in scenarios like bot detection, where labeled

data for malicious agents may be sparse or unavailable. In such contexts, the model is
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trained solely on data representing normal user behavior, and new instances are classified

based on their similarity to this normal behavior. By identifying deviations from normal

patterns, OCC methods can detect bot activity, even in the absence of explicit labels for

malicious actions [31, 32].

Furthermore, the flexibility of OCC makes it applicable across a variety of domains

beyond fraud and bot detection, such as intrusion detection, industrial system monitoring,

and medical diagnosis. In either of these cases, the focus is on identifying rare or anoma-

lous events, which could be indicative of significant problems, such as system failures or

health risks. Recent advancements in OCC techniques have incorporated deep learning

models, such as autoencoders, which have been shown to perform well in learning com-

plex representations of normal behavior and detecting outliers based on reconstruction

errors [31, 39]. Despite the challenges posed by the lack of labeled anomalous data, OCC

techniques have demonstrated their effectiveness in detecting rare but important events

in numerous high-stakes applications.

3.1.1 One-Class Support Vector Machine

The One-Class Support Vector Machine (OC-SVM) is a robust machine learning

algorithm specifically designed for one-class classification tasks, such as anomaly detection

and outlier identification. Based on the principles of Support Vector Machines (SVMs),

the OC-SVM aims to learn a decision boundary that encapsulates the majority of data

points from a single class representing “normal” behavior. Unlike traditional classifiers,

One-Class Classifiers are trained exclusively on examples of this normal class.

During training, the algorithm attempts to construct the smallest hypersphere that

encloses all – or most – of the data points. This hypersphere is defined by its radius r

and center c, while the hyperparameter ν in the optimization function (3.1) controls the

trade-off between the hypersphere’s size and the allowance for outliers. The problem is

formulated as the estimation of r, c, and a set of non-negative slack variables ξ1, ξ2, . . . , ξn,

with the data being mapped to a higher-dimensional space via a feature transformation

ϕ(·) to better capture complex patterns.

min
r,c,ξ

r2 +
1

νn

n∑
i=1

ξi subject to: ∥ϕ(xi)− c∥2 + ξi ≤ r2 for all i = 1, 2, ..., n. (3.1)

Any data point that falls outside this region is considered an anomaly or outlier. The

flexibility of OC-SVM comes from its ability to operate in both linear and non-linear

spaces, allowing it to capture complex relationships within the data [32, 36].
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OC-SVM has been widely applied in various fields, such as fraud detection, in-

trusion detection, and anomaly detection in sensor data. Its ability to detect deviations

from normal patterns makes it particularly useful when there is a lack of labeled data

for anomalous classes. For instance, in navigation anomaly detection, OC-SVM can be

trained on normal user navigation behavior and subsequently identify outliers, such as

bot activity or system errors. The kernel trick in OC-SVM enables it to map the data

to higher-dimensional spaces, enhancing its capability to detect more subtle and complex

anomalies that may not be linearly separable in the original feature space. Despite its

strengths, OC-SVM is sensitive to the choice of parameters, such as the regularization

parameter and the kernel function, which can significantly affect its performance [32, 31].

3.2 Markov Chain

A Markov Chain is a stochastic process {Xt}t≥0 with a state space S =

{s1, s2, . . . , sn} and a transition matrix Q, where the Markov property holds: P (Xt+1 =

sj | Xt = si) = Pij, with
∑n

j=1 Pij = 1 ∀i, where Pij is the probability of transition-

ing from state si to state sj.

The Markov property states that the probability of transitioning to each of the

possible next states in a Discrete-Time Markov Chain (DTMC) depends solely on the

current state and not on the sequence of preceding states. This property defines a first-

order DTMC, where future states are conditionally independent of past states given the

present state [24]. Discrete-time Markov chains are characterized by transitions occurring

at specific time steps and are particularly effective for modeling systems with a memo-

ryless nature. They have been widely applied in fields such as bioinformatics, natural

language processing, recommender systems, and web navigation and search patterns [16].

Mathematically, a DTMC is represented by a finite set of states and a transition prob-

ability matrix, where each element specifies the likelihood of moving from one state to

another at a given discrete time step.

This model’s simplicity and mathematical tractability make it a fundamental tool

for studying probabilistic systems and for solving real-world problems that exhibit stochas-

tic behavior [12].

Markov Chains have proven to be effective in anomaly detection and bot identifi-

cation, particularly in systems where sequential patterns and transitions are critical. By

modeling user behaviors as state transitions, Markov Chains can identify deviations from

typical navigation patterns in applications such as website monitoring or fraud detec-

tion [6]. For example, the transition probabilities between states – such as webpage visits
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or API requests – can help distinguish between legitimate users and automated bots that

exhibit irregular navigation paths [10]. Additionally, Markov-based anomaly detection

techniques are computationally efficient, making them suitable for real-time detection in

high-traffic environments (Liu et al. [19]).

3.2.1 Continuous-time Markov Chain

A Continuous-Time Markov Chain (CTMC) is an extension of the discrete-time

Markov Chain that models systems evolving over continuous time. Unlike discrete-time

Markov Chains, where transitions occur at fixed time intervals, CTMCs allow transitions

to occur at any point in time, governed by exponential waiting times. They are partic-

ularly suited for applications where the timing of transitions is critical, such as queuing

systems, reliability analysis, and anomaly detection [24].

In the context of bot detection, CTMCs can be used for capturing the dynamics

of user behavior by modeling the time spent in each state (e.g., webpage or API request)

and the transitions between states. This capability makes CTMCs ideal for identifying

irregular timing patterns, which are often indicative of automated or anomalous activity

as pointed in [5]. Additionally, CTMCs can be integrated with machine learning models

to enhance real-time detection systems by leveraging both temporal and probabilistic

features [19].

AContinuous-Time Markov Chain (CTMC) is a stochastic process {X(t)}t≥0

with state space S = {s1, s2, . . . , sn} and a transition rate matrix Q = (qij), where qij is

the rate of transition from state si to sj, for si ̸= sj. The holding time in state si follows

an exponential distribution with rate −qii, and the transition probability between states

si and sj is expressed as:

Pij(t) = P (X(t) = sj | X(0) = si).

The probability of a sequence of states s0, s1, . . . , sk occurring at times t0 =

0, t1, . . . , tk is given by:

P (X(t1) = s1, . . . , X(tk) = sk | X(0) = s0) =
k−1∏
i=0

Psi,si+1
(ti+1 − ti), (3.2)

where Psi,si+1
(t) is the probability of transitioning from state si to state si+1 in time ti+1,

given by:

Psi,si+1
(t) =

[
eQt

]
i,i+1

.
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Thus, the probability of observing a sequence of states over time is the product of the

individual transition probabilities for each consecutive state pair, where each transition

depends on the rate matrix Q and the time between transitions.

For example, for a sequence of transitions from state s0 to s1 at time t1 and from

s1 to s2 at time t2, the probability is:

P (X(t1) = s1, X(t2) = s2 | X(0) = s0) =
[
eQt1

]
s0,s1

[
eQ(t2−t1)

]
s1,s2

.
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Chapter 4

Data and Experimental Setup

This chapter outlines the decisions and methods employed in this study to analyze the

differences between legitimate users and malicious agents in the e-commerce context.

The methodology encompasses data collection, pre-processing, feature extraction, and

analytical techniques to highlight relevant aspects of the bots behavior.

4.1 Data collection

The data for this study was collected directly from shoppers’ browsers through a

JavaScript plugin that captures all user interactions and sends them to the platform’s

data lake. This plugin passively records events such as page views, cart add and checkout

events, providing a detailed log of user behavior. However, the API that receives these

events lacks both client-side authentication and field validation before data is stored.

We retrieved the data directly from the data lake by executing SQL queries and

subsequently exporting the query results into CSV files. Given the nature of the dataset,

which comprises navigation events, the volume of data is substantial, estimated at ap-

proximately 7.30 Terabytes for the selected accounts.

Handling such a massive volume of information required substantial computational

power, which exceeded the available resources at the time of research. Consequently, pro-

cessing the entire dataset in its raw form was not feasible. To address these limitations, we

employed two separate sampling strategies to ensure the data provided a representative

sample of the population while allowing for efficient analysis: the Store-Level Distri-

bution Sampling, to capture class distributions across stores, and Actor Behavior

Sampling to provide a diverse set of interactions for in-depth behavioral analysis.

By employing these two sampling approaches, we aimed to balance our analysis’

breadth and depth. The first sampling strategy, a stratified method, was designed to

capture the distribution of bots and legitimate users across various stores, allowing us to

accurately measure and characterize the presence of each class within individual stores and
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across different segments. The second sampling strategy ensured that we captured enough

behavioral data from each type of actor, providing a robust foundation for subsequent

analysis and for training machine learning models to distinguish between legitimate users

and bots.

This way, both samples were used on the Exploratory Data Analysis step, allowing

us to understand the difference between bots and legitimate users from multiple perspec-

tives. Additionally, this approach ensured that we had sufficient data to train the anomaly

detection models effectively.

Both sampling strategies use the request type and labels attributes available in

the collected events. Details of these sampling processes are presented in the following

sections and outlined in Algorithm 1 of the sampling processes.

The request type feature refers to the type of page being accessed during a ses-

sion. When a purchase is made, this feature assumes the value “orderPlaced”, which

indicates a confirmed transaction. In this study, we operate under the assumption that

actors who complete any purchase are legitimate users. This assumption is based on the

fact that completing a purchase requires going through multiple steps, such as providing

shipping addresses and payment information, which significantly reduces the likelihood of

the action being automated.

The second feature, labels, is used to identify bots. These labels are assigned

by a Web Application Firewall (WAF) service, which is capable of detecting and flagging

basic bot behaviors. The combination of these two features — purchase activity and bot

identification — enables us to initially classify users and bots, providing a foundation for

identifying patterns in the data.
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Algorithm 1 Data Extraction and Sampling Process

1: Initialize Variables
2: stores list ← [“AA1”, “AA2”, . . . , “SF3”]
3: users ← set()

4: bots ← set()

5: sampled events ← []

6: Step 1: Identify Users with Orders and Labels
7: for each e in navigation events table do
8: if store is in stores list and event date is within specified range then
9: e.has orders = False

10: e.has labels = False
11: if request type is “orderPlaced” then
12: u ← {“store”: e.store, “mac id”: e.mac id, “label”: “user”}
13: bots.put(u)

14: end if
15: if event.labels is not empty then
16: b ← {“store”: e.store “mac id”: e.mac id, “label”: “bot”}
17: bots.put(b)

18: end if
19: end if
20: end for
21: users bots ← users.union(bots)
22: Step 2: Sampling Based on Labels
23: if stratified == True then
24: sampled users ← users bots.sample(frac=0.0025, partitionBy=[store,

label])
25: else
26: sampled users ← users bots.sample(n=2500, partitionBy=[store, label])
27: end if
28: Step 3: Retrieve Full Session Data for Sampled Sessions
29: for each u in sampled users do
30: for each e navigation events table do
31: if e.mac id == u.mac id then
32: sampled events.append(e)
33: end if
34: end for
35: end for
36: Output: An events sample according the specified stratification method

Store-Level Distribution Sampling. To ensure a representative and manageable

dataset for analysis, we employed a stratified sampling method targeting 0.025% of

agents from each analyzed store and pre-defined class – bots and users. This approach

involved segmenting the population into strata based on shared attributes, specifically

account name and label. Random samples were then drawn from each stratum, main-

taining proportional representation of the overall population. This methodology ensures

a balanced perspective of user interactions across different classes while reducing data
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volume for more detailed exploration. Additionally, all events associated with the se-

lected agents during the observation period were extracted to facilitate a comprehensive

behavioral analysis over time.

