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Resumo

Aprendizado de Ranqueamento (AR) é uma das principais linhas de pesquisa em Recuper-
ação de Informação contudo, com o crescente aumento de dados e complexos algoritmos de
aprendizado de máquina, o esforço para processar todas as subtarefas em AR tem crescido
enormemente. Mais especificamente, após um algoritmo de ordenação fornecer um imenso
subconjunto de documentos (às vezes gigabytes), existe um extenso trabalho na fase de AR
para gerar novas meta-atributos no ato de execução da consulta e para executar algoritmos
considerados estado da arte de aprendizado de máquina. Nesse contexto, a seleção de atrib-
utos (SA) tem se tornado importante alternativa para eliminar atributos não relevantes, pois,
além de melhorar o tempo de execução dos AR, criando menos meta-atributos em tempo
de execução da consulta e usando menos meta-atributos nos algoritmos de aprendizado de
máquina para construir o modelo de ranqueamento, a SA também pode melhorar a efetivi-
dade com a ausência de atributos ruidosos e redundantes.

Por anos, porém, a literatura tem focado principalmente em efetividade e redução de
atributos como os principais critérios objetivos para SA, no entanto, ao remover certos atrib-
utos pode se deteriorar a efetividade de modelos de aprendizado para algumas importantes e
específicas consultas. De fato, nós temos notado, em nosso trabalho a otimização de somente
a efetividade média como métrica pode deteriorar a acurácia de algumas consultas, enquanto
melhora somente as consultas que são de mais alta performance.

Dessa forma, nesta tese nós propomos avaliar SA para AR com um objetivo adicional
em mente, conhecido por sensibilidade ao risco, que em linhas gerais permite avaliar a ro-
bustez do modelo, garantindo boa efetividade entre as consultas e minimizando a perda de
efetividade em consultas quando comparado a outros modelos de ranqueamento. Nós apre-
sentamos novos objetivos uni e multicritério para otimizar SA, efetividade e sensibilidade
ao risco, algumas vezes ao mesmo tempo. Para obter nossas metas, consideramos distintas
medidas de sensibilidade ao risco, tais como FRISK , TRISK , e GRISK

1. Como resultado dessa

1As métricas FRISK , TRISK e GRISK serão detalhadas mais adiante, mas de forma geral consideram diversas
formas de comparar a robustez de um modelo em relação a um ou a um grupo de modelos de ranqueamento
considerados baselines.
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atuação, mostramos que sensibilidade ao risco é um critério objetivo crucial em SA para
AR, promovendo, inclusive, resultados melhores do que quando usamos a efetividade como
critério objetivo. Isso porque, diferente do valor médio utilizado para comparação, a sensi-
bilidade ao risco avalia todas as consultas em relação a um ou a vários outros métodos de
Recuperação de Informação, provendo mais rigor na comparação entre dois subconjuntos de
atributos.

No intuito de avaliar nossa proposta de critérios objetivos para SA em AR, tam-
bém propomos uma nova metodologia para explorar o espaço de busca com diversos obje-
tivos, sugerindo extensões efetivas e eficientes do já bem conhecido algoritmo evolucionário
SPEA2. Por efetividade, aplicamos uma comparação mais rigorosa para o conjunto de atrib-
utos, usando um teste estatístico pareado para aumentar a confiança no relacionamento de
dominância. Por eficiência, introduzimos um algoritmo de aprendizado fraco como uma
caixa-preta para melhorar a avaliação das diversas interações dos conjuntos de atributos nos
procedimentos baseados em wrapper. Apesar de parecer contra intuitivo, conseguimos apri-
morar o tempo de execução e a comparação dos atributos de forma mais acurada, melhorando
a efetividade na seleção final do indivíduo para critérios multiobjectivos.

Nossos resultados experimentais mostram que a proposta multiobjetivo aperfeiçoa os
métodos de SA estado da arte, considerando a combinação de efetividade e sensibilidade ao
risco. Por exemplo, na coleção WEB10K conseguimos manter a efetividade e sensibilidade
ao risco, reduzindo em até 35% dos atributos. Ainda, nós mostramos fortes evidências quanto
ao benefício de usarmos aprendizado fraco como uma caixa-preta e a melhoria na seleção
final do indivíduo a partir da Fronteira de Pareto, através do uso do teste pareado. Nesta
tese, fornecemos, ademais, uma ampla análise da nossa metodologia e de seus impactos na
redução de atributos, sensibilidade ao risco e efetividade em SA para AR.
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Abstract

Learning to Rank (L2R) is one of the main research lines in Information Retrieval. How-
ever with ever increasing data and more complex machine learning algorithms, the effort to
process all sub-tasks in L2R has increased tremendously. More specifically, after a ranking
algorithm provides a huge subset (sometimes gigabytes) of documents from query terms,
there is an extensive work of L2R phase to generate meta-features on the fly and to process
the time consuming state-of-the-art machine learning algorithms. In this context, feature

selection (FS) becomes an important alternative to withdraw unimportant features. Besides
improving the overall L2R execution time, FS can also try to improve the effectiveness with
the absence of noisy and redundant features.

However, for years the literature has focused mostly on effectiveness and feature re-
duction as the main objective criteria for Feature Selection. But removing certain features
may damage the effectiveness of the learned model for some specific but important queries.
In fact, we have noted in our work that by optimizing only an average effectiveness and
number of features as criteria in FS for L2R one can deteriorate the ranking effectiveness of
some queries, providing less robust models.

Therefore, in this dissertation we propose to evaluate FS for L2R with an additional
objective in mind, named risk-sensitiveness. We introduce the risk-sensitiveness to the FS
for L2R, providing novel single and multi-objective criteria to optimize feature reduction,
effectiveness and risk-sensitiveness, sometimes at the same time. To achieve our goal, we
consider distinct risk-sensitive measures, such as FRISK , TRISK , and GRISK . As results of
this front, we show that risk-sensitiveness is a crucial objective criterion in FS for L2R,
providing still better results than the effectiveness criterion. Mainly because more than an
average value, risk-sensitiveness assesses the comparison of several queries against one or
a set of Information Retrieval baselines, providing a larger comparison of two subsets of
features.

In order to evaluate our new objective criteria for FS in L2R, we also propose a new
methodology to explore the multi-objective search space, suggesting effective and efficient
extensions of wrapper and a well-known Pareto Frontier algorithm, e.g. Strength Pareto
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Evolutionary Algorithm (SPEA2). By effective, we mean a more strict comparison for sets of
features, using a paired statistical test to increase the strength of the dominance relationship
in the Pareto set. In case of the efficient extensions, we introduce a weak learner as a black-
box in order to improve the evaluation of the wrapper strategy. Besides decreasing the time
performance, this proposal also provides a more accurate comparison of features, improving
the effectiveness of the final individual for the evolutionary process.

Our experimental results show that the proposal objective criteria outperforms the
state-of-the-art FS methods concerning effective and risk-sensitive evaluation. For instance,
for WEB10K dataset we allow a feature reduction of up 35% with same effective and risk-
sensitive performance. Moreover, we show that the risk-sensitiveness criterion provided
results more effective and robust than using only effectiveness. We show strong evidence
towards the benefits of using weak learner as a black-box and the improvements of selecting
the final individual from the Pareto set by using the paired statistical test. In this dissertation
we also provide a thorough analysis of our methodology and its impact on feature reduction,
risk-sensitiveness and effectiveness on FS for L2R.
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Chapter 1

Introduction

Learning to Rank (L2R) has established itself as an important research area in Information
Retrieval (IR). This is because L2R is the central task in many important IR applications
such as modern Web search engines, recommendation and question-answering systems [Liu,
2011]. In general, L2R applies machine learning algorithms to improve the ranking quality
by using annotated information about the relevance of documents.

To obtain good results, L2R strategies usually rely on dense representations exploiting
dozens of features, some of which are expensive to generate. In several scenarios, some of
these features may introduce noise or may be redundant, increasing the cost of the learning
process without bringing benefits or even harming the learned ranking model.

Thus, Feature Selection (FS) techniques have been examined in the L2R sce-
nario [Naini and Altingovde, 2014; Pan et al., 2011; Geng et al., 2007] to improve processing
time and increase effectiveness by removing noisy and redundant features. FS indeed may
have a high positive impact on processing time in L2R [Geng et al., 2007; Naini and Altin-
govde, 2014; Chapelle et al., 2011]. In addition to the training time, there is also the cost of
constructing the features (actually meta-features) as they are generated by several algorithms
(e.g., BM25, PageRank) and some of them need to be computed at query time.

Nevertheless, effectiveness and cost (better summarized by the number of exploited
features) are not the only objectives one may want to optimize in a L2R task. In fact, recently
the risk of getting very poor effectiveness for a few queries with a learned model has gained
much attention [Wang et al., 2012; Dinçer et al., 2014a; Collins-Thompson et al., 2014].
This interest in diminishing risk is due mainly to the fact that users tend to remember the few
failures of a search engine very well rather than the many successful searches [Knijnenburg
et al., 2012]. In fact, the authors in [Zhang et al., 2014] clearly show that improvements
in ranking performance do not always correlate with risk reduction. This has motivated
research in risk-sensitive L2R which considers the risk aspect of L2R models [Dinçer et al.,

1
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2014b,a]. The goal of the risk-sensitive L2R task is to enhance the overall effectiveness of a
ranking system while reducing the risk of performing poorer than a baseline ranking system
for any given query.

1.1 Problem Statement

We claim that feature selection used with the intent specifically to enhance efficiency and ef-
fectiveness may be a problem to risk-sensitiveness in L2R. This happens because FS reduces
the feature space when considering only overall effectiveness or cost as objectives. Thus,
it is possible that the reduction of features may worsen the ranking of documents for a few
queries (but important ones, such as medical searches), despite improving the ranking for
many others. Therefore, there may be features that, despite not significantly improving the
ranking effectiveness average, enhance the quality of few queries, providing a more robust
performance.

Figure 1.1 provides evidence of the above claim. It shows different rankings1 in x-
axis for some features of the MLSR-WEB10K dataset2. The first ranking sorts the features
considering effectiveness, measured in terms of NDCG@10. The other four rankings corre-
spond to the same features using four different weights of the GeoRisk risk-sensitive func-
tion3. Each feature corresponds to a colored line in the figure, guided by the rank position of
features (in y-axis) in each ranking.

Figure 1 shows that some features have an essential behavior on ranking effective-
ness, but they are less important from a risk-sensitive perspective, whereas the opposite
occurs with other features. In other words, Figure 1.1 illustrates an essential aspect of FS
in L2R: the filtering of features considering only the optimization of effectiveness as a cri-
terion may prune important features that would help to generate more robust (less risky)
models. Hence, the problem proposed in this dissertation concerns the selection of features
with risk-sensitiveness as a main objective criterion (without loss of effectiveness). We show
the importance of setting risk as an explicit objective, as noisy features from an effectiveness
perspective are not necessarily irrelevant or harmful in a risk-sensitive context. Furthermore,
the selection of features when using effectiveness as a single objective criterion may incur
in higher risk, mainly because the methods tend to optimize an average metric such as Mean
Average Precision (MAP) or NDCG, despite potential losses in few points.

1For this case, we sort the features using effectiveness and risk-sensitive measures.
2MLSR-WEB10K is a public dataset, released by Microsoft with 10,000 queries and 136 features. Better

described in section 4.1.
3GeoRisk provides a risk-sensitive evaluation of model performance, by comparing against a set of base-

lines. The weights ponder the degradation effect or negative variation of the evaluated model against a set of
baselines. It is deeper described in section 2.3.
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Figure 1.1: The ranking of some features from MLSR-WEB10k when varying the measures
over effectiveness (NDCG@10) and risk-sensitiveness (GeoRisk Dinçer et al. [2016]).

1.2 Research Goals

The above observations have motivated us to address distinct objective criteria in FS for
the L2R task. To the best of our knowledge, there are no studies that provide a thorough
analysis of the impact of feature selection in both effectiveness and risk-sensitiveness in the
L2R literature. Accordingly, the novel proposed objective criteria are: i) maximizing the
ranking effectiveness; ii) minimizing the risk for most queries; and iii) reducing the feature
space dimensionality, all at the same time. Accordingly, we analyze the impact of FS for
L2R in these objectives considering them both individually (as single objectives), as well as
combined as multi-objectives to be optimized.

By considering a robust and effective evaluation with FS, our dissertation aims to ob-
tain a possibly smaller set of features that guarantees ranking effective and risk-sensitive
performance. This is in contrast to existing FS for L2R approaches which goal is to drasti-
cally reduce the number of features in order to control the processing time.

We also propose a novel methodology to assess the impact on effectiveness and risk-
sensitiveness when diverse (most of the times, conflicting) objective criteria are applied to
the FS for the L2R task. Using an efficient and effective wrapper strategy, our proposed
methodology explores diverse sets of features as a search space and uses an evolutionary
search to select the best feature set according to single or multi-objective criteria. Wrapper
strategies are traditionally recognized as time consuming approaches [Qinbao Song et al.,
2013; Laporte et al., 2014]. To deal with this issue, in this dissertation we propose to exploit
“cheap” weak-learners as black-boxes that make the process more scalable and less costly.
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As a positive side effect, weak-learners also promote diversity in the solutions, as strong-
learners are more agnostic to the employed set of features. In other words, we drive the
exploration of the space of solutions using improvements in both wrapper and multi-objective
optimization processing.

To investigate combinations of simultaneous objectives, our proposal uses a multi-
objective criteria approach based on Pareto frontier optimization. There are several general-
purpose multi-objective optimization methods that can be used in this case, e.g., the works
in [Deb et al., 2002; Bandyopadhyay et al., 2008; Zitzler et al., 2001]. We have chosen
Strength Pareto Evolutionary Algorithm (SPEA2) [Zitzler et al., 2001], which besides being
the state-of-the-art in multi-objective optimization [Guardado et al., 2014], has already been
successfully applied to several related problems [Dalip et al., 2014; Li et al., 2015]. In fact,
Evolutionary Algorithms (EAs) are able to maximize non-continuous and non-differentiable
IR evaluation measures [Wang et al., 2015], e.g. MAP, NDCG@k, and ERR@k. As a result,
EAs are well suited to estimate the impact of the distinct proposed objective criteria and also
to evaluate our statements, mainly due to their capability of obtaining non-linear ranking
functions.

In this dissertation we perform a extended analysis, considering: i) several risk-
sensitive measures, ii) a large number of objective combinations, and iii) L2R methods as
black-boxes in order to provide our efficient wrapper-based FS. All these improvements re-
sult in a novel methodology for assessing several single and multi-objective criteria in FS for
the L2R task. For instance, we have shown that a recently published risk-sensitive measure
(i.e. GeoRisk [Dinçer et al., 2016]) has an important risk-sensitiveness impact in FS for L2R.
In summary, in this dissertation we provide three novel contributions:

1. We open up a new perspective of Feature Selection for risk-sensitive L2R, which high-
lights the importance of considering risk as an explicit objective criterion. In this con-
text, we are not only considering the average effectiveness obtained by a drastically
reduced subset of features, but a subset which provides a risk-sensitive and effective
performance;

2. To address the raised problem, we introduce single and multi-objective criteria to per-
form FS for L2R, considering three important objectives, concomitantly: feature di-
mensionality reduction, effectiveness and risk-sensitiveness. Some of these (conflict-
ing) objective criteria were never evaluated in FS for L2R;

3. A novel efficient and effective evolutionary methodology to evaluate different objec-
tive criteria in FS for the L2R task. We apply weak-learners to decrease the execution
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time while increasing diversity, and a paired test comparison over a multi-objective
evolutionary search to provide an accurate set of features.

4. We provide a broad discussion of the proposed methodology and objectives, show-
ing that, in FS for L2R, distinct goals (with feature reduction or accuracy) can be
achieved by varying the objective criteria. Also, most previous works explored only
small datasets, while here we consider large datasets, such as MSLR-WEB10K and
YAHOO.

1.3 Research Questions

To better introduce the ideas in this work, we present the following research questions that
guide our investigation.

Q1 – How to combine different (possibly conflicting) optimization objectives in FS for

L2R without being constrained to a particular L2R method?

In this work we propose to evaluate several objectives (important requirements for FS)
and their combinations. However, the challenge of optimizing distinct objectives, consider-
ing the possible conflicts among them, demands a multi-objective criteria method. For this
task, our methodology applies the Pareto Frontier Set in an evolutionary search4 as a wrapper
FS strategy not constrained to any specific L2R method.

Q2 – How to apply an efficient wrapper evolutionary FS algorithm over huge datasets,

without loss of effectiveness?

The computation of the fitness value for an individual is time consuming as it is nec-
essary to construct a L2R model with a subset of features corresponding to the individual
and to evaluate this model to derive the values for effectiveness and risk-sensitive measures.
This has to be done for each individual in the population and is specially time consuming for
some large datasets and state-of-the-art L2R algorithms. Hence, one of the key points in this
work is the reduction of the searching time during the wrapper-based feature selection.

Q3 – How to reduce the number of individuals in the Pareto frontier, while keeping

individuals that maximize the objective?

The literature shows that the Pareto frontier set can be large, especially when two
objectives are conflicting. This can make the selection within the Pareto set very hard, de-
creasing the final performance. We here address this selection using a strict comparison over
the individuals by the mean of an evolutionary search, using statistical hypothesis tests. As a

4In fact, we extend the well-known SPEA2, a general multi-objective optimization method.
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result, our method provides a smaller Pareto set with only statistically superior individuals.
This has an important impact on the accuracy of our methods, as we shall see.

Q4 – How good in terms of risk-sensitiveness, effectiveness and feature reduction is

the final individual produced by our methodology?

Differently from all other works in the literature of FS for L2R, we here describe
the performance of many objective criteria from a risk-sensitive perspective, and we show
that risk-sensitiveness is an important objective criterion in FS. Moreover, we provide a
full evaluation of many objective criteria over three dimensions, concomitantly: ranking
performance, number of features, and risk-sensitiveness. Considering the several intents
over FS for the L2R task, we provide clear demonstrations of results for the objectives and
evaluated datasets.

Q5 – How is the overfitting behavior concerning our proposed objective criteria and

evolutionary FS methodology?

