
Adriano César Machado Pereira

Uma Metodologia para Verificação

de Modelos de Sistemas de Comércio Eletrônico

{A Model Checking Methodology for E-commerce Systems)

Dissertação apresentada ao Curso de Pós-

Graduação em Ciência da Computação da

Universidade Federal de Minas Gerais, como

requisito parcial para a obtenção do grau de

Mestre em Ciência da Computação.

Belo Horizonte

28 de Agosto de 2002

UNIVERSIDADE FEDERAL DE MINAS GERAIS

FOLHA DE APROVAÇÃO

Uma Metodologia para Verificação de Modelos de

Sistemas de Comércio Eletrônico

ADRIANO CÉSAR MACHADO PEREIRA

Dissertação defendida e aprovada pela banca examinadora constituída pelos Senhores:

Prof.^AGNER MeihÂ JÚNIOR - Orientador

Departamento de Ciência da Computação - ICEx - UFMG

ProíTCARLOS-ÍOSÉ PERSnUTDg'^LuCE'NA

Departamento de Informática - PUC-Rio

Prof. Vfrgílio Augusto Fernandes Almeida

Departamento de Ciência da Computação - ICEx - UFMG

FRG

Belo Horizonte, 28 de agosto de 2002.

Resumo

Comércio eletrônico é uma importante área de aplicação associada à computação que

tem evoluído significativamente nos últimos anos. Entretanto, sistemas de comércio eletrô-

nico são complexos e difíceis de serem projetados corretamente. Atualmente, a maioria

das abordagens é ad-hoc, o que normalmente torna os sistemas menos confiáveis e implica

em alto custo em termos de tempo e recursos. Além disso, garantir a corretude de um

sistema de comercio eletrônico não é tarefa trivial devido à grande variedade de erros,

muitos deles muito sutis. Tal tarefa é complexa e trabalhosa se apenas testes e simulação,

técnicas comuns de validação de sistemas, são utilizados. Neste trabalho propõe-se uma

metodologia que utiliza métodos formais, especificamente verificação simbólica de modelos,

para projetar aplicações de comércio eletrônico e verificar automaticamente se suas regras

de negócio são satisfeitas. Usando a metodologia proposta, o projetista é capaz de identi-

ficar, antecipadamente, erros no processo de desenvolvimento do projeto e corrigi-los antes

que se propaguem a estágios posteriores da implementação. Dessa forma, torna-se possível

gerar aplicações mais confiáveis, desenvolvidas mais rapidamente e a baixo custo. A fim de

demonstrar a aplicabilidade e a praticabilidade da técnica proposta, modelou-se e verificou-

se uma loja virtual, na qual múltiplos compradores competem para adquirir itens de um

produto. A utilização de verificação automática se mostrou de extrema importância, pois

indicou erros difíceis de serem detectados durante o projeto da aplicação como, por exem-

plo, uma falha do controle de concorrência que permitia que o mesmo artigo fosse vendido

para clientes distintos. A metodologia proposta pode ser aplicada em sistemas de comércio

eletrônico em geral, onde as regras de negócio podem ser modeladas através de transições

no estado dos itens a venda. Como o método proposto é baseado em fórmulas CTL, as

regras de negócio devem ser representadas através das mesmas, o que pode ser considerado

uma limitação da metodologia. Estamos estudando outras características dos sistemas

de comércio eletrônico que ainda não foram formalizadas, assim como a possibilidade de

geração do atual código que implementa o sistema a partir de sua especificação. Neste

contexto, estamos desenvolvendo um conjunto de padrões de projeto a serem utilizados no

projeto e verificação de sistemas de comércio eletrônico. A idéia principal é definir uma

hierarquia de padrões para verificação de modelos, que especifique padrões para constru-

ção e verificação de modelos formais de comércio eletrônico. Consideramos esse trabalho o

primeiro passo para o desenvolvimento de um ambiente que integre a metodologia, uma lin-

guagem de especificação de sistemas de comércio eletrônico baseada em regras de negócio,

e um verificador de modelos. Um trabalho futuro é aplicar a metodologia proposta em

outras áreas, tais como comércio eletrônico móvel e telecomunicações.

Abstract

Electronic commerce is an important application that has evolved significantly in re-

cent past. However, electronic commerce systems are complex and difficult to be designed

correctly. Current most approaches are ad-hoc, frequently leading to expensive and unre-

liable systems that may take a long time to implement due to the great amount of errors.

Moreover, guaranteeing the correctness of an e-commerce system is not an easy task due to

the great amount of scenarios where subtle errors may occur. Such task is quite hard and

laborious if only tests and simulation, common techniques for system validation, are used.

In this work we propose a methodology that uses formal-method techniques, specifically

symbolic model checking, to design electronic commerce applications and to automatically

verify that these designs satisfy properties such as atomicity, isolation, and consistency.

Using the proposed methodology, the designer is able to identify errors early in the design

process and correct them before they propagate to later stages. Thus, its possible to gener-

ate more reliable applications, developed faster and at low costs. In order to demonstrate

the applicability and feasibility of the technique, we have modeled and verified a virtual

store m which multiple buyers compete for product items. For instance, the verification

process pointed out a concurrency control error which allowed the same item to be sold

twice. The proposed method can be applied in general e-commerce systems, where the

business rules can be modeled by state transitions of the items on sale. As the method is

based on CTL-formulas, the business rules should be represented by them, what can be

considered a limitation of the method. We are currently studying other features of elec-

tronic commerce systems that we have not yet been formalized, as well as the possibility

of generating the actual code that will implement the system from its specification. In this

context, we have been developing a set of design patterns to be used in the design and

verification process of e-commerce systems. The idea is to define a model checking pattern

hierarchy, which specifies patterns to construct and verify the formal model of e-commerce

systems. We consider this research the first step for the development of a framework,

which will integrate the methodology, an e-commerce specification language based on busi-

ness rules, and a model checker. A future research is to apply our methodology in other

application areas, such as mobile e-commerce and telecommunications.

Agradecimentos

2

Agradecimento significa ato ou efeito de agradecer, que significa demonstrar ou ma-

nifestar gratidão, que denota um reconhecimento por um benefício recebido. Imagino

que normalmente o agradecimento deva ser curto, mas penso que não posso perder esta

oportunidade para expressar minha eterna gratidão.

"Eu guardo, para todos aqueles que de uma ou outra forma contribuíram para fazer-

me mais grata a vida, uma eterna gratidão, e estampo nessa gratidão a lealdade com que

conservo essa recordação, a qual jamais pôde empalidecer ali onde se encerra tudo quanto

constitui a história de minha vida." (RAUMSOL)

A gratidão é um dos mais nobres sentimentos do ser humano. Penso que ela engrandece

a quem a testemunha e estimula e faz feliz a quem a recebe. Porém a gratidão é um

sentimento que vai ficando mais raro à medida que o ser humano, invertendo a hierarquia

de valores, tem se envaidecido, olvidando a Fonte Suprema que o criou, as suas raízes

espirituais e os seus deveres para com o seu semelhante.

Gratidão rima com recordação, e me recordo de um sábio ensinamento que expressa

que "recordar o bem recebido é fazer-se merecedor de tudo quanto amanhã possa nos ser

brindado".

A conclusão desta etapa, deste trabalho é um marco importante para mim. Retrata

um esforço não só meu, mas de muitos, com quem tenho a alegria de poder compartilhar

este momento especial.

Inicialmente, gostaria de expressar minha gratidão a Deus, pela maior de todas as

oportunidades, que é a de viver, por presidir sempre todos os momentos de minha vida.

"Que sempre seja Deus quem presida suas horas de alegria, oferecendo-Lhe, do mais

íntimo do coração, sua gratidão por tudo o que Lhe deve e possui em felicidade, em conhe-

cimento, em conforto, em triunfos."

Vale dizer também que "é bom recordar o que mais de uma vez afirmamos: os seres

invocam a Deus em seus momentos de desventura, pretendendo um amparo imediato, sem

perceberem, por outro lado, que poucos o fazem como homenagem de gratidão por seus

momentos de felicidade e, menos ainda, para mostrarem-lhe o fruto de seus esforços por

vincular-se à sua maravilhosa Vontade, plasmada na Criação. É preciso, pois, recordá-lo

também nos momentos de alegria; a recordação não só perde assim o caráter especulativo,

como também brota da gratidão pela felicidade que se vive. Então sim, o espírito individual

pode elevar a alma e vinculá-la a vibrações superiores."

Sou eternamente grato as Américas, avós amáveis e companheiras, ao avô Zizico, brin-

calhão e paciente, avô Wilson, sinônimo de luta e responsabilidade.

3

A meus queridos pais, Elza e Lourival, pelo ilimitado afeto e verdadeiro amor. Agradeço

o apoio, o carinho e os ensinamentos de inestimável valor. A Lê e Déia, por sempre terem

me dado tanto apoio e amor. Não posso deixar de lembrar do Eduardo, Igor e todos os tios,

tias, primos e primas, que completam esta minha maravilhosa família. Merecem minha

recordação também Marcinha, Maísa, Marly e Marcos.

A Maira, minha Lindona, com quem compartilho os mais valiosos anelos, por seu amor

incondicional, afeto grandioso, respeito, companherismo, tolerância e paciência. Agradeço

também por saber respeitar meu trabalho, me auxiliar nas decisões e compreender minhas

ausências. Obrigado por estar tornando minha vida mais feliz ainda!

Ao professor e Amigo Wagner Meira Jr., orientador deste trabalho e de tudo quanto

realizei nos últimos 5 anos de pesquisa, agradeço pelos valiosos ensinamentos, pelas opor-

tunidades, desafios, orientações e incentivos. Você costuma dizer que "o que vale no curso

de mestrado ou doutorado é o sofrimento". No início, não entendia isso, hoje compreendo

que na verdade esse sofrimento a que você se refere é a luta que, com muito esforço e

perseverança, culmina em capacitação e conhecimento. Sou muito grato por sua confiança

e colaboração.

Também agradeço ao professor Sérgio Campos, co-orientador deste trabalho, pelos

conhecimentos transmitidos e importante colaboração.

Aos demais membros da banca, os professores Virgílio Augusto Fernandes Almeida

e Carlos José Pereira de Lucena, ilustres pesquisadores de reconhecimento internacional,

agradeço pelos generosos conhecimentos e conselhos.

Agradeço aos companheiros de pesquisa Mark Song e Gustavo Gorgulho pelas inúmeras

contribuições a este trabalho, onde juntos formamos uma pequena grande equipe e al-

cançamos méritos com muito esforço, dedicação e perseverança. Espero que nossa união e

trabalho renda ainda muitos frutos e que os frutos já colhidos possam ser úteis para muitos.

Aos amigos, que felizmente são muitos, tantos que não caberiam nesta seção do tra-

balho. Em especial, aos amigos de infância, do Colégio Logosófico e Fundação Logosóíica,

onde destaco Alexandre Silveira, Ana Carolina Chaves, Anita Lima, Cynthia Porto, Daniel

Rocha, Guilherme Cavalieri, Gustavo França, Sarah Angrisano. Aos amigos do grupo

OGDGA, onde destaco Luciana Avelar e Rodrigo, o Foca. Aos integrantes das minhas

famílias de segundo grau, das quais destaco a família Neves Cavalieri, França, Silva Gon-

tijo, Macedo Paulinelli, e Alves Pereira. Aos amigos da Smart Price, incluindo os que lá

estão e os que por lá já passaram. A todos os amigos da 2000 e-mail. A todos os amigos da

UFMG, onde destaco, sem ordem de relevância mas com diferentes graus de afeto, Adriano

Veloso, Ana Paula Atayde, Autran Macedo, Benício Gontijo, Bruno Diniz, Bruno Possas,

Eduardo Kraemer, Eveline Veloso, Fabiana Ruas, Fernando Caixeta, Flávia Ribeiro, Goed-

son Paixão, Gustavo Gama, Júnia Gaudereto, Patrícia Marques, Paulo Araújo, Rodrigo

Barra, Rodrigo Fonseca, Tanara Lauschner, Tassni, Wolber, entre outros. A todos os

4

amigos da Engenharia, em especial ao José Henrique e Leonardo Santos. Prestar um agra-

decimento nominal não me parece a forma mais generosa de manifestar meu agradecimento,

pois o verdadeiro reconhecimento é visível no afeto que existe entre cada um de nós.

A todos do Laboratório e-SPEED, do Departamento de Ciência da Computação da

UFMG, por tornarem alegre, rico e divertido nosso convívio diário.

Não poderia deixar de agradecer ao Departamento de Ciência da Computação (DCC) da

Universidade Federal de Minas Gerais (UFMG) pelo ambiente propício ao desenvolvimento

do trabalho, muitos professores capacitados e competentes funcionários de que dispõe.

Agradeço especialmente à Emilia, Luciana, Renata e Túlia, funcionárias do DCC, que com

grande eficiência deram suporte ao meu curso de pós-graduação.

Finalmente, dedico este trabalho a todos que não estão diretamente mencionados, mas

que de alguma forma colaboraram para a conclusão do mesmo. Meu sincero obrigado!

Espero que este trabalho possa ser fonte de conhecimento para muitos seres e base para

desenvolvimento de novas pesquisas.

Agora que estou a finalizar estes dizeres, noto que palavras não são suficientes para

expressar meu afeto e gratidão, meu verdadeiro sentir.

Para concluir recorro então a um ensinamento especial de um grande Mestre, a quem

tanto sou grato, pois tem verdadeiramente tornado minha vida muito mais feliz: "A vida

não deve terminar como terminam as horas do dia, agonizando em um entardecer. A vida

tem que ampliar seus horizontes; fazer longas as horas da existência para que o espírito,

incorporado na matéria, experimente a grandiosidade de sua criação. Para isso tem que

renovar-se no passado e no futuro. No passado, reproduzindo constantemente na tela

mental todas as passagens vividas com maior intensidade; no futuro, pensando no que

ainda resta por fazer, naquilo que se pensou fazer, e, sobretudo, no que se quer ser nesse

futuro. E quanto mais gratidão o homem experimente pelo passado, quanto mais gratidão

guarde pelas horas felizes vividas nele, assim como pelas de luta ou de dor, que sempre são

instrutivas, tanto mais abrirá sua vida a novas e maiores perspectivas de realização."

5

Contents

List of Figures 7

List of Tables 8

1 Introduction 9
1.1 Formal Methods 10
1.2 Temporal Logic and Model Checking 10
1.3 E-commerce Systems 12

1.3.1 Architecture 12
1.3.2 Properties 13

1.4 Objective 14
1.5 Contributions 14
1.6 Related Work 15
1.7 Organization 16

2 Model Checking E-commerce Systems 17
2.1 Business Rules 17
2.2 Property Specification Patterns !!!!"!!!!!!! 18
2.3 Formal model of e-commerce systems 20

2.3.1 Properties of an e-commerce system 21
2.4 Formal-CAFE: An Incremental Specification

Methodology with Formal Verification 22
2.4.1 Conceptual Level 23
2.4.2 Application Level 23
2.4.3 Functional Level 25
2.4.4 Execution or Architectural Level 27

3 Case Studies 29
3.1 Case Study: An E-commerce Virtual Store 29

3.1.1 Conceptual Level 29
3.1.2 Application Level 31
3.1.3 Functional Level 33
3.1.4 Execution or Architectural Level 35

3.2 Case Study: An English Auction Site 36
3.2.1 Conceptual Level 36
3.2.2 Application Level 41
3.2.3 Functional Level 42
3.2.4 Execution or Architectural Level 45

4 Conclusions and Future Work 46

6

A Overview of CAFE - Methodology for the Design of E-commerce Systems 48
A.l Conceptual Level 49
A.2 Application Level 50
A.3 Functional Level 51

A.3.1 Types of processing 51
A.3.2 Data Categories 53
A.3.3 Services 54
A.3.4 Functional Requirements 54
A.3.5 Strategy of Storage 55

A.4 Execution Level 55
A.4.1 Server Architecture 55
A.4.2 Execution Environment 56
A.4.3 Protocols 56
A.4.4 Addressing 57
A.4.5 Tools 57

B Overview of Formal Methods 58
B.l Benefits of Using Formal Methods 61
B.2 Issues and Choices in Formal Methods 61
B.3 The Varieties of Formal Specifications 63

B.3.1 Model-oriented Specification 64
B.3.2 Property-oriented Specification 64
B.3.3 Specifications for Concurrent Systems 65

C Overview of Model Checking 66
C.l Temporal Logic and Model Checking 67
C.2 Symbolic Algorithms 69
C.3 Symbolic Model Checking 71

C.3.1 Binary Decision Diagrams 71
C.4 Modeling Concurrent Systems 72
C.5 The Computation IVee Logic - CTL !!!!!!!! 74

D Overview of the SMV and NuSMV Systems 77
D.l An informal introduction 78
D.2 The input language 86

D.2.1 Lexical conventions 87
D.2.2 Expressions 87
D.2.3 Declarations 89
D.2.4 Modules 93
D.2.5 Identifiers 95
D.2.6 Processes 96
D.2.7 Programs 96

D.3 The NuSMV System 97

Bibliography 99

A Source Code of Virtual Store Case Study 107
A.l Application Level 107
A.2 Functional Level 110
A.3 Execution Level 115

7

List of Figures

1.1 Three-level architecture of e-commerce server 13

2.1 A Pattern Hierarchy 20
2.2 Classification of business rules 22
2.3 The life cycle graph of product's item 24
2.4 The First Level of the Methodology 25
2.5 The Second Level of the Methodology 27
2.6 The Third Level of the Methodology 27

3.1 The life cycle graph of product's item 30
3.2 An English Auction Site - The life cycle graph of product's item 39

C.l BDD for (a A 6) V (c A d) 72
C.2 Example of a transition and its symbolic representation 73
C.3 A simple transition x = y 74
C.4 The state transition graph 75
C.5 State transition graph and corresponding computation tree 75
C.6 Basic CTL operators 76

D.l Model checker output for semaphore example 86

8

List of Tables

3.1 English Auction Events 40

A.l Elements of each level of CAFEs methodology 49

9

Chapter 1

Introduction

E-commerce has become a popular application. It makes the access to goods and

services easy and has revolutionized the economy as a whole. In general, we can define

electronic commerce as the use of network resources and information technology to ease

the execution of central processes performed by an organization.

As new e-commerce services are created, new types of errors appear, some unacceptable.

We define error as any unexpected behavior that occurs in a computer system. A typical

error that may occur in a site is to allow two users to buy the same item. Nowadays, there

is a consensus that the occurrence of errors in sites is a major barrier to the growth of

e-commerce, as it may cause damages to the users and to the site, depending on its nature.

However, guaranteeing the correctness of an e-commerce system is not an easy task due

to the great amount of scenarios where errors occur, many of them very subtle. Such task

is quite hard and laborious if only tests and simulations, common techniques of system

validation, are used.

Formal methods consist basically of the use of mathematical techniques to help in the

documentation, specification, design, analysis, and certification of computational systems.

The use of formal methods, in special model checking, is sufficiently interesting and promis-

ing since it consists of a robust and efficient technique to verify the correctness of several

system properties, mainly regard to identification of faults in advance.

Formal methods are used in Computer Science mainly to improve the quality of the

software and hardware or to guarantee the integrity of critical systems. In general, formal

methods are used for the sake of modeling, formal specification and formal verification of the

system, that are the basic processes of model checking. The design and implementation are

modeled considering the features that will be handled in the formal specification, making

possible to demonstrate its conformity through formal verification.

The next sections describe important concepts about formal methods, temporal logic

and model checking, and e-commerce systems. Then, the objective and main contributions

10

of this master thesis are presented. After that, there are two sections explaining the related

work and organization of the document, respectively.

1.1 Formal Methods

Formal methods are a set of techniques that use mathematical notation to describe the

requirements of the system and detail forms to validate this specification and subsequent

implementation.

The term formal methods refers to the use of mathematical modeling, calculation, and

prediction in the specification, design, analysis, construction, and assurance of computer

systems and software. The reason it is called "formal methods" rather than "mathematical

modeling of software" is to highlight the nature of the mathematics involved.

The specification corresponds to one of the initial stages of software development pro-

cess [40, 43] and its objective is to define, in a complete and consistent way, the functional

requirements of the system. In general, the specification is written in natural language,

being subjected to ambiguities, sensitivity to the context and different interpretations. For-

mal specification consists of the use of formal notations, based in mathematical techniques

and formal logic, to specify systems. The use of formal notations and mathematical for-

malisms allows to reduce errors and ambiguities committed during this process, generating

an accuracy and not ambiguous specification.

Formal methods embrace a variety of approaches that differ considerably in techniques,

goals, claims, and philosophy. The different approaches to formal methods tend to be

associated with different kinds of specification languages. Conversely, it is important to

recognize that different specification languages are often intended for very different pur-

poses and therefore cannot be compared directly to one another. Failure to appreciate this

point is a source of much misunderstanding. In this work we use model checking, which

is an interesting and promising formal method technique to verify hardware and software

systems using temporal logic.

1.2 Temporal Logic and Model Checking

Temporal logics have proved to be useful for specifying concurrent systems, because

they can describe the ordering of events in time without introducing time explicitly. They

were originally developed by philosophers for investigating the way that time is used in

natural language arguments [51].

Model checking is a method for formally verifying finite-state concurrent systems. Spec-

ifications about the system are expressed as temporal logic formulas, and efficient symbolic

11

algorithms are used to traverse the model defined by the system and check if the specifi-

cation holds or not. Extremely large state-spaces can often be traversed in minutes.

Applying model checking to a design consists of several tasks, that can be classified in

three main steps, as follows:

Modeling: consists of converting a design into a formalism accepted by a model checking

tool .

Specification: before verification, it is necessary to state the properties that the design

must satisfy. The specification is usually given in some logical formalism. For hard-

ware and software systems, it is common to use temporal logic, which can assert how

the behavior of the system evolves over time.

An important issue in specification is completeness. Model Checking provides means

for checking that a model of the design satisfies a given specification, but it is im-

possible to determine whether the given specification covers all the properties that

the system should satisfy. This problem illustrates how important a methodology is

to conceive a better specification in terms of completeness.

Verification: ideally the verification is completely automatic. However, in practice it

often involves human assistance. One such manual activity is the analysis of the

verification results. In case of a negative result, the user is often provided with an

error trace. This can be used as a counterexample for the checked property and can

help the designer in tracking down where the error occurred. In this case, analyzing

the error trace may require a modification to the system and reapplication of the

model checking algorithm.

In this work we use Symbolic model checking, which is a formal verification approach

by which a desired behavioral property of a system can be verified over a model through

representation of all the states reachable by the application and the behaviors that traverse

through them. The system being verified is represented as a state-transition graph (the

model) and the properties (the behaviors) are described as formulas in some temporal logic.

CTL (Computation Tree Logic) is a language used to describe properties of systems that

will be verified by the model checker. Computation trees are derived from state transition

graphs. Formulas in CTL refer to the computation tree derived from the model. It is

classified as a branching time logic, because it has operators that describe the branching

structure of this tree.

The model checking system we use is called SMV [59], developed by McMillan as part

of his doctoral dissertation thesis. It is based on a language for describing hierarchical

finite-state concurrent systems. SMV is a tool for checking finite state systems against

specifications in the temporal logic CTL. These concepts are very important to help us in

12

the conception of the methodology to design e-commerce systems, which are presented in

the next subsection.

1.3 E-commerce Systems

One of the most promising uses of the Web is for supporting commercial processes

and transactions. One of the advantages of the use of the Web in electronic commerce is

that it allows one-to-one interaction between customers and vendors through automated

and personalized services. Furthermore, it is usually a better commercialization channel

than traditional ones because its costs are lower and it can reach an enormous potential

customer population.

Generically, we define commerce as the execution of commercial transactions involving

trade goods and services. E-commerce consists of a set of techniques and computer tech-

nologies used to support commerce or make it easier. An English auction web site and a

virtual store are traditional examples of e-commerce applications.

Electronic commerce servers and traditional WWW servers act in well distinct con-

texts [25]. Furthermore, there are many differences between these types of servers. How-

ever, they can be differentiated by the additional functionalities supported and the infor-

mation stored by the e-commerce servers. WWW servers only receive and answer requests,

while e-commerce servers keep information transmitted between the user and the server,

and their associated actions. This information is kept for the purpose of transactional

integrity and support to the oflFered services. The state of the server comprises the user

session, which represents all the interactions that a user makes with the site in one sitting.

The following subsections describe the architecture of an e-commerce server.

1.3.1 Architecture

Components

An electronic commerce server [77] can be divided into three integrated components

(Figure 1.1):

1. WWW Server: it is the manager of the tasks, being responsible for the interface

with the users (customers), interacting directly with them, receiving the requests,

sending them to transaction server and repassing the results. It provides the interface

between the client access tool (normally a browser) and the e-commerce server.

2. Transaction Server: It processes the requests submitted to the e-commerce server,

such as the addition/removal of a new product to the shopping cart.

13

3. Database: It stores all the information of the virtual store, such as the description

of the product and the level of supply. More than a simple repository, it adds several

functionalities that allow the standardized, safe, and efficient access to the data,

through, for example, the creation of an index and user access control.

requests

responses

WWW
Server

services Transaction
Server

data

DBMS

Figure 1.1: Three-level architecture of e-commerce server

Requirements

There are four essential requirements to the implementation of electronic commerce

servers [68, 76]:

1. Management of the state of the application: The state of the application is the

set of user information and its interactions while accessing the server. Particularly,

the management of the state of the application makes possible the authentication of

users, control of user session, and the use of personalized services.

2. Transactional Support: These requirements are related to the transactions that

satisfy certain characteristics traditionally grouped into four properties under the

acronym ACID (Atomicity, Consistency, Isolation, Durability). These features make

possible, among others, concurrence control on the database and mechanisms of

recovery in case of errors.

3. Security: The security requirements are related to the restrictions of access to the

data managed by the server. The Web is not really a safe environment and the exe-

cution of e-commerce applications must take in consideration the basic requirements

of access restrictions to objects of the data base.

4. Performance: The performance of e-commerce servers is a crucial factor for the

satisfaction of the customers and consequent accomplishment of commercial transac-

tions.

1.3.2 Properties

In an e-commerce server, focusing more specifically at the transaction server, a trans-

action can be understood as a sequence of operations executed on the existing products

14

in the site capable to cause changes in the product state, which is part of the e-commerce

application state. Despite this, it is important to know the concept of transaction atom-

icity. Atomic transactions are constantly used in distributed or concurrent systems, being

characterized by the fact that, if something hinders the end of this transaction, the state

of the application must be restored to the state before the beginning of the execution,

preventing that the system pass to an inconsistent state.

The study of our model identified three relevant classes of properties to be verified:

• Atomicity: a transaction must be executed in its totality. If it is not possible, does

not have to execute none of its operations.

• Consistency; transformations preserve the consistency of the product state, that is, a

transaction transforms a consistent product state into another consistent one, without

necessarily preserve the consistency in the intermediate points of the transaction.

• Isolation: the transactions executed in the virtual store that modify the product state

must be isolated one of the others, thus, a transaction can not affect the result of

other executed simultaneously.

1.4 Objective

The objective of this work is to propose a methodology to design e-commerce systems

with model checking support. It can be divided into four main issues. The first one

comprises the study and evaluation of the available methodologies to specify e-commerce

systems. The second one is to study formal methods, more specifically model checking, to

define which technique must be adopted. The third one is to create the methodology that

uses formal-method techniques to design electronic commerce systems and to automatically

verify that these designs satisfy important properties of these systems. The fourth one is

to validate the methodology using traditional examples of e-commerce systems.

1.5 Contributions

Through our work it has become evident that there are few methodologies to design

e-commerce systems and none of them apply model checking.

The main contributions of this work are:

• Develop a work that involve three important areas of computer science: electronic

commerce, model checking, and software engineering.

15

• Provide a methodology to design more reliable e-commerce systems.

• Opportunity to extend the work to other application areas.

1.6 Related Work

Model checkers have been successfully applied to the verification of several large complex

systems such as an aircraft controller [16], a robotics controller [15], and a distributed

heterogeneous real-time system [91]. The key to the efficiency of the algorithms is the

use of binary decision diagrams [85] to represent the labeled state-transition graph and to

verify if a timing property is true or not. Model checkers can exhaustively check the state

space of systems with more than 10^° states in a few seconds [14, 16].

There are many works related to formal methods and more specifically to formal speci-

fication using symbolic model checking. But they often focus on hardware verification and

protocols, rarely to software applications.