Actor Behavior Sampling. Since we are analyzing multiple stores, selecting 0.025% of

shoppers may not provide a sufficient number of events for stores with lower engagement.

This limitation could negatively impact the analysis, as the reduced volume of data may

not be enough to capture significant patterns or trends in user and bot behavior. To

address this, the second approach selects a fixed number of 2,500 actors per store and

class, ensuring an adequate volume of events for the subsequent analysis. This number was

determined by analyzing the total number of events, ensuring that each store contributes

a sufficiently representative volume of interactions for the subsequent analysis.

4.2 Dataset

The dataset encompasses navigation events recorded from August 2023 to April

2024 via a JavaScript application that tracks shopper interactions on the platform stores.

The 0.025% sampling rate mentioned earlier corresponds to a total of 89,408 distinct

agents, 159,844 sessions and, 587,641 events, which are considered sufficient for our anal-

yses.

The analyzed stores are categorized into five distinct segments: pharmacies, fash-

ion, beauty, groceries, and collectible items. This segmentation is crucial for identifying

potential differences in user behavior between legitimate users and bots based on the type

of product they are interested in. Table 4.1 describes the samples size of each store.

4.2.1 Attributes

Collected data consists of records that describes a shopper event, enabling a com-

prehensive tracking of their interactions over specific sessions or even larger periods. Ta-

ble 4.2 outlines the key attributes utilized in this study.

To identify these users, we use the Mac ID attribute, which is a long-term cookie

present in the navigation events and retained in the shopper browsers for up to one year

or until be cleared. Since the majority of users do not log into the stores while navigating,
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Table 4.1: Store samples size

Segment Store Total users Total sessions Total events

Sports & Fitness
SF1 18,382 1,795 3,210
SF2 56,865 3,631 8,107
SF3 56,855 4,099 9,347

Apparel & Accessories
AA1 1,006 414 460
AA2 14,906 1,722 2,860
AA3 97,487 13,665 26,279

Department Stores
DS1 137,277 26,204 44,303
DS2 23,554 1,926 3,466
DS3 48,171 9,054 17,141

Beauty & Health
BH1 80,725 15,651 27,045
BH2 47,813 9,490 15,462
BH3 4,600 1,757 2,164

the Mac ID serves as an efficient proxy for this purpose. Additionally, it’s important to

note that a single user may have multiple Mac IDs, as they may navigate using different

browsers and devices.

Table 4.2: Attributes summary

Attribute Description

account name Unique alias used to identify the platform different stores

session id UUID stored as cookie in the shopper browser that is valid for 30
minutes and can be renewed with new interactions

mac id Long-life identifier stored in the browser cookies of each shopper that
is valid for one year and is renewed as new events are sent. However,
it expires if the user clears their cookies

clientdate Timestamp from the moment the event is stored.

request type Page type that is being accessed by the shopper.

user agent User-Agent string extracted in the server-side from the request.

url URL of the accessed page.

ref URL of the page that referred the shopper to this page.

ip Shopper IP address

labels Web Application Firewall (WAF) generated label

The Session ID attribute serves as a critical identifier for distinguishing distinct

user activities within a reduced time window. By associating events with their respective

session identifiers, it becomes possible to delineate user interactions occurring within a

specific timeframe. The initial step of this study involves analyzing the behaviors for a
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variety of agents and sessions, identified by mac id and session id attribute, aiming to

establish the optimal granularity for subsequent analyses.

The requestType attribute, found in the events data, indicates the type of page

accessed by the user and is categorized into productV iew, homeV iew, categoryView, cart,

payment, login, profile, orderPlaced, and others. Further details about each of these page

types are described on Table 4.3.

Table 4.3: Request type details

Request type Description

productView Event sent when the user load or refr‘esh a product details page

homeView Event sent when the user load or refresh the store home page

categoryView Event sent when the user load or refresh a category page

cart Event sent when the user load or refresh the cart page

payment Event sent when the user load or refresh the payment page

login Event sent when the user load or refresh the login page

profile Event sent when the user load or refresh its profile page

orderPlaced Event sent when the user finishes an order and then is redirected or
reload the order placed page

others Refers to all the events that could not be mapped to the previous val-
ues. This category may include events that are similar to others, but
due to specific store configurations, the script was unable to identify
the corresponding page.

Other fields such as the url, user agent, and the clientdate are present in the data,

providing valuable insights for distinguishing between legitimate and abnormal behaviors.

Additionally, the ref attribute indicates the preceding url for the current page, enabling

tracking of the shopper’s path while navigating on the platform stores.

4.2.2 Labels

One issue commonly faced in anomaly detection applications is the lack or limited

availability of labeled data. These anomalies, by nature, occur as rare cases in the dataset,

making them difficult to anticipate or capture in large numbers. In addition, manual

labeling is often impractical, as it requires expert judgment and can be resource-intensive,

especially when the anomalous patterns are complex or domain-specific.
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In this study, we address this challenge by assuming that purchase events reliably

indicate legitimate user behavior. Using a basic Web Application Firewall (WAF) mecha-

nism, we labeled bot activity, while orderPlaced events (see Table 4.3) served as proxies

for legitimate user actions. Although straightforward, this approach provides a practical

and reliable foundation for the exploratory data analysis phase.

At the time of conducting this study, the WAF served as the sole resource capable

of detecting highly suspicious activities. It analyzes the volume of requests alongside the

associated user agent, using these parameters to evaluate the behavior of incoming traffic.

Subsequently, the firewall system assigns a specific label to each activity based on the

applied rule, effectively categorizing it within the system.

Although the implemented firewall relies on basic rules to identify suspicious activ-

ities, it plays a crucial role in guiding the initial analysis and providing valuable insights,

despite the fact that only the most obvious bot activities are detected. Furthermore,

establishing a baseline for the expected performance of the proposed solution is essential.

The labeling process is discussed in more detail in Section 4.3.2.

4.3 Data Pre-processing

The attributes described previously in Section 4.2.1 went through a pre-processing

phase to refine the raw data. This process involved generating additional features, elimi-

nating noise, and removing irrelevant records. As a result, the data became more struc-

tured and consistent, allowing for more accurate and comprehensive analysis and enabling

us to extract meaningful insights.

4.3.1 Validating Mac and Session IDs

The attributes mac id and session id play a crucial role in distinguishing shop-

per interactions within the e-commerce environment. Both attributes are Universally

Unique Identifiers (UUIDs), generated by a JavaScript plugin when an actor accesses an

e-commerce page.

The session id is used to track user activity within a specific session. It remains

valid for 30 minutes of inactivity, after which it expires. This short lifespan helps us track

a user’s session while they are actively engaging with the site, enabling real-time tracking



4.3. Data Pre-processing 37

of interactions such as product view, add to cart, and checkout events. In contrast, the

mac id serves as a long-term identifier, stored as a cookie in the user’s browser. It lasts for

one year unless the user decides to clear their browser cookies before that. This extended

duration allows for continuity in tracking user behavior across multiple sessions, facilitat-

ing a deeper understanding of long-term engagement patterns and customer preferences.

Data consistency and reliability are crucial for any data-related task. To ensure

this, we implemented a validation method using the UUID Python Library 1. Universally

Unique Identifiers (UUIDs) are standardized 128-bit identifiers designed to ensure unique-

ness across systems and contexts. In our approach, the validation method attempts to

create a UUID object from the string value of the attribute – mac id and session id,

specifically. If the string can be successfully converted into a valid UUID, it is consid-

ered correct; otherwise, an exception is raised, indicating that the string does not conform

to the UUID format, thereby marking it as invalid. This ensures the integrity of attributes

that are expected to follow the UUID standard.

This method classifies both mac id and session id fields as either valid or invalid,

resulting in the creation of two new attributes: is valid mac id and is valid session id.

These attributes enabled us to introduce an additional criterion for identifying malicious

agents as attackers often exploit payload fields to inject malicious code, such as in SQL

injection attacks. As result, we identified only 12 new suspicious agents, which suggests

that such code injection attacks may either be rare or too sophisticated to be detected

with basic validation.

4.3.2 Labeling

To label legitimate user activities, we identify them based on the occurrence of

past purchase activity. Specifically, individuals who complete a purchase transaction

are labeled as legitimate users. This approach assumes that purchasing activity serves

as a reliable indicator of genuine user engagement, enabling us to differentiate between

legitimate users and other types of interactions, such as bot activity or website indexing.

On the other hand, we assume that events flagged by the Web Application Firewall

(WAF) mechanisms are likely generated by bots (such sessions receive a “bot” label).

Details of the implementation are provided in Algorithm 2.

1UUID Python Library available at https://docs.python.org/3/library/uuid.html

https://docs.python.org/3/library/uuid.html
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Algorithm 2 Simple Labeler

1: user mac ids ← set()

2: potential bot mac ids ← set()

3: Step 1: Identify Users and Bots
4: for each e in navigation events table do
5: if request type == “orderPlaced” then
6: user mac ids.put(e.mac id)
7: else if “bot” in e.labels then
8: potential bot mac ids.put(e.mac id)
9: end if

10: end for
11: Step 2: Classify sessions according the mac id label
12: for each e in navigation events table do
13: if e.mac id is in user mac ids then
14: e.label ← “user”
15: else if e.mac id is in potential bot mac ids then
16: e.label ← “bot”
17: else
18: e.label ← “unknown”
19: end if
20: end for

While these rules may effectively identify some types of user and bot behaviors,

they are insufficient to cover the full spectrum of possible malicious activities. As a

result, there may be instances where certain behaviors are misclassified or overlooked.

Despite its limitations, this rudimentary labeling system serves as an initial step towards

distinguishing between genuine user interactions and bot activity within the system.

