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Abstract

We discuss a general definition of likelihood function in terms of Radon-Nikodým

derivatives. The definition is validated by the Likelihood Principle once we estab-

lish a result regarding the proportionality of likelihood functions under different

dominating measures. This general framework is particularly useful when there

exists no or more than one obvious choice for a dominating measure as in some

infinite-dimensional models. We also discuss some versions of densities which are

specially important when obtaining the likelihood function. In particular, we argue

in favor of continuous versions of densities and highlight how these are related to

the basic concept of likelihood. Finally, we present a method, based on the concept

of differentiation of measures, to obtain a valid likelihood function, i.e., which is in

accordance with the Likelihood Principle. Some examples are presented to illus-

trate the general definition of likelihood function and the importance of choosing

particular dominating measures in some cases.

Keywords: Statistical model, Likelihood Principle, dominating measure, Radon-

Nikodým derivative, proportional likelihood, continuous densities, differentiation

of measures.
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Em minha trajetória na UFMG eu pude conhecer muita gente especial. Ana, Caio,

Gabi, Henrique, Lilian, Marina, Rodrigo, Tamires: obrigado.;

Denise, pelo incentivo e pela poesia, obrigado de coração;

Flávio, obrigado por todo o conhecimento que você compartilhou comigo e por
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Chapter 1

Introduction

In this thesis, we shall discuss some mathematical foundations of Likelihood The-

ory, more specifically, the definition of likelihood function. Likelihood-based method-

ologies are undoubtedly the most common and efficient ones to perform statistical

inference - in particular, maximum-likelihood estimation and Bayesian inference.

This is due to general strong properties of the likelihood function that stem from

a solid mathematical foundation, based on Measure/Probability Theory.

The concept of likelihood goes back to Fisher, with the actual term first ap-

pearance in Fisher (1921), and therefore before Kolmogorov’s probability axioms

(Kolmogorov, 1933) and the Radon-Nikodým Theorem (Nikodým, 1930) (Radon,

in 1913 proved the theorem for Rn Radon (1913), but Fisher did not mention him

in his work). Nevertheless, the intuition given by Fisher to construct the concept

of likelihood made it straightforward to extend the definition of likelihood function

(LF) in terms of Radon-Nikodým derivatives. The earliest explicit version of such

definition we could find is from Lindley (1953) [Definition 2.4], however, it is im-

plicitly assumed for example in Halmos and Savage (1949). It consists of defining

the likelihood function as any Radon-Nikodým (RN) derivative (see Definition 2.2

in Section 2.2), i.e. using any σ-finite dominating measure.

Since any model that has a dominating measure admits an uncountable number of

dominating measures, the aforementioned definition of likelihood function could

only be admissible if the choice of the dominating measure has no influence in the

inference process. Under the Likelihood Principle (LP), it means that any two

distinct dominating measures should lead to proportional likelihood functions.

Although such a result is accepted by the statistical community, it has not yet

been properly stated, proven or explored. This is one of the specific aims of this

thesis. In fact, this issue has never been properly raised in the literature. The

general definition of likelihood is always approached by assuming the existence of

a common dominating measure and there is no mention of other measures or what

1



2 Introduction

would be the implications of making a different choice. Reid (2013) mentions that

“Some books describe the likelihood function as the Radon-Nikodým derivative

of the probability measure with respect to a dominating measure. Sometimes the

dominating measure is taken to be Pθ0 for a fixed value θ0 ∈ Θ. When we consider

probability spaces and/or parameter spaces that are infinite dimensional, it is not

obvious what to use as a dominating measure.”

We state and prove what we call the Likelihood Proportionality Theorem, which

validates (in terms of the LP) the general definition of likelihood function in terms

of Radon-Nikodým derivatives. Moreover, we discuss how continuous RN deriva-

tives are relevant when obtaining the likelihood function. More specifically, we

show that the continuity property guarantees the proportionality result and leads

to likelihood functions that carry the intuitive concept of likelihood.

Finally, we discuss and provide several examples where the choice of the dominat-

ing measure requires special attention. Namely, situations: i) that require some

effort to find a valid dominating measure that can be used to obtain a valid likeli-

hood function; ii) in which more than one obvious dominating measure is available

but a particular choice may significantly easy the inference process. We also em-

phasise that we work with Likelihood Theory in a general context and not just

for parametric models. This context is considered in several relevant inference

problems nowadays, specially infinite-dimensional problems under the Bayesian

approach, as we illustrate in some of the examples provided.

We discuss five general classes of widely used models. The first example consid-

ers general finite-dimensional models and describes how to obtain a valid like-

lihood function when dealing with point-mass mixtures. In the second exam-

ple we discuss exponential family models. The following two examples consider

classes of infinite-dimensional models, non-homogeneous Poisson processes and

diffusions/jump-diffusions. Finally, the fifth example explores possibly important

implications of the choice of the dominating measure in general missing data prob-

lems.

Other works in the context of mathematical aspects of the likelihood function but

that pursue different directions can be found in Barndorff-Nielsen et al. (1976),

Fraser and Naderi (1996), Fraser et al. (1997) and Fraser and Naderi (2007).

This thesis is organised as follows: Section 1.1 presents some background on Mea-

sure Theory and Topology, which are essential to develop the work in the following

chapters. Chapter 2 presents the Likelihood Proportionality Theorem in Section

2.2 and discusses the importance of continuous densities and likelihoods in Section

2.3. Section 2.4 discusses the use of the prior predictive measure as a dominating

measure, in a Bayesian context. Chapter 3 describes some examples regarding
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the choice of dominating measure and shows how the Likelihood Proportionality

Theorem is to be used in practical inference problems. Chapter 4 discusses how

likelihood functions can be defined as a derivative of measures. Chapter 5 presents

some conclusions and future work.

1.1 Fundamentals

In this section we present the mathematical results and the notation needed to

understand the work in this thesis.

1.1.1 Fundamentals of Measure Theory

Let (Ω,F , µ) denote a measure space and M(Ω,F) the collection of all measurable

functions f : Ω −→ R.

Definition 1.1 (Absolute continuity). A measure λ on (Ω,F) is said to be abso-

lutely continuous with respect to a measure µ on (Ω,F) if E ∈ F and µ(E) = 0

imply that λ(E) = 0. In this case we write λ << µ and say that λ is dominated

by µ. A family P = {Pθ; θ ∈ Θ} of probability measures on (Ω,F) is said to be

absolutely continuous with respect to a measure µ on (Ω,F) if Pθ << µ, ∀θ ∈ Θ.

In this case we write P << µ and say that P is dominated by µ.

If µ and ν are two measures on the same measurable space (Ω,F) such that µ << ν

and ν << µ, then µ and ν are said to be equivalent measures.

Theorem 1.1 (Radon-Nikodým Theorem). Let λ and µ be σ-finite measures on

(Ω,F) such that λ << µ. Then there exists a nonnegative function f in M(Ω,F)

such that

λ(A) =

∫
A

fdµ, A ∈ F .

Furthermore, f is uniquely determined µ-almost everywhere.

Function f of the Radon-Nikodým Theorem is often called the Radon-Nikodým

derivative of λ with respect to µ and is denoted by dλ/dµ.

Proposition 1.1 (Radon-Nikodým chain rule). Let λ, µ, ν be σ-finite measures

on (Ω,F) such that λ << µ and µ << ν. Then

dλ

dν
=
dλ

dµ

dµ

dν
, ν − a.e.
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Proposition 1.2. Let A ∈ F be a nonempty set. If we denote

F(A) = {B ∩ A; B ∈ F},

then F(A) is a σ-algebra of subsets of A and F(A) ⊂ F .

Proof. Since ∅, A ∈ F , it follows that ∅, A ∈ F(A). Let D ∈ F(A). Then, there

exists B ∈ F such that D = A ∩ B. Since Bc ∈ F , it follows that A ∩ Bc, the

complement of A ∩ B in A, belongs to F(A). Now, let {Dn}∞n=1 be a sequence

of sets in F(A). Then, there exists a sequence {B}∞n=1 of sets in F such that

Dn = A ∩ Bn for every n ∈ N. Since ∪∞n=1Bn ∈ F , it follows that ∪∞n=1Dn =

∪∞n=1(A ∩ Bn) = A ∩ (∪∞n=1Bn) ∈ F(A). Hence, F(A) is a σ-algebra of subsets of

A. To see that F(A) ⊂ F , simply note that a σ-algebra is closed under countable

intersections.

Definition 1.2. Let A ∈ F be a nonempty set. We denote µ
∣∣
A

as the restriction

of the measure µ on (A,F(A)), i.e., µ
∣∣
A

is the measure defined on (A,F(A)) such

that µ
∣∣
A

(B) = µ(B), ∀B ∈ F(A).

Definition 1.3. Let f ∈M(Ω,F) and A ∈ F a nonempty set. We denote f
∣∣
A

as

the restriction of the measurable function f on A, i.e.,

f
∣∣
A

: A −→ R

ω 7−→ f(ω).

Proposition 1.3. Let f ∈ M(Ω,F) and A ∈ F be a nonempty set. Then, f
∣∣
A
∈

M(A,F(A)).

Proof. Let B ∈ B(R). Since f
∣∣
A

−1
(B) = A ∩ f−1(B), the proof is complete.

Definition 1.4. Let f and g be two functions in M(Ω,F) and let µ be a measure

on (Ω,F). We say that f and g are equivalent functions with respect to µ if f = g

µ-a.e, in which case we write f ≡µ g.

The relation ≡µ is an equivalence relation, that is, if f, g and h are functions in

M(Ω,F), then

a. f ≡µ f , the reflexive property;

b. if f ≡µ g then g ≡µ f , the symmetric property;

c. if f ≡µ g and g ≡µ h then f ≡µ h, the transitive property.
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Given a function f in M(Ω,F), the equivalence class of f with respect to µ, [f ]µ,

is the collection of all functions g in M(Ω,F) such that f ≡µ g, i.e.,

[f ]µ = {g ∈M(Ω,F); f ≡µ g}.

In words, µ-equivalent functions are indistinguishable from the point of view of a

measure µ.

Proposition 1.4. Let λ and µ be σ-finite measures on (Ω,F) such that λ << µ

and let f ∈ [dλ
dµ

]µ. Then, f
∣∣
A
∈ [dλ|A

dµ|A
]µ|A.

Proof. This follows from noting that∫
B

fdµ =

∫
B

f |Adµ|A, B ∈ F(A). (1.1)

Proposition 1.5. Let λ and µ be σ-finite measures on (Ω,F) such that λ << µ

and let f ∈ [dλ|A
dµ|A

]µ|A. If µ(Ac) = 0, then g = fIA ∈ [dλ
dµ

]µ.

Proof. Let B ∈ F . Since λ is dominated by µ and µ(Ac) = 0, it follows that

λ(Ac) = 0. Hence, λ(B) = λ(A ∩B). Moreover,

λ(A ∩B) = λ
∣∣
A

(A ∩B) =

∫
A∩B

f |Adµ|A =

∫
A∩B

fdµ,

where the last equality follows from (1.1). Then, since µ(Ac) = 0, we have that

λ(B) =

∫
A∩B

fdµ =

∫
B

fdµ.

Since B was taken arbitrary, the proof is complete.

1.1.2 Fundamentals of Topology

In this section, we present all the definitions and results from Topology needed to

state and prove our results. The first part is dedicated to some general concepts,

which will be useful when the σ-algebra of the problem is induced by a topology.

The second part presents the formal definition of continuous functions. Finally, in

the last part of this section, we consider measures defined on abstract spaces.

General Topology
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Definition 1.5. A family T of subsets of a set Ω is said to be a topology on Ω in

case:

(i) ∅ and Ω are in T .

(ii) The union of the elements of any subcollection of T is in T .

(iii) The intersection of the elements of any finite subcollection of T is in T .

An ordered pair (Ω, T ) consisting of a set Ω and a topology T on Ω is called a

topological space. Any set in T is called an open set of Ω. Sometimes, we prefer

say “U is a neighborhood of ω” rather than “U is an open set containing ω”.

If U is an open set of Ω, then the set U c = Ω − U is called an closed set of Ω.

Therefore, ∅ and Ω are open and closed sets of Ω.

Theorem 1.2. (Munkres (2014), Theorem 17.1) Let (Ω, T ) be a topological space.

Then we have that

(1) Arbitrary intersections of closed sets are closed.

(2) Finite unions of closed sets are closed.

Definition 1.6. A basis for a topology on a set Ω is a collection B of subsets of

Ω such that

(i) if ω ∈ Ω, then there exists B ∈ B such that ω ∈ B.

(ii) If ω ∈ B1 ∩ B2, B1, B2 ∈ B, then there exists B3 ∈ B, B3 ⊂ B1 ∩ B2, such

that ω ∈ B3.

Proposition 1.6. (Munkres (2014), Section 13) Let B a collection of subsets of a

set Ω such that B satisfies the two conditions in Definition 1.6. Let T a family of

subsets of Ω and suppose that a set U is in T if and only if for each ω ∈ U , there

exists B ∈ B such that ω ∈ B and B ⊂ U . Then, T is a topology on Ω.

