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Resumo

A detecção de ondas gravitacionais (GWs), e a forte evidência de um fundo
estocástico de GWs observada pelo NANOGrav, provam que somos capazes de extrair
informações anteriormente inacessíveis. Isso nos permite reconstruir eventos que ocorreram
há muito tempo e em galáxias distantes. Dentre as possíveis fontes dessas GWs, as
transições de fase cosmológicas de primeira ordem desempenham um papel de destaque
do ponto de vista da física de partículas.

Nesta dissertação, o assunto central de estudo é entender os efeitos hidrodinâmicos
das transições de fase de primeira ordem e calcular a velocidade terminal da parede da
bolha durante uma transição de fase cosmológica, modelando efeitos não-equilíbrio no
plasma. Um operador ϕ6 é incluído no potencial efetivo do Modelo Padrão para imitar
efeitos de nova física. O aquecimento hidrodinâmico do plasma à frente da bolha é levado
em conta.

Nós incluímos termos de ordem superior no chamado “fluido Ansatz”-expansão
na função distrubuição considerando efeitos fora do equilíbrio- e os comparamos com o
Ansatz usualmente adotado. Mostramos que essa correção pode até transformar soluções
de detonação em deflagrações. Esse resultado também corrobora achados recentes na
literatura de que, para um conteúdo de partículas do Modelo Padrão no plasma, apenas
soluções de deflagração são viáveis. No entanto, também mostramos que esse resultado
pode ser alterado em uma teoria com um conteúdo de partículas diferente.

Para que essa velocidade fosse calculada, todos os parâmetros da transição devem
ter sido previamente determinados. Dessa forma, o trabalho estabelece um caminho para
obter um conjunto completo de parâmetros necessários no cálculo da amplitude de ondas
gravitacionais originadas por transições de fase de primeira ordem.

Palavras-chave: cosmologia;transição de fase electrofraca; potencial efetivo;mecanismo
de Higgs.



Abstract
The detection of gravitational waves (GWs), and the strong evidence for a stochastic GW
background seen by NANOGrav, prove that we are capable of extracting information
previously inaccessible to us allows to reconstruct events that took place a long time ago
and in faraway galaxies. Among the possible sources of these GWs, first-order cosmological
phase transitions play a prominent role from the perspective of particle physics.

In this dissertation, the central subject of study is to understand the hydrodynamical
effects of first-order phase transitions and to compute the terminal bubble wall velocity
during a cosmological phase transition by modeling non-equilibrium effects in the plasma.
A ϕ6 operator is included in the Standard Model effective potential to mimic effects of new
physics. Hydrodynamical heating of the plasma ahead of the bubble is taken into account.

We include higher order terms in the fluid Ansatz - expansion in the distribution function
considering out-of-equilibrium effects- and compare it to a simpler Ansatz usually adopted
in literature. We show that this correction may even turn detonation solutions into
deflagrations. This result also corroborates recent findings in the literature that, for a
Standard Model particle content in the plasma, only deflagration solutions are viable.
However, we also show that this outcome may be altered in a theory with a different
particle content.

For this velocity to be calculated, all transition parameters must have been previously
determined. Thus, the work also establishes a path to obtain a complete set of parameters
required for calculating the amplitude of gravitational waves generated by first-order phase
transitions.

Keywords: cosmology;electroweak phase transition;effective potential;higgs mechanism.
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1 Introduction

In the past century, physicists have formulated and refined descriptions of the
fundamental laws of nature across large and small scales. The ΛCDM model is a physical
theory that successfully describes cosmic expansion, the cosmic microwave background
(CMB), and the large-scale structure of the universe.

On the other hand, the Standard Model (SM) of particle physics provides a quantum
field theory framework that accurately explains the fundamental forces (except gravity)
and elementary particles observed in experiments. The interplay between ΛCDM and
the SM remains a crucial frontier in theoretical physics, motivating extensions of both
models to achieve a more unified understanding of fundamental interactions and cosmology.
The main theme of this thesis will be the connection between the Standard Model and
Cosmology, and how gravitational waves can contribute to the search for new physics
beyond the energy scales we can probe with current collider experiments.

To understand this connection, let us first consider cosmology. It is a well-known
fact in cosmology that there is an inverse relationship between the age of the universe
and its temperature [1]. This relationship implies that matter behaved differently at
earlier times. Understanding this behavior is key to uncovering the history of our universe.
Structures such as galaxies and ourselves could only form once the universe cooled to
specific temperature thresholds.

If we trace the history of the cosmos to sufficiently early times, we will see that
all matter would become unbound. We would have a plasma of ionized particles, unable
to form bound states such as nuclei, atoms, molecules or larger structures. Perhaps more
shocking is the fact that also the way these particles interact will change depending on
the temperature of this plasma. So the history of the Cosmos can really be divided into
eras, as illustrated in figure 1.

At present, the universe is governed by four fundamental interactions: electromag-
netism, the weak force, the strong force, and gravity. However, studying the Standard
Model at finite temperatures reveals that, prior to t ∼ 10−12 seconds in the history of the
universe, the electromagnetic and weak interactions behaved as a single unified interaction,
known as the electroweak interaction.

We can speculate whether, in even earlier epochs, additional unifications occurred,
potentially culminating in a description involving only one fundamental interaction. How-
ever, these hypothetical unifications remain speculative: the only one that has been
empirically tested so far is the electroweak unification. The process of interaction unifica-
tion is illustrated in Figure 5.
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Figure 1 – Eras of particle behavior since the since the origin of the hot plasma. A more
complete description of each era can be found in cosmology textbooks [2, 3].

Figure 2 – Eras of interaction behavior since the origin of the hot plasma. While gravity
has yet to be described in a quantum paradigm, the Standard Model successfully
describes the behavior of the other three interactions.

New insights into fundamental physics are anticipated as we enter the era of
gravitational-wave astronomy [4–7]. The detection of gravitational waves (GWs) by



Chapter 1. Introduction 11

LIGO/Virgo/KAGRA [4–7] and the compelling evidence for a stochastic GW background
observed by NANOGrav [8] demonstrate our growing ability to extract information from
messengers previously inaccessible. These breakthroughs enable us to reconstruct events
that occurred long ago and in distant galaxies.

Among the possible sources of these GWs, first-order cosmological phase transitions
hold particular significance for particle physics. Given that the early universe experienced
periods of extremely high temperatures, any remnants from such epochs carry valuable
information about the effective particle content and the nature of their interactions in this
highly energetic regime. A relevant process involves particles in the plasma acquiring mass
via the Higgs mechanism [9]. If this happens to occur via a first order phase transition,
this process would be analogous to the boiling of water: regions where particles gain
mass—referred to as ‘bubbles’—form within a massless plasma. During bubble expansion,
mechanisms such as baryogenesis and dark matter production could occur. At the end of
the transition, the collisions between bubbles disrupt their spherical symmetry, resulting in
a time-dependent quadrupole moment in the energy-momentum tensor, generating GWs
[10–12], Importantly, these remnants could be detected by the future Laser Inteferometer
Spacial Antenna (LISA) [13], which will start taking data in the next decade.

Detecting cosmological GWs could place stringent constraints on particle physics
models, provided we have accurate predictions of how the GW spectrum depends on the
underlying microphysics. Crucially, the information conveyed by these novel messengers
could complement those obtained from collider experiments [14, 15]. Furthermore, such a
cosmological phase transition could produce other relics, including a matter-antimatter
asymmetry [16,17] and a dark matter abundance [18–21].

In this dissertation, the central subject of study is to understand the hydrodynamical
effects of first-order phase transitions and to compute the terminal bubble wall velocity
during a cosmological phase transition by modeling non-equilibrium effects in the plasma
with the so-called “extended fluid ansatz” [22]. A ϕ6 operator is included in the Standard
Model effective potential to mimic effects of new physics. Hydrodynamical heating of the
plasma ahead of the bubble is taken into account. We include higher order terms in the
fluid ansatz and compare it to the perfect fluid ansatz usually adopted. We show that
this correction may even turn detonation solutions into deflagrations. This result also
corroborates recent findings in the literature that, for a Standard Model particle content
in the plasma, only deflagration solutions are viable. However, we also show that this
outcome may be altered in a theory with a different particle content.

The dissertation is organized as follows: because this transition occurs at high
temperatures and involves microphysical processes, we must delve into quantum field
theory (QFT) at finite temperature to understand how the Higgs boson—the central player
in this transition—interacts with other particles. This constitutes the focus of the first
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chapter, where we describe QFT at a statistical level and use this formalism to compute
important thermodynamic properties relevant for the generation of gravitational waves.

The second chapter explores how a gravitational wave experiment, such as LISA,
could detect a stochastic GW background. We will compare LISA’s sensitivity curves with
GW spectra derived from our specific model.

The core of this dissertation lies in the final chapters. One of the most critical
and challenging parameters for determining the GW spectrum is still missing: the bubble
wall velocity, vw, which is the primary focus of this work. During the phase transition,
the plasma is driven out of equilibrium as particles gain mass. This process demands a
sophisticated hydrodynamic treatment of the plasma. We show how the particle content
of the theory affects the behavior of the bubble wall velocity, and, ultimately, how this
parameter influences the resulting GW power spectrum. Finally, chapter 7 is left to final
remarks and conclusions.
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2 First-order Electroweak Phase transitions

2.1 Spontaneous Symmetry Breaking
In nature, exact conservation laws are a manifestation of precise symmetries. An

exact symmetry in a Lagrangian is characterized by two conditions: the Lagrangian density
remains invariant under the symmetry transformation, and the physical vacuum is also
invariant under this transformation. While some symmetries, such as flavor symmetries or
nuclear isospin, are only approximate, others can be exact.

Modern particle physics is founded on the principle that fundamental interactions
adhere to specific exact symmetries. This implies that particles participating in these
interactions belong to specific representations of an underlying symmetry group, and any
symmetry transformation leaves the theory, particularly the Lagrangian, invariant.

For instance, the electroweak interaction is governed by the symmetry group
SU(2)L ×U(1)Y . Particles involved in weak interactions are charged under SU(2)L, forming
non-trivial representations of this group. For example, left-chiral fermions are organized
into SU(2)L doublets, pairing the charged lepton ℓ (e.g., e−, µ−, τ−) with its corresponding
neutrino νℓ. Under the weak interaction, these particles are treated as two states of the
same entity. Experimental evidence supports this framework, though the differing masses
of charged leptons and neutrinos reveal that these particles are not identical in every
respect. While the theory assumes an exact symmetry, the mass differences point to a
breaking of this symmetry. This apparent contradiction is resolved through the concept of
spontaneous symmetry breaking.

In spontaneous symmetry breaking, the fundamental laws described by the La-
grangian are symmetric under a specific group of transformations (e.g., SU(2)L × U(1)Y ),
but the vacuum state (the lowest energy state) is not. In essence, the symmetry governs
the dynamics of the particles, but it is not reflected in the vacuum configuration.

To illustrate spontaneous symmetry breaking, we consider a toy model with a real
scalar field ϕ. The Lagrangian is given by:

L = 1
2(∂µϕ)(∂µϕ) − V (ϕ), (2.1)

where V (ϕ) is the potential. If the potential is an even function of ϕ, i.e.,

V (ϕ) = V (−ϕ), (2.2)

the Lagrangian is invariant under the parity transformation:

ϕ → −ϕ. (2.3)
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Now, consider the specific potential:

V (ϕ) = 1
2µ2ϕ2 + 1

4 |λ|ϕ4. (2.4)

If µ2 > 0, the potential has a unique minimum at ϕ = 0, i.e.,

⟨ϕ⟩0 = 0. (2.5)

However, if µ2 < 0, as shown in Figure 3, the potential develops two new degenerate
minima at ±v. While the potential itself remains symmetric under parity (ϕ → −ϕ), the
spontaneous selection of one of these vacua (+v or −v) breaks this symmetry . This is a
classic example of spontaneous symmetry breaking. The minima are located at:

⟨ϕ⟩0 = ±

√√√√− µ2

|λ|
≡ ±v. (2.6)

Figure 3 – A scalar field potential illustrating spontaneous symmetry breaking as the
parameter changes from µ2 > 0 to µ2 < 0.

It is important to emphasize that this example is merely a toy model, and a more
accurate description of the Standard Model with real particle content must be introduced.

Let us return to the case of the SU(2)L ×U(1)Y symmetry, as found in the Standard
Model. As mentioned, the left-chiral fermions belong to SU(2)L doublets, which we can
write as

Le ≡

νe

e−


L

, (2.7)

where the left-handed states are

νL = 1
2(1 − γ5)ν and eL = 1cx

2 (1 − γ5)e. (2.8)

As an approximation to mimic the Standard Model 1, we will consider massless neutrinos,
which do not have a right-handed component. Therefore, the right-handed leptonic part is
1 Here, we are simulating SM because we are not considering the other families of leptons nor quarks
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given by
Re = eR = 1

2(1 + γ5)e. (2.9)

The U(1)Y hypercharge can be determined using the well-known Gell-Mann–Nishijima
relation for the electric charge, given by

Q = I3 + 1
2Y, (2.10)

where Q represents the electric charge, I3 is the third component of the weak isospin
associated with the SU(2)L gauge symmetry, and Y is the hypercharge under U(1)Y .

Applying the Gell-Mann–Nishijima relation to each component separately of 2.7,
and recalling that the upper component has I3 = +1/2 and the lower has I3 = −1/2, we
obtain the hypercharge of the left-handed lepton doublet is YL = −1.

On the other hand, right-handed leptons are singlets under SU(2)L, meaning they
have I3 = 0. The right-handed electron e−

R satisfies

Q(e−
R) = I3 + 1

2YR = 0 + 1
2YR = −1. (2.11)

Solving for YR, we find
YR = −2. (2.12)

Furthermore, since hypercharge and weak isospin generators commute, i.e.,

[I3, Y ] = 0, (2.13)

this ensures that the eigenstates of I3 remain eigenstates of Y , a necessary condition for
maintaining the consistency of the Standard Model gauge structure.

Thus, we conclude that the hypercharges of left- and right-chiral leptons in the
Standard Model are

YL = −1, YR = −2. (2.14)

Now, to construct a SU(2)L × U(1)Y theory, we define the gauge bosons of SU(2)L

as b1
µ, b2

µ, b3
µ, and for U(1)Y , the gauge boson Aµ. The Lagrangian for this theory can be

written as
L = −1

4F l
µνF lµν − 1

4fµνfµν + Lleptons, (2.15)

where the field strength tensors are

F l
µν = ∂νbl

µ − ∂µbl
ν + gϵjklb

j
µbk

ν (2.16)

for SU(2)L, and
fµν = ∂νAµ − ∂µAν (2.17)
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for U(1)Y . The gauge-covariant derivative is

Dµ = ∂µ + ig′

2 AµY + ig

2 τ · bµ, (2.18)

and therefore, the lepton part of the Lagrangian is given by (Ψ̄iγµDµΨ), i.e.,

Lleptons = Riγµ

(
∂µ + ig′

2 AµY

)
R + Liγµ

(
∂µ + ig′

2 AµY + ig

2 τ · bµ

)
L, (2.19)

where g is the coupling for the weak-isospin group SU(2)L and the weak hypercharge
coupling for U(1)Y is defined as g′/2.