4.3.3 Feature augmentation

Although the existing attributes provide a solid foundation for analysis, additional

detail is required to identify the complex behaviors central to this research. To address

this, feature augmentation plays a crucial role in enhancing the representational power

of our dataset. This process involves generating new features derived from the existing

data, facilitating deeper insights into shopper behavioral patterns.



4.3. Data Pre-processing 39

Datetime Features

Measuring and tracking shopper activities over time is essential for achieving our

research goals. To facilitate this analysis, we utilized the clientdate attribute to extract

several new time-based features, including month, week, day, week day, and hour of day

(see Table 4.4). These additional attributes enhance our ability to analyze shopper inter-

actions across different temporal dimensions. Temporal granularity enables us to explore

whether any coordinated behaviors emerge among malicious agents, providing valuable

insights into the dynamics of both legitimate and suspicious activities on the platform.

Table 4.4: Datetime features

Attribute Format Example

clientdate yyyy-MM-ddTHH:mm:ss.SSSZ 2024-10-30T13:57:21.836+0000

month YYYY-MM 2024-10

week YYYY-MM-DD 2024-10-27 (first day of week)

week day EEEE Wednesday

day YYYY-MM-DD 2024-10-30

hour of day HH 13

In addition to the attributes described in Table 4.4, we extracted the

state spent time feature to determine the amount of time an actor spent on a specific

page. To capture this, we ordered all events generated within a session and calculated

the time difference in seconds between consecutive events. Using this ordered sequence,

we created the session start date and session end date attributes by identifying the

timestamps of the first and last events in each session. This also enabled us to cal-

culate session duration as the time difference between the session start date and

session end date, capturing the total duration of each session and providing a measure

of the total time spent per session.

However, it’s important to point that it isn’t possible to precisely determine the

time spent in the last state (and, consequently, the session duration). Since there is

no subsequent event to signal the end of the last state, we lack a precise timestamp to

measure the time spent on that page. To address this limitation, we assume that the

session concludes when the shopper accesses the final page, which is excluded from the

duration calculation. This approach provides consistency in session duration calculations

while acknowledging that final state time may not be fully captured.
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Query parameters features

Query parameters are key-value pairs added to the end of the URL in web requests,

usually after a question mark (?). They enable the client to send specific data to the server,

helping to define or modify the request. Each query parameter consists of a key and a

value, separated by an equal sign (=). This structure allows clients to include several key-

value pairs in a single request, separating them using an ampersand (&). For example, in

the URL https://fakestore.com/search?query=books&category=fantasy, the query

parameters are query=books and category=fantasy with query and category as the

keys and books and fantasy as their respective values. Using this extraction approach,

we identified 411 distinct query parameters across various stores. Additional details on

the parameter extraction process are provided in Algorithm 3.

Algorithm 3 Extracting query parameters

1: keys ← []
2: values ← []
3: for u in urls do
4: url path ← p.split(‘?’)[-1]

5: url params ← url path.split(‘&’)

6: for p in url params do
7: if ‘=’ not in p then
8: result.append(‘’)

9: else
10: k ← p.split(‘=’)[0]

11: v ← p.split(‘=’)[1]

12: keys.append(k)

13: values.append(v)

14: end if
15: end for
16: end forreturn keys, values

Although we have an established pattern for extracting query parameters from

URLs, merchants retain the flexibility to customize these parameters based on their spe-

cific needs, leading to inconsistencies that complicate accurate extraction across different

stores. To address this challenge, we selected the top 100 most frequent query parameters

from both url and ref attributes to create the Word Clouds (see Figure 4.1a) highlighting

their most commonly used parameters.

Next, we conducted a semantic analysis of the identified query parameters, exam-

ining their respective values to determine the type of information they referred to. For

non-obvious parameters with unclear meanings, we conducted a manual analysis by nav-

igating the stores’ websites to determine the specific page types they referred to. This
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(a) (b)

Figure 4.1: Query Parameters Word Cloud of url (a) and ref (b) attributes

process allowed us to identify parameters related to search operations—such as filtering,

ordering, and search terms—as well as those associated with ad campaign pages and

pagination details.

Request Type. Due the substantial volume of events labeled as “otherView” in the

raw data, we decided to use the identified query parameters to further categorize label

the request type associated to these events. Some query parameters, such as map, may

have multiple meanings depending on the context, making it necessary to examine the

associated values to accurately determine the request type. By adopting this strategy

we successfully categorized 52% of the “otherView” events.

Table 4.5: Criteria for Determining Request Type

Request Type Identified Query Parameters Associated Values

searchView
q, q, query, query, termo,
initialquery, initialmap, fuzzy,
filter, filters, filtro, busca, terms

-

map filter, filtro, terms

o order, pricerange

categoryView map c, category, categoria

storePage returnurl, productlinknotfound -

productView idsku -

Table 4.5 summarizes the query parameters used to identify the type of page being

accessed. Each request type is associated with a distinct set of query parameters and,

in certain cases, it is necessary to analyze the associated parameter values to accurately

assign the appropriate label, as some parameters may serve multiple purposes depending

on their context.

Figure 4.2 illustrates the predominance of request types as percentages, before and

after the labeling refinement process (see Table 4.6 for detailed numbers). The labeling
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introduced two new request types, categoryView and searchView, accounting for 6.36%

and 18.32% of the total events, respectively. This process significantly reduced the pro-

portion of otherView events by 24.69%, enhancing our ability to distinguish between

different types of events during the actors’ navigation.

Figure 4.2: Request Type Percentage before and after labeling

Table 4.6: Request Type Metrics before and after labeling

Request Type Metric Before After

otherView
number of events 1,620,396 841,788
percentage of events 51.37% 26.68%

productView
number of events 919,463 919,465
percentage of events 29.15% 29.15%

categoryView
number of events 0 200,667
percentage of events 0.00% 6.36%

searchView
number of events 0 577,939
percentage of events 0.00% 18.32%

Origin Page. The ref attribute (see Table 4.2) contains the URL of the page accessed

immediately before the current one, allowing us to trace session origins. By analyzing the

ref attribute from the first event in each session, we can identify the source of user traffic.

Since origin pages may refer to external websites, our methodology is not limited to query

parameters alone. Initially, we analyze the domain of the ref URL to determine whether

it belongs to a known source, such as Google, Facebook, TikTok, or the store itself. If the

domain matches the one in the url attribute, we treat it as an internal page and apply the

previously described methodology for inferring values to label the origin page. Unlike the

request type, where the otherView label is used when query parameters do not match

any predefined rule, the origin type assigns the label storePage in such cases.

The majority of the identified origin pages correspond to internal pages (see Figure

4.3), which explains the similarity between the query parameters extracted from both the

ref and url attributes, as illustrated in Figures 4.1a and 4.1b.
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Figure 4.3: Origin Page Percentage

Page Index. Similar to the origin type and request type attributes, the page index

is extracted from the query parameters present in the url. To achieve this, we first

manually identified a set of query parameters commonly associated with page indices

during shopper navigation. Algorithm 4 was then implemented to iterate through this

set, checking for matches in the param keys attribute and identifying the corresponding

index. Once a match is found, the page value is extracted from the param values.

Figure 4.4: Number of pagination events for each request type

Figure 4.4 displays the distribution of identified pagination events across all request

types, contrasted with events without pagination. It’s interesting to observe that both

searchView and categoryView events exhibit a higher number of pagination events com-

pared to non-pagination events, highlighting the significant use of paginated navigation

in these contexts.
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Algorithm 4 Retrieve Page Number from Query Parameters

1: Input:
2: param keys (array): parameter keys associated to the url/ref
3: param values (array): parameter values associated to the url/ref
4: Initialize Variables
5: page key candidates ← [‘page’, ‘pagenumber’, ‘paged’, ‘pg’, ‘p’]
6: page value ← NaN

7: Step 1: Check if any candidate key exists in the URL parameters.
8: for key in page key candidates do
9: if key in param keys then

10: page index ← IndexOf(param keys, key)
11: page value ← param values[page index]

12: break
13: end if
14: end for
15: if page value is digit then return page value

16: end if
17: return NaN
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Chapter 5

Exploratory Data Analysis

Despite the challenge posed by limited labeled samples, it is essential to build an initial

foundation for guiding subsequent analysis and the development of bot detection models.

In this section, we outline the general characteristics of the observed data, aiming to

uncover distinctive behavioral patterns that differentiate genuine users from automated

entities, as well as identify the features that most effectively distinguish the two groups.

Figure 5.1: Number of events

Figure 5.1 illustrates the total number of events collected for each store, highlight-

ing their diverse customer bases. The dataset used to generate this figure was collected

through the stratified sampling approach, ensuring that the distribution of events reflects

the original proportions observed in each store. This method preserves the representa-

tiveness of overall customer interactions, enabling more accurate and meaningful insights

into each store’s performance and user engagement.

The DS1 stands out as the store with the highest number of navigation events,

totaling 132,277, while AA1 has the fewest, with only 1,006. The selection of these

stores was intentional, aiming to include a range of stores with different levels of audience

engagement. This variety is crucial for understanding if malicious agents tend to target

larger, more popular stores. By examining both high-traffic stores, like DS1, and smaller

ones, like AA1, we aim to validate whether bots are more likely to concentrate their



5.1. Mac IDs lifespan 46

activities on stores with a broader customer base, potentially exploiting higher visibility

and more opportunities for unauthorized actions.

Figure 5.2: Predominance of session labels

Figure 5.2 illustrates the distribution of user and bot sessions across the analyzed

stores. Department Stores (DS1, DS2, DS3 ) exhibit a higher proportion of bot sessions

compared to user sessions, suggesting that the diversity of their product catalogs may

attract a broader range of automated activities, potentially aiming to exploit high-demand

or popular items. This trend is also observed in the AA3 and BH3 stores, indicating that

the phenomenon is not confined to a specific segment, although certain stores appear to

be more heavily targeted.

Notably, AA1, despite having the smallest audience, records the highest proportion

of bot sessions at 74.19%, followed by BH3 with 14.56% (Figure 5.2). The significant 60%

gap between these two stores suggests that smaller stores, potentially perceived as less

secure or more vulnerable, may attract a disproportionately large number of malicious bots

compared to larger, more prominent stores. This disparity underscores the importance

of considering store-specific characteristics when analyzing bot activity in e-commerce

environments.

5.1 Mac IDs lifespan

Given that MAC IDs are stored in an actor’s browser for up to one year or until be

manually cleared, analyzing their lifespan offers valuable insights into shopper behavior,

particularly in distinguishing between legitimate users and bots. Bots tend to clear their
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browser caches more frequently to avoid detection, leading to shorter MAC ID lifespans.