For our experiments, we describe the performance of one selected individual from
the Pareto Set without describing whether there are other better ones. Hence, we propose
to evaluate the content of the Pareto set and to describe the overfitting behavior from each
method, by showing the selected individual among all Pareto Set.

Q6 – Are there groups of features which have a larger impact on risk-sensitiveness

than effectiveness?

Even though we combine multi-objective criteria and wrapper strategy to find a bet-
ter feature interaction to build a model, we believe that it is possible to evaluate features
which improve the risk-sensitiveness rather than effectiveness. In other words, we drive
our attention to point out which features or group of features provide more impact on risk-
sensitiveness. We show that there are some features which despite not being applied to op-
timize the effectiveness criterion, are used to support the robustness for some other queries.

Q7 – What are the effects on the results variation of the proposed statistical test com-

parison and multi-objective criterion?

In this work, we have proposed distinct strategies to improve risk-sensitiveness and
effectiveness when performing FS in a multi-objective scenario. However, we now pay at-
tention to the effect of each proposal in the experimental results, performing a 2k Factorial
Design [Jain, 1991] to discover the result variation obtained for each measure, i.e. risk-
sensitiveness and effectiveness. As a result, we have observed that the statistical test also
improves the risk-sensitiveness, as it performs a model comparison concerning all available
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queries.

The rest of this dissertation is organized as follows. Section 2 presents background and
related work. Section 3 describes our proposal. In Section 4 we describe our experimental
evaluation, presenting the answers to our research questions. Finally, Section 5 summarizes
our conclusions and next steps.

1.4 Publications

The main evaluations described in this dissertation are also presented in the following papers:

1. Sousa, D.; Canuto, S. ; Couto, T. ; Martins, W. ; Goncalves, M. . Incorporating

Risk-Sensitiveness into Feature Selection for Learning to Rank. In: the 24th ACM
International on Conference on Information and Knowledge Management, 2016, Indi-
anapolis, EUA. CIKM, 2016.

2. Sousa, D.; Canuto, S. ; Couto, T. ; Martins, W. ; Goncalves, M. . Risk-Sensitive Learn-

ing to Rank with Evolutionary Multi-Objective Feature Selection. In: ACM Transac-
tions on Information Systems, ACM TOIS. Waiting for the second stage of revision.





Chapter 2

Background and Related Work

2.1 Impacts of the Feature-Space in the L2R Task

Besides being widely used in industry, Learning to Rank has been successfully applied to
a variety of research areas, such as Question Answering [Severyn and Moschitti, 2015],
Recommender Systems [Shi et al., 2010] and Document Retrieval Systems [Joachims, 2002].

As defined in [Liu, 2011], L2R learns a function f : Rm→ R capable of maximizing
a retrieval effectiveness measure when the documents are sorted by the values of f , where
Rm is the vector space of m features in R, derived from documents and queries. In a desired
scenario, we would apply L2R to all documents, but since this is not usually possible due to
the huge amount of data available, a Web Search Engine executes the Ranking Pipeline, with
two phases: i) the Ranking Phase, which first produces an initial ranking processing, and ii)
the L2R Re-Ranking Phase, where the documents are re-ranked [Capannini et al., 2016].

The Ranking Phase aims at retrieving most of the relevant documents, also called the
top-k set, trying to maximize the recall of the retrieval system. To provide the top-k as a set of
relevant documents, the Ranking Phase performs a matching over user-query and documents,
exploiting a fast base ranker (e.g. BM25 [Liu, 2011]).

Afterward, the L2R Re-Ranking Phase1 uses the retrieved documents and a Machine
Learning (ML) learned model in order to obtain a better re-ranking of the documents that
maximizes the precision. The L2R Re-Ranking Phase uses the top-k documents obtained in
the Ranking Phase to create a feature-space with relevance related features or meta-features2.
We mean meta-features because they are derived from ranking algorithms such as term-

1This phase is also called Learning to Rank Framework in Liu [2011].
2The resulting set is formed by the union of the pairs (query, top-documents), forming the training and

‘test’ sets, in which each document is represented by the set of features and meta-features obtained in the
Ranking Phase.

9
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weighting scores (e.g., TF-IDF , Cosine Similarity, and Language Models [Liu, 2011]), that
provide measures for the query document relationship. Notably, there is great effort to create
these features – in some datasets up to 700 algorithms are executed.

With this feature-space, the L2R Re-Ranking Phase uses a supervised ML algorithm
as a top ranker to re-rank the documents in top-k. Unlike the first phase, the top ranker
maximizes precision, trying to put on top of the ranking the most relevant results. Such
precision relies on still large training datasets with gigabytes of annotated query-document
examples [Capannini et al., 2015]. In the case of ensemble ranking algorithms (the state-
of-the-art algorithms in the L2R Phase [Mohan et al., 2011]), at learning time, an iterative
and expensive process is performed over the whole training dataset. For instance, with the
LambdaMART algorithm [Mohan et al., 2011] in each iteration, a regression tree is created
over a huge training set.

In this context, the Ranking Pipeline (Initial Ranking and L2R Re-ranking Phases) is
a complex process that can be expensive in scenarios in which the L2R model needs to be
often updated. This update requirement has been previously defined as the Flexibility of
Web Search Engines [Chapelle et al., 2011], where flexibility is the temporal ability of L2R
Re-Ranking Phase to better adapt to the necessity of updating the training set in short time
[Sousa et al., 2012; Chapelle et al., 2011]. Due to the frequent changes on the Web, ranking
functions need to be re-learned repeatedly more often, and the Web Search Engine needs to
provide fresh models, such as novel ground truth datasets [Sousa et al., 2012]. As a result,
we have to consider that the Ranking Pipeline is a continuous task, and FS can reduce the
time cost to provide models with recent changes to the users [Capannini et al., 2015]. In
distinct scenarios, this temporal flexibility issues have been addressed in [Capannini et al.,
2016] by evaluating some known L2R algorithms on effectiveness and time cost, learning
the most effective ranker for a given time budget. We have exploited in [Sousa et al., 2012;
Freitas et al., 2016] some approaches with many-core processor technology, i.e. Graphical
Processing Units (GPU), to generate a fast Re-Ranking method based on Lazy Association
Rules that builds on-demand L2R models, obtaining up to 508x of speed up against the serial
version.

To sum up, the impacts of the feature-space in the L2R task are: i) in the time to
create the features for the top-k documents obtained in the Ranking Phase, ii) in the training
time of the top ranker to build the model, iii) in the test (or prediction time), to evaluate the
model with the features of the new queries, and iv) in the flexibility of Web Search Engines.
Accordingly, with the feature space dimension reduction one can improve time processing
for new executions of the L2R Re-Ranking Phase. Besides that, in this dissertation we
address these challenges with the advantage of taking risk into account.
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2.2 Feature Selection in L2R

First of all, it is important to define that in this dissertation we do not consider dimensionality
reduction as a method to build new and summarized features, such is the case of Principal
Component Analysis or PCA Hastie et al. [2009]. For our work, we provide a reduced
dimensionality by selecting existing features and using its subset to build more effective and
risk-sensitive models.

For FS works, there are several exploiting L2R. They can be divided into three main
strategies: embedded, filter, and wrapper. Embedded strategies select the features by trying
to minimize the training error during the learning of a model. Thus, the objective function
searches for the best minimal subset of features using a specific L2R error function. For
instance, in [Lai et al., 2013] an embedded strategy called FSMRank is proposed. It attempts
to minimize ranking errors while performing FS using a combination of importance and
similarity measures. In [Laporte et al., 2014], the authors use sparse regularized SVMs to
compute non-convex penalties, which leads to similar effectiveness score while reaching
feature reduction. However, as asserted in [Laporte et al., 2014], these embedded solutions
are designed for specific L2R algorithms, making them generally hard to adapt to other L2R
alternative methods. This is an important limitation, as the area evolves with better L2R
solutions.

In the filter approach, the selection strategy evaluates some quality measure (e.g. sim-
ilarity and correlation) for the features without involving any learning algorithm. More usu-
ally, the user defines a predefined parameter k of best features which are maintained and the
others are filtered out. The selected features are then used to learn a final model by a L2R
algorithm. For instance, in [Naini and Altingovde, 2014] the authors present several filter
methods that select the most relevant and diverse features, applying diversification tech-
niques such as Minimum Redundancy Maximum Relevance (mRMR) [Peng et al., 2005].
The work in [Shirzad and Keyvanpour, 2015] has further evaluated the mRMR concept, con-
sidering a non-linear feature selection method for L2R. They select a subset of k features
such that relevance and dissimilarity among the features are optimized. In these aforemen-
tioned works, the importance of a feature is computed one at a time, however as described
in [Pan et al., 2011; Das, 2001], the worth of a feature depends on the set of other features it
interacts with.

Wrapper strategies perform the selection of best features subsets based on the effec-
tiveness of a “generic” L2R algorithm, known as a L2R black-box which is optimized by the
learning procedure. The black-box computes the worthiness of a subset of features during the
exploration of the search space. For instance, the authors in [Pan et al., 2011] propose a wrap-
per strategy based on Evolutionary Algorithms (EA), performing an evolutionary process by
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eliminating “weak” features over the generations in order to reduce the dimensionality. As a
result, they can achieve a reduced number of features with small losses in effectiveness. Fur-
thermore, the work shows the importance of considering the interaction of features in order
to apply the FS. However, the final number of features has to be set as a parameter, which
is difficult to determine considering the large range of features. Besides, the main solution
optimizes only one objective – relative feature importance.

Although wrapper solutions are adaptable to search for the best subset of features to
a particular L2R algorithm or dataset, there are very few FS works using wrapper strategies
for L2R, specially because they are time consuming. In fact, often the same (state-of-the-
art) L2R algorithm used to select the feature subset as a black-box, is also applied to build
the final model. The application of good learning methods (and complex ones) in both the
training phase and to learn the final model supports the comments of authors in [Qinbao Song
et al., 2013], who states that, despite providing the best performing feature subset, wrapper
methods are very computationally intensive.

Our proposed methodology for FS using distinct single and multi-objective optimiza-
tion makes use of wrapper solutions. However, instead of using a state-of-the-art L2R al-
gorithm during the FS phase, we opted for a faster weak learning method. As described in
Section 4.3, we consider as a weak learner an algorithm that performs relatively better than a
random method and has a fast execution. This approach produces substantial improvements
on the FS processing time and the quality of the selected features as we shall discuss in
Sections 3.2.3 and 4.3. Furthermore, by improving the time performance, our methodology
provides a feasible method to perform wrapper strategies in large datasets for the FS task.

Although our proposal of exploiting a fast weak learner in a wrapper approach has
not been used for FS in L2R, as far as we know, it has already been used in classification
arena. The work in [Das, 2001] shows experimentally that a feature subset that allows one
algorithm to improve the accuracy should also contribute to a different algorithm to obtain
a high accuracy performance, considering most real-world datasets in classification field. In
our work, besides showing this novel evaluation with distinct L2R algorithms, we provide a
possible explanation for this behavior, as described in Section 4.3.

Our wrapper strategy also differs from previous ones as it exploits a multi-objective
Pareto-efficient method to evaluate several objectives. For this propose, there are several
general-purpose multi-objective algorithms, such as NSGAII [Deb et al., 2002], AMOSA
[Bandyopadhyay et al., 2008], and SPEA2 [Zitzler et al., 2001]. all of them applying Pareto
set in distinct approaches to deal with objective-criteria. In our dissertation we adapted
SPEA2 [Zitzler et al., 2001] to our experiments, which besides being the state-of-the-art in
evolutionary multi-objective algorithms [Guardado et al., 2014], has been used such as a suc-
cess in the literature [Li et al., 2015; Dalip et al., 2014; Guardado et al., 2014]. For instance,
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in [Dalip et al., 2014] the authors use SPEA2 with two competing criteria: minimizing the
number of features while maximizing effectiveness for the task of determining the quality
of collaborative content on the Web. As a future work, we intend to verify the behavior of
distinct multi-objective algorithms, evaluating the performance in L2R datasets. In any case,
even with SPEA2, we are able to obtain relevant results, as we shall see.

In our dissertation, we execute the SPEA2 by combining the risk-sensitive evaluation
as a criterion, which besides evaluating the robustness of a model, is used for the first time
in the L2R literature as a feature selection objective-criterion.

2.3 Risk and Risk-Sensitive Evaluation

The wide diversity in effectiveness among queries when several IR systems are applied had
already called the attention of IR researchers at the beginning of this century [Voorhees,
2005]. Over the years 2003 [Voorhees, 2003], 2004 [Voorhees, 2004], and 2005 [Voorhees,
2005] the Robust Retrieval Track (proposed by Text REtrieval Conference - TREC) investi-
gated the difficulty of specific queries even with a high precision system on average. One im-
portant conclusion of TREC was that optimizing the standard average effective performance
can harm some difficult queries, improving only the better-performing ones [Voorhees,
2005]. More currently, this variability of query precision for several IR systems has mo-
tivated the study of the risk-sensitiveness concept.

In [Wang et al., 2012] risk-sensitiveness is decomposed in degradation and reward,
where the degradation (reward) of the model M corresponds to the negative (positive) varia-
tion of queries evaluation regarding a specific IR system baseline. Suppose that we are given
a set of training queries QT , and two ranking models: a baseline B and a proposed model
M. The degradation of the model M corresponds to the average difference (or gain) in the
effectiveness of the baseline B against M in all queries in QT . This definition of degradation
was formally stated in [Wang et al., 2012] through the FRISK function defined in Eq. 2.1.

FRISK(QT ,M) =
1
|QT | ∑

g∈QT

max[0,B(g)−M(g)] (2.1)

where B(q) and M(q) denote the effectiveness value of the baseline and the new model for a
given query q, respectively. Note that the FRISK function uses the effectiveness of each query
in QT , which can be measured by any commonly-used IR evaluation measure following
the-higher-the-better values, such as AP, MRR, NDCG@k [Liu, 2011]. The main goal for
this function is to evaluate the difference between two models when assessing the same IR
measures. Hence, as the value of function FRISK decreases, it improves the chance of having
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a robust model, as there is less degradation of the model M against the baseline model B. In
this work we adopt the function FRISK as the definition of the degradation of a model M with
respect to a baseline B.

Degradation is a negative variation and an important concept in ranking systems. In
[Knijnenburg et al., 2012], the authors argue that the few failures a search engine makes
get more noticed by the users than the many successful searches. The same authors also
performed an ample study on user experience in recommender systems, finding out how
negative high-variance is for the users. Consequently, the minimization of degradation has
attracted the attention of researchers as an important additional objective for a ranking so-
lution [Wang et al., 2012; Dinçer et al., 2014b,a]. Furthermore, according to Wang et al.
[2012] and Collins-Thompson et al. [2014], robustness is the ability of a ranking solution to
minimize the degradation.

Contrary to degradation, the reward of a proposed method M in relation to a baseline
model B, is defined as the average gain in effectiveness of model M against the baseline B in
all queries in QT [Wang et al., 2012]. In [Wang et al., 2012] reward is formally stated by the
function presented in Eq. 2.2:

FREWARD(QT ,M) =
1
|QT | ∑

q∈QT

max[0,M(Q)−B(Q)] (2.2)

Reward and degradation can be combined in different ways to evaluate how much a
method M is sensitive to risk. The term risk-sensitive task was coined in the TREC 2013
Web track [Collins-Thompson et al., 2014] as the trade-off a system can achieve between
effectiveness (overall gains across queries) and robustness, both regarding a baseline [Wang
et al., 2012; Dinçer et al., 2014a]. In other words, a method is risk-sensitive if it can improve
the ranking of most queries and does not decrease the ranking performance of other ones
concerning a baseline ranking system (from now on referred to as BS4R, an acronym for
Baseline System for Risk). Thus, the risk-sensitive task corresponds to a multi-objective
optimization solution for the ranking problem which aims to maximize effectiveness and
minimize the risk3.

In [Wang et al., 2012], a measure to evaluate sensitiveness to risk is defined by means
of the function URISK , which aggregates functions FRISK and FREWARD in a single tradeoff

function. URISK is the objective function that the proposal in [Wang et al., 2012] aims to
maximize. Function URISK is defined as:

URISK(QT ,M) = FREWARD(QT ,M)− (1+α)FRISK(QT ,M) (2.3)
3Minimizing the risk is equivalent to maximizing robustness.
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The parameter α is the weight given to the degradation (FRISK). Different values of α

can significantly impact the risk-sensitive evaluation of the method, in [Wang et al., 2012;
Dinçer et al., 2014a] its range varying between 0 and 20. As described in [Wang et al.,
2012], α = 0 provided similar interpretation to the IR evaluation measure used, without the
risk-sensitive analysis.

The work described in [Dinçer et al., 2014a] extends the work in [Wang et al., 2012]
by proposing a generalization of the URISK function which is referred to as TRISK .

TRISK(QT ,M) =
URISK(QT ,M)

SE(URISK(QT ,M))
(2.4)

where SE is the estimation of the URISK standard error. We have applied the regular standard
error of the mean to URISK , that it is, σ(URISK)/

√
|QT |, where |QT | means the cardinality of

QT and σ the variance of values in URISK .

The proposed function, TRISK , uses inferential hypothesis testing for evaluating a risk-
sensitive task. The inferential techniques proposed in the paper enable us to: a) decide
whether an observed level of risk for an IR system is statistically significant and b) determine
the queries that individually lead to a significant level of risk.

On the other hand, the authors of [Dinçer et al., 2014b] study how the ranking method
used as BS4R can affect the risk-sensitive evaluation. They show that the choice of an ap-
propriate BS4R is of great importance in ensuring an unbiased risk-sensitive measurement of
the performance of individual systems. In particular, the higher the correlation between any
given system M and the BS4R across queries, the higher the measured risk-sensitive scores
of M on average. This implies a bias in the estimation of the risks. The paper suggests some
unbiased baselines, such as mean or maximum ranking performance over several ranking
methods.