Up to this point, our theory does not align with the real world. It includes four
massless bosons and lacks an electron mass term (which would explicitly break the
symmetry, since fermion mass terms involve a mixing of left- and right-chiral components,
which transform differently under SU(2)L). Therefore, we need to modify the theory to
provide mass to the desired particles. To do this, we define the complex doublet of scalar
fields as

ϕ ≡
(
ϕ+ ϕ0

)
, (2.20)

and add the familiar scalar part to the Lagrangian,

Lscalar = (Dµϕ)† (Dµϕ) − V
(
ϕ†ϕ

)
, (2.21)

where the potential is given by

V (ϕ) = µ2

2 ϕ†ϕ + |λ|
4 (ϕ†ϕ)2. (2.22)

We are also free to add an interaction term involving Yukawa couplings of the scalars to
the fermions,

LYukawa = −ζe

[
R
(
ϕ†L

)
+
(
Lϕ
)

R
]

. (2.23)

Considering again that µ2 < 0, one can choose the vacuum expectation value (VEV) of
the scalar potential as

⟨ϕ0⟩ =
 0

v/
√

2

 , (2.24)

with v given by

v =
√

−µ2

λ
. (2.25)

This symmetry breaking preserves only the U(1)EM symmetry, which is generated
by the electric charge. This can be verified by applying the generators of infinitesimal
transformations to the vacuum, leading to equation 2.10 when applied to the vacuum
expectation value (VEV) ⟨ϕ0⟩, keeping the symmetry unbroken. This implies that a linear
combination of generators (electric charge) prevents the photon from acquiring mass, while
the other gauge bosons necessarily acquire mass.
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To analyze this, we expand the Lagrangian of the theory around the VEV to
observe the behavior of the oscillations close to this minimum:

ϕ = exp
(

iζ · τ

2v

)(
0

(v + η)/
√

2

)
. (2.26)

To simplify the physical interpretation, we explore the gauge invariance and use the
so-called unitary gauge:

ϕ → ϕ′ = exp
(

−i
ζ · τ

2v

)
ϕ =

(
0

(v + η)/
√

2

)
, (2.27)

where the other fields also undergo this rotation, but Aµ and R remain unchanged. We
then explicitly expand Lscalar to highlight the main features of our theory. The new kinetic
term in the scalar Lagrangian becomes:

Dµϕ =
(

∂µ + i
g

2τ · bµ + i
g′

2 AµY

)(
0

v+η√
2

)
. (2.28)

For the SU(2)Y components, this leads to:

i
g

2τ · bµ · ϕ0

∣∣∣∣∣
v+η

= ig

2

 b3
µ b1

µ − ib2
µ

b1
µ + ib2

µ −b3
µ

 · ϕ0

∣∣∣∣∣
v+η

= ig

2

((b1
µ − ib2

µ)v+η√
2

−b3
µ

v+η√
2

)
. (2.29)

Defining:

W ±
µ =

b1
µ ∓ ib2

µ√
2

, (2.30)

One can write for the charged bosons:

(Dµϕ)† (Dµϕ) ⊃ g2

4
(
W +

µ (v + η)
) (

W −
µ (v + η)

)
. (2.31)

For the neutral gauge bosons, we can use equations 2.28 and 2.29 to obtain:

(Dµϕ)† Dµϕ ⊃ 1
4
(
g′Aµ − gb3

µ

)2 (v + η)2

2 . (2.32)

Finally, the scalar Lagrangian can be written as:

Lscalar =v2

4

[
g2(W +

µ )(W µ−) + 1
2
(
g′Aµ − gb3

µ

)2
]

+ 1
2 (∂µη) (∂µη) + µ2η2 + Interaction terms.

(2.33)

Defining the orthogonal combinations, the Z0 boson is given by:

Zµ =
−g′Aµ + gb3

µ√
g2 + g′2 , (2.34)

and the photon is:

Aµ =
gAµ + g′b3

µ√
g2 + g′2 , (2.35)
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which implies that the Z0 and Ws bosons acquires a mass:

MZ0 =
√

g2 + g′2 v

2 = MW

√
1 + g′2

g2 , (2.36)

while Aµ remains massless, as expected. The field η2 also acquires mass from the quadratic
term in Lscalar and represents the Higgs boson. Additionally, within the Yukawa Lagrangian,
the electron gains mass via the term −ζev/

√
2.

Thus, we have schematically achieved the desired particle content of the Standard
Model. A full description of this symmetry breaking, including quarks and the other
leptons, can be found in [23].

Unfortunately, this approach, even considering quarks and leptons, is unrealistic
in the early universe, which is our main focus here. The previous mechanism described
represents the Higgs dynamics at zero temperature, which is not the case in the early
hot universe. At this period, the universe can be described using Quantum Field Theory
at finite temperatures in a thermal environment. In this framework, the total potential
changes with temperature due to the interaction of the Higgs field with other particles in
the hot universe.

Thermal corrections arise because, at finite temperatures, particles occupy a range
of energy states according to the Bose-Einstein or Fermi-Dirac distributions. These dis-
tributions depend on the temperature, altering the propagators of the fields and thus
modifying the effective potential. The thermal bath effectively provides an additional
background field that the Higgs field interacts with, leading to temperature-dependent
changes in its potential energy.

Therefore, let us quantitatively discuss these thermal effects.

2.2 Thermal Potential

At high temperatures, the energy distribution of particles is influenced by thermal
excitations due to interactions with the Higgs field, making thermal corrections relevant [24].

In the early universe, the population of these enormous numbers of particles is
distributed according to thermal statistics, therefore, we must be able to identify the
partition function Z, which in quantum field theory at finite temperature is given by the
path integral over field ϕ,

Z =
∫

Dϕe−SE [ϕ], (2.37)

where SE[ϕ]is the euclidian action

SE[ϕ] =
∫ β

0
dτ
∫

x
d3xLE(ϕ, ∂µϕ). (2.38)
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We are using the imaginary-time formalism t → iτ to simplify equations, where LE means
the lagrangian computed also in the imaginary-time.

In this work we will focus on a lagrangian for the scalar field of the form,

L = 1
2∂µϕ∂µϕ + µ2

2 ϕ2 − λ

4 ϕ4 − 1
8M2 ϕ6. (2.39)

We include here a ϕ6 operator, which was absent in our previous discussion about the
Standard Model Higgs mechanism. This is because this term is introduced in order to
encapsulate effects from unknown physics beyond the Standard Model at an energy scale
M [25]. Taking M → ∞ recovers the Standard Model (SM).

With the Lagrangian of the field well defined, the euclidean action SE[ϕ] is

SE[ϕ] =
∫ β

0
dτ
∫

x
d3x

[
1
2
(
(∂τ ϕ)2 + (∇ϕ)2

)
+ µ2

2 ϕ2 − λ

4 ϕ4 − ϕ6

8M2

]
. (2.40)

Substituting the Euclidean action inside equation 2.54 leads to

Z =
∫

Dϕ exp
{

−
∫ β

0
dτ
∫

x
d3x

[
1
2
(
(∂τ ϕ)2 + (∇ϕ)2

)
+ µ2

2 ϕ2 − λ

4 ϕ4 − ϕ6

8M2

]}
. (2.41)

Because of the ϕ4 and ϕ6 terms, we deal with a nonfree scalar field theory (SFT), making
the full integral really difficult to solve. Fortunately, one can move this interaction problem
to a free scalar field case (V (ϕ) ∝ ϕ2) determining the physics of the free field and adding
the quartic and order-six terms as perturbations,

V (ϕ) = V (ϕ0) + dV

dϕ

∣∣∣∣∣
ϕ0

δϕ + 1
2

d2V

dϕ2

∣∣∣∣∣
ϕ0

δϕ2 + · · · (2.42)

And then, one can associate the δϕ2 term as an effective mass in a free scalar theory,

m2
eff = dV 2

dϕ2

∣∣∣∣∣
ϕ0

= µ2 + 3λ⟨ϕ⟩2 + 15⟨ϕ⟩4

4M2 . (2.43)

As we are dealing with a constant ϕ0 at a temperature T , expanding the kinetic terms
leads to the Euclidean action:

SE[δϕ] ≈ 1
2

∫ β

0
dτ
∫

x
d3x

[(
(∂τ δϕ)2 + (∇δϕ)2

)
+ m2

effδϕ2
]

. (2.44)

Now the integration becomes more straightforward, and we are dealing with an effective
"non-interactive" case.

To proceed with the action, we perform the Fourier transform of the field δϕ(x, τ).
This step is important because of the fact that the field δϕ(x, τ) exhibits periodicity in
the imaginary time τ , which is a direct consequence of the finite-temperature statistical
mechanics framework. Explicitly, we have,

δϕ(x, τ + β) = δϕ(x, τ),
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This periodicity arises from the quantization of energy at finite temperature. When
transitioning from the real-time formulation to the imaginary-time formulation (via
τ = it), the field must be periodic to respect the statistical requirements of the system in
thermal equilibrium. This guarantees that the system behaves consistently with the
partition function in statistical mechanics.

To solve this periodic boundary condition, one decomposes the field δϕ(x, τ) in
terms of discrete modes with frequencies corresponding to the periodicity in τ . These
modes are known as the Matsubara frequencies, which are defined as

ωn = 2πn

β
,

where n is an integer, and ωn is the frequency associated with the mode. The Matsubara
frequencies naturally satisfy the periodic boundary condition because they are quantized
in integer multiples of 2π

β
, ensuring the field’s periodicity in imaginary time.

This decomposition allows one to express the field in terms of Fourier components
that evolve with these Matsubara frequencies. The Fourier expansion of the field δϕ(x, τ)
is given by

δϕ(X) = δϕ(x, τ) = 1√
V β

∑
K

e−iK·Xδϕ(K) (2.45)

= 1√
V β

∑
K

eik·xe−i(iωn)(−iτ)δϕ(ωn, k) (2.46)

= 1√
V β

∑
K

eik·xe−iωnτ δϕ(ωn, k) (2.47)

where k represents the spatial wavevectors, and δϕ(ωn, k) are the Fourier components of
the field. The sum runs over both the wavevectors k (which correspond to the spatial
degrees of freedom) and the Matsubara frequencies ωn (which correspond to the temporal
degrees of freedom). The factor 1√

V β
is a normalization constant that ensures the correct

normalization of the field over both space and time. We have that ∑K = ∑
n,k and V is

the three spatial volume.

In the spatial coordinates, to incorporate periodic boundary conditions over finite
lenght Li, we expressed the field in terms of a Fourier series, where each mode ki corresponds
to a discrete momentum component in the xi-direction, reflecting the physical interpretation
of the field as a sum of waves. The periodicity in space, enforced by the finite extent
Li, discretizes the momenta. This is analogous to the temporal case, where β enforces
periodicity in τ . In the infinite volume limit (Li → ∞), the discrete sum over momenta
transitions to an integral, reflecting the continuum of momentum states in infinite space:

1
Li

∑
ni

→
∫ dki

2π
as Li → ∞. V = L1 · L2 · · · · Ld (2.48)
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Here, V = L1L2 · · · Ld represents the total spatial volume. Physically, each term in the sum
represents a mode of the field characterized by a frequency ωn (energy) and a wavevector
k (momentum).

Now, we can compute explicitly the integrals of the three terms inside 2.44. The
first term leads to,

∫ β

0
dτ
∫

d3x (∂τ ϕ)2 =
∫

d4X
1

V β

∑
K

∑
K′

∂τ

[
e−iωnτ eik·xδϕ (ωn, k)

]
× ∂τ

[
e−iωmτ eik′·xδϕ (ωm, k′)

]
=
∫

d4X
1

V β

∑
K

∑
K′

ei(k+k′)·xe−i(ωn+ωm)τ δϕ (ωn, k) (−iωn) (−iωm) δϕ (ωm, k′) .

(2.49)

Here we used the reality of the field and also used the standard integrals. Now, we can use
the useful relations, ∫ β

0
dτei(−ωn−ωm)τ = βδ (−ωn − ωm) ,∫

d3xei(k+k′)·x = V δ3 (k + k′) ,
(2.50)

to find:∫ β

0
dτ
∫

d3x (∂τ ϕ)2 = 1
V β

∑
K

∑
K′

[
V δ3 (k + k′)

]
[βδ (−ωn − ωm)]

× δϕ (ωn, k) (−iωn) (−iωm) δϕ (ωm, k′)
=
∑
K

δϕ (ωn, k) ω2
nδϕ (−ωn, −k) =

∑
K

ω2
nδϕ(K)δϕ(−K)

=
∑
K

ω2
nδϕ∗(K)δϕ(K).

(2.51)

The second and third terms are structurally similar, with the second term involving a
spatial momentum factor of k2, coming from the spatial derivatives, and the third term
involving a mass term m2, which appears from the term without deritivates. Now, the
Euclidean action for the scalar perturbation can be written as:

SE[δϕ] ≈ 1
2
∑

n

∑
k

δϕ(ωn, k)
(
ω2

n + k2 + m2
eff

)
δϕ∗(ωn, k). (2.52)

Using the properties of the exponential function, the action contributes to the partition
function via:

exp(−SE) =
∏
k,n

exp
[
−1

2
(
ω2

n + k2 + m2
eff

)
δϕ(ωn, k)δϕ∗(ωn, k)

]
. (2.53)

Recalling the partition function definition:

Z =
∏
k,n

∫
Dϕ exp

[
−1

2
(
ω2

n + k2 + m2
eff

)
δϕ(ωn, k)δϕ∗(ωn, k)

]
, (2.54)
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the Gaussian integral over the field fluctuations can be evaluated using the standard
identity: ∫

dDy exp
(

−1
2 y⃗ · Ây⃗

)
= (2π)D/2(det Â)−1/2. (2.55)

This is the generalization of the Gaussian integral. Applying this to equation 2.54, we are
left with a factor of (2π)D/2, which is irrelevant because we are taking the logarithm of
Z and are interested in the free energy of the system, which can be freely redefined by
addition or subtraction of constants. Therefore, the logarithm of Z becomes:

ln Z = ln
∏
k,n

(
ω2

n + k2 + m2
eff

)−1/2
= −1

2
∑
k,n

ln
(
ω2

n + k2 + m2
eff

)
. (2.56)

The sum over the momenta k will be performed in the end when we take the thermody-
namical limit (ie. V → ∞). The challenging part is evaluating the sum over Matsubara
frequencies ωn. Substituting ω = iωn = k0, the summation becomes:

T
∑

n

ln
(
ω2

n + k2 + m2
eff

)
= T

∑
k0

ln
(
−k2

0 + k2 + m2
eff

)
. (2.57)

Expanding the logarithm, we obtain:

T
∑
k0

ln
(
−k2

0 + k2 + m2
eff

)
= T

∑
k0

[ln (ωk − k0) + ln (ωk + k0)] , k0 = ωn (2.58)

where ωk = k + m2
eff. To compute the first term, the key idea is to rewrite the discrete

sum over Matsubara frequencies as a contour integral in the complex plane. To achieve
that, one can explore the hyperbolic cotangent function [24], defined as:

coth
(

βk0

2

)
, (2.59)

which is particularly useful because its poles are located precisely at the Matsubara
frequencies. The residue theorem can be employed to compute the sum:

T
∑
k0

ln (ωk − k0) = T
∑
k0

ln (ωk − k0) Res
[

β

2 coth
(

βk0

2

)]
. (2.60)

The remaining terms can be treated in a similar manner. By applying the residue
theorem and contour integration, the summation simplifies significantly. This follows
directly from the theorem:

∮
C

f(z) dz = 2πi
∑

Res (f, zk) . (2.61)

The key idea is to transform the original discrete sum into a contour integral that
encircles the poles of the function, allowing us to evaluate it via the residue theorem. Figure
4 illustrates the poles of the coth function, along with the chosen integration contour that
will be used.
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Figure 4 – Poles of coth(βk0/2) in the left figure and the right figure the path used to
encapsulate the residues.