However, because the events collected for this study cover only a specific time window,

it’s impossible to precisely determine when a MAC ID expires or how long it was actively

retained in the browser.

This limitation emphasizes the need to measure the number of accesses for each

actor. A significant number of actors may only have a single session, resulting in a brief

and potentially misleading MAC ID lifespan. Such short durations may simply represent

a one-time shopper, rather than indicating bot behavior.

(a) (b)

Figure 5.3: Frequency of (a) events and (b) access.

Figures 5.3(a-b) above illustrate a significant difference in the number of events

generated by bots and users, with users showing a third quartile (Q3) of 23 events, com-

pared to just 1 event for bots (Figure 5.3a). However, the majority of actors, both users

and bots, only access the stores once (Figure 5.3b). This indicates that the “Lifespan”

calculated later provides only a partial view of the overall behavior, as it fails to capture

the behavior of recurrent shoppers, offering a limited representation of their long-term

engagement.

Despite the presented limitations, the initial hypothesis relies on the assumption

that bots’ MAC IDs will exhibit a shorter lifespan, even within an established time win-

dow, a behavior that reflects a common practice among malicious agents of frequently

clearing browser caches to avoid detection. This hypothesis is supported by the data

shown in Figure 5.4, which illustrates the MAC ID lifespan across bots, users, and un-

known actors. Figure 5.4 highlights that bot sessions tend to have significantly shorter

lifespans compared to regular users, further indicating the deliberate attempts by bots to

obscure their tracks by clearing cache and cookies more often.

As illustrated in the Figure 5.4, all the actor classes presents a heavy-tailed distribu-

tion, with the majority of them having Mac IDs with relatively short lifespans. However,
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Figure 5.4: Mac IDs lifespan - general perspective

there is a significant difference between the user and bot distributions, where the bots

presents a 95th percentile (P95) of 1 minute, whereas users have a P95 of 346,138 minutes

(around 240 days) for the users. The unknown actors distribution seems to be a mix of

the other two and has a P95 of 56,091 minutes (around 39 days).

Figure 5.5: Mac IDs lifespan - individual perspective

The lifespan of Mac IDs was analyzed both in a generalized manner and individu-

ally for each store (Figure 5.5) to assess potential differences between stores or segments

and evaluate the feasibility of a generalized perspective, which can help determine whether

it is necessary to employ models tailored to specific segments or even individual stores

based on variations in lifespan and other relevant attributes. Analyzing the stores distri-

bution, it’s reasonable to say that all of them present the same distribution pattern for

all the actor classes.
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5.2 Timeline behavior

An interesting behavior is illustrated in the Figure 5.6a, where seasonality in access

patterns can be observed. For users, this seasonality is more consistent, while for bots,

there are some more noticeable peaks of activity. This suggests that while users follow a

relatively steady pattern of engagement, bots may be programmed to exploit certain time

periods or events.

(a) Event Volume Trends Over Time (b) Event Volume Growth Over Time

Figure 5.6: Events over time

Figure 5.6b presents the Empirical Cumulative Distribution Function (ECDF) for

the number of events generated by both users and bots during the analyzed period.

Although both classes share some overlapping spike periods, resulting in the curves being

relatively close to each other, the bot activity curve remains more unstable, with greater

fluctuations in comparison to the user curve.

To determine whether the apparent coordinated behavior of bots is a general trend

or more typical in certain stores, we illustrate the individual behavior for each analyzed

store in Figures 5.7 and 5.8. These visualizations allow for a comparison of the bot activity

patterns across stores, highlighting any consistent trends or store-specific variations.

Figure 5.7 illustrates the events timeline for each store separately, revealing two

distinct behaviors. Although the previously identified pattern has been observed in the

majority of the accounts, it is not the most prevalent behavior across all stores. For

the stores BH1, BH2, BH3, DS2, and DS3, bot activity appears to be more stable and

consistent over time. In contrast, the remaining stores exhibit behavior more aligned

to the general trend, with noticeable fluctuations and spikes in bot activity at specific

intervals.

The Empirical Cumulative Distribution Functions for each store are illustrated in

Figure 5.8 offer an alternative perspective on the actors’ behavior over time. It is evident

that for some stores, the bots’ ECDFs display noticeable “steps” that correspond to the
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Figure 5.7: Number of events generated by each store over the time

Figure 5.8: Cumulative number of events generated by each store over the time

peaks previously observed in Figure 5.7. This suggests a pattern of coordinated or periodic

bot activity aligned with the spikes in event timelines.

5.3 Sequences Analysis

The sequences refer to the chronologically ordered pages accessed within a session,

where each page corresponds to a specific request type (see Table 4.2). Subsequent
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analysis aims to determine whether there are noticeable differences in the navigation

patterns of bots and users, potentially revealing distinct behavioral trends between the

two groups.

5.3.1 Pagination

During navigation, an user may need to paginate through a Product Listing Page

(PLP) to locate the desired product(s). These PLPs typically consist of search results or

category pages, allowing shoppers to refine their search by applying filters and selecting

an ordering criterion. The raw data doesn’t include the page index, making it necessary

to extract it during the pre-processing phase described in Section 4.3.

Page index extraction primarily involves manually identifying the query parame-

ters that indicate the pagination index for each store. The identified keys were “page”,

“pagenumber”, “paged”, “pg”, “p”. However, for stores AA1, BH1 and BH3, we were

unable to identify a specific query parameter associated with the page index.

We incorporated pagination events into the request type as “nextPageView”

events and introduced a new attribute, page index, into the dataset to indicate which

page is being accessed. This addition enables us to track page navigation behavior more

precisely, capturing instances where users or bots progress across multiple pages within a

session.

Figure 5.9: Number of pages accessed in each session

Figure 5.9 illustrates the distribution of pagination activity, where the page index

is normalized by the 90th percentile for each store. This normalization adjusts for vari-
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ations in catalog sizes across stores, allowing for a consistent comparison of pagination

behavior between users and bots, regardless of differences in product catalog lengths.

Two interesting behaviors can be observed in Figure 5.9. First, the second quartile

(Q2, or median) normalized value for legitimate users is 0.0525, while for bots, it is

0.0103. Additionally, actors who navigate deeply are predominantly identified as bots.

This suggests that both superficial and deeper navigation is more characteristic of bot

behavior compared to legitimate users.

Figure 5.10: Number of pages accessed in each session by each account

We also analyzed the pagination distribution separately for each store, revealing

both high and low levels of bot activity across pages. In stores such as SF2, AA3, DS2,

and DS3, bots display a tendency to navigate deeply. In contrast, in the remaining

stores, we observe the opposite trend, where bots paginate less frequently than legitimate

users. This variation in pagination behavior suggests different browsing patterns across

stores and underscores the importance of tailoring detection strategies to account for these

differences.

5.3.2 Page types

Sequence states are composed of request type events. However, the raw events, as

outlined in Table 4.3, lack sufficient granularity to capture the nuances of agent behavior,

with many events labeled simply as “otherView”. Applying the method outlined in the

Section 4.3.3, we successfully reclassified 23% of the “otherView” events, allowing for a

clearer distinction of behaviors within the dataset.

Among the available attributes is the ref attribute, which specifies the page that a

user accessed immediately before the current page. This attribute is available for the first
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session event, enabling us to trace the origin of each access. However, the origin pages

themselves are not labeled as the events pages. To overcome this limitation, we applied

the method described in Section 4.3 to create the origin page attribute.

Figure 5.11: Sessions Origin Page Breakdown

Figure 5.11 displays the percentage of sessions initiated from each of the origin

pages and provide an overview of how different pages serve as the starting point for the

actor sessions. The majority of sessions (35.10%) originate from Google, while a significant

portion (30.44%) has no identified origin page. Sessions without an identified origin may

occur due to failures in the data collection process, or they could refer to situations where

the actor directly enters the store URL into the browser, bypassing any referral source.

The origin “storePage” ranks third, with 9.87% of sessions beginning directly

within the store. This may occur if the actor remains inactive for more than 30 min-

utes, prompting the plugin to generate a new session id for the session.

Figure 5.12: Sessions Origin Page Breakdown by Class

Figure 5.12 illustrates the percentage of bots and users who initiated their sessions

across the different origin pages. The results reveal that the most frequently used origins

exhibit a predominance of one class over the other. Google, for instance, is a primary
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entry point for sessions initiated by legitimate users, indicating a strong association with

authentic traffic. In contrast, sessions without an origin page show a predominance of bot

activity, suggesting that this absence of an origin page may be an indicator of bot-driven

interactions. More details are presented in Table 5.1.

Table 5.1: Sessions Origin Page Breakdown by Class

Previous Page Bot (%) User (%)

noPreviousPage 61.46% 25.73%
google 0.32% 38.08%
facebook 27.56% 2.97%
storePage 0.83% 14.18%
searchView 4.81% 3.12%
otherView 0.10% 6.16%
tiktok 4.64% 0.00%
adView 0.26% 4.05%
instagram 0.01% 2.69%
emailProvider 0.00% 1.23%
productView 0.01% 0.81%
youtube 0.77% 0.77%
categoryView 0.20% 0.20%

The origins “storePage”, “adView”, “instagram”, “emailProvider” and “youtube”

also show a higher prevalence of legitimate user sessions, while “facebook” and “tiktok”

appear to be common origins for bot traffic, suggesting these sources are frequently ex-

ploited by automated agents. It’s interesting to observe that the predominant class varies

among social networks, with certain platforms showing a higher prevalence of legitimate

users while others are more commonly associated with bot traffic.

The predominance of legitimate users across different origins offers valuable insights

that can serve as an important feature in training anomaly detection models. By analyzing

the origin of a session, models can leverage the correlation between entry points and

legitimate engagement, helping to accurately identify potential bot traffic.

This chapter demonstrates that bot and user behaviors follow distinct patterns,

allowing for effective differentiation. Through extensive analysis, we identified key navi-

gation characteristics that distinguish legitimate users from automated entities, enabling

us to determine the most relevant features for classification. These findings establish a

strong foundation for the next stages of our study, where we leverage these insights to

design and evaluate machine learning approaches for bot detection.
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Chapter 6

Model Design, Implementation and

Evaluation

In this chapter, we explore the design and implementation of the models developed for bot

detection within the e-commerce context. At the time of this study, the Web Application

Firewall (WAF) served as the only detection mechanism in place. Consequently, we

adopted it as a baseline for our experiments, focusing on developing a model capable of

replicating the WAF’s bot detection labels. This strategy validates the reliability of the

proposed approach in identifying less sophisticated malicious agents while establishing a

solid foundation for extending its capabilities to detect more advanced and evasive threats.