The work described in [9] presents practical questions that invalidate myths related to

formal methods, explained in Appendix B, and elaborate some conclusions that serve as

motivation for our work:

• An important question is how to make easy the adoption of formal methods in soft-

ware development process.

• Formal methods are not a panacea, they are an interesting approach that, as others,

can help to develop correct systems.

[29] describes the formal verification of SET(5ecure Electronic Transaction) [94] pro-

tocol, proving five basic properties of its specification. The authors considered formal

verification essential to demonstrate its correctness and robustness. In this work, they use

the FDR verifier [93].

According to [8], there is much interest in improving embedded system functionalities,

where security is a critical factor. The use of softwares in this systems enable new func-

tionalities, but create new possibilities of errors. In this context, formal methods might

be good alternatives to avoid them. But the authors mentioned that formal methods are

rarely adopted in this system, where security is a basic requirement.

In [7] the authors presents a payment protocol model verification. Before this, we have

knowledge of works in e-commerce only in authentication protocols. This article presents

a methodology used to perform the verification, which is very interesting. They validate it

using the C-SET protocol.

Formal analysis and verification of electronic commerce systems have not been studied

in detail until recently. Most work such as [7, 29, 44, 96] concentrates on verifying properties

16

of specific protocols and do not address how these techniques can assist in the design of

new systems. Moreover, these techniques seem to be less efficient than ours, ranging from

theorem proving techniques [7, 44] which are traditionally less efficient (even though more

expressive), to model checking [29, 96]. But even these works tend to be able to verify only

smaller systems consuming much higher resources than our method.

1.7 Organization

This master thesis introduces a methodology to create robust and correct e-commerce

systems applying model checking. Chapter 2 explains important concepts of e-commerce

modeling and explains our methodology, Formal-CAFE. Chapter 3 shows two case studies

used to validate the Formal-CAFE methodology. Chapter 4 presents some conclusions and

future work. For sake of completeness some appendices are also presented: Appendix A

describes the CAFE methodology; Appendix B discusses in details the concepts of formal

methods; Appendix C shows an overview of model checking; finally Appendix D introduces

the SMV and NuSMV systems, explaining important features about them.

17

Chapter 2

Model Checking E-commerce

Systems

There are many types of e-commerce applications, such as virtual bookstore, auction

sites, and others. The difference between them are their nature and their business rules.

Some business rules are common, for example: a given item should not be sold to more than

one customer. On the other hand, there are many other rules specific to the application, as

to allow or not the reservation of an item, to provide supply control, or to define priority

to transactions executed concurrently.

2.1 Business Rules

An e-commerce system can be described by its business rules. A business rule is a

norm, denoted property, which specifies the functioning of an e-commerce application. For

example, a rule can describe that an item can only be reserved if it is available.

As showed in [78, 79], properties can be described as formulas in CTL, which are built

from atomic propositions, boolean connectives, and temporal operators.

Consider the following example: an item can only be reserved if it is available. To

specify this property, a developer would have to translate this informal requirement into

the following CTL formula:

AG (((state = available) & (action = reserve) k (inventory > 0)) AX ((state =

reserved) & (next(inventory) = inventory - 1))).

As we can see, the specification process will demand some expertise in formal methods.

We contend that acquiring this level of expertise represents a substantial obstacle to the

18

adoption of the methodology. We propose to overcome this by using an specification pattern

system.

In [32, 33] was developed a system of property specification patterns for finite-state

verification tools based in the scope, order and occurrence of an event^. The next subsection

explains this property specification patterns.

2.2 Property Specification Patterns

Although formal specification and verification methods offer practitioners some signifi-

cant advantages over the current state-of-the-practice, they have not been widely adopted.

Partly this is due to a lack of definitive evidence in support of the cost-saving benefits of

formal methods, but a number of more pragmatic barriers to adoption of formal methods

have been identified [26], including the lack of such things as good tool support, appropriate

expertise, good training materials, and process support for formal methods.

The recent availability of tool support for finite-state verification provides an oppor-

tunity to overcome some of these barriers [33]. Finite-state verification refers to a set of

techniques for proving properties of finite-state models of computer systems. Properties

are typically specified with temporal logics or regular expressions, while systems are spec-

ified as finite-state transition systems of some kind. Tool support is available for a variety

of verification techniques including, for example, techniques based on model checking [58],

bisimulation [80], language containment [47], flow analysis [34], and inequality necessary

conditions [5]. In contrast to mechanical theorem proving, which often requires guidance

by an expert, most finite-state verification techniques can be fully automated, relieving the

user of the need to understand the inner workings of the verification process. Finite-state

verification techniques are especially critical in the development of concurrent systems,

where non-deterministic behavior makes testing especially problematic.

According to Dwyer [33], despite the automation, users of finite-state verification tools

must still be able to specify the system requirements in the specification language of the

tool. This is more challenging than it might appear at first.

Acquiring this level of expertise represents a substantial obstacle to the adoption of

automated finite-state verification techniques and that providing an effective way for prac-

titioners to draw on a large experience base can greatly reduce this obstacle. Even with

significant expertise, dealing with the complexity of such a specification can be daunting.

In many software development phases, such as design and coding, complexity is addressed

by the definition and use of abstractions. For complex specification problems, abstraction

is just as important.

^In an e-commerce system, an event describes a set of actions.

19

So we think this property specification patterns can ease the adoption of model check-

ing. Each property specification pattern has a scope, which is the extent of the program

execution over which the pattern must hold [32, 33]. There are five basic kinds of scopes,

as we explain follow:

• Global: the entire program execution

• Before: the execution up to a given state / event

• After: the execution after a given state / event

• Between: any part of the execution from one given state / event to another given

state / event

• After-until: like between but the designated part of the execution continues even if

the second state / event does not occur

The scope is defined by specifying a starting and an ending event for the pattern. For

state-delimited scopes, the interval in which the property is evaluated is closed at the left

and open at the right end. Thus, the scope consists of all states beginning with the starting

state and up to but not including the ending state.

A list of some patterns, with short descriptions, follows:

• Absence: a given event does not occur within a scope.

• Existence: a given event must occur within a scope.

• Bounded Existence: a given state must occur k times within a scope.

• Universality: a given event occurs throughout a scope.

• Precedence: an event P must always be preceded by an event Q within a scope.

• Response: a event P must always be followed by an event Q within a scope.

• Chain Precedence: a sequence of events Pi,...,P„ must always be preceded by a

sequence of events Qi,.-;Qn-

• Chain Response: a sequence of events Pj,..., must always be followed by a sequence

of events Qi,..., Qn-

The complete hierarchy created by [33] is showed in Figure 2.1.

Using this classification we could express the example explained in this section using

the patterns of universality, chain response and the logical operators.

20

Figure 2.1: A Pattern Hierarchy

To describe a portion of a system's execution that is free of certain events we present, as

an example, the Absence Pattern, also known as Never. In CTL Never(P) can be mapped

as:

• Globally: AG (!P).

• Before R: A [!P U (R V AG(! R))] •

• After Q: AG (Q ^ AG (! P)).

• Between Q and R: AG (Q -> A [!P U (R V AG (!R))]).

• After Q until R: AG (Q ^ !E [!R U (P A !R)])

In the next subsection we introduce the formal model of e-commerce systems defined

by our methodology, using examples to demonstrate how it can be adopted.

2.3 Formal model of e-commerce systems

Most electronic commerce systems can be modeled using a few entities: the products

being commercialized such as books or DVDs, the agents that act upon these products

such as consumer or seller, and the actions that modify the state of the product such as

reserving or selling an item [78, 79].

Similarly to traditional commercial systems, the main entity of electronic commerce is

the product that is transactioned. For each product being commercialized there are one or

more items, which are instances of the product. Each item is characterized by its life cycle,

which can be represented by a state-transition graph, i.e., the states assumed by the item

while being commercialized and the valid transitions between states. Examples of states

are reserved or sold. The item's domain is the set of all states the item can be.

21

The entities that interact with the e-commerce system are called agents. Examples of

agents are buyers, sellers and the store's manager. The agents perform actions that may

change the state of an item, that is, actions correspond to transitions in the life cycle graph.

Putting an item in the basket or canceling an item's reserve are examples of actions.

Services are sequences of actions on products. While each action is associated with an

item and usually comprises simple operations such as allocating an item for future purchase,

services handle each product as a whole, performing full transactions. Purchasing a book is

an example of a service, which consists of paying for the book, dispatching it, and updating

the inventory.

In the next subsection we explain the relevant properties to verify in e-commerce sys-

tems.

2.3.1 Properties of an e-commerce system

Thinking about an e-commerce application model, we realize that the first important

property to verify is completeness. This property guarantees that the model is consistent,

by asserting that all states and actions are achieved. Note that this property is not inherent

to the application business rules. So it should be verified in the first stage, before verifying

the other properties related to business rules.

To express this property we can use the property pattern of Existence. Additionally,

it's necessary to define the scope as after, considering that "Exists in the Future" means

"after current state / event". Once the completeness is verified true, we identify other

relevant properties to be checked, related to the business rules.

Transitivity is a property which defines the next state to be achieved after the occurrence

of an event in the current state. It's necessary to verify its trustworthy to guarantee the

correct execution of the services that satisfy business rules.

Most properties to be verified in the virtual store relate to transactions. A transaction

is an abstraction of an atomic and reliable sequence of operations executed. Transaction

processing is important for almost all modern computing environments that support con-

current processing. In an electronic commerce server, a transaction consists of a sequence

of actions affecting the existing items, each action potentially modifying the state of the

item. One of the most important properties that must be satisfied in this context is guar-

anteeing that the transactions being executed are consistent, that is, showing that the

concurrency control mechanism implemented is correct and that concurrent transactions

do not interfere with each other. In other words, we must verify whether transactions are

atomic.

We have to verify three types of properties that relate to the consistency of transactions:

• Atomicity: A transaction must be finished or not started, that is, if it doesn't finish.

22

its effects have to be undone.

• Consistency: A transaction transforms a consistent state into another consistent

one, without necessarily preserving the consistency in the intermediate points of the

transaction. The state of the product must remain coherent at all times.

• Isolation: The result of one transaction must not affect the result of another concur-

rent transaction.

The Figure 2.2 illustrates our classification of business rules. The next section details

the levels of the formal methodology, using real examples of e-commerce business rules to

explain how this properties can be checked.

2.4 Formal-CAFE: An Incremental Specification

Methodology with Formal Verification

This section explains the methodology to design the verifiable e-commerce system in-

crementally. Our methodology is hierarchical and divided into four major levels. Before

explain the levels is primordial to dissert how to describe an verifiable e-commerce system

properly.

The proposed methodology, an extension of the methodology (Chapter A), con-

sists of a way to design e-commerce systems to apply model checking. CAFE methodology

explains how to specify an e-commerce system and we consider the user should know some

formal language, such as SMV [58], to build the model.

The methodology is incremental and divided into four major levels. It is relevant to

emphasize that this organization were adopted in order to simplify the design specification,

but the designer may employ another organization.

Business Rules

Transit:

Figure 2.2: Classification of business rules

23

The first level, defined as conceptual, embodies the business rules and the definition of

the e-commerce system to be designed. As many details the designer specifies, as easier

would be to apply the methodology and achieve good results in the verification process.

The second level, called application, models the life cycle of the item that is commer-

cialized, identifying the types of operations (called actions, as we refer to henceforth) that

are performed on it and change its state.

The third one, named functional, models the services provided by the system and the

concept of multiple items are introduced.

The last level contemplates the components of the system and the user's interaction

with them. It completes the scope of the system, modeling its architecture, so we called it

the architectural level.

The next following subsections describe in detail each level of our methodology.

2.4.1 Conceptual Level

Formally, we characterize an e-commerce system by a tuple < P,I,D,Ag,Ac,S >,

where P is the set of products, I is the set of items, D is the set of product domains, Ag

is the set of agents, Ac is the set of actions and S is the set of services.

Products are sets of items, that is, i E I means that i e p,p e P. The products

partition the set of items, that is, every item belongs specifically to a single product.

Formally, I = UvpepP Pi Hpj = 0 for i ^ j. Domains are associated with items, that

is, each item i is characterized by a domain Di. Two items of the same product have the

same domain, i.e., for all items i,j G I, there is a product p such that if i G p and j E p,

then Di = Dj.

In this first level we don't have properties to verify, but we are interested in prepare

the designer to specify the e-commerce application as best as possible. This decision will

make easy the work being developed in the next levels of the methodology.

2.4.2 Application Level

This level describes the e-commerce system in terms of the life cycle of the items. It's

necessary to identify the states of an item, its attributes, the set of actions that could be

executed on it and the effects caused by them and the agents that execute these actions.

Here we are not interested in the functionalities of the web site and the architecture of

them.

The items are modeled by their life cycle graphs, which represent the state each item

can be in during its life cycle in the system. An example of a life cycle graph can be seen

in figure 2.3. States in this graph are possible states for the item such as available, or

24

Figure 2.3: The life cycle graph of product's item

reserved. Transitions represent the effect of actions such as reserving an item or buying it.

Each action is associated with a transition in the state-transition graph of the item

and is defined by a tuple < a,i,tr >G Ac, where a e Ag is the agent that performs the

action, and i e I is the item over which the action is performed, and tr e DiXDi is the

transition associated with the action. In our model, the actions performed on a given item

are totally ordered, that is, for each pair of actions x and y, where ix and iy are the same,

either x has happened before y or y has happened before x. Services are defined by tuples

< p, A >, where p e P and A = oi, 02,... is a sequence of actions such that if a, = (di, 0Í2),

Oi+i = (da, (^4) then <^2 = da Vz, di 6 Dj where Dj is the domain of an item from p.

Each item from I has several attributes, including the associated product, its state,

and other characteristics. Finally, the agents are represented by concurrent processes that

execute services, which are sequences of transitions on the state-transition graphs.

In this model, each global state represents one state in each product life cycle graph,

and transitions model the effects of actions in the system. Therefore, paths in the global

graph represent events that can occur in the system. The life cycle of the product is the

set of all life cycles of its items.

In this level it's important to verify the completeness property of the e-commerce model.

Here, it's important to observe that there are only actions and states. Actions, by defini-

tion, are transactional, so the atomicity, consistency and isolation are guaranteed. Transi-

tivity is related to the functionalities, so it will be important only in the next level, where

there are services being executed in the model.

To check the completeness property of the business model, we use the CTL-formulas

below, where S consists of all the states presented in the application model and A, the

universe of actions.

EF (state = <S>)

25

EF (action = <A>)

The Figure 2.4 illustrates the first level of our methodology. As this figure shows, there

are agents (Seller and Buyer) that represent the consumer and the supplier of the system.

There is an item, which has a set of states. The agents execute actions that could affect

the item's state.

O State O

action action

Item

Seller Agent Buyer Agent

Figure 2.4: The First Level of the Methodology

2.4.3 Functional Level

This level introduces the product, composed by zero (the product is not available) or

more items. The designer determines the operations the agents can perform, that we called

services. A service is executed on products and its effects might change or not the state of

it and its items. The focus of this level is to define clearly how services are executed and

what happens with the product and its items in this case.

In this level it's important to verify the transitivity property of the model. The agents

execute services that change the state of the item. This state must be consistent with the

life cycle of the item and the related business rule associated with it.

Some examples of transitivity are;

AG ((state = Not available & service = Make available) ->

AX (state = Available)

or

AG ((state = Available & service = Purge) ->

AX (state = Purged)

In this level it's important to verify either the atomicity, consistency and isolation prop-

erties either. It's essential to check the consistency between the state of the product and its

items in a given moment. In this level, there are agents performing services concurrently.

26

which may cause the system to achieve an invahd state. Therefore the isolation property

must be guaranteed.

To become clear, we give some examples of this properties^. First we give an example

of atomicity, if an item is available and a reserve action is performed by a. buyer and

granted by the server, the item must be reserved in the next state and the inventory must

be decremented.

AG ((state = available & service = reserve & inventory = 1) ->

AX (state = reserved & inventory =0))

Examples of consistency properties can be seen below:

• If the inventory is zero, then no item should be available.

AG (prl.inventory = 0 -> !prl.available)

• Conversely, if there is inventory, at least one item must be available.

AG (prl.inventory > 0 -> prl.available)

or

AG (prl.inventory > 0 ->

(itl.state = available) I (it2.state = available))

An example of isolation property could be: if there are two items available and two

buyers reserve these items simultaneously, the inventory must be zero in the next step.

AG ((bal.service=reserve & ba2.service=reserve & inventory = 2) ->

AX inventory =0)

This level is depicted in Figure 2.5. As it shows, there are agents that execute services,

that could modify the product's state. Some of these services, as a reserve of an instance

of the product, change the state of the item.

It's important to notice that the properties validated in the first level should retain

their validity in the second one and so on. The verification of the properties should be

incremental as well as the methodology proposed.

^The actual properties verified are slightly different than the ones presented here, which have been
simplified for readability.

27

O

Seller Agent

State

services

O

services

Buyer Agent

Product

Figure 2.5: The Second Level of the Methodology

2.4.4 Execution or Architectural Level

This level specifies the system in terms of its components and the way they interact

vi^ith each other. It's important to emphasize that this level comprises the other ones,

completing the specification of the system and describing its architecture.

In this level the model is more complex, contemplating the components of the system's

architecture. Therefore the transactional properties, as well as transitivity and complete-

ness properties, should be checked again to guarantee that the properties previously verified

continue to be satisfied in the current version.

Figure 2.6: The Third Level of the Methodology

As shown in Figure 2.6, we introduce the components of the system: the transaction

28

server of the virtual store and the web server. There are agents that submit requests to

the web server, which transform them into operations to the transaction server. These

operations, named services, are executed by this server, sometimes performing action on

the items.

This level is important because it enables the designer to get a specification closer to

the real implementation he wants to develop. The next chapter presents case studies that

validate the proposed methodology.

29

Chapter 3

Case Studies

3.1 Case Study: An E-commerce Virtual Store

In this section, we present a case study, an e-commerce virtual store, a very useful

and popular application. The objective is to show how the methodology proposed can be

used to design more reliable e-commerce systems. This is a typical electronic commerce

application in which most of the aspects that make such applications complex to design

are present, such as multiple agents of different types that compete for access to products,

products with more than one item and intermediate states for items (for example, one may

reserve an item before buying it). We have used the NuSMV model checker [17, 18, 19] to

perform this task.

3.1.1 Conceptual Level

In the virtual store we modeled, there are six states which correspond to types of pages

on the web site: Home, Browse, Search, Select, Add and Pay. The Home page is the initial

web page of the site. The Select page shows specific information about a product. The

Add page confirms product reservations and displays the contents of the customer's shop

cart. The Pay page is loaded after the purchase of the items in the shop cart is completed.

The Search and Browse pages present general information about the products offered by

the virtual store. There are still some states that correspond to the administration view of

the web site, used by the seller agent to change information about the products (operation

Change) and modify the its inventory (operation Make Available).

The transitions between these pages are associated with actions executed by the agents.

An example is the execution of a reserve action by the buyer agent, that causes the transi-

tion from Select to Add if completed with success. Therefore a transition between two web

pages is mapped to an action in the life cycle graph of the product's item.

30

Figure 3.1: The life cycle graph of product's item

In our virtual store, we have modeled two types of agents. The Buyer Agent represents

the customers that access the virtual store through WWW to get information about the

product and potentially to buy it. The Seller Agent represents the product's supplier that

will make it available, update its data and potentially sell it. The buyer agent can execute

one of the following actions: Report, the client requests information about the product;

Reserve/ Cancel Reserve, the client reserves an item or cancel a previous reserve; and Buy.

The seller agent can execute one of the actions: Make Available, when a new item enters

the store; Change to change its attributes; and Purge, when the item is removed from the

store.

We will model only one product in the store. This is because in this store transactions

on different products do not interfere with one another and there are no properties that

relate more than one product. As a consequence, modeling different products yields the

same results for each one. This is not a restriction of the method, however, if the system

relates different products, they could be modeled in a straightforward way. We do model

multiple items for the product, because transactions may affect more than one item.

The life cycle graph of the product's item has the following states, as can be seen in

Figure 3.1: Not Available, Available, Reserved, Sold and Purged. The transitions in the

graph can be seen in the figure. The global model of the virtual store is a collection of life's

cycle graphs and additional attributes represented by variables such as the inventory (the

number of items available). Additional logic is needed to "glue" together the various life

cycle graphs. For example, if a reserve is requested for one item but several are available, the

store must decide which item will be reserved. An special array of variables keeps track of

which items are available, and requests are fulfilled by an item chosen non-deterministically.

Finally, the agents are modeled as concurrent processes that perform actions. In the

model there is one seller agent that represents the administrator of the store and one or

more buyer agents that act as the customers. To illustrate how the methodology works in

31

practice, we will present parts of the SMV code for the virtual store.

As defined in the methodology, Section 2.4.1, conceptual level details the e-commerce

system requirements.

A set of business rules we identify in our study case are cited below:

• If the item is in the state Not Available and the action Make Available occurs, the

next state is Available.

• If the item is in the state Available and the action Purge occurs, the next state is

Purged.

• If the item is in the state Available and the action Change occurs, the next state is

the same.

• If the item is in the state Available and the action Report occurs, the next state is

the same.

• If the item is in the state Available and the action Reserve occurs, the next state is

Reserved.

• If the item is in the state Reserved and the action Cancel Reserve occurs, the next

state is Available.

• If the item is in the state Reserved and the action Buy occurs, the next state is Sold.

• The inventory of the product must be positive.

• If the inventory is positive, at least one item must be available.

• If the inventory is null, then the product must be not available.

• The actions Reserve and Cancel Reserve must be atomic.

• If there are agents executing concurrently, their actions must be isolated.

It is important to emphasize that all business rules must be granted in the next levels

to confirm the correctness of the virtual store.

3.1.2 Application Level

To design this level, it's important to know some concepts related to SMV. In SMV,

variables are of type Boolean, integer or enumerated. The variable state is an enumerated

variable that has five possible values. Assignment of values to variables is accomplished

using the init and next commands, init defines the initial value of the variable and next

32

defines the value of the variable in the next state as a function of the values of variables in

the current state.

A module in SMV consists of a number of variables and their assignments. The main

module consists of the parallel composition of each module. This is accomplished by

instantiating each module in the main module shown as follow:

MODULE main

VAR bal: buyer.agent();

ba2: buyer.agent();

sal: seller.agent 0;

itl: itemO ;

As described in Section 2.4.2, the first important property to be verified is completeness.

In this case study, we can do this through the specification written in CTL formulas:

EF (itl.state

EF (itl.State

EF (itl.state

EF (itl.state

EF (itl.state

= Not_Available)

= Available)

= Reserved)

= Sold)

= Purged)

EF (bal.action =

EF (ba2.action =

EF (bal.action =

EF (ba2.action =

EF (bal.action =

EF (ba2.action =

EF (bal.action =

EF (ba2.action =

EF (sal.action =

EF (sal.action =

EF (sal.action =

Report)

Report)

Reserve)

Reserve)

Cancel.Reserve)

Cancel_Reserve)

Buy)

Buy)

Make.Available)

Change)

Purge)

These specifications should be consistent with the item's life cycle graph, as illustrated

by Figure 3.1. In our model all of them were verified as true, certifying its completeness.

33

This version of the model has 3 modules (corresponding to 3 processes), which corre-

sponds to 94 lines of SMV code, and 14 properties verified.

Once we have checked this property, we continue the model, building the third level.

3.1.3 Functional Level

Continuing the process defined by the methodology we add new modules to the model,

which represents the product and its items. Here, we are interested in verify some business

rules related to services.

Initially, as described in Section 2.4.3, we have to check the transitivity properties of

the model. We can perform this using the following CTL formulas:

AG(state = Not_Available & service = Make_Available) ->

AX(state = Available)

AG(state = Available & service = Purge) -> AX(state = Purged)

AG(state = Available & service = Change) -> AX(state = Available)

AG(state = Available & service = Report) -> AX(state = Available)

AG(state = Available & service = Reserve) -> AX(state = Reserved)

AG(state = Reserved & service = Cancel.Reserve) ->

AX(state = Available)

AG(state = Reserved & service = Buy) -> AX(state = Sold)

To make easy to understand these representations, we abstracted of the items' id.

Based on these transitivity properties and the business rules, its possible to include new

propositions, which will restrict some transitions. This will make possible to verify the

transactional properties of the model, such as atomicity, consistency and isolation.

Here, it is explained some transactional properties, beginning with atomicity, if an item

is available and a reserve action is performed by a buyer, the item must be reserved in the

next state and the state must be consistent with this or the service is not executed and

the state is not modified.

AG ((state = Available & service = Reserve & inventory = v) ->

AX ((state = Available & inventory = v) 1

(state = Reserved & inventory = v-1)))

Note that the variable inventory partakes of the proposition added to this formula to

verify this business rule. The variable v is used only to simplify the formula, since in SMV

all the possible inventory values should be written.

34

Analogous to this example, there is other case: if the state is reserved and the service

cancels the reservation, showed as follow;

AG ((state = Reserved & service = Cancel_Reserve & inventory = v) ->

AX ((state = Available & inventory = v+1) |

(state = Reserved & inventory = v)))

The next formulas illustrate some consistency properties of the virtual store modeled.

The inventory should not be negative.

AG !(inventory < 0)

If the inventory is positive, at least one item must be available.

AG ((inventory > 0) -> (product_state = Available))

Finally some examples of isolation are presented.

if there are two buyer agents, one reserving the item and the other canceling his/her

reservation, the inventory must be kept consistent after the execution of both services:

AG ((buyerl_service = Reserve & buyer2_service = Cancel_Reserve &

inventory = v) -> AX (inventory = v))

In the case of inventory = 0, the reservation service can not be preceded by the cancel-

lation service. So, to solve this problem we decide to give priority to the buyer agent that

wants to cancel the reservation.

In a similar way, we specified all the other business rules and verify their veracity.

As a result of our case study, we were able to detect a serious error, that violated the

isolation property, causing the same item to be sold twice. It occurred because two buyer

agents tried to acquire the product at the same time and there was only one item available.

The following code fragment illustrates a buyer user session. Each buyer has its own user

session.

next(user_session) := case

user_session = product_select & buyer_service =

Reserve & next(productIsAvailable)=l : add_to_cart;

user_session = product_select & buyer.service =

Reserve & next(productIsAvailable)=0 : error;

35

1: user_session;

esac;

In this situation, the transaction server allowed both clients to reserve the same item

and the virtual store reached an inconsistent state. To solve this problem we introduced

a semaphore to guarantee mutual exclusion in add to cart mechanism, as showed in the

code fragment:

next(in_use) := case

in_use=0 & buyer_service_l=Reserve & buyer_service_2=Reserve

& inventory > 0 & inventory <= 2: {1,2};

in_use = 1 & buyer_service_l = Cancel.Reserve : 0;

in_use = 1 & buyer_service_l = Buy : 0;

in_use = 2 & buyer_service_2 = Cancel_Reserve : 0;

in_use = 2 & buyer_service_2 = Buy : 0;

1: in_use;

esac;

In such case, when a buyer requests a reserve of an item, the item will be added to its

shop cart only if the variable infuse contains this buyer identification number.

This version of the model has 4 modules (corresponding to 5 processes), which corre-

sponds to 211 lines of SMV code, and 30 properties verified.

3.1.4 Execution or Architectural Level

In this stage we added new modules to represent the e-commerce system as real as

possible. So we include the web server, transaction server and database server in the

model, adapting the specifications to it. Thus, the properties are related to requests,

instead of services.

In this level we do not identify new properties related to business rules since all of them

were verified in the previous level. However, it was necessary to check the functioning of

the architectural components, which demands the verification of new properties.

This version of the model has 5 modules (corresponding to 7 processes), which corre-

sponds to 700 lines of SMV code, and 71 properties verified.

The complete model has more than 10^^ states with more than 10^"^ reachable states.

36

3.2 Case Study: An English Auction Site

In this section, another case study is presented, an English auction site, a popular

web application. This is a common electronic business application in which most of the

aspects that make such applications complex to design are present, such as multiple agents

of different types that compete for access to products, products with more than one item

and intermediate states for items (for example, one may reserve an item before buying it).

We have used the NuSMV model checker [17, 18, 19] to perform this task.

William Vickrey [95] established the basic taxonomy of auctions based upon the order

in which prices are quoted and the manner in which bids are tendered. He established four

major (one sided) auction types.