The poles in figure 4 can be described as,

coth
(

βk0

2

)
= coth(nπi) ⇒ k0 = 2πin

β
= iωn, (2.62)

with residues 2/β. The residue Res
[

β
2 coth

(
βk0

2

)]
evaluates to unity. Using the residue

theorem in reverse, the sum over residues can be rewritten as a contour integral. This
integral is taken over a path C that encloses the poles of the function dependent on k0,
but excludes the poles of the hyperbolic cotangent (k0 = iωn = 2πiT ):

T
∑
k0

1
T

Res
[
ln (ωk − k0)

β

2 coth
(

βk0

2

)]
= 1

2πi

∮
C1∪C2

dk0
1
T

ln (ωk − k0)
1
2 coth

(
βk0

2

)
.

(2.63)
Applying this formula to the first term yields:

T
∑
k0

1
T

ln (ωk − k0) = 1
2πiT

∮
dk0 ln (ωk − k0)

1
2 coth

(
βk0

2

)

= − 1
4πiT

∮
dk0

( −1
ωk − k0

) ∫
dk0 coth

(
βk0

2

)

= 1
4πiT

∮
dk0

( 1
ωk − k0

) 2
β

ln
[
sinh

(
βk0

2

)]
.

(2.64)

Now we have,

T
∑
k0

1
T

ln (ωk − k0) = 1
2πi

∮
dk0

( 1
ωk − k0

)
ln
[
sinh

(
βk0

2

)]
, (2.65)

that can be solved using directly the residue theorem, leading to,

1
2πi

∮
dk0

( 1
ωk − k0

)
ln
[
sinh

(
βk0

2

)]
= ln

[
sinh

(
βωk

2

)]
. (2.66)
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Similarly, for the second term, choosing the opposite contour as the first one, we get:

T
∑
k0

ln (ωk + k0) = ln
[
sinh

(
βωk

2

)]
. (2.67)

Thus, the sum from Equation 2.60 can be written as:

T
∑

n

1
T

ln
(
ω2

n + ω2
k

)
= 2 ln

[
sinh

(
βωk

2

)]

= 2 ln
[1
2e

βωk
2
(
1 − e−βωk

)]
= βωk − 2 ln 2 + 2 ln

(
1 − e−βωk

)
.

(2.68)

The constant ln 2 can be neglected, as it is independent of temperature. The free energy
for a free scalar field can be obtained using the thermodynamic identity:

F = −T ln Z = T
∑

k

[
βωk

2 + ln
(
1 − e−βωk

)]
. (2.69)

and then, in the thermodynamic limit, we arrive at the free energy density,

f = p = lim
V →∞

−T
ln Z
V

= −T ln Z = T
∫ d3k

(2π)3

[
βωk

2 + ln
(
1 − e−βωk

)]
. (2.70)

It is important to emphasize that this result represents only the dominant term in the
expansion of equation 2.42. Including the contributions from all particles in the Standard
Model, and also summing the fermion contribution (similar computation), the total thermal
contribution is given by:

V̄ β
1 (ϕ, T ) = −

∑
F

gF T 4

2π2

∫ ∞

0
dx x2 ln

(
1 + e−

√
x2+β2m2

F

)

+
∑
B

gBT 4

2π2

∫ ∞

0
dx x2 ln

(
1 − e−

√
x2+β2m2

B

)
.

(2.71)

After integrating the zero-temperature one-loop contribution using a cutoff Λ [26], we
obtain the famous Coleman-Weinberg term:

∑
i

gi

64π2
m4

i

v4 ϕ4 ln ϕ2

v2 . (2.72)

By adjusting the quadratic and quartic terms to ensure the correct minima at v =
246.22 GeV, the total effective potential can be written as:

Veff(ϕ, T ) = −µ2

2 ϕ2 + λ

4 ϕ4 + ϕ6

8M2 +
(∑

i

gi

64π2
m4

i

v4

)
ϕ4 ln ϕ2

v2 + V̄ β
1 (ϕ, T ), (2.73)
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where the parameters µ2 and λ are given by:

µ2 = m2
h

2 − 3v4

4M2 , λ = m2
h

2v2 − 3v2

4M2 . (2.74)

In section 6 we will perform a two-fold analysis to evaluate the impact of the
particle content of the theory on the wall velocity. In one case, we will consider only top
quarks as heavy particles running in the loop. In the other case, we will consider top quarks,
W bosons, and Z bosons running in the loop, with gi = 12, 6, and 3 representing their
respective degrees of freedom and masses mi = 173.1 GeV, 80.385 GeV, and 91.1876 GeV,
respectively. A clear shape of our potential can be seen in figure 5, where one can see
the important critical temperature Tc i.e, the temperature at which we have degenerate
minima and the lowest energy state changes discontinuously.

Figure 5 – Higgs effective potential Veff(ϕ, T ) showing it profile above, at and below
critical temperature Tc

To accurately describe a transition that could generate detectable gravitational
waves (GWs), it is important to define the types of transitions more precisely. Three types
of phase transitions can be defined [27]:

1. First-order phase transition: In this case, the order parameter ϕ0 undergoes a
discontinuous change at the critical temperature Tc, which is the temperature at
which the minima of the potential are degenerate. Additionally, there is a release of
latent heat and a discontinuity in the thermodynamic enthalpy ω = T ∂p

∂T
at Tc.

2. Second-order phase transition: Here, all parameters change continuously at Tc,
with no discontinuity in the order parameter or in the thermodynamic quantities.

3. Crossover: In this case, the order parameter changes continuously at Tc, but not
analytically. This scenario represents a smooth transition without a sharp distinction
between the symmetric and broken phases.
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A transition with this potential, if of first-order, would occur analogously to water
boiling: regions of space appear where particles acquire mass (a probabilistic event that
involves surpassing a barrier of the free energy that connects the two minima) - the
so-called“bubble” – immersed in the middle of particles that are not yet massive. Then,
these nucleated bubbles start a fast percolation. This process can be understood in a
pictorial way using figure 6,

Figure 6 – Bubbles of a First-order phase transition (FOPT) immersed in the region with
massless particles

2.3 Nucleation temperature

As mentioned in the previous section, a key parameter of the phase transition is
the critical temperature, shown in Figure 5. This temperature corresponds to the point
where the potential’s minima become degenerate. However, it does not mark the onset
of the phase transition. Instead, the transition begins at the nucleation temperature, a
temperature below Tc, at which bubbles start to form, which will be discussed next.

First-order electroweak phase transitions proceed via the nucleation of bubbles
from a metastable false vacuum state [28], overcoming the potential barrier depicted in
Figure 5. Due to surface tension and internal pressure, larger bubbles tend to expand and
percolate, while smaller ones collapse, restoring the symmetric phase.

The critical field configurations that mediate the transition between the false and
true vacua are known as bounce solutions—solutions to the equations of motion derived
from the Euclidean action. The phase transition occurs when the nucleation rate per
unit volume surpasses the expansion rate of the universe. In other words, we require the
nucleation process to dominate over the rate at which bubbles form and disappear.
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To quantify this, we first compute the probability of overcoming the barrier. This
can occur via thermal fluctuations or quantum tunneling [2]. In our case, since we are in a
high-temperature regime, thermal fluctuations dominate.

For the system to transition to the true vacuum, it must overcome the potential
barrier. This requires a fluctuation with energy at least equal to the barrier height, which
we denote as Esph. The probability of a local fluctuation of the field ϕ with energy E

follows a Boltzmann distribution:

P (E) ≃ e−E/T (2.75)

Thus, the total probability of overcoming the barrier is given by summing over all possible
intermediate configurations with E > Esph:

P ≃
∑

E>Esph

e−E/T (2.76)

Since we are dealing with static field configurations, the energy of a given configuration
ϕ(x) is

E[ϕ] =
∫

d3x
[1
2(∇ϕ)2 + V (ϕ)

]
. (2.77)

The probability of a transition mediated by a fluctuation with energy E is exponentially
suppressed by the ratio E/T . Consequently, the dominant contribution to (2.76) comes
from the configuration with the lowest possible energy, known in the literature as the
sphaleron.

Moreover, this fluctuation corresponds to a bubble mediating the transition between
the two minima of the potential. That is, inside the bubble, we have the broken phase,
while outside, the system remains in the symmetric phase. Consequently, it must satisfy
the boundary conditions:

ϕ(r → ∞) = 0 and dϕ

dr

∣∣∣∣∣
ϕ=0

= 0. (2.78)

Thus, determining the sphaleron solution reduces to an optimization problem:
finding the field configuration that minimizes the energy while satisfying these boundary
conditions. Applying the Euler-Lagrange equation to this system gives

d

dr

(
r2 dϕ

dr

)
− r2 ∂V

∂ϕ
= 0, (2.79)

which simplifies to
d2ϕ

dr2 + 2
r

dϕ

dr
− ∂V

∂ϕ
= 0. (2.80)

Solving this equation of motion determines the profile ϕ(r) that minimizes E and
contributes dominantly to (2.76).
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For a one-dimensional potential, the solution can be obtained using a shooting
method that satisfies the boundary conditions (dϕ/dr)|r=0 = ϕ0 and limr→∞ ϕ = 0, leading
to a temperature-dependent profile ϕ(r). Our goal is to find the temperature at which

Γ
V

∼ H4.

This nucleation rate is proportional to the probability obtained earlier, and dimensional
analysis leads to

Γ
V

∼ T 4e−Esph/T . (2.81)

Setting this equal to the Hubble rate to the fourth power, as given by the Friedmann
equation, (

ȧ

a

)2
= π2g∗T 4

90M2
Pl

, (2.82)

and substituting into our nucleation rate, we obtain

T 4e−Esph/T =
(

π2g∗T 4

90M2
Pl

)2

. (2.83)

Applying this condition to the relevant energy scale (T ≈ 100 GeV) yields a constraint on
the nucleation temperature, given by S(T )/T ≈ 140. A numerical solver is then required
to find the profile that satisfies SE(T )/T ≈ 140 and thus determines the nucleation
temperature Tn.

One can plot a bounce profile at Tn and M = 700 GeV in figure 7 to demonstrate
bubbles shape. The profile shape in figure 7 is already computed at Tn and evaluating

Figure 7 – ϕ(r) bubble’s shape for Tn starting at ϕ0.

its integral using 2.77 gives us the desired result of SE(T )/T ≈ 140 for nucleation. We



Chapter 2. First-order Electroweak Phase transitions 29

choose an arbitrary value for M but there are regions of M in which the transition never
nucleate, called metastable regions.

2.3.1 Additional parameters

We know from the previous discussion that the bubble rate is given by the equation
2.81. With that, one can define the inverse time duration of the transition,

β ≈ Γ̇
Γ (2.84)

with leads to another important parameter, the ratio β/H∗, with H∗ Hubble parameter
at the temperature T∗ (temperature of production of GWs, for our setup it is reasonable
to assume T∗ ≈ Tn [29]). The gravitational wave spectrum is inversely proportional to
(β/H∗)2 [13], showing a great impact on the spectrum. Now, a key parameter that we are
going to use with a certain frequency is the vacuum-released energy normalized with the
radiation energy,

α = ρvac

ρ∗
rad

. (2.85)

We again are in a radiation-dominated era and ρ∗
rad = g∗π

2T 4
∗ /30. ρvac can be easily

computed using the difference between the two states ie., ρvac = ∆V − 1/4 · T · ∆(dV/dT ).
We used here the definition of the strength of the phase transition using the trace of the
energy momentum tensor [30].
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3 Gravitational Waves

3.1 Detection of Gravitational Waves

Gravitational waves are among the most challenging predictions of General Rela-
tivity test experimentally, due to the extreme precision required. For instance, consider
the perturbation caused by gravitational waves from a binary black hole system, where
each black hole has a mass of 10 solar masses and the system is located at a distance on
the order of 100 Mpc. The amplitude of the gravitational waves can be measured using
the definition of strain ∆L/L, or the length driven from equilibrium δL. For this detection
from black hole mergers, this relative displacement was of O 10−21 m [31].

Achieving such precision is a difficult task, and this experimental challenge became
particularly evident when gravitational waves were first directly detected in 2015 [8].
However, despite the difficulty, investing effort, time, and resources in this endeavor was
justified, as previous successes of General Relativity and indirect evidence of gravitational
waves had already been observed in the Hulse-Taylor binary system [32], where the loss of
kinetic energy due to gravitational wave emission was measured.

It is noted that interferometric techniques offer the greatest prospects for GW
registration due to their high sensitivity and extremely wide frequency band [33]. Therefore,
let us try to understand the most straightforward version of this kind of experiment.

3.1.1 An example of a simple Michelson interferometer

Interferometers provide an elegant solution to the experimental challenge of detect-
ing gravitational waves. While they may appear simple at first glance, large gravitational
wave interferometers are extremely complex, with numerous degrees of freedom that must
be controlled with high precision. Due to this complexity, we will focus on the simplest
case, which does not capture the full complexity of a real interferometer.

The Michelson interferometer, used in the Michelson-Morley experiment, is a highly
precise system designed to measure changes in the travel time of light along its arms. A
conceptual schematic of the system is shown in Figure 8. The setup consists of a laser
directed at a beam splitter, which reflects the laser beam with equal probability toward
two mirrors. When the light returns, it is split again, and part of it is directed to a light
detector.