A topology T given by the proposition above is called the topology generated by

B. The elements of the collection B are called basis elements. Hence, note that

if a topology T on a set Ω is generated by B, then each basis element is itself an

open set of Ω.

Definition 1.7. If d is a metric on Ω, then the collection of all ε-balls Bd(x, ε) =

{υ ∈ Ω; d(ω, υ) < ε}, for each ω ∈ Ω and for each ε > 0, is a basis for a topology

on Ω. This topology generated by the ε-balls is called the metric topology induced

by d.
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Given x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, we define the norm of the vector

x by

‖x‖ =

(
n∑
i=1

x2
i

) 1
2

and we define the euclidean distance in Rn by

d(x, y) = ‖x− y‖ =

(
n∑
i=1

(xi − yi)2

) 1
2

.

This is indeed a metric. The topology generated by the euclidean distance in-

duces the standard topology on Rn. The space Rn with its usual topology will be

considered in Chapter 4.

From now, we will simplify the notation. If (Ω, T ) is a topological space, we will

omit T and just say that Ω is a topological space.

Definition 1.8. If Ω is a topological space, Ω is said to be metrizable if there

exists a metric d on Ω that induces the topology of Ω.

Proposition 1.7. (Munkres (2014), Section 16) Let (Ω, T ) be a topological space.

If Γ is a subset of Ω, the collection

TΓ = {Γ ∩ U ; U ∈ T }

is a topology on Γ.

The topology TΓ is called the subspace topology and (TΓ) is called a subspace of

(Ω, T ).

Proposition 1.8. Any subspace of a metrizable space is metrizable.

Proof. Let (Ω, T ) be a metrizable space by some metric d and let (Γ, TΓ) a subspace

of (Ω, T ). Then, the metric d|Γ×Γ = dΓ defined by dΓ(ω, υ) = d(ω, υ) for all

ω, υ ∈ Γ is a metric on Γ which induces the topology TΓ.

Definition 1.9. Given a subset A of a topological space Ω, the interior of A is

defined as the union of all open sets contained in A, and the closure of A is defined

as the intersection of all closed sets containing A.

The interior of A is denoted by Ao and the closure of A is denoted by Ā. By the

definition of a topology, Ao is an open set and Ā is a closed set.

Definition 1.10. A subset A of a space Ω is said to be dense in Ω if Ā = Ω.
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Definition 1.11. A collection A of subsets of a space Ω is said to cover Ω, or to

be a covering of Ω, if the union of the elements of A is equal to Ω. The collection

A is called an open covering of Ω if each of its elements is an open set of Ω.

Definition 1.12. A space for which every open covering contains a countable

subcovering is called a Lindelöf space. A space having a countable dense subset is

often said to be separable.

Proposition 1.9. An arbitrary intersection of closed sets in a Lindelöf space can

be writen as a countable intersection of closed sets.

Proof. Let Ω be a Lindelöf space and {Bθ}θ∈Θ be a collection of closed sets of

Ω, where Θ is a nonempty index set. Then, Ω − Bθ is open for each θ ∈ Θ

and, consequently,
⋃
θ∈Θ(Ω−Bθ) is open. Hence, since Ω is Lindelöf, there exists

a countable sequence {θj}j∈N ⊂ Θ such that
⋃
θ∈Θ(Ω − Bθ) =

⋃
j∈N(Ω − Bθj).

Therefore,

⋂
θ∈Θ

Bθ = Ω−

(⋃
θ∈Θ

(Ω−Bθ)

)
= Ω−

(⋃
j∈N

(Ω−Bθj)

)
=
⋂
j∈N

Bθj

and the proof is complete.

Theorem 1.3. (Heinonen et al. (2015), Section 3.3) Every subspace of a separable

metric space is separable.

Theorem 1.4. (Heinonen et al. (2015), Section 3.3) A metric separable space is

Lindelöf.

Continuous functions

In Section 2.3.1 we investigate how continuous RN derivatives can lead to propor-

tional likelihood functions. Next, we present the definition and properties that

will be necessary to understand our results in that section.

Definition 1.13. Let Ω and Υ be two topological spaces. A function f : Ω −→ Υ

is said to be continuous if for each open set V of Υ, the set f−1(V ) is an open set

of Ω.

Theorem 1.5. (Munkres (2014), Theorem 18.1) Let Ω and Υ be two topological

spaces and let f : Ω −→ Υ. Then, f is continuous if and only if for each ω ∈ Ω and

each neighborhood V of f(ω), there is a neighborhood U of ω such that f(U) ⊂ V .

Proposition 1.10. (Munkres (2014), Theorem 18.2) If f : Ω −→ Υ is continuous

and Γ is a subspace of Ω, then the restricted function f
∣∣
Γ

: Γ −→ Υ is continuous.
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Definition 1.14. Let f : Ω −→ Υ and let ω ∈ Ω. If for each neighborhood V of

f(ω), there exists a neighborhood U of ω such that f(U) ⊂ V , then we say that

f is continuous at ω.

Theorem 1.6. (Munkres (2014), Theorem 21.1) Let f : Ω −→ Υ and let Ω and

Υ be metrizable with metrics dΩ and dΥ, respectively. Then, f is continuous at

ω ∈ Ω if, and only if, for each ε > 0 there exists δ > 0 such that

dΩ(ω, υ) < δ =⇒ dΥ(f(ω), f(υ)) < ε.

Theorem 1.7. (Munkres (2014), Theorem 21.3) Let f : Ω −→ Υ. If f is

continuous at ω, then for every convergent sequence ωn −→ ω, the sequence

f(ωn) −→ f(ω). The converse holds if Ω is a metrizable space.

Measures and topological spaces

In Chapter 2, our sample space is a separable metric space. This space is very

special since we can extract a countable subcovering from every open covering. In

particular, since the σ-algebra will be generated by the open balls of this metric

separable space it will be possible to calculate the probability of an arbitrary union

of events. This is the key of the proof of Theorem 2.2.

Definition 1.15. Let Ω be a topological space. The Borel σ-algebra B(Ω) is the

smallest σ-algebra in Ω that contains all open subsets of Ω. The elements of B(Ω)

are called Borel sets of Ω.

Since a topology is closed for arbitrary union of open sets and all open sets of Ω

are in B(Ω), the union of any collection of open sets is a Borel set. On the other

hand, since a σ-algebra is closed under complement, all closed sets of Ω are Borel

sets and, consequently, the intersection of any collection of closed sets is a Borel

set.

Definition 1.16. A topological space Ω is called a Hausdorff space if for each pair

ω1, ω2 of distinct points of Ω, there exist neighborhoods U1 and U2 of ω1 and ω2,

respectively, such that U1 ∩ U2 = ∅.

Definition 1.17. Let Ω be a Hausdorff space. A measure µ on the σ-algebra B(Ω)

is called:

1. a Borel measure on Ω if

µ(K) < +∞

for every compact K ⊂ Ω;
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2. locally finite if every point ω of Ω has a neighborhood Uω such that µ(Uω) <

+∞;

3. inner regular if for every B ∈ B(Ω)

µ(B) = sup{µ(K); K ⊂ B, K is compact};

4. outer regular if for every B ∈ B(Ω)

µ(B) = inf{µ(U); B ⊂ U, U is open};

5. regular if it is both inner regular and outer regular.

Definition 1.18. A measure defined on the Borel σ-algebra B(Ω) of a Hausdorff

space Ω is called a Radon measure on Ω if its is both locally finite and inner

regular.

Definition 1.19. A topological space Ω is called Polish when its topology has a

countable base and can be defined by a complete metric.

A metric is called complete when it induces a complete space. In turn, a space Ω

is said to be complete if every Cauchy sequence in Ω converges.

Theorem 1.8. (Bauer (2001), Theorem 26.3) On a Polish space Ω every locally

finite Borel measure µ is a σ-finite Radon measure.

Every finite measure is locally finite. Hence, on a Polish space, every probability

measure is a Radon Measure. We end this chapter with some results from Piccioni

(1982). These results will be usefull in Section 2.3.

Let Ω be a metric separable space and let B(Ω) the Borel σ-algebra of Ω

Theorem 1.9. (Piccioni (1982), Theorem I) Any locally finite measure on (Ω,F)

is σ-finite.

Theorem 1.10. (Piccioni (1982), Theorem II) If µ is a locally finite measure on

(Ω,B(Ω)), then the support of µ, say Sµ, has total measure, i.e., µ(Sµ) = µ(Ω).

In particular, any probability measure defined on a metric separable space has a

support with total measure.

Proposition 1.11. Let ν and µ be measures on (Ω,F) and let Sν and Sµ the

supports of ν and µ, respectively. If ν << µ, then Sν ⊂ Sµ.
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Proof. For any ω /∈ Sµ, there exists an open set Uω such that µ(Uω) = 0. Because

ν << µ, it follows that ν(Uω) = 0. Then, ω /∈ Sν and Scµ ⊂ Scν .

The following result from Piccioni (1982) guarantees the uniqueness of continuous

versions of densities under some mild conditions.

Theorem 1.11. Let µ and ν be LF measures on (Ω,F) such that µ << ν and

Sµ = Sν = Ω. If there exists a continuous version of dµ/dν on Ω, it is unique.

The following variate of the previous theorem will be of particular interest in the

results presented further ahead in this thesis.

Theorem 1.12. Let µ and ν be LF measures on (Ω,F) such that µ << ν. If

there exists a continuous version of dµ/dν on Sµ, it is unique.

Proof. Simply use Proposition 1.11, consider the measures µ
∣∣
Sµ

and ν
∣∣
Sµ

and apply

the previous theorem.





Chapter 2

Likelihood Proportionaly

Theorem

In this Chapter we provide a rigorous definition of the likelihood function. If

a population P = {Pθ; θ ∈ Θ}, Θ a nonempty set, is dominated by a σ-finite

measure ν, the likelihood function is a function of θ and will be defined in terms

of the Radon-Nikodým derivatives of Pθ with respect to ν. Since this definition

depends on the choice of ν, we ask ourselves whether the choice of the dominanting

measure has any influence in the inference process.

2.1 Motivation

Consider the following definition.

Definition 2.1 (Statistical model). A statistical model is a family of probability

measures P on (Ω,F), i.e P = {Pθ; θ ∈ Θ}, where the Pθ’s are probability

measures and Θ is an arbitrary index set. In the particular case where Θ ⊂ Rd

for d ∈ N, P is called a parametric model, θ a parameter and Θ the parameter

space. In any other case P is called a non-parametric model.

A statistical inference problem can be generally described as follows. Given a

model P , one wants to estimate a population Pθ∗ ∈ P based on a sample (realiza-

tion(s) from Pθ∗ - a random experiment). The likelihood function is one way to

quantify the likelihood of each Pθ having generated the data. We formally define

the likelihood function as follows.

Definition 2.2 (Likelihood function). Let P = {Pθ; θ ∈ Θ} be a statistical

model and ν any σ-finite measure such that P << ν. For a given observed sample

point ω, the likelihood function l(θ;ω) for Pθ ∈ P is given by the Radon-Nikodým

derivative
dPθ
dν

(ω), for all θ ∈ Θ.

13
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Note that the only condition imposed to the measure ν in the definition above is

that it dominates the model P . In many cases, the choice for ν is natural and

no other possibility is even considered. For example, the Lebesgue measure for

continuous random variables and the counting measure for discrete ones. This

is in fact how the likelihood function is defined in many books. Nevertheless, it

may be the case that the choice of the dominating measure is not obvious and

it is then natural to question how one should proceed. Consider, for example, a

homogeneous Poisson processes (PP) in a region S ∈ Rd, i.e. P = {PP (λ), λ ∈
R+}. There are two well-known choices for the dominating measure in this case.

The first one is to use the measure of a homogeneous Poisson process with rate

λ0, for any fixed λ0 > 0. The second one, based on the factorisation of the

process in terms of the number of points N and their locations, is the product

measure between the counting and the N -dimensional Lebesgue measures. The

two likelihood functions induced by those measures are, respectively,

exp

{
−
∫
S

(λ− λ0)ds

} N∏
j=1

(λ/λ0) and
e−λµ(S)(λµ(S))N

N !
(µ(S))−N , (2.1)

where µ(S) is the volume of S.

Note that both functions are proportional w.r.t. λ and, therefore, under the Like-

lihood Principle, lead to the same inference. It is then natural to ask ourselves

if different choices for the dominating measure always lead to proportional likeli-

hoods. A positive answer for this question validates Definition 2.2 in terms of the

Likelihood Principle.

The Likelihood Principle specifies how the likelihood function ought to be used

for data reduction - a detailed addressing of the LP can be found in Berger and

Wolpert (1988).

