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RESUMO 

 

A presença de grãos defeituosos é um importante parâmetro diretamente 
relacionado à qualidade do café, pois é associado a características sensoriais 
indesejáveis na bebida. Os grãos defeituosos que mais contribuem para a 
depreciação da bebida são os grãos pretos, ardidos e imaturos. O método 
convencional empregado na avaliação da qualidade de cafés torrados é baseado na 
análise sensorial da bebida ou “prova de xícara”, que demanda considerável tempo 
para ser executado, requer provadores treinados e depende de um controle rigoroso 
do grau de torração. Diante do exposto, este estudo teve como objetivo avaliar o 
potencial das técnicas espectroscópicas FTIR e NIR para a avaliação da qualidade de 
cafés com base na presença de grãos defeituosos. Grãos de café foram manualmente 
separados em cinco classes: sadio, ardido claro, ardido escuro, preto e imaturo. Cada 
uma das classes foi processada a três temperaturas (220 °C, 235 °C e 250 °C) e três 
níveis de torração (claro, médio e escuro) obtendo-se nove condições de torração. As 
amostras de café torrado foram então moídas, peneiradas e analisadas por DRIFTS, 
ATR-FTIR e NIR em um estudo classificatório. Os resultados de PCA indicaram que, 
com base nos espectros obtidos por DRIFTS, é possível discriminar as amostras em 
quatro grupos: (a) sadio, (b) preto, (c) ardido escuro e (d) ardido claro, com café 
imaturo dispersado entre os cafés ardidos. ATR-FTIR proporcionou a discriminação 
das amostras, apesar de não efetivamente, em dois principais grupos: (a) sadio e 
ardido claro, e (b) preto, ardido escuro e imaturo; enquanto NIR proporcionou a 
discriminação das amostras em três principais grupos: (a) sadios, ardido claro e 
imaturo, (b) ardido escuro e (c) preto. Nas três técnicas a variância entre as amostras 
levou à discriminação de cafés prioritariamente por suas classes, independentemente 
das suas condições de torração. Os modelos de classificação para os espectros 
obtidos por DRIFTS foram desenvolvidos por LDA enquanto que os modelos para 
ATR-FTIR e NIR foram desenvolvidos por rede Elástica. Porcentagens altas de 
amostras corretamente classificadas (até 100%) foram obtidas nos três modelos 
desenvolvidos. As variáveis discriminantes que contribuíram para a correta 
classificação de amostras nos modelos desenvolvidos por rede Elástica, para os 
dados de ATR-FTIR e NIR, foram extraídas e proporcionaram a seguinte 
interpretação dos modelos: (a) café sadio foi diretamente relacionado a altos teores 
de carboidratos e lipídios e baixos teores de proteína e/ou aminoácidos e cafeína; (b) 
café ardido claro foi relacionado a altos teores de carboidratos e cafeína; (c) café 
ardido escuro foi diretamente relacionado a altos teores de ácidos alifáticos e baixos 
teores de lipídios; (d) café preto foi relacionado a níveis altos proteínas e/ou 
aminoácidos e baixos níveis de lipídios; e (e) café imaturo foi relacionado a altos 
níveis de proteínas e/ou aminoácidos e cafeína e baixo conteúdo de lipídios. Misturas 
de grãos sadios e defeituosos, com %defeitos variando de 0% a 30% em passos de 
3%, foram produzidas e analisadas por ATR-FTIR e NIR para um estudo quantitativo. 
PLSR foi utilizada para o desenvolvimento dos modelos quantitativos que 
proporcionaram resultados satisfatórios. Valores de RMSEP baixos como 2,6% e 
valores de R2 altos como 0.956 no conjunto de validação foram obtidos. De um modo 
geral, os modelos desenvolvidos com espectros obtidos por NIR apresentaram-se 
mais robustos e acurados em relação aos modelos de ATR-FTIR. 
 
Palavras-chave: café, grãos defeituosos, FTIR, NIR.   
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ABSTRACT 

 

A major parameter directly related to coffee quality is the presence of defective 
beans, which impart negative sensory aspects to the beverage. The defects that 
contribute the most to the depreciation of the beverage quality are black, sour and 
immature beans. The conventional method used to assess the quality of roasted 
coffees is based on sensory evaluation, which, although reliable, is time-consuming 
and requires trained cupper experts. In view of the aforementioned, the objective of 
the present study was to evaluate the potential of FTIR and NIR spectroscopy as 
practical techniques to assess the quality of coffees based on the presence of 
defective beans. Coffee beans were manually sorted into five classes: black, dark 
sour, immature, light sour and non-defective. Each of the coffee classes was roasted 
at three temperatures (220 °C, 235 °C and 250 °C) and to three roasting degrees 
(light, medium and dark) obtaining nine roasting conditions. Roasted coffee samples 
were ground, sieved and analyzed by DRIFTS, ATR-FTIR and NIR for a classification 
study. Results from PCA indicated that based on DRIFTS spectra, coffee samples 
could be discriminated into four major groups: (a) non-defective, (b) black, (c) dark 
sour and (d) light sour, with immature beans scattered among the sour samples. ATR-
FTIR provided the discrimination of the coffee samples, although not clearly, into two 
groups: (a) non-defective and light sour and (b) black, dark sour and immature, and 
NIR provided the discrimination into three major groups: (a) non-defective, light sour 
and immature, (b) dark sour, and (c) black. At all cases the variance among the 
samples led to the discrimination of the coffees primarily by their classes, regardless of 
roasting degree. Classification models for DRIFTS spectra were developed by LDA 
while classification models for ATR-FTIR and NIR were developed by Elastic net. High 
percentages of correct classification, up to 100%, were achieved with each of the 
techniques employed. The discriminating variables that contributed to the correct 
classification of the samples from the Elastic net models, for ATR-FTIR and NIR data, 
were extracted and provided the following interpretation of the models: (a) non-
defective coffee was directly related to high levels of carbohydrates and lipids and 
lower levels of proteins and/or amino acids and caffeine; (b) light sour coffee was 
related to high levels of carbohydrates and caffeine; (c) dark sour coffee was directly 
associated with high levels of aliphatic acids and low levels of lipids; (d) black coffee 
was related to high levels of proteins and/or amino acids and low levels of lipids; and 
(e) immature coffee was related to high levels of proteins and/or amino acids and 
caffeine and low levels of lipids. In a second part of this study, blends of defective in 
admixture with non-defective coffee, with %defects ranging from 0% to 30% in steps of 
3%, were produced and analyzed by ATR-FTIR and NIR for a quantification assay. 
PLSR was used to construct the models that provided satisfactory results. RMSEP 
values as low as 2.6% and R2 values as high as 0.956 in the validation set were 
achieved. Overall, NIR overcame ATR-FTIR in terms of robustness and accuracy. 
 
Key-words: coffee, defective beans, FTIR, NIR.  
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1. INTRODUCTION 

 

The term ‘quality’ is officially defined by the International Organization for 

Standardization (ISO) as “the extent to which a group of intrinsic features (physical, 

sensorial, behavioral, temporal, ergonomic, functional, etc.) satisfies the requirements, 

where requirement means need or expectation which may be explicit, generally implicit 

or binding” (ISO, 2000). Thus, product quality can assume different meanings for 

consumers, producers and regulating organizations. In the case of coffee, quality may 

result from factors like the production system, the aspect and chemical composition of 

the green or roasted beans, and to the final beverage characteristics (RIBEIRO et al., 

2011).  

The quality of the raw bean is determinant in the coffee commercialization 

process and price quotations, and can be assessed by many physical and sensory 

parameters. Although time-consuming and dependent on trained cupper experts 

(FERIA-MORALES, 2002; PETRACCO et al., 2005), the sensory analysis or ‘cupping’ is 

an important and reliable method for this purpose. Each producing country weighs 

sensory characteristics in a different way, and this parameter must be considered as 

specific to each commercial origin (BEE et al., 2005). In Brazil, for example, coffees are 

classified based on their cup quality in seven categories: strictly soft, soft, softish, hard, 

rioysh, rio and rio zona (BRASIL, 2010). On the other hand, Kenya, Colombia and 

Central American countries have their own cup quality classification (BEE et al., 2005). 

It is important to mention that the sensory parameters of the raw coffee are ideally 

evaluated when roasting and grinding are conducted under controlled conditions. The 

Specialty Coffee Association of America, that maintains standards for the classification 

of specialty coffees in an international level, recommends that, to most accurately 

assess the quality of coffees, the beans must be roasted to a light to light-medium 

degree of roast, thus the cupper can clearly perceive the flavors and fragrances of the 

coffee. In addition, the samples should be ground immediately prior to cupping, no more 

than 15 minutes before infusion with water (SCAA, 2009).  

In spite of being reliable for the classification of raw beans, most of times the 

‘cupping’ is not suitable for the classification and inspection of roasted coffees from the 

market. This happens because there is no previous control of the roasting conditions, 

and low-grade coffees are generally roasted to a dark roasting degree to mask 
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unpleasant flavors and/or aromas. Besides the exposed drawback, in general, 

consumer demands related to food quality have resulted in an enormous increase in 

food standards, moving to zero-defects (TRIENEKENS and ZUURBIER, 2008). As a 

result, future technologies for the assessment of food quality will require sensitivity, 

miniaturization of instrumentation for portable use and simple sample preparation steps 

(CHO and KANG, 2011), contrary to the current sensory-based method used to assess 

the quality of coffees. Thus, there is a need to develop fast and reliable methods to 

assess the quality of roasted coffees.  

A good example of such rapid, non-destructive and accurate fingerprinting 

techniques is infrared spectroscopy (PETRACCO et al., 2005, RODRIGUEZ-SAONA 

and ALLENDORF, 2011). In particular, much attention has been given to Fourier 

transform infrared (FTIR) spectroscopy, which detects fundamental molecular vibrations 

as a result of molecular absorption of mid-infrared radiation, and NIR spectroscopy, 

which measures broad overtone and combination bands of fundamental molecular 

vibrations (LARKIN, 2011). Many studies have shown that these techniques in 

association with multivariate statistics can be successfully applied to the analysis of 

crude, roasted and ground coffee and the coffee beverage. FTIR has been applied to 

the discrimination of arabica and robusta varieties (KEMSLEY et al., 1995), detection of 

adulterants (BRIANDET et al., 1996, REIS et al., 2013), discrimination between 

decaffeinated and regular coffees (RIBEIRO et al., 2010), evaluation of roasting degree 

(LYMAN et al., 2003, WANG and LIM, 2012, WANG et al., 2011) and geographical 

authentication (WANG et al., 2009). NIR spectroscopy has been applied to the 

discrimination and quantification of arabica and robusta blends (ESTE AN-D E  et al., 

2004a, PIZARRO et al., 2007a, DOWNEY et al., 1997, DOWNEY and BOUSSION, 

1996), quantification of caffeine, theobromine and theophylline (HUCK et al., 2005), 

evaluation of roasting degree (ALESSANDRINI et al., 2008) and prediction of sensory 

properties (ESTEBAN-DIEZ et al., 2004b, RIBEIRO et al., 2011).  

In the present study, infrared spectroscopy is applied to assess the quality of 

roasted coffees. Specifically, the proposed methodology is based on the presence of 

defective beans. Defective beans are directly related to coffee quality, imparting 

negative sensory aspects to the beverage. Volatile substances from defective beans are 

often perceived at extremely low levels, masking the pleasant aroma of the non-

defective beans (BEE et al., 2005). The defects that contribute the most to the 

depreciation of the beverage quality are black beans, associated with a heavy and ashy 
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flavor; sour beans, related to sour, acetic, and oniony tastes; and immature beans, that 

impart astringency and bitterness to the beverage (BEE et al., 2005, CLARKE, 1987b). 

The negative impact of such beans has led the scientific community to devote much 

effort to the characterization of defects from a chemical, physical and morphological 

point of view (BEE et al., 2005, VASCONCELOS et al., 2007, OLIVEIRA et al., 2006, 

FRANCA et al., 2005b, FRANCA et al., 2005a, RAMALAKSHMI et al., 2007).  

Recently, CRAIG et al. (2011, 2012b) applied FTIR, using different 

measurement techniques, for the classification of defective and non-defective crude 

coffees. These measurement techniques included attenuated total reflectance (ATR), 

diffuse reflectance Fourier transform spectroscopy (DRIFTS) and transmittance 

measurements using KBr discs. In sequence, SANTOS et al. (2012) applied NIR to 

quantify defective and non-defective crude beans, from arabica and robusta coffees, 

and from different geographical origins. When it turns to roasted coffee, MANCHA 

AGRESTI et al. (2008) observed that, based on their volatile profiles, immature and 

black coffee could be discriminated from non-defective and sour coffee beans, while 

MENDONÇA et al. (2009a) did not find statistical difference among the electrospray 

ionization-mass spectra of defective and non-defective arabica coffees.  

 

In view of the aforementioned, the objective of the present study was to 

evaluate the potential of FTIR and NIR spectroscopy for the classification and 

quantification of defective (black, immature, light and dark sour) and non-defective 

roasted coffee blends. The specific objectives that characterize the main steps of this 

study are: 

 to evaluate the feasibility of employing DRIFTS for the discrimination between 

defective and non-defective roasted and ground coffees; 

 to evaluate the feasibility of employing ATR-FTIR for the discrimination and 

quantification of defective and non-defective roasted and ground coffees; 

 to evaluate the feasibility of employing NIR for the discrimination and 

quantification between defective and non-defective roasted and ground 

coffees; 

 to develop classification models based on Elastic net for variable selection; 
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 to develop quantitative models based on partial least squares regression 

(PLSR) to predict the percentage of defective coffees in admixture with non-

defective one.      
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2. LITERATURE REVIEW 

 

2.1. Coffee: From fruits to roasted coffee 

 

The coffee plant is an evergreen shrub or small tree from the Rubinaceae 

family with different species. The most economically important species are Coffea 

arabica L. (arabica coffee), that may become 4-6 m tall, and Coffea canephora Pierre 

ex Froehn (robusta coffee), that may grow 8-12 m. In cultivation both species are 

pruned to manageable heights of less than 2 m and less than 3 m in mechanically 

harvested plantations in Brazil (SIVETZ, 1979, ANZUETO et al., 2005). Although all 

species within the genus Coffea are of tropical African origin (BRIDSON and 

VERDCOURT, 1988), coffee cultivation is now widespread in tropical and subtropical 

regions, with the bulk of arabica coffee concentrated in Latin America and robusta 

coffee predominant in South-East Asia and Africa (ANZUETO et al., 2005).    

Brazil is the leading coffee producer, with 36% of the world coffee production 

and 30% of the global exportations. In 2012, were produced and exported 50.5 and 

33.5 million bags (60 kg), respectively (ABIC, 2013). The arabica coffee is the oldest 

known specie and is cultivated in mountainous regions at optimal altitudes from 1000 

to 2000 m and optimal temperature from 15 to 24 °C. It is more susceptible to 

diseases, pests and frosts. The arabica specie produces those coffees most 

appreciated by discerning coffee drinkers (BANKS et al., 1999, CLARKE and 

MACRAE, 1985), and represents 60.3% of the world coffee supply  (ICO, 2013). 

Robusta coffee, on the other hand, grows at relatively low altitudes; tolerates 

higher temperatures and heavier rainfall, and demands higher soil humus content than 

arabica. Usually robusta is processed via dry processing and is mostly used to 

constitute coffee blends, soluble and instant coffees (BANKS et al., 1999). The 

demand for robusta has been especially high in recent years, since it provides a less 

costly alternative to Arabica. Nowadays this specie represents approximately 39.7% of 

the coffee produced worldwide, and Vietnam is the leading producer (ICO, 2013). 

The coffee fruit is a drupe, usually called a berry or cherry, containing two 

seeds (coffee beans) embedded in a freshly pericarp and a sweet tasting mucilage 

layer. Sometimes the fruit contains only one round seed called “peaberry”. Arabica 

fruits are 12-18 mm and those of robusta 6-16 mm long. The coffee seeds are plano-
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convex in shape, grooved on the flat side, and consist mostly of endosperm with a 

small embryo at the base of the seed. Those seeds are enveloped in a silverskin and 

and a fibrous endocarp (parchment). Robusta beans are usually smaller, rounder and 

present a tighter centre cut than those of arabica (ANZUETO et al., 2005).   

 

2.1.1. Green coffee processing 

 

Harvesting of the coffee fruit should only start after a careful examination of 

the level of maturation, when most of the fruits are ripe, with a minimum presence of 

unripe fruits. It can be accomplished in different ways: by stripping onto the ground 

(not recommended), or onto sheets, by selective hand picking or by mechanical 

means. It is widely believed that quality coffee can only be obtained if selective hand 

picking is used, in order to guarantee that only ripe coffee fruits will be harvested. This 

is certainly valid for small plantations, but becomes a long-standing myth on modern 

medium-sized to large estates. Top-quality coffee can be produced regardless of the 

harvesting technique. When unwanted fruits are picked, which is unavoidable, quality 

must be maintained by post-harvest separation techniques, so that high quality coffee 

may still be produced from the remaining ripe fruits (BEE et al., 2005).  

After harvesting the first step of the coffee processing is the separation. 

Basically, fruits pass through a washer-separator where stones and impurities are 

eliminated and fruits are separated by density: on one side the lighter fruits (the dry 

and over-ripe) and on the other side the heavier ones (immature and ripe fruits) (BEE 

et al., 2005). Then the fruits will be processed by one of the three methods presented 

in Figure 1 to the removal of the pulp and to obtain intermediate products that will 

further provide the coffee beans found in the market. The wet processed coffee is 

most commonly regarded as a superior coffee with more enjoyable aroma (VINCENT, 

1987). However, when dry process is well conducted, it is possible to produce good 

coffee with ‘body’ and pleasant ‘aroma’ (BEE et al., 2005). As an example, in Brazil 

and Ethiopia the dry process is predominant and many of the most prized coffees in 

the world are produced (BANKS et al., 1999). 
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Figure 1. Flow chart of raw bean processing. Adapted from BORÉM (2008)  

 

The dry process is practiced where the climate is considerably warm and dry 

following harvest and where the copious quantities of water required for the wet 

process may not be available. Most of robusta coffees and most of the Brazilian crop 

are handled this way (CLARKE and MACRAE, 1985). In this process, the whole fruits 

are dried on large patios under the sun and/or in mechanical driers. Because of the 

long time required to dry the beans (from 2 to 4 weeks), the cost of labour and the 

chance for proliferation of different microorganisms on the fruit skin, artificial drying 

has also been used instead of or in addition to natural drying (VINCENT, 1987).     

The wet process was developed mainly in the equatorial regions where there 

is continuous rainfall during the harvest period, and hence the production of natural 

coffees often results in low quality coffees. Currently, the wet method may be 
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conducted in three ways. The traditional wet process consists in the removal of the 

pulp by a pulper, followed by the removal of the mucilage from the parchment by 

biological fermentation. The pulped natural process produces beans known in Brazil 

as cereja descascado. In this process, the husk and part of the mucilage are 

mechanically removed by a pulper, and the beans in parchment are dried in patios or 

artificial dryers. Fermentation for the removal of mucilage is not used, thus, this 

process consumes less water and energy than wet process. The quality of pulped 

coffee, when well processed, has been shown to be excellent, with the advantage of 

producing coffee with greater body than the wet processed coffee (BEE et al., 2005, 

BORÉM, 2008). In a study comparing different processing techniques, it was found 

that pulped natural coffee beans presented more positive attributes of quality, less 

defects and lower microbial count (SANTOS et al., 2009). The third processing 

consists in removing the husk and the mucilage mechanically, resulting in the 

demucilaged coffee (BORÉM, 2008).  

The operations carried out subsequently to dry, wet or pulped natural 

processing aim to prepare the green beans for consumption and exportation. An 

artificial re-drying step is performed to ensure that the moisture level of the beans is 

lower than 11%.  This is especially important to provide stability during storage and to 

enable husk and parchment to be removed more easily. The cleaning step is 

performed to remove impurities, such as metal pieces and foreign bodies. It can be 

carried out by the use of a hopper with screens to remove large and medium-sized 

impurities, followed by a magnetic separator to remove metal pieces, and cleaner-

separator which combines sifting and pneumatic dust removal (VINCENT, 1987). 

At this point, dry processed beans still have husks or outer coverings of the 

fruits, and the wet processed beans still have the dried parchment surrounding the 

bean. The process called hulling is then accomplished to remove these outer layers, 

and may be accompanied by a polishing step if the silverskin removal is required. After 

the outer coverings have been removed, it is advantageous in terms of marketing 

purposes, to size-grade the green coffee beans. Size graders use sieves of different 

sizes and shapes to separate the beans according to such attributes. The densimetric 

sorting separation is purposed to remove defects associated with less dense beans, 

such as malformed, insect-damaged, fermented beans, etc. Densimetric sorting is 

usually done by upward current of air or gravimetric table (VINCENT, 1987, BEE et al., 

2005).       
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Electronic sorting machines are usually employed in cooperatives of producers 

and industries to actually separate defective and non-defective beans prior to other 

processing steps such as storage and roasting. In these machines, beans pass one by 

one through electronic eyes that assess the color of each one and control a 

mechanical ejector that removes the defective beans as required (see Figure 2). 

These sorters use monochromatic or bichromatic light and can be adjusted to 

eliminate either more or fewer defective beans (VINCENT, 1987). However, studies 

indicate that color separation is not absolutely effective for defective beans that have 

similar color to non-defective ones such as immature and sour (FRANCA et al., 2005b, 

FARAH et al., 2006, VASCONCELOS et al., 2007). A good instance of such a rapid 

and non-destructive technique that could separate these beans more efficiently is 

based in infrared spectroscopy. In particular, the studies by CRAIG et al. (2011) and 

CRAIG (2012b) demonstrated that FTIR in combination with multivariate statistics 

presents potential to be used for the classification of defective and non-defective 

coffee bean.  
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Figure 2. Schematic layout of an electronic sorting machine (Source: 

http://www.buhlergroup.com) 

 

Finally, beans are stored in 60 kg bags. As already mentioned, the moisture of 

the beans must not exceed 11% for suitable storage. Therefore, the relative humidity 

of the storage area should be carefully controlled. When the relative humidity of the air 

is over 74% (corresponding to an equilibrium moisture content in the beans of about 

13% w/w), certain innocuous moulds develop. A relatively humidity of over 85% is 

sufficient to the multiplication of yeasts and bacteria (VINCENT, 1987).   

 

 

 

 

http://www.buhlergroup.com/


11 

2.1.2. Raw bean classification 

 

The classification of the coffee beans, which includes physical and sensorial 

analysis, is a crucial phase in the commercialization process, influencing in price 

quotations as well as national regulations governing importation into consuming 

countries. Unfortunately, the existence of a variety of classification systems means 

that each country adopts a different classification, requiring equivalency norms for use 

at international level. Overall, the classification is based on the evaluation of all 

parameters related to coffee bean described in Table 1 (BEE et al., 2005).  

 

Table 1. Parameters used in commercial classification 

Parameter Description 

Designation 

 

Species: C. arabica/ C. robusta  

Processing: natural (dry), pulped natural and 

washed (wet) 

Geographical origin 

Crop year  

Classification by bean size Size and shape of the beans 

Classification by type (number of 

defects) 

Defective beans and foreign matter 

Density Specific mass of the beans 

Humidity Moisture content 

Color and appearance Coloration and uniformity of the beans  

Roast Roast regularity, smell, etc 

Cup quality Characteristic aroma and flavors 

Adapted from BEE et al. (2005) and CLARKE et al. (1987b) 

    

Some considerations regarding the parameters listed in Table 1 are: (a) 

arabica coffee fetches a higher price than robusta. (b) The size or screen of the beans 

is measured by the dimension of the holes in the screen that holds them back. The 

separation and classification of the beans by size is important to guarantee an 

adequate and uniform roast. (c) In coffee that has been correctly dried, the humidity 

level should be 11±0.5% for raw coffees. (d) The drying processing system can be 
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recognized by the bean color and appearance of the silverskin. Washed coffee is 

translucent, shiny and green-bluish. A green-bluish color in washed coffee indicates 

freshness and high quality, while a yellowish color is a sign of old and low quality 

coffee. Natural coffee has a semi-opaque color and a yellowish or even brown skin. 

Pulped natural coffee has an intermediate aspect. (e) Observing the uniformity of a 

roasted coffee sample helps to identify defects that were not observed previously 

(BEE et al., 2005). 

   With regard to the classification by type, most producing countries adopt 

their own classification system to describe the presence of defective beans, which will 

be explored in details in section 2.2. At the international level the ‘New York Coffee 

and Sugar Exchange’ introduced the concept of the black bean equivalent according 

to which all defects are accounted for in terms of equivalence to black beans, as 

indicated in Tables 2 and 3 (BEE et al., 2005, FRANCA et al., 2005b). These defects 

are visually identified and manually sorted in a 300 g sample by a professional trained 

for green coffee classification. 

 

Table 2. Summary description of the type classification system 

Type no. Maximum allowable number of 

defects per 300 g sample 

NY2 6 

NY3 13 

NY4 30 

NY5 60 

NY6 120 

NY7 240 

NY8 450 

Source: FRANCA et al. (2005b) 
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                      Table 3. Equivalence ratings according to the type classification system 

Defect type and quantity Equivalency (defects) 

1 black bean 1 

2 sour beans 1 

5 immature beans 1 

2/5 insect damaged beans 1 

1 small stone 1 

1 large stone 5 

1 small twig 1 

1 large twig 5 

Source: FRANCA et al. (2005b) 

 

In terms of cup quality, each producing country weighs organoleptic defects in 

a different way, which may lead to discrepancies in sensorial evaluation between 

producing and consuming countries. Brazilian coffees, as an example, are classified 

into cup quality according to the ranking shown in Table 4. Rioysh, rio and rio zona 

beans are considered defects associated with irregular beans in cup taste or with off-

taste. These beans present normal appearance but medicinal and phenolic flavor of 

iodine. These defects are caused by overripe fruits contaminated by microorganisms 

on branch, or dried under contact with patio soil contaminated by microorganisms 

and/or trichloroanisole (BEE et al., 2005). 

 

Table 4.  Cup quality classification 

Cup quality Description 

Strictly soft The same as soft, but more accentuated 

Soft Pleasant, mild and sweetish flavor and taste 

Softish Mildly sweetish and soft taste, without harshness or astringency 

Hard Sour, astringent and harsh taste, but without strange taste 

Rioysh Mild flavor of iodoform 

Rio Typical and accentuated flavor of iodoform 

Rio zona Very strong aroma and taste, similar to iodoform or carbolic acid  

Source: BRASIL (2010) 
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Besides the aforementioned classifications, coffee certification has gained 

importance in the international commercialization of the raw beans. Studies have 

shown that the demand for certified and verified coffee will continue to grow strongly in 

the foreseeable future (ZAMBOLIM, 2007; ICO, 2013). These certifications may 

assure not only the quality of the bean, but it may also assure that a coffee was 

produced under good agricultural practices and management, safe and healthy 

working conditions, no child labor and protection of the environment.  Some examples 

of certifications applied to coffees are Fairtrade, UTZ Kapeh and EureGAP 

(ZAMBOLIM, 2007).  

 

2.1.3. Roasting and grinding 

 

Coffee roasting consists of applying considerable heat to the beans, which 

must be kept in motion to ensure an uniform roast, until their color reaches the desired 

shade of brown and their aroma is fully developed. At this stage the coffee must be 

rapidly cooled by air current with or without the aid of water spray or “quench” 

(BONNLANDER et al., 2005, CLARKE and MACRAE, 1985). The principles of 

roasting vary from a mechanical, with a wide variety of rotating drums, a thermal, 

including contact, radiation and convective radiation heat transfer, and an operational 

point of view (BONNLANDER et al., 2005). Conventional and newer developments on 

roasting techniques were described by CLARKE (1987b) and CLARKE and 

VITZTHUM (2008).  

The roasted beans are characterized by the process to which they have been 

subjected. The roasting degree expresses the external color, the flavor developed, the 

dry mass loss that has occurred and the chemical changes in the beans, and is 

divided into: ‘light’, ‘medium’ and ‘dark’ roasts. Depending on the gas temperature 

applied to the beans, that can vary from 220 °C to 260 °C, roasted coffees may 

additionally be described as having been ‘fast’ roasted (roasting time of a few minutes 

or even less) or ‘conventionally’ roasted (time in order of 12-15 min) with an 

intermediate time of 5-8 min (CLARKE and VITZTHUM, 2008, CLARKE, 1987a). The 

actual dry mass loss observed at different degrees of roasted is shown in Table 5.         
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Table 5. Approximate percentage of dry mass loss for different roasting degrees  

Degree of roast Dry mass loss (%) 

Light 1-5 

Medium 5-8 

Dark 8-12 

Very dark >12 

Source: CLARKE  (1987a) 

 

The main transformations occurring in the bean with increasing temperature 

from a macroscopic standpoint are given in Table 6. The color changes and the 

formation of micro fissures in the bean can be observed in Figure 3.    

