
CHARACTERIZING AND PREDICTING THE

POPULARITY OF GITHUB PROJECTS

HUDSON SILVA BORGES

CHARACTERIZING AND PREDICTING THE

POPULARITY OF GITHUB PROJECTS

Tese apresentada ao Programa de Pós-
-Graduação em Ciência da Computação do
Instituto de Ciências Exatas da Universi-
dade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Doutor em Ciência da Computação.

Orientador: Marco Túlio de Oliveira Valente

Belo Horizonte

Agosto de 2018

HUDSON SILVA BORGES

CHARACTERIZING AND PREDICTING THE

POPULARITY OF GITHUB PROJECTS

Thesis presented to the Graduate Program
in Computer Science of the Federal Univer-
sity of Minas Gerais in partial fulfillment of
the requirements for the degree of Doctor
in Computer Science.

Advisor: Marco Túlio de Oliveira Valente

Belo Horizonte

August 2018

c© 2018, Hudson Silva Borges.
Todos os direitos reservados.

Borges, Hudson Silva

B732c Characterizing and Predicting the Popularity of
GitHub Projects / Hudson Silva Borges. — Belo
Horizonte, 2018

xxii, 104 f. : il. ; 29cm

Tese (doutorado) — Federal University of Minas
Gerais

Orientador: Marco Túlio de Oliveira Valente

1. Computação - Teses. 2. Open Source Software.
3. GitHub. 4. Popularity Growth Patterns.
I. Orientador. II. Título.

CDU 519.6*32(043)

Agradecimentos

Gostaria de agradecer a todos que contribuiram, de forma direta ou indireta, para a
conclusão desta tese de doutorado. Não seria possível concluir este trabalho sem o
suporte de vocês. Eu agradeço a Deus por ter todas essas pessoas na minha vida.

Agradeço especialmente aos meus pais, Diva e Hugo, que sempre estiveram ao meu
lado, apoiando minhas decisões e dando todo suporte necessário. Agradeço também a
minha noiva, Elisângela, e sua família que estiveram comigo a todo momento.

Ao meu orientador, Professor Marco Tulio Valente, que nos últimos seis anos
contribuiu de forma significativa para o meu crescimento pessoal e acadêmico.

Aos colegas do grupo de pesquisa ASERG pela amizade, pela agradável convivên-
cia diária e pela colaboração em diversos trabalhos.

Ao Programa de Pós-Graduação em Ciência da Computação (PPGCC) por
oferecer um curso de tal nível de excelência e o suporte financeiro e acadêmico.

Por fim, agradeço aos professores Eduardo Figueiredo, Fabrício Benevenuto,
Ingrid Nunes e Leonardo Murta pela participação na minha defesa e pelas valiosas
contribuições.

ix

Abstract

Software popularity is a valuable information to modern open source developers, who
constantly want to know whether their projects are attracting new users, whether new
releases are gaining acceptance, or whether they are meeting user’s expectations. How-
ever, we still have few studies about the popularity of open source projects. To tackle
this problem, in this thesis, we propose and evaluate—through a set of quantitative
and qualitative studies—practical guidelines and insights to help project managers
understand and improve the popularity of their projects. First, we conduct a large-
scale investigation with 791 developers to reveal their motivations for starring projects
and to check whether they consider the number of stars before using or contributing
to GitHub projects. The results reveal that three out four developers consider the
number of stars and most developers star repositories to show appreciation and to
bookmark projects. Next, we characterize the main factors that impact the number of
stars of 5,000 GitHub projects. We reveal how popularity varies and correlates with
other characteristics of a repository. We also investigate how often repositories lose
popularity, how early they become popular, and what is the impact of new features
in their popularity. Then, we propose, characterize, and validate a set of popularity
growth patterns, which are derived after clustering the time series that describe the
number of stars of the projects. After that, we address the most common channels used
by developers to promote open source projects. We study these promotion channels
and how often developers promote their projects. We also show how popular projects
differ from random ones on the usage of promotion channels and what is the impact
of promotion on news media sites. Finally, we use multiple linear regression models to
predict the popularity of open source repositories. The results show that we can rely
on the past six months to predict the number of stars six months ahead. Moreover,
prediction models that consider the proposed growth patterns can reduce the average
prediction error and reduce the amount of data needed to provide predictions.

Keywords: Open Source Development, Social Coding, Software Popularity.

xi

Resumo

Popularidade é uma informação valiosa para desenvolvedores de projetos de código aberto,
que querem constantemente saber se seus projetos estão atraindo novos usuários ou se novas
releases estão atendendo às expectativas dos usuários. Contudo, poucos estudos investigam
a popularidade de projetos de código aberto. Nesta tese, propomos e avaliamos—por meio
de estudos quantitativos e qualitativos—um conjunto de diretrizes e informações práticas
para ajudar gestores de projetos a entender e melhorar a popularidade de seus proje-
tos. Primeiro, conduzimos uma investigação em larga escala com 791 desenvolvedores para
revelar as motivações que os levam a “estrelar” um projeto e para verificar se eles con-
sideram o número de estrelas antes de usarem ou contribuirem com projetos GitHub. Os
resultados revelam que três em cada quatro desenvolvedores consideram o número de es-
trelas e a maioria “estrelam” repositórios para mostrar apreciação e para adicionar projetos
em bookmarks. Em seguida, caracterizamos os principais fatores que afetam o número de
estrelas de 5,000 projetos GitHub. Revelamos como a popularidade varia e se correlaciona
com outras características dos repositórios. Também investigamos com que frequência os
repositórios perdem popularidade, quão cedo eles se tornam populares e qual é o impacto
de novas funcionalidades em sua popularidade. Em seguida, propomos, caracterizamos e
validamos um conjunto de padrões de crescimento de popularidade, que são obtidos após
clusterização das séries temporais que descrevem o número de estrelas dos projetos. Depois
disso, investigamos os canais mais comuns usados pelos desenvolvedores para promover
projetos de código aberto. Nós descrevemos os principais canais de promoção e analisamos
a frequência com que desenvolvedores promovem seus projetos. Também mostramos como
projetos populares diferem de outros projetos no uso dos canais de promoção e qual é o im-
pacto da promoção em sites sociais de compartilhamento de notícias. Finalmente, usamos
modelos de regressão linear múltipla para prever a popularidade de repositórios de código
aberto. Os resultados mostram que podemos usar os dados dos últimos seis meses para
prever o número de estrelas dos próximos seis meses. Além disso, modelos de previsão que
consideram os padrões de crescimento propostos podem reduzir o erro médio e a quantidade
de dados necessários para fornecer previsões.

Palavras-chave: Código Aberto, Codificação Social, Popularidade de Software.

xiii

List of Figures

1.1 Social coding features supported by GitHub (at the top of the figure) . . . 2
1.2 “Has Vue passed React yet?” site created to compare the number of stars of

React and Vue.js projects (https://hasvuepassedreactyet.surge.sh) 2
1.3 GitHub stars history of popular JavaScript-based MVC frameworks 3

2.1 Follow feature on GitHub . 10
2.2 Forking feature on GitHub . 11
2.3 Opening a pull request on GitHub . 11
2.4 List of trending repositories on GitHub . 12

3.1 How useful are the following metrics to assess the popularity of GitHub
projects? (1: not useful; 4: very useful) . 20

3.2 Age, number of commits, number of contributors, and number of forks
(outliers are omitted) . 23

3.3 Top-10 languages by number of repositories 24
3.4 Number of repositories by domain . 25
3.5 Stars by programming language (considering only the top-10 languages with

more repositories) . 32
3.6 Popularity by application domain . 33
3.7 Popularity by repository owner . 33
3.8 Correlation analysis. In subfigures (c) and (d), the line is the identity relation 35
3.9 Number of stars and unstars events per repository (during April, 2018).

The red line is the identity function. 37
3.10 Years between stars and unstars events by programming language. Outliers

are omitted. 38
3.11 Years between stars and unstars events by domain. Outliers are omitted. . 39
3.12 Cumulative distribution of the time fraction a repository takes to receive

10%, 50%, and 90% of its stars . 40

xv

https://hasvuepassedreactyet.surge.sh

3.13 Fraction of stars gained in the first four weeks and in the last four weeks . 40
3.14 Fraction of stars for all releases (FSAll) and just after major releases (FSMajor) 41
3.15 Reportr/dashboard (the dots indicate weeks with releases) 42
3.16 Fraction of stars gained in the first week after all releases and just after the

major releases . 42
3.17 Fraction of stars gained in the week following all releases (or just the major

releases) / fraction of time represented by these weeks 43
3.18 Fraction of stars by fraction of time (median values), computed using dif-

ferent time intervals . 44
3.19 βCV for 2 ≤ k ≤ 15 . 46
3.20 Clusters of time series produced by the KSC algorithm 47
3.21 Time series representing the centroids of each cluster 47
3.22 Examples of systems with viral growth . 48
3.23 Rank differences in the interval of one year 49
3.24 Correlation analysis (as result, we removed features a.pull_requests,

a.contributors, r.network, and o.type) . 51

4.1 Number of GitHub stars of the analyzed projects 63
4.2 Most common promotion channels . 64
4.3 Number of promotion channels per project 65
4.4 Distribution of the number of posts on the last 12 months (outliers are

omitted) . 66
4.5 Number of groups, cities, and countries of the user meetings 67
4.6 Most common promotion channels used by random projects 68
4.7 Number of posts, upvotes, and comments (outliers are omitted) 69
4.8 Number of GitHub stars received by projects covered by successful Hacker

News posts in the first three days before and after the post publication . . 70

5.1 Cross Validation . 75
5.2 βCV (2 ≤ k ≤ 15) . 76
5.3 Five growth trends (clusters) identified for the repositories in our dataset . 76
5.4 Repositories popularity . 79
5.5 jquery/jquery time series (369 weeks) 80
5.6 Generic model error . 80
5.7 Stars vs RSE (generic model, tr = 26 weeks) 81
5.8 Generic model error (y-axis). Predictions for 26, 52, and 104 weeks, using

different fractions of data (x-axis) . 83

xvi

5.9 Model prediction error for different growth trends (i.e., clusters extracted
using the KSC algorithm) . 84

5.10 Improvement of specific models per cluster (outliers are omitted). 84
5.11 Real vs predicted rankings. The red line is the identity function. 86
5.12 Spearman’s rank correlation rho between predicted and real rankings per

group of top-repositories (p-value < 0.001). 87

xvii

List of Tables

3.1 Descriptive statistics on the number of stars of the repositories in our dataset 22
3.2 Why do users star GitHub repositories? (95% confidence level with a 3.15%

confidence interval) . 28
3.3 Do GitHub users consider the number of stars before using or contributing

to a project? (95% confidence level with a 3.19% confidence interval) . . . 28
3.4 Features implemented in successful releases 44
3.5 How the features are selected? . 44
3.6 Popularity Growth Patterns . 47
3.7 Factors potentially affecting the growth pattern of a repository 50
3.8 Top-10 most influential factors (p-value < 0.01) 52
3.9 Classification effectiveness . 53
3.10 Number of survey participants and answers per growth pattern – CI =

Confidence interval at confidence level of 95% 54
3.11 Reasons for Slow Growth (95% confidence level with a 19.1% confidence

interval) . 55
3.12 Reasons for Moderate Growth – Positive Sentiments – (95% confidence level

with a 16.9% confidence interval) . 56
3.13 Reasons for Moderate Growth – Negative Sentiments – (95% confidence

level with a 16.9% confidence interval) . 56
3.14 Reasons for Fast Growth (95% confidence level with a 16.1% confidence

interval) . 57
3.15 Reasons for Viral Growth (95% confidence level with a 18.8% confidence

interval) . 57

4.1 Active Twitter, Facebook, and Google+ accounts 66

5.1 Popularity Trends Description . 77
5.2 Top-10 repositories with more stars . 79

xix

5.3 Number of stars gained (real and predicted measures) for the top-10 (first
table half) and bottom-10 repositories (second table half). Predictions are
produced using a generic model (tr = 26 weeks and t = 52). We can see
that the error (column “% Diff”) is lower for the top-repositories. 82

5.4 Number of stars gained (real and predicted measures) for the top-10 (first
table half) and bottom-10 repositories (second table half). Predictions are
produced using specific models (tr = 26 weeks and t = week 52). Column “%
Improve” shows the gains achieved by specific models, when compared with
the predictions provided by generic models. Black bars represent positive
gains and gray bars denote negative gains. 85

5.5 Real and predicted rankings for the top-10 (first table half) and bottom-10
repositories (second table half), using the generic and the specific models.
Marks “—” indicate repositories that were created and/or became popular
after the date we set to select the repositories considered in this study. . . 88

xx

Contents

Agradecimentos ix

Abstract xi

Resumo xiii

List of Figures xv

List of Tables xix

1 Introduction 1
1.1 Problem and Motivation . 1
1.2 Objectives . 4
1.3 Contributions . 4
1.4 Publications . 7
1.5 Thesis Outline . 7

2 Background and Related Work 9
2.1 Social Coding and GitHub . 9
2.2 Software Popularity . 13
2.3 Popularity Prediction . 15
2.4 Software Promotion . 16
2.5 Concluding Remarks . 17

3 Characterizing the Popularity of GitHub Projects 19
3.1 Introduction . 19
3.2 Dataset . 21
3.3 Survey Study . 25

3.3.1 Survey Design . 25
3.3.2 Survey Results . 26

xxi

3.4 Characterization Study . 30
3.4.1 Results . 31

3.5 Popularity Growth Patterns . 45
3.5.1 Proposed Growth Patterns . 46

3.6 Growth Patterns Characterization . 48
3.6.1 Methodology . 49
3.6.2 Most Influential Factors . 51

3.7 Developers’ Perceptions on Growth Patterns 53
3.7.1 Survey Design . 53
3.7.2 Survey Results . 54

3.8 Threats to Validity . 58
3.9 Conclusion . 59

4 Promotion on Open Source Projects 61
4.1 Introduction . 61
4.2 Study Design . 62
4.3 Results . 64
4.4 Threats to Validity . 71
4.5 Concluding Remarks . 71

5 Predicting the Popularity of GitHub Repositories 73
5.1 Introduction . 73
5.2 Study Design . 74
5.3 Dataset . 78
5.4 Results . 79
5.5 Threats to Validity . 89
5.6 Concluding Remarks . 89

6 Conclusion 91
6.1 Summary . 91
6.2 Contributions . 93
6.3 Key Findings and Discussion . 95
6.4 Future Work . 96

Bibliography 97

xxii

Chapter 1

Introduction

In this chapter, we start by stating our problem and motivation (Section 1.1). Next,
we discuss the objectives, goals, and intended contributions of this thesis (Section 1.2).
Then, we list our current publications (Section 1.4). Finally, we present the outline of
this thesis (Section 1.5).

1.1 Problem and Motivation

Social coding platforms are disrupting the way developers collaborate on open source
software development. For example, GitHub is the world’s largest collection of open
source software, with around 31 million users and 89 million repositories.1 In addition
to a git-based version control system, GitHub integrates features for social coding
(as highlighted in Figure 1.1). For example, developers can fork their own copy of
a repository, work and improve the code locally, and then submit a pull request to
integrate their changes in the main repository. Moreover, GitHub also supports features
typical of modern social networks. For example, inspired by the like button of such
networks, GitHub users can star a repository, presumably to manifest their interest or
satisfaction with the hosted project [Begel et al., 2013].

However, the real and practical meaning of “starring a project” was never
the subject of an in-depth and well-founded empirical investigation. Furthermore,
GitHub’s success contributed to the emergence of a competitive open source market.
As a result, it is common to see various projects competing for the same users. For
example, AngularJS, React, Vue.js, Backbone.js, and Ember.js compete for
developers of single-page Web applications implemented in JavaScript. To illustrate

1https://github.com/search, verified on 06/26/2018.

1

https://github.com/search

2 Chapter 1. Introduction

Figure 1.1: Social coding features supported by GitHub (at the top of the figure)

the relevance of stars for developers of these projects, in September 2016 the React

project achieved the number of 50,000 GitHub stars. In order to celebrate this
achievement the maintainers wrote a special blog post and created a commemo-
rative t-shirt.2 As a second example, in June 2018, Vue.js surpassed React in
number of stars and this fact was the subject of several discussions on news sites
(e.g., https://news.ycombinator.com/item?id=17316267), social media sites (e.g.,
https://twitter.com/dan_abramov/status/1007439168400654336), and blogs
(e.g., https://zendev.com/2018/06/19/react-usage-beating-vue-angular.html).
In fact, a developer created a simple website to track the number of stars of both
projects (Figure 1.2).

Figure 1.2: “Has Vue passed React yet?” site created to compare the number of stars
of React and Vue.js projects (https://hasvuepassedreactyet.surge.sh)

Figure 1.3 shows the GitHub stars history of AngularJS, React, Vue.js,
Backbone.js, and Ember.js repositories. Created in January, 2010, angu-

lar/angular.js is the oldest repository among these frameworks. However, the
growing of its number of stars is decreasing since the creation of a new version of the
framework, which is currently hosted on a new repository, called angular/angular.

2https://facebook.github.io/react/blog/2016/09/28/our-first-50000-stars.html

https://news.ycombinator.com/item?id=17316267
https://twitter.com/dan_abramov/status/1007439168400654336
https://zendev.com/2018/06/19/react-usage-beating-vue-angular.html
https://hasvuepassedreactyet.surge.sh

1.1. Problem and Motivation 3

Few months later, jashkenas/backbone and emberjs/ember.js were created and,
over time, they presented a similar growth in their number of stars. Maintained by
Facebook, facebook/react quickly became popular, as showed by the high number
of stars gained over time. Finally, vuejs/vue was created only five months later,
gaining less stars until the end of 2015. After that, Vue.js started to gain more stars
at the point to recently surpass facebook/react.

Date

S
ta

rs

2010 2012 2015 2017

0K
20

K
40

K
60

K
80

K
10

0K

●

●

angular/angular
angular/angular.js
emberjs/ember.js
facebook/react
jashkenas/backbone
vuejs/vue

●

●

angular/angular
angular/angular.js
emberjs/ember.js
facebook/react
jashkenas/backbone
vuejs/vue

●

●

angular/angular
angular/angular.js
emberjs/ember.js
facebook/react
jashkenas/backbone
vuejs/vue

●

●angular/angular
angular/angular.js
emberjs/ember.js
facebook/react
jashkenas/backbone
vuejs/vue

●

●

angular/angular
angular/angular.js
emberjs/ember.js
facebook/react
jashkenas/backbone
vuejs/vue

●

●angular/angular
angular/angular.js
emberjs/ember.js
facebook/react
jashkenas/backbone
vuejs/vue

Figure 1.3: GitHub stars history of popular JavaScript-based MVC frameworks

However, several relevant questions about starring practices on GitHub remain
opened. On the one hand, for project owners it is important to know the characteristics
that make their frameworks popular, the different patterns in the growth of popularity,
and which factors or events most influence the acceleration in the number of stars, as
presented by Vue.js, for example. On the other hand, project users may have interest
in technologies that will become popular in the future or even know if a given project
is becoming stagnant in terms of popularity. Unfortunately, we have few studies about
the popularity of open source projects. The exceptions are probably an attempt to
distinguish popular and unpopular Python repositories using machine learning tech-
niques [Weber and Luo, 2014] and a study on the effect of project’s popularity on
documentation quality [Aggarwal et al., 2014]. By contrast, popularity is extensively
studied on other social platforms, like YouTube [Ahmed et al., 2013; Figueiredo et al.,
2014] and Twitter [Lehmann et al., 2012; Ma et al., 2013]. These studies aim to guide
content generators on producing successful social media content. Similarly, scientific
knowledge on open source software popularity might also provide valuable insights on
how to build and evolve systems in a competitive software market.

4 Chapter 1. Introduction

1.2 Objectives

This thesis has three main goals, as described next:

• Motivated by the lack of studies in the area, we intend to provide both a quanti-
tative and qualitative characterization on the popularity of GitHub projects, as
measured by their number of stars. By means of an analysis of the time series
that describe the growth of the number of projects’ stars, we intend to help devel-
opers to understand how popularity evolves on GitHub and the main factors that
affect the popularity of their projects, including programming language, project
domain, and frequent releases, among others. Additionally, by means of a set
of surveys, we intend to collect developers’ perceptions about the importance
and meaning of GitHub stars. Ultimately, our goal is to assess the relevance of
monitoring the number of stars of GitHub projects.

• We intend to provide practical guidelines and insights on how to improve the
number of stars of GitHub projects. More specifically, based on the results of
the aforementioned quantitative and qualitative studies, we concluded that pro-
motion on social media sites is a important factor for gainning popularity on
GitHub. Therefore, we intend to conduct surveys with developers to reveal the
most common promotion channels they use to promote their projects.

• We intend to propose models to predict the popularity of GitHub projects. These
models can be used by project owners to compare the popularity of their projects,
in the future, with possible competitors. They can also help developers to support
decisions on moving to or learning new technologies. Moreover, these predictions
can benefit developers by providing a long-term vision. For example, they can
prioritize projects with a consistent growing in favor of viral projects, which
usually attract the developers’ attention only for few days.

1.3 Contributions

The contributions achieved with this thesis are summarized as follows:

• A quantitative characterization of the popularity of GitHub reposito-
ries. To gain a first view of the popularity of GitHub projects, we investigate
the main factors that impact the number of stars of a large set of 5,000 GitHub
projects. This investigation aimed to answer the following research questions:

1.3. Contributions 5

(RQ #1) How popularity varies per programming language, application domain,
and repository owner? (RQ #2) Does popularity correlate with other character-
istics of a repository, like age, number of commits, number of contributors, and
number of forks? (RQ #3) How often do repositories lose popularity? (RQ #4)
How early do repositories gain popularity? (RQ #5) What is the impact of new
features on popularity? We found that JavaScript is the language with the high-
est number of popular repositories and the three domains whose repositories are
more popular are systems software, applications, and web libraries and frame-
works (RQ #1). We also reported the existence of a moderate correlation of stars
with contributors and forks, a low correlation between stars and commits, and a
negligible correlation between stars and repository’ age (RQ #2). We show that
“unstar” events do not have a major influence on the popularity of GitHub repos-
itories (RQ #3) and we concluded that repositories have a tendency to receive
more stars right after their creation (RQ #4). Finally, we showed that there is
an acceleration in the number of stars gained after releases (RQ #5).

• A set of patterns to describe popularity growth. We propose four pat-
terns of popularity growth, which are derived after clustering the time series that
describe the number of stars of GitHub projects. We show that almost 60% of
the repositories present a slow growth in their number of stars and 30% present a
moderate growth. Moreover, 9.3% of the repositories have a fast growth and only
2.3% present a massive (or viral) growth. We also show that the repository’ age,
number of issues, and last git-push are the most important features that dis-
tinguish repositories in the proposed growth patterns. The proposed popularity
growth patterns can help project owners to reason about the popularity of their
projects and also to compare this popularity with the one of competitors. Fi-
nally, project users can use the proposed patterns to prioritize projects with fast
growth since they are more likely to receive contributions and to be maintained
longer.

• A qualitative characterization on the relevance of Github stars. First, we
present a large-scale investigation with 791 developers to reveal their motivations
for starring projects and to check whether they consider the number of stars before
using or contributing to projects on GitHub. We found that GitHub developers
star repositories mainly to show appreciation to projects (52.5%) and three out
of four consider the number of stars before using or contributing to a project.
Finally, we present a survey with 345 developers to reveal their perceptions on
the proposed growth patterns. The results show that the major reason for slow

6 Chapter 1. Introduction

growth is deprecation or lack of activity and the major reason for fast and viral
growth is promotion on social media sites (e.g., Hacker News).