The English Auction is the most common type of auction. The English format can

be used for an auction containing either a single item or multiple items. In an English

Forward auction, the price is raised successively until the auction closes. In an English

Reverse auction the price is lowered until the auction closes. At auction close, the Bidder

or Bidders declared to be the winner(s) are required to pay the originator the amounts of

their respective winning bids. This case study considers the English Forward auction, also

known as the open-outcry auction or the ascending-price auction. It is used commonly to

sell art, wine and numerous other goods.

Paul Milgrom [73, 74, 75] defines the English auction in the following way. "Here the

auctioneer begins with the lowest acceptable price (the reserve price: lowest acceptable

price. Useful in discouraging buyer collusion.) and proceeds to solicit successively higher

bids from the customers until no one will increase the bid. The item is 'knocked down'

(sold) to the highest bidder."

Contrary to popular belief, not all goods at an auction are actually knocked down. In

some cases, when a reserve price is not met, the item is not sold.

Sometimes the auctioneer will maintain secrecy about the reserve price, and he must

start the bidding without revealing the lowest acceptable price. One possible explanation

for the secrecy is to thwart rings (subsets of bidders who have banded together and agree

not to outbid each other, thus effectively lowering the winning bid).

The next subsections present the English auction model created using the Formal-CAFE

methodology.

3.2.1 Conceptual Level

An English Auction consists of an only seller and one or more buyers that want to

acquire the item of the auction. The salesman creates this auction specifying:

• the init date of the auction.

37

• the finish date of the auction.

• minimum value (minimum value of the bid that is accepted).

• private value (optional attribute, that denotes the lesser value of the bid accepted by

the salesman for concretion of the business).

• minimum increment (optional attribute, that denotes the minimum value between

two consecutive bids).

The buyers might make bids as many as they want. The following rules are defined:

• the first bid's value must be equal or higher than the attribute minimum value.

• The bids must be increased at each iteration.

• Who wins the auction: the buyer who makes the higher bid until the end of the

auction, and this bid must be equal or higher than the attribute private value, defined

by the seller. If this attribute is not defined, the bid is the winner.

There are the following entities in the model:

• buyer agent;

• seller agent;

• transaction server and

• English auction server.

There still have the modules web server and database, but I abstracted them here, as they

will be on the architectural level only.

The next paragraphs present some high-level description of the entities.

MODULE English auction server; it is responsible to dispatch some events that con-

trols the auction workflow. The important states that an auction should assume

are:

• closed, to be initiated.

• opened without bids.

• opened with bids, but the private value hasn't been achieved.

• opened with bids and the private value has already been achieved.

38

• Finished without winner.

• Finished with winner.

Other attributes should be stored as the buyer id that wins an auction, number of bids

made and their values, and so on.

MODULE buyer agent: represents the consumer, the person who wants to buy some

product.The following actions could be executed by the buyer agent:

• get: show information about a specific auction.

• list: list the auctions.

• bid actions: actions related to bid as create, get and list.

In our model, the Report action represents two possibilities related to information about

the auction: get and list. The bid actions are modeled as Make Bid.

MODULE seller agent: represents the seller, the person who wants to sell some product

using the English auction mechanism. The following actions could be executed by

the seller agent:

• get: show information about a specific auction.

• create: create a new auction.

• list: list the auctions.

• update: update the information of a specific auction.

• make available: a new item is added to the inventory.

• purge: an item is removed from the inventory.

• cancel auction: the current auction negotiation is canceled.

In our model, the Report action executed by the seller agent represent get and list actions

described. The create functionality is represented by the action Reserve in Auction. In the

same manner, update is described as Change action. The functionalities make available,

purge, and cancel auction are represented by actions with its respective names.

MODULE transaction server: represents the server responsible for execute the actions

of the agents and keep the users session state. It starts the English auction process,

which could be represent by the init page (home) of the auction web site. When

this state is achieved, the agents would execute any of the English auctions actions

allowed, as previously described.

39

Figure 3.2: An English Auction Site - The life cycle graph of product's item

Considering the English auction rules, a bid would be accepted if:

• the auction is opened.

• the bid's value is greater than the minimum value.

• the bid's value is greater than the last one gave (considering the minimum increment,

if it was defined by the seller).

In this case study, the life cycle graph of the product's item has the following states, as

can be seen in figure 3.2: Not Available, Available, Reserved in Auction, Sold in Auction

and Purged. The transitions in the graph can be seen in the figure. The global model of

the English auction web site is a collection of life's cycle graphs and additional attributes

represented by variables such as the inventory (the number of items available). Additional

logic is needed to "glue" together the various life cycle graphs.

Finally, the agents are modeled as concurrent processes that perform actions. In the

model there is one seller agent that represents the administrator of the store and one or

more buyer agents that act as the customers. To illustrate how the methodology works in

practice, we will present parts of the SMV code for the English auction web site.

As defined in the methodology, Section 2.4.1, conceptual level details the e-commerce

system requirements.

The MODULE English Auction Server has the responsibility to control the auction

process. To do it, there are some events it has to manage, defined in Table 3.1.

A set of business rules we identify in our study case are cited below:

40

id Dispatch Condition Result
1 finish date is achieved and the

reserved value is not reached
the item in auction will be
available

•2 finish date is achieved and the
reserved value is reached

the item will be sold to the
owner of winner bid

3 finish date is achieved and no-
body made bids

the item in auction will be
available

Table 3.1: English Auction Events

If the item is in the state Not Available and the action Make Available occurs, the

next state is Available.

If the item is in the state Available and the action Purge occurs, the next state is

Purged.

If the item is in the state Available and the action Change occurs, the next state is

the same.

If the item is in the state Available and the action Report occurs, the next state is

the same.

If the item is in the state Available and the action Reserve in Auction occurs, the

next state is Reserved.

If the item is in the state Reserved in Auction and the action Cancel Auction occurs,

the next state is Available.

If the item is in the state Reserved in Auction and the action Report occurs, the next

state is Reserved in Auction.

If the item is in the state Reserved in Auction and the action Event 1 occurs, the

next state is Available.

If the item is in the state Reserved in Auction and the action Event 3 occurs, the

next state is Available.

If the item is in the state Reserved in Auction and the action Event 2 occurs, the

next state is Sold in Auction.

If the item is in the state Reserved in Auction and the action Make Bid occurs, the

next state is Reserved in Auction.

If the item is in the state Purged and the action Report occurs, the next state is

Purged.

41

• If the item is in the state Sold in Auction and the action Report occurs, the next

state is Sold in Auction.

• The inventory of the product must be positive.

• If the inventory is positive, at least one item must be available.

• If the inventory is null, then the product must be not available.

• The actions Reserve in Auction and Cancel Auction must be atomic.

• If there are agents executing concurrently, their actions must be isolated.

• Events 1, 2, and 3 must be isolated.

It is important to emphasize that all business rules must be granted in the next levels

to confirm the correctness of the case study.

3.2.2 Application Level

A module in SMV consists of a number of variables and their assignments. The main

module consists of the parallel composition of each module. This is accomplished by

instantiating each module in the main module shown as follow:

MODULE main

VAR

itl: process item(l,buyerl.action, sellerl.action, sys.event);

buyer1: process buyer_agent(l,action);

sellerl: process seller_agent(l,action);

sys: process system(event);

The process system is representing the module English auction server, which dispatches

the events. As described in Section 2.4.2, the first important property to be verified is

completeness. In this case study, we can do this through the specification written in CTL

formulas:

EF (itl.state

EF (itl.State

= Not Available)

= Available)

42

EF (itl.state = Reserved in Auction)

EF (itl.state = Sold in Auction)

EF (itl.state = Purged)

EF (buyerl.action = Report)

EF (buyerl.action = Make Bid)

EF (buyerl.action = None)

EF (sellerl.action

EF (sellerl.action

EF (sellerl.action

EF (sellerl.action

EF (sellerl.action

EF (sellerl.action

= Make Available)

= Change)

= Purge)

= Reserve in Auction)

= Ccincel Auction)

= None)

EF (sys.event =1)

EF (sys.event =2)

EF (sys.event = 3)

EF (sys.event = None)

These specifications should be consistent with the item's life cycle graph, as illustrated

by Figure 3.2. In our model all of them were verified as true, certifying its completeness.

It is important to emphasize that we put the None action to represent the situation

where the agents and system do not execute any action. This situation is frequently

observed in web sites and this interval between two consecutive actions of an agent is

known as "think time".

This version of the model has 4 modules (corresponding to 4 processes), which corre-

sponds to 156 lines of SMV code, and 18 properties verified.

Once we have checked this property, we continue the model, building the third level.

3.2.3 Functional Level

Continuing the process defined by the methodology we add new modules to the model,

which represents the product and its items. Here, we are interested in verify some business

rules related to services.

Initially, as described in Section 2.4.3, we have to check the transitivity properties of

the model. We can perform this using the following CTL formulas;

43

AG (itl.state = Not Available & service = MaJce.Available) ->

AX (itl.state = Available)

AG (itl.state = Available & service = Report) ->

AX (itl.state = Available)

AG (itl.state = Available & service = Change) ->

AX (itl.state = Available)

AG (itl.state = Available & service = Reserve in Auction) ->

AX (itl.state = Reserved in Auction)

AG (itl.state = Available & service = Purge) ->

AX (itl.state = Purged)

AG (itl.state = Reserved in Auction & service = Report) ->

AX (itl.state = Reserve in Auction)

AG (itl.state = Reserved in Auction & service = Make Bid) ->

AX (itl.state = Reserved in Auction)

AG (itl.state = Reserved in Auction & service = Event 1) ->

AX (itl.state = Available)

AG (itl.state = Reserved in Auction & service = Event 2) ->

AX (itl.state = Sold in Auction)

AG (itl.state = Reserved in Auction & service = Event 3) ->

AX (itl.state = Available)

AG (itl.state = Reserved in Auction & service = Camcel Auction) ->

AX (itl.state = Available)

AG (itl.state = Sold in Auction & service = Report) ->

AX (itl.state = Sold in Auction)

AG (itl.state = Purged & service = Report) ->

AX (itl.State = Purged)

To make easy to understand these representations, we abstracted of the items' id.

Based on these transitivity properties and the business rules, its possible to include new

propositions, which will restrict some transitions. This will make possible to verify the

transactional properties of the model, such as atomicity, consistency and isolation.

Here, it is explained some transactional properties, beginning with atomicity, if an item

is available and a reserve action is performed by a buyer, the item must be reserved in the

44

next state and the state must be consistent with this or the service is not executed and

the state is not modified.

AG ((state = Available & service = Reserve in Auction & inventory = v) ->

AX ((state = Available & inventory = v) |

(state = Reserved & inventory = v-1)))

Note that the variable inventory partakes of the proposition added to this formula to

verify this business rule. The variable v is used only to simplify the formula, since in SMV

all the possible inventory values should be written.

Analogous to this example, there is other case: if the state is reserved and the service

cancels the reservation, showed as follow:

AG ((state = Reserved in Auction & service = Cancel Auction &

inventory = v) -> AX ((state = Available & inventory = v+1) |

(state = Reserved & inventory = v)))

The next formulas illustrate some consistency properties of the English auction web

site modeled.

The inventory should not be negative.

AG !(inventory < 0)

If the inventory is positive, at least one item must be available.

AG ((inventory > 0) -> (product.state = Available))

Finally some examples of isolation are presented.

if there are two buyer agents, one reserving the item and the other canceling his/her

reservation, the inventory must be kept consistent after the execution of both services:

AG ((buyerl_service = Reserve in Auction & buyer2_service =

Ccincel Auction & inventory = v) -> AX (inventory = v))

In the case of inventory = 0, the reservation service can not be preceded by the cancel-

lation service. So, to solve this problem we decide to give priority to the buyer agent that

wants to cancel the reservation.

In a similar way, we specified all the other business rules and verify their veracity.

This version of the model has 7 modules (corresponding to 5 processes: item, buyer

agent, seller agent, product, system), which corresponds to 226 lines of SMV code, and 30

properties verified.

45

3.2.4 Execution or Architectural Level

In this stage we added new modules to represent the e-commerce system as real as

possible. So we include the web server, transaction server and database server in the

model, adapting the specifications to it. Thus, the properties are related to requests,

instead of services.

In this level we do not identify new properties related to business rules since all of them

were verified in the previous levels. However, it was necessary to check the functioning of

the architectural components, which demands the verification of new properties.

This version of the model has 8 modules (corresponding to 6 processes), which represent

two buyer agents, a seller agent, the system (English auction server), the web server, the

transaction server, two items (database server). The complete model demanded 693 lines

of SMV code, and more than 70 properties were verified.

46

Chapter 4

Conclusions and Future Work

This work proposes a methodology to specify e-commerce systems. This technique can

increase the efficiency of the design of electronic commerce applications. We use formal

methods not only to formalize the specification of the system but also to automatically ver-

ify properties that it must satisfy. This technique can lead to more reliable, less expensive

applications that might be developed significantly faster. We have modeled and verified a

virtual store and an English auction web site to demonstrate how the method works.

As a result of our virtual store case study, we were able to detect a serious error, that

violated the isolation property, causing the same item to be sold twice. It occurred because

two buyer agents tried to acquire the product at the same time and there was only one

item available. During this verification we have precisely identified both errors and their

causes that would have been difficult to find out otherwise.

The proposed method can be applied in general e-commerce systems, where the business

rules can be modeled by state transitions of the items on sale. As the method is based on

CTL-formulas, the business rules should be represented by them, what can be considered

a limitation of the method.

We are currently studying other features of electronic commerce systems that we have

not yet formalized, as well as the possibility of generating the actual code that will imple-

ment the system from its specification. In this context, we have been developing a set of

design patterns, we call them model checking patterns, to be used in the design and ver-

ification process of e-commerce systems. Based on the Formal-CAFE methodology, these

patterns aim to simplify the adoption of this methodology. Formal-CA FE dem&nds knowl-

edge of symbolic model checking, which is considered a hurdle to its diffusion. The idea

is to define a model checking pattern hierarchy, which specifies patterns to construct and

verify the formal model of e-commerce systems. These patterns will be defined considering

a Formal-CAFE case study of a virtual store.

We consider this research the first step to the development of a framework, which will

47

integrate the methodology, an e-commerce specification language based on business rules,

and a symbolic model checker. Another future work is to use our model checking patterns

in other application areas, such as mobile e-commerce (m-commerce) and telecommunica-

tions.

48

Appendix A

Overview of CAFE - Methodology for

the Design of E-commerce Systems

CAFE [68] is a model developed to provide an incremental method to design e-commerce

systems. It is oriented by trade goods, based on its life cycle. In this appendix we describe

the methodology CAFE, which was the basis to develop this master thesis.

The start point of CAFE is the business-oriented model that will be provided. This

model will not be discussed in details, but it must describes the nature of the products being

negotiated and the type of negotiation. This description is normally textual and has the

objective to distinguish the elements that are part of the business and the operations that

are executed on them, which goes to be objects of the specification. CAFE is structured

in four levels, as defined follow:

Conceptual: this level defines the entities of the e-commerce system. This entities are

the basis to build the followed levels.

Application: this level models the life cycle of the products that are commercialized,

identifying the types of operations (called actions) that are performed on the products

and that change their states.

Functional: this level models the services provided by the system, detailing the user

interaction with the system. In other words, the services implementation strategies

are defined.

Execution: this level determines how the application will be implemented, considering

the system's architecture, and define the requirements to be achieved.

This 0 structure aim to regard the phases of an e-commerce system conception. The

first level, called conceptual, is very important because it defines the basis to build the other

49

Level Components

Conceptual Entities
Application Product's item

life cycle of the item
Actions
Agents

l"\inctional Services
Products
Product's items
Functional requirements

Execution System's architecture
Components
Protocols
Tools

Table A.l: Elements of each level of CAFEs methodology

ones. The application level focus on the life cycle of the product's item. The functional

level detail this interactions. The last level, execution, complete the methodology, defining

the architecture of the system. It's relevant to explain that this model is not rigid, so it's

possible to define sub-phases to follow this process.

In the Table A.l is presented some elements used to compose the e-commerce system

specification.

In the following subsections we detail this levels.

A.l Conceptual Level

In the same way that traditional models of commerce, the central object of the e-

commerce are the products, goods or services, commercialized. For each commercialized

product, it has one or more items, that are product instances. Each item is characterized

by a state and the states are modified by actions executed by agents. Without loss of

generality, virtual business is the environment where agents act to acquire products. The

virtual business is implemented by an e-commerce server, that is responsible for managing

the transactions involving products.

Formally, we characterize an e-commerce system by a tuple < P,I,D,Ag,Ac,S >,

where P is the set of products, I is the set of items, D is the set of product domains, Ag

is the set of agents, Ac is the set of actions and S is the set of services.

Products are sets of items, that is, i e I means that i e p,p e P. The products

partition the set of items, that is, every item belongs specifically to a single product.

Formally, I = UvpepP Pi<^Pj = 0 for i 7^ j. Domains are associated with items, that

is, each item i is characterized by a domain D». Two items of the same product have the

same domain, i.e., for all items i,j 6 I, there is a product p such that if i € p and j e p,

50

then Di = Dj.

Each action is associated with a transition in the state-transition graph of the item and

is defined by a tuple < a,i,tr >G Ac, where a G Ap is the agent that performs the action,

and i G / is the item over which the action is performed, and tr G DiXDi is the transition

associated with the action.

In this model, the actions performed on a given item are totally ordered, that is, for

each pair of actions x and y, where ix and iy are the same, either x has happened before

y ox y has happened before x.

Services are defined by tuples <p,A >, where p G P and = Oi, 02,... is a sequence

of actions such that if Oj = (^1,^2), Oj+i = {dz,di) then d2 = yi,di G Dj where Dj is

the domain of an item from p.

A.2 Application Level

As mentioned, in the application level the business-oriented model starts to be detailed.

Thus, on the basis of the business-oriented model, we extract the following information:

1. the types of products commercialized by the server;

2. the attributes that characterize the commercialized products;

3. the possible states that each item can assume;

4. the actions that can be executed and its effect on the state of items; and

5. the agents who execute actions.

All the entities and relations of the conceptual level are instantiated in the application

level. It is important to stand out that, for each type of different product commercialized

by the server, there is an instance of the application level.

An important definition, that is made in the application level, is the nature of the

attributes of the commercialized items. Attributes can be characterized by the durability,

the interval of time where a given instance of the attribute is not modified. The durability

of an attribute is a function of its dynamic behavior, and the higher its frequency of

update, the lower its durability will be. Thus, based on criterion durability, we can divide

the attributes in two groups:

Static: attributes whose values do not change as consequence of actions. Its durability is

theoretically infinite.

51

Dynamic: attributes whose values can be changed by actions, in accordance to the tran-

sition function. Notice that the dynamism of the attributes of one product can be

varied, being able to define sub-groups of attributes depending on the implementa-

tion.

The attributes of an item define its state. Another form to represent the state of an

e-commerce server is through the products and its states, where the state of a product

is the amount of items in each possible state of the product. Both representations are

equivalents, being also interchangeable.

Considering the nature of the attributes, we can distinguish three types of actions:

Innocuous actions: they do not affect the state of an item.

Temporary actions: they change the state of the item in temporary character, i.e, the

item can assume its original state again, that is, its state before the application of

the action, as effect of one or more actions.

Perennial actions: they change the state of the item in permanent character, being ir-

reversible.

The life cycle of an item can be visualized through the graph of state transitions, where

the vertices are states and the edges are actions that cause the state transition.

A.3 Functional Level

The functional level of the CAFE model describes the services to be oflfered and the

components of the server. Before considering the method to describe these services, it is

necessary to define the types of processing to be executed and to categorize the requirements

in terms of data access and modification. After these definitions, we present the three parts

that compose the functional level:

1. description of the services,

2. server architecture and

3. storage strategy.

A.3.1 Types of processing

The types of processing can be divided in accordance to the architecture of the com-

ponents usually found in e-commerce servers: processor/memory, disk access and network.

52

Without loss of generality, we can distinguish ten types of processing that are normally

executed by e-commerce servers. Obviously these categories are not exhausting and aim to

demonstrate the criteria to be used to distinguish them. Below we present these categories

listed by component.

Processor and Memory

Arithmetic: accomplishment of operations involving integers and floating-point numbers.

Processing of characters: manipulation of strings of characters.

Support to transactions: synchronization between the components and competing op-

erations on the same products. These operations are necessary to keep the ACID

properties of e-commerce servers.

Temporary storage: allocation and access to dynamic memory for data response and

execution of other operations on them.

Disk

Reading of files: access and reading of data stored in files, such as static pictures and

page skeletons generated by the e-commerce server.

Querying attribute-value: selection of a set of attributes of one or more products in

accordance with a criterion of equality, similarity or coverage of values.

Writing of files: access and writing (insertions and modifications) of files, to possibly

register some action of the customer.

Persistent storage: safe storage of data, in order to satisfy the transactional properties

of isolation and durability.

Network

Access from the Internet: connectivity resources so that services can be accessed from

the Internet.

Access Control: control of safe access to the e-commerce server, when the received and

transmitted information are decoded and codified.

It must be standed out that the criterion of the component's architecture does not

produce orthogonal categories. The access control, for example, even so has been fit as a

network functionality, also can involve significant processing.

53

The distinction of these types of processing must also be based on limitations of current

technologies and involved operations in the maintenance of transactional properties. The

description of the types of processing demanded for each service serves to determine the

technology to be used by the server. Script Languages, for example Tel and Perl, are

normally efficient in the manipulation of strings of characters, but they are inefficient in

the accomplishment of arithmetical operations of floating-point, since all the variables are

strings of characters and have to be converted when the operation is executed.

A.3.2 Data Categories

Functionally defining, the data are categorized under two criteria in order to subsidize

its strategy of manipulation: volatileness, that quantifies the frequency of data update,

and type of sharing, that describes how many services can access the data simultaneously

and the protocol to access them.

Related to volatileness we can classify the data in four categories:

Static: the data do not change with the execution of actions on items. Descriptive infor-

mation of products, as heading, author and synopsis of a book, are typically static.

Little volatile: data are modified eventually with the execution of actions. A typical

example of little volatile data is the price of a product in a traditional virtual store,

cause it is modified only when new remittances of products are received or the prices

of the supplier change.

Very volatile: data are modified frequently as consequence of actions in the server. The

amount of items in supply in a virtual store is an example of very volatile data,

therefore it changes each time the product is bought.

Definitive: definitive data are those that, once modified by a given action, become static.

The buyer of an item is a definitive data, therefore its content is modified only once.

Related to the type of sharing, the data can be classified in three categories:

Replicable: data you talked back can be copied and be used simultaneously to satisfy

some requests. Static data are normally talked back.

Periodically consistent: data you consist periodically can be talked back, be accessed

and be modified for more than one request simultaneously, but they are brought up

to date in a global form eventually. Little volatile data as prices of products can be

talked back and are consisted periodically when new lists of prices are put on use.

54

Mutually exclusive: data that are accessed for only one request at every moment. The

inventory of a product is data that must be mutually exclusive, considering its im-

portance for the trustworthiness of the business and its high degree of volatileness.

These two categorizations are not completely orthogonal, since we do not have all the

12 combinations of volatileness degree and type of sharing.

A.3.3 Services

The detailed specification of each service to be offered is the first component of the

functional level of the CAFE model. The specification of a service consists of the following

information:

Denomination: the identification of the service.

Description: brief description of the purpose and context of the service, which does not

have to exceed a paragraph.

Parameters: which are the informations passed as parameters to the execution of a ser-

vice.

Actions: which are the actions, as defined in the application level, that are executed by

the occasion of a service.

Attributes: indication of the attributes that are modified by a service, including the

origin of the new values that are designated.

Classification: the services are classified in accordance to the actions that compose them,

more specifically, the most restrictive action indicates the category of the service. A

service that executes perennial and innocuous actions is perennial, while a service

that executes innocuous and temporary actions is temporary.

Data requirements: presentation of the requirements in terms of volatileness and form

of sharing for each one of the attributes when each action is executed.

A.3.4 Functional Requirements

Since the services are described, is necessary to fit them in terms of the processing

requirements that will be necessary for its execution, indicating the types of processing to

be provided by the components of the e-commerce server.

The functional requirements characterize the demands to be taken by the components

in accordance to the support given to the types of processing discussed in Section A.3.1,

55

such as support to the processing of transactions, persistence of data and processing of

strings of characters. The mapping properly said is the description of the services in terms

of the components, justified on the basis of functional criteria and storage support.

It is important to stand out the commitments that must be considered when we select

the components. For example. Database Management Systems (DBMS) provide persis-

tence and atomicity in a safe form, however at high costs due to the complexity of the

computation that has to be executed. Thus, when the support to the persistence of data,

transactional properties and access control increases, also is higher the complexity of the

computation to be done and, therefore, the latency to satisfy the requests of the customers.

A.3.5 Strategy of Storage

After the definition of the services and the features of the components that will execute

them, we must determine in which component each product attribute will be stored and

manipulated. The location of the attributes is function of attributes and components

features. When an attribute can be stored in more than one component, the component

that offers the best support, or the best relation cost-benefit must be selected.

The storage granularity is function of the accesses made by the services. We distinguish

two types of access: horizontal and vertical. Horizontal accesses request some attributes of

a given item, while vertical accesses select one or more attributes of several items. Thus,

we can segment the data vertically or horizontally in accordance to the accesses done by

the services. For example, when a customer makes a fetching in a virtual store, attributes

of several items are selected, while the verification of an item for addition to the shopping

cart segments the database in an horizontal form.

A.4 Execution Level

The execution level specifies in details the implementation of the e-commerce server.

This specification is composed by five parts, described below. We must stand out that this

structure aim to illustrate the detailing of inherent information to the execution level, once

the format of the specification is dependent of the execution environment.

A.4.1 Server Architecture

The server architecture defines the nature of the software components being used and

justifies their use, in terms of the functional requirements. For example, if one of the

requirements is persistent storage, so the use of a database server is necessary. In the

56

other hand, transactional support can be provided either by an application server or by

the database server.

The definition of the architecture must consider not only functional aspects, but also

financial aspects (cost) and existence of components. We must also define the commu-

nication protocols among the e-commerce servers components, expliciting the interaction

mechanisms among the components.

A.4.2 Execution Environment

The execution environment describes the interconnection between the components and

the customers interface. The definition of the execution environment must be coherent with

the description of the services and functionalities (that compose the functional level). This

description must be done in terms of paradigms of implementation, and system primitives.

Examples of paradigms are client-server, remote procedure calls and message exchange.

In terms of system primitives, we must enumerate resources such as TCP/IP support and

ability to do fork and rsh.

A.4.3 Protocols

Once the types of communication and cooperation between the components are defined,

it is necessary to specify the protocols to be used for this communication. Thus, for each

service it must be indicated (in the case of standardized protocols) or be described the

protocols used for communication between the components. Examples of standardized

protocols are the protocol HTTP, standard ODBC, used to access the database manager

systems(DBMS), and CGI interface, used for execution of dynamically instantiated tasks.

The definition of the protocols must specify the types, purpose and message format.

The message type identifies the system primitive used (i.e., RPC, TCP/IP). The protocol

can be briefly described by the time diagram of necessary messages for the achievement of

the service. For each message the following information must be specified:

• purpose;

• type, that indicates the basic protocol to be used;

• sender and receiver;

• content; and

• format.

57

We can exemplify the specification of a protocol analyzing a service of distribution of

banners (electronic announcements), used for paid advertisement in an e-commerce site.

The announcements are generated by a specialized server who takes care of only one type

of request, which receive a parameter that specifies the nature of the announcement. The

attendance to the request consists of two messages, the first one specifying the features

of the announcement to be generated and the second one containing the announcement.

The messages are exchanged through a TCP/IP connection established between the re-

questor and the announcement server. The first message is textual and contains only the

parameter to generate the announcement. This message is interpreted by the server, the

announcement is generated and sent to the requestor through a binary message containing

the picture corresponding to the announcement. All these information can be presented

in a stream of messages diagram. In this diagram, there is a time line for each one of the

participant entities of the protocol (requestor and server), that shows the time sequence

of messages. Each arrow in the diagram represents a message that is exchanged and the

notations indicate its purpose and its content.

AAA Addressing

The e-commerce servers can use particular protocols, however, for use in the WWW,

the several services must be accessed in a non-ambiguous and deterministic way. Thus,

it is necessary to define an addressing standard that not only indicates the service being

requested, but also the parameters that conduct the execution of the service. The addresses

are normally URLs composed by three parts: identification of the server, specification of

the service and its parameters. The identification of the server follows the standard of the

URLs. The specification of the services follows the same convention of the static resources

of the WWW, hierarchically organized. The parameters can be juxtaposed to the end of

the URL in the case of a command GET or be explicitly listed by a command POST.