 

Table 6. Macroscopic changes during roasting  

Temperature 

within 

the bean (°C) Effect 

20-130 Liquid-vapour transition of water. Color fades 

130-140 First endothermic maximum. Yellow coloring and swelling with 

beginning of non-enzymatic browning. Roast gases are formed and 

start to evaporate 

140-160 Complex series of endothermic and exotermic peaks. Color changes 

to light brown. Large increase in bean volume and micropores. Rests 

of silverskin are removed. Little fissures at the surface occur. Aroma 

formation starts  

160-190 Roasting reactions move towards the inner dry structure of the bean  

190-220 Micro fissures inside the beans. Smoke escapes. Large volumes of 

carbon dioxide escape and leave the bean porous. Typical flavor of 

roasted coffee appears.  

Source: BONNLANDER et al. (2005)  
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Figure 3. Stereo microscope section of a bean: (a) green; (b) toasted to 70 °C; (c) 

roasted, showing the porous structure. Source: BONNLANDER et al. (2005) 

 

Following the above mentioned reactions, numerous chemical changes also 

occur in the bean during roasting. Among them, sucrose is partly dehydrated and 

hydrolized to reducing sugars, giving rise to many volatile and non-volatile 

compounds, water and carbon dioxide, and the rest being pyrolysed (caramelized). 

The Mailllard reaction, which generates melanoidins, has a low activation energy and 

is favored in the presence of reactive nitrogen compounds.  Polysaccharides, except 

the highly insoluble cellulose, are partly solubilized generating anhydrides and 

polymers, such as melanoidins. The lipid fraction remains almost the same during 

roasting, with a slightly increase in the levels of trans fatty acids, and a decrease in the 

levels of linoleic acids, cafestol, and tocopherols. Regarding nitrogen compounds, 

caffeine remains stable, 50% of the trigonelline is decomposed to nicotinic acids and 

other compounds, free amino acids are pyrolysed or react to form Maillard products, 

and proteins are denatured. The mineral content does not change. Most of the 

chlorogenic acids content is hydrolysed, isomerated and, to a smaller extent, 

lactonized. The compounds formed are melanoidins, free quinic acid, quinides, 

phenols and volatile compounds. Finally, carboxylic acids are formed during the first 

stages of roasting due to carbohydrate hydrolysis, but are degraded after a longer 

exposition to heat. Thus, light roasted coffees contain higher quantities of carboxylic 

acids than dark roasted (SIVETZ, 1979, LYMAN et al., 2003, BONNLANDER et al., 

2005, CLARKE and MACRAE, 1985).  

Table 7 summarizes the chemical composition of green and roasted arabica 

and robusta coffees, where the changes that occur as a result of roasting process are 

evidenced.   
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Table 7. Summary of composition data (%dry weight) for green and roasted arabica 

and robusta coffee beans 

Component Arabica Robusta 

Green Roasted Green Roasted 

Minerals 3-4.2 3.5-4.5 4-4.5 4.6-5 

Caffeine 0.9-1.2 ~1 1.6-2.4 ~2 

Trigoneline 1-1.2 0.5-1 0.6-0.75 0.3-0.6 

Lipids 12-18 14.5-20 9-13 11-16 

Chlorogenic acids 5.5-8 1.2-2.3 7-10 3.9-4.6 

Aliphatic acids 1.5-2 1-1.5 1.5-2 1-1.5 

Oligosaccharides 6-8 0-3.5 5-7 0-3.5 

Total polysaccharides 50-55 24-39 37-47 - 

Amino acids 2 0 2 0 

Proteins 11-13 13-15 11-13 13-15 

Melanoidins - 16-17 - 16-17 

Source: CLARKE and MACRAE (1985)  

 

Roasted beans require a cutting action to provide a ground coffee with 

particles of suitable size and shape for subsequent brewing, and this siza is best 

obtained by means of cutting rolls. Nevertheless, various impact-type grinders have 

been used for producing finer grind coffee, and the flaking rolls have been used to 

produce particles of a flaked shape which may provide benefits on brewing (CLARKE, 

1987a). Due to the porous and brittle structure of the dark coffee, the highest the 

degree of roast, the easier to obtain finer particles (BANKS et al., 1999). Coffee grinds 

are qualitatively classified into ‘coarse’, ‘medium’ or ‘fine’. There is no national or 

international consensus of agreement as to the average particle size that constitutes 

each of these classes but there are recommendations for the various grinders in terms 

of screen sizes. The traditional method of assessing the degree of grind is from sieving 

analyses using a number of different screen or sieve mesh sizes in a specific 

procedure (CLARKE, 1987a).    

 

 



18 

2.1.4. Quality assurance of the roasted coffee 

 

As discussed so far, many physical and sensory parameters are used to 

classify the raw bean, and such classification is determinant in the coffee 

commercialization process and price quotations. On the other hand, there is a lack of 

methodologies to assess the quality of roasted coffees from the market.  

At the international level, ISO has standards for the determination of bulk 

density of the whole beans (ISO, 2011a) and caffeine content (ISO 2009, ISO 2011b). 

But in terms of quality, each country adopts its own system. In Brazil, for example, 

roasted coffees from the market are officially inspected by means of moisture content, 

which should not be higher than 5%, and by means of the presence of impurities, fruit 

parts (e.g. hulls, husks) and foreign matter, that should not exceed 1%. Individually, 

the presence of foreign matter should not exceed 0.1% (BRASIL, 2010). The current 

method used to identify the presence of those impurities and foreign matter is, 

however, based on the microscope analysis of coffee samples. Since the method 

relies on the visual examination of small amounts of sample, it is subject to lack of 

reproducibility. Microbiologic and mycotoxin analyses may also be conducted. In 

addition, the cup test was initially proposed to evaluate the global quality of the 

beverage. The sensory characteristics to be evaluated would be the fragrance, aroma, 

acidity, bitterness, astringency, taste, residual taste, influence of defective beans, body 

and beverage category, which is divided in strictly soft, soft, softish, hard, rioysh, rio 

and rio zona. A coffee with global score lower than 4 would be disqualified and 

forbidden to be sold (BRASIL, 2010). This regulation was later revoked and the 

sensory analysis is currently not being applied for the inspection of coffees from the 

market (BRASIL, 2013). 

The traditional cup test is in most of times not suitable for the classification and 

inspection of roasted coffees from the market. This happens because that is no 

previous control of the roasting conditions, and low-grade coffees are generally 

roasted to a dark roasting degree to mask unpleasant flavors and/or aromas. Besides 

that, sensory-based methods are time-consuming and require trained cupper experts 

(FERIA-MORALES, 2002, PETRACCO et al., 2005), which represent a barrier to the 

implementation of such methodologies for routine analysis and inspection purposes. 

As a consequence of the aforementioned drawbacks, regulatory organizations and 

industry strive to correlate sensory data collections and experimental data in order to 
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calibrate instrumental screening methodologies (FERIA-MORALES, 2002, 

PETRACCO et al., 2005). A good example of such a rapid, non-destructive 

fingerprinting technique is near-infrared spectroscopy that, in previous studies, has 

accomplished the prediction of sensory parameters in roasted coffee (PETRACCO et 

al., 2005, RIBEIRO et al., 2011, ESTEBAN-DIEZ et al., 2004b).  

 

2.2. Coffee: Defective beans 

 

The type and number of defective beans influence significantly the quality of 

the coffee beverage. Table 8 shows a summary of the main defects visually identified, 

their origin and their effect on the brew flavor and/or roasting process. It is important to 

note that other defects not listed in the Table may also occur.  

   

Table 8. Main defects visually identified among coffee beans, their origin and their 

effect in the brew flavor and/or roasting process 

Group Defect Brew flavor/roasting Origin 

Foreign matter Stones, sticks, clod Effect mainly economic H/P 

Fruit parts  Bean parchment, dried 

cherry, husk fragment 

Non-specific downgrading, 

lack of flavor 

P 

Irregularity/integrity 

of bean shape 

Shell, bean fragment, 

broken bean, insect 

damaged bean, etc. 

Uneven roast, bitterness, less 

acidity 

F/P 

Irregular in color and 

surface texture 

Black, black-green, sour, 

immature, mouldy bean, etc.  

Slow roast, harshy/strange 

flavors, less acidity, 

astringency, metallic flavor 

F/H/P/S 

F, Field damaged beans: genetic problems, environmental conditions and attacks by pests 

and diseases. 

H, Harvested-damaged beans: inadequate crop management 

P, Process-damaged beans: imperfect processing operations (pulping, washing, drying, 

cleaning, hulling, etc.) 

S, Storage damaged beans: deficient storage 

Adapted from BEE et al. (2005) and MIYA et al. (1973) 

 

Among these defects, those that affect the beverage quality the most are the 

black, sour and immature (OLIVEIRA et al., 2008). Black beans derive from dead 
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beans within the cherry on the tree, over-ripe cherry fallen on the ground or attacked 

by fungi and other pests. Sour beans are associated with ‘overfermentation’ during the 

wet process or with beans that have been in adverse conditions, becoming fermented 

by bacteria or xenophilic moulds, with the embryo dead. Immature beans derive from 

unripe coffee beans. Black-green beans occur due to the fermentation of unripe coffee 

beans (BEE et al., 2005, CLARKE, 1987b). 

Only a few studies have attempted to discriminate defective and non-defective 

beans. Prior to roasting, these beans can be discriminated by several physical and 

chemical parameters (MENDONCA et al., 2009b, VASCONCELOS et al., 2007, 

FRANCA et al., 2005b, SANTOS et al., 2012). After roasting, solid phase micro 

extraction gas chromatography-mass spectrometry (SPME-CG-MS) has shown 

success in achieving this purpose. TOCI and FARAH (2008) reported volatile 

compounds that could be used as potential defective coffee markers. MANCHA 

AGRESTI et al. (2008) showed that roasted defective and non-defective coffees could 

be separated into two distinct groups based on their volatile profiles: immature/black 

beans and non-defective/sour coffees. In spite of the positive results reported in the 

previously mentioned studies, the drawbacks of the technique employed must be 

considered. First, the volatile composition of coffee beans may vary according to many 

parameters such as soil composition, climate, agricultural practices, and most 

importantly, roasting conditions, making the achievement of reproducible results 

arduous. In addition, the SPME-CG-MS technique is costly, time consuming, and not 

suitable for routine analysis. Sequentially, MENDONÇA et al. (2009a) employed 

electrospray-ionization mass spectrometry for the same purpose, but no discrimination 

among defective and non-defective coffees was observed after roasting.  

 

2.2.1. Physical attributes  

 

The size and shape of the beans vary with species and quality. Arabica coffee 

beans are bigger than robusta and non-defective is bigger than defective in both 

species. Thus, the size of the beans is measured by the dimension of the holes in the 

screen or sieve and used as a means of commercialization (MENDONÇA et al., 

2009b, FRANCA & OLIVEIRA, 2008). After roasting, the separation of defective and 
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non-defective beans by size is efficient among arabica coffee beans. For robusta 

coffee only sour and black beans can be discriminated (MENDONÇA et al., 2009b).      

A comparison between the densities of green defective and non-defective 

beans have shown that there is no significant difference between them except for  

robusta black beans, which have a lower density than the others. During roasting, 

there is an increase in the volume and lost in the mass, which results in a decrease in 

the density of the bean. Because arabica black beans are smaller, their volume 

increases less than others resulting in higher density after roasting (MENDONÇA et 

al., 2009b, FRANCA et al., 2005b, FRANCA et al., 2005a). However, MENDONÇA et 

al. (2009bb) did not find a significant difference among robusta black beans. 

Green beans contain 10-13% of moisture content, but no significant difference 

was found among the moisture content levels of non-defective and defective beans 

(CLARKE and MACRAE, 1985, RAMALAKSHMI et al., 2007). During roasting under 

the same conditions, the moisture loss is lower among defective than among non-

defective beans, indicating that defective beans roast at a lower level 

(VASCONCELOS et al., 2007). This observation is explained by the fact that defective 

beans contain less sucrose than non-defective ones.  

Color is an important attribute of green coffee beans because it varies 

considerably with species, presence of defect, origin, processing conditions and age of 

the bean. Therefore, the labour-intensive manual sorting is employed in the 

commercial classification of sample lots by type, and the electronic color sorting is 

employed in cooperatives of producers and industries to actually separate defective 

and non-defective beans prior to other processing steps (CLARKE, 1987b). Immature 

beans are identified by their greenish or metallic-green silverskin color with the ventral 

closed. Sour beans can have a wide range of colors: light to dark brown-reddish, dark 

brown or yellowish green endosperm, sometimes with a waxy appearance or a brown 

silverskin color. Black beans have the endosperm totally black, and black-green beans 

have a dark-green to black-green silverskin color (BEE et al., 2005, COELHO, 2000). 

Nevertheless, in the study by TEIXEIRA et al. (1971), black-green beans were visually 

classified as sour after the removal of the silverskin. 
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2.2.2. Chemical attributes 

 

In actual amounts, sucrose is the major free sugar present in green coffee, 

varying with species, variety, stage of maturity, processing and storage conditions 

(CLARKE and MACRAE, 1985). The presence of immature and fermented beans is 

directly related to the sucrose level in a given sample. Sucrose levels are expected to 

increase with coffee maturation and, since this is the main free sugar available, 

sucrose levels decrease if fermentation occurs (MAZZAFERA, 1999). Before roasting, 

MAZZAFERA (1999) found that immature-black and immature Brazilian beans present 

one-thirty and one-fifth of the sucrose level of a normal bean. This was also observed 

for Vietnamise robusta coffee, where black beans contained 0.9% sucrose and non-

defective beans contained 4% (BEE et al., 2005). VASCONCELOS et al. (2007) and 

RAMALAKSHMI et al. (2007) found higher levels of sucrose in non-defective 

compared to defective beans. After roasting, only traces of sucrose were detected by 

VASCONCELOS et al. (2007) in light roasted coffee and no sucrose was detected in 

medium and dark roasting degrees. Polysaccharides are present in green coffee in 

amounts of 40-50% d.b., with mannans, galactans, cellulose and araban being the 

most important (CLARKE and MACRAE, 1985). Other polysaccharides such as starch 

or pectin are present at only low levels in mature coffee beans (BEE et al., 2005). After 

medium roasting, approximately 75% of the original polysaccharides remained 

(CLARKE and MACRAE, 1985). VASCONCELOS et al. (2007) have observed higher 

levels of total carbohydrates before and after roasting in non-defective than in 

defective coffee, but such result was determined by difference.  

The green coffee lipids are composed of coffee oil substantially present in the 

endosperm and a small amount in the wax, located in outer layers of the beans. The 

oil contains triglycerides and a considerable amount of other lipid components. The 

lipids loss during roasting is minimal (CLARKE and MACRAE, 1985). Arabica coffee 

contains higher level of oil than robusta, and non-defective beans contain higher levels 

than defective ones (MAZZAFERA, 1999, OLIVEIRA et al., 2006, VASCONCELOS et 

al., 2007). Nevertheless, OLIVEIRA et al. (2006) did not find a significant difference in 

the fatty acid profile of both defective and non-defective coffee, before or after 

roasting.   

Crude protein content is calculated from total nitrogen content. Thus, it must 

be corrected for caffeine and, ideally, trigonelline nitrogen. If such corrections are 
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made, the protein content in green coffee is close to 10% with little quantitative and 

qualitative differences between species (BEE et al., 2005, CLARKE and MACRAE, 

1985).  MAZZAFERA (1999) reported higher levels for black beans in comparison to 

immature and immature-black. Nevertheless, this result did not correlate with free 

amino acid content, which was higher for immature beans than black and immature-

black coffees. COELHO et al. (2000) also observed higher levels of protein in black 

coffee. VASCONCELOS et al. (2007) and OLIVEIRA et al. (2006) did not find a 

significant difference in the protein contents of defective and non-defective coffees, 

before or after roasting. RAMALAKSHMI et al. (2007), on the other hand, reported 

slightly lower protein contents for low quality coffees. 

Trigonelline is a nitrogenous base with a pyridine ring that is decomposed 

during roasting in the order of 50-80%, giving rise to volatile compounds of sensory 

significance (CLARKE and MACRAE, 1985). Half of the volatile compounds generated 

during its thermal degradation consist of pyridines and pyrroles, both detected in 

roasted coffee (MANCHA AGRESTI et al., 2008). Nicotinic acid, which also exhibits a 

pyridine ring, is especially important from a sensory and a nutritional point of view, 

since it is an essential vitamin (CLARKE and MACRAE, 1985). Prior to roasting, 

FRANCA et al. (2005b) reported trigonelline levels of approximately 1% in non-

defective, immature and sour coffee beans and lower values (~0.8%) for black beans. 

FRANCA et al. (2005a) did not find significant differences in trigonelline levels 

between defective and non-defective coffee beans. FARAH et al. (2006) reported a 

strong negative correlation between trigonelline levels and poor quality and Rio-off 

flavor. After roasting, no significant correlation between trigonelline levels and cup 

quality was observed. Slightly higher levels of trigonelline were observed for black/sour 

beans, which was associated to the fact that such beans attained lighter roasting 

degrees in comparison to other classes (FRANCA et al., 2005b, FRANCA et al., 

2005a). 

Among the amines present in green coffee, studies indicate that putrescine is 

the prevailing amine, regardless of variety, quality or growth and processing 

conditions. OLIVEIRA et al. (2005) found higher putrescine levels for the lowest quality 

coffee; however, because the samples did not come from the same crop, one could 

argue that these differences could also be attributed to other factors such as growth 

and processing conditions. On the other hand, VASCONCELOS et al. (2007) reported 

higher levels of amines in high quality coffee. In both studies histamine was detected 
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only in defective beans or low quality coffee, indicating that this amine could be a 

potential marker for the detection of defective beans in green coffee. After roasting, the 

levels of amines decreased dramatically. In light roasted coffee, only traces of 

serotonin were found while, in the medium and dark roasted coffees, no amines were 

found. 

Caffeine is an alkaloid, with a methylated dioxypurine structure relatively 

stable to roasting. Although caffeine sublimation point is at 178 ° C, the pressure build-

up within the bean and the poor rate of diffusion of vapor through its outer layers leads 

to low losses of caffeine during roasting unless severe roasting conditions are 

employed (CLARKE and MACRAE, 1985). MAZZAFERA et al. (1999) did not find 

significant difference in the caffeine levels of defective and non-defective coffee. Using 

a UV-based methodology, FARAH et al. (2006) found that the concentrations of 

caffeine and trigonelline were higher in high quality coffees in comparison to bad 

quality ones. The same observation was made by FRANCA (2005a) and 

RAMALAKSHMI et al. (2007). Nonetheless, FRANCA et al. (2005b) found that non-

defective beans exhibited lower caffeine levels than defective ones.  

The types of acids found in coffee are aliphatic carboxylic acids but also 

phosphoric acid, some alicyclic and heterocyclic acids, and chlorogenic acids that will 

be discussed separately. The presence of acids in the beverage contributes to sensory 

parameters such as acidity and astringency, and may add flavor effect through aroma 

and taste in the case of undissociated molecules. Aliphatic acids that may add 

desirable flavors to the beverage are pyruvic, 2-methylbutyric, 2-methylvaleric, 2-

ethylbutyric and levulinic. It has been observed that coffees stored for a long time are 

slightly more acid than those made from corresponding new crop (WOODMAN, 1985). 

Studies have demonstrated that prior to roasting defective present higher acidity than 

non-defective beans, with highest values for sour beans. Acidity decreases after 

roasting without difference among defective and non-defective beans. It must be 

considered that such acidity may also be influenced by the presence of chlorogenic 

acids (VASCONCELOS et al., 2007, FRANCA et al., 2005a, RAMALAKSHMI et al., 

2007).  

Chlorogenic acids (CGAs) are phenolic compounds esterified to quinic acid. 

Through roasting process, CGAs form numerous isomers that exert diverse beneficial 

effects to health, including caffeoylquinic acids (CQA), dicaffeoylquinics (diCQA) 

feruloylquinic acids (FQA), and coumaroylquinic acids (CoQA). However, the 
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excessive roasting may lead to the destruction of these compounds (CLARKE and 

MACRAE, 1985). According to WHITE (1995), the CQA content of green coffee beans 

can be used as an indicator of quality and maturity, in a way that the relationship 

diCQA/CQA is higher in immature beans in comparison to non-defective beans. 

FARAH et al. (2006) observed that prior to roasting the low quality immature and 

black-green beans had higher levels of CGA, and 5-CQA and 5-FQA had a high 

relationship with poor beverage quality. Light roasted and medium roasted low quality 

coffees were correlated with high levels of 3-CQA, 4-CQA, 5-CQA, and 5-CQA, 4-

FQA, and 5-FQA, respectively. 93% of the original CGA content was lost during dark 

roast, and no relationship between CQA and coffee quality was found. Furthermore, it 

was found a positive relationship between CGA content, especially 5-CQA, and color 

intensity of the beans. Indeed, CLARKE and MACRAE (1985) have previously 

reported that the greater the discoloration in the sequence green, yellow, brown to 

black, the lower the total CGA content and the lower the CGA:diCQA molar ratio. 

There is no evidence that arabica and robusta differ significantly in their levels 

of mineral content, but studies suggest that dry-processed arabica and robusta coffee 

have slightly higher levels than wet-processed ones. This is probably due to leaching 

out of minerals during the fermentation and washing stages of the wet-processed 

coffee (BEE et al., 2005, CLARKE and MACRAE, 1985). Potassium represent 40% of 

the total minerals of the coffee beans (BEE et al., 2005). OLIVEIRA et al. (2006) and 

VASCONCELOS et al. (2007) found higher mineral content in defective than non-

defective beans, with black beans exhibiting the highest amount. 

Coffee quality is directly related to its aroma and flavor. Numerous volatile 

compounds are present in green and roasted coffees, varying considerably with 

several factors such as specie, climatic conditions and soil, storage and roasting 

conditions. Because of that, the volatile profile of coffee has been successfully used 

for the discrimination of coffees by specie, geographical origin, quality and presence of 

adulterants (NUROK et al., 1978, DART and NURSTEN, 1985, COSTA FREITAS et 

al., 2001, ZAMBONIN et al., 2005, RISTICEVIC, 2008, OLIVEIRA et al., 2009). 

MANCHA AGRESTI et al. (2008) attempted to discriminate defective and non-

defective roasted coffees by their volatile profile using SPME-CG-MS. Although 250 

volatile compounds were identified, only five of them were detected in defective but not 

in non-defective and could be used as defective coffee markers. Sour beans were 

those with highest number of compounds not detected in non-defective coffee, 
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followed by black and immature. Results from principal component analysis (PCA) 

indicated that defective and non-defective beans could be separated into two groups 

based on their volatile profile, one represented by immature and black beans, and 

other by non-defective and sour beans. These findings suggested that sour and black 

beans could be associated with the fermentation of non-defective and immature 

beans, respectively.  

 

2.2.3. Sensory attributes 

 

Black beans are generally regarded as giving a ‘heavy’ and ‘ashy’ flavor to the 

beverage. Their volatile profile is distinct from non-defective or other defective beans, 

being considered the worst intrinsic defect. The black-green beans are characterized 

by astringency and a taste reminiscent of rotten fish. Sour beans are regarded as 

especially important in downgrading flavor, contributing to sour, oniony and fermented 

taste and smell. Immature beans contribute to the astringency, due to the presence of 

tannins, which in low concentrations produce an acceptable gustatory sensation called 

‘mouthfeel’. It also adds bitterness and metallic taste to the beverage (COELHO, 2000, 

CLARKE, 1987b, MANCHA AGRESTI et al., 2008).    

Studies have demonstrated that the smell and taste of defective beans can be 

perceived even at low levels. COELHO et al. (2000) evaluated the sensory attributes 

of Brazilian coffees, previously classified as strictly soft, after an increasing addiction 

of immature, sour and black beans. Before the addition of defective beans, higher 

values of positive attributes, such as peanut, nuts, cereal and caramel, were observed. 

With the inclusion of 5 to 10% of immature beans the attribute astringency was noted. 

30% of immature beans were sufficient to increase the attribute chemical, oily and 

fermented. The defect black was the most detrimental to the quality of the beverage, 

contributing to the attributes bitter and sour. The transition of the cup quality 

classification from strictly soft to hard occurred after the addition of 19.49%, 16.36% 

and 14.26% of immature, sour or black beans, respectively.  

PUERTA-QUINTERO (2000) evaluated the impact of the immature beans on 

the sensory quality of the beverage. It was found that 2.5% of immature in mixture with 

ripe beans was sufficient to reject 30% of the samples by the cuppers due to 

unpleasant tastes. Nonetheless, BEE et al. (2005) asserted that, in espresso coffee, 
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the astringency and metallic tastes of immature beans are perceivable at percentages 

of immature beans as low as 1%. 

 

2.3. FTIR and NIR spectroscopy  

 

2.3.1. Basic concepts 

 

The electromagnetic radiation covers a wide wavelength range, from low-

energy radio waves to high-energy γ-rays, as illustrated in Figure 4. When exposed to 

radiation, many processes may occur in an atom or molecule. A molecule may undergo 

rotational, vibrational, electronic or ionization processes, in order to increasing energy. 

A molecule may scatter light in a Raman process. Nuclear magnetic resonance and 

electron spin resonance processes involve transitions between nuclear spin and 

electron spin states, respectively. Nevertheless, an atom may only undergo an 

electronic transition or ionization because it has no rotational or vibrational degrees of 

freedom. Spectroscopy is basically an experimental subject concerned with the 

absorption, emission or scattering of electromagnetic radiation by atoms or molecules 

(HOLLAS, 2004). At each of the electromagnetic regions, different information on the 

radiated sample may be obtained.     

 

 

Figure 4. Regions of the electromagnetic spectrum and processes that may occur in 

an atom or molecule exposed to the radiation. IR = infrared, UV = ultra-violet and NMR 

= nuclear magnetic resonance. 
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The regions of the electromagnetic spectrum where molecular vibration will take 

place are far-infrared, mid-infrared and near-infrared. When a sample is radiated with IR 

light at each of these regions different chemical bonds absorb this light at different 

wavelengths, depending on the atoms connected, the surrounding molecules, and the 

type of vibration the absorbance gives rise to (THYGESEN et al., 2003). The low 

energetic far-infrared is typically absorbed by heavy molecules such as inorganic and 

organometallic substances (SMITH, 2002), which limits the application of this radiation 

to food systems. The other two infrared regions of the spectrum give rise to different 

techniques: MIR and NIR spectroscopy. Figure 5 presents an energy level diagram 

showing the states involved in MIR and NIR techniques. 

 

 

Figure 5. Energy level diagram showing the states involved in infrared absorption. 

 

MIR provides characteristic fundamental vibrations during which the electrical 

dipole moment changes are employed for the elucidation of molecular structure 

(LARKIN, 2011). This implies that bonds that connect two identical or nearly identical 

parts of a molecule, for example C=C bond, tend to be less active than a weakly 

polarizable bond, such as the OH bond. For this reason, water dominates and interferes 

in the IR spectrum (THYGESEN et al., 2003). Concerning instrumentation, MIR 

spectrometers are classified into two groups: dispersive and Fourier-transform (FT). The 

most significant advantage of FT spectrometers is that radiation from all wavelengths is 

measured simultaneously by an interferometer, whereas in dispersive spectrometers all 

wavelengths are measured consecutively. Due to the higher sensitivity and speed, 

almost all commercially available MIR equipments are based upon an interferometer, 

which led MIR spectroscopy to also be called Fourier transform infrared (FTIR) 

spectroscopy (SABLINSKAS, 2005, LARKIN, 2011).  
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NIR spectroscopy measures the broad overtone and combination bands of 

some of the fundamental vibrations and is an excellent technique for rapid and accurate 

quantification analysis, overcoming MIR (LARKIN, 2011). The main disadvantage is that 

the superposition of many overtone and combination bands causes broad peaks and a 

very low structural selectivity in comparison to MIR, where many fundamental peaks 

can be observed in isolated positions (KAROUI and DE BAERDEMAEKER, 2007). Of 

all the optical spectroscopic techniques, NIR offers the greatest diversity of 

instrumentation principles, including FT, scanning-grating, diode array, filter, light-

emitting diode and acoustic-optical tuneable filter spectrometers. This diversity of 

instrumentation principles as well as the development of the equipments allowed NIR to 

be applied in online and at-line modes in food processing facilities (SABLINSKAS, 

2005). While FTIR has been prominent and attractive in industrial applications over the 

past decade or more, NIR spectroscopy has been adopted in the food industry and in 

agriculture for more than 30 years (GAUGLITZ and VO-DINH, 2006). 