The Likelihood Principle. All the information about Pθ obtainable from an

experiment is contained in the likelihood function for Pθ given the sample. Two

likelihood functions contain the same information about Pθ if they are proportional

to one another.
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2.2 Likelihood Proportionality Theorem

The proportionality mentioned in the LP stated above means that l1(θ;ω) =

h(ω)l2(θ;ω), with l1 and l2 being the two likelihood functions. This is a gen-

eral version of the LP, which is a variant from the version presented in Berger and

Wolpert (1988) [page 19]. It may be contextualised in different cases and stated

in particular ways. For example, considering different data points ω or even differ-

ent experiments which, in our construction, could be characterised as the sample

consisting of observing different functions X ∈ M(Ω,F). However, as motivated

by the example in the previous section, we consider the LP under the perspective

of different dominating measures. This way, Definition 2.2 is validated by the LP

if different dominating measures lead to proportional likelihood functions. Such

a result is stated in its details in the Likelihood Proportionality Theorem further

ahead in this section.

Before stating and proving the theorem, we need some auxiliary results. The

first one is a neat result from Halmos and Savage (1949) (Lemma 7) considering

dominated families of measures.

Lemma 2.1. (Halmos and Savage (1949)) Let P = {Pθ; θ ∈ Θ} be a family of

probability measures and ν a σ-finite measure on (Ω,F). If P << ν then there

exists a probability measure Q, such that P << Q and Q =
∑∞

i=1 ciPθi, where the

ci’s are nonnegative constants with
∑∞

i=1 ci = 1 and Pθi ∈ P, i ∈ N.

Proof. First, consider the case where ν is a finite measure. Let

P0 =

{
∞∑
i=1

ciPi; Pi ∈ P , ci ≥ 0 and
∞∑
i=1

ci = 1

}

so P ⊂ P0 and if Q ∈ P0, then Q << ν. Now, let C be the class of all measur-

able sets C for which there exists Q ∈ P0 such that Q(C) > 0 and dQ/dν > 0

ν-a.e. on C. To see that C is not empty, take any P0 ∈ P and note that

{ω ∈ Ω; dP0/dν(ω) > 0} ∈ C. Since ν is a finite measure, it follows that

supC∈C ν(C) < ∞. Moreover, there exists a sequence {Ci}∞i=1 ⊂ C such that

ν(Ci) −→ supC∈C ν(C). For each Ci, let Qi ∈ P0 such that Qi(Ci) > 0 and

dQi/dν > 0 ν-a.e. on Ci. Let Q0 =
∑∞

i=1 2−idQi/dν ∈ P0. It follows that

dQ0/dν =
∑∞

i=1 2−idQi/dν. Let C0 = ∪∞i=1Ci. Since

∞⋃
i=1

{
ω ∈ Ci;

dQi

dν
(ω) > 0

}
⊂
{
ω ∈ C0;

dQ0

dν
(ω) > 0

}
,

it follows that C0 ∈ C and, consequently, supC∈C ν(C) = ν(C0).
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We now prove that P << Q0 for all P ∈ P . Suppose that Q0(A) = 0. Let P ∈ P
and B = {ω ∈ Ω; dP/dν(ω) > 0}. Since Q0(A ∩ C0) = 0 and dQ0/dν > 0 ν-a.e.

on C0, it follows that ν(A ∩ C0) = 0 and, consequently, P (A ∩ C0) = 0. Then,

P (A) = P (A∩B) = P (A∩B∩Cc
0). If P (A∩B∩Cc

0) > 0, then ν(A∩B∩Cc
0) > 0.

But C0∪(A∩B∩Cc
0) ∈ C and ν(C0∪(A∩B∩Cc

0)) = ν(C0)+ν(A∩B∩Cc
0) > ν(C0),

which contradicts ν(C0) = supC∈C ν(C). Hence, P (A) = 0.

For the case where ν is a σ-finite measure, it suffices, in view of the preceding case,

to show that there exists a finite measure µ that dominates the family P . Since ν

is a σ-finite measure, there exists a partition {An}∞n=1 of Ω such that ν(An) <∞
for all n ∈ N. For each B ∈ F , let µ(B) =

∑∞
n=1 ν(B ∩Bn)/(2nν(Bn)). It follows

that µ is a finite measure on (Ω,F) and P << µ for every P ∈ P .

We now present a definition regarding sets of dominating measures and a proposi-

tion which will play an important role in the proof of the Likelihood Proportion-

ality Theorem.

Definition 2.3. For a family of probability measures P = {Pθ; θ ∈ Θ}, suppose

that the family Υ = {ν; P << ν and ν is σ-finite} is nonempty. If there exists

λ ∈ Υ such that λ << ν for all ν ∈ Υ, then we say that λ is a minimal dominating

measure for the family P .

Note that a minimal dominating measure is not necessarily unique. However, by

definition, two minimal dominating measures are always equivalent.

Proposition 2.1. Let P = {Pθ; θ ∈ Θ} be a family of probability measures defined

on the measurable space (Ω,F). Suppose that the family Υ = {ν; P << ν} is

nonempty. Then, there exists a minimal dominating measure λ for P.

Proof. Since Υ 6= ∅, there exists ν ∈ Υ such that P << ν and ν is a σ-finite

measure. Then, it follows from Lemma 2.1 that there exists a measure λ such that

P << λ and where λ =
∑∞

i=1 ciPθi , where the ci’s are nonnegative constants with∑∞
i=1 ci = 1 and Pθi ∈ P . We now show that measure λ is a minimal dominating

measure w.r.t. P , i.e. if ν ∈ Υ, then λ << ν. Take any ν ∈ Υ and let A ∈ F such

that ν(A) = 0. Then, Pθ(A) = 0 for all θ ∈ Θ and, particularly, Pθi(A) = 0, for

all i ∈ N. Thus, λ(A) =
∑∞

i=1 ciPθi(A) = 0.

For a function f in M(Ω,F), define [f ]µ as the equivalence class of f with respect

to µ, i.e. the collection of all functions g in M(Ω,F) such that g = f µ-a.s. We

now state and prove the Likelihood Proportionality Theorem.

Theorem 2.1 (The Likelihood Proportionality Theorem). Let P = {Pθ; θ ∈ Θ}
be a family of probability measures and ν1, ν2 σ-finite measures on (Ω,F), where
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Θ is a nonempty set. Suppose that P << ν1 and P << ν2. Then, there exists a

measurable set A such that Pθ(A) = 1, for all θ ∈ Θ, and there exist f1,θ ∈ [dPθ
dν1

]ν1,

f2,θ ∈ [dPθ
dν2

]ν1, for all θ ∈ Θ, and a measurable function h such that

f1,θ(ω) = h(ω)f2,θ(ω), ∀θ ∈ Θ, ∀ω ∈ A. (2.2)

Proof. Let ν be a minimal dominating measure for P (its existence is guaranteed

by Proposition 2.1). Now, take h1 ∈ [ dν
dν1

]ν1 , h2 ∈ [ dν
dν2

]ν1 and, for each θ ∈ Θ,

take gθ ∈ [dPθ
dν

]ν1 . Define, for each θ ∈ Θ, f1,θ(ω) = gθ(ω)h1(ω) and f2,θ(ω) =

gθ(ω)h2(ω). It follows that f1,θ ∈ [dPθ
dν1

]ν1 and f2,θ ∈ [dPθ
dν2

]ν1 . Let

A = {ω ∈ Ω; h2(ω) > 0}

so that ν(Ac) = 0 and consequently Pθ(A) = 1 for all θ ∈ Θ. Let h be defined to

be

h(ω) =

{
h1(ω)
h2(ω)

, if ω ∈ A,
0, if ω ∈ Ac.

Then, h ∈M(Ω,F) and

f1,θ(ω) = h(ω)f2,θ(ω), ∀θ ∈ Θ, ∀ω ∈ A.

Discussion of Theorem 2.1. Note that equation (2.2) implies that f1,θ(ω) ∝θ
f2,θ(ω), ∀θ ∈ Θ, ∀ω ∈ A, which validates Definition 2.2 in terms of the Likelihood

Principle i.e., independent of the choice of the dominating measure the inference

will (a.s.) be the same. Furthermore, the proportionality result is valid a.s. Pθ,

for all θ ∈ Θ, in particular, for the true θ.

Note, however, that Theorem 2.1 states the existence of versions of RN derivatives

that satisfies (2.2), which means that not all versions necessarily do. In this

sense, it would be useful to define a class of versions that always satisfy (2.2) and,

possibly, lead to a well-behaved likelihood function, for example, that satisfy the

classical regularity conditions. We further explore this issue in the first part of

Section 2.3 and in Chapter 4, considering versions of RN derivatives that satisfy

some continuity properties.

In some cases, [dPθ
dν1

]ν1 and [dPθ
dν2

]ν2 are unitary sets. For example, in a family P =

{Pθ; θ ∈ Θ} of discrete distributions, i.e. Pθ(ω) > 0, for all θ ∈ Θ and for all

ω ∈ Ω. Another interesting particular example is the case where the family of
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probability measures is a countable set. In this case, any pair of versions of the

RN derivative satisfies (2.2).

Proposition 2.2 below relates Theorem 2.1 to the Factorisation Theorem.

Proposition 2.2. Consider P, ν1 and ν2 from Theorem 2.1, Q from Lemma 2.1

and let T be a sufficient statistic for P with range space (T ,B). Then:

i) For each version g∗θ ∈ [dPθ
dQ

]ν1 in (Ω, σ(T )) and h1 ∈ [ dQ
dν1

]ν1 in (Ω,F), there

exists a B-measurable function gθ such that g∗θ = gθ ◦ T and the function

f1,θ = (gθ ◦ T )h1 is a version in [dPθ
dν1

]ν1, for all θ.

ii) If we obtain f1,θ and f2,θ as in i), for ν1 and ν2, respectively, from the same

g∗θ , then f1,θ ∝ f2,θ in a measurable set A, for all θ, such that ν1(Ac) = 0.

Proof. To prove i), for each θ ∈ Θ, take g∗θ ∈ [dPθ
dQ

]ν1 in (Ω, σ(T )) and h1 ∈ [ dQ
dν1

]ν1

in (Ω,F). Then, there exists a B-measurable function gθ such that g∗θ = gθ ◦T (see

Shao, 2003, Section 1.4, Lemma 1.2). Now, since T is a sufficient statistic for P ,

it follows that gθ ◦T ∈ [dPθ
dQ

]ν1 in (Ω,F) (see Lehmann, 1986, Section 2.6, Theorem

8). Define the function f1,θ as

f1,θ(ω) = gθ(T (ω))h1(ω), ∀ω ∈ Ω.

Thus, it follows from the RN chain rule, that f1,θ ∈ [dPθ
dν1

]ν1 for all θ ∈ Θ.

To prove ii), let f1,θ(ω) = gθ(T (ω))h1(ω) and f2,θ(ω) = gθ(T (ω))h2(ω) for all ω ∈ Ω

and θ ∈ Θ, where h2 ∈ [ dQ
dν2

]ν2 . Let A = {ω ∈ Ω; h1(ω) > 0}. Then, ν1(Ac) = 0

and f1,θ ∝ f2,θ in A, for all θ ∈ Θ.

Part i) from Proposition 2.2 can be seen as a stronger version of the Factorisation

Theorem as it states that the density representation is valid for all θ in the whole

Ω, i.e. it holds Pθ a.s., for all θ. The classical version of the Factorisation Theorem

is a consequence since all versions in [dPθ
dν1

]ν1 are Pθ equivalent.

Finally, note that the result in Theorem 2.1 is valid for any topological structure

induced in the sample space Ω, in particular, if Ω is non-separable and/or non-

metric. In the next section, a specific topological space will be needed.

2.3 Properties under continuity assumptions

We now discuss two particular versions of RN derivatives that always satisfy the

Likelihood Proportionality Theorem.
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2.3.1 Continuous versions of Radon-Nikodým derivatives

As we have mentioned before, we would like to define a subclass of RN versions

that would always satisfy the proportionality relation (2.2) and, therefore, provide

a practical way to obtain a likelihood function. That is achieved by considering

continuous versions of densities. We state two results (Theorem 2.2 and Proposi-

tion 2.3) that, under different assumptions, guarantee that continuous versions of

the RN derivatives, when these exist, do satisfy (2.2). In fact, in Piccioni (1982)

and Piccioni (1983), the likelihood function is defined as a continuous version of

the RN derivative. The author proves, under some additional assumptions, that,

if such a version exists, it is unique and this particular definition is justified by

the fact that such a version is related to a limit that builds on the intuition of

likelihood. Finally, regarding well-behaved versions of the likelihood function, con-

tinuity is a particular property of interest. In particular, most of the important

results regarding properties of the MLE rely on assumptions that include continu-

ity. In some cases, specially for parametric models, continuity of the likelihood is

implied by continuity of the RN density.

For the whole of this section, let Ω be a metric separable space with a distance

that induces the topology T . As usual, F is the smallest σ-algebra containing T
- the Borel σ-algebra of Ω. Since the topology of Ω is induced by a metric, Ω is

metrizable.

We now discuss why continuous versions of densities lead to likelihood functions

that carry the true intuition of likelihood. In the simplest case where Ω is discrete,

the likelihood is proportional to the probability of the observed sample which gives

a clear interpretation to the concept of likelihood. This concept is extended to the

continuous case by defining the likelihood ratio in a point ω0 as the limit

lim
A−→ω0

Pθ(A)

ν(A)
, (2.3)

where A is a neighborhood of ω0 such that the diameter of A tends to zero. Piccioni

(1982) shows that there exists a continuous version f cθ of dPθ/dν if and only if there

exists the limit in (2.3), in which case f cθ (ω0) is exactly this limit.

