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A B S T R A C T   

In this work, for the first time, chromatographic paper was used for a multiphase extraction assisted by an 
electric field (MPEF) and directly coupled to paper spray mass spectrometry (PS-MS). Using this approach, five 
tricyclic antidepressants (TCAs) were determined in oral fluid. Firstly, the MPEF conditions were optimized using 
liquid chromatography-mass spectrometry (LC-MS/MS). The effects of the chromatographic paper and the types 
of electrolyte used in the acceptor phase, the organic solvent type and the amount used in the donor phase, the 
extraction time, and the applied electric potential were all investigated. After optimization, the analytes were 
extracted from the donor solution (sample and acetonitrile 1:1 (v/v)) over a period of 10 min at 300 V, crossing 
the free liquid membrane (1-octanol) and reaching the acceptor phase (chromatographic paper wetted with 400 
mmol L−1 acetic acid). The method using LC-MS/MS was validated, demonstrating a linear range from 2 to 12 ng 
mL−1, with detection and quantification limits of 0.13–0.25 and 0.44–0.84 ng mL−1, respectively, an intraday 
precision of less than 20%, and no matrix effect observed. The optimized MPEF conditions were then applied to 
determine TCAs by PS-MS and for this analysis cyclobenzaprine was used as an internal standard. The easy, fast 
and direct approach of coupling MPEF with PS-MS analysis, as well as the pre-concentration and the low 
standard deviation of replicates (less than 20%), demonstrates that this method can be useful for screening in 
clinical and toxicological analysis.   

1. Introduction 

Direct analysis approaches have become increasingly more popular 
in recent years, and paper spray mass spectrometry (PS-MS) is one of the 
most widespread exponents within this field. The elegant strategy of 
ambient ionization for mass spectrometry analysis, presented by Cooks 
in 2009 [1], uses a small triangular piece of porous support (usually 
chromatographic paper with dimensions of 1.5 × 1.5 cm) to directly 
receive a small volume of sample, without any prior preparation. After 
sample application, a suitable solvent is dropped over the paper and the 
electric field assists the paper to form a spray with the analytes ionized at 
the entrance of the mass spectrometer. Several applications of PS-MS 
have already been reported for different analytes (drugs [2–7], pesti
cides [8–12], hormones [13], and peptides [14]) and samples (saliva 
[5], urine [3,15,16], plasma [2], blood [7,14,17], serum [17,18], bev
erages [6,8,12,19–22], environmental samples [9,23–25], and food [10, 
11,26–28]). 

With any analytical strategy, from the established LC-MS to the new 
PS-MS approach, high amounts of salts, proteins, lipids, sugar, and other 
interferents make the analysis of biological fluids, food and environ
mental samples a singular challenge, especially if the number of runs per 
day is high. In the case of PS-MS, to overcome this difficulty, many 
authors have combined different sample preparation procedures, such as 
LLE (liquid-liquid extraction) [6], SPE (solid-phase extraction) [2], 
QuEChERS [12], protein precipitation [7], and so on. 

Among recent approaches to sample preparation, electroextraction is 
one alternative that has been used with great success for the clean-up 
and pre-concentration of analytes present in complex matrices [29, 
30]. Electric fields can transfer charged analytes from a donor phase 
(sample) to an acceptor phase in a short time, with selectivity, effi
ciency, and a low consumption of solvent [31]. Some studies have 
described direct analysis by mass spectrometry after electroextraction 
without the need for chromatography or electrophoresis and the benefits 
of using fast and inexpensive techniques with focusing and selectivity 
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capabilities, such as PS-MS, have been explored [32–38]. 
There are many strategies concerned with the use of an electric field 

in sample preparation, and the so-called multiphase extraction assisted 
by an electric field (MPEF), with a free liquid acceptor phase or one 
embedded inside a solid support, has attracted attention due to its 
robustness, versatility, and capability for the simultaneous extraction of 
multiple samples [33,39–41]. 

A recent study described the electroextraction of crystal violet (CV) 
from fish using a cellulose cone tip as a simultaneous porous support to 
the electrolyte solution and adsorbent to the analyte [40]. After 
extraction, the colored analyte was quantified by a digital image anal
ysis method using a conventional flatbed scanner. The cellulose cone tip 
used in this work inspired us to use this porous support in PS-MS after 
the electroextraction as an easy and cheap technique to obtain more 
selective and clean extracts, as well as reliable analytical results. 