In the same vein, the work in [Dinçer et al., 2016] investigates the use of multiple BS4R
in risk-sensitive evaluation, regarding not only mean and the variance of the observed losses
and wins, but also the shape of the score distribution when using a set of ranking systems
as risk-baseline. The authors claim that using a set of systems as BS4R is the proper way
to know the difficulty of each query, avoiding queries that are badly predicted by a single
system, but not for others. For this propose, the paper performs the Chi-square test statistics
in order to calculate the expectation of the ranking effectiveness for each query using the
overall performance of both current system and other risk-baseline systems. The function
ZRISK is defined in [Dinçer et al., 2016] as:

ZRISK(i) =
[

∑
q∈Q+

ziq +(1+α) ∑
q∈Q−

ziq

]
(2.5)
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where
ziq =

xiq− eiq√eiq
,eiq = Si×

Tq

N
, (2.6)

and xiq is the effectiveness of a query q obtained with the corresponding system i. The
element i is defined as i ∈ {1,2, ...,r} for each system, where r is the number of systems,
and the element q is defined as q ∈ {1,2, ..., |QT |}, where |QT | the max size of queries. Both
Q+ and Q− are sets of positive and negative ziq, respectively. Let Si be the expected system
performance for all queries in IR system i, Tq the within-query IR system effectiveness for

the query q, and N =
r
∑

i=1

QT

∑
q=1

xiq the sum of all elements.

As the ZRISK computes the risk-sensitiveness regardless of the mean effectiveness of
systems, it does not provide a comparative risk-sensitive evaluation of different systems.
Accordingly, the same authors proposed a Geometric Mean of ZRISK for this purpose, called
GRISK function:

GRISK(Si) =
√

Si/QT ×Φ(ZRisk(i)/QT ) (2.7)

where Φ() is the cumulative distribution function of the Standard Normal Distribution. Ba-
sically, the GRISK provides a ranking systems comparison with a robustness perspective,
evaluating each given query against a performance expectation. This expectation is obtained
from the population of the observed ranking effectiveness of systems for a specific query.

All the aforementioned works aim to enhance the risk-sensitive task without consid-
ering FS. In this dissertation we propose evaluations over several objective criteria for FS
strategies, considering a multi-objective Pareto efficient method to optimize, besides the
trade-off between effectiveness and risk-sensitiveness.



Chapter 3

Feature Selection Proposal

3.1 Motivation

Our main motivation is to answer our first research question: Q1 – How to combine different

(potentially conflicting) optimization objectives in FS for L2R without being constrained to

a particular L2R method?

The usual main intent of FS is the reduction of features without harming effectiveness.
However, focusing only on this objective may harm both the effectiveness of some queries
and mainly the overall risk-sensitiveness. For instance, trying to minimize the number of
features while optimizing the ranking performance may generate very specialized solutions
(with low generalization), with few features fitting a group of queries that maximize an
average metric such as Mean Average Precision (MAP) or NDCG. However, this reduced
set may increase the risk of getting poor effectiveness for some other queries, as shown in
Section 4.

Indeed, although the number of features is an important criterion in FS, we claim that
there are other important ones which are capable of obtaining relevant results in effective-
ness and risk-sensitiveness, while still reducing the feature space. In cases where the intent
is a feature reduction without decreasing risk-sensitiveness, our experimental results (de-
scribed in Section 4.5.2) show that the combination of risk-sensitiveness and effectiveness is
better than effectiveness along with the number of features. For this reason, we propose a
methodology to evaluate single and multi-objective criteria, considering, at the same time: i)
effectiveness and risk-sensitiveness; ii) effectiveness, risk-sensitiveness, and feature reduc-
tion; or iii) risk-sensitiveness and feature reduction.

We exploit an evolutionary process that attempts to optimize some pre-defined objec-
tives by varying the set of features to be used in the L2R model as a wrapper method. In

17
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cases in which the number of features is not a direct objective, our methodology still tends
to reduce the dimensionality while improving the other objectives (e.g. effectiveness and
risk-sensitiveness) due to the elimination of noisy, redundant1. Section 3.2.3 provides fur-
ther discussion on this subject. As we shall see in Section 4, this process allows us to obtain
a good feature reduction, without harming the risk-sensitiveness for some objective combi-
nations.

In Section 3.2 we present our evolutionary multi-objective proposal, which makes use
of SPEA2 [Zitzler et al., 2001] to select a set of features. SPEA2 is the state-of-the-art in
the evolutionary processing [Guardado et al., 2014], besides being able to optimize several
proposed objective combinations at the same time, as reported in [Li et al., 2015].

3.2 Evolutionary Multi-Objective FS

SPEA2 is based on Genetic Algorithms [Srinivas and Patnaik, 1994] and thus uses an evo-
lutionary approach to explore the solution space for multi-objective problems. In our case,
this solution space corresponds to the power set of the set of features used in L2R, and a
particular solution corresponds to a set of features, also referred to as an individual. In this
process, each individual receives a fitness value that scores its worthiness based on its like-
lihood of surviving in the next generation. Once the fitness values have been computed for
each individual in one generation, the best individuals are selected to take part in the breed-
ing of the next one. These selected individuals are kept in an archive Ag during generation
g. Thus, in the process, the archive works like a bucket to keep the best individuals over the
generations. On the other hand, the unfit individuals are eliminated during this evolutionary
process. After many generations, surviving individuals (or their descendants) tend to be bet-
ter than the eliminated ones, according to the fitness criteria. This process is summarized in
Figure 3.1, where besides describing the overview of SPEA2 process, it also highlights the
parts addressed by our work and explained in Sections 3.2.1, 3.2.2, and 3.2.3.

In more details, Algorithm 1 describes the original SPEA2. The algorithm takes as
input the size n of the population, the size a of the archive, and the number ng of generations.
A population, Pg ={i0, ..., in}, is the set of individuals in a generation g. In our case, each
individual corresponds to a binary array (aka, a chromosome) in the feature space. A position
in the array is defined as a gene and corresponds to a feature. It is 0 when the feature is
absent in the individual and 1 otherwise. The algorithm first creates an empty archive A1 and
a population P1 with n individuals in lines 1 and 2, respectively.

1This idea is supported by the work in Li and Yang [2005], or high-risk features
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Figure 3.1: The SPEA2 process highlighting the proposals addressed in this work, gray parts.

Instead of using only randomly generated individuals for the initial population, we also
include in P1 some synthetic ones to explore the relevant search space regions faster. Thus,
we include synthetic individuals generated from Random Forest Feature Importance algo-
rithm, or RFFI2. Random Forest Feature Importance sorts the features according to feature
impurity, and less impurity means higher position at each tree of the forest. In this case, each
synthetic individual has a range of the best features ordered by RFFI. For instance, the first
synthetic individual has 5 features from the top, the second one 10 features from the top, and
so on.

Once all individuals have been created, the fitness score for each one is computed
(Line 4). When assigning scores to individuals, SPEA2 must consider the optimization of
multiple objectives. Thus, the algorithm uses the dominance relationship among individuals
to provide the fitness values. Let x and y be two potentially conflicting objectives. Let also i

and j be two different individuals. Individual i dominates j ( denoted as i� j ), if and only
if (xi > x j ∧ yi ≥ y j)∨ (xi ≥ x j ∧ yi > y j). In other words, i dominates j if i is better than j

in one objective, and i is not worse than j in the other one. An individual i is in the Pareto
2using the public library Scikit-Learn(http://scikit-learn.org/)
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Algorithm 1 The Original SPEA2 Algorithm.
Require: Population size n
Require: Size a of Archive (Ag)
Require: Number of generations t
Ensure: Ag close to Pareto frontier

Let Pg = pop. of individuals {i0, ..., in} of generation g
Let Ag = the best individuals of all generations until g
Let Dg = dominated individuals of Pg and Ag

Let Ng = non-dominated individuals of Pg and Ag

1: A1← /0
2: Initialize P1 with random and synthetic individuals
3: for g = 1 to t do
4: Compute fitness(i), i ∈ Pg∪Ag

5: with i ∈ Pg∪Ag do:
6: Assign i to Dg if fitness(i) ≥ 1
7: Assign i to Ng if fitness(i) < 1
8: Add Ng to Ag

9: if | Ag |> a then
10: truncate(Ag)
11: else if Ag < a then
12: k = a− | Ag |
13: Fill Ag with the k best individuals in Dg

14: Pg+1← /0
15: Ag+1← Ag

16: while | Pg+1 | −1 < n do
17: Select two individuals ix and iy from Ag.
18: (new_ix,new_iy) = crossover(ix, iy)
19: Add new_ix and new_iy to Pg+1
20: fol all i ∈ Pg+1
21: random_mutate(i)

frontier, when there is no other individual j that dominates i. In this case, i is said to be a
nondominated individual. The strength S(i) of an individual i is defined as the number of
individuals who are dominated by i, as described in Eq. 3.1.

S(i) =| { j | j ∈ Pg∪Ag∧ i� j} | (3.1)

The fitness score of i is computed by Eq. 3.2.

f itness(i) = R(i)+Dens(i) (3.2)

and

R(i) = ∑
j∈(Pg∪Ag)∧ j�i

S( j). (3.3)
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where R(i) sums the strength of the individuals who dominate i. Observe that R(i)<R( j)

means that the individual j is worse than individual i, since the strength and number of indi-
viduals that dominate j are greater than the strength and number of individuals that dominate
i. Thus, the value of f itness(i) is optimized by minimizing R(i). When R(i) = 0, no individ-
ual dominates i, meaning that all individuals with R(i) = 0 are the best solutions, i.e., they
belong to the Pareto frontier.

The term Dens(i) in Eq. 3.2 is referred to as density estimate in [Zitzler et al., 2001].
It is used to break ties, i.e. individuals with similar dominance. In other words, if two indi-
viduals provide the same dominance relationship, the method selects the individual which is
more distinct in the population, increasing the variability over the selected population. It is
calculated according to Eq. 3.4:

Dens(i) =
1

σ k
i +2

(3.4)

The value 2 in [Zitzler et al., 2001] is used to ensure that Dens(i) is less than 1 and to
keep the denominator greater than zero. Also, σ k

i is the distance between individual i and its
kth nearest individual using the K-nearest neighbor algorithm [Hastie et al., 2009] with the
Euclidean Distance. The parameter k is defined as

√
| Ag |+ | Pg |.

Observe that Dens(i) is assigned to promote a large variety of solutions, as it decreases
when i is farther from a dense region. In this sense, a higher priority is given to the more
distinct individual, avoiding the search process to be trapped in a local optimal solution. In
addition, an individual with tied R(i) values but in a sparse region will have more chance of
surviving to the next generation. This step helps to avoid overfitting, as the algorithms tend
to diversity.

After computing the fitness for each individual, the algorithm populates the Dg and Ng

sets, putting in Dg the individuals which are dominated by other individuals (Line 6), and in
Ng all nondominated individuals (Line 7).

Lines 8-13 of Algorithm 1 define the elitism process, saving in the archive (Ag) all the
nondominated individuals of the population. If the archive is full (Line 9), the algorithm
removes the individual which is most similar to all other individuals in the archive. We use
Euclidean Distance as the similarity measure among individuals. This removal is repeated
until the size of the archive becomes equal to the limit a. This approach increases the diver-
sity of genotype. If the archive is not full the algorithm fills the archive (Line 13) with the
best individuals in Dg (i.e. individuals that despite being dominated have small fitness).

After Ag is full, the algorithm initializes the next generation archive (Ag+1) with Ag

(Line 15). Next, it creates a new population Pg+1, performing crossover and mutation on
individuals of the current archive (Ag). Crossover is performed by using the Tournament



22 CHAPTER 3. FEATURE SELECTION PROPOSAL

Selection method [Srinivas and Patnaik, 1994] (Line 17), which selects the individuals with
highest fitness values, among a few sets of individuals chosen at random from Ag. Using the
Two Point Crossover [Srinivas and Patnaik, 1994] method, the crossover is performed (Line
18) exchanging a continuous random sequence of genes between two selected individuals.

In Lines 20 and 21, the algorithm applies a random selection for mutation to each indi-
vidual. The random_mutate(i) method flips a coin to perform the mutation for an individual
i. In the positive case, it flips a coin again for each gene in the chromosome corresponding to
i, following a Binomial Distribution with a previously defined parameter. In order to improve
the variability over the search space, we selected this mutation method in order to set a low
probability for a mutation process so that few individuals are mutated. However, when the
mutation is performed, it produces a large modification in the chromosome.

After Algorithm 1 is completely executed, it ensures that a set of individuals are in or
close to the Pareto frontier, which is a subset of the last archive. In order to select only one
individual (as the definitive subset of features), we choose the individual which produces the
model with the greatest effectiveness value in the training set.

As far as we know, the use of SPEA2 for selecting features of a L2R model has not been
reported in the literature. Indeed, we extended SPEA2 regarding the following aspects: (i)
the explicit definition of the exploited dominance relationships, (ii) the use of a statistical test
to compute the dominance relationships and (iii) the use of a fast weak learning algorithm as
a black-box L2R method to improve the wrapper strategy. We explain the demand for these
extensions and how they were performed in the following subsections.

3.2.1 Dominance Relationships

In this section we describe in detail how we compute the fitness of an individual i. We
compute the fitness of i using Eq. 3.2, however, we use different definitions of the dominance
relationship (�) according to the objectives we want to optimize. Since these objectives are:
effectiveness, risk-sensitiveness and feature reduction, we need first to obtain a ranking
model derived from the L2R black-box algorithm using the set of features forming individual
i. Secondly, we need to compute measures of effectiveness, number of features and risk-
sensitiveness to evaluate the learned model for i, according to the objectives considered.

The effectiveness of the model corresponding to an individual i is computed using the
values of a IR measure, e.g. MAP, MRR, or NDCG [Liu, 2011]. We refer to the effectiveness
value of a model corresponding to an individual i as eff (i). The risk-sensitiveness of the
model learned for i is measured using three of the four measures presented in Section 2.3:
FRISK(i), TRISK(i) and GRISK(i) (Eq.2.1, Eq.2.4 and Eq.2.7, respectively). We do not use
the function URISK in our evaluations because of its highly correlated results with TRISK , as
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shown in [Dinçer et al., 2014a]. Finally, the measure used to evaluate the objective of feature
reduction is simply the counting of the number of features forming the individual i.

Given the model learned for an individual i and the objective evaluation measures,
we next give the definitions of dominance relationships we use to compute the fitness of
individuals in the SPEA2 algorithm.

Definition 1. i
E-R
� j if and only if (FRISK(i) < FRISK(j) ∧ eff (i) ≥ eff (j)) ∨ (FRISK(i) ≤

FRISK(j)∧ eff (i)> eff (j)).

We use Definition 1 to determine whether an individual i dominates individual j (i.e.,
i � j) regarding ranking performance eff () and degradation, FRISK(). By using eff () and
FRISK() as independent objectives in Definition 1, we are improving the computation of
risk-sensitive evaluation in comparison to those computed by URISK , TRISK and GRISK , (Eq.
2.3, Eq. 2.4 and Eq. 2.7, respectively). This is because FRISK has no parameter α to be
adjusted as is the case of the other three risk-sensitiveness measures. In addition, as FRISK()

evaluates only the degradation of a model, it alone cannot be considered a risk-sensitive
function. However, applying it with a ranking performance function, we provide an instance
of risk-sensitive evaluation, since we are maximizing effectiveness and minimizing the risk
of performing poorer than a baseline system.

Definition 2. i
E-G
� j if and only if (GRISK(i) > GRISK(j)∧ eff (i) ≥ eff (j)) ∨ (GRISK(i) ≥

GRISK(j)∧ eff (i)> eff (j)).

In Definition 2 we combine ranking performance eff () and risk-sensitiveness with mul-
tiple BS4R, using GRISK(). For this definition, the ranking performance has a greater factor,
as it participates on both objectives.

Definition 3. i
T
� j if and only if TRISK(i)> TRISK(i)

Definition 4. i
G
� j if and only if GRISK(i)> GRISK(i)

Definitions 3 and 4 explore the straight risk-sensitive objective criterion, TRISK and
GRISK , respectively. Noting that with only one objective criterion there is no Pareto fron-
tier, and the SPEA2 algorithm becomes more similar to a classic single objective genetic
algorithm.

Definition 5. i
E
� j if and only if eff (i)> eff (j)

We also evaluate effectiveness as a unique objective criterion, in Definition 5. As
effectiveness is applied to many FS works in the literature, our main goal using Definition 5
is to evaluate its risk-sensitiveness in our Evolutionary Algorithm.
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Definition 6. i
E-F
� j if and only if (nFeat(i) < nFeat(j) ∧ eff (i) ≥ eff (j)) ∨ (nFeat(i) ≤

nFeat(j)∧ eff (i)> eff (j))}

Definition 7. i
T-F
� j if and only if (nFeat(i)< nFeat(j)∧TRISK(i)≥ TRISK(j)) ∨ (nFeat(i)≤

nFeat(j)∧TRISK(i)> TRISK(j))}

Definition 8. i
G-F
� j if and only if (nFeat(i)< nFeat(j)∧GRISK(i)≥GRISK(j)) ∨ (nFeat(i)≤

nFeat(j)∧GRISK(i)> GRISK(j))}

As already described, we also optimize other objectives accepting a more drastically
feature reduction. Thus, Definition 6 to 8 include number of features, effectiveness and risk-
sensitive evaluation functions (TRISK and GRISK). The nFeat(i) corresponds to the number of
features of individual i.

Definition 9. i
E-G-F
� j if and only if[

nFeat(i)< nFeat(j)∧GRISK(i)≥ GRISK(j)∧ eff (i)≥ eff (j)
]
∨[

GRISK(i)> GRISK(j)∧nFeat(i)≤ nFeat(j)∧ eff (i)≥ eff (j)
]
∨[

eff (i)> eff (j)∧GRISK(i)≥ GRISK(j)∧nFeat(i)≤ nFeat(j)
]

Definition 10. i
E-R-F
� j if and only if[

nFeat(i)< nFeat(j)∧FRISK(i)≤ FRISK(j))∧ eff (i)≥ eff (j)
]
∨[

FRISK(i)< FRISK(j)∧nFeat(i)≤ nFeat(j)∧ eff (i)≥ eff (j)
]
∨[

eff (i)> eff (j)∧FRISK(i)≤ FRISK(j)∧nFeat(i)≤ nFeat(j)
]

To further evaluate our multi-objective approach, we also perform a combination of
three objective criteria in Definition 9 (using GRISK) and in Definition 10 (using FRISK):

For each objective O (except the number of features and GRISK function) we use a
statistical significance test when comparing two individuals according to objective O. In the
next section, we discuss the importance of this statistical test.