It is natural to expect that continuous versions will satisfy the proportionality

relation (2.2). This is established in Theorem 2.2 and Proposition 2.3 below. In

order to prove these two results, we require the following Lemma and Definition,

which are valid for general sample spaces Ω.

Lemma 2.2. Let P = {Pθ; θ ∈ Θ} be a family of probability measures and ν1 and

ν2 σ-finite measures on (Ω,F), where Θ is a nonempty set. Suppose that P << ν1

and P << ν2. Then, there exists a measurable set A such that
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(i) Pθ(A) = 1, for all θ ∈ Θ and

(ii) ν1

∣∣
A

and ν2

∣∣
A

are equivalent measures, that is, ν1

∣∣
A
<< ν2

∣∣
A

and ν2

∣∣
A
<<

ν1

∣∣
A

.

Proof. Since P << ν1, it follows from Lemma 2.1 that there exists a sequence

{ci}∞i=1 of nonnegative constants such that
∑∞

i=1 ci = 1 and there exists a sequence

{θi}∞i=1 ⊂ Θ such that P << Q, where Q =
∑∞

i=1 ciPθi . Now define for each i ∈ N
the following sets

A1,i =

{
ω ∈ Ω;

dPθi
dν1

(ω) > 0

}
and A2,i =

{
ω ∈ Ω;

dPθi
dν2

(ω) > 0

}
.

Thus, Pθi(A1,i) = 1 and Pθi(A2,i) = 1, ∀i ∈ N. Let Ai = A1,i∩A2,i (Ai is measurable

since every A1,i and A2,i are measurable), then Pθi(Ai) = 1, ∀i ∈ N. Let A =⋃
i∈NAi, then clearly Pθi(A) = 1, ∀i ∈ N (simply note that Ai ⊂ A) and, since

Q =
∑∞

i=1 ciPθi , it follows that Q(A) = 1. Now, since Q(Ac) = 0 and P << Q,

Pθ(A
c) = 0, ∀θ ∈ Θ. Therefore, Pθ(A) = 1, ∀θ ∈ Θ.

To prove (ii), suppose that there exists a measurable set B ∈ F such that ν2(A ∩
B) = 0 but ν1(A ∩B) > 0. Since A ∩B =

⋃
i∈N(Ai ∩B), there exists i0 ∈ N such

that ν1(Ai0 ∩B) > 0. Hence,

0 <

∫
Ai0∩B

dPθi0
dν1

dν1 = Pθi0 (Ai0 ∩B). (2.4)

On the other hand, since ν2(A ∩ B) = 0, ν2(Ai ∩ B) = 0, ∀i ∈ N, and then, by

hypothesis, Pθ(Ai ∩ B) = 0, ∀(θ, i) ∈ Θ × N. In particular, Pθi0 (Ai0 ∩ B) = 0,

which contradicts (2.4). This implies that, for all B ∈ F , if ν2(A ∩ B) = 0, then

ν1(A ∩ B) = 0, which means that ν1

∣∣
A
<< ν2

∣∣
A

. The proof that ν2

∣∣
A
<< ν1

∣∣
A

is

symmetrically analogous.

Definition 2.4 (Dominating pair). Consider P = {Pθ; θ ∈ Θ}, where Θ is a

nonempty set, to be a family of probability measures and let ν1 and ν2 be σ-finite

measures on (Ω,F) such that P << ν1 and P << ν2. A pair (A, ν3) is called a

dominating pair for the triple (P , ν1, ν2), where A ∈ F and ν3 =
∑∞

i=1 ciPθi for

some sequences {θi}∞i=1 and {ci}∞i=1 such that
∑∞

i=1 ci = 1, if νi
∣∣
A
<< νj

∣∣
A
, i, j =

1, 2, 3 and ν3(A) = 1.

Note that a dominating pair for (P , ν1, ν2) always exists. That is guaranteed by

Lemma 2.1 and Lemma 2.2.
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Theorem 2.2. Let (A, ν3) be a dominating pair for (P , ν1, ν2). If there exist con-

tinuous versions of Radon-Nikodým derivatives f1,θ ∈ [dPθ|A
dν1|A

]ν1|A, f2,θ ∈ [dPθ|A
dν2|A

]ν1|A,

∀θ ∈ Θ, then, for all h ∈ [dν2|A
dν1|A

]ν1|A, there exists a measurable set Bh ∈ F(A) such

that Pθ(Bh) = 1, for all θ ∈ Θ, h is continuous on Bh and

f1,θ(ω) = h(ω)f2,θ(ω), ∀θ ∈ Θ, ∀ω ∈ Bh.

Proof. Let {Pθi} be a family of probability measures used in the construction of

the measure ν3. Now, define measures Ṗθ, ν̇1, ν̇2 and ν̇3 to be the restriction of

the respective measures on (A,F(A)), for all θ ∈ Θ. For each i ∈ N, consider the

continuous derivatives f1,θi ∈ [
dṖθi
dν̇1

]ν̇1 , f2,θi ∈ [
dṖθi
dν̇2

]ν̇1 and take any h ∈ [dν̇2
dν̇1

]ν̇1 . For

each i ∈ N, define

Ai = {ω ∈ A f1,θi(ω) = h(ω)f2,θi(ω)}.

Note that the RN chain rule implies that ν1(Aci) = 0 for all i ∈ N. Now, let

Bi = {ω ∈ A; f2,θi(ω) > 0},

and let B =
⋃∞
i=1Bi, Dh =

⋂∞
i=1Ai and Sh = Dh ∩ B. Hence, it follows that

ν̇3(B) = 1 = ν̇3(Sh) = 1 and, consequently, Ṗθ(Sh) = 1, for all θ ∈ Θ. We claim

that h is continuous on the subspace Sh. To see that, note first that since Ω is

a metrizable and separable space we know from Theorem 1.8 that any subspace

of a metrizable space is metrizable and from Theorem 1.3 that every subspace of

a metric separable space is separable. Hence, the subspace Sh of Ω is metrizable

and separable. Therefore, we can use Theorem 1.7 to prove that

h : Sh −→ R

is continuous.Fix ω0 ∈ Sh and let {ωn}∞n=1 ⊂ Sh such that limn ωn = ω0. Thus,

by the definition of Sh, it follows that ω0 ∈ Dh and there exists i0 ∈ N such that

ω0 ∈ Bi0 . This implies that

h(ω0) =
f1,θi0

(ω0)

f2,θi0
(ω0)

. (2.5)

Now, since f2,θi0
is continuous in A and (0,+∞) is an open set in R, we have

by Definition 1.14 that Bi0 = f−1
2,θi0

((0,+∞)) is an open set in A. Hence, by the

definition of a subspace, we have that Sh ∩Bi0 is an open set in Sh. Thus, by the

convergence of the sequence {ωn}∞n=1, there exists n0 ∈ N such that, for n ≥ n0,



22 Likelihood Proportionaly Theorem

ωn ∈ Sh ∩Bi0 and

h(ωn) =
f1,θi0

(ωn)

f2,θi0(ωn)
. (2.6)

Finally, from (2.5), (2.6) and the continuity of f1,θi0
and f2,θi0

, it follows that

lim
n
h(ωn) = h(ω0),

which establishes the continuity of h in Sh.

Now, for each θ ∈ Θ, define the following set

Bθ = {ω ∈ Sh; f1,θ(ω) = h(ω)f2,θ(ω)}.

It follows, by the RN chain rule, that ν̇1(Bc
θ

⋂
Sh) = 0, for all θ ∈ Θ. Furthermore,

since the function (f1,θ − hf2,θ) is continuous on Sh, we have that Bθ = (f1,θ −
hf2,θ)

−1({0}) is a closed set in Sh for each θ ∈ Θ and, consequently, Bh =
⋂
θ∈ΘBθ

is also a closed set in Sh. Since Sh is metric separable, it follows from Theorem

1.4 that Sh is Lindelöf. This implies, by Theorem 1.9, that there exists a sequence

{θj} ⊂ Θ such that Bh =
⋂∞
j=1 Bθj . Moreover, since ν̇1(Bc

θ

⋂
Sh) = 0, for all

θ ∈ Θ, it follows that ν̇1(Bc
h

⋂
Sh) = 0 which, in turn, implies that Ṗθ(Bh) = 1 for

all θ ∈ Θ, and

f1,θ(ω) = h(ω)f2,θ(ω), ∀θ ∈ Θ, ∀ω ∈ Bh.

Moreover, Ṗθ(Bh) = Pθ
∣∣
A

(Bh) = Pθ(A ∩ Bh) = 1 for all θ ∈ Θ. Since Pθ(A) = 1,

we have that Pθ(Bh) = Pθ(A ∩Bh) = 1 for all θ ∈ Θ. The proof is complete.

Theorem 2.2 defines a specific subclass of RN versions that always satisfies the

proportionality relation (2.2). Moreover, if the dominating measures under con-

sideration are locally finite (LF), Theorem 1.12 guarantees that the continuous

version (w.r.t. each of the measures) is unique. In many statistical models, there

exist, and it is straightforward to obtain, continuous versions of f1,θ and f2,θ in Ω,

for all θ ∈ Θ.

Let Sν be the support of a measure ν on (Ω,F). The following corollary applies

to several examples of statistical models.

Corollary 2.1. Suppose that ν1 and ν2 are LF measures with Sν1 = Ω. Sup-

pose also that there exist continuous versions of Radon-Nikodým derivatives f1,θ ∈
[dPθ
dν1

]ν1, f2,θ ∈ [dPθ
dν2

]ν1, for all θ ∈ Θ, and that f1,θ(ω) > 0 and f2,θ(ω) > 0, for all

ω ∈ Ω and θ ∈ Θ. Then

f1,θ(ω) ∝θ f2,θ(ω), ∀ω ∈ Ω, ∀θ ∈ Θ.
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Proof. Since f1,θ and f2,θ are strictly positive in Ω, for all θ ∈ Θ, it follows that all

the Pθ’s, ν1 and ν2 are equivalent and, by Proposition 1.11, Sθ = Sν2 = Sν1 = Ω,

for all θ ∈ Θ. For each θ ∈ Θ, define hθ(ω) =
f1,θ(ω)

f2,θ(ω)
, for all ω ∈ Ω, and note

that, for all θ ∈ Θ, hθ ∈ [dν2
dν1

]ν1 and hθ is continuous in Ω. Since, ν1 and ν2 are LF

measures, Theorem 1.12 guarantees that all the hθ’s coincide in Ω, i.e. hθ = h,

for all θ ∈ Θ. The result follows from the fact that f1,θ(ω) = h(ω)f2,θ(ω), for all

ω ∈ Ω and for all θ ∈ Θ.

Proposition 2.3. Let P = {Pθ; θ ∈ Θ} be a family of probability measures and ν1

and ν2 LF measures on (Ω,F), where Θ is a nonempty set, P << ν1, P << ν2. Let

(ν3, A) be a dominating pair for (P , ν1, ν2) and Sθ, S1, S2 and S3 be the supports of

Pθ (for each θ ∈ Θ), ν1, ν2 and ν3, respectively. If there exists a continuous version

on Sθ of the Radon-Nikodým derivative f2,θ ∈ [
dPθ|Sθ
dν2|Sθ

]ν1|Sθ , ∀θ ∈ Θ, and there

exists a continuous version on S3 of the Radon-Nikodým derivative h ∈ [
dν2|S3
dν1|S3

]ν1|S3 ,

then f2,θ and h are unique in Sθ and S3, respectively, and there exists an unique

continuous version of f1,θ ∈ [
dPθ|Sθ
dν1|Sθ

]ν1|Sθ on Sθ, for all θ ∈ Θ. Moreover, we have

that f1,θ(ω) and f2,θ(ω) are proportional for every θ ∈ Φω = {θ ∈ Θ; ω ∈ Sθ}.

Proof. Simply note that Sθ ⊂ S3 (Proposition 1.11) and define f1,θ(ω) = h(ω)f2,θ(ω),

∀ω ∈ Sθ, ∀θ ∈ Θ. The uniqueness of f1,θ, f2,θ and h is guaranteed by Theorem

1.12.

2.3.2 Continuous likelihood functions

For each θ ∈ Θ, take a version fθ ∈ [dPθ
dν

] and let F = {fθ; θ ∈ Θ}.

Definition 2.5. (Fraser and Naderi (2007)) F is said to be continuous on Θ if Θ

is a separable metric space and if, for each ω in Ω, fθ(ω) is continuous in θ.