• A study on the channels used to promote open source projects. The
use of promotion channels can help to keep the interest of the community and
also to attract new members. In this study, we address the most common chan-
nels used by developers to promote open source projects. We ask four research
questions: (RQ #1) What are the most common promotion channels? (RQ #2)
How often do developers promote their projects? (RQ #3) How popular and
random projects differ on the usage of promotion channels? and (RQ #4) What
is the impact of promotion on Hacker News? We show that Twitter and User
Meetings are the most common channels whereas Facebook and Google+ are the
less common ones (RQ #1). We also show that most projects that use blogs post
more than once a month (RQ #2). More importantly, we found that the usage
of promotion channels is significantly lower among random projects compared to
the popular ones (RQ #3). Finally, we show that promotion on Hacker News (a
popular news aggregator site3) has a major impact on the number of stars of the
projects (RQ #4).

• A model to predict the popularity of GitHub repositories. Repository
owners and clients usually want to know how their projects will perform in the
future, when compared with competitor projects. In this final study, we use
multiple linear regression models to predict the popularity of GitHub repositories.
Specifically, we compute and apply such models over two types of data: generic
and specific. By generic, we refer to models produced using the top GitHub
repositories, including 4,248 popular GitHub repositories. By specific, we refer
to models produced from repositories that share similar growth patterns. We
evaluate the proposed models by asking three major research questions: (RQ
#1) What is the accuracy of the generic prediction models? (RQ #2) What is
the accuracy of the specific prediction models? (RQ #3) What is the accuracy
of the repositories’ rank as predicted using the generic and specific models? We
found that general models start to provide accurate predictions when they are
trained with data from six months and used to predict the number of stars six
months ahead (RQ #1). We also found that specific models can reduce the
average prediction error (e.g., 15% on median for slow growth pattern); they also
require less data to provide predictions, e.g., 10 weeks for slow growth pattern

3https://news.ycombinator.com, verified on 06/26/2018.

https://news.ycombinator.com

1.4. Publications 7

(RQ #2). Finally, we report a very strong correlation between predicted and real
rankings (RQ #3). In summary, the proposed predictions models can help both
project owners and users. For example, project owners can use the predictions
to support long-term decisions whereas users can use the predictions to support
their decisions on moving to or adopting new software technologies.

1.4 Publications

The following publications document the results we have accomplished during this
Ph.D work:

• Hudson Borges, Andre Hora, Marco Tulio Valente. Understanding the Factors
that Impact the Popularity of GitHub Repositories. In 32nd IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 1-11, 2016.
Qualis A1.

• Hudson Borges, Andre Hora, Marco Tulio Valente. Predicting the Popularity of
GitHub Repositories. In 12th International Conference on Predictive Models and
Data Analytics in Software Engineering (PROMISE), p. 1-10, 2016. Qualis B2.

• Hudson Borges, Jailton Coelho, Paulo Carvalho, Mariana Fernandes, Marco Tulio
Valente. Como Pesquisadores Usam o Dataset GHTorrent?. In 5th Brazilian
Workshop on Software Visualization, Evolution and Maintenance (VEM), p. 1-
8, 2017. Qualis B5.

• Hudson Borges and Marco Tulio Valente. How do Developers Promote Open
Source Projects?. Accepted for IEEE Computer, 2018. Qualis A1, JCR 2018:
1.98.

• Hudson Borges and Marco Tulio Valente. What’s in a GitHub Star? Under-
standing Repository Starring Practices in a Social Coding Platform. Journal of
Systems and Software, vol. 146, p. 112-129, 2018. Qualis A2, JCR 2018: 2.27.

1.5 Thesis Outline

This thesis is structured in the following chapters:

• Chapter 2 describes background on social coding, software popularity, data pre-
diction, and channels commonly used to promote open source projects.

8 Chapter 1. Introduction

• Chapter 3 presents an in-depth investigation on the popularity of GitHub repos-
itories. First, we reveal the developers’ motivations for starring projects on
GitHub. Then, we study the main factors that impact the number of stars of
GitHub projects and investigate the impact of new features on project popularity.
Finally, we identify, characterize, and explore the developers’ perceptions on four
main popularity growth patterns.

• Chapter 4 explores the most common channels used by developers to promote
open source projects.

• Chapter 5 investigates the use of multiple linear regression models to predict the
number of stars of GitHub repositories.

• Chapter 6 concludes this thesis and outlines future work ideas.

Chapter 2

Background and Related Work

In this chapter, we present background information and work related to this PhD the-
sis. First, we introduce the concept of social coding and discuss how GitHub, the
most popular social coding platform nowadays, implements social features; we also
present studies that investigate the impact of such features on software development
(Section 2.1). Next, in Section 2.2 we present studies related to software popularity
in app stores and social media sites. In Section 2.4, we discuss studies related to the
promotion of open source projects. Moreover, in Section 2.3 we present an overview
on the applications of data prediction techniques in different contexts of software engi-
neering. Finally, we conclude this chapter with general remarks on the discussed topics
(Section 2.5).

2.1 Social Coding and GitHub

Over the last years, open source software development has become more social and
collaborative. In fact, social coding emphasizes formal and informal collaboration in
the software development by empowering knowledge exchange between the developers.
In this context, traditional code management tools (e.g., control version systems, issue
tracking, etc) are combined with social networks features to connect developers and
increase their social interactions. Among the platforms that support social coding,
GitHub is nowadays the most popular one and the world’s largest collection of open
source software, with around 31 million users and 89 million repositories.1

Due to its vast number of social features, GitHub has been the major data source
for several studies in software engineering. For example, on GitHub, developers can

1https://github.com/search, verified on 06/26/2018

9

https://github.com/search

10 Chapter 2. Background and Related Work

Figure 2.1: Follow feature on GitHub

follow other developers to listen their activities on the platform (Figure 2.1). These
social interactions and the implications on the software development are the subject
of several studies [Jiang et al., 2013; Wu et al., 2014; Blincoe et al., 2016]. Jiang
et al. [2013] conduct a study to understand the influence of developers connections
on project dissemination in GitHub. To this purpose, the authors collected more
than 2 million social links from 747 thousand users. Then, the authors construct
social graphs and characterize the role played by these links. They show that social
links play a notable role by helping in projects dissemination and also by influencing
developers to participate in projects. Wu et al. [2014] analyze to what extend the
following feature on GitHub is similar to features in other social media platforms.
Particularly, they examined developers’ interactions inside and outside the homebrew
project. According to their findings, most of the follow activities in this project are not
product of developers’ collaborations on GitHub, but from interactions on other social
platforms (i.e., Twitter, HackerNews, StackOverflow, etc). Finally, Blincoe et al. [2016]
investigate why GitHub users make use of the follow feature and the influence of the
most followed users on their followers. To identify the motivations behind following
other developers, the authors surveyed 800 GitHub users. They found that receiving
updates on activities, discovering new projects and trends, and learning are some of
the reasons for following popular users. Moreover, they also reported that followers
are likely to contribute to new projects after a popular user whom they are following
performs an activity on that project.

Forking is another widely used feature provided by GitHub. By forking a reposi-
tory, developers can create a copy of the project in their own account to freely modify,
without affecting the original project. It is also important to observe that the copy
can be made by anyone without requiring the permission of the repository’s owner

2.1. Social Coding and GitHub 11

Figure 2.2: Forking feature on GitHub

(Figure 2.2). Jiang et al. [2016] analyze the characteristics of forking behavior by in-
vestigating almost 2 million GitHub forks. Their findings show that developers fork
repositories mainly to submit pull requests, fix bugs, add new features, and keep copies.
Moreover, developers are likely to fork projects implemented in their preferred program-
ming languages and mostly forks are copied from the original owner (i.e., developers
usually do not fork from other forked repositories). Finally, Zhou et al. [2018] present
an approach to automatically identify and label features among code changes in forks
and to provide a compact overview of features and their implementations. To this
purpose, they cluster the changed code relationships and their dependencies to label
each identified feature with representative keywords extracted from commit messages,
code, and comments. According to the authors, their technique produces more accurate
labels than previous ones.

Figure 2.3: Opening a pull request on GitHub

According to Jiang et al. [2016], the major reason for forking repositories is to
submit pull requests. As illustrated in Figure 2.3, pull request is a feature that allow
developers, who are not members of a given project, to submit their changes (e.g., bug
fixes, new features, or code improvements) to the original project. After the submission,
the request is analyzed by developers of the original repository and, if accepted, merged
to the source code. The pull-based software development model was explored in other
studies [Gousios et al., 2014; Yu et al., 2015; Gousios et al., 2015]. Gousios et al. [2014]

12 Chapter 2. Background and Related Work

explore how pull-based development works by analyzing almost 2 million pull requests
and then identifying the factors that affect pull request lifetime, merging, and rejection.
They show that the pull-based model is used by only 14% of the analyzed projects, and
most of the pull requests affect just a few lines of code. In another study, Gousios et al.
[2015] investigate the work practices and the challenges that integrators face while
working in pull-based settings. By means of a qualitative investigation and survey
with integrators, they found that integrators struggle to maintain the quality of their
projects and have difficulties with prioritizing contributions that need to be merged.
At last, Yu et al. [2015] report an investigation on which factors affect pull request
evaluation latency in GitHub. To this purpose, they used a multiple linear regression
to model the latency of pull requests evaluation. Their results show that small changes
on pull requests (e.g., low number of lines modified) increases the reviewing chances
and that number of comments is the best latency predictor (i.e., pull requests with
more comments are likely to be resolved faster).

Figure 2.4: List of trending repositories on GitHub

Finally, GitHub provides a social feature named stars, which is similar to a like
in other social media sites (e.g., Facebook, Twitter, and HackerNews). GitHub defines
stars as a way to show appreciation to the repository’s maintainers for their work
and/or to make it easier to find a repository later. Indeed, stars play an important role

2.2. Software Popularity 13

in the GitHub platform and most of the repository rankings depend on this measure.2

Additionally, GitHub has a dedicated page where they list the repositories that gained
more stars in the day, week, or month (as shown in Figure 2.4).

However, we still have few studies about the popularity of open source projects
in social coding platforms. Weber and Luo [2014] attempt to differentiate popular and
unpopular Python projects on GitHub using machine learning techniques. They found
that in-code features are more important than author metadata features. Zhu et al.
[2014] study the frequency of folders used by 140 thousands GitHub projects and their
results suggest that the use of standard folders (e.g., doc, test, examples) may have an
impact on project popularity. Bissyande et al. [2013] analyze the popularity, interop-
erability, and impact of various programming languages, using a dataset of 100K open
source software projects. Aggarwal et al. [2014] study the effect of social interactions
on GitHub projects’ documentation. They conclude that popular projects tend to at-
tract more documentation collaborators. Jiang et al. [2017] provide a comprehensive
analysis of inactive yet available assignees in popular GitHub projects. They show that
some projects have more than 80% of inactive assignees. Ma et al. [2016] conduct a
study to identify the most influential Python projects on GitHub. They found that
these projects are not necessarily popular among GitHub users. Papamichail et al.
[2016] argue that the popularity of software components is as an indicator of software
quality. As one of the findings of a systematic mapping study, Cosentino et al. [2017]
report that popularity is also useful to attract new developers. Finally, by analyzing
the effect of evolutionary software requirements on open source projects, Vlas et al.
[2017] state that the success depends on the continuous developing of requirements.

A deep understanding of technical and non-technical factors that impact the
popularity can provide valuable insights on how to build and evolve systems in a
competitive market. In the next section, we discuss studies the popularity aspect in
other platforms (e.g., app stores and social media sites) and studies that investigate
the relationship between popularity and software quality.

2.2 Software Popularity

Popularity in the context of mobile apps is the subject of several studies. For example,
there are many studies examining the relationship between popularity of mobile apps
and their code properties [Datta and Kajanan, 2013; Fu et al., 2013; Linares-Vasquez
et al., 2013; Mojica Ruiz et al., 2014; Lee and Raghu, 2014; Tian et al., 2015; Guerrouj

2https://help.github.com/articles/about-stars, verified on 03/12/18.

14 Chapter 2. Background and Related Work

et al., 2015; Palomba et al., 2015; Corral and Fronza, 2015; McIlroy et al., 2016]. Tian
et al. [2015] investigate 28 factors along eight dimensions to understand how high-
rated Android applications are different from low-rated ones. Their results show that
external factors, like number of promotional images, are the most influential ones.
Guerrouj and Baysal [2016] explore the relationships between mobile apps’ success
and API quality. They found that changes and bugs in API methods are not strong
predictors of apps’ popularity. In another study, Guerrouj et al. [2015] analyse changes
of Android API elements between releases and report that high app churn leads to
lower user ratings. McIlroy et al. [2016] study the frequency of updates in popular free
apps from different categories in the Google Play store. They report that frequently-
updated apps do not experience an increase in negative ratings by their users. Mojica
Ruiz et al. [2014] examine the relationship between the number of ad libraries and app’s
user ratings. Their results show that there is no relationship between the number of
ad libraries in an app and its rating. Linares-Vasquez et al. [2013] investigate how
the fault- and change-proneness of Android API elements relate to applications’ lack
of success. They state that making heavy use of fault- and change-prone APIs can
negatively impact the success of these apps. Lee and Raghu [2014] tracked popular
apps in the Apple Store and found that the survival rates of free apps are up to two
times more than the paid ones. Moreover, they report that frequent feature updates
can contribute to app survival among the top ones. Ali et al. [2017] conducted a
comparative study of cross-platform apps to understand their characteristics. They
show that users can perceive and rate differently the same app on different platforms.

Other studies track popularity on social networks, including video sharing sites
(e.g., YouTube) and social platforms (e.g., Twitter). Chatzopoulou et al. [2010] analyze
popularity of YouTube videos by looking at properties and patterns metrics. They
report that several popularity metrics are highly correlated. Figueiredo et al. [2011]
characterize the growth patterns of videos on YouTube. They show that copyright
protected videos tend to get most of their views earlier and videos on top lists tend
receive a large fraction of their views on a peak day or week. Lehmann et al. [2012]
analyze popularity peaks of hashtags in Twitter. For example, they found four usage
patterns restricted to a two-week period centered on the peak times. Babaei et al. [2018]
study news posts that reach a consensus (i.e., evoke similar reactions) from readers on
Twitter. By analyzing the popularity of news posts with high and low consensus, they
show that both types of news are equally popular, in number of retweets, with users.

Finally, other studies analyze the relationship between popularity and software
quality. Sajnani et al. [2014] study the relationship between component popularity and
component quality in Maven, finding that, in most cases, there is no correlation. Capra

2.3. Popularity Prediction 15

et al. [2011] evaluate the effect of companies participation on open source communities
and conclude that this involvement improves the popularity, but leads to lower software
quality.

2.3 Popularity Prediction

One of the chapter of this thesis (Chapter 5) is inspired by the vast literature on defect
prediction. For example, a systematic literature review listed 208 defect prediction
studies [Hall et al., 2012], which differ regarding the software metrics used for pre-
diction, the modeling technique, the granularity of the independent variable, and the
validation technique. As independent variables, the studies use source code metrics
(size, cohesion, coupling, etc), change metrics, process metrics, code smells instances,
etc. The modeling techniques vary with respect to linear regression, logistic regression,
naive bayes, neural networks, etc. In this thesis, instead of predicting the future num-
ber of defects of a system, we rely on multiple linear regressions to predict the number
of stars of GitHub repositories.

Jiang et al. [2016] explore why and how developers fork what from whom in
GitHub. They report that some repository owners are popular, and attract many
forks; other owners are unpopular and rarely attract forks. They also report that
a higher percentage of attractive owners are organizations, have more followers and
earlier registration in GitHub.

Martin et al. [2016] extract time series information about popular Google Play
apps and investigate how release frequency affects an app’s performance, as measured
by rating, popularity, and number of user reviews. They label as “impactful releases”
the ones that caused a significant change on the app’s popularity, as inferred by Causal
Impact Analysis (a form of causal inference). They report that more mentions of fea-
tures and fewer mentions of bug fixing increase the chance for a release to be impactful.
Couto et al. [2014] follow a similar approach but to identify causal relationships be-
tween changes in internal measures of software quality (coupling, cohesion, complexity,
etc) and the number of defects reported for a system.

Popularity prediction in other social networks is the target of several studies. In
Twitter, Ma et al. [2013] predict hashtag popularity to identify fast emerging topics
attracting collective attention. Their results reveal that context features (e.g., number
of users that tweeted the hashtag) are relatively more effective than content feature
(e.g., number of tweets with the hashtag). Tsur and Rappoport [2012] used a hybrid
approach based on linear regressions to predict the spread of ideas in Twitter and found

16 Chapter 2. Background and Related Work

that a combination of content features with temporal and topological features mini-
mizes prediction error. In YouTube, Szabo and Huberman [2010] found a strong linear
correlation between the popularity of videos at early and later times. Based on this
finding, they present a model to predict future popularity. Pinto et al. [2013] propose
two prediction models based on multivariate linear regression that incorporate infor-
mation about historical patterns. Finally, Roy et al. [2013] propose a framework called
SocialTransfer that utilizes knowledge from social streams (e.g., Twitter) to discover
sudden popularity bursts in videos. They show that social trends have a ripple effect
as they spread from the Twitter domain to the video domain. To our knowledge, this
thesis is the first to target popularity prediction—measured by the number of stars—of
software projects in the GitHub social coding network.

2.4 Software Promotion

Although open source software has been exhaustively explored recently, little is known
about how developers promote these projects. Bianco et al. [2012] analyze market-
ing and communication strategies of three companies that develop open source soft-
ware. By means of interviews, they found that websites and product launch events
are adopted by the three organizations; however, the organizations differ considerably
on the use of other communication channels, mainly when promoting the projects in
open source communities and among industrial users. Singer et al. [2014] report a
qualitative study focused on discovering the benefits that Twitter brings to developers.
They found that Twitter adopters use it to stay aware of industry changes, for learning,
and for building relationships. By correlating the blogging and committing behavior of
developers, Pagano and Maalej [2011] observed an intensive use of blogs, frequently de-
tailing activities described shortly before in commit messages. Bajic and Lyons [2011]
analyze how software companies use social media techniques to gather feedback from
users collectively. Their results suggest that startups use social media mainly for com-
petitive advantage and established organizations use it to monitor the buzz among their
users. By studying a successful software development company, Hansson et al. [2006]
identified that user meetings and newsletters are adopted to include and increase the
participation of users in the development process. Finally, Aniche et al. [2018] conduct
a study to understand how developers use modern news aggregator sites (Reddit and
Hacker News). According to their results, the two main reasons for posting links on
these sites is to promote own work and to share relevant content.

2.5. Concluding Remarks 17

2.5 Concluding Remarks

In this chapter, we provided background information and related work to better under-
stand the state of the art related to this PhD thesis. Firstly, we introduced the concept
of social coding and how this concept is influencing modern software development (Sec-
tion 2.1). Moreover, we presented some of the social features available on GitHub, the
most popular social coding platform, and studies that investigate the impact of these
features on software development. In Section 2.2, we showed that popularity has been
explored in several other contexts (e.g., app stores and social media sites) and with
different purposes (e.g., correlate popularity and internal software quality). In Sec-
tion 2.3, we presented existing investigations on defect prediction, which was one of
the inspiration for a part of this thesis, in different contexts (e.g., social networks and
app stores). Finally, we discussed studies on software promotion, since we also inves-
tigate the most common channels used by open source developers to promote their
projects (Section 2.4).

Chapter 3

Characterizing the Popularity of
GitHub Projects

In this chapter, we report a deep investigation on the popularity of GitHub repositories.
In Section 3.1, we introduce the study. Next, Section 3.2 describes and characterizes
the dataset used in the study. Then, in Section 3.3 we report a survey with developers
to reveal their motivations for starring GitHub projects and in Section 3.4 we describe a
quantitative characterization of the number of stars of GitHub projects. Furthermore,
in Section 3.5 we propose a set of patterns to describe the popularity growth of GitHub
repositories. In Section 3.6, we identify factors that distinguish the repositories in each
growth pattern and in Section 3.7 we report a survey with developers to reveal their
perceptions on these patterns. Finally, in Section 3.8 we discuss threats to validity and
Section 3.9 concludes the chapter.

3.1 Introduction

Software popularity is a valuable information to modern open source developers, who
constantly want to know if their systems are attracting new users, if new releases are
gaining acceptance, or if they are meeting user’s expectations. In order to provide
initial evidence on the most useful metrics for measuring the popularity of GitHub
projects, we conducted an initial survey with StackOverflow users. We rely on these
users because StackOverflow is a widely popular programming forum, listing questions
and answers about a wide variety of technologies, which are provided by practitioners
with different profiles and background [Vasilescu et al., 2013]. We randomly selected
a sample of 400 StackOverflow users, using a dump of the site available at Google

19

20 Chapter 3. Characterizing the Popularity of GitHub Projects

BigQuery.1 We e-mailed these users asking them a single question: How useful are
the following metrics to assess the popularity of GitHub projects? We then presented
three common metrics provided by GitHub, which are displayed at the front page of
any project: watchers, stars, and forks. Although available in any repository, project
owners do not have control about these metrics; any GitHub user can watch, star, or
fork a repository, without asking permission to its owners. The survey participants
were asked to rank the usefulness of these metrics in a 4-point Likert scale; we also
configured the survey system to present the metrics in a random order, to avoid a
possible order effect bias. We received 54 answers, which corresponds to a response
ratio of 13.5%. As presented in Figure 3.1, the results of this initial survey show that
stars are viewed by practitioners as the most useful measure of popularity on GitHub,
with 83% of answers with scores 3 (31%) or 4 (52%). It is followed by forks with 72% of
answers with scores 3-4 (35% and 37%, respectively) and by watchers with 67% (37%
and 30%, respectively).

17%

28%

33%

83%

72%

67%

Forks

Stars

Watchers

100 50 0 50 100

Percentage

Responses 1 2 3 4

Figure 3.1: How useful are the following metrics to assess the popularity of GitHub
projects? (1: not useful; 4: very useful)

After confirming the relevance of stars in the preliminary survey, we conducted
a large-scale characterization study, with GitHub projects and developers, which is
described in details in this chapter. In the first part of this characterization study,
we collected historical data about the number of stars of 5,000 popular GitHub
repositories. We perform a survey with 791 developers to reveal their motivations
for starring projects. Our intention is to confirm that stars are a reliable measure of
popularity on GitHub. Moreover, we use our dataset to answer five research questions:

RQ #1: How popularity varies per programming language, application domain, and
repository owner? The goal is to provide an initial view about the popularity of

1https://cloud.google.com/bigquery/public-data/stackoverflow

https://cloud.google.com/bigquery/public-data/stackoverflow

3.2. Dataset 21

the studied systems, by comparing the number of stars according to programming
language, application domain, and repository owner (user or organization).

RQ #2: Does popularity correlate with other characteristics of a repository, like age,
number of commits, number of contributors, and number of forks? This investigation
is important to check whether there are factors that can be worked to increase a
project’s popularity.

RQ #3: How often do repositories lose popularity? On GitHub, users can remove
their stars from previously starred repositories (which is commonly called an unstar
event). The goal of this third research question is to explore how often developers
unstar repositories and correlate this information with the programming language and
application domain.

RQ #4: How early do repositories gain popularity? With this research question, we
intend to check whether gains of popularity are concentrated in specific phases of a
repository’s lifetime, specifically in early releases.

RQ #5: What is the impact of new features on popularity? This investigation can
show if relevant gains in popularity happen due to new features, as implemented in
new releases.

In the second part of the study, we propose four patterns of popularity growth in
GitHub, which are derived after clustering the time series that describe the growth of
the number of stars of the projects in the dataset. We also investigate the endogenous
factors (i.e., the ones that can be retrieved directly from a repository) that affect
the classification of a project in a given growth pattern. Finally, in the third part
of the study, we present a survey conducted with 115 project owners to reveal their
perceptions about the proposed growth patterns. Our intention is to derive action-
able insights to developers interested in increasing the number of stars of their projects.