Let kL = ωL

c
and λL = 2π

kL
represent the wave properties of light. A spatial

component of the electric field of the laser beam leaving the beam splitter can be written
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Figure 8 – Simple experiment of the Michelson interferometer.

as

E0e
−iωLt+ik⃗·x⃗. (3.1)

Consider Lx and Ly as the lengths of the two arms, oriented as shown in Figure 8.
The power measured by the detector can be calculated, and after some calculation, the
eletric field of the laser can be described by,

|Efinal|2 = E2
0 sin2[kL(Ly − Lx)]. (3.2)

Thus, any variation in the length of the arms corresponds to a change in the power
detected, which is the basis for detecting gravitational waves.

To further explore the calculation, we can use the results of the transverse and
traceless gauge transformation discussed in [31] to understand the operation of the
interferometer.

In this coordinate system, let us consider objects in free fall. Even in the presence
of gravitational waves, the coordinates of these objects remain unchanged. However, it
is important to note that although the mirrors of terrestrial interferometers are not in
free fall, the forces acting on them are static compared to the frequencies of gravitational
waves [34]. Therefore, we can treat the mirrors as if they were in free fall in the horizontal
plane.

For simplicity, assume that the gravitational waves only have positive polarization
in the z direction (with respect to the coordinate system in Figure 8). In the z = 0 plane,
we have

h+(t) = h0 cos(ωgwt). (3.3)
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From the perturbation of the background Minkowski metric (caused by the GWs),

gµν = ηµν + hµν (3.4)

we see that the metric will take the following form (we are in a plane in the TT gauge):

gµν =


−c2 0 0 0
0 1 + h+(t) 0 0
0 0 1 − h+(t) 0
0 0 0 1

 . (3.5)

Since photons travel along null geodesics, setting ds2 = 0 = gµνdxµdxν in the
metric (3.5), we have:

dx = ±cdt
√

1 + h+(t) (3.6)

and treating h+ perturbatively,

dx = ±c dt
(

1 − 1
2h+(t)

)
, (3.7)

where + corresponds to the outgoing photon (before reflected) and − to the incoming
photon after reflection. After some boring calculations involving the time it takes for each
laser to travel from the beam to the perturbed arms [34], the resulting effect depends on
the change in the phase of each beam. This phase change translates into an observable
result in the power P = |Etot|2 at the final detector. To maximize the observed effect, it
can be shown that the arms lengths Lx, Ly (which are equal to cancel noise) should be:

L = Lx + Ly

2 = λgw

4 .

This configuration maximizes the effect. However, the wavelength of gravitational
waves is extremely long, making arms of this magnitude impractical due to funding and
engineering constraints. A solution to this limitation is provided by the use of Fabry-Perot
cavities, which allow the laser to bounce within the cavity, simulating a longer effective
length in the interferometer [35].

3.2 Contributions to the Gravitational Wave Spectrum
As discussed in chapter 2, among the possible sources of these GWs, first-order

cosmological phase transitions play a prominent role from the perspective of particle
physics. Now, with a more solid idea of how an experiment could detect gravitational
waves coming from this type of source, we can move on to compute the amplitude of
gravitational waves generated by first-order phase transitions.

Three processes contribute to the production of gravitational waves (GWs) during
a first-order phase transition. These processes will be discussed sequentially:
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• Scalar field contribution

This contribution arises from the collision of bubble walls in the plasma. It can be
computed using the envelope approximation [13], where a fraction of the latent heat from
the phase transition is deposited in a thin shell near the bubble front. The energy in each
shell is quickly dispersed after colliding with another shell. This process is illustrated in
figure 9. Numerical simulations using this approximation [37] lead to the spectrum:

Figure 9 – The collided walls, denoted by the gray lines, gradually lose their energy and
momentum densities after collisions [36].

h2Ωenv(f) = 1.67 × 10−5
(

H∗

β

)2 (
κα

1 + α

)2
(

100
g∗

)1/3 ( 0.11v3
w

0.42 + v2
w

)
Senv(f), (3.8)

where Senv(f) parametrizes the spectral shape of the GW radiation using the envelope
approximation:

Senv(f) = 3.8(f/fenv)2.8

1 + 2.8(f/fenv)3.8 , (3.9)

with:
fenv = 16.5 × 10−3 mHzf∗

β

β

H∗

T∗

100 GeV

(
g∗

100

)1/6
, (3.10)

and:
f∗/β = 0.62

1.8 − 0.1vw + v2
w

. (3.11)

• Sound Waves

The expansion of bubble walls generates motion in the plasma, creating sound
waves. This type of GW production is an active area of research, and a definitive model
that accounts for vw is not yet available. It turns out that vw is a crucial parameter for
determining the GW spectrum. For generic values of vw significantly different from the
sound speed cs, numerical results from [38] are fitted by:
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h2ΩSW(f) = 2.65 × 10−6
(

H∗

β

)(
κvα

1 + α

)2
(

100
g∗

)1/3

vwSSW(f), (3.12)

where κv is the fraction of latent heat transformed into the bulk motion of the fluid [13].
SSW is given by

Ssw(f) = (f/fsw)3
(

7
4 + 3 (f/fsw)2

)7/2

, (3.13)

with,

fsw = 1.9 × 10−2mHz 1
vw

(
β

H∗

)(
T∗

100GeV

)(
g∗

100

) 1
6

(3.14)

• Magnetohydrodynamic (MHD) Contribution

The expansion of bubbles induces turbulence in the plasma, which in turn generates a
time-dependent quadrupole moment in the energy-momentum tensor, producing GWs.
Assuming turbulence, as proposed in [39], the contribution to the GW spectrum is given
by

h2Ωturb(f) = 3.35 × 10−4
(

H∗

β

)(
κturbα

1 + α

)1/2
(

100
g∗

)1/3

vwSturb(f), (3.15)

where κturb is the fraction of latent heat transformed into turbulence. There is so far no
appropriate modeling for this parameter. It is sometimes assumed that κturb = εκsw, with
typical values ranging from 5 − 10% [13]. Sometimes extreme cases as ε = 0 (negligible
turbulence) [40] and ε = 1 [41] are also assumed. In our case, we are going to assume
κturb = 0.05.

Therefore, Sturb(f) is given by,

Sturb (f) = (f/fturb )3

[1 + (f/fturb )]
11
3 (1 + 8πf/h∗)

(3.16)

with,

fturb = 2.7 × 10−2mHz 1
vw

(
β

H∗

)(
T∗

100GeV

)(
g∗

100

) 1
6

, (3.17)

and,

h∗ = 16.5 · 10−3(T∗/100)(g∗/100)1/6mHz. (3.18)

These processes contribute to the total spectrum of the stochastic GW background.
Each contribution is additive, thus

h2ΩGW ≈ h2Ωenv + h2ΩSW + h2Ωturb. (3.19)
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3.3 LISA

Ground-based interferometers are limited to frequencies above about 10 Hz due
to seismic and Newtonian noise. This type of seismic noise affects the interferometer in
the form of surface waves, which cause oscillations in the interferometer’s suspension
mechanisms. On the other hand, Newtonian noise refers to fluctuations in the gravitational
force caused by the movement of objects, resulting in variations in the gravitational
attraction. The main contribution to this noise comes from seismic noise, which causes
variations in mass density and, consequently, fluctuations in the gravitational force. The
figure 10 shows different types of noises that can be found in an interferometer [34].

Figure 10 – Different noises of a ground-based interferometer.

Furthermore, the mHz region (below 10Hz) is potentially rich in gravitational wave
(GW) sources, including supermassive black holes and first-order phase transitions in
the early universe. To detect these, space-based interferometers are needed, as seismic
and newtonian noise is absent in space. LISA consists of three spacecraft arranged in an
equilateral triangle, 5 million km apart, orbiting the Sun. The triangle’s center is about 50
million km behind the Earth along its orbit. The arm length is optimized to detect GWs
in the 10 mHz range, with LISA sensitive to frequencies from 0.1 mHz to 0.1 Hz [42].

Each LISA spacecraft will carry two test masses, one for each arm, floating freely
as shown in figure 11. The spacecraft uses a drag-free technique to keep centered on the
test masses. The position of the masses is sensed, and the spacecraft adjusts its position
using micro-thrusters, requiring extremely small thrusts—less than 100 µN. These tiny
thrusts are generated by emitting fast ions in space, compensating for external influences
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Figure 11 – LISA setup [42].

like solar winds and micro-meteorites. The LISA Pathfinder mission, an ESA initiative,
demonstrated this drag-free control technique with the required precision [42].

The test masses exchange laser signals. Given the 5 million km distance, simple
reflection is impractical due to power loss from diffraction, which spreads the beam over a
20 km radius. Instead, LISA employs a laser transponder system, where an incoming laser
is sensed, and another laser, phase-locked to the first, sends back a return beam. Unlike
a Michelson interferometer with equal arms, laser frequency fluctuations do not cancel
out when taking the difference between arms. To address this, LISA employs time-delay
interferometry, where the outputs of the two arms are recombined with a time delay that
compensates for the arm length difference. This technique cancels laser frequency noise
while preserving the signal from GWs in the mHz region.

LISA’s sensitivity to gravitational waves in the frequency range of 10−4 Hz to
1 Hz makes it an ideal instrument for searching for signatures of early-universe phase
transitions. If the electroweak phase transition is of first order and occurs at sufficiently
high energy scale, O(1 TeV), the resulting gravitational waves could fall within LISA’s
detectable range. A comparison of the sensitivities of various gravitational wave detectors
is shown in Figure 12 [43].

According to the last section, the shape and peak of the power spectrum depend
on the parameters of the phase transition. For our setup, one can plot the spectrum for
several parameters of M and see where the spectrum falls within inside LISA‘s sensitivity,
following [13], we implement equation 3.15 and 3.12 that give us the following spectrum ,
we see that the spectrum starts to become non-detectable at M ≈ 570GeV. Therefore, a ϕ6

model offers a straightforward approach to analyzing the behavior of detectable first-order
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Figure 12 – Sensitivity plot from [43] showing the sensitivity curves of several gravitational
wave detectors.

Figure 13 – Plot of the Gravitational Waves spectrum for several values of parameter M .

phase transitions.
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4 Hydrodynamical effects

With the potential well-defined and the formulas established for computing the
gravitational wave spectrum, we can now proceed to determine other important parameters
that remain unknown. It’s important to emphasize that our main focus here is to compute
vw. This chapter will provide an important nontrivial step to achieve that.

As the bubble propagates through the plasma, hydrodynamical effects are expected
to arise. These effects can be analyzed using two complementary approaches, which
should ultimately yield consistent results. The first approach relies on macroscopic physics,
leveraging conservation laws such as energy and momentum conservation. The second
approach, based on microscopic physics, will be the focus of the final sections.

For now, let us focus on the first approach that will give us important parameters
and great insights on what is happening when the bubbles expands inside the plasma.

4.1 The energy-momentum tensor
The continuity of the total energy-momentum tensor across the bubble interface

will be our guide to comprehend the profiles and effects that occurs with the bubble
passage. The energy-momentum tensor of a scalar field is given by

T ϕ
µν = ∂µϕ∂νϕ − gµν

(1
2∂αϕ∂αϕ − V0(ϕ)

)
, (4.1)

while that of a relativistic fluid in local equilibrium (perfect fluid) is

T pl
µν = (e + p)uµuν − gµνp = w uµuν − gµνpT , (4.2)

where uµ is the four-velocity of the plasma, w ≡ e + pT is the enthalpy density, e is the
energy density, and pT is the pressure contribution due solely to the plasma particles.

We are interested in the energy-momentum far ahead of and behind the wall, where
∂µϕ = 0, this illustration can be seen in figure 14.

Therefore, the total energy-momentum tensor is

Tµν = T ϕ
µν + T pl

µν = w uµuν − gµν(pT − V0). (4.3)

Note that pT − V0 ≡ p acts as an effective total pressure, incorporating the free energy
released by the scalar field during the phase transition. In fact, one can verify that
V0 − pT = V (T, ϕ), which is the thermal effective potential of the scalar field, calculated
in eq. (5.15) [44].
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Figure 14 – Figure illustrating the bubble profile.

Focusing on the bubble wall frame with a terminal bubble wall velocity (constant
velocity) leads to a time-independent energy-momentum tensor. Taking the z-component of
eq. 4.3 and using the four-velocity uµ = γz(1, vz), the divergence of the energy momentum
tensor gives the following equations:

∂zT zz = 0 = ∂z(ω)γ2
z v2

z + ∂zp, ∂zT z0 = ∂z(ω)γ2
z vz. (4.4)

Integrating these equations and denoting the phases in front and behind the wall by
subscripts + (unbroken phase) and − (broken phase), we obtain the matching conditions:

w+v2
+γ2

+ + p+ = w−v2
−γ2

− + p− and w+v+γ2
+ = w−v−γ2

−. (4.5)

Using thermodynamic relations,

w = p + ρ, w = T
∂p

∂T
, and ρ = T

∂p

∂T
− p, (4.6)

every term is well defined via our thermal potential.

4.2 The bag equation
For completeness, the plasma can be approximated, simplifying any numerical result

for any type of potential. By using the thermal contribution in eq. 2.71, we can expand
the free energy for bosons and fermions, truncating at the first term, which naturally leads
to the so-called bag equation.

Expanding eq. 2.71 for m ≪ T [45], gives

V β
1 (ϕ, T )

T 4 = −π2

90 + 1
24

(
mi

T

)2
− 1

12π

(
mi

T

)3
− 1

32π2

(
mi

T

)4
ln mie

γE−3/4

4πT
+ · · · (4.7)

for bosons, and

V β
1 (ϕ, T )

T 4 = −7
8

π2

90 + 1
48

(
mi

T

)2
+ 1

32π2

(
mi

T

)4
ln mie

γE−3/4

πT
+ · · · (4.8)
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for fermions. Then, it’s easy to see that we can express p = −F satisfying the equation
of state of a radiation gas, where the pressure has the form p = aT 4/3 and define the
leading-order term

a = π2

30
∑

i

(
Nb + 7

8Nf

)
, (4.9)

which transforms the total free energy into

p = −F = aT 4

3 − V (ϕ). (4.10)

Using the thermodynamic relations 4.6,

w = aT 4 and ρ = aT 4 − p. (4.11)

It is important to note that this expansion is only valid for mi ≪ T and breaks down for
particles with mi ∼ T (including top quarks, W and Z bosons). However, this deviation is
often minimal due to the dominance of light particle degrees of freedom (DoF) (remember,
we are summing over all species and only few of then will not respect (mi << T ).

A relevant question now is whether this approximation is suitable for our model.
To assess this, we can plot the thermal potential in eq. 2.71, computing the exact integral
as well as the leading-order approximation from eq. 4.10 at the electroweak scale T 100
GeV. The respective masses of each Standard Model particle are used, as shown in 15.

Figure 15 – Comparison between exact thermal contribution and Taylor expansion ap-
proximation.

