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RESUMO

Avanços na tecnologia de automação aumentam a segurança e a eficiência dos processos
industriais. Como resultado, atualmente operamos em uma era interconectada, na qual
dispositivos se comunicam e colaboram para resolver problemas complexos. Contudo, essa
interconectividade traz consigo novos obstáculos, demandando estratégias robustas para
assegurar um controle confiável e eficaz em aplicações do mundo real. Esta tese aborda
alguns desses desafios via o projeto de controladores distribuídos, aplicáveis tanto a sistemas
interconectados quanto a sistemas multiagentes. No contexto de sistemas interconectados, esta
tese concentra-se em dois cenários distintos. O primeiro cenário trata do projeto de controladores
distribuídos para sistemas interconectados não lineares sujeitos a retardos variantes no tempo
na dinâmica local e nas interconexões entre os subsistemas. Já o segundo cenário aborda o
projeto simultâneo de controladores distribuídos e mecanismos locais de acionamento baseados
em eventos (ETMs, do inglês, Event-triggered mechanims) para reduzir o consumo de recursos
de comunicação. Em ambos os casos, o sistema não linear é representado por modelos fuzzy
Takagi-Sugeno (TS) com consequentes não lineares (N-TS), que simplificam a representação
em contextos interconectados em comparação a abordagem clássica para modelagem Takagi-
Sugeno. Já no contexto de sistemas multiagentes, esta tese aborda o consenso sem líder e o
consenso de formação com seguimento de líder para agentes modelados como sistemas lineares
com parâmetros variantes (LPV, do inglês, Linear Parameter-Varying). Diferentemente da
maioria das abordagens existentes, os métodos propostos consideram perturbações internas
causadas por discrepâncias entre parâmetros de escalonamento dos agentes. Em ambas as
estruturas de consenso, são propostos protocolos distribuídos baseados em observadores para
lidar com estados não medidos. Todos os métodos de projeto propostos nesta tese são
formulados via condições suficientes expressas como desigualdades matriciais lineares (LMIs,
do inglês, Linear Matrix Inequalities), obtidas das teorias de Lyapunov e Lyapunov-Krasovskii.
Simulações numéricas ilustram a eficácia das abordagens de controle distribuídas propostas
para lidar com esses desafios.

Palavras-chave: controle distribuído; sistemas interconectados. sistemas multi-agentes; con-
senso sem líder; consenso líder-seguidor; desigualdades matriciais lineares; sistemas lineares
com parâmetros variantes; sistemas fuzzy Takagi-Sugeno.



ABSTRACT

Advancements in automation technology improve the safety and efficiency of industrial processes.
As a result, we now operate in an interconnected era where devices communicate and collab-
orate to solve complex problems. However, this interconnectivity introduces new challenges
and requires robust strategies to ensure reliable and effective control in modern real-world
applications. This thesis addresses some of these challenges by designing distributed control
approaches for interconnected as well multi-agent systems. In the context of interconnected
systems, this thesis focuses on two different scenarios. In particular, the first scenario addresses
the design of distributed controllers for delayed interconnected nonlinear systems with time-
varying delays in both the local subsystems’ dynamics and the physical interconnections among
the subsystems. Moreover, the second scenario addresses the codesign of distributed controllers
and local event-triggered mechanisms (ETMs) to reduce the consumption of communication
resources. In both cases, the nonlinear system is represented by Takagi-Sugeno (TS) fuzzy mod-
els with nonlinear consequents (N-TS fuzzy), which simplify representation in interconnected
contexts compared to standard TS fuzzy models. Furthermore, for multi-agent systems, this
thesis tackles leaderless and leader-following formation consensus for agents modeled as Linear
Parameter-Varying (LPV) systems. Unlike most existing approaches, the proposed methods
account for internal perturbations caused by scheduling parameter mismatches among agents.
In both consensus frameworks, distributed observer-based protocols are proposed to handle
unmeasured states. All the design methods proposed in this thesis are performed with sufficient
conditions formulated via linear matrix inequalities (LMIs) derived from the Lyapunov and
Lyapunov-Krasovskii theory. Numerical simulations illustrate the effectiveness of the proposed
distributed control approaches in addressing these challenges.

Keywords: distributed control; interconnected systems; multi-agent systems; leaderless consen-
sus; leader-following consensus; linear matrix inequalities; linear parameter varying systems;
Takagi-Sugeno fuzzy systems.
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1 INTRODUCTION

1.1 Interconnected and multi-agent systems

The human capacity for critical thinking allows the design of tools and techniques to
modify the environment. History shows that since the Paleolithic age, when the first tools were
created to ensure survival, the complexity of humanity’s existence has constantly grown, and
consequently, the need for technological innovations has increased at an exponential rate. The
improvement of society’s quality of life can be seen as the main motivation for the development
of new techniques, once the increase in population drew attention to the necessity of simplifying
relationships and automating processes. This technological evolution is a slow and gradual
process that requires the cooperation of several fields of science. As highlighted by Bernstein
& Bushnell [1]:

"An interesting aspect of the history of technology is the way in which an innovation
was developed. In many cases, inventions were the result of numerous people
making small advances until a critical point was reached."

It is beyond question that the field of control engineering has directly contributed to
the inception of several technological breakthroughs. These previous efforts have led to an
interconnected era, where we can interact and communicate with each other even in distant
parts of the world. One can observe that many modern devices are composed of interconnected
elements that might engage in collaboration with one another through information exchange.
Therefore, it is crucial to design new control strategies that can effectively address the main
challenges presented by these complex systems.

In this context, the literature has introduced several definitions to characterize such
scenarios. Among them, the so-called Interconnected Systems (ISs), and Multi-Agent Systems
(MASs) are of particular interest in this thesis. The first reference to ISs was found in the notes
of Elden [2], in 1921, where the operation of the interconnection between the power systems
of the Eastern Massachusetts Electric Company and the New England Power Company is
discussed. Since then, processes such as multi-robot control, distributed intelligence, oscillator
synchronization, social interaction modeling, transportation networks, power systems, chemical
reactors, and aerospace systems, among many others, have been defined as ISs [3]. Similarly,
as discussed by Chen & Ren [4], the study of MASs stretches back through history, having
emerged as a distinct field at the beginning of the 21st century. The potential applications of
MASs also include processes such as satellite formation, robotics, electric power systems, and
intelligent transportation systems [5].
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Due to their similarities, overlaps in the terminology of ISs and MASs are common
in the literature. For instance, the approaches of [6, 7] define the systems they address as
interconnected multi-agent systems, while [8] refers to physically interconnected multi-agent
systems. Other works, such as [9,10], also include the notion of large-scale into interconnected
and multi-agent systems, respectively. However, as discussed in [11], the concept of large-scale
can be highly subjective. An alternative way to distinguish these systems is to consider whether
decomposition techniques are necessary to manage their complexity [10, 11]. To properly
define the class of systems addressed in this thesis, the same arguments presented in [12] are
considered, where ISs and MASs are distinguished by evaluating if the interactions among the
components of the overall system are raised by physical connections or introduced into the
control setup to deal with cooperative goals. More specifically, the following definitions are
considered:

Definition 1.1: Interconnected Systems (Adapted from [12])

Interconnected systems (ISs) are referred to the class of systems composed of a set of
physically coupled interacting subsystems with individual control objectives.

Definition 1.2: Multi-agent Systems (Adapted from [12])

Multi-agent systems (MASs) are referred to the class of systems that are composed of
a set of autonomous subsystems (usually known as agents), that interact trough the
exchange of information and work together to achieve cooperative control goals.

From Definitions 1.1 and 1.2, one can perceive that only on ISs certain variables
associated with a subsystem may directly affect the dynamics of the other subsystems. In
practice, the structure of a global closed-loop interconnected system depends on the number of
subsystems, how the subsystems are physically interconnected, and how the communications
(between the subsystems to the local controllers and among the controllers) are performed.
Similarly, the structure of a global closed-loop MAS depends on the number of agents and
on how the communications (between the agents to the local controllers and among the
controllers) are defined. Thus, a general structure of an overall closed-loop system for both ISs
and MASs is not easy to depict.

Broadly speaking, these general structures can be divided into three main components:
the physical system, the communication framework, and the control setup. For illustration
purposes, Figures 1.1 and 1.2 present conceptual simplifications of these structures. The
structure of a IS, emphasizing the physical interconnections among the subsystems, is presented
in Figure 1.1. Meanwhile, Figure 1.2 illustrates the MASs structure, where the interactions are
restricted to the exchange of information in the control setup, in order to achieve cooperative
control.
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Physical InterconnectionsPhysical Interconnections

Control
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Figure 1.1 – Conceptual simplification of the general structure of a closed-loop Intercon-
nected Systems.

Network
Information Exchange

Control Setup
Cooperative

C1 C2 CN

P1 P2 PN
Multi-Agent

System

Figure 1.2 – Conceptual simplification of the general structure for a closed-loop Multi-
Agent Systems.

Based on the aforementioned discussion, the importance of the information exchange
among subsystems or agents is evident. From the availability of information to the design and
implementation of the control law, the main structures of control setup are categorized as
centralized control, decentralized control, and distributed control. Due to the characteristics of
the systems, it is reasonable to expect an increase in the design complexity and the required
resources with the growth of the number of subsystems or agents. Therefore, a trade-off
between the performance of the closed-loop system and these required resources is desirable.
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In addition to hardware, the main concerns in these cases pertain to the communication and
computational burden of each strategy.

The next section provides a discussion on the advantages and disadvantages of the
main structures for control setup.

1.2 Main control structures

1.2.1 Centralized control

In the centralized approach, a single controller is responsible for ensuring the stability
of the entire system. The control unit requires measurements of all subsystems or agents and
defines all control actions. A general illustration of the centralized structure is depicted in
Figure 1.3.

Control
Setup

Physical
System

P1 P2 PN

Network
All information is transmitted to a single controller

C

Figure 1.3 – Centralized control.

Due to the knowledge of global information, the main advantage of this approach is
the possibility of obtaining appropriate levels for closed-loop performance. However, the high
communication resources necessary to collect and transmit all data to the central controller
and the high computational resources required to simultaneously process all data for the design
of the control inputs can be considered as the major drawbacks of this approach. Moreover,
note that if the measurements of one single physical system are compromised, there is an
impact on the performance of the global system.
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1.2.2 Decentralized control

In the decentralized approach, each subsystem has its own local controller. The
controllers have access only to the measurements of their respective subsystems, that is, there
is no exchange of information among the controllers. A general illustration of the decentralized
structure is depicted in Figure 1.4.

Control
Setup

Physical

System

P1 P2 PN

C1 CN

Network
The information is not exchanged

C2

Figure 1.4 – Decentralized control.

Compared with the centralized approach, the decentralized structure provides a reduction
in the required communication and computational resources. However, due to the lack of
information, global closed-loop performance may be affected. Furthermore, note that when the
decentralized structure is considered in ISs, the interconnections among the subsystems are
ignored in the local control laws. Overlooking the interconnection effects in the structure of
the controllers introduces additional difficulties and may lead the design process to infeasible
solutions, as there is no guarantee that a set of independent local controllers can always
be designed. Unlike the centralized approach, if the measurements of one single unit are
compromised, only the corresponding control input is damaged at first. However, due to the
interconnections, a cascade effect might occur, affecting the other subsystems.

1.2.3 Distributed control

In the distributed approach, stabilization of the global closed-loop system is performed
with a set of local controllers that are capable of exchanging information with the controllers
of neighboring subsystems or agents. For ISs, a suitable choice for the communication network
might be to guarantee that the controllers are interconnected in the same way as the physical
interconnections. A general illustration of the distributed structure is depicted in Figure 1.5.
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Distributed control establishes a compromise between closed-loop performance and the
required resources. On the one hand, this strategy provides greater modularity and economy of
resources, in comparison with centralized control. On the other hand, due to the exchange of
information in the neighborhood, the distributed control is able to improve the closed-loop
performance compared to the decentralized approach. Thus, it is possible to conclude that
the distributed control structure pursues an equilibrium between the main advantages of the
previous approaches. Due to this, the focus of this thesis is on exploring the benefits of the
distributed control structure for different challenges in the context of ISs and MASs.

Control
Setup

Physical
System

P1 P2 PN

C1 CN

Network
Information exchange among neighbors

C2

Figure 1.5 – Distributed control.

In a more general setting, where the overall IS or MAS consists of N subsystems or
agents, the interactions among them must be properly defined, and in such cases graph theory
is employed. An example of an undirected graph is depicted in Figure 1.6. In the case of ISs,
the arrows (edges) indicate that the dynamics of the i-th subsystem directly depends on the
states of the j-th subsystems that are interconnected to it. The edges are undirected, that
is, they point in both directions, to indicate that the interconnections are mutual. Moreover,
in the case of MAS, the graph represents the communication topology. Therefore, the local
controllers will send and receive information from the other controllers according to the edges
of the undirected graph. More information on the concepts of graph theory considered in this
thesis is presented in Appendix A.
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Figure 1.6 – Example of an undirected graph.

Similarly to the control setup, several modeling approaches can also be used to describe
the physical dynamics of ISs and MASs. Some of these approaches are further discussed in the
following section, which focuses on modeling at the physical level.

1.3 Modeling of interconnected and multi-agent systems

The modeling of a system’s dynamic behavior is crucial in the field of automatic
control. Among various modeling approaches, nonlinear dynamics is known to offer a richer
representation, covering a wide range of real-world applications [13,14]. As discussed in [15], it
is often possible to approximate nonlinear systems using models such as Linear Time-Invariant
(LTI) systems, uncertain LTI systems, Takagi-Sugeno (TS) fuzzy models, Linear Parameter-
Varying (LPV) systems, and quasi-LPV systems. Consequently, it is not surprising that the
literature in the fields of ISs and MAS covers works that address both nonlinear dynamics
and their approximations. Thus, the goal of this section is to specify the modeling approach
adopted in this thesis.

First, for ISs, the aim is to investigate continuous-time nonlinear models that consists
of N interconnected nonlinear subsystems described as follows:

Pi : ẋi(t) = fi(xi(t), ui(t)) +
∑︂

j ∈ Ni

gij(xi(t), xj(t)),

where xi(t) ∈ Rni is the state vector of the i-th subsystem, ui(t) ∈ Rmi is the i-th control
input, Ni is the neighborhood, and fi and gij are nonlinear functions that represents the local
nonlinear dynamics, and the nonlinear interconnections among the subsystems respectively.

Nonlinear dynamical systems are known to be more complex and challenging to control
than linear systems. Moreover, the nonlinear control techniques that exist have particularities
that can make the design process onerous for complex applications. Therefore, the aforemen-
tioned approximations for the nonlinear dynamics are often considered to simplify the control
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design process. Among them, this thesis places particular emphasis on the TS fuzzy approach.
In this modeling, the nonlinear behavior is represented with a polytopic embedding constructed
by a convex summation of linear models. The main advantage of this approach is the possibility
to formulate the control design by exploring the Lyapunov theory and the model’s convexity,
obtaining sufficient conditions in terms of Linear Matrix Inequalities (LMIs).

Note that in the context of ISs, the nonlinearities of the model may occur in the local
subsystems dynamics, and in the interconnections among the subsystems, which makes the
control design even more challenging, once representing all these nonlinearities by a set of
fuzzy rules might lead to the curse of dimensionality problem. To overcome this issue, the
main strategies consist of considering only the local nonlinearities in fuzzy modeling, and
assuming that the nonlinear interconnections satisfy some bounding properties such as norm
bounding [16], quadratic bounding [17], or sector bounding [18]. Therefore, the approach
proposed in this thesis assumes that the nonlinear interconnections are sector-bounded. In
this case, a Takagi-Sugeno fuzzy model with nonlinear consequents (N-TS fuzzy) [19,20] is
obtained for each subsystem of IS.

A variety of possible dynamical models have also been investigated in the literature for
MASs. Among them, it is possible to highlight the single and double integrator models (that
can be seen as special cases of a general linear dynamics), and nonlinear models such as the
Lagrangian and unicycle systems [4]. Furthermore, MASs can be classified as homogeneous
(when the dynamics of all agents are equal), or heterogeneous (when each agent is described
by an individual representation) [21]. In the context of MASs, this thesis centers its attention
on the particular cases where the dynamics of the agents can be represented by LPV models.

Similarly to TS fuzzy models, the LPV approach also represents the system dynamics in
a polytopic embedding. However, in the LPV representation, the convex summation of linear
models can be performed in terms of time-varying scheduling parameters, which are functions
of measured exogenous signals. For more details about the TS fuzzy, N-TS fuzzy, and LPV
modeling approaches employed in this thesis, the reader is referred to the seminal works, survey
papers, and previous thesis available in [11,15,22–29].

1.4 Addressed challenges

The general scope of this thesis has been outlined in previous discussions. Building on
this context, this section now focuses on the specific challenges (problems) investigated in this
work.

1.4.1 Handle the presence of time-delays in interconnected systems

Time delay is an intrinsic phenomenon of several real-world problems in the fields
of biology, chemistry, economics, mechanics, physics, physiology, population dynamics, and
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engineering sciences. Examples of the modeling of such processes as Delay Differential Equations
(DDE) are presented in [30], and the motivations for the study of time-delay systems are
discussed in [31].

As highlighted in a historical note in [32], the first equations with delay were studied
in the 18th century, and ever since, this topic has been attracting the attention of many
researchers, especially in the control community, after the early results of robust control for
systems with uncertain delays. In control systems, the effects of the time delays are not
restricted to the system dynamics. They can appear in the state, in the control input, or in
the measurements, being classified as transport, communication, and measurement delays,
respectively, [32].

It is well known that the presence of time delays can cause harmful effects on the
system’s operation, and if not properly managed, it can even lead the system to instability.
Therefore, the development of control approaches capable of dealing with the presence of
delays is a very important and challenging issue. Several results have been proposed in the
literature, mostly based on the methods of Lyapunov-Krasovskii and Lyapunov-Razumikhin,
which are able to provide constructive finite-dimensional conditions. More information on
analysis and control approaches for time-delay systems can be found in the works [31–35] (and
the references therein).

In continuous-time nonlinear ISs, the effects of time-varying delays in the physical
system might appear in both the local subsystem’s dynamics and the physical interconnections
among the subsystems. The dynamics of each subsystem, in this case, can be described as:

Pi : ẋi(t) = fi(xi(t), xi(t− hi(t)), ui(t)) +
∑︂

j ∈ Ni

gij(xi(t), xj(t− τij(t))),

where xi ∈ Rni is the state vector of the i-th subsystem, ui ∈ Rmi is the i-th subsystem
control input, hi(t) is the internal time-varying delay of the subsystem’s dynamics, and τij(t)
is the time-varying delay induced by the connection between the subsystems Pi and Pj.

Based on the aforementioned discussion, the first challenge addressed by this thesis is
as follows:

To propose a novel distributed control approach, in terms of LMI-based conditions,
for the stabilization of continuous time-delay interconnected nonlinear systems
represented by polytopic N-TS fuzzy models.

1.4.2 Preserve communication resources in the control of interconnected systems

It is evident that a reliable communication network is essential for a successful imple-
mentation of control approaches for ISs. Unfortunately, in real-world applications, the ideal
operation of such networks is almost impossible, and to address more realistic scenarios, it is
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necessary to consider network-induced phenomena that might prevent the correct operation of
the closed-loop system.

For instance, consider that the communication network has its own bandwidth limitations.
In this case, the system measurements traffic, or the control input traffic, may cause congestion
in the Sensor-Controller (S-C) or Controller-Actuator (C-A) communication channels. This
congestion is capable of causing problems such as network-induced delays, data packet dropouts,
and data packet disorders. A complete discussion of the mentioned issues and other network
constraints, such as quantization errors, network channel fading, time-varying networks, and
time-varying sample intervals, can be consulted in the survey papers [36–40], and in the
references therein. These aspects highlight several challenges of the control design for ISs. The
possible consequences make clear the importance of designing control approaches to cope with
these network-induced effects. Moreover, it is also clear that developing resource-aware control
approaches that reduce the usage of communication resources is equally important.

The way information is transmitted in the control loop directly influences the burden of
communication resources. The traditional time-triggered approach considers that data sampling
and transmissions are performed in instants of time determined by clocks. In this case, the
sampling mainly occurs according to three different strategies: i) periodically with a constant
sampling period, ii) periodically with a time-varying sampling period, or iii) with stochastic
sampling. Since these strategies are only driven by time, they cannot verify if transmissions are
not required. This inefficient transmission results in a waste of communication resources and
may cause an overload in channels [37].

An effective way to reduce the number of unnecessary transmissions is the Event-
Triggered Control (ETC) approach. In this strategy, an Event-Triggered Mechanism (ETM)
that takes into account the evolution of the system states (or outputs) and their deviation from
the last transmission to define when the transmissions occur. More precisely, new transmissions
are triggered by ETM if the triggering function exceeds a threshold.

Due to its efficiency, the ETC theory has been widely explored by the control community
[41–47]. Several results have been reported in the literature considering optimization-based
and Lyapunov-based formulations that employ modeling tools such as hybrid system models,
perturbed models, and time-delay models. Moreover, it is also possible to classify the ETC
methods according to the technique considered to monitor the measurements of the system
(continuous, continuous with regularization, and periodic), according to the triggering function
(static, adaptive, and dynamic), and according to the design process (emulation and co-design).
The works [48, 49] present a complete overview of the definitions, differences, and advantages
of these strategies.

Therefore, the goal is to consider the ETC theory to reduce the number of transmissions
in distributed control of ISs. More specifically, the second challenge addressed by the thesis is:
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To propose a distributed event-triggered control approach, in terms of LMI-based
conditions, to preserve communication resources in the stabilization of continuous-
time interconnected nonlinear systems represented by polytopic N-TS fuzzy models.

1.4.3 Manage different scheduling parameters and unmeasurable states in LPV multi-agent
system

Influenced by the cooperative behaviors of the natural world, the study of MASs enabled
significant advancements in practical applications in several fields. An interesting feature of
MASs is their cooperative actions, which allow them to solve complex problems by modifying
the agents’ behavior to achieve a common goal. From the control design perspective, consensus,
formation, and flocking control have been the three major tasks extensively investigated in
recent years [50, 51].

Broadly speaking, the consensus problem seeks to achieve an agreement among all
agents, that is, all agents agree upon and converge to a single value. In this case, the control
input is defined as the consensus protocol, which is the way in which the agents will exploit
their collective behavior to reach a consensus [4]. As explained in [4,50], the consensus problem
can be divided into leaderless and leader-following problems, as described as follows:

Definition 1.3: Leaderless consensus (Adapted from [4, 50])

A general MAS with N agents achieves a leaderless consensus if

lim
t→∞

||zi(t) − zj(t)|| = 0, ∀j ̸= i, i, j ∈ N≤N ,

where zi(t) and zj(t) represent the state or output of the i-th and j-th agent.

Definition 1.4: Leader-following consensus (Adapted from [4, 50])

A general MAS with N agents and a leader achieves a leader-following consensus if

lim
t→∞

||zi(t) − z0(t)|| = 0, ∀i ∈ N≤N

where zi(t) represents the state or output of the i-th agent, and z0(t) is a common
desired trajectory of the leader for all agents to track.

Moreover, in the formation problem, the main goal is to guarantee that the group of
agents forms and maintain a geometric formation to achieve a coordinated goal:



Chapter 1. Introduction 32

Definition 1.5: Leaderless formation consensus (Adapted from [4, 50])

A general leaderless formation consensus problem is to design a consensus protocol for a
MAS to achieve

lim
t→∞

||zi(t) − zj(t) − (fi − fj)|| = 0, ∀j ̸= i, i, j ∈ N≤N ,

where zi(t) and zj(t) represent the state or output of the i-th and j-th agent, and
(fi − fj) is the formation deviation between the i-th and j-th agents.

Definition 1.6: Leader-following formation consensus (Adapted from [4, 50])

A general leader-follower formation consensus problem is to design a consensus protocol
for an MAS to achieve

lim
t→∞

||zi(t) − z0(t) − fi0|| = 0, ∀i ∈ N≤N ,

where zi(t) represents the state or output of the i-th agent, z0(t) the common desired
trajectory for all agents to track and fi0 is the desired formation deviation from z0(t).

These problems and their variations have been extensively addressed in multiple scenarios,
as can be seen in several existing survey papers [4,50–59] (and the references therein). However,
as discussed in Section 1.3, the focus of this thesis is on the case of LPV MASs. In general,
an LPV system can be described by:⎧⎪⎨⎪⎩ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t) (continuous-time)

y(t) = C(ρ(t))x(t)⎧⎪⎨⎪⎩x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) (discrete-time)
y(k) = C(ρ(k))x(k)

where x ∈ Rnx is the state, u ∈ Rnu is the input, y ∈ Rny is the output, and ρ =
[ρ1, ρ2, . . . , ρp]⊤ is a vector of time-varying parameters, which are functions of exogenous
signals. This system can be represented by a polytopic model as:⎧⎪⎨⎪⎩ẋ(t) = ∑︁Nv

i=1 αi(ρ(t))(Aix(t) +Biu(t)) (continuous-time)
y(t) = ∑︁Nv

i=1 αi(ρ(t))Cix(t)⎧⎪⎨⎪⎩x(k + 1) = ∑︁Nv
i=1 αi(ρ(k))(Aix(k) +Biu(k)) (discrete-time)

y(k) = ∑︁Nv
i=1 αi(ρ(k))Cix(k)

being Nv the number of vertices of the polytopic domain, Ai, Bi and Ci, are constant matrices
representing the vertices, and αi(ρ(·)) are the time-varying parameters satisfy the convex sum
property:

Nv∑︂
h=1

αh(ρ(·)) = 1, and αh(ρ(·)) ≥ 0, ∀h ∈ N≤Nv .
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Since the time-varying parameters ρ(·) are functions of exogenous signals, one interesting
feature that may occur in the context of MASs is: A homogeneous LPV MASs where all agents
belong to the same polytopic domain, may present heterogeneity in its dynamics, if each agent
has different time-varying parameters ρi(·). In this case, the convex sum of the vertices can
result in a different matrix of the polytopic domain, even if the agents have identical structures.
As discussed in [52], consensus protocols designed for completely homogeneous MASs are not
suitable if all agents do not have exactly the same dynamics, and challenges might arise due to
various aspects.

In the cases where it is not possible to overcome these challenges posed by physical
characteristics or communication constraints, exact consensus might not be achieved. An
alternative solution is to guarantee that the consensus error can be confined in a bounded
region around the origin, ensuring a practical consensus [60]. Following [60–62], the notion of
practical consensus can be described as follows:

Definition 1.7: Practical consensus (Adapted from [60–62])

Defining the ellipsoid
E(P, ε) ≜ {e ∈ RNn : e⊤ P e ≤ ε},

where P > 0 is a positive definite matrix, ε > 0 is a given positive scalar and e is the
consensus error. A MAS is said to achieve a practical consensus if

lim
t→∞

d(e(t, e0), E(P, ε)) = 0,

where e(t, e0) represents the trajectory of the error system with the initial condition e0,
and d(e(t, e0), E(P, ϵ)) represents the distance between e(t, e0) and E(P, ε).

As discussed previously, the information available for the design of the consensus law
is a key feature in achieving the defined consensus. Besides the information obtained from
other agents, the accessibility to local measurements is equally important. However, in several
practical applications, some of the systems states might not be available for measurement, or
there is a high cost for obtaining all the sensors required [15,63]. In such cases, the design of
observer-based consensus protocols can provide a viable solution [64]. Thus, the challenges
addressed by this thesis in the context of LPV MASs are:

To propose a distributed observer-based consensus approach, in terms of LMI-based
conditions, capable of guaranteeing the leaderless practical state-consensus of
continuous-time LPV MASs with different scheduling parameters and unmeasur-
able states.
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To propose a distributed observer-based consensus approach, in terms of LMI-based
conditions, capable of guaranteeing the leader-follower formation consensus of
discrete-time LPV MASs with different scheduling parameters and unmeasurable
states.

1.5 Thesis outline and contributions – The Big Picture

The big picture of the thesis organization is summarized in Figure 1.7, where it is
possible to see that it is divided into four main parts.

APPROACHES TO DISTRIBUTED CONTROL DESIGN:
addressing multiple challenges in interconnected and multi-agent systems

Figure 1.7 – Thesis organization – The big picture.

The Part I encompasses this Chapter 1, where the general introduction and the addressed
challenges are discussed. In Parts II and III, the proposed distributed control approaches for
interconnected nonlinear systems and distributed consensus protocols for LPV MASs are
presented, respectively. Moreover, in Part IV, concluding remarks and suggestions for future
work are discussed. The related contributions of each chapter are described as follows:
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• PART II - Distributed Control for Interconnected Nonlinear Systems

• Chapter 2: Provides a literature review on the existing approaches for interconnected
systems in the contexts of time-delay and event-based control approaches. Moreover,
the specific objectives of Chapters 3 and 4 are stated.

• Chapter 3: Concerns the challenge of designing a distributed control strategy for
continuous-time interconnected nonlinear systems subject to time-varying delays in
both local subsystem dynamics and physical interconnections among subsystems.
Based on Lyapunov-Krasovskii stability theory, the proposed method develops
synthesis conditions for constructing a distributed control law that ensures local
asymptotic stability of the closed-loop system at the origin. A guaranteed set
of admissible initial conditions is formulated to ensure the validity of the closed-
loop N-TS fuzzy model considered to represent the system. Furthermore, the
chapter introduces a quasi-convex optimization procedure to enlarge the set of
initial conditions. The results of this Chapter are published in [65].

• Chapter 4: Concerns the challenge of co-designing an asynchronous distributed event-
triggered control strategy for continuous-time nonlinear interconnected systems.
Since state information is transmitted to local controllers only at triggering instants,
a key complexity arises from the mismatch between the premise variables of the
subsystems and the ETC setup. To address this, the chapter proposes a novel
distributed event-triggered mechanism (ETM) that actively compensates for these
mismatches. The chapter also introduces a multi-objective optimization procedure
to simultaneously enlarge the estimated domain of attraction and minimize the
consumption of communication resources. Furthermore, the proof of the existence
of a strictly positive minimum inter-event time to exclude Zeno behavior is also
presented. The results of this Chapter are published in [66].

• PART III - Distributed Consensus for LPV Multi-agent Systems

• Chapter 5: Provides a literature review on the existent approaches for the consensus
of LPV MASs.

• Chapter 6: Concerns the challenge of designing a distributed gain-scheduled observer-
based framework to achieve practical state consensus in continuous-time LPV MASs,
where each agent operates under distinct time-varying scheduling parameters. A
central problem arises from the heterogeneity of scheduling parameters across agents,
which introduces non-synchronization effects modeled as internal disturbances. The
chapter presents sufficient synthesis conditions for designing an observer-based
consensus protocol that guarantees the exponential convergence of the trajectories
of the consensus error to a bounded region around the origin. The results of this
Chapter are published in [67].
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• Chapter 7: Concerns the challenge of designing a distributed gain-scheduled observer-
based framework to achieve leader-following formation in discrete-time LPV MASs,
where each agent operates under distinct time-varying scheduling parameters.
Similar to Chapter 6, the framework explicitly addresses parameter mismatches and
formation requirements as internal perturbations. However, in this leader-following
formation scenario, the mitigation of these perturbations via compensation signals
is investigated. The chapter further establishes sufficient design conditions to
guarantee that the combined dynamics of estimation and tracking errors remain
bounded in the cases where the proposed compensation signals cannot be designed.
The results of this Chapter are published in [68].

• PART IV - Concluding Remarks and Further Steps

• Chapter 8: Summarizes the main contributions of this thesis and presents the
concluding remarks and suggestions for future work.



Part II

Distributed Control for Interconnected Nonlinear Systems
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2 LITERATURE REVIEW AND SPECIFIC OBJECTIVES OF PART II

This chapter presents a literature review of existing approaches for interconnected
systems in the scenarios of time-delay §2.1, and event-based control §2.2. Moreover, based on
the pre-organized discussion, the specific objectives addressed in the remaining Chapters of
Part II are defined in §2.3.