3.2 Dataset

The dataset used in this study includes the top-5,000 public repositories by number of
stars on GitHub. We limit the study to 5,000 repositories for two major reasons. First,
to focus on the characteristics of highly popular GitHub projects. Second, because we
investigate the impact of application domain on popularity, which demands a manual
classification of each system domain.

22 Chapter 3. Characterizing the Popularity of GitHub Projects

All data was obtained using the GitHub API, which provides services to search
public repositories and to retrieve specific data about them (e.g., stars, commits, con-
tributors, and forks). The data was collected on January 23rd, 2017. Besides retrieving
the number of stars for each system, we also relied on the GitHub API to collect histor-
ical data about the number of stars. For this purpose, we used a service from the API
that returns all events of a given repository. For each star, these events store the date
and the user who starred the repository. However, the GitHub API returns at most 100
events by request (i.e., a page) and at most 400 pages. For this reason, it is not possi-
ble to retrieve all stars events of systems with more than 40K stars, as is the case for
18 repositories, such as FreeCodeCamp, Bootstrap, D3, and Font-Awesome.
Therefore, these 18 systems are not considered in Sections 3.5, 3.6, and 3.7.

Table 3.1 shows descriptive statistics on the number of stars of the repositories in
our dataset. The number of stars ranges from 1,596 (for mapnik/mapnik) to 224,136
stars (for FreeCodeCamp/FreeCodeCamp). The median number of stars is 2,866.

Table 3.1: Descriptive statistics on the number of stars of the repositories in our dataset

Min 1st Quartile 2nd Quartile 3rd Quartile Max

1,596 2,085 2,866 4,541 224,136

Age, Commits, Contributors, and Forks: Figure 3.2 shows boxplots about the distri-
bution of the age (in number of weeks), number of commits, number of contributors,
and number of forks for the 5,000 systems in the dataset. For age, the first, second,
and third quartiles are 114, 186, and 272 weeks, respectively. For number of commits,
the first, second, and third quartiles are 102, 393, and 1,230, respectively. For number
of contributors, the first, second, and third quartiles are 8, 25, and 64, respectively;2

and for number of forks, the first, second, and third quartiles are 252, 460, and 879,
respectively. Therefore, the systems in our dataset usually have years of development
and many commits and contributors.

Programming Language: As returned by the GitHub API, the language of a project
is the one with the highest percentage of source code in its repository. Figure 3.3
shows the distribution of the systems per programming language. JavaScript is the
most popular language (1,559 repositories, 31.1%), followed by Java (520 repositories,
10.4%), Python (441 repositories, 8.8%), Objective-C (374 repositories, 7.4%), and

2We report contributors data as retrieved by the GitHub API. This data may be different from the
one presented on the project’s page on GitHub, which only counts contributors with GitHub account.

3.2. Dataset 23

0
10

0
20

0
30

0
40

0
50

0

A
ge

 (
w

ee
ks

)

(a) Age (weeks)

0
50

0
15

00
25

00

C
om

m
its

(b) Commits

0
50

10
0

15
0

C
on

tr
ib

ut
or

s

(c) Contributors

0
50

0
10

00
15

00

F
or

ks

(d) Forks

Figure 3.2: Age, number of commits, number of contributors, and number of forks
(outliers are omitted)

Ruby (305 repositories, 6.1%). Despite a concentration of systems in these languages,
the dataset includes systems in 71 languages, including Cuda, Julia, SQLPL, and XSLT
(all with just one repository).

Owner: We also characterize our dataset according to repository owner. On GitHub,
a repository can be owned by a user (e.g., torvalds/linux) or by an organization
(e.g., facebook/react). In our dataset, 2,569 repositories (51.3%) are owed by users
and 2,431 repositories (48.7%) by organizations.

Application Domain: In this study, we also group repositories by application domain.
However, different from other source code repositories, like SourceForge, GitHub does
not include information about the application domain of a project. For this reason, we
manually classified the domain of each system in our dataset. Initially, the author of
this thesis inspected the description of the top-200 repositories to provide a first list
of application domains, distributed over six domain types, as presented next. These

24 Chapter 3. Characterizing the Popularity of GitHub Projects

Ja
va

S
cr

ip
t

Ja
va

P
yt

ho
n

O
bj

ec
tiv

e−
C

R
ub

y

G
o

H
T

M
L C

P
H

P

C
+

+

R

ep
os

ito
rie

s

0

500

1000

1500

Figure 3.3: Top-10 languages by number of repositories

domains were validate with a second researcher. After this initial classification, the
first author inspected the short description, the GitHub page and the project’s page of
the remaining 4,800 repositories. During this process, he also marked the repositories
with dubious classification decisions. These particular cases were discussed by the first
and second authors, to reach a consensus decision. To the best of our knowledge, this
is the first large-scale classification of application domains on GitHub.

The systems are classified in the following six domains:3

1. Application software: systems that provide functionalities to end-users,
like browsers and text editors (e.g., WordPress/WordPress and
adobe/brackets).

2. System software: systems that provide services and infrastructure to other sys-
tems, like operating systems, middleware, and databases (e.g., torvalds/linux
and mongodb/mongo).

3. Web libraries and frameworks: systems that are used to implement the front-
end (interface) of web-based applications (e.g., twbs/bootstrap and angu-

lar/angular.js).

4. Non-web libraries and frameworks: systems that are used to imple-
ment other components of an application, despite a web-based interface
(e.g., google/guava and facebook/fresco).

3This classification only includes first-level domains; therefore, it can be further refined to include
subdomains, such Android vs desktop applications.

3.3. Survey Study 25

5. Software tools: systems that support development tasks, like IDEs, package man-
agers, and compilers (e.g., Homebrew/homebrew and git/git).

6. Documentation: repositories with documentation, tutorials, source code exam-
ples, etc. (e.g., iluwatar/
java-design-patterns).

Figure 3.4 shows the number of systems in each domain. The top-3 domains
are web libraries and frameworks (1,535 repositories, 30.7%), non-web libraries and
frameworks (1,439 repositories, 28.7%), and software tools (972 repositories, 19.4%).
The projects in these domains can be seen as meta-projects, i.e., they are used to
implement other projects, in the form of libraries, frameworks, or documentation.

W
eb

N
on

−
w

eb

To
ol

s

A
pp

lic
at

io
ns

D
oc

S
ys

te
m

R

ep
os

ito
rie

s

0

200

400

600

800

1000

1200

1400

Figure 3.4: Number of repositories by domain

3.3 Survey Study

We conducted an investigation with developers to reveal their motivations for starring
projects and to check whether they consider the number of stars before using or con-
tributing to projects on GitHub. In this section, we describe the design of the survey
questionnaire and the selection of the survey participants (Section 3.3.1) and report
the survey results (Section 3.3.2).

3.3.1 Survey Design

The survey questionnaire has two open-ended questions: (1) Why did you star
owner/name? and (2) Do you consider the number of stars before using or contribut-
ing to a GitHub project? In the first question, owner/name refers to a repository.

26 Chapter 3. Characterizing the Popularity of GitHub Projects

Our intention with this question is to investigate whether stars can be viewed as a
measure of popularity, which we define as follows: “the state of being liked, enjoyed,
accepted, or done by a large number of people”, according to Merriam-Webster. With
the second question, our goal is to check whether stars is indeed a factor considered by
developers when establishing a more close relationship with a project, as a client (or
user) or as a contributor (or developer). These questions were sent by email to the last
developer who starred each repository in our dataset. The emails were obtained using
the GitHub API. When the developers who gave the last star do not have a public
email, we select the previous one and so on, successively. We excluded 276 reposi-
tories (5.5%) because the last star was given more than six months before the data
collection. Therefore, this increases the probability of developers not remembering the
concrete reasons they starred these repositories. Moreover, for 336 repositories (6.7%),
the selected developer also starred other repository in our dataset, thus we excluded
these repositories to avoid sending multiple emails to the same developer. Finally, our
sample of participants consists of 4,370 developers.

The questionnaire was sent between 13rd and 27th of March 2017. After a period
of 30 days, we obtained 791 responses and 173 e-mails returned due to delivery issues
(e.g., non-existent recipient), resulting in a response rate of 18.8%. This number of
answers represent a confidence interval of 3.15%, for a confidence level of 95%. Con-
sidering the locations configured in the respondents’ GitHub profile, 133 respondents
(16.8%) are from the United States, 74 respondents (9.4%) are from China, 39 (4.9%)
are from Brazil, 34 (4.3%) are from Canada, and 27 (3.4%) from India. Other 321
respondents (40.6%) are from 68 different countries and 163 respondents (20.6%) have
no location configured in their GitHub profiles. To preserve the respondents privacy,
we use labels P1 to P791 when quoting the answers. We analyze the answers using
thematic analysis [Cruzes and Dyba, 2011], a technique for identifying and recording
“themes” (i.e., patterns) in textual documents. Thematic analysis involves the follow-
ing steps: (1) initial reading of the answers, (2) generating a first code for each answer,
(3) searching for themes among the proposed codes, (4) reviewing the themes to find
opportunities for merging, and (5) defining and naming the final themes. All steps
were performed by the first author of this thesis.

3.3.2 Survey Results

A separate subsection discusses the answers to each survey question.

3.3. Survey Study 27

3.3.2.1 Why did you star owner/name?

In this question, we asked the developers to respond why they starred a given repository.
In the next paragraphs, we present four major reasons that emerged after analysing
the answers.

To show appreciation: More than half of the participants (52.5%) answered they
starred the repositories because they liked the project. In general, the answers mention
that stars are used as “likes” button in other social networks, such as Facebook and
YouTube. As examples we have:

I liked the solution given by this repo. (P373)

I starred this repository because it looks nice. (P689)

Bookmarking: 51.1% of the participants reported they starred the repositories for
later retrieval. We have the following answers as examples:

I starred it because I wanted to try using it later. (P250)

Because I use stars as a “sort of” bookmarks. (P465)

Due to usage: 36.7% of the participants reported they used or are using the project.
As examples we have:

I have been using for many years and was about to use again in a new project. (P162)

Because it solved my problem. (P650)

Due to third-party recommendations: 4.6% of the participants starred the repos-
itories due to recommendations from friends, websites, or other developers, as in this
answer:

I starred the repository because a technological group recommended it. (P764)

Additionally, five developers (0.6%) answered they do not know or remember the
reason why they starred the repositories. Table 3.2 details the number of answers and
the percentage of responses on each theme. Note that one answer can receive more
than one theme. For example, the theme To show appreciation appeared together with
Bookmarking and Due to usage in 122 and 116 answers, respectively. Moreover, Due
to usage and Bookmarking appeared together in 63 answers.

Summary: GitHub developers star repositories mainly to show appreciation to the
projects (52.5%), to bookmark projects for later retrieval (51.1%), and because
they used or are using the projects (36.7%).

28 Chapter 3. Characterizing the Popularity of GitHub Projects

Table 3.2: Why do users star GitHub repositories? (95% confidence level with a 3.15%
confidence interval)

Reason Total %

To show appreciation 415 52.5
Bookmarking 404 51.1
Due to usage 290 36.7
Due to recommendations 36 4.6
Unknown reasons 5 0.6

3.3.2.2 Do you consider the number of stars before using or contributing to
a project?

In the second question, we asked the participants to respond if they consider the num-
ber of stars before using or contributing to GitHub projects. From the 791 answers
received in the survey, 14 developers (1.7%) did not answer this specific question. Thus,
the numbers presented in this section refer to 777 responses, which gives an updated
confidence interval of 3.19%, for a confidence level of 95%. First, we classified the
answers in yes (the participant does consider the number of stars) and no (the par-
ticipant does not consider the number of stars). As observed in Table 3.3, 73% of
the participants consider the number of stars before using or contributing to GitHub
projects and 23.3% answered negatively to this question. Finally, 3.7% of the partici-
pants did not correctly answer the question, probably due to a misunderstanding. For
example, participant P745 just provided the following answer: “I am not an active OSS
contributor ”.

Table 3.3: Do GitHub users consider the number of stars before using or contributing
to a project? (95% confidence level with a 3.19% confidence interval)

Answer Total %

Yes 567 73.0
No 181 23.3

Unclear 29 3.7

Positive Answers: Considering the participants who answered positively to this sec-
ond question, 26.5% commented that the number of stars has a high influence on their
decision of using or contributing to a project. As examples, we have these answers:

I always consider the amount of stars on a repo before adopting it in a project. It is
one of the most important factors, and in my opinion gives the best metric at a glance
for whether a package is production ready. (P365)

3.3. Survey Study 29

Of course stars count is very useful thing, because it tells about project quality. If many
people starred something – many people think that it is useful or interesting. (P31)

For 29.3% of the participants who provided a positive answer, the number of stars
is just one of the factors they consider before using or contributing to GitHub projects.
Other factors include quality of the code/documentation, recent activity, license, and
project owner. As examples, we have the following answers:

Yes. I do not take it as my only metric, but having a considerable number of stars and
recent activity is reassuring in terms of it being a stable project that my projects can
depend on in future. (P104)

I often consider the number of stars (as well as recency of commits, PRs, and issues)
in deciding whether to use a project. (P442)

Moreover, 8.8% of the participants consider the number of stars when using but
not when contributing to GitHub projects. For example:

I usually contribute more to projects with less stars because of the ease of approach to a
smaller community, hence project. On the other hand I normally use frameworks with
more stars because of the continuous support they have. (P642)

Additionally, 46 participants (8.1%) provided other comments, as in the following
answers:

Yes, a little, I look if it has at least a couple of stars to be sure that doesn’t get unmain-
tained in a short term (P89)

Number of stars is not the major point for me. But it can serve as indicator of some-
thing really good (P224)

I don’t really notice exactly how many stars something has, but I do notice orders of
magnitude (hundreds vs thousands vs tens of thousands) (P421)

Finally, 194 developers (34.2%) did not provide additional information to justify
their positive answers.

Negative Answers: Considering only the participants who answered negatively to
this second question, 45 participants (24.9%) commented they consider the purpose,
domain, and features of the project, but not the number of stars. As examples, we
have the answers:

No, my primary interest is: what problem is solving by this project (P203)

30 Chapter 3. Characterizing the Popularity of GitHub Projects

Not really. If I like the strategy and implementation, I don’t really care how popular or
unpopular the repository is (P560)

Moreover, 38 developers (21.0%) answered they consider other measures and
sources of information on their decisions, but not the number of stars. For example:

No, I don’t consider the number of stars. Number of contributors, commits are impor-
tant instead of number of stars (P270)

No, I usually know a project from a different source than GitHub itself so I rather refer
to the outside opinions on a framework (blogs, articles, community. . .) on whether it
is of good quality than a stars on github (P557)

Additionally, 26 participants (14.3%) provided other reasons for not considering
the number of stars (e.g., popularity does not reflect the project quality); and 74
developers (40.8%) did not provide additional information to justify their answers.

Summary: Three out of four developers consider the number of stars before using
or contributing to GitHub projects. Practical Implication: Stars are a reliable
proxy for the popularity of GitHub projects.

3.4 Characterization Study

In this section, we describe a quantitative characterization of the number of stars of
GitHub projects. More specifically, we provide answers to five research questions:

RQ #1: How popularity varies per programming language, application domain, and
repository owner? The goal is to provide an initial view about the popularity of the
studied systems, by comparing the number of stars according to programming language,
application domain, and repository owner (user or organization).

RQ #2: Does popularity correlate with repository’s age, number of commits, number of
contributors, and number of forks? This investigation is important to check whether
there are factors that can be worked to increase a project’s popularity.

RQ #3: How often do repositories lose popularity? On GitHub, users can remove
their stars from previously starred repositories (which is commonly called an unstar
event). The goal of this third research question is to explore how often developers

3.4. Characterization Study 31

unstar repositories and correlate this information with the programming language and
application domain.

RQ #4: How early do repositories gain popularity? With this research question, we
intend to check whether gains of popularity are concentrated in specific phases of a
repository’s lifetime, specifically in early releases.

RQ #5: What is the impact of new features on popularity? This investigation can
show if relevant gains in popularity happen due to new features, as implemented in
new releases.

The proposed research questions aim to shed light on the relation between GitHub
stars and other project metrics and characteristics. Some our findings directly support
actionable guidelines, e.g., we reveal that repositories owned by organizational accounts
are more popular. Others motivate or support developers when making a decision to
start a new open source project, e.g., we show that there is still a relevant demand for
Web libraries and frameworks, mostly implemented in JavaScript. Furthermore, for
existing repositories, our findings can explain their popularity, but cannot be used to
improve it; for example, it is not practical to migrate a project to a new programming
language and, most obviously, to a new application domain.

3.4.1 Results

RQ #1: How popularity varies per programming language, application domain, and
repository owner?

Figure 3.5 shows the distribution of the number of stars for the top-10 languages
with more repositories. The top-3 languages whose repositories have the highest median
number of stars are: JavaScript (3,163 stars), HTML (3,059 stars), and Go (3,000
stars). The three languages whose repositories have the lowest median number of stars
are C (2,679 stars), Java (2,666 stars), and Objective-C (2,558 stars). By applying
the Kruskal-Wallis test to compare multiple samples, we found that these distributions
differ in at least one language (p-value < 0.001). Then, a non-parametric, pairwise,
and multiple comparisons test (Dunn’s test) was used to isolate the languages that
differ from the others. In Figure 3.5, the labels a and b in the bars express the
results of Dunn’s test. Bars sharing the same labels indicate distributions that are not
significantly different (p-value ≤ 0.05). For example, both JavaScript and HTML share
the label b, which means that these distributions have no statistical difference. On the

32 Chapter 3. Characterizing the Popularity of GitHub Projects

other hand, the distribution with the number of stars of JavaScript projects (label b)
is statistically different from Java (label a).

Ja
va

S
cr

ip
t

H
T

M
L

G
o

C
+

+

P
H

P

P
yt

ho
n

R
ub

y C

Ja
va

O
bj

ec
tiv

e−
C

0

2000

4000

6000

8000

10000

S
ta

rs

ab

ab
abab

a

b

a

ab
ab ab

Figure 3.5: Stars by programming language (considering only the top-10 languages
with more repositories)

Figure 3.6 shows the distribution of the number of stars for the repositories in each
application domain. The median number of stars varies as follow: systems software
(3,168 stars), applications (3,147 stars), web libraries and frameworks (3,069 stars),
documentation (2,942 stars), software tools (2,763 stars), and non-web libraries and
frameworks (2,642 stars). By applying the Kruskal-Wallis test, we found that the dis-
tributions are different (p-value < 0.001). According to Dunn’s test, the distribution
of non-web libraries and frameworks (label c) is statistically different from all other
domains, showing that projects from this domain are less popular. Similarly, tools (la-
bel b) are more popular only than non-web libraries and frameworks (label c). Finally,
there is no statistical difference between the popularity of systems software, applica-
tions, web libraries and frameworks, and documentation (since all these distributions
have the label a in common).

Finally, Figure 3.7 shows how popularity varies depending on the repository owner
(i.e., user or organization). The median number of stars is 3,067 stars for repositories
owned by organizations and 2,723 stars for repositories owned by users. By applying
the Mann-Whitney test, we detected that these distributions are different (p-value
< 0.001) with a very small effect size (Cohen’s d = −0.178). We hypothesize that
repositories owned by organizations—specifically major software companies and free
software foundations—have more funding and resources, which contributes to their

3.4. Characterization Study 33

S
ys

te
m

A
pp

lic
at

io
ns

W
eb

D
oc

To
ol

s

N
on

−
w

eb

0

2000

4000

6000

8000

10000

12000

S
ta

rs
a

ab

c

a

b
a

Figure 3.6: Popularity by application domain

higher popularity.

Organization User

20
00

40
00

60
00

80
00

10
00

0

S
ta

rs

Figure 3.7: Popularity by repository owner

Among the top-100 most popular repositories, only 29 repositories are owned
by users. The developers of 17 of such systems have a public email address in their
GitHub profile. We sent a short questionary to these developers and received responses
from five of them (29.8%). In this questionary, we asked two questions. First, we asked
the developers about possible plans to migrate their repositories to an organization
account. All developers answered negatively this question. Two developers mentioned
they want to explicitly appear as the repository owner, like in this answer:

“I worked hard to create the project, and having it under my personal username is
necessary to have proper credit for it.”

34 Chapter 3. Characterizing the Popularity of GitHub Projects

To complement the first question, we asked the developers if they agree that
migrating the repositories to an organization account would help to attract more users.
Four developers (80%) answered negatively to this question and only one participant
provided the following answer:

“It depends on what organization it is. If it’s a well known org I’m sure it helps,
otherwise I don’t think it makes a difference.”

Therefore, although it seems “easier” to organizations to reach the top positions
of GitHub popularity ranking, some projects owned by individual developers also reach
these positions. These developers usually do not want to move to organizational ac-
counts, basically to keep full control and credit for their repositories.

Summary: JavaScript is the language with the highest number of popular reposi-
tories (median of 3,163 stars). The top-3 most popular application domains are (1)
systems software, (2) applications, and (3) web libraries and frameworks. Repos-
itories owned by organizations are more popular than the ones owned by indi-
viduals. Practical Implications: Programming language and application domain
may influence the popularity of a repository. On the one hand, projects devel-
oped in JavaScript are likely to have more stars than projects developed in other
languages. On the other hand, non-web libraries and frameworks are expected to
have less stars than projects in other application domains.

RQ #2: Does popularity correlate with repository’s age, number of commits, number
of contributors, and number of forks?

Figure 3.8 shows scatterplots correlating the number of stars with the age (in
number of weeks), number of commits, number of contributors, and number of forks of
a repository. Following the guidelines of Hinkle et al. [2003], we interpret Spearman’s
rho as follows: 0.00 6 rho < 0.30 (negligible), 0.30 6 rho < 0.50 (low), 0.50 6 rho <

0.70 (moderate), 0.70 6 rho < 0.90 (high), and 0.90 6 rho < 1.00 (very high). First,
the plots suggest that stars are not correlated with the repository’s age (Figure 3.8a).
We have old repositories with few stars and new repositories with many stars. For
example, facebookincubator/create-react-app has only five months and 19,083
stars, while mojombo/grit has more than 9 years and 1,883 stars. Essentially, this
result shows that repositories gain stars at different speeds. We ran Spearman’s rank

3.4. Characterization Study 35

correlation test and the resulting correlation coefficient is close to zero (rho = 0.050
and p-value < 0.001).

5 10 20 50 100 500

Age (weeks)

S
ta

rs

10
3.

2
10

4
10

5

(a) Age vs Stars

Commits
S

ta
rs

10
3.

2
10

4
10

5

100 101 102 103 104 105 106

(b) Commits vs Stars

Contributors

S
ta

rs

10
3.

2
10

4
10

5

100 101 102 103

(c) Contributors vs Stars

Forks

S
ta

rs

10
3.

2
10

4
10

5

102 103 104 105

(d) Forks vs Stars

Figure 3.8: Correlation analysis. In subfigures (c) and (d), the line is the identity
relation

The scatterplot in Figure 3.8b shows that stars have a low correlation with number
of commits (rho = 0.439 with p-value < 0.001). However, as presented in Figure 3.8c,
stars have a moderate correlation with contributors (rho = 0.502 with p-value < 0.001).
In this figure, a logarithm scale is used in both axes; the line represents the identity re-
lation: below the line are the systems with more contributors than stars. Interestingly,
two systems indeed have more contributors than stars: raspberrypi/linux (6,277
contributors and 3,414 stars) and Linuxbrew/legacy-linuxbrew (5,681 contribu-
tors and 2,397 stars). This happens because they are forks of highly successful repos-
itories (torvalds/linux and Homebrew/brew, respectively). The top-3 systems
with more stars per contributor are shadowsocks/shadowsocks (16,017 stars/ con-
tributor), wg/wrk (10,658 stars/contributor), and octocat/Spoon-Knife (9,961

36 Chapter 3. Characterizing the Popularity of GitHub Projects

stars/contributor). However, these systems have just one contributor. The three sys-
tems with less stars per contributor are DefinitelyTyped/DefinitelyTyped (2.97
stars/contributor), nodejs/node-convergence-archive (2.88 stars/contributor),
and openstack/nova (2.23 stars/contributor).