As expected, the approximation converges for the light particles, and since most
degrees of freedom are light particles, the sum over all Standard Model species yields a
significant result. This approximation is advantageous for fast numerical computation of
the thermal contribution.



Chapter 4. Hydrodynamical effects 41

4.3 Fluid equations
Another crucial hydrodynamic step is to determine the hydrodynamic variables in

front of and behind the bubble wall. At a finite temperature, the bubble nucleates with the
scalar profile given by the O(3) bounce solution with spherical symmetry like 7, and the
subsequent expansion is assumed to be spherical, making spherical coordinates convenient.
Thus, the fluid velocity and other thermodynamic quantities depend only on the temporal
and radial coordinates t and r, where r is the distance from the bubble center and t is the
time since nucleation.

When the bubble reaches a steady expansion state long after nucleation, there is
no characteristic distance scale for a steadily expanding bubble. Consequently, the fluid
velocity and other thermodynamic quantities depend solely on the self-similarity coordinate
ξ = r

t
. In the planar wall case, the four-velocity of the plasma at a point ξ is uµ = γ(1, v(ξ)),

where γ is the Lorentz factor associated with v(ξ). We define a perpendicular direction
uµ = γ(v(ξ), 1) such that uµuµ = 0, yielding

uµ∂µ = −γ

t
(ξ − v)∂ξ and uµ∂µ = γ

t
(1 − vξ)∂ξ. (4.12)

Projecting the continuity equation along uµ and the perpendicular direction uµ, and using
uµuµ = 1 and uν∂µuν = 1

2∂µ(uνuν) = 0, we arrive at

∂zT 00 = 0 =⇒ ∂ξe

w
= 1

µ(ξ, v)

(
2 v

ξ(1 − vξ) + γ2∂ξv

)
,

∂zT 0z = 0 =⇒ ∂ξp

w
= γ2µ(ξ, v)∂ξv,

(4.13)

where we define
µ(ξ, v) ≡ ξ − v

1 − vξ
. (4.14)

We can rewrite ∂zT 0z = 0 as an equation for the temperature profile using w = T ∂ξ
∂T

∂p
∂ξ

and then solving the differential integrating both sides to obtain

T (ξ) = T (ξ0) exp
(∫ v(ξ)

v(ξ0)
γ2µ(ξ(v), v) dv

)
. (4.15)

Now, using the sound speed c2
s = ∂p

∂e
= ∂ξp

∂ξe
, ∂zT 00, and the same trick of the partial

derivatives used to compute equation 4.15, we arrive at

∂vξ = ξ

2v

1 − vξ

1 − v2

(
µ(ξ, v)2

c2
s

− 1
)

, (4.16)

(ξ − v)∂ξe

w
= 2v

ξ
+ [1 − γ2v(ξ − v)]∂ξv, (4.17)

(1 − vξ)∂ξp

w
= γ2(ξ − v)∂ξv. (4.18)
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Figure 16 – General profiles of the fluid velocity v(ξ) in the frame of the bubble center.
There are no consistent solutions in the shaded regions.

This leads to the equation

2v

ξ
= γ2(1 − vξ)

(
µ(ξ, v)2

c2
s

− 1
)

∂ξv, (4.19)

which can be solved for ξ = ξ(v) and then substituted back into eq. (4.15) for the profile
T (ξ). Figure 16 shows different profiles of v(ξ) for different initial conditions of ξ0, v0.

4.4 Classification of solutions and discontinuities
As demonstrated by the arguments above, equation (4.19) is central to hydrody-

namic analysis. To better understand its solutions, we will rewrite the energy-momentum
continuity across the bubble wall using the form 4.5. These equations can be combined to
yield a relationship between the fluid velocities ahead of and behind the wall [46,47]:

v+ = 1
1 + α

X+ ±
√

X2
− + α2 + 2

3α

 with X± ≡
3v2

− ± 1
6v−

, (4.20)

where
α ≡ (w+ − 3p+) − (w− − 3p−)

4ρrad
(4.21)

defines the ratio of energy released by the transition relative to the energy contained in
radiation in the plasma, ρrad = π2T 4 × 106.75/90 [11,48].
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Figure 17 – Possible profiles of solutions from the hydrodynamic equation. From left to
right: deflagrations, hybrids, and detonations.

We are now prepared to discuss the solutions of eq. (4.19). Depending on the initial
conditions, consistent solutions exhibit distinct patterns of discontinuities, allowing for
classification into three types, depicted in figures 17 and 18.

Figure 18 – Different velocity profiles v(ξ) for deflagrations, hybrids, and detonations. Also
shown are the speed of sound cs and the Jouguet velocity vJ . The figure was
produced with a fiducial value of α = 0.3. This figure represents cases of the
general profiles of figure 16

.

4.4.1 Detonations

One possible class of solutions is detonations, which occur when the wall velocity
exceeds the so-called Jouguet velocity1,

ξw > vJ = 1√
3

1 +
√

2α + 3α2

1 + α
. (4.22)

1 Obtained from the Chapman-Jouguet condition, which gives v− = cs for detonations [46,48,49].
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In this scenario, the wall encounters the plasma while it is still at rest. Thus, the plasma
immediately ahead of the bubble wall remains unaffected, with a temperature T+ = Tn.

4.4.2 Deflagrations

Another solution class is deflagrations, where the wall propagates at subsonic
velocities, ξw ≡ vw < cs, accompanied by a shock wave that precedes the bubble wall,
heating the plasma. This is illustrated in figure 19. The shock front velocity ξsh can be
determined as follows. In the plasma frame (also known as the “bubble center frame” in
the literature, where the plasma is at rest at infinity), the plasma is stationary ahead
of the shock and moves with velocity v(ξsh) immediately behind it. Transforming to the
shock frame using Lorentz velocity addition, eq. (4.14), the plasma moves with velocity
−ξsh ahead of the shock and with −µ(ξsh, v(ξsh)) behind it. Given that the plasma remains
in the broken phase on both sides of the shock, eq. (4.5) yields the condition [46,48,50]:

ξshµ(ξsh, v(ξsh)) = 1
3 and ξsh

µ(ξsh, v(ξsh)) = 3T 4
sh + T 4

n

3T 4
n + T 4

sh
. (4.23)

Rewriting the first equation gives

ξsh = v(ξsh)
3 +

√
v(ξsh)2

9 + 1
3 . (4.24)

The shock front position can thus be found by solving eq. (4.19) for v(ξ) and identifying
where v(ξ) satisfies eq. (4.24).

The second condition in eq. (4.23) can then be used to establish the temperature
jump across the shock front:

Tn

Tsh
=
(

3(1 − ξ2
sh)

9ξ2
sh − 1

)1/4

. (4.25)

From eqs. (4.15) and (4.25), we have

Tn

T+
= Tn

Tsh
· Tsh

T+
=
(

3(1 − ξ2
sh)

9ξ2
sh − 1

)1/4

exp
(∫ v(ξsh)

v(ξw)
γ2µ(ξ(v), v) dv

)
, (4.26)

where ξ(v) is obtained by solving eq. (4.19). For deflagrations, the plasma is at rest behind
the wall (in the plasma frame), so in the bubble frame, v− = −ξw. Given T+ and v−, we
can solve the continuity equations (4.5) to find T− and v+ (the fluid velocity in front of the
wall in the wall frame). Using v+, the fluid velocity ahead of the wall in the plasma frame
is computed as v(ξw) = µ(ξw, v+), allowing for the initial conditions to solve eq. (4.19)
and find v(ξsh). The integration in eq. (4.26) yields Tn(T+, vw). For a fixed ξw, this process
iterates until Tn(T+, vw) matches the nucleation temperature calculated in the previous
section, determining T+.
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wallshock

p− 6= 0
v− = −ξw
T−

v(ξw)
T+

ξsh

v(ξsh)
Tsh

p+ = 0
vn = −ξsh
Tn

p+ = 0

ξw

Figure 19 – Depiction of the wall and shock fronts. Behind the wall (yellow region to the
right), the plasma is in the broken phase (p− ̸= 0) and at rest, so the plasma
velocity in the bubble frame is v− = −ξw. Ahead of the shock front (white
region to the left), the plasma is also at rest, giving a velocity of −ξsh in the
shock frame. The temperature T+ immediately ahead of the wall is found
by calculating the temperature jump from Tn to Tsh across the shock front,
then evolving to the wall along the shock wave (red region in between) using
eq. (4.15).

4.4.3 Hybrids

Another kind of solution is called hybrids, which occurs for supersonic walls
(ξw > cs). Unlike Jouguet detonations, hybrids involve a shock front ahead of the wall, as
well as a rarefaction wave behind it. The method for computing T+ in this case is similar
to the one used for deflagrations described above. However, the plasma is no longer at rest
behind the wall; instead, it moves at the speed of sound (in the wall frame) [46, 51]. Thus,
one must set v− = cs in the continuity equations.

4.5 Behavior of T+, T−, v+, v−

Now that we have the tools to compute T+, T−, v+, v− for a given vw one can plot a
graph of v+ as a function of ξw to illustrate the dependence described in equation 4.19. This
can be done for a low value of M (e.g., M = 600 GeV) and for a high value (M = 820 GeV),
showing that the difference between v+ and v− is highly dependent on the strength of the
transition. Higher values of M lead to closer values of v+ and v−, as one would expect in
the standard model limit where M → ∞. This behavior is clear in figure 20.

With these plots, one can see the propositions made in this section. In the defla-
gration case, the plasma is at rest right behind the wall, so that the wall velocity is now
v− = vw, and the relation v+ < v− is valid due to the shock front created. In contrast, in
detonations, the phase transition wall moves at supersonic speed hitting fluid that is at
rest in front of the wall. In the wall frame, the symmetric-phase fluid moves into the wall
at v+ = vw and entering the broken phase behind the wall where it slows down so that
v < v+ (e.g. the fluid gains mass). We can also see in the hybrids region that we have
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Figure 20 – Plots showing the dependence of v+ and v− with the parameter vw as an
input. The left picture shows the plot for M = 600GeV and the right one for
M = 820GeV. The velocities until vw = 1/

√
3 refers to deflagrations, from cs

to vJ , Hybrids, and after the descontinuity, detonations.

.

v− = cs while v+ still gets constrained by the shock front.

We can also plot the dependence of T+ and T− as functions of ξw seen in figure
21: Again, the difference between T+ and T− decreases as the transition strength weakens.

Figure 21 – Plots showing the dependence of T+ and T− with the parameter vw as an
input. The left picture shows the plot for M = 600 GeV and the right one for
M = 820 GeV.

Additionally, this plot highlights a key feature of the behavior of T+ and T−: a discontinuity
appears at vJ . This arises because, in deflagrations and hybrid transitions, the temperature
T+ does not match the ambient plasma temperature outside the shock, Tn. This discrepancy
results from changes in thermodynamic quantities both ahead of the wall and at the shock
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front, which intuitively leads to distinct conditions in the bubble’s front as hybrids transition
to detonations. Note that, in detonations, the absence of a shock front means information
has not propagated to the bubble’s front. Thus, T+ converges to Tn immediately after
reaching vJ . This process also causes a friction discontinuity ahead of the bubble, which
will be further discussed in the next section.
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5 Non-equilibrium effects

Now that we have developed methods to understand the macroscopic behavior of
the solutions for bubble propagation, let us delve into the microphysics of the problem. In
this section, we will explore how to describe the system in a nonequilibrium framework,
with the understanding that, in the appropriate asymptotic limits, these microscopic
descriptions should converge to the macroscopic properties previously derived. To tackle
this complex approach to nonequilibrium physics, we will begin by examining the renowned
Kadanoff-Baym equations.

5.1 The Boltzmann equation

The dynamics of particles in the plasma are described by the Kadanoff-Baym
equations, a set of integro-differential equations used in nonequilibrium quantum field
theory to explain the time evolution of Green’s functions (or correlation functions) in
systems out of equilibrium [52].

In the context of the Kadanoff-Baym formalism, certain two-point functions encode
the dynamics of the system. In particular, the Wightman function G< encodes the particle
distribution functions,

G<(p, x) = 2πf(p⃗, x)δ(p2 − m2). (5.1)

It can also be shown that this function satisfies the typical condition of a Green’s function.
This function describes the distribution of particles and the correlations of the field in
momentum space. It can be shown that [53], to leading order in a gradient expansion,
when the wall width is taken to be much larger than typical particle momenta in the
plasma, i.e. Lw ≫ 1/T , the dynamical equation of this function is given by the Boltzmann
equation by the kinetic and collision terms inside Kadanoff-Baym equation:

(
pµ∂µ + 1

2∂µm2∂pµ

)
G<(p, x) = coll. (5.2)

This equation describes how the quantum field evolves out of equilibrium, including both
free propagation (via the Louville term) and the interactions (represented by the collision
term). The collision term (coll) describes how the particle distribution changes due to
interactions, such as,

• Particle creation or annihilation.

• Scattering processes (e.g., top-top scattering in a plasma).
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In the case of a field undergoing dynamics driven by interactions, the evolution described
by the Boltzmann equation equations considers both quantum fluctuations (through the
Green’s functions) and statistical effects (through the collision integral). The equation
5.1is the constraint equation, which encodes the fact that the Wightman function G<

can be expressed in terms of the particle distribution function f(p, x), this relationship
allows us to derive various physical quantities (such as currents or observables) from the
system’s statistical properties. The interesting aspect of equation (5.2) is that it leads to
the Boltzmann equation in a 3-dimensional space. It’s easy to see that the term pµ∂µ, with
γ = 1, leads to:

pµ∂µ = m(∂t + v⃗ · ∇), (5.3)

which is the usual kinetic term in the Boltzmann equation. The term involving the derivative
of the momentum is the usual force term in 4-dimensional space, and the collision term
takes into account the interactions involved in the thermodynamical content of the plasma.
It also relates to the quantum field theory of the problem (through interactions), which
we will discuss in detail later in the collision terms.

Let’s then, move to create an approach that allows us to deal with such complexity
and solve this complex equation.

5.2 The friction term
We discussed that we are interested in the velocity of this wall once the growing

bubble reaches a steady expansion regime. To compute this speed, one needs the equation
of motion for the Higgs in the plasma. One achieves this by using the energy-momentum
conservation of all particles in the plasma and the Higgs background:

∂µT total
µν = ∂µ

(∑
n

T plasma
n,µν + T ϕ

µν

)
= 0, (5.4)

n being the species inside the plasma. The energy-momentum tensor of the plasma for
each species n can be expressed as the usual formula:

T plasma
n,µν =

∫ d4p

(2π)4 pµpνG<
n (p, x) =

∫ d3p

(2π)3
pµpν

En

fn(p, x), (5.5)

where p0 = En. Next, we compute the divergence of the energy-momentum tensor T plasma
n,µν .