Lemma 2.3. Let ν1 and ν2 be two σ-finite measures on (Ω,B) such that P <<

νi, i = 1, 2. Suppose that Θ is a separable metric space and for each θ ∈ Θ there

exists versions f1,θ ∈ [dPθ
dν1

] and f2,θ ∈ [dPθ
dν2

] such that F1 = {f1,θ; θ ∈ Θ} and

F2 = {f2,θ; θ ∈ Θ} are continuous on Θ. Then, there exist a measurable set A

and a measurable function h such that Pθ(A) = 1 for all θ ∈ Θ and

f1,θ(ω) = f2,θ(ω)h(ω),∀ω ∈ A, ∀θ ∈ Θ. (2.7)

Proof. Since P << ν1, it follows from Lemma 2.1 that there exists a sequence

{ci}∞i=1 of nonnegative constants such that
∑∞

i=1 ci = 1 and there exists a sequence

{θi}∞i=1 ⊂ Θ such that P << Q, where Q =
∑∞

i=1 ciPθi . Since Θ is separable there

exists a countable subset Θ0 = {θn}∞n=1 ⊂ Θ such that Θ0 is dense in Θ. Then,
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since P << Q and Θ0 is a countable set, it follows from the RN chain rule that

there exist a measurable set F and measurable functions h1 ∈ [ dQ
dν1

] and h2 ∈ [ dQ
dν2

]

such that Q(F ) = 1 and

f1,θ(ω) = gθ(ω)h1(ω),∀ω ∈ F, ∀θ ∈ Θ0, (2.8)

f2,θ(ω) = gθ(ω)h2(ω),∀ω ∈ F, ∀θ ∈ Θ0, (2.9)

where gθ is the Radon-Nikodým derivative of Pθ with respect to Q. Let G = {ω ∈
Ω; h2(ω) > 0}. Define A = F ∩ G and let l(ω) = h2(ω)IA(ω) + IAc(ω). Thus,

Q(A) = 1 and

f1,θ(ω) = f2,θ(ω)
h1(ω)

l(ω)
,∀ω ∈ A,∀θ ∈ Θ0. (2.10)

Now, fix θ ∈ Θ. Then, there exists a sequence {θn}∞n=1 ⊂ Θ0 such that limn θn = θ.

Since for each ω ∈ A the derivatives f1,θ(ω) and f2,θ(ω) are continuous on θ, taking

the limit in (2.10), it follows that

f1,θ(ω) = f2,θ(ω)h(ω),∀ω ∈ A,

where h = h1/l. Since θ is arbitrary,

f1,θ(ω) = f2,θ(ω)h(ω), ∀ω ∈ A, ∀θ ∈ Θ,

where Pθ(A) = 1 for all θ ∈ Θ and h is a measurable function.

Lemma 2.3 says that if l1(θ|ω) and l2(θ|ω) are continuous likelihood functions

with respect to the dominating measures ν1 and ν2, respectively, then, they are

necessarily proportional in θ. In summary, continuous likelihood functions satisfy

the LPT.

Theorem 2.3. Let ν1 and ν2 be two σ-finite measures on (Ω,B) such that P <<

νi, i = 1, 2. Suppose that Θ is a separable metric space and for each θ ∈ Θ there

exists a version f1,θ ∈ [dPθ
dν1

] such that F1 = {f1,θ; θ ∈ Θ} is continuous on Θ.

Then, for each θ ∈ Θ, there exists a version f2,θ ∈ [dPθ
dν2

]such that

1. F2 = {f2,θ; θ ∈ Θ} is continuous on Θ;

2. there exists a measurable set A and a measurable function h such that

f1,θ(ω) = f2,θ(ω)h(ω),∀ω ∈ A,∀θ ∈ Θ,

where Pθ(A) = 1 for all θ ∈ Θ.
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Proof. We will first prove the assertion 1. Let Q =
∑∞

i=1 ciPθi and Θ0 ⊂ Θ as in

Lemma 2.3. Then, there exist a measurable set F and a measurable function h1

sucht that Q(F ) = 1, h1 is strictly positive on F and

f1,θ(ω) = gθ(ω)h1(ω), ∀ω ∈ F, ∀θ ∈ Θ0, (2.11)

where gθ is the Radon-Nikodým derivative of Pθ with respect to Q. Now, take

h2 ∈ [ dQ
dν2

] and, for each θ ∈ Θ, define

f2,θ(ω) = IF (ω)gθ(ω)h2(ω). (2.12)

Hence, for each θ ∈ Θ, f2,θ ∈ [dPθ
dν2

]. We claim that, for each ω ∈ F , the likelihood

function with respect to ν2 is continuous on Θ. To see that, fix θ0 ∈ Θ and

ω ∈ F . Since Θ0 is a dense subset of Θ, there exists a sequence {θn}∞n=1 such that

limn θn = θ0. By the continuity of the likelihood function with respect to ν1, we

have that f1,θ0(ω) = limn f1,θn(ω) and, consequently, it follows from (2.11) that

gθ0(ω) = lim
n
gθN (ω). (2.13)

Finally, it follows from (2.12) and (2.13) that

lim
n
f2,θn(ω) = lim

n
[IF (ω)gθn(ω)h2(ω)] = IF (ω)gθ0(ω)h2(ω) = f2,θ0(ω).

Thus, we conclude that F2 = {f2,θ; θ ∈ Θ} is continuous on Θ and the assertion

1 is proved. Since we know that F1 and F2 are continuous on Θ, the assertion 2

follows from Lemma 2.3.

Suppose that the population P is dominated by a σ-finite measure ν1 such that

the likelihood function obtained from ν1 is a continuous function from Θ to R.

Theorem 2.3 states that if we choose another σ-finite measure ν2 to dominate

the population then the new likelihood function obtained from ν2 will also be a

continuous function and consequently, by Lemma 2.3, these two different functions

will be proportional in θ. In other words, continuity is preserved when we change

the dominating measure.

2.4 The predictive measure as a dominating mea-

sure

Izbicki et al. (2014) propose a novel methodology for nonparametric density ratio
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estimation and show how this general framework can be extended to address the

problem of estimating the likelihood function when this is intractable. In particu-

lar, the authors use the density of the prior predictive measure in the denominator

of the ratio and, therefore, obtain an approximation for the likelihood function

induced by the use of this particular dominating measure. We now investigate

when the prior predictive measure can be used as a dominating measure for the

model.

Let X be a sample from a population in a parametric family P = {Pθ; θ ∈ Θ},
where Θ ⊂ Rk for a fixed k ∈ N and X be the range of X. Let R be a non

zero prior distribution on Θ and denote by BX and Bθ the σ-fields on X and Θ,

respectively. Suppose that the function

Θ 7−→ [0, 1]

θ 7−→ Pθ(B)

is Borel for any fixed B ∈ BX . Then, there is a unique probability measure P on

(X ×Θ,BX × BΘ) (Shao (2003), Chapter 4) such that, for B ∈ BX and C ∈ BΘ,

P (B × C) =

∫
C

Pθ(B)dR.

The posterior distribution of θ, given X = x, will be denoted by Pθ|x. The next

theorem provides a formula for the p.d.f of the posterior distribution Pθ|x.

Theorem 2.4. (Bayes Formula) Assume that P is dominated by a σ-finite mea-

sure ν and fθ(x) = dPθ
dν

(x) is a Borel funtion on (X ×Θ,BX × BΘ). Suppose that

m(x) =
∫

Θ
fθ(x)dR > 0. Then, the posterior distribution Pθ|x is dominated by R

and
dPθ|x
dR

(x) =
fθ(x)

m(x)
.

The function m in Theorem 2.4 is called the marginal p.d.f. of X with respect to

ν. Observe that the Bayes Formula is well defined only for the points X = x such

that m(x) > 0. If m(x) = 0 we may have problems. To see that, suppose there

exists x ∈ X such that m(x) = 0. Then, by the definition of m, it follows that∫
Θ

fθ(x)dR = 0,

and since R(Θ) > 0, R(Zc
x) = 0, where Zx = {θ ∈ Θ; fθ(x) = 0}. In words, given

X = x such that m(x) = 0, the likelihood function vanishes R-almost everywhere.

We will see later that the zero set of the function m plays an important role for

the predictive measure. Before that, we formalise the concept of this measure.
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Definition 2.6. The measure λ defined on (X ,BX ) by

λ(A) =

∫
A

mdν, ∀A ∈ BX

is called (prior) predictive measure.

Proposition 2.4. The predictive measure is independent of the choice of the mea-

sure that dominates the population P.

Proof. Let µ be a σ-finite measure such that P << µ. Let gθ(x) = dPθ
dµ

(x) and

define

m∗(x) =

∫
Θ

gθ(x)dR.

Now consider the predictive measure ξ obtained from m∗, i.e.,

ξ(A) =

∫
A

m∗dµ, ∀A ∈ BX .

We claim that λ = ξ. For any A ∈ BX ,

λ(A) =

∫
A

mdν =

∫
A

∫
Θ

fθ(x)dRdν
(i)
=

∫
Θ

∫
A

fθ(x)dνdR =

∫
Θ

Pθ(A)dR

=

∫
Θ

∫
A

gθ(x)dµdR
(ii)
=

∫
A

∫
Θ

gθ(x)dRdµ =

∫
A

m∗dµ = ξ(A),

where the equalities (i) and (ii) follow from Fubini’s theorem.

From now, let N denote the zero set of the function m. As we discussed previously,

we have a problem when m(x) = 0, since the likelihood function, given X = x,

is zero almost everywhere in this case. Therefore, the ideal marginal p.d.f. of X

with respect to ν is a function m such that m(x) > 0 for all x ∈ X .

Proposition 2.5. If m(x) > 0 for all x ∈ X , then the predictive measure λ

dominates P.

Note that, for the previous proposition to be valid, it is enough ν(N) = 0. Nev-

ertheless, the result is not guaranteed if we only have that Pθ(N) = 0 R-almost

everywhere.

Theorem 2.5. The predictive measure λ dominates Pθ if and only if Pθ(N) = 0.

In particular, λ dominates P if and only if Pθ(N) = 0 for all θ ∈ Θ.

Proof. If λ dominates Pθ, the result follows immediately since λ(N) = 0. Suppose

now that Pθ(N) = 0 and take A ∈ BX such that λ(A) = 0. We have to show that
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Pθ(A) = 0. Note that

0 = λ(A) = λ(A ∩N c) =

∫
A∩Nc

mdν. (2.14)

Then, since m is strictly positive in A ∩N c, equation (2.14) is true only if ν(A ∩
N c) = 0. Hence, Pθ(A ∩ N c) = 0. But, by hypothesis, Pθ(A) = Pθ(A ∩ N c) and

the result follows.

Theorem 2.6. If Mθ = {x ∈ X ; fθ(x) > 0} does not depend on θ, then P << λ.

Proof. Let M = Mθ for all θ ∈ Θ and let A ∈ BX such that λ(A) = 0. To show

that Pθ(A) for all θ ∈ Θ is sufficient to show that ν(A ∩M) = 0, since P << ν

and Pθ(A) = Pθ(A ∩M) for all θ ∈ Θ. Suppose that ν(A ∩M) > 0. Hence, since

fθ is strictly positive on A ∩M ,

Pθ(A) = Pθ(A ∩ S) =

∫
A∩S

fθdν > 0, ∀θ ∈ Θ. (2.15)

On the other hand,

λ(A) =

∫
A

mdν =

∫
A

∫
Θ

fθdRdν =

∫
Θ

Pθ(A)dR =

∫
Θ

Pθ(A ∩ S)dR, (2.16)

where the penultimate equation follows from Fubini’s theorem. Then, sinceR(Θ) >

0, it follows from (2.15) and (2.16) that λ(A) > 0, contradicting the assumption

that λ(A) = 0. So, ν(A ∩M) = 0 and the proof is complete.



Chapter 3

Exploring some model classes

We now explore the results from Chapter 2, specially the Likelihood Proportion-

ality Theorem, considering some classes of statistical models. We highlight special

aspects of that theorem and illustrate its importance in different contexts.

3.1 Finite-dimensional random variables

It is often the case in which the statistical model under consideration is a family

of probability measures consisting of a finite dimensional random variable with

discrete and/or continuous coordinates. This covers a wide range of models from

iid univariate random variables to highly structured hierarchical Bayesian models

with mixture components. In this case, the most common choice for dominat-

ing measure is the appropriate product of the counting and Lebesgue measures.

Nevertheless any probability measure with common support is a valid dominating

measure and, therefore, admits versions that lead to proportional likelihoods. A

particularly interesting example, that goes beyond a purely discrete or continuous

random variable, are point-mass mixtures.

Consider the probability measure of a r.v. Y such that P (Y = ai) = pi > 0, for

i = 1, . . . ,m and
∑m

i=1 pi = p < 1, and Y = Zj w.p. qj, such that Zj is a continuous

r.v. on B ⊂ R with Lebesgue density fj, for j = 1, . . . , n and
∑n

j=1 qj = 1− p. In

this case, Gottardo and Raftery (2009) show that the probability measure P of Y

is dominated by the measure ν1 + ν2, where ν1 is the counting measure and ν2 is

the Lebesgue measure and

dP

d(ν1 + ν2)
(y) =

m∑
i=1

piI{ai}(y) +
n∑
j=1

qjfj(y)IB\A(y), (3.1)

29
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where A = {a1, . . . , an}. The use of a non-valid RN derivative, in particular by

ignoring the indicator functions in (3.1), leads to misspecified likelihood functions

with possibly serious consequences in the inference process. The density in (3.1) is

uniquely defined on A and one should always consider continuous versions of the

fj’s (in B) when these exist. These versions not only guarantee the proportionality

of likelihoods obtained for different dominating measures (see Theorem 2.2) as it

also guarantees that the likelihood obtained is the limit in (2.3).