A.4.5 Tools

Once the services and the interaction between components are defined, it is necessary

to define the tools that will be necessary to implement the server, in order to support

the services and its implementation among the several components. Beyond its use in the

implementation of the components, the cost of the employed tools must also be considered.

Examples of tools are WWW servers, DBMSs and interface generators.

58

Appendix B

Overview of Formal Methods

Formal methods are a set of techniques of software engineering that use mathemati-

cal notation to describe the requirements of the system and detail forms to validate this

specification and subsequent implementation.

The term formal methods refers to the use of mathematical modeling, calculation, and

prediction in the specification, design, analysis, construction, and assurance of computer

systems and software. The reason it is called "formal methods" rather than "mathematical

modeling of software" is to highlight the nature of the mathematics involved.

The specification corresponds to one of the initial stages of software development pro-

cess [40, 43] and its objective is to define, in a complete and consistent way, the functional

requirements of the system. In general, the specification is written in natural language,

being subjected to ambiguities, sensitivity to the context and different interpretations. For-

mal specification consists of the use of formal notations, based in mathematical techniques

and formal logic, to specify systems. The use of formal notations and mathematical for-

malisms allows to reduce errors and ambiguities committed during this process, generating

an accuracy and not ambiguous specification.

Unfortunately, as interest in formal methods increases, the number of misconceptions

regarding formal methods continues to grow in tandem. While formal methods have been

employed, to some extent, for over a quarter of a century, there are still very few people

who understand exactly what formal methods are, and how they are applied in practice [9].

Many people completely misunderstand what constitutes a formal method, and how formal

methods have been successfully employed in the development of complex systems.

In order to be familiar with formal methods, we looked for basic knowledge about it

in related works. In [45], Hall presents seven old myths on the use of formal methods,

aiming to show that these are not very real through practical examples. Seven widely

held conceptions about formal methods are challenged. These beliefs are variants of the

following:

59

1. formal methods can guarantee that software is perfect.

2. they work by proving that the programs are correct.

3. only highly critical systems benefit from their use.

4. they involve complex mathematics.

5. they increase the cost of development.

6. they are incomprehensible to clients.

7. nobody uses them for real projects.

The arguments are based on the author's experiences. They address the bounds of

formal methods, identify the central role of specifications in the development process, and

cover education and training.

This seven cited myths were analyzed by the author, who contributed with the following

conclusions:

1. Formal methods are very helpful at finding errors early on and can nearly eliminate

certain classes of error.

2. They work largely by making you think very hard about the system you propose to

build.

3. They are useful for almost any application.

4. They are based on mathematical specifications, which are much easier to understand

than programs.

5. They can decrease the cost of development.

6. They can help clients understand what they are buying.

7. They are being used successfully on practical projects in industry.

Myths that formal methods can guarantee perfect software and eliminate the need for

testing (Myth 1 in Hall's paper) are not only ludicrous, but can have serious ramifications

in system development if naive users of formal methods take them seriously. Claims that

formal methods are all about proving programs correct (Myth 2 in Hall's paper) and are

only useful in safety-critical systems (Myth 3), while untrue, are not quite so detrimental,

and a number of successful applications in non safety-critical domains have helped to clarify

these points (see [49] for examples).

60

The derivation of a number of simple formal specifications of quite complex problems,

and the successful development of a number of formal methods projects under budget

have served to dispel the myths that the application of formal methods requires highly

tramed mathematicians (Myth 4) and increases development costs (Myth 5). The success-

ful participation of end-users and other non-specialists in system development with formal

methods has ruled out the myth that formal methods are unacceptable to users (Myth

6), while the successful application of formal methods to a number of large-scale complex

systems, many of which have received much media attention, should put an end to beliefs

that formal methods are not used on real large-scale systems (Myth 7).

Regretfully, twelve years later, these and other misconceptions still abound. Formal

methods are unfortunately the subject of extreme hyperbole or deep criticism in many

of the "popular press" science journals. FVom the claims that the authors of such articles

make, it is quite clear that they have little or no understanding of what formal methods are,

nor how they have been applied in industry. In [9], seven more myths of formal methods

are presented. In this work, the author analyzes these myths and tries to demystify them

using examples. These myths are enumerated as follows:

1. Formal methods delay the development process.

2. Formal methods lack tools.

3. Formal methods replace traditional development methods.

4. Formal methods only apply to software.

5. Formal methods are unnecessary.

6. Formal methods are not supported.

7. Formal methods people always use formal methods.

Formal methods techniques provide many benefits in the process of systems develop-

ment. The formal specification acts as a mechanism of fails prevention, through a precise

specification and without ambiguity in the system's functional requirements. The initial

stages of the system development (documentation, requirements specification, and design)

are considered the most critical, whereas the incidence of fails is normally observed It

is a consensus that the fails introduced in the earliest stages of the system development's

lifecycle are more difficult and expensive to be detected and removed.

61

B.l Benefits of Using Formal Methods

The adoption of formal methods provides many benefits in the system development

process. Some of them are described, as follows:

• Formal methods allow to properties and consequences of non-executable specification

of the system to be analyzed through theorem-proving in the earlier stages of its

lifecycle.

• Formal methods, through the use of mathematical formalisms, are capable to produce

non-ambiguous and precise specification.

• Formal verification can be used to test initial specifications of the project, when

normally is not possible to apply other validation technique.

• Accordmg to the automatic nature of formal verification, is possible to analyse

changes in the specification in a reliable way.

• The use of automatic tools could reduce the amount of time demanded to develop

the system.

• Early formal thought about the system.

• Easy derivation of test cases.

In spite of the high costs inherent in application of formal methods, the many benefits

provided by its adoption can compensate the spent investments.

B.2 Issues and Choices in Formal Methods

Expertise in formal methods is not widespread, and can be costly to acquire. Further-

more, the resources available for any project are limited, so that effort expended on formal

methods may reduce that available for other methods of analysis and assurance. For these

reasons, formal methods need to be applied selectively. There are several dimensions in

the use of formal methods that permit selective or partial application. According to [87],

the most important ones are:

• The amount of formality can vary between occasional use of ideas and notation from

discrete mathematics in a "pencil and paper" manner to "fully formal" treatments

that are checked with a mechanical theorem prover.

• Formal methods can be applied to all, or only to selected, components of the system.

62

• Formal methods can be applied to selected properties of the system (e.g., absence of

deadlock) rather than to its full functionality.

• Formal methods can be applied to all, or merely to some, of the stages of the de-

velopment lifecycle. If the latter, we can choose whether to favor the earlier, or the

later stages of the lifecycle.

• In all cases it is possible to include more or less detail and to choose the level of

abstraction at which the formal treatment is conducted.

In [87], each of these is examined in more detail. In this work, he classified formal

methods in levels, according to their formalism, as follows:

Level 0 . no formal method is applied. This corresponds to the common practice, where

verification is a manual process of revision applied to documents written in natural

language. The validation is done by tests.

Level 1 : formal methods use ideas and notation from discrete mathematics and logic,

but withm a loose framework, where mathematics, English, diagrams, and other

notations are used together. Proofs are careful arguments that are evaluated by

whether they persuade reviewers. This is the way most mathematics is done.

Level 2 : formal methods employ a fixed specification language for documenting require-

ments and designs. A specification language generally blends concepts from logic,

discrete mathematics, and programming into a single notation. Often, the language

is supported by tools that check specifications for certain types of errors, and that

provide useful functions such as cross-referencing or typesetting. Analysis and proofs

are performed by hand and recorded with pencil and paper, but make use of explicit

axioms and proof rules that describe the semantics of the languages and methods

used.

Level 3 : formal methods stress mechanized analysis. Their specification languages are

generally closer to standard logic than those of type 2 formal methods, and are

supported by tools that include proof checkers, theorem provers, or model checkers.

The tools that support a Level 3 formal method are often referred to collectively as

a verification system.

The advantage of Level 1 formal methods is the flexibility that is available: notations

and techniques can be selected, or invented, to suit the particular problem at hand. These

methods can be very effective when used by individuals or small teams possessed of skill and

judgment, but the lack of standardized notation and methods can make communication

and training difficult across larger groups.

63

Level 2 formal methods address the problems of communication and training by pro-

viding fixed specification notations([48, 92] and VDM [53] are well-known examples) and,

usually, a methodology for using them. Individual Level 2 methods are well suited to some

types of applications (e.g., data processing), and less well suited to others (e.g., concurrent

systems); users must be careful not to stretch their chosen method beyond its limits.

In general, the Level 2 notations are optimized for descriptive, rather than analytic,

purposes. If the goal is to use formal methods to calculate properties of a design for the

purpose of analysis, then a Level 3 method equipped with appropriate tools will probably

be more suitable. It generally requires considerable skill and experience to use Level 3

tools efi^ectively, but they can provide a very high degree of assurance.

Depending on the kind of the application, the desire goals and the available resources,

any alternative of these levels could be a good choice.

Another criterion that should be considered is the likely effectiveness of formal methods

versus traditional methods for quality control and assurance. It is to be expected, and

there is some evidence to support the expectation [61], that the intrinsically hard design

problems tend to be the most prone to faults, and the most resistant to traditional means of

assurance. These intrinsically hard problems generally involve complex interactions, such

as the coordination of distributed, concurrent, or real-time computations, and redundancy

management. It requires great skill to address these problems using formal methods, but

the number and size of these problems may not be large. The greatest return on formal

methods may be obtained when relatively few, very highly skilled people apply formal

methods to the hardest and most critical problems.

In our work, we decide to apply model checking to design e-commerce systems, so we

use the Level 3 of formal methods.

B.3 The Varieties of Formal Specifications

Formal methods embrace a variety of approaches that differ considerably in techniques,

goals, claims, and philosophy. The different approaches to formal methods tend to be

associated with different kinds of specification languages. Conversely, it is important to

recognize that different specification languages are often intended for very different pur-

poses and therefore cannot be compared directly to one another. Failure to appreciate this

point is a source of much misunderstanding.

According to [87], the formal specification languages could be categorized as:

• Model-oriented Specification

• Property-oriented Specification

64

• Specifications for Concurrent Systems

Each of this categories is next explained.

B.3.1 Model-oriented Specification

If specification or annotation of programs is the goal, then the formal notation em-

ployed should generally be close to, though more abstract than, that of programming, with

operations changing values "stored" in an implicit system "state", with data structures

described fairly concretely, and with control described in operational terms.

Formal notations with these characteristics are often described as model oriented, mean-

ing that desired properties or behaviors are specified by giving a mathematical model that

has those properties. For data structures, these models are often constructed from the

notions of set theory using sets, functions, relations, and so on.

Some examples of model-oriented specification languages are VDM-SL [36], the lan-

guage associated to VDM (Vienna Development Method), the specification language Z [3]

and HQS [46] (Higher Order Software).

A disadvantage of model-oriented specifications is that they can be overly prescriptive:

suggesting how something is to be implemented, rather than just the properties it is re-

quired to have. For example, even though the specification of the least function does not

prescribe an algorithm, it is stated in terms of the pointer and array model, and so it would

be fairly diflScult to use this specification to establish correctness of an implementation that

used linked lists instead.

B.3.2 Property-oriented Specification

In contrast to the model-oriented style of specification that is often preferred for

program-level descriptions, specifications of early-lifecycle products such as requirements

commonly use property-oriented notations. These notations use an axiomatic style to state

properties and relationships that are required to hold of the component being described,

without suggesting how it is to be achieved.

An advantage of property-oriented over model-oriented specifications is that it is pos-

sible merely to constrain certain relationships or values, without having to define them

exactly. On the other hand, it is very easy to write conflicting constraints that cause the

specification to become inconsistent; inconsistent specifications are unimplementable, and

are very dangerous because they can be used to prove anything.

Property-oriented Specification languages are based on entities and attributes. The

entities are key elements of software, which could be mapped in modules in a formal model.

The attributes are specified by application of functions and relation to entities. They

65

specify operations allowed to entities and relationships between them. The specification

is determined in terms of axioms, which define the relationship between operations. The

most known algebraic specification language is OBJ [40].

B.3.3 Specifications for Concurrent Systems

Concurrent and distributed systems can be specified in a variety of styles. One style

takes some form of communication as primitive and has programming-like features for

sending and receiving values. This style has a model-oriented flavor and is often referred

to as process algebra. Another style takes shared variables as the primitive means of

communication and often uses temporal logic to allow specification that a property should

hold henceforth or eventually on some or all execution paths. This style has a property-

oriented flavor. Methods associated with a kind of analysis known as model checking use

one type of description (a kind of state machine) to specify the system concerned, and

another (a kind of temporal logic) to specify the properties required of it.

Further distinctions concern whether concurrent activities are considered to occur simul-

taneously (true concurrency) or alternately ("interleaving" concurrency), and whether

consideration of time is restricted to the order in which events happen, or whether duration

is considered (real-time logics). The most popular specification languages for concurrent

systems is CSP [50] and CCS [57] (Calculus of Concurrent Systems).

Our developed methodology, Formal-CAFE could be classified as property-oriented

specification because it is based on the life cycle of the the items on sale and properties

defined from the business rules.

66

Appendix C

OvervÍGw of IVíodel Checking

In this section we present a brief background on model checking and describe some

scenarios where this technique is successfully employed for developing correct and robust

systems.

Applying model checking to a design consists of several tasks, that can be classified in

three main steps, as follows:

Modeling: consists of converting a design into a formalism accepted by a model checking

tool .

Specification: before verification, it is necessary to state the properties that the design

must satisfy. The specification is usually given in some logical formalism. For hard-

ware and software systems, it is common to use temporal logic, which can assert how

the behavior of the system evolves over time.

An important issue in specification is completeness. Model Checking provides means

for checking that a model of the design satisfies a given specification, but it is impos-

sible to determine whether the given specification covers all the properties that the

system should satisfy.

Verification: ideally the verification is completely automatic. However, in practice it

often involves human assistance. One such manual activity is the analysis of the

verification results. In case of a negative result, the user is often provided with an

error trace. This can be used as a counterexample for the checked property and can

help the designer in tracking down where the error occurred. In this case, analyzing

the error trace may require a modification to the system and reapplication of the

model checking algorithm.

An error trace can also result from incorrect modeling of the system or from an

incorrect specification (often called a false negative). The error trace can also be

67

useful in identifying and fixing these two problems. A final possibility is that the

verification task will fail to terminate normally, due to the size of the model, which

is to large to fit into the computer memory. In this case, it may be necessary to redo

the verification after changing some of the parameters of the model checker or by

adjusting the model (e.g., by using additional abstractions).

C.l Temporal Logic cincl IVlodel Checking

Temporal logics have proved to be useful for specifying concurrent systems, because

they can describe the ordering of events in time without introducing time explicitly. They

were originally developed by philosophers for investigating the way that time is used in

natural language arguments [51]. Although a number of different temporal logics have been

studied, most have an operator like Gf that is true in the present if / is always true in the

future (i.e., if / is globally true). To assert that two events d and ea never occur at the

same time, one would write G(-.ei V ^63). Temporal logics are often classified according

to whether time is assumed to have a linear or a branching structure.

Several researches, including Burstall [82] and Pnueli [2], have proposed using temporal

logic for reasoning about computer programs. However, Pnueli [2] was the first to use

temporal logic for reasoning about concurrency. His approach involved proving properties

of the program under consideration from a set of axioms that described the behavior of the

individual statements in the program. The method was extended to sequential circuits by

Bochmann [41] and Malachi and Owicki [97]. Since proofs were constructed by hand, the

technique was often difficult to use in practice.

The introduction of temporal-logic model checking algorithms by Clarke and Emer-

son [20, 39] in the early 1980s allowed this type of reasoning to be automated. Because

checking that a single model satisfies a formula is much easier than proving the validity

of a formula for all models, it was possible to implement this technique very efficiently.

The algorithm developed by Clarke and Emerson for the branching-time logic CTL was

polynomial in both the size of the model determined by the program under consideration

and in the length of its specification in temporal logic. They also showed how fairness [42]

could be handled without changing the complexity of the algorithm. This was an impor-

tant step in that the correctness of many concurrent programs depends on some type of

fairness assumption; for example, absence of starvation in a mutual exclusion algorithm

may depend on the assumption that each process makes progress infinitely often.

At roughly the same time Quielle and Sifakis [52] gave a model checking algorithm for

a subset of CTL, but they did not analyze its complexity. Later, Clarke, Emerson, and

Sistla [21] devised an improved algorithm that was linear in the product of the length of

the formula and the size of the state transition graph. The algorithm was implemented

68

in the EMC model checker, which was widely distributed and used to check a variety of

network protocols and sequential circuits [6, 21, 31, 63, 64, 65, 66]. Early model checking

systems were able to check state transition graphs with between 10^ and 10® states at

a rate of about 100 states per second for typical formulas. In spite of these limitations,

model checking systems were used successfully to find previously unknown errors in several

published circuit designs.

Sistla and Clarke [1, 4] analyzed the model checking problem for a variety of temporal

logics and showed, in particular, that for linear temporal logic (LTL) the problem was

PSPACE-covsxpXetQ. Pnueli and Lichtenstein [72] reanalyzed the complexity of checking

linear-time formulas and discovered that although the complexity appears exponential in

the length of the formula, it is linear in the size of the global state graph. Based on this

observation, they argued that the high complexity of linear-time model checking might

still be acceptable for short formulas. The same year, Fujita [62] implemented a tableau

based verification system for LTL formulas and showed how it could be used for hardware

verification.

CTL* is a very expressive logic that combines both branching-time and linear-time

operators. The model checking problem for this logic was first considered in a paper by

Clarke, Emerson, and Sistla [37], where it was shown to be C£^complete, establishing

that it is the same general complexity class as the model checking problem for LTL. This

result can be sharpened to show that CTL* and LTL model checking are of the same

algorithmic complexity (up to a constant factor) in both the size of the state graph and the

size of the formula. Thus, for purposes of model checking, there is no practical complexity

advantage to restricting oneself to a linear temporal logic [35].

Alternative techniques for verifying concurrent systems have been proposed by a num-

ber of other researches. Many of these approaches use automata for specifications as well

as for implementations. The implementation is checked to see whether its behavior con-

forms to that of the specification. Because the same type of the model is used for both

implementation and specification, an implementation at one level can also be used as a

specification for the next level of refinement. The use of language containment is implicit

in the work of Kurshan [88], which ultimately resulted in the development of a powerful

verifier called COSPAN [60, 81, 98]. Vardi and Wolper [69] first proposed the use of uj-

automata (automata over infinite words) for automated verification. They showed how the

linear temporal logic model checking problem could be formulated in terms of language

containment between w-automata. Other notions of conformance between automata have

also been considered, including observational equivalence [24, 83], and various refinement

relations [24, 84].

69

C.2 Symbolic Algorithms

In the original implementation of the model checking algorithm, transition relations

were represented explicitly by adjacency lists. For concurrent systems with small numbers

of processes, the number of states was usually fairly small, and the approach was often

quite practical. In systems with many concurrent parts however, the number of states

in the global state transition graph was too large to handle. In 1987, McMillan [11, 59],

then a graduate student at Carnegie Mellon University, realized that by using a sym-

bolic representation for the state transition graphs, much larger system could be verified.

The new symbolic representation was based on Bryant's orderer binary decision diagrams

(OBBDS) [85]. OBBDs provide a canonical form for boolean formulas that is often sub-

stantially more compact than conjunctive or disjunctive normal form, and very efficient

algorithms have been developed for manipulating them. Because the symbolic representa-

tion captures some of the regularity in the state space determined by circuits and protocols,

it is possible to verify systems with an extremely large number of states - many orders of

magnitude larger than could be handled by the explicit-state algorithms. By using the

original CTL model checking algorithm [20] of Clarke and Emerson with the new rep-

resentation for state transition graphs, it became possible to verify some examples that

had more than 10^° states [11, 59]. Since then, various refinements of the OBDD-based

techniques by other researches have pushed the state count up to more than 10^^° [55, 56].

The implicit representation is quite natural for modeling sequential circuits and proto-

cols. Each state is encoded by an assignment of boolean values to the set of state variables

associated with the circuit or protocol. The transition relation can therefore be expressed

as a boolean formula in terms of two sets of variables, one set encoding the old state and

the other encoding the new. This formula is then represented by a binary decision diagram.

The model checking algorithm is based on computing fix-points of predicate transformers

that are obtained from the transition relation. The fix-points are sets of states that repre-

sent various temporal properties of the concurrent systems. In the new implementations,

both the predicate transformers and the fix-points are represented with OBDDs. Thus, it

is possible to avoid explicitly constructing the state graph of the concurrent system.

The model checking system that McMillan developed as part of his doctoral dissertation

thesis is called SMV [59]. It is based on a language for describing hierarchical finite-

state concurrent systems. Programs in the language can be annotated by specifications

expressed in temporal logic. The model checker extracts a transition system represented as

an OBDD from a program in the SMV language and uses an OBDD-based search algorithm

to determine whether the system satisfies its specification. If the transition system does

not satisfy some specification, the verifier will produce an execution trace that shows why

the specification is false. The SMV system has been widely distributed, and a large number

70

of examples have now been verified with it. These examples provide convincing evidence

that SMV can be used to debug real industrial designs.

An impressive example that illustrates the power of symbolic model checking is the

verification of the cache coherence protocol described in the IEEE Puturebus+ standard

(IEEE Standard 896.1-1991). Although development of the Futurebus+ cache coherence

protocol began in 1988, all previous attempts to validate the protocol were based entirely

on informal techniques. In 1992, researchers at Carnegie Mellon [28, 38] construct a precise

model of the protocol in SMV language and then used SMV to show that the resulting

transition system satisfied a formal specification of cache coherence. They were able to

find a number of errors that were not previously detected and potential errors in the design

of the protocol. This appears to be the first time that an automatic verification tool has

been used to find errors in an IEEE standard.

One of the best indications of the power of the symbolic verification methods comes

from studymg how the CPU time required for verification grows asymptotically with larger

and larger instances of the circuit or protocol. In many of the examples that have been

considered by a variety of groups, this growth rate is a small polynomial in the number of

components of the circuit [30, 55, 56].

A number of other researches have independently discovered that OBDDs can be used

to represent large state-transition systems. Coudert, Berthet, and Madre [70] have devel-

oped an algorithm for showing equivalence between two deterministic finite-state automata

by performmg a breadth first search of the state space of the product automata. They use

OBDDs to represent the transition functions of the two automata in their algorithm. Simi-

lar algorithms have been developed by Pixley [12,13]. In addition, several groups including

Bose and Fisher [89], and Coudert, Madre, and Berthet [71] have experimented with model

checking algorithms that use OBDDs.

In related work Bryant, Seger and Beatty [30, 86] have developed an algorithm based

on symbolic simulation for model checking in a restricted linear time logic. Specifications

consist of precondition-postcondition pairs expressed in the logic. The precondition is used

to restrict inputs and initial states of the circuit; the postcondition gives the property that

the user wishes to check. Formulas in the logic have the form

Pq A Xpi A X'^p2 A ... A A X^'pn.

The syntax of the formulas is highly restricted compared to most other temporal logics

used for specifying programs and circuits. By limiting the class of formulas that can be

handled, it is possible to check certain properties very efliiciently.

71

C.3 Symbolic Model Checking

Ensuring the correctness of the design at its earliest stage is a major challenge in any

system development process. Current methods use techniques such as simulation and

testing for design validation. Although effective in the early stages of debugging, their

effectiveness drops quickly as the design becomes clear. A serious problem with these

techniques is that they explore some of the possible behaviors of the system. One can

never be sure whether the unexplored trajectories may contain fatal bugs. A very attractive

alternative to simulation and testing is the approach oi formal verification which conducts

an exhaustive exploration off all possible behaviors of the system.

Symbolic model checking is a formal verification approach by which a desired behavioral

property of a system can be verified over a model through exhaustive enumeration of all

the states reachable by the application and the behaviors that traverse through them.

The system being verified is represented as a state-transition graph (the model) and the

properties (the behaviors) are described as formulas in some temporal logic. Formally, the

model is a labeled state-transition graph M. The labels correspond to the values of the

variables in the program, while the transitions correspond to the passage of time in the

model.

Model checkers have been successfully applied to the verification of several large complex

systems such as an aircraft controller [16], a robotics controller [15], and a distributed

heterogeneous real-time system [91]. The key to the efficiency of the algorithms is the use

of binary decision diagrams to represent the labeled state-transition graph and to verify if

a timing property is true or not. Model checkers can exhaustively check the state space

of systems with more than lO^" states in a few seconds [14, 16]. We claim that symbolic

model check will be an efficient technique to the formal verification of e-commerce systems.

C.3.1 Binary Decision Diagrams

Binary decision diagrams (BDDs) are a canonical representation for boolean formulas

[10]. A HDD is obtained from a binary decision tree by merging identical subtrees and

eliminating nodes with identical left and right siblings. The resulting structure is a directed

acyclic graph rather than a tree which allows nodes and substructures to be shared.

The internal vertices are labeled with boolean variables. Leaves are labeled with 0 and

1. Canonicity is ensured placing a strict total order on the variables as one traverses a

path from "root" to "leaf". The edges are labeled with 0 or 1. For every truth assignment

there is a corresponding path in the BDD such that at vertex x, the edge labeled 1 is taken

if the assignment sets x to 1; otherwise, the edge labeled 0 is taken.

If the path end in the "leaf labeled 0 then the formula will not be satisfied, conversely,

if it end in the leaf" labeled 1 then the formula will be satisfied - the assignment made to

72

Figure C.l: BDD for (a A 6) V (c A d)

each variable satisfies the formula. Figure C.l illustrates the BDD for the boolean formula

(o A 6) V (c A d).

C.4 Modeling Concurrent Systems

In order to model the system, a type of state transition graph called a Kripke structure

is used. A Kripke structure consists of a set of states, a set of transitions between states,

and a function that labels each state with a set of properties that are true in this state.

Paths in a Kripke structure model computations of the system.

A state is a snapshot of the system that capture the values of the variables at a particu-

lar instant of time. An assignment of values to all the variables defines a state in the graph.

For example, if the model has three boolean variables a, 6, and c, then (a=l,6=l,c=l),

(a=0,ò=0,c=l), and (a=l,6=0,c=0) are examples of possible states. The symbolic repre-

sentations of these states are (a, b, c), (ã, 6, c), and (a, b, c), respectively, where a means that

the variable is true in the state and ã means that the variable is false. Boolean formulas

over variables of the model can be true or false in a given state. Note that the value of

a boolean formula in a state is obtained by substituting the values of the variables into

the formula for that state. For example, the formula a V c is true in all the three states

discussed above.

The graph representation can be a direct consequence of this observation. One can

use a boolean formula to denote the set of states in which that formula is satisfied. For

example, the formula true represents the set of all states, the formula false represents the

empty set with no states, and the formula a V c represents the set of states in which a

or c are true. Notice that individual states can be represented by a formula with exactly

one proposition for each variable in the system. For instance, the state s = (a, 6, c) is

represented by the formula aA^bAc. We say that a A-^b Ac is the formula associated

73

Qa,b,-|^ z:^ na A-ib A iC A na'A b'A-ic'

Figure C.2: Example of a transition and its symbolic representation.

with the state s. Because symbols are used to represent states, algorithms that use this

method are called symbolic algorithms.

Transitions can also be represented by boolean formulas. A transition s ^ t is repre-

sented by using two distinct sets of variables, one set for the current state s and another

set for the next state t. Each variable in the set of variables for the next state corresponds

to exactly one variable in the set of variables for the current state. For instance, if the

variables for the current state are a, 6, and c, then the variables for the next state are

labeled a', b', and Let be the formula associated with the state s and ft with the

state t. Then, the transition s-^t is represented by f.Aft. The meaning of this formula is

the following: there exists a transition from state s to state t if and only if the substitution

of the variable values for s in the current state and those of t in the next state yields

true. For example, a transition (Figure C.2) from the state (ã,6,c) to the state (ã,6,c) is

represented by the formula ->a A->b A-^c A ->a' Ah' A ->c'.

As boolean formulas can represent sets of states, they can also represent sets of transi-

tions. Symbolic model checking takes advantage of this fact by grouping sets of transitions

mto a single formula which often significantly simplifies traversing the graph. Note that

the transition relation of the model is a disjunction of all particular transitions in the

graph. The clustering of transitions happens automatically when boolean formulas are

implemented using HDDs. This occurs because bdds are canonicals: given a fixed variable

ordering, a boolean formula is represented by a unique BDD [10]. Therefore, the order in

which the transition relation is constructed does not affect the final result i.e., the canonical

property guarantees that the same transitions will be clustered according to the formulas

that represent them. This technique is one of the main reasons for the efficiency of symbolic

algorithms.