2.1 Literature review of time-delay interconnected systems

Within the context of ISs, the system’s intricate structure permits the occurrence of
time-delays not only in the local dynamics of the subsystems but also in the interconnections
among them. Various approaches have been proposed in the literature to address each specific
case. To provide an overview of the control methods for time-delay interconnected systems, the
main results were summarized in the literature review presented in Table 2.1. The approaches
were classified based on three criteria: the location of the time-delays (local dynamics of
the subsystems, interconnections among the subsystems, or in both), the control structure
(Decentralized or Distributed control), and the class of model representing the subsystems
(Nonlinear, Linear, TS fuzzy or N-TS fuzzy).

Table 2.1 – Literature Review: Control for Time-delay Interconnected Systems

Delay location Nonlinear Linear TS fuzzy N-TS fuzzy

Local Dynamics
Decentralized [69–79] [80] [81–89] ×
Distributed × [90–92] × ×

Interconnections
Decentralized [93–122] [123–131] [132–137] ×
Distributed × [138] [139] ×

Both
Decentralized [140–147] [148–153] [154] ×
Distributed [155] [156,157] × ×

Control Approaches for Time-Delay Interconnected Nonlinear Systems

The works [69–79] focus on the design of decentralized controllers for systems with
time-delay only in the nonlinear dynamics of the subsystems. To cope with unknown functions,
delays, and unmeasured states, the approaches of [69–73] perform the design of adaptive
controllers based on universal approximators and recursive techniques. More specifically, the
design of a decentralized adaptive neural output-feedback control scheme is proposed in [71],
adaptive neural network memory output-feedback controllers are designed in [72], and a
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decentralized adaptive implicit inverse control scheme is presented in [73]. Moreover, in the
approaches of [74–76], the design is based on the combination of dynamic gain techniques
with the backstepping approach, and Lyapunov-Krasovskii stability arguments. Finally, the
works [77–79] propose delay-dependent LMI conditions for the design of state-feedback [77,79],
and memory static output-feedback controllers [78].

The design of decentralized controllers for ISs with nonlinear subsystems and time-
delay only in the interconnections among the subsystems is addressed in [93–122]. Notice
that this setup has been the most explored in the literature. Similarly to the first group of
references, the majority of these approaches [93,94,97,99–109,111–114,117–122] focus on the
development of adaptive controllers based on universal approximators and recursive techniques.
The design of observer-based output-feedback controllers is performed in [95, 96] based on
the dynamic-gain approach. A delay-dependent sufficient condition is proposed in [101] for
the design of decentralized H∞ state-feedback controllers. The H∞ control problem is also
addressed in [115,116], using neural networks to obtain a linear differential inclusion state-space
representation, that allows the synthesis of fuzzy controllers through LMIs. Moreover, in [110]
the design of dynamic output-feedback controllers is carried out by combining the backstepping
technique with Nussbaum functions and Lyapunov-Krasovskii stability arguments.

The approaches of [140–147], deal with the decentralized control problem for ISs with
nonlinear subsystems and time-delay in both the local subsystems’ dynamics and the physical
interconnections. The design of model reference adaptive controllers is investigated in [140–142].
Two distinct cases are considered in [147]. If the bounds of the uncertain interconnection are
available, the design of the output-feedback decentralized controllers is performed with the
backstepping method. Otherwise, if the bounds are unknown, neural network approximations
are considered to obtain an adaptive control law. In [144] a delay-dependent static output-
feedback variable structure control is obtained considering the Lyapunov-Razumikhin approach.
Furthermore, in [145,146,151] the design of robust decentralized state-feedback controllers [146],
decentralized delay-dependent state-feedback controllers [145], and decentralized dynamic
output-feedback controllers for discrete-time systems [151], are performed through LMIs
conditions.

It is important to emphasize that the performed literature review shown that little atten-
tion has been paid to the design of distributed control approaches for time-delay interconnected
nonlinear systems, regardless of the location of the time-delays. The only exception is the
approach of [155], where the reference tracking problem for interconnected nonlinear system
with delays in both local dynamics and interconnections is investigated. The proposed method
consist on the design of distributed preview tracking controllers, obtained trough sufficient
conditions based on Lyapunov-Krasovskii stability arguments with the focus on H∞ disturbance
attenuation.
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Control Approaches for Time-Delay Interconnected Linear Systems

Shifting our attention to approaches that employ linear models to represent the subsys-
tems, it is also challenging to find results for distributed control. In [90–92], the authors present
sufficient conditions in the form of LMIs for the design of distributed filters and controllers [90],
distributed preview controllers for discrete-time systems with time-varying delays and polytopic
uncertainties [91], and robust distributed controllers for the primary frequency control of
time-delay power systems [92]. It is important to note that these conditions consider the
presence of delays only in the local dynamics of the subsystems.

The partial state consensus problem is investigated in [138] with the design of distributed
controllers for a chain of interconnected delayed systems with interconnection delays. In [157]
the design of distributed controllers and distributed anti-windup compensators are proposed for
the robust stabilization of spatially interconnected delayed systems with input saturation. The
control of wide-area power systems with state and interconnection delays is performed in [156]
with distributed sliding mode controllers.

Furthermore, notice that the remaining approaches focus on the design of decen-
tralized controllers for linear ISs with time-delays only in the local dynamics [80], only in
the interconnections [123–131], or both in the dynamics of local subsystems and physical
interconnections [148–153].

Control Approaches for Time-Delay Interconnected TS Fuzzy Systems

Specifically in the context of TS fuzzy delayed ISs, one may cite the approaches
[81–88,132–137,139,154]. In [81, 82] decentralized control schemes are proposed for nonlinear
interconnected systems with multiple time-delays in their local dynamics. The modeling error is
considered as a perturbation, and a robust design is proposed. Decentralized H∞ controllers are
also designed by the approaches of [83,86,87]. In [83,87] the system is subject to delays in the
dynamics and outputs of the subsystems, and in [86] the delays affect only the local dynamics.
The decentralized approach proposed in [86] is made up of sampled-data local controllers with
memory parameters. Combining stability arguments of the Lyapunov-Krasovskii theory with
the scaled small gain theorem, the method proposed in [87] can design decentralized dynamic
output-feedback controllers.

An Input-Output stability approach is addressed in [134]. Similarly to [87], a combination
of the Lyapunov-Krasovskii theory with the scaled small gain theorem is considered to provide
a reachable set estimation and design decentralized controllers. In [136], the finite-time control
problem is investigated with the design of decentralized dynamic output-feedback controllers for
time-delayed systems subject to intermittent actuator and sensor faults. Moreover, the finite-
time stabilization for interconnected systems with nonlinear discontinuous interconnections is
addressed in [139]. The system is modeled with the interval type-2 (IT2) TS fuzzy approach,
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and the proposed controllers are delay-dependent once the discontinuous and delayed terms are
included in the control scheme. Finally, notice that only the approach of [154] considers the
presence of time delays in both local dynamics of the interconnections, and only [139] proposes
a distributed structure in the context of delayed TS fuzzy ISs.

From the literature review performed, it becomes evident that limited attention has been
paid to the design of distributed controllers for time-delay interconnected nonlinear systems.
Furthermore, it is also possible to notice that the approaches employing TS fuzzy models are
mainly focused on the design of decentralized controllers. Although the distributed control
problem for local stabilization of non-delayed interconnected N-TS fuzzy systems has been
addressed by [18], the literature review was unable to find any approach that investigates the
local control design for interconnected N-TS systems in the presence of time-delays, which is
more involved than in the non-delayed case.

In the next section, the literature review is extended to include existing approaches of
event-based control for interconnected systems.

2.2 Literature review on event-based control for interconnected systems

To provide an overview of the ETC methods for ISs, the main results were summarized
in the literature review presented in Table 2.2. The approaches were classified based on two
criteria: the control structure (Decentralized or Distributed control), and the class of models
representing the subsystems (Nonlinear, Linear, TS fuzzy , or N-TS fuzzy).

Table 2.2 – Literature Review

Nonlinear Linear T-S Fuzzy N-TS Fuzzy

Decentralized [158–197] [198–202] [203–208] ×
Distributed [209–218] [219–229] [230–232] ×

Decentralized Event-triggered Control Approaches for Interconnected Nonlinear Systems

It is evident that the development of event-triggered decentralized approaches for the con-
trol of interconnected nonlinear systems is currently attracting significant attention [158–197].
Among these approaches, the main focus is the development of event-triggered adaptive
techniques [158–169,171–187,195]. Similarly to the case of time-delay interconnected nonlinear
system, these works are mainly based on the combination of universal approximators with
classical methods for the control of nonlinear systems. It is possible to highlight approaches
derived considering dynamic surface control [158–160], adaptive dynamic programming algo-
rithms [161–164], adaptive critic learning [165–169], reinforcement learning [170,171], fuzzy
logic systems [172–174], cyclic small gain [175], and neural networks [176–181]. Approaches
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that combine game theory with reinforcement learning have also been proposed in [191–193].
Furthermore, the results of [188–190] are established considering Input-to-State stability
arguments, and the adaptive tracking problem is addressed in [182–187].

Notice that none of the previously mentioned event-based decentralized approaches
for interconnected nonlinear systems have provided constructive conditions in the form of
LMIs. The literature review performed identifies [196, 197] as the only works focusing on
control design using LMIs. In [196], the design of robust decentralized event-triggered model
predictive controllers for networked Lipchitz systems is performed considering infinite-horizon
cost functions. Furthermore, co-design conditions based on Lyapunov-Krasovskii stability
arguments are proposed in [197], to simultaneously design the decentralized event-triggered
controllers and the matrices of the event-triggered mechanisms.

Distributed Event-triggered Control Approaches for Interconnected Nonlinear Systems

The distributed event-triggered control for interconnected nonlinear systems has been
addressed in the works [209–218]. In particular, [210] proposes a distributed event-based
control scheme for uncertain input-affine interconnected nonlinear systems based on a hybrid
learning approach that integrates approximate dynamic programming with online exploration.
In [211], the adaptive dynamic programming approach is also explored for the development of
a distributed control scheme for nonlinear interconnected systems with strong interconnections.
Furthermore, in [214], the same approach is employed for the design of an event-triggered
distributed H∞ constrained control algorithm. The H∞ performance is also considered in [215]
for the design of an observer-based distributed approach with dynamic dual side ETMs, and
in [217] for an anti-disturbance control approach based on the design of distributed extended
state observer and output-feedback.

Additionally, in [213], the adaptive dynamic programming approach is used to address
the robust tracking control problem for nonlinear interconnected systems with uncertain
interconnections. In [212], the focus is on a dynamic event-triggered distributed fault-tolerant
control method for uncertain nonlinear interconnected systems, which also employs the adaptive
dynamic programming technique. Moreover, a fault-compensation control scheme is proposed
in [216] considering distributed adaptive sliding mode controllers. Finally, event-triggered
distributed model predictive control algorithms are proposed in [209,218] for interconnected
systems with nonlinear coupling terms and bounded disturbances.

Event-triggered Control Approaches for Interconnected Linear Systems

For ISs with linear models representing the subsystems, the development of event-
based decentralized approaches has been explored in [198–202]. Furthermore, event-based
distributed control methods have been proposed in [219–229]. Unlike the approaches for
nonlinear subsystems, the results of several works in this context are based on LMIs conditions
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[198–202,219–222]. Among then, co-design conditions with H∞ performance were proposed
in [199,200] for the design of event-triggered dynamic output-feedback controllers, and in [202],
for the design of event-triggered state-feedback controllers. Meanwhile, event-based co-design
conditions are also proposed in [201,221] for the design of static output-feedback controllers,
in [220] for the design of state-feedback controllers for ISs with sparse connections, and in [219]
for an observer-based approach to solve the secure load frequency control problem. Finally, a
data-driven approach is proposed in [222] for unknown discrete-time interconnected systems.

Event-triggered Control Approaches for Interconnected TS fuzzy Systems

In the context of TS fuzzy modeling for the subsystems, the development of event-based
decentralized approaches has been carried out in [203–208]. Additionally, event-based distributed
control methods were proposed in [230–232]. In [205], a decentralized event-triggered state-
feedback fuzzy approach was introduced that considers the presence of network-induced delays
and time-driven samplers. The problem is formulated considering the input-delay and perturbed
system approaches, and the design conditions are obtained using Lyapunov-Krasovskii stability
arguments. In the works [206, 207], a two-channel triggering strategy has been proposed
for the development of event-based decentralized observer-based output-feedback [206], and
event-based decentralized dynamic output-feedback control approaches. In both cases, the
presence of ETM is assumed in the S-C and C-A channels. As in [205], the proposed methods
are also formulated considering the input-delay approach and Lyapunov-Krasovskii stability
arguments. However, the presence of network-induced delays is not considered in [206,207].

Furthermore, a decentralized H∞ control approach is proposed in [208] for nonlinear
large-scale systems modeled by affine fuzzy systems with unknown interconnections and network-
induced delays. Meanwhile, the approaches of [194,203] propose the use of interval type-2 TS
fuzzy models to represent the subsystems. In [203], an observer-based decentralized output-
feedback control method is proposed for systems with actuator saturation. Moreover, [194]
presents an exponential gain approach to achieve fixed-time stabilization for systems with
unknown interconnections and bounded perturbations.

In distributed methods [230–232], the type-2 TS fuzzy modeling is also employed
[230,231]. In [230] a distributed output-feedback load frequency control approach is developed
for nonlinear interconnected power systems with switching topology. Similarly, in [231] a
distributed output-feedback approach is proposed considering multi-rate samplers and time-
driven zero-order holds. Furthermore, in [232], a distributed event-based output-feedback
approach is proposed for ISs where the subsystems are represented by discrete-time TS fuzzy
models.

Unlike the previously discussed classes of systems, when the TS fuzzy approach is
considered to model the subsystems, event-based control designs must account for additional
challenges arising from the aperiodic update of information. For instance, in the design
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fuzzy controllers relying on state-dependent premise variables, the aperiodic update of the
measurements induces a difference between the premise variables available to the fuzzy controller,
and the real-time premise variables of the subsystems. If this asynchronous phenomenon is not
addressed, fuzzy controllers are reduced to traditional linear control laws. This issue increases
the conservativeness of the design condition, potentially affecting the feasibility of the solution
and the efficiency of the proposed method.

Unfortunately, the phenomenon of asynchronism has been neglected in the results
of [203,207]. In [205,206,231], this problem was handled considering prior knowledge of the
deviation bounds between asynchronous membership functions. In [230] a three-step procedure
is considered to obtain a relation between the current state and the last transmitted output,
from which the deviation bounds of the product of the asynchronous membership functions are
obtained. Moreover, in [208,232] partitions in the state-space are considered to deal with this
issue. However, this bounding strategy requires that the deviation bounds be satisfied during
the operation, thus limiting the operation range of the closed-loop system.

Similarly to the case of time-delay interconnected nonlinear systems, the literature
review reveals a lack of approaches that address the local event-based control problem for
interconnected N-TS fuzzy systems. With the main existing methods now established, the
specific objectives of Part II of this thesis are outlined in the next section.

2.3 Specific objectives of part II

Although different challenges are addressed in the context of delayed and event-based
control for interconnected nonlinear systems, two common features can be highlighted: the
design of distributed controllers and the N-TS fuzzy modeling of the subsystems. Furthermore,
it is known that in general, the polytopic embedding resultant from the TS fuzzy and N-TS
fuzzy modeling represents the nonlinear dynamics in a compact set (validity domain) of the
state-space. If the system trajectories evolve outside of this domain, the stability guarantees
may be lost, leading to implementation issues on the original nonlinear system. Therefore,
a common issue that must be addressed in both cases is to ensure that the trajectories of
the closed-loop system do not evolve outside of the validity domain. Thus, it is important to
perform a local analysis to ensure the correct operation of the closed-loop system. To address
this issue, along with the gaps in the literature discussed in Sections 2.1 and 2.2, the specific
objectives of this thesis in the context of ISs are:

• To propose sufficient LMI-based synthesis conditions, using Lyapunov-Krasovskii stability
arguments, for the design of distributed control laws to the stabilization of time-delay
interconnected nonlinear systems subject to time-varying delays in both the subsystems’
dynamics and nonlinear interconnections.
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• To propose sufficient LMI-based synthesis conditions, using stability arguments from
Lyapunov theory, for the simultaneous co-design of a set of local ETMs and event-based
distributed control laws to stabilize interconnected nonlinear systems while preserving
communication resources.

• To provide an estimate of the domain of attraction of the equilibrium of the global
closed-loop system (in the scenario of non-delayed nonlinear interconnected systems),
and an estimate of the set of admissible initial conditions (in the scenario of time-delay
nonlinear interconnected systems) to ensure the safe operation of the proposed distributed
control approaches.

• To propose an optimization procedure capable of enlarging the estimate of the set
of admissible initial conditions in the scenario of time-delay nonlinear interconnected
systems.

• To propose a multi-objective optimization procedure to enlarge the estimate of the
domain of attraction, and minimize the number of state transmissions in the proposed
event-based distributed control setup.

• Effortlessly deal with the influence of the asynchronous state-dependent membership
functions in the proposed event-based distributed control setup.

• To prove the existence of a minimum inter-event time (MIET) ensuring that in the
proposed event-based distributed control setup the Zeno behavior does not occur.
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3 DISTRIBUTED CONTROL OF TIME-DELAY INTERCONNECTED NONLIN-
EAR SYSTEMS

This chapter investigates the distributed control of interconnected nonlinear systems
subject to time-varying delays in both local subsystem dynamics and physical interconnections.
To address the complexity of such systems, the N-TS fuzzy model is employed, a framework
offering reduced structural complexity compared to conventional TS fuzzy models. Building on
Lyapunov-Krasovskii stability theory, we propose a synthesis condition to design a distributed
control law that ensures local asymptotic stability of the closed-loop system’s origin. Crucially,
this approach guarantees a well-defined set of admissible initial conditions, within which
the validity of the N-TS fuzzy model is rigorously maintained. Furthermore, a quasi-convex
optimization framework is formulated to systematically enlarge the admissible initial condition
set, thereby enhancing the practical applicability of the proposed methodology.

The remainder of this chapter is organized as follows. The problem formulation is
presented in §3.1. The proposed design condition and the optimization issues are defined
in §3.2. Two numerical examples are presented in §3.3 to illustrate the application of the
proposed methodology. Conclusions are drawn in §3.4.

3.1 Problem Formulation

Consider the i-th nonlinear time-delay subsystem given by the following N-TS fuzzy
model:

Pi: ẋi(t)=Ai(zi(xi(t)))xi(t)+Adi(zi(xi(t)))xi(t−hi(t))

+Bi(zi(xi(t)))ui(t)+
∑︂

j∈Ni

gij(xi(t), xj(t−τij(t)), (3.1)

where xi ∈ Rni is the state, ui ∈ Rmi is the input, zi = (zi1, zi2, . . . , zipi
) ∈ Rpi is the vector

of premise variables zik : Rni → R, k ∈ N≤pi
,

gij(xi, xj) = Aijxj +Gij(zi)ϕij(xi, xj),

is the function that models the interconnection between the subsystems Pj and Pi, ϕij :
Rni ×Rnj → Rnϕ,i are the nonlinear interconnections, hi(t) are the internal time-varying delays
of the subsystem’s dynamics, τij(t) is the time-varying delay induced from the connection
between Pi and Pj, and Ni is the neighboring set of the i-th subsystem (see Appendix A).

Let wik
0 (zik)= (z1

ik−zik) / (z1
ik−z0

ik), and wik
1 (zik) = 1 − wik

0 (zik), be the membership
functions defined such that each premise variable zik is written as zik = wik

0 (zik)z0
ik+wik

1 (zik)z1
ik,

with z0
ik = infxi∈Di

zik and z1
ik = supxi∈Di

zik. By defining the normalized membership functions

αii
(zi) =

pi∏︂
k=1

wik
ik

(zik),
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it is possible to verify that
∑︂

ii∈Bpi

αii
(zi) = 1, and αii

(zi) ≥ 0, ∀ii ∈ Bpi .

Therefore, the i-th subsystem Pi described as (3.1) can be equivalently rewritten as the
following N-TS fuzzy model:

Pi: ẋi(t)=
∑︂

ii∈Bpi

αii
(zi)

(︃
Ai

ii
xi(t) +Bi

ii
ui(t) + Ai

dii
xi(t−hi(t))

)︃
+
∑︂

j∈Ni

Aijxj(t−τij(t)) +
∑︂

ii∈Bpi

αii
(zi)Gij

ii
ϕij(xi(t), xj(t−τij(t))),

(3.2)

where ii is a pi-dimensional multi-index, and Ai
ii
, Bi

ii
, Ai

dii
, and Gij

ii
are the vertices.

Furthermore, the time-varying delays satisfy the following assumption.
Assumption 3.1: Bounded delays

The time-varying delays of the interconnections and the time-varying delays of each
subsystem are subject to the same upper and lower bounds.

In this case, it is possible to define single time-varying delays τ(t), and h(t), satisfying

h0 ≤ h(t) ≤ h1 and τ0 ≤ τ(t) ≤ τ1,

for positive scalars hk, τk, ∀ k ∈ B. This Assumption that the time-varying delays are bounded
is commonly considered in the literature of time-delay systems (see [33,35,233]). Note that
knowledge of the variation in the time-varying delays is not required.

Therefore, each subsystem and interconnection can be subject to different time-varying
delays, as long as they respect the general bounds. Based on these bounds, the initial condition
for each subsystem Pi is

xi(s) = φi(s), ∀s ∈ [−d, 0],

where φi ∈ C ([−d, 0],Rni) corresponds to the set of initial conditions over the interval [−d, 0],
with d ≜ max{h1, τ1}.

The i-th local fuzzy controller is given by

Ci: ui(t) = Ki(zi(xi(t)))xi(t) +
∑︂

j∈Ni

Kij(xi(t), xj(t)), (3.3)

where
Ki(zi(xi(t))) =

∑︂
ji∈Bpi

αji
(zi)Ki

ji

is the decentralized term, and

Kij(xi, xj) = Lijxj +Mij(zi(xi(t)))ϕij(xi, xj), (3.4)
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is the distributed term, with Lij ∈ Rmi×nj and

Mij(zi(xi(t))) =
∑︂

ji∈Bpi

αji
(zi)M ij

ji
,

for all j ∈ Ni.

Notice that (3.4) does not depend on the delayed state information of the adjacent
subsystems because the delay τ(t) are only induced in the (physical) interconnections among
the subsystems. Moreover, the local controllers Ci are assumed to be interconnected with
the same topology as the subsystems Pi, then the graph representing the local controllers’
communication is the same undirected graph G (see Appendix A).

Remark 3.1
The proposed distributed control law (3.3) can be reduced to a decentralized control law
when considering Lij = 0 and Mi(zi(xi(t)) = 0 for all i ∈ V and j ∈ Ni. Moreover,
when considering Lij ̸= 0 and Mi(zi(xi(t)) = 0 the proposed control law can be reduced
to a distributed control law that is linear with respect to state variables from neighboring
subsystems. Notice that (3.3) is distributed and nonlinear with respect to state variables from
neighboring subsystems due to dependence on ϕij(xi, xj).

The matrix-value functions Ai(zi(xi(t))), Bi(zi(xi(t))), Ki(zi(xi(t))), Adi(zi(xi(t))),
Gij(zi(xi(t))), and Mij(zi(xi(t))) are obtained with the N-TS fuzzy modeling of the delayed
nonlinear dynamics of the subsystems, and defined in a validity domain represented by a convex
polytope (the reader is referred to the Appendix B for additional details and examples on TS
fuzzy and N-TS fuzzy modeling). To alleviate the notation the dependence of this matrices
on zi(xi(t)) is omitted. Thus, they are simply denoted by Ai(xi), Bi(xi), Ki(xi), Adi(xi),
Gij(xi), and Mij(xi) hereafter.

It follows from Pi in (3.1), Ci in (3.3), and Assumption 3.1 that the closed-loop dynamics
of each subsystem is

ẋi(t) = (Ai(xi) +Bi(xi)Ki(xi))xi(t) + Adi(xi)xi(t−h(t))

+
∑︂

j∈Ni

Bi(xi)Lijxj(t) +Bi(xi)Mij(xi)ϕij(xi(t), xj(t))

+
∑︂

j∈Ni

Aijxj(t− τ(t)) +Gij(xi)ϕij(xi(t), xj(t− τ(t)).

(3.5)

Furthermore, the global interconnected closed-loop system (P , C) can be compactly
written as follows:

ẋ(t)=Acl(x)x(t) + Ad(x)x(t−h(t)) +B(x)M(x)ϕ(χ(t))

+Hx(t−τ(t)) +G(x)ϕ(χ(t− τ(t))), (3.6)
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where Acl(x) ≜ A(x) + B(x)(K(x) + Z), x = (x1, . . . , xN) ∈ Rn, u = (u1, . . . , uN) ∈ Rm,
ϕ(χ) = (ϕ1(χ1), . . . , ϕN(χN)) ∈ Rnϕ , χ = (χ1, . . . , χN) ∈ RNn, with

χi(t− τ(t)) = (xi(t− τ(t)), xi(t), x̄i(t− τ(t))) ∈ Rn,

ϕi (χi(t− τ(t)) =
(︂
ϕik1(xi(t), xk1(t− τ(t))), . . . , ϕikdi

(xi(t), xkdi
(t− τ(t)))

)︂
∈ Rdi ,

xi = (x1, . . . , xi−1) ∈ Rni , x̄i = (xi+1, . . . , xN) ∈ Rn̄i , ni ≜ n−∑︁N
k=i nk, n̄i ≜ n−∑︁i

k=1 nk,
φ ∈ C ([−d, 0],Rn) is the initial condition, and

A(x) = diag(A1(x1), . . . , AN(xi)), Ad(x) = diag(Ad1(x1), . . . , AdN(xN)),
G(x) = diag(G1(x1), . . . , GN(xN)), B(x) = diag(B1(x1), . . . , BN(xN)),
K(x) = diag(K1(x1), . . . , KN(xN)), M(x) = diag(M1(x1), . . . ,MN(xN)),

with

Gi(xi) =
[︂
Gik1(xi) · · · Gikdi

(xi)
]︂
, Mi(xi) =

[︂
Mik1(xi) · · · Mikdi

(xi)
]︂
,

for all kiℓ ∈ Ni, ℓ ∈ N≤di
. The elements of H = [Hij] and Z = [Zij], for all i, j ∈ V, are

defined in terms of the adjacency matrix A (see Appendix A) as

Hij =

⎧⎪⎨⎪⎩0 if aij = 0

Aij if aij = 1,
Zij =

⎧⎪⎨⎪⎩0 if aij = 0

Lij if aij = 1.

Remark 3.2
Since the terms of the degree matrix D are considered to construct Gi(xi), and Mi(xi), and
the terms of the adjacency matrix A are considered to construct H, and Z, the topology of
the global systems, represented by the undirected graph G(V , E) is directly reflected in the
closed-loop system.

Remark 3.3
The vector χi(·) = (xi(·), xi(t), x̄i(·)) is introduced to represent the situation in which the
nonlinear interconnections of the i-th subsystem depends on the time-delayed information of
the neighbor subsystems. Notice that χi(t) = (xi(t), xi(t), x̄i(t)) = x(t).

Notice that the matrix-valued functions of the subsystems and local controllers are
written in a validity domain represented by a convex polytope (see Appendix B). Consequently,
the matrices of the global closed-loop system (3.6) can be written as

A(x) = ∑︁
i∈Bp

αi(z)Ai, Ad(x) = ∑︁
i∈Bp

αi(z)Adi, K(x) = ∑︁
i∈Bp

αi(z)Ki,

B(x) = ∑︁
i∈Bp

αi(z)Bi, G(x) = ∑︁
i∈Bp

αi(z)Gi, M(x) = ∑︁
i∈Bp

αi(z)Mi,
(3.7)

for all x ∈ D , where i=(i1, i2, . . . , iN) is a multi-dimensional index on Bp = Bp1 × · · · × BpN ,
αi(x) = αi1(z1) · · ·αiN

(zN), and

D = {x ∈ Rn : h⊤
l x ≤ 1, l ∈ N≤nf

}, (3.8)



Chapter 3. Distributed Control of Time-Delay Interconnected Nonlinear Systems 50

is the validity domain of the global time-delay interconnected system, with hl=[01×ni
h⊤

iℓi
01×ni

]⊤,
and l = 2(i− 1) + ℓi, ℓi ∈ N≤nfi

, i ∈ V, and nf the the number of half-spaces defining the
polytope. The domain D is a compact set that contains the origin x = 0, and the model (3.6)
is valid only if the trajectories remain within D , since convexity is lost otherwise.

Notice that in the proposed modeling, the nonlinear interconnections ϕi are introduced
in the consequent parts, and only the local nonlinearities are considered to build the polytopic
embedding via the sector nonlinearity approach, which reduces the number of fuzzy rules. The
advantages of reducing the number of fuzzy rules are put in evidence in [18] for the non-delayed
case.

Furthermore, nonlinear interconnections ϕi(·) are considered to satisfy the sector-
bounded property, as established in the following assumption.

Assumption 3.2: Sector bounded nonlinear interconnections

Each nonlinearity ϕi : Rn → Rdi , i ∈ V, belongs to the sector [0,Ωi] in a compact
domain D ⊂ Rn.

From Assumption 3.2, since ϕi is constructed clustering ϕikiℓ
for kiℓ ∈ Ni, ℓ ∈ N≤di

,
then all ϕikiℓ

also belong to the sectors [0,Ωij]. Thus, Ωi can be defined as

Ωi =
[︂
Ωi1 Ωi2 · · · ΩiN

]︂
∈ Rdi×n,

with Ωij ∈ Rdi×nj and Ωij = 0 ∀j /∈ Ni. If Assumption 3.2 is satisfied, the conditions of
Lemma C.2 also hold. This Lemma presents an inequality that is considered to obtain the
proposed conditions to design the distributed control law.

Based on the aforementioned definitions, the problem addressed in this chapter is stated
as follows.

Problem 3.1

Consider the closed-loop distributed control system (P , C) in (3.6), where each subsystem
Pi is given as in (3.1), and the local controllers Ci are as in (3.3). Assuming that
Assumptions 3.1 and 3.2 are satisfied, for a given equivalent polytopic representation of
the closed-loop system (3.7), valid in the compact region D in (3.8), design the gains of
the distributed control law such that the origin x = 0 of the closed-loop system (3.6) is
asymptotically stable. Moreover, find a set of admissible initial conditions Xδ, such that
any closed-loop trajectory x(t) with initial condition φ ∈ Xδ remains confined in D .
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3.2 Main Results

3.2.1 Distributed control design conditions

As discussed in the previous sections, the N-TS fuzzy model (3.6) is only valid on the
domain D . To ensure the correct operation of the closed-loop system, a set of admissible
initial conditions Xδ is defined in the following proposition.

Proposition 3.1: Stability analysis

Let V0 : Rn → R be a positive definite and radially unbounded function and V :
C 1([−d, 0],Rn) × C ([−d, 0],Rn) → R be a functional such that

V0(x(t)) ≤ V (xt, ẋt), ∀t > 0, (3.9)
κ∥φ(0)∥2 ≤ V (φ, φ̇) ≤ γ∥φ∥2

c1 + ρ∥φ̇∥2
c , (3.10)

where κ, γ, and ρ are positive scalars and xt : [−d, 0] → Rn the segment xt(s) = x(t+s),
∀s ∈ [−d, 0]. Let the sets

R0 = {x ∈ Rn : V0(x) ≤ 1}, (3.11)
Xδ =

{︂
φ ∈ C 1([−d, 0],Rn), φ̇ ∈ C ([−d, 0],Rn) : ∥φ∥c1 ≤ δ, ∥φ̇∥c ≤ δ

}︂
, (3.12)

with

δ = 1/
√
γ + ρ. (3.13)

If the following conditions are satisfied

V̇ (xt, ẋt) < 0, ∀xt ∈ Da, (3.14)
R0 ⊂ D , (3.15)

where
Da = {φ ∈ C 1([−d, 0],Rn) : φ(s) ∈ D , ∀s ∈ [−d, 0]},

then, for any initial condition φ ∈ Xδ, the trajectories of (3.6) converge asymptotically
to the origin remaining confined in R0 and, consequently, in D .

Proof. Assume that conditions (3.14)–(3.15) are satisfied. Condition (3.14) ensures that the
origin of the closed-loop system (3.6) is asymptotically stable, provided that x(t) is confined
to a region

Ra = {xt ∈ C ([−d, 0],Rn) : V (xt, ẋt) ≤ 1} ⊂ Da.