The result from Gottardo and Raftery (2009) is actually more general and provides

a valid dominating measure with the respective RN derivative for probability mea-

sures consisting of a countable mixture of mutually singular probability measures.

3.2 Exponential families

In this section, we discuss how the choice of the measure that will dominate the

model can affect an exponential family. Moreover, we will see how Exponential

families are related to the LPT.

Definition 3.1. (Shao (2003)) A parametric family P = {Pθ; θ ∈ Θ} dominated

by a σ-finite measure ν on (Ω,F) is called an exponential family if and only if

dPθ
dν

(ω) = exp{[η(θ)]τT (ω)− ξ(θ)}h(ω), ω ∈ Ω, (3.2)

where T is a random p-vector with p ∈ N, η is a function from Θ to Rp, h is a

nonnegative Borel function and

ξ(θ) = log{
∫

Ω

exp{[η(θ)]τT (ω)}h(ω)dν(ω).

Note that the Definition 3.1 depends on the measure ν. Then, if we change the

measure that will dominate the family P , the representation given in (3.2) will be

different. Thus, it is natural to ask if the exponential representation is independent

of the choice of the dominating measure, i.e., if P is dominated by a σ-finite

measure µ, then dPθ
dµ

has the form given in (3.2). The aim of this section is to

answer this question. Theorem 3.1 states that the definition of a exponential

family is independent of the choice of a dominating measure, i.e., if a family P
has densities with respect to a σ-finite measure ν given by (3.2), then for every

σ-finite measure µ that dominates P there will be exist functions gθ and hµ (that

do not depend on θ) such that

dPθ
dµ

(ω) = g(ω, θ)hµ(ω).
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Furthermore, the function g(ω, θ), named here kernel function, will be the same

for all the σ-finite measures that dominate the model. This kernel is:

g(ω, θ) = exp{[η(θ)]τT (ω)− ξ(θ)}.

The unique difference between the densities of a model with respect to two different

measures, say ν and µ, will be the measurable functions hν and hµ. Since hν and

hµ do not depend on θ, the class of Exponential families whose the densities are

given by (3.2) always satisfies the LPT. Before states the main theorem of this

section, we draw attention to a particular dominating measure. This dominanting

measure is discussed briefly in Shao (2003).

For any A ∈ F , define

λ(A) =

∫
A

hdν,

where the function h is the same measurable function in (3.2). Hence, λ is a σ-finite

measure on (Ω,F). We claim that P << λ. To see this, let B = {ω; h(ω) > 0}
and let λ(A) = 0 for some A ∈ F . Then, λ(A) = λ(A ∩B) and consequently∫

A∩B
hdν = 0.

Since the function h is strictly positive on A ∩ B, it follows that ν(A ∩ B) = 0

and Pθ(A) = Pθ(A ∩ B) = 0 for all θ ∈ Θ. Therefore, λ dominates P and, since

λ << ν, we have by RN chain rule

dPθ
dλ

(ω) = exp{[η(θ)]τT (ω)− ξ(θ)}, ω ∈ Ω. (3.3)

We can conclude two importants things from the result above: (i) the change of the

dominating measure has preserved the exponential representation and (ii) there

exists a measure λ such that λ dominates the model and the RN derivatives of Pθ

with respect to λ are strictly positive for all ω ∈ Ω and for all θ ∈ Θ. Observation

(ii) can be useful to demonstrate when a family F is not an exponential family

and it may also be usefull to prove when the predictive measure can be used as

a dominating measure for the model. Particularly, if m is the marginal p.d.f. of

a sample X with respect to ν, then m is strictly positive. Hence, the hypothesis

from Proposition 2.5 is satisfied.

Example 3.1. Let P = {Pθ θ = (a, β) ∈ R× (0,∞)} be a family of distributions

where each Pθ has an exponential distribution with two unknown parameters a and
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β, i.e.,

Pθ(A) =

∫
A

1

β
exp{−(x− a)

β
}I(a,∞)(x)dµ(x),

where A ∈ B(R) and µ is the Lebesgue measure on the real line. Then P is not an

exponential family.

Proof. We have from (3.3) that there exists a non zero measure λ such that Pθ

has a positive density with respect to λ given by

dPθ
dλ

(x) = exp{[η(a, β)]τT (x)− ξ(a, β)}, x ∈ Ω.

Let r ∈ R and take any a > r. If we define A = (−∞, r), then for all β ∈ (0,∞),

it follows that

P(a,β)(A) =

∫
(−∞,r)∩(a,∞)

1

β
exp{−(x− a)

β
}(x)dµ(x) = 0.

.

On the other hand, since

0 = P(a,β)(A) =

∫
A

exp{[η(a, β)]τT (x)− ξ(a, β)}dλ(x),

it must be λ((−∞, r)) = 0. Since r is arbitrary, we conclude that λ must be a

zero measure, which is a contradiction.

Theorem 3.1. Being an Exponential family is a property of the model P, i.e., it

is independent of the dominating measure ν from Definition 3.1. Moreover, if P
is an Exponential family, then, for all σ-finite mesure ν such that P << ν, there

exist functions η, T and ξ and there exists a measurable function hν such that

dPθ
dν

(ω) = exp{[η(θ)]τT (ω)− ξ(θ)}hν(ω), ω ∈ Ω,∀θ ∈ Θ.

Proof. Suppose that dPθ
dν

is given by (3.2). Consider the measure Q given by

Lemma 2.1 and let q ∈ [dQ
dν

]. Remember that Q is minimal and so Q << ν.

Without loss of generality we may assume that q > 0. Define, for each θ ∈ Θ, the

following function:

bθ(ω) = exp{[η(θ)]τT (ω)− ξ(θ)}m(ω), ω ∈ Ω, (3.4)

where m = hν/q. By RN chain rule, it follows that

exp{[η(θ)]τT (ω)− ξ(θ)}h(ω) =
dPθ
dQ

(ω)q(ω), ν − a.e. (3.5)
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Consequently, from (3.4) and (3.5), bθ = dPθ/dQ ν-almost-everywhere. Hence,

bθ ∈ [dPθ
dQ

]. Now, let µ be a σ-finite measure such that P << µ and let µ 6= ν.

Again, by the minimality of Q, Q << µ. Let s ∈ [dQ
dµ

] and define, for each θ ∈ Θ,

pθ(ω) = exp{[η(θ)]τT (ω)− ξ(θ)}hµ(ω), ω ∈ Ω, (3.6)

where hµ = ms. Hence, by RN chain rule, pθ ∈ [dPθ
dµ

] and the proof is complete.

Let C = {ν; ν is σ− finite and P << ν}. It follows from Theorem 3.1 that for all

ν ∈ C, there exists a version dPθ/dν such that

dPθ
dν

(ω) = g(ω, θ)hν(ω),∀ω ∈ Ω,∀θ ∈ Θ,

where the function g will be the same for any ν ∈ C. Hence, in particular, if P is

an Exponential family, the versions dPθ
dν

and dPθ
dµ

given by (3.2) and (3.6) satisfies

the LPT.

3.3 Missing data problems

Consider a statistical model P = {Pθ; θ ∈ Θ} on (Ω,F), such that Ω = Ω1 × Ω2

and F = σ(F1,F2). Suppose, however, that only ω1 ∈ Ω1 is observed. This is the

general formulation of a statistical missing data problem and may be motivated

by modelling reasons and/or because the marginal density of Pθ (w.r.t. some

dominating measure) on (Ω1,F1) is not available but the joint density on (Ω,F)

is. A likelihood-based inference approach considers the (pseudo-)likelihood, which

is obtained from the density of Pθ w.r.t. some dominating measure, and integrates

out the missing data somehow. This is typically done via EM (or Monte Carlo

EM) in the frequentist approach or via MCMC in the Bayesian approach. Both

methodologies involve dealing with the conditional measure of the missing data

given the data ω1 and the parameters θ.

Suppose that two dominating measures ν1 and ν2 for P are available. Each of

them may be used to obtain a RN derivative for measures Pθ and, consequently,

a (pseudo-)likelihood. If ω1 is observed, we have

πi(ω2|ω1, θ) ∝ πi(ω1, ω2|θ), i = 1, 2, (3.7)

where the right hand side is the RN derivative of Pθ w.r.t. νi. This way, the left

hand side is the density of the conditional measure of the missing data given data
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and θ w.r.t. some dominating measure which is induced by νi and, therefore, may

be different for ν1 and ν2.

Theorem 2.1 guarantees that the (pseudo-)likelihood is proportional w.r.t. θ only

and not w.r.t. ω2, which also needs to be estimated. As a consequence, although

both measures can be used, this choice may have great influence when devising

the inference methodology. The EM algorithm requires computing an expectation

w.r.t. the conditional measure of the missing data whilst the Monte Carlo EM

and the MCMC require sampling from this measure. If the conditional densities

πi(ω2|ω1, θ) are different for i = 1 and i = 2, it may be the case that the required

tasks are harder or even not feasible for one of them - although both densities are

valid ones.

An interesting example can be found in Gonçalves and Gamerman (2017), where

(ω1, ω2) is the realisation of a homogeneous Poisson process in a compact region

S ⊂ Rd. Furthermore, ω1 are the Poisson events remaining after performing

a Poisson thinning and ω2 are the thinned events. Therefore, the missing data

consists of a discrete random variable which represents the number of thinned

events and a vector of continuous r.v.’s representing their locations. Gonçalves

and Gamerman (2017) devise an MCMC algorithm to perform inference in their

model (which also involves a Gaussian process) which is a Gibbs sampling that

samples the missing data, from its full conditional distribution, in one of its steps.

As we have mentioned in Section 3.4, there are two obvious dominating measures to

obtain a density for the homogeneous Poisson process. Gonçalves and Gamerman

(2017) argue that their algorithm is feasible if and only if the measure consisting

of the product of the counting and multidimensional Lebesgue measure is used.

This leads to a conditional density where the marginal p.m.f. of the number of

points and the conditional Lebesgue density of their locations can be devised.

3.4 Poisson processes

Poisson process (PP) is the most common statistical model to fit point pattern

data. Consider some region S ⊂ Rd, for d ∈ N. Poisson processes can actually be

defined in more general measurable spaces (see Kingman, 1993, Chp. 2). Let us

first consider a homogeneous PP on S with intensity λ(s) = λ, ∀s ∈ S, λ ∈ R+,

which defines a probability measure Pλ. In this case, we have two obvious domi-

nating measures for Pλ. The first one represents a realization ω as (N, s1, . . . , sN),

where N is the number of points and the sj’s are their respective locations. We

can factor their joint density as π(N)π(s1, . . . , sN |N) and use the product measure

ν1 ⊗ ν2 as a dominating measure, where ν1 is the counting measure and ν2 is the
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N -dimensional Lebesgue measure. We get that

dPλ
d(ν1 ⊗ ν2)

(ω) =
e−λµ(S)(λµ(S))N

N !
(µ(S))−N , (3.8)

where µ(S) is the volume of S.

Another valid dominating measure is the probability measure ν of any PP for

which the intensity function is positive everywhere in S, in particular constant

and equals to 1. In that case, the RN derivative is given by Jacod’s formula (see

Andersen et al., 1993, Chp. II):

dPλ
dν

(ω) = exp

{
−
∫
S

(λ− 1)ds

} N∏
j=1

(λ/1). (3.9)

Note that the densities in (3.8) and (3.9) are proportional in λ. In a standard in-

ference problem where ω is observed and λ is to be estimated, there is no practical

difference in considering one or the other. In a more complex context, however, it

may be a crucial choice. Gonçalves and Gamerman (2017) propose a methodol-

ogy to make exact (discretisation-free) inference for spatio-temporal Cox processes

which is based on an augmented model consisting of a homogeneous PP. In their

case, choosing the dominating in (3.8) to obtain the (pseudo-)likelihood of the aug-

mented model is crucial to devise a valid MCMC algorithm to perform (Bayesian)

inference - this example is described in more details in Section 3.3.

In the case of a non-homogeneous PP, the measure of another PP is the only

obvious choice for a dominating measure. The density of a PP with intensity

function λ := {λ(s), s ∈ S} - measure Pλ, w.r.t. the measure ν of a unit intensity

PP is given by

dPλ
dν

(ω) = exp

{
−
∫
S

λ(s)− 1ds

} N∏
j=1

(λ(sj)/1). (3.10)

If we consider the Skorokhod space D of càdlàg functions with the respective

Skorokhod topology, we get that D is a separable space and the likelihood function

in (3.10) is continuous on D.

Note that, for a fixed ω, the expression in (3.10) is proportional (in λ) to the

following function - known as the Poisson process likelihood:

l(λ) = exp

{
−
∫
S

λ(s)ds

} N∏
j=1

λ(sj). (3.11)
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Finally, note that using the dominating measure of any other PP (with positive

intensity over S) would lead to a function proportional to the one in (3.11).