Our hypothesis is based on the assumption that bots and legitimate users exhibit

distinct navigation patterns, particularly in terms of the types of pages accessed and the

time spent on each. To capture this behavior accurately, we modeled agent actions using

the Continuous Time Markov Chain (CTMC) framework. This approach maintains a

transition rate matrix for every possible state transition, which serves as a reference to

compute the transition probabilities based on the pair of pages and the time spent on the

source page. This chapter aims to assess the CTMC’s capability in characterizing agent

behavior, particularly its effectiveness in distinguishing between legitimate users and bots

by analyzing their navigation sequences.

6.1 Features modeling

6.1.1 Continuous-Time Markov Chain Modeling

The attributes presented in previous approaches focused primarily on session-level

metrics and isolated session events, demonstrating their utility in establishing a baseline
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model for our study. However, our hypothesis posits that bots and legitimate users ex-

hibit fundamentally distinct navigation patterns. By effectively capturing these patterns,

we aim to enhance the model’s ability to differentiate between these two groups more

accurately.

Transition rate matrix

By modeling the sequence of session events as a Markov Chain (Section 3.2), we

analyzed the navigation patterns of users and bots by calculating the transition rates

between all possible states. To better understand the user and bot behavior, we created

heatmaps containing these rates for all possible transitions for three distinct groups: users,

bots, and unlabeled sessions. The heatmaps are structured such that each row represents

a source state, and each column corresponds to a target state, with the values indicating

the transition rates.

Figure 6.1: Transition Rates for legitimate sessions (in log scale)

Figure 6.1 visualizes the transition rates between web pages visited by legitimate

users. Each cell in the heatmap represents the rate of transition from one page (row) to

another page (column). The transition rate is calculated as the inverse of the average time

(in milliseconds) users spend on each page before navigating to the next one – regardless

the destination. These rates are displayed on a logarithmic scale to better visualize

the wide range of values. Notably, the heatmap reveals that nearly all state-to-state

transitions are possible within this group, reflecting the diversity of navigation behaviors

exhibited by legitimate users. A particularly notable pattern emerges from transitions

originating from the adView event: it serves as one of the most frequent sources for

transitions to other pages. Additionally, it is important to emphasize that, since purchase
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occurrences are the sole criterion for labeling sessions as legitimate, transitions involving

end-funnel steps (e.g., checkout and payment) tend to exhibit elevated rates.

Similarly, Figure 6.2 illustrates the transition rates for bot sessions, revealing a

stark contrast compared to the previous heatmap. This difference lies in the significantly

reduced number of possible transitions, as evidenced by numerous gaps in the transition

matrix. This sparsity highlights the more constrained and repetitive navigation patterns

characteristic of bot behavior.

Figure 6.2: Transition Rates for suspicious sessions (in log scale)

It’s interesting to observe that suspicious activities are concentrated on

productView events, followed by checkout-related events such as shipping and payment,

highlighting objectives such as scraping product catalogs, reserving items by adding them

to the cart, and potentially attempting profile invasions during the checkout process.

However, despite the elevated rate, it is essential to note that this does not imply a higher

likelihood of occurrence for the transition itself. Instead, it means that, given the source

state, the most frequent choice is the observed destination state.

Figure 6.3: Transition Rates for unlabeled sessions (in log scale)

Finally, Figure 6.3 displays the transition rates for unlabeled sessions—i.e., those

generated by agents without an assigned label. Since these sessions are a mix of both
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legitimate and malicious agents, the heatmap is expected to exhibit a combination of

patterns observed in the user and bot transition matrices.

Sequence Probabilities

Sequence probabilities are calculated by integrating both the structural and tem-

poral dynamics of agent behavior. The structural aspect is captured through a transition

rate matrix, which encodes the rates at which agents move between different states. These

rates, stored in logarithmic form, represent the intensity or speed of transitions, rather

than direct probabilities. The logarithmic scale is employed because, due to the large

number of possible transitions, the resulting likelihood values can be extremely small,

which can hinder the analysis and interpretation of the data.

To compute the actual transition probabilities, the log-transformed rates are ad-

justed using a Continuous Time Markov Chain (CTMC) model. This model encodes the

time spent in the current state and transition rates to other states, assuming a “memo-

ryless” property. Specifically, the likelihood of leaving a state does not change over time,

with longer durations in a state corresponding to a lower likelihood of transitioning. By

multiplying the transition probabilities for each step across the entire sequence, the overall

sequence probability is computed, which captures both the structural transition dynamics

and the temporal patterns of agent behavior.

In our study, this framework was employed to compute sequence probabilities for

both user- and bot-exclusive sequences. As outlined in Equation 3.2, the likelihood of a

given sequence is determined as the product of the transition rates between consecutive

states and the probabilities of remaining in a state for a specific duration. Given the

substantial number of distinct sequences, the probabilities were log-transformed to ensure

numerical stability and streamline the analysis. This transformation also accounted for

the influence of sequence length on probability, mitigating the bias that could otherwise

favor longer sequences.

With the achieved results, we could investigate the probability distributions for

both groups in a scenario where the transition matrix is modeled based on user behavior,

allowing us to examine how each group aligns with or diverges from typical user behavioral

patterns.

Figure 6.4 displays the log-normalized probability distribution for both bot and

user sequences, revealing an intriguing pattern. The likelihood of observing a bot se-

quence, given the user transition matrix, is concentrated on the right side of the chart,

whereas the user probabilities are more evenly distributed across the range. This be-
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Figure 6.4: Distribution for Sequences Normalized Probability

havior can be attributed to overlapping transitions between bot and user sequences. It

means bots may exploit common transitions that are frequently observed in user behavior,

resulting in a higher concentration of probability in specific regions of the distribution.

This overlap indicates that, while the sequences themselves are expected to differ—

due to the unique goals or strategies of bots—the transitions within the sequences are not

entirely different from those of legitimate users. Bots may follow the same common

transition paths as users, but they probably tend to do so in a more deterministic way,

resulting in fewer variations across their sequences compared to the broader range of user

behaviors.

Sequence probabilities were then added to our dataset as a new feature, repre-

senting the likelihood of the observed sequence of events occurring within a session. In

Chapter 7, we discuss the impact of this new feature on model’s performance.

State transitions

For a better understanding of the behavior presented previously, we computed

the top 20 (most frequent) transitions present in bot and user-exclusive sequences and

analyzed the intersection between these transitions (see Figure 6.5).

The top 20 transitions in both bot and user-exclusive sequences include 9 shared

transitions, accounting for 45% of the total, highlighting that nearly half of the most

frequent transition patterns are common across both groups. This overlap suggests that

bots are not entirely different in terms of the structural dynamics of their behavior.

Rather, they tend to mimic certain user transition patterns, which contributes to the

concentration of bot sequence probabilities in specific regions of the distribution.

Despite the observed similarity, an deeper analysis reveals that productView →



6.1. Features modeling 60

Figure 6.5: Shared Transitions Ranking Between Bot and Users

productView and otherView → otherView are the most frequent in both user and bot

groups. The predominance of the productView transition is expected, as viewing products

is a natural behavior in both legitimate shopping activities and bot-driven navigation.

This suggests that relying solely on transition states may not be sufficient to distinguish

between bots and users, as both groups share a significant overlap in their structural

navigation patterns.

On the other hand, the otherView → otherView transition also appears promi-

nently – especially for legitimate users – but offers limited distinguishing power. The

vague nature of the “other” state likely contributes to its inability to differentiate be-

tween user and bot behaviors, underscoring the need to refine and improve the current

page labeling process. Ambiguous or poorly defined states may dilute the effectiveness of

behavioral analysis, making it harder to extract actionable insights from the navigation

sequences.

To further investigate these transitions, we analyzed the distribution of time until

transition for both productView → productView and otherView → otherView transi-

tions. Figures 6.6a and 6.6b illustrate the probability distributions of time spent on state

until these transitions occur for both bots and users.

The results reveal a significant overlap in short time-spent durations, which is

consistent across both groups. This overlap highlights a challenge in detecting bots solely

based on these transitions, as the structural and temporal patterns for shorter durations

are nearly indistinguishable between bots and legitimate users. Such shared behavior

could reflect common, fast browsing actions that occur naturally in both automated and

human navigation.

However, the distributions also reveal distinctive patterns for longer transition
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times. A notable number of transitions with extended time durations are more heavily

associated with user activities, suggesting that legitimate actors occasionally exhibit ir-

regular or prolonged pauses in navigation. These longer durations may result from nature

of shopping online, where the shopper analyses the product details.

(a) (b)

Figure 6.6: Transition Time Distributions for productView → productView (a) and
otherView → otherView (b)

These findings help explain the high probability observed for bot sequences when

user behavior is used as a reference. The overlap in shorter transition times suggests that

bots mimic legitimate user behavior to some extent, particularly in common and quick

transitions such as productView → productView.

At the same time, the distinctive presence of longer-duration transitions among

bots introduces variability that contributes to the elevated probabilities. The user-based

transition matrix, designed to model legitimate behavior, may not penalize these irregular

patterns strongly enough, further inflating the likelihood of bot sequences. Figures 6.7a

and 6.7b illustrate the frequency of exclusive transitions within user and bot sessions.

Checkout events were excluded since purchase occurrences serve to label legitimate agents.

The results reveal that bots tend to focus their activities on the first six transitions,

whereas regular user behavior is more evenly distributed.

To better understand the differences in transitions between bots and users, we

analyzed the relative frequency distributions of the most common transitions for both

groups. Figures 6.8 and 6.9 illustrate these distributions, providing valuable insights.

In Figure 6.8, the frequency distributions for the most common user transitions

encompass or overlap with those of bots. Conversely, for bots, the frequency distributions

often fall outside the user distribution range, as shown in Figure 6.9. The productView

→ productView transition is the only exception, as it occurs frequently in both groups,

making it a shared behavior.
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(a) (b)

Figure 6.7: Exclusive transitions for users (a) and bots (b)

Figure 6.8: Relative Frequency of Users’ Most Common Transitions

Another significant finding is the variance within the distributions. For certain

transitions among users (productView → searchView, searchView → searchView, and

searchView → productView), variances are comparable, suggesting a consistent pattern.

In contrast, bot transitions exhibit highly concentrated distributions, with values tightly

clustered depending on the transition type, whereas user distributions maintain reasonable

variability.

Based on these analyses, we introduced the relative frequency attribute R(Tij), a

new feature that quantifies the relative frequency of the transition Tij from state si to

state sj, normalized by the sequence size. This relative frequency is computed for the

transitions presented in Figures 6.8 and 6.9. The purpose of this feature is to describe

the sequence in terms of the most frequent behaviors observed in both groups.