Integrating (3.14) from 0 to t, yields V (xt, ẋt) ≤ V (φ, φ̇), which from (3.10) ensures
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that
V0(x(t)) ≤ V (xt, ẋt) ≤ V (φ, φ̇) ≤ γ∥φ∥2

c1 + ρ∥φ̇∥2
c .

Provided that φ ∈ Xδ, it is obtained

V0(x(t)) ≤ V (xt, ẋt) ≤ V (φ, φ̇) ≤ δ2(γ + ρ),

and the selection of δ as in (3.13) implies

V0(x(t)) ≤ V (xt, ẋt) ≤ V (φ, φ̇) ≤ 1.

As a result, it is possible to conclude that for any φ ∈ Xδ, then x(t) ∈ R0, ∀t > 0. Since
(3.15) ensures that R0 ⊂ D , consequently x(t) ∈ D , ∀t > 0. This concludes the proof.

Proposition 3.1 introduces the conditions required to guarantee the local asymptotic
stability of the origin of (3.6), providing estimates of the set of admissible initial conditions Xδ.
However, this result does not provide a constructive procedure for designing the distributed
control law. In the sequel, the idea is to obtain constructive conditions such that Proposition 3.1
are satisfied based on the following Lyapunov-Krasovskii functional candidate

V (xt, ẋt) =
4∑︂

k=1
Vk(xt) + V5(ẋt) + V6(ẋt), (3.16)

where Vk(xt) = ∑︁N
i=1 Vki(xit), for k ∈ N≤4, and Vm(ẋt) = ∑︁N

i=1 Vmi(ẋit), for m ∈ {5, 6}, with

V1i(xit)=η⊤
hi(t)P1iηhi(t),

V2i(xit)=η⊤
τi(t)P2iητi(t),

V3i(xit)=
∫︂ t

t−h0
x⊤

i (s)Q1ixi(s)ds+
∫︂ t−h0

t−h1
x⊤

i (s)Q2ixi(s)ds,

V4i(xit)=
∫︂ t

t−τ0
x⊤

i (s)Q3ixi(s)ds+
∫︂ t−τ0

t−τ1
x⊤

i (s)Q4ixi(s)ds,

V5i(ẋit)=h0

∫︂ 0

−h0

∫︂ t

t+θ
ẋ⊤

i (s)R1iẋi(s)dsdθ+h10

∫︂ h0

−h1

∫︂ t

t+θ
ẋ⊤

i (s)R2iẋi(s)dsdθ,

V6i(xit)=τ0

∫︂ 0

−τ0

∫︂ t

t+θ
ẋ⊤

i (s)R3iẋi(s)dsdθ+τ10

∫︂ τ0

−τ1

∫︂ t

t+θ
ẋ⊤

i (s)R4iẋi(s)dsdθ,

being h10 = h1 − h0, τ10 = τ1 − τ0,

ηhi(t) = (xi(t), h0ψi(h0, 0), h10ψi(h1, h0)),

ητi(t) = (xi(t), τ0ψi(τ0, 0), τ10ψi(τ1, τ0)),

and ψi(a, b) ≜ 1
a−b

∫︁ t−b
t−a xi(s)ds. The matrices Pji, j ∈ N≤2, Qki, Rki, k ∈ N≤4, for i ∈ N≤N ,

are all symmetric and positive definite matrices.

With the definition of the Lyapunov-Krasovskii functional (3.16), the following proposi-
tion introduces a systematic procedure to compute the positive scalars κ, γ, and ρ required to
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estimate the set of admissible initial conditions Xδ that meet the requirements established in
Proposition 3.1.

Proposition 3.2: Estimate the set of admissible initial conditions

For the Lyapunov-Krasovskii functional candidate V (xt, ẋt) defined in (3.16) and the
function

V0(x) = x⊤P0x, (3.17)

where
P0 = diag(U⊤

1 (P11 + P21)U1, . . . , U
⊤
N (P1N + P2N)UN)

and Ui = [Ini
0ni×ni

0ni×ni
]⊤, the conditions (3.9)-(3.10) are satisfied with

κ = λ(P0), (3.18)

γ =
N∑︂

i=1

⎛⎝ 2∑︂
k=1

ωkλ̄(Pki) +
4∑︂

j=1
ωj+2λ̄(Qji)

⎞⎠ , (3.19)

ρ =
N∑︂

i=1

4∑︂
l=1

ωl+6λ̄(Rli), (3.20)

being ω1 = 1 + h2
0 + h2

10, ω2 = 1 + τ 2
0 + τ 2

10, ω3 = h0, ω4 = h10, ω5 = τ0, ω6 = τ10,
ω7 = h3

0/3, ω8 = h10(h2
1 − h2

0)/2, ω9 = τ 3
0 /3, and ω10 = τ10(τ 2

1 − τ 2
0 )/2.

Proof. Note that V0(x) ≤ V1(xt)+V2(xt), then it is possible to conclude that V0(x) ≤ V (xt, ẋt),
since all terms of the functional are positive definite, which shows that (3.9) is satisfied.
Moreover, for t ∈ [−d, 0], xt = φ, which allows to write

V (φ, φ̇) ≤
N∑︂

i=1

⎛⎝ 2∑︂
k=1

ωkλ̄(Pki) +
4∑︂

j=1
ωj+2λ̄(Qji)

⎞⎠∥φi∥2
c1 +

N∑︂
i=1

4∑︂
l=1

ωl+6λ̄(Rli)∥φ̇i∥2
c .

As ∥φi∥2
c1 ≤ ∥φ∥2

c1 and ∥φ̇i∥2
c ≤ ∥φ̇∥2

c , it follows that V (φ, φ̇) ≤ γ∥φ∥2
c1 + ρ∥φ̇∥2

c , with
γ and ρ defined in (3.19) and (3.20), respectively. Finally, since V0(x) ≤ V (xt, ẋt) and
λ(P0)∥x∥2 ≤ V0(x), the lower bound to V (φ, φ̇) can be obtained directly by taking κ as
in (3.18), which proves that (3.10) is satisfied. This concludes the proof.
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Remark 3.4
Three different regions are considered in Propositions 3.1 and 3.2: the validity domain
previously discussed D , the safe operating region R0, and the set of admissible initial
conditions Xδ. It is known that finding the exact region of attraction, i.e., the set of all
initial conditions whose trajectories of the closed-loop system asymptotically converge to the
origin, is a challenging task. In the non-delayed case, as in [18], it is possible to estimate this
region considering the largest level set of quadratic Lyapunov functions V0 : Rn → R>0 in the
Euclidean space, obtaining regions R0 that guarantee the safe operation of the closed-loop
system. However, in the delayed case as addressed here, the trajectories initiating at this safe
operation region R0 do not necessarily converge to the origin, once conditions are obtained
considering a Lyapunov-Krasovskii functional V : C 1([−d, 0],Rn) × C ([−d, 0],Rn) → R that
is not defined only in the Euclidean space, but also in the space of continuously differentiable
functions.

Remark 3.5
By imposing restrictions on initial conditions, as made in Propositions 3.1 and 3.2, it is
possible to estimate the set of admissible initial conditions Xδ that represents a relation
between the initial conditions in the space of continuously differentiable functions with the
initial conditions in the Euclidean space. Thus, due to this relation, for any initial condition
taken in Xδ, the trajectories will converge asymptotically to the origin remaining confined
in R0. Finally, since R0 ⊂ D , it is possible to conclude that the initial conditions φ ∈ Xδ

are sufficient to ensure that the validity domain D will not be violated. This guarantee is
not provided in the existent work in the literature of interconnected T-S fuzzy systems with
time-delays.

In the sequel, a delay-dependent condition is introduced to design the distributed control
laws (3.3) such that (3.14) in Proposition 3.1 is satisfied with the functional (3.16), thus
guaranteeing the asymptotic stability of the origin of the closed-loop system (3.6).

Theorem 3.1

Consider the system (3.6) and assume that Assumptions 3.1 and 3.2 are satisfied for given
τk and hk, k ∈ B, and Ωi ∈ Rdi×n. Let the positive scalar ϵ and hiℓi

be given. If there
exist symmetric positive definite matrices ˜︁P1i, ˜︁P2i ∈ R3ni×3ni , ˜︁Q1i, ˜︁Q2i, ˜︁Q3i, ˜︁Q4i, ˜︁R1i,˜︁R2i, ˜︁R3i, ˜︁R4i ∈ Rni×ni , and matrices Xi ∈ Rni×ni , Λi ∈ Rdi×di , ˜︁Lij ∈ Rmi×nj , ˜︂Mi(xi) ∈
Rmi×di , ˜︁Y1i, ˜︁Y2i, ˜︁Y3i, ˜︁Y4i ∈ R2ni×2ni , and ˜︂Ki(xi) ∈ Rmi×ni , ∀i ∈ N≤N ,∀j ∈ Ni, such
that
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∑︂
(i,j)∈P(m,n)

Υij(hw, τk, ϵ) < 0, ∀m,n∈Bp+, w, k∈B, (3.21)
⎡⎣U⊤

i

(︂ ˜︁P1i + ˜︁P2i

)︂
Ui ⋆

hiℓi
Xi 1

⎤⎦ ≥ 0, ∀ℓi ∈ N≤nfi
, i ∈ V , (3.22)

where

Υij(h, τ, ϵ) ≜

⎡⎢⎢⎢⎣
˜︁Θij(h, τ, ϵ) W⊤

h
˜︁Yw+1 W⊤

τ
˜︁Yk+3

⋆ −˜︂R2 0
⋆ ⋆ −˜︂R4

⎤⎥⎥⎥⎦ , (3.23)

˜︁Θij(h, τ, ϵ) = ˜︁Φ(h, τ) + ˜︁Π0 + ˜︁Πτ + He(˜︂X (ϵ) ˜︁Bij),˜︁Φ(h, τ) =
∑︂
i∈V

(︂˜︁Φhi(h) + ˜︁Φτi(τ)
)︂
,

˜︁Φhi(h) = He(G⊤
hi(h) ˜︁P1iJhi) + ˜︁Σhi − Z⊤

hi
˜︂R1iZhi + F⊤

i

(︂
h2

0
˜︁R1i + h2

10
˜︁R2i

)︂
Fi

−W⊤
hi
˜︁Ψhi(h)Whi,˜︁Φτi(τ) = He(G⊤

τi(τ) ˜︁P2iJτi)) + ˜︁Στi − Z⊤
τi
˜︂R3iZτi + F⊤

i

(︂
τ 2

0
˜︁R3i + τ 2

10
˜︁R4i

)︂
Fi

−W⊤
τi
˜︁Ψτi(τ)Wτi,˜︁Π0 = −2E⊤

0 ΛE0 + He(E⊤
0 Ω(IN⊗X)(1⊤

N⊗N0)),˜︁Πτ = −2E⊤
τ ΛEτ + He(E⊤

τ Ω(IN⊗X)T ),˜︁Σhi = v⊤
i2
˜︁Q1ivi2 + v⊤

i3( ˜︁Q2i − ˜︁Q1i)vi3 − v⊤
i5
˜︁Q2ivi5,˜︁Στi = v⊤

i2
˜︁Q3ivi2 + v⊤

i6( ˜︁Q4i − ˜︁Q3i)vi6 − v⊤
i8
˜︁Q4ivi8,˜︂X (ϵ) = ϵF⊤ +N⊤

0 +N⊤
h +N⊤

τ ,
˜︁Aij = AiX +Bi

˜︂Kj +Bi
˜︁Z,˜︁B(z) = −XF + ˜︁AijN0 + AdiXNh +HXNτ +Bi

˜︂MjE0 +GiΛEτ ,˜︂R1i = diag( ˜︁R1i, 3 ˜︁R1i), ˜︂R2i = diag( ˜︁R2i, 3 ˜︁R2i), Ω = diag(Ω1, . . . ,ΩN),˜︂R3i = diag( ˜︁R3i, 3 ˜︁R3i), ˜︂R4i = diag( ˜︁R4i, 3 ˜︁R4i), X = diag(X1, . . . , XN),

Λ = diag(Λ1, . . . ,ΛN), ˜︂Rk = diag(˜︂Rk1, . . . , ˜︂RkN), k ∈ {2, 4}, Fi = vi1,

˜︁Ψhi(h) =
⎡⎣˜︂R2i 0

0 ˜︂R2i

⎤⎦+ h1−h
h10

⎡⎣˜︂R2i
˜︁Y2i˜︁Y T

2i 0

⎤⎦+ h−h0
h10

⎡⎣ 0 ˜︁Y1i˜︁Y T
1i

˜︂R2i

⎤⎦ ,
˜︁Ψτi(τ) =

⎡⎣˜︂R4i 0
0 ˜︂R4i

⎤⎦+ τ1−τ
τ10

⎡⎣˜︂R4i
˜︁Y4i˜︁Y ⊤

4i 0

⎤⎦+ τ−τ0
τ10

⎡⎣ 0 ˜︁Y3i˜︁Y ⊤
3i

˜︂R4i

⎤⎦ ,
˜︁Yk = diag( ˜︁Yk1, . . . , ˜︁YkN), ˜︁Yki =

⎧⎪⎨⎪⎩
[︂ ˜︁Y ⊤

ki 0
]︂⊤

k ∈ {1, 3},[︂
0 ˜︁Yki

]︂⊤
k ∈ {2, 4},

vij =
[︂
0ni×14ni+(j−1)ni

Ini
0ni×(14−j)ni+14ni+2nϕ

]︂
,

E0 =
[︂
0nϕ×14n Inϕ

0nϕ×nϕ

]︂
, Eτ =

[︂
0nϕ×14n 0nϕ×nϕ

Inϕ

]︂
,

Wh =
[︂
W⊤

h1 · · · W⊤
hN

]︂⊤
, Wτ =

[︂
W⊤

τ1 · · · W⊤
τN

]︂⊤
.
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Jhi =

⎡⎢⎢⎢⎣
vi1

vi2 − vi3

vi3 − vi5

⎤⎥⎥⎥⎦ , Ghi(h) =

⎡⎢⎢⎢⎣
vi2

h0vi9

(h− h0)vi10 + (h1 − h)vi11

⎤⎥⎥⎥⎦ ,

Jτi =

⎡⎢⎢⎢⎣
vi1

vi2 − vi6

vi6 − vi8

⎤⎥⎥⎥⎦ , Gτi(τ) =

⎡⎢⎢⎢⎣
vi2

τ0vi12

(τ − τ0)vi13 + (τ1 − τ)vi14

⎤⎥⎥⎥⎦ ,

Whi =

⎡⎢⎢⎢⎢⎢⎢⎣
vi3 − vi4

vi3 + vi4 − 2vi10

vi4 − vi5

vi4 + vi5 − 2vi11

⎤⎥⎥⎥⎥⎥⎥⎦ , Wτi =

⎡⎢⎢⎢⎢⎢⎢⎣
vi6 − vi7

vi6 + vi7 − 2vi13

vi7 − vi8

vi7 + vi8 − 2vi14

⎤⎥⎥⎥⎥⎥⎥⎦ , T =

⎡⎢⎢⎢⎣
T1
...
TN

⎤⎥⎥⎥⎦ , Ti =

⎡⎢⎢⎢⎣
T i

vi2

T i

⎤⎥⎥⎥⎦ ,

T i =

⎡⎢⎢⎢⎣
v17
...

v(i−1)7

⎤⎥⎥⎥⎦ , T i =

⎡⎢⎢⎢⎣
v(i+1)7

...
vN7

⎤⎥⎥⎥⎦ , N0 =

⎡⎢⎢⎢⎣
v12
...
vN2

⎤⎥⎥⎥⎦ , Zhi =
⎡⎣ vi2 − vi3

vi2 + vi3 − 2vi9

⎤⎦ ,

F =

⎡⎢⎢⎢⎣
F1
...
FN

⎤⎥⎥⎥⎦ , Nh =

⎡⎢⎢⎢⎣
v14
...
vN4

⎤⎥⎥⎥⎦ , Nτ =

⎡⎢⎢⎢⎣
v17
...
vN7

⎤⎥⎥⎥⎦ , Zτi =
⎡⎣ vi2 − vi6

vi2 + vi6 − 2vi12

⎤⎦ ,
then, invoking Proposition 3.1, we have that for any initial condition φ ∈ Xδ, for δ as in
(3.13) with γ and ρ as in (3.19) and (3.20), respectively, the trajectories of the closed-
loop system (3.6) converge asymptotically to the origin remaining confined in R0 ⊂ D ,
being R0 defined in (3.15) with V0(x) given in (3.17). The gains of the distributed
controller are Ki(xi) = ˜︂Ki(xi)X−1

i , Mi(xi) = ˜︂Mi(xi)Λ−1, and Lij = ˜︁LijX
−1
j .

Proof. The proof is carried out in two steps. In the first step, conditions (3.21) ensure the
negative definiteness of the time-derivative of the Lyapunov-Krasovskii candidate (3.16) and,
consequently, (3.14) hold. In the second step, (3.22) ensures that R0 ⊂ D , and, consequently,
(3.15) holds. Having (3.14) and (3.15) satisfied, it is possible to prove the local asymptotic
stability of the origin of (3.6) by invoking Proposition 3.1.

1) Negativeness of V̇ (xt, ẋt):

Consider the augmented vector

ξ(t) = (ζ(t), ϕ(χ(t)), ϕ(χ(t− τ(t)))) ∈ Rnξ , nξ = 14n+ 2nϕ

where ζ = (ζ1, . . . , ζN), ζi(t) = (ẋi(t), xi(t), σhi(t), στi(t), ςhi(t), ςτi(t)), and

σhi(t) = (xi(t− h0), xi(t− h(t)), xi(t− h1)), ςhi(t) = (ψi(h0, 0), ψi(h0, h(t)), ψi(h(t), h1)),

στi(t) = (xi(t− τ0), xi(t− τ(t)), xi(t− τ1)), ςτi(t) = (ψi(τ0, 0), ψi(τ0, τ(t)), ψi(τ(t), τ1)).
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The time-derivative of (3.16) can be expressed as

V̇ (xt, ẋt) =
N∑︂

i=1

[︃
ξ(t)⊤

(︃
He

(︂
G⊤

hi(h(t))P1iJhi

)︂
+ Σhi+ He

(︂
G⊤

τi(τ(t))P2iJτi)
)︂

+Στi + F⊤
i

(︂
h2

0R1i + h2
10R2i

)︂
Fi + F⊤

i

(︂
τ 2

0R3i + τ 2
10R4i

)︂
Fi

)︃
ξ(t)

−h0

∫︂ t

t−h0
ẋ⊤

i (s)R1iẋi(s)ds− h10

∫︂ t−h0

t−h1
ẋ⊤

i (s)R2iẋi(s)ds

−τ0

∫︂ t

t−τ0
ẋ⊤

i (s)R3iẋi(s)ds −τ10

∫︂ t−τ0

t−τ1
ẋ⊤

i (s)R4iẋi(s)ds
]︃
.

being Σhi = v⊤
i2Q1ivi2 +v⊤

i3(Q2i −Q1i)vi3 −v⊤
i5Q2ivi5, and Στi = v⊤

i2Q3ivi2 +v⊤
i6(Q4i −Q3i)vi6 −

v⊤
i8Q4ivi8. From the Wirtinger-based integral inequality (Lemma C.5), and the delay-dependent

reciprocally convex lemma (Lemma C.4), we have that it is possible to obtain the following
upper-bound for the global functional

V̇ (xt, ẋt) ≤ ξ⊤(t)
[︄∑︂

i∈V

(︃
Φhi(h) + Φτi(τ) +W⊤

hiΞhi(h(t))Whi +W⊤
τiΞτi(τ(t))Wτi

)︃⎤⎦ξ(t),
with R1i=diag(R1i, 3R1i), R2i=diag(R2i, 3R2i), R3i=diag(R3i, 3R3i), R4i=diag(R4i, 3R4i),

Ψhi(h) =
⎡⎣R2i 0

0 R2i

⎤⎦+h1−h
h10

⎡⎣R2i Y2i

Y2i
T 0

⎤⎦+h−h0
h10

⎡⎣ 0 Y1i

Y1i
T R2i

⎤⎦ ,
Ξhi(h) =

⎡⎣h1−h
h10

Y1iR−1
2i Y

⊤
1i 0

0 h−h0
h10

Y ⊤
2i R−1

2i Y2i

⎤⎦ ,
Ψτi(τ) =

⎡⎣R4i 0
0 R4i

⎤⎦+τ1−τ
τ10

⎡⎣R4i Y4i

Y ⊤
4i 0

⎤⎦+ τ−τ0
τ10

⎡⎣ 0 Y3i

Y ⊤
3i R4i

⎤⎦ ,
Ξτi(τ) =

⎡⎣ τ1−τ
τ10

Y3iR−1
4i Y

⊤
3i 0

0 τ−τ0
τ10

Y ⊤
4i R−1

4i Y4i

⎤⎦ ,
Φhi(h) = He(G⊤

hi(h)P1iJhi) + F⊤
i

(︂
h2

0R1i + h2
10R2i

)︂
Fi + Σhi − Z⊤

hiR1iZhi −W⊤
hiΨhi(h)Whi,

Φτi(τ) = He(G⊤
τi(τ)P2iJτi)) + F⊤

i

(︂
τ 2

0R3i + τ 2
10R4i

)︂
Fi + Στi − Z⊤

τiR3iZτi −W⊤
τiΨτi(τ)Wτi.

Considering the property of the sector-bounded nonlinearities (Lemma C.2), it follows
from S-procedure arguments that

V̇ (xt, ẋt) − 2
∑︂
i∈V

Si(χi(t),Λi) − 2
∑︂
i∈V

Si(χi(t− τ(t)),Λi) < 0. (3.24)

With the previous definitions, it is possible to conclude that condition (3.24) is satisfied if
ξ⊤(t)Q(h(t), τ(t))ξ(t) < 0, where

Q(h, τ) = Φ(h, τ) + Π0 + Πτ +
∑︂
i∈V

(︂
W⊤

hiΞhi(h)Whi +W⊤
τiΞτi(τ)Wτi

)︂
,

Φ(h, τ) =
∑︂
i∈V

(Φhi(h) + Φτi(τ)) ,

Π0 = −2E⊤
0 Λ−1E0 + He(E⊤

0 Λ−1Ω(1⊤
N⊗N0)),

Πτ = −2E⊤
τ Λ−1Eτ + He(E⊤

τ Λ−1ΩT ).
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Moreover, it follows from the closed-loop dynamics in (3.6) that B(x)ξ(t) = 0, being
B(x) = −F + Acl(x)N0 + Ad(x)Nh +HNτ +B(x)M(x)E0 +G(x)Eτ . Then, considering
Lemma C.1 we have that

Q(h(t), τ(t)) + X (ϵ)B(x) + B⊤(x)X (ϵ)⊤ < 0, (3.25)

ensures the asymptotic stability of the closed-loop equilibrium with X (ϵ) = ϵF⊤X−⊤ +
N⊤

0 X
−⊤ +N⊤

h X
−⊤ +N⊤

τ X
−⊤. As the condition in (3.25) is affine in h and τ , it is ensured if

the following conditions obtained with the application of the Schur complement N times hold:⎡⎢⎢⎢⎣
Θ(x, hw, τk, ϵ) W⊤

h Yw+1 W⊤
τ Yk+3

⋆ −R2 0
⋆ ⋆ −R4

⎤⎥⎥⎥⎦ < 0, (3.26)

where Θ(x, h, τ, ϵ) = Φ(h, τ)+Π0+Πτ +He(X (ϵ)B(x)), w, k ∈ B, Rk = diag(Rk1, . . . ,RkN ),
k ∈ {2, 4}, and the others matrices are as defined in Theorem 3.1. Let U = diag(U1, I2⊗Λ,U2),
U1 = diag((I14 ⊗ X1), . . . , (I14 ⊗ XN)), U2 = diag(I4N ⊗X1), . . . , (I4N ⊗XN)). By multi-
plying (3.26) with U⊤ on the left and U on the right, it results in

Υ(x, hw, τk, ϵ) ≜

⎡⎢⎢⎢⎣
˜︁Θ(x, hw, τk, ϵ) W⊤

h
˜︁Yw+1 W⊤

τ
˜︁Yk+3

⋆ −˜︂R2 0
⋆ ⋆ −˜︂R4

⎤⎥⎥⎥⎦ < 0, (3.27)

for w, k ∈ B. Note that the conditions in (3.27) are nonlinear since they are written in terms
of the normalized membership functions. To recast a finite set of solvable LMI conditions, the
relaxations developed in [234] are used, resulting in (3.23). Thus, if (3.21) hold, then (3.25)
and (3.14) are satisfied as well, and the origin of the closed-loop system (3.6) is asymptotically
stable.

2) R0 ⊂ D :

By multiplying (3.22) by diag(Xi
−⊤, 1) on the left and its transpose on the right yields⎡⎣U⊤

i (P1i + P2i)Ui ⋆

hiℓi
1

⎤⎦ ≥ 0, ℓi ∈ N≤nfi
, ∀i ∈ V . (3.28)

Then pre and post-multiplying (3.28) by
[︂
−x⊤

i 1
]︂

results in

x⊤
i U

⊤
i (P1i + P2i)Uixi − x⊤

i hiℓi
− hiℓi

xi + 1 ≥ 0,

for all ℓi ∈ N≤ne , i ∈ V . These inequalities imply

x⊤P0x− x⊤hl − hlx+ 1 ≥ 0, l ∈ N≤nf
.

Since for all x ∈ R0 we have x⊤P0x ≤ 1, which implies that hlx ≤ 1, and guarantees the
inclusion R0 ⊂ D . Thus, we have that (3.15) holds. This concludes the proof.
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Remark 3.6
Note that it is possible to construct particular cases considering the time-varying delays either
in the interconnections or the subsystems’ dynamics individually, as discussed as follows:

(i) Delay only in the interconnections:

Disregarding the time-varying delay h(t), the closed-loop system is

ẋ(t) = Acl(x)x(t)+Hx(t−τ(t)) +G(x)ϕ(χ(t− τ(t)))+B(x)M(x)ϕ(χ(t)),

where Acl(x) and the set of initial conditions are defined as in (3.6) with d = τ1. Following the
same reasoning presented in the proof of Theorem 3.1, the design condition can be obtained
with a Lyapunov-Krasovskii functional candidate composed of the terms V2(xt), V4(xt), and
V6(xt) of (3.16).

(ii) Delay only in the subsystems’ dynamics:

In this case, the closed-loop system can be expressed as

ẋ(t)=Acl(x)x(t)+Adx(t−h(t))+Gcl(x)ϕ(χ(t)),

where Acl(x) ≜ A(x) +B(x)(K(x) + Z) +H, Gcl(x) ≜ G(x) +B(x)M(x), and the initial
conditions defined with d = h1. In this case, the corresponding set of LMIs can be obtained
with a Lyapunov-Krasovskii functional candidate composed of the terms V1(xt), V3(xt), and
V5(xt) of (3.16).

3.2.2 Enlargement of the Set of Admissible Initial Conditions

The previous result already guarantees that the system’s closed-loop trajectories will
remain enclosed in the estimated safe operation region. However, our goal in this section is
to enlarge the estimated set of admissible initial conditions with the following optimization
problem:

min J ≜
N∑︂

i=1

10∑︂
j=1

ωj trace (Eij) + η̄βi (3.29)

s.t. :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LMIs in (3.21), (3.22),
Oij − Eij ≤ 0, Oij ∈ Oi, i ∈ V , j ∈ N≤10,⎡⎢⎣Xi +X⊤

i − Ini
Ini

Ini
βiIni

⎤⎥⎦ ≥ 0, i ∈ V ,
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where Eij are decision variables with appropriate dimensions, βi are scalar variables, η̄ is a
scalar weight, ωj are the scalar terms defined in Proposition 3.2, and Oij ∈ Oi is the j-th
matrix in the set

Oi =
{︂ ˜︁P1i, ˜︁P2i, ˜︁Q1i, ˜︁Q2i, ˜︁Q3i, ˜︁Q4i, ˜︁R1i, ˜︁R2i, ˜︁R3i, ˜︁R4i

}︂
.

The minimization of J tends to enlarge the radius of Xδ, since the minimization of the
sum of trace(Eij) together with the constraints Oj − Eij ≤ 0 imply in the decreasing of the
maximum eigenvalues of the matrices of the functional (3.16). The last constraints imply that
(Xi+Xi

⊤−Ini
)−1 ≤ βiIn. Since (Xi−Ini

)⊤(Xi−Ini
) ≥ 0, then (X⊤

i +Xi−Ini
)−1 ≥ X−⊤X−1,

from which it follows that βiIni
≥ X−⊤X−1. Inclusion of η̄βi in the objective function J tends

to reduce the eigenvalues of X−⊤
i X−1. This is useful to further reduce the eigenvalues of the

matrices of the functional since they are reconstructed performing a congruence transformation
with Xi

−⊤. Therefore, the optimization problem tends to reduce γ and ρ given in (3.19) and
(3.20), respectively, which leads to the enlargement of (3.12) with δ given in (3.13). Using
similar arguments, it is possible to conclude that the volume of the region R0 ⊂ D in (3.11) is
also enlarged with V0(x) given in (3.17).

3.3 Numerical Examples

This section presents two numerical examples to illustrate the effectiveness of the
proposed approach in designing distributed controllers for time-delay interconnected nonlinear
systems

Example 1: To illustrate the importance of estimating the set of admissible initial conditions

Consider the interconnected system with two subsystems

ẋ1(t) =x1(t) + 2x3
1(t) cos(2x1(t)) + 3x1(t− h(t)) − 3x2(t− τ(t))

+ 0.5 arctan5(x1(t) − x2(t− τ(t))) + u1(t),

ẋ2(t) =x2(t) + 2x3
2(t) − 3x1(t− τ(t)) − 3x2(t− h(t))

+ 0.5 arctan5(x2(t) − x1(t− τ(t))) + x2(t)2u2(t).

Notice that the N-TS fuzzy modeling of this system is discussed in Appendix B. For the
minimum and maximum allowable delays τ0 = 0.05, τ1 = 0.20, h0 = 0.05, and h1 = 0.10,
the optimization problem (3.29) is solved by employing a grid search over the parameters ϵ
and η̄. The solution with (ϵ∗, η̄∗) = (0.7, 3 × 105) leads to the enlarged set of admissible
initial conditions Xδ with δ = 2.8621. To illustrate the importance of estimating this set, the
designed distributed control law was used in several simulations with different initial conditions.
The closed-loop trajectories for each initial condition are depicted in Figure 3.1. The initial
conditions were defined in terms of the three different regions discussed in Remark 3.4. These
regions are represented as follows:
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• The validity domain D : Square box in black ( );

• Safe operating region R0: Ellipse in cyan ( );

• Set of admissible initial conditions Xδ: Circle in red ( ).

Figure 3.1 – The closed-loop trajectories for different initial conditions. The region of
validity D is the square in black ( ), the safe operating region R0 is the
ellipse in cyan ( ), and the set of admissible initial conditions Xδ is the
circle in red ( ) - Example 1.

On the one hand, as expected, all the closed-loop trajectories depicted in blue ( ),
are initiating in Xδ and asymptotically converging to the origin without leaving the validity
domain D . On the other hand, it is clearly illustrated that there is no guarantee that trajectories
initiating outside of Xδ, will be constrained within D or converge to the origin. Notice that
only the trajectories in green ( ) converge to the origin, but the ones in magenta ( )
leave the region of validity D and converge to other equilibrium points. Some of the trajectories
in magenta ( ) have initial conditions inside of R0, but since the convergence to the origin
is not ensured in this set, the trajectories ended up leaving the validity domain D .
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Recall that the set of admissible initial conditions Xδ is obtained by imposing the
restrictions presented in Propositions 3.1 and 3.2. From the results presented, it is possible to
conclude that this set is essential to ensure the correct operation of the closed-loop system, since
otherwise there is no guarantee that the validity domain D is respected. Moreover, to the best
of the authors’ knowledge, there is no approach in the literature of time-delay interconnected
nonlinear systems that also provides such a guarantee. Thus, a direct comparison of the results
obtained is not possible.