To do this, we apply the derivative ∂µ to the energy-momentum tensor:

∂µT plasma
n,µν = ∂µ

∫ d3p

(2π)3
pµpν

En

fn(p, x) (5.6)

Taking the divergence of the tensor of the plasma and subtracting with the coll term of
equation 5.2,

∂µT plasma
n,µν − colln = −1

2∂µm2
n

∫ d4p

(2π)4 pν∂pµG<
n (p, x),



Chapter 5. Non-equilibrium effects 50

This equation describe how the collision terms and the passage of the bubble alter the
distribution of particles in the plasma, and therefore the distribution of energy-momentum
among the species. Integrating by parts leads to:

− 1
2∂µm2

n

∫ d4p

(2π)4 pν∂pµG<
n (p, x) = 1

2∂νm2
n

∫ d4p

(2π)4 G<
n (p, x)

= 1
2∂νm2

n

∫ d3p

(2π)3
1

En

fn(p, x), (5.7)

where En denotes the energy of species n. On the other hand, the energy-momentum
tensor of the classical field background is given by:

T ϕ
µν = ∂µϕ∂νϕ − gµν

(1
2∂ρϕ∂ρϕ − V (ϕ)

)
. (5.8)

The divergence of this energy-momentum tensor is:

∂µT ϕ
µν = ∂νϕ

(
□ϕ + dV

dϕ

)
. (5.9)

Finally, by plugging Eqs. (5.7) and (5.9) into Eq.(5.4), one obtains the Higgs
equation of motion:

□ϕ + dV

dϕ
+
∑

n

dm2
n

dϕ

∫ d3p

(2π)3
1

2En

fn(p, x) = 0. (5.10)

Note that the collision terms are absent in this equation; they cancel out when the sum
over all species is performed. Here, fi(p, x) is the distribution function of particle i, and gi

represents its number of degrees of freedom.

As we are dealing with a non-equilibrium case, one can decompose fi(p, x) into an
equilibrium and a non-equilibrium part:

fi(p, x) = f eq
i (p) + δfi(p, x), with f eq

i (p) = 1
eβpµuµ−δp−δbg ∓ 1 , (5.11)

where uµ is the plasma four-velocity, β ≡ 1/T is the inverse temperature, and the sign ∓
distinguishes bosons and fermions, respectively. The fluctuations δ can be expanded in
powers of momentum [22]:

δ(x, p) = w(0)(x) + pµw(1)
µ (x) + pµpνw(2)

µν (x) + . . . (5.12)

It is worthwhile emphasizing that, up to this point, this approach is fully generic:
any fluctuation δf can be expressed in the form (5.12) for some function δ(x, p), and any
such function can be expanded in powers of momenta, which is essentially an expansion in
the 4D generalized version of spherical harmonics [54]. Since these generalized spherical
harmonics form a complete set in the functional space, this expansion is expected to
converge for any reasonably well-behaved function δf .
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However, we will make one further approximation, assuming that the fluctuations
w(i) are sufficiently small to linearize the following expression:

δf = δ(x, p) (−f ′ eq) , (5.13)

where f ′ eq is the derivative of the equilibrium distribution function given in Eq. (5.11)
with respect to pµuµ.

Going back to the EOM, in the plasma rest frame, pµuµ = E =
√

p2 + m2, so

1
2

∂m2
i

∂ϕ

∫ d3p

(2π)3Ei

f eq
i (p) = ±T

∂

∂ϕ

∫ d3p

(2π)3 log
(

1 ∓ e−β
√

p2+m2
)

. (5.14)

This term can be absorbed into V0 to yield the effective thermal potential:

V (T, ϕ) ≡ V0 +
∑

i

(±gi)
T 4

2π2

∫ ∞

0
dp p2 log

(
1 ∓ e−β

√
p2+(m/T )2

)
, (5.15)

where the upper sign corresponds to bosons and the lower one to fermions. The Klein-
Gordon equation for the scalar field immersed in the plasma can now be written as:

□ϕ ∂νϕ + ∂V (T, ϕ)
∂ϕ

∂νϕ +
∑

i

gi

2
∂m2

i

∂ϕ
∂νϕ

∫ d3p

(2π)3Ei

δfi(p, x) = 0. (5.16)

Notice that the potential in equation 5.10 represents only the non-thermal contribution
and now our Klein-Gordon equation also include the thermal contributions, but the third
term is still unknown. What we can do here is insert an Ansatz into these fluctuations,
considering a small variation in the temperature, chemical potential, and the velocity of
the fluid relative to the background properties.

5.3 Recalling the Boltzmann equation
Now that the nonequilibrium distribution setup is established, we can tackle the

Boltzmann equation, one of our most challenging tasks. The Boltzmann equation 5.2 can
be expanded similarly to Eq. (5.11) to understand the physics of each contribution. This
expansion leads to:

(pµ∂µ + 1
2∂µm2∂pµ)feq + (pµ∂µ + 1

2∂µm2∂pµ)δf = coll. (5.17)

On the left-hand side (LHS) of this equation, we can identify and discuss two different
terms. First, the source term:

Source = (pµ∂µ + 1
2∂µm2∂pµ)feq. (5.18)

This term acts as a driving force arising due to changes in the equilibrium distribution
feq. Physically, feq evolves because of variations in system parameters, such as the mass
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m, temperature T , or chemical potential µ. This term is called the source term because
it introduces deviations from equilibrium due to external changes in the system (e.g., a
z-dependence mass or a temperature gradient1).

Next, we identify the “kinetic term”:

Kinetic =
(

pµ∂µ + 1
2∂µm2∂pµ

)
δf.

This term describes how the deviation from equilibrium (δf) evolves due to particle motion
(kinematics). Physically, it captures the dynamics of how deviations from equilibrium
evolve due to particle motion independent of the equilibrium state.

The right-hand side (RHS) of Eq. (5.2) represents the collision terms, which are
limited to 2 → 2 processes, each characterized by an amplitude Mpk→p′k′ . The collision
term is expressed as:

coll = C[fp] = 1
2

∑
processes

∫ d3k d3p′ d3k′

(2π)92Ek 2Ep′ 2Ek′
|Mpk→p′k′|2(2π)4δ4(p + k − p′ − k′)Ppk→p′k′ ,

(5.19)

where
Ppk→p′k′ ≡ fpfk(1 ± fp′)(1 ± fk′) − fp′fk′(1 ± fp)(1 ± fk) (5.20)

is the population factor, which accounts for how the number density of reactants and
products in the plasma influences the reaction rate. The first term in P , proportional to
fpfk, means that a process pk → p′k′ is more efficient when more reactants are present in
the plasma. Likewise, the number density of outgoing particles also influences the overall
rate, taken into account by the factors (1 ± f), which correspond to stimulated emission
(for bosons, the “+” sign) or Pauli blocking (for fermions, the “-” sign). The second term
in P , with an overall negative sign, accounts for the reverse process p′k′ → pk.

Now, to solve the Boltzmann equation for the fluctuations δfi, one first needs to
find an efficient way to compute the collision terms. To illustrate the procedure, let us first
limit ourselves to first-order terms in the momentum expansion, so that the fluctuations
in Eq. 5.12 are parametrized as:

δ = δµ + pµ

(
δuµ − uµδT

T

)
. (5.21)

It is important to emphasize that this procedure of considering only first-order terms
in momentum is a tool to facilitate the calculation of momentum elements from the
Boltzmann equation. The total approach, however, can be extended to any order in the
momentum expansion, as seen in Eq. 5.12. In this context, δµ represents the particle’s
1 In our case, the z-dependence of the mass.
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chemical potential, δT/T tracks fluctuations in the fluid temperature, and δuµ (which
satisfies uµδuµ = 0) represents the velocity fluctuations.

Furthermore, we assume that the bubble has expanded sufficiently so that the
effects of the wall curvature are negligible, and the problem becomes one-dimensional,
similarly to what we also assumed in the hydrodynamical considerations. In the rest frame
of the bubble wall, with the z-axis orthogonal to the wall and oriented towards the broken
phase, we have uµ = γw(1, vw), δuµ ≡ δv ūµ = δvγw(vw, 1), and m2(x) → m2(z).

To proceed, we take three moments of the Boltzmann equation, multiplying it by
1, pµuµ, and pµūµ (where ūµ is the four-velocity orthogonal to uµ), and integrating over p.
This is a common procedure used in Boltzmann equation in textbooks of Comoslogy [55]to
take out information of this complex equation.

Let us first apply this method in a generic form, and then explicitly show the
first-order perturbation in Eq. 5.28 to understand the mechanism of taking moments from
the Boltzmann equation.

5.4 Taking moments
As discussed in the previous section, the strategy to solve the Boltzmann equation

involves taking moments of the equation. To do this, first divides the Boltzmann equation
by the energy, leading to the following form:

pµ ∂µδf

Ep

= C[f ]
Ep

+ S

Ep

. (5.22)

One can multiply this equation by powers of momentum and energy, as in (pµuµ)a and
(pµūµ)b, which includes finer details of the distribution function. Due to this form of taking
moments, we will see that we will often encounter terms of the form,

∫ d3p

E
(pµuµ)m (pν ūν)n

(
−f ′

eq

)
= 4πT m+n+2


cm+n+1

n+1 , n even,

0, n odd.
(5.23)

This integral is constant in the massless case, and for n ≥ 2, we have:

cb
n ≡ 1

T n+1

∫
dp pnfBE

p

(
1 + fBE

p

)
= n!ζn,

cf
n ≡ 1

T n+1

∫
dp pnfFD

p

(
1 − fFD

p

)
=
(

1 − 1
2n−1

)
n!ζn,

(5.24)

with fBE and fFD denoting the Bose-Einstein and Fermi-Dirac distribution functions,
respectively, for the collision terms associated with annihilation it will also be convenient
to define

c̃n+1 ≡ 1
T n+1

∫
dp pnfFD

p

(
1 + fBE

p

)
=
(

1 − 1
2n+1

)
n!ζn+1. (5.25)
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These integrals can be easily solved by choosing a reference frame where pµuµ = E.

Now, with this machinery of definitions, one can exploit the first-order momentum
terms in the Boltzmann equation to understand all three components before expressing
them in the generic form that will be implemented in our code.

5.4.1 Kinetic terms

Analyzing the first-order perturbations, we can consider three types of momentum
from the Boltzmann equations: (1, pµuµ and pµūµ).The shape of the kinetic terms are:

γ
∫ d3p

E
pµ∂µδf. (5.26)

To handle these terms, we define the coordinate ξ = xµvµ, where vµ = γw(vwuµ −
ūµ), essentially decomposing in the velocity direction and its perpendicular four-velocity
direction. Recalling equation 5.28,

δp = δµ + pµ(δuµ − uµδT/T ), (5.27)

we see that equation 5.26 becomes

γ
∫ d3p

E
pµ(vwuµ + ūµ)∂ξδf = γ

∫ δd3p

E
pµ(vwuµ + ūµ)∂ξ[δp(−f ′

eq)] (5.28)

The derivative inside the fluctuation applies only to δp. The derivative ∂ξ(−f ′
eq) is considered

a second-order term in our linearization of equation 5.13 (our taylor expansion is truncated
until first-order) and can be neglected. Now, let’s proceed with the moments.

• First moment

The first moment of the kinetic terms is:

γ
∫ d3p

E
pµ(vwuµ + ūµ)∂ξ[δp(−f ′

eq)] (5.29)

Substituting equation 5.28 into the first momentum, we analyze each term of the fluctua-
tions. For the µ term, we obtain:

γ
∫ d3p

E
pµ(vwuµ + ūµ)∂ξδµ(−f ′

eq) = γ
∫ d3p

E
pµuµ(vw)∂ξ(µ)(−f ′) (5.30)

+ γ
∫ d3p

E
pµūµ∂ξ(µ)(−f ′) = 4πT 3vwc2∂ξ(µ) (5.31)

Here, we directly applied equation 5.23. This equation will be useful for any order in our
Ansatz. For the velocity fluctuation, we have:∫ d3p

E
pµ∂µpµūµ(δv/T )(f ′) = γ

∫ d3p

E
pµuµpµūµ(vw)∂ξ(δv/T )(−f ′) (5.32)

+ γ
∫ d3p

E
(pµūµ)2∂ξ(δv/T )(−f ′) = 4πT 3(c3/3)∂ξ(δv) (5.33)
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In this case, the first term has an odd n and the second has an even n, leading to a c3/3
term.

For the third perturbation δT/T , we obtain:∫ d3p

E
pµ∂µpµuµ(δT/T 2)(−f ′) = γvw

∫ d3p

E
pµuµpµuµ∂ξ(δT/T 2)(−f ′) (5.34)

+ γ
∫ d3p

E
(pµūµ)2pµūµ∂ξ(δT/T 2)(−f ′) = 4πvwT 3(c3)∂ξ(δT/T ). (5.35)

Now that we understand the machinery for using equation 5.23, we can easily compute
the other two moments. For pµuµ, we get terms like:

∫ d3p

E
pµpµuµ∂µ(δµ/T )(−f ′

eq) = 4πT 4(c3)∂ξ(δµ), (5.36)

∫ d3p

E
pµpµuµ∂µpµūµ(δv/T )(−f ′

eq) = 4πT 4(c4/3)∂ξ(δv), (5.37)

∫ d3p

E
pµpµuµ∂µpµuµ(δT/T )(−f ′

eq) = 4πT 4(c4)∂ξ(δT ). (5.38)

For pµūµ, we obtain:

∫ d3p

E
pµpµūµ∂µ(δµ/T )(−f ′

eq) = 4πT 4(c3/3)∂ξ(δµ), (5.39)

∫ d3p

E
pµpµūµpµūµ∂µ(−f ′

eq)
(

δv

T

)
= 4πT 4(c4)∂ξ(δv), (5.40)

∫ d3p

E
pµpµūµpµuµ∂µ

(
δT

T 2

)
(−f ′

eq) = 4πT 4vw

(
c4

3

)
∂ξ

(
δT

T

)
. (5.41)

We can combine the three expressions in a matrix form, which will be useful for general-
ization and numerical solutions:

4πγT 3


vwc2 vwc3

c3
3

c3vwT c4Tvw
c4T

3

c3T
c4T

3
c4vwT

3

× d

dξ


δµ
−δT

T

δv

 . (5.42)

We need to be careful with factors of T and also with additional factors that will be
important for the final results of the solutions. Dividing everything by (2π)3γ one can
define the kinetic matrix A:

A
dq

dξ
≡= T 3

2π2


vwc2 vwc3

c3
3

c3Tvw c4Tvw
c4T

3

c3T
c4T

3
c4vwT

3

× d

dξ


δµ
−δT

T

δv

 . (5.43)

Now, let us move on to the source terms.
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5.4.2 Source terms

By computing the derivatives from equation 5.18, the first derivative of the second
term cancels out entirely with the first term of the source, leaving only the second term
applied. This leads to: ∫ d3p

E
(f ′

eq)uµ ∂µm2

2 . (5.44)

Here, we do not have to deal with the fluctuations, as the source terms are defined
against the equilibrium distribution, making the task of taking moments simpler. Thus,
the moments of 1, pµuµ, and pµūµ are as follows:

∫ d3p

E
(f ′

eq)
∂µm2

2 , (5.45)

∫ d3p pµuµ

E
(f ′

eq)
∂µm2

2 , (5.46)

∫ d3p pµūµ

E
(f ′

eq)
∂µm2

2 . (5.47)

Using equation 5.23 again and dividing by the factor introduced inside the kinetic matrix
we arrive at,

S = 1
(2π)3γ

4πvwuµ∂µm2


c1

c2T

0

 . (5.48)

The divergence term can also be linearized, and we find

S = 1
(2π)3γ

4πvwuµγ(vwuµ + ūµ)∂ξm
2


c1

c2T

0

 = 1
2π2 vw∂ξm

2


c1

c2T

0

 (5.49)

5.4.3 Collision terms

Now, for the interaction terms (collision terms), our integrals will take the form

coll = C[fp] = 1
2

∑
processes

∫ d3pd3k d3p′ d3k′δ

(2π)9(Ep)2Ek 2Ep′ 2Ek′
|Mpk→p′k′|2 (2π)4δ4(p + k − p′ − k′) Ppk→p′k′ ,

(5.50)

To compute this, we will include the annihilation and scattering processes described in
figure 22.
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Figure 22 – Diagrams considered in the collision terms of this work. We compute only the
leading-log contributions, focusing on t- and u-channel diagrams. The four
diagrams in the first row represent processes that change the perturbations
of the top quark, namely: double annihilation into gluons, scattering by light
quarks, scattering by gluons, and absorption and re-emission of a gluon. The
second row represents processes that change the distribution of W bosons,
namely: single annihilation (by gluons into quarks and by quarks into gluons),
double annihilation into quarks, absorption and re-emission, and scattering
by quarks.