In the end, these observations highlight the limitations of relying solely on transi-

tion states and their durations to distinguish between bots and legitimate users. While

bots can mimic user behavior to some extent, particularly in common transitions, they

also exhibit temporal anomalies that set them apart.
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Figure 6.9: Relative Frequency of Bots’ Most Common Transitions

6.2 One-Class Support Vector Machine

In the context of bot detection, the One-Class Support Vector Machine (OC-SVM)

is a powerful tool for addressing the imbalance between legitimate user and bot activities.

Unlike traditional classifiers, which distinguish between multiple classes, the OC-SVM

focuses solely on modeling the characteristics of one class — legitimate user behavior —

while treating deviations from this norm as potential anomalies.

Compared to other one-class classifiers, OC-SVM provides a well-defined decision

boundary, making it more interpretable than deep learning-based approaches like Autoen-

coders, which require extensive hyperparameter tuning and large training datasets. Unlike

methods such as Isolation Forest, which assumes anomalies are sparse and well-separated,

OC-SVM effectively captures nuanced bot behaviors that closely resemble legitimate users.

Additionally, it leverages kernel functions to handle high-dimensional data, enabling it to

model subtle deviations in navigation patterns. This capability is particularly valuable

in bot detection, where fraudulent behaviors may not always exhibit clear, easily sepa-

rable characteristics. By focusing on deviations from learned user behavior rather than

requiring explicit knowledge of bot activities, OC-SVM remains effective even in scenarios

where little prior information about bot strategies is available.

For the context presented in this study, we used the OC-SVM to identify anomalous

sequences in agents’ navigation. A sequence is formally defined as an ordered list of state

transitions within a single session, where each transition is represented by a pair (si, sj),

with si denoting the origin state and sj the destination state in the sequence. For each

pair, the transition time tij is calculated as the difference between the timestamps of the

two states. The sequence is constructed chronologically based on ti, encapsulating the

temporal and navigational behavior of an agent during a session.
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This section outlines the application of OC-SVM for bot detection, detailing its

configuration, the rationale for choosing this method, and the evaluation of its perfor-

mance. Although OC-SVM is an unsupervised approach, we validate its predictions by

checking whether the identified anomalies correspond to known bot activities, as labeled

by the Web Application Firewall (WAF), and whether the non-anomalous cases align with

legitimate user behavior. This dual validation process ensures the model’s reliability in

distinguishing bots from genuine users.

To evaluate the model’s effectiveness, we apply the metrics described in Section 6.3,

enabling a comprehensive assessment of its performance. By leveraging the unsupervised

nature of OC-SVM, our goal is to establish a baseline model capable of detecting anomalies

in user navigation behavior, specifically differentiating between bot and legitimate user

interactions. If the OC-SVM model proves successful in detecting these anomalies, it can

be trusted to identify unknown malicious agents. This would enable the extension of

its application to label unkown sessions or users, ensuring continuous and adaptive bot

detection as new threats evolve over time.

6.2.1 Model Training

During the model training phase, we systematically experimented different input

configurations, progressively enhancing them by adding new and more sophisticated fea-

tures. This iterative approach allowed us to explore the impact of increasingly complex

representations on model performance. Table 6.1 summarizes the features explored.

To enhance the understanding of the experiments conducted, the features have

been grouped into distinct scopes, with each scope reflecting a specific dimension of the

observed data. This categorization not only highlights the varied aspects of user behavior

and session characteristics but also facilitates a systematic exploration of how different

feature sets contribute to the model’s performance. The experiments, along with the

respective data configurations, are systematically presented in Table 7.1.

To prevent data leakage, we excluded end-funnel events from the totalizer fea-

tures, specifically those ranging from email to orderPlaced, retaining only events shared

between bots and users. The “Session Attributes” encapsulates general characteristics

of each session, providing an overarching view of its structure and activity. “Sequence

Probability”, derived from transition matrix rates, represents the likelihood of an agent’s

sequence of events occurring based on legitimate user behavior. Finally, the “Transition

Attributes” capture the relative frequency of the most common transitions for bots and

users within each sequence, offering insights into distinct navigational patterns. Based on



6.2. One-Class Support Vector Machine 65

Scope Attributes Description

Totalizers

totalAdEvents Count of ad-related events in a session.
totalCartEvents Count of cart-related events in a session.
totalCategoryEvents Count of category events in a session.
totalHomeEvents Count of home page events in a session.
totalProductEvents Count of product-related events in a ses-

sion.
totalSearchEvents Count of search-related events in a session.
totalShippingEvents Count of shipping events in a session.
totalOtherEvents Count of uncategorized events in a session.

Session Attrs

uniquePages Count of distinct pages visited in a session.
originPage Source page of the session.
sessionDuration Total duration of the session.
totalEvents Total count of events in a session.
avgTransitionTime Average time between events.

Sequence Prob. sequenceProbability Probability of a sequence occurring given
the modeled CTMC.

Transition Attrs

startToProduct Fraction of start → product in a session.
facebookToProduct Fraction of facebook → product in a ses-

sion
searchToSearch Fraction of search → search in a session
searchToProduct Fraction of search → product in a session
productToSearch Fraction of product → search in a session
productToProduct Fraction of product → product in a ses-

sion
productToEnd Fraction of product → end in a session
shippingToShipping Fraction of shipping → shipping in a ses-

sion

Table 6.1: Summary of training input features

experiments summarized in 7.1, we trained different instances of OC-SVM model varying

the input and documenting the results, described in Section 7.

For model training, the dataset of user events was partitioned into training (60%),

validation (20%), and testing (20%). Since the OC-SVM is trained exclusively on legit-

imate user data, bot events were excluded from the training phase and instead evenly

distributed between the validation and testing sets, with each receiving 50% of the bot

events. This approach ensures that the model is evaluated on unseen anomalies while

preserving a balanced distribution for performance assessment.

In this study, we deliberately chose not to implement outlier removal techniques

during data preprocessing. This decision was driven by the understanding that outliers

may represent anomalous or unexpected behaviors that are essential to the identification

of bots. Removing these data points could potentially obscure patterns indicative of mali-

cious activity, thereby reducing the effectiveness of the model in detecting such behaviors.

By retaining all data, including outliers, we ensured that the full spectrum of naviga-
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tional behaviors, both typical and atypical, was represented in the analysis, enabling a

more robust and comprehensive detection process.

Finally, during the training phase, we conducted hyperparameter tuning to opti-

mize the model’s performance by systematically varying the values of key parameters.

Table 6.2 outlines the parameters explored, their descriptions, and the range of values

tested.

Table 6.2: SVM-OC Hyperparameter tuning configurations.

Parameter Description Values
kernel Function that transforms input data into

a higher-dimensional space for better
separability.

rbf, poly, sigmoid

gamma Coefficient for rbf, poly, and sigmoid

kernels, controlling the influence of indi-
vidual data points.

0.001, 0.01, 0.1, 0.5, 1

nu Upper bound on the fraction of training
errors and lower bound on the fraction of
support vectors.

0.001, 0.01, 0.1

shrinking Boolean flag indicating whether to use
the shrinking heuristic to improve train-
ing efficiency.

True, False

6.3 Evaluation Metrics

Evaluating unsupervised learning models like OC-SVM poses a unique challenge

due to the absence of predefined labels for direct comparison. However, in scenarios

where labeled data is partially available, metrics such as Precision, Recall, and F1-Score

can be utilized to assess performance. In this study, these metrics are derived by applying

the trained model to a labeled subset of the data, comparing the predicted anomalies

with known bot instances, and verifying non-anomalous predictions against legitimate

user data. This methodology provides a quantitative assessment of the model’s capabil-

ity to effectively distinguish anomalous behaviors, even within an unsupervised learning

framework. Next, we summarize the metrics used to evaluate the proposed method.

Since the OC-SVM is designed to learn the normal behavior of legitimate users, it

constructs a boundary around this class in the feature space. Any instance that signifi-

cantly deviates from this learned representation is flagged as an anomaly. In this context,

bots are assigned as the positive class, while legitimate users are considered the nega-
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tive class. This choice aligns with the typical anomaly detection framework, where rare

or unexpected behaviors (e.g., fraudulent transactions, network intrusions) are treated as

positive instances requiring identification. By structuring the classification in this manner,

the evaluation metrics effectively capture the model’s ability to minimize false positives

(misclassifying legitimate users as bots) and maximize true positives (correctly identifying

bots), ensuring a robust assessment of detection performance.

True Positive (TP). Refer to the instances where the model correctly identifies posi-

tive cases, such as bots accurately labeled as bots. This metric is crucial for understanding

the model’s success in detecting intended targets and serves as a foundation for calculat-

ing other performance metrics like Recall and F1-score. High TP values indicate effective

detection of the targeted class.

False Positive (FP). Occur when the model incorrectly classifies false cases as positives

– in our context, it means label legitimate users as bots. This error type is particularly

critical in e-commerce contexts, as it can severely impact the user experience, depending

on the platform’s mitigation strategy, and undermine trust in the platform. Additionally,

is a key factor in the calculation of other metrics, such as Precision.

True Negative (TN). Represent the scenario where the model correctly identifies a

negative occurrence precisely—in other words, when legitimate users are precisely clas-

sified as legitimate. This metric reflects the model’s ability to avoid classifying benign

traffic as malicious, contributing to overall model reliability and specificity. High TN rates

indicate the model is successfully distinguishing non-bot activity.

False Negative (FN). Occur when the model fails to identify positive occurrences,

labeling them as negative. In our context, high FN rates indicates the model is failing to

identify bot activities, which can have significant consequences, such as allowing malicious

actors to bypass detection. Minimizing FNs is critical for ensuring robust Recall, as failing

to detect bots compromises the effectiveness of the detection system.

Precision. Measures the proportion of correctly identified positive instances out of all

instances classified as positive—i.e., the fraction of correctly identified bots among all

the bot instances. It indicates the model’s ability to avoid False Positive (FP), a critical

aspect in contexts such as e-commerce bot detection, where misclassifying legitimate users

as bots can harm the user experience. The Precision is formally defined in Equation 6.1.

Precision =
TP

TP + FP
(6.1)
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Recall. Also known as sensitivity, measures the proportion of actual positive instances

correctly identified by the model. Unlike Precision, which focuses on minimizing false posi-

tives, Recall emphasizes minimizing false negatives, ensuring the model correctly identifies

the maximum possible number of bots. This metric, defined formally in Equation 6.2, is

particularly valuable in scenarios where identifying all positive cases is critical.