Although the simulations were performed with the time-varying delays

τ(t)=τ1 + τ0

2 +(τ1 − τ0) sin(40πt+ π/2)
2 , h(t)=h1 + h0

2 +(h1 − h0) cos(40πt+ π/2)
2 ,

any time-varying function that respects the bounds of the minimum an maximum allowable
delay can be considered. The initial condition for all cases is φ(s) = x0,∀s ∈ [−d, 0]. Moreover,
to illustrate the importance of the proposed optimization problem, notice that disregarding the
procedure of section 3.2.2 the obtained solution leads to a set Xδ with δ = 0.0033. Thus, it is
possible to conclude that, with the optimization procedure, the radius of the admissible initial
conditions set is enlarged 867.30 times.

Example 2: Interconnected Power Network

The aim of this example is to synchronize a power network composed of 7 generators.
The interconnections among the generators are described according to the undirected graph in
Figure 3.2.

P1

P6P4

P3P2

P1 P5

P7

Figure 3.2 – Graph representing the interconnections among generators – Example 2.

The nonlinear dynamics of each generator is [235]:

ẋi1(t) = xi2(t),

ẋi2(t) = − Di

Mi
xi2(t) − 1

Mi
xi3(t) − 1

Mi

∑︂
j∈Ni

ϕ̄ij(xi(t), xj(t− τ(t))),

ẋi3(t) = − 1
Ti
x13(t) + 1

Ti
x14(t),

ẋi4(t) = 1
Ki
x12(t) − Ri

Ki
x14(t) + 1

Ki
ui(t),
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where the state variables (xi1, xi2, xi3, xi4) describe the phase angle difference, angular velocity
difference, mechanical input difference, and valve position difference respectively. In this case,
time-varying delays affect only the interconnections among the generators. The parameters
Mi, Di, Ti, Ki, and Ri are, respectively, the inertia constant, damping coefficient, turbine
time constant, governor time constant, and droop characteristic. Their values are depicted in
Table 3.1.

Table 3.1 – Parameters of the interconnected power network – Example 2

Subsystem Mi Di Ti Ki Ri

P1 0.5 1.2 0.1 1 0.1
P2 0.3 1.0 0.1 1 0.1
P3 1.0 0.3 0.1 1 0.1
P4 0.2 1.5 0.1 1 0.1
P5 0.9 0.9 0.1 1 0.1
P6 0.1 0.4 0.1 1 0.1
P7 0.4 0.9 0.1 1 0.1

Moreover, the sector-bound nonlinear interconnections are

ϕ̄ij(xi, xj) = Yij sin(xi1 − xj1) ∈ co{ΩLix,ΩUix}, (3.30)

where Yij is the admittance between the i-th and the j-th generator, ΩLi = (2/π)ΩUi, and

ΩUi =
[︂
ΩUi1 ΩUi2 . . . ΩUiN

]︂
,

with ΩUij =
[︂
Ω⊤

Uijki1
. . . Ω⊤

Uijkiℓ

]︂⊤
∈ Rdi×nj , being

ΩUijkℓ
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[Yikiℓ

0 0 0], if j = i,

[−Yikiℓ
0 0 0], if j = kiℓ,

[0 0 0 0], otherwise

for all j ∈ V, kiℓ ∈ Ni, ℓ ∈ N≤di
. Notice that the sector in (3.30) is valid for all Di = {xi ∈

R4 : |xi1| ≤ π/4}, ∀i ∈ V. Although the sector-bound nonlinearities (3.30) do not satisfy
Assumption 3.2, one can perform a simple loop transformation to obtain

ϕij(xi, xj) = ϕ̄ij(xi, xj) − ΩLix ∈ co{0,Ωix},

where Ωi = (1 − 2/π)ΩUi. The admittances are Y12 = 1.2819, Y15 = 0.7668, Y23 = 1.0752,
Y34 = 0.8634, Y45 = 0.2443, Y46 = 0.5580, and Y67 = 0.3343.

Consider that the minimum and maximum allowable delays are τ0 = 0.05 and τ1 = 0.30,
respectively. Disregarding the optimization problem a set of admissible initial conditions
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Xδ with δ = 0.0050 is obtained. Meanwhile, performing a grid search over the parameters
(ϵ, η̄), a solution with (ϵ∗, η̄∗) = (0.44531, 5.7243) leading to δ = 0.1134, which results in an
enlargement of 22.68 times of the set of admissible initial condition estimation. The time
series of the angular positions xi1(t) and the control input signals of the local controllers
ui(t), ∀i ∈ V , are presented in Figure 3.3. The simulation is performed considering the initial
condition φ(s) = x0, ∀s ∈ [−τ1, 0], with x0 taken inside of Xδ. As expected, the trajectories
converge asymptotically to the origin remaining inside of the validity domain.

Figure 3.3 – Trajectories of the closed-loop phase angle difference of each generator for
initial condition chosen inside of the estimated set Xδ – Example 2.

The case when different time-varying delays are considered

To illustrate the capability of the proposed approach to deal with different time-varying
delays, consider the results presented in Figure 3.4. In this experiment, each time-varying delay
τij(t) varies according to a specific trigonometric function that satisfies the bounds defined for
τ(t), that is, 0.05 ≤ τij(t) ≤ 0.3. Note that the designed distributed control law is capable of
ensuring the synchronism of the power network. Thus, if the interval obtained for the general
time-varying delay considered in the synthesis condition is respected, each time-varying delay
can be modeled separately.
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Figure 3.4 – Trajectories of the closed-loop phase angle difference of each generator for
initial condition chosen inside of the estimated set Xδ considering different
delays τij – Example 2.

3.4 Conclusion

This chapter addressed the distributed control of interconnected time-delay nonlinear
systems with time-delayed interconnections. Considering an N-TS fuzzy representation of
the interconnected system, a design condition has been proposed to design the distributed
control law such that the origin of the closed-loop time-delay interconnected system is locally
asymptotically stable. To ensure that closed-loop trajectories do not leave the validity domain
of the N-TS fuzzy model, a characterization of the set of admissible initial conditions has
been proposed. Numerical examples have been provided to illustrate the effectiveness of the
proposed approach.
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4 DISTRIBUTED EVENT-TRIGGERED CONTROL OF INTERCONNECTED
NONLINEAR SYSTEMS

This chapter addresses the asynchronous distributed event-triggered control of continuous-
time nonlinear interconnected systems. The nonlinear dynamics of the subsystems are repre-
sented by N-TS fuzzy models via the sector nonlinearity approach. Moreover, the nonlinear
interconnections among the subsystems are assumed to be known and sector-bounded. In the
ETC setup, where the state information is asynchronously available to the local controllers
only in specific time instants, it is necessary to deal with the asynchronous premise variables
once they introduce extra difficulties to derive suitable co-design conditions. To deal with this
issue, it is proposed a new triggering strategy such that local ETMs are properly designed to
counteract the effects of asynchronous premise variables. With this new distributed ETM, a
co-design condition is proposed and the existence of a strictly positive minimum inter-event
time is proved to exclude Zeno behavior. Moreover, a multi-objective optimization procedure is
introduced to enlarge the estimate of the domain of attraction of the closed-loop equilibrium
and minimize the number of transmissions provided by the ETMs. Finally, the approach is
validated through a numerical example of the synchronization of interconnected oscillators.

The remainder of this chapter is organized as follows. The problem formulation is
presented in §4.1. The proposed emulation condition and the optimization issues are defined
in §4.2. A numerical example is presented in §4.3 to illustrate the application of the proposed
methodology. Conclusions are drawn in §4.4.

4.1 Problem formulation

The Distributed Event-Triggered Control Setup

Consider a nonlinear interconnected system composed of a set of subsystems P =
{P1, . . . ,PN}. The goal is to design a distributed event-triggered controller composed of a
set of local controllers C = {C1, . . . , CN} and local event-triggered mechanisms (ETMs), such
that the origin of the closed-loop system is asymptotically stable. The ETC setup is shown
in Figure 4.1. In the considered setup, the state measurements of each subsystem, xi(t), are
transmitted through the network in appropriate instants of time tik, determined by local ETMs.
The discrete signal xi(tik) is sent to a zero-order hold (ZOH) mechanism resulting in a piecewise
continuous signal x̂i(t) = xi(tik), ∀t ∈ [tik, tik+1), that is available to the local controllers.

Consider that each subsystem of the interconnected system P is described as

Pi : ẋi = Ai(xi)xi +Bi(xi)ui +
∑︂

j∈Ni

gij(xi, xj), (4.1)
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Figure 4.1 – Distributed ETC setup, where Pi are the subsystems, Ci are the local
controllers, xi are the continuous state measurements, xi(tik) are the state
measurements available to the controllers, and ui(t) are the distributed
control inputs.

where xi ∈ Rni is the state of the i-th subsystem, ui ∈ Rmi is the i-th control input, and

gij(xi, xj) = Aijxj +Gij(xi)ϕij(xi, xj), (4.2)

is the function that represent the interconnection between Pi and the subsystem’s Pj in
the neighborhood Ni of Pi. The interconnections among the subsystems are composed of
sector-bounded functions ϕij representing the nonlinear interconnections and matrices Aij

representing the linear interconnections.

Moreover, the proposed i-th event-based control law is

Ci : ui = Ki(x̂i)x̂i +
∑︂

j∈Ni

Kij(x̂i, x̂j), (4.3)

where
Ki(x̂i) =

∑︂
ji∈Bpi

αji
(ẑi)Ki

ji

is the decentralized term of the local fuzzy controller, and the distributed term is

Kij(x̂i, x̂j) = Lijx̂j +Mij(x̂i)ϕij(x̂i, x̂j),

with Lij ∈ Rmi×nj and
Mij(x̂i) =

∑︂
ji∈Bpi

αji
(ẑi)M ij

ji
,

for all j ∈ Ni.
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Remark 4.1
Similar to Chapter 3, the dependency of matrix-value functions on the premise variables
zi(xi(t)) and zi(x̂i(t)) is omitted. Thus, they are simply denoted by Ai(xi), Bi(xi), Gij(xi),
Ki(x̂i), and Mij(x̂i). Moreover, the discussion performed in Remark 3.1 can be extended to
the proposed event-based control law (4.3).

It follows from Pi in (4.1), and Ci in (4.3), that the closed-loop dynamics of each
subsystem is

ẋi = Ai(xi)xi +Bi(xi)Ki(x̂i)(xi + ei) +
∑︂

j∈Ni

[Aijxj +Bi(xi)Lij(xj + ej)] (4.4)

+
∑︂

j∈Ni

[Gij(xi)ϕij(xi, xj) +Bi(xi)Mij(x̂i)ϕij(x̂i, x̂j)] ,

where
ei(t) = x̂i − xi, ∀t ∈ [tik, tik+1), (4.5)

is the transmission error that measures the deviation between the current state xi and its value
at the latest transmission x̂i. Notice that the closed-loop dynamics (4.4) reads

ẋi = Ai(xi)xi +Bi(xi)Ki(xi)(xi + ei) +Bi(xi)(δi + ξi) −Gi(xi)ρi(e, x) (4.6)
+ [Gi(xi) +Bi(xi)Mi(xi)]ϕi(x̂) +

∑︂
j∈Ni

[Aijxj +Bi(xi)Lij(xj + ej)] ,

where e = (e1, . . . , eN) ∈ Rn, x = (x1, . . . , xN) ∈ Rn,

ϕi(x) = (ϕiki1(xi, xk1), . . . , ϕikidi
(xi, xkdi

)) ∈ Rdi ,

ρi(e, x) = ϕi(x̂) − ϕi(x), ζi = (xi, ei),

ξi(ζi, ζj) = [Mi(x̂i) −Mi(xi)]ϕi(x̂),

δi(ζi) = [Ki(x̂i) −Ki(xi)] (xi + ei),

Mi(xi) =
[︂
Mik1(xi) · · · Mikdi

(xi)
]︂
,

Gi(xi) =
[︂
Gik1(xi) · · · Gikdi

(xi)
]︂
,

for all kiℓ ∈ Ni, ℓ ∈ N≤di
.

Notice that the collection of nonlinearities ϕi(x) is obtained considering all the nonlinear
interconnections of the i-th subsystem. It is considered that the functions ϕi(x) in (4.6) and
its partial derivatives bounded as established in the following assumption.

Assumption 4.1

The nonlinearities ϕi(x) : Rn → Rdi , i ∈ V , belongs to the sector [0,Ωi], and its partial
derivatives are bounded as

0 ≤ ∂ϕi(x)
∂x

≤ Ji,

inside a compact domain D ⊂ Rn.
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Remark 4.2
The purpose of Assumption 4.1 is to exploit the sector properties presented in Lemmas C.2
and C.3. Notice that these conditions are not restrictive for practical uses once it is possible
to perform loop transformations in the original nonlinearities. For instance, consider that the
system (4.6) is defined with ϕ̃i(x) ∈ [ΩLi,ΩUi]. Applying a loop transformation, it is possible
to obtain ϕ̄i(x) = ϕ̃i(x) − ΩLix ∈ [0,Ωi], with Ωi = ΩUi − ΩLi. Similarly, if JLi ≤ ∂ϕ̄i(x)

∂x
≤

JUi, another loop transformation can be performed to obtain ϕi(x) = ϕ̄i(x) − JLix, with
Ji = JUi − JLi.

Interconnected Closed-Loop System

The global interconnected system (P , C) can be written as

ẋ=Acl(x)x+Gcl(x)ϕ(x̂) +B(x)(K(x) + L̄)e+B(x) (δ + ξ) −G(x)ρ(x, e), (4.7)

where u = (u1, . . . , uN) ∈ Rm, ζ = (ζ1, . . . , ζN) ∈ R2n, z = (z1, . . . , zN) ∈ Rp, ϕ(x) =
(ϕ1(x), . . . , ϕN(x)) ∈ Rnϕ , ρ(e, x) = (ρ1(e, x), . . . , ρN(e, x)) ∈ Rnϕ ,

Acl(x) = A(x) +B(x)K(x) + Ā+B(x)L̄, Gcl(x) = G(x) +B(x)M(x),

M(x) = diag(M1(x1), . . . ,MN(xN), A(x) = diag(A1(x1), . . . , AN(xN)),

B(x) = diag(B1(x1), . . . , BN(xN)), K(x) = diag(K1(x1), . . . , KN(xN))

G(x) = diag(G1(x1), . . . , GN(xN)), δ(ζ) = [K(x+ e) −K(x)] (x+ e),

ξ(ζ) = [M(x+ e) −M(x)]ϕ(x+ e),

The elements of Ā = [Āij] and L̄ = [L̄ij], for all i, j ∈ V, are defined in terms of the
adjacency matrix A (see Appendix A) as follows:

Āij =

⎧⎪⎨⎪⎩0 if aij = 0,

Aij if aij = 1,
L̄ij =

⎧⎪⎨⎪⎩0 if aij = 0,

Lij if aij = 1.

Based on the N-TS fuzzy modeling of the subsystems, it is possible to write the
matrix-valued functions of the interconnected closed-loop system (4.7) as:

A(x) = ∑︁
i∈Bp

αi(x)Ai, B(x) = ∑︁
i∈Bp

αi(x)Bi,

G(x) = ∑︁
i∈Bp

αi(x)Gi, K(x) = ∑︁
i∈Bp

αi(x)Ki,

M(x) = ∑︁
i∈Bp

αi(x)Mi,

(4.8)

for all x ∈ D , where i = (i1, i2, . . . , iN) is a multi-dimensional index on Bp, being Bp =
Bp1 × · · · × BpN , αi(x) = αi1(x1) · · ·αiN

(xN) are the membership functions, and

D = {x ∈ Rn : h⊤
l x ≤ 1, l ∈ N≤nf

}, (4.9)

with hl = [01×ni
h⊤

iℓi
01×ni

]⊤, and l = 2(i− 1) + ℓi, ℓi ∈ N≤nfi
, i ∈ V . Recall that the model

(4.7) is valid only for x ∈ D (the compact set containing the origin x = 0).
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The Local Event-Triggered Control Scheme

In this paper, event-based communication is considered to save communication resources.
It is assumed that the transmissions are performed asynchronously, that is, the state information
of each subsystem is updated independently. The sequence of transmissions of each subsystem
is scheduled according to the following event-triggering mechanism:

ti0 = 0, tik+1= inf{t > tik :Γi(ζi(t), ζj(t))< 0}, i ∈ V , (4.10)

and the trigger function is given by

Γi(ζi, ζj) = ζ⊤
i Ψiζi − µi(ζi, ζj), (4.11)

where

Ψi =
⎡⎣Ψi

x Ψi
xe

⋆ −Ψi
e

⎤⎦ , (4.12)

is a symmetric matrix to be designed, with Ψi
x ∈ Rni×ni and Ψi

e ∈ Rni×ni being symmetric
and positive definite matrices. Moreover, the function introduced to cope with the internal
perturbation caused by the asynchronous phenomenon is

µi(ζi, ζj) = 2x⊤
i Pi

−1Bi(xi)
(︃
δi(ζi) + ξi(ζi, ζj)

)︃
, (4.13)

with Pi ∈ Rni×ni being symmetric and positive definite matrices, and δi(ζi), ξi(ζi, ζj) as defined
in (4.6).

Notice that between event times, the states x̂i and xi are mismatched. Due to this
difference, the state-dependent membership functions αii

(xi) and αii
(x̂i) are asynchronous.

Consequently, the usual Linear Matrix Inequalities (LMIs) relaxations cannot be employed for the
linearization of terms such as B(xi)K(x̂i) and B(xi)M(x̂i) once the normalized membership
functions of the matrix-valued functions are not the same. This problem is generally addressed
by limiting the deviation bounds of the membership functions [205,230], or assuming partitions
in the state space [208,232]. However, these assumptions may introduce conservativeness into
the co-design conditions. To deal with this phenomenon in the distributed control co-design
for nonlinear interconnected systems, this paper considers a cancellation-based strategy [236],
in which the inclusion of the term µi in the triggering mechanism allows the development of
conditions in the form of LMIs that do not impose any restriction on the membership functions.
Moreover, since the proposed control input (4.3) is distributed, there is another asynchronism
between the nonlinear interconnections ϕij(xi, xj) and ϕij(x̂i, x̂j). The proposed approach is
also capable of dealing with the influence of this additional source of asynchronism.
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Remark 4.3
Notice that although the first part of Γi(ζi, ζj) in (4.11) given by ζ⊤

i Ψiζi is standard in the
general literature of ETC, the proposed ETM in (4.10) provides characteristics that have
not been explored so far in the literature of distributed ETC of continuous-time intercon-
nected nonlinear systems. The main novelty is the inclusion in Γi(ζi, ζj) of the new term
µi(ζi, ζj) defined in (4.13) to cope with the internal perturbation caused by the asynchronous
phenomenon.

Based on the previous definitions, the problem addressed in this chapter is stated as
follows.

Problem 4.1

Consider a nonlinear interconnected system with subsystems described as (4.1) and
an event-triggered distributed control policy with local control laws as in (4.3) whose
sequences of transmissions is generated by the local ETMs (4.10)-(4.13). Design the
gains Ki(x̂i), Lij, and Mij(x̂i) of (4.3), and the trigger parameters Ψi of (4.10),
∀ i ∈ V , j ∈ Ni, such that the closed-loop system (4.7) is locally asymptotically stable.
Moreover, provide an estimate of the domain of attraction R = {x ∈ Rn : x⊤P−1x ≤ 1},
P = P⊤ > 0, to ensure that closed-loop trajectories starting in R ⊂ D do not evolve
outside the domain D , and converge asymptotically to the origin.

4.2 Main Results

4.2.1 Excluding Zeno behavior

This analysis aims to prove that the triggering strategy proposed in (4.10) does not
lead to Zeno behavior. The existence of a strictly positive minimum inter-event time (MIET)
is ensured by the following Lemma.

Lemma 4.1

Consider the global closed-loop interconnected system (4.7). Given the local ETMs as
in (4.10)-(4.13), there exists a MIET τ ∗

i ∈ R>0 such that tik+1 − tik ≥ τ ∗
i .

Proof. From (4.10), transmissions are triggered when

Gi(xi, ei) > 1 − Vi(xi, ei),

with
Gi(xi, ei) = e⊤

i Ψi
e ei

x⊤
i Ψi

x xi

, Vi(xi, ei) = µi(ζi, ζj) − 2x⊤
i Ψi

xe ei

x⊤
i Ψi

x xi

.
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Notice that at t = tik, one has ei = µi(ζi, ζj) = 0. Consequently, Gi(xi, ei) = Vi(xi, ei) = 0.
Meanwhile, for t ∈ [tik, tik+1), that is, before a new event is triggered, Gi(xi, ei) ≥ 0 must evolve
from 0 to 1−Vi(xi, ei). Therefore, it is possible to conclude that Vi(xi, ei) < 1, ∀t ∈ [tik, tik+1).

Defining Zi = λ̄(Ψi
e)

λ(Ψi
x) , one has Gi(xi, ei) ≤ Zi

||ei(t)||2
||xi(t)||2 . Thus, in the worst case, transmis-

sions are not triggered while

||ei(t)||
||xi(t)||

≤ 1√
Zi

√︂
1 − Vi(xi, ei). (4.14)

By following the same steps presented in [237], the dynamics of ||ei(t)||
||xi(t)|| is bounded as follows

d

dt

(︄
||ei(t)||
||xi(t)||

)︄
≤ ||ėi(t)||

||xi(t)||
+ ||ei(t)|| ||ẋi(t)||

||xi(t)||2
. (4.15)

Considering the closed-loop dynamics in (3.5) and provided that the state-dependent matrices
are bounded for all xi, x̂i ∈ Di, one has that

||ėi(t)|| = ||ẋi(t)|| ≤ C1||xi(t)|| + C2||ei(t)|| + Wi(x, e),

with C1 = ||Ai(xi) +Bi(xi)Ki(x̂i)||, C2 = ||Bi(xi)Ki(x̂i)||,

Wi(x, e) =

⃦⃦⃦⃦
⃦⃦ ∑︂

j∈Ni

Aijxj +Bi(xi)Lij(xj + ej)

+ Gij(xi)ϕij(xi, xj) +Bi(xi)Mij(x̂i)ϕij(x̂i, x̂j)∥

Then, substituting the last results in (4.15) leads to

d

dt

(︄
||ei(t)||
||xi(t)||

)︄
≤ C1||xi(t)|| + C2||ei(t)|| + Wi(x, e)

||xi(t)||
(4.16)

+ ||ei(t)|| (C1||xi(t)||+C2||ei(t)|| + Wi(x, e))
||xi(t)||2

. (4.17)

Defining ˜︃Wi(x, e) = Wi(x,e)
||xi(t)|| , si = sup

x∈D, e ∈De

˜︂Wi(x, e) ∈ R≥0, and φi(t) = ||ei(t)||
||xi(t)|| , it is possible

to write the estimate
φ̇i(t) ≤ νi

0 + νi
1φi(t) + νi

2φ
2
i (t),

with νi
0 = C1 + si, νi

1 = C1 + C2 + si, and νi
2 = C2, from which φi(t) ≤ ψi(t, ψi

0), where
ψi(t, ψi

0) is the solution of the initial value problem ψ̇i(t) = νi
0 + νi

1ψi(t) + νi
2ψ

2
i (t), with

ψi(0, ψi
0) = ψi

0, being νi
0, νi

1, and νi
2 non-negative constants. By following the same arguments

of [236], we have that

1. 0 ≤ Vi(xi, ei) < 1 : Since Gi(xi, ei) < 1, we have that Gi(xi, ei) takes more time to
evolve from 0 to 1 − Vi(xi, ei) than ψi(t, 0) to reach 1√

Zi

√︂
1 − Vi(xi, ei) for the first

time.
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2. Vi(xi, ei) < 0: In this case, as 1 − Vi(xi, ei) > 1, ψi(t, 0) takes less time to evolve from
0 to 1√

Zi
than to 1√

Zi

√︂
1 − Vi(xi, ei). Therefore, Gi(xi, ei) requires less time to evolve

from 0 to 1 than ψi(t, 0) to reach 1√
Zi

.

Thus, it is possible to conclude that the inter-event times are bounded by the time that ψi

takes to evolve from 0 to Z̄i√
Zi

, with Z̄i = min(1,
√︂

1 − Vi(xi, ei)). The solution of
∫︂ dψi

νi
0 + νi

1ψi(t) + νi
2ψi(t)2 =

∫︂
dt,

is computed according to the following cases

• Case 1: (νi
1)2 − 4νi

0ν
i
2 = 0,

• Case 2: (νi
1)2 − 4νi

0ν
i
2 < 0,

• Case 3: (νi
1)2 − 4νi

0ν
i
2 > 0.

The inter-event times are then bounded by the solution τ ∗
i ∈ R>0 of ψi(τ ∗

i , 0) = Z̄i√
Zi

obtained
for each case:

• Case 1:
τ ∗

i = 4Z̄iν
i
2

2νi
2ν

i
1Z̄i + (νi

1)2
√

Zi

,

• Case 2:

τ ∗
i =

2 arctan
(︃

Z̄i(4νi
0νi

2−(νi
1)2)

(νi
1Z̄i+2νi

0
√

Zi)
√

(4νi
0νi

2−(νi
1)2)

)︃
√︂

(4νi
0ν

i
2 − (νi

1)2)
,

• Case 3:

τ ∗
i =

ln
(︃

Z̄iν
i
1+Z̄i

√
νi

1
2−4νi

2νi
0+2Z̄iν

i
0

Z̄iνi
1−Z̄i

√
νi

1
2−4νi

2νi
0+2Z̄iνi

0

)︃
√︂
νi

1
2 − 4νi

2ν
i
0

,

which is not null for all cases, thus ensuring tik+1 − tik ≥ τ ∗
i > 0, and excluding the

existence of Zeno behavior. This concludes the proof.

4.2.2 Co-design Condition

A sufficient condition to design the control laws (4.3) and the ETMs (4.10)-(4.13) is
stated as follows.

Theorem 4.1

Consider the system (4.7) and assume that Assumption 4.1 is satisfied for given Ωi, Ji ∈
Rdi×n. If there exists symmetric positive definite matrices Pi, ˜︁Ψi

x,
˜︁Ψi

e ∈ Rni×ni , matrices˜︂Kj ∈ Rm×n, ˜︂Mj ∈ Rm×nϕ , j ∈ Bp, ˜︁Ψi
xe ∈ Rni×ni , and ˜︁L ∈ Rm×n, and diagonal matrices
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Λsi
,Λhi

∈ Rdi×di such that
∑︂

(i,j)∈P(m,n)
Υij < 0, ∀m,n ∈ Bp+, (4.18)

⎡⎣P P⊤hℓ

⋆ 1

⎤⎦ ≥ 0, ∀ℓ ∈ N≤nf
, (4.19)

with

Υij =
⎡⎣ ˜︁Θij ⋆

Pχ1 − ˜︁Ψx

⎤⎦ ,
˜︁Θij = χ1

⊤
(︂
He

(︂
AiP +Bi

˜︂Kj + ĀP +Bi
˜︁L)︂)︂χ1 + He

(︂
χ⊤

1

(︂
GiΛs +Bi

˜︂Mj
)︂
χ3
)︂

+He
(︂
χ⊤

1

(︂
Bi(˜︁L+ ˜︂Kj) + ˜︁Ψxe

)︂
χ2
)︂

− χ2
⊤ ˜︁Ψe χ2 − 2χ3

⊤Λs χ3 − 2χ4
⊤Λh χ4

−He
(︂
χ⊤

1 (GiΛh)χ4
)︂

+ He
(︂
χ⊤

3 Ω(IN⊗P )(1N⊗χ1)
)︂

+He
(︂
χ⊤

3 Ω(IN⊗P )(1N⊗χ2)
)︂

+ He
(︂
χ⊤

4 J(IN⊗P )(1N⊗χ2)
)︂
,

χ1 =
[︂
In×n 0n×n 0n×nϕ

0n×nϕ

]︂
,

χ2 =
[︂
0n×n In×n 0n×nϕ

0n×nϕ

]︂
,

χ3 =
[︂
0nϕ×n 0nϕ×n Inϕ×nϕ

0nϕ×nϕ

]︂
,

χ4 =
[︂
0nϕ×n 0nϕ×n 0nϕ×nϕ

Inϕ×nϕ

]︂
,˜︁Ψxe = diag( ˜︁Ψ1

xe, . . . ,
˜︁ΨN

xe), ˜︁Ψx = diag( ˜︁Ψ1
x, . . . ,

˜︁ΨN
x ), ˜︁Ψe = diag( ˜︁Ψ1

e, . . . ,
˜︁ΨN

e ),
P = diag(P1, . . . , PN), Λs = diag(Λs1 , . . . ,ΛsN

), Λh = diag(Λh1 , . . . ,ΛhN
),

Ω = diag(Ω1, . . . ,ΩN), J = diag(J1, . . . , JN),

then the distributed controllers (4.3) with Kj = ˜︂KjP
−1, Mj = ˜︂MjΛs

−1, L̄ = ˜︁LP−1, and
the ETMs (4.10)-(4.13) with Ψi

e = P−1
i
˜︁Ψi

eP
−1
i , Ψi

xe = P−1
i
˜︁Ψi

xeP
−1
i , and Ψi

x = ˜︁Ψi−1
x ,

guarantee that the state trajectories of the closed-loop system (4.7) with initial conditions
taken inside of

R = {x ∈ Rn : V (x) ≤ 1}, (4.20)

with Lyapunov function given by,

V (x) = x⊤P−1x, (4.21)

do not leave R ⊂ D , and converge asymptotically to the zero equilibrium.

Proof. First, note that all Pi, i ∈ NN are positive definite matrices. Thus, it is possible to
conclude that V (x) as in (4.21) is positive definite.

Furthermore, assume that the conditions in (4.18) are feasible. From the convex
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property of the membership functions, the LMIs in (4.18) imply

∑︂
m∈Bp+

∑︂
n∈Bp+

αm(x)αn(x)
⎛⎝ ∑︂

(i,j)∈P(m,n)
Υij

⎞⎠ < 0. (4.22)

Multiplying (4.22) by diag(P−1, P−1,Λ−1
s ,Λ−1

h , I) on the left and on the right, and performing
the change of variables Kj = ˜︂KjP

−1, Mj = ˜︂MjΛs
−1, L̄ = ˜︁LP−1, Ψxe = P−1 ˜︁ΨxeP

−1, and
Ψe = P−1 ˜︁ΨeP

−1, it follows that

∑︂
i∈Bp

∑︂
j∈Bp

αi(x)αj(x)
⎡⎣Θij ⋆

χ1 − ˜︁Ψx

⎤⎦ < 0, (4.23)

with

Θij = χ⊤
1 He

(︂
P−1

(︂
Ai +BiKj + Ā+BiL̄

)︂)︂
χ1 + He

(︂
χ⊤

1 (P−1 (Gi +BiMj))χ3
)︂

+He
(︂
χ⊤

1

(︂
P−1Bi(L̄+Kj) + Ψxe

)︂
χ2
)︂

− χ⊤
2 Ψe χ2 + −2χ3

⊤Λ−1
s χ3 − 2χ4

⊤Λ−1
h χ4

−He
(︂
χ⊤

1 (P−1Gi)χ⊤
4

)︂
+ He

(︂
χ⊤

3 Λ−1
s Ω(1N⊗χ1)

)︂
+ He

(︂
χ⊤

3 Λ−1
s Ω(1N⊗χ2)

)︂
+He

(︂
χ⊤

4 Λ−1
h J(1N⊗χ2)

)︂
.

From Schur complement and the change of variables Ψx = ˜︁Ψ−1
x , the inequalities in (4.23)

imply

χ⊤
1 He

(︂
P−1Acl(x)

)︂
χ1 − χ⊤

2 Ψe χ2 − 2χ⊤
3 Λ−1

s χ3 + χ⊤
1 Ψx χ1 − 2χ⊤

4 Λ−1
h χ4 (4.24)

+ He
(︂
χ⊤

1

(︂
P−1B(x)(L̄+K(x)) + Ψxe

)︂
χ2
)︂

− He
(︂
χ⊤

1

(︂
P−1G(x)

)︂
χ4
)︂

+ He
(︂
χ⊤

1

(︂
P−1Gcl(x)

)︂
χ3
)︂

+ He
(︂
χ⊤

3 Λ−1
s Ω(1N⊗χ1)

)︂
+ He

(︂
χ⊤

3 Λ−1
s Ω(1N⊗χ2)

)︂
+ He

(︂
χ⊤

4 Λ−1
h J(1N⊗χ2)

)︂
< 0.