3.5 Diffusions and jump-diffusions

Brownian motion driven stochastic differential equations (SDE), known as diffu-

sion processes, are quite popular in the statistical literature to model a variety

of continuous time phenomena. Formally, a diffusion is defined as the continu-

ous time stochastic process which is the unique solution of a well-defined SDE.

Making statistical inference for diffusions is a challenging problem due to the com-

plex nature of such processes. The continuous time feature implies that they lie

on infinite-dimensional space and typically have unknown intractable transition

densities. As a consequence, an exact likelihood in a discretely observed context

is unavailable. The most promising solutions available stand out for treating the

inference problem without resorting to discretisation schemes (see Beskos et al.,

2006). These methodologies, called exact, rely on the (pseudo-)likelihood function

of a continuous-time trajectory and give rise to interesting issues related to the

context of this thesis. We discuss the case where the processes are univariate and

the diffusion process Y := {Ys, s ∈ [0, t]} is defined as the solution of an SDE of

the type:

dYs = a(Ys, θ)ds+ σ(Ys, θ)dWs, s ∈ [0, t], Y0 = y0, (3.12)

where Ws is a Brownian motion and functions a and σ are suppose to satisfy some

regularity conditions to guarantee the existence of an unique solution (see Kloeden

and Platen, 1995). Diffusion processes trajectories are a.s. continuous and non-

differentiable everywhere. An interesting generalisation considers the possibility of

discontinuity points stochastically defined by a marked Poisson process, possibly

non-homogeneous and depending on the state and time of the original diffusion

process. Such processes are called jump-diffusions and are also quite appealing in

a variety of applications. Formally, a jump-diffusion is the solution of the SDE:

dYs = a(Ys, θ)ds+ σ(Ys, θ)dWs + dJs, s ∈ [0, t], Y0 = y0, (3.13)

where Js is a marked Poisson process with intensity function λ(Ys, s, θ) and jump

size density f(·;Ys, s, θ) - in its most general form.

In a typical statistical problem, one is interested in estimating the functions

a(Ys, θ), σ(Ys, θ) and, in a jump-diffusion context, also λ(Ys, s, θ) and f(·;Ys, s, θ).
These are typically defined parametrically, as it is done here, but non-parametric

approaches may be considered. In the parametric case, the aim is to estimate the
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parameter set θ. As it was mentioned above, exact methodologies rely on the like-

lihood of a complete trajectory which can only be obtained if a valid dominating

measure is available. It turns out, however, that processes with distinct diffusion

coefficient σ define mutually singular probability measures. As a consequence,

there exists no σ-finite measure that simultaneously dominates the family of prob-

ability measures if this is uncountable, which is often the case (if it is countable,

a countable sum of measures would dominate - see Gottardo and Raftery (2009)).

Therefore, different values of θ define mutually singular measures and no likelihood

function can be obtained. The clever solution for this problem, firstly proposed in

Roberts and Stramer (2001), considers two transformations of the diffusion path.

This is decomposed as (Yobs, Ẋ), where Yobs are the discrete observations of Y

and Ẋ are transformed bridges between the observations. More specifically, for

(time-ordered) observations y0, . . . , yn at times t0, t1, . . . , tn, consider the Lamperti

transform Xs = η(Ys, θ) =
∫ Xs
y

1
σ(u,θ)

du, for some element y of the state space of

Y . This implies that X is the solution of a SDE with unit diffusion coefficient

and drift α(Xs, θ), which depends on function σ. Now, defining xi(θ) = η(yi, θ),

i = 0, . . . , n, consider the following transformation of the bridges of X between

the xi(θ) points, Ẋs = ϕ−1(Xs) = Xs −
(

1− s−ti−1

ti−ti−1

)
xi−1(θ)−

(
s−ti−1

ti−ti−1

)
xi(θ), for

s ∈ (ti−1, ti). This implies that the transformed bridges start and end in zero

and are, therefore, dominated by the measure of standard Brownian bridges. The

density of (Yobs, Ẋ) is decomposed as π(Yobs, Ẋ) = π(Yobs)π(Ẋ|Yobs) and obtained

w.r.t. to the parameter-free dominating measure νn ⊗Wn - the product measure

of the n-dimensional Lebesgue measure and the measure of a standard Brownian

bridges of respective time lengths. Lemma 2 from Beskos et al. (2006) gives that:

π(Yobs, Ẋ) =
n∏
i=1

η′(yi; θ)φ
(

(xi(θ)− xi−1(θ))/
√
ti − ti−1

)
exp {A(xn(θ); θ)− A(x0(θ); θ)}

exp

{
−
∫ T

0

(
α2 + α′

2

)
(ϕθ(Ẋs); θ)

}
, (3.14)

where A(u) =
∫ u

0
α(z, θ)dz and φ is the standard Gaussian density.

Assuming that σ is continuously differentiable, one can show that, under the supre-

mum norm, the density in (3.14) is continuous in C - the space of continuous

functions on [0, t]. The sup norm on C also defines a separable space.

In the case of jump-diffusions, the dominating measure combines the dominating

measure from (3.14) with the measure of a marked Poisson process with unit jump

intensity and some known jump size measure that dominates the jump size measure

of all measures in the family. Lemma 1 from (see Gonçalves et al., 2017) gives the
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desired likelihood function. As in the Poisson process example, if we consider the

Skorokhod space D of càdlàg functions with the respective Skorokhod topology,

the density obtained is continuous.



Chapter 4

Differentiation

Let (Ω,B) be a measurable space and let ν and µ be σ-measures defined on (Ω,B).

Suppose that ν << µ. The Radon-Nikodým theorem guarantees that there exists

an integrable function f , called Radon-Nikodým derivative, such that

ν(E) =

∫
E

fdµ, E ∈ F .

Note that the Radon-Nikodým theorem only guarantees the existence of f . It does

not suggest any method to obtain this derivative. Suppose that Ω is a metrizable

space. Let x ∈ Ω and I ∈ F . We write I =⇒ x (I contracts to x) to say that

x ∈ I and the diameter of I tends to zero. An interesting question is: can the

Radon-Nikodým derivative f behave like a genuine derivative?, i.e., can we find a

differentiation basis I = {I; I ∈ F} such that

lim
I=⇒x

ν(I)

µ(I)
= f(x). (4.1)

µ-almost everywhere? Section 1 presents an answer to this question. The purpose

of this chapter is to provide a method to obtain likelihood functions from a genuine

derivative as in (4.1). This is discussed in Section 2. Section 1 presents the results

on the theory of differentiation of measures needed to develop the theory in Section

2. All the theorems and definitions in Section 1 are from Evans and Gariepy (1991).

4.1 Differentiation of Radon measures

Let µ and ν be Radon measures on Rn. Since Rn is a Polish space, it follows from

Theorem 1.8 that µ and ν are σ-finite measures.

Definition 4.1. For each point x ∈ Rn, define

39
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Dµν(x) ≡

 lim sup
r→0

ν(B(x,r))
µ(B(x,r))

if µ(B(x, r)) > 0 for all r > 0,

+∞ if µ(B(x, r)) = 0 for some r = 0.

Dµν(x) ≡

{
lim inf
r→0

ν(B(x,r))
µ(B(x,r))

if µ(B(x, r)) > 0 for all r > 0,

+∞ if µ(B(x, r)) = 0 for some r = 0.

Definition 4.2. If Dµν(x) = Dµν(x) < +∞, we say ν is differentiable with

respect to µ at x and write

Dµν(x) ≡ Dµν(x) = Dµν(x).

Dµν(x) is the derivative of ν with respect to µ. We also call Dµν the density of ν

with respect to µ.

Definition 4.3. If Dµν(x) = Dµν(x) < +∞, we call x a density point of ν with

respect to µ. The set of the density points of ν with respect to µ will be denoted

by D(ν, µ).

Theorem 4.1. Let µ and ν be Radon measures on Rn. Then Dµν exists and is

finite µ a.e. Futhermore, Dµν is measurable.

Theorem 4.1 says that µ(D(ν, µ)c) = 0.

Theorem 4.2. Let ν and µ be Radon measures on Rn, with ν << µ. Then

ν(A) =

∫
A

Dµν dµ

for all Borel sets A ⊂ Rn. In other words

Dµν(x) =
dν

dµ
(x), µ a.e.

4.2 Defining the likelihood function as a deriva-

tive of measures

Let P = {Pθ; θ ∈ Θ} be a family of probability measures on Rn such that P << µ.

Since Rn is a Polish space and any probability measure is a locally finite measure,

it follows from Theorem 1.8 that each Pθ is a Radon measure. Therefore, in view

of Section 4.1, we can define DµPθ, the derivative of Pθ with respect to µ. The

aim of this section is to define the likelihood as a derivative DµPθ. To do that,

we should be able to exhibit a measurable set A such that Pθ(A) = 1 and DµPθ
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exists for all θ ∈ Θ and for all x ∈ A. In view of Theorem 4.2, DµPθ exists µ

almost everywhere, i.e., there exists, for each θ ∈ Θ, a measurable set Aθ such

that µ(Acθ) = 0 and DµPθ exists in Aθ. Therefore, if Θ is uncountable (as usual),

Theorem 4.2 does not imply that DµPθ is a likelihood function. This result is

established by Theorem 4.3. More specifically, it states, under certain conditions,

that DµPθ is a valid likelihood for θ, i.e., for any two dominating measures µ and

ν there exists a measurable set A such that

(a) Pθ(A) = 1 for all θ ∈ θ;

(b) DµPθ and DνPθ exist for all θ ∈ Θ and for all x ∈ A and

(c) DµPθ(x) ∝θ DνPθ(x) for each x ∈ A and for all θ ∈ Θ.

In order to prove Theorem 4.3, we need the following four lemmas.

Lemma 4.1. Let x be a point in the support of ν. Then, Dµν(x) = s ∈ R+ if and

only if for every ε > 0 there exists N0 ∈ N such that∣∣∣∣∣ν(B(x, 1
n
))

µ(B(x, 1
n
))
− s

∣∣∣∣∣ < ε (4.2)

for all n ≥ N0.

Proof. Suppose that Dµν(x) = s ∈ R+ and take ε > 0. For each N ∈ N, define

AN = sup
n≥N

{
ν(B(x, 1

n
))

µ(B(x, 1
n
))

}
and BN = inf

n≥N

{
ν(B(x, 1

n
))

µ(B(x, 1
n
))

}
. (4.3)

Hence, infN{AN} = s = supN{BN}. Thus, there exists N1 ∈ N such that AN1 <

s+ ε. Therefore, by the definition of the sequence AN ,

ν(B(x, 1
n
))

µ(B(x, 1
n
))
< s+ ε, ∀n ≥ N1. (4.4)

A similar argument for the sequence BN shows that there exists N2 ∈ N such that

s− ε <
ν(B(x, 1

n
))

µ(B(x, 1
n
))
, ∀n ≥ N2. (4.5)

Taking N0 = max{N1, N2}, (4.2) follows from (4.4) and (4.5). To go the other way,

we will show firstly that Dµν(x) < +∞. Consider the sequence {AN}N given by

(4.3). By hypothesis, x is a point in the support of ν. Hence, since the support of

ν is a subset of the support of µ, it follows that µ(U) > 0 for every neighborhood of
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x and, consequently, AN ∈ R for every N ∈ N. Again, by hypothesis, there exists

some integer K0 such that the sequence 0 ≤ AN ≤ s+ 1. Then, since {AN}N is a

nonincreasing sequence, we have that the sequence {AN}N≥K0 is bounded. Hence,

infN AN = infN≥K0 AN exists and is finite. But

inf
N
AN = inf

N≥K0

AN = lim sup
r→0

ν(B(x, r))

µ(B(x, r))
.

Thus, Dµν(x) < +∞. We claim that Dµν(x) ≤ s. Suppose s < Dµν(x). Let

ε = (Dµν(x) − s)/2. Hence, ε > 0. Then, it follows from (4.2) that there exists

N0 ∈ N such that

ν(B(x, 1
n
))

µ(B(x, 1
n
))
< s+ ε < Dµν(x), ∀n ≥ N0.

Therefore, we have that AN0 ≤ s + ε < Dµν(x), contradicting the fact that

Dµν(x) ≤ AN for all N ∈ N. So, it must be Dµν(x) ≤ s. Similarly, Dµν(x) ≥
s. Since Dµν(x) ≤ Dµν(x), we have Dµν(x) = s = Dµν(x) and the proof is

complete.

From now Let P = {Pθ; θ ∈ Θ} be a family of probability measures on (Rn,B(Rn))

such that P << ν and P << µ. We write Q =
∑∞

k=1 ckPθk for the minimal

dominating measure given by Lemma 2.1. Let Sθ, Sµ, Sν and SQ denote the support

of Pθ, µ, ν and Q, respectively, for each θ ∈ Θ. Remember that Sθ ⊂ SQ ⊂ Sµ and

Sθ ⊂ SQ ⊂ Sν for all θ ∈ Θ.