In this study, this strategy was used for the first time to test five basic 
tricyclic antidepressants that are widely used around the world [42]. 
These basic drugs were extracted from oral fluid, a non-invasive sample 
that can be easily used for drug monitoring [43–46]. The porous support 
and extraction parameters were optimized by quantifying the drugs 
using liquid chromatography-mass spectrometry, and the concept of 
multiphase extraction assisted by an electric field coupled to paper spray 
mass spectrometry (MPEF-PS-MS) was then evaluated. 

2. Experimental 

2.1. Reagents, chemicals, and solutions 

Acetonitrile (ACN) purchased from Merck (Germany), 1-octanol 
from Sigma Aldrich (U.S.A.) and methanol (MeOH) and isopropanol 
from J. T. Baker (U.S.A.) were all of liquid chromatography grade. 
Formic acid, hydrochloride acid, ammonium acetate were obtained from 
Merck (Germany). Acetic acid (HAc) was purchased from F. Maia 
(Brazil). Ethanol, calcium chloride dihydrate, carboxymethylcellulose 
sodium salt, sodium monohydrogen phosphate and CV were acquired 
from Synth (Brazil). Sodium chloride and α-amylase (Aspergillus oryzae) 
at 36 U mg−1 were obtained from Sigma Aldrich (U.S.A.). Potassium 
monohydrogen phosphate was acquired from Neon (Brazil). Potassium 
dihydrogen phosphate was purchased from Vetec (Brazil). All reagents 
used were of analytical grade and were used without prior purification. 
Deionized water (18.2 MΩ cm) was obtained from a Millipore high 
purity water dispenser (U.S.A). The chromatographic papers (1 Chr and 
3 MM Chr grade) were purchased from Whatman (U.K.). The papers 
were cut into isosceles triangle tips (central angle of 50◦) with a long 
rectangular body (~3.5 cm in length and 0.8 cm in width). The hydro
chloride salts of doxepin (DOX), imipramine (IMI), amitriptyline (AMI), 
nortriptyline (NOR) and clomipramine (CLO), and the hydrochloride 
salt of cyclobenzaprine (CBZ), as an internal standard, were obtained 
from Sigma Aldrich (U.S.A.) (pKa values are presented in Fig. S1). The 
stock solutions of these drugs at 500 μg mL -1 were prepared by dis
solving each salt separately in methanol and keeping them under 
refrigeration at 4 ◦C. 

2.2. Oral fluid samples 

The synthetic oral fluid was prepared based on the work of Arain and 
co-workers [47], with the carboxymethylcellulose concentration 
adapted to 5 g L -1. The human oral fluid samples were collected from ten 
healthy volunteers (five young women and five young men) by just 
dropping the fluid in a recipient at least 30 min after feeding or tooth 
brushing. The studies with human oral fluid were carried out according 
to the Declaration of Helsinki for studies on human subjects, following 
its approval by the Research Ethics Committee of the Federal University 
of Minas Gerais, Brazil (protocol number: CAEE 32011214600005149). 

2.3. MPEF approach for LC-MS/MS and PS-MS 

For extraction optimization and LC-MS/MS method validation, a free 
paper approach was used (Fig. 1(A) left), whereas the supported paper 
configuration (Fig. 1 (A) right) was chosen for the PS-MS analysis. A 
multiwell plate (Fig. 1 (B)), as previously described [40], was used 
during the extraction procedures. The perforated conductive inert metal 
originally described to support the cellulose cone tips [40] was adapted 
to the triangular chromatographic paper shape, as shown in Fig. 1 (C). 
During the extraction optimization, the TCAs at 0.5 μg mL−1 were 
extracted from 1 mL of the donor phase (saliva sample added acetoni
trile 1:1), crossing the organic filter (750 μL of 1-octanol) and reaching 
the acceptor phase (1 Chr chromatographic paper wetted with HAc at 
400 mmol L−1). The electric potential was applied through an electro
phoresis source (KASVI model K33–300 V, China) connected to a mul
timeter (Tekpower model TP4000ZC, U.S.A.) with a RS-232 
communicator to measure the electric current and record it on a com
puter (Windows XP build version 07.12.05_1339). 