In order to write specifications that describe properties of concurrent systems we need

to define a set of atomic proposition AP. An atomic proposition is an expression that has

the form op d where v e V - the set of all variables in the system, d G £) - the domain

of interpretation, and op is any relational operator. Now, we can define formally a Kripke

structure M over AP as & four tuple M = {S, So, R, L) where:

1. 5 is a finite set of states.

2. SqC S is the set of initial states.

3. Ç 5" X 5 is a transition relation that must be total.

74

4. L : 2^^ is a function that labels each state with the set of atomic propositions true

in that state.

procedure example;

var
X := 0;
y :=1;

begin

while (true) x = y;

end

Figure C.3: A simple transition x = y

To illustrate the notions defined we consider the simple system in Figure C.3, where

^ — {^>2/}) D — {0,1} and SQ{x^y) = (x = 0) A (y = 1). The only possible transition is

X = y represented by the formula R{x, y, x', y') = {x' = y) A {y' = y). The kripke structure

M = (S, So, R, L) extracted from these formula is:

• 5 ={(0,0), (0,1), (1,0), (1,1)}.

• 5o = {(0,l)}.

. R = {[(0,0), (0,0)], [(0,1), (1,1)], [(1,0), (0,0)], [(1,1), (1,1)]}.

• ^((0,0)) = {x = Q,y = 0}, L((0,1)) = {x = 0, y = 1}, L((l,0)) = {x = 1, y = 0},

and l((l,l)) = {x = l,y= 1}.

The Figure C.4 graphically shows the kripke structure M. As one can note the only

path which starts in the initial state is (0,1)(1,1)(1, l)...(i, i). This is the only computation

of the system.

C.5 The Computation Tree Logic - CTL

Computation tree logic, is the logic used to express properties that will be verified by

the model checker. Computation trees are derived from state transition graphs. The graph

structure is unwound into an infinite tree rooted at the initial state, as seen in figure C.5.

Paths in this tree represent all possible computations of the program being modeled

Formulas in CTL refer to the computation tree derived from the model. It is classified

as a branching time logic, because it has operators that describe the branching structure of

this tree. Formulas in CTL are built from atomic propositions, boolean connectives -i and

75

^0) ^(y=ò^

(x = 0 y = 0)
(x' = 0 y' = y)

(x = 0 y = l) A (X' = l y'=y)

3

(x = l'^y=l) '^(x'sl ''y'sy)

Figure C.4: The state transition graph

© © ©

© ■ .

Figure C.5: State transition graph and corresponding computation tree.

A, and temporal operators. Each of these operators consists of two parts: a path quantifier

followed by a temporal quantifier. Path quantifiers describe the branching structure - they

indicate that the property should be true in a//paths from a given state (A), or some path

from a given state (E). The temporal quantifier describes how events should be ordered

respect to time for a path specified by the path quantifier. Examples of temporal

quantifiers and their mformal meanings are: F if, meaning that if holds sometime in the

future; G meaning that ^ holds globally on the path; X meaning that ^ holds in the

next state. Some examples of CTL formulas are given below to illustrate the expressiveness

of the logic.

• AG(reg AF ack): It is always the case that if the signal req is high, then

eventually ack will also be high.

• "EsYistartedAlready): It is possible to get to a state where started holds but ready

does not hold.

The four operators most widely used are illustrated in Figure C.6. Further details
on

76

M, s |s EF g M, s |b AF g

.. Á 4%

M,s I- EGg M g |_

Figure C.6: Basic CTL operators

the semantics of the operators and on the expressiveness of the logic can be obtained in [91],

II

Appendix D

Overview of the SMV and NuSMV

Systems

The SMV system [67] is a tool for checking finite state systems against specifications

in the temporal logic CTL. The input language of SMV is designed to allow the descrip-

tion of finite state systems that range from completely synchronous to completely asyn-

chronous, and from the detailed to the abstract. One can readily specify a system as a

synchronous Mealy machine, or as an asynchronous network of abstract, nondeterministic

processes. The language provides for modular hierarchical descriptions, and for the defini-

tion of reusable components. Since it is intended to describe finite state machines, the only

basic data types in the language are finite scalar types. Static, structured data types can

also be constructed. The logic CTL allows a rich class of temporal properties, including

safety, liveness, fairness and deadlock freedom, to be specified in a concise syntax. SMV

uses the OBDD-based symbolic model checking algorithm to efficiently determine whether

specifications expressed in CTL are satisfied.

The primary purpose of the SMV input language is to provide a symbolic description

of the transition relation of a finite Kripke structure. Any propositional formula can be

used to describe this relation. This provides a great deal of flexibility, and at the same

time a certain danger of inconsistency. For example, the presence of a logical contradiction

can result in a deadlock - a state or states with no successor. This can make some spec-

ifications vacuously true, and makes the description unimplementable. While the model

checking process can be used to check for deadlocks, it is best to avoid the problem when

possible by using a restricted description style. The SMV system supports this by pro-

viding a parallel-assignment syntax. The semantics of assignment in SMV is similar to

that of single assignment data flow languages. A program can be viewed as a system of

simultaneous equations, whose solutions determine the next state. By checking programs

78

for multiple assignments to the same variable, circular dependencies, and type errors, the

compiler insures that a program using only the assignment mechanism is implenientable.

Consequently, this fragment of the language can be viewed as a hardware description lan-

guage, or a programming language. The SMV system is by no means the last word on

symbolic model checking techniques, nor is it intended to be a complete hardware descrip-

tion language. It is simply an experimental tool for exploring the possible applications of

symbolic model checking to hardware verification.

D.l An informal introduction

Before delving into the syntax and semantics of the language, let us first consider a few

simple examples that illustrate the basic concepts. Consider the following short program

in the language.

MODULE main

VAR

request : boolean;

state : {ready,busy};

ASSIGN

init(state) := ready;

next(state) := case

state = ready ft request : busy;

1 : {ready,busy};

esac;

SPEC AG(request -> AF state = busy)

The input file describes both the model and the specification. The model is a Kripke

structure, whose state is defined by a collection of state variables, which may be of Boolean

or scalar type. The variable request is declared to be a Boolean in the above program,

while the variable state is a scalar, which can take on the symbolic values ready or busy.

The value of a scalar variable is encoded by the compiler using a collection of Boolean

variables, so that the transition relation may be represented by an OBDD. This encoding

is invisible to the user, however.

The transition relation of the Kripke structure, and its initial state (or states), are

determined by a collection of parallel assignments (a system of simultaneous equations),

79

which are introduced by the keyword ASSIGN. In the above program, the initial vahie of

the variable state is set to ready. The next value of state is determined by the current

state of the system by assigning it the value of the expression:

case

state = ready & request : busy;

1 : {ready,busy>;

esac;

The value of a case expression is determined by the first expression on the right lian<l

side of a (0 such that the condition on the left hand side is true. Thus, if state = ready &

request is true, then the result of the expression is busy, otherwise, it is the set fready,husyg.

When a set is assigned to a variable, the result is a non-deterministic choice among the

values m the set. Thus, if the value of status is not ready, or request is false (in the current

state), the value of state in the next state can be either ready or busy. Non-deterministic

choices are useful for describing systems which are not yet fully implemented (i.e., where

some design choices are left to the implementor), or abstract models of complex protocols,

where the value of some state variables cannot be completely determined.

Notice that the variable request is not assigned in this program. This leaves the SMV

system free to choose any value for this variable, giving it the characteristics of an uncon-

strained input to the system.

The specification of the system appears as a formula in CTL under the keyword SPEC.

The SMV model checker verifies that all possible initial states satisfy the specification. In

this case, the specification is that invariantly if request is true, then inevitably the value

of state is busy.

The following program illustrates the definition of reusable modules and expressions.

It is a model of a 3 bit binary counter circuit. Notice that the module name "maÍM"has

special meaning in SMV, in the same way that it does in the C programming language.

The order of module definitions in the input file is inconsequential.

MODULE main

VAR

bitO : counter.cell(1);

bitl : counter.cell(bitO.carry.out);

bit2 : counter.cell(bitl.carry.out);

SPEC

80

AG AF bit2.carry.out

MODULE counter.celKcarry.in)

VAR

value : boolean;

ASSIGN

init(value) := 0;

next(value) := value + carry.in mod 2;

DEFINE

carry.out := value & carry.in;

In this example, we see that a variable can also be an instance of a user defined module.

The module in this case is counter cell, which is instantiated three times, with the names

bitO, bitl and bit2. The counter cell module has one formal parameter carry in. In the

instance bitO, this formal parameter is given the actual value 1. In the instance bitl, car-

ryin is given the value of the expression bitO.carry out. This expression is evaluated in the

context of the mam module. However, an expression of the form a:b denotes component

b of module a, just as if the module a were a data structure in a standard programming

language. Hence, the carry in of module bitl is the carry out of module bitO. The key-

word DEFINE is used to assign the expression value & carry in to the symbol carry out.

Definitions of this type are useful for describing Mealy machines. They are analogous to

macro definitions, but notice that a symbol can be referenced before it is defined.

The effect of the DEFINE statement could have been obtained by declaring a variable

and assigning its value, as follows:

VAR

carry.out : boolean;

ASSIGN

carry.out := value & carry.in;

Notice that in this case, the current value of the variable is assigned, rather than the

next value. Defined symbols are sometimes preferable to variables, however, since they

don't require introducing a new variable into the OBDD representation of the system. The

weakness of defined symbols is that they cannot be given values non-deterministically. An-

other difference between defined symbols and variables is that while variables are statically

typed, definitions are not. This may be an advantage or a disadvantage, depending on

your point of view.

81

In a parallel-assignment language, the question arises: "What happens if a given vari-

able is assigned twice in parallel?"More seriously: "What happens in the case of an ab-

surdity, like a := a -h 1; (as opposed to the sensible next(a) := a -f- l;)?"In the case of

SMV, the compiler detects both multiple assignments and circular dependencies, and treats

these as semantic errors, even in the case where the corresponding system of equations has

a unique solution. Another way of putting this is that there must be a total order in which

the assignments can be executed which respects all of the data dependencies. The same

logic applies to defined symbols. As a result, all legal SMV programs are realizable.

By default, all of the assignment statements in an SMV program are executed in parallel

and simultaneously. It is possible, however, to define a collection of parallel processes,

whose actions are interleaved arbitrarily in the execution sequence of the program. This

is useful for describing communication protocols, asynchronous circuits, or other systems

whose actions are not synchronized (including synchronous circuits with more than one

clock). This technique is illustrated by the following program, which represents a ring of

three inverting gates.

MODULE main

VAR

gatel : process inverter(gate3,output);

gate2 : process inverter(gatel.output);

gates : process inverter(gate2.output);

SPEC

(AG AF gatel.out) ft (AG AF Igatel.out)

MODULE inverter(input)

VAR

output : boolean;

ASSIGN

init(output) := 0;

next(output) := !input;

A process is an instance of a module which is introduced by the keyword process. The

program executes a step by non-deterministically choosing a process, then executing all of

the assignment statements in that process in parallel. It is implicit that if a given variable

is not assigned by the process, then its value remains unchanged. Because the choice of

the next process to execute is non-deterministic, this program models the ring of inverters

independently of the speed of the gates. The specification of this program states that the

82

output of gatel oscillates (ie., that its value is infinitely often zero, and infinitely often 1).

In fact, this specification is false, since the system is not forced to execute every process

infinitely often, hence the output of a given gate may remain constant, regardless of changes

of its input.

In order to force a given process to execute infinitely often, we can use a fairness

constraint. A fairness constraint restricts the attention of the model checker to those

execution paths along which a given CTL formula is true infinitely often. Each process

has a special variable called running which is true if and only if that process is currently

executing. By adding the declaration

FAIRNESS

running

to the module inverter, we can effectively force every instance of inverter to execute in-

finitely often, thus making the specification true.

One advantage of using interleaving processes to describe a system is that it allows a

particularly efficient OBDD representation of the transition relation. We observe that the

set of states reachable by one step of the program is the union of the sets of states reachable

by each individual process. Hence, rather than constructing the transition relation of the

entire system, we can use the transition relations of the individual processes separately

and the combine the results [58, 59], This can yield a substantial savings in space in

representing the transition relation.

The alternative to using processes to model an asynchronous circuit would be to have all

gates execute simultaneously, but allow each gate the non-deterministic choice of evaluating

its output, or keeping the same output value. Such a model of the inverter ring would look

like the following:

MODULE main

VAR

gatel : inverter(gate3.output);

gate2 : inverter(gate2.output);

gates : inverter(gatel.output);

SPEC

(AG AF gatel.out) & (AG AF !gatel.out)

MODULE inverter(input)

VAR

83

output : boolean;

ASSIGN

init(output) := 0;

next(output) := !input union output;

The union operator allows us to express a nondeterministic choice between two ex-

pressions. Thus, the next output of each gate can be either its current output, or the

negation of its current input - each gate can choose non-deterministically whether to delay

or not. As a result, the number of possible transitions from a given state can be as high

as 2n, where n is the number of gates. This sometimes (but not always) makes it more

expensive to represent the transition relation. The relative advantages of interleaving and

simultaneous models of asynchronous systems are discussed in [58].

As a second example of processes, the following program uses a variable semaphore to

implement mutual exclusion between two asynchronous processes. Each process has four

states: idle, entering, critical and exiting. The entering state indicates that the process

wants to enter its critical region. If the variable semaphore is zero, it goes to the critical

state, and sets semaphore to one. On exiting its critical region, the process sets semaphore

to zero again.

MODULE main

VAR

semaphore : boolean;

prod : process user;

proc2 : process user;

ASSIGN

init(semaphore) := 0;

SPEC

AG ! (prod.state = critical ft proc2.state = critical)

MODULE user

VAR

state : {idle,entering,critical,exiting};

ASSIGN

init(state) := idle;

next(state) := case

state = idle : {idle,entering};

state = entering & !semaphore : critical;

84

state = critical : {critical,exiting};

state = exiting : idle;

1 : state;

esac;

next(semaphore) ;= case

state = entering : 1;

state = exiting : 0;

1 : semaphore;

esac;

FAIRNESS

running

If any specification in the program is false, the SMV model checker attempts to produce

a counterexample, proving that the specification is false. This is not always possible, since

formulas preceded by existential path quantifiers cannot be proved false by a showing a

single execution path. Similarly, sub-formulas preceded by universal path quantifier cannot

be proved true by a showing a single execution path. In addition, some formulas require

infinite execution paths as counterexamples. In this case, the model checker outputs a

looping path up to and including the first repetition of a state.

In the case of the semaphore program, suppose that the specification were changed to

AG (prod.state = entering -> AF prod.state » critical)

In other words, we specify that if prod wants to enter its critical region, it eventually

does. The output of the model checker in this case is shown in figure 3.1. The counterex-

ample shows a path with prod going to the entering state, followed by a loop in which

proc2 repeatedly enters its critical region and the returns to its idle state, with prod only

executing only while proc2 is in its critical region. This path shows that the specification is

false, since prod never enters its critical region. Note that in the printout of an execution

sequence, only the values of variables that change are printed, to make it easier to follow

the action in systems with a large number of variables.

Although the parallel assignment mechanism should be suitable to most purposes it

is possible in SMV to specify the transition relation directly as a prepositional formula in

terms of the current and next values of the state variables. Any current/next state pair is in

the transition relation if and only if the value of the formula is one. Similarly, it is possible

to give the set of initial states as a formula in terms of only the current state variables

85

These two functions are accomplished by the TRANS and INIT statements respectively.

As an example, here is a description of the three inverter ring using only TRANS and

INIT:

MODULE inverter(input)

VAR

output : boolean;

INIT

output = 0

TRANS

next(output) = !input | next(output) = output

Accordmg to the TRANS declaration, for each inverter, the next value of the output

is equal either to the negation of the input, or to the current value of the output. Thus,

in effect, each gate can choose nondeterministically whether or not to delay. The use of

TRANS and INIT is not recommended, since logical absurdities in these declarations can

lead to unimplementable descriptions. For example, one could declare the logical constant

0 (false) to represent the transition relation, resulting in a system with no transitions at all.

However, the flexibility of these mechanisms may be useful for those writing translators

from other languages to SMV.

To summarize, the SMV language is designed to be flexible in terms of the styles of

models it can describe. It is possible to fairly concisely describe synchronous or asyn-

chronous systems, to describe detailed deterministic models or abstract nondeterministic

models, and to exploit the modular structure of a system to make the description more

concise. It is also possible to write logical absurdities if one desires to, and also sometimes

if one does not desire to, using the TRANS and INIT declarations. By using only the

parallel assignment mechanism, however, this problem can be avoided. The language is

designed to exploit the capabilities of the symbolic model checking technique. As a result

the available data types are all static and finite. No attempt has been made to support

a particular model of communication between concurrent processes (e.g., synchronous or

asynchronous message passing). In addition, there is no explicit support for some features

of communicating process models such as sequential composition. Since the full generality

of the symbolic model checking technique is available through the SMV language, it is

possible that translators from various languages, process models, and intermediate formats

could be created. In particular, existing silicon compilers could be used to translate high

level languages with rich feature sets into a low level form (such as a Mealy machine) that

could be readily translated into the SMV language.

86

/

MODULE main
VAR
gatel : inverter(gate3.output);
gate2 : inverter(gatel.output);
gate3 : inverter(gate2.output);
SPEC
(AG AF gatel.out) & (AG AF Igatel.out)

specification is false

AG (procl.State = entering -> AF procl.s... is false:

.semaphore = O

.procl.State = idle

.proc2.state = idle

next state: [executing process .procl]

next state:

.procl .state = entering

AF procl.state = critical is false:

[executing process .proc2]

next state:
[executing process .proc2]
.proc2.state = entering

next state:
[executing process .procl]
.semaphore = 1
.proc2.state = critical

next state:

[executing process .proc2]

next state:
[executing process .proc2]

.proc2.state = exiting

next state:

.semaphore = 0

.proc2.state = idle
\

Figure D.l: Model checker output for semaphore example

D.2 The input language

-This section describes the various constructs of the SMV input And their

syntax.

87

D.2.1 Lexical conventions

An atom in the syntax described below may be any sequence of characters in the

set A-Z,a-z,0-9,_,-, begmnmg with an alphabetic character. All characters in a name are

significant, and case is significant. Whitespace characters are space, tab and newline. Any

string starting with two dashes and ending with a newline is a comment. A number

is any sequence of digits. Any other tokens recognized by the parser are enclosed in quotes

in the syntax expressions below.

D.2.2 Expressions

Expressions are constructed from variables, constants, and a collection of operators,

including Boolean connectives, integer arithmetic operators, and case expressions. The

syntax of expressions is as follows.

expr :

atom ;; a symbolic constant

|n\imber ;; a numeric constant

lid ;; a variable identifier

1"!" expr ;; logical not

Iexpr1 expr2 ;; logical and

Iexprl "I" expr2 ;; logical or

lexprl expr2 ;; logical implication

Iexprl expr2 ;; logical equivalence

lexprl "=" expr2 ;; equality

lexprl "<" expr2 ;; less than

lexprl ">" expr2 ;; greater than

lexprl "<=" expr2 ;; less that or equal

lexprl ">=" expr2 ;; greater than or equal

lexprl "+" expr2 ;; integer addition

lexprl expr2 ;; integer subtraction

lexprl expr2 ;; integer multiplication

lexprl "/" expr2 ;; integer division

lexprl "mod" expr2 ;; integer remainder

I"next" "(" id ")" ;; next value

Iset_expr ;; a set expression

Icase_expr ;; a case expression

88

An id, or identifier, is a symbol or expression which identifies an object, such as a

variable or defined symbol. Since an id can be an atom, there is a possible ambiguity if a

variable or defined symbol has the same name as a symbolic constant. Such an ambiguity is

flagged by the compiler as an error. The expression next(x) refers to the value of identifier

X in the next state (see Section D.2.3). The order of parsing precedence from high to low

is

*,/

mod

s I 7 1= 7= » • J • > • > •

!

ft

I

->,<->

Operators of equal precedence associate to the left. Parentheses may be used to group

expressions.

A case expression has the syntax

case_expr :

"case"

expr_al ":" expr_bl ";"

expr_a2 ";" expr_b2 ";"

"esac"

A case expression returns the value of the first expression on the right hand side, such

that the corresponding condition on the left hand side is true. Thus, if expr.al is true

then the result is expr.bl. Otherwise, if expr_a2 is true, then the result is expr-b2, etc. If

none of the expressions on the left hand side is true, the result of the case expression is the

numeric value 1. It is an error for any expression on the left hand side to return a value

other than the truth values 0 or 1.

A set expression has the syntax

89

set_expr :

vail val2 ... "}"

I exprl "in" expr2 ;; set inclusion predicate

I exprl "union" expr2 ;; set union

A set can be defined by enumerating its elements inside curly braces. The elements

of the set can be numbers or symbolic constants. The inclusion operator tests a value for

membership in a set. The union operator takes the union of two sets. If either argument

is a number or symbolic value instead of a set, it is coerced to a singleton set

D.2.3 Declarations

The VAR declaration

A state of the model is an assignment of values to a set of state variables. Those

variables (and also instances of modules) are declared by the notation

decl :: "VAR"

atoml ":" typel

atom2 ":" type2 ";"

The type associated with a variable declaration can be either Boolean, scalar, or a user

defined module. A type specifier has the syntax

type :: boolean

I "{" vail val2 ... "}'•

I atom ["(" exprl "," expr2 ... ")"]

I "process" atom ["(" exprl expr2 ... ")"]

val ;: atom 11 number

A variable of type boolean can take on the numerical values 0 and 1 (representing falso

and true, respectively). In the case of a list of values enclosed in set brackets (where atoms

90

are taken to be symbolic constants), the variable is a scalar which can take any of those

values. Finally, an atom optionally followed by a list of expressions in parentheses indicates

an instance of module atom (see Section D.2.4). The keyword process causes the modulo

to be instantiated as an asynchronous process (see Section D.2.6).

The ASSIGN declaration

An assignment declaration has the form

decl :: "ASSIGN"

destl ":=" exprl

dest2 expr2

dest :: atom

I "init" "(" atom ")"

I "next" "(" atom ")"

On the left hand side of the assignment, atom denotes the current value of a variable,

init(atom) denotes its initial value, and next(atom) denotes its value in the next state. If

the expression on the right hand side evaluates to an integer or symbolic constant, the

assignment simply means that the left hand side is equal to the right hand side. On tho

other hand, if the expression evaluates to a set, then the assignment means that the left

hand side is contained in that set. It is an error if the value of the expression is not

contained in the range of the variable on the left hand side.

In order for a program to be implementable, there must be some order in which the

assignments can be executed such that no variable is assigned after its value is referenced.

This is not the case if there is a circular dependency among the assignments in any given

process. Hence, such a condition is an error. In addition, it is an error for a variable to bo

assigned more than once simultaneously. To be precise, it is an error if:

1. the next or current value of a variable is assigned more than once in a given process,

or

2. the initial value of a variable is assigned more than once in the program, or

3. the current value and the initial value of a variable are both assigned in the program,

or

4. the current value and the next value of a variable are both assigned in the program,

or

91

5. there is a circular dependency, or 6. the current value of a variable depends on the

next value of a variable.

The TRANS declaration

The transition relation R of the model is a set of current state/next state pairs. Whether

or not a given pair is in this set is determined by a Boolean valued expression, introduced

by the TRANS keyword. The syntax of a TRANS declaration is

decl :: "TRANS" expr

It is an error for the expression to yield any value other than 0 or 1. If there is more

than one TRANS declaration, the transition relation is the conjunction of all of TRANS

declarations.

The INIT declaration

The set of mitial states of the model is determined by a Boolean expression under the

INIT keyword. The syntax of a INIT declaration is

decl :: "INIT" expr

It is an error for the expression to contain the next() operator, or to yield any value other

than 0 or 1. If there is more than one INIT declaration, the initial set is the conjunction

of all of the INIT declarations.

The SPEC declaration

The system specification is given as a formula in the temporal logic CTL, introduced

by the keyword SPEC. The syntax of this declaration is

decl :: "SPEC" ctlform

A CTL formula has the syntax

ctlform :

expr ;; a Boolean expression

I "!" ctlform ;; logical not

I ctlforml "&" ctlform2 ;; logical and

I ctlforml "~" ctlform2 ;; logical or

92

I ctlforml ctlform2 ;; logical implies

I ctlforml ctlform2 ;; logical equivalence

I "E" pathform ;; existential path quantifier

I "A" pathform ;; universal path quantifier

The syntax of a path formula is

pathform :

"X" ctlform ;; next time

"F" ctlform ;; eventually

"G" ctlform ;; globally

ctlfonnl "U" ctlform2 ;; until

The order of precedence of operators is (from high to low)

E.A.X.F.G.U

I

ft

I

->.<->

Operators of equal precedence associate to the left. Parentheses may be used to group

expressions. It is an error for an expression in a CTL formula to contain a next() operator

or to return a value other than 0 or 1. If there is more than one SPEC declaration, the

specification is the conjunction of all of the SPEC declarations.

The FAIR declaration

A fairness constraint is a CTL formula which is assumed to be true infinitely often in

all fair execution paths. When evaluating specifications, the model checker considers path

quantifiers to apply only to fair paths. Fairness constraints are declared using the following

syntax:

decl :: "FAIR" ctlform

A path is considered fair if and only if all fairness constraints declared in this manner

are true infinitely often.

93

The DEFINE declaration

In order to make descriptions more concise, a symbol can be associated with a commonly

used expression. The syntax for this declaration is

decl :: "DEFINE"

atoml ":=" exprl

atom2 expr2

When every an identifier referring to the symbol on the left hand side occurs in an

expression, it is replaced by the value of the expression on the right hand side (not the ex-

pression itself). Forward references to defined symbols are allowed, but circular definitions

are not allowed, and result in an error.

D.2.4 Modules

A module is an encapsulated collection of declarations. Once defined, a module can

be reused as many times as necessary. Modules can also be parameterized, so that each

instance of a module can refer to different data values. A module can contain instances of

other modules, allowing a structural hierarchy to be built. The syntax of a module is as

follows.

module :

["OPAQUE"]

"MODULE" atom ["(" atoml atom2 ... ")"]

decll

decl2

The optional keyword OPAQUE is explained in the section on identifiers. The atom

immediately following the keyword MODULE is the name associated with the module.

Module names are drawn from a separate name space from other names in the program,

and hence may clash with names of variables and definitions. The optional list of atoms in

parentheses are the formal parameters of the module. Whenever these parameters occur

in expressions within the module, they are replaced by the actual parameters which are

supplied when the module is instantiated.

94

A instance of a module is created using the VAR declaration (see Section D.2.3). This

declaration supphes a name for the instance, and also a list of actual parameters, which

are assigned to the formal parameters in the module definition. An actual parameter can

be any legal expression. It is an error if the number of actual parameters is different from

the number of formal parameters. The semantics of module instantiation is similar to

call-by-reference. For example, consider the following program fragment:

VAR

a : boolean;

b : foo(a);

MODULE foo(x)

ASSIGN

X := 1;

The variable a is assigned the value 1. Now consider the following program

define

a := 0;

VAR

b : bar(a);

MODULE bar(x)

define

a := 1;

y := x;

In this program, the value assigned to y is 0. Using a call-by-name (macro expansion)

mechanism, the value of y would be 1, since a would be substituted as an expression for x.

Forward references to module names are allowed, but circular references are not, and

result in an error.

95

D.2.5 Identifiers

An id, or identifier, is an expression which references an object. Objects are instances

of modules, variables, and defined symbols. The syntax of an identifier is as follows.

id :

atom

I id "." atom

An atom identifies the object of that name as defined in a VAR or DEFINE declaration.