All aforementioned dominance relationships are defined with the intent of assessing
the risk-sensitiveness and effectiveness of the proposed single and multi-objective criteria.
However, our methodology is absolutely flexible to accommodate any other type of objec-
tive combination. As a suggestion, one application could perform feature selection in order
to optimize two or three distinct effectiveness measures or more than two risk functions,
without directly concerning effectiveness performance.
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3.2.2 Using Paired Tests in the Dominance Relationships

One important issue when using the Pareto frontier is to select the final individual to learn
the definitive model. This is because the obtained Pareto frontier is usually large, especially
when the two objectives are conflicting [Wismans et al., 2011]. As a result, the task to
evaluate and to select only one individual from several in Pareto set becomes difficult.3

To explain why the Pareto set increases, let us consider an example of two non-
dominated individuals, i and j. Suppose that regarding objective x, i is a little greater than j,
using a scalar value of some measure. Otherwise, taking into account another objective y and
also using a scalar value, j can be substantially greater than i regarding y. In this case, there
is no dominance relationship between i and j, as a result, both individuals are kept in Pareto
frontier, increasing its size, even though there is a small difference between both individuals
for objective x.

In this work we deal with this issue by considering a L2R idiosyncrasy, that is, the
models learned for individuals i and j are used to generate rankings for each query of the
training set. Thus, we can compare both models per query (with regard to the objective x) and
use the training set as a sample for the evaluation. This allows us to perform a paired statisti-
cal test and consequently compare individuals i and j confidently. Using our aforementioned
example, the individual i will probably not be statistically different from j on objective x,
thus defining i dominated by j, and consequently, keeping only j as a non-dominated in-
dividual. As a result, when using a statistical test we are more strict to assign a difference
between two models, providing an improved ranking of individuals and a reduced Pareto set,
such as shown by the experiments described in Section 4.4.

In order to describe the influence of the statistical test, Table 3.1 lists all possible dom-
inance relationships of individuals i and j without a statistical test comparison, for one and
two objectives, and the possible changes when applying a paired statistical test. The absence
of a statistical test is represented by Best Mean, which only uses a regular comparison of the
best mean values. For instance, in the first line, the table shows that an equivalent relation-
ship using Best Mean can be kept the same or changed towards i� j or j� i, by using the
paired test comparison. The first line also represents a conflict dominance for two individuals
in two objectives, but applying statistical test there are three possibles changes. Differently
for the remaining lines, where either the dominance relationship keeps the same, or changes
towards an equivalent one, i.e, only maximum of one possible changes and the change drives
to a tied relationship.

3 Some works have already addressed this Pareto set size issue [Wismans et al., 2011; Tzeng and Tsaur,
1997]. In Wismans et al. [2011], for instance, some pruning and ranking methods are applied only over the opti-
mal Pareto set, aiming to be used as an assist to the decision making process and providing a better compromise
solution.
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From Table 3.1, for two objective criteria, the paired test can impact more on the evo-
lutionary comparison as it breaks the tied relationship. Alternatively, for all other options4,
the paired test only keeps the same dominance relationship or changes towards an equivalent
one, despite assigning a more strict comparison. Hence, in the case of one objective crite-
rion, we do not expect that the paired test should provide different results, as we do in more
than one objective criteria. Section 4.4 describes the experimental results which support our
claims.

Influence with Paired Statistical Test
Best Mean i≡ j i� j j� i

i
OBJ1−OBJ2≡ j Yes Yes Yes

i
OBJ1−OBJ2� j Yes Yes No

j
OBJ1−OBJ2� i Yes No Yes

i
OBJ1≡ j Yes No No

i
OBJ1� j Yes Yes No

j
OBJ1� i Yes No Yes

Table 3.1: Consequence of using paired statistical test comparison in one and two objective
criteria.

It is also worth observing that the reduction of a Pareto set does not reduce the variabil-
ity over the evolutionary process. As described in Algorithm 1, the mutation and crossover
processes are applied to all archive5 and population sets, and not only to the Pareto frontier.

In order to illustrate this behavior, in Figure 3.2a the Pareto set is a subset of the
Archive, and each individual (represented by circles) has the rank position considering a
dominance relationship without a statistical test. Concerning the statistical test comparison
performance in Figure 3.2b, the ranking positions of the individuals suffer a minor rearrange-
ment and the Pareto set is diminished, as a consequence of more strict comparison for the
dominance relationship, and without changing the size of the archive.

As our experiments show (see Section 4.4), in the cases of datasets with many queries,
the significance test improves the comparison of individuals considerably, leading to a strict
dominance evaluation. As a consequence, the Pareto frontiers are much smaller than those
produced by the conventional method. Furthermore, only high-quality individuals remain in
the final Pareto set, improving the selection of the final individual.

4Even though the dominance relationship is applied to two or more objective criteria, the dominance for
one objective criterion can be interpreted as a relevance superiority.

5Remarking that the archive works as a bucket to keep the best individuals over the generations.
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Figure 3.2: The Pareto sets when using the statistical test over the evolutionary process.

3.2.3 Using a Fast and Weak Learner Algorithm as a Black-Box

In this work our methodology to evaluate multi-objective criteria in FS makes use of a wrap-
per strategy. However, traditional wrapper strategies exploit the same L2R algorithm both as
a black-box during FS and in the final ranking solution after the FS is performed. Usually, a
state-of-the-art L2R algorithm is chosen, therefore, raising two important issues: i) as these
algorithms are time consuming, wrapper approaches become infeasible in huge datasets and
ii) a high-quality learner (i.e. with both low variance and low bias) is usually able to attenuate
the presence of “bad” (i.e., noisy, redundant) features, predicting similar accuracy for differ-
ent individuals. As a result, the state-of-the-art L2R algorithm could not explicitly indicate
the inconvenience of “bad” features to the learning process of FS, driving the evolutionary
exploration to bad regions in the search space.

Measuring an individual’s fitness is crucial in our proposal, as it influences consider-
ably the execution time of SPEA2 and the exploration of the search space. Thus, we claim
that, for fitness processing, it is better to use a fast L2R method more sensitive to both,
good and bad features, than to use a method which builds a highly effective model. In other
words, it is interesting that the L2R algorithm used during the wrapper FS does not attenuate
the effect of bad individuals, so that they can be filtered out more effectively from the Pareto
frontier during the generation process.

Based on the above assumptions, during the SPEA2 execution we apply weak rank-
ing methods (e.g. Regression Tree or Linear Regression) as the L2R black-box to build the
model for each individual. Besides improving the comparison between individuals, they are
much faster than most state-of-the-art L2R algorithms. In Section 4.3 we show the large
differences between using a weak and a state-of-the-art learner as a black-box in our exper-
iments. Nevertheless, after the final selection of features is done, we apply a more effective
method, such as Random Forests [Breiman, 2001] or LambdaMART [Mohan et al., 2011],
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all of them well-known very effective and strong L2R methods.
In order words, by using a weak-learner in an evolutionary process for FS, we claim

that it is more discriminative to evaluate individuals over the evolving process for FS. Con-
cerning the black-box as a loss function for feature selection, the function should optimize
the prediction considering the best set of features.

It is worth observing that this exploitation of weaker learning methods to process a
training subspace has been used in different machine learning contexts, such as classifier
ensembles. Random Forests, for instance, exploits regression trees without pruning, in order
to measure the information gain obtained by many training subspaces (aka, bagging). By
combining all such biased measurements, it can achieve a model with lower variance [Hastie
et al., 2009].

The original SPEA2 and regular wrapper strategies do not use the improvements pro-
posed in this work, namely: (i) paired statistical significance test to measure meaningful
differences and (2) a biased learning method as a black-box. These improvements and the
novel multi-objective criteria are evaluated in the next section.



Chapter 4

Experimental Evaluations

In this chapter, we describe a set of experiments performed to answer our proposed research
questions, assigning each subsection for a research question. However, we first describe the
datasets, the BS4R, the FS baseline methods and the hyper-parameter settings.

4.1 Datasets and Evaluation Measures

We conduct our experiments on four well-known benchmark datasets: MSLR-WEB10K
(from Microsoft Research1), Yahoo! Webscope dataset version 1 and set 2 (from YAHOO!
Learning to Rank Challenge2), and LETOR3 datasets: TD2003 and TD2004. For our eval-
uation, each dataset was divided into five folds for a 5-fold cross-validation procedure, with
three folds for training, one for validation and one for testing. The details of WEB10K,
YAHOO, TD2003, and TD2004 datasets are summarized in Table 4.1.

Queries No. docs No. features
WEB10K 10,000 1,200,192 136
YAHOO 6,330 172,870 700
TD2003 50 49,058 64
TD2004 75 74,146 64

Table 4.1: Characteristics of the datasets

As defined in Section 2.3, risk-sensitiveness evaluates the robustness of a ranking
solution relative to a defined Baseline System for Risk, or BS4R. When using TRISK and
FRISK functions only one BS4R is applied. Conversely, the GRISK function uses more than

1http://research.microsoft.com/enus/projects/mslr/
2http://research.yahoo.com/Academic_Relations
3http://research.microsoft.com/enus/um/people/letor/
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one BS4R to evaluate risk-sensitiveness. Furthermore, we have applied distinct BS4R ap-
proaches in the training and test phases to measure the risk-sensitive functions.

In the training phase or within the SPEA2 Algorithm, in order to measure the TRISK

or FRISK functions for each individual, we use the full set of features combined with the
black-box method as the BS4R. Consequently, all new individuals (features subsets) have
the model trained with all features as a reference to risk-sensitive evaluation. However, to
obtain the GRISK score for an individual, we use all remainder individuals from the genera-
tion as the set of BS4R. Recall that GRISK uses the shape of the score distribution of many
BS4R to measure the risk-sensitiveness. Hence, all individuals from a population define
the shape of robustness, and each individual is compared against the shape to evaluate its
risk-sensitiveness. It is worth noting that, in our work GRISK changes the BS4R over the
generations, differently from TRISK that uses the same BS4R for all generations. In both
cases, all individuals are evaluated using the same machine learning approach. This fulfills
the requirements defined in Dinçer et al. [2014b] to be a valid and an unbiased BS4R.

Considering the test set, in order to evaluate the risk-sensitive performance of the final
model, we use the Mean, Max and BM25 performance as BS4R for TRISK , as also applied
in Dinçer et al. [2014b]; Wang et al. [2012]. BM25 is already available as a feature in the
dataset, corresponding to the result when the method is applied to the whole document. With
Mean and Max Baselines we evaluate the effectiveness (e.g. using NDCG@10) for each
feature value as a score for document ranking, corresponding to the average effectiveness for
all features for the Mean Baseline, and the highest effectiveness value for the Max Baseline.
In the case of GRISK , we use the full set of features combined with important L2R algorithms
with different solving paradigms: ListNet, AdaRank, LambdaMART, Random Forest and
MART. Additionally, to avoid overfitting when evaluating the GRISK of the selected features
with Random Forest, for instance, RF is not used as a L2R algorithm to compose the set of
BS4R methods.

To report the improvements of the selected features, we use GRISK and TRISK scores.
Additionally, we use “Wins” and “Losses > 20%”, following [Dinçer et al., 2014a; Wang
et al., 2012]. The measure Wins for a method M counts the number of queries for which
M wins against the BS4R, ignoring ties. The measure “Losses > 20%” (represented by
“L > 20%” in our tables) expresses the number of queries for which the relative loss in
effectiveness of a method M against the BS4R is higher than 20%. It is worth noting that
“L > 20%” has a “less is better” interpretation – which is shown in our tables using the
symbol ↓.

We evaluate the effectiveness for queries of a dataset performing the average of the
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NDCG@10 [Liu, 2011] over all queries4. Moreover, to ensure the relevance of the results,
we assess the statistical significance of our measurements by means of a paired T-test [Sakai,
2014] with 95% confidence.

4.2 Hyper-Parameters Definitions and FS Baselines

For risk-sensitive measures (TRISK and FRISK) only the α parameter5 has to be previously
defined and analyzed. However, besides the L2R and FS baselines, some “default” param-
eterization is also necessary for the SPEA2 evolutionary process. For SPEA2, we adopt
a parameter setting with some values used in previous works [Laumanns et al., 2001; Pan
et al., 2011; Zitzler et al., 2001]. Table 4.2 summarizes them. For instance, the work in Pan
et al. [2011] indicates that having more individuals per generation is better than having more
generations. Hence, we define population size as 75 (as used in Dalip et al. [2014]) and the
number of generations as 30. In addition, as in Zitzler et al. [2001], a large archive size
suggests a large elitism, thus we use an archive size of 150 (twice the population size). For
the mutation and crossover parameters we follow the guidelines in Laumanns et al. [2001]:
individual mutation probability = 0.2, gene mutation probability = 0.3, and crossover proba-
bility = 0.8. The individual mutation probability is the probability to perform a mutation in
an individual, and the gene mutation probability is the probability to change a gene. In order
to drive the search for better regions, we also insert synthetic individuals in the first popu-
lation, selecting sets with 5%, 10%, 15%, up to 95% of best features evaluated by Random
Forest Feature Importance. We apply these same parameters and settings for all evolutionary
executions.

To compute TRISK
6 and GRISK in the training phase (inside of SPEA2) we apply the

following range of α values (considering Wang et al. [2012]): 1, 5, 10, 15, 20, 25, 30,
35, and 40. From the best evaluation performance on the validation set, we used α = 35
for YAHOO and WEB10K, and α = 5 for TD2003 and TD20004. On the other hand, to
evaluate our method in test set we use the value 5 in α parameter, also suggested in [Dinçer
et al., 2014a, 2016]. In fact, other values for α parameter were tested, but we did not find a
statistical difference in effectiveness.

To evaluate the feature sets selected by the FS methods, we apply two well-known
state-of-the-art L2R methods [Mohan et al., 2011]: Random Forest and LambdaMART. We

4We have tested with other metrics such as MAP and NDCG at other positions and the results were quali-
tatively the same.

5Remarking that using a parameter α the risk-sensitive measures apply a linear combination of reward and
degradation values.

6As URISK is a component of TRISK , TRISK also uses the α parameter.
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Parameterization Description

SPEA2

Population Size 75
Generation Number 30
Archive Size 150
Mutation Probability 0.2
Gene Mutation Probability 0.3
Crossover Probability 0.8

Risk-sensitiveness α Values 1, 5, 10, ..,40
Random Forest Number of Trees 100, 200, 300

LambdaMART
Learning Rate 0.025, 0.05, 0.075, 0.1
Number of Leaves 10, 50, 80
Number of Trees 100,200, 300, 500, 800

BTFS
Features Rate 0.02, 0.10, 0.25, 0.50
k 10, 30, 50

DivFS
Algorithms MPT and MMR
k 0.20, 0.30, 0.40

Table 4.2: Summary of the applied parameters.

evaluate for Random Forest only the number of trees ∈ {100,200,300}7} on the validation
set and left the remaining parameters with their default values (as in the Scikit-Learn8). For
the LambdaMART algorithm, we chose the best performing parameters in the validation set
for the learning rate, the number of leaves, and the number of trees. We evaluate the follow-
ing values: learning rate ∈ {0.025,0.05,0.075,0.1}, number of leaves ∈ {10,50,80}, and
number of trees ∈ {100,200,300,500,800}. The remaining parameters of LambdaMART
follow the QuickRank9.

In order to evaluate our proposals against other Feature Selection methods, we consider
instances of wrapper and filter strategies. Hence, we have used some recent FS methods that
were cited in several papers, such as [Pan et al., 2011] (here called BTFS) such as a wrapper
instance, and [Naini and Altingovde, 2014] (here called DivFS) such as a filter instance. To
evaluate the BTFS method, we select the best parameters considering the best ranking per-
formance over the validation set. We use the same elimination rate as in the original work:
0.02, 0.10, 0.25 and 0.50. The authors consider that using 30 features (the k parameter) of
their datasets, which originally contained 419 and 367 features, was enough to obtain the
same prediction as using the full dataset. Following the authors, we apply 30, 50, 10 and 10
features, respectively in WEB10K, YAHOO, TD2003, and TD2004. Concerning the evolu-
tionary process in BTFS, we use the same parameters used in our solution, also described in

7As described in [Gomes et al., 2013], Random Forest is known to be robust to change in parameters, and
few changes in the parameters are necessary to obtain good performance.

8http://scikit-learn.org/stable/
9http://quickrank.isti.cnr.it/
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Table 4.2. To evaluate the DivFS method, we implement the best approaches found in the
original paper, namely Modern Portfolio Theory and Maximal Marginal Relevance. In both
cases, we use the target number of features considering the same rate used by the authors
(also the k parameter): 0.20, 0.30, and 0.40. We use the validation set only to evaluate the
best parameters, and then apply the best values in the test set.

In the next sections we answer our research questions by means of an extensive set of
experiments on the considered datasets. The first two questions are related to our Evolution-
ary algorithm extensions, and the third concerns our methodology to evaluate several single
and multi-objective criteria.

4.3 Evaluating the Weak Learner as a Black-Box

Q2 – How to apply an efficient wrapper evolutionary FS algorithm over huge datasets,

without loss of effectiveness?

As highlighted in Section 3.2.3, an evolutionary algorithm adapted to a wrapper strat-
egy and using a state-of-the-art L2R method has serious time consuming issues, mainly due
to the fitness processing. We address this by applying a weak learner as black-box to perform
a faster execution and to improve the accuracy of feature selection in the SPEA2 process. We
now provide evidence for this claim, assessing the performance of distinct L2R algorithms
as black-boxes. Furthermore, we also use this section to describe the weak learners used to
evaluate our multi-objective FS proposal, over the next sections.

Initially, we evaluate distinct L2R executions out of the evolutionary process, showing
in Figure 4.1 and Table 4.3 the time and accuracy performances, respectively. The exper-
iments execute all features on the training partition of a 5-fold cross-validation procedure,
varying the L2R algorithms such as: Linear Regression, Regression Tree, Short Regression
Tree, Random Forest, and LambdaMART. Particularly, for Short Regression Tree, we per-
form tuning of the leaves number on the validation set, applying it in training set to build a
shorter tree. We also use the LambdaMART and Random Forest as instances of the state-of-
the-art L2R algorithms. As expected, in Figure 4.1 both Random Forest and LambdaMART
are the most time consuming, being up to 28x and 121x slower than the Linear Regression,
respectively. Despite this, Random Forest and LambdaMART provide the best effective
performance (in Table 4.3) against other L2R algorithms. In contrast, the faster ones pro-
vided the worst effectiveness performance, such as Linear Regression, Regression Tree and
Short Regression Tree. In fact, the faster algorithms create simple models, without proper
treatment for bad features. From both Figure 4.1 and Table 4.3 one can consider Linear Re-
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gression, Regression Tree and Short Regression Tree as fast and weak learners, and Random
Forest and LambdaMART as strong learners.