 

2.3.1.1. Measurement Techniques 

 

When interacting with a sample, incident light of intensity I0 may be partly 

reflected (IR) at optical interfaces, partly scattered (IS), absorbed (IA), and transmitted 

(IT), as shown in Figure 6.  

 

 

Figure 6. Energy balance of incident light upon interaction with a sample 

 

The energy balance for the incident light may be written as (STEINER, 2005): 

 

I0 = IA + IR + IT + IS                                                                            [Eq. 1] 
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The chemical information about the sample goes into IA. This value cannot be 

measured directly, but it can be evaluated knowing I0 , IR, IT and IS and applying these 

values to Eq. 1. In the commercial spectrometers only one detector is used to measure 

a particular couple of intensity values (I0 and either IT, IR, or IS). Thus, the goal of sample 

preparation is to bring the remaining intensities to zero (or close to zero) (STEINER, 

2005). 

Several measuring techniques can be employed to assess IR, IT or IS. The 

traditional technique used for MIR measurements is based on transmittance, usually 

requiring considerable sample processing, e.g. the production of KBr pellets for powder 

analysis. Transmittance requires very small samples, on the order of milligrams, and 

although this may be an advantage for identification of synthesized molecules, it can 

pose problems for heterogeneous materials, such as food, in relation to 

representativeness (KAROUI et al., 2010). In NIR spectroscopy, diffuse transmittance is 

usually measured in the region of the spectrum between 800 and 1100 nm, where weak 

absorptions enable useful data to be obtained from samples with 1-2 cm thickness, 

such as meat, cheese or whole grain (HUANG et al., 2008). 

Sample presentation developments have included diffuse reflectance mode 

(KAROUI et al., 2010), an external reflection measurement technique. Diffuse 

reflectance can be applied to analyze powders and rough surface solids. The technique 

relies upon scattering of radiation within the sample. The incident light may result in 

absorption, in regularl reflection from the sample surface or in multiple diffusely 

scattered light, which is the part of radiation used in diffuse reflectance measurements. 

The optical collection accessory is designed to reject the specular reflected radiation 

and to collect as much of the diffuse reflected light as feasible. Disadvantages are the 

strong dependence on the refractive index of the sample, the particle size and 

distribution, packing density, and sample homogeneity that must be carefully controlled 

(STEINER, 2005, LARKIN, 2011). In MIR, diffuse reflectance is very weak and could 

only be measured after routine FTIR spectrometers became available, generating the 

technique called diffuse reflectance Fourier transform spectroscopy (DRIFTS) 

(STEINER, 2005). In NIR spectroscopy diffuse reflectance is used in the region of 1100-

2500 nm of the spectrum where the amount of scattering makes the path length so high 

that transmittance through 1 cm thickness of most samples is negligible. In this 

situation, diffuse reflectance is measured because most of the incident radiation is 
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reflected. This measurement mode is suitable for thicker samples, such as wheat 

powder and fruits (HUANG et al., 2008). 

The introduction of the versatile and powerful reflectance technique called 

attenuated total reflectance (ATR) is probably the most useful increment in MIR 

measurement techniques (KAROUI et al., 2010). In this technique, a radiation beam 

enters a crystal and undergoes total internal reflection. The beam penetrates a fraction 

of a wavelength beyond the reflecting surface and when a material in close contact with 

the reflecting surface absorbs radiation, the beam loses energy at the wavelength 

where the material absorbs (see Figure 7). The depth of penetration is a function of the 

wavelength, the refractive index of the crystal, and the angle of incident radiation 

(STUART, 2005). ATR is a nondestructive method that requires little or no sample 

preparation and allows fast and simple sampling regardless of the state of the food 

system (liquid, gel, solid, etc.). However, attention must be given to the fact that a good 

contact between sample and crystal surface is needed, limiting the utility of ATR for 

thick powders. In addition, when using a zinc selenide crystal, the pH of liquid samples 

must be between 5 and 9 (KAROUI et al., 2010). 

 

 

Figure 7. Attenuated total reflectance Fourier transform infrared (FTIR-ATR). Source: 

KAROUI et al. (2010)  

 

2.3.2. Applications in coffee analysis 

 

A large number of studies have demonstrated the potential of FTIR and NIR in 

association with chemometrics for the analysis of coffee. The application of such 

techniques covers the analysis of crude, roasted and ground, soluble and instant 

coffees.  

Studies on FTIR aimed to discriminate arabica and robusta species 

(KEMSLEY et al., 1995, DOWNEY et al., 1997), detect adulterants such as glucose, 
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starch or chicory in soluble coffee (BRIANDET et al., 1996) and corn and coffee husks 

in roasted and ground coffee (REIS et al., 2013). Other studies aimed to classify 

defective and non-defective crude coffees  (CRAIG et al., 2011, CRAIG et al., 2012b), 

classify decaffeinated and regular coffees (RIBEIRO et al., 2010), evaluate roasting 

conditions (LYMAN et al., 2003, WANG and LIM, 2012), and discriminate (WANG et 

al., 2011) and quantify (WANG et al., 2009) coffees from different geographical origins. 

In particular, the high structural selectivity observed in FTIR, where many fundamental 

peaks can be observed in isolated positions, makes this technique a powerful tool for 

assessing the composition of roasted coffees. In the carbonyl region (1680-800 cm-1), 

for example, it is possible to attribute peaks to different compounds such as vinyl 

esters/lactones, esters, aldehydes, ketones, and acids, and observe how the 

composition of such compounds change as the roasting degree increases or 

decreases (LYMAN et al., 2003, WANG and LIM, 2012, WANG et al., 2011).       

Studies on NIR include the discrimination between arabica and robusta 

species (DOWNEY and BOUSSION, 1996, DOWNEY et al., 1997), the quantification 

of robusta in admixture with arabica coffee (PIZARRO et al., 2007a), the quantification 

of defective and non-defective crude beans enabling a fast assessment of coffee 

grade (SANTOS et al., 2012), the quantification of caffeine, theobromine and 

theophylline (PIZARRO et al., 2007b, HUCK et al., 2005), the prediction of roasting 

degree (ALESSANDRINI et al., 2008) and the prediction of sensory characteristics of 

the beverage (ESTEBAN-DIEZ et al., 2004b, RIBEIRO et al., 2011). Concerning the 

latter studies, based on NIR spectra, sensory parameters such as body, flavor, 

bitterness, cleanliness and overall quality could be predicted in espresso and roasted 

and ground coffee, and associated with regions of the spectra where different 

compounds may absorb.   

From the aforementioned applications it can be noticed that, in general, FTIR 

has mostly been applied for discrimination, classification and characterization 

purposes while NIR has been mostly employed in the development of quantitative 

models.  
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2.4. Spectra preprocessing 

 

Infrared spectra quite often suffer from the problems of unwanted spectral 

variations that may have sources such as light scattering from solid samples or cloudy 

liquids, poor reproducibility due to path length variations, variations in temperature, 

density or particle size of the sample, and noises such as those from the detector or 

amplifier (OZAKI et al., 2007). Therefore, the use of mathematical preprocessings to 

reduce these variations is particularly important in the development of calibration 

models with minimal errors. However, there is always the danger of applying the wrong 

type or applying a too severe preprocessing that will remove the valuable information 

from the spectra. The proper choice of preprocessing methods is difficult to assess prior 

to model validation, but in general, performing several preprocessing steps is not 

advisable, and, as a minimum requirement, preprocessing should maintain or decrease 

the effective model complexity (RINNAN et al., 2009). 

The classification of such preprocessings varies considerably in the literature. 

They are usually divided into four categories: (a) noise reduction (e.g. smoothing), (b) 

baseline correction (e.g. derivatives, MSC, SNV), (c) resolution enhancement (e.g. 

difference spectra), and (d) centering and normalization methods (e.g. mean centering, 

area normalization) (OZAKI et al., 2007). Other authors may classify MSC, SNV and 

normalizations as scatter correction methods, spectral derivatives as additive and 

multiplicative effects correction methods (RINNAN et al., 2009), and mean centering as 

resolution enhancement methods (OZAKI et al., 2007). In this section, only the 

preprocessings employed in the present study will be explored. A complete description 

of mathematical preprocessings applied to spectra are available in the literature 

(LASCH, 2012, RINNAN et al., 2009, WORKMAN JR, 2001). 

Simple normalization is basically an adjustment to a data set that equalizes 

the magnitude of each sample and a common approach to the multiplicative 

scaling problem. The method attempts to identify some aspect of each sample 

that should be essentially constant from one sample to the next, and correcting 

the scaling of all variables based on this characteristic. Such characteristics 

include the area under the curve or the maximum value (maximum absorbance 

intensity) observed for all variables for the given sample. The ability of a 

normalization method to correct multiplicative effects depends on how well it 
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can separate the scaling effects that are due to properties of interest (e.g., 

concentration) from the interfering systematic effects. Area normalization is a 

common approach to correct the multiplicative scaling problem, where each variable is 

divided by the sum of the absolute value of the area under the curve (WISE, B. M. & 

GALLAGHER, 2013). Baseline correction is basically a treatment used to subtract a 

baseline offset from a spectrum. Multiplicative scatter correction (MSC) is a relatively 

simple processing step that attempts to account for undesirable scaling effects and 

baseline effects. This correction is achieved by regressing a measured spectrum 

against a reference or mean spectrum and then correcting the measured spectrum 

using the slope (and possibly intercept) of this fit. In most applications, the average 

spectrum of the calibration set is used as the reference spectrum (RINNAN et al., 

2009, EIGENVECTOR RESEARCH, 2003). 

Derivative transformations are common methods used to remove unimportant 

baseline signal from samples and reduce instrument effects in which each variable in a 

sample is subtracted from its immediate neighboring variable. This subtraction 

removes the signal which is the same between the two variables and leaves only the 

part of the signal which is different. Thus, derivatives de-emphasize lower frequencies 

and emphasize higher frequencies, tending to accentuate noise. For this reason, the 

Savitzky-Golay algorithm is often used to simultaneously smooth the data as it takes 

the derivative, greatly improving the utility of derivatized data (WISE, B. M. & 

GALLAGHER, 2013). 

A first-order derivative transformation removes linear baseline offsets and 

results in a curve containing peaks and valleys that correspond to the point of 

inflection on either side of the log(1/R) peak. Bands, peaks and valleys do not follow 

the log(1/R) spectral pattern, and false peaks in the negative direction are generated, 

making it rather difficult to visually interpret the first derivative spectra. On the other 

hand, the second-order derivative calculation removes multiplicative baseline offsets 

resulting in a spectral pattern of absorption peaks pointing down rather than up. The 

second derivative transformation can be very helpful in spectral interpretation due to 

the fact that, in this form, band intensity and peak location are maintained with those in 

the log(l/R) spectral pattern, and apparent band resolution enhancement takes place. 

A few or any false peaks in the negative direction are generated; meanwhile two false 
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valleys in the positive ordinate scale for every band in a negative direction are 

generated (JOHN et al., 2007).  

Mean-centering is a preprocessing method that requires special attention. It 

can significantly improve the performance of spectral models and is generally always 

recommended. The method refers to a procedure in which the average of the 

calibration spectra (average absorption over the calibration spectra as a function of 

wavelength or frequency) is calculated and subtracted from the spectra of the 

individual calibration samples prior to the development of the model. This way, each 

spectrum of the mean-centered data includes only how that spectrum differs from the 

average spectra in the original data (ASTM, 2012; WISE, B. M. & GALLAGHER, 

2013). 

 

2.5. Multivariate statistics applied to spectral data 

 

Given the large amount of information provided by each single spectrum, 

multivariate statistics techniques are required for spectral data analysis. Figure 8 

summarizes the conventional multivariate techniques used for spectral data analysis. 

Classification techniques can be divided into unsupervised and supervised. The first 

aims to classify unknown observations into groups, according to similarity correlations. 

Unsupervised methods can be used when there is no known information on the dataset 

evaluated, or as a preliminary exploratory analysis. For example, PCA can be employed 

to evaluate if the studied samples can be discriminated by their spectral profile. If so, 

the analyst is encouraged to perform more experiments and get enough data to 

construct a classification or quantification model. The supervised techniques aim to 

create classification models based on a training set of data containing observations 

whose category is known. These models are sequentially used to identify the category 

of new observations from a validation set on the basis of their explanatory variables or 

features.  

Once the sample classification has been achieved, it can be useful to determine 

more precisely to what extend samples differ (ROGGO et al., 2007). The multivariate 

regression techniques consist of modeling a relationship between a desired physical, 

chemical or biological attribute of an object, which represents the dependent variables, 

and its spectrum response, or independent variables. This way, a regression model 
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describes and estimates how the properties and attributes vary when the spectra 

change. In sequence, the techniques that were employed in the present study will be 

briefly described.  

 

 

Figure 8. Conventional multivariate statistic techniques used for modeling spectral 

data. PCA = principal components analysis, HCA = hierarchical clustering analysis, 

LDA = linear discriminant analysis, PLS-DA = partial least squares discriminant 

analysis, kNN = k-nearest neighbor, NN = neural networks, MLR = multiple linear 

regression, PCR = principal components regression, PLSR = partial least squares 

regression, SVM = support vector machines. 

 

2.5.1. Principal Components Analysis 

 

PCA is a general multivariate statistical projection technique for data dimension 

reduction, and it has been used in various areas, such as exploratory data analysis, 

pattern recognition, quality monitoring and control (CHEN et al., 2009).  The power of 

PCA is in revealing relationships based on similarity and difference between objects or 

samples that were not previously suspected. Thereby, PCA allows interpretations in 

chemical or physicochemical terms that would not ordinarily result. In addition, PCA is 

frequently used as an intermediate step for other multivariate techniques, e.g. PCs may 

serve as inputs to linear discrimination analysis (LDA) or multiple regressions (ADAMS, 

1995, JOHNSON and WICHERN, 2007) and as a robust tool for outlier removal (LIN et 

al., 2007, CHEN et al., 2009).  

Multivariate statistic 
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Non-linear 

NN, SVM 
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The analysis is concerned with explaining the variance-covariance structure of 

a set of variables through a few linear combinations of these variables, providing data 

reduction and interpretation (JOHNSON and WICHERN, 2007). The traditional 

approach to implementation of PCA involves rotating and transforming the original p 

axes, each representing an original variable, into new axes. This transformation is 

performed in a way so that the new axes lie along the directions of maximum variance 

of the data with the condition that the axes are orthogonal, i.e. the new variables are 

uncorrelated (ADAMS, 1995). Although p components are required to reproduce the 

total system variability, often much of this variability and information can be accounted  

by a small number of k principal components (PCs). This way, the original data set, 

consisting of n measurements on p variables, is reduced to a data set consisting of n 

measurements on k PCs (JOHNSON and WICHERN, 2007).  

 

2.5.2. Linear Discriminant Analyisis 

 

LDA is a parametric and linear classifier that focuses on finding optimal 

boundaries between classes. In the same way as PCA, LDA is a feature reduction 

method. However, while PCA selects a direction that retains maximal structure in a 

lower direction among the data, LDA selects the direction that achieves a maximum 

separation among the different classes (SHARAF et al., 1986). The algorithm is based 

on the assumption that the classes have multivariate normal distributions. For 

establishing a reliable LDA classifier model, the number of objects required needs to 

be higher than the number of variables. Hence, for spectral data analysis, variables 

reduction is usually necessary (WANG & MIZAIFOFF, 2008). A common practice is 

using PCs obtained from PCA as inputs for LDA.  

 

2.5.3. Partial Least Squares Regression  

 

PLSR is a one step regression technique computed with least squares 

algorithms. The technique can analyze data with strongly collinear, noisy, and 

numerous X-variables, and also simultaneously model several response variables, Y, 

providing the benefit of giving a simpler overall picture than one separate model for 

each Y-variable (CLARK and CRAMER, 1993, WOLD et al., 2001, SMITH, 2002). The 

goal of the PLSR is to establish a linear link between two matrices, the spectral data X 
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and the reference values Y. This approach involves modeling both X and Y in order to 

find out the variables in X matrix that will best describe the Y matrix. This can be 

explained by the representation of the spectra in a space of linear combinations of the 

original variables, i.e. latent variables, which describe best the studied property 

(ROGGO et al., 2007). A combination of these latent variables is further used as the 

regression coefficients for predicting Y. 

When analyzing highly correlated X-variables, which is the case of spectral 

data, a substantial risk for “over-fitting”, i.e., getting a well fitting model with little or no 

predictive power, must be considered. In addition, spectrometers typically have limited 

range over which they will respond linearly. For dispersive spectrometers, scattered 

light may limit the linear response range. Similarly, for FTIR spectrometers, phase 

errors can limit the linear response range. This nonlinearity in the X-Block may limit the 

transferability of the model between spectrometers as well as the robustness of the 

model. When spectral regions exhibiting nonlinear response are included in 

multivariate models, the number of variables needed to model the calibration data will 

increase (ASTM, 2012). This number must however be carefully chosen based on the 

predictive significance of each component in order not to include components when 

they are non-significant (MANTANUS et al., 2009, WOLD et al., 2001). This predictive 

significance can be reliably accessed by cross-validation. According to ASTM (2012), 

cross-validations is a standard procedure used in PLSR where one or more sample 

spectra are removed from the data matrix, their corresponding reference values are 

removed from the reference value vector, and a model is built on the remaining 

samples. The model is then used to estimate the value for the samples that were left 

out. This process is repeated until each sample has been left out once. The error from 

the cross validation is calculated as:  

 

             

 

where       is the vector containing the cross validation estimates. The standard error 

of cross validation is then calculated as: 
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where n is the number of samples.  Finally, the calibration model with the smallest 

SECV can be selected as the optimum model for the calibration set used (ASTM, 

2012). 

 

2.5.4. Sparse learning dimensionally reduction algorithms 

 

One of the primary focuses in multivariate statistics applied to spectral data is 

finding a succinct and effective representation for original high dimensional data. Due to 

the typical “p >> n” feature in spectral data, where n is the number of observations and 

p is the number of variables, and the fact that these variables are correlated, statistical 

analysis and results interpretation of spectral data is still challenging. The conventional 

algorithms applied for spectroscopy data, e.g., PCA, LDA, are categorized into linear 

dimensionality reduction algorithms, assuming that samples are drawn from different 

Gaussians. These algorithms produce a low dimensional subspace and each basis of 

the subspace is a linear combination of all the original variables used for high 

dimensional sample representation. Since each of the new variables (PC’s, latent 

variables) is a linear combination of the original ones, it is reasonable to consider each 

new variable as the response of several variables, representing a problem in terms of 

variable selection and coefficients shrinkage (ZHOU et al., 2011).  

Sparse learning dimensionally reduction algorithms, e.g. least absolute 

shrinkage and selection operator (LASSO) (TIBSHIRANI, 1996, TIBSHIRANI, 2011) 

and Elastic net (ZOU and HASTIE, 2005), were developed not only to achieve 

dimensional reduction, but also to reduce the number of explicitly variables used in a 

model. In the last years these algorithms have became popular in domains with very 

large datasets, such as genomics and web analysis (FRIEDMAN et al., 2010, ZHU and 

HASTIE, 2004), according to ZHOU et al. (2011) because: 

 Sparsity can make the data more succinct and simpler, so the calculation of the 

low dimensional representation and the subsequent processing, e.g. 

classification and regression, becomes more efficient; 

 Sparsity can control the weights of original variables and decrease the variance 

brought by possible over-fitting with the least increment of the bias; and 

 Sparsity provides a good interpretation of a model, revealing an explicit 

relationship between the objective of the model and the given variables. This is 
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important for understanding practical problems, especially when the number of 

variables is larger than the number of samples. 

LASSO regression is a popular penalized least squares method that imposes 

an L1-penalty on the regression coefficients. The L1-penalty corresponds to a Laplace 

prior, which expects many predictors to be close to zero and a small subset to be larger 

and nonzero. This way, LASSO regression provides both continuous shrinkage and 

automatic variable selection simultaneously. A successful application of LASSO was 

reported by ZANON et al. (2011) for the reconstruction of glucose levels from 150 

multisensor channels measured with dielectric spectroscopy and optical sensors, in a 

continuous glucose monitoring (CGM) sensor approach. In comparison to ordinary least 

squares and PLSR it was observed that LASSO regression provided better 

generalization performances in predicting “unseen” data from the validation set and 

selected original variables that were likely to be less sensitive to noise. In another study, 

DYAR and coworkers (2012) compared PLSR and LASSO regression techniques to 

determine the elemental composition of igneous and highly-metamorphosed rocks 

based on the spectra obtained by a remote laser-induced breakdown spectrometer 

(LIBS). Despite the results of both techniques were comparable in terms of accuracy, 

the interpretability differed greatly in terms of fundamental understanding. While PLSR 

generated latent variables projected into the original feature space of the spectra, 

LASSO required a much smaller number of nonzero correlation coefficients to 

determine the concentration of each of the rock elements. Thus, LASSO could directly 

provide an understanding of the underlying physical processes that gave rise to LIBS 

emissions by determining which coefficients can best represent concentration and 

which ones were causing matrix effects. 

Although LASSO has shown success in many situations, it presents some 

limitations in the following scenarios: (a) in the p > n case, LASSO selects at most n 

variables before it saturates due to the nature of the convex optimization problem, and 

(b) if there is a group of variables among which the pairwise correlations are very high, 

LASSO tends to select only one variable from the group and does not care which one is 

selected. The regularization technique called Elastic net was proposed to fix these 

problems (ZOU and HASTIE, 2005). Elastic net is a version of penalized least squares 

that combines both Ridge and LASSO regression. Ridge regression, or Tikhonov 

regularization, shrinks (toward zero) the least square coefficients, while LASSO not only 

shrinks the coefficients but also provides model selection. Unlike LASSO penalty, the 
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Ridge penalty (L2-penalty), drawn from a Gaussian distribution, is ideal if there are 

many predictors and all have nonzero coefficients. Therefore, in Elastic net the penalty 

is a compromise between the Ridge-regression penalty (α = 0) and the LASSO penalty 

(α = 1) (FRIEDMAN et al., 2010).  

FU and coworkers (2011) proposed a multi-component spectral data analysis, 

a combination of Elastic net for variable selection with PLSR that can be seen as a 

two-step variable shrinkage. First Elastic net eliminates uninformative variables. 

Second, the recursive leave-one-group-out strategy shrinks the variables in terms of 

PLSR in the root-mean-square error of cross-validation (RMSECV) sense. The 

algorithm was applied to near infrared (NIR) spectroscopy data sets and provided 

competitive results with full-spectrum PLS regression method. More recently, 

STEPHEN et al. (2012) applied Elastic net to the discrimination of a single bacterial 

strain grown on solid media culture with three different chromate levels by surface-

enhanced Raman spectroscopy. Elastic net allowed the classification and visualization 

of discrete points or wavelengths that discriminated environmentally induced cell 

surface composition.  

  

http://www.acronymfinder.com/Root_Mean_Square-Error-of-Cross_Validation-(RMSECV).html
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3. MATERIAL AND METHODS 

 

3.1.  Material 

 

Arabica green coffee samples were acquired from a coffee roasting company 

located in Minas Gerais (MG) State, Brazil (Café Fino Grão, Contagem, MG). The 

samples consisted of coffee beans harvested by the strip-picking method that were 

rejected by color sorting machines. Samples of 2kg of whole beans were randomly 

taken, mixed and their beans were manually sorted (by a professional trained and 

certified for green coffee classification) into five lots: non-defective, immature, black and 

sour (separated into light and dark colored). Samples of 25g were taken from each lot 

and roasted in a convection oven (Model 4201D Nova Ética, São Paulo, Brazil) at 220, 

235 and 250 oC. For each temperature, samples were roasted at three roasting times, 

resulting in nine different roasting conditions for each lot, and a total of 45 coffee 

samples. These conditions were established for each specific lot, given that defective 

coffee beans have been shown to roast to a lesser degree than non-defective coffee 

beans when submitted to the same processing conditions (MANCHA AGRESTI et al., 

2008). Different from industrial coffee roasters, the convection oven used in this study 

had fixed temperature during the roasting processes, and there was no rotation or 

motion of the beans.   

 Thereafter samples were ground in a coffee grinder (Arbel, Brasil).  

To assess the roasting degree of each coffee sample, color evaluation was 

performed in both whole and ground beans using a tristimulus colorimeter (HunterLab 

Colorflex 45/0 Spectrophotometer, Hunter Laboratories, VA, USA) with standard 

illumination D65 and colorimetric normal observer angle of 10o. Roasting degrees were 

defined according to luminosity (L*) measurements similar to commercially available 

coffee samples (19.0 < L*< 25.0), corresponding to light (23.5 < L*< 25.0), medium 

(21.0 < L*< 23.5) and dark (19.0 < L*< 21.0) roasts. The weight loss was calculated as 

the weight difference, in percentage, of each sample before and after roasting, as 

described in the following equation:     

 

        
      

  
                                                 [Eq. 2] 
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where, Wl is weight loss, wi is the initial weight and wf is the final weight.  

 

Samples were then sieved, obtaining fractions with the following particle sizes: 

(a) 0.84 mm > particle diameter > 0.39 mm, (b) 0.39 mm > particle diameter > 0.25 mm, 

(c) 0.25 mm > particle diameter > 0.15 mm, and (d) particle diameter < 0.15 mm. In 

previous experiments it was observed that smaller particle sizes provided more 

repeatable spectra. Thus, fraction “d” was used for DRIFTS and fraction “c” was used 

for the ATR-FTIR experiment. Fraction “a” was used in the NIR experiment since the 

amount of sample required for the readings was higher, and this fraction was available 

in a larger amount.    

For the classification and characterization of defective and non-defective 

coffees by DRIFTS, FTIR and NIR, pure samples of each of the sample classes at 

different roasting conditions were analyzed.  

For the quantitative analysis of coffee blends by FTIR and NIR, dark and light 

sour, black, and immature coffees were mixed with non-defective coffee, with %defects 

ranging from 3% to 30% in steps of 3% (10 blends for each of the four defects). These 

samples corresponded to those roasted at 235 °C and to a medium roasting degree. In 

addition, blends of a mixture of the four defects (25% of each defect) with non-defective 

coffee were also produced. Therefore, the following blends were produced: (a) light sour 

in admixture with non-defective coffee, (b) dark sour in admixture with non-defective 

coffee, (c) black in admixture with non-defective coffee, (d) immature in admixture with 

non-defective coffee and (e) defects (25% of each defect) in admixture with non-

defective coffee. These blends were disposed in Falcon tubes and shaken for one 

minute in tube shaker (Fisatom, Brazil). Furthermore, pure samples of non-defective 

coffee, representing 0% of defects, were used.  

The samples were storage in plastic bags, at room temperature. The same 

coffee samples were analyzed for the DRIFTS, FTIR and NIR studies, but the NIR 

analyses were performed some months after roasting. Thus it is possible to consider 

that, when the samples were analyzed by NIR, their moisture content was higher.   
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3.2. Methods 

 

3.2.1. DRIFTS measurements and spectral collection 

 

A Shimadzu IRAffinity-1 FTIR Spectrophotometer (Shimadzu, Japan) with a 

DLATGS (Deuterated Triglycine Sulfate Doped with L-Alanine) detector was used in 

the measurements that were all performed in a dry controlled atmosphere at room 

temperature (20 ± 0.5 °C). Diffuse reflectance (DR) measurements were performed in 

diffuse reflection mode with a Shimadzu sampling accessory (DRS8000A). The ground 

coffee sample was mixed dried KBr, with a coffee/KBr mass ratio of 10%, and then 23 

mg of this mixture was placed inside the sample port. Pure KBr was employed as 

reference material (background spectrum). Each of the 45 samples was analyzed in 

triplicate, obtaining a total of 135 readings. All spectra were recorded within a range of 

3100–600 cm−1 with a 4 cm−1 resolution and 20 scans, and submitted to background 

subtraction.  

 

3.2.2. ATR-FTIR measurements and spectral collection 

 

A Shimadzu IRAffinity-1 FTIR Spectrophotometer (Shimadzu, Japan) with a 

DLATGS (Deuterated Triglycine Sulphate Doped with L-Alanine) detector was used in 

the ATR-FTIR measurements that were performed in a dry atmosphere and room 

temperature (20 ± 0.5 °C). A horizontal ATR sampling accessory (ATR-8200HA) 

equipped with ZnSe cell was employed. To obtain a constant sample mass, a small 

metal recipient 2.4 mm thick and presenting an aperture of the same size of the ATR 

accessory (79 mm long and 10 mm wide) was placed over the ZnSe ATR crystal. 