Recall =
TP

TP + FN
(6.2)

F1-Score. Is a statistical measure used to evaluate the performance of a classification

model, particularly in scenarios with imbalanced datasets as it ensures neither precision

nor recall dominates the evaluation. It represents the harmonic mean of precision and

recall, combining these two metrics into a single value to balance the trade-off between

false positives and false negatives. Therefore, to better address the real-world implications

of our model, we prioritize an evaluation metric that allows adjusting the balance between

precision and recall according to the practical requirements of the application.

F1 = 2 · Precision · Recall
Precision + Recall

(6.3)

Fβ-Score. In e-commerce applications, false positives (i.e., classifying a user as a bot)

can be more harmful than false negatives if, for example, misclassified users are blocked

in the platform. Therefore, to better address the real-world implications of our model, we

also consider an evaluation metric that allows a custom balance between precision and

recall, chosen according to the practical requirements of the application. The Fβ-Score

(Equation 6.4) generalizes the F1-Score by introducing a positive real factor β, which

determines the relative importance of recall compared to precision, allowing the metric

to adapt to different contexts where either minimizing false positives or false negatives is

more critical. To minimize false positives, we set β = 0.5 in our experiments, prioritizing

precision over recall.

Fβ = (1 + β2) · Precision · Recall
(β2 × Precision) + Recall

(6.4)

Specificity Also known as the true negative rate, measures a model’s ability to correctly

identify negative instances. In the context of e-commerce bot detection, this means accu-

rately classifying legitimate users as non-bots. High specificity indicates that the model

effectively avoids false positives, which is crucial for minimizing disruption to genuine

users.

Specificity =
TN

TN + FP
(6.5)
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Chapter 7

Experimental Results and Analysis

In this chapter we present the experimental results and analysis conducted to evaluate the

proposed method for detecting anomalous behaviors in e-commerce based on navigation

data. By applying the OC-SVM model to labeled and unlabeled data subsets, we aim to

assess its effectiveness in distinguishing legitimate user sessions from bot activity.

The experiments systematically explore different input configurations, combining

distinct feature scopes with diverse hyperparameter settings to ensure a thorough evalu-

ation of the model’s performance. Furthermore, we examine how feature engineering and

data representation influence detection capabilities, shedding light on behavioral patterns

within both user and bot groups. The adopted criteria for determining the most relevant

results is the Fβ-Score, chosen for its ability to balance precision and recall based on

their relative importance in this context. Table 7.1 provides a summary of the data scope

utilized across the conducted experiments.

Experiment Attributes Scope

Experiment 1 Totalizers
Experiment 2 Totalizers and Session Attributes
Experiment 3 Transition Attributes
Experiment 4 Transition and Session Attributes and Sequence probability

Table 7.1: Experiments Summary

7.1 Experiment Results

Experiment 1. In the first experiment, we focused exclusively on the totalizer at-

tributes, a straightforward set of features derived from the navigation data. These at-

tributes encapsulate all navigation events, excluding those associated with end-funnel

steps such as login and payment. This exclusion was necessary to prevent potential data

leakage, given that our criteria for defining legitimate behavior relies on purchase-related
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events. Table 7.2 summarizes the results and the hyperparameter configurations selected

for the best-performing models in this experiment.

Parameters TN TP Precision Accuracy Fβ-Score

kernel: linear

nu: 0.001

shrinking: True

94.97% 91.27% 99.2% 91.74% 98.49%

kernel: linear

nu: 0.1

shrinking: True

91.16% 94.38% 98.65% 93.97% 98.28%

gamma: scale

kernel: poly

degree: 3

nu: 0.1

shrinking: True

90.85% 92.38% 98.58% 92.19% 98.04%

gamma: scale

kernel: poly

degree: 2

nu: 0.1

shrinking: True

90.55% 92.45% 98.53% 92.21% 98.00%

gamma: scale

kernel: poly

degree: 2

nu: 0.01

shrinking: True

89.33% 92.4% 98.35% 92.01% 97.83%

Table 7.2: Experiment 1 Results: Summary of model performance and chosen hyperpa-
rameters (β = 0.5).

By analyzing the results using the Fβ-Score as the performance criterion, with

β = 0.5, the dominance of linear kernels, followed by low-degree (2 and 3) polynomial

kernels, indicates that totalizer features exhibit a strong degree of linear separability.

The use of polynomial kernels, compared to the top-performing linear kernel, re-

sulted in a 4.1% decrease in the True Negative Rate, accompanied by a slight 1% increase

in the True Positive Rate. This trade-off caused a 0.6% reduction in Precision, under-

scoring the inherent challenge of optimizing bot detection accuracy while minimizing the

misclassification of legitimate users.

When comparing linear kernels, an increase in the regularization parameter from

0.001 to 0.1 had a notable impact on model performance. Both True Negative and True

Positive rates were affected, with reductions and increases of approximately 3%, respec-

tively. This outcome aligns with expectations, as a higher regularization parameter estab-

lishes a softer decision boundary, thereby reducing False Positive occurrences and favoring
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a balanced classification. Regarding the polynomial kernels, we observe that lower de-

grees, combined with a less strict decision boundary (nu = 0.1), yield improved results.

Experiment 2. In the second Experiment we added the Session Attributes (Table 6.1)

to the totalizers, which includes temporal information through sessionDuration and

avgTransitionTime and other contextual features such as originPage and totalEvents.

Parameters TN TP Precision Accuracy Fβ-Score

gamma: 0.01

kernel: poly

degree: 2

nu: 0.01

shrinking: True

99.09% 92.58% 99.86% 93.41% 99.22%

gamma: 0.001

kernel: poly

degree: 3

nu: 0.01

shrinking: True

99.09% 92.51% 99.86% 93.35% 99.21%

gamma: scale

kernel: poly

degree: 2

nu: 0.01

shrinking: True

99.09% 92.49% 99.86% 93.33% 99.21%

gamma: 0.001

kernel: poly

degree: 2

nu: 0.01

shrinking: True

98.93% 92.51% 99.83% 93.33% 99.18%

gamma: 0.1

kernel: poly

degree: 3

nu: 0.01

shrinking: True

98.93% 92.54% 99.83% 93.35% 99.18%

Table 7.3: Experiment 2 Results: Summary of model performance and chosen hyperpa-
rameters (β = 0.5).

The results presented in Table 7.3 highlight a significant shift in performance com-

pared to the findings discussed in Experiment 1. Precision improved from 99.2% to 99.86%

for the top 1 result in both experiments. This increase can be attributed to a marked

improvement in the True Negative Rate—from 94.97% in Experiment 1 to 99.09% in the

second experiment.

The incorporation of new features enhanced performance with polynomial kernels,

suggesting that the added complexity of the data necessitated a more flexible decision
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boundary, as a linear boundary proved inadequate for effective separation. While the

precision score remained stable across the top three results, minor reductions were ob-

served in the True Positive Rate. Additionally, both Accuracy and the Fβ-score saw slight

decreases, with percentage reduction of -0.08% and -0.01%, respectively.

Experiment 3. Similar to the approach used in Experiment 1, this experiment focused

exclusively on the Transition Attributes, which capture the relative frequency of the most

relevant transitions occurring in each session. By isolating these features, we aimed to

assess their individual contribution to the model’s performance, free from the influence of

other attribute subsets.

Parameters TN TP Precision Accuracy Fβ-Score

gamma: scale

kernel: rbf

nu: 0.01

shrinking: True

97.41% 91.49% 99.59% 92.25% 98.87%

gamma: scale

kernel: rbf

nu: 0.001

shrinking: True

96.95% 91.76% 99.52% 92.42% 98.83%

gamma: 1

kernel: rbf

nu: 0.1

shrinking: True

89.48% 93.31% 98.38% 92.83% 97.94%

gamma: 0.001

kernel: rbf

nu: 0.1

shrinking: True

89.18% 93.03% 98.33% 92.54% 97.87%

gamma: scale

kernel: rbf

nu: 0.1

shrinking: True

89.02% 92.87% 98.31% 92.38% 97.84%

Table 7.4: Experiment 3 Results: Summary of model performance and chosen hyperpa-
rameters (β = 0.5).

By using only Transition Attributes yielded a notable improvement of approxi-

mately 3% in the True Negative Rate, accompanied by a slight increase in precision of ap-

proximately 0.4%. Contrary to previous experiments where linear and polynomial kernels

demonstrated superior performance, the top five performing models in this experiment

exclusively employed the RBF kernel. This result strongly suggests that the RBF ker-

nel is particularly effective at capturing the inherent clustering of users and bots within

the feature space defined by the Transition Attributes. This implies that the patterns
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captured by these attributes are not linearly separable and exhibit complex, non-linear

relationships that the RBF kernel is better equipped to model.

Experiment 4. In this experiment, we extended the attribute set used in Experiment

3 by incorporating the “Session Attributes,” which encapsulate general characteristics of

each session.

Parameters TN TP Accuracy F1-Score Fβ-Score

gamma: 0.001

kernel: poly

degree: 3

nu: 0.01

shrinking: True

99.09% 92.51% 99.86% 93.35% 99.21%

gamma: 0.01

kernel: poly

degree: 2

nu: 0.01

shrinking: True

99.09% 92.49% 99.86% 93.33% 99.21%

kernel: linear

nu: 0.01

shrinking: True

99.09% 92.38% 99.86% 93.23% 99.20%

gamma: 0.001

kernel: poly

degree: 4

nu: 0.01

shrinking: True

98.93% 92.56% 99.83% 93.37% 99.19%

gamma: 0.001

kernel: poly

degree: 2

nu: 0.01

shrinking: True

98.93% 92.51% 99.83% 93.33% 99.18%

Table 7.5: Experiment 4 Results: Summary of model performance and chosen hyperpa-
rameters (β = 0.5).

The results are intriguing, as they closely align with those obtained in Experiment

2, exhibiting only marginal differences in metrics such as TN, TP, and Fβ-Score. Given

that this experiment leverages the relative frequencies of the most common transitions

identified in State transitions while Experiment 1 computes the frequency of distinct

events, it is possible that these different subsets of features act as proxies for each other,

capturing overlapping behavioral patterns.
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7.2 Results Analysis

In this section, we utilize the models with best result in Experiment 4, as it pre-

sented the better performance when compared to the others. Subsequently, we re-run

some analyses from Chapter 5 to examine whether any notable differences emerge be-

tween instances predicted as anomalous and those classified as non-anomalous. This

analysis serves as a measure of our solution’s effectiveness in detecting bots within the

e-commerce context, providing valuable insights into its practical applicability.

gamma kernel degree nu shrinking
0.001 poly 3 0.01 True

Table 7.6: Selected parameters

The One-Class SVM (OC-SVM) model was trained using the parameters detailed

in Table 7.6. Unlike the experimental phase, where only 60% of user events were used

for training, this final model was trained on the entire dataset of legitimate user events,

as the optimal parameters had already been determined. This decision allowed us to

maximize the number of training examples, improving the model’s ability to characterize

normal user behavior and, consequently, enhancing its anomaly detection capabilities. By

leveraging all available normal data, the model is expected to learn a more robust and

representative decision boundary, increasing its sensitivity to deviations indicative of bot

activity.