Figure 4.1: The execution time (in seconds) of L2R algorithms using all features, applying
a 5-fold cross-validation on the training set.

Datasets
Linear

Regression
Short

Regression Tree
Regression

Tree
Random
Forest LambdaMART

WEB10k 0.4042±0.0063 0.3896 ±0.0061 0.2717 ±0.0069 0.4243 ±0.0067 0.4482 ±0.0065
YAHOO 0.6889 ±0.0073 0.6645 ±0.0082 0.6000 ±0.0083 0.7014 ±0.0075 0.7160 ±0.0079
TD2003 0.3236±0.0772 0.2291 ±0.0763 0.2276 ±0.0854 0.3487 ±0.0778 0.2644 ±0.0823
TD2004 0.2917±0.0522 0.2501 ±0.0510 0.2038 ±0.0509 0.3393 ±0.0519 0.3119 ±0.0534

Table 4.3: The effectiveness (NDCG@10) when processing 5-Fold in the training set with
distinct algorithms.

We now evaluate the aforementioned L2R algorithms as black-boxes in our evolution-
ary SPEA2 algorithm according to time and effectiveness. First, Figure 4.2 describes the
time cost of our SPEA2 when varying only the black-box methods over the evolutionary
processing, showing the execution time for 75 individuals and 30 generations in WEB10K
dataset and without any tuning of L2R parameters. To avoid any comparison of objective-
criteria and statistical test proposals, the experiment in the table uses for all execution the

effectiveness as the objective-criterion,
E
� , and the best effectiveness to compare the indi-

viduals. This experiment uses only one machine, in order to better describe the performance
in serial execution, which is a Intel R© i7-870, running at 2.93GHz, with 16GB RAM. In the
case of LambdaMART we did not finish the execution due to the long processing time.

As one can observe in Figure 4.2, both Random Forest and LambdaMART are very
time consuming as black-boxes. For instance, Random Forest spent up to 30x and 18x longer
than Linear Regression and Regression Tree, respectively. The LambdaMART execution
was terminated when missing over 30% of processing, despite that, it is 3x longer than the
Random Forest. Note that the results in Figure 4.2 follow the individual execution in Figure



4.3. EVALUATING THE WEAK LEARNER AS A BLACK-BOX 35

4.1. In fact, time performance is an improvement of using a fast learner in the evolutionary
process. Depending on some parameters, such as the number of generations and individuals,
the processing can be prohibitive for large datasets when a strong learner is used.

Figure 4.2: The execution time (in hours) to process our wrapper evolutionary algorithm
when varying the L2R algorithms as black-box in WEB10K dataset.

Although the processing time is a requirement, it is absolutely important that the black-
box algorithms provide accurate comparison over the individuals, guaranteeing an accurate
feature selection. Hence, Table 4.4 presents the effectiveness of the final model when vary-
ing the aforementioned L2R algorithms as black-boxes. Due to the long processing time of
LambdaMART, we do not provide its effectiveness results. In addition, as LambdaMART
depends on parameter tuning to obtain an accurate evaluation of feature sets, its execution
became an impossible experiment in evolutionary wrapper strategies. On the contrary, Ran-
dom Forest is more robust to the parameter tuning [Gomes et al., 2013], and consequently it
is more robust to evaluate several features sets over an evolutionary execution without chang-
ing the parameters in the training phase. The results in Table 4.4 correspond to NDCG@10
(with confidence intervals) using Random Forest with the final selected features subset (i.e.,
the selected individual). Note that besides distinct evaluation black-boxes, by using Random
Forest as the final model, we are showing an important baseline, which is a case of perform-
ing same L2R algorithm (Random Forest) in both the black-box and in the final model.

Table 4.4 shows that even using a faster weak learner as a black-box the ranking per-
formance of selected features is similar or even better than using Random Forest. As one
can see, Regression Tree presented statistically similar results to those of Random Forest as
black-box in all datasets. Linear Regression also obtained interesting results, outperform-
ing the Short Regression Tree and providing results close to Regression Tree and Random
Forest. Possibly, Short Regression Tree could not provide a proper evaluation of a set of fea-
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Datasets
Linear

Regression
Short

Regression Tree
Regression

Tree
Random
Forest

WEB10K 0.4201RF ±0.0068 0.4176RF ±0.0069 0.4234 ±0.0069 0.4228 ±0.0067
YAHOO 0.7033RF ±0.0085 0.6993RF ±0.0086 0.7042 ±0.0085 0.7050 ±0.0085
TD2003 0.3272 ±0.0771 0.3273 ±0.0765 0.3658 ±0.0858 0.3441 ±0.0775
TD2004 0.3336 ±0.0527 0.3331 ±0.0505 0.3488 ±0.0519 0.3309 ±0.0518

Table 4.4: NDCG@10 of selected features (with confidence intervals) when experimenting
four L2R algorithms as black-boxes. All results for WEB10K and YAHOO are related to
two folds only, due to the time cost of executing Random Forest as a black-box. The symbol
“RF” shows that the results are statistically distinct against the Random Forest execution.

tures without tuning of leafs number. These results in the table show that a weak learner such
as a Regression Tree and Linear Regression may be used in place of a state-of-art L2R as
black-box methods in the wrapper-based FS without affecting the quality of the final selected
individual and improving the execution time.

The good results of Regression Tree as a black-box when using Random Forest as
a final learner may be expected by the fact that the Regression Tree algorithm is also a
weak-learner inside the Random Forest. Hence, finding a set of features which improves the
performance of the Regression Tree should also improve the Random Forest performance.
This strengthens our argument for using weak learners as black-boxes in the FS process,
mainly when the main goal is to improve the time performance of wrapper strategies. More-
over, our experiments show strong evidence that regression models (i.e. Linear Regression
and Regression Tree) as black-boxes provide important feature selection for ensemble of tree
(i.e. Random Forest and LambdaMART10). In future, we intend to further evaluate whether
other distinct algorithms (e.g. neural net or probabilistic models) also provide advantage as
black-boxes models.

Concerning the intuition of weak learner quality in evolutionary search, one can under-
stand as its capability to discriminate among the individuals during the evolutionary process
and not only to find the individual that obtain the maximum performance. By discriminate,
we mean the capacity to not reduce the importance of bad features. This can be observed
more clearly in Figures 4.3 and 4.4, which show the SPEA2 when using effectiveness as

objective criterion,
E
� . The figures describe effectiveness (in NDCG@10) on TD2003 and

TD2004 datasets, respectively, using a Random Forest and a Linear Regression11 as black-
boxes. The box-plots in the figures summarize the effectiveness (NDCG@10) of individuals

10Next section describe the results when using Random Forest and LambdaMART to evaluate the selected
individuals.

11We describe these experiments using Linear Regression, because its results provide a better description of
our weak learner intuitions.
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in the archives from different generations of our evolutionary process. We select archives
A1, A2, and A3 to represent, respectively, the first, middle and last generations. The first
three boxes in the Figure represent the performance using Random Forest, and the last three,
using Linear Regression. As the evolutionary process receives synthetic individuals from
Random Forest Feature Importance algorithm12, we perceive in Figure 4.3 and 4.4 that both
experiments begin with relative good individuals. However, only the quality of individuals
when using Linear Regression improves during the evolutionary process, and Random Forest
could not discriminate the set of features over the process.
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Figure 4.3: The performance (NDCG@10) of SPEA2 using Random Forest (RF) and Linear
Regression (LR) over generations for TD2003 dataset.
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Figure 4.4: The performance (NDCG@10) of SPEA2 using Random Forest (RF) and Linear
Regression (LR) over generations for TD2004 dataset.

In the figures, Random Forest average results are almost constant, while Linear Regres-
sion results show an increasing average curve. One possible reason is that a weak learner
may not be able to attenuate the impact of noisy features as input, decreasing the overall
effectiveness. We observe that there is higher variability in ranking performance when using

12For all experiments we select several rates of good features from the Random Forest Feature Importance
algorithm, varying from 5%, 10%, 15% up to 95% of the best features.
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Linear Regression, especially in Figure 4.3, showing that Linear Regression enables a more
sensitive evaluation of the individuals.

To sum up and answering our Q2 research question, we show that weak learners, e.g.
Linear Regression and Regression Tree, can be applied as a black-box in a wrapper strategy
to perform FS on the L2R task. From now on, we perform and assess our wrapper evolution-
ary evaluation using Linear Regression and Regression Tree as black-boxes, assessing the
selected individuals accuracy with Random Forest and LambdaMART algorithms.

4.4 Evaluating the Paired Statistical Test for Pareto

Set Selection

Q3 – How to improve the selection of individuals inside of the Pareto frontier set, in order

to provide a more effective subset of features?

As a result of the SPEA2 process, a Pareto set is obtained with individuals that max-
imize all objective criteria. The size of this set can be large in cases where the objectives
conflict with each other, increasing the difficulty of choosing only one individual. As de-
scribed in Section 3.2.2, we deal with this issue by performing statistical tests to compare
individuals in a multi-objective scenario, improving the ranking effectiveness and obtaining
a smaller Pareto set.

To provide evidence for our claim, we begin by showing the reduced Pareto set due
to statistical test comparisons, in Figure 4.5. Each column shows the percentage of Pareto

set inside the last archive when applying
E-R
� and

E-G
� (E −R and E −G, respectively) as

objective criteria, and the weak learners such as Linear Regression and Regression Tree. The
BestMean method performs a regular comparison with the best mean values of NDCG@10,
without paired statistical tests, and the Wilcoxon (Wilcoxon Signed-rank test [Hsieh et al.,
2008]) method corresponds to comparisons of the mean NDCG@10, but using a paired test
to confirm when an individual is superior.13 As expected, the experiment described in the
figure allows us to observe that using statistical test comparison with multi-objective criteria
provides a smaller Pareto set for all tests, through a more statistically strict comparison and
breaking the tie relationship. We also note similar results when comparing both Wilcoxon
and t-Test paired test methods. However, as Wilcoxon has been shown to be more robust
against (or insensitive to) outliers [Hsieh et al., 2008], we use it in our experiments on the
evolutionary processing, more specifically (in the training phase.).

13Reminding that the SPEA2 use all the archive and population to perform the cross-over and mutation
process, as described in the Algorithm 1, and not only the Pareto set, described in Figure 4.5.



4.4. EVALUATING THE PAIRED STATISTICAL TEST FOR PARETO SET SELECTION 39

(a) Linear Regression as a black-box.

(b) Regression Tree as a black-box.

Figure 4.5: Percentage of individuals remaining in the archive composing the Pareto Set in

WEB10K and YAHOO datasets when using
E-G
� and

E-R
� objective criteria, Linear Regression

and Regression Tree as weak-learners, and both method of fitness comparison: BestMean
and Wilcoxon.

In order to provide the real benefits of the smaller Pareto Set, we now show improve-
ments on the effectiveness in Table 4.5, which describes the effectiveness (NDCG@10)
of the final individual when a paired statistical test is applied to evaluate the fitness over
the generations. The table describes the experimental results for BestMean, Wilcoxon and
Wilcoxon-End, where BestMean and Wilcoxon were already explained, and Wilcoxon-End
is our method to apply paired test only in the last generation. Our goal with Wilcoxon-End is
to assess whether the statistical comparison in the last generation is enough to provide effec-
tive results. The results are assessed considering Linear Regression and Regression Tree as
black-boxes. We apply in this experiment multi-objective and single-objective combinations,

for instance,
E
� ,

E-R
� , and

E-G
� . Note that

E-R
� applies the statistical test in both objectives,

effectiveness and FRISK , as defined in 3.2.1.

As a very important result, Table 4.5 supports our claim that the statistical tests im-
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prove the individual selection in the Pareto set. Considering only Wilcoxon and BestMean,

the Wilcoxon method provides a better result for all multi-objective criteria, such as
E-G
� and

E-R
� . Wilcoxon provides results statistically superior (the bold values) for all weak-learners,
except for Regression Tree in WEB10K, which does not show statistically distinguishable
values. Considering Wilcoxon and Wilcoxon-End methods, we can observe very close re-
sults, obtaining statistically distinguishable values only in three of eight multi-objective ex-
ecutions. Hence, showing that the statistical test can be applied only in the last generations,
in order to improve the ranking of individuals and to reduce the Pareto set.

Linear Regression Regression Tree
WEB10K

E
�

E-G
�

E-R
�

E
�

E-G
�

E-R
�

Wilcoxon 0.4212 0.4237b 0.4244be 0.4220 0.4238 0.4238
BestMean 0.4202 0.421 0.4205 0.4237 0.4232 0.4234
Wilcoxon-End 0.4201 0.4229 0.4205 0.4237 0.4237 0.4227

YAHOO
E
�

E-G
�

E-R
�

E
�

E-G
�

E-R
�

Wilcoxon 0.7 0.7017b 0.7025be 0.6991 0.7019b 0.7027be

BestMean 0.7006 0.7005 0.7007 0.6994 0.6997 0.6994
Wilcoxon-End 0.7003 0.7022 0.7007 0.6994 0.7013 0.6994

Table 4.5: Evaluating the statistical tests performance during the evolutionary search for
WEB10k and YAHOO datasets. The letters b and e show statistically difference against
BestMean and Wilconxon-End methods, respectively.

Comparing
E-G
� and

E-R
� against

E
� in Table 4.5, we observe distinct results. As ex-

pected, the ranking effectiveness results for
E
� are not statistically distinguishable when the

method varies over BestMean, Wilcoxon and Wilcoxon-End. In fact, as described in section
3.2.2, concerning a single-objective in an evolutionary process with a statistical test compar-
ison, the ranking of the best individuals should not be very different in relation to the absence

of the statistical test. On the other hand, in a multi-objective criteria,
E-G
� and

E-R
� , the statisti-

cal test can break the conflict between two individuals, by equalizing two individuals for one
objective and allowing a dominance relationship for the multi-objective comparison. This is
a very interesting result, as it strengthens our assumptions that the statistical test avoids more
tied comparison in a multi-objective scenario.

We have also evaluated the Wilcoxon, BestMean and Wilcoxon-End methods on
TD2003 and TD2004 datasets, in Figure 4.6. However, as there are few queries on these
datasets, we note that there is no further improvement when a statistical test is performed.
Despite that, the max absolute values (the bold ones) vary over Wilcoxon and Wilcoxon-
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End methods, which provide evidence of the importance of our statistical test comparison
proposal over individuals when considering multi-objective criteria.

Linear Regression Regression Tree
TD2003

E
�

E-G
�

E-R
�

E
�

E-G
�

E-R
�

Wilcoxon 0.3272 0.3327 0.3586 0.3658 0.3325 0.3495
BestMea 0.3339 0.3368 0.35 0.3447 0.3394 0.3884
Wilcoxon-End 0.3453 0.3605 0.3582 0.3502 0.3506 0.3604

TD2004
Wilcoxon 0.3336 0.346 0.3546 0.3488 0.3474 0.3443
BestMea 0.3248 0.3432 0.3544 0.34 0.3407 0.3597
Wilcoxon-End 0.3236 0.3428 0.3474 0.3449 0.338 0.3625

Table 4.6: Evaluating the statistical tests performance during the evolutionary search for
TD2003 and TD2004 datasets.

Figure 4.6: The execution time (in hours) to process our individual comparison methods
in the evolutionary algorithm when varying the objective criteria and weak learner as a
black-box in WEB10K dataset.

Regarding an efficiency evaluation, Figure 4.6 shows the time performance of Best-
Mean and Wilcoxon methods applied with proposed multi-objective criteria in the WEB10K
dataset. We do not show the Wilcoxon-End in the figure, because it has the similar time of
BestMean. As Figure 4.6 shows, there is a little different when applying the statistical test
in the SPEA2 process. Furthermore, Linear Regression is almost twice faster than Regres-
sion Tree. Although not described in the figure, 99% of processing time incurs due to L2R
algorithm, processing the fitness values, which can change towards 98% (in average) if the
paired test comparison is performed. This result confirms that SPEA2 has the time bounded
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by the fitness processing (or the L2R method), and applying a paired test comparison does
not increase significantly the processing time.

Answering our Q3 research question, a statistical paired comparison can improve the
final selection of an individual in the Pareto set, considering a multi-objective criteria in FS
for the L2R task.

4.5 A Multi-Objective FS Evaluation

Q4 – What is the performance of risk-sensitiveness, effectiveness and feature reduction on

the proposed objective criteria and methodology in FS for L2R?

In this section we evaluated all proposed objective-criteria combinations for FS. First,
we describe the general result in a summarized heatmap. Afterward, we present more details
regarding risk-sensitiveness, ranking performance, and feature reduction.

The experimental results show that some of our objective-criteria for FS improve the
risk-sensitiveness without decreasing the effectiveness, besides reducing the features space.
This can be observed in Figure 4.7, which summarizes the effectiveness, risk-sensitiveness,
and feature reduction performance when varying the objective criteria. The figure shows
the number of statistical victories for each objective-criteria, which counts the victories of
one objective-criteria against others, varying the datasets (WEB10K, YAHOO, TD2003 and
TD2004), weak learners (Linear Regression and Regression Tree as black-boxes), and the
BS4R (Max, Mean and BM25). In the figure, greater numbers mean more dark colors.

In overall, i
E-R
� j and i

E-G
� j achieve a great victories number in risk-sensitiveness, but also

ineffective performance, meanwhile obtaining a minor feature reduction. On the other hand,

the effectiveness such as an objective-criterion, i
E
� j, provided a larger feature reduction,

however decreasing the effectiveness and risk-sensitiveness.

From Figure 4.7, we can observe that methods which applied a more drastically feature
reduction could not improve the quality of effectiveness and risk-sensitiveness. On the other
hand, the methods which focus in how to provide a more accurate model concerning to

effectiveness and low-risk (e.g. i
E-R
� j, i

E-G
� j), could obtain a very interesting effective and

robust performance, even when performing Feature Selection. Note that these methods are
contrary to FS methods available in the literature, which the goal is to drastically reduce the
amount of features in order to control the noise, redundancy and processing time.