2.4. Proof-of-concept of the multiwell electroextraction plate with the new 
approach using chromatographic paper 

To evaluate the functionality of chromatographic paper as a sorbent 
in the acceptor phase, extractions with the cationic dye CV as a model 
compound were carried out. The donor phase consisted of 1 mL of CV at 
2 μg mL−1 in a mixture of McIlvaine buffer pH 3.0 and acetonitrile (1:1, 
v/v). A volume of 750 μL of 1-octanol was used as an organic filter and 
the acceptor phase was chromatographic paper 3 MM Chr soaked with 
70 μL of acetic acid (400 mmol L−1). The extractions were carried out by 
applying 300 V for 3 min. 

2.5. Electroextraction optimization 

Univariate studies to optimize the electroextraction were carried out 
for the following parameters: organic solvent in the donor phase 
(acetonitrile, methanol or ethanol); electrolyte in the acceptor phase 
(acetic acid at 400 mmol L−1, pH 2.50, formic acid at 400 mmol L−1, pH 
2.01 or HCl at 10 mmol L−1, pH 2.01); solid porous electrolyte solution 
support (conventional chromatographic paper 1Chr used for PS-MS or 3 
MM Chr). A multivariate study was carried out to optimize the extrac
tion time, electric potential and percentage of organic solvent present in 
the donor phase through the Box-Behnken design. The levels used in this 
experimental design are shown in Table S1. The data were processed 
using Design Expert 11 software (Statease, U.S.A). For the LC-MS/MS 
analyses, after extraction, the analytes were desorbed from the paper 
with 25 μL of isopropanol dropped on both sides of the paper and then 
500 μL of desorption solution (methanol:acetonitrile:acetic acid, 
47.5:47.5:5, v/v/v) were added. The chromatographic paper and 
desorption solution were vortexed for 30 s and sonicated for an addi
tional 10 min. In addition, the organic filter (diluted fivefold in aceto
nitrile) was analyzed by LC-MS/MS to verify the amount remaining in 
this phase. For the PS-MS analyses, the electroextraction with the sup
ported paper configuration (Fig. 1 (A) right) was realized previously 
using an internal standard (cyclobenzaprine) in the donor phase and 
after TCAs were directly analyzed by the paper spray. All experiments 
were realized in triplicate. 

2.6. LC-MS/MS and PS-MS conditions 

The LC-MS/MS analyses were performed on an Acquity UPLC H- 
Class liquid chromatography system (Waters, U.S.A) coupled to a triple 
quadrupole mass spectrometer with an electrospray ionization source 
(Xevo TQD, Waters, Ireland). The chromatographic separation was 
performed using an Acquity UPLC HSS C18 column (1.8, 2.1 × 50 mm) 
(Waters, U.S.A). The oven and sample plate were kept at 45 and 25 ◦C, 
respectively. The mobile phase consisted of formic acid at 0.1% in water 
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(v/v) (A) and 0.1% in methanol (B) with a flow rate of 400 μL min−1 and 
the following gradient elution (time, %B): 0.00 min, 55%; 0.70 min, 
95%; 1.70 min, 95%; 1.71 min, 55%; until 2 min, total time of analysis. 
An aliquot of 1 μL of the sample was injected into the LC-MS/MS system. 
The mass spectrometer was operated in positive ionization mode (ESI+) 
under the following conditions: source temperature, 150 ◦C; capillary 
voltage, 2 kV; desolvation temperature, 480 ◦C; desolvation gas flow, 
720 L h−1; cone gas flow, 20 L h−1. The other conditions of the MS 
analysis are presented in Table 1. 

The PS-MS analyses were performed on a LCQ Fleet mass spec
trometer (Thermo Scientific, U.S.A.) with an electrospray ionization 
source and an ion trap analyzer. For this study, the electrospray 

ionization was replaced for a paper spray source, as shown in Fig. 2. The 
MS operating conditions were: capillary voltage, 43 V; capillary tem
perature, 275 ◦C; ionization voltage, +4 kV; tube lens voltage, 85 V; 
distance from paper tip to MS cone inlet, 5 mm; acquisition time, 0.2 
min. For spray formation, a 50 μL solution of methanol:isopropanol: 
formic acid (95.45:4.45:0.1, v/v/v) was used. The m\z monitored were 
264 (NOR), 278 (AMI), 276 (CBZ), 280 (DOX), 281 (IMI) and 315 (CLO). 