If a identifies an instance of a module, then the expression a:b identifies the component

object named b of instance a. This is precisely analogous to accessing a component of a

structured data type. Note that an actual parameter of module instance a can identify

another module instance b, allowing a to access components of b, as in the following

example:

VAR

a : foo(b);

b : bar(a);

MODULE foo(x)

define

C := x.p I x.q;

module bar(x)

VAR

p : boolean;

q : boolean;

Here, the value of c is the logical or of p and q. If the keyword OPAQUE appears before

a module definition, then the variables of an instance of that module are not externally

accessible. Thus, the following program fragment is not legal:

VAR

96

a : fooO;

DEFINE

b :« a.x;

• • •

OPAQUE MODULE f00 0

VAR

X ; boolean;

D.2.6 Processes

Processes are used to model interleaving concurrency, with shared variables. A process

is a module which is instantiated using the keyword process (see Section D.2.3). The

program executes a step by nondeterministically choosing a process, then executing all of

the assignment statements in that process in parallel, simultaneously. Each instance of a

process has special variable Boolean associated with it called running. The value of this

variable is 1 if and only if the process instance is currently selected for execution. The rule

for determining whether a given variable is allowed to change value when a given process is

executing is as follows: if the next value of a given variable is not assigned in the currently

executing process, but is assigned in some other process, then the next value is the same

as the current value.

D.2.7 Programs

The syntax of an SMV program is

'j^ogram ::

modulei

module2

There must be one module with the name main and no formal parameters. The module

main is the one instantiated by the compiler.

To see a formal semantics assigned to SMV programs, I suggest the reading of Section

3,3 of McMillan's thesis [58].

97

D.3 The NuSMV System

In this work I used the NuSMV [17, 18, 19], a symbolic model checker jointly developed

by Carnegie Mellon University (CMU) and Istituto per la Ricerca Scientifica e Tecnológica

(IRST).

The NuSMV project aims at the development of an open architecture for model check-

ing, which can be reliably used for the verification of industrial designs, as a core for

custom verification tools, as a test-bed for formal verification techniques, and applied to

other research areas.

NuSMV is available at http://nusmv.irst.itc.it.

The main features of NuSMV are the following:

• Functionalities:

NuSMV allows for the representation of synchronous and asynchronous finite state

systems, and the analysis of specifications expressed in Computation Tree Logic

(CTL) and Linear Temporal Logic (LTL). Heuristics are available for achieving ef-

ficiency and partially controlling the state explosion. The interaction with the user

can be carried on with a textual, as well as graphical, interface.

• Architecture:

A software architecture has been defined. The diflferent components and function-

alities of NuSMV have been isolated and separated in modules. Interfaces between

modules have been provided. This should allow to reduce the effort needed to modify

and extend NuSMV.

• Quality of the implementation:

NuSMV is written in ANSI C, is POSIX compliant, and has been debugged with

Purify in order to detect memory leaks. Furthermore, the system code is thoroughly

commented. NuSMV uses the state of the art BDD package developed at Colorado

University. This makes it very robust, portable, efliicient. Furthermore, its code

should be easy to understand and modify by other people than the developers.

The input language of NuSMV is designed to allow the description of finite state ma-

chines (FSM) which range from completely synchronous to completely asynchronous, and

from the detailed to the abstract.

One can readily specify a system as a synchronous Mealy machine, or as an asyn-

chronous network of nondeterministic processes. The language provides for modular hier-

archical descriptions, and for the definition of reusable components. Since it is intended

to describe finite state machines, the only data types in the language are finite ones -

booleans, scalars and fixed arrays. Static, data types can also be constructed.

98

Specifications can be expressed in CTL (Computation TVee Logic), or LTL (Linear

Temporal Logic). These logics allow a rich class of temporal properties, including safety,

liveness, fairness and deadlock freedom, to be specified in concise a syntax.

The primary purpose of the NuSMV input is to describe the transition relation of a

Kripke structure. Any expression in the propositional calculus can be used to describe this

relation. This provides a great deal of flexibility, and at the same time a certain danger of

inconsistency. For example, the presence of a logical contradiction can result in a deadlock

- a state or states with no successor. This can make some specifications vacuously true, and

makes the description unimplementable. While the model checking process can be used

to check for deadlocks, it is best to avoid the problem when possible by using a rcstrictc-d

description style. The NuSMV system supports this by providing a parallel-a.ssignin(<nt

syntax. The semantics of assignment in NuSMV is similar to that of single assignment

data flow language. By checking programs for multiple parallel assignments to the same

variable, circular assignments, and type errors, the interpreter insures that a progran.

using only the assignment mechanism is implementable. Consequently, this fragment of

the language can be viewed as a description language, or a programming language.

99

Bibliography

[1] A. P. Sistla. Theoretical Issues in the Design of Distributed and Concurrent Systems.

PhD thesis, Harvard University, Cambridge, MA, 1983.

[2] A. Pnueh. The temporal logic of programs. In Proceedings of the 18th IEEE Sympo-

sium on the Foundations of Computer Science^ pages 46-57, 1977

[3] J. Abrial. The specification language z : Basic library, 1980.

[4] A.P. Sistla and E.M. Clarke. The complexity of prepositional linear temporal logics.

Journal of Assoc. Comput. Mach., 32(3):733-749, July 1985.

[5] G. S. Avrunin, U. A. Buy, J. C. Corbett, L. K. Dillon, and J. C. Wileden. Auto-

mated analysis of concurrent systems with the constrained expression toolset. IEEE

Transactions on Software Engineering, 17(11): 1204-1222, Nov. 1991.

[6] B. Mishra and E.M. Clarke. Hierarchical verification of asynchronous circuits using

temporal logic. Theoretical Computer Science, 38:269-291, 1985.

[7] Bolignano. Towards the formal verification of electronic commerce protocols. In

PCSFW: Proceedings of The 10th Computer Security Foundations Workshop. IEEE

Computer Society Press, 1997.

[8] J. P. Bowen. Formal methods in safety-critical standards. In Proc. 1993 Software

Engineering Standards Symposium (SBSS'9S), Brighton, UK, pages 168-177. IEEE

Computer Society Press, 30-3 1993.

[9] J. P. Bowen and M. G. Hinchey. Seven more myths of formal methods. IEEE Software.

12(3):34-41, 1995.

[10] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35(8), 1986.

[11] J. Birch. E. Clarke. K. McMillan, D. Dill, and L, Hwang. Symbolic model-ci.eckinr

10 20 states and beyond, 1992.

100

[12] C. Pixley, G. Beihl, and E. Pacas-Skewes. Automatic derivation of FSM sjjecifica-

tion to implementation encoding. In Proceedings of The International Conference on

Computer Design, pages 245-249, Cambridge, MA, Oct. 1991.

[13] C. Pixley, S.-W. Jeong, and G.D. Hachtel. Exact calculation of synchronization se-

quences based on binary decision diagrams. In 29th ACM/IEEE Design Automation

Conference, pages 620-623, 1992.

[14] S. Campos, E. Clarke, W. Marrero, and M. Minea. Verifying the performance of the

pci local bus using symbolic techniques. In International Conim.nct on CompnU-r

Design, 1995.

[15] S. V. Campos, E. M. Clarke, W. Marrero, and M. Minea. Timing analysis of in-

dustnal real-time systems. In Wortahop on Industnal-strength Formal specification

Techniques, 1995.

[16] S. V. Campos, E. M. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Comput-

ing quantitative characteristics of finite-state real-time systems. In IEEE Real- Time

Systems Symposium, 1994.

[17] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a reimplementation of

smv, 1998.

(181 A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: A new symbolic model

verifier, 1999.

[19] A. Cimatti and M. Roveri. User manual.

[20] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic, 1981.

[21] E. Clarke and E. Emerson. Sistla: Automatic verification of finite-state concurrent

systems using temporal logic specification, 1986.

[22] E. M. Clarke, 0. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan and

L. A. Ness. Verification of the R.turebus+ cache coherence protocol. In L. Clae.,en,

editor. International Symposium on Computer Hardware Description Languages an d

their Applications. North-Holland, April 1993.

[23] E. M. Clarke, 0. Grumberg, and D. A. Peled. Model Checking. The MIT Press

Cambridge, Massachusetts, 1999.

101

[24] R. Cleaveland, J. Parrow, and B. StefFen. The concurrency workbench: A semantics-

based tool for the verification of concurrent systems. ACM Transactions on Program-

ming Languages and Systems, 15(l):36-72, January 1993.

[25] D. Krishnamurty and J. Rolia. Predicting the performance of an e-commerce server:

Those mean percen tiles. In Proc. First Workshop on Internet Server Performance

ACM SIGME TRICS, July 1998.

[26] D. Rosenblum. Formal methods and testing: Why the state-of-the-art is not the

state-of-the-practice. ACM SIGSOFT Software Engineering Notes, 21(4), 1996.

[27] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol verifica-

tion as a hardware design aid. In 1992 IEEE International Conference on Computer

Design: VLSI in Computers and Processors, pages pages 522-525, 1992

[28] D.E. Long. Model Checking, Abstraction, and Compositional Verification. PhD thesis,

Carnegie Mellon University, 1993.

[29] S. L. Department. Model checking the secure electronic transaction (set) protocol. In

Proceedings of the 7th International Symposium on Modeling, Analysis and Simulation

of Computer and Telecommunication Systems, 1998.

[30] D.L. Beatty, R.E. Bryant, and C.-J.H. Seger. Formal Hardware Verification by Syni-

bohc Ternary Trajectory Evaluation. In Proceedings of the 28th ACM/IEEE Design

Automation Conference. IEEE, lEE Computer Society Press, June 1991.

[31] D.L. Dill and E.M. Clarke. Automatic verification of asynchronous circuits using

temporal logic. lEE Proceedings, 133 Part E(5):276-282, Sept. 1986.

[32] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specigcation patterns for

flmte-state verification. In 2nd Workshop on Formal Methods in Software Praclm:

March 1998.

[33] M. B. Dwyer, G. S. Avrunin. and J, C. Corbett. Patterns in property specifications

for finite-state venfication. In 2ist International Conference on Software Enqineerina

May 1999.

[34] M. B. Dwyer and L. A. Clarke. Data Sow analysis for verifying properties of concurrent

programs. In Proceedings of the ACM SIGSOFT '94 Symposinm on the Foundations

of Software Engineering, pages 62-75, Dec. 1994.

[35] E.A. Emerson and C.-L. Lei. Modalities for model checking: Branching time strikes

back. In Proceedings of the Twelfth Annual ACM Symposium on Principies of Pm-

gramming Languages, pages 84-96, New York, Jan. 1985. ACM.

102

[36] R. Elm8tr0m, P. G. Larsen, and P. B. Lassen, The IFAD VDM-SL toolbox: A practical

approach to formal specifications. ACM SIGPLAN Notices, 29(9):77-80, 1994,

[37] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of Finite-State

Concurrent Systems Using Temporal Logic. In Prvceedings of the tenth Annml ACM

Symposium on Prinaples of Programming Languages, 1983.

[38] E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Ung, K.L. McMillan, a.ul L.A.

Ness. Verification of the Puturebus+ Cache Coherence Protocol. In D. Agnew, L. Cla(!-

sen, and R. Camp<«ano, editors. The Eleventh International Symposium on Computer

Hardware Description Languages and their Applications, pages 5-20, Ottawa Canada

Apr. 1993. IFIP WG10.2, CHDL'93, IEEE COMPSOC, Elsevier Science Publishers

B.V., Amsterdam, Netherland.

[39] E. Emerson. Branching time temporal logics and the design of correct concurrent

programs, 1981.

[40] R. E. Fairley. Software Engineering Concepts. McGraw-Hill, New York New York

1985.

[41] G. V. Bochmann. Hardware specification with temporal logic: An example. IHEK

Transactions on Computers, C-31(3);46-57, 1982.

[42] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fair-

ness. Conference Record of the Seventh Annual ACM Symposium on Principles of

Programming Languages, Las Vegas, NV, 163-173, 1980.

[43] C. Ghezzi, M. Jazayeri, and D, Mandrioli. Fundamentah of Software EnginecHng

Prentice Hall, Englewood Cliffs, 1991.

[44] S. Gurgens, J. Lopez, and R. Peralta. Efficient detection of failure modes i„ electronic

commerce protocols. In DEXA Workshop, pages 850-857, 1999

[45] J. A. Hall. Seven myths of formal methods. IEEE Software, 7(5):11-19, 1990,

[46] M. Hamilton and S. Zeldin. Higher order software - a methodology for defining soft-

ware. Software Engineering, 2(l):9-32, 1976.

[47] Z. Har El and R. Kurshan. Software for analytical development of communications

protocols. AT&T Technical Journal, 69(l):45-59, Jan. 1990.

[48] I. J. Hayes, editor. Specification Case Studies. Prentice Hall International Series in

Computer Science, 2nd edition, 1993.

103

[49] M. G. Hinchey and J. P. Bowen. Applications of formal methods. Prentice Hall, first

edition, 1995.

[50] C. Hoare. Communicating sequential processes: Prentice-hall international, 1985.

[51] G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen London

1984.

[52] J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in

cesar. In Proceedings of the fifth International Symposium on Programming, 1981.

[53] C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall Interna-

tional, Englewood Cliffs, New Jersey, second edition, 1990. ISBN 0-13-880733-7

[54] W. M. Jr., C. D. Murta, S. V. A. Campos, and D. O. G. Neto. Sistemas de Comercio

Eletrônico, Projeto e Desenvolvimento. Campus, 2002.

[55] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with partitionod

transition relations. In A. Halaas and P.B. Denyer, editors. International Conference

on Very Large Scale Integration, pages 49-58, Edinburgh, Scotland, Aug. 1991. IFIP

Transactions, North-Holland.

[56] J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, and D.L. Dill. Symbolic model

checking for sequential circuit verification. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 13(4):401-424, Apr. 1994

[57] P. Kanellakis, S. Smolka, E. Finite, P. Three, and o Equivalence. Information and

computation, 1990.

[58] K.L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Prob-

lem. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1992.

[59] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell

Massachusetts, 1993.

[60] R. P. Kurshan. Computer-aided Verification of Coordinating Processes - The.

Automata-Theoretic Approach. Princeton Univ. Press, 1994.

[61] R. R- Lutz. Analyzing software requirements errors in safety-critical, embedded sys-

tems. Technical Report TR92-27, Iowa State University, Aug. 27, 1992.

[62] M. Fujita, H. Tanaka, and T. Moto-oka. Logic design assistance with temporal logic.

In C.J. Koomen and T. Moto-oka, editors, Proceedings of the Seventh International

Symposium on Computer Hardware Description Languages and Their Applications

pages 129-138, Amsterdam, 1983. IFIP, North-Holland.

104

[63] M.C. Browne and E.M. Clarke. SML: A high level language for the design and ver-

ification of finite state machines. In D. Borrione, editor, FYom HDL Descriptions to

Guaranteed Correct Circuit Designs, pages 269-292, Amsterdam, 1987. North-Holland.

[64] M.C. Browne, E.M. Clarke, and D.L. Dill. Checking the correctness of sequential

circuits. In Proceedings of the IEEE's International Conference on Computer Design,

pages 445-448, Port Chester, New York, 1985.

[65] M.C. Browne, E.M. Clarke, and D.L. Dill. Automatic circuit verification using tempo-

ral logic: Two new examples. In G.J. Milne and RA. Subrahmanyam, editors. Formal

Aspects in VLSI Design, pages 113-124, Amsterdam, 1986. North-Holland.

[66] M.C. Browne, E.M. Clarke, D.L. Dill, and B. Mishra. Automatic Verification of

Sequential Circuits Using Temporal Logic. IEEE Transactions on Computers, C-

35(12):1035-1044, 1986.

[67] K. McMillan. The smv system draft, 1992.

[68] W. Meira Jr., C. Murta, S. Campos, and D. Guedes. Comércio Eletrônico: Projeto

e Desenvolvimento de Sistemas. Edições SBC-Campus. Campus, Rio de Janeiro RJ

2002.

[69] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In Proceedings of the Annual Symposium on Logic in Computer Science,

pages 332-344. IEEE Computer Society Press, D.C., June 1986.

[70] O. Coudert, C. Berthet, and J.C. Madre. Verification of synchronous sequential ma-

chines using symbolic execution. In Proceedings of the International Workshop on

Automatic Verification Methods for Finite State Systems, volume 407 of Lecture Notes

in Computer Science, pages 365-373, Grenoble, France, June 1989. Springer-Verlag

Coudert, C. Berthet, and J.C. Madre. Verifying temporal properties of sequential

machines without building their state diagrams. In R. R Kurshan and E. M. Clarke,

editors, Proceedings of the 1990 Workshop on Computer-Aided Verification, June 199o!

[72] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy

their linear specification. In Proceedings of the Twelfth Annual ACM Symposium on

Principles of Programming Languages, pages 97-107, New York, Jan. 1985. ACM.

[73] P- Milgrom. The economics of competitive bidding: A selective survey. In L. Horwicz

D. Schmeidler, and H. Sonneschein, editors, 1985.

[74] R Milgrom. Auctions and bidding: A primer. Journal of Economic Perspectives

3:3-22, 1989.

105

[75] P. Milgrom and Robert Weber. A theory of auctions and competitive bidding. Eco„„.

métrica, 50:1089-1122, oct 1982.

[76] G. Paixão, W. M. Jr., V. Almeida, D. Menascé, and A. Pereira. Design and iniplc»-

mentation of a tool for measuring the performance of complex e-commerce sites. paK(«s

309-323, March 2000. Performance Tools 2000 - Motorola University, Illinois - USA.

[77] A. Pereira, B. Gontijo, T. Cangado, and W. Meira Jr. Replicação de dados om servi-

dores paralelos de comércio eletrônicos. In Anais do I Workshop em Sistemas Com-

putacionais de Alto Desempenho, pages 45-50, São Pedro - SP, Outubro 2000.

[78] A. Pereira, M. Song, G. Gorgulho, W. Meira Jr., and S. Campos. A formal method-

ology to specify e-commerce systems. In Proceedings of the 4th International Confer-

ence on Formal Engineering Methods, Lecture Notes in Computer Science, Shanghai

China, Oct. 2002. Springer-Verlag.

[79] A. Pereira, M. Song, G. Gorgulho, W. Meira Jr., and S. Campos. Uma meto.lol,,-

gia para verificação de modelos de sistemas de comércio eletrônico. In Proceedino.,

of the 5th WORKSHOP ON FORMAL METHODS (WMF'2002), Lecture Not,« in

Computer Science, Gramado, RS, Brasil, Oct. 2002.

[80] R. Cleaveland and J. Parrow and B. Steffen. The concurrency workbench: A

mantles based tool for the verification of concurrent systems. ACM Transactiom on

Programming Languages and Systems, 15(l):36-72, Jan. 1993.

[81] R. H. Hardin, Z. Har'El, and R. P. Kuishan. COSPAN. In Rajeev Alur and Thomas A

Henzmger, editors, Proceedings of the Eighth International Conference on Computer

Auled Verification CAV, volume 1102 of Lecture Notes in Computer Science page,

423-427, New Brunswick, NJ, USA, July/Aug. 1996, Springer Verlag.

[82] R. M. Burstall. Program proving as hand simulation with a little induction. In IFIP

Information Processing '74, pages 308-312, 1974.

[83] R. Milner. An algebraic definition of simulation between programs. In In Proceedings

of the Second Intemation Joint Conference on Artificial Intelligence, Sept. 1971.

[84] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in

Computer Science. Springer-Verlag, New York, 1980.

[851 R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation IEEE

Transactions on Computers, C-35(8):677-691, Aug. 1986.

106

[86] R.E. Bryant and C.-J.H. Seger. Formal verification of digital circuits using symbolic

ternary system models. In E.M. Clarke and R.P. Kurshan, editors, Pnceeding., of U,,

Workshop on Computer-Aided Verification (CAV90), volume 3 of DIM ACS Series m

Discrete Mathematics and Theoretical Computer Science. New York, 1991, American

Mathematical Society, Springer-Verlag.

[87] J. Rushby. Formal methods and their role in the certification of critical systems, 1995.

[88] S. Aggarwal, R.P. Kurshan, and K.K. Sabnani. A Calculus for Protocol Specification

and Validation. In Protocol Specification, Testing and Verification III, pages 19^34

Amsterdam, 1983. North-Holland.

[89] S. Bose and A.L. Fisher. Automatic Verification of Synchronous Circuits Using Sym-

bolic Simulation and Temporal Logic. In L.J.M. Claesen. editor, Proceedings of the

IMEC-IFIP Intematwnal Workshop on Applied Format Methods for Correct VLB!

Design, Nov. 1989.

[90] S. Campos, E. Clarke, W. Marrero and M. Minea. Verus: a tool for quantitative

analysis of flmte-state real-time systems. Workshop on Languages, Compilers and

Tools for Real-Time Systems, 1995.

[91] S. V. Campos. A Quantitative Approach to the Formal Verification of Real-Time

Systems. PhD thesis. School of Computer Science, Carnegie Mellon University, 1996.

[92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series

in Computer Science, 2nd edition, 1992.

[93] F. Systems. Fdr: A tool for checking the failures-divergence preorder of csp, 1999.

[94] M. Visa. Secure electronic transaction (set) specification book 1,2,3, 1997.

495] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal

of Finance, 16:8-37, mar 1961.

[96] W. Wang Z. Hidvégi, A. Bailey, and A. Whinston. E-process design and assurance

usmg model checking. In IEEE Computer, Oct. 2000.

[97] Y. Malachi and S. S. Owicki. Temporal specifications of self-timed systems In H. T.

Kung, B. Sproull, and G. Steele, editors, VLSI Systems and Computations., mi.

[98] Z. Har'El and R.P. Kurshan. Software for analytical development of communication

protocols. Techmcal report, AT&T Bell Laboratories, Murray Hill, NJ, Jan. 1990.

Appendix A

Source Code of Virtual Store Case

Study

A.l Application Level

1

2 — Virtual Store - Application Level

3 — Adriano Machado

4 — Version: 1.3

5

6 MODULE main

7

8 VAR

9 buyer; process buyer_agent(l); — buyer agent process

10 seller : process seller^gent (1); — seller agent process

11 item: process item(l,buyer.action, seller .action); — item process

12

13 SPEC EF (item.state = Not_Available)

14 SPEC EF (item.state = Available)

15 SPEC EF (item.state = Reserved)

16 SPEC EF (item.state = Sold)

17 SPEC EF (item.state = Purged)

18

19 SPEC EF (buyer.action = Reserve)

20 SPEC EF (buyer.action = Report)

21 SPEC EF (buyer.action = CanceLReserve)

22 SPEC EF (buyer.action = Buy)

23 SPEC EF (buyer.action = none)

24

25 SPEC EF (seller, action = Make_Available)

26 SPEC EF (seller.action = Purge)

27 SPEC EF (seller.action = Change)

28 SPEC EF (seller.action = none)

29

30 — Module that represents the item

31

32 MODULE iteni(itemid, actionl, action2)

33

34 VAR

35 state : {Not.Available, Available, Reserved, Sold, Purged};

36

37 ASSIGN

38

39 init (state) := Not-Available;

40

41 next (state) := case

42 state = Not-Available & action2=Make_Available: Available;

43 state = Available &: actionl=Report : Available ;

44 state = Available & actionl=Reserve : Reserved;

45 state = Available &: action2=Change : Available;

46 state = Available & action2=Purge : Purged;

47 state Reserved & actionl=Cancel_Reserve : Available;

48 state = Reserved & actionl=Buy : Sold;

49 1: state;

50 esac;

51

52 FAIRNESS running

53

54 — Module that represents the seller agent

55

56 MODULE seller-agent (seller Jd)

57

58 VAR

59 action: {Make-Available, Change, Purge, none}',

60

61 ASSIGN

62

63 init (action) := none;

64

65 next(action) := case

66 action Make_Available : \Müke.Available, Change, Purge,none}',

67 action Change . {Make-Available, Change, Purge,none}',

68 action — Purge ; {Make-Available, Change, Purge,none}\

69 action = none : {Make-Available, Change, Purge, none}\

70 1: action;

71 esac;

72

73 FAIRNESS running

74

75 — Module that represents the buyer agent

76

77 MODULE buyer_agent(id)

78

79 VAR

80 action: {Report, Reserve, CanceLReserve, Buy, none};

81

82 ASSIGN

83

84 init (action) := none;

85

86 next(action) := case

87 action Report : {Report,Reserve,Cancel-Reserve,Buy,none]\

88 action = Reserve : {Report,Reserve,Cancel-Reserve,Buy,none}\

action — CanceLReserve : {Report,Reserve,CanceLReserve,Buy,none}

action — Buy . {Report,Reserve,Cancel-Reserve,Buy,none}\

action — none . {Report, Reserve, Cancel-Reserve, Buy, none};

92 1: action;

93 esac;

94

95 FAIRNESS running

A.2 Functional Level

1

2 — Virtual Store — Functional Level

3 — Adriano Machado

4 — Version: 2.7

5

6 MODULE main

7

8 VAR

9 buyerl: process buyer_agent(1);

10 sellerl : process seller_agent (1);

11 prl: process product(l,buyerl.action, sellerl .action);

12 itl : process item(l,prl.itemJd,buyerl.action, sellerl .action);

13 it2 : process item(2,prl.itemJd,buyerl.action, sellerl .action)-

14

15 SPEC EF(prl.bits_array = 0)

16 SPEC EF(prl.bits_array = 1)

17 SPEC EF(prl.bits_array = 2)

18 SPEC AF(prl.bits_array = 2)

19 SPEC EF(prl.bits_array = 3)

20 SPEC EF(prl.itemJd = 0)

21 SPEC EF(prl.itemJd = 1)

22 SPEC EF(prl.itemJd = 2)

23 SPEC AG (prl.item Jd = 0 | prl.item Jd = 1 | prl.item Jd = 2)

24 SPEC AG (prl.item Jd = 0 | prl.item Jd = 1)

25 SPEC AG(prl.bits.array = 2 -> AX prl.item Jd = 2)

26 SPEC EF(it2.state = Available & buyerl.action=Reserve)

27 SPEC EF(it2.state = Available & buyerl.action=Reserve & prl.item Jd

28 SPEC EF(itl.state = Available k buyerl. action=Reserve k prl.item Jd

29

30 — First Level Properties

31 SPEC EF (itl.state = Not-Available)

32 SPEC EF (itl.state = Available)

33 SPEC EF (itl.state = Reserved)

34 SPEC EF (itl.state = Sold)

35 SPEC EF (itl.state = Purged)

36

Ill

37 SPEC EF (it2.state = Not .Available)

38 SPEC EF (it2.state = Available)

39 SPEC EF (it2.state = Reserved)

40 SPEC EF (it2.state = Sold)

41 SPEC EF (it2.state = Purged)

42

43 SPEC EF (buyerl.action = Reserve)

44 SPEC EF (buyerl.action = Report)

45 SPEC EF (buyerl.action = CancelJleserve)

46 SPEC EF (buyerl.action = Buy)

47 SPEC EF (buyerl .action = none)

48

49 SPEC EF (sellerl.action = Make_A.vailable)

50 SPEC EF (sellerl.action = Purge)

51 SPEC EF (sellerl.action = Change)

52 SPEC EF (sellerl.action = none)

53

54 — Consistency Examples

55 SPEC AG !(prl.inventory > 2)

56 SPEC AG !(prl.inventory < 0)

57 SPEC AG !(prl.inventory = 0 & prl.productlsAvailable = 1)

58 SPEC AG !(prl.inventory > 0 & prl.productlsAvailable = 0)

59 SPEC EF .'(prl.bits^rray = 2 & prl.itemJd=l)

60 SPEC EF !(prl.bits^rray = 1 & prl.itemJd=2)

61 SPEC EF !(prl.bits^rray = 0 & prl.itemJd != 0)

62 SPEC EF !(prl.bits_array = 3 & prl.itemjd = 0)

63

64 — Isolation Example

65 SPEC AG ((buyerl.action=Reserve & sellerl.action=Make_Available) — > AX ((prl.

inventory > 0 &: prl.productlsAvailable = 1) | (prl.inventory = 0 & prl.

productis Available = 0)))

66

67 — Atomicity Example

68 SPEC ((itl.state=Available & it2.state=Reserved k buyerl.action=Reserve & sellerl.

action=none) —> AX (itl.state=Reserved & prl.inventory = 0))

69

70 MODULE product(id_produto,opl,op2)

71

72 VAR

73 itemJd : 0..2;

74 inventory : 0..2;

75 bits_array : 0..3; — Each bit corresponds to an item

76 productlsAvailable: boolean;

77

78 ASSIGN

79

80 init (productlsAvailable) := 0;

81

82 init (bits_array) := 0;

83 init (itemJd) := 0;

84 init (inventory) := 0;

85

86 next (inventory) := case

87 op2 = Make_Available & inventory = 1 : inventory + 1;

88 op2 = Make_Available & inventory = 0 : inventory + 2;