Finally, Figure 3.8d shows plots correlating a system popularity and its number
of forks. As suggested by the followed guidelines, there is a moderate positive cor-
relation between stars and forks (rho = 0.558 and p-value < 0.001). For example,
twbs/bootstrap is the second repository with the highest number of stars and also
the second one with more forks. angular/angular.js is the fifth repository in num-
ber of stars and the third one with more forks. In Figure 3.8d, we can also observe that
only 28 systems (0.56%) have more forks than stars. As examples, we have a repository
that just provides a tutorial for forking a repository (octocat/SpoonKnife) and a
popular puzzle game (gabrielecirulli/2048), whose success motivated many forks
with variations of the original implementation.

Summary: There is no correlation between the number of stars and the repository’s
age; however, there is a low correlation with commits, and a moderate correlation
with contributors and forks. Practical Implications: Increasing the number of
GitHub stars may help to attract more contributors to a project and increase its
chances of long-term success.

RQ #3: How often do repositories lose popularity?

In this research question, we investigate how often developers remove stars from
GitHub repositories. Moreover, we provide an estimation of the time taken by de-
velopers to lose interest on the projects (i.e., the time between the “star” and the
“unstar” events). Finally, we correlate this information with programming language
and application domain.

As GitHub does not provide information on unstar events, we implemented a
script to identify users that removed their star by comparing the list of users starring
the repositories in different dates. Basically, our goal was to identify users that removed
their star and consequently are not present in the most recent list of users starring a
given repository. In this investigation, we first collected the users starring the studied
repositories on April 1, 2018, and computed the difference with the ones starring the
repositories on April 30, 2018. Due to the interval between the dataset construction

3.4. Characterization Study 37

and the data collection for the investigation, some of the repositories were not anymore
available (e.g., they were moved, deleted or became private). On total, we analyzed
4,709 repositories, which represents 94.18% of the repositories in our dataset. In this
period, these repositories gained a total of 489,338 stars and 54,025 unstars.

Figure 3.9 shows a scatterplot correlating the number of stars and unstars events
per repository. As expected, most of the repositories gain more stars than lose stars
(i.e., they are represented above the identity line in the plot). Specifically, 188 reposi-
tories (3.99%) lost more stars on the last month than gained stars in the same period.
From this total, 173 repositories (92%) lost at most 10 stars, which suggest that unstar
events do not have a major influence on repositories popularity. The repository that
lost more stars was expressjs/express (1,354 stars and 730 unstars), followed by
flutter/flutter (2,587 stars and 452 unstars), atom/atom (693 stars and 167
unstars), bitcoin/bitcoin (1,146 stars and 160 unstars), and Microsoft/vscode

(2,032 stars and 159 unstars). By computing the Spearman’s rank coefficient, we found
a high correlation between stars gained and unstars (rho = 0.730 and p-value < 0.001).
Thus, the number of unstars tend to be proportional to the number of stars gained.

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

● ●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

1 2 5 10 20 50 100 200 500

1
5

10
50

50
0

Unstars

S
ta

rs

Figure 3.9: Number of stars and unstars events per repository (during April, 2018).
The red line is the identity function.

We also estimate the time taken by developers to remove their stars from the
repositories. We found that some users remove their stars few hours after starring the
projects and other ones take decades to remove. For example, we found that a users
took only 7 hours to remove its star from rg3/youtube-dl. By contrast, another
removed its star from mislav/will_paginate after 10 years! On average, users take

38 Chapter 3. Characterizing the Popularity of GitHub Projects

1.13 years and, on median, 1.59 years to remove stars from projects. Figure 3.10 shows
the distribution of the time, in years, that developers took to unstar repositories ac-
cording to the programming language (restricted to the ones with more repositories
in our dataset). The language who developers take more time, on median, to unstar
repositories is Objective-C (2.27 years), followed by Ruby (2.02 years) and Java (1.17
years). By applying the Kruskal-Wallis test, we found that the distributions are dif-
ferent (p-value < 0.001). According to Dunn’s test, the distribution of Objective-C
(label f) and Ruby (label g) are statistically different from all other languages, sug-
gesting that projects from these languages retain the developers interest for more time.
By contrast, projects in C++ and Go presented the lowest values, with 295 days on
median between stars and unstars events.

O
bj

ec
tiv

e−
C

R
ub

y

Ja
va

H
T

M
L

Ja
va

S
cr

ip
t C

P
H

P

P
yt

ho
n

C
+

+

G
o

0

2

4

6

8

10

12

Ye
ar

s

abc
d d

e

a
be

f abe

c

g

Figure 3.10: Years between stars and unstars events by programming language. Out-
liers are omitted.

Finally, Figure 3.11 shows the distribution of the time took by developers to
unstar repositories, according to the application domain. The median time varies as
follow: applications (1.17 years), web libraries and frameworks (1.17 years), non-web
libraries and frameworks (1.16 years), software tools (1.11 years), systems software
(1.03 years), and documentation (1.02 years). By applying the Kruskal-Wallis test,
we found that the distributions are different (p-value < 0.001). According to Dunn’s
test, documentation and systems software (labels d and b, respectively) are statistically
different from the other domains. Moreover, web and non-web libraries and frameworks
are also statistically different (labels a and c, respectively).

3.4. Characterization Study 39

A
pp

lic
at

io
ns

W
eb

N
on

_w
eb

To
ol

s

S
ys

te
m

D
oc

0

1

2

3

4

5

6

7

Ye
ar

s

a

b

c d
c

a

Figure 3.11: Years between stars and unstars events by domain. Outliers are omitted.

Summary: Unstar events do not have a major influence on the popularity of
GitHub repositories. Objective-C is the language whose developers take more
time to remove their stars. Moreover, projects from the documentation domain
are those who developers lose their interest faster.

RQ #4: How early do repositories gain popularity?

Figure 3.12 shows the cumulative distribution of the time fraction a repository
takes to receive at least 10%, at least 50%, and at least 90% of its stars. Around
32% of the repositories receive 10% of their stars very early, in the first days after the
initial release (label A, in Figure 3.12). We hypothesize that many of these initial stars
come from early adopters, who start commenting and using novel open source software
immediately after they are released. After this initial burst, the popularity growth of
the repositories tend to stabilize. For example, half of the repositories take 48% of
their age to receive 50% of their stars (label B); and around half of the repositories
take 87% of their age to receive 90% of their total number of stars (label C).

Figure 3.13 shows the distribution of the fraction of stars gained in the first and
last four weeks of the repositories. For the first four weeks, the fraction of stars gained
is 0.4% (first quartile), 7.0% (second quartile), and 21.6% (third quartile). For the last
four weeks, it is 0.8% (first quartile), 1.6% (second quartile), and 2.7% (third quartile).
By applying the Mann-Whitney test, we found that these distributions are different

40 Chapter 3. Characterizing the Popularity of GitHub Projects

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction of time since created − f

P
ro

b.
 (

F
ra

ct
io

n
of

 ti
m

e
si

nc
e

cr
ea

te
d

≤
f)

● A

●B
● C

≥ 10% of total stars
≥ 50% of total stars
≥ 90% of total stars

Figure 3.12: Cumulative distribution of the time fraction a repository takes to receive
10%, 50%, and 90% of its stars

(p-value < 0.001) with a large effect size (Cohen’s d = 0.856).

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●
●
●
●●

●

●

●●
●●

●

●
●
●
●●

●

●

●

●●●●●●

●●

●

●
●

●

●

●

●

●

●

●●●●

●

●●●●

●

●
●
●
●
●
●●

●
●●●●●

●

●●●
●

●

●

●

●

●●

●

●●●●●
●●
●

●●

●

●

●

●

●

●●●●●

●
●
●
●●
●

●
●
●

●

●

●
●

●

●●
●●

●
●

●

●

●

●

●●●

●●

●
●

●

●

●●●

●

●●●

●

●●

●

●
●
●

●

●

●
●

●
●
●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●
●
●

●

●
●●

●

●●●
●
●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●●●
●
●

●

●

●
●
●●●●

●

●●
●

●
●●●●

●
●●

●

●

●

●●
●
●

●
●
●
●

●

●●●
●●

●

●●●●●

●

●

●

●

●●
●
●

●
●

●●
●

●

●

●

●

●

●
●●

●

●
●●●●●●

●

●

●

●

●●

●

●●
●

●

●
●
●●●

●

●
●

First Last

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.13: Fraction of stars gained in the first four weeks and in the last four weeks

3.4. Characterization Study 41

Summary: Repositories have a tendency to receive more stars right after their
first public release. After this period, the growth rate tends to stabilize. Practical
Implications: GitHub developers should concentrate more efforts to promote their
projects in the first weeks after the initial release.

RQ #5: What is the impact of new features on popularity?

In this research question, we investigate the impact of new features on the popu-
larity of GitHub repositories. The goal is to check whether the implementation of new
features (resulting in new releases of the projects) contribute to a boost in popular-
ity. Specifically, we selected 1,539 repositories from our dataset (30.7%) that follow a
semantic versioning convention to number releases. In such systems, versions are iden-
tified by three integers, in the format x.y.z, with the following semantics: increments
in x denote major releases, which can be incompatible with older versions; increments
in y denote minor releases, which add functionality in a backward-compatible manner;
and increments in z denote bug fixes. In our sample, we identified 1,304 major releases
and 8,570 minor releases.

First, as illustrated in Figure 3.14, we counted the fraction of stars received by
each repository in the week following all releases (FSAll) and just after major releases
(FSMajor). As mentioned, the goal is to check the impact of new features in the number
of stars right after new releases (however, in the end of the RQ, we also consider the
impact of different week intervals). As an example, Figure 3.15 shows the time series
for Reportr/dashboard, using dots to indicate the project’s releases (v1.0.0/v.1.1.0,
v2.0.0, and v2.1.0, respectively). This project has FSAll = 0.525 (i.e., 52.5% of its stars
were gained in the weeks following the four releases) and FSMajor = 0.248 (i.e., 24.8%
of its stars were gained in the weeks following the releases v1.0.0 and v2.0.0).

1.
0.
0

1.
1.
0

2.
0.
0
2.
1.
0

2.
2.
0

FSMajor FSAll

Figure 3.14: Fraction of stars for all releases (FSAll) and just after major releases
(FSMajor)

Figure 3.16 shows the distribution of FSAll and FSMajor for all selected reposito-
ries. When considering all releases, the fraction of stars gained in the first week after

42 Chapter 3. Characterizing the Popularity of GitHub Projects

0 50 100 150

0
50

0
10

00
15

00
20

00
25

00

Weeks

S
ta

rs

●

●

●

Figure 3.15: Reportr/dashboard (the dots indicate weeks with releases)

the releases is 1.0% (first quartile), 3.1% (second quartile), and 10.5% (third quartile).
For the major releases, it is 0.5% (first quartile), 1.2% (second quartile), and 3.8%
(third quartile). By applying the Mann-Whitney test, we found that these distribu-
tions are different (p-value < 0.001), but with a small effect size (Cohen’s d = 0.316).
yarnpkg/yarn (a package manager for JavaScript) is the repository with the highest
fraction of stars received after releases. The repository has one year, 21,809 stars, and
gained most of its stars (83.0%) in the weeks after its releases.

All Major

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

F
ra

ct
io

n
of

 s
ta

rs

Figure 3.16: Fraction of stars gained in the first week after all releases and just after
the major releases

We also computed two ratios: RAll = FSAll/FTAll and RMajor = FSMajor/FTMajor,
where FT is the fraction of time represented by the weeks following the releases per

3.4. Characterization Study 43

the repository’s age. When RAll > 1 or RMajor > 1, the repository gains proportion-
ally more stars after releases. For example, Reportr/dashboard (Figure 3.15) has
FTAll = 0.019 (i.e., the weeks following all releases represent only 1.9% of its total age)
resulting in RAll = 0.525/0.019 = 27.047. Therefore, releases have a major impact on
its number of stars. Figure 3.17 shows boxplots with the results of RAll and RMajor

for all repositories. Considering all releases, we have that RAll is 0.89 (first quartile),
1.35 (second quartile), and 2.20 (third quartile). For major releases only, we have that
RMajor is 0.83 (first quartile), 1.49 (second quartile), and 3.37 (third quartile). By ap-
plying the Mann-Whitney test, we found that these distributions are different (p-value
< 0.05); but after computing Cohen’s d, we found a very small effect size (d = −0.188).

All Major

0
1

2
3

4
5

6
7

F
ra

ct
io

n
of

 s
ta

rs
 b

y
fr

ac
tio

n
of

 ti
m

e

Figure 3.17: Fraction of stars gained in the week following all releases (or just the
major releases) / fraction of time represented by these weeks

Figure 3.18 shows the median values of RAll and RMajor computed using stars
gained after n weeks (1 ≤ n ≤ 4). Both ratios decrease (for major and all releases).
Therefore, although there are some gains of stars after releases, they tend to decrease
after few weeks.

Finally, to reveal the characteristics of the most successful releases, we sent a
brief questionary to the main developers of 60 releases with the highest fraction of
stars gained on the week after the release (and whose developers have a public email
address on their GitHub profile). We received answers from 25 developers. First, we
asked the developers about the type of features implemented in these releases. As
presented in Table 3.4, the releases usually include both functional and non-functional
requirements (14 answers), followed by releases with mostly functional requirements
(9 answers). We did not receive answers about releases including non-functional re-

44 Chapter 3. Characterizing the Popularity of GitHub Projects

1.
20

1.
30

1.
40

1.
50

Weeks after release

Fa
ct

io
n

of
 s

ta
rs

 b
y

fr
ac

tio
n

of
 ti

m
e

1 2 3 4

●

●

●

●

● All
Major

Figure 3.18: Fraction of stars by fraction of time (median values), computed using
different time intervals

quirements. Two developers provide other types of answers (“complete rewrite” and
“maintenance release”, respectively).

Table 3.4: Features implemented in successful releases

Features Answers

Both functional and non-functional 14
Mostly functional 9
Other answers 2
Mostly non-functional 0

We also asked the developers to explain how the features implemented in these
releases were selected (answers including multiple items are possible in this question).
As presented in Table 3.5, the features usually come from ideas of the repository’
maintainers (23 answers) and from user’s suggestions (11 answers).

Table 3.5: How the features are selected?

Features selected from Answers

Ideas of the repository maintainers 23
Users suggestions 11
Features of similar projects 6
Other answers 3

3.5. Popularity Growth Patterns 45

Summary: There is an acceleration in the number of stars gained after releases.
For example, half of the repositories gain at least 49% more stars in the week
following major releases than in the other weeks. However, because repositories
usually have more weeks without releases, this phenomenon is not sufficient to
generate a major concentration of popularity gain after releases. For example,
75% of the systems gain at most 3.8% of their stars in the week following major
releases. Practical Implications: Software releases can also be strategically used
to increase the repository’ popularity.

3.5 Popularity Growth Patterns

In this section, we investigate common popularity growth patterns concerning the
GitHub repositories in our dataset. To this purpose, we use the KSC algorithm [Yang
and Leskovec, 2011]. This algorithm uses an iterative approach, similar to the classical
K-means clustering algorithm, to assign the time series in clusters and then refine the
clusters centroids by optimizing a specific time series distance metric that is invariant
to scaling and shifting. As result, the clusters produced by the KSC algorithm are less
influenced by outliers. KSC is used in other studies to cluster time series representing
the popularity of YouTube videos [Figueiredo, 2013] and Twitter posts [Lehmann et al.,
2012]. Like K-means [Hartigan, 1975], KSC requires as input the number of clusters k.

Because the time series provided as input to KSC must have the same length,
we only consider data regarding the last 52 weeks (one year). We acknowledge that
this decision implies in a comparison of projects in different stages of their evolution
(e.g., a very young project, which just completed one year, and mature projects, with
several years). However, it guarantees the derivation of growth patterns explaining the
dynamics of the most recent stars received by a project and in this way it also increases
the chances of receiving valuable feedback of the projects contributors, in the survey
described in Section 3.7. Due to this decision, we had to exclude from our analysis 333
repositories (6.6%) that have less than 52 weeks.

We use the βCV heuristic Menasce and Almeida [2001] to define the best number
k of clusters. βCV is defined as the ratio of two coefficients: variation of the intraclus-
ter distances and variation of the intercluster distances. The smallest value of k after
which the βCV ratio remains roughly stable should be selected. This means that new
added clusters affect only marginally the intra and intercluster variations [Figueiredo
et al., 2014]. In our dataset, the values of βCV start to stabilize for k = 4 (see Fig-

46 Chapter 3. Characterizing the Popularity of GitHub Projects

ure 3.19). Note that although the value of βCV increases for k = 5 (from 0.968 to 1.002,
respectively), the βCV for k = 4 remains almost the same for k = 6 and k = 7 (0.966
and 0.963, respectively). For this reason, we use four clusters in this study.

2 4 6 8 10 12 14

0.
7

0.
8

0.
9

1.
0

1.
1

k

B
cv

Figure 3.19: βCV for 2 ≤ k ≤ 15

3.5.1 Proposed Growth Patterns

Figure 3.20 shows plots with the time series in each cluster. The time series representing
the clusters’ centroids are presented in Figure 3.21. The time series in clusters C1, C2,
and C3 suggest a linear growth, but at different speeds. On the other hand, the series in
cluster C4 suggest repositories with a sudden growth on the number of stars. We refer
to these clusters as including systems with Slow, Moderate, Fast, and Viral Growth,
respectively.

Slow growth is the dominant pattern, including 58.2% of the repositories in our
sample, as presented in Table 3.6. The table also shows the percentage of stars gained
by the cluster’s centroids in the period under analysis (52 weeks). The speed in which
the repositories gain stars on cluster C1 is the lowest one (19.8% of new stars in one
year). Moderate growth is the second pattern with more repositories (30.0% of the
repositories and 63.9% of new stars in one year). 9.3% of the repositories have a
fast growth (218.6% of new stars in the analyzed year). Cluster C4 (Viral Growth)
includes repositories with a massive growth in their number of stars (1,317%). However,
it is a less common pattern, including 2.3% of the repositories. Figure 3.22 shows
two examples of systems with a viral growth: chrislgarry/Apollo–11 (Apollo
11 guidance computer source code, with a peak of 19,270 stars in two weeks) and

3.5. Popularity Growth Patterns 47

−50 −40 −30 −20 −10 0

0
10

00
0

20
00

0
30

00
0

40
00

0

Timeseries on cluster Slow

Weeks

S
ta

rs

(a) Cluster C1

−50 −40 −30 −20 −10 0

0
10

00
0

30
00

0

Timeseries on cluster Moderate

Weeks

S
ta

rs

(b) Cluster C2

−50 −40 −30 −20 −10 0

0
50

00
15

00
0

Timeseries on cluster Fast

Weeks

S
ta

rs

(c) Cluster C3

−50 −40 −30 −20 −10 0

0
50

00
15

00
0

Timeseries on cluster Viral

Weeks

S
ta

rs

(d) Cluster C4

Figure 3.20: Clusters of time series produced by the KSC algorithm

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 3.21: Time series representing the centroids of each cluster

naptha/tesseract.js (a JavaScript library to recognize words in images, which
received 6,888 stars in a single week).

Table 3.6: Popularity Growth Patterns

Cluster Pattern # Repositories Growth (%)

C1 Slow 2,706 (58.2%) 19.8
C2 Moderate 1,399 (30.0%) 63.9
C3 Fast 434 (9.3%) 218.6
C4 Viral 110 (2.3%) 1,317.2

48 Chapter 3. Characterizing the Popularity of GitHub Projects

−50 −40 −30 −20 −10 0

0
20

00
40

00
60

00
80

00
10

00
0

chrislgarry/Apollo−11

Weeks

S
ta

rs

(a) Apollo-11

−50 −40 −30 −20 −10 0

0
10

00
30

00
50

00
70

00

naptha/tesseract.js

Weeks

S
ta

rs
(b) Tesseract.js

Figure 3.22: Examples of systems with viral growth

We also investigate the impact of the proposed growth patterns on repositories
ranking. To this purpose, we calculate the ranking of the studied repositories on week 0
(first week) and 51 (last week), by number of stars. Next, we calculate the repositories
rank in such weeks. Repositories with positive values improved their ranking position,
whereas negative values mean repositories losing positions. Figure 3.23 presents the
distribution of the rank differences by growth pattern. Initially, we can observe that
at least 75% of the slow repositories dropped in the ranking. By contrast, almost
all repositories (109 out of 110) with viral growth improved their rank on the same
period. Finally, 82% and 96% of the repositories with moderate and fast growth,
respectively, increased their ranks. By applying a Kruskal-Wallis test, we found that
these distributions are different (p-value < 0.001). According to Dunn’s test, the rank
differences of repositories with slow and moderate growth are statistically different from
the other patterns; however, there is no statistical difference between repositories with
fast and viral growth.

3.6 Growth Patterns Characterization

In this section, we identify endogenous factors that distinguish the repositories in each
growth pattern. Revealing these factors is important because developers can strive to
improve or change the ones that can be controlled or better understand the impact of
those they have no control.

3.6. Growth Patterns Characterization 49

●

●
●
●●
●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●●
●

●
●

●●

●●
●●●
●
●
●
●●
●●●●
●●

●

●●●

●

●●

●

●

●

●

●

Slow Moderate Fast Viral

−
10

00
0

10
00

30
00

P
os

iti
on

s
ga

in
ed

Figure 3.23: Rank differences in the interval of one year

3.6.1 Methodology

To identify the most influential factors, we collected a set of characteristics of the
repositories following each proposed growth pattern and applied a Random Forest
classifier [Breiman, 2001]. We choose Random Forest because it is robust to noise and
outliers [Provost and Fawcett, 2001; Tian et al., 2015; Hora et al., 2016].

Table 3.7 lists 31 factors along three dimensions potentially affecting the stars
growth of the repositories. The Repository dimension includes factors that are ac-
cessible to users on the repositories’ page in GitHub. Usually, these pages are the
main, or even unique, source of information about the projects and might influence
the developers’ decision on using (or not) a project. For example, forks, and sub-
scribers are measures of potential contributors to the repository. Moreover, the quality
of README files is another criterion considered by developers when selecting projects.

The Owner dimension includes factors related to the repository’ owner, for ex-
ample, number of followers and account type. For example, developers with more
followers may take advantage of GitHub News Feed7, since their recent activities are
shown to more developers [Tsay et al., 2014]. Finally, developers owning popular repos-
itories might also attract more users to their other projects.