Multiplying (4.24) by
[︂
x⊤ e⊤ ϕ⊤(x̂) ρ⊤(e, x)

]︂
on the left and its transpose on the right, it

is possible to obtain

2x⊤P−1
[︃
Acl(x)x+

(︂
B(x)(K(x) + L̄)

)︂
e
]︃
+2x⊤P−1

[︃
Gcl(x)ϕ(x̂) −G(x)ρ⊤(e, x)

]︃
− 2ϕ⊤(x̂)Λ−1

s ϕ(x̂) + 2ϕ⊤(x̂)Λ−1
s Ω(1N⊗x̂) − 2ρ⊤(x, e)Λ−1

h ρ(x, e)

+ 2ρ⊤(x, e)Λ−1
h J(1N⊗e) + 2x⊤(t)Ψxe e(t) − e⊤(t)Ψe e(t) + x⊤(t)Ψx x(t) < 0. (4.25)

Notice that ∑︁N
i=1 µi(ζi, ζj) = 2x⊤P−1B(x) (δ(ζ) + ξ(ζ)) . By adding this term on both sides

of (4.25), one has

ẋ⊤P−1x+ x⊤P−1ẋ+
N∑︂

i=1
(Γi(ζi, ζj) − 2Si(x̂,Λsi

) − 2Hi(e, x,Λhi
)) < 0. (4.26)

with ẋ as in (4.7), Γi(ζi, ζj) as in (4.11), Si(x̂,Λi) as in (C.1), and Hi(e, x,Λhi
) as in (C.2).

Thus, considering the property of the sector-bounded nonlinearities, it is possible to conclude
from S-procedure arguments that (4.26) ensures V̇ (x) < 0, with V (x) as in (4.21), guaranteeing
that the origin of the global closed-loop system (4.7) is locally asymptotically stable. Moreover,
the condition (4.19) ensures that R ⊂ D (see [18] for details). This concludes the proof.
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Remark 4.4
Theorem 4.1 provides a co-design condition without any assumptions on the deviation bounds
between the membership functions. This is possible due to the term µi(ζi, ζj) in the proposed
ETM (4.10), which can vanish the effects of asynchronous premise variables by canceling
the terms with the product B(xi)K(x̂i), and B(xi)M(x̂i). The computation of µi(ζi, ζj)
requires that the states of the local and neighboring subsystems be continuously available
for the local ETMs. Therefore, the proposed approach might not be suitable for applications
where this information is unknown.

4.2.3 A Multi-objective optimization problem

There are two different objectives related to the solution of Problem 4.1: the minimiza-
tion of the number of transmissions and the maximization of the estimated domain of attraction.
The first objective implies a reduction of the bandwidth usage, and it can be achieved by
minimizing the eigenvalues of the matrices Ψi

e, Ψi
xe, and maximizing the eigenvalues of Ψi

x.
Considering the decision variables of Theorem 4.1, similar to [236], this objective can be carried
out by minimizing

J̄1 = tr(Ψ̃x + Ψ̃e + Ψ̃xe).

Assuming that the conditions of Theorem 4.1 hold, with the constraint P−1 ≤ Q, being
Q a symmetric matrix with appropriate dimension, the minimization of

J̄2 = tr(Q),

results in the minimization of the eigenvalues of P−1. Thus, the volume of the ellipsoidal set
R in (4.20) is also enlarged.

A multi-objective optimization problem can be formulated to deal with both objective
functions by applying the ε-constraint approach [238]. Here, the objective function J̄2 is
minimized under J̄1 constrained by ε ∈ R>0, as presented in the following proposed optimization
problem:

minimize J̄2

subject to P > 0, ˜︁Ψx > 0, ˜︁Ψe > 0,⎡⎣Q In

⋆ P

⎤⎦ ≥ 0,

(4.18), (4.19), tr( ˜︁Ψx + ˜︁Ψe + ˜︁Ψxe) ≤ ε.

(4.27)

For fixed values of ε, the optimization problem is a convex one, and the Pareto front is
estimated by solving it for several values of ε.
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4.3 Distributed ETC of Interconnected Van Der Pol Oscillators

Consider a nonlinear interconnected system composed of four Van Der Pol Oscillators
coupled according to the graph in Figure 4.2.

P1

P2 P3

P4

Figure 4.2 – Graph describing the interconnections among the Van Der Pol oscillators -
Example 1.

Each subsystem is described as [10]:

ẋi1(t) = xi2(t),

ẋi2(t) = −xi1(t) + µi

(︂
1 − x2

i1(t)
)︂
xi2(t)

+ gi(xi1(t))ui(t) + γ̄i

∑︂
j∈Ni

sin (xj1(t) − xi1(t)) .
(4.28)

where gi(xi1(t)) = (1/(0.4 + 0.1x2
i1(t)). The parameters µi and γ̄i are chosen as µ1 = 0.5,

µ2 = 0.35, µ3 = 0.6, µ4 = 1, and γ̄1 = −0.5, γ̄2 = 0.2, γ̄3 = 0.4, γ̄4 = −0.1. The functions
ϕ̄i(xi, xj), defined gathering ϕ̄ij = sin(xji − xi1), do not satisfy Assumption 4.1, since they
belong to the sector [ΩLi,ΩUi] where ΩLi = [ΩLi1 . . . ΩLiN ] and ΩUi = [ΩUi1 . . . ΩUiN ] are
constructed as ΩLim = [Ω⊤

Limki1
. . . Ω⊤

Limkiℓ
]⊤, ΩUim = [Ω⊤

Uimki1
. . . Ω⊤

Uimkiℓ
]⊤ ∈ Rdi×nj ,

with

ΩLimkℓ
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[−1 0], if m = i,

[1 0], if m = kiℓ,

[0 0], otherwise,

ΩUimkℓ
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[0.22 0], if m = i,

[−0.22 0], if m = kiℓ,

[0 0], otherwise.

Notice that it is possible to perform a loop transformation and define ˜︁ϕij = xi1 − xj1 +
sin(xji − xi1), which belong to the sector [0,Ωi], as required by Assumption 4.1. The matrices
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Ωi = [Ωi1 . . . ΩiN ] are defined as Ωi = ΩUi −ΩLi, with Ωim = [Ω⊤
imki1

. . . Ω⊤
imkiℓ

]⊤ ∈ Rdi×nj ,

Ωimkℓ
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[1.22 0], if m = i,

[−1.22 0], if m = kiℓ,

[0 0], otherwise,

for all j ∈ Ni, m ∈ V , kiℓ ∈ Ni, ℓ ∈ N≤di
.

Therefore, an exact NT-S fuzzy model with 4 rules can be constructed with

Ai
00 = Ai

01 =
⎡⎣ 0 1
−1 − 2γ̄i −8µi

⎤⎦ , Bi
00 = Bi

10 =
⎡⎣ 0
2.5

⎤⎦ ,
Ai

10 = Ai
11 =

⎡⎣ 0 1
−1 − 2γ̄i µi

⎤⎦ , Bi
01 = Bi

11 =
⎡⎣ 0
0.7692

⎤⎦ ,
Aij =

⎡⎣ 0 0
γ̄i 0

⎤⎦ , Gi
00 = Gi

01 = Gi
10 = Gi

11 =
⎡⎣ 0 0
γ̄i γ̄i

⎤⎦ .
where zi1(t) = x2

i1, and zi2(t) = gi(xi1(t)), Di = {xi ∈ R2 : |xi1| ≤ 3} ∀i ∈ V,
z0

i1 = 0, z1
i1 = 9, z0

i2 = 0.7692, and z1
i2 = 2.5. Consequently, the weighting func-

tions can be obtained as in (B.6). and the normalized state-dependent membership func-
tions as α00(zi) = wi1

0 (zi1)wi2
0 (zi2), α01(zi) = wi1

0 (zi1)wi2
1 (zi2), α10(zi) = wi1

1 (zi1)wi2
0 (zi2),

α11(zi) = wi1
1 (zi1)wi2

1 (zi2).

Notice that with the previously performed steps, we are able to represent system (4.28)
as a T-S fuzzy model (4.1). Considering the closed-loop subsystems in (4.6), we have that the
nonlinear functions composing ρi(e, x) must satisfy Assumption 4.1 to guarantee that Lemma
(C.2) holds. For ˜︁ϕij=xi1 − xj1 + sin(xji − xi1), it possible to compute that

JLi ≤ ∂ ˜︁ϕi(x)
∂x

≤ JUi,

with JLi=[JLi1 . . . JLiN ] and JUi=[JUi1 . . . JUiN ] constructed as JLim=[J⊤
Limki1

. . . J⊤
Limkiℓ

]⊤,
JUim = [J⊤

Uimki1
. . . J⊤

Uimkiℓ
]⊤ ∈ Rdi×nj , where

JLimkℓ
=

⎧⎪⎨⎪⎩[−2 0], if m = kiℓ,

[0 0], otherwise,
JUimkℓ

=

⎧⎪⎨⎪⎩[2 0], if m = i,

[0 0], otherwise.

Another loop transformation can be performed to obtain ϕi(x) = ˜︁ϕi(x) − JLix with˜︁ϕij = xi1 + xj1 + sin(xji − xi1), that satisfies Assumption 4.1 considering Ji = JUi − JLi.
Notice that this second loop transformation is performed only in the nonlinear terms of ˜︁ρi(e, x),
that is,

˜︁ρi(e, x) = ˜︁ϕi(x̂) − ˜︁ϕi(x)

= (ϕi(x̂) + JLix̂) − (ϕi(x) + JLix)

= (ϕi(x̂) − ϕi(x)) + JLi(x− x̂)

= ρi(e, x) + JLie.
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Therefore, with ρi(e, x) = ϕi(x) − ϕi(x̂) the conditions of Lemma (C.2) holds. Moreover,
notice that it is required to replace ˜︁ρ(e, x) by ρ(e, x) + JLe in the global closed-loop (4.7) to
compensate the transformations.

The optimization problem in (4.27) was solved for 20 values of ε in a logarithmic grid
between 100 and 104, and the cost obtained for the objective function J̄2, for each one of the
20 points, are depicted in Figure 4.3. From the results of Figure 4.3, it can be noticed that
larger values of ε result in smaller values for J̄2, resulting in the increase of the volume of the
estimated domain of attraction. For ε = 100, the solution of the optimization problem results
in J̄2 = 265.33, and with ε = 104 the obtained solution is J̄2 = 0.8901. Since J̄1 is constrained
by ε, the increase of ε will result in a higher number of events. Thus, the choice of ε must be
made to achieve a compromise between the two objectives.

Figure 4.3 – The values of J̄2 obtained by solving the proposed optimization problem
with respect to fixed values for the upper-bound ε of J̄1 - Example 1.

The trajectories of the closed-loop system in a simulation are presented in Figure
4.4. The distributed control law composed by (4.3) and the local ETMs (4.10)-(4.13) were
designed by solving the optimization problem in (4.27) with ε = 100, resulting in J̄2 = 2.6515.
The initial condition x0 was chosen inside of the enlarged estimation for the DoA, that is,
x⊤

0 P
−1x0 < 1.

The results in Figure 4.4 illustrate the efficacy of the proposed approach in ensuring
the asymptotic stability of the origin of the closed-loop interconnected system (4.7). Notice
that the control inputs ui(t) are asynchronously updated according to the event times of
the corresponding ETM, being (21, 19, 24, 22) the number of events of each subsystem
(P1,P2,P3,P4) respectively. The inter-event times are depicted in Figure 4.5. From Figure
4.6, it is possible to notice that the inter-event times correspond to the times required for
Gi(xi, ei) evolve from 0 to 1 − Vi(xi, ei), as expected from the proof of the existence of τ ∗

i in
Lemma 4.1. Therefore, the obtained results emphasize the arguments provided in Lemma 4.1
to ensure the Zeno-freeness property.
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Figure 4.4 – Closed-loop trajectories of system (4.28) with the designed distributed
control inputs (4.3) under the proposed ETMs (4.10)-(4.13).

Figure 4.5 – Inter-event times of each subsystem originated with the implementation of
the proposed ETMs (4.10)-(4.13) in the simulations of Figure 4.4.
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Figure 4.6 – Functions Gi(xi, ei) and 1 − Vi(xi, ei) computed in the simulations of Fig-
ure 4.4.

Moreover, the number of events (Ne), minimum inter-event times (τ ∗
i ), maximum

inter-event times (τ̄i), and the median of average inter-event times (τa) where computed in
100 simulations of 10s with different initial conditions chosen in the border of the enlarged
estimation of the DoA obtained with ε = 100. The results for each subsystem are presented in
Table 4.1, and are similar even considering the asynchronous transmissions. Furthermore, it is
also possible to notice that all MIETs (τi) are strictly positive, confirming the exclusion of the
Zeno behavior in the proposed distributed ETC setup.

Table 4.1 – Mean of the number of events (Ne), minimum inter-event times (τ ∗
i ), max-

imum inter-event times (τ̄i), and the median of average inter-event times
(τm) for each subsystem in 100 simulations with different initial conditions.

Subsystem Ne τ ∗
i (s) τ̄i (s) τm (s)

P1 22 0.2094 0.7763 0.4684
P2 22 0.2231 0.7646 0.4803
P3 23 0.1584 0.7334 0.4525
P4 22 0.2143 0.8884 0.4615
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4.4 Conclusions

In this chapter an asynchronous distributed event-triggered control approach has been
proposed for the stabilization of nonlinear interconnected NT-S fuzzy systems. In the proposed
method, transmissions are triggered regarding a distributed ETC scheme properly defined to
cancel the effect of asynchronous premise variables and nonlinear interconnections. With this
cancellation scheme, a sufficient condition has been proposed to co-design the ETMs and
the gains of the distributed control law. Moreover, a procedure to estimate the domain of
attraction has been provided. To enlarge this estimate and reduce the number of transmissions,
a convex multi-objective optimization problem has been presented. From numerical simulations,
the effectiveness of the approach in guaranteeing the asymptotic stability of the origin of the
global interconnected system is demonstrated. Finally, the exclusion of Zeno behavior has been
formally proven, thus enabling the implementation of the distributed ETC scheme.



Part III

Distributed Consensus for LPV Multi-agent Systems
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5 LITERATURE REVIEW AND SPECIFIC OBJECTIVES OF PART III

This chapter presents a review of the existent approaches for LPV MASs §5.1. Moreover,
based on the pre-organized discussion, the specific objectives addressed in the remaining
Chapters of Part III are defined in §5.2.

5.1 Literature review of LPV MAS systems

Due to its wide application range, which encompasses several modeling approaches for
agents, and distinct consensus problems, the literature of multi-agent system is more complex
and diverse than the previous case of ISs. Consequently, obtaining a complete overview of all the
existent approaches to the consensus of MAS is an exhaustive task that goes beyond the scope
of this thesis. Therefore, this review of the literature is restricted to the existing approaches for
MAS represented by LPV models. More information on approaches for other classes of MAS
can be found in the various survey papers existent (and the references within) [4, 50–59].

To provide an overview of the consensus methods within the LPV context, the main
results are summarized in the literature review presented in Table 5.1. The approaches were
classified based on two criteria: the type of LPV system considered to describe the agents
(completely homogeneous LPV MAS, LPV MAS with the homogeneous polytopic domain
but with different scheduling parameters, or heterogeneous LPV MAS), and the addressed
consensus problem (Leaderless, Leader-following, Output regulation, or Practical Consensus).
Moreover, notice that the systems were also distinguished as continuous-time LPV MAS or
discrete-time LPV MAS.

Table 5.1 – Literature Review: Consensus for LPV MAS

Leaderless Leader-following Output Practical

Continuous
Homogeneous [239–242] [243,244] × ×

Different parameters × × × ×
Heterogeneous [245] [246] [247–249] ×

Discrete
Homogeneous [250] × [251,252] ×

Different parameters × × × ×
Heterogeneous × × × ×
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The leaderless consensus problem of homogeneous continuous-time LPV MAS has been
investigated in [239–242]. Among these results, the approach of [241] proposes a gain-scheduled
observer-based consensus protocol, in which both the controller and the observer gains depend
on the time-varying scheduling parameters. The design is performed through sufficient LMI
conditions obtained considering the Polya’s Theorem. A similar gain-scheduled observer-based
approach is also considered in [242]. However, differently from [241], the presence of additive
and multiplicative faults in the sensors and actuators is considered. To deal with this faulty
scenario, virtual actuators and sensors are introduced to compose a fault-tolerant consensus
protocol. Moreover, the presence of actuator faults is also considered in [240]. In the proposed
method, the faults are modeled as an polytopic uncertainty and a robust observer-based reliable
protocol is proposed. Furthermore, a gain-scheduled consensus protocol is proposed in [239]
considering the presence of time-varying delays in communication among agents.

The use of homogeneous continuous-time LPV models for agents is also explored
in [243, 244]. As in [241, 242], observer-based protocols are introduced, but with attention
directed to the leader-following consensus problem. Additionally, the presence of actuator
faults is considered in [243]. Furthermore, the consensus of heterogeneous continuous-time
LPV MAS is investigated in [245]. Although the approach is not explicitly focused on the
leader-following problem, the consensus is based on an internal dynamics method, in which the
agents try to track a controlled local internal dynamics that must achieve a consensus with the
homogeneous internal dynamics of the other agents. Moreover, the leader-following consensus
problem has also been addressed in [246] for MASs with heterogeneous parameter-dependent
linear fractional transformation dynamics. Further investigations in MASs with continuous-time
heterogeneous LPV modeling are performed in [247–249]. These approaches focused on
the output regulation problem considering distributed observers [247], distributed adaptive
observers [248], and distributed event-triggered adaptive observers [249].

In contrast to the previously discussed scenario of continuous-time LPV MASs, ap-
proaches for discrete-time LPV MASs have received limited attention. The literature review
identified only the works of [250–252] addressing this scenario. In [250], a leaderless consensus
approach is proposed based on finite frequency fault estimators and adaptive event-triggered
mechanisms. The fault-tolerant consensus protocol considers a compensation scheme using the
estimations of the faults to mitigate its effects. It is worth mentioning that a completely homoge-
neous modeling with parameter-independent input and output matrices is considered. Moreover,
the design of the consensus and observer gains is performed with LMI conditions obtained
considering the pole assignment and H∞ performance. Finally, the event-triggered ℓ2-optimal
output formation is investigated in [251,252] for non-holonomic vehicles modeled as polytopic
LPV models. Although the problem formulation accounts for different parameters, [251,252]
also assumes a homogeneous scheduling among all agents.

Furthermore, although not included in Table 5.1, it is worth mentioning the approaches
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[253–257] in the context of nonlinear Lipschitz MASs. Notice that these works use the LPV
framework to represent local Lipschitz nonlinearities in the agents’ nonlinear models. In
summary, with the main consensus approaches for LPV MASs now established, the specific
objectives of Part III of this thesis are presented in the next section.

5.2 Specific objectives of part III

From the discussion performed in Section 5.1, it becomes evident that limited attention
has been given to the design of distributed consensus protocols for LPV MASs. The literature
review was unable to find any approach that investigates the practical consensus for the scenario
with different scheduling parameters in both continuous and discrete-time. The first work to
evaluate the influence of different scheduling parameters was [241], where it is shown that if a
consensus protocol designed considering equal parameters is implemented in an continuous-time
LPV MAS with different parameters, a non-synchronization scenario appears. Although [241]
acknowledges the non-synchronization effects raised by the difference among the scheduling
parameters, it does not offer a solution to deal with this problem, by assessing or setting
bounds on the consensus error within this more intricate context. Furthermore, the literature
review was also unable to find any approach that investigates the leader-following consensus
for discrete-time LPV MASs, even for the scenario of completely homogeneous agents. Thus,
to address these gaps in the literature, the specific objectives of this thesis in the context of
LPV MASs are:

• To propose sufficient LMI-based synthesis conditions, using Lyapunov stability arguments,
for the design of a distributed observer-based consensus protocol to achieve practical
leaderless consensus of continuous-time LPV MASs with distinct time-varying scheduling
parameters.

• To propose sufficient LMI-based synthesis conditions, using Lyapunov stability arguments,
for the design of a distributed observer-based consensus protocol to achieve the practical
leader-following formation consensus of discrete-time LPV MASs with distinct time-
varying scheduling parameters.

• To guarantee that the trajectories of the consensus error, when disturbed by internal
perturbations that arise due to the difference among the scheduling parameters, converge
exponentially to an attractive bounding region in both scenarios of practical leaderless
consensus and practical leader-following formation consensus.

• To propose a compensated distributed observer-based consensus protocol to ensure, when
possible, the exact leader-following tracking formation of discrete-time LPV MASs with
heterogeneous scheduling parameters.
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6 A DISTRIBUTED OBSERVER-BASED APPROACH FOR THE PRACTICAL
STATE CONSENSUS OF LPV MULTI-AGENT SYSTEMS

This chapter proposes a distributed gain-scheduled observer-based framework to achieve
practical state consensus for linear parameter-varying (LPV) multi-agent systems (MAS).
In the considered scenario, scheduling parameter mismatches among agents are explicitly
modeled as bounded disturbances. Using Lyapunov theory, sufficient conditions are derived
to design a gain-scheduled observer-based consensus protocol. This protocol guarantees that
the consensus error trajectories converge exponentially to a bounded region, ensuring practical
consensus. Furthermore, numerical simulations demonstrate the efficacy of the proposed
approach, highlighting its advantages over non-synchronized outcomes typically observed in
LPV MAS under heterogeneous scheduling parameters.

The remainder of this chapter is organized as follows. The problem formulation is
presented in §6.1. The proposed design conditions are defined in §6.2. Two numerical examples
are presented in §6.3 to illustrate the application of the proposed methodology. Conclusions
are drawn in §6.4.

6.1 Problem formulation

Consider a MAS composed of N agents in the form

ẋi(t) = A(ρi(t))xi(t) +B(ρi(t))ui(t),

yi(t) = C(ρi(t))xi(t),
(6.1)

where xi ∈ Rnx is the state vector, ui ∈ Rnu is the control input, yi ∈ Rny is the output,
and ρi(t) ∈ Rp is the vector of time-varying scheduling parameters, which are functions of
measured exogenous signals.

The parameter-dependent matrices A(ρi(t)) ∈ Rnx×nx , B(ρi(t)) ∈ Rnx×nu , and
C(ρi(t)) ∈ Rny×nx are functions of the scheduling parameters and belong to a polytopic
domain. Then, they can be written as follows:⎡⎣A(ρi(t)) B(ρi(t))

C(ρi(t)) ·

⎤⎦ =
Nv∑︂

h=1
αh(ρi(t))

⎡⎣Ah Bh

Ch ·

⎤⎦ , (6.2)

where Ah, Bh, and Ch are the vertices of the polytopic domain, Nv is the number of vertices
and αh(ρi(t)) satisfies the convex sum property:

Nv∑︂
h=1

αh(ρi(t)) = 1, and αh(ρi(t)) ≥ 0, ∀i ∈ V .

The addressed LPV-MAS (6.1) comprehends N same-order agents represented by homogeneous
LPV models with the same vertices. That is, all agents share the same polytopic domain.
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However, it is assumed that each agent has independent time-varying scheduling parameters,
which can induce heterogeneity among the agents. Moreover, also notice that differently of
interconnected system, the agents do not share any common states, being the local open-loop
dynamics completely decoupled.

Consider the following gain-scheduled observer-based distributed consensus protocol

ui = K(ρi(t))
∑︂

j∈Ni

(x̂i − x̂j), ∀i ∈ V , (6.3)

where K(ρi(t)) ∈ Rnu×nx is the gain-scheduled function, x̂i ∈ Rnx is the estimated state
of the local agent, and x̂j ∈ Rnx are the estimated states of the agents that compose the
neighborhood Ni. For each agent, the local estimated states are given by

̇̂xi(t) = A(ρi(t))x̂i(t) +B(ρi(t))ui(t) + L(ρi(t))
(︃
C(ρi(t))x̂i(t) − yi(t)

)︃
, (6.4)

where L(ρi(t)) ∈ Rnx×ny is the gain-scheduled observer function.

The gain-scheduled functions associated with the proposed distributed consensus pro-
tocol and the local observers belong to the same polytopic domain and can be expressed
as:

K(ρi(t)) =
Nv∑︂
l=1

αl(ρi(t))Kl, L(ρi(t)) =
Nv∑︂
l=1

αl(ρi(t))Ll,

where Kl and Ll are the vertices to be designed. For notational simplicity, the time dependency
of ρi(t) is omitted, and only ρi is considered hereafter.

Remark 6.1
In the proposed gain-scheduled observer-based distributed consensus protocol, the difference
between the state of agent i and those of its neighbors j, i.e., xi − xj, cannot be directly
used, since not all states are measurable. Each agent has its own local observer x̂i, and
the estimated states are transmitted to all agents in its neighborhood. Similar to previous
distributed approaches, the communication among agents follows an undirected graph G(V , E)
(see Appendix A).

Defining zi = x̂i − xi, as the local estimation error, z = (z1, z2, . . . , zN), and
ρ = (ρ1, ρ2, . . . , ρN), it is possible to write

ż =
Nv∑︂

h=1

Nv∑︂
l=1

(︂
αhl(ρ) ⊗ Inx

)︂(︂
IN ⊗ (Ah + LlCh)

)︂
z, (6.5)

where αhl(ρ) = diag
(︂
αh(ρ1)αl(ρ1), . . . , αh(ρN)αl(ρN)

)︂
.

By substituting the consensus protocol (6.3) into (6.1), we have that

ẋi = A(ρi)xi +B(ρi)K(ρi)
∑︂

j∈Ni

(︂
(zi + xi) − (zj + xj)

)︂
.
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Therefore, the global dynamics of all agents x = (x1, x2, . . . , xN) can be written as

ẋ =
Nv∑︂

h=1

Nv∑︂
l=1

(︂
αhl(ρ) ⊗ Inx

)︂[︃(︂
IN ⊗ Ah + L ⊗BhKl

)︂
x+

(︂
L ⊗BhKl

)︂
z
]︃
. (6.6)

Let the consensus error be defined as δi = xi − x̄, being x̄ = (1/N)∑︁N
j=1 xj . Then, the relation

between the global consensus error δ = (δ1, δ2, . . . , δN), and the states x is given by δ = Υx,
with Υ = (Ῡ ⊗ Inx) and Ῡ = (IN − (1/N)11⊤). Hence, the consensus error can be defined as

δ̇ =
Nv∑︂

h=1

Nv∑︂
l=1

Υ
{︃(︂
αhl(ρ) ⊗ Inx

)︂[︃(︂
IN ⊗ Ah + L ⊗BhKl

)︂
x+

(︂
L ⊗BhKl

)︂
z
]︃}︃
.

Provided that (L ⊗BhKl

)︂
x = (L ⊗BhKl

)︂
δ, and x = δ + (1 ⊗ x̄), it is possible to write

δ̇ =
Nv∑︂

h=1

Nv∑︂
l=1

Υ
{︃(︂
αhl(ρ) ⊗ Inx

)︂[︃(︂
IN ⊗ Ah + L ⊗BhKl

)︂
δ +

(︂
L ⊗BhKl

)︂
z
]︃

+ fhl(ρ, x̄)
}︃
,

being fhl(ρ, x̄) = (αhl(ρ)1 ⊗ Ahx̄
)︂
.

Finally, defining the augmented error systems as e = (z, δ) we obtain

ė = Ā(ρ)e+Bω ω, (6.7)

with

Ā(ρ) =
Nv∑︂

h=1

Nv∑︂
l=1

⎡⎣Ā11
hl 0

Ā21
hl Ā22

hl

⎤⎦ , Bω =
⎡⎣0
1

⎤⎦ ,
Ā11

hl = αhl(ρ) ⊗ (Ah + LlCh) ,

Ā21
hl =

(︂
Ῡαhl(ρ) ⊗ Inx

)︂(︂
L ⊗BhKl

)︂
,

Ā22
hl =

(︂
Ῡαhl(ρ) ⊗ Inx

)︂(︂
IN ⊗ Ah + L ⊗BhKl

)︂
,

ω =
Nv∑︂

h=1

Nv∑︂
l=1

Υ fhl(ρ, x̄).

Remark 6.2
Notice that the augmented error system is subject to an internal perturbation ω due to
the difference among the time-varying parameters of the agents. From the definition of
(6.7), it is possible to conclude that e = 0 if and only if ω = 0, and x̂i = xi = x̄, ∀i ∈ V.
Similarly to [241], an exact consensus (or synchronization scenario) can be achieved by
selecting ρ1 = ρ2 = . . . = ρN . If all agents have the same scheduling parameters, then
Ῡαhl(p)1 = 0 ∀h, l = 1, . . . , Nv, which is a sufficient condition to ensure ω = 0. For the case
where the scheduling parameters are different, the trajectories of w depend on the vertices
Ah of the system matrices, on the mean of the states x̄, and on the time-varying difference
among the scheduling functions αhl(ρ). Since in general ω ̸= 0, the exact consensus cannot
be achieved, resulting in the non-synchronization scenario discussed in [241]. For this reason,
the development of a practical consensus approach is the main goal of this chapter.
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Defining the ellipsoid

E(P, ε∗) ≜ {e ∈ R2Nnx : e⊤ P e ≤ ε∗},

where P > 0 is a symmetric positive definite matrix and ε∗ > 0 is a given positive scalar, the
notion of practical consensus considered follows the same lines established in Definition 1.7,
where the MAS (6.1) is said to achieve practical leaderless consensus if

lim
t→∞

d(e(t, e0), E(P, ε∗)) = 0,

being e(t, e0) the trajectory of the error system (6.7) with initial condition e0 ∈ R2Nnx , and
d(e(t, e0), E(P, ε∗)) the distance between e(t, e0) and E(P, ε∗).

Based on the augmented error dynamics (6.7) the following assumption is considered.

Assumption 6.1

The internal perturbation ω is bounded by

||ω(t)||∞ ≤
Nv∑︂

h=1

Nv∑︂
l=1

||Υfhl(ρ, x̄)||∞, (6.8)

from which it is possible to define γ ≜ supt≥0(||ω(t)||∞) .

Remark 6.3
As highlighted in Remark 6.2 the trajectories of the internal perturbations depend on the
mean of the states x̄. Therefore, the value of γ, computed as the supremum of the infinity
norm of ω(t) for all t ≥ 0, will be finite only if x̄ is also finite. If the dynamics of (6.6) are
not unstable, this condition is directly satisfied.

The following analysis conditions are considered in the design of the proposed gain-
scheduled observer-based consensus protocol.

Lemma 6.1: Adapted from [62, 258]

If there exist positive scalars a > 0, b > 0, and symmetric positive definite matrices
P1 ∈ Rnx×nx and P2 ∈ Rnx×nx such that the Lyapunov function

V (e) = e⊤P e, P = diag
(︂
(IN ⊗ P1), (IN ⊗ P2)

)︂
, (6.9)

satisfies
V̇ (e) + aV (e) − b ω⊤ω < 0, (6.10)

the trajectories e(t, e0) of the error system will converge exponentially to the attractive
region

X∞ ≜

{︄
e ∈ R2Nnx : e⊤Pe ≤ γ2b

a

}︄
, (6.11)

with a decay rate of a/2.
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Proof. The proof follows the same reasoning performed in [62,258]. Therefore, the proof is
omitted.

Finally, the problem addressed in this Chapter is stated as follows.
Problem 6.1

Given the LPV MAS described in (6.1), determine a condition to design both the dis-
tributed observer-based gain-scheduled consensus protocol (6.3), and the gain-scheduled
state-observer (6.4) such that the trajectories e(t, e0) of the error system (6.7) con-
verges exponentially towards the attractive region (6.11), and the practical consensus is
achieved.

6.2 Main results

This section presents the proposed LMI-based design conditions of the distributed
gain-scheduled observer-based consensus protocol (6.3).