Approximately 2 g of the ground and roasted coffee samples was then placed inside the 

metal recipient and pressed with a spatula to obtain the best possible contact with the 

crystal. The empty recipient was used to obtain the background spectrum. The 

approximate total time required for sample preparation was 5 min. All spectra were 

recorded within a range of 3100–800 cm−1 with a 4 cm−1 resolution and 20 scans and 

submitted to background subtraction. For the classification assay, pure samples of 

defective and non-defective coffees were read in triplicate, obtaining a total of 135 

readings. For the quantitative assay, each of the 10 samples that constituted a blend of 
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defective and non-defective coffee as well as pure samples of non-defective coffee, 

representing 0% of defects, were read in five replicates. A total of 55 readings were 

obtained for each group of defect or the mixture of all defects to be quantified in 

admixture with non-defective coffee. 

 

3.2.3. NIR measurements and spectral collection 

 

A SpectraStar 2400 Drawer NIR spectrophotometer (Unity Scientific) with an 

InGaAs detector was used in the measurements. Approximately 3 g of ground coffee 

samples were placed inside a glass cup, filling the entire empty space, and covered. 

The atmosphere air was used to obtain the background spectra, which was 

automatically taken from time to time. The approximate time required for sample 

preparation and analysis was 2 min. All spectra were recorded within a range of 1200–

2400 nm with 1 nm resolution and submitted to background subtraction. For the 

classification assay, samples of pure defective and non-defective coffees were read in 

triplicate, obtaining a total of 135 readings. For the quantitative assay, each sample that 

constituted a blend of defective and non-defective coffee was read in five replicates, 

and the non-defective pure coffee in eight replicates. A total of 58 readings were 

obtained for each group of defect or mixture of defects to be quantified in admixture with 

non-defective coffee. 

 

3.2.4.  Data analysis 

 

Preprocessings were applied to raw data prior to statistical analysis to 

compensate any changes in experimental conditions and enhance the results. These 

pre-treatments included: baseline correction, area and maximum value normalization, 

MSC and 1st and 2nd derivatives Savitzky-Golay. Prior to the statistical analysis all 

datasets were mean centered. The softwares Matlab (The MathWorks, Co., Natick, MA) 

and the computational package PLS_Toolbox (Eigenvector Research, Inc.) were 

employed for the pre-treatments calculation.  
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3.2.4.1. DRIFTS data analysis 

 

PCA is an exploratory multivariate analysis technique that projects the data 

matrix to a lower dimensional space spanned by the eigenvectors. The loading vectors 

corresponding to the k largest eigenvalues are retained to optimally capture the 

variance of the data and to minimize the effect of random noise (JACKSON & 

MUDHOLKAR, 1979). PCA was used to provide an explanation of the data variability.  

Sequentially, LDA was applied to develop classifier models. LDA is a method 

that focuses on finding optimal boundaries between classes. As PCA, LDA is a feature 

reduction technique, however, while PCA selects a direction that retains maximal 

structure in a lower direction among the data, LDA selects the direction that achieve a 

maximum separation among the different classes (SHARAF et al., 1986). For 

establishing a reliable LDA classifier model, the number of objects required needs to be 

higher than the number of variables. Hence, for spectral data analysis, variable 

reduction is usually necessary (WANG & MIZAIKOFF, 2008). Thus, different 

combinations of wavenumbers that would be associated with key coffee compounds 

were evaluated. The wavenumbers that provided the best prediction ability of the coffee 

classes were considered. Model validation was performed using 25% of the samples as 

the evaluation set. Recognition ability was calculated as the percentage of members of 

the calibration set that were correctly classified, and prediction ability was calculated as 

the percentage of members of the validation set that were correctly classified. The 

software XLStat was used for the statistical analysis of the data obtained by DRIFTS.  

 

3.2.4.2. FTIR and NIR data analyses 

 

3.2.4.2.1. Removal of outliers and exploratory analysis  

 

Besides being an interesting tool to provide an explanation of the data 

variability, PCA was also used to detect outliers prior to the classification analysis. The 

fitness between data and the PCA model can be calculated using the residual matrix 

and Q statistics that measures the distance of a sample from the new space of the PCA 

model (JACKSON & MUDHOLKAR, 1979). The Hotelling’s T2 statistics indicates how 

far the estimated sample by the PCA model is from the multivariate mean of the data, 

thus this statistics provides an indication of variability within the normal subspace 
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(WISE, 1991). The combination of Q and T2 tests are used to detect remaining 

abnormal observations (Lin et al., 2007). Given the significance level for the Q and T2 

statistics, in this case, 99%, observations with Q and/or T2 values over the threshold 

were classified as outliers (LIN et al., 2007). After the elimination of the outlier 

observations from the model, the procedure was continually repeated until no outliers 

were identified. The software Matlab (The MathWorks, Co., Natick, MA) and the 

computational package PLS_Toolbox (Eigenvector Research, Inc.) were employed.  

 

3.2.4.2.2. Classification and characterization of pure samples of defective and non-

defective coffees 

 

Elastic net (ZOU and HASTIE, 2005) was used to classify pure samples of 

coffee (non-defective, dark and light sour, black and immature) and to select the 

variables or wavenumbers/wavelengths that reveal an explicit relationship with the 

different classes of samples. This algorithm was applied using the glmnet package for 

the R software that fits generalized linear models via penalized maximum likelihood. 

Samples were randomly separated into training (75%) and validation (25%) data sets. 

The regularization parameter lambda causes coefficient shrinkage, minimizing the 

residual sum of squares. In order to obtain the lambda value that gives a minimum 

cross-validated error, leave-one-out cross-validation was performed. In sequence, 

multinomial logistic models were fitted with the training data set at α values ranging from 

0 to 1, in steps of 0.25. The α parameter controls the mixing between Ridge and Lasso 

regression. Ridge regression (α = 0) imposes a L2-penalty to the model inducing 

coefficient shrinkage, while Lasso regression (α = 1) imposes a L1-penalty which 

expects many predictors to be close to zero and a small subset to be nonzero, providing 

automatic variable selection. Elastic net (0 < α < 1) provides both coefficient shrinkage 

and variable selection. The developed models were used to predict the classification of 

observations from the calibration and new observations from the validation data set. 

The α-value that provided the higher predictability based on the lowest classification 

errors was considered as the best fit model. The discriminant wavenumbers from the 

best fit model and their respective coefficient estimates were then extracted. 
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3.2.4.2.3. Quantification of coffee blends 

 

PLSR was the technique of choice for the quantification of coffee blends, which 

was carried out using Matlab software (The MathWorks, Co., Natick, MA) with the 

PLS_Toolbox computational package (Eigenvector Research, Inc.). Samples were 

separated into calibration (75%) and validation (25%) sets. The optimal number of latent 

variables employed in the models was automatically chosen by leave-one-out cross-

validation based on the minimum value of RMSECV. The combination of Q and T2 

tests, with 99% of significance level, was used to detect the remaining abnormal 

observations in the calibration set. Observations with Q and/or T2 values over the 

threshold were classified as outliers and removed from the model. The evaluation of the 

goodness of the models was based on the following parameters: the correlation 

coefficient (R²) that should be as close to 1 as possible, and the root mean square 

errors for both the calibration (RMSEC) and prediction (RMSEP) sets, that must be as 

small as possible (HUCK et al., 2005). The latter parameters were calculated as follows: 

 

       
         

   
   

     
      [Eq. 3] 

 

       
         

   
   

  
      [Eq. 4] 

where yi and ŷi  correspond to the actual and predicted adulteration levels of sample i, 

and IC and IP are the total number of samples in the calibration and prediction 

(validation) sets, respectively. v is the number of degrees of freedom, or the number of 

latent variables used in the model more 1 for mean centered data.   
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4. RESULTS AND DISCUSSION 

 

4.1. Sample preparation  

 

In this study, only defects associated with beans irregular in visual appearance 

(color and surface texture) were considered. But it is worth noting that other types of 

defects may also occur, such as defects associated with foreign matter, coffee fruit 

parts and defects associated with beans irregular in cup taste after proper roasting and 

brewing, i.e. ‘stinker’ and ‘rio’ beans.    

Figure 9 shows green coffee beans manually sorted into five lots: non-defective, 

immature, black and sour (separated into light and dark colored). The separation of sour 

beans into light and dark was performed to obtain more homogeneous lots. It must be 

mentioned that some black green beans may be found together with the dark sour lot. 

Indeed, in an experiment reported by TEIXEIRA et al. (1971) it was observed that after 

the removal of the silverskin from black green beans, these beans were classified, 

based on their appearance, as sour. 

 

 

Figure 9. Manually sorted defective and non-defective coffee beans 
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The values of luminosity of defective and non-defective whole and ground 

coffee beans, respectively, are shown in Figure 10 and 11. The colorimetric results for 

green beans were already published by CRAIG et al. (2012b). Prior to roasting, black 

and dark sour, either whole or ground beans, presented lower luminosity values than 

non-defective, immature and light sour ones. Luminosity values were higher for ground 

beans than for wholes as a consequence of the fact that the bean surface is darker 

than its core. The results obtained for both whole and ground beans are in agreement 

with that obtained by FRANCA et al. (2005b) and MENDONÇA et al. (2009b). After the 

beans were roasted to a medium roasting degree, the values of luminosity decreased, 

as expected. It was observed that the interior of the beans was darker than its surface 

for non-defective and immature, while similar values were observed for light sour. Dark 

sour and black coffee still exhibited a darker surface than its core, indicating that these 

beans were roasted to a lighter extent than others, which is agreement with the 

observations by FRANCA et al. (2005b).  

 

 

Figure 10. Average L* values of defective and non-defective whole coffee beans 

before and after a medium roasting  
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Figure 11. Average luminosity L* values of defective and non-defective coffees before 

and after a medium roasting  

 

Table 9 summarizes both the colorimetric and weight loss results obtained from 

the roasting tests performed at 250 °C, 235 °C and 220 °C. Roasting times were 

adjusted in order to obtain coffees with light, medium and dark roasting degrees. These 

degrees were defined on the basis of the L* measurements of the coffees after grinding. 

It was established, based on previous colorimetric analysis of commercial ground 

coffees, that values of L* for light roasting degree would range from 23.5 to 25.0, from 

21.0 to 23.5 for medium roasting degree and from 19.0 to 21.0 for dark roasted coffee.  
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Table 9. Roasting results based on color measurement (L*) and percentage of weight 

loss (wet weight)  

  250 °C 

  Light Medium Dark 

  Time L* %WL Time L* %WL Time L* %WL 

Non-defective 7’’10’’’ 25.4 13.47 7’’30’’’ 21.74 14.07 8’’ 19.72 15.73 

Light sour 8’’ 24.74 13.81 8’’30’’’ 21.22 15.33 9’’ 19.71 16.55 

Dark sour 9’’ 24.55 13.78 9’’30’’’ 21.92 15.03 10’’ 19.92 16.02 

Black 6’’45’’’ 24.97 11.69 8’’ 21.97 14.43 8’’30’’’ 20.68 14.45 

Immature 8’’30’’’ 25.15 14.23 9’’ 21.98 16.13 10’’30’’’ 18.84 17.09 

 
235 °C 

 
Light Medium Dark 

 
Time L* %WL Time L* %WL Time L* %WL 

Non-defective 9’’ 23.75 13.69 10’’ 21.93 14.23 11’’ 19.38 15.89 

Light sour 10’’ 23.56 14.45 10’’30’’’ 21.91 15.28 11’’ 19.87 15.74 

Dark sour 12’’5’’’ 23.97 13.65 13’’ 22.99 14.62 15’’ 20.17 16.21 

Black 8’’40’’’ 23.75 12.53 10’’ 21.98 13.33 12’’ 20.58 15.55 

Immature 13’’ 23.19 15.51 15’’ 21.99 16.04 15’’30’’’ 19.97 16.56 

 
220 °C 

 
Light Medium Dark 

 
Time L* %WL Time L* %WL Time L* %WL 

Non-defective 13’’ 23.49 14.08 14’’ 22.24 14.54 17’’ 19.66 15.4 

Light sour 13’’ 25.15 14.19 16’’ 22.15 14.95 19’’ 20.55 16.18 

Dark sour 27’’ 23.76 14.54 30’’ 2.2 14.99 34’’ 20.37 15.96 

Black 14’’ 24.55 12.9 17’’ 21.95 13.73 20’’ 20.68 15.21 

Immature 29’’ 23.28 15.61 30’’ 22.5 15.83 35’’ 21.02 16.89 

 

Carbohydrates are quite important for the coffee roasting process. During 

roasting, the cell-wall matrix of the beans is opened, resulting in the solubilization of 

polysaccharides upon extraction. The hydrolysis of these polysaccharides results in the 

release of oligosaccharides and monosaccharides that will be converted into Maillard 

and pyrolysis products (OOSTERVELD et al., 2003). Carbohydrate content is directly 

associated with the bean development and fermentation processes. Previous studies 

suggested that non-defective beans contain more carbohydrates, especially sucrose, 

than sour, black (RAMALAKSHMI et al., 2007, VASCONCELOS et al., 2007) and 

immature beans, which presents the lowest content (MAZZAFERA, 1999, 

VASCONCELOS et al., 2007). Thus, it was expected that non-defective and immature 

beans would take a shorter and a longer time to be roasted, respectively. According to 

the literature, non-defective beans roast slightly faster than defective beans 

(VASCONCELOS et al., 2007, FRANCA et al., 2005b).  
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Considering the time that each coffee class took to achieve the established 

value of L*, results shown in Table 9 revealed that, indeed, under most roasting 

conditions, non-defective coffee achieved the established value of luminosity faster than 

other classes while immature beans were slower. Black beans, which also present low 

sucrose content because of the fermentation processes, achieved the established 

values of luminosity faster than non-defective beans at 250 °C and 235 °C. However, 

this result is possibly related to the fact that black beans exhibited a lower luminosity 

value than other beans even before roasting (CRAIG et al., 2012b). Looking at the 

percentages of weight loss at each roasting condition, it was observed that, because of 

the longer and the shorter times of exposition to heat, immature and black coffees lost 

more and less weight than other classes, respectively. The roasting processes were, 

however, conducted in laboratory scale using a convective oven with fixed temperature 

and no motion of the beans. In this system, the heat transfer is not as efficient and 

homogeneous (BONNLANDER et al., 2005). Thus, it is reasonable to consider that the 

roasting results obtained in this study could be changed if an industrial coffee roaster 

was used.        

 

4.2. DRIFTS 

 

4.2.1. Observations on DRIFTS spectra  

 

The results from this experiment were already published and can be found at 

Annex C. Average spectra obtained for defective and non-defective roasted coffee 

samples are shown in Figure 12. A comparative evaluation of these spectra indicates 

that they are quite similar, although variations in band intensity are perceived, with 

absorbance values being higher for non-defective and light sour beans and lower for 

black beans.  

The two sharp bands at 2920 and 2850 cm-1 have been previously identified in 

Arabica and Robusta roasted coffee samples (KEMSLEY et al., 1995) and also on 

Arabica green coffee samples (CRAIG et al., 2011ab). Studies of FTIR analysis of 

caffeine on soft drinks have reported two sharp bands at 2882 and 2829 cm−1, with the 

latter being due to the asymmetric stretching of C–H bonds of methyl (–CH3) group in 

the caffeine molecule (PARADKAR & IRUDAYARAJ, 2002). The sharp band at 1740 
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cm-1 was also reported on previous FTIR studies on roasted coffee, in association to 

carbonyl (C=O) vibration of the ester group in triglycerides (KEMSLEY et al., 1995) or to 

aliphatic esters (LYMAN et al., 2003), indicating that this band could be associated to 

lipids. The combination of absorptions at 1740 cm-1 (C=O stretch) and at 2830-2695  

cm-1 (HC=O stretch) with a weak shoulder-type peak at 2725-2740 cm-1 could be 

interpreted as a presence of aldehydes (MILLER et al., 2003), which are volatile 

compounds found aplenty in roasted coffee, as a result of the thermal degradation of 

unsaturated fatty acids, such as linoleic acid (OLIVEIRA et al., 2006). The wavenumber 

1659 cm-1 has been identified by GARRIGUES et al. (2000) as due to the presence of 

carbonyl groups in caffeine in their FTIR analysis of trichloromethane extracts of roasted 

coffee. However, in this study, this band appears rather modestly in the spectra for 

roasted and ground coffee. Thus, it can be assumed that several other compounds in 

roasted coffee also absorb in that range of wavenumbers.  

Several bands can be viewed in the range of 1700 to 600 cm-1. The 

wavenumber range of 1400 to 900 cm-1 is characterized by vibrations of several types 

of bonds, including C–H, C–O, C–N and P–O (SABLINKAS et al., 2005; WANG et al., 

2009). Other studies on FTIR analysis of roasted coffees (KEMSLEY et al., 1995; 

BRIANDET et al., 1996) have reported that carbohydrates exhibit several absorption 

bands in this region, so it is expected that this class of compounds will contribute to 

several of the observed bands. According to KEMSLEY et al. (1995), BRIANDET et al. 

(1996), and LYMAN et al. (2003), chlorogenic acids also present absorption in the 

region of 1450 to 1000 cm-1. Chlorogenic acids represent a family of esters formed 

between quinic acid and one to four residues of certain trans-cinnamic acids, most 

commonly caffeic, p-coumaric and ferulic (CLIFFORD et al., 2008). Axial CO 

deformation of the quinic acid occurs in the range of 1085 to 1050 cm-1, and OH 

angular deformation occurs between 1420 and 1330 cm-1. The COC ester bond also 

absorbs in the 1300-1000 cm-1 range (SILVERSTEIN et al., 2005) and therefore the 

bands located in the range of 1450 to 1050 cm-1 could be partially due to chlorogenic 

acids. Another substance that can be associated to peaks in the 1600 to 1300 cm-1 

range is trigonelline, a pyridine derivative that has been reported to present four bands 

in this range, due to axial deformation of C=C e C=N bonds (SILVERSTEIN et al., 

2005).  
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(a) 

 

(b) 

 

Figure 12. Mean average spectra obtained by ATR-FTIR for defective and non-

defective roasted coffees. (a) original spectra and spectra submitted to (b) baseline 

correction and area normalization and (c) 1st derivative Savitzky-Golay. ― light sour, 

― dark sour, ― black, ― non-defective, ― immature (continued). 
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4.2.2. Exploratory and classification analyses  

 

The scatter plots obtained by PCA analysis are displayed in Figure 2. A clear 

separation between categories can be observed, with four distinct major groups: non-

defective, black, dark and light sour, with some outlier points. The few outlier samples 

from each group that were present in other classes (for example, a few non-defective 

and black beans in the light sour group) correspond to samples subjected to extreme 

roasting conditions (light roast/lower temperature and dark roast/higher temperature). 

Regardless of the employed spectra processing technique, immature beans are 

somewhat scattered between light and dark sour defects. Clustering of immature and 

sour defects was also observed in the analysis of green coffees by ESI (+)-MS profiles 

(MENDONÇA et al., 2008) or DRIFTS (CRAIG et al. 2011a), whereas MANCHA 

AGRESTI et al. (2008) reported grouping of immature and black roasted coffee beans 

according to their volatile profiles.  

A clear separation between non-defective and defective coffee beans can be 

observed in all the plots displayed in Figure 13. Evaluation of the loadings plots 

obtained after PCA analysis of raw and processed spectra (not shown) indicated that 

the spectral ranges that presented the highest influence on PC1 and PC2 values in 

association with the non-defective coffees were the following: 1700-1500 cm-1 and 970 

to 600 cm-1 in general representing the regions in which non-defective coffees 

presented higher absorbance intensity in comparison to all defective categories. 

Loadings obtained for first derivatives could not be associated to specific regions in the 

spectra. 
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(a) 

 

(b) 

 

Figure 13. PCA scores scatter plots of ATR-FTIR spectra (a) original; (b) after 

baseline correction and area normalization; and (c) after 1st derivative Savitzky-Golay. 

● non-defective, ● immature, ● black, ● light sour, ● dark sour. 
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(c) 

 

Figure 13. PCA scores scatter plots of ATR-FTIR spectra (a) original; (b) after 

baseline correction and area normalization; and (c) after 1st derivative Savitzky-Golay. 

● non-defective, ● immature, ● black, ● light sour, ● dark sour (continued). 

 

Results from PCA indicate that the obtained spectra could provide enough 

information to develop classification models for non-defective and each specific class 

of defective coffees. Thus, LDA was applied with the purpose of obtaining 

classification models for assigning categories to samples. LDA models were 

constructed employing different combination of variables (wavenumbers). It was 

observed that model recognition ability varied significantly with the number of 

variables, with the best correlations being provided by eight-variable models. In 

general the models were satisfactory (average recognition and prediction abilities 

above 75%) as long as the selected wavenumbers presented high loading values. 

Therefore, the following wavenumbers, which have been previously reported in other 

FTIR studies on coffee, were selected for the final models: 2924, 2852, 1743, 1541, 

1377, 1076, 910 and 816 cm-1. These wavenumbers can be associated with caffeine, 

carboxylic acids, lipids, chlorogenic acids, trigonelline and carbohydrates.  

For all the developed models, the first three discriminant functions were 

enough to provide sample classification. The total sample variance for the models 

based on original spectra, normalized spectra and first derivative spectra were, 

respectively, 95.2, 95.3 and 97.6%. The calculated values of each discriminant 

function at the group centroids are displayed in Table 10. For example, considering the 
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the only sample class who exhibited positive values for DF1, DF2 and DF3, while 

black coffee, negative values. The corresponding values obtained for correct 

classification rates for each specific model and group are shown in Table 11.  

Recognition and prediction abilities were quite similar for all the developed models.  

 

Table 10. Calculated values of the first three discriminant functions at each sample 

group centroid 

Model Non-defective Immature Dark sour Light sour Black 

Original 

DF1 4.695 -3.409 -1.918 1.614 -1.115 

DF2 0.577 -0.04 2.88 -0.489 -2.975 

DF3 0.454 2.121 -1.493 0.35 -1.437 

Normalized spectra 

DF1 -3.21 3.274 2.847 -1.266 -0.945 

DF2 -1.691 0.506 -1.588 0.828 2.513 

DF3 -0.507 3.274 1.549 -0.531 1.283 

First derivative 

DF1 2.402 -0.711 0.094 0.376 -2.078 

DF2 0.885 -0.696 -2.073 0.625 1.28 

DF3 0.423 -0.41 0.388 -0.992 0.496 

DF1, DF2 and DF3 represent the first, second and third discriminant functions, respectively. 
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Table 11. Correct classification rates (%) for the LDA models 

Model Non-defective Immature Dark sour Light sour Black Total 

Original  

Calibration 83.3 87 100 78.3 89.6 95.5 

Validation 100 100 100 100 100 100 

Normalized spectra  

Calibration 84 90 100 100 78.3 89.6 

Validation 100 80 100 100 100 95 

First derivative  

Calibration 82.6 75 77.3 70 87 78.6 

Validation 75 100 100 66.7 75 800 

Classification rates were evaluated as the percent ratio between the number of samples 

correctly classified in a specific group and the total number of samples of that group.   

 

The data was further re-evaluated in order to develop a more generic 

classification model, i.e., only one discrimination function that would provide 

discrimination between non-defective and defective beans, without separating the 

defects into specific groups. The classification functions and the respective correct 

classification rates are shown in Table 12. Respective average values of recognition 

and prediction abilities were 97.3 and 100%, for the model based on original spectra, 

96.4 and 100%, for the model based on normalized spectra, and 94.6 and 95%, for the 

model based on first derivatives. Such results confirm that DRIFTS provides 

satisfactory discrimination between defective and non-defective roasted coffees. 
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Table 12. Model equations and correct classification rates (%) based on generic 

discrimination between defective and non-defective coffees 

Model Non-defective Defective Total 

Original: DF = -6.7 + 63.3X2924 – 69.9X2852 + 66.9X1743 – 21.9X1541 – 60.7X1377 – 111X1076 + 

49.3X910 + 19.7X816 

Calibration 87.5 100 97.3 

Validation 100 100 100 

Normalized: DF = -251.2 + 175.4X2924 + 93.6X2852 – 36X1743 + 18.9X1541 – 58.8X1377 + 86.6X1076 

– 29.4b910 + 3b816 

Calibration 84 100 96.4 

Validation 100 100 100 

First derivative: DF = -6.2 – 109X2924 – 815.8X2852 – 433.5X1743 – 615.2X1541 – 715.4X1377 + 

2560.3X1076 + 859.2X910 – 486.3X816 

Calibration 88 96.6 94.6 

Validation 94 100 95 

DF represents the discriminant function. X corresponds to the absorbance (log1/R) value at 

the corresponded wavenumber. Classification rates were evaluated as the percent ratio 

between the number of samples correctly classified in a specific group and the total number of 

samples of that group.    

 

In spite of the interesting results achieved, DRIFTS possesses some 

drawbacks from a practical point of view. First, the sample preparation requires more 

steps than ATR-FTIR or NIR. The sample must be diluted and well mixed with KBr that 

must be dry to avoid humidity interference. Then, the sample (~23 mg) is placed in a 

sample port and read. The particle size and size distribution, sample packing, and 

dilution must be carefully controlled for quantitative analysis (LARKIN, 2011). 

Furthermore, because of the small amount of sample analyzed, quantitative analyses 

are rather complicated. Thus, in this study, a quantitative assay was not attempted by 

DRIFTS.  
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4.3. ATR-FTIR 

 

4.3.1. Observations on ATR-FTIR spectra 

 

Average original spectra obtained for defective and non-defective roasted 

coffee samples are shown in Figure 14a.  A comparative evaluation of these spectra 

indicates that they are quite similar. A considerable difference in their baseline is 

observed, with absorbance values (log(1/R)) being higher for light sour and non-

defective coffees and lower for immature, dark sour and black beans. After the 

application of baseline correction (see Figure 14b) and 1st derivative (see Figure 14c), 

the spectra of defective and non-defective coffees exhibited a high similarity, being 

hardly visually differentiated.  

Major peaks were observed at 2920 cm-1, 1747 cm-1 and at 1400-900 cm-1. 

These bands have been previously identified in arabica and robusta roasted coffee 

samples (KEMSLEY et al., 1995, DOWNEY et al., 1997) and also on arabica green 

coffee samples (CRAIG et al., 2012b, CRAIG et al., 2012a).  The first region is 

associated with symmetric and asymmetric stretching of CH bonds in CH2 and CH3 

groups (SILVERSTEIN et al., 2005). The region associated with CH2 groups is highly 

related to the presence of lipids (WANG and LIM, 2012, REIS et al., 2013), while the 

CH3 region has great importance in the identification of caffeine (PARADKAR and 

IRUDAYARAJ, 2002). Thus, the sharp bands at 2920 and 2850 cm-1 observed in the 

spectra presented for coffee in Figure 14 can be attributed to both caffeine and lipids. 

The sharp band at 1747 cm-1 is assigned to C=O stretch from aliphatic esters groups, 

thus it is mostly related to the presence of lipids. Variations in the lipid composition can 

subtly affect the spectral shape in and around this feature. The regions around 1747 

cm-1 are also related to C=O stretch, but from different functional groups including 

aldehydes, ketons and esters. Such compounds add different aromas to the coffee, 

making this region of the spectrum an important region from a sensory point of view 

(KEMSLEY et al., 1995, KAROUI et al., 2010, LYMAN et al., 2003, WANG et al., 

2009). The third region, from 1400-900 is commonly called fingerprint region because 

of the large amount of characteristic bands from single bonds or strictly specific 

functional groups. Among these bounds, C-H, C-O, C-N and P-O groups are included 
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(SABLINSKAS, 2005, SILVERSTEIN et al., 2005). In particular, carbohydrates exhibit 

large features in this region (KEMSLEY et al., 1995, JOHN et al., 2007). 

With regard to the 1st derivative spectra (see Figure 14c), bands, peaks and 

valleys do not follow the log(1/R) spectral pattern observed in Figures 14a and 14b. A 

first-order derivative of the log(1/R) results in a curve containing peaks and valleys that 

correspond to the point of inflection on either side of the log(1/R) peak (JOHN et al., 

2007). Thus, the actual highest point of each of the positive peaks observed in Figures 

14a and 14b becomes 0 after 1st derivative transformation, and instead, two peaks, 

one positive and one negative, will occur before and after the actual highest point of 

the peaks in the original spectra (Figure 14c).   

 

 

Figure 14. Mean average spectra obtained by ATR-FTIR for defective and non-

defective roasted coffees. (a) original spectra and spectra submitted to (b) baseline 

correction and area normalization and (c) 1st derivative Savitzky-Golay. ― light sour, 

― dark sour, ― black, ― non-defective, ― immature.  