5.4.3.1 Example of an annihilation process

We can now compute some collision integrals and take moments to understand this
mechanism at first order better.

The integral 5.50 can be solved using standard QFT methods. To better understand
the computation of these processes step by step, let us first compute the Feynman diagram
for qq̄ → gg using QCD.

The tree-level diagrams that contribute are illustrated in figure 23. As mentioned

Figure 23 – Diagrams that contribute to qq̄ → gg

before, we are working within a leading-log approximation. Therefore, we will only consider
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the u- and t-channels, which are the only ones that contribute to the logarithmic terms [56].
Consequently, we will compute only the first two diagrams. Choosing pk → p′k′ and
applying the Feynman rules, we can write the amplitudes M1 and M2 as follows:

iM1 = (ig)2v̄(k) ̸ ϵ∗(k′) i(̸ p− ̸ p′)
(p − p′)2 ̸ ϵ∗(p′)u(p)tbta,

iM2 = (ig)2v̄(k) ̸ ϵ∗(p′) i(̸ p− ̸ k′)
(p − k′)2 ̸ ϵ∗(k′)u(p)tatb.

(5.51)

Here, u and v̄ describe particles and antiparticles in the process, the ϵ‘s terms describe the
polarizations of the gluons, and we are using the slash notation that represents ̸ p = γµpµ.
We are also going to use the famous Mandelstam variables t, u, s in the rest of the section.

It can be seen that the second diagram can be obtained by simply swapping p′

with k′. It is convenient to evaluate these diagrams with initial and final states of definite
helicities. By the P and CP symmetry of QCD, there are only two independent processes
that could be nonzero: qLq̄R → gRgR and qLq̄R → gRgL. Let’s evaluate them for the three
diagrams. To begin with, we set up the kinematics:

pµ = (E, 0, 0, E), p′µ = (E, E sin θ, 0, E cos θ),
kµ = (E, 0, 0, −E), k′µ = (E, −E sin θ, 0, −E cos θ).

Then,
uL(p) =

√
2E(0, 1, 0, 0), vL(k) =

√
2E(1, 0, 0, 0).

With this set up, we can write the polarization vectors for the gluons (respecting
ϵµϵ∗

µ = −1 and kµϵµ = 0):

ϵ∗
Lµ(p) = 1√

2
(0, − cos θ, −i, sin θ), ϵ∗

Rµ(p) = 1√
2

(0, − cos θ, i, sin θ),

ϵ∗
Lµ(k′) = 1√

2
(0, cos θ, −i, − sin θ), ϵ∗

Rµ(k′) = 1√
2

(0, cos θ, i, − sin θ).
(5.52)

Now, let us compute iM1(qLq̄R → gRgR):

iM1(qLq̄R → gRgR) = −ig2E2tbta

t − m2
q

(0, 0, 1, 0)

× (γ1cθ + γ2i + γ3(−sθ)) × (γ0 + γ3 − γ0 − γ1sθ − γ3cθ)

× (γ1(−cθ) + γ2i + γ3sθ)


0
1
0
0

 .

(5.53)

This simplifies to:
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iM1(qLq̄R → gRgR) = −ig2E2tbta

t
(0, 0, 1, 0)

×


0 0 −sθ 1 + cθ

0 0 −1 + cθ sθ

sθ −1 − cθ 0 0
1 − cθ −sθ 0 0



×


0 0 1 − cθ −sθ

0 0 −sθ −1 + cθ

−1 + cθ sθ 0 0
sθ 1 − cθ 0 0



×


0 0 sθ 1 − cθ

0 0 1 − cθ −sθ

−sθ −1 + cθ 0 0
1 + cθ sθ 0 0




0
1
0
0


= −ig2E2tbta2sθ(cθ − 1).

(5.54)

Using the relation t = −2E2(1 − cθ), we obtain:

iM1(qLq̄R → gRgR) = −ig2tbtasθ
t

t − m2
q

. (5.55)

Similarly, for u = −2E2(1 + cθ), we have:

iM1(qLq̄R → gRgR) = ig2tbtasθ
u

u − m2
q

. (5.56)

Thus, the total amplitude is:

iM(qLq̄R → gRgR) = −ig2
(

tbta t

t − m2
q

− tatb u

u − m2
q

)
sin θ. (5.57)

For the other helicities, we have:

iM1(qLq̄R → gRgL) = −ig2tbta sin θ
t

t − m2
q

,

iM2(qLq̄R → gRgL) = −ig2tatb t

u − m2
q

sin θ,

iM1 (qLq̄R → gLgR) = −ig2tbta sin θ
u

u − m2
q

,

iM2 (qLq̄R → gLgR) = −ig2tatb t

u − m2
q

sin θ.

Therefore,

iM (qLq̄R → gRgL) = −ig2
(

tbta t

t − m2
q

+ tatb t

u − m2
q

)
sin θ.
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And computing the other two amplitudes:

iM (qLq̄R → gLgR) = −ig2
(

tbta t

u − m2
q

+ tatb u

t − m2
q

)
sin θ.

The above amplitudes will lead to logarithmic divergences in the limit of massless
quarks, mq → 0, which we will adopt (except for thermal contributions to the masses,
which will regulate this divergence). Then clearly the most important term in the expansion
is this logarithmic. This motivates us to simplify the analysis by truncating every higher-
order term beyond this leading-logarithm. This is called the “leading-log approximation”
in the literature, and is the approximation we will adopt here. In this case, one can set
t = u. This will lead to simpler terms and also simplify sin(θ) to unity. Therefore, let’s
take the average, sum the spins and the helicities, and finally compute |M|2, making sure
to include the factor of two from the initial factor qRq̄L and this gives the final result
typically quoted in the literature [43]:

1
3 · 1

22

∑
spin, color

|M|2

= 1
12 · 2 · g4 sin2 θ

 (2 tr
(
tbtatatb

)
+ 4 tr

(
tbtatbta

)
+ 2 tr

(
tatbtbta

))

+ 2
(
tr
(
tbtatatb

)
− 4 tr

(
tbtatbta

)
+ 2 tr

(
tatbtbta

))  t2

(t − m2
q)2

= 1
12 · 2 · g4 · 8 ·

(
t2

t − m2
q

tr
(
tbtatatb

))
= 1

12 · 2 · g4 · 8 ·
(

t2

(t − m2
q)2 · 16

3

)
=

− 128
9 · g4 ·

(
st

(t − m2
q)2

)
.

(5.58)

To solve the traces, we used the properties of SU(3) trace explicitly found in [57] and
again applied the leading-log approximation, which turns t = −2s. This gives us the final
result:

|Mpk→p′k′ |2 = −128
9 g4

s

st(
t − m2

q

)2 .

The collision term therefore turns into:

128g4
s

9

∫ d3p

(2π)32Ep

d3k

(2π)32Ek

[
µ + pµδuµ − pµuµ

(
δT

T 2

)]
.

×
∫ d3p′

(2π)32Ep′

d3k′

(2π)32Ek′

st(
t − m2

q

)2 (2π)4δ4 (p + k − p′ − k′) P [fi] . (5.59)

The entire analysis is performed to linear order in the perturbation, simplifying the
population factor as done in [58]. Furthermore, in the leading log approximation, the
energy transfer is small, allowing us to approximate
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P = fpfk (1 + fp′) (1 + fk′) ≃ fpfk (1 + fp) (1 + fk) . (5.60)

By performing the p′ and k′ integrals first, the δ4 function can be splitted in the one-
dimensional part and 1 three-dimensional part, and the integral over d3p′d3k′ simplifies
to:

∫
p′

∫
k′

=
∫ d3p′ d3k′

(2π)64Ep′Ek′

−st

(t − m2
q)2 (2π)4δ(2Ep − 2Ep′)

δ3(2p′ − 2p′)fpfk(1 + fp′)(1 + fk′). (5.61)

Recalling the Mandelstam variables s = (k′ + p′)2 = (p + k)2 and t = (p − p′)2 = (k − k′)2,
the term st inside the integral becomes:

t = (p − p′)2 = 2|p⃗||p⃗ ′|(1 − cos θ′).

Here, we used the assumption that the particles in the external legs are massless outside
the bubble. Additionally, we can use the identity s = 4E2

cm = 2k · p, as provided by 5.4.3.1.
With this, the integral over k′ and p′ simplifies to:∫

k′

∫
p′

=
∫ dp′p′2dθ′ sin(θ′)(2π)(2k · p)2pp′(1 − cos θ′)δ(2Ep − 2Ek′)

(2π)34Ep′Ep′(2pp′(1 − cos θ′) + m2
q)2

=
∫ p′2dp′dθ′ sin(θ′)(2k · p)2pp′(1 − cos θ′)δ(2Ep − 2Ep′)

(2π)4Ep′Ek(2pp′(1 − cos θ′) + m2
q)2 . (5.62)

=
∫ dθ′ sin(θ′)(2k · p)2pp′(1 − cos θ′)

(2π)4(2pp′(1 − cos θ′) + m2
q)2 . (5.63)

To deal with this angular integral, we will keep only the leading-log term, which is dominant
in the limit of mq → 0. Then, this transforms the angular part θ′ integral into

∫ dθ′ sin(θ′)(2k · p)2pp′(1 − cos θ′)
(2π)4(2pp′(1 − cos θ′) + m2

q)2 ≈ 1
8π

ln
(

2k · p

m2
q

)
. (5.64)

Now, integrating over p and k, a factor of 16π2 appears in the numerator due to the
angular integrals, and the energies can be simplified for each momentum, p and k. Then,
the full integral becomes:

2g4
s

18π5

∫
pk ln

(
4pk

m2
q

)
δfpfk(1 + fp)(1 + fk)

[
µ + pµδuµ − pµuµ

(
δT

T 2

)]
dp dk. (5.65)

We see here the logarithmic divergence in the limit mq → 0, which we mentioned above.
This equation represents the first moment. To factor out the other two types of momentum,
we use the approximation [58]:∫

pn ln
(

p

T

)
fp(1 + fp) ≈ ln

(
n + 1

2

) ∫
pnfp(1 + fp) dp. (5.66)
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Finally, using Equation (5.25) and taking three moments—1, pµuµ, and pµūµ—we find the
terms of linear order:

Γannih = 2g4
s

9π5



ln
(

9T 2

m2

)
c̃2

2T
3 ln

(
15T 2

m2

)
c̃2c̃3T

3 0

ln
(

15T 2

m2

)
c̃2c̃3T

4 1
2

 ln
(

21T 2

m2

)
c̃2c̃4

+ ln
(

25T 2

m2

)
c̃2

3

T 4 0

0 0 3
2

 ln
(

21T 2

m2

)
c̃2c̃4

+ ln
(

25T 2

m2

)
c̃2

3

T 4



.

As a final remark regarding dimensions, the goal is to render every equation in our system
dimensionless. To achieve this, we divide each equation by T 3, thereby eliminating any
additional temperature factors in the second and third rows of the kinetic, source, and
collision matrices, as these factors are common to all terms. For the scattering processes,
one can follow the steps indicated in [58]. The process is analogous, and is omitted for the
sake of brevity.

Let us emphasize that, up to this point, we have primarily considered first-order
fluctuations involving only three moments. However, this can be generalized to arbitrary
orders, and even the collision integrals remain exactly solvable at leading log [47]. We
implement a numerical code which works to arbitrary order in this momentum expansion,
which will be used for obtaining our main results. Any higher-order fluctuation can be
handled using the same method we developed, simply by including more moments in the
computation and leveraging equations like 5.23 and 5.66, which are essential for building
an arbitrary-order framework. A generic algorithm to implement the results can be found
in [47].

5.5 Solving the Boltzmann Equation
Now that we have a clear picture of how each component of the Boltzmann equation

behaves, we can proceed to solve it. As argued above, after linearizing in the fluctuations
w(i) and taking moments, the equation can be written in matrix form and can be solved
using the method of Green’s functions. The Boltzmann equation can be written as

dq

dz
+ (A−1Γ)q = A−1S (5.67)

where
S = Svec

dF

dz
(5.68)
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where F is defined has

F (z/Lw) = (m(z))2

2T 2 = m2
0

2T 2

(1
2

(
1 − tanh

(
z

Lw

)))2
(5.69)

That comes from defining
ϕ = ϕ0

2

(
1 − tanh

(
z

Lw

))
. (5.70)

This represents the shape of ϕ(z), with z being the bubble’s radius.