Theorem 6.1

Consider closed-loop error dynamics (6.7) computed with the LPV MAS (6.1), the dis-
tributed gain-scheduled consensus protocol (6.3), and the gain-scheduled observer (6.4).
Given positive scalars a, b ∈ R, ϵ ∈ R, and the λm non-zero eigenvalues of the Lapla-
cian matrix L, ∀m = 2, . . . , N , if there exist symmetric positive definite matrices
P1 ∈ Rnx×nx , ˜︁P2 ∈ Rnx×nx , matrices X1 ∈ Rnx×nx , X2 ∈ Rnx×nx , ˜︂Kl ∈ Rnu×nx , and˜︁Ll ∈ Rnx×ny , such that the following inequalities hold

Φhh < 0, if h = l, (6.12)
Φhl + Φlh < 0, if h < l, (6.13)
Ψhhm < 0, if h = l, ∀ m = 2, . . . , N, (6.14)
Ψhlm + Ψlhm < 0, if h < l, ∀ m = 2, . . . , N, (6.15)

with

Φhl =
⎡⎣ −ϵHe(X1) ⋆

ϵ ˜︁Θ⊤
hl + P1 −X1 aP1 + He( ˜︁Θhl)

⎤⎦ , (6.16)

Ψhlm =

⎡⎢⎢⎢⎣
−ϵHe(X2) ⋆ ⋆

ϵ˜︁Γ⊤
hlm+ ˜︁P2−X2 a ˜︁P2 + He(˜︁Γhlm) ⋆

ϵInx Inx −bInx

⎤⎥⎥⎥⎦, (6.17)

˜︁Θhl = X1Ah + ˜︁LlCh, (6.18)˜︁Γhlm = AhX2 + λmBh
˜︂Kl, (6.19)

for all h, l ∈ N≤Nv . Then, the trajectories of the error dynamics (6.7) converge
exponentially to the attractive region X∞ defined in (6.11) with a decay rate of a/2.
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Moreover, the gains of the consensus protocol (6.3), the gains of the observer (6.4), and
the matrices of the Lyapunov function (6.9) are given, respectively, by Kl = ˜︂KlX

−1
2 ,

Ll = X−1
1
˜︁Ll, P1, and P2 = X−⊤

2
˜︁P2X

−1
2 .

Proof. Firstly by applying a separation principle argument, we have that the exponential
convergence of (6.7) to the attractive region (6.11) can be analysed considering the subsystems

ż =
Nv∑︂

h=1

Nv∑︂
l=1

(︂
αhl(ρ) ⊗ Inx

)︂(︂
IN ⊗ (Ah + LlCh)

)︂
z, (6.20)

δ̇ =
Nv∑︂

h=1

Nv∑︂
l=1

(︂
Ῡαhl(ρ) ⊗ Inx

)︂(︂
IN ⊗ Ah + L ⊗BhKl

)︂
δ + ω. (6.21)

Notice that the internal perturbation ω does not affect the state-estimation subsystem (6.20).
Moreover, considering V (z) = z⊤(IN ⊗ P1)z it is possible to compute

V̇ (z) = ż⊤(IN ⊗ P1)z + z⊤(IN ⊗ P1)ż, (6.22)

that can be written as

V̇ (z)= 2
Nv∑︂

h=1

Nv∑︂
l=1

z⊤
(︂
αhl(ρ) ⊗ Inx

)︂(︂
IN ⊗ P1 (Ah + LlCh)

)︂
z.

Replacing (6.18) in (6.16), and performing the exchange of variables X1Ll = ˜︁Ll, we have
Θhl = X1Ah + X1LlCh, and

Φhl =
⎡⎣ −ϵHe(X1) ⋆

ϵΘ⊤
hl + P1 −X1 aP1 + He(Θhl)

⎤⎦ . (6.23)

Multiplying (6.23) by [A⊤
h + C⊤

h L
⊤
l Inx ] on the left, and its transpose in the right, results in

Φhl = He (P1(Ah + LlCh)) + aP1. (6.24)

Considering the convex property of the time-varying parameters, it is possible to write (6.24) as
Nv∑︂

h=1

Nv∑︂
l=1

αhl(ρ)Φhl =
Nv∑︂

h=1
αhh(ρ)Φhh +

Nv∑︂
h=1

Nv∑︂
l>h

αhl(ρ) (Φhl + Φlh) ,

from which it is possible to conclude that the LMIs (6.12)-(6.13) are sufficient to guarantee
that V̇ (z) + aV (z) < 0, with V̇ (z) as in (6.22).

Now considering the consensus-error (6.21), and choosing V (δ) = δ⊤(IN ⊗ P2)δ, it is
possible to compute V̇ (δ) similarly to (6.22). Moreover, from the spectral decomposition of
the Laplacian matrix L, it is possible to define the exchange of coordinates ˜︁δ = (T−1 ⊗ Inx)δ.
Applying the exchange of coordinates in (6.21) and in V̇ (δ), we obtain

˜̇︁δ =
Nv∑︂

h=1

Nv∑︂
l=1

(︂˜︁αhl(ρ) ⊗ Inx

)︂(︂
IN ⊗ Ah + Λ ⊗BhKl

)︂˜︁δ + ˜︁ω, (6.25)
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where ˜︁αhl(ρ) = T−1Ῡαhl(ρ)T , ˜︁ω = (T−1 ⊗ Inx)ω, and

V̇ (˜︁δ) =2
Nv∑︂

h=1

Nv∑︂
l=1

˜︁δ⊤
(︂˜︁αhl(ρ) ⊗ Inx

)︂(︂
IN ⊗ P2Ah + Λ ⊗ P2BhKl

)︂˜︁δ + 2˜︁δ⊤(IN ⊗ P2)˜︁ω. (6.26)

Replacing (6.19) in (6.17), multiplying (6.17) on the left by diag(X−⊤
2 , X−⊤

2 , Inx) and its
transpose on the right, and performing the exchange of variables ˜︂Kl = KlX2, and P2 =
X−⊤

2
˜︁P2X

−1
2 , we have Γhlm = X−⊤

2 Ah + λmX
−⊤
2 BhKl, and

Ψhlm =

⎡⎢⎢⎢⎣
−ϵHe(X−1

2 ) ⋆ ⋆

ϵΓ⊤
hlm + P2 −X2

−⊤ aP2 + He(Γhlm) ⋆

ϵX−1
2 X−1

2 −bInx

⎤⎥⎥⎥⎦ . (6.27)

Multiplying (6.27) by

B⊤ =
⎡⎣A⊤

h + λmK
⊤
l B

⊤
h Inx 0

Inx 0 Inx

⎤⎦ ,
on the left, and B on the right results in

Ψhlm =
⎡⎣He(P2 (Ah + λmBhKl) + aP2 ⋆

P2 −bInx

⎤⎦ . (6.28)

Finally, performing a dimension adjustment and then multiplying (6.28) by ϖ⊤ = [˜︁δ⊤ ˜︁ω⊤] on
the left, and its transpose on the right, we obtain

ϖ⊤Ψhlmϖ = ˜︁δ⊤
(︂
He
(︂
IN ⊗ P2 (Ah + λmBhKl)

)︂)︂ ˜︁δ
+ ˜︁δ⊤(IN ⊗ aP2) ˜︁δ + ˜︁ω⊤ (IN ⊗ P2) ˜︁δ + ˜︁δ⊤

(︂
IN ⊗ P⊤

2

)︂ ˜︁ω − b ˜︁ω⊤˜︁ω.
Considering the convex property of the time-varying parameters, and exploring the fact that
λ1 = 0 and ˜︁δ1 = 0 in the transformed subsystem, it is possible to conclude that the LMIs
(6.14)-(6.15) are sufficient to guarantee that V̇ (˜︁δ) + aV (˜︁δ) − b ˜︁ω⊤˜︁ω < 0, with V̇ (˜︁δ) as in
(6.26).

Moreover, notice that since P1 and P2 are symmetric positive definite matrices, we
have V (z) > 0 and V (δ) > 0, for all z, δ ̸= 0. Thus, it is possible to conclude that
V (e) = V (z) + V (δ) as in (6.9) is positive definite. Furthermore, from the previously
performed steps, it is possible to conclude that if the LMIs (6.12)-(6.15) hold, the derivative
V̇ (e) = V̇ (z) + V̇ (δ) satisfies (6.10). Thus, all the conditions of Lemma 6.1 hold and the
trajectories of the error system will converge exponentially to the attractive region (6.11). This
concludes the proof.

Remark 6.4
Note that differently from [241], the observer gains of Theorem 6.1 are recovered independently
of the Lyapunov function (6.9). Therefore, in the proposed approach, the design can be
performed without imposing particular structures on the Lyapunov matrices in (6.9).
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6.3 Numerical examples

6.3.1 Example 1

In this example, a comparison of the proposed approach with the method developed
in [241] to demonstrate its advantages. First, it is illustrated that the proposed practical
consensus approach can improve the state consensus and reduce the consensus error for LPV
MAS with different time-varying parameters. Moreover, it is also shown that the observer-
based gain-scheduled approach in Theorem 6.1 achieves feasible results in cases where the
observer-based gain-scheduled method developed in [241] fails.

Consider the LPV MAS, composed of 4 agents with the following two-vertex polytopic
representation:

A1 =
⎡⎣ 0 1
−1 0

⎤⎦ , A2 = R−1
p

⎡⎣ 0 1 + p

−1 0

⎤⎦Rp, Rp =
⎡⎣cos (β̄) − sin (β̄)

sin (β̄) cos (β̄)

⎤⎦ ,
B1 =

⎡⎣1
1

⎤⎦ , B2 =
⎡⎣ 1
1 + 10p

⎤⎦ , C1 =
[︂
1 0

]︂
, C2 =

[︂
1 + 10p 0

]︂
, β̄ = arctan (p),

and communication described by the Laplacian matrix

L =

⎡⎢⎢⎢⎢⎢⎢⎣
3 −1 −1 −1

−1 1 0 0
−1 0 2 −1
−1 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎦ .

As explained in [241], with p = 0 the system is reduced to an LTI system, and for
increasing values of p > 0, the difference between the two vertices increases. Thus, the goal is
to compare the performance of the design in terms of p.

Considering p = 0.49 (the maximum value of p such that the conditions of [241] are
feasible), a = 0.9526, b = 1.6554, and ϵ = 0.001, the solution of the gain-scheduled observer
based practical consensus protocol proposed in Theorem 6.1 is given by:

L⊤
1 =

[︂
−1.1236 −0.6837

]︂
, L⊤

2 =
[︂
−0.3373 −0.2873

]︂
,

K1 =
[︂
−2.4882 −0.7343

]︂
, K2 =

[︂
−1.0936 −0.2344

]︂
.

The values of the scalar parameters a, b, and ϵ were defined by a grid search. Similarly
to the non-synchronization scenario of [241], we perform simulations starting from the initial
conditions x1(0) = [1 1]⊤, x2(0) = [1 3]⊤, x3(0) = [3 1]⊤, x4(0) = [3 3]⊤, and with different
scheduling parameters, α1(ρ1(t)) = (1+sin(2t))/2; α1(ρ2(t)) = (1+cos(0.1t))/2; α1(ρ3(t)) =
(1 + sin(0.5t))/2; α1(ρ4(t)) = (1 + cos(0.05t))/2; and α2(ρi(t)) = (1 − α1(ρi(t))),∀i ∈ V.
The simulation results are depicted in Figures 6.1-6.2.
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In Figure 6.1, it is clear that closed-loop LPV MAS achieves practical consensus, even
in the case of different scheduling parameters. Notice that the agents are maintaining the
practical consensus while converging together toward the origin. Moreover, from Figure 6.2, it
is possible to see the oscillations of the consensus error around the zero equilibrium, confirming
once again that the practical consensus is achieved. When the agents are close to the origin,
we have x̄ ≈ 0. Consequently, the internal perturbation that depends on x̄ is also w ≈ 0 even
with different scheduling parameters.

To illustrate the benefits of the proposed practical consensus, we will directly compare
the norm of the augmented error vector e(t), which comprises the estimation and consensus
errors, with the norm of error in the non-synchronization scenario obtained with the approach
proposed in [241]. From the results presented in Figure 6.3, we observe that, as expected,
the convergence error obtained with the proposed approach in ( ) is upper-bounded by
the convergence error of the approach in [241] ( ). This result clearly demonstrates the
superiority of the designed consensus protocol in dealing with the presence of different scheduling
parameters compared to the current literature. It is important to highlight that, unlike the
proposed method, the conditions of [241] were not designed to deal with this more general
case, which makes clear the contribution and importance of the result in Theorem 6.1.

Figure 6.1 – State trajectories of the closed-loop LPV MAS with the proposed practical
consensus for p = 0.49 – Example 6.3.1.



Chapter 6. A distributed observer-based approach for the practical state consensus of LPV multi-agent
systems 96

Figure 6.2 – Trajectories of the consensus error obtained with the proposed gain-scheduled
observer-based practical consensus.

Figure 6.3 – Norm of the augmented error system considering the proposed approach
( ) and the method of [241] ( ) – Example 6.3.1.

Now consider the LPV MAS with p = 1. In this case, the approach in [241] fails to
provide feasible solutions. However, selecting by grid-search: a = 1, b = 0.1, and ϵ = 0.001, it
is possible, via Theorem 6.1, to have a solution to the gain-scheduled observer-based practical
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consensus protocol, namely:

L⊤
1 =

[︂
−1.2200 −0.7220

]︂
, L⊤

2 =
[︂
−0.2873 −0.1977

]︂
,

K1 =
[︂
−5.2191 −1.0451

]︂
, K2 =

[︂
−1.4950 −0.2352

]︂
.

Similarly to [241], if the scheduling parameters are equal, we have that γ = 0, and the protocol
proposed in Theorem 6.1 can achieve the exact consensus.Therefore, it is possible to conclude
that the proposed approach also contributes to improving the completely homogeneous case,
since it proposes less conservative design conditions, that obtain feasible solutions for bigger
values of p compared to [241]. To illustrate this fact, Figures 6.4-6.5 depict the state trajectories
obtained with a simulation considering the solution for p = 1, with different parameters and
with α1(ρi(t)) = (1 + sin(2t))/2, α2(ρi(t)) = (1 − α1(ρi(t))),∀i ∈ V , respectively.

Figure 6.4 – State trajectories of the closed-loop LPV MAS for the case of p = 1 and
different parameters – Example 6.3.1.

It can be seen that practical consensus is successfully achieved as depicted in Figure
6.4, and that exact consensus occurs as depicted in Figure 6.5. Similarly to the previous case,
when different parameters are considered in the simulations, the trajectories of the agents
maintain the practical consensus while converging towards the origin. This behavior is possible
because the combination of the proposed protocol with different parameters results in stable
heterogeneous dynamics. Meanwhile, when considering the same parameter for all agents, the
closed-loop MAS is completely homogeneous and the exact consensus is achieved.
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Figure 6.5 – State trajectories of the closed-loop LPV MAS for the case of p = 1 and
equal parameters – Example 6.3.1.

6.3.2 Example 2

Consider an adaptation of the LPV MAS presented in Example 1 of [240]. The matrices
A(η̄) and B(η̄) are assumed to remain the same, but the output matrix is replaced by C(η̄).
The system is composed of a four-vertex polytopic representation given by:

A(η̄) =
⎡⎣ 0 −0.18
1.07 + 0.3η̄1 + 0.4η̄2 0

⎤⎦ , B(η̄) =
⎡⎣1
1

⎤⎦ , C(η̄) =
[︂
1 0

]︂
,

where η̄1 and η̄2 belong to the intervals 0.1 ≤ η̄1 ≤ 0.2, 0.3 ≤ η̄2 ≤ 0.4.

Moreover, consider that the system has N = 10 agents and the Laplacian matrix
encompasses the following neighborhood: N1 = {2}, N2 = {1, 3, 4}, N3 = {2, 5}, N4 = {2, 5},
N5 = {3, 4, 6}, N6 = {5, 7, 8}, N7 = {6, 9}, N8 = {6, 9}, N9 = {7, 8, 10}, N10 = {9}.

Selecting a = 1, b = 0.001 and ϵ = 0.001, the solution of Theorem 6.1 results in the
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observer-based practical consensus protocol given by:

K1 =
[︂
−3.0498 −6.5706

]︂
, K2 =

[︂
−3.0663 −6.5793

]︂
,

K3 =
[︂
−3.0625 −6.5809

]︂
, K4 =

[︂
−3.0829 −6.6023

]︂
,

L⊤
1 =

[︂
−1.2118 2.8951

]︂
, L⊤

2 =
[︂
−1.2118 2.8551

]︂
,

L⊤
3 =

[︂
−1.2118 2.8651

]︂
, L⊤

4 =
[︂
−1.2118 2.8251

]︂
.

To evaluate the effectiveness of the proposed consensus protocol, we have performed
temporal simulations with initial conditions within the range x1, x2 ∈ [−5, 5]. Similarly to
Example 1, we have considered a different trigonometric variation for the parameters η̄i

1(t) and
η̄i

2(t) within its specific bounds. The state trajectories of the closed-loop LPV MAS, equipped
with the proposed distributed observer-based consensus protocol and considering different
scheduling parameters are depicted in Figure 6.6.

Figure 6.6 – State trajectories of the closed-loop LPV MAS of Example 6.3.2.

From the simulation results presented in Figure 6.6, it is possible to conclude that the
practical consensus is successfully achieved. Furthermore, with the simulated state trajectories,
we can compute the internal perturbation ω(t) and γ, for 0 ≤ t ≤ 100. Thus, an estimate of
the attractive region (6.11) can be performed with an upper bound r =

√︃
γ2b

λ(P ) for the norm of
the augmented error system. The trajectory of the norm and the upper bound obtained r are
presented in Figure 6.7. Since an exact consensus has not been reached, the norm of the error
system does not converge to the origin. However, notice that, as expected, the norm in steady
state is constrained in the estimated attractive region.
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Figure 6.7 – Norm of the consensus error with the obtained bound for the attractive
region - Example 6.3.2.

6.4 Conclusions

This chapter has presented a novel distributed gain-scheduled observer-based approach
for the practical consensus of multi-agent systems represented by continuous-time LPV models.
It has been shown that due to mismatched scheduling parameters among the agents, the
exact state-consensus cannot be achieved with a classical distributed consensus protocol. To
cope with the resultant internal perturbations, the proposed method ensures an alternative
solution where the trajectories of the consensus error exponentially converge to a bounded
region around the origin. Furthermore, the effectiveness of proposed protocol was illustrated
through numerical methods compared with existent gain-scheduled observer-based approaches.
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7 A DISTRIBUTED OBSERVER-BASED APPROACH FOR THE LEADER-
FOLLOWING FORMATION CONSENSUS OF DISCRETE-TIME LPV MULTI-
AGENT SYSTEMS

This chapter addresses the leader-following formation consensus problem for multi-agent
systems (MASs) represented by discrete-time linear parameter-varying (LPV) models. The
scenario in which each agent can be modeled with different time-varying scheduling parameters
is investigated with the design of compensation signals. Using Lyapunov stability arguments,
sufficient conditions are derived for designing a distributed gain-scheduled observer-based
consensus protocol that ensures formation tracking. Furthermore, the scenario where the
effects of the desired formation and mismatches on the scheduling-parameters are considered as
internal perturbations is also investigated. Under this assumption, we propose sufficient design
conditions to ensure that the combined estimation and tracking error dynamics is ℓ∞-norm
bounded. The effectiveness of the proposed leader-following framework is illustrated through
numerical examples.

The remainder of this chapter is organized as follows. The problem formulation is
presented in §7.1. The proposed design conditions are defined in §7.2. Two numerical examples
are presented in §7.3 to illustrate the application of the proposed methodology. Conclusions
are drawn in §7.4.

7.1 Problem formulation

Consider an MAS comprising a leader and N followers represented by discrete-time
LPV systems. The dynamics of the followers are given by

xi(k + 1) = A(ρi(k))xi(k) +B(ρi(k))ui(k),

yi(k) = C(ρi(k))xi(k),
(7.1)

where xi(k) ∈ Rnx is the state vector, ui(k) ∈ Rnu is the control input, yi(k) ∈ Rny is the
output, and ρi(k) ∈ Rp is the vector of time-varying scheduling parameters, which are functions
of measured exogenous signals. Meanwhile, the leader system is described as

s(k + 1) = A(ρs(k))s(k), (7.2)

where s(k) ∈ Rnx is the state vector and ρs(k) ∈ Rp is the vector of time-varying scheduling
parameters of the leader.

The parameter-dependent matrices of the followers A(ρi(k)) ∈ Rnx×nx , B(ρi(k)) ∈
Rnx×nu , and C(ρi(k)) ∈ Rny×nx , the parameter-dependent matrix of the leader A(ρs(k)), and
all the parameter-dependent matrices to be designed in this thesis belong to a polytopic domain
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and can be generically written as functions of the scheduling parameters as follows:

A(ρi(k)) =
Nv∑︂

h=1
αh(ρi(k))Ah, A(ρs(k)) =

Nv∑︂
h=1

αh(ρi(k))Ah,

C(ρi(k)) =
Nv∑︂

h=1
αh(ρi(k))Ch, B(ρi(k)) =

Nv∑︂
h=1

αh(ρi(k))Bh,

where Nv is the number of vertices of the polytopic domain and αh(ρi(k)) satisfy the convex
sum property:

Nv∑︂
h=1

αh(ρi(k)) = 1, and αh(ρi(k)) ≥ 0, ∀i ∈ N≤N .

Notice that similarly to Chapter 6, the parameter-dependent matrices of the agents
are homogeneous with respect to the vertices of the polytopic domain. However, they
have independent time-varying scheduling parameters, which induces heterogeneity in global
dynamics. Moreover, the leader-dynamics A(ρs(k)) also share the same vertices of the followers’
representation.

The main goal of this chapter is to design distributed observer-based consensus laws
ui(k), ∀i ∈ N≤N , such that the followers described in (7.1) track the trajectory generated by
the leader-dynamics (7.2) according to a desired formation, as established in Definition 7.1.

Definition 7.1: Adapted from [259, 260]

The MAS (7.1)-(7.2) achieves leader-following formation consensus if

lim
k→∞

||xi(k) − s(k) − fi|| = 0, ∀i ∈ N≤N , (7.3)

for any initial condition xi(0), where fi denotes the desired constant formation vector of
agent i with respect to the leader trajectory.

To ensure that the MAS achieves the leader-following formation consensus (7.3), the
proposed gain-scheduled observer-based distributed consensus law is:

ui(k)= K(ρi(k))
⎛⎝ ∑︂

j∈Ni

[︂
x̄i(k) − x̄j(k)

]︂
+ηi (x̄i(k) − s(k))

⎞⎠+ νi(k) + ri(k), (7.4)

νi(k) = M(ρi(k))fi (7.5)
ri(k) = ηiR(ρi(k))s(k), (7.6)

where K(ρi(k)) ∈ Rnu×nx , M(ρi(k)) ∈ Rnu×nx , and R(ρi(k)) ∈ Rnu×nx , are the gain-
scheduled functions to be designed, x̄i(k) = x̂i(k) − fi, x̂i ∈ Rnx is the estimated state of the
local agent, and ηi are the pinning that indicate whether the i-th follower has access to the
leader dynamics (ηi = 1) or not (ηi = 0).

For each agent, the local estimated state is given by

x̂i(k + 1) = A(ρi(k))x̂i(k) +B(ρi(k))ui(k) + L(ρi(k))
(︃
C(ρi(k))x̂i(k) − yi(k)

)︃
, (7.7)
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where L(ρi(k)) ∈ Rnx×ny is the gain-scheduled observer gain to be designed.

The gain-scheduled functions associated with the proposed distributed consensus pro-
tocol and the local observers belong to the same polytopic domain and can be expressed
as:

K(ρi(t)) =
Nv∑︂
l=1

αl(ρi(t))Kl, L(ρi(t)) =
Nv∑︂
l=1

αl(ρi(t))Ll,

M(ρi(t)) =
Nv∑︂
l=1

αl(ρi(t))Ml, R(ρi(t)) =
Nv∑︂
l=1

αl(ρi(t))Rl,

where Kl, Ll, Ml and Rl are the vertices to be designed.

Remark 7.1
The proposed observer-based gain-scheduled distributed consensus law (7.4) can be partitioned
into three components. The term K(ρi(k))

(︂∑︁
j∈Ni

[︂
x̄i(k) − x̄j(k)

]︂
+ ηi (x̄i(k) − s(k))

)︂
,

concerns the distributed relative information with respect to the neighboring agents and the
leader. Notice that if fi = 0,∀i ∈ N≤N , this term is reduced to a leader-following consensus
protocol. The components νi(k) and ri(k) are compensation signals introduced to deal with
the desired formation fi, and the mismatch between the scheduling parameters of the agents
and the leader, respectively. Similar compensation signals can be found in the literature on
formation tracking for MASs [260–263].

The proposed design conditions will be developed considering a global error composed
of local estimation and consensus-tracking errors. From the discrete-time LPV model of the
agents (7.1), and the defined local observer structure (7.7), it is possible to write the dynamics
of the local estimation errors zi(k) = xi(k) − x̂i(k) as

zi(k + 1) = A(ρi(k)) (xi(k) − x̂i(k)) − L(ρi(k))
(︃
C(ρi(k))x̂i(k) − yi(k)

)︃
zi(k + 1) = (A(ρi(k)) + L(ρi(k))C(ρi(k))) zi(k).

(7.8)

Let αhl(ρk)=diag(αh(ρ1(k))αl(ρ1(k)), . . . , αh(ρN (k))αl(ρN (k)), ρ(k)=(ρ1(k), . . . , ρN(k)), and
z(k)=(z1(k), . . . , zN(k)), we have that

z(k + 1) =
Nv∑︂

h=1

Nv∑︂
l=1

(αhl(ρk) ⊗ Inx)(IN ⊗ (Ah + LlCh)). (7.9)

Meanwhile, by setting δi(k) = xi(k)−s(k)−fi as the local leader-following consensus tracking
error, it is possible to compute

δi(k + 1) = A(ρi(k))xi(k) +B(ρi(k))ui(k) − A(ρs(k))s(k) − fi.

By the definitions of local estimation and consensus-tracking error, we have x̂i(k) = xi(k) −
zi(k), and xi(k) = δi(k) + s(k) + fi, resulting in x̂i(k) = δi(k) + s(k) + fi − zi(k). Replacing
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x̂i(k) in the consensus law (7.4), we obtain

ui(k)=K(ρi(k))
⎛⎝ ∑︂

j∈Ni

[︃
(δi(k) − zi(k)) − (δj(k) − zj(k))

]︃
+ ηi (δi(k) − zi(k))

⎞⎠
+ νi(k) + ri(k), ∀i ∈ N≤N ,

allowing us to write the dynamics of the local consensus tracking error as

δi(k + 1) = A(ρi(k))δi(k) +
(︂
A(ρi(k)) − I +B(ρi(k))M(ρi(k))

)︂
fi

+
(︂
A(ρi(k)) − A(ρs(k)) + ηiB(ρi(k))R(ρi(k))

)︂
s(k)

+ ηiB(ρi(k))K(ρi(k)) (δi(k) − zi(k))

+B(ρi(k))K(ρi(k))
⎛⎝ ∑︂

j∈Ni

[︃
(δi(k) − zi(k)) − (δj(k) − zj(k))

]︃⎞⎠ .
Let αhlq(ρ̄k) = diag(αh(ρ1(k))αl(ρ1(k))αq(ρs(k)), . . . , αh(ρN(k))αl(ρN)(k)αq(ρs(k))), f =
(f1, . . . , fN), η = diag(η1, . . . , ηN), s̄(k) = (1 ⊗ s(k)), and δ(k) = (δ1(k), . . . , δN(k)). Then,
similarly to the estimation error, it is possible to write

δ(k + 1) =
Nv∑︂

h=1

Nv∑︂
l=1

(αhl(ρk) ⊗ Inx)
{︂
(IN ⊗ Ah + L̄ ⊗BhKl)δ(k)

− (L̄ ⊗BhKl)z(k) + (IN ⊗ (Ah +BhMl − Inx)) f
}︂

+
Nv∑︂

h=1

Nv∑︂
l=1

Nv∑︂
q=1

(αhlq(ρ̄k) ⊗ Inx)(IN ⊗ (Ah − Aq) − η ⊗BhRl)s̄(k).

(7.10)

Finally, defining the augmented error system e(k) = (z(k), δ(k)), we have

e(k + 1) = Ā(ρk)e(k) + B̄ww(k), (7.11)

where w(k) = wf (k) + ws(k), and

Ā(ρk)=
Nv∑︂

h=1

Nv∑︂
l=1

⎡⎣αhl(ρk) ⊗ (Ah + LlCh) 0
−αhl(ρk)L̄ ⊗BhKl αhl(ρk) ⊗ Ah + αhl(ρk)L̄ ⊗BhKl

⎤⎦ ,
wf (k) =

Nv∑︂
h=1

Nv∑︂
l=1

(αhl(ρk) ⊗ (Ah +BhMl − Inx)) f, B̄w =
⎡⎣0
1

⎤⎦ ,
ws(k) =

Nv∑︂
h=1

Nv∑︂
l=1

Nv∑︂
q=1

((αhlq(ρ̄k) ⊗ Inx)(IN ⊗ (Ah − Aq) − η ⊗BhRl)) s̄(k).

With the error system (7.11), it is possible to conclude that the leader-following
formation consensus (7.3) can be achieved only if w(k) = 0. The term w(k) can be seen
as an internal perturbation that arises in the closed-loop error system due to the desired
formation (wf (k)), and heterogeneity among the scheduling parameters of the agents and the
leader (ws(k)). The compensation signals (7.5)-(7.6) introduced in the consensus law (7.4)
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are designed to compensate the signal w(k) such that the augmented error system (7.11) is
reduced to e(k + 1) = Ā(ρk)e(k), which allows the design of the control and the observer
gains, K(ρi(k)) and L(ρi(k)), by employing a separation principle argument.

Remark 7.2
As discussed in [260], without the compensation signal (7.5), the leader-following formation
consensus (7.3) is achieved only for specific formations fi that satisfy

(︂
A(ρi(k)) − I

)︂
fi = 0.

Therefore, the compensation signal (7.5) is essential to extend the range of feasible formations.
Another outstanding contribution of this Chapter is to deal with heterogeneity among the
scheduling parameters of the agents and the leader by means of the additional compensation
signal (7.6). Similarly, if (7.6) is not introduced in the consensus law, the leader-following
formation consensus (7.3) can be achieved by forcing that all scheduling parameters are
equal, that is, ρ1(k) = ρ2(k) = . . . = ρN(k) = ρs(k), once it results in A(ρi(k)) = A(ρs(k),
∀ i ∈ N≤N . Thus, (7.6) allows for exact leader-following formation in a more general scenario.

The design of the compensation signal (7.5) requires only local information. However,
to cope with the heterogeneity among the scheduling parameters, the design of (7.6) requires
access to the states and scheduling parameters of the leader, as defined in the next Assumption.

Assumption 7.1

The leader states s(k), and scheduling parameters ρs(k) are available for all agents of
the MASs (6.1), that is, ηi = 1, ∀ i ∈ N≤N .

Based on the previous discussion, the first problem addressed in this Chapter can be
stated as follows.

Problem 7.1

Given the LPV MAS described in (7.1), assuming that Assumption 7.1 holds, design
the distributed observer-based consensus law (7.4), and the observer (7.7), such that
the origin of the error system (7.11) is exponentially stable and the leader-following
formation consensus (7.3) is achieved.

In this Chapter, the case where Assumption 7.1 does not hold and the compensation
signals cannot be designed is also investigated. In this scenario, it is required that at least
one follower agent can obtain the information from the leader. Moreover, we have that if
M(ρi(k)) = 0nu×nnx

and R(ρi(k)) = 0nu×nnx
, the internal perturbations of the augmented
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error system (7.11) can be rewritten as

wf (k) =
Nv∑︂

h=1

Nv∑︂
l=1

(αhl(ρk) ⊗ (Ah − Inx)) f, (7.12)

ws(k) =
Nv∑︂

h=1

Nv∑︂
l=1

Nv∑︂
q=1

(αhlq(ρ̄k) ⊗ (Ah − Aq)) s̄(k). (7.13)

For the sequence of vectors {wf (k)}k∈Z+ , and {ws(k)}k∈Z+ , define ||wf ||ℓ∞=supk≥0||wf (k)||,
and ||ws||ℓ∞ = supk≥0||ws(k)||. Consequently, considering that the leader dynamics is not
unstable and the desired formations are finite, we have that

||w||ℓ∞ ≤ ||wf ||ℓ∞ + ||ws||ℓ∞ < ∞

Due to the effects of these internal perturbations, the leader-following consensus (7.3) cannot
be achieved. Therefore, the second problem addressed in this paper is to ensure that in the
absence of compensation signals, the error system (7.11) is bounded, as described in the
following problem.