The Activity dimension includes factors related to the coding activity in the 52
weeks considered when extracting the growth patterns. For example, higher number

4Total number of forks including forks of forks
5https://pages.github.com
6https://help.github.com/articles/what-s-the-difference-between-user-and-organiza

tion-accounts
7https://help.github.com/articles/news-feed, a dashboard with recent activity on reposi-

tories.

https://pages.github.com
https://help.github.com/articles/what-s-the-difference-between-user-and-organization-accounts
https://help.github.com/articles/what-s-the-difference-between-user-and-organization-accounts
https://help.github.com/articles/news-feed

50 Chapter 3. Characterizing the Popularity of GitHub Projects

Table 3.7: Factors potentially affecting the growth pattern of a repository

Dimension Factor Description

Repository

Stars (r.stars) Number of stars
Forks (r.forks) Number of forks
Network (r.network) Number of repositories in the network4
Subscribers (r.subscribers) Number of users registered to receive notifications
Age (r.age) Number of weeks since creation
Last Push (r.pushed) Number of weeks since last git push
Is Fork (r.is_fork) Repository is a fork (boolean value)
Has homepage (r.has_homepage) Repository has a homepage (boolean value)
Size (r.size) Size of the repository in MB
Language (r.language) Main programming language of the repository
Has Wiki (r.has_wiki) Repository has Wiki (boolean value)
Has Pages (r.has_pages) Repository has GitHub pages5 (boolean value)
Is Mirror (r.mirror) Repository is a mirror (boolean value)
Domain (r.domain) Application domain (as defined in Section 3.2)
Description length (r.description_length) Number of words in the description
README length (r.readme_length) Number of words in the README file

Owner

Account Type (o.type) Account type: User or Organization6
Company (o.company) Owner belongs to an organization (boolean value)
Has Public Email (o.email) Owner has a public email (boolean value)
Public Repositories (o.repos) Number of public repositories
Public Gists (o.gists) Number of public code snippets
Followers (o.followers) Number of followers
Following (o.followings) Number of following
Repositories Popularity (o.stars) Sum of all stars of all public repositories
Account Age (o.age) Number of weeks since its account was created

Activity
(last 52 weeks)

Commits (a.commits) Number of commits
Contributors (a.contributors) Number of contributors
Tags (a.tags) Number of git tags
Releases (a.releases) Number of releases
Issues (a.issues) Number of issues
Pull Requests (a.pull_requests) Number of pull requests

of commits might indicate that the project is in constant evolution whereas number of
contributors, issues, and pull requests might indicate the engagement of the community
with the project.

Before using the Random Forest classifier, we performed a hierarchical cluster
analysis on the 31 features in Table 3.7. This technique is proposed for assessing
features collinearity and it is used in several other studies [Tian et al., 2015; Rakha
et al., 2016]. Figure 3.24 presents the final hierarchical cluster. For sub-hierarchies
with correlation greater than 0.7, only one variable was selected to the classifier. For
this reason, we removed the features a.pull_requests and a.contributors (first cluster
below the line), r.network (second cluster), and o.type (third cluster).

3.6. Growth Patterns Characterization 51

r.i
s_

fo
rk

r.h
as

_p
ag

es
r.l

an
gu

ag
e

r.d
om

ai
n

r.d
es

cr
ip

tio
n_

le
ng

th
r.r

ea
dm

e_
le

ng
th

o.
re

po
s

o.
st

ar
s r.a

ge
o.

ag
e

a.
ta

gs
a.

re
le

as
es

r.p
us

he
d

a.
is

su
es

a.
pu

ll_
re

qu
es

ts
a.

co
m

m
its

a.
co

nt
rib

ut
or

s
r.s

ta
rs

r.s
ub

sc
rib

er
s

r.f
or

ks
r.n

et
w

or
k

r.h
om

ep
ag

e
r.s

iz
e

o.
em

ai
l

o.
co

m
pa

ny
o.

gi
st

s
o.

fo
llo

w
in

g
o.

ty
pe

o.
fo

llo
w

er
s

r.h
as

_w
ik

i
r.m

irr
or

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

S
pe

ar
m

an
 ρ

2

Figure 3.24: Correlation analysis (as result, we removed features a.pull_requests,
a.contributors, r.network, and o.type)

3.6.2 Most Influential Factors

To assess the relative importance of the selected features in discriminating each growth
pattern, we used the rfPermute package for R [Archer, 2013]. We use the Mean
Decrease Accuracy (MDA), which is determined during the prediction error measure
phase, to rank the features based on their importance to the classifier. MDA is quan-
tified by measuring the change in prediction accuracy, when the values of the features
are randomly permuted compared to the original observations [Wolpert and Macready,
1999].

Table 3.8 lists the top-10 most influential factors according to the feature impor-
tance ranking (all of them with p-value < 0.01). As we can observe, these features are
spread among the three dimensions, which shows their importance. For Repository,
the two most discriminative features are Age and Last Push, respectively. In fact, for
Age, we observed that slow growth is more common in old repositories whereas reposi-
tories presenting fast and viral growth are newest. The median number of weeks since
creation is 235 for slow, 167 for moderate, 96 for fast, and 76 for viral. Regarding Last
Push, we observed long inactive periods in repositories with slow growth. The median
number of weeks since the last code update is 3.53 for slow, 0.80 for moderate, 0.52
for fast, and 0.49 for viral. For the Owner dimension, the two most discriminative
features are Account Age and Followers, respectively. The owners of repositories with
viral growth have the lowest account age (median of 173 weeks) and the lowest median
number of followers (0). Finally, for Activity, the two most discriminative features
are Issues and Commits, respectively. Similarly to previous factors, repositories with

52 Chapter 3. Characterizing the Popularity of GitHub Projects

slow growth have the lowest number of commits (only 19 commits). Moreover, mod-
erate and fast repositories have higher median number of issues than slow and viral
repositories (51, 64, 19, and 11 issues, respectively).

Table 3.8: Top-10 most influential factors (p-value < 0.01)

Ranking Factor Dimension Actionable

1 Age (r.age) Repository -
2 Last Push (r.pushed) Repository Yes
3 Issues (a.issues) Activity -
4 Commits (a.commits) Activity Yes
5 Forks (r.forks) Repository -
6 Account Age (o.age) Owner -
7 Stars (r.stars) Repository -
8 Subscribers (r.subscribers) Repository -
9 Followers (o.followers) Owner -
10 Tags (a.tags) Repository Yes

Although some factors cannot be controlled by developers, others depend on
their actions. From the top-10 most influential factors in Table 3.8, three are directly
impacted by developers’ actions (column “Actionable”). These results suggest that
projects with frequent updates (Last Push), a rich development history (Commits), and
frequent releases (Tags) tend to attract more attention, in terms of number of stars.
However, it is also important to highlight that “correlation does not necessarily implies
in causation”. Therefore, it might be the project popularity that triggers constant
pushes, commits, and releases. In other words, these results indicate that success in
open source projects has its own price, which comes in the form of constantly having
to updating and improving the projects. Developers should be aware of this fact and
reserve time to maintain a successful project. In fact, a recent survey shows that
lack of time is the third most common reason for the failure of modern open source
projects [Coelho and Valente, 2017].

Finally, to assess the effectiveness of the classifier, we relied on metrics commonly
used in Machine Learning and Information Retrieval [Yates et al., 1999]. Precision
measures the correctness of the classifier in predicting the repository growth pattern.
Recall measures the completeness of the classifier in predicting growth patterns. F-
measure is the harmonic mean of precision and recall. Table 3.9 shows the results
for each growth pattern and the overall result. In general, Random Forest performed
satisfactorily for all patterns with a precision of 65.81%, recall of 68.40%, and F-measure
of 67.08%. The Slow pattern, which concentrates most of the repositories, presented

3.7. Developers’ Perceptions on Growth Patterns 53

the most accurate results (F-measure = 81.47%). On the other hand, Viral has the
worst results (F-measure = 6.61%), which can be caused by exogenous factors that are
hard to predict.

Table 3.9: Classification effectiveness

Growth Pattern Precision (%) Recall (%) F-measure (%)

Slow 75.98 87.80 81.47
Moderate 54.16 47.96 50.87
Fast 47.43 29.72 36.54
Viral 36.36 3.64 6.61

Overall 65.81 68.40 67.08

Summary: When we compare the proposed growth patterns, Age is the most dis-
criminative feature, followed by number of Issues and Last Push. Moreover, three
out of four features from the Activity dimension are in the top-10 most discrimi-
native ones, which confirms the importance of constantly maintaining and evolving
open source projects. Practical Implications: Active development is essential to
popularity growth and competitiveness on GitHub.

3.7 Developers’ Perceptions on Growth Patterns

In this section, we describe a survey with developers to reveal their perceptions on the
growth patterns proposed in this work. Section 3.7.1 describes the design of the survey
questionnaire and the selection of the survey participants. Section 3.7.2 reports the
survey results.

3.7.1 Survey Design

In this second survey, we asked developers to explain the reasons for the slow, moderate,
fast, or viral growth observed in the number of stars of their repositories. The ques-
tionnaire was sent by email to the repository’s owner, for repositories owned by Users,
or to the contributor with the highest number of commits, for repositories owned by
Organizations. For each growth pattern, we randomly selected 100 repositories whose
developers have a public email. Exceptionally for repositories classified with viral

54 Chapter 3. Characterizing the Popularity of GitHub Projects

growth, we selected 45 developers because they are the only ones with public emails
on GitHub. Thus, our sample of participants consists of 345 developers.

The questionnaire was sent between the 18th to 22nd of May 2017. After a
period of seven days, we received 115 responses, resulting in a response ratio of 33.3%,
considering the four growth patterns together (see details in Table 3.10). To preserve
the respondents privacy, we use labels R1 to R115 when quoting their answers. After
receiving the answers, the thesis’s author analyzed them, following the same steps of
the survey presented in Section 3.3.

Table 3.10: Number of survey participants and answers per growth pattern – CI =
Confidence interval at confidence level of 95%

Growth Pattern Participants Answers % CI

Slow 100 26 26.0 19.1
Moderate 100 33 33.0 16.9
Fast 100 34 34.0 16.1
Viral 45 22 48.9 18.8

3.7.2 Survey Results

Table 3.11 lists five major reasons for slow growth, according to the surveyed devel-
opers. Unmaintained or low activity was the main reason, reported by 14 developers
(53.8%). Limited or lack of promotion was mentioned by four developers (15.3%).
For three developers, the project focus on a specific niche audience, thus not being so
popular as other repositories. Furthermore, emergence of alternative solutions was the
reason pointed by two developers. Other three developers reported they have no idea
on the reasons of the slow growth. Finally, five developers provided other reasons (e.g.,
project age). Examples of answers include:

The reason is there’s no new material there. Also the material that is there is becoming
outdated and less relevant over time. (R27, Unmaintained or low activity)

I believe the primary reason is that I am doing virtually nothing to actively promote
the project. (R26, Limited or lack of promotion)

I don’t know the root cause, my guess is that it’s a rather specialized tool with a limited
audience. (R38, Niche audience)

After analyzing the reasons formoderate growth, we identified two conflicting sen-
timents in the answers: (a) positives reasons, which are contributing to the popularity

3.7. Developers’ Perceptions on Growth Patterns 55

Table 3.11: Reasons for Slow Growth (95% confidence level with a 19.1% confidence
interval)

Reason Answers Percentage (%)

Unmaintained or low activity 14 53.8
Limited or lack of promotion 4 15.3
Niche audience 3 11.5
Alternative solutions 2 7.6
Unknown 3 11.5
Other reasons 5 19.2

growth; (b) negative reasons, which are limiting the popularity growth. The major
reasons for the positive and negative sentiments are listed in Tables 3.12 and 3.13,
respectively.

For positive sentiments, 15 developers (45.4%) mentioned active promotion
(mainly on social media sites, as Hacker News8). The use of trending technologies was
mentioned by nine developers (27.2%). For example, danialfarid/ng-file-upload
(a popular Angular component) is benefited by the large community of Angular
practitioners. Active project (e.g., with frequent updates and fast issues resolution)
was mentioned by seven developers (21.2%). Three developers explicitly mentioned the
repository provides an innovative solution and two developers mentioned that code or
documentation quality contributed to the popularity growth. Finally, three other pos-
itive reasons were provided (project usability, usefulness, and maturity). As examples
we have these positive answers:

It could be related to how many people are using Angular JS and the development and
new features in the module had been active for couple years. (R34, Trending technology,
Active project)

The initial increase in stars happened as word of the project got out. I initially had a
Product Hunt page and posted it on Hacker News. From there it is started to popup on
other tech sites. (R85, Active promotion)

Our continued releases every 3-4 months for nearly 6 years is probably the reasoning.
We are a steady, stable, open source solution for reverse engineering. (R16, Active
project, Maturity)

For answers transmitting negative sentiments, three developers mentioned the
project’s niche audience as a restrictive growth factor. Moreover, low activity and lim-
ited or lack of promotion were mentioned by two and one developers, respectively. Fi-

8https://news.ycombinator.com

https://news.ycombinator.com

56 Chapter 3. Characterizing the Popularity of GitHub Projects

Table 3.12: Reasons for Moderate Growth – Positive Sentiments – (95% confidence
level with a 16.9% confidence interval)

Reason Answers Percentage (%)

Active promotion 15 45.4
Trending technology 9 27.2
Active project 7 21.2
Innovative project 3 9.0
Code or doc. quality 2 6.0
Other 3 9.0

Table 3.13: Reasons for Moderate Growth – Negative Sentiments – (95% confidence
level with a 16.9% confidence interval)

Reason Answers Percentage (%)

Niche audience 3 9.0
Low activity 2 6.0
Limited or lack of promotion 1 3.0
Old project 1 3.0

nally, one developer mentioned that the project age is restricting its popularity growth.
Examples of negative answers are:

I think the demographics for [repository] users shifts towards the [other-repository] –
new devs and people new to a young language tend to look for more features, and
[repository] is explicitly not that. (R25, Niche audience)

My best guess is that it’s an older project that’s occasionally attracting new people, but
there’s no single big “marketing event” where it gets a huge spike of GitHub stars. (R28,
Old project, Limited or lack of promotion)

For repositories presenting fast growth, Table 3.14 lists six major reasons reported
by their developers. Active promotion is the major reason according to 22 developers
(64.7%). Furthermore, trending technology was mentioned by 11 developers (32.3%).
Other eight developers (24.5%) mentioned that it is an innovative project. Examples
of reasons for fast growth include:

It’s a popular project because nothing else like it exists for React. (R72, Innovative
project, Trending technology)

We’ve been adding a lot of features in the last year, and I’ve been trying to evangelise
the project to gain new users - some of those things probably helped a lot. (R66, Active
project, Active promotion)

3.7. Developers’ Perceptions on Growth Patterns 57

Table 3.14: Reasons for Fast Growth (95% confidence level with a 16.1% confidence
interval)

Reason Answers Percentage (%)

Active promotion 22 64.7
Trending technology 11 32.3
Innovative project 8 24.5
Active project 5 14.7
Project usability 2 5.8
Project usefulness 2 5.8
Unknown 2 5.8
Other 5 14.7

Finally, Table 3.15 lists five major reasons that emerged after analysing the de-
velopers’ answers for viral growth. As observed, 16 developers (72.7%) linked this
behavior to successful posts in social media sites, mostly Hacker News. Code or docu-
mentation quality were mentioned by six developers (27.2%). Four developers (19.0%)
linked the viral growth to trending technologies. As examples of answers we have:

Yes, we had a huge bump in stars. The secret: coverage by Hacker News, which resulted
in follow-up by other news sites. (R44, Promotion on social media sites)

In my opinion is just that [repository] replied to some people need and gain adoption
very fast. Sharing the project on reddit/twitter/hacker news helped a lot the spread of
it. In my opinion the quality of docs/examples helps a lot. (R103, Promotion on social
media sites, Code or documentation quality, Useful project)

I believe the project has seen such great growth because of it’s position within the greater
Angular community ... (R87, Trending technology)

Table 3.15: Reasons for Viral Growth (95% confidence level with a 18.8% confidence
interval)

Reason Answers Percentage (%)

Promotion on social media sites 16 72.7
Code or documentation quality 6 27.2
Trending technology 4 19.0
Useful 3 14.2
New features 2 9.5
Other 2 9.5
Unknown 1 4.7

58 Chapter 3. Characterizing the Popularity of GitHub Projects

Summary: According to the surveyed developers, the major reason for slow growth
is deprecation or lack of activity (53.8%). Regarding moderate growth, there are
two conflicting sentiments on the developers’ answers: positive sentiments (e.g.,
active promotion) and negative sentiments (e.g., niche audience). For fast growth,
the three major reasons are active promotion, usage of trending technology, and
innovative project. Finally, the major reason for viral growth is also promotion
on social media sites (72.7%). Practical Implications: Active promotion is an
important aspect that should be emphasized by project managers. However, it is
also important to provide high-quality features, code, and documentation.

3.8 Threats to Validity

Dataset. GitHub has millions of repositories. We built our dataset by collecting the top-
5,000 repositories by number of stars, which represents a small fraction in comparison
to the GitHub’s universe. However, our goal is to investigate the popularity of the
most starred repositories. Furthermore, most GitHub repositories are forks and have
very low activity [Kalliamvakou et al., 2014, 2015; Cosentino et al., 2017].

Application domains. Because GitHub does not classify the repositories in domains,
we performed this classification manually. Therefore, it is subjected to errors and
inaccuracies. To mitigate this threat, the dubious classification decisions were discussed
by two researchers.

Survey study 1. The 5,000 repositories in our dataset have more than 21 million stars
together. Despite this fact, we surveyed only the last developers who starred these
repositories, a total of 4,370 developers. This decision was made to do not spam the
developers. Moreover, we restricted the participants to those who gave a star in the
last six months to increase the chances they remember the motivation for starring the
projects. Another threat is related to the manual classification of the answers to derive
the starring motivations. Although this activity has been done with special attention
by the thesis’s author, it is subjective by nature.

Survey study 2. In the second survey, we asked the developers to explain the reasons
for the slow, moderate, fast, or viral growth observed in the number of stars of their
repositories. For each growth pattern, we randomly selected a group of 100 reposito-
ries/developers. Exceptionally for repositories presenting a viral growth, 45 developers

3.9. Conclusion 59

were used since they are the only ones with public e-mails. Since we received 115
answers (corresponding to a response ratio of 33.3%), we report the perceptions of a
non-negligible number of developers.

Growth patterns. The selection of the number of clusters is a key parameter in algo-
rithms like KSC. To mitigate this threat, we employed a heuristic that considers the
intra/intercluster distance variations [Menasce and Almeida, 2001]. Furthermore, the
analysis of growth patterns was based on the stars obtained in the last year. The stars
before this period are not considered, since KSC requires time series with the same
length.

Growth patterns characterization. In Section 3.6, we use a random forest classifier
to identify the factors that distinguish the proposed growth patterns. This classifier
requires the number of trees to compose a Random Forest. In this study, we used 100
trees, which is in the range suggested by Oshiro et al. [2012].

3.9 Conclusion

In this study, we reported that developers star repositories due to three major rea-
sons (which frequently overlap): to show appreciation to the projects, to bookmark
a project, and because they are using the project. Furthermore, three out of four
developers declared they consider the number of stars before using or contributing to
GitHub projects (Section 3.3).

Actionable Insight #1: Stars are a reliable popularity measure; therefore, project
managers should track and compare the number of stars of their projects with
competitor ones.

In Section 3.4, we presented a quantitative characterization of the top-5,000 most
starred repositories. We found that repositories owned by organizations are more pop-
ular than the ones owned by individuals (RQ #1). We also reported the existence of
a moderate correlation of stars with contributors and forks, a low correlation between
stars and commits, and no correlation between stars and repository’ age (RQ #2).
Moreover, we show that unstar events do not influence significantly on the popular-
ity growth of the repositories (RQ #3). Furthermore, repositories have a tendency to
receive more stars right after their first public release (RQ #4). Finally, there is an
acceleration in the number of stars gained after releases (RQ #5).

60 Chapter 3. Characterizing the Popularity of GitHub Projects

Actionable Insight #2: Project managers should consider using organizational
accounts (e.g., aserg-ufmg instead of hsborges). It is also important to work to
attract new contributors and to evolve the projects by frequently providing new
releases.

We validated the proposed popularity growth patterns (Sections 3.5 and 3.6) by
means of a survey with project owners and core developers. We revealed that the major
reason for a slow growth in the number of stars is the project deprecation or lack of
activity. Regarding moderate growth, we detected both positive sentiments (e.g., active
promotion) and negative ones (e.g., niche audience). The major reasons for fast growth
are active promotion, usage of trending technology, and innovative projects. Finally,
the major reason for viral growth is also promotion on social media.

Actionable Insight #3: Open source projects require an investment on market-
ing and advertisement, mainly in social networks and programming forums, like
Hacker News.

The analyzed data, manual classification of the application domain, and the sur-
veyed responses used in this study is publicly available at the Zenodo data repository:
https://doi.org/10.5281/zenodo.1183752.

https://doi.org/10.5281/zenodo.1183752

Chapter 4

Promotion on Open Source
Projects

In Chapter 3, we showed that active promotion is the major reason for moderate and
fast growth in popularity, according to the surveyed developers. Therefore, in this
chapter, we present an investigation on the most common channels used by developers
to promote open source projects. This chapter is organized as follows. First, we
motivate our study and present our research questions (Section 4.1). Then, we describe
the methodology followed in the study (Section 4.2). Next, we present and discuss the
results of each research questions (Section 4.3). Finally, Section 4.4 discusses threats
to validity and Section 4.5 concludes the chapter.

4.1 Introduction

Open source projects have an increasing importance in modern software development.
For example, several open source projects are daily used by millions of users. However,
it is also important to continually attract participants and contributors to these
projects, in order to increase the chances of long-term success [Comino et al., 2007].
Particularly, several channels can be used to promote open source software, helping to
keep the interest of the community and also to attract new members. In this study,
we intend to reveal the most common channels used by developers to promote open
source projects. We address four research questions:

RQ #1: What are the most common promotion channels? The goal is to provide a
list of the most common channels used to promote the open source projects on GitHub.

61

62 Chapter 4. Promotion on Open Source Projects

RQ #2: How often do developers promote their projects? With this research question,
we intent to quantify the frequency that developers promote their projects on blogs
and social networks. We also characterize the meeting groups of the projects’ users.

RQ #3: How popular and random projects differ on the usage of promotion channels?
This investigation can show if there is significant difference in the usage of the
promotion channels by popular and non-popular GitHub projects.

RQ #4: What is the impact of promotion on Hacker News? Social news aggregators
(e.g., Hacker News) are sites that allow developers to make their content easily reach-
able by a large audience. The goal of this final research question is to analyze the
impact of successful posts on the number of stars of the analyzed projects.

4.2 Study Design

To reveal the most common promotion channels used by developers, we manually
inspected the documentation of the top-100 projects with most stars on GitHub. We
restricted our analysis to popular projects because they have a large number of users
and therefore need better and efficient ways to communicate with users and also to
attract new contributors.

Figure 4.1 shows the distribution of the number of stars of
the projects considered in this study. This number ranges from
291,138 stars (freeCodeCamp/freeCodeCamp) to 23,322 stars
(tiimgreen/github-cheat-sheet). The considered projects are primarily de-
veloped on 17 programming languages; JavaScript is the most common one (40
projects), followed by Python (9 projects) and Go (5 projects). Furthermore, 14
projects only include markdown files with documentation purposes (e.g., projects with
tutorials, books, awesome lists, etc). Finally, regarding the project owners, 69 are
organizational accounts and 31 are user accounts.

For each of these 100 projects, we initially inspected their READMEs on GitHub
to identify the channels used to promote the projects and to keep the users up-to-
date with important information about them. For example, the following sentence is
available on the README of adobe/brackets: “Y ou can see some screenshots of
Brackets on the wiki, intro videos on YouTube, and news on the Brackets blog”. In this
case, wiki and YouTube are used to support users whereas blog is a channel used to
disseminate news about Brackets. Thus, only blog is considered a promotion channel
in our study. Next, we inspected the projects’ website, for those projects having one.

4.2. Study Design 63

S
ta

rs

Projects

50
K

10
0K

15
0K

20
0K

25
0K

30
0K

Figure 4.1: Number of GitHub stars of the analyzed projects

We navigated through the site pages, searching for more channels used to promote the
projects.

After this manual inspection, the following promotion channels emerged:

• Blogs, which are used, for example, to publish announcements of new software
versions, upcoming events, and improvements.

• Events and Users Meetings: Organizing events and supporting users meet-
ings are other strategies commonly followed to promote projects. On events the
initiative usually comes from the development team or from the organization that
supports the project, whereas on user meeting the initiative comes from the users,
usually from a specific region or country. We rely on Meetup1 to discover users
meetings.