89 opl = Reserve &: inventory > 0: inventory - 1;

90 opl = Cancel-Reserve & inventory < 2: inventory + 1;

91 1: inventory;

92 esac;

93

94 next(bits_array) := case

bits-array = 0 &: op2 = Make_Available & inventory = 0: bits.array + 3;

bits-array = 0 & opl = Cancel-Reserve : bits-array + itemJd;

bits-array = 1 & opl = Cancel-Reserve & itemJd =2: bits^rray + itemJd;

bits-array = 2 & opl = Cancel .Reserve & itemJd =1: bits-array + itemJd;

bits_array = 3 & opl = Reserve : bits_array - itemJd;

bits-array = 2 & opl = Reserve & itemJd =2: bits_array - itemJd;

bits-array = 1 & opl = Reserve & itemJd =1: bits.array - itemJd;

1: bits-array;

105 next (itemJd) := case

106 bits-array = 0 : itemJd = 0; — none of the items will be the target of the

action

107 bits-array = 1 : itemJd = 1; — action will be executed on item 1

bits.array = 2 : itemJd = 2; — action will be executed on item 2

95

96

97

98

99

100

101

102

103 esac;

104

113

bits_array — 3 : itemJd — {1,2]\ — action will be executed on item 1 or 2

110 1: itemJd;

111 esac;

112

113 next(productlsAvailable) := case

114 productlsAvailable = 0 &: op2=Make_Available & inventory <2:1;

115 productlsAvailable = 0 &: inventory >0:1;

116 productlsAvailable = 1 &: inventory = 0:0;

117 productlsAvailable = 0 & opl=Reserve : 0;

118 productlsAvailable = 0 &: op 1=Cancel .Reserve & inventory <2:1;

119 productlsAvailable = 0 &: opl=Buy : 0;

120 productlsAvailable = 0 & op2=Change : 0;

121 productlsAvailable = 1 & opl=Report : 1 ;

122 productlsAvailable = 1 & opl=Reserve & inventory = 1:0;

123 productlsAvailable = 1 & op 1=Cancel .Reserve : 1;

124 productlsAvailable = 1 opl=Buy : 1;

125 productlsAvailable = 1 & op2=MakeJVvailable : 1;

126 productlsAvailable = 1 & op2=Change : 1;

127 productlsAvailable = 0 & inventory = 0 & opl=none: 0;

128 productlsAvailable = 0 & inventory = 0 & op2=none: 0;

129 1: productlsAvailable;

130 esac;

131

132 FAIRNESS running

133

134 — Module that represents the item

135

136 MODULE item(id,iditem,opl,op2)

137

138 VAR

139 state : {Not.Available, Available, Reserved, Sold, Purged}-,

140 ASSIGN

141

142 init (state) := Not-Available;

143

144 next(state) := case

145 state = Not^Available k op2=Make.Available: Available;

146 state = Available & opl=Report : Available;

147 state — Available & opl—Reserve & id = iditem; Reserved;

148 state = Available & opl=Cancel_Reserve &: id = iditem: Available;

149 state = Available & opl=Buy : Available;

150 state = Available & op2=Make_Available : Available;

151 state = Available & op2=Change : Available;

152 state = Available & op2=Purge : Purged;

153 state = Reserved & opl=Report : Reserved ;

154 state = Reserved & opl=Reserve & id = iditem: Reserved;

155 state Reserved & opl=Cancel_Reserve & id = iditem: Available;

156 state = Reserved & opl=Buy & id = iditem: Sold;

157 state = Reserved & op2=Make_Available : Reserved;

158 state = Reserved & op2=Change : Reserved;

159 state = Sold & opl=Report : Sold;

160 state = Sold &c opl=Reserve : Sold;

161 state = Sold & opl=Cancel_Reserve : Sold;

162 state = Sold &: opl=Buy : Sold;

163 state = Sold & op2=Make_Available : Sold;

164 state = Sold & op2=Change : Sold;

165 1: state;

166 esac;

167

168 FAIRNESS running

169

170 — Module that represents the seller agent

171

172 MODULE seller .agent (id)

173

174 VAR

175 action: {Make.Available, Change, Purge, none};

176

177 ASSIGN

178

179 init (action) := Make_Available;

180

181 next (action) := case

182 action = Make_Available : {Change, Purge, none};

183 action = Change : {Change, Purge, none};

184 action = Purge : {Change, none};

115

185 action = none: {Change, Purge}\

186 1: action;

187 esac;

188

189 FAIRNESS running

190

191 — Module that represents the buyer agent

192

193 MODULE buyer .agent (id)

194

195 VAR

196 action: {Report, Reserve, CanceLReserve, Buy, none};

197

198 ASSIGN

199

200 init (action) := Report;

201

202 next(action) := case

action = Report : {Report,Reserve,Buy, none};

action = Reserve : {RepoH,CanceLReserve,Buy, none};

action = CanceLReserve : {RepoH, Reserve, none};

action = Buy : {Report, none};

action = none : {Report, Reserve, CanceLReserve, Buy, none};

1: action;

211 FAIRNESS running

A.3 Execution Level

1

2 — Virtual Store - Architectural Level

3 — Adriano Machado

4 — Version: 7.6

5

6 MODULE main

7

8 VAR

203

204

205

206

207

208

209 esac;

210

116

9 buyerl-wwwjsocket: boolean;

10 buyer2_www_socket: boolean

11 sellerl.wwwjsocket: boolean

12 www_shop_socket_l: boolean

13 www_shop_socket_2: boolean

14 www_shopjsocket_3: boolean

15 shop_www_socket_l: boolean

16 shop_www_socket_2: boolean

17 shop_www_socket_3: boolean

18 www_buyerl_socket: boolean

19 www_buyer2_socket: boolean

20 www_sellerl.socket: boolean

21

22 VAR

23 buyerl: process buyer_agent(l,www^ervj-esp.l,www^erv_resp.2,

www_buyerl^ocket,www_buyer2.socket,buyerl_wwwjocket, '

buyer2_www.socket,www^hop_socket_l ,www.shop.socket.2);

24 buyer2: process buyer_agent(2,wwwjserv_resp.l,www.servj-esp.2,

www.buyerl socket ,www_buyer2_socket .buyer 1 .www socket,

buyer2_www^ocket,www^hop.socket_l,www^hop.socket-2);
25 sellerl : process seller_agent (3,www^erv_resp.3,www_sellerl.socket,

www.shop jsocket_3);

26 www: process webServer(shop_www_socket_l,shop.www_socket.2,

buyerl -www .socket ,buyer2_www.socket, www .buyer 1 .socket,

www_buyer2.socket,www.shop^ocket.l,www.shop.socket_2'
buyerl.op.req.1, buyer2.opj:eq.2, sh.user.session.1, sh.user^ession.2,

shop_www.socket.3,sellerl_www.socket,www.sellerl.socket,
 www.shop.socket_3,sellerl^pj-eq_3);

27 sh: process shop(www^hop^cket.l,www^hop^cket J.www^ervjeq.l,

wwwjervjeq_2,wwwjhopjocket.3,www_servjeqJ,www.buyerljod«.l,
www_buyer2.socket,www.sellerl^ocket);

28 itl: process item(l,sh.itemJd,www.serv_req.l,wwwjservj-eq.2,www.serv.req.3

))

29 it2: process item(2,sh.itemJcl,www.serv.req.l,www.serv.req.2,www.serv.req.3

)>

30

31

32 ASSIGN

117

33 init (buyerl_www_socket) := 1;

34 init (buyer2_www_socket) := 1;

35 init (sellerl .wwwsocket) := 1;

36 init (shop_www.socket_l) := 0;

37 init (shop_www_socket_2) := 0;

38 init (shop_wwwjsocket_3) := 0;

39 init (wwwjshop^socket.l) := 0;

40 init (wwwjshopjsocket_2) := 0;

41 init (wwwjshop_socket_3) := 0;

42 init (www_buyerljsocket) := 0;

43 init (www_buyer2jsocket) := 0;

44 init (wwwjsellerljsocket) := 0;

45

46 DEFINE

47 www.serv_resp_l:= www.servj-esp.l;

48 wwwjservj:esp_2:= www.servj'esp_2;

49 www_serv_resp_3:= www.servj:esp_3;

50 www.servjreq_l;= www.servj-eq.l;

51 wwwjservj:eq_2:= www.servj:eq_2;

52 wwwjservj-eq-3:= www.servj-eq_3;

53 buyerl.opj-eq.l := buyerl.opj-eq.l;

54 buyer2_opj-eq_2 := buyer2.opj-eq_2;

55 sellerl_opj:eq-3 := sellerl .op_req_3;

56 sh_user^ession_l := sh. user_session_l ;

57 sh_userjsession_2 := sh. user .session _2 ;

58

59 — Novas Especificações

60 SPEC AG !(sh.in_use = 1 & sh.in.use = 2)

61 SPEC EF (sh.in.use = 0)

62 SPEC EF (buyerl.opjreq.l = ho)

63 SPEC EF (buyerl_opj:eq_l = sr)

64 SPEC EF (buyerl_opj:eq_l = br)

65 SPEC EF (buyer 1.op jeq.l = pa)

66 SPEC EF (buyerl_opj:eq_l = di)

67 SPEC EF (buyerl_opj-eq_l = ad)

68 SPEC EF (buyer 1.opj-eq_I = si)

69 SPEC EF (!buyerl.www_socket= 0)

70 SPEC EF (!buyerl_www_socket= 1)

118

71 SPEC EF (buyerl_www_socket= 1 | buyerl_www_socket= 0)

72 SPEC EF !(www_shop_socket_l= 1)

73 SPEC EF(buyerl_www_socket = 1)

74 SPEC EF(buyer2_www_socket = 1)

75 SPEC EF(sellerl_www_socket = 1)

76 SPEC EF(shop_www_socket_l = 1)

77 SPEC EF(shop_www_socket_2 = 1)

78 SPEC EF(shop_www_socket_3 = 1)

79 SPEC EF (www.shop jsocket_l = 1)

80 SPEC EF(www.shop_socket-2 = 1)

81 SPEC EF(wwwjshopjocket_3 = 1)

82 SPEC EF(www_buyerl socket = 1)

83 SPEC EF(www_buyer2_socket = 1)

84 SPEC EF(wwwjiellerl-socket = 1)

85 SPEC EF(buyerl.opj:esp_l = si)

86 SPEC EF(www.servj'esp_l = sl_resp)

87 SPEC EF(wwwjerv_req_l = sljreq)

88 SPEC EF(www_buyerl_socket=l & www.servj-esp_l = sl_resp)

89 SPEC AG(sh.user.session_l = home) -> EF (sh.user^ession.l = home)

90 SPEC AG(sh.user.session_l = home) -> EF (sh.user.session.1 = select)

91 SPEC AG(sh.user_session_l = home) -> EF (sh.user^ession.l = search)

92 SPEC AG(sh.user^ession_l = home) -> EF (sh. user .session 1 = browse)

93

94 SPEC EF(buyerl.opj:eq_l = ho)

95 SPEC EF(buyerl.opj:eq_l = si)

96 SPEC EF(buyerl.opj-eq_l = sr)

97 SPEC EF(buyerl.opj:eq_l = br)

98

99 SPEC EF (www.servj:eq_l = hojreq)

100 SPEC EF (www.servjreq.l = slj:eq)

101 SPEC EF (www.servj-eq.l = srj-eq)

102 SPEC EF (www.servjreq.l = brjreq)

103

104 SPEC AG(sh.user^ession.l = home) -> EX (sh. user session _1 = home)

105 SPEC AG(sh.user^ession.l = home) -> EX (sh.user.session.1 = select)

106 SPEC AG(sh.user.session_l = home) -> EX (sh.user.session.1 = search)

107 SPEC AG(sh.user.session_l = home) -> EX (sh.user^ession.l = browse)

108

I

119

109 SPEC EF (sh.user_session_l = home k www_serv_req_l = hoj-eq & www_shopjsocket 1

=1)

110 SPEC EF (sh.user_session_l = home &: www_servj-eq_l = sl_req & www^hop_socket 1

=1)

111 SPEC EF (sh.user_session_l = home & www_servj-eq_l = srjreq & www^hop_socket 1

=1)

112 SPEC EF (sh.user_session_l = home & www_serv_req_l = br_req & wwwjshop^ocket 1

=1)

113

114 SPEC AG(sh.user^ession_l = home & www^erv.req_l = hoj-eq & www_shop_socket.l

=1) —> EX (sh.user_session_l = home)

115 SPEC AG(sh.user^ession_l = home & www^erv_req_l = sl_req & www^hop^ocket.l

=1) —> EX (sh.user_session_l = select)

116 SPEC AG(sh.userjession_l = home & www_serv_req_l = sr_req & www^hopjsocket.l

=1) —> EX (sh.user_session_l = search)

117 SPEC AG(sh.user^ession_l = home & www^erv_req.l = brj-eq & www^hop_socket.l

=1) —> EX (sh.user_session_l = browse)

118

119 SPEC AG(sh.user^ession_l = search) -> EX (sh.user^ession_l = select)

120 SPEC AG(sh.user^ession_l = browse) -> EX (sh.user_session.l = select)

121

122 SPEC EF (sh.userjsession.l = select)

123 SPEC EF !(shop_www_socket_l= 1)

124 SPEC EF !(www_buyerljsocket = 1)

125 SPEC AG((buyerl.op_resp_l = ho & buyerl_www_socket=l) -> EF (buyerl_op_req 1

= H)

126 SPEC AG((buyerl.opj-esp_l = ho & buyerl.www^ocket=l) -> EF (buyerl.op_req.l

 =sr))

127

128 SPEC EF (www_serv_req_l=ad_req)

129 SPEC EF (www_serv_req_2=ad-req)

130 SPEC EF (sh.in-use = 1)

131 SPEC EF (sh.in.use = 2)

132

133 — Exemplos de CONSISTÊNCIA

134 SPEC AG !(sh.inventory > 2)

135 SPEC AG !(sh.inventory < 0)

136 SPEC AG (sh.inventory = 0) -> AX (sh.productlsAvailable = 0)

120

137 SPEC AG (sh.inventory > 0) -> AX (sh.productlsAvailable = 1)

138

139 —Exemplo de ATOMICIDADE

140 — Existiam 2 itens, sendo (1 livre , 1 vendido)

141 Comprador pediu para comprar produto, então se item tornar-se alocado,

obrigatoriamente

142 a quantidade do produto deverah se tornar O, ou então nao foi atomico.

143 SPEC AG((itl.state=Available & it2.state=Reserved & buyerl.op_req_l=ad & !buyer2.

op_req_2=ad) -> AX (itl.state=Reserved k sh.inventory = 0))

144

145 SPEC AG !(sh. user .session _l=select & EX (sh.user^ession_l=pay))

146 SPEC AG !(sh.user_session_2=select & EX (sh. user session 2=Dav))

147

148 — Modulo que representa o servidor de transacao do servidor de comercio eletrônico

149

150 MODULE shop(www^hop^ocket.l, www^hop^ocket.2,www^ervj-eq.l,

www^ervj:eq.2, www_shop^ocket_3, www^ervj-eq.3, www.buyerl'^ocket,

www_buyer2_socket ,www jsellerl jsocket)

151

152 VAR

153 user^ession_l : {home, select, search, browse, add, pay, error);

154 user_session_2 : {home, select, search, browse, add, pay, error};

155 shop_www_socket_l: boolean;

156 shop_www_socket_2: boolean;

157 shop_www_socket_3: boolean;

158 in_use : 0..2;

159 itemJd : 0..2;

inventory :_0.^2;

161 bits_array ; 0..3; — cada item eqüivale a um bit

162 productlsAvailable: boolean;

163

164 ASSIGN

165 init (userjsession.l) ;= home;

166 init (userjsession_2) := home;

167 init(in_use) := 0;

168 init (bits_array) := 3;

169 init (item Jd) := 0;

170 init (inventory) := 2;

171 init (productlsAvailable) := 1;

172

173 next (productlsAvailable) := case

174 productlsAvailable = 0 & inventory >0:1;

175 productlsAvailable = 1 & inventory = 0:0-

176 productlsAvailable = 0 & www_serv_req_l=ad_req : 0;

177 productlsAvailable = 0 & www^erv_req_2=ad_req : 0;

178 productlsAvailable = 0 & www_serv_req_l=dij-eq k inventory <2:1;

179 productlsAvailable = 0 & www_servj-eq.2=dij-eq & inventory <2:1;'

180 productlsAvailable = 0 &: www_serv_req.l=pa_req : 0;

181 productlsAvailable = 0 & www^erv_req_2=pa_req : 0;

182 productlsAvailable = 1 &: wwwjserv_req_l=br_req • 1 •

183 productlsAvailable = 1 & www_serv_req_2=br_req • 1 •

184 productlsAvailable = 1 & www_servj:eq.l=adj-eq & inventory = 1 & in use

= 1:0;

185 productlsAvailable = 1 & www^erv_req.2=adj:eq k inventory = 1 & in use

= 2:0;

186 productlsAvailable = 1 & www_serv_req_l=dij-eq : 1;

187 productlsAvailable = 1 & www_serv_req_2=di_req : 1'

188 productlsAvailable = 1 &: www_serv_req_l=pa_req : 1;

189 productlsAvailable = 1 & wwwjerv_req.2=pa_req : 1;

190 1: productlsAvailable;

191 esac;

192

193 next (inventory) := case

194 www^ervj-eq.1 = adj-eq & inventory > 1 & www^hop^cket.l=l: inventory

J95 www^ervj-eq.1 = ad^eq k inventory = 1 & i„.„5e=l & ,vww^hop^ocket.l

=1 : inventory — 1;

196 www^rvjeqJ = adj-eq & inventory > 1 & www^l,op^cket.2=l: inventory

197 www^ervjeq J = adj:eq & inventory = 1 & in.use=2 k www^hop^ocl<et.2

=1: inventory — 1;

198 www^ervjeq.1 = dijeq & inventory < 2 & wwwjhopjocket.l=l: inventory

199 www^e^j-eq^ = di_req k inventory < 2 k www^l,op^ocket-2=l: inventory

200 1: inventory;

122

201 esac;

202

203 next(bits_array) := case

204 bits-array = 0 & www^rvj-eq.1 = dijeq k www^hop.socket.l=l: bitsj,rray

+ itemJd;

205 bits^ray = 1 & www^erv^.l = dUeq & itemJd =2 & www^hopjiocket.l

=1: bits_array + itemJd;

206 bits.array = 2 k www^ervjeq.l = dijeq k itemJd =1 k www.shop^ocliet.1

=1: bits_array + itemJd;

207 bits_array = 0 k www^ervjeqJ = dijeq k ww«r^hop^cket-2=l: bits.array

+ itemJd;

208 bits^ray = 1 k www^ervjeqJ = dijreq k itemJd =2 k www^hop^ocket.2

=1: bits_array + itemJd;

209 bits^rray = 2 k ww«-^erv^_2 = di^eq k itemJd =1 k ww^hop^ckel_2

=1: bits_array + itemJd;

210 bits^rray = 3 k www^rvjeq.l = adjeq k www^hop^ocket.l=l: bits.«rr«y

— itemJd;

211 bits_array = 2 k ww^ervjeq.I = ad^eq k itemJd =2 k ww„^l,op^c.ck.t.l

=1: bits_array - itemJd;

212 bits^rray = 1 k w»,v^ervjreq.l = ad^ k itemJd =1 k ww»-^l,op^ocket.l

=1: bits_array - itemJd;

213 bits-array = 3 k www.servj-eq.2 = ad_req k ww^hop^ocket.2=l: bits_array

— itemJd;

214 bits.array = 2 & w^rvjeqJ = ad^eq k itemJd =2 k www^hop_socket.2

=1: bits_array - itemJd;

215 bits.array = 1 k www^rv^eqj = ad.req k itemJd =1 k «-ww^hop^ocket 2

=1: bits_array - itemJd;

_J216 1: bits_array;

217 esac;

218

219 next(itemJd) := case

220 bits^rray = 0 : itemJd = 0; — ãno áser feita çãao sobre itens

221 bits^ray = 1 : itemJd = I; — çãao áser realizada sobre item 1

222 bits^ray = 2 ; itemJd = 2; — çãao áser realizada sobre item 2

223 bits^rray = 3 : itemJd = {I.S}; — çãao áser realizada sobre item 1 ou 2

224 1: itemJd;

225 esac;

226

123

227 next(in_use) := case

228 in_use = O & www^erv_req_l=adj-eq & www_serv_req_2=ad & inventory

<= 2: {1,2}-

229 in.use = O & www_serv_req_l=adjreq k inventory <= 2: 1;

230 in.use = O &: wwwjservj:eq_2=ad_req k inventory <= 2: 2;

231 in.use = 1 & wwwjservj:eq_l=dij:eq : 0;

232 in.use = 1 & www.servj:eq_l=paj-eq : 0;

233 in.use = 2 k www.servj:eq_2=paj:eq : 0;

234 in.use = 2 k www.servj-eq.2=dij:eq : 0;

235 1 : in.use;

236 esac;

237

238 next(userjsession.l) := case

239 user.session.1 = home k www.servj-eq.l=hoj-eq k www.shop.socket.l=l :

' home;

240 user.session.1 = home k www.servj:eq.l=slj-eq k www^hop.socket_l=l :

select;

241 user.session.1 = home k www.servjeq.l=srj-eq k www.shop.socket.l = l :

search;

242 user.session.1 = home k www.servjeq.l=brj-eq k www.shop.socket.l=l :

browse;

243 user^ion_l = select k wwjerv^.l=hojeq k wwwjhopjocket_l=l :

home;

244 user.session.1 = select k www^ervjeq.l=srj:eq k www.shop.socket.l=l :

search;

245 user^ssion.1 = select k www^tvjeq.l=adjreq k wwwjhopjocket.l=l k

next(productIsAvailable)=l k in_use=0: add;

24 6 user.session.1 = select k www.servjeq.l=ad_req k www_shop.socket.l=l k

next(productIsAvailable)=l k in.use=l; add;

247 user.session.1 = select k www.servj:eq.l=adj-eq k www_shop.socket.l=l k

next(productIsAvailable)=0 : error;

248 user^ionJ = search k www_servjeq.l=srjeq k wwwjhopjocket_l=I :

search;

249 user_session.l = search k wwwjervjeq_l=hojeq & wwwjhopjocket.l=l :

home;

250 user .session .1 — search k www.servj:eq_l=slj:eq k wwwjshop.socket_l=l •

select;

251 user^ession.1 = search k www^rvjeq.l=brje<i & wwwjhopjocket.l=l :

I

browse;

252 user_session_l = browse & www_serv_req_l=br_req & www^hop_socket.l=l

browse;

253 user_session_l = browse &: www_serv_req_l=ho_req & www_shopjsocket 1 = 1

home;

254 user_session_l = browse k www_serv_req_l=sr_req & www^hop^ocket_l=l

search;

255 user_session_l = browse & www_serv_req_l=sl_req & www_shop_socket_l=l

select;

256 user^ession_l = add & www_serv_req_l=pa-req & www_shopjocket.l=l : p

257 user_session_l = add & www_serv_req_l=dij:eq & www^hopjocket.l = l ;

home;

258 user_session_l = add k www_serv_req_l=sr_req & www^hop^ocket_l=l :

search;

259 user_session_l = add & www_serv_req_l=brj-eq & www^hop^ocket_l=l :

browse;

260 user_session_l = pay & www_servj:eq_l=hoj-eq & www^hop_socket_l=l :

home;

261 user_session_l = error: home;

2g2 1- user_session_l ;

263 esac;

264

265 next(shop_wwwjsocket_l) := case

206 shop_wwwjsocket_l = 0 & wwwjshopjsocket.l = 1: 1;

267 shop_www_socket_l = 1 & www_buyerl.socket = 1: 0;

2gg 1: shop_www_socket_l;

269 esac;

270-

271 next (user session := case

272 user_session-2 = home & www^ervj:eq_2=hoj-eq k www^hop_socket_2=l :

home;

273 user_session_2 = home k www^ervj-eq_2=sljeq k www^hop^ocket.2=l :

select;

274 user_session_2 = home k www^ervj:eq_2=sr_req k www^hop^ocket 2=1 ■
search;

275 user_session_2 = home k www_servj:eq_2=br_req k www_shopsocket_2=1 •

browse;

276 user_session_2 = select k www_serv_req_2=ho_req k www^hopjsocket_2=l •

I I

27'

27Í

27£

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

125

home;

userjsession_2 = select & www_serv.reqJ2=sr_req Sc www_slu)pj<ockot.2=l :

search;

user_session_2 = select & www_serv_req_2=ad_req & www_shop_socket_2=l &

next(prociuctIsAvailable)=l & in.use=0: add;

user_session_2 = select & www_serv_req_2=ad_req & www_shop_socket_2=l &;

next(productIsAvailable)=l & in.use=2: add;

user_session_2 = select & www_serv_req_2=ad_req www_shop_socket_2=l &

next{productIsAvailable)=0 : error;

user^ession_2 = search & www_serv_req_2=sr.req & www^hop-socket.2=l :

search;

user_session_2 = search & www_serv_req_2=ho_req & www_shopjsocket_2=l :

home;

user_session_2 = search & wwwjserv_req_2=sl_req & www_shop_socket_2= 1 :

select;

user^ession_2 = search & www^erv.req_2=br_req & www .shop jsocket.2=l :

browse;

user.session_2 = browse & www_serv_req_2=br_req & wwwjshopjiocket_2=l :

browse;

user.session_2 = browse & www^ervj-eq_2=hoj"eq &: www_shop.socket-2=l :

home;

userjession_2 = browse & wwwjserv_req.2=sr_req & www^hop.socket-2=l :

search;

user_session_2 = browse & www_serv_req_2=sl_req & www.shopjsocket_2=l :

select;

user .session _2 = add & wwwjerv_req_2=paj-eq & www.shop.socket_2=l : pay;

user.session_2 = add & www.serv_req_2=dij"eq & www^hopjsocket_2=l :

home;

user.session_2 = add & www^erv.req_2=srj-eq & www^hopjiocket-2=l :

search;

user .session _2 = add www.serv_req.2=brj"eq & www.shop.socket_2=l :

browse;

user.session_2 = pay Sc www.servjreq.2=hoj'eq Sc www.shop.socket_2=l :

home;

user.session_2 = error: home;

1: user .session _2 ;

126

298 next(shop_www_socket_2) := case

299 shop_www^ocket_2 = O & www_shopjsocket.2 = 1: 1;

300 shop_www_socket_2 = 1 & www_buyer2jocket = 1: 0;

301 1: shop_wwwjsocket_2;

302 esac;

303

304 next(shop_www_socket_3) := case

305 shop_wwwjsocket_3 = O & www_shopjsocket_3 = 1:1;

306 shop_www^ocket_3 = 1 & www^ellerlsocket = 1:0;

307 1: shop_wwwjsocket_3;

308 esac;

309

310 FAIRNESS running

311

312

313 — Modulo que representa o item, objeto alvo das operacoes do agente comprador

314

315 MODULE item(id,iditem,www_serv_req.l, wwwjerv_req.2, www^ervj-eq 3)

316

317 VAR

318 State : {Reserved, Sold, Available}-,

319

320 ASSIGN

321 init (state) := Available; — coloque isso como padrao

322

323 next (state) := case

324 state = Available & www_serv_req.3=ds_req : Available;

_325 state = Available & www_servj:eq_3=ch_req : Available;

326 state = Reserved & www^ervj-eq_3=ds_req : Reserved;

327 state = Reserved & www_serv_req_3=chj-eq : Reserved;

328 state = Sold & www_serv_req_3=ds-req : Available;

329 state = Sold k www^erv_req_3=ch_req : Sold;

330 state = Available & www_serv_req_l=br_req : Available;

331 state = Available & www^ervjeq.l=adj:eq & id = iditem: Reserved;

332 state = Available & www^ervj-eq.l=di_req & id = iditem: Available;'

333 state = Available & wwwjservj:eq_l=pa_req : Available;

334 state = Reserved & www_serv_req_l=br_req : Reserved ;

335 state = Reserved & www^erv_req.l=adj:eq & id = iditem: Reserved;

127

336 state = Reserved k www_serv_req_l=di_req & id = iditem: Available;

337 state = Reserved & wwwjserv_req_l=pa_req & id = iditem: Sold;

338 state = Sold www_serv_req_l=br_req : Sold;

339 state = Sold k www_serv_req_l=ad_req : Sold;

340 state = Sold k www_servjreq_l=di_req : Sold;