Problem 7.2

Given the LPV MAS described in (7.1), if Assumption 7.1 does not hold, design a
distributed observer-based consensus law in the form

ui(k)=K(ρi(k))
⎛⎝∑︂

j∈Ni

x̄i(k) − x̄j(k) + ηi (x̄i(k) − s(k))
⎞⎠ , (7.14)

such that the augmented error system (7.11), with the internal perturbations given
by (7.12) and (7.13), is bounded for any initial condition e(0), and any sequence
{w(k)}k∈Z+ ∈ ℓ∞. That is, there exists an upper bound φ(e(0), ||w||ℓ∞) such that

||e(k)|| ≤ φ(e(0), ||w||ℓ∞), ∀k ≥ 0,

and
lim

k→∞
sup ||e(k)|| < γ||w||ℓ∞ , (7.15)

where γ > 0 corresponds to the ℓ∞ performance level.

Remark 7.3
Note that Problem 7.1 considers the case where both compensation signals (7.5) and (7.6)
can be properly designed. In contrast, Problem 7.2 considers the case where neither of them
can be designed. The situations where only (7.5) or only (7.6) is designed are special cases
of Problem 7.2, corresponding to w(k) = ws(k) and w(k) = wf (k), respectively.
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7.2 Main Results

This section presents the main results. First, the conditions to ensure the exponential
and ℓ∞ stability of the augmented error system are defined based on the Lyapunov Theory.
Then, assuming that the compensation signals are properly designed, sufficient conditions are
provided for the design of the compensated consensus law able to ensure the leader-following
consensus (7.3). Finally, sufficient conditions are presented for the design of the uncompensated
consensus law that provides the bounding guarantees for the ℓ∞ gain (7.15).

7.2.1 Exponential and ℓ∞ stability analysis conditions

The proposed approach is based on the Lyapunov theory presented in the following
analysis condition.

Lemma 7.1

If there exist positive scalars γ, σ ∈ (0, 1), and symmetric positive definite matrices
P1 ∈ Rnx×nx and P2 ∈ Rnx×nx , such that the Lyapunov function

V (e(k)) = e(k)⊤P e(k), P = diag((IN ⊗ P1), (IN ⊗ P2)), (7.16)

satisfies
∆V k + σ

(︂
V (e(k)) − γw(k)⊤ w(k)

)︂
< 0, (7.17)

⎡⎣P ⋆

I γI

⎤⎦ > 0, (7.18)

where ∆V k = V (e(k + 1)) − V (e(k)), then the augmented error system (7.11), with
the rewritten internal perturbations given by (7.12) and (7.13) is bounded by

||e(k)|| <
√︂
γ(1 − σ)kV (e(0)) + γ2||w||2ℓ∞ , (7.19)

and ℓ∞-stable with performance level γ. Moreover, if w(k) = 0 ∀k ≥ 0, the augmented
error system (7.11) is exponentially stable with respect to the origin, and the leader-
following formation consensus (7.3) is achieved.

Proof. The proof follows the same reasoning as in [264]. First, notice that condition (7.17)
can be written as

V (e(k + 1)) < (1 − σ)V (e(k)) + σγw(k)⊤ w(k)),
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which recursively implies that

V (e(k)) < (1 − σ)kV (e(0)) + σγ
k−1∑︂
i=0

(1 − σ)i||w(k − 1 − i)||2, ∀k ≥ 1,

< (1 − σ)kV (e(0)) + γ||w||2ℓ∞ , (7.20)

once σ ∈ (0, 1). By applying the Schur complement in (7.18) we have

P > γ−1I,

which is equivalent to
γe(k)⊤Pe(k) > e(k)⊤e(k). (7.21)

By combining (7.20) and (7.21), it is possible to conclude that

||e(k)||2 < γV (e(k)) < γ(1 − σ)kV (e(0)) + γ2||w||2ℓ∞ , ∀k ≥ 1,

resulting in the bound defined in (7.19). Moreover, notice that if w(k) = 0, the condition
(7.20) is reduced to V (e(k)) < (1 − σ)kV (e(0)), guaranteeing that the origin of the error
system is exponentially stable. This concludes the proof.

7.2.2 Compensated-consensus design conditions

In the sequel, the design conditions proposed to solve Problem 7.1 are presented.
Theorem 7.1

On the basis that Assumption 7.1 holds, consider: the augmented error dynamics (7.11)
obtained with discrete-time LPV MAS (7.1), the gain-scheduling consensus protocol
(7.4), and the observer (7.7). Given positive scalars σ ∈ (0, 1), ϵ ∈ R+, and the
eigenvalues λ̄m of L̄, ∀ m = 1, . . . , N , if there exist symmetric positive definite matrices
P1 ∈ Rnx×nx , ˜︁P2 ∈ Rnx×nx , matrices X1 ∈ Rnx×nx , X2 ∈ Rnx×nx , ˜︂Kl ∈ Rnu×nx , and˜︁Ll ∈ Rnx×ny , such that the following inequalities hold

Ψhh < 0, if h = l, (7.22)
Ψhl + Ψlh < 0, if h < l, (7.23)
Φhhm < 0, if h = l, ∀ m = 1, . . . , N, (7.24)
Φhlm + Φlhm < 0, if h < l, ∀ m = 1, . . . , N, (7.25)
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with

Ψhl =
⎡⎣P1 − ϵHe(X1) ⋆

ϵ ˜︁Θ⊤
hl (σ − 1)P1

⎤⎦ , (7.26)

Φhlm =
⎡⎣ ˜︁P2 − ϵHe(X2) ⋆

ϵ ˜︁Γ⊤
hlm (σ − 1) ˜︁P2

⎤⎦ , (7.27)

˜︁Θhl = X1Ah + ˜︁LlCh, (7.28)˜︁Γhlm = AhX2 + λ̄mBh
˜︂Kl, (7.29)

for all h, l ∈ N≤Nv , and if there exist compensation gains M(ρi(k)) and R(ρi(k)), such
that the following conditions(︂

A(ρi(k)) − I +B(ρi(k))M(ρi(k))
)︂
fi = 0, (7.30)(︂

A(ρi(k)) − A(ρs(k)) +B(ρi(k))R(ρi(k))
)︂
s(k) = 0, (7.31)

hold for all i ∈ N≤N . Then {w(k) = 0}k∈Z+ , the error dynamics (7.11) is exponentially
stable and the gains of the observer (7.7), the matrices of the Lyapunov function (7.16),
and the remaining gains of the consensus protocol are given, respectively, by Ll = X−1

1
˜︁Ll,

P2 = X−⊤
2

˜︁P2X
−1
2 , P1, and Kl = ˜︂KlX

−1
2 .

Proof. First, notice that matrices P1 and ˜︁P2 are symmetric and positive definite. Therefore,
the Lyapunov function (7.16) is also positive definite. Moreover, considering that the conditions
(7.30)-(7.31) hold we have that {w(k) = 0}k∈Z+ , and by employing the separation principle
argument, the exponential stability of the augmented error system (7.11) can be evaluated
considering the following subsystems

z(k + 1) =
Nv∑︂

h=1

Nv∑︂
l=1

(αhl(ρk) ⊗ (Ah + LlCh)) z(k),

δ(k + 1) =
Nv∑︂

h=1

Nv∑︂
l=1

(︂
(αhl(ρk) ⊗ Inx)(IN ⊗ Ah + L̄ ⊗BhKl)

)︂
δ(k).

Defining V (z(k)) = z(k)⊤(IN ⊗P1)z(k), the condition V (z(k + 1)) + (σ − 1) V (z(k)) < 0,
is equivalent to

z(k + 1)⊤(IN ⊗ P1)z(k + 1) + (σ − 1)z(k)⊤(IN ⊗ P1)z(k) < 0.

Replacing (7.28) in (7.26), and performing the change of variables ˜︁Ll = X1 Ll, results
in ⎡⎣P1 − ϵHe(X1) ϵ(X1Ah +X1LlCh)

⋆ (σ − 1)P1

⎤⎦ . (7.32)

Multiplying (7.32) by [A⊤
h + C⊤

h L
⊤
l Inx ], on the left and its transpose in the right, we obtain

Ψhl = (Ah + LlCh)⊤P1 (Ah + LlCh) + (σ − 1)P1,
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from which it is possible to conclude that due to the convex properties of time-varying parameters,
the LMIs (7.22)-(7.23) are sufficient to guarantee V (z(k + 1)) + (σ − 1) V (z(k)) < 0.
Furthermore, by defining

V (δ(k)) = δ(k)⊤(IN ⊗ P2)δ(k), (7.33)

considering the spectral decomposition L̄ = T̄ Λ̄ T̄−1, and the exchange of coordinates˜︁δ(k) = (T̄−1 ⊗ Inx)δ(k), ˜︁αhl(ρk) = T̄−1αhl(ρk)T̄ , it is possible to write the condition
V (δ(k + 1)) + (σ − 1)V (δ(k)) < 0 as

˜︁δ(k + 1)⊤(IN ⊗ P2)˜︁δ(k + 1) + (σ − 1)˜︁δ(k)⊤(IN ⊗ P2)˜︁δ(k) < 0,

with ˜︁δ(k + 1) =
Nv∑︂

h=1

Nv∑︂
l=1

(︂
(˜︁αhl(ρk) ⊗ Inx)(IN ⊗ Ah + Λ̄ ⊗BhKl)

)︂ ˜︁δ(k).

Multiplying (7.27) by diag(X−⊤
2 , X−⊤

2 ) on the left and its transpose on the right, replacing
(7.29), and performing the exchange of variables ˜︂Kl = KlX2, and P2 = X−⊤

2
˜︁P2X

−1
2 results

in ⎡⎣P2 − ϵHe(X−⊤
2 ) ϵ(X−⊤

2 Ah + λ̄mX
−⊤
2 BhKl)

⋆ (σ − 1)P2

⎤⎦ . (7.34)

Multiplying (7.34) by [A⊤
h + λ̄mK

⊤
l B

⊤
h Inx ] on the left and its transpose in the right, it results

in
Φhlm = (Ah + λ̄mBhKl)⊤P2 (Ah + λ̄mBhKl) + (σ − 1)P2,

from which it is possible to conclude that due to the convex properties of time-varying parameters,
the LMIs (7.24)-(7.25) are sufficient to guarantee that V (δ(k + 1)) + (σ − 1) V (δ(k)) < 0.

Combining the previous steps, it is possible to see that the LMIs (7.22)-(7.25) are
sufficient to guarantee

V (e(k + 1)) + (σ − 1) V (e(k)) < 0,

with a Lyapunov function V (e(k)) = V (δ(k)) + V (z(k)), as defined in (7.16). Thus, if
all the conditions of Theorem 7.1 hold, the trajectories of the error system (7.11) converge
exponentially to the origin. This concludes the proof.

Assuming that the compensation signals are properly designed, the presented Theorem
7.1 provides sufficient conditions to guarantee the exponential stability of the origin of the
error system (7.11). If the input matrices B(ρi(k)) are invertible, the suitable design of the
compensation gains can be directly performed by considering

M(ρi(k)) = B(ρi(k))−1
(︂
Inx − A(ρi(k))

)︂
,

R(ρi(k)) = B(ρi(k))−1
(︂
A(ρs(k)) − A(ρi(k))

)︂
.
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Moreover, if the matrices B(ρi(k)) are not invertible the Moore-Penrose pseudo-inverse
B(ρi(k))† may be applied for the computation of M(ρi(k)), and R(ρi(k)). In this case, the
conditions (7.30) and (7.31) will be satisfied if

fi ∈ ker
(︂
A(ρi(k)) − I +B(ρi(k))M(ρi(k))

)︂
, ∀ i ∈ V ,

s(k) ∈ ker
(︂
A(ρi(k)) − A(ρs(k)) +B(ρi(k))R(ρi(k))

)︂
, ∀ i ∈ V .

Note that, if the compensation gains M(ρi(k)) can be designed independently of the formations
fi, it is possible to extend the range of feasible desired formations, as discussed in Remark 7.2
and in [260].

7.2.3 Bounded-consensus design conditions

In the previous approach, if the design of the compensation gains is not possible, the
leader-following consensus (7.3) cannot be achieved. Although suitable formations can be
defined to ensure (A(ρi(k) − I)fi = 0, ∀i ∈ N≤N , the difference among the scheduling
parameters will prevent the exact consensus. In this case, the goal is to design the consensus
law (7.14), which guarantees that the error system (7.11) is bounded. To solve Problem 7.2,
we present the design conditions in Theorem 7.2.

Theorem 7.2

Consider the augmented error dynamics (7.11) obtained with discrete-time LPV MAS
(7.1), the gain-scheduling consensus protocol (7.14), the observer (7.7), and the rewritten
internal perturbations (7.12)-(7.13). Given positive scalars σ ∈ (0, 1), ϵ ∈ R+, and the
eigenvalues λ̄m of L̄, ∀ m = 1, . . . , N , if there exist symmetric positive definite matrices
P1 ∈ Rnx×nx , ˜︁P2 ∈ Rnx×nx , matrices X1 ∈ Rnx×nx , X2 ∈ Rnx×nx , ˜︂Kl ∈ Rnu×nx , and˜︁Ll ∈ Rnx×ny , and a positive scalar γ ∈ R+, such that inequalities (7.22)-(7.23) hold
together with

Υhhm < 0, if h = l, ∀ m = 1, . . . , N, (7.35)
Υhlm + Υlhm < 0, if h < l, ∀ m = 1, . . . , N, (7.36)⎡⎣ ˜︁P ⋆

X̄2 γI

⎤⎦ < 0, (7.37)

for all h, l ∈ N≤Nv , where ˜︁P = diag(P1, ˜︁P2), X̄2 = diag(Inx , X2),

Υhlm =

⎡⎢⎢⎢⎣
˜︁P2 − ϵHe(X2) ⋆ ⋆

ϵ ˜︁Γ⊤
hlm (σ − 1) ˜︁P2 ⋆

ϵI 0 −σγI

⎤⎥⎥⎥⎦ , (7.38)

and ˜︁Γhlm as in (7.29). Then, the error dynamics (7.11) is ℓ∞ stable with performance
index γ. The gains of the observer (7.7), the matrices of the Lyapunov function (7.16),
and the gains of the consensus protocol (7.14) are given, respectively, by Ll = X−1

1
˜︁Ll,

P2 = X−⊤
2

˜︁P2X
−1
2 , P1, Kl = ˜︂KlX

−1
2 .
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Proof. Firstly, from the error system (7.11) with the rewritten internal perturbations (7.12)-
(7.13), it is possible to see that the internal perturbations do not affect the state-estimation.
Therefore, the separation principle can be once again employed, and the ℓ∞ stability of the
augmented error system (7.11) can be evaluated considering the following subsystems

z(k + 1) =
Nv∑︂

h=1

Nv∑︂
l=1

αhl(ρk) ⊗ (Ah + LlCh)z(k), (7.39)

δ(k + 1) =
Nv∑︂

h=1

Nv∑︂
l=1

(αhl(ρk) ⊗ Inx)(IN ⊗ Ah + L̄ ⊗BhKl)δ(k) + w(k). (7.40)

Recall that it was already shown in the previous proof, that if the inequalities (7.22)-
(7.23) hold, the trajectories of the estimation error subsystem (7.39) converges exponentially
to the origin. Therefore, we only need to prove that subsystem (7.40) is ℓ∞ stable.

The remainder of the proof follows the same steps performed in the proof of Theorem
7.1. Notice that considering (7.40), the condition

V (δ(k + 1)) + (σ − 1)V (δ(k)) − σγ w(k)⊤w(k) < 0,

can be equivalently written as

˜︁δ(k+1)⊤(IN ⊗P2)˜︁δ(k+1)+(σ−1)˜︁δ(k)⊤(IN ⊗P2) ˜︁δ(k)− ˜︁w(k)⊤(IN ⊗σγInx) ˜︁w(k) < 0,
(7.41)

with V (δ(k)) as in (7.33), and ˜︁w(k) = (T̄−1 ⊗ Inx)w(k).

Replacing (7.29) in (7.38), multiplying (7.38) on the left by diag(X−⊤
2 , X−⊤

2 , Inx)
and its transpose on the right, and performing the exchange of variables ˜︂Kl = KlX2, and
P2 = X−⊤

2
˜︁P2X

−1
2 , results in⎡⎢⎢⎢⎣
P2 − ϵHe(X−⊤

2 ) ϵ(X−⊤
2 Ah + λ̄mX

−⊤
2 BhKl) ϵX−⊤

2

⋆ (σ − 1)P2 0nx×nx

⋆ ⋆ −σγInx

⎤⎥⎥⎥⎦ . (7.42)

Multiplying, (7.42) by

B⊤ =
⎡⎣A⊤

h + λ̄mK
⊤
l B

⊤
h Inx 0nx×nx

Inx 0nx×nx Inx

⎤⎦ ,
on the left, and its transpose on the right, we obtain⎡⎣(A⊤

h + λ̄mK
⊤
l B

⊤
h )P2(Ah + λ̄mBhKl) + (σ − 1)P2 ⋆

P2(Ah + λ̄mBhKl) P2 − σγInx

⎤⎦ . (7.43)

Moreover, performing a dimension adjustment, and then multiplying (7.43) by [˜︁δ(k)⊤ ˜︁w(k)⊤]
on the left, and its transpose on the right, results in
˜︁δ(k)⊤

(︂
IN ⊗ (A⊤

h + λ̄mK
⊤
l B

⊤
h )P2(Ah + λ̄mBhKl)

)︂˜︁δ(k) + ˜︁w(k)⊤
(︂
IN ⊗ (P2 − σγInx)

)︂ ˜︁w(k)

+ ˜︁δ(k)⊤
(︂
(σ − 1)(IN ⊗ P2)

)︂˜︁δ(k) + He
(︂˜︁δ(k)⊤(IN ⊗ P2(Ah + λ̄mBhKl)) ˜︁w(k)

)︂
,
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from which it is possible to conclude that due to the convex properties of time-varying
parameters, the LMIs (7.35)-(7.36) are sufficient to guarantee (7.41). Therefore, we have that
the LMIs (7.22)-(7.25) and (7.35)-(7.36) are sufficient to guarantee (7.17) with a Lyapunov
function as defined in (7.16).

Finally, multiplying (7.37) by diag(Inx , X
−⊤
2 , Inx , Inx) on the left, and its transpose on

the right, and performing the exchange of variables P2 = X−⊤
2

˜︁P2X
−1
2 , it is possible to see

that (7.37) is equivalent to (7.18). Thus, all the conditions of Lemma 7.1 are satisfied. This
concludes the proof.

Remark 7.4
As discussed in [264], the upper bound of the error norm in (7.19) can be reduced with
minimization of γ.

7.3 Numerical Examples

In this section, the main results of this Chapter are illustrated by two numerical examples.
The first example is a numerical system, while the second is the model of an angular positioning
MAS. The proposed consensus protocol is discussed, highlighting its advantages and limitations.

7.3.1 Example 1

Consider the LPV MAS, adapted from [241], composed of N = 4 agents with commu-
nication topology described by

L =

⎡⎢⎢⎢⎢⎢⎢⎣
3 −1 −1 −1

−1 1 0 0
−1 0 2 −1
−1 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎦ , η =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Initially we take ηi = 1, ∀ i ∈ N≤4, as defined in Assumption 7.1. The vertices of the
continuous-time system are

Ā1 =
⎡⎣ 0 1
−1 0

⎤⎦ , Ā2 = R−1
p

⎡⎣ 0 1 + p

−1 0

⎤⎦Rp, Rp =
⎡⎣cos (β) − sin (β)

sin (β) cos (β)

⎤⎦ , β = arctan (p),

B̄1 =
⎡⎣1 0
0 1

⎤⎦ , B̄2 =
⎡⎣1 0
0 1 + 10p

⎤⎦ , C1 =
[︂
1 0

]︂
, C2 =

[︂
1 + 10p 0

]︂
, p = 0.5.

By employing the Euler discretization with Ts = 0.01s, we have

A1 = I + TsĀ1 =
⎡⎣ 1.000 0.010
−0.010 1.000

⎤⎦ , A2 = I + TsĀ2 =
⎡⎣ 1.002 0.014
−0.011 0.998

⎤⎦ ,
B1 = TsB̄1 =

⎡⎣0.01 0
0 0.01

⎤⎦ , B2 = TsB̄2 =
⎡⎣0.01 0

0 0.06

⎤⎦ , C1 =
[︂
1 0

]︂
, C2 =

[︂
6 0

]︂
.



Chapter 7. A Distributed Observer-based Approach for the Leader-following Formation Consensus of
Discrete-time LPV Multi-agent Systems 114

To ensure that conditions (7.30)-(7.31) hold, we define

M(ρi(k)) = B(ρi(k))−1(Inx − A(ρi(k)), R(ρi(k)) = B(ρi(k))−1(A(ρs(k) − A(ρi(k)),

as the gains of the compensation signals. Then, the design of the observer-based consensus
protocol can be carried out by invoking Theorem 7.1. By considering ϵ = 1 and σ = 0.01, we
obtain the following gains

K1 =
⎡⎣−27.8777 −0.2284

0.1051 −10.4342

⎤⎦ , K2 =
⎡⎣−27.9406 −0.4216

0.0494 −4.5015

⎤⎦ ,
L1 =

⎡⎣−0.3941
−0.3084

⎤⎦ , L2 =
⎡⎣−0.1582
−0.1234

⎤⎦ ,
and Lyapunov matrices

P1 =
⎡⎣ 1.2098 −0.3890
−0.3890 0.4823

⎤⎦ , P2 =
⎡⎣ 1.3220 −0.0047
−0.0047 1.3213

⎤⎦ .
To validate the designed consensus protocol, we perform a simulation of the with initial
conditions

x1(0) =
⎡⎣ 3
10

⎤⎦ , x2(0) =
⎡⎣−7
−3

⎤⎦ , x3(0) =
⎡⎣10

1

⎤⎦ , x4(0) =
⎡⎣−5
−8

⎤⎦ ,
x̂1(0) =

⎡⎣0
0

⎤⎦ , x̂2(0) =
⎡⎣0
0

⎤⎦ , x̂3(0) =
⎡⎣0
0

⎤⎦ , x̂4(0) =
⎡⎣0
0

⎤⎦ , s(0) =
⎡⎣3
3

⎤⎦ ,
exogenous time-varying scheduling parameters,

α1(ρ1(k)) = 1 + sin(2t(k))
2 α2(ρ1(k)) = 1 − α1(ρ1(k)),

α1(ρ2(k)) = 1 + cos(t(k))
2 α2(ρ2(k)) = 1 − α1(ρ2(k)),

α1(ρ3(k)) = 1 + sin(0.05t(k))
2 α2(ρ3(k)) = 1 − α1(ρ3(k)),

α1(ρ4(k)) = 1 + cos(0.05t(k))
2 α2(ρ4(k)) = 1 − α1(ρ4(k)),

α1(ρs(k)) = 1 + cos(5t(k))
2 α2(ρs(k)) = 1 − α1(ρs(k)).

and the desired formations,

f1 =
⎡⎣3
0

⎤⎦ , f2 =
⎡⎣ 0
−3

⎤⎦ , f3 =
⎡⎣−3

0

⎤⎦ , f4 =
⎡⎣0
3

⎤⎦ .
Considering the simulation time of 10s and the sampling time Ts = 0.01s, the closed-

loop trajectories of LPV MAS (7.1) equipped with the proposed consensus protocol (7.4) are
depicted in Figure 6.1. Furthermore, the trajectories of the estimation and consensus errors are
presented in Figures 7.2 and 7.3, respectively.
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Figure 7.1 – Trajectories of the leader and following agents equipped with the proposed
formation consensus protocol (7.4) designed with Theorem 7.1 - Example 1.

Figure 7.2 – Trajectories of the estimation error obtained with the observer designed with
Theorem 7.1 - Example 1.
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Figure 7.3 – Trajectories of the consensus error obtained with the consensus protocol
designed with Theorem 7.1 - Example 1.

The initial conditions of the leader and the following agents in the x-plane are highlighted
by the black hexagram and the circles , respectively. Similarly, the position of the leader
and the following agents in the x-plane at t = 10s are highlighted by the magenta hexagram

and the circles , respectively. From the results of Figure 7.1, it is possible to see that
the following agents successfully track the leader in ( ) while maintaining the specified
formation.

Notice that both errors converge exponentially to the origin. Therefore, it is clear that
the leader-following consensus (7.3) is properly achieved, illustrating the effectiveness of the
proposed observer-based consensus protocol in dealing with the formation tracking problem of
LPV MASs with different time-varying scheduling parameters.

As previously discussed in Remark 7.2, the exact leader-following consensus obtained
in the simulation results depicted in Figures 7.1-7.3 requires the proper design of the signals
(7.5)-(7.6) to compensate for the internal perturbations. To illustrate the importance of the
proposed compensation, especially when dealing with different scheduling parameters, consider
a second scenario where information about the leader is unavailable to all agents. In this case,
only agent x1 will receive leader information, that is, ηi = 0, for i = 2, 3, 4.

Recall that without leader information, local controllers cannot be designed with the
compensation signals (7.6). Therefore, since the condition of the Assumption 7.1 does not
hold for all agents, the consensus protocol must be designed by invoking Theorem 7.2. Then,
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by considering ϵ = 1.8 and σ = 0.03 we obtain γ = 34.62, and

K1 =
⎡⎣−36.9253 2.9426

−0.5473 −13.2470

⎤⎦ , K2 =
⎡⎣−27.6660 −5.3710

2.4110 −2.4536

⎤⎦ ,
P1 =

⎡⎣105.7084 −27.9799
−27.9799 15.2488

⎤⎦ , P2 =
⎡⎣ 0.0879 −0.0146
−0.0146 0.0325

⎤⎦ ,
L1 =

⎡⎣−0.4186
−0.7467

⎤⎦ , L2 =
⎡⎣−0.1644
−0.2909

⎤⎦ ,
Considering the same initial conditions, formations, and scheduling parameters, the

trajectories of the closed-loop following agents and the consensus error of the second scenario
are depicted in Figures 7.4–7.5. It can be seen from the results of Figure 7.4 that even without
compensations ri(k), the following agents can track the leader dynamics. However, as shown
in Figure 7.5, the agents do not achieve the exact desired formation and consensus errors
oscillate around the origin due to the internal perturbation ws(k) in (7.13). This result shows
the contributions of the proposed approach, demonstrating that dealing with the formation
perturbation wf (k) is not sufficient to achieve the exact formation (7.3) for LPV MASs in the
form of (7.1).

Figure 7.4 – Trajectories of the leader and following agents equipped with the proposed
formation consensus protocol designed with Theorem 7.2 - Example 1.
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Figure 7.5 – Trajectories of the consensus error obtained with the consensus protocol
designed with Theorem 7.2 - Example 1.

Moreover, to evaluate the boundedness guarantees provided by the conditions of
Theorem 7.2, consider a scenario where none of the compensation signals (7.5)–(7.6) are
designed. The behavior of the combined internal perturbation w(k), with the same initial
conditions and time-varying scheduling parameters, is depicted in Figure 7.6. With the compute
of ||w||ℓ∞ , together with the previously presented values of σ, γ, P1, and P2, obtained with
Theorem 7.2, we can compute φ(e(0), ||w||ℓ∞) as defined in (7.19).

Figure 7.6 – Internal perturbations of the closed-loop consensus error - Example 1.
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A comparison of the norm of the augmented error system (7.11), together with the
obtained φ(e(0), ||w||ℓ∞), is presented in Figure 7.7. The exact leader-following consensus
can be achieved when considering both compensations (depicted in ). In other cases,
when only one type of compensation is considered (only ri(k) depicted in and only νi(k)
depicted in ), or when the compensations are neglected (depicted in ), the norm of the
augmented error system is bounded by φ(e(0), ||w||ℓ∞) ( depicted in ). As expected, the
consensus law without compensation yields the worst results, again accentuating the benefits
of the proposed approach.

Figure 7.7 – Comparison of the norm of the augmented error system - Example 1.

7.3.2 Example 2

Consider an LPV MAS angular positioning inspired by the model presented in [265,266].
The classical angular position system (APS) comprises a rotating antenna driven by an electric
motor. The control goal is to drive the motor to rotate the antenna so that it points in the
direction of a moving target. In this paper, we assume that the target is a MAS composed of a
leader-following formation, and our goal is to design a distributed gain-scheduled observer-based
consensus such that the formation of the angular positioning LPV MAS matches the formation
of the targets, as illustrated in Figure 7.8.
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Figure 7.8 – Setup of an angular positioning MASs.

The time-varying dynamics of the APS is given by

xi(k + 1) =
⎡⎣1 0.1
0 1 − 0.1ρi(k)

⎤⎦xi(k) +
⎡⎣ 0
0.1κ

⎤⎦ui(k),

yi(k) =
[︂
1 0

]︂
xi(k),

where xi = [θ⊤
i θ̇⊤

i ]⊤, θi [rad] is the angular position, θ̇i [rad/s] is the angular velocity,
0.1 s−1 ≤ ρi(k) ≤ 10 s−1 is proportional to the coefficient of viscous friction in the rotation
parts of the antenna, and κ = 0.787 rad−1V−1s−2 is a given constant. Similarly to [265,266],
ρi(k) is arbitrarily time-varying in the indicated range of variation.

We assume that the angular position of the leader-target θlt [rad], and the formation
of its followers is measurable and available. Considering a simulation time of t = 10 s with a
sampling period of Ts = 0.01s, the position of the leader-target is given by

θlt(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π
3 0 ≤ k ≤ 300,
π
3 + (k − 300)π

6 300 < k ≤ 400,
π
2 300 < k ≤ 700,
π
2 + (k − 700)π

6 700 < k ≤ 800,
2π
3 800 < k ≤ 1000.

(7.44)

Moreover, we assume the target system comprises one leader and three followers with
the same distance of π/12. Therefore, the desired formation can be written as

f1 =
⎡⎣− π

12

0

⎤⎦ , f2 =
⎡⎣−π

6

0

⎤⎦ , f3 =
⎡⎣−π

4

0

⎤⎦ .
Notice that a leader of the APS in the open-loop form of (7.2) cannot track the position

of the leader-target described in (7.44). In this case, it is necessary to consider a controlled
leader in the form

s(k + 1) = A(ρs(k))s(k) +B(ρs(k))us(k).
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where the leader control input us(k) is properly designed to track the leader-target. By the
definition of the consensus error, notice that we now have

δi(k + 1) = A(ρi(k))xi(k) +B(ρi(k))ui(k) − A(ρs(k))s(k) −B(ρs(k))us(k) − fi.

Similarly to [259], we assume that the leader control input is known by all followers,
and the consensus law is modified to ui(k) = ui(k) + us(k) resulting in

δi(k+1) = A(ρi(k))xi(k)+B(ρi(k))ui(k)−A(ρs(k))s(k)−fi+
(︂
B(ρi(k))−B(ρs(k))

)︂
us(k).

Since the input matrix of the APS systems is parameter-independent, we have B(ρi(k)) =
B(ρs(k)) = B, and the augmented error system (7.11) remains unchanged. However, in
the more general case, the consensus law can be modified to ui(k) = ui(k) + ūs(k) where
employing the same strategy considered in the compensation signals, ūs(k) is defined to satisfy
condition B(ρi(k))ūs(k) −B(ρs(k))us(k) = 0.

Notice that the desired formations satisfy
(︂
A(ρi(k)) − I

)︂
fi = 0. Therefore, we only

design the compensation signals ri(k) considering the Moore-Penrose pseudoinverse to obtain

R(ρi(k)) = B(ρi(k))†(A(ρs(k)) − A(ρi(k)).