 

(a) 
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Figure 14. Mean average spectra obtained by ATR-FTIR for defective and non-

defective roasted coffees. (a) original spectra and spectra submitted to (b) baseline 

correction and area normalization and (c) 1st derivative Savitzky-Golay. ― light sour, 

― dark sour, ― black, ― non-defective, ― immature (continued).  

 

(c) 

(b) 
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4.3.2. Outlier removal and exploratory analysis 

 

PCA analysis was applied to the original and pretreated ATR-FTIR dataset to 

detect outliers or abnormal observations, and to provide an explanation of the variability 

within the data. Using PCA, the original high-dimensional spectral dataset containing 

chemical information of defective and non-defective coffees was projected to a low-

dimensional space where the first PCs explained most of the variance between the 

samples. The fitness between data and model was calculated based on Q statistics that 

measures the distance of a sample from the new space of the PCA model (JACKSON 

and MUDHOLKAR, 1979). The Hotelling’s T2 statistics indicates how far the estimated 

sample is from the multivariate mean of the data. It provides an indication of the 

variability within the normal subspace (WISE, 1991). Samples with Q or T2 statistics 

values over the threshold of 99% were classified as outliers and removed from the data 

set. The procedure for outlier removal was performed and repeated until no outliers 

were identified. In the ATR-FTIR datasets corresponding to original, baseline corrected 

and area normalized, and 1st derivative transformed spectra, 0, 4 and 5 outliers were 

detected and removed, respectively. Figure 15 shows the outliers removed from the first 

PCA models developed.  

 

(a) 

 

Figure 15. Plot of Q residuals vs. Hotelling’s T2 statistic for outlier removal in the ATR-

FTIR datasets corresponding to (a) original spectra, spectra submitted to (b) baseline 

correction and area normalization and (c) 1st derivative.   
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(b) 

 

 

(c) 

 

Figure 15. Plot of Q residuals vs. Hotelling’s T2 statistic for outlier removal in the ATR-

FTIR datasets corresponding to (a) original spectra, spectra submitted to (b) baseline 

correction and area normalization and (c) 1st derivative (continued).   

 

The resulting scatter plots obtained by the PCA analysis of ATR-FTIR spectra 

are displayed in Figure 16. At all of the Figures, there is a trend, but still not clear, on 

the separation of non-defective and light sour from black, dark sour and immature 

coffees. In Figure 16a this trend is observed through PC1, which explained 94.37% of 

the variability amongst the samples. In Figure 14b this trend appears through PC3 that 

explained only 3.31% of the variability amongst the samples, although this separation is 

not well evidenced. The application of 1st derivative transformation slightly improved the 

separation of non-defective and light sour coffees from the remaining classes through 

PC1 (86.30) and PC3 (0.73%) (see Figure 16c). But overall, PCA analysis of ATR-FTIR 
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spectra did not show an evident discrimination of defective and non-defective beans, 

and neither a discrimination of the samples by roasting condition.           

 

(a) 

 

(b) 

 

Figure 16. PCA scores scatter plots of ATR-FTIR spectra (a) original; (b) after 

baseline correction and area normalization; and (c) after 1st derivative Savitzky-Golay. 

● non-defective, ● immature, ● black, ● light sour, ● dark sour. 
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(c) 

 

 

Figure 16. PCA scores scatter plots of ATR-FTIR spectra (a) original; (b) after 

baseline correction and area normalization; and (c) after 1st derivative Savitzky-Golay. 

● non-defective, ● immature, ● black, ● light sour, ● dark sour (continued). 

 

4.3.3. Classification and variable selection by Elastic net: chemical assignments 

of selected ATR-FTIR absorption bands 

 

Table 13 summarizes the results obtained by the multinomial logistic models 

constructed via Elastic net to classify the ATR-FTIR spectra. As expected, the 

application of preprocessings to the data increased the accuracy of the models in a way 

that models constructed with the original spectral exhibited worse results in comparison 

to models constructed with preprocessed spectra. In general, models constructed with a 

lower number of nonzero variables provided better results. Excellent statistical 

classification of defective and non-defective coffees was achieved at α levels ranging 

from 0.25 to 1. In particular, perfect classification was obtained with baseline corrected 

and normalized spectra at α level of 0.25. 

These results indicated that an accurate classification can be achieved from 

relatively small regions of the spectrum, by means of imposing penalties in the model to 

reduce the number of explicit variables. LASSO regression (α = 1) imposes a L1-penalty 

that corresponds to a Laplace prior distribution, which expects many predictors to be 
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close to zero and a small subset to be nonzero, providing automatic variable selection 

(ZANON et al., 2011). Although LASSO has shown success in many situations, it 

presents some limitations if there is a group of variables among which the pairwise 

correlations are very high. In this scenario LASSO tends to select only one variable from 

the group and does not care which one is selected. The regularization technique called 

Elastic net was proposed to fix these problems (ZOU and HASTIE, 2005). Elastic net is 

a version of penalized least squares that combines both Ridge (α = 0) and LASSO 

regression, providing shrinkage and model selection at the same time (FRIEDMAN et 

al., 2010). Considering the classification results shown in Table 13 and the exposed 

discussion, the variable selection for ATR-FTIR results was based on Elastic net, with 

the coefficient estimates plotted at α level of 0.75. 

 

Table 13. Percentage of correct classification obtained by Elastic net models based on 

ATR-FTIR spectra: comparing treatments and penalties 

   Correct Classification (%) 

Treatment α Nonzero  

variables 

Cal CV Val 

Original spectra 0 676 0.63 0.54 0.71 

 0.25 318 0.88 0.88 0.93 

 0.5 239 0.89 0.89 1 

 0.75 151 0.9 0.9 0.93 

 1 39 0.96 0.96 0.99 

Baseline correction + 

area normalization 

0 676 0.91 0.91 0.87 

0.25 291 1 1 0.97 

0.5 175 1 1 0.97 

0.75 99 1 1 0.97 

1 35 1 1 0.97 

1st derivative 0 676 1 

1 

0.97 

 0.25 254 1 0.95 

 0.5 112 1 0.96 

 0.75 73 1 0.95 

 1 33 1 0.94 

Cal = calibration; CV = cross-validation; Val = validation. 
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The reason why Elastic net was chosen as the technique for variable selection 

is because it provides a good interpretation of a model, revealing an explicit relationship 

between the objective of the model and the given variables. In this situation, it allows 

the visualization of discriminating wavenumbers and how these wavelengths contributed 

to the correct classification of each coffee class. For example, a positive coefficient 

estimate indicates that a specific coffee class exhibited higher intensity at that range of 

the spectrum, which may be associated with a higher concentration of a specific 

compound in comparison to other coffee classes.  

Figures 17a and 17b show the Elastic net coefficient estimates for original 

spectra and spectra submitted to baseline correction and area normalization, 

respectively. Regardless of variations in the absolute coefficient estimate values, the 

same regions of the spectra were selected for the classification of defective and non-

defective coffees. It is also important to mention that the region between 2800 and 1800 

cm-1 was not included in the development of the classification models for the following 

reasons: in terms of coffee, there is no compound with chemical importance absorbing 

in this region; the absorption of carbon dioxide in the region around 2330 cm-1 causes 

considerable noise effect; and there is a slight shift in the baseline of the spectra even 

after the application of baseline correction.    
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Figure 17. Elastic net coefficient estimates at α = 0.75 for ATR-FTIR (a) original 

spectra and (b) spectra submitted to baseline correction and area normalization. A 

peak indicates that correct classification of spectra is associated with the 

corresponding spectral region. A positive peak indicates higher intensity than other 

classes; a negative peak indicates lower intensity. ―non-defective, ―light sour, 

―dark sour, ―black and ―immature. 

 

It is rather difficult to interpret a first derivative spectra because bands, peaks 

and valleys do not follow the log(1/R) spectral pattern. As discussed previously, a first-
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order derivative of the log(1/R) results in a curve containing peaks and valleys that 

correspond to the point of inflection on either side of the log(1/R) peak (JOHN et al., 

2007). For this reason, the 1st derivative spectra obtained by ATR-FTIR were 

disregarded for the Elastic net variable selection.  

The following discussion was conducted examining each of the nonzero 

coefficient estimates obtained by Elastic net and, based on the literature, conducting a 

tentative assignment of these coefficients to chemical compounds that may absorb in 

the selected region of the ATR-FTIR spectra. Table 14 summarizes the chemical 

assignment of the selected spectral regions obtained for the original and the spectra 

submitted to baseline correction and area normalization. To make the interpretation of 

these results more clear and simple, only the sign of the coefficients will be taken into 

account, while the absolute values will be disregarded.  

Correct classification of non-defective coffee was associated with 12 spectral 

regions. The positive region 6 and the positive regions 21, 22, 23, 26 and 29 could be 

related to higher contents of carbohydrates, especially polysaccharides, and lipids in 

non-defective coffee, respectively. This finding was expected considering that studies in 

the literature have reported higher levels of these compounds in non-defective coffee 

than in defective ones (OLIVEIRA et al., 2006, VASCONCELOS et al., 2007, 

RAMALAKSHMI et al., 2007, FRANCA et al., 2005b, MAZZAFERA, 1999). The selected 

regions 10, 14, 15, 16 and 28 exhibited negative coefficients and could be related to 

lower levels of amino acids, proteins and caffeine in non-defective coffees. This result is 

in agreement with the studies by MAZZAFERA et al. (1999), FRANCA et al. (2005b) 

and VASCONCELOS et al. (2007), where slightly lower levels of protein and caffeine 

were observed in non-defective coffee. According to WANG et al. (2011) and WANG 

and LIM (2012), roasting coffees to a medium and dark degrees increases the presence 

of compounds such as aldehydes, that also contributed to the positive region 21, and 

decreases the content of caffeine. Thus, results from this study suggests that, under the 

same roasting conditions, non-defective coffee attain a higher extent of roasting in 

comparison to defective ones. The negative region 9 could not be attributed to any 

specific compound, but according to SILVERSTEIN et al. (2005), symmetrical C-H 

bending vibrations of methyl groups occurs near 1375 cm-1. Thus it is possible that 

compounds with methyl groups, such as caffeine, would contribute in this region. 

Ten positive regions were associated with correct classification of light sour 

coffee. Among them, regions 4, 5 and 6, and regions 22, 25 and 26 suggest that light 
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sour coffee contains high content of polysaccharides and lipids, respectively. The 

positive regions 12, 13, 14 and 27 can be related to high levels of protein and most 

likely caffeine. The negative region 2 was attributed to the absorption of phenolic 

compounds, and can be related to a low content of chlorogenic acid or pyridine. There 

is no evidence that light sour coffee presents lower levels of such compounds, but these 

negative coefficients could be attributed to a higher degradation of chlorogenic acids 

during roasting. Regions 11 and 28 suggest that light sour coffee is associated with low 

levels of protein and caffeine, which contradicts the positive coefficients at regions 12-

14 and 27. And finally regions 17, 18 and 24 may be related to low level of aromatic 

acids and vynil esters or lactones in light sour coffee. In the study by WANG and LIM 

(2012) using ATR-FTIR it was observed that the absorbance values of unsaturated 

ester/lactones were lowered from the start of first crack to the start of second crack and 

then stabilized. These findings suggest that light sour as well as non-defective coffee, 

attained a higher extent of roasting than other coffee classes. The negative regions 7 

could not be assigned to any potential vibration that would occur in a coffee sample. 

Region 8 has not been reported in the literature to any coffee compound, but according 

to SILVERSTEIN et al. (2005) the OH in-plane bending vibrations in alcohols and 

phenols occurs between 1330 and 1420 cm-1. Thus, this region could possibly be 

related to chlorogenic acids.  

In the case of dark sour, correct classification was associated with a strong 

absorption in region 2, where phenolic compounds possibly absorb. This finding could 

result from the low degree of roasting attained by dark sour coffee. The negative 

coefficients observed at regions 6 and 10 were related to polysaccharides and amino 

acids, respectively, and 22 and 25, related to lipids. Dark sour coffee also presented 

positive coefficients at the characteristic regions of aromatic and aliphatic acids 

absorption (17-20). The noticeably higher acidity of sour beans in comparison to other 

coffee classes, which occurs because of bean fermentation, was previously 

demonstrated in the literature for green coffee. However, it is worth noting that such 

acidity could also be influenced by the presence of chlorogenic acids (FRANCA et al., 

2005a, RAMALAKSHMI et al., 2007, VASCONCELOS et al., 2007), or by a lighter 

extent of roast.  

Correct classification of black coffee was related to three regions with positive 

coefficients. Region 1 was attributed to phenolic compounds and pyridine, specifically 

with chlorogenic acids and trigonelline. According to MAZZAFERA (1999) and FRANCA 
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et al. (2005b) significant lower levels of chlorogenic acids and trigonelline were found in 

raw black coffee than in other coffee classes. Nevertheless, black coffee attains a 

lighter roasting extent, resulting in a lower degradation of these compounds. Results 

from FRANCA et al. (2005b) indicated that, after roasting, black coffee exhibited 

significant higher level of chlorogenic acids than other coffee classes, corroborating the 

results found in this work. The positive region 16 was attributed to protein absorption. In 

the studies by OLIVEIRA et al. (2006) and VASCONCELOS et al. (2007), prior to 

roasting proteins were found at higher levels in black beans, but no significant 

difference among defects was found among roasted coffees. According to FABIAN et al. 

(1994), beyond protein absorption, caffeine could also contribute to region 16. Although 

there is no evidence that, prior to roasting, caffeine levels among defects vary 

significantly (FRANCA et al., 2005b, MAZZAFERA, 1999), the fact that black beans 

roast to a lesser extent would lead to a higher content of caffeine after roasting 

(FRANCA et al., 2005b), which explains the positive coefficient at region 27. The 

negative coefficients related to polysaccharides at regions 3 and 5 were somewhat 

expected considering that black beans can be originated from fermentation processes. 

Regions 20 and 21 were assigned to aliphatic acids or aldehydes and ketones, 

compounds that are mainly formed during roasting (LYMAN et al., 2003, WANG et al., 

2011), confirming that black coffee roasted to a lesser extent. Concerning the regions 

21 and 26, assigned to lipids, according to the literature, black coffee contains lower 

level of lipids than non-defective (OLIVEIRA et al., 2006) and possibly light sour coffees, 

but slightly higher lipid content among defective beans (OLIVEIRA et al., 2006, 

MAZZAFERA, 1999). 

The correct classification of immature coffee was associated with higher 

absorption intensities at regions 10 and 11, attributed to amino acids and proteins, and 

28, attributed to caffeine. In terms of amino acids, MAZZAFERA (1999) reported higher 

levels for immature coffee, although the same was not observed for proteins. There is 

no evidence that immature coffee presents higher levels of proteins (MAZZAFERA, 

1999, FRANCA et al., 2005b, FRANCA et al., 2005a), which dominated the selected 

region 11. According to the literature, immature coffee contains higher content of 

caffeine in the endosperm (MAZZAFERA et al., 1991) or either in the whole fruit 

(SUZUKI and WALLER, 1984) in comparison to non-defective coffee. However, no 

significant difference among defects was found by MAZZAFERA (1999) and FRANCA 

et al. (2005b). Negative coefficients for immature coffee were observed at regions 1, 16 
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and 29, related to phenolic compounds, protein and lipids, respectively. In spite of the 

high content of chlorogenic acids in green immature beans (MAZZAFERA, 1999, 

FRANCA et al., 2005a, FARAH et al., 2005), most of this content is expected to be 

degraded during roasting (FRANCA et al., 2005b). The presence of positive and 

negative regions associated with proteins reveals some inconsistency in these 

assignments. Finally the negative coefficients of immature coffee attributed to lipids 

were in agreement with the study by OLIVEIRA et al. (2006). 
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Table 14. Tentative chemical assignment of significant ATR-FTIR bands selected by Elastic net (α = 0.75) for the classification of 

defective and non-defective coffees  

Region 
selected 

Gereral region 
ranges ND LS DS BL IM Vibration modes Compounds References 

1 800-801  
  

+ - 
Out-of-plane CH bend, adjacent 

CH wag Phenolic compounds, pyridine 1 

2 823-835  - + 
  

out-of-plane CH bend, adjacent 
CH wag Phenolic compounds, pyridine 1 

3 1039  
  

- 
 

C-O str Celulose 2 

4 1099  + 
   

C-O str Carbohydrates 2, 3 

5 1118-1132  + 
 

- 
 

C-O str Carbohydrates 3, 4 

6 1138-1165 + + - 
  

C-O str Polysaccharydes, celulose 4 

7 1292-1294  - 
      8 1334-1338  - 
      9 1363-1365 - 

    
sym CH bend in CH3 

 
1 

10 1502-1558 - 
 

- 
 

+ sym NH3 bend Amino acids 1, 2, 5 

11 1560-1589  - 
  

+ NH bend Amide II Protein 1, 2 

12 1610-1612  + 
   

NH2, NH bend Amide II, lactam Caffeine, protein 1, 5 

13 1618-1625  + 
   

NH2, NH bend Amide II, lactam Caffeine, protein 1, 5 

14 1633 - + 
   

NH2, NH bend Amide II, lactam Caffeine, protein 1, 5 

15 1641-1645 - 
    

NH2, NH bend Amide II, lactam Caffeine, protein 1, 5 

16 1649-1674 - 
  

+ - Amide I Protein 2 

17 1683-1691  - + 
  

C=O str in aryl conjugated acids Aromatic acids, CGA 6, 7 

18 1695  - 
   

C=O str in aryl conjugated acids Aromatic acids, CGA 6, 7 

19 1701  
 

+ 
  

C=O str in aryl conjugated acids Aromatic acids, CGA 6, 7 

20 1705-1720  
 

+ - 
 

C=O str Ketones, aliphatic acids 1, 6, 8 

21 1722-1735 + 
  

- 
 

C=O str Aliphatic aldehyde, lipids 5, 8 

22 1737-1749 + + - 
  

C=O str from esters Lipids 2, 6 

23 1753-1759 + 
    

C=O str from esters Lipids 2, 6 

24 1760-1774  - 
   

C=O str adjacent to C-O- group Vynil esters, lactones 6 
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25 2810-2833  + - 
  

sym CH str in CH2 Lipids 1 

26 2835-2848 + + 
 

- 
 

sym CH str in CH3 Lipids 1 

27 2850-2862  + 
 

+ 
 

sym CH str in CH3 Caffeine 1, 9 

28 2868-2877 - - 
  

+ sym CH str in CH3 Caffeine 1, 9 

29 2908-2920 + 
   

- asym CH2 str Lipids 1, 5, 10 

LS = light sour, DS = dark sour, BL = black, ND = non-defective, IM = immature. 

sym = symmetric, asym = asymmetric, str = stretching 

CGA = chlorogenic acids 

List of references: 

1. SILVERSTEIN et al. (2005) 

2. KAROUI et al. (2010) 

3. BRIANDET et al. (1996) 

4. KEMSLEY et al. (1995) 

5. WANG and LIM (2012) 

6. LYMAN et al. (2003) 

7. FABIÁN et al. (1994) 

8. WANG et al. (2011) 

9. YANG et al. (2005) 

10.  REIS et al. (2013)
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4.4. NIR 

 

4.4.1. Observations on NIR spectra 

 

Figure 18a shows the original mean average spectra of defective and non-

defective coffees. The spectra exhibit a similar shape to the typical NIR spectra of 

coffee reported in the literature (ESTEBAN-DIEZ et al., 2004b, RIBEIRO et al., 2011). 

Overall, spectra of defective and non-defective coffees exhibited notable similarity, 

being visually differentiated only by a slight variance in the absorbance (log(1/R) 

intensity.  

The shape of the spectra was particularly dominated by broad water 

absorption bands between 1440-1460 nm (first overtone of O–H stretching) and 1930-

1950 nm (combination band of O–H stretching and O–H deformation). Thereby, in 

these regions the typical absorption bands of coffee components were very weak in 

comparison with the water bands. This feature was also observed after spectra were 

submitted to MSC (Figure 18b) and baseline correction (Figure 18c). Other few 

regions of the spectra that could be identified were extensively reported in the 

literature as characteristic absorption regions of specific compounds. For example, the 

two well defined peaks between 1715-1760 nm and 2300-2350 nm were assigned to 

lipids and the peak around 2100 nm was previously assigned to carbohydrates (JOHN 

et al., 2007, RIBEIRO et al., 2011). Nevertheless, these peaks are composite of 

numerous individual bands that cannot be visibly resolved in log(1/R) form due to the 

high overlap of overtones and combination bands. Thus, a discussion on the main 

differences between spectra of defective and non-defective coffees will be conducted 

in section 4.4.3 supported by statistical analysis. 

 

. 
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Figure 18. Mean average spectra obtained by NIR for defective and non-defective 

roasted coffees. (a) original spectra and spectra submitted to (b) MSC normalization 

and (c) baseline correction. ― light sour, ― dark sour, ― black, ― non-defective, ― 

immature.  

 

(a) 

(b) 
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Figure 18. Mean average spectra obtained by NIR for defective and non-defective 

roasted coffees. (a) original spectra and spectra submitted to (b) MSC normalization 

and (c) baseline correction. ― light sour, ― dark sour, ― black, ― non-defective, ― 

immature (continued).  

 

4.4.2. Outliers removal and exploratory analysis  

 

PCA analysis was applied to original and pretreated NIR datasets to detect 

outliers or abnormal observations, and to provide an explanation of the variability within 

the data. Samples with Q or T2 statistics values over the threshold of 99% were 

classified as outliers and removed from the data set. The procedure for outlier removal 

was performed and repeated until no outliers were identified. A total of 6 outliers were 

detected and removed from each of the NIR datasets, corresponding to original, 

baseline corrected and MSC corrected spectra. Figure 19 shows the outliers removed 

from the first PCA model developed. 

 

(c) 
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(a) 

 

(b) 

 

(c) 

 

Figure 19. Plot of Q residuals vs. Hotelling’s T2 statistic for outlier removal in the NIR 

datasets corresponding to (a) original spectra, spectra submitted to (b) baseline 

correction and (c) MSC.   
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The resulting scatter plots obtained by the PCA analysis for NIR spectra are 

shown in Figure 20. A clear separation between black coffee and other coffee classes 

can be observed at all plots. In Figure 20a the 1st and the 2nd PC’s, which explained 

95.64 and 3.89% of the variance amongst the samples, respectively, contributed to the 

separation of dark sour from non-defective and light sour coffees. In the baseline 

corrected data (Figure 20b) only the 1st PC, which explained 92.69% of the variance 

amongst the samples, contributed to the separation of dark sour from non-defective and 

light sour coffees. In Figure 20c the same separation was observed through 1st and 4th 

PC’s that responded for 80.82% and 1.49% of the variance amongst the samples, 

respectively.  

Looking at Figure 20a, immature coffee was overlapped among all coffee 

classes. After baseline correction, black coffee was completely discriminated from other 

classes by the 3rd PC, but immature was still overlapping with dark sour, non-defective 

and light sour coffee. The application of MSC to the spectral data contributed for a well 

defined discrimination of black coffee through PC2 and dark sour through PC1, while 

non-defective, light sour and immature were clustered together. Overall, samples were 

essentially discriminated by sample class, while the roasting conditions (temperature 

and roasting degree) did not explain the variance of the first three PC’s. 

Reports on the classification of defective and non-defective roasted coffees are 

scarce in the literature.  CRAIG et al. (2012a) observed clustering of immature and sour 

coffee based on DRIFTS whereas MANCHA AGRESTI et al. (2008) reported grouping 

of immature and black coffee according to their volatile profiles.  
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(a) 

 

(b) 

 

  

 

Figure 20. PCA scores scatter plots of NIR spectra (a) original (b) after baseline 

correction; and (c) after MSC. ● non-defective, ● immature, ● black, ● light sour, ● 

dark sour. 
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(c) 

 

Figure 20. PCA scores scatter plots of NIR spectra (a) original (b) after baseline 

correction; and (c) after MSC. ● non-defective, ● immature, ● black, ● light sour, ● 

dark sour (continued). 

 

4.4.3. Classification and variable selection by Elastic net: chemical assignments 

of selected NIR absorption bands 

 

Table 15 summarizes the results obtained by the generalized linear models 

constructed for the classification of defective and non-defective coffees based on NIR 

spectra. As was observed in the ATR-FTIR classification results (section 4.3.3), the 

application of pre-treatments to the data increased the accuracy of the NIR models in a 

way that models constructed with the original spectra exhibited worse results in 

comparison to models constructed with pretreated spectra. In addition, models 

constructed with a reduced number of nonzero variables provided better results. 

Excellent statistical classification of defective and non-defective coffees was achieved at 

α levels ranging from 0.25 to 1. In particular, perfect classification was obtained for 

baseline corrected spectra at α levels ranging from 0.5 to 1. Taking into account the 

results presented in Table 15 and the discussion regarding the choice of the α level 

exposed in section 4.2.3, the variable selection for NIR spectra was based on Elastic 

net, with the coefficient estimates plotted at the α level of 0.75. 
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Table 15. Percentage of correct classification obtained by Elastic net models based on 

NIR spectra: comparing treatments and penalties 

   Correct Classification 

(%) 

Treatment α Nonzero  

variables 

Cal CV Val 

Original spectra 0 1200 0.84 0.84 0.7 

 0.25 681 0.92 0.91 0.85 

 0.5 519 0.95 0.92 0.85 

 0.75 307 0.95 0.95 0.88 

 1 27 0.95 0.95 0.88 

Baseline correction 0 1200 0.84 0.84 0.82 

 0.25 545 0.99 0.99 0.97 

 0.5 316 1 1 1 

 0.75 188 1 1 1 

 1 36 1 1 1 

MSC 0 1200 0.89 0.89 0.94 

 0.25 446 1 1 0.94 

 0.5 271 1 1 0.94 

 0.75 174 1 1 0.94 

 1 39 1 1 0.88 

 Cal = calibration; CV = cross-validation; Val = validation 

 

Figures 21a, 21b and 21c show the Elastic net coefficient estimates for non-

treated spectra and spectra submitted to baseline correction and MSC, respectively. 

Visually higher coefficient estimates were found in the regions around 1400-1500, 1670-

1900 and 2200-2230 nm. The nonzero variables and their respective coefficient values 

associated with the correct classification of defective and non-defective coffees varied 

considerably depending on the pretreatment applied to the spectral data. However, 

some features were found to be characteristic for each specific coffee class. For 

example, black coffee exhibited negative coefficient estimates in the region around 

1685 nm and immature coffee exhibited positive coefficient estimates in the region 

around 2245 nm. 
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(a) 

 

(b) 

 

Figure 21. Elastic net coefficient estimates at α = 0.75 for NIR (a) non-treated spectra 

and NIR spectra submitted to (b) baseline correction and (c) MSC. A peak indicates 

that correct classification of spectra is associated with the corresponding spectral 

region. A positive peak indicates higher intensity than other classes; a negative peak 

indicates lower intensity. ―non-defective, ―light sour, ―dark sour, ―black and 

―immature. 
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(c) 

 

Figure 21. Elastic net coefficient estimates at α = 0.75 for NIR (a) non-treated spectra 

and NIR spectra submitted to (b) baseline correction and (c) MSC. A peak indicates 

that correct classification of spectra is associated with the corresponding spectral 

region. A positive peak indicates higher intensity than other classes; a negative peak 

indicates lower intensity. ―non-defective, ―light sour, ―dark sour, ―black and 

―immature (continued). 

 

The interpretation of the Elastic net coefficient estimates graphs for NIR spectra 

was achieved in the same way as the ATR-FTIR discussion reported previously. A 

tentative assignment of each of the nonzero coefficient regions to chemical compounds 

that may absorb in the selected regions, based in the literature, was conducted.  Table 

17 summarizes the chemical assignment of the selected spectral regions obtained by 

non-treated spectra as well as spectra submitted to baseline correction and MSC. Only 

the sign of the coefficients will be taken into account, while the absolute values of the 

coefficients will be disregarded. In general different regions of the spectrum were 

selected by the Elastic net classification models. The selection of regions 7 and 21 

suggests that coffee samples may contain more or less moisture; although no 

significant differences in the water content between defective and non-defective roasted 

coffees was reported in the literature (OLIVEIRA et al., 2006, VASCONCELOS et al., 

2007). Considering that samples roasted at light, medium and dark roasts were included 
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in the model, this variation could be assigned to differences due to roasting degree, or 

absoption of humidity by the samples during the storage. 

Correct classification of non-defective coffee was associated with 13 spectral 

regions. Regions 4, 14 and 15, and possibly region 24, exhibited positive coefficients, 

and could be associated with lipids. The positive regions 16 and 18 were previously 

related in the literature to carbohydrates, although amino acids may also absorb. 