• Twitter, Facebook, and Google+, which are also used to connect the projects
to users. We considered only official accounts, which are explicitly advertised on
the project documentation or are verified by the social network (e.g., https:
//support.twitter.com/articles/20174631).

• Newsletter and RSS feeds, which refer to e-mails with the most relevant news
about the projects and RSS feeds.

1https://meetup.com

https://support.twitter.com/articles/20174631
https://support.twitter.com/articles/20174631
https://meetup.com

64 Chapter 4. Promotion on Open Source Projects

In addition, we found that developers use Q&A forums (e.g., StackOverflow),
discussion groups (e.g., Google Groups), and messaging tools (e.g., IRC and Slack) to
promote their projects. However, these channels are mostly used to discuss the projects
and to provide answers to common questions raised by users. For example, from the 155
topics opened in 2017 in the adobe/brackets discussion group at Google Groups,
only eight (5.1%) are related to announcements of new versions, mostly pre-releases for
community testing. Moreover, from almost 500 topics on facebook/react official
forum, we could not identify any announcement related to the project development.
Thus, in this study, we do not consider forums, discussion groups, and messaging tools
as promotion channels.

4.3 Results

RQ #1: What are the most common promotion channels?

Figure 4.2 presents the most common promotion channels used by the top-100
projects on GitHub. The most common channel is Twitter, which is used by 56 projects.
The second one is Users Meetings (41 projects), followed by Blogs (38 projects), Events
(33 projects), and RSS feeds (33 projects). The least common channels are Facebook
and Google+, which are used by 18 and 7 projects, respectively.

P
ro

je
ct

s

0
10

20
30

40
50

60

Tw
itt

er
U

se
rs

 M
ee

tin
g

Bl
og

Ev
en

ts

R
SS

N
ew

sl
et

te
r

Fa
ce

bo
ok

G
oo

gl
e+

Figure 4.2: Most common promotion channels

Figure 4.3 shows the distribution of the number of promotion channels per
project. Almost one third of the projects (32 projects) do not use any channel.

4.3. Results 65

By contrast, more than half of the projects (55 projects) use at least two promo-
tion channels. The highest number of promotion channels is seven, which is the case
of facebook/react, facebook/react-native, meteor/meteor, golang/go,
ionic-team/ionic, angular/angular, and adobe/brackets. We also found
that Blog and Twitter is the most frequent combination of channels (35 projects).
Other frequent combinations include, for example, Blog and RSS (31 projects), Events
and Users Meetings (31 projects), and Twitter, Events and User Meetings (31 projects).

Number of Promotion Channels

P
ro

je
ct

s

0 2 4 6

0
5

10
15

20
25

30
35

Figure 4.3: Number of promotion channels per project

Summary: Twitter is the most used promotion channel among the top-100 GitHub
projects by stars. Moreover, most of the projects use at least two promotion
channels. Practical Implications: Developers should prioritize Twitter as their
main channel of communication with contributors and users.

RQ #2: How often do developers promote their projects?

In this second question, we investigate how often developers promote their
projects on blogs and social networks. For blogs, we calculate the promotion fre-
quency as the number of posts on the last 12 months. For social networks, we could
not retrieve all posts for all projects because their APIs restrict the search to a recent
period (e.g., last seven days for Twitter and last 100 posts for Facebook). Thus, in
this case, we only classified each social network account in two distinct groups: active
and inactive. An active account has at least three posts on the last three months;

66 Chapter 4. Promotion on Open Source Projects

otherwise, it is considered an inactive account. This classification was performed by
manually counting the number of posts on the social network pages.

Figure 4.4 presents the distribution of the number of blog posts on the
last 12 months. The number ranges from 1 (nylas/nylas-mail) to 1,300
(freeCodeCamp/freeCodeCamp); the first, second, and third quartile values are
7, 19, and 54 posts, respectively.

0
20

40
60

80
Blog

Figure 4.4: Distribution of the number of posts on the last 12 months (outliers are
omitted)

Table 4.1 lists the activity status of the Twitter, Facebook, and Google+ accounts.
We found that 83.9% of the projects that use Twitter have an active account; 55.6% of
the projects have an active Facebook account and only 28.6% have an active Google+
account.

Table 4.1: Active Twitter, Facebook, and Google+ accounts

Channel Active (%) Inactive (%)

Twitter 47 (83.9%) 9 (16.1%)
Facebook 10 (55.6%) 8 (44.4%)
Google+ 2 (28.6%) 5 (71.4%)

Finally, we investigate the characteristics of the user meeting groups promoted
on Meetup (such meetings are the 3rd most common promotion channel studied in
this article). A Meetup group is a local community of people that is responsible for
organizing meeting events.2 These groups are identified by topics to help members find
them. Here, we rely on these topics to collect meetups about the studied open source
projects, along with their locations (i.e., city and country). For example, the topic

2https://www.meetup.com/help/article/902256

https://www.meetup.com/help/article/902256

4.3. Results 67

for jquery/jquery is jquery and a summary of the meeting groups about this topic
can be found at https://www.meetup.com/topics/jquery/all. Figure 4.5 presents
the distribution of the number of groups, cities, and countries of the projects with
meetings registered at Meetup. For groups, the values ranges from 2 to 2,261 groups;
considering the cities, the values range from 2 to 725; finally, for countries, the values
range from 2 to 96. The maximum values always refer to torvalds/linux. In other
words, torvalds/linux has 2,261 meetup groups, which are spread over 725 cities
from 96 countries.

●

●

●

●

●

0
50

0
10

00
15

00
20

00

M
ee

tu
ps

(a) Groups

●

●

0
20

0
40

0
60

0

C
iti

es

(b) Cities

0
20

40
60

80

C
ou

nt
rie

s

(c) Countries

Figure 4.5: Number of groups, cities, and countries of the user meetings

Summary: Most projects post on their blogs with a high frequency (on median,
1.5 posts per month).

RQ #3: How popular and random projects differ on the usage of promotion channels?

In the first research question, we investigated the most common promotion chan-
nels used by popular GitHub projects. In this section, we contrast the usage of promo-
tion channels by these projects and by a random sample of GitHub projects. For this
purpose, we randomly selected 100 projects from the top-5,000 repositories by number
of stars and manually inspected their documentation using the same methodology re-
ported in Section 4.2. The number of stars of this random sample ranges from 2,297
stars (uber-archive/image-diff) to 22,558 (vsouza/awesome-ios).

Figure 4.6 compares the usage of promotion channels by the random projects and
by the most popular ones. In the random sample, the number of projects using the

https://www.meetup.com/topics/jquery/all

68 Chapter 4. Promotion on Open Source Projects

investigated promotion channels is significantly lower compared to the most popular
ones. However, by applying the Spearman’s rank correlation test, we found a strong
correlation between the number of projects using the promotion channels on each group
(rho = 0.904 and p-value < 0.01). For example, Twitter is also the most used promotion
channel among the random projects (31 projects), followed by Blogs (17 projects)
and RSS (13 projects). Compared to the most popular projects, Users meetings and
Newsletter are less common (13 and 6 projects, respectively). Finally, Facebook and
Google+ also have a very limited usage (7 and 4 projects, respectively).

P
ro

je
ct

s

0
10

20
30

40
50

60

Random
Top

Tw
itt

er

Bl
og

R
SS

U
se

rs
 M

ee
tin

g

Ev
en

ts

Fa
ce

bo
ok

N
ew

sl
et

te
r

G
oo

gl
e+

●

●

● ●

● ●
●

●

Figure 4.6: Most common promotion channels used by random projects

Summary: The number of projects using promotion channels is significantly lower
among random projects.

RQ #4: What is the impact of promotion on Hacker News?

After publishing content on blogs, Twitter, etc., open source developers can also
promote this content on social news aggregator sites. These sites aggregate contents
from distinct sources for easing viewing by a large public. The most popular and
important example is Hacker News,3 which is dedicated to Computer Science and
related technologies content. Hacker News posts just include a title and the URL of
the promoted content (e.g., a blog post about a new version of an open source project).
Any user registered in the site can post a link on Hacker News, i.e., not necessarily

3https://news.ycombinator.com

https://news.ycombinator.com

4.3. Results 69

the links are posted by the contributors of an open source project, for example. Other
Hacker News users can discuss the posts and upvote them. An upvote is similar to a
like in social networks; posts are listed on Hacker News according to the number of
upvotes. In this research question, we use Hacker News due to its popularity; posts
that reach the front page of the site receive for example 10-100K page views, in one or
two days.4 Furthermore, Hacker News provides a public API, which allows search and
metadata collection.

For each popular project considered in our study (100 projects), we searched
for Hacker News posts with a URL referencing the project sites or pages, including
GitHub pages (READMEs, issues, etc). As result, we found 3,019 posts on Hacker
News referencing content from 96 studied projects (i.e., only four projects are never
referenced on Hacker News). Figure 4.7 presents the distributions of the number of
posts per project, upvotes, and comments. The number of posts ranges from 1 to 298
posts per project (rails/rails); the first, second, and third quartile values are 4, 10,
and 43 posts, respectively. Regarding their upvotes, the most popular post is about
appple/swift (“Swift is Open Source”), with 1,824 upvotes; the quartile values are 2,
3, and 12 upvotes, respectively. Finally, the highest number of comments is 760, about
a GitHub issue opened for Microsoft Visual Studio (“VS Code uses 13% CPU when
idle due to blinking cursor rendering”); the quartile values are 0, 0, and 2 comments,
respectively. On the one hand, these results show that most Hacker News posts do not
attract attention. By contrast, a small number of posts attract a lot of attention. For
example, the top-10% posts have at least 132 upvotes. These posts are called successful
posts in this investigation.

0
20

40
60

80
10

0

of

 p
os

ts

(a) Posts

0
5

10
15

20
25

of

 u
pv

ot
es

(b) Upvotes

0
1

2
3

4
5

of

 c
om

m
en

ts

(c) Comments

Figure 4.7: Number of posts, upvotes, and comments (outliers are omitted)

Figure 4.8 shows boxplots with the number of GitHub stars gained by projects
4https://goo.gl/evyP4w

https://goo.gl/evyP4w

70 Chapter 4. Promotion on Open Source Projects

covered by successful posts, in the first three days before and after the publication date
on Hacker News. The intention is to investigate the impact of a successful promotion on
Hacker News, by comparing the number of stars gained before and after each successful
post publication. On the median, the projects covered by successful posts gained 74
stars in the first three days before their appearance on Hacker News; in the first three
days after the publication, the projects gained 138 stars. Therefore, Hacker News has
a positive impact on the project’s popularity, measured by GitHub stars. Indeed, the
distributions are statistically different, according to the one-tailed variant of the Mann-
Whitney U test (p-value ≤ 0.05). By computing Cliff’s delta, we found a medium effect
size (d = −0.372).

Before After

0
20

0
40

0
60

0

S
ta

rs

Figure 4.8: Number of GitHub stars received by projects covered by successful Hacker
News posts in the first three days before and after the post publication

Finally, we inspected the titles of each successful post, aiming to categorize the
post purpose. The most common category includes posts announcing new releases
of open source projects (44.9%; e.g., “Angular 2 Final Released”). Other popular
categories include posts promoting articles or reports about the projects (25.4%; e.g.,
“Vue.js vs. React”), announcing the first release of a project (16.5%; e.g., “YouTube-
dl: Open-source YouTube downloader”), highlighting new project features (10.6%; e.g.,
“Git and GitHub Integration Comes to Atom”) and open sourcing products (1.6%; e.g.,
“Visual Studio Code is now open source”).

4.4. Threats to Validity 71

Summary: Most Hacker News posts do not attract attention, however the suc-
cessful ones have a positive impact on the project’s popularity. Moreover, most of
the successful posts are related to new releases of open source projects. Practical
Implications: GitHub developers should consider promoting new releases on news
aggregator sites since it requires a low effort and can reach a large number of
developers.

4.4 Threats to Validity

Dataset: In this study, we build an initial dataset with the top-100 repositories with
most stars on GitHub. Thus, we can not generalize our results to all projects hosted
on GitHub. To mitigate this point, we also analyzed a set of other 100 random
repositories and the results were consistent to the top ones.

Documentation inspection: The analysis of the projects’ documentations and websites
were performed only by the author of this thesis. To mitigate this threat, the criteria
to identify the channels were defined in agreement with a second researcher and the
inspection was done with special attention.

Meetup topics: To analyze the characteristics of the user meeting, we relied on the
topics provided by Meetup website. These topics are essentially useful since the
website has more than 260.000 meeting groups spread in 178 countries. However, as
they are added by the groups’ organizers, there still the chance of some of them have
been misconfigured or using non-representative topics.

4.5 Concluding Remarks

In this chapter, we investigated the most common promotion channels used by popular
GitHub projects. First, we detailed the project selection and the inspection method-
ology used to collect the promotion channels used by the projects analyzed in this
study. Next, we presented the most common promotion channels used by the top-100
projects on GitHub, by number of stars. We found that Twitter is the most common
promotion channel, followed by Users Meetings, Blogs, Events, RSS Feeds, Newslet-
ters, Facebook and Google+ (RQ #1). Then, we investigated how often developers

72 Chapter 4. Promotion on Open Source Projects

promote their projects on blogs and social networks. We showed that most projects
posts on their Blogs with a high frequency (on median, 19 posts per year) and the
large majority of the accounts on Twitter are active (i.e., has at least three posts on
the last three months) (RQ #2). By contrasting the usage of promotion channels by
popular projects and by random ones, we observed that the number of projects using
the promotion channels is significantly lower among the random projects (RQ #3).
Finally, we studied the impact of promoting projects’ contents on Hacker News, which
is nowadays the most popular news aggregator site. We showed that promotion has a
relevant impact on the number of stars of the projects (RQ #4).

This study supports the following practical recommendations to open source
project managers and leaders:

1. Promotion is an important aspect of open source project management, which
should be emphasized by project leaders. For example, most popular GitHub
projects (two thirds) use at least one promotion channel; half of the projects
invest on two channels. By contrast, the use of promotion channels is less common
among projects with lower popularity.

2. Open source project managers should consider the use of Twitter (47 projects
among the top-100 most popular GitHub projects have active Twitter accounts),
Users meetings (which are organized or supported by 41 projects), and blogs
(which are used by 38 projects).

3. Open source project managers should also consider promotion on social news
aggregator sites. Successful posts on Hacker News usually have a relevant impact
on the popularity of GitHub projects. However, only 10% of the Hacker News
posts about the studied projects have some success.

The data used in this study is publicly available at the Zenodo data repository:
https://doi.org/10.5281/zenodo.1226698.

https://doi.org/10.5281/zenodo.1226698

Chapter 5

Predicting the Popularity of GitHub
Repositories

In this study, we extend our investigation presented in Chapter 3 by using of multiple
linear regressions to predict the popularity of GitHub repositories. This chapter is
organized as follows. First, we present the dataset used in the study (Section 5.3)
and discuss the methodology followed in the study (Section 5.2). Section 5.4 presents
our results, by exploring and discussing answers for the proposed research questions.
Finally, Section 5.5 discusses threats to validity and Section 5.6 concludes the chapter.

5.1 Introduction

Prediction models have been successfully used to infer the popularity of content in
other social networks, such as the number of views of YouTube videos [Roy et al.,
2013; Pinto et al., 2013; Figueiredo, 2013] and the number of tweets associated to a
given hashtag [Tsur and Rappoport, 2012; Ma et al., 2012, 2013]. However, to our
knowledge, we are the first to attempt to predict the popularity—measured by the
number of stars—of software projects hosted at GitHub. Specifically, we compute
and investigate multiple linear regression models over two types of data: generic and
specific. By generic, we refer to models produced from the complete dataset considered
in this study, which includes historical data about the number of stars of 4,248 popular
GitHub repositories. By specific, we refer to models produced from repositories that
share similar growth trends. These trends are inferred using the KSC algorithm [Yang
and Leskovec, 2011], which clusters time series with similar shapes. We address three
major research questions in the study:

73

74 Chapter 5. Predicting the Popularity of GitHub Repositories

RQ #1: What is the accuracy of the generic prediction models? We report the
Relative Squared Error (RSE) of the regression models computed using the time series
of number of stars of all projects in our dataset.

RQ #2: What is the accuracy of the specific prediction models? First, using the KSC
clustering algorithm, we identify four major growth trends among the systems in our
dataset. Then, we evaluate the accuracy of the regression models computed over the
time series of each cluster.

RQ #3: What is the accuracy of the repositories rank as predicted using the generic
and specific models? In the previous RQs, our goal is to the predict the total number
of stars, using generic and specific models. By contrast, in this final RQ, we evaluate
the ability of both models to predict not the number of stars of a repository after a
time, but its rank among the repositories in our dataset.

5.2 Study Design

In this section, we detail the techniques and models used to predict the number of stars
of GitHub repositories. We also discuss how we evaluate the accuracy of these models.

Prediction Technique: We rely on multiple linear regression to predict the popularity
of GitHub repositories. Multiple linear regression differs from simple regression by
considering that all variables are not equally important [Freedman, 2009]. The general
form of a multiple linear regression is as follows:

Yt = b0 + b1Xt1 + b2Xt2 + ...+ brXtr

where Yt is the dependent variable (number of stars at week t), Xti are the independent
variables (stars in weeks i, 1 ≤ i ≤ r ≤ t), and bj are the regression coefficients
(0 ≤ j ≤ r ≤ t).

Estimating the Errors: To evaluate the accuracy of the models, we use the Relative
Squared Error (RSE). Assume that N(r, t) is the real number of stars of a repository r
in the week t. Moreover, assume that N̂(r, tr, t) is the number of stars predicted for r at
the week t from the popularity data of the first tr weeks. The RSE for this prediction

5.2. Study Design 75

is given by [Pinto et al., 2013]:

RSE =

(
N̂(r, tr, t)

N(r, t)
− 1

)2

For a collection R of repositories, the mean Relative Squared Error (mRSE) is
defined as the arithmetic mean of the RSE values of all repositories in R, as given by:

mRSE =
1

|R|
∗
∑
r∈R

(
N̂(r, tr, t)

N(r, t)
− 1

)2

Cross-Validation: As ilustrated in Figure 5.1, we perform cross-validation to assess
the prediction models. We use 10 folds, i.e., the repositories are randomly partitioned
in 10-folds and we use nine folds to build the prediction models (training set) and the
remaining fold to evaluate their accuracy (validation set).

R
e

p
o

s
ito

rie
s

Weeks

Training

Test

Prediction (tr) t

Figure 5.1: Cross Validation

Generic and Specific Models: We generate models for two datasets: generic and
specific. By generic, we refer to models produced from the complete dataset, i.e., from
the time series with the number of stars collected for 4,248 repositories. By specific, we
refer to models produced from repositories that shared similar growth trends. As in our
previous work [Borges et al., 2016], we rely on the KSC algorithm [Yang and Leskovec,

76 Chapter 5. Predicting the Popularity of GitHub Repositories

2011] to identify growth trends in our dataset. This algorithm clusters time series with
similar shapes using a metric that is invariant to scaling and shifting. In other words,
each cluster groups time series that share similar growth trends. Particularly, to answer
RQ #2 we produce specific models considering only the time series in each cluster. We
use the βCV heuristic [Menasce and Almeida, 2001] to define the best number k of
clusters. βCV is defined as the ratio of the coefficient of variation of the intracluster
distances and the coefficient of variation of the intercluster distances. The smallest
value of k after which the βCV ratio remains roughly stable should be selected. In our
dataset, the values of βCV stabilize for k = 5 (see Figure 5.2). Therefore, we configure
KSC to produce five clusters.

2 4 6 8 10 12 14

0.
7

0.
8

0.
9

1.
0

1.
1

k

B
cv

Figure 5.2: βCV (2 ≤ k ≤ 15)

Figure 5.3 shows the time series representing the clusters’ centroids of the five
clusters. The trends presented by clusters C1, C2, and C3 suggest a linear growth in
the number of stars. The trend presented by cluster C4 differs from the first three ones
due variations in the number of stars over the time. Finally, cluster C5 suggests a viral
growth.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Figure 5.3: Five growth trends (clusters) identified for the repositories in our dataset

5.2. Study Design 77

As presented in Table 5.1, cluster C1 concentrates almost half of the repositories
in our dataset (49.1%) while cluster C5 has the lowest concentration (1.2%). Table 5.1
also presents the percentage of growth of each cluster, considering the centroids time
series. This percentage ranges from 19.9% (cluster C1) to 1,659.1% (cluster C5).

Table 5.1: Popularity Trends Description

Cluster # Repositories % Growth

C1 2,087 (49.1%) 19.9
C2 1,456 (34.2%) 61.3
C3 521 (12.2%) 175.1
C4 131 (3.0%) 883.2
C5 53 (1.2%) 1,659.1

When answering RQ #2, we do not consider specific models for cluster C5 due
to two main reasons: (a) it includes only 53 repositories (1.2%); (b) as presented in
Figure 5.3, the time series in this cluster do not have a linear shape.

Repositories Ranking: To answer RQ #3, we compute three rankings: (i) reposito-
ries sorted according to the predicted number of stars using a generic prediction model
(configured with tr = 26 weeks and t = 52); (ii) repositories sorted according to the
predicted number of stars using specific prediction models (configured with tr = 26

weeks and t = 52); (iii) repositories sorted according to their real number of stars, as
provided by GitHub API, on April 25, 2016, i.e., the last week we consider to build
the time series of stars. In the first two rankings, the rank positions range from 1 to
4,248 (which is the dataset size). However, the third ranking includes all repositories
in the previous rankings plus 468 repositories that entered the list of the most popular
repositories in the year before April 25, 2016. As examples, we have apple/swift

and Netflix/falcor. Netflix/falcor is not among the top-5,000 most popular
repositories on April 25, 2015, when we select the repositories used in the study, but
it gained popularity to the point of being the 481st most popular repository one year
later. apple/swift was created on October 10, 2015; despite this it is the 23rd most
popular repository on April 25, 2016, when we define the real ranking. In this way, the
investigation conducted to answer RQ #3 includes the cases where a repository falls in
the ranking not only due to a better performance of the repositories used to produce
the prediction models, but also due to the performance of any other repository.

78 Chapter 5. Predicting the Popularity of GitHub Repositories

5.3 Dataset

The initial dataset used in this study includes historical data about the top-5,000 pub-
lic repositories with more stars in GitHub. All data was obtained using the GitHub
API, which provides services to search public repositories and to retrieve specific in-
formation about them (e.g., stars). First, we collect basic data about the repositories
(i.e., owner, stars, creation date, programming language, etc.). Next, for each reposi-
tory, we collect historical data about the number of stars. For this purpose, we used
a service from the API that returns all star events of a given repository. For each
star, these events store the date and the user responsible to starring the repository.
However, GitHub API returns at most 100 events by request (i.e., a page) and at most
400 pages. For this reason, it is not currently possible to retrieve all star events of
systems with more than 40K stars, which is the case of seven repositories: FreeCode-
Camp (112,397 stars), twbs/bootstrap (95,293 stars), vhf/free-programming-
books (54,208 stars), mbostock/d3 (49,173 stars), angular/angular.js (48,787
stars), FortAwesome/Font-Awesome (41,621 stars), facebook/react (41,037
stars). Moreover, 278 repositories have no main programming language identified.
These repositories do not store source code, e.g., jlevy/the-art-of-command-line
(26,298 stars) or are moved/removed repositories, e.g., nodejs/node-v0.x-archive
(37,354 stars). Therefore, we also remove these repositories from the dataset. Ad-
ditionally, we only consider the stars gained in the last 52 weeks of each repository.
Thus, repositories with less than 52 weeks are also removed from the dataset (468
repositories).