Moreover, from Figure 4.7 we can see that using only ranking effectiveness as an

objective, i.e,
E
� , it is not possible to produce robust models, as empirically demonstrated
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Effectiveness Risk-sensitiveness Feature Reduction
E-R
� 73 75 3

E-G
� 62 69 13
G
� 62 63 8
E
� 54 56 27

E-F-G
� 49 54 41
T
� 46 53 32

G-F
� 45 50 42

DivFS 27 35 55
BTFS 21 24 84

T-F
� 10 9 71

E-F-R
� 7 10 68
E-F
� 4 7 74

Table 4.7: Heatmap of our results for FS over effectiveness, risk-sensitiveness, and feature
reduction.

in most of the collections used in our experiments. In contrast, only by introducing a risk-
sensitive measure one can produce more low-risk model.

In next sections we evaluate with more details our proposed objective criteria, in order
to thoroughly describe our outcomes.

4.5.1 Risk-Sensitiveness Evaluation

4.5.1.1 Evaluation on WEB10K and YAHOO Datasets

We start evaluating the risk-sensitive performance of our proposed single and multi-objective
criteria and our FS methodology in WEB10K and YAHOO datasets. Tables 4.814 and 4.9
present the experimental results for the WEB10K over selected sets of features trained with
Random Forest. The first table shows results for the evolutionary algorithm with Linear
Regression as the L2R black-box, while the second table contains results for Regression
Trees. Each table is separated vertically by a line. Results at the right of this line correspond
to methods that have feature reduction as one optimization objective, whereas results at left
do not optimize this criterion.

For WEB10K,
E-R
� and

E-G
� are the only FS methods capable of consistently keeping

their risk-sensitiveness evaluation for both Linear Regression (Table 4.8) and Regression

14For readability reasons, we did not include the confidence intervals from now on.



44 CHAPTER 4. EXPERIMENTAL EVALUATIONS

WEB10K - Back-box: Linear Regression

Full
E-R
�

E-G
�

E
�

G
�

T
�

E-F
�

T-F
�

G-F
�

E-F-G
�

E-F-R
� DivFT BTFS

GRISK 0.419 0.4182 0.4177 0.4159 0.4167 0.4164 0.4129 0.4148 0.4161 0.416 0.4134 0.4134 0.4122
Max BS4R

TRISK -94.7e -94.4e -94.6e -95.8 f -95.2 f e -95.4 f -97.4 f e -96.3 f e -95.4 f -95.8 f -96.4 f e -96.4 f e -97.0 f e

Win 1758 1752 1774 1745 1708 1734 1640 1698 1720 1705 1683 1680 1674
L>20%↓ 5097 5097 5129 5201 5157 5180 5297 5248 5166 5208 5234 5266 5289

Mean BS4R
TRISK 50.5e 49.6 f e 48.5 f e 47.3 f 48.3 f 48.3 f 45.8 f e 46.2 f 48.2 f 47.8 f 45.1 f e 43.8 f e 44.9 f e

Win 8402 8401 8389 8373 8377 8368 8339 8364 8381 8377 8343 8327 8316
L>20%↓ 768 792 803 813 810 792 826 806 804 800 847 839 835

BM25 BS4R
TRISK 5.6e 5.4e 4.3 f e 3.7 f 4.3 f 3.9 f 2 f e 2.4 f e 4.1 f 3.5 f 1.8 f e 1.8 f e 2.3 f e

Win 7287 7261 7254 7215 7228 7214 7134 7172 7233 7241 7193 7175 7157
L>20%↓ 1081 1127 1163 1173 1138 1147 1201 1193 1146 1143 1201 1189 1188

Table 4.8: The risk-sensitive evaluation in WEB10K dataset, using the RF on selected fea-
tures and the Linear Regression as a Black-Box. Bold represents the best values among FS
methods. The superscript letters e and f appearing in results for TRISK represent results

statistically distinguishable with the
E
� objective and the Full set of features, respectively.

Tree (Table 4.9) similar to the “Full Set of Features”15. Also, in both tables, results for the
E-R
� and the

E-G
� objectives have the highest values for TRISK and GRISK among all the FS

methods in all tests, and also the best results in almost all other risk-sensitive measures.

WEB10K - Black-box: Regression Tree

Full
E-R
�

E-G
�

E
�

G
�

T
�

E-F
�

T-F
�

G-F
�

E-F-G
�

E-F-R
� DivFS BTFS

GRISK 0.419 0.417 0.418 0.411 0.417 0.415 0.41 0.41 0.417 0.417 0.405 0.413 0.412
Max BS4R

TRISK -94.7e -94.7 -94.6e -94.8 f -94.7 f -96.0 f e -98.9 f e -99.1 f e -94.6 f -95.1 f -100.4 f e -96.4 f e -97.0 f e

Win 1758 1747 1755 1745 1739 1714 1580 1536 1750 1755 1460 1680 1674
L>20%↓ 5097 5122 5116 5130 5154 5235 5460 5466 5137 5154 5508 5266 5289

Mean BS4R
TRISK 50.5e 48.4 f 48.9 f e 48.1 f 48.4 f 46.7 f e 41.3 f e 41.6 f e 48.4 f 48.8 f 39.3 f e 43.8 f e 44.9 f e

Win 8402 8387 8415 8378 8385 8379 8254 8243 8375 8404 8216 8327 8316
L>20%↓ 768 786 771 799 795 793 872 858 794 795 891 839 835

BM25 BS4R
TRISK 5.6e 4.8 f e 4.8 f e 3.9 f 4.6 f 2.7 f e -2.4 f e -2.4! f e 4.7 f e 4.8 f e -3.4 f e 1.5 f e 2.1 f e

Win 7287 7251 7265 7246 7251 7199 7109 7067 7275 7258 7076 7175 7157
L>20%↓ 1081 1131 1128 1156 1140 1166 1297 1273 1122 1119 1308 1189 1188

Table 4.9: The risk-sensitive evaluation in WEB10K dataset, using the RF on selected fea-
tures and the Long Regression Tree as a Black-Box. Bold represents the best values among
FS methods. The superscript letters e and f appearing in results for TRISK represent results

statistically distinguishable with the
E
� objective and the Full set of features, respectively.

Almost all
E-R
� and

E-G
� results are statistically superior to those for the

E
� objective

criterion, which confirms our hypothesis that optimizing only effectiveness is not sufficient

to have a good risk-sensitive performance. On the other hand, results for
E-R
� and

E-G
� are

not inferior to those methods having risk-sensitiveness as the only objective to be optimized

15 Most differences between the all-features method and
E-R
� and

E-G
� are not statistically significant
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(
G
� and

T
� ). This means that the multi-objective criteria effectiveness × risk-sensitiveness

(
E-R
� and

E-G
� ) presented results comparable or even superior to those of methods trying to

optimize each isolated objective. In fact, we note that by using multi-objective criteria, we
are improving the evaluation of individuals through the evolutionary search, being more
rigorous in evaluation of each features set.

It is also important to highlight that the methods that have feature reduction as an
objective (even those also trying to optimize risk-sensitiveness) do not perform consistently

better than
E-R
� and

E-G
� . This confirms our initial claim that methods that optimize feature

reduction may sacrifice risk-effectiveness.

Results for WEB10K dataset are especially important because this dataset is usually
considered a reference in L2R. Therefore, results in WEB10K results confirm that it is fea-

sible to find a robust solution by exploiting the
E-R
� or

E-G
� objectives criteria.

Now we turn our attention to Tables 4.10 and 4.11 that present results for the YAHOO

dataset16. The method
E-R
� performed consistently better than all other FS methods, consid-

ering the two used black-boxes. However, method
G
� performed slightly better than

E-G
� for

this collection, winning in some measures for some BS4R and tying up in others. Neverthe-

less, both
E-R
� and

E-G
� are among the three best FS methods for the YAHOO dataset.

YAHOO - Black-box: Linear Regression

Full
E-R
�

E-G
�

E
�

G
�

T
�

E-F
�

T-F
�

G-F
�

E-F-G
�

E-F-R
� DivFS BTFS

GRISK 0.5489 0.5494 0.5491 0.5482 0.5494 0.5477 0.5454 0.5454 0.5477 0.5483 0.5463 0.5442 0.5469
MAX BS4R

TRISK -49.6e -49.6e -49.8e -50.0 f -49.6e -50.1 f -50.4 f e -50.4 f e -50.0 f -50.0 f -50.4 f e -51.0 f e -50.2 f

Win 2173 2178 2160 2138 2178 2143 2144 2144 2150 2160 2132 2092 2122
L>20%↓ 2006 2020 2029 2027 2023 2026 2082 2082 2021 2034 2069 2073 2073

Mean BS4R
TRISK -3.0e -3.0e -3.2 f -3.5 f -3.0e -3.5 f -4.2 f e -4.2 f e -3.4 f -3.3 f -3.7 f -4.6 f e -3.6 f

Win 4901 4900 4902 4888 4909 4902 4860 4860 4905 4886 4872 4853 4890
L>20%↓ 778 784 785 792 785 800 807 807 793 795 805 820 795

Table 4.10: The risk-sensitive evaluation in YAHOO dataset, using the RF on selected fea-
tures and the Linear Regression as a Black-Box. As there is no public description of the
features in YAHOO dataset, this table does not contain the BM25 BS4R.

Furthermore,
E-R
� ,

E-G
� , and

G
� methods are statistically superior to

E
� in almost all risk-

sensitive measures and performed better than any method which optimizes feature reduction.
For YAHOO, effectiveness as an objective alone is not sufficient to drive the search towards
low-risk models. In addition, having a reduction of features as one of the objectives is not
consistently good to derive risk-sensitive models.

16As there is no public description of the features in YAHOO dataset, Table 4.10 and 4.11 do not not contain
the BM25 BS4R.
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Besides that, taking only
G
� ,

G-F
� and

E-F-G
� methods in Tables 4.8 to 4.11, one can

observe a robust behavior in our experiments, mainly when compared against the
T
� ,

T-F
�

objective criteria. This clearly shows that GRISK explores a more robust search space, and
it does this better than TRISK . This behavior is explained by the strength of GRISK , which
captures the risk measure comparing the model to the shape of the score distribution with
many BS4Rs.

More specifically, TRISK as a risk-sensitive objective criterion evaluates the individuals
considering a static BS4R over the generations, only the full set of features is used as an
immutable robust model. By using the GRISK this limitation is overcame. As all individuals
of each generation are used as BS4R, the GRISK objective criterion provides a coevolutionary
search, varying the fitness score for the same individual over the time and the fitness score is
dependent of the individuals population. As as result, GRISK evaluates better the individuals
of a population regarding risk-sensitiveness, as the BS4R change over the generation and the
search adapts itself for better solutions.

The risk-sensitive results of the baselines methods (DivFS and BTFS) are among the
worst in the WEB10K dataset. Nevertheless, for the YAHOO dataset this picture changes
towards relatively better results for BTFS, when comparing to our multi-objective models
that have feature reduction as one of the objectives to be optimized. In addition, most of

these FS baselines are statistically inferior when compared to
E-F
� and

E-G
� . This is to be

expected as these FS approaches usually attempt to obtain the best effectiveness and feature
reduction, disregarding risk. Additionally, as the number of features is an objective criterion
in these methods, their results are similar to our evolutionary methods which include the
number of features as an objective criterion.

YAHOO - Black-box: Regression Tree

Full
E-R
�

E-G
�

E
�

G
�

T
�

E-F
�

T-F
�

G-F
�

E-F-G
�

E-F-R
� DivFS BTFS

GRISK 0.549 0.549 0.549 0.5472 0.5485 0.5444 0.544 0.544 0.5477 0.548 0.544 0.5442 0.5469
Max BS4R

TRISK -49.6e -49.6e -49.8e -50.4 f -49.8 f e -51.0 f e -51.2 f e -51.2 f e -50.0 f -49.9 f e -51.2 f e -51.0 f e -50.2 f

Win 2173 2184 2147 2108 2168 2088 2090 2090 2136 2152 2090 2092 2122
L>20%↓ 2006 2020 2041 2057 2017 2092 2100 2100 2048 2042 2100 2073 2073

Mean BS4R
TRISK -3.0e -3.0e -3.0e -3.7 f -3.2e -4.2 f e -4.4 f e -4.4 f e -3.5 f -3.4 f -4.4 f e -4.6 f e -3.6 f

Win 4901 4906 4899 4876 4887 4863 4856 4856 4913 4903 4856 4853 4890
L>20%↓ 778 785 789 796 792 794 824 824 797 799 824 820 795

Table 4.11: The risk-sensitive evaluation in YAHOO dataset, using the RF on selected fea-
tures and the Regression Tree as a Black-Box. As there is no public description of the features
in YAHOO dataset, this table does not contain the BM25 BS4R.
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4.5.1.2 Evaluation on TD2003 and TD2004 Datasets

For completeness, we have also evaluated all methods with the TD2003 and TD2004
datasets, or TDs. Results for both collections with the two black-boxes (Linear Regression
and Regression Tree) are presented in Tables 4.12 to 4.15. Since these collections are very
small, it is hard to obtain consistent (i.e., statistically significant) results for them. Indeed,
Gomes et al. [2013] has already demonstrated that it is hard to obtain statistical signifi-
cance in both datasets because of their low number of queries. However, our goal with these
datasets is to highlight the tendencies of ranking effectiveness and risk-sensitive evaluation.

TD2003 - Black-Box: Linear Regression

Full
E-R
�

E-G
�

E
�

G
�

T
�

E-F
�

T-F
�

G-F
�

E-F-G
�

E-F-R
� DivFT BTFS

GRISK 0.379 0.373e 0.339 0.331 0.352 0.354 0.225 0.217 0.362 0.3598 0.2712e 0.358 0.286e

Max BS4R
TRISK -6.3e -5.9e -5.9e -6.5 f -6.1e -7.1 f -8.4 f e -8.4 f e -7.1e -6.2e -8.2 f e -6.9 f -7.6 f e

Win 9 9 9 7 6 6 0 1 5 4 2 8 2
L>20%↓ 28 27 29 32 28 32 38 40 30 30 37 32 38

Mean BS4R
TRISK 5.6e 5.3e 3.7 f 3.7 f 4.0 5.3 -1.5 f e -1.6 f e 5.2 5.3e 0.3 f e 5.3 0.3 f e

Win 41 40 39 37 38 38 27 25 39 40 30 39 34
L>20%↓ 5 8 7 10 9 7 18 20 7 6 14 4 12

BM25 BS4R
TRISK 1.3e 1.4e -0.2 f -0.13 f 1.8e 0.2 f -2.7 f e -2.7 f e 0.2 1.9e -1.5 f e -0.2 f -1.6 f

Win 34 34 31 28 30 30 20 19 32 34 23 32 26
L>20%↓ 7 6 9 8 6 8 16 15 8 6 11 9 12

Table 4.12: The risk-sensitive evaluation in TD2003 dataset, using the RF on selected fea-
tures and the Linear Regression as a Black-Box.

TD2003 - Black-Box: Regression Tree

Full
E-R
�

E-G
�

E
�

G
�

T
�

E-F
�

T-F
�

G-F
�

E-F-G
�

E-F-R
� DivFT BTFS

GRISK 0.380 0.362 0.367 0.364 0.380 0.352 0.230 0.230 0.310 0.336 0.250 0.358 0.286
MAX BS4R

TRISK -6.3 -6 -6.7 -5.8 -5.8 -6.3 -9.0 f e -9.0 f e -6.7 f e -6.6 f e -8.5 f e -6.9 -7.6 f e

Win 9 10 6 9 6 7 0 0 5 6 2 8 2
L>20%↓ 28 27 33 28 26 29 40 40 33 32 40 29 38

MEAN BS4R
TRISK 5.6 4.6 6.6 4.6 5.6 4.3 -1.8 f e -1.8 f e 2.1 f e 2.4 -1.7 f e 5.4 0.3 f e

Win 41 38 43 39 39 40 26 26 34 38 27 39 34
L>20%↓ 5 8 4 8 7 7 20 20 9 9 20 4 12

BM25 BS4R
TRISK 1.3 0.4 1.1 1.2 1.3 1.1 -2.7 f e -2.7 f e -1.1 f -0.9 -2.6 f e -0.2 f -1.6 f e

Win 34 32 31 31 33 33 19 19 27 31 20 32 26
L>20%↓ 7 8 6 6 5 6 16 16 10 9 15 9 12

Table 4.13: The risk-sensitive evaluation in TD2003 dataset, using the RF on selected fea-
tures and the Regression Tree as a Black-Box.

Concerning the TDs experiments, when using Linear Regression as black-box the out-

comes for methods
E-R
� and

E-G
� in TD2003 and TD2004 are among the best methods. When
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TD2004 - Black-Box: Linear Regression

Full
E-R
�

E-G
�

E
�

G
�

T
�

E-F
�

T-F
�

G-F
�

E-F-G
�

E-F-R
� DivFS BTFS

GRISK 0.364 0.364 0.354 0.346 0.343 0.361 0.298 0.338 0.354 0.346 0.297 0.346 0.334
MAX BS4R

TRISK -9 -8.7 -8.8 -9.4 -9.9 -8.5 -10.7 f e -10.6 f -8.72 -9.7 -10.9 f e -9.2 -9.5 f

Win 14 14 16 9 11 14 5 7 14 9 7 13 11
L>20%↓ 47 45 48 50 51 45 55 52 47 48 56 51 51

MEAN BS4R
TRISK 6.7 7.3e 6.4 4.6 6.2 5 0.3 f e 5.2 6.2 5.8 0.56 f e 3.9 4.9 f

Win 63 65 62 60 59 63 52 61 64 62 51 62 60
L>20%↓ 8 8 11 11 13 10 20 12 10 12 22 11 9

BM25 BS4R
TRISK 0.1 0.3 -0.1 -0.6 0 -0.2 -2.3 f e -1.3 f 0.3 0.01 -2.3 f e -1.0 f -0.8 f

Win 58 57 53 52 53 55 41 44 55 50 41 50 55
L>20%↓ 10 9 11 12 10 11 20 15 7 8 19 11 12

Table 4.14: The risk-sensitive evaluation in TD2004 dataset, using the RF on selected fea-
tures and the Linear Regression as a Black-Box.