Indeed, it is well known that carbohydrate levels are higher in non-defective beans. It 

was also reported in the literature that lipid content is significantly higher in non-

defective beans than defective ones (OLIVEIRA et al., 2006, VASCONCELOS et al., 

2007, RAMALAKSHMI et al., 2007, FRANCA et al., 2005b, MAZZAFERA, 1999). In the 

study by RIBEIRO et al. (2011), coffee samples with different cup qualities were 

analyzed by NIR. Based on an ordered predictor selection algorithm, some regions 

were selected as relevant contributors for the overall quality. Among them, the lipid 

regions 1412-1444 nm, 1704-1720 nm and 2126-2132 nm were selected as significant. 

The same regions were associated in the present work with non-defective coffee. 

Negative coefficients were found at regions 2, 6, 11, 22 and 26. Region 2 is possibly 

related to CH vibration, but, from our knowledge, no chemical assignment of a possible 

coffee compound in this region has been documented in the literature so far. Regions 6, 

11, 22 and 26 could be related to the absorption of caffeine, chlorogenic acids and 

proteins. Previous studies found slightly lower levels of caffeine in non-defective 

coffees, and in comparison to immature coffee, non-defective beans present lower 

levels of chlorogenic acids (MAZZAFERA, 1999, FRANCA et al., 2005b). 

VASCONCELOS et al. (2007) also found lower level of protein in non-defective coffee 

than defective ones, agreeing with the results obtained in this study. 

Correct classification of light sour coffee was associated with 12 regions. The 

positive regions 3, 5, 15, 19, 25 and 28 could be associated with high contents of 

caffeine, chlorogenic acids, lipids and/or proteins in light sour coffee. The regions with 

negative coefficients, 4 and 10, corresponded to regions where lipids and proteins 

absorb, respectively. Region 21 and 22 could be related to lower content of moisture or 

chlorogenic acids, and protein and/or nitrogenous compounds respectively in light sour 

coffee. In the case of dark sour, correct classification was associated with seven regions 

of the spectrum. The positive region 12 was previously related in the literature to 

proteins, although ESTEBAN-DIEZ et al. (2004b) attributed a peak at 1584 nm to 

carbohydrates. The selected regions with negative coefficients were the regions 1, 5, 7, 
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24 and 27. The lower absorption in the first two regions and at the regions 24 and 27 

may occur due to a lower content of compounds such as quinic acid, carbohydrates, 

amino acids, caffeine, lipids and/or chlorogenic acids in dark sour coffees. Both dark 

and light sour coffee exhibited positive coefficients at region 19, while non-defective 

coffee exhibited a negative coefficient. According to WORKMAN and WEYER (2007) 

the C=O overtone of carboxylic acids occur at 1900 nm. Indeed, studies form the 

literature suggest that sour beans contain higher level of acids than other coffee 

classes, which is in accordance with the literature (FRANCA et al., 2005a, 

RAMALAKSHMI et al., 2007, VASCONCELOS et al., 2007).  

With regard to black coffee, the correct classification was related to five positive 

peaks including regions 1, 7, 8, 9 and 23. The first one occurs due to the 2nd overtone of 

CH in CH2 and CH groups that has been related in the literature to many coffee 

compounds such as quinic acids, carbohydrates, amino acids and caffeine. 

Nevertheless, amino acids might have a higher contribution to this region considering 

that black coffee was previously characterized by its higher content of proteins in 

comparison to other coffee classes (OLIVEIRA et al., 2006, MAZZAFERA, 1999, 

VASCONCELOS et al., 2007). The positive regions 8 and 9 might be associated with 

the presence of chlorogenic acids or phenols, which is in agreement with the study by 

FRANCA et al. (2005b), where roasted black coffee exhibited a significantly higher 

content of chlorogenic acids than other coffees  (FRANCA et al., 2005b). The negative 

peak at region 13 was assigned to caffeine; however the opposite was expected 

because roasted black coffee was previously associated with higher levels of caffeine 

by FRANCA et al. (2005b). Regarding region 15, assigned to lipids, according to the 

literature, black coffee contains lower level of lipids than non-defective coffee 

(OLIVEIRA et al., 2006) and possibly light sour coffees, but a slightly higher lipid content 

than other defective beans (OLIVEIRA et al., 2006, MAZZAFERA, 1999).  

Nine regions of the spectrum were associated with the correct classification of 

immature coffee, including the three positive regions 13, 20 and 27, assigned in the 

literature to caffeine and chlorogenic acids. RIBEIRO et al. (2011) correlated beverage 

acidity and chlorogenic acids with the region of 2246-2270 nm because of the O-H 

combination bands. This region overlaps exactly the region 27 selected by Elastic net. 

However, a negative peak at the region 8, where chlorogenic acids or phenols may 

absorb, was also observed, disagreeing with the previous assignment. An evaluation of 

the published works on chlorogenic acids in relation to coffee quality indicates that high 
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levels seem to be associated with the presence of immature beans (MAZZAFERA, 

1999, FRANCA et al., 2005a, FARAH et al., 2005). After roasting, FRANCA et al. 

(2005b) found a lower level of chlorogenic acids in immature coffee than in non-

defective, black and sour. No significant difference in the level of caffeine among 

defects was found by MAZZAFERA (1999) and FRANCA et al. (2005b), but the ATR-

FTIR results obtained in this study are in agreement with the selected positive 

coefficients related to caffeine, reinforcing the fact that immature coffee may contain a 

higher content of caffeine than non-defective and sour beans. Negative peaks at the 

regions 14, 16, 17 and 18 suggest that immature coffee contains a lower amount of 

lipids and carbohydrates than other coffee classes, which is in accordance with the 

studies by MAZZAFERA (1999) and OLIVEIRA et al. (2006).  

A comparison between the results obtained for ATR-FTIR (see section 4.2.3) 

and NIR indicated that ATR-FTIR can provide more information and selectivity on the 

group frequencies present in the samples. It is well known that precise band 

assignments are difficult in the near-infrared region because of the fact that a single 

band may be attributable to several possible combinations of fundamental and overtone 

vibrations overlapped (WORKMAN and WEYER, 2007). The use of Elastic net, a 

statistical technique that provides the selection of specific and sparse variables, 

provided insights to the interpretation of NIR spectra.  

Although some differences in the chemical compounds assigned in the ATR-

FTIR and NIR variable selection results were noticed, most of compounds assigned for 

the NIR spectra were in agreement with those assigned for ATR-FTIR spectra. A 

compilation of the major chemical compounds assigned and in conformity with both 

techniques is shown in Table 16. A valuable note from this Table is that lipids were the 

major compounds strictly related to coffee quality, with high levels observed for non-

defective and low levels for dark sour, black and immature.  

The discussion presented in sections 4.2.3 and 4.3.3 also evidenced that, under 

the same roasting conditions, the higher extent of roasting attained by non-defective 

and light sour and the lesser attained by dark sour, black and immature beans was a 

key factor for the discrimination of these beans. The high content of free sugars 

available for reactions in healthy beans resulted in an efficient roasting, with extensive 

degradation of compounds such as amino acids and, consequently, large production of 

aroma compounds, including ketones and aldehydes. The opposite was observed for 

defective beans. In particular, the low extent of roasting attained by black beans 
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resulted in a reduced degradation of chlorogenic acids and trigonelline. However, the 

establishment of the roasting degrees was based only in the color measurements, and 

since the black beans exhibit naturally low luminosity before roasting, this results could 

be influenced by an incomplete roasting. It is also important to mention that the roasting 

processes were conducted in laboratory scale using a convective oven with fixed 

temperature and no motion of the beans. In this system, the heat transfer is not as 

efficient and homogeneous (BONNLANDER et al., 2005). Thus, it is reasonable to 

consider that the roasting results obtained in this study could be changed if an industrial 

coffee roaster was used.  

 

      Table 16. Chemical compounds assigned in ATR-FTIR and NIR variable selection 

Compounds ND LS DS BL IM 

Carbohydrates + +    

Proteins and/or amino acids -   + + 

Lipids +  - - - 

Caffeine - +   + 

Chlorogenic acids    +  

Aliphatic acids   +   

LS = light sour, DS = dark sour, BL = black, ND = non-defective, IM = immature 

A positive peak indicates higher level than other classes; a negative peak 

indicates lower level 
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Table 17. Tentative chemical assignment of significant NIR bands selected by Elastic net (α = 0.75) for the classification of defective 

and non-defective coffees  

Region 
selected 

Gereral region 
ranges 

ND LS DS BL IM Vibration modes Compounds References 

1 
1215-1224  

 
- + 

 
2nd overtone CH in CH2 and CH groups 

Quinic acid, carbohydrates, amino 
acids, caffeine 

1, 2, 3 

2 1264-1276 - 
    

CH vibration 
  

3 1398  + 
   

2x CH str + 2x CH def (=CH) Caffeine 3 

4 1411 + - 
   

1st overtone OH  ROH, oil 4 

5 
1420-1425  + - 

  
1st overtone OH in aromatic, 

1st overtone OH NH 
CGA 2 

6 1427-1445 - 
    

1st overtone OH NH CGA 2 

7 1451-1461 + 
 

- + - 1st overtone OH str Water 
 

8 1462-1473  
  

+ - 1st overtone OH  CGA and phenols 2 

9 1473-1491  
  

+ 
 

1st overtone OH CGA and phenols 2 

10 1494-1500  - 
   

1st overtone NH str in aromatic amine Aromatic amine 5 

11 1504-1527 - 
    

1st overtone NH str in proteins Proteins 1, 5 

12 1556-1601  
 

+ 
  

1st overtone NH str  
1st overtone of OH str 

CONH 
Carbohydrates 

1, 4  

13 1672-1711  
  

- + 1st overtone CH (=CH) Caffeine 2, 3 

14 1716-1733 + 
   

- 1st overtone CH2  (double band) Lipids  1, 6 

15 1738-1755 + + 
 

- 
 

1st overtone CH2  (double band) Lipids 1, 6 

16 1760-1791 + 
   

- 1st overtone CH str (CH2 sym) Carbohydrates, amino acids 1, 3 

17 1795-1830  
   

- 1st overtone CH str (CH2 sym) Carbohydrates, amino acids 1, 3 

18 1830-1871 + 
   

- OH str + 2x CO str Carbohydrates (fibre content) 1, 4 

19 1892-1899 - + + 
  

1st overtone C=O str (.C=OOH) Carboxylic acids 5 

20 1902-1913  
   

+ 2nd overtone C=O str  (CO2H) CGA 1, 2 

21 
1937-1959  - 

   
2nd overtone C=O in CO2R 

OH str +  OH def 
CGA 
Water 

1 

22 
1970-1993 - - 

   
NH asym str + amide II 

C=O str second overtone 
Protein and nitrogenous comp 

Caffeine 
1, 3 

23 2085-2114  
  

+ 
 

1st overtone C=O and OH comb bands Caffeine, CGA 2 
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24 2132-2166 + 
 

- 
  

comb =CH str + C=C str (HC=CH) Lipids, caffeine 1, 7, 8 

25 

2170-2230  + 
   

2x amide I + amide III 
NH bend 2nd overtone, CH str/C=O str comb, 

C=O str/amide III comb 
1st overtone of OH in RNH2 CC CHO 

Protein and/or CGA 1, 2, 4 

26 2238-2241 - 
    

NH and OH comb in RNH2 CHO CH3 and CH3 Caffeine, CGA 2 

27 
2242-2266  

 
- 

 
+ 

NH and OH comb in RNH2 CHO CH3 and CH3  
comb OH str OH def 

Caffeine, CGA 1, 2, 8 

28 2283-2293  + 
   

CH + CH comb (CH2 CH3) Caffeine or CGA 2, 6 

LS = light sour, DS = dark sour, BL = black, ND = non-defective, IM = immature. 

comb = combination, def = deformation, str = stretching 

CGA = chlorogenic acids 

 

List of references: 

1. ESTEBAN-DIEZ et al. (2004b) 

2. RIBEIRO et al. (2011) 

3. PIZARRO et al. (2007b) 

4. JOHN et al. (2007) 

5. WORKMAN and WEYER (2007) 

6. HUCK et al. (2005) 

7. LAASONEN et al. (2003) 

8. DOWNEY and BOUSSION (1996) 
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4.5. Quantitative analysis of defective and non-defective coffees: A 

comparative evaluation between ATR-FTIR and NIR   

 

In the previous sections, it was demonstrated that defective and non-defective 

coffees can be discriminated according to chemical differences between the samples. 

These differences were evidenced taking into account the selected discriminating 

variables (wavelengths or wavenumbers) and how these variables contributed to the 

discrimination of defective and non-defective coffees. The assignment of these 

variables to chemical compounds provided a powerful tool for the characterization of 

each of the sample classes. Nonetheless, it may be taken into account that, in practice, 

a 100% non-defective coffee, as well as a 100% defective coffee, would not be found in 

the market for two reasons. First, the electronic sorting machine employed in 

cooperatives of producers and industries to separate defective beans is not completely 

efficient in the separation of beans that have similar color to non-defective ones, such 

as immature and sour beans (FRANCA et al., 2005b, FARAH et al., 2006, 

VASCONCELOS et al., 2007). Also, since defective beans represent an investment in 

growing, harvesting and handling in the coffee production chain, coffee producers have 

adopted the practice of dumping the separated beans in blends with non-defective 

ones, giving rise to a low-grade roasted and ground coffee (OLIVEIRA et al., 2006). In 

view of the aforementioned, in this section a comparative evaluation of the 

performances of ATR-FTIR and NIR techniques for the development of quantitative 

models to predict the percentage of defective coffee in admixture with non-defective 

coffee is presented.  

The results from PCA discussed in sections 4.3.2 and 4.4.2 suggested that the 

variability among spectra of defective and non-defective coffees was higher than the 

variability due to roasting condition (roasting degree and temperature), i.e. samples 

were essentially discriminated by sample class. Therefore, the quantitative analysis was 

conducted using only one sample from each sample class to produce the coffee blends.  

The samples used corresponded to those roasted to a medium degree and at a medium 

roasting temperature (235 °C). As described in section 3.1, the following blends were 

produced: (a) defects (25% of each defect) in admixture with non-defective coffee, (b) 

light sour in admixture with non-defective coffee, (c) dark sour in admixture with non-
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defective coffee, (d) black in admixture with non-defective coffee and (e) immature in 

admixture with non-defective coffee.  

To find the best correlation between spectra and percentage of defective coffee, 

besides the original spectra, two preprocessings were applied to ATR-FTIR spectra 

(baseline correction and area normalization, and 1st derivative) and to NIR spectra 

(baseline correction and MSC). The quantitative datasets were split into calibration (43 

spectra) and validation (15 spectra) sets. PLSR was the regression technique of choice 

in this study. Leave-one-out cross-validation was used to automatically select the 

optimum number of latent variables, based on the minimum value of RMSECV.  

Samples from the calibration set with Q or T2 statistics values over the 

threshold of 99% were classified as outliers and removed from the data set. The 

procedure for outlier removal was performed and repeated until no outliers were 

identified. Table 18 shows the number of outliers removed from each of the PLSR 

models developed, where it is evidenced that more outliers were identified in the ATR-

FTIR than in the NIR models. In this scenario, the presence of outliers can be related to 

operation errors, instrumental noise or abnormal observations originated from errors or 

differences during the sample weighing and production of the mixtures.   

 

Table 18. Outliers detected and removed from the PLSR models developed from ATR-

FTIR and NIR spectra 

ATR-FTIR Defects LS DS BL IM 

Original 0 4 3 0 0 

Baseline correction + area normalization 0 0 3 2 0 

1st derivative 1 2 1 1 0 

NIR Defects LS DS BL IM 

Original 0 0 0 1 0 

Baseline correction  0 0 0 1 0 

MSC  0 0 0 1 1 

 

The scatter plots of actual and calculated values for percentage of defects in 

admixtures with non-defective coffee for both ATR-FTIR and NIR models are shown in 

Figures 22 and 23. The scatter plots of individual defects (black, light sour, dark sour 

and immature) in admixture with non-defective coffee are displayed in Annexes A and 
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B. A visual inspection of the scatter plots suggests that higher predictability was 

achieved with the NIR models. Also, from a visual inspection it is tough to determine 

whether the application of preprocessings improved the results.  

 

(a) 

 

(b) 

 

(c) 

 

Figure 22. Actual x predicted percentage of defective coffee in admixture with non-

defective coffee from PLSR models developed with ATR-FTIR spectral data. (a) 

original, (b) baseline correction and area normalization, (c) 1st derivative. ○ calibration 

set, ● validation set. 
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(a) 

 

(b) 

 

(c) 

 

Figure 23. Actual x predicted percentage of defective coffee in admixture with non-

defective coffee from PLSR models developed with NIR spectral data. (a) original, (b) 

baseline correction, (c) MSC. ○ calibration set, ● validation set. 

 

Tables 19-23 summarize the prediction results obtained by PLSR for both ATR-

FTIR and NIR spectra. A comparison between the ATR-FTIR models constructed with 
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original (only mean centered) spectra and spectra submitted to baseline correction and 

area normalization and 1st derivative shows that the application of preprocessings 

provided potential benefits to the regression models. Apart from black coffee, where the 

opposite was observed, the application of mathematical preprocessings, increased the 

robustness of the models, reducing the number of latent variables included. The same 

observation was made for all NIR models: although similar values of RMSEP and R2 

were obtained at original and pretreated spectra models, the use of preprocessings 

reduced the number of latent variables included in the models. In Table 16, particularly, 

the application of MSC improved the predictability of the results, even using a lower 

number of latent variables.       

Taking into account the results from the predictive parameters RMSEC, RMSEP 

and R2 shown in Tables 19-23, it can be concluded that NIR models provided more 

accurate and robust models than ATR-FTIR models. Beyond that, the number of latent 

variables was a key feature. To achieve satisfactory predictive results, a considerably 

higher number of latent variables were used in the development of the ATR-FTIR 

models. In reference to ASTM (2012), the determination of the number of latent 

variables to be used in a model is a critical step in the model development. In general, if 

too few variables are used, a less accurate model will result. If too many variables are 

used, the estimates from the model will be unstable, which means that small changes in 

the spectrum, on the order of the spectral noise, may produce statistically significant 

changes in the estimates. Thus, models with fewer factors are less likely to exhibit over 

fitting and tend to have better generalization ability.  

Overall, NIR spectroscopy was superior to ATR-FTIR in the quantitative 

analysis of defective and non-defective coffees. All defect classes could be accurately 

quantified in admixtures with non-defective coffee, except for light sour coffee. Both 

ATR-FTIR and NIR models for light sour coffee quantification exhibited moderate results 

even employing a higher number of PLSR latent variables. Nevertheless this 

achievement was expected considering that previous studies employing ATR-FTIR 

suggested that light sour coffee is chemically similar to non-defective coffee and these 

classes are usually clustered together (CRAIG et al., 2012b, CRAIG et al., 2012a).      
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Table 19. Results from the PLSR models developed from ATR-FTIR and NIR spectra 

for predicting the percentage of defects in admixture with non-defective coffee 

 PLS- 

LVs 

Calibration  Validation 

 
RMSEC (%) R2 RMSECV (%)  RMSEP (%) R2 

ATR-FTIR        

Original 8 0.021 0.949 0.039  0.042 0.863 

Baseline correction + 

area normalization  

7 0.021 0.932 0.036  0.044 0.832 

1st derivative  5 0.026 0.926 0.037  0.032 0.891 

NIR        

Original 5 0.024 0.94 0.032  0.034 0.871 

Baseline correction  5 0.018 0.964 0.030  0.029 0.913 

MSC  4 0.019 0.963 0.029  0.030 0.906 

 

Table 20. Results from the PLSR models developed from ATR-FTIR and NIR spectra 

for predicting the percentage of light sour coffee in admixture with non-defective coffee 

 PLS- 

LVs 

Calibration  Validation 

 
RMSEC (%) R2 RMSECV (%)  RMSEP (%) R2 

ATR-FTIR        

Original 10 0.014 0.977 0.036  0.043 0.786 

Baseline correction + 

area normalization  

8 0.014 0.977 0.036  0.045 0.784 

1st derivative  9 0.048 0.978 0.045  0.048 0.747 

NIR        

Original 7 0.015 0.977 0.056  0.038 0.837 

Baseline correction  6 0.018 0.968 0.055  0.041 0.818 

MSC  6 0.017 0.97 0.054  0.043 0.799 
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Table 21. Results from the PLSR models developed from ATR-FTIR and NIR spectra 

for predicting the percentage of dark sour coffee in admixture with non-defective coffee 

 PLS- 

LVs 

Calibration  Validation 

 
RMSEC (%) R2 RMSECV (%)  RMSEP (%) R2 

ATR-FTIR        

Original 7 0.021 0.949 0.033  0.033 0.881 

Baseline correction + 

area normalization 

5 0.023 0.943 0.036  0.034 0.857 

1st derivative  5 0.018 0.965 0.028  0.039 0.847 

NIR        

Original 6 0.016 0.975 0.029  0.026 0.953 

Baseline correction  5 0.017 0.97 0.029  0.027 0.943 

MSC  4 0.019 0.963 0.029  0.029 0.941 

 

Table 22. Results from the PLSR models developed from ATR-FTIR and NIR spectra 

for predicting the percentage of black coffee in admixture with non-defective coffee 

 PLS- 

LVs 

Calibration  Validation 

 
RMSEC (%) R2 RMSECV (%)  RMSEP (%) R2 

ATR-FTIR        

Original 3 0.028 0.91 0.032  0.042 0.817 

Baseline correction + 

area normalization  

5 0.025 0.93 0.040  0.042 0.839 

1st derivative  10 0.005 0.997 0.030  0.039 0.847 

NIR        

Original 6 0.019 0.964 0.037  0.028 0.918 

Baseline correction  5 0.021 0.958 0.038  0.029 0.915 

MSC  4 0.022 0.979 0.037  0.030 0.905 
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Table 23. Results from the PLSR models developed from ATR-FTIR and NIR spectra 

for predicting the percentage of immature coffee in admixture with non-defective coffee 

 PLS- 

LVs 

Calibration  Validation 

 
RMSEC (%) R2 RMSECV (%)  RMSEP (%) R2 

ATR-FTIR        

Original 7 0.035 0.889 0.065  0.039 0.865 

Baseline correction + 

area normalization  

6 0.034 0.884 0.060  0.043 0.871 

1st derivative  6 0.029 0.903 0.056  0.034 0.9 

NIR        

Original 5 0.019 0.962 0.028  0.055 0.723 

Baseline correction  5 0.012 0.986 0.030  0.029 0.903 

MSC  5 0.007 0.995 0.028  0.031 0.895 
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5. CONCLUSION 

 

The main objective of this study was to evaluate the potential of FTIR and NIR 

spectroscopy for the classification and quantification of defective (black, immature, 

light and dark sour) and non-defective roasted coffees. Considering the results 

obtained and presented, it can be concluded that the methodologies employed were 

adequate for the proposed objective.  

Results from the exploratory analysis by PCA indicated that, based on the 

spectra obtained by DRIFTS, it was possible to discriminate the samples into four major 

groups: (a) non-defective, (b) black, (c) dark sour and (d) light sour, with immature 

beans scattered among sour samples. Classification models were developed by LDA 

and provided high levels of correct classification in both calibration and validation sets. 

In spite of the interesting results achieved at a classification level, DRIFTS possess 

some drawbacks such as the time demanded to prepare the samples, which limits its 

applicability for routine analyses, and the considerably small amount of sample 

analyzed, that limits its applicability for quantitative analyses. Thus, in this study a 

quantitative assay was not attempted by DRIFTS.  

With regard to ATR-FTIR and NIR results, an exploratory analysis of the ATR-

FTIR spectra indicated that this technique provided, although not clearly, the 

discrimination of the coffee samples into two groups: (a) non-defective and light sour 

and (b) black, dark sour and immature. Results from NIR spectroscopy, on the other 

hand, demonstrated that the coffee samples could be discriminated into three major 

groups: (a) non-defective, light sour and immature, (b) dark sour, and (c) black. In both 

cases the variance among the samples led to the discrimination of the coffees primarily 

by their classes, regardless of roasting degree. 

The classification models for ATR-FTIR and NIR spectra were developed based 

on Elastic net and exhibited excellent classification results. The best results, which 

achieved up to 100% of correct classification, were obtained at α levels ranging from 

0.25 to 1, indicating that accurate classification can be obtained from relatively small 

regions of the spectrum, by means of imposing penalties on the models to reduce the 

number of explicit variables. The discriminating variables that contributed to the correct 

classification of defective and non-defective coffees were extracted and provided an 

interesting interpretation of the models. As expected, ATR-FTIR provided more 
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information and selectivity on the group frequencies present in the coffee samples. The 

use of Elastic net to select specific and sparse variables provided insights in the 

interpretation of the complex NIR spectra dominated by broad combination and 

overlapping bands.  

A summarized compilation of the major chemical compounds assigned and in 

agreement in both ATR-FTIR and NIR variable selection results suggested that correct 

classification of non-defective coffee was directly related to high levels of 

carbohydrates and lipids and lower levels of proteins and/or amino acids and caffeine. 

Correct classification of light sour was related to high levels of carbohydrates and 

caffeine. Dark sour coffee was directly associated with high levels of aliphatic acids 

and low levels of lipids, and black coffee with high levels of proteins and/or amino 

acids, and low levels of lipids. Finally, correct classification of immature coffee was 

related to high levels of proteins and/or amino acids and caffeine and low levels of 

lipids.  A valuable note from these results were the fact that lipids were the major 

compound strictly related to coffee quality, with high levels observed for non-defective 

and low levels for dark sour, black and immature. 

A comparative evaluation between ATR-FTIR and NIR for the quantification of 

defective and non-defective coffees based on PLSR indicated that NIR was superior to 

ATR-FTIR providing more robust and accurate models. Indeed, PLSR models 

constructed with NIR spectra provided excellent predictive results.    
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6. FUTURE WORK 

 

The positive results obtained for the classification and quantification of 

defective and non-defective coffees presented in this study indicated that the 

employed techniques are suitable for the assessment of the coffee quality in terms of 

the presence of defective beans, regardless of roasting degree. Thus, one can expect 

that this research should be expanded to the analysis of roasted and ground coffees 

with different cup qualities and further validation. Methodologies based on infrared 

spectroscopy, especially NIR, could be potential alternatives to the current cup test 

employed in regulation organizations and industry. For this purpose it would be 

primarily required to evaluate the effect of including more variants in the model, i.e.  to 

include coffees from different lots, crops and geographical origin in the study. In 

addition, coffees used in the present study were roasted in a convection oven that, 

although simulates coffee roasting process on a laboratory scale, does not correspond 

to the process employed in the industry. Then, in a future work, defective and non-

defective coffees, coffees with different cup quality, from different lots, crops or 

geographical origin would need to be processed in a coffee roaster instead.   

Elastic net, the technique applied to the classification of defective and non-

defective coffees and variable selection could also be used for the quantitative 

analysis of blends in an effort to provide better predictive results. For this purpose, two 

strategies could be tested. The first is simply applying Elastic net to fit a linear 

regression model, instead of fitting a multinomial model for classification. In this case 

the variable response would be quantitative instead of categorical. A second option 

would be applying Elastic net to select the variables that best represent each sample 

class of mixture and use these variables as inputs to develop conventional regression 

models such as PLSR, or ideally MLR.  

 

  

  



105 

7. REFERENCES 

 

ABIC, acesso em 24 de janeiro de 2013. Disponível na Internet 
<http://www.abic.com.br>. 

ADAMS, M. J. 1995. Chemometrics in analytical spectroscopy, Cambridge, Royal 
Society of Chemistry. 

ALESSANDRINI, L., ROMANI, S., PINNAVAIA, G. & ROSA, M. D. 2008. Near infrared 
spectroscopy: An analytical tool to predict coffee roasting degree. Analytica 
Chimica Acta, 625, 95-102. 

ANZUETO, F., BAUMANN, T., GRAZIOSI, G., PICCIN, C. & VAN DER VOSSEN, H. 
2005. The plant. Espresso Coffee. The Science of Quality, 21-86. 

ASTM Standard E1655-05, 1997 (2012), "Standard Practices for Infrared Multivariate 
Quantitative Analysis," ASTM International, West Conshohocken, PA, 2006, 
DOI: 10.1520/E1655-05R12, www.astm.org. 

 ANKS, M. M., МАК-ФАДДЕН, К. & ATKINSON, C. 1999. Мировая энциклопедия 
кофе, РОСМЭН. 