2.7. Figures of merit 

The analytical performance of the MPEF-LC-MS/MS method was 
evaluated based on the Eurachem guide [48]. The experiments were 
conducted using the synthetic oral fluid and applying 300 V for 10 min. 
The donor phase (sample of oral fluid), organic filter and acceptor phase 
consisted of: 1 mL mixture of sample:ACN 1:1 (v/v), 750 μL of 1-octanol, 
and chromatographic paper 3 MM Chr wetted with 70 μL of acetic acid 
(400 mmol L −1), respectively. Linearity was investigated in the range 
2–12 ng mL−1 with six points evenly spaced and three replicates (n = 3) 
for each concentration level. The matrix effect was investigated 
comparing three calibrations curves prepared in the desorption solvent 
and the synthetic and human oral fluid extracts. The slope and linear 
coefficient of the curves were compared through statistical F- and t-tests 
at a 95% confidence level. The limits of quantification (LOQ) and 
detection (LOD) were assessed using ten blank extracts fortified with 0.5 
ng mL−1 TCAs. These parameters were estimated using LOD = 3s0/n1/2 

and LOQ = 10s0/n1/2, where s0 is the standard deviation of the TCA 
concentration and n is the number of replicates, in this case 10. The 

Fig. 1. Electroextraction schemes of the free paper (left) and the supported paper (right) configurations of the MPEF system, tube and paper (A). Multiphase 
multiwell plate for electroextraction (B) based on previous work [40] with adaptation for the chromatographic paper. Chromatographic paper used in the present 
work (MPEF), the usual chromatographic paper used for PS-MS direct analysis [1] and the cellulose cone tip for electroextraction describe elsewhere [39–47] (C). 

Table 1 
Transitions, collisions energy and cone voltages for TCA analysis by LC-MS/MS.  

Analyte Transitions (m/z)a Collision energy (V) Cone voltage (V) 

DOX 280 → 107 
280 → 233 

26 
18 

40 
40 

IMI 281 → 86 
281 → 58 

18 
30 

40 
30 

AMI 278 → 91 
278 → 105 

26 
26 

40 
40 

NOR 264 → 91 
264 → 105 

22 
22 

30 
30 

CLO 315 → 86 
315 → 58 

18 
30 

40 
30  

a The first transition was used for quantification and the second for 
confirmation. 
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intra- and interday precision and accuracy were assessed through six 
extractions of TCAs at three concentration levels (2, 6 and 10 ng mL−1). 
For interday precision, two consecutive days were carried out. The 
extraction efficiency (EE) was estimated at these three concentration 
levels with six replicates for each according to Eq. (1). Hence, the 
method was applied to ten different spiked samples of human oral fluid 
at 6 ng mL -1 of each TCA with three replicates for each sample. 

EE (%) =
peak area of the analyte extracted from oral fluid

peak area of the analyte added to the oral fluid extract
× 100

Eq. 1  

3. Results and discussion 

Different multiphase electroextraction approaches have been 
described in recent years, such as the free solution presented by Raterink 
et al. [33] the conductive hydrogel proposed by Wuethrich et al. [49] 
the cellulose cone tip shown by Orlando et al. [40] and so on [50,51]. As 
mentioned in these works, the conductivity of the electrolyte solution, as 
well as the shape, length and porosity of the support used in the acceptor 
phase, greatly influences the electric resistance and therefore the 
extraction efficiency [40,41]. For this reason, a proof-of-concept study 
was carried out to certify that the chromatographic paper and its ge
ometry (size and shape) were not limiting factors for the extraction 
performance. Crystal violet (a cationic dye) was chosen as the model 
compound for this test. The results (Fig. S2) show that CV effectively 
migrates to the chromatographic paper after 3 min of extraction. At the 
beginning of the extraction, after a few seconds, it was observed that the 
dye began coloring the tip of the paper where the electric charges were 
concentrated and was spread out over the time. Visually, the physical 
integrity of the chromatographic paper was maintained, confirming that 
it is a good support for multiphase electroextraction. 

After the proof-of-concept test, the MPEF electroextraction proced
ure was optimized for the determination of five antidepressants by LC- 
MS/MS after a desorption step. The strategy was conducted in this 
way to validate the use of the chromatography paper with the shape 
presented in Fig. 1 before proceeding to the PS-MS analysis. 