TD2004 - Black-Box: Regression Tree

Full
E-R
�

E-G
�

E
�

G
�

T
�

E-F
�

T-F
�

G-F
�

E-F-G
�

E-F-R
� DivFS BTFS

GRISK 0.364 0.351 0.353 0.363 0.366 0.362 0.314 0.314 0.349 0.354 0.285 0.346 0.334
MAX BS4R

TRISK -8.9 -8.9 -8.7 -8.7 -9.1 -8.9 -10.0!e -10.0 f e -9.5 -9.5 -10.0 f e -9.2 f e -9.5 f e

Win 14 12 18 16 13 14 8 8 9 10 6 13 11
L>20%↓ 47 49 47 47 48 46 52 52 51 50 54 51 51

MEAN BS4R
TRISK 6.7 6.3 5.3 5.3 8.2 6.3 1.6 f e 1.6 f e 6.1 6 0.2 f e 3.9 4.9 f

Win 63 61 61 63 66 62 55 55 61 60 50 62 60
L>20%↓ 8 11 11 10 7 9 17 17 9 10 20 11 9

BM25 BS4R
TRISK 0.1 -0.2 -0.5 -0.2 0.1 -0.5 -1.8 f e -1.8 f e -0.4 -0.5 -2.4 f e -1.0 f e -0.8 f

Win 58 52 54 52 57 53 46 46 51 50 41 50 55
L>20%↓ 10 10 12 11 8 13 15 15 11 12 19 11 12

Table 4.15: The risk-sensitive evaluation in TD2004 dataset, using the RF on selected fea-
tures and the Regression Tree as a Black-Box.

using the Regression Tree as black-box, the experimental results for TD2003 show a better

performance for
G
� . In case of TD2004 using Regression Tree the results are not clear at all.

Even with this lack of clarity for TD2004, one can observe that the methods that include the
number of features as an objective criterion were outperformed by ones that do not include
it, which was also assessed in TD2003.

Regarding the full set of features (“Full”) comparison for TDs, we notice that the most
of methods that include risk-sensitiveness as a criterion are statistically similar to “Full”.

However, in some cases
E-R
� outperforms “Full” with absolute values, such as for TD204 in

Table 4.14 for risk-sensitive measures and for TD2003 dataset in Table 4.13.

We observe that there is a higher variance of results when changing the black-boxes
for TD2003 and TD2004 datasets. In fact, when using Regression Tree as black-box there
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is no consistency regarding the objective criteria which give the best risk-sensitiveness. One
reason for that is the overfitting behavior of the Regression Tree without pruning, combined
with the few available data in these datasets. This can limit the quality of the evolutionary

search for some methods. However, one can observe a tendency of
E-R
� ,

E-G
� , and

G
� towards

better results. Again, giving evidence to our claim that using a risk measure as an objective
criterion may be useful to avoid poor results in some queries.

4.5.2 Effectiveness Evaluation

Table 4.16 shows that in addition to risk-sensitiveness the objectives that optimize both ef-
fectiveness and risk-sensitiveness are also capable of obtaining good ranking performance,

i.e. rank effectiveness. As we can see, the
E-R
� multi-objective method is the only one that

obtained the best results against all evaluated FS methods, considering all datasets and black-

boxes. In the majority of the results, the
E-R
� performance is statistically similar against using

all features, except for WEB10K when using Regression Trees as a black-box method.

Effectiveness Evaluation (NDCG@10)

Full
E-R
�

E-G
�

E
�

G
�

T
�

E-F
�

T-F
�

G-F
�

E-F-G
�

E-F-R
� DivFT BTFS

Black-Box: Linear Regression
WEB10K 0.424e 0.424e 0.424 f e 0.421 f 0.422 f 0.422 f 0.417 f e 0.419 f e 0.422 f 0.421 f 0.418 f e 0.417 f e 0.418 f e

YAHOO 0.703e 0.703e 0.702 f e 0.700 f 0.703e 0.700 f 0.698 f e 0.698 f e 0.700 f 0.701 f 0.698 f e 0.695 f e 0.699 f

TD2003 0.363e 0.359e 0.333 f 0.327 f 0.354 f e 0.323 f 0.203 f e 0.202 f e 0.335 f 0.354e 0.262 f e 0.344 0.262 f e

TD2004 0.351 0.354 0.346 0.334 0.329e 0.359 0.279 f e 0.314 f 0.356 0.333 0.289 f e 0.329 0.313 f

Black-Box: Regression Tree
WEB10K 0.424e 0.423 f 0.424e 0.422 f 0.423 f 0.421 f e 0.411 f e 0.409 f e 0.423 f 0.423 f 0.408 f e 0.417 f e 0.418 f e

YAHOO 0.703e 0.703e 0.702e 0.699 f 0.702e 0.696 f e 0.695 f e 0.695 f e 0.700 f 0.701 f e 0.695 f e 0.695 f e 0.699 f

TD2003 0.363 0.35 0.333 0.366 0.357 0.349 0.202 f e 0.202 f e 0.293 f e 0.300 f e 0.203 f e 0.344 0.262 f e

TD2004 0.351 0.344 0.347 0.349 0.34 0.349 0.298 f e 0.298 f e 0.327 0.33 0.272 f e 0.329 f e 0.313 f e

Table 4.16: The NDCG@10 values in evaluated datasets, using the Random Forest model.
Bold represents the best values for FS methods. The superscript letters e and f represent

results statistically distinguishable with the
E
� objective and the Full set of features, respec-

tively.

It is worth noting that
E-R
� ,

E-G
� , and

G
� outperformed the ranking performance of

E
�

in the majority of the cases, which has effectiveness as the main objective criterion. In
fact, the risk-sensitive computation includes as a component the gain of effectiveness against

the BS4R. Therefore, in a multi-objective method such as
E-R
� and

E-G
� , where there is the

combination of effectiveness and risk-sensitiveness, there is also a tendency that the selected
individual optimize the effectiveness more than methods which apply the effectiveness as the

unique objective criterion. In case of
G
� , each query effectiveness is compared against a set

of BS4R, driving the evolutionary search for a region with less degradation of queries.
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E-R
� ,

E-G
� , and

G
� are the best three objective criteria when evaluating effectiveness, with

E-R
� and

E-G
� being more often statistically indistinguishable to the full set of features. For the

methods that include the number of features as an objective criterion, they usually end up at
positions in the search spaces containing solutions that damage effectiveness. Considering
the FS baselines, DivFS performed more consistently among different datasets, as it ties with
full feature more often than the BTFS method.

4.5.3 Feature Reduction Evaluation

Figures 4.7 and 4.8 present the feature space reduction for all evaluated methods, when
using Linear Regression and Regression Tree as black-boxes, respectively. As expected, a
more drastic reduction is obtained when the number of features is included as an objective

criterion, except for
G-F
� and

E-F-G
� , where the GRISK function prevents the exploration of

regions with less risk-sensitive evaluation, due to the coevolutionary search performance. As
a result, GRISK also obtained less “risky” models (see Tables 4.8 to 4.11 ).

In particular,
E-F
� ,

T-F
� , and BTFS, reduced the number of features dramatically (varying

from almost 69% to 90% ), though with a resulting reduction in effectiveness and risk-

sensitiveness. We note that,
E-R
� and

E-G
� could reach a significant reduction, over 13% and

38%, respectively, without degrading the effectiveness and risk-sensitiveness.

Figure 4.7: Description of feature reduction for the FS methods, using Linear Regression as
Black-Box.

The results in the large datasets (WEB10K and YAHOO) show an important causality
behavior between the number of features and risk-sensitiveness/effectiveness. The ranking
method learned with Random Forest using all features (“Full Set of Features”) presented the
best values for almost all of the risk-sensitive and effective measures (Tables 4.8 to 4.16).
Suggesting that more features mean more risk-sensitive or effective models. However, the

methods combining effectiveness and risk-sensitiveness as objective criteria (
E-R
� and

E-G
� )
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Figure 4.8: Description of feature reduction for the FS methods, using Regression Tree as
Black-Box.

are capable of obtaining similar effectiveness and risk-sensitiveness by exploring the search
space trying to find subsets of features that optimize the accuracy while eliminating unimpor-
tant subsets. The consequence is that the proposal multi-objective methods present results
statistically similar to those obtained by the method using all the features (“Full Set of fea-
tures”) while still reducing the set of features, as shown in Figures 4.7 and 4.8.

In fact, we observe that the rate of noisy and redundant features are absolutely uncer-
tain, and some datasets seem to have more of these kinds of features than others. Therefore,
our experiments show that a proper approach with the ability to search for a random set of
features that comply with some specific objectives, is an important contribution in FS for
L2R.

4.5.4 Varying the Goals when Performing FS

The goal of our dissertation is not to learn the model with the smaller set of features, but
to obtain a possibly little smaller set of features that guarantees ranking effectiveness and
risk-sensitiveness performance through distinct multi-objectives methods. However, we also
note that the best objective method depends on the main user goal. Hence, for the purpose
of evaluating distinct aims, Figure 4.9 summarizes the aforementioned experiments for all
objectives with the assessed datasets. Each chart in Figure 4.9 shows the number of victories
for each objective against other when evaluation separately: effectiveness (NDCG@10),
risk-sensitiveness, and feature reduction. The number of victories in the figure considers the
average for evaluated two black-boxes. In case of risk-sensitiveness evaluation, the figure
shows the best methods by computing the average victories of four measures: TRISK , GRISK ,
L > 20%, and Win. In the figure, specifically for WEB10K and YAHOO, we consider a
statistical difference (t-Test, with 95% confidence) to decide whether a method is better
than other in the counting process. For TD2003 and TD2004 datasets we do not apply
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paired statistical test, but only the absolute mean difference, as already commented due to
the difficulty to obtain statistical significance differences in these collections [Gomes et al.,
2013].

(a) WEB10K (b) YAHOO

(c) TD2003 (d) TD2004

Figure 4.9: The average performance over two black-boxes, summarizing the victories with
T-test (95% confidence).

Figure 4.9 shows that
E-R
� ,

E-G
� and

G
� obtained the best trade-offs between effective-

ness and risk-sensitiveness, while reducing some features. More often,
E-R
� and

E-G
� criteria

appear in all experiments as the best results, concerning both effective and risk-sensitive
evaluation. In addition, both produce the best results when compared to objectives that try

to optimize only one of both criteria. The single objective
G
� also obtained a good trade-

off between effectiveness and risk-sensitiveness, outperforming the TRISK . As explained,
this occurs because TRISK uses the same BS4R during the generations, hence decreasing the
exploration over the search space, differently from GRISK function which exploits distinct
BS4R over the evolutionary search.

Examining Figure 4.9 one can conclude that, if one of the goals in FS is feature re-

duction without large effectiveness losses and with low-risk, the best solution is the
E-F-G
�
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(a) WEB10K - Linear Regression (b) WEB10K - Regression Tree

(c) YAHOO - Linear Regression (d) YAHOO - Regression Tree

Figure 4.10: LambdaMART executions.

method. For this objective criteria, the reduction was around 55% of features, for all datasets,
with a relatively good effective and risk-sensitive performance for both assessed black-boxes.

The method
E-F-R
� performed inferior to

E-F-G
� in terms of effectiveness and risk-sensitiveness

while keeping a comparable number of features in most collections. It is interesting to ob-
serve that both methods, while reducing more than 55% of features, performed consistently

better in both – effectiveness and risk-sensitiveness – when compared to
E
� and all the other

FS methods aiming at feature reduction in the two largest datasets (WEB10K and YAHOO).

To conclude, if the main goal is to obtain some reduction in dimensionality in a robust

way and without effectiveness losses, the best options are
E-R
� ,

E-G
� ,

G
� with the dimension-

ality reductions varying from 13 to 46% (described in Tables 4.7 and 4.8 ).

The same conclusions can be observed when applying the LambdaMART algorithm to
train the model with the selected feature subset, as shown in Figure 4.10. The figure sum-
marizes the results for the main datasets, WEB10K and YAHOO, showing the performance

of each black-box. In general, both methods
E-R
� and

E-G
� obtained the best results, with

G
�

outperforming both
E-R
� and

E-G
� only in YAHOO with Linear Regression.
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4.6 An Overfitting Evaluation

Q5 – How is the overfitting behavior of proposed objective criteria and evolutionary FS

methodology?

In the previous sections we presented our improvements when selecting only one in-
dividual from the Pareto set. In this section, we evaluate all the content of Pareto set in
order to describe the overfitting behavior of our proposed strategies and the arrangement of
individuals over two dimensions, effectiveness and risk-sensitiveness.

Each individual from the Pareto set is presented as geometrical symbol in Figures
4.11 and 4.12, considering risk-sensitiveness (GRISK) and effectiveness (NDCG@10). The
Figures describe the results of FS methods observing each fold separately with normalized
values for each axis. The geometrical symbols in Figures show the results of main objec-

tive criteria: Effectiveness-FRISK (
E-R
� ), Effectiveness-GRISK (

E-G
� ), Effectiveness (

E
� ), GRISK

(
G
� ), and TRISK (

T
� ). We are not considering objective criteria which include the number of

features for this experiment, because these objectives tend to downgrade effectiveness, as
discussed in Section 4.3. In these experiments all geometric symbols describe the perfor-
mance on the test set. In order to describe the overfitting behavior, we highlight the best
individual in training set with filled ones, which are also those selected by the methods in

the discussion of the previous sections. In the case of
E
� ,

G
� , and

T
� , as there is no Pareto

set during the evolutionary process, we are showing the individuals which were statistically
tied as the best ones in the last generation. For clarity purpose, we only describe results in
WEB10K and YAHOO datasets with Linear Regression as black-box.

In Figure 4.11, for WEB10K, one can observe that both multi-objective optimizations,
E-R
� (square) and

E-G
� (circle), respectively, are closer to the top right corner in almost all

folds, showing that these objectives are capable of finding the best individuals that maximize
both objectives, and confirming observations made in Sections 4.5.2 and 4.5.1. On the other

hand, even obtaining better results, Figure 4.11 shows an overfitting behavior for
E-R
� method,

mainly on Folds 1 and 5, when the filled squares are below of the empty ones. For this

experiment,
E
� and

G
� show a performance consistent with the findings of section 4.5.2 and

4.5.1, in which
G
� outperforms

E
� .

In particular, for
T
� we observe that there are more individuals in the Figure (repre-

sented by triangle points down). This is because there are much more tied individuals in the
last population for this objective criterion than for the other ones. Possibly due to the paired
test over TRISK , which should not provide statistical difference over the individuals, thus

keeping more individuals which were not dominated by any other. As a result,
T
� presents
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(e) Fold 5

Figure 4.11: Performance in effectiveness (NDCG@10) and risk-sensitiveness (GeorRisk)
for individuals in Pareto frontier for Effectiveness-FRISK (E.R), Effectiveness-GRISK (E.G),
Effectiveness (E), GRISK (G) and TRISK (T), on WEB10K dataset.

a strong overfitting behavior, with many more empty triangles down when compared to the

filled ones. In fact, we believe that this overfitting can decrease the evaluation of
T
� for

ranking and risk performance, as described in Sections 4.5.2 and 4.5.1.

Figure 4.12 presents some similar results for YAHOO, and are also consistent with

Sections 4.5.2 and 4.5.1.
E-R
� obtained the best performance on Fold 1, and a better risk-
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Figure 4.12: Performance in effectiveness (NDCG@10) and risk-sensitiveness (GeorRisk)
for individuals in Pareto frontier for Effectiveness-FRISK (E.R), Effectiveness-GRISK (E.G),
Effectiveness (E), GRISK (G) and TRISK (T), on YAHOO dataset.

sensitiveness performance on Folds 1, 2, 3, and 4. In Fold 5, the best three methods,
E-R
� ,

E-G
� , and

G
� are practically tied. For this experiment,

G
� appears a little better than

E-G
� , out-

performing it on Folds 3 and 4. The overfitting can also be observed for YAHOO, especially

for
T
� , where the filled triangle points down are closer to the down left right corner than the

empty ones.
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To sum up and answering our Q6 research question, this experiment shows that
E-R
� ,

E-G
� and

G
� methods are capable of finding more often individuals at the top right corner. In

addition, we could observe an overfitting tendency for some objectives, more often for
T
�

and
E-R
� . This suggests a future work to further evaluate the parameters settings or even make

a more profound analysis of methods to select individuals from the Pareto set.

4.7 Describing Features with Greater Impact on

Risk-Sensitiveness

Q6 – Are there groups of features which have larger impact on risk-sensitiveness than

effectiveness?

Our work takes as an important concept the selection of features through a wrapper
strategy, which assigns a fitness score regarding the interactions of features with a L2R al-
gorithm. For instance, our experiments in section 4.5 provide a final set of features (from
features interactions) which optimizes effectiveness and risk-sensitiveness. As a result, it is
difficult to rank the features concerning their importance over risk-sensitiveness only. How-
ever, we now address this challenge through a search for algorithms of features which provide
more effective or risk-sensitive performance, when concerning its interactions to build a L2R
model.

In order to provide this quality evaluation, we had initially assessed the frequency
of some features in the individuals in the Pareto Set in the last generation. However, we
could not find a pattern of features in several individuals of the Pareto set. Due to the feature
similarity in the datasets, similar individuals are composed of distinct features. Alternatively,
increasing the abstraction level of the L2R feature space, one can observe that some features
are similar in the sense that they are obtained by a same algorithm or measure applied to
different parts of the documents. For instance, to provide two features, the same algorithm
is applied to the title and the body of the document. Hence, we reduce the aforementioned
issue for the following question: Are there groups of features, build by the same algorithm,
which provides more impact on a specific objective criterion?