BEE, S., BRANDO, C., BRUMEN, G., CARVALHAES, N., KOLLING-SPEER, I., 
SPEER, K., SUGGI LIVERANI, F., TEXEIRA, A., THOMAZIELLO, R. & VIANI, 
R. 2005. The raw bean. Espresso coffee, the science of quality, Elsevier 
Academic Press, Italy, 87-178. 

BONNLANDER, B., EGGERS, R., ENGELHARDT, U. & MAIER, H. 2005. 4.1 THE 
PROCESS. Espresso Coffee: The Science Of Quality, 179. 

BORÉM, F. M. 2008. Pós-colheita do café, Editora UFLA. 
BRASIL. Instrução Normativa n. 16, de 24 de maio de 2010.  Regulamento Técnico 

para o café torrado em grãos e para o café torrado e moído. Ministério da 
Agricultura, Pecuária e Abastecimento, Brasília. 

BRASIL. Instrução Normativa n. 7, de 22 de fevereiro de 2013.  Ministério da 
Agricultura, Pecuária e Abastecimento, Brasília. 

BRIANDET, R., KEMSLEY, E. K. & WILSON, R. H. 1996. Approaches to Adulteration 
Detection in Instant Coffees using Infrared Spectroscopy and Chemometrics. 
Journal of the Science of Food and Agriculture, 71, 359-366. 

BRIDSON, D. & VERDCOURT, B. 1988. Flora of tropical East Africa: Rubiaceae (part 
2). Rotterdam: AA Balkema. 

CHEN, T., MARTIN, E. & MONTAGUE, G. 2009. Robust probabilistic PCA with 
missing data and contribution analysis for outlier detection. Computational 
Statistics & Data Analysis, 53, 3706-3716. 

CHO, Y. J. & KANG, S. 2011. Emerging Technologies for Food Quality and Food 
Safety Evaluation. Boca Raton: CRC Press. 

CLARKE, R. 1987a. Roasting and grinding. In: CLARKE, R. J. & MACRAE, R. (eds.) 
Coffee: Technology. New York: Springer. 

CLARKE, R. & VITZTHUM, O. 2008. Coffee: recent developments. London: Wiley-
Blackwell. 

CLARKE, R. J. 1987b. Grading, Storage, Pre-treatments and Blending. In: CLARKE, 
R. J. & MACRAE, R. (eds.) Coffee: Technology. New York: Springer. 

CLARKE, R. J. & MACRAE, R. 1985. Coffee: Chemistry. New York: Elsevier Applied 
Science Publishers. 

CLIFFORD, M. N., KIRKPATRICK, J., KUHNERT, N., ROOZENDAAL, H., SALGADO, 
P. R. 2008. LC-MSn analysis of the cis isomers of chlorogenic acids, Food 
Chemistry, 106, 379-385. 

http://www.astm.org/


106 

COELHO, K. F. 2000. Avaliação química e sensorial da qualidade do café de bebida 
estritamente mole após a inclusão de grãos defeituosos. Univerisidade Federal 
de Lavras. 

COSTA FREITAS, A., PARREIRA, C. & VILAS-BOAS, L. 2001. The Use of an 
Electronic Aroma-sensing Device to Assess Coffee Differentiation—
Comparison with SPME Gas Chromatography–Mass Spectrometry Aroma 
Patterns. Journal of Food Composition and Analysis, 14, 513-522. 

CRAIG, A. P., FRANCA, A. S. & OLIVEIRA, L. S. 2011. Discrimination between 
Immature and Mature Green Coffees by Attenuated Total Reflectance and 
Diffuse Reflectance Fourier Transform Infrared Spectroscopy. Journal of Food 
Science, 76, C1162-C1168. 

CRAIG, A. P., FRANCA, A. S. & OLIVEIRA, L. S. 2012a. Discrimination between 
defective and non-defective roasted coffees by diffuse reflectance infrared 
Fourier transform spectroscopy. Lwt-Food Science and Technology, 47, 505-
511. 

CRAIG, A. P., FRANCA, A. S. & OLIVEIRA, L. S. 2012b. Evaluation of the potential of 
FTIR and chemometrics for separation between defective and non-defective 
coffees. Food Chemistry, 132, 1368-1374. 

DART, S. & NURSTEN, H. 1985. Volatile components. In: CLARKE, R. J. & MACRAE, 
R. (eds.) Coffee: Chemistry. New York: Elsevier Applied Science Publishers. 

DOWNEY, G. & BOUSSION, J. 1996. Authentication of coffee bean variety by near-
infrared reflectance spectroscopy of dried extract. Journal of the Science of 
Food and Agriculture, 71, 41-49. 

DOWNEY, G., BRIANDET, R., WILSON, R. H. & KEMSLEY, E. K. 1997. Near- and 
Mid-Infrared Spectroscopies in Food Authentication:  Coffee Varietal 
Identification. Journal of Agricultural and Food Chemistry, 45, 4357-4361. 

DYAR, M. D., CARMOSINO, M. L., BREVES, E. A., OZANNE, M. V., CLEGG, S. M. & 
WIENS, R. C. 2012. Comparison of partial least squares and LASSO 
regression techniques as applied to laser-induced breakdown spectroscopy of 
geological samples. Spectrochimica Acta Part B-Atomic Spectroscopy, 70, 51-
67. 

ESTE AN-D  E , I., GONZÁLEZ-SÁIZ, J. M. & PIZARRO, C. 2004a. An evaluation of 
orthogonal signal correction methods for the characterisation of arabica and 
robusta coffee varieties by NIRS. Analytica Chimica Acta, 514, 57-67. 

ESTEBAN-DIEZ, I., GONZALEZ-SAIZ, J. M. & PIZARRO, C. 2004b. Prediction of 
sensory properties of espresso from roasted coffee samples by near-infrared 
spectroscopy. Analytica Chimica Acta, 525, 171-182. 

FÁBIÁN, Z., IZVEKOV, V., SALGÓ, A. & ÖRSI, F. Year. Near-infrared reflectance and 
Fourier transform infrared analysis of instant coffee mixtures. In:  Analytical 
Proceedings including Analytical Communications, 1994. Royal Society of 
Chemistry, 261-263. 

FARAH, A., DE PAULIS, T., TRUGO, L. C. & MARTIN, P. R. 2005. Effect of roasting 
on the formation of chlorogenic acid lactones in coffee. Journal of Agricultural 
and Food Chemistry, 53, 1505-1513. 

FARAH, A., MONTEIRO, M., CALADO, V., FRANCA, A. & TRUGO, L. 2006. 
Correlation between cup quality and chemical attributes of Brazilian coffee. 
Food Chemistry, 98, 373-380. 

FERIA-MORALES, A. M. 2002. Examining the case of green coffee to illustrate the 
limitations of grading systems/expert tasters in sensory evaluation for quality 
control. Food Quality and Preference, 13, 355-367. 



107 

FRANCA, A. S., MENDONCA, J. C. F. & OLIVEIRA, S. D. 2005a. Composition of 
green and roasted coffees of different cup qualities. Lwt-Food Science and 
Technology, 38, 709-715. 

FRANCA, A. S., OLIVEIRA, L. S., MENDONCA, J. C. F. & SILVA, X. A. 2005b. 
Physical and chemical attributes of defective crude and roasted coffee beans. 
Food Chemistry, 90, 89-94. 

FRANCA, A. S. & OLIVEIRA, L.S. (2008). Chemistry of Defective Coffee Beans. In E. 
N. Koeffer (Ed.), Food Chemistry Research Developments (p. 105-138). New 
York: Nova Publishers.  

FRIEDMAN, J., HASTIE, T. & TIBSHIRANI, R. 2010. Regularization Paths for 
Generalized Linear Models via Coordinate Descent. Journal of Statistical 
Software, 33, 1-22. 

FU, G. H., XU, Q. S., LI, H. D., CAO, D. S. & LIANG, Y. Z. 2011. Elastic Net Grouping 
Variable Selection Combined with Partial Least Squares Regression (EN-
PLSR) for the Analysis of Strongly Multi-collinear Spectroscopic Data. Applied 
Spectroscopy, 65, 402-408. 

GARRIGUES, J. M., BOUHSAIN, Z., GARRIGUES, S., DE LA GUARDIA, M. 2000. 
Fourier Transform Infrared determination of caffeine in roasted coffee samples, 
Fresenius Journal of Analytical Chemistry, 366, 319–322. 

GAUGLITZ, G. & VO-DINH, T. 2006. Handbook of Spectroscopy. Weinheim: Wiley-
VCH Verlag GmbH & Co. KGaA. 

HOLLAS, J. M. 2004. Modern Spectroscopy. Cichester: John Wiley & Sons. 
HUANG, H., YU, H., XU, H. & YING, Y. 2008. Near infrared spectroscopy for on/in-line 

monitoring of quality in foods and beverages: A review. Journal of Food 
Engineering, 87, 303-313. 

HUCK, C. W., GUGGENBICHLER, W. & BONN, G. K. 2005. Analysis of caffeine, 
theobromine and theophylline in coffee by near infrared spectroscopy (NIRS) 
compared to high-performance liquid chromatography (HPLC) coupled to mass 
spectrometry. Analytica Chimica Acta, 538, 195-203. 

ICO. 2013. Annual Review 2011/12. London: International Coffee Organization (ICO). 
ISO. 2000. Quality Management System, Principles and Terminology. ISO 9000:2000. 

Geneva: international Organization for Standadization.  
ISO. 2009. Coffee – Determination of caffeine content (Reference method). ISO 

4052:1983. Geneva: international Organization for Standadization.  
ISO. 2011a. Green and roasted coffee – Determination of free-flow bulk density of 

whole beans (Routine method). ISO 6669:1995. Geneva: international 
Organization for Standadization.  

ISO. 2011b. Coffee and coffee products – Determination of the caffeine content using 
high performance liquid chromatography (HPLC) (Reference method). ISO 
20481:2008. Geneva: international Organization for Standadization.  

JACKSON, J. E. & MUDHOLKAR, G. S. 1979. Control Procedures for Residuals 
Associated With Principal Component Analysis. Technometrics, 21, 341-349. 

JOHN, S., MARK, W. & JEROME, W. 2007. Application of NIR Spectroscopy to 
Agricultural Products. Handbook of Near-Infrared Analysis, Third Edition. CRC 
Press. 

JOHNSON, R. & WICHERN, D. 2007. Applied Multivariate Statistical Analysis (6th 
Edition), {Prentice Hall}. 

KAROUI, R. & DE BAERDEMAEKER, J. 2007. A review of the analytical methods 
coupled with chemometric tools for the determination of the quality and identity 
of dairy products. Food Chemistry, 102, 621-640. 



108 

KAROUI, R., DOWNEY, G. & BLECKER, C. 2010. Mid-infrared spectroscopy coupled 
with chemometrics: a tool for the analysis of intact food systems and the 
exploration of their molecular structure-quality relationships - a review. 
Chemical Reviews, 110, 6144-6168. 

KEMSLEY, E. K., RUAULT, S. & WILSON, R. H. 1995. Discrimination between Coffea 
arabica and Coffea canephora variant robusta beans using infrared 
spectroscopy. Food Chemistry, 54, 321-326. 

LAASONEN, M., HARMIA-PULKKINEN, T., SIMARD, C., RÄSÄNEN, M. & VUORELA, 
H. 2003. Development and validation of a near-infrared method for the 
quantitation of caffeine in intact single tablets. Analytical Chemistry, 75, 754-
760. 

LARKIN, P. 2011. Infrared and Raman Spectroscopy; Principles and Spectral 
Interpretation. Waltham: Elsevier Science. 

LASCH, P. 2012. Spectral pre-processing for biomedical vibrational spectroscopy and 
microspectroscopic imaging. Chemometrics and Intelligent Laboratory Systems, 
117, 100-114. 

LIN, B., RECKE, B., KNUDSEN, J. K. H. & JØRGENSEN, S. B. 2007. A systematic 
approach for soft sensor development. Computers & Chemical Engineering, 31, 
419-425. 

LYMAN, D. J., BENCK, R., DELL, S., MERLE, S. & MURRAY-WIJELATH, J. 2003. 
FTIR-ATR Analysis of Brewed Coffee:  Effect of Roasting Conditions. Journal of 
Agricultural and Food Chemistry, 51, 3268-3272. 

MANCHA AGRESTI, P. D. C., FRANCA, A. S., OLIVEIRA, L. S. & AUGUSTI, R. 2008. 
Discrimination between defective and non-defective Brazilian coffee beans by 
their volatile profile. Food Chemistry, 106, 787-796. 

MANTANUS, J., ZIÉMONS, E., LEBRUN, P., ROZET, E., KLINKENBERG, R., 
STREEL, B., EVRARD, B. & HUBERT, P. 2009. Moisture content determination 
of pharmaceutical pellets by near infrared spectroscopy: Method development 
and validation. Analytica Chimica Acta, 642, 186-192. 

MAZZAFERA, P. 1999. Chemical composition of defective coffee beans. Food 
Chemistry, 64, 547-554. 

MAZZAFERA, P., CROZIER, A. & MAGALHÃES, A. C. 1991. Caffeine metabolism in 
Coffea arabica and other species of coffee. Phytochemistry, 30, 3913-3916. 

MENDONCA, J. C. F., FRANCA, A. S., OLIVEIRA, L. S. & AFONSO, R. J. C. F. 
2009a. Application of electrospray ionization-mass spectrometry to the 
discrimination of green and roasted coffees by species and quality. In: LANG, J. 
K. (ed.) Handbook on Mass Spectrometry: Instrumentation, Data and Analysis, 
and Applications. ISBN: 978-1-60741-580-0. 269-289 

MENDONÇA, J. C. F., FRANCA, A. S. & OLIVEIRA, L. S. 2009b. Physical 
characterization of non-defective and defective Arabica and Robusta coffees 
before and after roasting. Journal of Food Engineering, 92, 474-479. 

MILLER, F.A., Mayo, D.W., Hannah, R.W. 2003. Course Notes on the Interpretation of 
Infrared and Raman Spectra, Hoboken, NJ, USA: Wiley. 

MIYA, E., GARRUTI, R., CHAIB, M., ANGELUCCI, E., FIGUEIREDO, I. & SHIROSE, 
L. 1973. Defeitos do café e qualidade da bebida. Coletânea do Instituto de 
Tecnologia de Alimentos, 5. Campinas: Instituto de Tecnologia de Alimentos. 

NUROK, D., ANDERSON, J. & ZLATKIS, A. 1978. Profiles of sulfur containing 
compounds obtained from Arabica and Robusta coffees by capillary column gas 
chromatography. Chromatographia, 11, 188-192. 



109 

OLIVEIRA, L. S., FRANCA, A. S., CAMARGOS, R. R. & FERRAZ, V. P. 2008. Coffee 
oil as a potential feedstock for biodiesel production. Bioresource Technology, 
99, 3244-3250. 

OLIVEIRA, L. S., FRANCA, A. S., MENDONCA, J. C. F. & BARROS, M. C. 2006. 
Proximate composition and fatty acids profile of green and roasted defective 
coffee beans. Lwt-Food Science and Technology, 39, 235-239. 

OLIVEIRA, R., OLIVEIRA, L. S., FRANCA, A. S. & AUGUSTI, R. 2009. Evaluation of 
the potential of SPME-GC-MS and chemometrics to detect adulteration of 
ground roasted coffee with roasted barley. Journal of Food Composition and 
Analysis, 22, 257-261. 

OLIVEIRA, S. D., FRANCA, A. S., GLÓRIA, M. B. A. & BORGES, M. L. A. 2005. The 
effect of roasting on the presence of bioactive amines in coffees of different 
qualities. Food Chemistry, 90, 287-291. 

OOSTERVELD, A., VORAGEN, A. G. J. & SCHOLS, H. A. 2003. Effect of roasting on 
the carbohydrate composition of Coffea arabica beans. Carbohydrate Polymers, 
54, 183-192. 

OZAKI, Y., MORITA, S. & DU, Y. 2007. Spectral analysis. Near-infrared spectroscopy 
in food science and technology, 47-72. 

PARADKAR, M. M. & IRUDAYARAJ, J. 2002. Rapid determination of caffeine content 
in soft drinks using FTIR–ATR spectroscopy. Food Chemistry, 78, 261-266. 

PETRACCO, M., ILLY, A. & VIANI, R. 2005. The cup. Espresso Coffee: The Science 
of Quality, ed. by IllyA and VianiR. Academic Press, London, 290-315. 

PIZARRO, C., ESTEBAN-DÍEZ, I. & GONZÁLEZ-SÁIZ, J.-M. 2007a. Mixture 
resolution according to the percentage of< i> robusta</i> variety in order to 
detect adulteration in roasted coffee by near infrared spectroscopy. Analytica 
Chimica Acta, 585, 266-276. 

PIZARRO, C., ESTEBAN-DÍEZ, I., GONZÁLEZ-SÁIZ, J.-M. & FORINA, M. 2007b. Use 
of Near-Infrared Spectroscopy and Feature Selection Techniques for Predicting 
the Caffeine Content and Roasting Color in Roasted Coffees. Journal of 
Agricultural and Food Chemistry, 55, 7477-7488. 

PUERTA-QUINTERO, G. 2000. Influencia de los granos de café cosechados verdes 
en la calidad física y organoléptica de la bebida. Cenicafé, 51(2), 136-150. 

RAMALAKSHMI, K., KUBRA, I. R. & RAO, L. J. M. 2007. Physicochemical 
characteristics of green coffee: Comparison of graded and defective beans. 
Journal of Food Science, 72, S333-S337. 

REIS, N., FRANCA, A. S. & OLIVEIRA, L. S. 2013. Discrimination between roasted 
coffee, roasted corn and coffee husks by Diffuse Reflectance Infrared Fourier 
Transform Spectroscopy. LWT - Food Science and Technology, 50, 715-722. 

RIBEIRO, J. S., FERREIRA, M. M. C. & SALVA, T. J. G. 2011. Chemometric models 
for the quantitative descriptive sensory analysis of Arabica coffee beverages 
using near infrared spectroscopy. Talanta, 83, 1352-1358. 

RIBEIRO, J. S., SALVA, T. J. & FERREIRA, M. M. C. 2010. CHEMOMETRIC 
STUDIES FOR QUALITY CONTROL OF PROCESSED BRAZILIAN COFFEES 
USING DRIFTS. Journal of Food Quality, 33, 212-227. 

RINNAN, A., VAN DEN BERG, F. & ENGELSEN, S. B. 2009. Review of the most 
common pre-processing techniques for near-infrared spectra. Trac-Trends in 
Analytical Chemistry, 28, 1201-1222. 

RISTICEVIC, S. 2008. HS-SPME-GC-TOFMS Methodology for Verification of 
Geographical Origin and Authenticity Attributes of Coffee Samples. Analytica 
Chimica Acta, 617, 72-84. 



110 

RODRIGUEZ-SAONA, L. & ALLENDORF, M. 2011. Use of FTIR for rapid 
authentication and detection of adulteration of food. Annual Review of Food 
Science and Technology, 2, 467-483. 

ROGGO, Y., CHALUS, P., MAURER, L., LEMA-MARTINEZ, C., EDMOND, A. & 
JENT, N. 2007. A review of near infrared spectroscopy and chemometrics in 
pharmaceutical technologies. Journal of Pharmaceutical and Biomedical 
Analysis, 44, 683-700. 

SABLINSKAS, V. 2005. Instrumentation. In:  GAUGLITZ, G. & VO-DINH, T. (eds.) 
Handbook of Spectroscopy. Wiley-VCH Verlag GmbH & Co. KGaA. 

SABLINSKAS, V., STEINER, G., HOF, M. 2005. Applications. In:  GAUGLITZ, G. & 
VO-DINH, T. (eds.) Handbook of Spectroscopy. Wiley-VCH Verlag GmbH & Co. 
KGaA. 

SANTOS, J. R., SARRAGUÇA, M. C., RANGEL, A. O. S. S. & LOPES, J. A. 2012. 
Evaluation of green coffee beans quality using near infrared spectroscopy: A 
quantitative approach. Food Chemistry, 135, 1828-1835. 

SANTOS, M. A., CHALFOUN, S. M. & PIMENTA, C. J. 2009. Influence of the wet 
processing and drying types on chemical and physicochemical composition of 
coffee (Coffea arabica L.). Ciência e Agrotecnologia, 33, 213-218. 

SCAA. 2009. Cupping specialty coffee. SCAA Protocols. Disponível na Internet < 
https://www.scaa.org/?page=resources&d=cupping-protocols>. 

SCHMIDT, C. A. P. & MIGLIORANZA, É. 2011. A ANÁLISE SENSORIAL EO CAFÉ: 
UMA REVISÃO. Revista Eletrônica Científica Inovação e Tecnologia, 1, 16-24. 

SHARAF, M. A., ILLMAN, D.L., KOWALSKI, B. R. 1986. Chemometrics: John Wiley & 
Sons. 

SILVERSTEIN, R. M., WEBSTER, F. X. & KIEMLE, D. J. 2005. Spectrometric 
identification of organic compounds. Hobokens: John Wiley & Sons. 

SIVETZ, M. 1979. Desrosier; NW Coffee Technology. AVI Publishing Co.: Westport, 
CT. 

SMITH, B. C. 2002. Quantitative Spectroscopy: Theory and Practice: Theory and 
Practice. San Diego: Elsevier Science. 

STEINER, G. 2005. Measurement Techniques. In:  GAUGLITZ, G. & VO-DINH, T. 
(eds.) Handbook of Spectroscopy. Wiley-VCH Verlag GmbH & Co. KGaA. 

STEPHEN, K. E., HOMRIGHAUSEN, D., DEPALMA, G., NAKATSU, C. H. & 
IRUDAYARAJ, J. 2012. Surface enhanced Raman spectroscopy (SERS) for the 
discrimination of Arthrobacter strains based on variations in cell surface 
composition. The Analyst, 137, 4280-6. 

STUART, B. H. 2005. Experimental Methods. Infrared Spectroscopy: Fundamentals 
and Applications. Chichester: John Wiley & Sons, Ltd. 

SUZUKI, T. & WALLER, G. R. 1984. Biosynthesis and biodegradation of caffeine, 
theobromine, and theophylline in Coffea arabica L. fruits. Journal of Agricultural 
and Food Chemistry, 32, 845-848. 

TEIXEIRA, A., CARVALHO, A., MONACO, L. & FAZUOLI, L. C. 1971. Graos 
Defeituosos em café; Colhido Verde. Bragantia (Brasil). Abr, 30, 77-89. 

THYGESEN, L. G., LØKKE, M. M., MICKLANDER, E. & ENGELSEN, S. B. 2003. 
Vibrational microspectroscopy of food. Raman vs. FT-IR. Trends in Food 
Science & Technology, 14, 50-57. 

TIBSHIRANI, R. 1996. Regression shrinkage and selection via the LASSO. Journal of 
the Royal Statistical Society Series B-Methodological, 58, 267-288. 

https://www.scaa.org/?page=resources&d=cupping-protocols


111 

TIBSHIRANI, R. 2011. Regression shrinkage and selection via the LASSO: a 
retrospective. Journal of the Royal Statistical Society Series B-Statistical 
Methodology, 73, 273-282. 

TOCI, A. T. & FARAH, A. 2008. Volatile compounds as potential defective coffee 
beans’ markers. Food Chemistry, 108, 1133-1141. 

TRIENEKENS, J. & ZUURBIER, P. 2008. Quality and safety standards in the food 
industry, developments and challenges. International Journal of Production 
Economics, 113, 107-122. 

VASCONCELOS, A. L. S., FRANCA, A. S., GLORIA, M. B. A. & MENDONCA, J. C. F. 
2007. A comparative studv of chemical attributes and levels of amines in 
defective green and roasted coffee beans. Food Chemistry, 101, 26-32. 

VINCENT, J. 1987. Green coffee processing. In: CLARKE, R. J. & MACRAE, R. (eds.) 
Coffee: Technology. New York: Springer. 

WANG, L., MIZAIKOFF, B. 2008. Application of multivariate data-analysis techniques 
to biomedical diagnostics based on mid-infrared spectroscopy. Analytical and 
Bioanalytical Chemistry 391, 5, 1641-1654. 

WANG, J., JUN, S., BITTENBENDER, H. C., GAUTZ, L. & LI, Q. X. 2009. Fourier 
Transform Infrared Spectroscopy for Kona Coffee Authentication. Journal of 
Food Science, 74, C385-C391. 

WANG, N., FU, Y. & LIM, L.-T. 2011. Feasibility Study on Chemometric Discrimination 
of Roasted Arabica Coffees by Solvent Extraction and Fourier Transform 
Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 59, 3220-
3226. 

WANG, N. & LIM, L.T. 2012. Fourier Transform Infrared and Physicochemical 
Analyses of Roasted Coffee. Journal of Agricultural and Food Chemistry, 60, 
5446-5453. 

WHITE, R. 1995. Coffee adulteration and multivariate approach to quality control. In: 
16th International Colloquium on the Chemistry of Coffee, 259-266, ASIC, 
Paris. 

WISE, B. M. 1991. Adapting multivariate analysis for monitoring and modeling of 
dynamic systems. University of Washington. 

WISE, B. M. & GALLAGHER, N. B. 2013. PLS_Toolbox Software User guide. 
http://wiki.eigenvector.com/index.php?title=Software_User_Guide 

WOLD, S., SJOSTROM, M. & ERIKSSON, L. 2001. PLS-regression: a basic tool of 
chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109-130. 

WOODMAN, J. 1985. Carboxylic acids. Coffee. Springer. 
WORKMAN, J. & WEYER, L. 2007. Practical Guide to Interpretive Near-Infrared 

Spectroscopy, Taylor & Francis. 
WORKMAN JR, J. 2001. Review of Chemometrics Applied to Spectroscopy: Data 

Preprocessing. In: WORKMAN, J. (ed.) The Handbook of Organic Compounds. 
Burlington: Academic Press. 

YANG, H., IRUDAYARAJ, J. & PARADKAR, M. M. 2005. Discriminant analysis of 
edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food 
Chemistry, 93, 25-32. 

ZAMBOLIM, L. 2007. Certificação de café, Universidade Federal de Viçosa. 
Departamento de Fitopatologia. 

ZAMBONIN, C. G., BALEST, L., DE BENEDETTO, G. E. & PALMISANO, F. 2005. 
Solid-phase microextraction–gas chromatography mass spectrometry and 
multivariate analysis for the characterization of roasted coffees. Talanta, 66, 
261-265. 

http://wiki.eigenvector.com/index.php?title=Software_User_Guide


112 

ZANON, M., RIZ, M., SPARACINO, G., FACCHINETTI, A., SURI, R. E., TALARY, M. 
S. & COBELLI, C. 2011. Assessment of linear regression techniques for 
modeling multisensor data for non-invasive continuous glucose monitoring. 
Conference proceedings : ... Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society. IEEE Engineering in Medicine 
and Biology Society. Conference, 2011, 2538-41. 

ZHOU, T., TAO, D. & WU, X. 2011. Manifold elastic net: a unified framework for 
sparse dimension reduction. Data Mining and Knowledge Discovery, 22, 340-
371. 

ZHU, J. & HASTIE, T. 2004. Classification of gene microarrays by penalized logistic 
regression. Biostatistics, 5, 427-443. 

ZOU, H. & HASTIE, T. 2005. Regularization and variable selection via the elastic net. 
Journal of the Royal Statistical Society Series B-Statistical Methodology, 67, 
301-320. 

 
 

 



113 

ANNEX



114 

ANNEX A. Actual x predicted percentage of defective coffee in mixture with non-defective coffee from PLSR models developed with 

FTIR spectral data. (a) original, (b) baseline correction and area normalization, (c) 1st derivative. ○ calibration set, ● validation set. 
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ANNEX A. Actual x predicted percentage of defective coffee in mixture with non-defective coffee from PLSR models developed with 

FTIR spectral data. (a) original, (b) baseline correction and area normalization, (c) 1st derivative. ○ calibration set, ● validation set. 

(continued) 
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ANNEX A. Actual x predicted percentage of defective coffee in mixture with non-defective coffee from PLSR models developed with 

FTIR spectral data. (a) original, (b) baseline correction and area normalization, (c) 1st derivative. ○ calibration set, ● validation set. 