Lemma 4.2. Fix θ ∈ Θ and suppose that DµPθ(x) and DµQ(x) exist and are finite

for some x ∈ Sθ. If DµQ(x) > 0, then DQPθ(x) exists and is finite. Moreover,

DQPθ(x) = DµPθ(x)/DµQ(x).

Proof. Suppose that DµPθ(x) = p and DµQ(x) = q > 0. From Lemma 4.1 there

exists N1 ∈ N such that ∣∣∣∣∣Q(B(x, 1
k
))

µ(B(x, 1
k
))
− q

∣∣∣∣∣ < q

2
,

for every k ≥ N1. Set M = 2/q2. Hence, M > 0 and

µ(B(x, 1
k
))

qQ(B(x, 1
k
))
< M, (4.6)

for all k ≥ N1. Now take ε > 0. We will find some N0 ∈ N such that∣∣∣∣∣Pθ(B(x, 1
n
))

Q(B(x, 1
n
))
− p

q

∣∣∣∣∣ < ε,
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for all n ≥ N0. There are two cases to consider: (i) the case p = 0 and (ii) the

case p > 0. We consider only the case when p > 0. The proof when p is zero is

quite similar. By Lemma 4.1, there exist N1, N2 ∈ N such that∣∣∣∣∣Pθ(B(x, 1
n
))

µ(B(x, 1
n
))
− p

∣∣∣∣∣ < ε

2qM
and

∣∣∣∣∣Q(B(x, 1
k
))

µ(B(x, 1
k
))
− q

∣∣∣∣∣ < ε

2pM
. (4.7)

for all n ≥ N1 and for all k ≥ N2. Let N0 = max{N1, N2} and let n ≥ N0. Since

∣∣∣∣∣Pθ(B(x, 1
n
))

µ(B(x, 1
n
))

µ(B(x, 1
n
))

Q(B(x, 1
n
))
− p

q

∣∣∣∣∣ =

∣∣∣∣∣
(
Pθ(B(x, 1

n
))

µ(B(x, 1
n
))
q −

Q(B(x, 1
n
))

µ(B(x, 1
n
))
p

)
µ(B(x, 1

n
))

qQ(B(x, 1
n
))

∣∣∣∣∣
and N0 ≥ N1, we have from (4.6) that∣∣∣∣∣Pθ(B(x, 1

n
))

µ(B(x, 1
n
))

µ(B(x, 1
n
))

Q(B(x, 1
n
))
− p
q

∣∣∣∣∣ ≤M

∣∣∣∣∣Pθ(B(x, 1
n
))

µ(B(x, 1
n
))
q−

Q(B(x, 1
n
))

µ(B(x, 1
n
))
p+pq−pq

∣∣∣∣∣, (4.8)

Finally, it follows from (4.7) and (4.8) that∣∣∣∣∣Pθ(B(x, 1
n
))

Q(B(x, 1
n
))
− p

q

∣∣∣∣∣ ≤Mq

∣∣∣∣∣Pθ(B(x, 1
n
))

µ(B(x, 1
n
))
− p

∣∣∣∣∣+Mp

∣∣∣∣∣Q(B(x, 1
n
))

µ(B(x, 1
n
))
− q

∣∣∣∣∣ < ε

2
+
ε

2
= ε

for all n ≥ N0.

Since DµQ(x) > 0 Q almost surely (and then Pθ almost surely for every θ ∈ Θ),

we can consider that the density of Q with respect to µ is strictly postive for all

x ∈ A.

Lemma 4.3. If DQPθ(x) and DµQ(x) exist and are finite for some x ∈ Sθ, then

DµPθ(x) exists and is finite. Furthermore, DµPθ(x) = DQPθ(x)DµQ(x).

Proof. Similar to the proof of Lemma 4.2.

Lemma 4.4. Let x0 ∈ Sθ. Suppose that there exists a version fθ ∈ [dPθ
dµ

] such that

fθ is continuous at x0. Then, DµPθ(x0) = fθ(x0).

Proof. Given ε > 0, there exists, by the continuity of fθ at x0, a positive integer

N0 such that

x ∈ B
(
x0,

1

n

)
=⇒ fθ(x) ∈ B(fθ(x0), ε),

for all n ≥ N0. Hence,

Pθ(B(x0, 1/n)) =

∫
B(x0,1/n)

fθ(x)dν(x) ≤ (fθ(x0) + ε)ν(B(x0, 1/n)).
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The last formula shows that, for all n ≥ N0,

Pθ(B(x0, 1/n))

ν(B(x0, 1/n))
− fθ(x0) ≤ ε,

and using the fact that fθ(x0) − ε < fθ(x) for every x ∈ B(x0, 1/n), n ≥ N0, we

get that ∣∣∣∣∣Pθ(B(x0, 1/n))

ν(B(x0, 1/n))
− fθ(x0)

∣∣∣∣∣ ≤ ε,

for all n ≥ N0. The result follows from Lemma 4.1.

Lemma 4.4 also appears in Piccioni (1982) (Theorem V). The two proofs are quite

similar. Whilst our proof uses Lemma 4.1, Piccioni’s proof uses the definition

of lim sup and lim inf. Moreover, Piccioni’s result is established for any metric

separable space and locally finite measures.

We are now ready to state Theorem 4.3.

Theorem 4.3. Let P be a family of probability measures on Rn and suppose that:

(i) S = Sθ for all θ ∈ Θ;

(ii) there exists a Radon measure µ on Rn and a version fµ,θ ∈ [dPθ
dµ

], for each

θ ∈ Θ, that is continuous on S.

Then, for any other Radon measure ν that dominates P, there exists a measurable

set A, with Pθ(A) = 1 for all θ ∈ Θ, such that

(I) the derivatives DµPθ and DνPθ exist for all x ∈ A and for all θ ∈ Θ;

(II) DµPθ and DνPθ are versions that satisfy the Likelihood Proportionality The-

orem, i.e.,

DµPθ(x) ∝θ DνPθ(x), ∀θ ∈ Θ, ∀x ∈ A.

Proof. Theorem 1.10 implies that Q(S) = 1, where Q is the minimal dominanting

measure for P given by Lemma 2.1. Also, condition (ii) and Lemma 4.4 imply

that DµPθ exists for all θ ∈ Θ and for all x ∈ S. By Theorem 4.1, there exists a

measurable set Bµ such that Q(Bµ) = 1 and DµQ exists for all x ∈ Bµ. Hence,

Q(Bµ∩S) = 1 and DµQ exists for all x ∈ (Bµ∩S). Remember that (see comment

just before Lemma 4.2) we can consider that DµQ is strictly positive on (Bµ ∩S).

Thus, by Lemma 4.3, it follows that DQPθ(x) exists for all x ∈ (Bµ ∩ S) and for

all θ ∈ Θ. Furthermore

DµPθ(x) = DQPθ(x)DµQ(x), ∀x ∈ (Bµ ∩ S), ∀θ ∈ Θ. (4.9)
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Now note that, by Theorem 4.1, there exists a measurable set Bν such that

Q(Bν) = 1 and DνQ exists and is strictly positive for all x ∈ Bν . Define

A = (Bµ ∩ Bν ∩ S) and note that Q(A) = 1. Since DQPθ(x) and DνQ exist

for all ∈ A, it follows from Lemma 4.3 that DνPθ exists for all x ∈ A and

DνPθ(x) = DQPθ(x)DνQ(x), ∀θ ∈ Θ. (4.10)

Finally, it follows from (4.9) and (4.10) that

DµPθ(x) = DνPθ(x)
DµQ(x)

DνQ(x)

for all x ∈ A and for all θ ∈ Θ. Since DµQ(x)/DνQ(x) does not depend on θ, the

proof is complete.

4.3 Extension for general spaces

In this section, we will extend the result in Theorem 4.3 for any Vitali metric

measure space.

Definition 4.4. A metric measure space id defined to be a triple (Ω, d, µ), where

(Ω, d) is a separable metric space and µ is a nontrivial locally finite Borel regular

mesure on Ω.

Definition 4.5 (Fine covering). A covering B of a set A ⊂ Ω by closed balls1 is

called fine if

inf{r; r > 0 and B(x, r) ∈ B} = 0, (4.11)

for each x ∈ A.

Definition 4.6. A metric measure space (Ω, d, µ) is called a Vitali metric measure

space, and the measure µ a Vitali measure, if, and only if, for every subset A of

Ω and for every covering B of A by closed balls satisfying (4.11) for each x ∈ A
there exists a pairwise disjoint subcollection C ⊂ B such that

µ

(
A
∖ ⋃

B∈C

B

)
= 0.

Theorem 4.4 (Lebesgue differentiation theorem). (Heinonen et al. (2015), Sec-

tion 3.4) Let (Ω, d, µ) be a Vitali metric space and let f be a locally integrable

1B(x, r) = {y ∈ Ω; d(x, y) ≤ r}
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function. Then

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

f(y)dµ(y) = f(x) (4.12)

for almost every x ∈ Ω.

Let P be a probability measure dominated by µ. Then, if f ∈ [dP
dµ

], the Lebesgue

differentiation theorem implies that

lim
r→0

P (B(x, r))

µ(B(x, r))
= f(x) a.e.

As in Section 4.1, we call x a density point of P with respect to µ if the limit in

(4.12) exists. The set of density points of P with respect to µ will be denoted by

D(P, µ).

NOte that if µ is any Radon measure in Rn, then (Rn, µ) is a Vitali metric space

(Heinonen (2001), Remark 1.13). Therefore, the next theorem is an extension of

Theorem 4.3.

Theorem 4.5. Let P be a family of probability measures on Ω and suppose that:

(i) S = Sθ for all θ ∈ Θ;

(ii) there exists a Vitali measure µ on (Ω, d) and a version fµ,θ ∈ [dPθ
dµ

], for each

θ ∈ Θ, that is continuous on S.

Then, for any other Vitali measure ν that dominates P, there exists a measurable

set A, with Pθ(A) = 1 for all θ ∈ Θ, such that

(I) the derivatives DµPθ and DνPθ exist for all x ∈ A and for all θ ∈ Θ;

(II) DµPθ and DνPθ are versions that satisfy the Likelihood Proportionality The-

orem, i.e.,

DµPθ(x) ∝θ DνPθ(x), ∀θ ∈ Θ, ∀x ∈ A.

Proof. The proof is analogous to that from Theorem 4.3. The Lebesgue differen-

tiation theorem guarantees the validity of Lemmas 4.1, 4.2, 4.3 and 4.4 for Vitali

metric measure spaces.



Chapter 5

Final remarks

5.1 Conclusion

In this thesis, we discussed some mathematical foundations of Likelihood Theory,

more specifically, the definition of likelihood function, in both parametric and non-

parametric contexts. We consider the general definition of likelihood function in

terms of the Radon-Nikodým derivative of each probability measure in the model

w.r.t. any dominating measure, evaluated at the observed sample and, therefore,

seen as a function of θ. The Likelihood Proportionality Theorem validates this

definition in terms of the Likelihood Principle by guaranteeing the existence of ver-

sions of the densities that are, almost surely, proportional for any two dominating

measures.

Whilst the Likelihood Proportionality Theorem only guarantees the existence of

versions that are proportional, a practical strategy to find such versions is provided

by considering densities which satisfy at least one of two continuity properties.

First, the density is continuous in ω and second, the density defines a continuous

likelihood function. Namely, those versions are always in accordance with the

Likelihood Principle.

The decision of which dominating measure to use is particularly interesting in cases

where there exists no or more than one obvious choice. Both cases are illustrated

and discussed in Chapter 3 for some general classes of models. In particular,

we presented appealing versions of RN derivatives and discussed how different

choices, although leading to the same result, may have influence in the complexity

of the inference process. We also discussed, in Section 2.4, the choice of the prior

predictive measure as a dominating measure.

Finally, a method to obtain valid likelihood functions was proposed in Chapter

47
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4 by discussing how Radon-Nikodým derivatives behave, under some mild condi-

tions, like a genuine derivative that can be determined from the differentiation of

measures. Moreover, those genuine derivatives are shown to satisfy the Likelihood

Proportionality Theorem.

5.2 Future work

This thesis studies some aspects of likelihood theory from a point of view never

actually considered in the literature before. It is then natural that the work

developed here instigates further investigation in the area.

A first problem would be to extend the results about differentiation of measure

from Chapter 4 for more general spaces. For example, the space of càdlàg func-

tions. In this context, it would be interesting to investigate whether likelihood

functions for continuous time/space models could be devised based on discrete

approximations. In particular, Gaussian process driven models.

Given the generality of the definition of likelihood function, it would be interest-

ing to study its properties in non-parametric contexts, i.e., when the parametric

space is infinite. In particular, what properties can be established for maximum

likelihood estimators of finite-dimensional functions of the parameter? Or, in a

Bayesian context, what are the properties of the posterior distribution of those

functions. What are the implications of adopting improper prior measures?
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Gonçalves, F. B. and Gamerman, D. (2017). Exact Bayesian inference in spatio-

temporal Cox processes driven by multivariate Gaussian processes. To appear

in Journal of the Royal Statistical Society - Series B.
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