We address this question looking for groups of algorithms of features which provide
more effectiveness or risk-sensitiveness performance. For this analysis, a group is a set of
features obtained by the same algorithm, and each algorithm scores the documents to the
queries in the training set regarding some parts of the documents. For instance, the “Covered
Query Term” algorithm is a group with five features, as it counts the frequency of query terms
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WEB10K
Linear Regression Regression Tree

Groups
E-G
�

E-R
�

E
�

E-G
�

E-R
�

E
�

Covered query term number
Covered query term ratio
Stream length
IDF (Inverse document frequency)
Sum of term frequency
Min of term frequency
Max of term frequency
Mean of term frequency
Variance of term frequency
Sum of stream length normalized term frequency
Min of stream length normalized term frequency
Max of stream length normalized term frequency
Mean of stream length normalized term frequency
Variance of stream length normalized term frequency
Sum of TF*IDF
Min of TF*IDF
Max of TF*IDF
Mean of TF*IDF
Variance of TF*IDF
Boolean model
Vector space model
LMIR.ABS
LMIR.DIR
LMIR.JM
Number of slash in URL and length of URL
Inlink, OutLink, pageRank, SiteRank
QualityScore and QualityScore2
Query-url, url, and url dwel click count

Table 4.17: Algorithms as meta-features obtained when performing
E-G
� ,

E-R
� , and

E
� objec-

tive criteria for WEB10K dataset.

in the body, anchor, title, URL, and the whole document. Tables 4.17, 4.18 and 4.19 list the
group used in our experiment, which are derived from MSLR-WEB10K (from Microsoft
Research17) and LETOR18 datasets descriptions. For this experiment, we have executed our
SPEA2 algorithm with a space of groups (contrary to a space of features) in order to obtain
the selected groups which optimize some objective-criteria. Concerning this, an individual

17http://research.microsoft.com/enus/projects/mslr/
18http://research.microsoft.com/enus/um/people/letor/
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TD2003
Linear Regression Regression Tree

Groups
E-G
�

E-R
�

E
�

E-G
�

E-R
�

E
�

Covered query term number
IDF (Inverse document frequency)
TF*IDF
Stream length
BM25
LMIR.ABS
LMIR.DIR
LMIR.JM
Sitemap based term and core propagation
Hyperlink variations
HITS authority and hub
PageRank and HostRank
Topical: PageRank, HITS authority, and HITS hub
Inlink and outlink number
Number of: slash in URL,
length of URL, and child page
Extracted title with: BM25,
LMIR.ABS, LMIR.DIR and LIMIR.JM

Table 4.18: Algorithms as meta-features obtained when performing
E-G
� ,

E-R
� , and

E
� objec-

tive criteria for TD2003 dataset.

is an array which it is 0 when the group is absent, and 1 otherwise.

The results can be observed in Tables 4.17, 4.18 and 4.19, which paint in gray color
the group of algorithms that appear in at least one individual in the Pareto Set and in more

than two of the 5-folds19. In case of effectiveness objective (
E
� ), we are showing again the

individuals which were statistically tied as the best ones in the last generation.

As we can see in Tables 4.17, 4.18 and 4.19, the risk-sensitiveness base criteria use
more group of features over the individuals in the Pareto set than effectiveness criterion. In
fact, in order to provide a robust model, more groups of features are used to improve the
effectiveness for some queries over the individuals in the Pareto set. On the other hand, by
using effectiveness as objective criterion more groups are removed from the final models,
decreasing the effectiveness for some queries and the overall robustness.

We may say that the features that are in
E-G
� and

E-R
� but not in

E
� are necessarily im-

proving the risk-sensitiveness performance. Specifically for effectiveness performance in the
WEB10K dataset, groups such as “Sum of stream length normalized term frequency” and

19Reminding that we are using the 5-fold cross-validation for our experiments.
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TD2004
Linear Regression Regression Tree

Groups
E-G
�

E-R
�

E
�

E-G
�

E-R
�

E
�

Covered query term number
IDF (Inverse document frequency)
TF*IDF
Stream length
BM25
LMIR.ABS
LMIR.DIR
LMIR.JM
Sitemap based term and core propagation
Hyperlink variations
HITS authority and hub
PageRank and HostRank
Topical: PageRank, HITS authority, and HITS hub
Inlink and outlink number
Number of: slash in URL,
length of URL, and child page
Extracted title with: BM25,
LMIR.ABS, LMIR.DIR and LIMIR.JM

Table 4.19: Groups of features obtained when performing
E-G
� ,

E-R
� , and

E
� objective criteria

for TD2004 dataset.

“Variance of TF*IDF” are not applied in any of the weak learners, despite improving the
risk-sensitiveness. In the case of TD2003 and TD2004 there are some distinctions between
selected groups when varying the weak learner. For instance, “Inlink and outlink num-
ber” and “Topical: PageRank, HITS authority, and HITS hub”, respectively to TD2003 and
TD2004, are not necessarily improving the effectiveness or risk-sensitiveness when using
the Linear Regression.

As a conclusion and answering our Q6 research question, we may say that there are
groups of features which are not important to improve the overall effectivenesses, such as
“Sum” and “Min of stream length normalized term frequency” in WEB10K. However, as
these features are important to improve the effectiveness of same few queries, they are se-
lected in case of risk-sensitiveness as a base criterion.
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4.8 Assessing the Effect on the Results Variation of

our Proposals

Q7 – What are the effects on the results variation of the proposed statistical test comparison

and multi-objective criterion?

In our work, we provide distinct strategies to improve effectiveness and risk-
sensitiveness while performing the feature selection. However, we now dedicate important
attention to distinguish the effects of the strategies on the variation results. In other words, we
assess the effects of our objective-criteria and paired statistical test proposals on the variation
of NDCG@10 and GRISK results, called here as response variables.

In order to evaluate these effects, we perform a Factorial Design where each factor
has two levels (or alternative values): presence or absence of the corresponding factor. In
case of paired statistical test factor the first level considers its absence, that is, we use only
the best mean without a statistical test, and the second one its presence, or the Wilcoxon

method. For objective-criteria, the first level uses the effectiveness only,
E
� , and the second

one applies the combination of effectiveness and GRISK functions,
E-G
� . We have chosen

the
E-G
� , because it provided improvements in effectiveness and risk-sensitiveness, besides

increasing the feature reduction.

We have executed our SPEA2 process with aforementioned levels, assessing the re-
sponse variable of the selected individual in the final Pareto set, and performing the compar-
ison with the NCG@10 over the average with the 5-folds cross-validation. The 2k Factorial
Design executed here follows the definition in [Jain, 1991]. We separated our evaluation for
each weak learner, as it is described in Figures 4.13, 4.14, 4.15, and 4.16.

The figures show the results for our factorial designing experiment, where each bar
represents the effect of our factors (or interaction of factors) over the variation to the re-
sponse variable. The figures describe the results for WEB10K and YAHOO datasets and
Linear Regression and Regression Tree as weak learners. As we can see, a relevant result,
the paired test has a high effect for the risk-sensitiveness (GRISK measure, or GeoRisk in the
figures), considering its isolated factor or even in its interaction with the objective criteria,
which is the case of a greater factor interaction in the Regression Tree results. Neverthe-
less, the statistical paired test is a very interesting method to improve the robustness of the
learning processing. In fact, it allows a robust comparison over all queries, as it performs
the comparison for all sample of queries, considering the difference of rank effectiveness for
each query and not only the overall average value. Furthermore, the objective-criteria and
their interactions with paired test also perform an important risk-sensitive ( GRISK measure)
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effect in our experiments.
Changing towards effectiveness as a variable response, NDCG@10, the objective-

criteria and their interactions with paired statistical test describe a larger effect than the
statistical test. More specifically, in WEB10K for Regression Tree, the interaction of fac-
tors provided a larger effect on NDCG@10. Differently of WEB10K in Linear Regression,
where the interaction has a minor effect.

Ideally, we would like to evaluate the impact of the weak learner. However, as it would
be necessary to perform a strong learner in order to guaranty the presence and absence of
the factor, which is impracticable due to not scalable characteristic of strong learners as
black-box, we are leaving this evaluation as future work. We intend to use some available
architecture technology, such as Graphical Processing Unit, to improve the execution time
of the strong learner.

As a conclusion and answering our Q7 research question, we observe that the sta-
tistical test also improves the risk-sensitive performance of our method, allowing a robust
comparison over all queries. In addition, the objective-criteria improved the effective perfor-
mance, besides their interactions with paired statistical test has shown an important effect on
effectiveness and risk-sensitiveness.

Figure 4.13: The Factorial Design for Linear Regression with WEB10K
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Figure 4.14: The Factorial Design for Regression Tree with WEB10K

Figure 4.15: The Factorial Design for Linear Regression with YAHOO
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Figure 4.16: The Factorial Design for Regression Tree with YAHOO



Chapter 5

Conclusions and Future Work

In this chapter we present the summary of the results achieved and provide a description for
future work.

5.1 Conclusions

This is the first dissertation that thoroughly investigated the impact of risk-sensitiveness
in feature selection for Learning to Rank. In this context, it introduces single and multi-
objective criteria that optimize risk-sensitiveness and effectiveness while performing the fea-
ture reduction. Furthermore, we also proposed a methodology based on multi-objective using
the Pareto Frontier, improving the effectiveness and efficiency of the search space evaluation.

Before delving into the planned future work, in the following sections we outline each
specific contribution.

5.1.1 A New Methodology to Evolutionary Algorithms

Q1 – How to combine different optimization objectives in FS for L2R without being con-

strained to a particular L2R method?

In this dissertation we perform our multi-objective criteria for FS in the L2R task
using SPEA2 as a general multiobjective criteria, concerning the interaction of features
on the wrapper strategy and without being attached to a particular L2R algorithm as a
black-box. We noted that this strategy provides the flexibility to search for several regions
in the feature space, even providing feature reduction without using number of feature as a
objective criterion. As a result, we describe a new methodology to perform FS with wrapper
strategy.

65
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Q2 – How to apply an efficient wrapper evolutionary FS algorithm over huge datasets,

without loss of effectiveness?

Our methodology extends the evolutionary wrapper algorithms by using weak learners
as black-box. We show that weak learners, e.g. Linear Regression and Regression Tree, can
be applied in a wrapper strategy to perform FS on the L2R task and by improving more than
120x the execution time without decreasing the effectiveness.

Furthermore, we note that a weak learner allows a more sensitive comparison to
evaluate the individuals, as it assigns the fitness values penalizing the presence of bad
features. In contrast to strong-learners, which can decrease the weight of bad features in
time to build the model, providing similar effectiveness when comparing distinct sets of
features (or individuals).

Q3 – How to improve the selection of individuals inside of the Pareto frontier set, in

order to provide a more effective subset of features?

Our methodology also extends the works in Pareto set, as it applies strict comparison
among individuals, by performing a paired statistical test to define the dominance relation-
ship of the individual over the generations. As described in our experiments, this strategy
reduces the conflict between individuals in multi-objective criteria, decreasing the Pareto set
dimension and improving the effectiveness of the selected final individual. Moreover, we
confirm our expectation that the paired test does not provide consistent influence when using
only one objective criterion.

5.1.2 Risk-sensitive Feature Selection for Learning to Rank

Q4 – What is the performance of risk-sensitiveness, effectiveness and feature reduction on

the proposed objective criteria and methodology in FS for L2R?

In this dissertation we stress the evaluation of several risk-sensitive measures with
effectiveness and number of features as multi-objective to perform feature selection. As a
result, we show that using effectiveness and risk-sensitiveness as objective criteria provide a
better subset of features for L2R, which increases the effectiveness of most queries and also
of some queries which are avoided in the absence of risk-sensitive measures. For instance,
by using only the average of the effectiveness as an objective criterion, the training phase
explores the search space with a minor set of features, which are specialized in the average
of effective performance, and do not improve several queries.

In fact, we show that risk-sensitiveness is an important objective criterion in order to
perform FS in L2R. In our experimental results, all methods which have only effectiveness
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and/or number o features as an objective criterion could not outperform the methods which
have risk-sensitiveness and effectiveness as criteria. This is an important contribution in the
area, as effectiveness and feature reduction are commonly found in works of literature for
FS in L2R. Moreover, we note that our FS objectives conclusions match the observations of
the Robust Retrieval Track of TREC Voorhees [2005] in the beginning of this century, which
optimizing the standard average effective performance can damage some difficult queries,
improving only the better-performing ones.

Our work improves the feature-space by i) reducing the time performance to execute
the L2R phases, making it more flexible to update the training set; ii) evaluating several fea-
ture selection objectives, for instance, reducing the feature dimensionality without damaging
effectiveness; and mainly, iii) with the responsibility of not increasing the risk of obtaining
bad predictions for some queries.

Furthermore, our experimental results show that it is possible to obtain a significant
feature reduction without damaging risk-sensitiveness and effectiveness, and using a
combination of multi-objective criteria is better than using a single one, even when the main
goal is used as the objective.

Q5 – How is the overfitting behavior of proposed objective criteria and evolutionary

FS methodology?

With respect to the overfitting, our experiment show that
E-R
� ,

E-G
� and

G
� methods

are capable of finding more often individuals at the top right corner with less influence of

overfitting. Differently, when using
T
� objective we could observe an overfitting tendency,

which suggests a future work to further evaluate the parameters settings or even make a
more profound analysis of methods to select individuals from the Pareto set.

Q6 – Are there groups of features which have larger impact on risk-sensitiveness than

effectiveness?

We also evaluate the quality of specific features over effectiveness and risk-
sensitiveness. We may say that there are groups of features which are not important to
improve the overall effectivenesses, such as “Sum” and “Min of stream length normalized
term frequency” in WEB10K. However, as these features are important to improve the
effectiveness of same queries, they are selected in case of risk-sensitiveness as a base
criterion. This is a very interesting result, as some features can now be considered important
for the risk-sensitive perspective.

Q7 – What are the effects on the results variation of the proposed statistical test com-
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parison and multi-objective criterion?

We observe that our proposal have distinct impact in results variation. For instance, we
observe that the statistical test also improves the risk-sensitive performance when selection
the feature, allowing a robust comparison over all queries. In addition, the objective-criteria
proposed improved the effective performance, besides their interactions with paired statisti-
cal test has shown an important effect on effectiveness and risk-sensitiveness.

To sum up, from our experimental results we note that besides the features provide
distinct important roles in the feature-space, e.g. low-risk and/or effectiveness, the rate of
unimportant features (noisy and redundant) is absolutely uncertain in datasets, with some
datasets having more of this kind of features than others. Hence, the task of selecting relevant
sets of features becomes even more challenging. In this sense, our dissertation provides a
relevant and a novel contribution in FS for L2R, by including the risk-sensitiveness as a
criterion in FS, enhancing the selection of Pareto set individuals and the processing time of
wrapper strategies

5.2 Future Work

The methodology described in this dissertation shows a multi-objective evolutionary execu-
tion for FS in L2R. In fact, there is room to improve our strategy for efficiency and effective-
ness.

In terms of processing time, our experiments show that 99% of SPEA2 process is due
to the black-box execution. Thus, even though the weak learner allows a better time cost,
we consider as a second further step an evaluation of these weak learners in a parallel pro-
cessing, such as a multi-core architecture in Graphic Processing Units (GPUs). Besides the
weak learner can fit better in a GPU architecture than a strong-learner, with fewer iterations
over the dataset, the computation of individuals in one generation is an embarrassingly par-
allel problem. In addition, we could assess the performance when increasing the number of
individuals in the generations, exploring a larger search space.

Following our experiments in the factorial design in Section 4.8, we show that paired
statistical test and the multi-objective criteria have a strong impact in the effective and risk-
sensitive performance. However, we intend to extend this evaluation by considering other
factors, such as evolutionary multi-objective algorithms and more L2R black-boxes. In our
dissertation we use SPEA2 as a general-purpose multi-objective optimization method, how-
ever, we can evaluate if other sorts of general methods can improve the selection of best in-
dividuals or even finding the best individual with fewer generations. For instance, we expect
to apply a factorial design with NSGAII [Deb et al., 2002] and AMOSA [Bandyopadhyay
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et al., 2008] as alternative multi-objective methods. Besides that, we also intend to further
execute our methodology with a strong learner in order to better evaluate the impact of the
weak learner as a black-box. However, to evaluate a strong-learner algorithm, we need to
adapt a fast implementation for an evolutionary environment in order to improve the time
performance when executing many individuals of one generation.

In our work, we have explored improvements on the SPEA2 algorithm to obtain better
performance in the context of a wrapper strategy to compute the fitness value. However,
SPEA2 has many parameters to set up, the wrapper strategy is absolutely time consuming,
and there is a hard work for tuning the Evolutionary algorithm settings, due to the huge
search space (2n, where n varies from 64 to 700 our evaluated datasets).Therefore, we intend
to combine a filter strategy such as a wrapper one, by assessing the ranking effectiveness of a
L2R model when using single features and assessing the use of both risk-sensitive and effec-
tiveness evaluation as multi-objective criteria over the Pareto set. One possible application is
to find features in the Pareto set, applying distinct objectives and their combinations, such as
effectiveness and risk-sensitiveness of one feature and the similarity with other features. By
combining a filter and a wrapper strategy, we intend to build a less complex model as well
as to improve the processing time.

Another interesting future step is the prediction of features which improve some spe-
cific queries. As described in the Section 4.7, a smaller set of features was enough to provide
a relevant effectiveness, while some extra features were applied to optimize the risk-sensitive
performance. This happened because some queries need some specific features to improve
their effectiveness. Therefore, besides to use a basic group of features, we may ask whether
it is possible to select an extra group of features on-demand in order to improve the effective-
ness of some specific queries. As a result, we can improve the overall effectiveness and the
execution time, as we will apply the extra-features only when necessary. On way to perform
this evaluation could be by the selection of sub-parts in the ensemble algorithms, as these
parts are directly related to some features, e.g. the selection of regression tree in the Random
Forest or LambdaMart algorithms.

Concerning the contributions of our work, in special the paired statistical test and the
multi-objective optimization with risk-sensitive and effective performance, we can also eval-
uate their behavior in algorithms which build L2R models, without concerning FS task. In
special, some recent works [Wang et al., 2015; Li et al., 2016] have applied evolutionary
process with Genetic Algorithm and Genetic Programming to obtain an effective L2R model
without applying the proposals suggested in this dissertation. In theory, our proposal could
be adapted to them in order to also improve the effectiveness and robustness of the final
model.

The dissertation presented here contributes to L2R, as a new methodology to execute
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FS. However, we can also try to apply our methodology in many other scenarios, such as
Recommender Systems and Question Answering. In case of Recommender Systems, we can
use the risk-sensitiveness in multi-objective criteria to also improve the effectiveness when
performing feature selection, or even we can use our paired statistical test to compare the
models or the features in the training phase, considering the recommendations as a sample.
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