(continued) 
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ANNEX B. Actual x predicted percentage of defective coffee in mixture with non-defective coffee from PLSR models developed with 
NIR spectral data. (a) original, (b) baseline correction, (c) MSC. ○ calibration set, ● validation set. 
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ANNEX B. Actual x predicted percentage of defective coffee in mixture with non-defective coffee from PLSR models developed with 
NIR spectral data. (a) original, (b) baseline correction, (c) MSC. ○ calibration set, ● validation set. (continued) 
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ANNEX B. Actual x predicted percentage of defective coffee in mixture with non-defective coffee from PLSR models developed with 
NIR spectral data. (a) original, (b) baseline correction, (c) MSC. ○ calibration set, ● validation set. (continued) 
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ANNEX C. Discrimination between defective and non-defective roasted coffees by 
DRIFTS. 
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The objective of this work was to evaluate the feasibility of employing Diffuse Reflectance Infrared
Fourier Transform Spectroscopy (DRIFTS) for discrimination between defective and non-defective coffees
after roasting and grinding. Defective (black, immature and sour) and non-defective Arabica coffee beans
were submitted to light, medium and dark roasts at 220, 235 and 250 �C. Principal Components Analysis
of the DRIFTS spectra (normalized or not) and of the first derivatives of the spectra provided separation
of the samples into four groups: non-defective, black, dark sour and light sour, with immature beans
scattered among the sour samples. Classification models were developed based on Linear Discriminant
Analysis and recognition and prediction abilities of these models ranged from 95 to 100%. Such results
indicate that DRIFTS presents potential for the development of a fast and reliable analytical methodology
for discrimination between defective and non-defective coffee after roasting and grinding.

� 2012 Published by Elsevier Ltd.
1. Introduction

The presence of defective coffee beans depreciates the quality of
the coffee beverage consumed worldwide. These beans represent
about 20% of the total coffee produced in Brazil and similar
amounts can be expected in other producing areas around the
world (Mendonça, Franca, Oliveira, & Nunes, 2008; Ramalakshmi,
Kubra, & Rao, 2007). Although separated from the non-defective
beans prior to commercialization in external markets, the
majority of the defective beans are dumped in the Brazilian internal
market and, overall, a low-grade roasted coffee is consumed in the
country (Craig, Franca, & Oliveira, 2011). The negative effect that
such beans have on coffee quality can be associated to specific
problems that occur during harvesting and post-harvest processing
operations. Black beans result from dead beans within the coffee
cherries or from beans that fall naturally on the ground by action of
rain or over-ripening (Mazzafera, 1999). The presence of sour beans
ectance Fourier Transform
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Spectroscopy; PCA, principal
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can be associated with ‘overfermentation’ during wet processing
and with improper drying or picking of overripe cherries, whereas
immature beans come from immature fruits (Clarke & Macrae,
1987; Mendonça et al., 2008). The chemical changes due to the
extraneous factors acting upon the beans (e.g., microbial fermen-
tation) and due to the maturity stage of the beans (e.g., immature
vs. mature) exert a perceptive effect in the sensory quality of the
coffee beverage when determined by a trained sensory panel, but
can be subtle enough not to be detected by analytical instruments
depending on the technique being employed for that purpose.
Considering that the defective coffee is separated from the non-
defective prior to commercialization, and is also cheaper than
non-defective coffee, the amount of defective beans to be used for
roasting is dependent exclusively on the types of blends defined by
the roasters themselves. Thus, the ultimate quality of a brand of
coffee will be dictated by the amount of defective beans used for
roasting, with higher qualities being expected for blends with small
amounts of these beans and lower qualities for blends with greater
amounts. The presence of black beans in a roasted batch usually
imparts a heavy flavor to the beverage; sour beans contribute to
sour and oniony tastes, while immature beans impart astringency
(Clarke & Macrae, 1987).

Research interest on defective and low quality coffee beans has
intensified over the past years, given the increasing awareness
regarding the negative aspects they impart to the quality of the
roasted and ground coffee used for beverage preparation and
consumption (Craig et al., 2011; Craig, Franca, & Oliveira, 2012;
en defective and non-defective roasted coffees by diffuse reflectance
gy (2012), doi:10.1016/j.lwt.2012.02.016
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Farah, Monteiro, Calado, Franca, & Trugo, 2006; Franca, Mendonça,
& Oliveira, 2005; Franca, Oliveira, Mendonça, & Silva, 2005; Mancha
Agresti, Franca, Oliveira, & Augusti, 2008; Mendonça et al., 2008;
Mendonça, Franca, & Oliveira, 2009; Mendonça, Franca, Oliveira,
& Afonso, 2009; Oliveira, Franca, Mendonça, & Barros-Junior,
2006; Ramalakshmi et al., 2007; Vasconcelos, Franca, Glória, &
Mendonça, 2007). Such studies have shown that there are physical
and chemical differences between defective and non-defective
coffee beans prior to roasting, but only a few have attained some
success regarding discrimination of defective and non-defective
coffees after roasting. Mancha Agresti et al. (2008) showed that
roasted defective and non-defective coffees could be separated into
two distinct groups based on their volatile profiles: immature/black
beans and non-defective/sour coffees. Mendonça, Franca, and
Oliveira (2009) showed that, for Arabica coffees, defective and
non-defective roasted coffees could be separated by sieving.
However, the majority of the commercially available roasted coffee
is ground. Mendonça et al. (2008) and Mendonça, Franca, Oliveira
et al. (2009) attempted to employ electrospray-ionization mass
spectrometry (ESI-MS) for discrimination of defective and non-
defective coffees before and after roasting. ESI-MS profiles in the
positive mode (ESI(þ)-MS) provided separation between defective
and non-defective green coffees prior to roasting, but could not
provide separation of roasted coffees.

Recent studies have shown that methods based on Fourier
Transform Infrared spectroscopy (FTIR) in combination with che-
mometric techniques have been successfully applied for food
quality evaluation (Rodriguez-Saona & Allendorf, 2011). FTIR-based
methods are fast, reliable and simple to perform. They can be based
on transmittance or reflectance readings, and although both tech-
niques are appropriate for analyzing either solid or liquid samples,
reflectance-based methods require none or very little sample
pretreatment, being thus more commonly employed as routine
methodologies for food analysis (Bauer et al., 2008; Rodriguez-
Saona & Allendorf, 2011). Reflectance methods that are appro-
priate for non specular solid samples are divided into Attenuated
Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-
FTIR) and Diffuse Reflectance Fourier Transform Infrared Spec-
troscopy (DRIFTS). While ATR collects information mainly from the
solid surface, DRIFTS provides information from the entire solid
matrix, given that it is a combination of internal and external
reflection. Both techniques have been employed for coffee quality
analysis, with most of the ATR-based studies focusing on analysis of
liquid samples, i.e., the coffee beverage (Briandet, Kemsley, &
Wilson, 1996; Lyman, Benck, Dell, Merle, & Murray-Wijelath,
2003; Wang, Jun, Bittenbender, Gautz, & Li, 2009). DRIFTS has
been also successfully applied for analysis of coffee, specifically
targeting discrimination between Arabica and Robusta varieties
(Kemsley, Ruault, & Wilson, 1995), detection of glucose, starch or
chicory as adulterants of freeze-dried instant coffees (Briandet
et al., 1996) and separation between decaffeinated and regular
roasted coffees (Ribeiro, Salva, & Ferreira, 2010). We have shown, in
recent studies, that DRIFTS provides satisfactory discrimination of
non-defective/defective and immature/mature coffees prior to
roasting (Craig et al., 2011, 2012). In view of the aforementioned,
the objective of this work was to evaluate the potential of this
technique in the discrimination of defective and non-defective
coffee beans after roasting and grinding.

2. Materials and methods

Arabica green coffee samples were acquired from a Coffee
Roasting Company located in Minas Gerais (MG) State, Brazil (Café
Fino Grão, Contagem, MG). The samples consisted of three 60 kg
bags of coffee beans (harvested by the strip-picking method) that
Please cite this article in press as: Craig, A. P., et al., Discrimination betwe
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were rejected by color sorting machines. Four samples of 2 kg of
whole beans were randomly taken from each bag, mixed and their
beans were manually sorted (by a professional trained and certified
for green coffee classification) into five lots: non-defective, imma-
ture, black and sour (separated into light and dark colored). Coffee
samples (25 g) were taken from each lot and submitted to roasting
in a convection oven (Model 4201D Nova Ética, São Paulo, Brazil), at
220, 235 and 250 �C. After roasting, the samples were ground
(D < 0.5 mm) and submitted to color evaluation. Color measure-
ments were performed using a tristimulus colorimeter (HunterLab
Colorflex 45/0 Spectrophotometer, Hunter Laboratories, VA, USA)
with standard illumination D65 and colorimetric normal observer
angle of 10�. Measurements were based on the CIE L*a*b* three
dimensional cartesian (xyz) color space represented by: Luminosity
(L*), ranging from 0 (black) to 100 (white) e z axis; parameter a*,
representing the greenered color component e x axis; and
parameter b*, representing the blueeyellow component-y axis.
Roasting conditions were established for each specific lot, given
that defective coffee beans have been reported to roast to a lesser
degree than non-defective coffee beans when submitted to the
same processing conditions (Mancha Agresti et al., 2008). Roasting
degrees were then defined according to luminosity (L*) measure-
ments similar to commercially available coffee samples
(19.0 < L* < 25.0), corresponding to light (23.5 < L* < 25.0),
medium (21.0 < L* < 23.5) and dark (19.0 < L* < 21.0) roasts. The
corresponding roasting times ranged from 7 to 10 min (250 �C),
9e16 min (235 �C) and 12e33 min (220 �C), with the smaller and
larger times for a given temperature corresponding to the light
and dark roasts, respectively.

A Shimadzu IRAffinity-1 FTIR Spectrophotometer (Shimadzu,
Japan) with a DLATGS (Deuterated Triglycine Sulfate Doped with L-
Alanine) detector was used in the measurements that were all per-
formed in a dry controlled atmosphere at room temperature
(20� 0.5 �C).Diffuse reflectance (DR)measurementswereperformed
in diffuse reflection mode with a Shimadzu sampling accessory
(DRS8000A). The ground coffee samplewasmixedwith KBr (100mg)
and then 23 mg of this mixture was placed inside the sample port.
Pure KBr was employed as reference material (background spec-
trum). All spectra were recorded within a range of 4000e400 cm�1

with a 4 cm�1 resolution and 20 scans, and submitted to back-
ground subtraction. The spectra were also truncated to 2500 data
points in the range of 3100e600 cm�1, in order to eliminate noise
readings present in the upper and lower ends of the spectra.
Preliminary tests were performed in order to evaluate the effect of
particle size (0.39 mm < D < 0.5 mm; 0.25 mm < D < 0.39 mm;
0.15mm<D< 0.25mm; andD< 0.15mm) and coffee/KBrmass ratio
(2, 5,10, 20, 30, 40and50%) on thequalityof the obtained spectra. The
conditions that provided the best quality spectra (higher intensity
and lower noise interference) were D < 0.15 mm and 10% coffee/KBr
mass ratio. In order to improveperformanceof predictionmodels, the
following data pretreatment techniques were evaluated: (0) no
additional processing (raw data), (1) mean centering, (2) normaliza-
tion, (3) baseline correction, (4) first derivatives and (5) second
derivatives. Mathematical treatments such as mean centering and
normalization are commonly applied to data in order to remove
redundant information and enhance sample-to-sample differences
(Wang et al., 2009).Mean centering corresponds to subtraction of the
average absorbance value of a given spectrum from each data point.
Normalization is calculated by dividing the difference between the
response at each data point and the minimum absorbance value by
the difference between the maximum and minimum absorbance
values. Baseline correction andderivative transformations are usually
performed in order to compensate for baseline offset between
samples and also to reduce instrument variations (Esteban-Díez,
González-Sáiz, Sáenz-González, & Pizarro, 2007).
en defective and non-defective roasted coffees by diffuse reflectance
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The statistical software XLSTAT Sensory 2010 (Addinsoft, New
York) was employed for all the chemometric calculations.

3. Results and discussion

Average spectra obtained for defective and non-defective roas-
ted coffee samples are shown in Fig. 1. A comparative evaluation of
Fig. 2. Comparison of (a) raw and (b) normalized spectra obtained for coffee beans
before (gray curves) and after roasting (black curves).
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these spectra indicates that they are quite similar, although varia-
tions in band intensity are perceived, with absorbance values being
higher for non-defective and light sour beans and lower for black
beans. The two sharp bands at 2920 and 2850 cm�1 have been
previously identified in Arabica and Robusta roasted coffee samples
(Kemsley et al., 1995) and also on Arabica green coffee samples
(Craig et al., 2011, 2012), in association to asymmetric and
symmetric stretching of CeH bonds. Studies of FTIR analysis of
caffeine on soft drinks have reported two sharp bands at 2882 and
2829 cm�1, with the latter being due to the asymmetric stretching
of CeH bonds of methyl (eCH3) group in the caffeine molecule
(Paradkar & Irudayaraj, 2002). Other FTIR studies on corn and corn
flour have also reported two bands at 2927e2925 and 2855 cm�1,
being respectively attributed to asymmetric and symmetric CeH
stretching in lipids (Cremer & Kaletunç, 2003; Gordon, Schudy,
Wheeler, Wicklow, & Greene, 1997). Thus, the sharp bands at
2920 and 2850 cm�1 observed in the spectra presented for coffee in
Fig.1 can be attributed to combination bands towhich both caffeine
and lipids contribute. The sharp band at 1740 cm�1 was also re-
ported on previous FTIR studies on roasted coffee, in association to
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carbonyl (C]O) vibration of the ester group in triglycerides
(Kemsley et al., 1995) or to aliphatic esters (Lyman et al., 2003),
indicating that this band could be associated to lipids. The combi-
nation of absorptions at 1740 cm�1 (C]O stretch) and at 2830-
2695 cm�1 (HeC]O stretch) with a weak shoulder-type peak at
2725e2740 cm�1 could be interpreted as a presence of aldehydes
(Miller, Mayo, & Hannah, 2003), which are volatile compounds
found aplenty in roasted coffee, as a result of the thermal degra-
dation of unsaturated fatty acids, such as linoleic acid, which is
quite abundant in the coffee lipid fraction (Oliveira et al., 2006). The
wavenumber 1659 cm�1 has been identified by Garrigues,
Bouhsain, Garrigues, and De La Guardia (2000) as due to the
presence of carbonyl groups in caffeine in their FTIR analysis of
trichloromethane extracts of roasted coffee, and was further used
as the determinant band in their quantitative analytical procedure
for caffeine in roasted coffee samples. However, in our study, this
Fig. 4. Scores on the discriminant functions provided by the 8 variables LDA models of diff
after normalization; and (d) after first derivatives. non-defective; immature; sour (
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band appears rather modestly in the spectra for roasted and ground
coffee. Thus, it can be assumed that several other compounds in
roasted coffee also absorb in that range of wavenumbers and that,
apparently, trichloromethane does not extract them, since in the
work by Garrigues et al. (2000) the 1659 cm�1 was quite sharp in
the trichloromethane extract.

A comparison of average DR spectra obtained for green and
roasted coffees is shown in Fig. 2a. The spectra are qualitatively
similar, even though roasted coffees presented higher absorbance
in comparison to green coffees. It is interesting to observe that,
once the spectra were normalized (see Fig. 2b), all the previously
cited bands (2920, 2850 and 1740 cm�1) presented similar levels of
absorbance in green and roasted coffees. This could be associated to
the fact that both caffeine and lipids levels are not expected to vary
significantly during roasting (Franca, Mendonça et al., 2005; Franca,
Oliveira et al., 2005; Vasconcelos et al., 2007). Evaluation of Fig. 2b
use reflectance spectra (3100e600 cm�1) (a) raw spectra (b) after mean centering; (c)
light); sour (dark); black.

en defective and non-defective roasted coffees by diffuse reflectance
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Table 1
Calculated values of the first three discriminant functions at each sample group
centroid.

Model Non-defective Immature Dark sour Light sour Black

Raw spectra
DF1 5.683 �2.422 �3.816 3.483 �3.013
DF2 0.432 0.314 2.544 �0.304 �3.122
DF3 �1.034 2.851 �1.479 0.996 �1.220
Mean-centered spectra
DF1 4.695 �3.409 �1.918 1.614 �1.115
DF2 0.577 �0.040 2.880 �0.489 �2.975
DF2 0.454 2.121 �1.493 0.350 �1.437
Normalized spectra
DF1 �3.621 3.274 2.847 �1.266 �0.945
DF2 �1.691 0.506 �1.588 0.828 2.513
DF2 �0.507 3.274 1.549 �0.531 1.283
First derivatives
DF1 2.402 �0.711 0.094 0.376 �2.078
DF2 0.885 �0.696 �2.073 0.625 1.280
DF2 0.423 �0.410 0.388 �0.992 0.496

DF1, DF2 and DF3 represent the first, second and third discriminant functions,
respectively.

Table 2
Correct classification rates (%) for the LDA models.

Model Non-
defective

Immature Dark
sour

Light
sour

Black Total

Raw spectra
Recognition 87.0 90.9 100.0 100.0 100.0 95.5
Prediction 100.0 100.0 100.0 100.0 100.0 100.0
Mean-centered spectra
Recognition 83.3 87.0 100.0 100.0 78.3 89.6
Prediction 100.0 100.0 100.0 100.0 100.0 100.0
Normalized spectra
Recognition 84.0 90.0 100.0 100.0 72.7 89.3
Prediction 100.0 80.0 100.0 100.0 100.0 95.0
First derivatives
Recognition 82.6 75.0 77.3 70.0 87.0 78.6
Prediction 75.0 100.0 100.0 66.7 75.0 80.0

Classification rates were evaluated as the percent ratio between the number of
samples correctly classified in a specific group and the total number of samples of
that group.
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also shows no significant differences between green and roasted
coffees regarding absorbance values of the small band at
3008 cm�1. This band can be attributed to the symmetric stretching
vibration of CeH cis-olefinic groups (¼CeH in cis RHC ¼ CHR) and
can be also associated to the presence of lipids (Yang & Irudayaraj,
2001). The fact that it was not significantly changed from the
spectrum for the green beans to that of roasted ones indicates that
the double bonds of unsaturated fatty acids did not undergo
isomerization from cis to trans during roasting.

Several bands can be viewed in the range of 1700e600 cm�1. The
wavenumber range of 1400e900 cm�1 is characterized by
vibrations of several types of bonds, including CeH, CeO, CeN and
PeO (Sablinskas, Steiner, & Hof, 2003; Wang et al., 2009). Other
studies on FTIR analysis of roasted coffees (Briandet et al., 1996;
Kemsley et al., 1995) have reported that carbohydrates exhibit
several absorption bands in this region, so it is expected that this
class of compoundswill contribute to several of the observed bands.
According to Kemsley et al. (1995), Briandet et al. (1996), and Lyman
et al. (2003), chlorogenic acids also present absorption in the region
of 1450e1000 cm�1. Chlorogenic acids represent a family of esters
formed between quinic acid and one to four residues of certain
trans-cinnamic acids, most commonly caffeic, p-coumaric and
ferulic (Clifford, Kirkpatrick, Kuhnert, Roozendaal, & Salgado, 2008).
Axial CeO deformation of the quinic acid occurs in the range of
1085e1050 cm�1, and OeH angular deformation occurs between
1420 and 1330 cm�1. The CeOeC ester bond also absorbs in the
1300e1000 cm�1 range (Silverstein, Webster, & Kiemle, 2005) and
therefore the bands located in the range of 1450e1050 cm�1 could
be partially due to chlorogenic acids. Hashimoto et al. (2009)
studied the influences of coffee varieties, geographical origin and
of roasting degree on the mid-infrared spectral characteristics of
brewed coffee, and also developed a fast and reliable procedure to
determine the caffeine and chlorogenic acid contents in brewed
coffee using theATR-FTIRmethod. In theirmethod, developedbased
on the spiking of the coffee brewwith different amounts of caffeine,
they identified the band at 1242 cm�1 as the most relevant
absorption band for characterization of the caffeine content in the
brew. In the roasted and ground coffee IR spectra herein obtained for
defective and non-defective coffee beans this peak appears shifted
to a slightly lower band (1238 cm�1), but it is present in all spectra.
Another substance that can be associated to peaks in the
1600e1300 cm�1 range is trigonelline, a pyridine derivative that has
been reported to present four bands in this range, due to axial
deformation of C]C and C]N bonds (Silverstein et al., 2005). A
comparison of the average spectra of green and roasted coffees
presented in Fig. 2b shows a decrease in the relative absorbance of
several bands in the 1700e600 cm�1 region after roasting. Several
literature reports confirm that the levels of carbohydrates,
trigonelline and chlorogenic acids diminish upon roasting (Farah
et al., 2006; Franca, Oliveira et al., 2005), so such variations in
chemical composition are expected to affect the spectra in the
1700e600 cm�1 range.

Using the DR spectra as chemical descriptors, pattern recogni-
tion (PR) methods (principal components analysis e PCA and linear
discriminant analysis e LDA) were applied in order to establish
whether or not specific types of beans could be discriminated
within roasted coffee samples. Data matrices were constructed so
that each row corresponded to a sample and each column repre-
sented the spectra datum at a given wavenumber, after processing
as described in the previous section. The spectra pretreatment
steps that provided a satisfactory level of discrimination between
defective and non-defective coffees were the following: (0) no
additional treatment of raw data, (1) mean centering, (2) normal-
ization and (4) first derivatives. Pretreatments (3) and (5), baseline
correction and second derivatives, did not provide satisfactory
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separation between defective and non-defective coffees. Further-
more, baseline correction (3) provided undesirable separation by
roasting temperature.

The scatter plots obtained by PCA analysis are displayed in Fig. 3.
A clear separation between categories can be observed, with four
distinct major groups: non-defective ( ), black ( ), dark ( ) and
light sour ( ), with some outlier points. The few outlier samples
from each group that were present in other classes (for example,
a few non-defective and black beans in the light sour group)
correspond to samples subjected to extreme roasting conditions
(light roast/lower temperature and dark roast/higher temperature).
Regardless of the employed spectra processing technique, imma-
ture beans ( ) are somewhat scattered between light and dark sour
defects. Clustering of immature and sour defects was also observed
in the analysis of green coffees by ESI (þ)-MS profiles (Mendonça
et al., 2008) or DRIFTS (Craig et al., 2011), whereas Mancha
Agresti et al. (2008) reported grouping of immature and black
roasted coffee beans according to their volatile profiles.

A clear separation between non-defective and defective coffee
beans canbeobserved inall theplotsdisplayed in Fig. 3. Evaluationof
the loadings plots obtained after PCA analysis of raw and processed
spectra (not shown) indicated that the spectral ranges that presented
the highest influence on PC1 and PC2 values in association with the
non-defective coffees (PC1 and PC2 positive for spectra without
further treatment, PC1 and PC2 negative for spectra submitted to
mean centering, and PC1 negative and PC2 positive for normalized
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Table 3
Model equations and correct classification rates (%) based on generic discrimination between defective and non-defective coffees.

Model

Raw spectra: DF ¼ �5:0þ 93:7A2924 � 110:8A2852 þ 53A1743 � 23:9A1541 � 86:4A1377 � 128:6A1076 þ 25:4A910 þ 9:4A816
Non-defective Defective Total

Recognition 84.0 100.0 96.4
Prediction 100.0 100.0 100.0
Mean-centered spectra: DF ¼ �6:7þ 63:3B2924 � 69:9B2852 þ 66:9B1743 � 21:9B1541 � 60:7B1377 � 111:0B1076 þ 49:3B910 þ 19:7B816

Non-defective Defective Total
Recognition 87.5 100.0 97.3
Prediction 100.0 100.0 100.0
Normalized spectra: DF ¼ �251:2þ 175:4C2924 þ 93:6C2852 � 36:0C1743 þ 18:9C1541 � 58:8C1377 þ 86:6C1076 � 29:4C910 þ 3:0C816

Non-defective Defective Total
Recognition 84.0 100.0 96.4
Prediction 100.0 100.0 100.0
First derivatives: DF ¼ �6:2� 109:0D2924 � 815:8D2852 � 433:5D1743 � 615:2D1541 � 715:4D1377 þ 2560:3D1076 þ 859:2D910 � 486:3D816

Non-defective Defective Total
Recognition 88.0 96.6 94.6
Prediction 94.0 100.0 95.0

DF represents the discriminant function. An corresponds to the absorbance value at wavenumber n; Bn corresponds to the absorbance value at wavenumber n, after mean
centering; Cn corresponds to the absorbance value at wavenumber n, after normalization; and Dn corresponds to the absorbance first derivative at wavenumber n. Classi-
fication rates were evaluated as the percent ratio between the number of samples correctly classified in a specific group and the total number of samples of that group.
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spectra) were the following: 1700e1500 and 970e600 cm�1, in
general representing the regions in which non-defective coffees
presented higher absorbance intensity in comparison to all defective
categories (see Fig. 1). Loadings obtained for first derivatives could
not be associated to specific regions in the spectra.

Results from the principal components analysis indicate that the
obtained spectra could provide enough information to develop
classification models for non-defective and each specific class of
defective roasted coffees. Thus, linear discriminant analysis (LDA)
was performed with the purpose of obtaining classification models
for assigning categories to samples. Model validation was per-
formed using w25% of the samples as the evaluation set. Recog-
nition ability was calculated as the percentage of members of the
calibration set that were correctly classified, and prediction ability
was calculated as the percentage of members of the validation set
that were correctly classified. LDA models were constructed
employing different numbers of variables (wavenumbers), starting
with the entire spectrum and decreasing the number of variables. It
was observed that model recognition ability varied significantly
with the number of variables, with the best correlations being
provided by eight-variable models. In general the models were
satisfactory (average recognition and prediction abilities above
75%) as long as the selected wavenumbers presented high loading
values. Therefore, the following wavenumbers, that have been
previously reported in other FTIR studies on coffee, were selected
for the final models: 2924, 2852, 1743, 1541, 1377, 1076, 910 and
816 cm�1, with possible association to caffeine, carboxylic acids,
lipids, chlorogenic acids, trigonelline and carbohydrates. The score
plots for the first three discriminant functions are shown in Fig. 4.
The first three discriminant functions accounted for 96.2, 95.2, 95.3
and 97.6% of of the total sample variance, for the models based on
raw spectra, media-centered spectra, normalized spectra and first
derivatives, respectively. A clear separation of all groups (non-
defective, black, immature, dark sour and light sour) can be
observed for the models based on DR spectra (see Figs 4aec),
whereas some level of group overlapping was observed for the
model based on spectra derivatives (Fig. 4d). The calculated values
of each discriminant function at the group centroids are displayed
in Table 1. It is interesting to point out that, for all the developed
models, the first three discriminant functions are enough to
provide sample classification. For example, considering the model
based on the raw spectra, it can be observed that non-defective
coffees present positive values for DF1 and DF2 and negative
values for DF3, whereas black beans present negative values for
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DF1, DF2 and DF3. The corresponding values obtained for correct
classification rates for each specific model and group are shown in
Table 2. Recognition and prediction abilities were quite similar for
all the developed models.

The data were further evaluated in order to develop a more
generic classification model, i.e., only one discrimination function
that would provide discrimination between non-defective and
defective beans, without separating the defects into specific groups.
The classification functions and respective correct classification
rates are shown in Table 3. Respective average values of recognition
and prediction abilities were 96.4 and 100%, for the model based on
raw spectra, 97.3 and 100%, for the model based on media-
corrected spectra, 96.4 and 100%, for the model based on normal-
ized spectra, and 94.6 and 95%, for the model based on first
derivatives. Such results confirm that DRIFTS provides satisfactory
discrimination between defective and non-defective roasted
coffees, demonstrating its potential for detection of defective beans
in mixtures with non-defective ones after roasting. Regarding the
application of such methodology for routine analyses of roasted
coffee quality, further studies are still necessary, involving a trained
panel of coffee tasters, to establish the minimum amount, if any, in
which defective beans can be introduced to a non-defective coffee
batch and changes in the beverage quality would still not be
perceived in relation to one without defective beans. With the
minimum amounts effectively established, mixtures of defective
and non-defective roasted beans can be suitably prepared and duly
tested for the discrimination capability of the developed models.

4. Conclusion

The feasibility of employing DRIFTS as a methodology for
discrimination between defective and non-defective roasted
coffees was evaluated. The obtained spectra were similar, with
small differences in absorbance intensity between non-defective
and defective coffees. PCA results based on DR spectra and first
derivatives indicated separation of the samples into four major
groups: non-defective, black, dark sour and light sour, with
immature beans scattered among the sour samples. LDA classifi-
cation models, based on absorbance readings and derivatives at
eight wavenumbers (2924, 2852, 1743, 1541, 1377, 1076, 910 and
816 cm�1), provided separation of the samples into five groups:
non-defective, black, dark sour, light sour and immature beans.
Average recognition and prediction abilities ranged from 79 to 96%
and from 80 to 100%, respectively. Discrimination functions for
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generic classes of defective and non-defective coffee samples were
also developed. For these generic models, recognition and predic-
tion abilities ranged from 95 to 97% and from 95 to 100%, respec-
tively. The results obtained in the present study confirm that
DRIFTS provides satisfactory levels of discrimination between
defective and non-defective coffee beans after roasting.
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