The results of the univariate studies were expressed as a mean of the 

extraction percentage for each analyte (n = 3) and are presented in 
Fig. 3. Initially, extractions with and without application of the electric 
field were performed. In Fig. 3 (A), it can be observed that the electric 
field was essential for improving (81 times in average) the TCA recovery 
when compared to the extraction without an electric field. Since the 
analytes were predominantly cationic in the donor phase (pH 6.50, the 
smallest pKa of the TCAs is 9.20), they did not transfer extensively for the 
organic filter by diffusion and almost were not detected in the acceptor 
phase. This fact indicated that the transfer of the cationic form of the 
TCAs, from donor to acceptor phase, is mainly modulated by electro
migration through the application of the electric field. Another obser
vation was that beyond the higher extraction recovery obtained with the 
use of the electric field, a significant amount of analytes remained stuck 
in the organic filter (Fig. S3). This is in accordance with results that 
demonstrated that the partition equilibrium of the analyte (neutral and 
ionized forms) between the immiscible phases is displaced when ions 
migrate from the donor to acceptor phase [52]. 

The type, pH and concentration of the electrolyte in the acceptor 
phase must maintain adequate electrophoretic mobility (ionization) and 
ion exchange flux among the phases (conductivity and partition). The 
pH values of the electrolyte solutions used were sufficiently low and 
more than three units below the pKa of the analytes [53]. Three different 
electrolyte solutions were tested for the acceptor phase and the best 
performance was observed for acetic acid (Fig. 3 (B)). This results are in 
accordance with previous studies of electromembrane extraction with 
free liquid membranes [54,55]. We could suppose that the partition 
(electrolyte solution in the acceptor phase-organic filter) of acetate or 
even formate ions is certainly greater than that observed for chloride 
ions. However, the amount of TCAs found in the organic filter (Fig. S4) 
was higher when HCl was used. One hypothesis for this observation is 
the change in the pH of the HCl electrolyte solution due to its low buffer 
capacity during the electrolysis process. Another possible explanation is 
the lack of electromigration of TCA-chloride in the organic filter due to 
the high stability of this neutral ion pair [52]. 

Regarding the electrolyte support of the acceptor phase, two types of 
chromatographic paper with the same composition but different thick
nesses were compared. The 3 MM Chr is thicker than 1 Chr (0.34 versus 
0.18 mm) and, consequently, the former can sustain a larger quantity of 

Fig. 2. Top (A) and side (B) views of paper spray ionization source and the developed supported paper configuration for MPEF-PS-MS.  
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electrolyte solution and maintain the electromigration for a longer 
period. This prediction was confirmed by the results presented in Fig. 3 
(C), where the thicker chromatographic paper demonstrated an average 
improvement of 140% for all five TCAs. 

For many MPEF extraction approaches described in the literature, 
polar organic solvents are added to the donor phase (sample) [56] to 
reduce the interfacial tension and improve the kinetics of the mass 
transfer of analytes between phases [33,40]. To increase the extraction 
of TCAs, acetonitrile, methanol and ethanol were evaluated. The best 
result was obtained with acetonitrile (Fig. 3 (D)). This observation can 
be attributed to the combination of the good partition between the 
aqueous and organic phases, as well the better capacity of solvation of 
the cationic TCAs by acetonitrile. 

After the univariate studies, a Box-Behnken design was carried out to 
optimize the extraction time, electric potential and acetonitrile per
centage added to the donor phase. These three are well known as some 
of the most significant parameters for improving the EE in MPEF ex
tractions. Among them, the acetonitrile percentage presented the 
strongest influence in the process, followed by the extraction time and 
the electric potential. The response (analytical signal) was improved 
with the increase of all variables studied (Table S2). By comparing the 
response of the optimal conditions (300 V/18 min) versus the initial 
conditions (300 V/10 min), we conclude that, for our purpose, the desire 
to improve the analytical signal does not justify a much longer extrac
tion time (Fig. S5). Therefore, it was decided that the initial conditions 
of 10 min of extraction time, 300 V of applied voltage and 50% ACN v/v 
in the donor phase would be maintained for evaluation of the perfor
mance of the MPEF-LC-MS/MS method. At these conditions, a maximum 
and average electric current of 0.72 and 0.48 mA, respectively, were 
observed. 