(a) (b)

Figure 7.1: Total of events per (a) agent and (b) session.

Our initial analysis focused on the frequency of events generated by each predicted

class, mirroring the approach employed in the exploratory data analysis (EDA) presented
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in Figure 5.3. A comparison of these results reveals a striking similarity in event frequency

patterns between the predicted classes (see Figure 7.1a) and those observed during the

EDA phase.

To complement this analysis, we examined the sequence size for each class—i.e.,

the number of events per session in each group. The results, displayed in Figure 7.1b,

highlight a clear distinction: users tend to interact more extensively with the stores

during their sessions, while bots exhibit significantly shorter sequences of events. This

observation reinforces the behavioral differences between the two groups, with legitimate

users demonstrating more engaged and prolonged browsing sessions compared to bots.

The similarity between the results observed during the EDA and the model pre-

dictions is particularly remarkable, given that event frequencies were not directly utilized

as features in the model. However, as illustrated in Figures 7.1a and 7.1b, actors who

interact more within their sessions naturally generate a higher number of events. Thus,

even though the model was trained and made predictions at the session level, the sequence

size—implicitly captured through totalizer attributes—appears to reflect this behavior.

This suggests that the model may have indirectly learned to associate sequence length

with session activity patterns, aligning its predictions with the event frequency trends

observed in the exploratory phase.

Figure 7.2: Lifespan for Predicted Actors

Next, we analyze the actors lifespan, defined as the interval between their first and

last interactions. As discussed in Chapter 5, legitimate users tend to exhibit a longer

lifespan compared to malicious actors. In our results, although the difference is more

subtle, a similar pattern is observed: users access the stores over a more extended period

than bots. This finding further supports the hypothesis that legitimate users engage in

more sustained activity, while bots tend to interact in a more transient manner.

This behavior can be also noticed when analyzing stores individually as illustrated

in Figure 7.3. For all analyzed stores we found the same behavior when analyzing it from

a general perspective.
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Figure 7.3: Lifespan for Predicted Actors - individual perspective

While the exploratory data analysis (Figure 5.9) revealed that certain bots tend to

navigate more deeply through paginated content, our model predictions did not replicate

this specific behavior. However, the predominant trend, where bots navigate less than

users, was successfully captured, as shown in Figure 7.4. Bot activity is primarily con-

centrated on the initial pages, with a median normalized value of 0.21 compared to 0.30

for users.

The higher normalized values observed in the model’s predictions compared to

those in the EDA can be attributed to differences in the datasets analyzed. The EDA

focused on users who completed purchases, likely reflecting a more deliberate navigation

pattern aimed at finalizing an order. In contrast, bots detected by the Web Application

Firewall (WAF) are restricted in scope due to the WAF’s inherent limitations.

Figure 7.4: Pagination for predicted actors

In the results shown in Figure 7.4, both users and bots exhibit normalized page

values exceeding 1. Since the normalization is based on the 90th percentile, the agents

on the right hand side of the plot represent the top 10% who navigate more deeply—i.e.,
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beyond 90% of other agents. This behavior aligns with the previously stated hypothesis:

the unlabeled sample encompasses a more diverse range of behaviors compared to the

examples used during the training phase.

Finally, when analyzing the Sequence Probabilities (as we did in Chapter 6), we

found the same behavior. Sequence sessions identified as anomalous present higher prob-

ability of occurring when modeling the expected behavior of legitimate sequences as illus-

trated in Figure 7.5. As mentioned previously, a possible explanation for that behavior is

that bots tend to frequently perform “highly likely transitions”.

Figure 7.5: Pagination for predicted actors

As detailed in Chapter 6, to address this limitation, we analyzed the most relevant

transitions for each class and incorporated them as attributes for each session. This

process involved calculating the relative frequency of these transitions within each session

sequence. This approach led to the results observed in Experiment 4, which closely

mirrored those obtained in Experiment 2.

The observed similarity in results between Experiment 2 and Experiment 4 is at-

tributed to the shared characteristic of their feature representations. In both experiments,

the training features—state frequencies in Experiment 2 and transition frequencies in Ex-

periment 4—focused solely on counts, thereby omitting information about the sequential

order of events.

Despite the limitations of frequency-based representation in capturing the full se-

quential structure of user sessions, the results obtained in Experiment 2 (leveraging to-

talizers and session attributes) and Experiment 4 (combining transitions and session at-

tributes) demonstrate the model’s ability to effectively identify key behavioral patterns

distinguishing legitimate users from bots. These findings suggest that the types of pages

frequently accessed by each group offer valuable discriminatory insights, even without

incorporating the sequential context.
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Chapter 8

Conclusions and Future Work

The increasing prevalence of automated and malicious bot activity necessitates a deep

understanding of their behavioral patterns. This study offers valuable insights into the

distinct characteristics of legitimate users and malicious bots in the e-commerce context.

Through an extensive analysis of navigation data, encompassing interaction patterns and

temporal aspects such as session duration and average transition times, we identified key

behavioral distinctions between these groups.

Our methodology, rooted in exploratory data analysis, enabled the design of novel,

informative features for machine learning models. This approach proved effective in uncov-

ering patterns that differentiate bots from users, providing a robust foundation for under-

standing agent behavior and identifying relevant features for subsequent model training.

By employing a transition matrix derived from user behavior and modeled as a

Continuous Time Markov Chain (CTMC), we computed the sequence probability for

each session. However, as shown in Figure 6.4, sequence probabilities did not significantly

enhance model performance. Unexpectedly, bot session probabilities were higher than

anticipated, despite prior assumptions that bot sequences would exhibit lower probabilities

when compared to the reference model of user behavior.

This unexpected result prompted a deeper investigation, shifting the focus from

entire session sequences to individual state transitions. The analysis uncovered intriguing

patterns, including exclusive transitions unique to both users and bots, as depicted in

Figures 6.7a and 6.7b. These findings informed the creation of “Transition Attributes”

(see Table 6.1) and a reevaluation of our approach.

Despite notable differences in exclusive transitions, common transitions posed a

significant challenge (Figure 6.5). For instance, the productView → productView tran-

sition emerged as the most frequent in both groups. Analyzing the time spent on this

transition revealed considerable overlap between users and bots, highlighting the limita-

tions of relying solely on transition states to distinguish between the two groups.

To address this challenge, we expanded our analysis beyond sequence probabilities

and transition attributes by introducing additional features such as the number of accessed

pages, session duration, and origin page—referred to as “Session Attributes.” During

the exploratory data analysis, these attributes revealed significant behavioral differences,
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enabling a more comprehensive framework for distinguishing users from bots.

In our experiments (see Chapter 6), combining Session Attributes with Totalizers

and Transition Attributes yielded the most effective results. These findings confirmed

our hypothesis that relying solely on transition and state-based aspects is insufficient for

producing meaningful distinctions. Consequently, the developed One-Class SVM model

emerged as a powerful tool for identifying anomalous behaviors in agent navigation, ef-

fectively detecting deviations from established patterns of legitimate user activity.

Revisiting the questions raised in Section 1.2, we conclude that the extensive Ex-

ploratory Data Analysis revealed significant differences between users and bots in the

navigation context. These differences are particularly notable in state transitions, page

counts, and broader aspects such as session duration and the number of accessed pages.

On the other hand, the transition probabilities derived from CTMCs proved not to be

a relevant feature for discriminate between legitimate and malicious agents. Finally, the

OC-SVM demonstrated to be a highly effective mechanism for detecting anomalous be-

havior in the e-commerce context, achieving an accuracy of up to 99%. The predicted

classes for the unlabeled data also exhibited distinct behavioral patterns for both groups.

This evidence supports the assertion that it is possible to attain good performance in

detecting anomalous behavior using solely navigation data.

Despite the significant results, the findings lack validation by experts – an essential

step to more accurately assess the model’s performance and establish confidence in its

reliability. Furthermore, our approach is limited by the reliance on WAF-generated labels

and the “made a purchas” criterion for bot and user labeling. The WAF mechanism only

detects a narrow subset of malicious behaviors, and assuming that all purchasing users

are legitimate may fail to account for sophisticated bots capable of mimicking legitimate

user actions. This reliance potentially limits our ability to capture the full diversity of

user behaviors, introducing biases into the analysis.

Additionally, our study does not explicitly utilize agents labeled as bots, either in

the Continuous-Time Markov Chain (CTMC) modeling or during the training of the One-

Class Support Vector Machine (OC-SVM). Instead, we focused on modeling legitimate

user behavior and detecting anomalies based on deviations from these patterns. While this

approach reduces the risk of overfitting to the specific bot behaviors captured by the Web

Application Firewall (WAF), it may limit the model’s ability to detect more nuanced or

unconventional bot activities that fall outside the scope of legitimate behavior deviations.

This trade-off reflects a deliberate choice to prioritize generalization and robustness over

reliance on potentially biased or incomplete bot labels. A further constraint of this study

is the significant volume of “otherView” events present in the navigation data, as they

offer minimal actionable insights, making it difficult to extract meaningful conclusions

from their analysis.

Lastly, while we focused on the One-Class Support Vector Machine (OC-SVM)
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for anomaly detection, experimenting with other one-class classifiers, such as Isolation

Forests or Deep Autoencoders, could have offered additional perspectives and potentially

improved model performance. Future research could explore these alternative approaches

to refine the detection of anomalous behaviors in e-commerce environments.

Concurrent with this study, new data sources have become available, including

mouse movement data and search queries. Future research will therefore investigate the

potential of these attributes to further enhance bot detection accuracy. Specifically, the

incorporation of mouse movement data could provide valuable insights into user interac-

tion styles, as bots often exhibit less natural mouse trajectories and movements compared

to human users. Similarly, analyzing search queries could reveal patterns indicative of

automated behavior, such as repetitive searches or queries related to specific exploits.

In addition to these newly introduced features, future research will focus on ex-

ploring more granular time-based attributes, such as the time spent on specific page

elements and the distribution of inter-click intervals. A finer-grained temporal analy-

sis could provide deeper insights into distinguishing human users, who naturally exhibit

pauses and reflective browsing patterns, from bots, which often perform actions at con-

sistent and rapid intervals. Furthermore, we plan to investigate second and third-order

Markov Chains to enhance our capability to model more complex dependencies in naviga-

tion patterns, potentially improving the detection of anomalous behaviors and uncovering

subtler distinctions between bots and legitimate users.
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