Figure 5.4 shows the number of stars of the 4,248 repositories in our
dataset. This number ranges from 39,149 stars (jquery/ jquery) to 1,248 stars
(mikeflynn/egg.js). As presented, the distribution is right skewed (quantiles 5%
= 1,307 stars and 95% = 9,360 stars). The mean and median number of stars are
3,393 and 2,240, respectively. Table 5.2 lists the top-10 repositories with more stars.
These repositories have at least 30K stars and belong to four different domains (Web
Frameworks and Libraries, Software Tools, Documentation, and System Software).

Next, we built the stars time series of each repository from the stars events. These
time series consist of the number of stars gained by week since the repository creation
date up to April 25, 2016, when we collected our data. As an example, Figure 5.5
shows the time series retrieved for jquery/jquery, the most starred repository in
our dataset. This repository has 369 weeks (x-axis) and the number of stars increased
from 1,692 stars to 39,149 stars (y-axis).

5.4. Results 79

Repositories (log scale)

S
ta

rs

1 10 100 1000 5000

0K
10

K
20

K
30

K
40

K

Figure 5.4: Repositories popularity

Table 5.2: Top-10 repositories with more stars

Repository Domain # Stars

jquery/jquery Web 39,149
robbyrussell/oh-my-zsh Tools 36,373
airbnb/javascript Doc 34,064
h5bp/html5-boilerplate Web 33,704
meteor/meteor Web 33,594
torvalds/linux System 31,702
daneden/animate.css Web 31,549
facebook/react-native Web 31,217
rails/rails Web 30,779
docker/docker System 30,742

5.4 Results

RQ #1: What is the accuracy of the generic prediction models?

In order to start answering this question, we produce generic prediction models
and assess their accuracy using 10-fold cross validation for different values of tr (pre-
diction data, see Figure 5.1). In all cases, we use the models to predict the number of
stars at week 52 (t = 52, in Figure 5.1). In other words, we use the number of stars
in the first tr weeks to predict the number of stars in the 52nd week (last week we

80 Chapter 5. Predicting the Popularity of GitHub Repositories

Week

S
ta

rs

0 100 200 300 369

10
K

20
K

30
K

40
K

Figure 5.5: jquery/jquery time series (369 weeks)

considered when collecting the number of stars). Figure 5.6 reports the average error
(mRSE) across all models.

0 10 20 30 40 50

0
10

20
30

Prediction data (t r)

m
R

S
E

Figure 5.6: Generic model error

For small values of tr the models do not perform well, e.g., for tr = 10 weeks
mRSE = 5.858±4.372 (mean ± 95% confidence interval). However, as we increase the
values of tr, the results are more accurate. For example, mRSE = 0.432 ± 0.257 for

5.4. Results 81

tr = 26 weeks. This means that we can predict with a low error the number of stars
six months ahead, using as training data the past six months of stars.

Figure 5.7 shows a scatter plot that correlates the number of stars gained and the
RSE for the generic models produced using tr = 26 weeks. Each point in this figure
represents a repository. We ran Spearman’s rank correlation test and the resulting
correlation coefficient rho is -0.50, with p-value < 0.001. Therefore, the generic models
are more accurate for the repositories that gained many stars in the period.

● ● ●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

● ●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●● ●

●

●

●

●
●●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

● ●
●●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●●●
●

● ●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

● ●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●
●●

●●● ●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●
●●●

●●

●

●
●

●
●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●●
●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●
●

● ●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

● ●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●● ● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●●

●

●
●

●
●

●

●● ●

●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

Stars Gained

R
S

E
 (

lo
g

sc
al

e)

0K 5K 10K 15K 20K1e
−

09
1e

−
06

1e
−

03
1e

+
00

1e
+

03

Figure 5.7: Stars vs RSE (generic model, tr = 26 weeks)

Table 5.3 lists the prediction results for the top-10 and bottom-10 repositories
with more stars in our dataset. The column “Stars” shows the real number of stars
gained in 52 weeks and the column “Predicted” presents the number of stars predicted
for the same period using a generic model (tr = 26 weeks and t = 52). The difference
between the real and the predicted values ranges from 1.64% to 12.84%, in absolute
values, for the top-10 repositories and from 2.83% to 100% for the bottom-10 ones.

Finally, we evaluate the accuracy of the generic prediction models for different
values of the target week t. Figure 5.8 shows the average error for t = 26 weeks (half
year) and t = 104 weeks (two years). The figure also includes the average error for
t = 52 weeks (already presented in Figure 5.6). In all cases, we see a decreasing trend
of the average error measure. However, for higher values of t, we need less prediction
data to achieve similar average errors. For example, using t = 52 weeks and a fraction
of time equals to 0.5 (i.e, 26 weeks) the average error (mRSE) is 0.432 ± 0.257. For
t = 104 weeks, a similar average error (mRSE = 0.460± 0.182) happens for a fraction
of time of 0.36 (i.e., 38 weeks).

82 Chapter 5. Predicting the Popularity of GitHub Repositories

Table 5.3: Number of stars gained (real and predicted measures) for the top-10 (first
table half) and bottom-10 repositories (second table half). Predictions are produced
using a generic model (tr = 26 weeks and t = 52). We can see that the error (column
“% Diff”) is lower for the top-repositories.

Repository Stars Predicted % Diff

jquery/jquery 6,160 5,369 -12.84
robbyrussell/oh-my-zsh 13,536 11,829 -12.61
airbnb/javascript 17,026 14,882 -12.59
h5bp/html5-boilerplate 4,896 4,691 -4.19
meteor/meteor 9,919 10,082 +1.64
torvalds/linux 10,566 9,682 -8.37
daneden/animate.css 10,492 9,452 -9.91
facebook/react-native 18,443 19,373 +5.04
rails/rails 5,701 5,128 -10.05
docker/docker 10,268 9,721 -5.33

ReactiveRaven/jqBootstrapValidation 213 298 +39.91
infinitered/ProMotion 119 238 +100.00
nslocum/design-patterns-in-ruby 640 731 +14.22
jbt/markdown-editor 621 744 +19.81
mumble-voip/mumble 565 667 +18.05
Manabu-GT/ExpandableTextView 676 623 -7.84
apache/flink 890 712 -20.00
mafintosh/mongojs 322 381 +18.32
rofl0r/proxychains-ng 813 790 -2.83
mikeflynn/egg.js 584 793 +35.79

Summary: The generic models start to provide accurate predictions when they
are trained with data from six months and used to predict the number of stars six
months ahead. Furthermore, generic models for highly popular repositories are
more accurate than the ones generated for repositories with few stars.

RQ #2: What is the accuracy of the specific prediction models?

In this second research question, we generate specific prediction models for the
repositories in each cluster (presented in Section 5.2) and assess their accuracy using
10-fold cross validation for different values of tr. As in the first question, we predict
the number of stars at week 52.

Figure 5.9 reports the average error across all specific models. Cluster C1, which
concentrates almost half of the repositories, presents a fast decreasing in the average
error, e.g., mRSE = 18.500±14.501 for tr = 1 week and 0.127±0.020 for tr = 10 weeks.

5.4. Results 83

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

t r t t

m
R

S
E

Target dates

t r = 26
t r = 52
t r = 104

Figure 5.8: Generic model error (y-axis). Predictions for 26, 52, and 104 weeks, using
different fractions of data (x-axis)

This suggests that specific models for this cluster require very few data to provide
accurate predictions. Cluster C2 also presents accurate results for any value of tr. As we
can observe, the accuracy of the models for cluster C2 is higher than the accuracy for C1
when considering tr ≤ 6 weeks. However, for tr > 6 weeks, the accuracy of C2 is slightly
lower. For example, mRSE = 0.030±0.009 (tr = 26 weeks) and mRSE = 0.038±0.009

(tr = 26 weeks) for clusters C1 and C2, respectively. Cluster C3, which presents the
fastest linear trend, shows an initial increasing in the average error, followed by a drastic
reduction. This happens due to inaccurate results of two repositories: tessalt/echo-
chamber-js (RSE = 284.29) and gilesbowkett/rewind (RSE = 224.48), which
gained a high number of stars at weeks 8 and 13, respectively.1

Figure 5.10 shows boxplots with the improvements per cluster. The improvements
are calculated from the gains achieved by specific models (tr = 26 weeks). As we can
observe, specific models improve the predictions in all clusters, considering the median
values. The median improvements for each cluster are 15.72%, 1.08%, 2.00%, and
6.66%, respectively. The repositories in cluster C1 take more advantage of specific
models (1st quartile = 2.43%). By contrast, clusters C3 and C4 have the highest
percentage of repositories with a worst performance (1st quartile equal to -9.46% and
-11.79%, respectively).

Table 5.4 lists the specific prediction results for the top-10 and bottom-10 repos-
itories with more stars in our dataset. The column “Stars” shows the real number

1Because cluster C5 does not follow a linear trend it is not included in our analysis.

84 Chapter 5. Predicting the Popularity of GitHub Repositories

0 10 20 30 40 50

0
5

10
15

Prediction data (t r)

m
R

S
E

(a) Cluster C1

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Prediction data (t r)

m
R

S
E

(b) Cluster C2

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Prediction data (t r)

m
R

S
E

(c) Cluster C3

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Prediction data (t r)

m
R

S
E

(d) Cluster C4

Figure 5.9: Model prediction error for different growth trends (i.e., clusters extracted
using the KSC algorithm)

C1 C2 C3 C4

−
40

−
20

0
20

40
60

80

Cluster

Im
pr

ov
e

(%
)

Figure 5.10: Improvement of specific models per cluster (outliers are omitted).

5.4. Results 85

of stars gained in 52 weeks and the column “Predicted” presents the number of stars
predicted for the same period using specific models (tr = 26 weeks). The difference be-
tween the real and predicted number of stars ranges from 0.06% to 18.29%, in absolute
values, for the top-10 repositories. Column “% Improve” shows the gains achieved by
specific models, when compared with the predictions provided by the generic models.
As we can see, the specific models increase the accuracy of the predictions for six out
of ten repositories, from 3.39% to 7.72%. For the bottom-10 repositories, the difference
between the real and predicted values ranges from 1.88% to 44.06% (column “% Diff”).
In this case, the specific models produced more accurate results for seven out of ten
repositories (column “% Improve”).

Table 5.4: Number of stars gained (real and predicted measures) for the top-10 (first
table half) and bottom-10 repositories (second table half). Predictions are produced
using specific models (tr = 26 weeks and t = week 52). Column “% Improve” shows
the gains achieved by specific models, when compared with the predictions provided
by generic models. Black bars represent positive gains and gray bars denote negative
gains.

Repository Cluster Stars Predicted % Diff % Improve
jquery/jquery C1 6,160 5,578 -9.45 +3.39
robbyrussell/oh-my-zsh C2 13,536 12,826 -5.25 +7.37
airbnb/javascript C2 17,026 20,140 +18.29 -5.70
h5bp/html5-boilerplate C1 4,896 4,690 -4.21 -0.02
meteor/meteor C2 9,919 10,571 +6.57 -4.93
torvalds/linux C2 10,566 10,498 -0.64 +7.72
daneden/animate.css C2 10,492 10,045 -4.26 +5.65
facebook/react-native C3 18,443 18,432 -0.06 +4.98
rails/rails C1 5,701 5,386 -5.53 +4.53
docker/docker C2 10,268 9,468 -7.79 -2.46

ReactiveRaven/jqBootstrapValidation C1 213 209 -1.88 +38.03
infinitered/ProMotion C1 119 155 +30.25 +69.75
nslocum/design-patterns-in-ruby C3 640 922 +44.06 -29.84
jbt/markdown-editor C2 621 667 +7.41 +12.40
mumble-voip/mumble C2 565 583 +3.19 +82.35
Manabu-GT/ExpandableTextView C3 676 729 +7.84 0
apache/flink C3 890 853 -4.04 +14.29
mafintosh/mongojs C1 322 309 -4.04 +14.29
rofl0r/proxychains-ng C3 813 886 +8.98 -6.15
mikeflynn/egg.js C1 584 523 -10.45 +25.34

Summary: Repositories in cluster C1 (slow growth, 49.1% of the repositories)
demand less data to produce reliable predictions. Cluster C1 has also the high-
est percentage of repositories taking advantage of specific models. Furthermore,
specific models improved the predictions of six (out of ten) top systems, from
3.39% to 7.72%. They also improved the predictions of seven (out of ten) bottom
systems, from 1.88% to 44.06%. Therefore, specific models are recommended for
repositories with slow growth (cluster C1) and/or among the ones with less stars.

86 Chapter 5. Predicting the Popularity of GitHub Repositories

RQ #3: What is the accuracy of the repositories rank as predicted using the generic
and specific models?

Figure 5.11 shows scatter plots correlating the real rank and predicted rankings
using generic and specific models. The red line represents the identity function, i.e.,
a perfect match between the real and predicted ranks. Points above this line are
repositories where the predicted rank is higher than the real one (we refer to this kind
of error as an underestimation; e.g., a repository is predicted at the 10th position,
but in fact it is in position 5th). By contrast, points below the identity line have a
predicted rank lower than the real one (we refer to this error as an overestimation;
e.g., a repository is predicted at the 5th position, but in fact it in in position 10th).
Initially, we can observe that both models tend to overestimate many predictions,
i.e., we usually have more points below the identity line. This happened because
468 repositories were created and/or quickly became more popular than the ones in
our dataset. These repositories are called newcomers, in the context of this research
question. Suppose for example that a newcomer appears at rank i; in this case it
increases the rankings of all repositories with a predicted rank greater than i. This
shift in the rankings is not detected by the prediction models we investigate, since they
do not have information about new systems appearing in the rankings. However, we
decide to consider newcomers in this first part of RQ #3 to simulate a situation that
will appear in the practice.

Real

P
re

di
ct

ed

0K
1K

2K
3K

4K

0K 1K 2K 3K 4K

(a) Using generic models

Real

P
re

di
ct

ed

0K
1K

2K
3K

4K

0K 1K 2K 3K 4K

(b) Using specific models

Figure 5.11: Real vs predicted rankings. The red line is the identity function.

5.4. Results 87

To compare the real and the predicted rankings, we use the Spearman’s correla-
tion test. Since the test requires as input two vectors with the same size, we removed
the newcomers from the real rankings. For the generic model, we found a strong corre-
lation between the ranks (rho = 0.9534 and p-value < 0.001). For the specific models,
the correlation is slightly higher (rho = 0.9777 and p-value < 0.001). Figure 5.12 shows
the Spearman’s coefficient for different groups of top-repositories. For the top-16 repos-
itories, the correlation using the generic model is lower than the one using the specific
models (rho = 0.9321 and rho = 0.9821, respectively). For the other top-values values,
this difference decreases. However, the rankings as predicted by the specific models
present slightly higher results in all cases.

16 32 64 128 256 512 1024 2048 4096

Specific Generic

Top Repositories

rh
o

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Figure 5.12: Spearman’s rank correlation rho between predicted and real rankings per
group of top-repositories (p-value < 0.001).

Table 5.5 shows the predicted rank for the top-10 and bottom-10 repositories in
our dataset. The column “Real” represents the real rank in GitHub when our dataset
was collected. The column “Predicted” shows the predicted rank using the generic
(column “Generic”) and the specific models (column “Specific”). Repositories that
were created or became popular after the date we start collecting the time series are
marked with “—”. Finally, the column “Diff” shows the difference between the predicted
and the real rankings. As mentioned, both predictions are more accurate for the top
repositories and tend to overrate the rank of the bottom repositories. For the top-10
repositories, the difference in absolute values between the ranks ranges from 0 to 2
(generic models) and from 0 to 1 (specific models). For the bottom-10 repositories, the

88 Chapter 5. Predicting the Popularity of GitHub Repositories

difference between the ranks ranges from 528 to 1,145 (generic models) and from 520
to 892 (specific models). However, it is important to notice that the distribution of the
number of stars per repository is heavy-tailed Borges et al. [2015]. Therefore, minor
differences in the predicted number of stars can represent a movement of hundreds of
positions in the relative order of a repository. For example, an error of 175 stars in the
number of stars predicted to Apache/Flink is responsible to generate a error of 528
positions in its ranking (from position 4,708 in the real ranking; to position 4,180 in
the ranking predicted using a generic model).

Table 5.5: Real and predicted rankings for the top-10 (first table half) and bottom-10
repositories (second table half), using the generic and the specific models. Marks “—”
indicate repositories that were created and/or became popular after the date we set to
select the repositories considered in this study.

Repository Real Predicted Diff

Generic Specific Generic Specific

jquery/jquery 1 1 1 0 0
robbyrussell/oh-my-zsh 2 2 2 0 0
airbnb/javascript 3 5 3 2 0
h5bp/html5-boilerplate 4 4 5 0 1
meteor/meteor 5 3 4 -2 -1
torvalds/linux 6 8 6 2 0
daneden/animate.css 7 9 8 2 1
facebook/react-native 8 6 7 -2 -1
rails/rails 9 10 10 1 1
docker/docker 10 11 11 1 1

jbt/markdown-editor 4,707 3,908 4,001 -799 -706
apache/flink 4,708 4,180 4,167 -528 -541
google/ion 4,709 — — — —
Manabu-GT/ExpandableTextView 4,710 4,149 4,016 -561 -694
iPaulPro/Android-ItemTouchHelper-Demo 4,711 — — — —
mumble-voip/mumble 4,712 4,011 4,092 -701 -620
mafintosh/mongojs 4,713 4,080 4,164 -633 -549
mikeflynn/egg.js 4,714 3,569 4,194 -1,145 -520
wequick/Small 4,715 — — — —
rofl0r/proxychains-ng 4,716 4,136 3,824 -580 -892

Summary: Prediction models tend to overestimate repositories ranks, specifically
due to the entry of newcomers in the list of popular repositories. However, when
newcomers are not considered, there is a strong correlation between predicted
and real rankings (rho = 0.9534 and 0.9777, for generic and specific models,
respectively.)

5.5. Threats to Validity 89

5.5 Threats to Validity

Measuring popularity using the number of stars. In the investigation reported in this
study, we measure popularity using the number of stars of the GitHub repositories,
as in other studies [Weber and Luo, 2014; Aggarwal et al., 2014]. However, we
highlight that developers can star a repository for other reasons, for example, to create
bookmarks.

Unstar. In GitHub, users can unstar a repository that they starred before. As GitHub
does not provide data about these events, we do not take into account these events in
our study.

Repositories selection. GitHub has 17,136,765 public repositories, including forks (in
June 15, 2016). For this study, we started with the top-5,000 repositories with more
stars and after a cleaning step, we analyze 4,248 repositories. However, we stress that
our goal is to predict popularity of most starred repositories. For example, 12,462,551
repositories (73%) have no stars and probably will never receive one in their lifetime.
In other words, it is probably easier (and less useful) to make predictions for a dataset
with all public repositories in GitHub.

Growth trends. The selection of the number of clusters is a key parameter in clustering
algorithms like KSC. To mitigate this threat, we use the βCV heuristic [Menasce and
Almeida, 2001] to define the best number k of clusters. We also discard cluster C5 from
our evaluation of specific models (RQ #2), since the repositories in this cluster do not
follow a linear growth. Notice, however, that cluster C5 includes only 53 repositories
(1.2%).

5.6 Concluding Remarks

In this study, we use multiple linear regressions to predict the popularity of GitHub
repositories. We found that general models, i.e., models produced using the top GitHub
repositories, start to provide accurate predictions when they are trained with data from
six months and used to predict the number of stars six months ahead (RQ #1). We also
found that specific models, i.e., models produced using repositories that share the same
growth trend, can reduce the average prediction error and produce reliable predictions
using less data. For the most common growth trend in our dataset, which includes
almost half of the repositories, specific models improved significantly the accuracy of the
predictions (RQ #2). Finally, we report that prediction models tend to overestimate

90 Chapter 5. Predicting the Popularity of GitHub Repositories

the repositories ranks. However, when newcomers are not considered, there is a very
strong correlation between predicted and real rankings (RQ #3).

Chapter 6

Conclusion

In this chapter, we present our closing points and arguments. We summarize the key
findings of this thesis (Section 6.1) and review our main contributions (Section 6.2).
Next, in Section 6.3, we discuss other implications of our findings. Finally, we outline
possible ideas for future work (Section 6.4).

6.1 Summary

Social coding platforms are disrupting the way developers collaborate on open source
software development. In addition to version control systems, modern social coding
platforms usually integrate features typical of social networks. For example, inspired
by the like button of such networks, GitHub users can star a repository. However, the
real and practical meaning of “starring a project” was never the subject of an in-depth
and well-founded empirical investigation. For example, in a preliminary study with
400 StackOverflow users, we found that stars are viewed by practitioners as the most
useful measure of popularity on GitHub. Considering this context, in this thesis, we
propose and evaluate—through a set of quantitative and qualitative studies—practical
guidelines and insights to help project managers understand and improve the popularity
of their projects.

First, as result of the study reported in Chapter 3, we confirmed that stars are a
reliable popularity measure; therefore, project managers should track and compare the
number of stars of their projects with competitor ones. We collected historical data
about the number of stars of 5,000 popular GitHub repositories. We used this dataset
to characterize the main factors that impact the number of stars of these projects. We
also proposed, characterized, and validated four common popularity growth patterns,

91

92 Chapter 6. Conclusion

which were derived after clustering the time series that describe the number of stars of
the projects. We summarize our findings in this chapter as follows.

• GitHub developers star repositories mainly to show appreciation to the projects
(52.5%), to bookmark projects for later retrieval (51.1%), and because they used
or are using the projects (36.7%). Particularly, three out of four developers
consider the number of stars before using or contributing to GitHub projects.

• JavaScript is the language with the highest number of popular repositories (me-
dian of 3,163 stars). The top-3 most popular application domains are (1) systems
software, (2) applications, and (3) web libraries and frameworks. Repositories
owned by organizations tend to be more popular than the ones owned by individ-
uals. We did not find a correlation between numbers of stars and the repository’s
age; however, we found a low correlation with commits, and a moderate correla-
tion with contributors and forks.

• Unstar events (i.e., when users remove their stars) do not have a major influ-
ence on the popularity of GitHub repositories. Furthermore, projects containing
documentation are those who developers lose their interest faster. Finally, we
found that repositories have a tendency to receive more stars right after their
first public release. After this period, the growth rate tends to stabilize.

• Slow growth is the dominant growth pattern, including 58.2% of the repositories
in our dataset. Then, moderate growth is the second pattern with more reposito-
ries (30.0%), followed by fast growth (9.3%). Finally, we show that viral growth
includes repositories with a massive growth in their number of stars. However, it
is a less common pattern, including 2.3% of the repositories.

• Age is the most influential feature to discriminate repositories in the proposed
growth patterns. The second and third most influential features are number of
Issues and Last Push, respectively. Moreover, three out of four features from the
Activity dimension are in the top-10 most discriminative ones, which confirms
the importance of constantly maintaining and evolving open source projects.

• According to developers of the studied projects, the major reason for slow growth
is deprecation or lack of activity (53.8%). Regarding moderate growth, there
are two conflicting sentiments on the developers’ answers: positive sentiments
(e.g., active promotion) and negative sentiments (e.g., niche audience). For fast

6.2. Contributions 93

growth, the three major reasons are active promotion, usage of trending technolo-
gies, and innovative project. Finally, the major reason for viral growth is also
promotion on social media sites (72.7%).

In order to increase the chances of long-term success, it is very important to
continually attract more participants and contributors to open source projects. In
Chapter 4, we investigated the most common promotion channels used by the top-
100 projects on GitHub, by number of stars. We concluded that promotion is an
important aspect of open source project management, which should be emphasized by
project leaders. For example, most popular GitHub projects (two thirds) use at least
one promotion channel; half of the projects invest on two channels. We also contrasted
the usage of promotion channels by popular projects and by random ones. We observed
that the number of projects using the promotion channels is significantly lower among
the random projects. Finally, we studied the impact of promoting projects on popular
news aggregator site, particularly on Hacker News. We showed that successful posts
usually have a relevant impact on the popularity of GitHub projects. However, only
10% of the Hacker News posts have some success.