To ensure that the chromatographic paper is suitable for the 

extractions, some figures of method were estimated, and the results are 
summarized in Table 2. The precision and accuracy were satisfactory 
according to the analytical guide. The LOD and LOQ values were com
parable with other studies in the literature in which TCAs were deter
mined in blood [57–59], urine [58–61] and saliva [59] through 
chromatography techniques and sample preparation assisted by an 
electric field (Table S3). No signal of interferents was observed in the 
chromatograms of the blank extract, demonstrating the selectivity of the 
method (Fig. S6). 

The matrix effect was investigated by comparing the curves con
structed in the desorption solvent and in the extracts of synthetic and 
human oral fluids, two by two, through the F- and t-tests at a confidence 
level of 95% and the statistical tests demonstrated that the matrix effect 
was not significant (p > 0.05) (Fig. S7). High selectivity and the absence 
of a matrix effect are important advantages of electroextraction tech
niques and have already been demonstrated in other works [41,56,62, 
63]. These characteristics are essential for direct analysis approaches, 
such as PS-MS, where the clean-up of the sample can reduce many 
problems regarding the signals of interferents or the accumulation of 
dirt on the mass spectrometry entrance and the frequent need of stops 
for maintenance. 

The validation experiments were carried out in synthetic oral fluid; 
however, it is well known that the oral fluid may vary greatly according 
to the sex, age, diseases and so on. For this reason, the fortified samples 
of oral fluids from ten different volunteers were analyzed by the MPEF- 
LC-MS/MS method and it was observed that the TCA analytical signals 
were similar among samples and also to the analytical signal obtained 
with the synthetic oral fluid (Fig. S8), which reinforces the effective 
clean-up obtained by MPEF. 

The first development to couple multiphase electroextraction to PS- 
MS analysis was the porous support. In 2019, Orlando described a 

Fig. 3. Effect of electric field applica
tion (A), electrolyte solution type of the 
acceptor phase (B), paper thickness used 
as a sorbent in the acceptor phase (C) 
and polar organic solvent present in the 
donor phase (D) on TCA recoveries. 
General conditions: extraction voltage, 
300 or 0 V; extraction time, 10 min; 
donor phase, 1 mL of aqueous solution 
spiked with TCAs at 0.5 μg mL−1 each; 
organic filter, 750 μL of 1-octanol; 
acceptor phase, chromatographic paper 
soaked with acid solution. HAc: acetic 
acid at 400 mmol L−1 pH 2.5; HCOOH: 
formic acid at 400 mmol L−1 pH 2; HCl: 
hydrochloric acid at 10 mmol L−1 pH 2; 
ACN: acetonitrile; MeOH: methanol; 
EtOH: ethanol. Error bars represent the 
standard deviation (n = 3).   
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cellulose cone tip, such as that presented in Fig. 1 (C). This type of 
support was efficient for electroextraction; however, its low superficial 
area was not able to support an adequate amount of solvent to form a 
stable spray during PS-MS. The conventional triangle paper used in the 
PS-MS analysis is too short to contact the electrode and organic filter 
simultaneously. Thus, an adaptation to be suitable for both situations 
was necessary (Fig. 1 (C)). However, the longer shape of the paper 
developed for MPEF made handling difficult and PS-MS requires a sig
nificant manipulation for arranging it in front of mass spectrometry. 
Thus, the support approach described in Fig. 1 (A) was used to stabilize 
and reduce the variation in positioning. The support was made with a 
conventional polypropylene micropipette 5 mL tip. By cutting carefully 
the tip end with a sharp knife and making a little hole with a needle to 
drop the solvent used in PS-MS, the reusable support could be easily, and 
custom made. 

The proof of concept and figures of merit for the MPEF-LC-MS/MS 
method demonstrate that the size and shape of the chromatographic 
paper is reliable to extract TCAs from oral fluid with reproducibility, 
selectivity and effectivity. 