Defining the term u = z/Lw, we get

dq

du
+ Lw(A−1Γ)q = A−1SvecS(u)

where
S(u) = −

(
m

T

)2
(

1 − tanh(u)
4 cosh(u)

)
(5.71)

The case with only one perturbation can be solved analytically, but we focus on a generic
order of perturbation. The homogeneous solution is trivial:

qhom(u) =
∑

i

αiχ exp(−λiu), (5.72)

where αi and χi are the eigenvalues and eigenvectors of the term Lw(A−1Γ). To solve the
non-homogeneous part, we compute the Green’s function G for a source. We know that
the solution must go to zero far from the bubble, as the plasma is in equilibrium so the
fluctuations vanish. Therefore, the Green’s function has the following form:

G(u) =


∑

λi>0 αiχi exp (−λiu) , u > 0∑
λi<0 αiχi exp (−λiu) , u < 0

(5.73)

It is important to emphasize that the eigenvalues of Lw(A−1)Γ represent the
thickness of the perturbations around the bubble, i.e., how far the perturbation can
propagate. Thus, the solution q(u) is

q(u) =
(
χ−1

i · A−1 · Svec
)

·
∫ ∞

u
du′ ∑

λi>0
S(u′)χi exp [−λi(u′ − u)]

−
∫ u

−∞
du′ ∑

λi<0
S(u′)χi exp [−λi(u′ − u)] . (5.74)

One can also compute the fluctuations for light species in the plasma (small masses
in the thermal bath). Importantly, the source terms are absent for the light species
by construction, since their masses are not significantly changed during the passage
of the bubble. The fluctuations of the light species are only sourced indirectly due to
collision terms with the heavy particles. Moreover, the chemical potential of the light
species vanishes identically since their particle numbers equilibrate quickly, so the light
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elements can be described only through velocity and temperature fluctuations. This means
that the corresponding moments of the Boltzmann equation for these species involve a
multiplication by pµuµ or pµūµ, with a single power of pµ. Because of this, when summing
over the equations for all the fluctuations (heavy and light species alike), the sum over
the collision terms must vanish. This means that the collision matrix of the light species
with tops and weak gauge bosons (collectively denoted as W ) satisfy [22]

Γlight,t = −NtΓt and Γlight,W = −NW ΓW , (5.75)

with Nt,W the respective number of degrees of freedom, and Γt,W the collision matrix
entering the Boltzmann equation for the heavy fluctuations. It’s also important to emphasize
that the kinetic matrices of the light particles will carry only the moments related with
pµuµ and pµūµ, leading to a 2x2 matrix, different from the usual 3x3 matrix related with
the three moments. Then, for the light species, Boltzmann equation turns into,

Alight · q′
light + Γlight,W · qW + Γlight,t · qt = 0. (5.76)

With that, the background part of the solution is obtained by integrating q(u):

qbg(u) =
∑

i

A−1
bg (LwNiΓi)

∫ u

∞
qi(u′) du′. (5.77)

With the fluctuations computed, one can apply them into the EOM and chase our final
goal: the bubble wall velocity.
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6 Computing the wall velocity

By now, we have computed a large set of parameters, but the one that is the focus
of this work, namely the bubble wall velocity, still needs to be computed. Let us take care
of it.

6.1 Finding the bubble wall velocity vw

As we discussed, in the bubble wall frame, the observer will only see a steady flow
of particles from the plasma into the bubble, and the situation is time-independent. Thus,
we can replace ∂ν → ∂z. By modeling the scalar field profile as

ϕ(z) = ϕ0

2

(
1 − tanh z

Lw

)
, (6.1)

the problem reduces to solving the equation of motion

□ϕ + ∂V (T, ϕ)
∂ϕ

+
∑

i

gi

2
∂m2

i

∂ϕ

∫ d3p

(2π)3Ei

δfi(p, x) = 0. (6.2)

for two variables: the wall velocity vw and the width Lw.

Using equation 5.74, we now have an approximation to solve the fluctuations of the
equation of motion. When integrated over the space, this leads to what we call the friction
terms. For this, we take two moments of the equation and normalize by the appropriate
factors of temperature to obtain a dimensionless quantity, namely

M1 ≡ 1
T 4

∫ ∞

−∞
(LHS of eq. (5.16)) dz = 0,

M2 ≡ 1
T 5

∫ ∞

−∞
(LHS of eq. (5.16))(2ϕ(z) − ϕ0) dz = 0.

However, as the bubble interface crosses the plasma, some particles collide against
it and are reflected back, leading to a slightly higher temperature T+ > Tn immediately
ahead of the bubble wall. Since this is the region where the non-equilibrium effects are
prominent, we evaluate the above quantities at this temperature T+ (this justifies our work
of chapter 4).

Equations (6.3) can then be written as [44]

M1 ≡ ∆V

T 4
+

+ f = 0,

M2 ≡ 2
15(LwT+)2

(
ϕ0

T+

)3

+ W

T 5
+

+ g = 0,

(6.3)
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where f and g are the terms coming from integration over the non-equilibrium contributions
(terms involving δfi in eq. (5.16)), while∆V

W

 ≡
∫ ∞

−∞

∂V (T+, ϕ)
∂ϕ

∂zϕ

 1
ϕ0 tanh(z/Lw)

 dz. (6.4)

Note, in particular, that ∆V is (minus) the pressure difference across the wall due to the
free energy released by the transition. Then equation M1 has a simple interpretation: the
pressure pushing the wall forward must be counterbalanced by the friction f . On the other
hand, the integrand in the definition of W is asymmetric under parity reflections around
the origin (due to the tanh(z/Lw) term), so it can be seen as an overall “stretching” effect
that tends to change the wall width. The solution of these equations are the values of vw

and Lw for which these forces are all balanced out.

We implemented a numerical code in Python to solve the Boltzmann equation for
the fluctuations w(i) to arbitrary n-th order in momentum expansion 5.13, which can then
be plugged back into equation 6.2 to find the friction functions f and g. One can plot
equations 6.4 for a fixed parameter while varying the velocity along the x-axis, as shown
in Figure 24.The equations (6.4) are then solved for vw and Lw to find the correct vw.

It has recently been argued in the literature that, once hydrodynamic effects are
taken into account, such as the heating of the plasma ahead of the wall, no non-luminal
detonations can be found [59]. This is because the pressure against the wall (i.e., M1 in
eq. (6.4)) blows up as the wall approaches the speed of sound, and suddenly drops when
the Jouguet velocity is reached. If the wall has enough energy to overcome the Jouguet
threshold, the opposing force will not be able to resist its expansion, and it will inevitably
runaway. It is argued that, even if a non-luminal detonation solution exists, a deflagration
solution will also exist. Since the wall speed grows from zero up to this stable value, it will
stabilize at the deflagration speed. In order to verify this statement, we begin by showing
in figure 24 the behavior of the two "forces," M1 and M2, as a function of the wall velocity.
Here, we consider only top quarks as the heavy particles in the fluid. We perform two
analyses: one in which the fluid velocity is taken to be vw, and another in which it is
considered to be v+. In the former case, there is a discontinuity across the speed of sound
due to the behavior of friction. In the latter case, however, the behavior is continuous up
to the Jouguet velocity, because v+ is always smaller than the speed of sound, and the
discontinuity in friction is never reached. We will show that, although the overall behavior
of M1 and M2 changes qualitatively, this choice has little impact on the final result. This
is because our model has modest values for the fractional released energy, α ≲ 0.01, and
in this case v+ ≈ vw up to velocities very close to the speed of sound [60].

The left plot in figure 24 corresponds to M = 700 GeV. In this case, one notices
that the net pressure initially increases until both forces are balanced, after which there
is a drop (either across the sound barrier or after the Jouguet velocity, depending on
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Figure 24 – Pressure difference (M1) and "stretching force" (M2) across the wall. The
left plot corresponds to M = 700 GeV and LwT = 7.4266, with a Jouguet
velocity vJ = 0.630. In this case, the solution is a deflagration. The right plot
corresponds to M = 630 GeV and LwT = 8.2235, with a Jouguet velocity
vJ = 0.651. Here, the solution is a Jouguet detonation. The behavior changes
drastically across the sound speed due to the shape of the non-equilibrium
friction terms, as shown in figure 24 and discussed in depth in ref. [47]. Across
the Jouguet velocity, there is another jump, this time due to hydrodynamical
effects, as the expansion is now a detonation, and there is no heating of the
plasma in front of the wall. In the shaded region, we expect the linearization
procedure of the Boltzmann equation to break down.

whether we consider vw or v+). Beyond the Jouguet velocity, the non-equilibrium friction
dominates, and the pressure difference is not enough to push the wall at such high velocities,
leaving only one solution corresponding to a deflagration. Notice that the point where
M1 = M2 = 0 is approximately the same, whether we use vw or v+ as the fluid velocity
(there will be a slight change in the wall width Lw that solves these equations as well; here,
we plotted for the value Lw that satisfies both equations using vw as the fluid velocity).
The right panel, on the other hand, corresponds to M = 630 GeV. In this case, for subsonic
walls, the friction is never enough to counterbalance the pressure difference, and the only
solution is a detonation. Again, by using v+ as the velocity ahead of the wall, both M1

and M2 continue to grow and cross the x-axis at some point in the deflagration regime,
but not simultaneously.

One could then expect to find non-luminal detonations as the only solutions in
this case. In the shaded grey region, we show the area where we expect a breakdown of
our linearization procedure for the Boltzmann equation, which can be estimated to occur
when [47]

α

X2
−
≳ 1 (breakdown of linearization procedure). (6.5)

with X− defined in eq. (4.20).

Figure 25 corroborates the above expectation, showing the wall velocity for varying
cutoff scales M in the case where only top quarks are considered heavy. The grey shaded
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Figure 25 – (Left) Solutions for the bubble wall velocity as a function of the mass scale M ,
including only top quarks as heavy species in the plasma. The shaded region
corresponds to the breakdown of the linearization procedure, so solutions in
this region should be interpreted with caution. (Right) Ratio of v(i+1)

w /v(i)
w ,

where v(i)
w is the solution at the i-th order in the fluid expansion. Notice that

the solutions converge quickly, as the ratios approach unity.

region corresponds to the breakdown of the validity of the linearization procedure in the
Boltzmann equation. This means that, outside the shaded region, our procedure is well
under control and the results are trustworthy. It is noticed that for large values of the
cutoff M , one approaches the decoupling limit, the transition becomes weaker, and only
deflagration solutions exist. But as we decrease M , the transition becomes stronger, and
only non-luminal detonations are obtainable in this approach. Further investigation is
necessary, however, to check whether other deflagration solutions might appear once we
improve the linearization procedure and reduce or altogether remove the grey shaded
band.

Finally, we have verified that these results are essentially unchanged whether we
use vw or v+ as the fluid velocity ahead of the bubble, in agreement with the expectations
discussed above. We also show in the right panel of figure 25 the ratio of velocities in
the detonation regime, computed at two consecutive orders in the expansion of eq. (5.12).
Notice that the ratio approaches unity as we increase the order of the expansion, indicating
that the expansion converges quickly. It is also noteworthy that the inclusion of second-
order effects may reduce the wall velocity by a factor of O(10%) compared to a first-order
calculation, highlighting the inappropriateness of the perfect fluid Ansatz.

Let us now consider the case where the W ’s and Z’s are also included as heavy
species. The results in this case are qualitatively different, as seen in figure 26. If we
truncate the fluid expansion at first order, i.e., consider a perfect fluid only, we obtain
similar results to the previous case: deflagrations at large M and detonations for low
enough cutoff (strong enough transitions). However, as higher-order terms are included,
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Figure 26 – (Left) Solutions for the bubble wall velocity as a function of the mass scale
M , including top quarks, W ’s, and Z’s as heavy species. As in figure 25, the
shaded region corresponds to the breakdown of the linearization procedure.
(Right) Ratio of solutions at two consecutive orders in the fluid expansion.
The convergence is slower here compared to the top-only case, but it still
occurs.

detonation solutions become untenable. This shows that the inclusion of higher-order terms
in the fluid expansion can lead to qualitatively different results compared to truncating the
expansion at three fluctuations. Moreover, our findings corroborate recent results in [51,59],
which suggest that consistent solutions are deflagrations. However, the impossibility of
non-luminal detonations might not be a general statement and could depend on the particle
content of the theory.

The right panel of figure 26 illustrates the convergence tendency of the momentum
expansion. We emphasize that such convergence is expected for any reasonably well-
behaved function, since eq. (5.12) is analogous to an expansion in 4-dimensional spherical
harmonics [54]. However, figure 26 shows that, in the presence of gauge bosons, this
convergence is slower than what we observed when only top quarks were considered.
This can be understood by noting that the expansion parameter is O(D/L), where D

is the diffusion length of the plasma particles and L is the wall width [58]. For top
quarks, Dtop ≃ 2.9/T , whereas for gauge bosons, DW ≃ 5.5/T , which is almost twice as
large [58,61].
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7 Conclusion and final remarks

Determining the velocity of bubble expansion during a first order phase transition
is essential for an accurate estimate of the relics stemming from such a process. There have
been many recent developments in the literature in this direction, including alternative ways
to model non-equilibrium dynamics in the plasma. In this work we study the behaviour of
the wall velocity when the friction is evaluated with the so-called “extended fluid Ansatz”.
In this approach the non-equilibrium distribution functions have the same functional shape
as the equilibrium ones, but while the former depends only on a single power of energy and
momentum, the latter instead includes arbitrary powers of a momentum expansion. Since
this amounts to an expansion in 4d spherical harmonics, one expects that any reasonably
well behaved function could be approximated this way.

We then solve the Boltzmann equation in this approach and compute the fluctua-
tions away from equilibrium, leading to the friction terms. In our solution, we perform a
linearization procedure which does not always hold. However, we can establish a criterion
for its validity, and can then have an adequate estimate of the reliability of our methods.

Our main result is that the inclusion of higher order terms in the momentum
expansion of the fluid Ansatz are typically very relevant, and in some cases may even turn
a detonation solution into a deflagration. For a Standard Model particle content in the
plasma, considering the W and Z bosons and the top quark as heavy species, no detonations
are found once we include terms beyond the perfect fluid Ansatz, corroborating recent
findings in the literature [51, 59]. However, this conclusion could be heavily dependent on
the particle content of the plasma. We illustrate this statement by also analysing a situation
where only top quarks are included as heavy species. In this case the overall picture changes
and non-luminal detonations seem to be the only viable solutions for sufficiently small
M . However, more investigation is needed to check whether deflagrations could be viable
solutions in this range once we improve the linearization procedure. Moreover, in this
detonation regime the inclusion of higher order terms in the fluid Ansatz is quantitatively
important, as the difference to the perfect fluid result may be a factor of O(10%) or higher.
On a final note, we have checked that the momentum expansion tends to converge, albeit
slowly when gauge bosons are included in the picture because of their larger diffusion
length compared to the top quarks.

It would be interesting to investigate how the result would be impacted should
we include the spatial dependence of the coefficients appearing in the Boltzmann system.
Similarly, one could also include the spatial dependence of the temperature profile across
the bubble wall, which varies from T− behind the wall to T+ ahead of it. We did this in
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the recent paper. [62].

Besides this important result, in this dissertation we provided a detailed analysis of
the behavior of various aspects of a first-order electroweak phase transition and explained
the entire process of calculating the most important parameters for the theoretical power
spectra. This field lacks a single, comprehensive, and detailed study, and often the compu-
tations are fragmented and unclear. Therefore, in addition to the interesting results we
obtained, this dissertation could serve as a valuable resource for other scientists in training
in the discussed field.
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