Finally, in Chapter 5, we studied the use multiple linear regressions to predict
the popularity of GitHub repositories. Specifically, we computed and investigated the
use of generic prediction models, which are the ones produced using all projects in the
dataset, and the use of specific prediction models, which are the ones produced from
repositories sharing the same growth pattern. We found that general models start to
provide accurate predictions when they are trained with data from six months and used
to predict the number of stars six months ahead. Moreover, specific models improve
significantly the accuracy of the predictions and reduce the amount of data needed to
build the prediction models. Finally, we evaluated the ability of the prediction models
to predict the rank of a repository after a time. We reported that the proposed pre-
diction models tend to overestimate the repositories ranks; however, when newcomers
are not considered, there is a strong correlation between predicted and real rankings.

6.2 Contributions

We summarize our contributions as follows:

• We reveal the developers motivations for starring GitHub projects through
a large-scale investigation with 791 participants. We also reveal that developers
star repositories mainly to show appreciation to projects. We also reveal that

94 Chapter 6. Conclusion

three-quarters of the participants consider the number of stars before
using or contributing to a project.

• We quantitatively characterize the popularity of a large set of 5,000
GitHub repositories. We show how popularity varies per programming lan-
guage, application domain, and repository owner. We correlate popularity with
other characteristics of a repository, like age, number of commits, number of con-
tributors, and number of forks. Finally, we reveal that new features have a major
impact on popularity.

• We propose four patterns of popularity growth: Slow, Moderate, Fast, and
Viral. We also identify endogenous factors that distinguish the repositories in
each growth pattern (e.g., frequent updates, development history, and frequent
releases). Moreover, we reveal the perceptions of repositories’ owners on these
patterns.

• We address the most common channels used by developers to promote
open source projects. We list the most common promotion channels and show
how often developers promote their projects on those channels. We differ the
usage of promotion channels among popular and random projects and show the
impact of promotion on a modern social news aggregator site.

• We propose and evaluate the use multiple linear regression models to pre-
dict the popularity of GitHub repositories. We show that generic prediction
models start to provide accurate predictions when they are trained with data
from six months and used to predict the number of stars six months ahead. We
also show that specific prediction models can reduce the average prediction error
and reduce the amount of data required to provide predictions.

• We developed an open-source supporting website, called GitTrends.io
(http://gittrends.io), that developers can use to visualize the popularity his-
tory of GitHub projects, compare the repositories growth with other ones, in
order to support their decisions on use open source projects.

• We provide a public dataset (https://doi.org/10.5281/zenodo.1183752)
with the application domain of 5,000 GitHub repositories. This dataset
can support research in a variety of Software Engineering problems and contexts.

http://gittrends.io
https://doi.org/10.5281/zenodo.1183752

6.3. Key Findings and Discussion 95

6.3 Key Findings and Discussion

In Chapter 3, we report that three out of four developers consider the number of stars
before using or contributing to GitHub projects. This result indicates that projects
that are already popular tend to be selected in place of the less popular ones. In
the literatury, this phenomenon is often referred to as the “rich get richer” [Wu et al.,
2007; Gábor Kondor et al., 2014; Fang et al., 2014], meaning that the most popular
repositories tend to attract more users and contributors than the less popular ones.

We also report that GitHub developers star repositories mainly to show appreci-
ation (52.5%), to bookmark (51.1%), and because they used or are using the projects
(36.7%). These results show that GitHub stars is a relevant metric that effectively
groups different motivations, which can be summarized in a positive signal to the
repository’ maintainers.

In Chapter 3, we characterize the number of stars of GitHub projects. Regarding
the selection of GitHub projects for empirical studies based on number of stars by
empirical software engineering researchers, the following observations are derived from
our findings: (1) this selection favors JavaScript systems (31.1% of the systems in our
dataset) and also web libraries and frameworks (30.7% of the dataset systems); (2) this
selection might result in a relevant number of projects that are not software systems
(8.6% of the projects in our dataset are tutorials, books, awesome-lists, etc); (3) this
selection favors large projects (in terms of number of contributors) with many forks, as
we concluded when investigating RQ #2 (correlation analysis); (4) additionally, after
examining RQ #3, we recommend researchers (and also practitioners) to check whether
the stars are not gained in a short time interval, for example, right after the project
public release.

In a survey with project owners, we reveal that the major reason for moderate,
fast, and viral growth is active promotion. Regarding the selection of GitHub projects
based on number of stars by researchers, the following observations are derived from
our findings: (1) this selection might favor projects with successful marketing and
advertising strategies, despite the adoption of well-established software engineering
practices; (2) it is particularly important to check whether the projects have a viral
growth behavior (e.g., chrislgarry/Apollo-11 gained 19,270 stars in just two weeks).

Regarding the strategies for increasing the number of stars of GitHub reposito-
ries, active promotion is the most consistent one according to project owners. Indeed,
in Chapter 4 we show that successful posts on Hacker News have a positive impact
on the number of stars on the days following these posts. Moreover, we reveal that
more that 61% of these posts relate to announcements of software releases. The cor-

96 Chapter 6. Conclusion

relation between releases and the increase on the number of stars was also explored in
Section 3.4, where we show that there is an acceleration in the number of stars gained
after minor and major releases. In summary, promoting mainly releases on social news
aggregator sites may increase the chances of GitHub projects receiving more stars.

6.4 Future Work

Future work includes an investigation of repositories that have few stars, including
a comparison with the most starred ones. It would also be interesting to correlate
repository’s popularity and language popularity and in this way to investigate relative
measures of popularity. For example, if we restrict the analysis to a given language,
a Scala repository can be considered more popular than a JavaScript one, although
having less stars. Finally, the use of a different technique (e.g., Scott-Knott ESD) may
provide additional insights on the factors that impact the classification of a project in
the proposed growth patterns [Tantithamthavorn et al., 2017].

Regarding the channels used by developers to promote their projects, future work
include an investigation of the content promoted by the projects. For example, in
Chapter 4, we showed that successful Hacker News posts usually have a relevant impact
on the popularity of GitHub projects. Thus, the understanding of the content and
context of successful posts can guide developers on defining promotion strategies for
their projects.

Regarding the popularity prediction, future work may include the investigation
of prediction models that also consider the programming languages. In Chapter 5, we
reported that models that consider the repository growth pattern improve the predic-
tions and reduce the amount of data required to predict. Thus, the consideration of
other characteristics of repositories may improve the predictions’ accuracy. Finally, the
investigation of different approaches to predict popularity, e.g., epidemic models [Wang
et al., 2013] and machine learning models [Mohri et al., 2012], may improve our current
results.

Bibliography

Aggarwal, K., Hindle, A., and Stroulia, E. (2014). Co-evolution of project documenta-
tion and popularity within GitHub. In 11th Working Conference on Mining Software
Repositories (MSR), pages 360--363.

Ahmed, M., Spagna, S., Huici, F., and Niccolini, S. (2013). A peek into the future:
predicting the evolution of popularity in user generated content. In 6th International
Conference on Web Search and Data Mining (WSDM), pages 607--616.

Ali, M., Joorabchi, M. E., and Mesbah, A. (2017). Same app, different app stores: A
comparative study. In 4th International Conference on Mobile Software Engineering
and Systems (MOBILESoft), pages 79--90.

Aniche, M., Treude, C., Steinmacher, I., Wiese, I., Pinto, G., Storey, M.-A., and
Gerosa, M. (2018). How modern news aggregators help development communities
shape and share knowledge. In 40th International Conference on Software Engineer-
ing (ICSE), pages 1–12.

Archer, E. (2013). rfPermute: Estimate Permutation p-Values for Random Forest
Importance Metrics.

Babaei, M., Kulshrestha, J., Chakraborty, A., Benevenuto, F., Gummadi, K. P., and
Weller, A. (2018). Purple Feed: Identifying High Consensus News Posts on Social
Media. In AAAI/ACM Conference on Artifical Intelligence, Ethics & Society (AIES).

Bajic, D. and Lyons, K. (2011). Leveraging social media to gather user feedback
for software development. In 2nd International Workshop on Web 2.0 for Software
Engineering, pages 1--6.

Begel, A., Bosch, J., and Storey, M. A. (2013). Social networking meets software
development: Perspectives from GitHub, MSDN, Stack Exchange, and TopCoder.
IEEE Software, 30(1):52–66.

97

98 Bibliography

Bianco, V. D., Lavazza, L., Lenarduzzi, V., Morasca, S., Taibi, D., and Tosi, D. (2012).
A study on OSS marketing and communication strategies. In 8th International
Conference on Open Source Systems (OSS), pages 338--343.

Bissyande, T. F., Thung, F., Lo, D., Jiang, L., and Reveillere, L. (2013). Popular-
ity, interoperability, and impact of programming languages in 100,000 open source
projects. In 37th Annual International Computer Software and Applications Confer-
ence (COMPSAC), pages 303--312.

Blincoe, K., Sheoran, J., Goggins, S., Petakovic, E., and Damian, D. (2016). Under-
standing the popular users: Following, affiliation influence and leadership on GitHub.
Information and Software Technology, 70:30 – 39.

Borges, H., Hora, A., and Valente, M. T. (2016). Understanding the factors that impact
the popularity of GitHub repositories. In 32nd International Conference on Software
Maintenance and Evolution (ICSME), pages 1--11.

Borges, H., Valente, M. T., Hora, A. C., and Coelho, J. (2015). On the popularity of
GitHub applications: A preliminary note. CoRR, abs/1507.00604.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5--32.

Capra, E., Francalanci, C., Merlo, F., and Rossi-Lamastra, C. (2011). Firms’ involve-
ment in open source projects: a trade-off between software structural quality and
popularity. Journal of Systems and Software, 84(1):144–161.

Chatzopoulou, G., Sheng, C., and Faloutsos, M. (2010). A first step towards under-
standing popularity in YouTube. In 30th IEEE International Conference on Com-
puter Communications Workshops (INFOCOM), pages 1--6.

Coelho, J. and Valente, M. T. (2017). Why modern open source projects fail. In 25th
International Symposium on the Foundations of Software Engineering (FSE), pages
186--196.

Comino, S., Manenti, F. M., and Parisi, M. L. (2007). From planning to mature: On
the success of open source projects. Research Policy, 36(10):1575--1586.

Corral, L. and Fronza, I. (2015). Better code for better apps: a study on source code
quality and market success of Android applications. In 2nd International Conference
on Mobile Software Engineering and Systems (MOBILESoft), pages 22–32.

Bibliography 99

Cosentino, V., Izquierdo, J. L. C., and Cabot, J. (2017). A systematic mapping study
of software development with GitHub. IEEE Access, 5:7173–7192.

Couto, C., Pires, P., Valente, M. T., Bigonha, R., and Anquetil, N. (2014). Predicting
software defects with causality tests. Journal of Systems and Software, 93:24--41.

Cruzes, D. S. and Dyba, T. (2011). Recommended steps for thematic synthesis in
software engineering. In 5th International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), pages 275--284.

Datta, D. and Kajanan, S. (2013). Do app launch times impact their subsequent
commercial success? an analytical approach. In International Conference on Cloud
Computing and Big Data (CloudCom-Asia), pages 205–210.

Fang, Y., Huang, H., Jian, P., Xin, X., and Feng, C. (2014). Self-adaptive topic
model: A solution to the problem of “rich topics get richer”. China Communications,
11(12):35–43.

Figueiredo, F. (2013). On the prediction of popularity of trends and hits for user
generated videos. In 6th International Conference on Web Search and Data Mining
(WSDM), pages 741--746.

Figueiredo, F., Almeida, J. M., Gonçalves, M. A., and Benevenuto, F. (2014). On the
dynamics of social media popularity. ACM Transactions on Internet Technology,
14(4):1--23.

Figueiredo, F., Benevenuto, F., and Almeida, J. M. (2011). The tube over time:
Characterizing popularity growth of YouTube videos. In 4th ACM International
Conference on Web Search and Data Mining (WSDM), pages 745--754.

Freedman, D. A. (2009). Statistical Models: Theory and Practice. Cambridge University
Press.

Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., and Sadeh, N. (2013). Why people hate
your app: making sense of user feedback in a mobile app store. In 19th International
Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 1276--1284.

Gousios, G., Pinzger, M., and van Deursen, A. (2014). An exploratory study of the pull-
based software development model. In 36th International Conference on Software
Engineering (ICSE), pages 345--355.

100 Bibliography

Gousios, G., Zaidman, A., Storey, M.-A., and van Arie Deursen (2015). Work practices
and challenges in pull-based development: the integrator’s perspective. In 37th IEEE
International Conference on Software Engineering (ICSE), pages 358--368.

Guerrouj, L., Azad, S., and Rigby, P. C. (2015). The influence of app churn on app
success and StackOverflow discussions. In 22nd International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 321--330.

Guerrouj, L. and Baysal, O. (2016). Investigating the Android apps’ success: an em-
pirical study. In 24th International Conference on Program Comprehension (ICPC),
pages 1--4.

Gábor Kondor, D., Pósfai, M., Csabai, I., and Vattay (2014). Do the rich get richer?
an empirical analysis of the bitcoin transaction network. PLOS ONE, 9(2):1–10.

Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S. (2012). A systematic lit-
erature review on fault prediction performance in software engineering. Transactions
on Software Engineering, 38(6):1276--1304.

Hansson, C., Dittrich, Y., and Randall, D. (2006). How to include users in the de-
velopment of off-the-shelf software: A case for complementing participatory design
with agile development. In 39th Annual Hawaii International Conference on System
Sciences (HICSS), pages 175c–175c.

Hartigan, J. A. (1975). Clustering algorithms. John Wiley & Sons, Inc.

Hinkle, D. E., Wiersma, W., and Jurs, S. G. (2003). Applied Statistics for the Behav-
ioral Sciences. Houghton Mifflin.

Hora, A., Valente, M. T., Robbes, R., and Anquetil, N. (2016). When should in-
ternal interfaces be promoted to public? In 24th International Symposium on the
Foundations of Software Engineering (FSE), pages 280--291.

Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P. S., and Zhang, L. (2016). Why and
how developers fork what from whom in GitHub. Empirical Software Engineering,
22(1):1--32.

Jiang, J., Lo, D., Ma, X., Feng, F., and Zhang, L. (2017). Understanding inactive yet
available assignees in GitHub. Information and Software Technology, 91:44 – 55.

Jiang, J., Zhang, L., and Li, L. (2013). Understanding project dissemination on a social
coding site. In 20th Working Conference on Reverse Engineering (WCRE), pages
132--141.

Bibliography 101

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., and Damian,
D. (2014). The promises and perils of mining GitHub. In 11th Working Conference
on Mining Software Repositories (MSR), pages 92--101.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., and Damian,
D. (2015). An in-depth study of the promises and perils of mining GitHub. Empirical
Software Engineering, 21(5):1--37.

Lee, G. and Raghu, T. (2014). Determinants of mobile apps’ success: evidence from
the app store market. Journal of Management Information Systems, 31(2):133--170.

Lehmann, J., alves, G., Ramasco, J. J., and Cattuto, C. (2012). Dynamical classes
of collective attention in Twitter. In 21st International Conference on World Wide
Web (WWW), pages 251--260.

Linares-Vasquez, M., Bavota, G., Bernal-Cardenas, C., Penta, D. M., Oliveto, R., and
Poshyvanyk, D. (2013). API change and fault proneness: a threat to the success of
Android apps. In 9th Foundations of Software Engineering (FSE), pages 477--487.

Ma, W., Chen, L., Zhou, Y., and Xu, B. (2016). What are the dominant projects in
the GitHub Python ecosystem? In 3rd International Conference on Trustworthy
Systems and their Applications (TSA), pages 87–95.

Ma, Z., Sun, A., and Cong, G. (2012). Will this #hashtag be popular tomorrow?
In 35th International Conference on Research and Development in Information Re-
trieval (SIGIR), pages 1173--1174.

Ma, Z., Sun, A., and Cong, G. (2013). On predicting the popularity of newly emerging
hashtags in Twitter. Journal of the American Society for Information Science and
Technology, 64(7):1399--1410.

Martin, W., Sarro, F., and Harman, M. (2016). Causal impact analysis for app releases
in Google Play. In 24th International Symposium on the Foundations of Software
Engineering (FSE), pages 1--12.

McIlroy, S., Ali, N., and Hassan, A. E. (2016). Fresh apps: an empirical study of
frequently-updated mobile apps in the google play store. Empirical Software Engi-
neering, 21(3):1346--1370.

Menasce, D. A. and Almeida, V. (2001). Capacity Planning for Web Services: Metrics,
Models, and Methods. Prentice Hall.

102 Bibliography

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of machine
learning. MIT press.

Mojica Ruiz, I. J., Nagappan, M., Adams, B., Berger, T., Dienst, S., and Hassan, A. E.
(2014). Impact of ad libraries on ratings of Android mobile apps. IEEE Software,
31(6):86--92.

Oshiro, T. M., Perez, P. S., and Baranauskas, J. (2012). How many trees in a random
forest? In 8th International Workshop on Machine Learning and Data Mining in
Pattern Recognition (MLDM), pages 154--168.

Pagano, D. and Maalej, W. (2011). How do developers blog?: An exploratory study.
In 8th Working Conference on Mining Software Repositories (MSR), pages 123--132.

Palomba, F., Vasquez, L.-M., Bavota, G., Oliveto, R., Penta, D. M., Poshyvanyk, D.,
and Lucia, D. A. (2015). User reviews matter! tracking crowdsourced reviews to
support evolution of successful apps. In 31st International Conference on Software
Maintenance and Evolution (ICSME), pages 291–300.

Papamichail, M., Diamantopoulos, T., and Symeonidis, A. (2016). User-perceived
source code quality estimation based on static analysis metrics. In 2nd International
Conference on Software Quality, Reliability and Security (QRS), pages 100–107.

Pinto, H., Almeida, J. M., and Alves, G. A. (2013). Using early view patterns to
predict the popularity of YouTube videos. In 6th International Conference on Web
Search and Data Mining (WSDM), pages 365–374.

Provost, F. and Fawcett, T. (2001). Robust classification for imprecise environments.
Machine learning, 42(3):203--231.

Rakha, M. S., Shang, W., and Hassan, A. E. (2016). Studying the needed effort for
identifying duplicate issues. Empirical Software Engineering, 21(5):1960--1989.

Roy, S. D., Mei, T., Zeng, W., and Li, S. (2013). Towards cross-domain learning for
social video popularity prediction. IEEE Transactions on Multimedia, 15(6):1255--
1267.

Sajnani, H., Saini, V., Ossher, J., and Lopes, C. V. (2014). Is popularity a measure
of quality? an analysis of Maven components. In 30th Software Maintenance and
Evolution (ICSME), pages 231–240.

Bibliography 103

Singer, L., Filho, F. F., and Storey, M.-A. (2014). Software engineering at the speed of
light: how developers stay current using Twitter. In 36th International Conference
on Software Engineering (ICSE), pages 211--221.

Szabo, G. and Huberman, B. A. (2010). Predicting the popularity of online content.
Communications of the ACM, 53(8):80.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and Matsumoto, K. (2017). An
empirical comparison of model validation techniques for defect prediction models.
IEEE Transactions on Software Engineering, 43(1):1--18.

Tian, Y., Nagappan, M., Lo, D., and Hassan, A. E. (2015). What are the characteristics
of high-rated apps? a case study on free Android applications. In 31st International
Conference on Software Maintenance and Evolution (ICSME), pages 1--10.

Tsay, J., Dabbish, L., and Herbsleb, J. (2014). Influence of social and technical factors
for evaluating contribution in GitHub. In 36th International Conference on Software
Engineering (ICSE), pages 356--366.

Tsur, O. and Rappoport, A. (2012). What’s in a hashtag?: content based prediction of
the spread of ideas in microblogging communities. In 5th International Conference
on Web Search and Data Mining (WSDM), pages 643--652.

Vasilescu, B., Filkov, V., and Serebrenik, A. (2013). Stackoverflow and GitHub: Asso-
ciations between software development and crowdsourced knowledge. In 6th Inter-
national Conference on Social Computing (SocialCom), pages 188--195.

Vlas, R., Robinson, W., and Vlas, C. (2017). Evolutionary software requirements
factors and their effect on open source project attractiveness. In 50th Hawaii Inter-
national Conference on System Sciences (HICSS), pages 1--11.

Wang, H., Li, Y., Feng, Z., and Feng, L. (2013). Retweeting analysis and prediction in
microblogs: An epidemic inspired approach. China Communications, 10(3):13–24.

Weber, S. and Luo, J. (2014). What makes an open source code popular on GitHub?
In 13th IEEE International Conference on Data Mining Workshop (ICDW), pages
851--855.

Wolpert, D. H. and Macready, W. G. (1999). An efficient method to estimate bagging’s
generalization error. Machine Learning, 35(1):41--55.

104 Bibliography

Wu, M., Jiang, Q., and Zhang, Y. (2007). Worrisome rich-get-richer? not the true
story! In 7th International Conference on Computer and Information Technology
(CIT), pages 194–199.

Wu, Y., Kropczynski, J., Shih, P. C., and Carroll, J. M. (2014). Exploring the ecosys-
tem of software developers on GitHub and other platforms. In 17th Conference on
Computer Supported Cooperative Work & Social Computing (CSCW), pages
265--268.

Yang, J. and Leskovec, J. (2011). Patterns of temporal variation in online media. In 4th
International Conference on Web Search and Data Mining (WSDM), pages 177--186.

Yates, R., Neto, B., et al. (1999). Modern information retrieval. ACM press New York.

Yu, Y., Wang, H., Filkov, V., Devanbu, P., and Vasilescu, B. (2015). Wait for it: deter-
minants of pull request evaluation latency on GitHub. In 12th Working Conference
on Mining Software Repositories (MSR), pages 367--371.

Zhou, S., Stănciulescu, Ş., Leßenich, O., Xiong, Y., Wąsowski, A., and Kästner, C.
(2018). Identifying features in forks. In 40th International Conference on Software
Engineering (ICSE), pages 1–12.

Zhu, J., Zhou, M., and Mockus, A. (2014). Patterns of folder use and project popularity:
A case study of GitHub repositories. In 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ISEM), pages 1--4.

	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem and Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Publications
	1.5 Thesis Outline

	2 Background and Related Work
	2.1 Social Coding and GitHub
	2.2 Software Popularity
	2.3 Popularity Prediction
	2.4 Software Promotion
	2.5 Concluding Remarks

	3 Characterizing the Popularity of GitHub Projects
	3.1 Introduction
	3.2 Dataset
	3.3 Survey Study
	3.3.1 Survey Design
	3.3.2 Survey Results

	3.4 Characterization Study
	3.4.1 Results

	3.5 Popularity Growth Patterns
	3.5.1 Proposed Growth Patterns

	3.6 Growth Patterns Characterization
	3.6.1 Methodology
	3.6.2 Most Influential Factors

	3.7 Developers' Perceptions on Growth Patterns
	3.7.1 Survey Design
	3.7.2 Survey Results

	3.8 Threats to Validity
	3.9 Conclusion

	4 Promotion on Open Source Projects
	4.1 Introduction
	4.2 Study Design
	4.3 Results
	4.4 Threats to Validity
	4.5 Concluding Remarks

	5 Predicting the Popularity of GitHub Repositories
	5.1 Introduction
	5.2 Study Design
	5.3 Dataset
	5.4 Results
	5.5 Threats to Validity
	5.6 Concluding Remarks

	6 Conclusion
	6.1 Summary
	6.2 Contributions
	6.3 Key Findings and Discussion
	6.4 Future Work

	Bibliography