Consider the communication among the agents of the APS is given by

L =

⎡⎢⎢⎢⎣
1 −1 0

−1 2 −1
0 −1 1

⎤⎥⎥⎥⎦ , η =

⎡⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎦ .
With ϵ = 1, and σ = 0.025, we solve the conditions of Theorem 7.1 to obtain the following
gain vertices:

K1=
[︂
−3.4843 −4.8451

]︂
, K2=

[︂
−3.6610 −0.3055

]︂
, L1=

⎡⎣−1.0372
−0.3919

⎤⎦ , L2=
⎡⎣−1.0412

0.0359

⎤⎦ ,
and Lyapunov matrices

P1 =
⎡⎣ 0.8620 −0.2865
−0.2865 0.7248

⎤⎦ , P2 =
⎡⎣2.6946 0.6532
0.6532 0.7807

⎤⎦ .
To validate the designed consensus protocol, we perform a simulation of the closed-loop

system with trajectories starting from the initial conditions

s(0) =
⎡⎣0
0

⎤⎦ , x1(0) =
⎡⎣ π

10

0

⎤⎦ , x2(0) =
⎡⎣ π

12

0

⎤⎦ , x3(0) =
⎡⎣ π

14

0

⎤⎦ ,
x̂1(0) =

⎡⎣0
0

⎤⎦ , x̂2(0) =
⎡⎣0
0

⎤⎦ , x̂3(0) =
⎡⎣0
0

⎤⎦ ,
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and with the exogenous time-varying scheduling parameters of the followers and leader defined
as

α1(ρ1(k)) = 1 + sin(3t(k))
2 α2(ρ1(k)) = 1 − α1(ρ1(k)),

α1(ρ2(k)) = 1 + cos(4t(k))
2 α2(ρ2(k)) = 1 − α1(ρ2(k)),

α1(ρ3(k)) = 1 + sin(0.01t(k))
2 α2(ρ3(k)) = 1 − α1(ρ3(k)),

α1(ρs(k)) = 1 + cos(7t(k))
2 α2(ρs(k)) = 1 − α1(ρs(k)).

The closed-loop trajectories of the angular positioning LPV MAS are depicted in
Figure 7.9. As shown in Figure 7.9, with the designed consensus protocol, the angular
positioning system can successfully track the formation of the target. Notice that due to
compensation signals ri(k), the consensus error depicted in Figure 7.10 converges exponentially
to the origin, and the formation is maintained even during the transient period when the
angular velocities are not null and ws(k) is actively disturbing the augmented error system.

Figure 7.9 – Trajectories of the leader and following agents equipped with the proposed
formation consensus protocol designed with Theorem 7.1- Example 2.

Furthermore, we show by the consensus error depicted in Figure 7.11 that, if the
compensation signals ri(k) are neglected, the angular positioning system loses its desired
formation during transition times, highlighting the importance of the proposed method.
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Figure 7.10 – Trajectories of the consensus error obtained with the consensus protocol
designed with Theorem 7.1 - Example 2 .

Figure 7.11 – Trajectories of the consensus error obtained with the consensus protocol
designed with Theorem 7.2 without the compensation signals ri(k). -
Example 2 .

7.4 Conclusions

This chapter has addressed the problem of leader-following formation consensus for
discrete-time LPV multi-agent systems. Compensation signals are introduced to properly
cancel closed-loop terms that cannot be directly embedded into the error dynamics due to
the dependency on the desired formation or mismatches among the time-varying scheduling
parameters. For the design of the observer and the remaining gains of the proposed consensus
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protocol, conditions in the form of LMIs were developed based on Lyapunov stability arguments.
Moreover, for the cases where the compensation signal cannot be designed, a ℓ∞ analysis
condition was presented that provides an upper bound for the disturbed augmented error
system. The proposed approaches have been tested in numerical examples that highlight the
effectiveness of the consensus protocol in achieving the exact leader-following consensus even
when the mismatches among the time-varying scheduling parameters introduce heterogeneity
into the discrete-time LPV MAS.
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8 CONCLUDING REMARKS

This thesis has addressed multiple challenges in interconnected and multi-agent systems
with advances in the design of distributed control and consensus approaches. The developed
frameworks provide systematic solutions to stabilize continuous-time nonlinear interconnected
delayed systems, save communication resources in the networked control of continuous-time
nonlinear interconnected systems, achieve the practical leaderless state-consensus of continuous-
time LPV MASs, and maintain the leader-following formation consensus of discrete-time LPV
MASs.

In Chapter 3, sufficient conditions were proposed for designing distributed control laws
that guarantee the local stability of the origin of continuous-time nonlinear interconnected
systems subject to time-delays in its physical dynamics. The conditions were obtained employing
Lyapunov-Krasovskii stability arguments and written in the form of LMIs. A set of admissible
initial conditions has been defined to ensure that the state trajectories of the closed-loop
system do not leave the validity domain of the N-TS fuzzy model representing the subsystems.
Moreover, to increase the estimate of this set, an optimization procedure has also been
proposed.

Chapter 4 investigated the asynchronous ETC problem for continuous-time intercon-
nected nonlinear systems, proposing a novel distributed ETM to counteract mismatches from
asynchronous premise variables. The exclusion of Zeno behavior has been formally proven,
thus enabling the implementation of the distributed ETC scheme. Moreover, a procedure for
estimating the domain of attraction has been provided. To enlarge this estimate and reduce the
number of transmissions, a convex multi-objective optimization problem has been presented.

Chapter 6 investigated the practical state consensus of continuous-time MASs with
agents described by LPV models. Sufficient conditions were presented for the design of a
gain-scheduled observer-based consensus protocol. The main novelty of the proposed method
is that, by treating parameter mismatches as internal disturbances, the approach ensured
exponential convergence to a bounded error region.

Moreover, Chapter 7 extended the consensus investigation to the leader-following forma-
tion of discrete-time LPV-MAS. Similarly to Chapter 6, mismatches in scheduling parameters
were considered in system modeling. To solve this problem, a distributed gain-scheduled
observer-based consensus protocol composed of the combination of the relative information
concerning neighboring agents and compensation signals is designed. Compensation signals are
introduced to cope with closed-loop terms that emerge due to the dependence on the desired
formation or mismatches among the time-varying scheduling parameters.
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8.1 Further Steps

The possible next steps for this doctoral research are listed as follows:

(i) Explore different alternatives for the distributed ETC setup:

Notice that in the proposed setup, the continuous monitoring of state measurements
by the local ETM may not be practical for digital implementations. To overcome this
limitation, an alternative approach is to introduce a sampler into the setup, where the
system measurements are made available to the ETM at fixed sample intervals of h, as
depicted in Figure 8.1.

Interconnected System x1(t)

x2(t)

xN (t)

P2

P1

P3

P4 PN

P

Sampler

Sampler

Sampler

x1(jh)

x2(jh)

xN (jh)

Event-Triggering

Mechanism

Figure 8.1 – Illustrating the inclusion of the sampler in the ETC setup

Notice that in this case, the measurements of the subsystems states are unavailable
between two consecutive sampling intervals. As a result, the proposed cancellation-based
scheme, which relies on continuous state measurements, is no longer feasible. Therefore,
dealing with this setup without assuming deviation bounds, state-space partitions, or
linear controllers is a very challenging task. Based on this discussion, a possible future
direction is to investigate the development of a distributed event-triggered impulsive
approach for continuous-time nonlinear interconnected systems.

With an impulsive approach, the distributed control laws will be implemented in the
subsystems only at the transmission instants. This implies that the control actions
will be executed exclusively at specific points where the measurements of the system
are available and the asynchronism does not occur. Recent approaches that deal with
event-triggered impulsive control have been proposed in [267–271].

(ii) Consider an ETC setup for the consensus of LPV MASs

Recall that in the context of LPV MASs, gain-scheduling controllers depend on exogenous
parameters, and there is no mismatch among the parameters of the local consensus
protocols and agents. Therefore, a possible future direction is to investigate the de-
velopment of a distributed periodic event-triggered consensus approach for the
consensus of LPV MASs. Moreover, in a scenario where not all states are available for
measurements (as addressed in this thesis in the context of LPV MASs), another possible
future direction is to investigate the development of a distributed observer-based
periodic event-triggered consensus approach for the consensus of LPV MASs.
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(iii) Consider effects of network-induced phenomena in the analysis:

In a networked-control setup, the system is subject to the effects of networked-induced
phenomena even with an ETC approach reducing the use of communication [272–274].
Therefore, another possible future direction is to derive conditions for distributed con-
trol or consensus approaches considering network-induced phenomena, such as
packet dropouts, cyber-attacks, and network-induced delays. More specifically,
in the context of cyber-attacks, it is possible to address the problem of distributed
control for interconnected nonlinear systems or the design of distributed con-
sensus approaches for LPV MASs subject to denial of service attacks (DoS),
deception attacks, or a hybrid combination of both.

The deception attack is also known as the false data injection attack. The main goal
of this type of attack is to manipulate the packets transmitted in the communications
channels compromising their data integrity. Normally, the modeling of deception attacks
follows a stochastic process as considered in [275]. Meanwhile, the DoS attacks are
capable of closing up the data exchange among controllers, sensors, and actuators,
consuming the resources of the communication channels and consequently disrupting the
data availability [265,276–278]. An illustration of these effects is depicted in Figure 8.2.

Network

xi x̂i

Network

xi x̂i

Figure 8.2 – Illustrating the effects of cyber-attacks in the Network

(iv) Manage unmeasurable states and premise variables on the control of Interconnected
systems

Unlike the proposed approaches for LPV MASs in Chapters 6 and 7, the methods
developed in Chapters 3 and 4 considers full-state information. However, in several
practical applications, some of the systems states might not be available for measurement.
In this scenario, the considered N-TS fuzzy modeling might present unmeasurable premise
variables, impairing the design of distributed fuzzy controllers that cannot be defined in
function of these variables. Based on this discussion, another possible future direction is to
investigate the development of distributed observer-based control approaches for
nonlinear interconnected systems represented by N-TS fuzzy models, capable
of efficiently dealing with unmeasurable premise variables.
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(v) Manage the presence of actuator and sensor faults

Similarly to the network-induced phenomena, it also known that the possible occur-
rences of sensor and actuator faults in modern control systems can lead to closed-loop
performance degradation or even instability [279–281]. Therefore, another possible
future direction is to derive conditions for fault-tolerant distributed control or
consensus approaches.
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APPENDIX A – GENERAL CONCEPTS OF GRAPH THEORY

In this thesis, the interconnections among subsystems and interactions among agents
are represented with undirected graphs. In the graph theory, a graph G = (V , E) is composed
by a vertex set V = {1, 2, . . . , N} that corresponds to the set of indexes of the subsystems,
agents or controllers, and a set of edges E = {eij = (i, j) ∈ V × V}, where the first argument
of eij = (i, j) is the parent node and the second argument is the child node. The graph is
called undirected once the interaction between two vertices is mutual, i.e., for all (i, j) ∈ E ,
the correspondent (j, i) also belongs to set edges.

The edges of the graph can be represented with a adjacency matrix A = [aij ], i, j ∈ V .
As usual, the elements of A, are defined as

aij =

⎧⎪⎨⎪⎩0, if i = j or eij /∈ E ,

1, if eij ∈ E .

The degree matrix D associated with the graph G is the diagonal matrix D = diag(d1, . . . , dN )
that represents the number of edges attached to each vertex. Its elements are defined as

di =
N∑︂

j=1
aij ∀i ∈ V .

The neighborhood set of the subsystem Pi is defined as Ni = {j ∈ V : (j, i) ∈ E}.
Notice that the cardinality of Ni is di, and it can be rewritten as Ni = {ki1, ki2, . . . , kidi

}. For
illustration purposes, consider the undirected graph depicted in Figure 1.6. In this case, the
neighborhood set of each subsystem is:

• N1 = {3, 4}; N2 = {4, 5}; N3 = {1, 4, 6}; N4 = {1, 2, 3, 5};

• N5 = {2, 4, 7}; N6 = {3, 7, 8}; N7 = {5, 6, 8}; N8 = {6, 7}.

Moreover, the corresponding adjacency and degree matrices are given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
1 0 0 1 0 1 0 0
1 1 1 0 1 0 0 0
0 1 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.



APPENDIX A. General concepts of Graph Theory 158

From the Adjacency and Degree matrices one can compute the Laplacian matrix L =
D − A. Moreover, in a leader-following framework of multi-agent systems, the communication
among the leader and the following agents is represented by η = diag(η1, . . . , ηN), where the
pinning parameters ηi indicate whether the i-th follower has access to the leader dynamics
(ηi = 1) or not (ηi = 0). Therefore, the overall communication can be represented by
L̄ = L + η.

The matrices L and L̄ can be written in terms of its spectral decomposition, such
that L = TΛT−1, and L̄ = T̄ Λ̄T̄−1, where the orthogonal matrices T, T̄ ∈ RN×N con-
stitutes the eigenvectors of L and L̄, and Λ = diag(λ1, λ2, . . . , λN) ∈ RN×N and Λ̄ =
diag(λ̄1, λ̄2, . . . , λ̄N) ∈ RN×N are diagonal matrices with the eigenvalues of L and L̄ ordered
as λ1 < λ2 ≤ . . . ≤ λN , and λ̄1 < λ̄2 ≤ . . . ≤ λ̄N .
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APPENDIX B – TS AND N-TS FUZZY MODELING

Standard TS Fuzzy and N-TS Fuzzy modeling

The TS fuzzy is known as an appropriate way to represent input-affine nonlinear systems

ẋ(t) = f(x(t)) + g(x(t))u(t),

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the control input vector, and f(·) ∈ Rnx

and g(·) ∈ Rnx×nu are smooth nonlinear function defined over a compact region D ⊂ Rn

containing the origin, as the following set of fuzzy rules

Model rule i : If z1(t) ∈ Mi
1 and . . . and zp(t) ∈ Mi

p

Then ẋ(t) = Aix(t) +Biu(t), i ∈ Ir,

where zi(t) is the i-th element of the vector of premise variables z(t) ∈ Rp, Ai ∈ Rn×n, and
Bi ∈ Rn×m are the matrices of the local dynamics, Mi

j is the fuzzy set related to the j-th
premise variable zj(t), Ir = {1, 2, . . . , r}, and r is the number of fuzzy rules. The advantage
of this approach is that after the center-of-gravity method for defuzzification procedure, the
nonlinear dynamics can be expressed as a convex sum of local linear models weighted by the
normalized membership grades. The inferred TS fuzzy model is described by

ẋ(t) =
r∑︂

i=1
αi(zi) (Aix(t) +Biu(t)) , (B.1)

where the normalized membership functions are given by,

αi(zi) =
∏︁p

j=1 M
i
j(zj(t))∑︁r

i=1
∏︁p

j=1 M
i
j(zj(t))

,

being M i
j(zj(t)) ∈ [0, 1] the membership degree of zj(t) with respect to the fuzzy set Mi

j.
Moreover, the normalized membership functions αi(zi) satisfy the convex sum property

αi(zi) ≥ 0,
r∑︂

i=1
αi(zi) = 0.

Examples of the modeling process of (B.1) are presented in [24]. Usually, when
considering the sector nonlinearity approach for the TS fuzzy modeling, the nonlinearities of the
system are chosen as premise variables. If the nonlinear system is complex (as in the case of
interconnected systems), the number of fuzzy rules required to construct the TS fuzzy model
might lead to the curse of dimensionality. An alternative to overcome this drawback is to
consider the N-TS fuzzy approach. In this case, it is assumed that the function f(x(t)) of the
input-affine nonlinear system can be rewritten as

f(x(t)) = fa(x(t)) + fb(x(t))ϕ(x(t)),



APPENDIX B. TS and N-TS Fuzzy modeling 160

being ϕ(x(t)) a sector-bounded nonlinear function. Finally, the inferred N-TS fuzzy model is
described as

ẋ(t) =
r∑︂

i=1
αi(zi) (Aix(t) +Biu(t) +Giϕ(x(t))) , (B.2)

where Gi ∈ Rn×nϕ is a matrix that is also considered to describe the local dynamics.

In this thesis, the subsystems of the interconnected system are represented in a polytopic
embedding constructed with the same reasoning of the N-TS fuzzy modeling presented to
obtain (B.2). Due to the interconnections, and the presence of time-varying delays in the system
dynamics, the obtained model differs from (B.2), and each case has its own particularities.
Therefore, it is presented in the sequel, the specific N-TS fuzzy model employed in this work
for the cases of non-delayed and time-delay interconnected nonlinear systems.

Interconnected N-TS Fuzzy systems

Consider a continuous-time interconnected nonlinear system, composed by N interacting
subsystems described as:

Pi : ẋi(t) = Ai(xi)xi(t) +Bi(xi)ui(t) +
∑︂

j∈Ni

gij(xi(t), xj(t)), (B.3)

where xi ∈ Rni is the state of the i-th subsystem, ui ∈ Rmi is the i-th control input, and

gij(xi, xj) = Aijxj +Gij(xi)ϕij(xi, xj), (B.4)

is the function that models the interconnection between Pi and the subsystem Pj in the
neighborhood Ni of Pi. The functions ϕij are sector-bounded functions representing the
nonlinear interconnections, and Aij represent the linear interconnections.

The following convex polytope defines the validity domain of the subsystems

Di = {xi ∈ Rni : h⊤
iℓi
xi ≤ 1, ℓi ∈ N≤nfi

}, (B.5)

where hiℓi
∈ Rni , ℓi ∈ N≤nfi

, and nfi is the number of half-spaces defining the polytope.

The premise variables are the non-constant terms in (B.3). Let zi = (zi1, zi2, . . . , zipi
) ∈

Rpi be the vector of state-dependent premise variables zik : Rni → R, k ∈ N≤pi
. Regarding

the sector nonlinearity approach, for xi ∈ Di, each premise variable zik can be written as

zik = wik
0 (zik)z0

ik + wik
1 (zik)z1

ik,

where z0
ik = infxi∈Di

zik, z1
ik = supxi∈Di

zik, the weighting functions are

wik
0 (zik)=z

1
ik−zik

z1
ik−z0

ik

, wik
1 (zik) = 1 − wik

0 (zik), (B.6)

and the state-dependent membership functions that satisfy the convex sum property are defined
as:

αii
(zi) =

pi∏︂
k=1

wik
ik

(zik),
∑︂

ii∈Bpi

αii
(zi) = 1, and αii

(zi) ≥ 0, ∀ii ∈ Bpi . (B.7)
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By defining the collection of nonlinearities ϕikiℓ
for kiℓ ∈ Ni, ℓ ∈ N≤di

, as

ϕi(x) = (ϕiki1(xi, xk1), . . . , ϕikidi
(xi, xkdi

)) ∈ Rdi , (B.8)

and
Gi(xi) =

[︂
Gik1(xi) · · · Gikdi

(xi)
]︂
, (B.9)

with x = (x1, . . . , xN) ∈ Rn, the i-th subsystem Pi in (B.3) can be equivalently written as
the following N-TS fuzzy model:

ẋi(t) =
∑︂

ii∈Bpi

αii
(zi)

(︂
Ai

ii
xi(t) +Bi

ii
ui(t) +Gi

ii
ϕi(x(t))

)︂
+
∑︂

j∈Ni

Aijxj(t), (B.10)

once the matrix-valued functions Ai(xi), Bi(xi), and Gi(xi) of the i-th subsystem Pi in (B.3)
are given by

Ai(xi) =
∑︂

ii∈Bpi

αii
(zi)Ai

ii
, Bi(xi) =

∑︂
ii∈Bpi

αii
(zi)Ai

ii
, Gi(xi) =

∑︂
ii∈Bpi

αii
(zi)Gi

ii
, (B.11)

for all xi ∈ Di, where ii is a pi-dimensional multi-index. A modeling example is presented in
the sequel.

Example: Network of interconnected pendulums

Consider the network of inverted interconnected pendulums proposed in [18] where the
linear springs are replaced by hardening springs. The nonlinear model of each pendulum is
given by:

ẋi1(t) = xi2(t),

ẋi2(t) = g

li
sin(xi1(t)) + 1

mil2i
ui(t) − ka2

mil2i

∑︂
j∈Ni

(xi1(t) − xj1(t))

− ka2γ2

mil2i

∑︂
j∈Ni

(xi1(t) − xij(t))3 ,

where xi1(t) is the rod angle with respect to the upright position, xi2(t) is the angular
velocity, ui(t) is the torque applied to the base of the i-th pendulum, g is the gravitational
acceleration, mi is the mass, and li the rod length of the i-th pendulum. The linear and
nonlinear elastic coefficients are k and γ, respectively, and a is the height of the their connection
at the pendulum’s rods. Defining zi1(t) = sin(xi1(t)), and imposing the state constraints
Di = {xi ∈ R : |xi| ≤ θ̄}, one can compute that:

z0
i1 = inf

x1∈D1
z11 = sin(θ̄)

θ̄
, z1

i1 = sup
x1∈D1

z11 = 1,

and, consequently zi1(t) = wi1
0 (zi1(t))z0

i1 + wi1
1 (zi1(t))z1

i1 with

wi1
0 (zi1(t)) = z1

i1 − zi1(t)
z1

i1 − z0
i1

, wi1
1 (zi1(t)) = 1 − wi1

0 (zi1(t)),

α0(zi) = wi1
0 (z1(t)), α1(zi) = wi1

1 (z1(t)),
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since p1 = 1.

By gathering the nonlinear interconnections ϕij(xi, xj) = (xi1(t) − xij(t))3 for all
j ∈ Ni, it is possible to construct ϕi(xi) as in (B.8) with xi(t) = [xi1(t) xi2(t)]⊤. Furthermore,
the local state-space matrices are:

Ai(xi) = α0(zi)

⎡⎢⎣ 0 1
g
li

sin(θ̄)
θ̄

− dika2

mil2i
0

⎤⎥⎦+ α1(zi)
⎡⎣ 0 1

g
li

− dika2

mil2i
0

⎤⎦ ,
Bi(xi) = α0(zi)

⎡⎣ 0
1

mil2i

⎤⎦+ α1(zi)
⎡⎣ 0

1
mil2i

⎤⎦ , Aij =
⎡⎣ 0 0

ka2

mil2i
0

⎤⎦ ,
Gi(xi) = α0(zi)

⎡⎣ 0 . . . 0
−ka2γ2

mil2i
. . . −ka2γ2

mil2i

⎤⎦+ α1(zi)
⎡⎣ 0 . . . 0
−ka2γ2

mil2i
. . . −ka2γ2

mil2i

⎤⎦ .
Note that the dimension of Gi(xi) as defined in (B.9) depends on the total number of
interconnections of each subsystem.

Time-Delay Interconnected Fuzzy-Systems

Consider the i-th nonlinear time-delay subsystem, as :

Pi: ẋi(t)=Ai(xi)xi(t)+Adi(xi)xi(t−hi(t))+Bi(xi)ui(t)+
∑︂

j∈Ni

gij(xi(t), xj(t−τij(t)), (B.12)

where xi ∈ Rni is the state, ui ∈ Rmi is the input, gij(xi, xj) as in (B.4) is the function that
models the interconnection between the subsystems Pj and Pi, ϕij : Rni × Rnj → Rnϕ,i , hi(t)
are the internal time-varying delays of the subsystem’s dynamics, and τij(t) is the time-varying
delay induced from the connection between Pi and Pj.

The matrix-value functions Ai(xi), Bi(xi), Gi(xi), and Adi(xi), are defined in the
validity domain represented by the convex polytope (B.5), and with a similar procedure of
(B.6)-(B.7) it is possible to represent (B.12) as

ẋi(t) =
∑︂

ii∈Bpi

αii
(zi)

(︂
Ai

ii
xi(t) + Ai

dii
xi(t− h(t)) +Bi

ii
ui(t) +Gi

ii
ϕi(χi(t− τ(t))

)︂
(B.13)

+
∑︂

j∈Ni

Aijxj(t− τ(t)), (B.14)

where the collection of time-delay nonlinearities ϕikiℓ
for kiℓ ∈ Ni, ℓ ∈ N≤di

is given by

ϕi (χi(t− τ(t)) =
(︂
ϕiki1(xi(t), xk1(t− τ(t))), . . . , ϕikidi

(xi(t), xkdi
(t− τ(t)))

)︂
∈ Rdi ,

for all xi ∈ Di. The time-delay in the interconnections affects the states of the neighboring
subsystems. Therefore, the overall gathering of nonlinear time-delayed interconnections is
written in terms of

χi(t− τ(t)) = (xi(t− τ(t)), xi(t), x̄i(t− τ(t))) ∈ Rn,
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xi = (x1, . . . , xi−1) ∈ Rni , x̄i = (xi+1, . . . , xN) ∈ Rn̄i , ni ≜ n − ∑︁N
k=i nk, and n̄i ≜

n − ∑︁i
k=1 nk,. Notice that χi(t) = (xi(t), xi(t), x̄i(t)) = x(t). A modeling example is

presented in the sequel.

Example: Time-delay interconnected system

Consider the following interconnected system with two subsystems:

ẋ1(t) =x1(t) + 2x3
1(t) cos(2x1(t)) + 3x1(t− h(t)) − 3x2(t− τ(t))

+ 0.5 arctan5(x1(t) − x2(t− τ(t))) + u1(t),

ẋ2(t) =x2(t) + 2x3
2(t) − 3x1(t− τ(t)) − 3x2(t− h(t))

+ 0.5 arctan5(x2(t) − x1(t− τ(t))) + x2
2(t)u2(t).

(B.15)

Defining z1(t) = cos(2x1(t))x2
1(t), and z2(t) = x2

2(t) as premise variables, and

ϕ12 = arctan5(x1(t) − x2(t− τ(t)),

ϕ21 = arctan5(x2(t) − x1(t− τ(t))),

as the sector-bounded nonlinear interconnections it is possible to rewrite the system as:

ẋ1(t) = (1 + 2z1(t))x1(t) + 3x1(t− h(t)) − 3x2(t− τ(t))

+ 0.5ϕ12(x1(t), x2(t− τ(t))) + u1(t),

ẋ2(t) = (1 + 2z2(t))x2(t) − 3x1(t− τ(t)) − 3x2(t− h(t))

+ 0.5ϕ21(x1(t− τ(t)), x2(t)) + z2(t)u2(t).

The region of validity of each subsystem is defined as Di = {xi ∈ R : |xi| ≤ 2π}. Therefore,
one can compute that:

z0
11 = inf

x1∈D1
z11 = −22.6977, z1

11 = sup
x1∈D1

z11 = 39.4784,

z0
21 = inf

x2∈D2
z21 = 0, z1

21 = sup
x2∈D2

z21 = 39.4784,

and, consequently

z1(t) = w11
0 (z1(t))z0

11 + w11
1 (z1(t))z1

11, z2(t) = w21
0 (z2(t))z0

21 + w21
1 (z2(t))z1

21,

with

α0(z1) = w11
0 (z1(t)) = z1

11 − z1(t)
z1

11 − z0
11
, α1(z1) = w11

1 (z1(t)) = 1 − w11
0 (z1(t)),

α0(z2) = w21
0 (z2(t)) = z1

21 − z2(t)
z1

21 − z0
21
, α1(z2) = w21

1 (z2(t)) = 1 − w21
0 (z2(t)),
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and the matrices are given by:

A1(x1) = α0(z1) · (−44.3959) + α1(z1) · 79.9588,

A2(x2) = α0(z2) · 1 + α1(z2) · 79.9588,

Ad1(x1) = α0(z1) · 3 + α1(z1) · 3 = 3,

Ad2(x2) = α0(z2) · (−3) + α1(z2) · (−3) = −3,

B1(x1) = α0(z1) · 1 + α1(z1) · 1 = 1,

B2(x2) = α0(z2) · 0 + α1(z2) · 39.4784,

G1(x1) = α0(z1) · 0.5 + α1(z1) · 0.5 = 0.5,

G2(x2) = α0(z2) · 0.5 + α1(z2) · 0.5 = 0.5,

A12 = A21 = −3.

Notice that in the standard T-S fuzzy modeling, one should define the nonlinear interconnections
arctan5(x1(t) − x2(t − τ(t)) and arctan5(x2(t) − x1(t − τ(t))) as premise variables, which
increases the number of fuzzy rules and the complexity of the T-S fuzzy model. As highlighted
in [234], the N-TS fuzzy models can reduce not only the numerical complexity for control
design and implementation but also the conservativeness of the results. More information and
examples regarding the benefits of N-TS fuzzy modeling are presented in the works [18–20].
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APPENDIX C – USEFUL LEMMAS

This appendix presents technical lemmas that are considered for obtaining the results
of this thesis.

Lemma C.1: Finsler’s Lemma [282]

Let x ∈ Rn, Q ∈ Sn and B ∈ Rm×n such that rank(B) < n, and B⊥ denote the basis
for the null-space of B, that is, BB⊥ = 0. The following statements are equivalent:

i) x⊤Qx < 0, ∀x such that Bx = 0, x ̸= 0.

ii) B⊥⊤QB⊥ ≺ 0.

iii) ∃µ ∈ R : Q − µB⊤B ≺ 0.

iv) ∃ X ∈ Rn×m : Q + X B + B⊤X ⊤ ≺ 0.

The next Lemma C.2 presents the generalized sector condition that is considered to
design the proposed distributed control laws for interconnected systems.

Lemma C.2: Sector Condition [283]

If the nonlinearities ϕi : Rn → Rdi , ∀i ∈ V , belongs to the sector [0,Ωi] on a compact
domain D ⊂ Rn, then the following condition

Si(x,Λi) ≜ ϕ⊤
i (x)Λ−1

i (ϕi(x) − Ωix) < 0, ∀x ∈ D , (C.1)

holds for any diagonal matrix Λi > 0 ∈ Rdi×di , and Ωi =
[︂
Ωi1 Ωi2 · · · ΩiN

]︂
∈ Rdi×n,

with Ωij ∈ Rdi×nj and Ωij = 0 ∀j /∈ Ni.
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Moreover, a second sector condition is also considered for the cases evolving the partial
derivatives of the nonlinearities

Lemma C.3: Sector Condition for partial derivatives [284]

If the partial derivatives of the nonlinearities ϕi(x) : Rn → Rdi , ∀i ∈ N≤N , satisfy

0 ≤ ∂ϕi(x)
∂x

≤ Ji,

then the following conditions

Hi(e, x,Λhi
) ≜ ρ⊤

i (e, x)Λ−1
hi

(ρi(e, x) − Jie) < 0, (C.2)

holds for any diagonal matrices Λhi
> 0 ∈ Rdi×di , and

Ji =
[︂
Ji1 Ji2 · · · JiN

]︂
∈ Rdi×n,

with e = x̂−x, ρi(e, x) = ϕi(x̂) −ϕi(x), Jij ∈ Rdi×nj and Jij = 0 ∀j /∈ Ni, ∀x, x̂ ∈ D .

The delay-dependent reciprocally convex inequality, previously considered in works such
as [285–288], is considered to construct delay-dependent conditions that generally lead to less
conservative results. The inequality is presented in the following Lemma.

Lemma C.4: Delay-dependent reciprocally convex inequality [285]

Let n ∈ N, and R1, R2 ∈ Rn×n be symmetric positive definite matrices. If there exist
symmetric matrices X1, X2 ∈ Rn×n and matrices Y1, Y2 ∈ Rn×n such that⎡⎣R1 0

0 R2

⎤⎦− ϱ

⎡⎣X1 Y1

Y ⊤
1 0

⎤⎦− (1 − ϱ)
⎡⎣ 0 Y2

Y ⊤
2 X2

⎤⎦ ≥ 0,

holds for all ϱ ∈ B. Then, the following inequality⎡⎣R1
ϱ

0
0 R2

1−ϱ

⎤⎦ ≥

⎡⎣R1 0
0 R2

⎤⎦+ (1 − ϱ)
⎡⎣X1 Y2

Y ⊤
2 0

⎤⎦+ ϱ

⎡⎣ 0 Y1

Y ⊤
1 X2

⎤⎦
holds for all ϱ ∈ (0, 1) ⊂ R.

If the parameter ϱ is defined in terms of the time-varying delays of the system, the
aforementioned Lemma C.4 makes possible the development of delay-dependent conditions.
Moreover, by imposing X1 = R1 − Y1R

−1
2 Y ⊤

1 , and X2 = R2 − Y ⊤
2 R

−1
1 Y2, the number of

decision variables is reduced. With the particular choices X1 = X2 = 0, and Y1 = Y2, the
results of Lemma C.4 are reduced to the standard version presented in [289].
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Furthermore, the Wirtinger-based integral inequality as presented in the sequel is also
considered in the development of the proposed design conditions.

Lemma C.5: Wirtinger-based integral inequality [290]

Let n ∈ N, for any symmetric positive definite matrix Sn
+, the following inequality holds

for all continuously differentiable function ω ∈ [a, b] → Rn :

(b− a)
∫︂ b

a
ω̇⊤(s)R ω̇(s)ds ≥

⎡⎣θ1

θ2

⎤⎦⊤ ⎡⎣R 0
0 3R

⎤⎦⎡⎣θ1

θ2

⎤⎦ ,
where

θ1 = ω(b) − ω(a), and θ2 = ω(b) + ω(a) − 2
b− a

∫︂ b

a
ω(s)ds.
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