After these studies and using the same optimized conditions 
described for figures of merit estimation, the TCAs extracted from syn
thetic oral fluid were directly analyzed by the PS-MS approach. Fig. 4 
(A) depicts the mass spectra with the intensity signals of the analytes and 
IS added to the sample. Using the TCA/IS ratio, RSD values lower than 
19% for nortriptyline and lower than 14% for the others (n = 3) (Fig. 4 
(B)) were observed. Variation in PS-MS analysis is common, and this 
problem is greatly reduced using isotope-labeled analytes. However, the 
use of just one analogue compound as the IS for all analytes and the few 
variations observed in the analytical signal after MPEF-PS-MS demon
strates that this approach could be applied in routine analysis without 
additional difficulty. In addition, adequate precision for a pre- 
concentration of least 3.5-fold (based on a 35% recovery average, 500 
μL of sample and 50 μL paper spray solvent volumes used) was observed. 
Although a relatively high concentration was evaluated (2 μg L−1) for 

the TCAs, better sensitivity by PS-MS could be obtained. The sensitivity 
is strongly dependent to the mass spectrometry used and, in our case, the 
equipment employed was not state of the art. Undoubtedly, coupling the 
electroextraction with PS-MS (MPEF-PS-MS) brings advantages, such as 
the reduction of ion suppression, cost, maintenance and higher analyt
ical frequency in relation to conventional PS-MS or LC-MS/MS. 

4. Conclusions 

The innovative chromatographic paper format and supports pre
sented in this work were suitable for the effective extraction of tricyclic 
antidepressants from oral fluid, assisted by electric fields. The validation 
parameters of the MPEF-LC-MS/MS method demonstrated that extrac
tion in this format can reduce the matrix effect and is suitably precise 
and accurate. The direct coupling of electroextraction to PS-MS 
demonstrated that there was no significant difficulty in interfacing 
both techniques, particularly when using the support made of micropi
pette tips. The intense and reproducible PS-MS signals reinforced that 
the approach presented here is promising for routine analysis, 
combining the best, well-established advantages of this sample prepa
ration and analytical technique, such as the high analytical frequency, 
low cost of consumables, selectivity, and so on. 
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Table 2 
Figures of merit for the MPEF-LC-MS/MS method.  

Analyte Linear regression equation (2–12 ng mL−1) R2a LODb LOQb Accuracy (%)c 

(RSDintra assay; RSDinter assay; %) 
Extraction efficiency (%)d 

(RSD; %) 

(ng mL−1) 2 ng mL−1 6 ng mL−1 10 ng mL−1 2 ng mL−1 6 ng mL−1 10 ng mL−1 

DOX 108.23 x + 85.40 0.9953 0.25 0.84 80 (12; 25) 96 (10; 11) 104 (9; 7) 51 (8) 51 (8) 53 (8) 
IMI 341.64 x – 30.33 0.9962 0.13 0.44 81 (5; 8) 107 (9; 10) 108 (8; 7) 43 (4) 52 (8) 54 (7) 
AMI 107.08 x + 7.69 0.9972 0.21 0.72 104 (13; 26) 103 (5; 13) 108 (11; 11) 54 (12) 59 (5) 57 (3) 
NOR 94.60 x + 25.19 0.9928 0.17 0.57 75 (20; 18) 90 (5; 9) 100 (9; 8) 49 (16) 56 (5) 63 (10) 
CLO 255.74 x + 107.64 0.9981 0.13 0.44 77 (5; 14) 99 (7; 10) 111 (13; 12) 42 (3) 47 (6) 52 (11) 

an = 18. bn = 10. c,dn = 6. DOX: doxepin; IMI: imipramine; AMI: amitriptyline; NOR: nortriptyline; CLO: clomipramine. 

Fig. 4. Paper spray mass spectrometry 
analysis of TCAs after MPEF extraction. 
Mass spectrum of TCA mixture (A) and 
their intensities ratio with the internal 
standard (B). General MPEF conditions: 
applied voltage, 300 V; time, 10 min; 
donor phase, 1 mL of synthetic oral fluid 
spiked with TCAs and cyclobenzaprine 
(internal standard) all at 2 μg mL−1; 
organic filter, 750 μL of 1-octanol; 
acceptor phase, chromatographic paper 
3 MM Chr soaked with 70 μL of acetic 
acid at 400 mmol L−1. General PS-MS 
conditions: ionization voltage, +4 kV; 
capillary temperature, 375 ◦C; paper 
distance from MS inlet, 5 mm; spray 
solvent, 50 μL of methanol: isopropanol 
95.5: 4.5 with 0.1% formic acid (v/v/v). 
Error bars represent the standard devi
ation (n = 3).   
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