341 state = Sold k wwwjserv_req_l=pa_req : Sold;

342 state = Available k www_serv_req_2=br_req : Available;

343 state = Available k www_servj:eq_2=ad_req & id = iditem: Reserved;

344 state = Available k www.serv_req_2=dij-eq & id = iditem: Available;

345 state = Available k www_serv_req_2=pa_req : Available;

346 state = Reserved k wwwjserv_reqJ2=br_req : Reserved •

347 state = Reserved k www^erv_req_2=ad_req & id = iditem: Reserved;

348 state = Reserved k www^erv_req_2=dij-eq k id = iditem: Available;

349 state = Reserved k wwwjserv_req_2=pa_req & id = iditem: Sold;

350 state = Sold k www_serv_req_2=br_req : Sold;

351 state = Sold k www_serv_req_2=ad_req : Sold-

352 state = Sold k www^erv_req_2=di_req : Sold;

353 state = Sold k wwwjserv_req_2=pa_req : Sold;

354 1 : state;

355 esac;

356

357 FAIRNESS running

358

359

360 — Modulo que representa o servidor WWW do servidor de comercio eletrônico

361

362 MODULE webServer(shop-www^cket.l,shop.www^cket^,buyerl.ww«r_socket

 ''">'®t2-www^ocket,www.buyerl^ocket.www.buyer2 jocket,www jhop socket' 1

wwwjhop^ocket.2,buyerl.opj:eq.l, buyer2.opjeq.2, sh.userjession.I,

sh.userjessionJ, shop-www^cket.3, sellerl.wwwjiocket, www^ellerüocket,

www_shop_socket_3, sellerl_opjeq_3)

363

364 VAR

365 servj-eq.1: {ho.reg, sLreq ^ sr.ro;, br.req, ai.nq, di.nq, pareq]-

366 serv.resp.1: {ho.re,p, ,Uresp , sr.r^sp, br.resp, adLnsp, , pa.™p,

er.resp};

367 serv-reqJ2: {ho.reg, sLreg , sr.req, br.req, ad.req, dLreq , pa.req}-

368 serv.resp_2: {ho.reap, sLresp , sr.resp, br.resp, ad.resp diresn 1.
> ^^-resp , pa.resp,

er.resp};

369 serv_req_3 : { ds.req, ch-req};

370 serv_resp_3: {ds^resp, c/i_resp};

371

372 ASSIGN

373 init (serv_req_l) := ho_req;

374 init (serv_req_2) := ho-req;

375 init (serv_req_3) := ch_req;

376 init (serv_resp_l) := ho_resp;

377 init (serv_resp_2) := ho_resp;

378 init (serv_resp_3) := ch_resp;

379

380 next(serv_req_l) := case

381 buyerl_op_req.l = ho & buyerl_www^ocket=l : hoj-eq;

382 buyerl_op_req_l = sl & buyerl_www^ocket=l : sl_req;

383 buyerl_op_req_l = sr & buyerl_www^ocket=l : sr_req;

384 buyerl_op_req_l = br & buyerl_wwwjsocket=l : br_req;

385 buyerl_op_req_l = ad & buyerl_www_socket=l : aci_req;

386 buyerl_op_req_l = di & buyerl_www^ocket=l : dij-eq;

387 buyerl_op_req_l = pa & buyerl_www^ocket=l : pa_req;

388 1: serv_req_l;

389 esac;

390

391 next(www_shop_socket-l) := case

392 www_shop^ocket_l = O & buyerl_www_socket = 1:1-

393 www_shopjsocket.l = 1 & shop.www^ocket.l = 1:0-

394 1: www_shop_socket_l;

__395^ esac;

396

397 next(serv_req_2) := case

398 buyer2.opjreq_2 = ho & buyer2_www_socket=l : ho_req;

399 buyer2_op_req_2 = sl & buyer2_www^ocket=l : sljeq;

400 buyer2_op_req_2 = sr & buyer2.www_socket=l : srjeq;

401 buyer2_op_req_2 = br & buyer2_www_socket=l : br_req;

402 buyer2_op_req_2 = ad & buyer2_www_socket=l : ad_req;

403 buyer2_op_req_2 = di & buyer2_www_socket=l : di-req;

404 buyer2_op_req_2 = pa & buyer2_www_socket=l : pa-req;

405 1: serv_req_2;

406 esac;

407

408 next(www_shop_socket_2) := case

409 www_shopjsocket_2 = 0 & buyer2_www_socket = 1: 1;

410 www_shop_socket_2 = 1 & shop_wwwjsocket_2 = 1:0;

411 1: www^hop_socket_2;

412 esac;

413

414

415 next(serv_resp_l) := case

416 next(sh_user_session_l) — home & shop_www_socket_l=l : ho_resp;

417 next(sh_user^ession_l) = select & shop_www^ocket_l=l : sUesp;

418 next(sh_user_session_l) = search & shop_www_socket_l=l : sr_resp;

419 next(sh_user_session_l) = browse & shop_www_socket_l=l : br_resp"

420 next(sh_user_session_l) = home & shop.www^ocket_l=l : ho_resp;

421 next(sh_user_session_l) = search & shop_www^ocket_l=l : sr_resp';

422 next(sh_user_session_l) = add & shop_www_socket_l=l : adjresp'

423 next(sh_user_session_l) = add & shop_wwwjsocket_l=l : ad_resp'

424 next(sh_user_session.l) = error & shop_www^ocket_l = l : er_resp;

425 next(sh_user_session_l) = search & shop_www^ocket_l=l : sr_resp'

426 next(sh_user^ession_l) = home & shop.www^ocket_l=l : ho_resp;'

427 next(sh_user_session_l) = select & shop_wwwjsocket_l=l : sl_resp'

428 next(sh_user_session_l) = browse & shop_www^ocket.l=l : brjesp;

429 next(sh_user_session_l) = browse & shop.www_socket_l=l : br_resp;

430 next(sh_iiser_session_l) = home & shop_www_socket_l=l : ho_resp'

431 next(sh_user_session_l) = search & shop_www_socket_l=l : sr_resp;

432 next(sh_user_session_l) = select & shop_www_socket_l=l : sl_resp-

 -433 iiext(sh_user_session_l) = pay h shop_www_socket_l=l : pa_resp;

434 next(sh_user_session_l) = home & shop_www_socket_l=l : ho_resp;

435 next(sh_user_session.l) = search & shop.wwwjocket-l=l : srj-esp;

436 next(sh_user_session_l) = browse & shop_www_socket_l=l : br_resp-

437 next(sh_user-session_l) = home & shop_www_socket.l=l : ho_resp; '

438 next(sh_user^ession_l) = home & shop.www_socket_l=l : hoj-espi

439 1: serv_resp.l;

440 esac;

441

442 —next(serv_resp_l) := case

443 sh_user_session_l = home & next(sh_user_session_l) = home &

130

shop_www_socket_l=l : ho_resp;

444 sh_user_session_l = home & next(sh_user_session_l) = select k

shop_www_socket_l=l : sljresp;

445 sh_user_session_l = home & next(sh_userjsession_l) = search k

shop_www_socket_l=l : sr_resp;

446 sh_user_session_l = home k next(sh_user^ession_l) = browse k

shop_www_socket_l=l : br_resp;

447 sh_user_session_l = select k next(sh_user^ession_l) = home k

shop_www_socket_l=l : ho_resp;

448 sh_user_session_l = select k next(sh_user_session_l) = search k

shop_www^ocket_l=l : sr_resp;

449 sh_user^ession_l = select k next(sh_user_session_l) = add k

shop_www_socket_l=l : ad_resp;

450 sh_user_session_l = select k next(sh_user_session_l) = add k

shop_www_socket_l=l : adjesp;

451 — sh_user^ession_l = select k next(sh_user^ession_l) = error k

shop-www_socket_l=l : er_resp;

452 sh_user_session_l = search k next(sh_user_session_l) = search k

shop-wwwjsocket_l=l : sr_resp;

453 — sh_user_session_l = search k next(sh-user^ession.l) = home k

shop_www_socket_l=l : ho_resp;

454 sh_user_session_l = search k next(sh_user_session_l) = select k

shop_www_socket-l=l : sl_resp;

455 — sh_user^ession_l = search k next(sh.user^ession_l) = browse k

shop_www-Socket_l=l : br_resp;

456 — sh_user_session_l = browse k next(sh.user^ession_l) = browse k

shop_www_socket_l=l : br_resp;

 457 sh_user_session_l = browse &LJiext(sh_user_session_l) = home k

shop-www_socket_l=l : ho_resp;

458 — sh_user_session_l = browse k next(sh_userjession_l) = search k

shop_www_socket_l=l : sr_resp;

459 sh_user_session_l = browse k next(sh_user^ession_l) = select k

shop_wwwjsocket_l=l : sl_resp;

460 sh_user_session_l = add k next{sh_userjession_l) = pay k shop.www_socket 1

=1 : pa_resp;

461 sh_user_session_l = add k next(sh_user_session_l) = home k shop.www .socket 1

=1 : ho_resp;

462 sh_userjession_l = add k next(sh_userjession_l) = search k

131

shop-www_socket_l=l : sr_resp;

463 — sh_user_session_l = add k next(sh_user_session-l) = browse &

shop.wwwjsocket_l=l : br_resp;

464 sh_user_session_l = pay êí next(sh_user_session_l) = home & shop_www_socket-l

=1 : ho_resp;

465 — sh_user_session_l = error & next(sh-user_session_l) = home &

shop_www_socket_l=l : ho_resp;

466 — 1: serv_resp_l;

467 —esac;

468

469

470 next(www_buyerl_socket) := case

471 www-buyerlsocket = O & shop_www_socket-l = 1:1;

472 www-buyerl .socket = 1 & buyerl.www^ocket =1:0;

473 1: www-buyerl.socket;

474 esac;

475

476 next(servj:esp_2) := case

477 next(sh_user.session.2) = home & shop.www^ocket.2=l : ho_resp;

478 next(sh.user.session_2) = select & shop.wwwjocket.2=l : slj-esp;

479 next(sh.usersession.2) = search & shop.www^ocket_2=l : srj-csp;

480 next(sh_user.session_2) = browse Sc shop.www.socket.2=l : brj-esp;

481 next (sh.user .session _2) = home & shop.www socket .2=1 : hojesp;

482 next(sh.user.session.2) = search & shop.www_socket_2=l : srj-esp;

483 next(sh.user.session_2) = add & shop.www.socket.2=l : adj-esp;

484 next(sh.userjsession.2) = add & shop.wwwjocket_2=l : ada-esp;

485 next(sh.user.session_2) = error & shop.www.socket_2=l : er.re8p;

486 next(sh.user.session.2) = search & shop.www.socket.2=l : srjesp;

487 next(sh.user.session.2) = home & shop.www.socket.2=l : hoj-esp;

488 next(sh.user.session_2) = select & shop.www.socket.2= 1 : slj-esp;

489 next(sh.user.session.2) = browse & shop.www.socket.2=l : br-rcsp;

490 next(sh.userjession.2) = browse & shop.www.socket.2=l : brj-esp;

491 next(sh-user.session.2) = home k shop.wwwjocket.2=l : hoj-esp;

492 next(sh.user.session.2) = search & shop.wwwjocket.2=l : srj-esp;

493 next (sh.user.session.2) = select Sc shop.www.socket.2=l : slj-esp;

494 next(sh.user.ses8Íon-2) = pay & shop.www.socket.2=l : pa_resp;

495 next(sh.u8er_session.2) = home & shop.www.socket.2=l : hoj-esp;

496 next(sh.user.session.2) = search & shop.www.socket_2=l : sr.resp;

^^97 next(sh_user_session_2) — browse & shop_www_socket_2=l : br_resp;

498 next(sh_user_session_2) = home & shop_www^ocket_2=l : ho_resp;

499 next(sh_user_session_2) = home & shop_wwwjsocket_2=l : ho_resp;

500 1: serv_resp_2;

501 esac;

502

503 —next(serv_resp_2) := case

504 sh_user_session_2 = home & next(sh_user_session_2) = home &

shop.www^ocket_2=l : ho_resp;

505 sh_user_session_2 = home k next(sh_user_session_2) = select k

shop_www^ocket_2=l : sl_resp;

506 sh_user_session_2 = home & next(sh_user_session_2) = search k

shop_www^ocket_2=l : sr_resp;

507 sh_user_session_2 = home & next(sh_user_session_2) = browse &

shop_www_socket_2=l : br_resp;

508 sh_user_session_2 = select k next(sh_user_session_2) = home k

shop_www_socket_2=l : ho_resp;

509 sh_user_session_2 = select k next (sh.user .session _2) = search k

shop_wwwjsocket_2=l : srj-esp;

510 sh_user.session_2 = select k next (sh.user_session_2) = add k

shop_www.socket_2=l : adjesp;

sh_user^ession_2 = select k next (sh .user session _2) = add k

shop_wwwjsocket_2=l : ad_resp;

512 — sh_user.session.2 = select k next(sh.user.session.2) = error k

shop_wwwjsocket.2=l : erj-esp;

513 — sh.user.session.2 = search k next(sh_user^ession.2) = search k

shop.www.socket-2=l : srjresp;

514 —sh.user.sessioii_2 = search & next(sh_user.session_2) = home k

shop.www.socket.2=1 : hojresp;

515 sh.user.session.2 = search k next(sh.userjsession_2) = select k

shop.wwwjsocket_2=l : sljresp;

516 — sh_user.session.2 = search k next(sh_user.session_2) = browse k

shop_www.socket_2=l : brjresp;

517 sh.user.session.2 = browse k next(sh_user.session_2) = browse k

shop.wwwjsocket_2=l : brjresp;

sh.user.session.2 = browse k next(sh_userjsession-2) = home k

shop.www.socket_2=l : hojresp;

sh_user.session.2 = browse k next(sh.user.session_2) = search k

133

shop_wwwjsocket_2=l : sr_resp;

520 — sh_user_session_2 = browse k next(sh.user_session_2) = select k

shop_wwwjsocket_2=l : sl_resp;

sh_user_session_2 = add & next(sh.user.session_2) = pay & shop_www_socket_2

=1 : pajresp;

sh_user.session_2 = add k next(sh_userjsession_2) = home k shop_www_socket_2

=1 : hojresp;

523 — sh_user.session_2 = add k next(sh_user_session_2) = search k

shop_wwwjocket_2=l : srj-esp;

524 — sh_user_session.2 = add k next(sh_user^ession_2) = browse k

shop_www^ocket_2=l : brj-esp;

525 — sh_user jession_2 = pay k next(sh_user^ession_2) = home k shop_www^ocket-2

=1 : hojresp;

526 — sh_user^ession_2 = error k next(sh_userjsession_2) = home k

shop_wwwjsocket_2=l : hojresp;

527 — 1; serv_resp_2;

528 —esac;

529

530 next(www_buyer2^ocket) := case

531 www_buyer2^ocket = O & shop_wwwjsocket_2 = 1:1;

532 www_buyer2socket = 1 & buyer2_wwwjsocket = 1:0;

533 1: www_buyer2_socket;

534 esac;

535

536 next(serv_req_3) := case

537 sellerl_opj:eq_3 = ds &: sellerl_wwwjsocket=l : {ds-req};

538 sellerl_opj:eq_3 = ch & sellerl_www^ocket=l : {ch-req}]

539 k serv_req_3;

540 esac;

541

542 next(www^hop^ocket_3) := case

543 www^hop_socket_3 = O &: sellerl.www_socket = 1: 1;

544 www^hopjsocket_3 = 1 k shop_www^ocket_3 = 1:0;

545 1: wwwjshopjsocket_3;

546 esac;

547

^48 — nao ha necessidade de controle de sessão do vendedor

549

550 next(www_sellerl.socket) := c£ise

551 www^sellerljsocket = 0 & shop_www.socket_3 = 1: 1;

552 wwwjsellerljsocket = 1 & sellerl_www.socket = 1:0;

553 1: www^sellerl.socket;

554 esac;

555

556

557 FAIRNESS running

558

559 — Modulo que representa o usuário, o agente comprador

560

561 MODULE buyer_agent(id,www.servj:esp.l,www.serv_resp_2,www_buyerl.socket,

www_buyer2.socket,buyerl_www.socket,buyer2_www.socket,www.shop.socket.l,
www_shop.socket_2)

562

563 VAR

opj:eq_l: {ho, sl, sr, br, ad, di, pa}\

565 opj-eq_2: {ho, sl, sr, br, ad, di, pa};

566 opjresp.l: {ho, sl, sr, br, ad, di, pa, er};

567 opj'esp.2: {ho, sl, sr, br, ad, di, pa, er};

568

569 ASSIGN

570 init(opj-eq_l) := ho;

571 init (opj:eq_2) := ho;

572 init(opj:esp_l) := ho;

573 init (op_resp_2) := ho;

574

575 next(opj:eq_l) := case

576 op_resp_l = ho & id=l & buyerl_www.socket=l: {ho,sl,sr,br};

577 opjresp-l = sl &: id=l & buyerl_www.socket=l: {ho,ad,sr}-,

578 opj-esp_l = sr & id=l & buyerl_www.socket=l: {s/,;io,6r,5r};

579 opjesp.l = br & id=l k buyerl.www_socket=l: {ho,br,sr,sl}-,

580 opj-esp.l = ad & id=l & buyerl_www.socket=l: {sr,pa,br,di};

581 opj-esp.l = pa & id=l & buyerl_www.socket=l: {ho};

582 opj-esp-l = er &: id=l & buyerl_www.socket=l: {/lo};

583 1; op_req_l;

584 esac;

585

135

586 next(buyerl_www_socket) := case

587 op_resp_l = ho & id=l & buyerl_wwwjsocket=l & www_shop_socket_l =1 :

buyerl _www_socket=0;

588 op_resp_l = sl &; id=l & buyerl_www_socket=l k www_shop_socket_l =1 :

buyer 1 _www_socket=O;

589 op_resp_l = sr & id=l & buyerl.www.socket=1 wwwjshop_socket_l =1 :

buyerl _www jsocket=0;

590 op_resp_l = br & id=l & buyerl_www_socket=l Sz www_shop_socket_l =1 :

buyer l-www socket=0;

591 op_resp_l = ad & id=l &: buyerl_www_socket=l & wwwjshopjsocket_l =1 :

buyerl_wwwjsocket=0;

592 opjresp-l = pa &: id=l & buyerl_www_socket=l & www^hop_socket_l =1 :

buyer 1 _www_socket=0;

593 op_resp_l = er & id=l & buyerl_www_socket=l & www_shop_socket_l =1 :

buyer 1 _w ww_socket=0;

594 www_buyerl-Socket = 1 ; buyerl _wwwjsocket = 1;

595 1: buyerl_www_socket;

596 esac;

597

598

599 next(op_req_2) := case

600 op_resp_2 = ho & id=2 èc buyer2-www_socket=l: {ho,sl,sr,br}-,

601 op-resp_2 = sl & id=2 & buyer2_www_socket=l: {ho,ad,sr}-,

602 op_resp_2 = sr & id=2 & buyer2_www_socket=l: {sl,ho,br,sr}-,

603 op_resp_2 = br & id=2 & buyer2-Www_socket=l; {ho,br,sr,sl}-,

604 op_resp-2 = ad & id=2 & buyer2_wwwjsocket=l: {sr,pa,br,di}-,

605 op_resp_2 = pa & id=2 & buyer2_www-socket=l: {ho}\

606 op_resp^2 = er & id=2 & buyer2_www>socket=l: {/lo};

607 1; op_req_2;

608 esac;

609

610 next(buyer2_wwwjsocket) := case

611 opjresp.l = ho & id=2 &: buyer2_www_socket=l & www_shop_socket_2 =1 :

buyer2_www jsocket=0;

612 op_resp_l = sl & id=2 k buyer2_www_socket=l & wwwjshop_socket_2 =1 :

buyer2_www_socket=0;

613 op_resp_l = sr &: id=2 & buyer2_wwwjsocket=l & www_shop_socket_2 =1 :

buyer2-wwwjsocket=0;

136

op_resp_l = br & id=2 & buyer2_www_socket=l www_shop_socket 2 =1 •

buyer2_www_socket=0;

op_resp_l = ad & id=2 &: buyer2_www_socket=l www_shop_socket_2 =1 :

buyer2_www_socket=0;

op_resp_l = pa & id=2 & buyer2_www_socket=l & www_shop.socket _2 =1 ;

buyer2_www^ocket=0;

opjesp-l = er & id=2 & buyer2_wwwjsocket=l èc www.shop.socket_2 =1 ;

buyer2_www.socket=0;

www_buyer2jsocket = 1 ; buyer2_www^ocket = 1;

1: buyer2_wwwjsocket;

623 next(opj:esp_l) := case

624 www_buyerljsocket=l & wwwjservj:esp_l = hoj-esp : ho;

625 www.buyerljocket=l & www^servj-esp.l = sljresp : sl;

626 www_buyerljsocket=l & wwwjservj-esp.l = srj-esp : sr;

627 www_buyerl.socket=l & www.servjresp_l = brj-esp : br;

628 www_buyerl.socket=l &: wwwjservj:esp_l = adj-esp : ad;

629 www.buyerl_socket=l & www.servj:esp_l = pajesp : pa;

630 www_buyerljocket=l & www.servj:esp_l = erjesp : er;

631 1: opj:esp_l;

632 esac ;

633

634 next(opj:esp.2) := case

635 www_buyer2.socket=l k www.servj-esp_2 = hoj-esp : ho;

636 www_buyer2^ocket=l & www.servj-esp_2 = sl_resp : sl;

__j637 wwwJ)uyer2^cket=l & www_serv_r£sp_2 = sr_resp : sr;

638 www_buyer2^ocket=l & www^ervj-esp_2 = brjesp : br;

639 www_buyer2jsocket=l & www.servj-esp_2 = adjresp : ad;

640 www_buyer2.socket=l & www.servj-esp_2 = paj-esp : pa;

641 www_buyer2-socket=l k www^ervj-esp_2 = erj-esp : er;

642 1: opj:esp.2;

643 esac;

644

645 FAIRNESS running

646

647 — Modulo que representa o usuário, o agente vendedor

614

615

616

617

618

619

620 esac;

621

622

648

649 MODULE seller^gent(id,www_serv_resp_3,www_sellerl^ocket,www_shopjsocket_3)

650

651 VAR

652 op_req_3: {cÍ5, ch, no}; ds = disponibilizar; ch = alterar; no = none

653 op_resp_3: {ho,er}\

654 sellerl.www-Socket: boolean;

655

656 ASSIGN

657 init (op_req_3) := no;

658 init (op_resp_3) := ho;

659

660 next(op_req_3) := case

661 op_resp_3 = ho &: id=3 & sellerl_www_socket=l: {ds,ch,no}\

662 op_resp_3 = er & id=3 & sellerl_www_socket=l: {ds,ch,no}\

663 1: op_req_3;

664 esac;

665

666 next (seller l_www_socket) := case

667 op_resp_3 = ho & id=3 &; sellerl_www_socket=l k, www_shop_socket_3 =1

sellerl_www_socket=0;

668 op_resp_3 = er & id=3 & sellerl_www_socket=3 k www_shopjsocket_3 =1 :

sellerl.www _socket=0;

669 www_sellerl .socket = 1 : sellerl_wwwsocket = 1;

670 1: sellerl-wwwjsocket;

671 esac;

672

673 next(opj:esp_3) := case

674 www_sellerl^ocket=l & www_servj:esp_3 = ho_resp : ho;

675 www_sellerljsocket=l k www.servj-esp_3 = erj-esp : er;

676 1: opj:esp_3;

677 esac;

678

679 FAIRNESS running

Glossary

138

These explanations are provided to help the nonspecialist. They are intended to reflect

the technical uses of the terms considered, but do not attempt to incorporate subtleties

that concern the specialist.

Abstraction: the process of simplifying certain details of a system description or model

so that the main issues are exposed. Abstraction is the key to gaining intellectual

mastery of any complex system, and a prerequisite to effective use of formal methods.

It requires great skill and experience to use abstraction to best effect.

In formal methods, abstraction is part of the process of developing a mathematical

model that is a simplification or approximation of reality but that retains the pro-

perties of interest. In physics, for example, it is customary to model a moving object

as a point mass, and to ignore its shape. Similarly in the case of a flight-control

system, one can analyze properties of, say, the clock synchronization algorithm or

the redundancy management mechanisms by abstracting these away from the larger

and more complex system in which they are embedded.

Correctness: the property that a system does what it is expected and required to do.

Formal methods cannot establish correctness in this most general sense because they

deal with formal models of the system that may be inaccurate or incomplete, and

with formal statements of requirements that may not capture all expectations. The

difference between the real and modeled worlds is a potential source of error that

attends all uses of mathematical modeling in engineering (e.g., in numerical aerody-

namics or stress calculations) and that must be controlled by validating the models

concerned. The difference between expectations and documented requirements is an-

other problem that attends all engineering activities. Formal methods provide ways

to make the specifications of assumptions and requirements precise; formal validation

(q.v.) can then be used to ensure that the specifications are adequately complete and

correct.

Correctness does not ensure safety or other critical properties, since the system

requirements and expectations may not address these issues (correctly or at com-

pletely). System requirements usually describe functional properties (i.e., what the

system is to do); it is necessary to establish nonfunctional properties such as safety

and security (which often describe what the system is not to do) by separate scrutiny

(based, e.g., on hazard analysis, or threat analysis). Formal methods can be used in

these processes.

139

Design Faults; mistakes in the design of the system, or in the understanding of its re-

quirements and assumptions, that cause it to do the wrong thing or to fail in certain

circumstances. Also called generic faults. Modular redundancy provides no protec-

tion against these faults.

Formal logic: symbolic notation equipped with rules for constructing formal proofs. For-

mal logic consists of a language for writing statements and syntactic rules of inference

for constructing proofs using these statements. Formal logic supports a form of rea-

soning that does not rely on the subjective interpretation of the symbols used.

There are many formal logics; they differ in what concepts they can express, and in

how difficult it is to discover or check proofs. Propositional logic, first order logic,

higher-order logic, the simple theory of types, and temporal logic are all examples

of formal logics that find application in formal methods. These logics are gene-

rally augmented with certain theories defined within them that provide definitions

or axiomatizations for useful mathematical concepts, such as sets, numbers, state

machines, etc.

Formal Proof and formal deduction: Formal deduction is the process of deriving a

sentence expressed in a formal logic from others through application of one or more

rules of inference.

A formal proof is a demonstration that a given sentence (the theorem) follows by

formal deduction from given (i.e., assumed) sentences called premises.

Formal methods: methods that use ideas and techniques from mathematical or formal

logic (q.v.) to specify and reason about computational systems (both hardware and

software).

Formal specification: a description of some computational system expressed in a nota-

tion based on formal logic. Generally, the specification states certain assumptions

about the context in which the system is to operate (e.g., laws of physics, properties

of subsystems and of systems with which the given system is to interact), and cer-

tain properties required of the system. A requirements specification need specify no

more than this; a design specification will specify some elements of how the desired

properties are to be achieved-e.g., algorithms and decomposition into subsystems.

Formal validation: a process for gaining confidence that top-level formal specifications

of requirements and assumptions are correct. Formal verification (q.v.) cannot be

applied at these levels because there are no higher-level requirements or more basic

assumptions against which to verify them: processes of review and examination must

be used instead. Formal validation consists of challenging the formal specifications

140

by proposing and attempting to prove theorems that ought to follow from them (i.e.,

"if I've got this right, then this ought to follow.")

Formal verification: the process of showing, by means of formal deduction, that a for-

mal design specification satisfies its formal requirements specification. The formal

description of a design and its assumptions supply the premises, and the requirements

supply the theorem to be proved. In hierarchical developments, assumptions and de-

signs at one level become requirements at another, so the formal verification process

can be repeated through many levels of design and abstraction. At the topmost level,

validation (q.v.) must be employed.

Model checking: is a method for formally verifying finite-state concurrent systems. Spec-

ifications about the system are expressed as temporal logic formulas, and efficient

symbolic algorithms are used to traverse the model defined by the system and check

if the specification holds or not. Extremely large state-spaces can often be traversed

in minutes. The technique has been applied to several complex industrial systems

such as the Futurebus-F [22] and the PCI local bus protocols [14].

Theorem provmg and proof checking: Given a putative theorem and its premises,

a theorem prover attempts to discover a proof that the theorem follows from the

premises; on the other hand, a proof checker simply checks that a given proof is

valid accordmg to the rules of deduction for the logic concerned. Both these pro-

cesses can be automated. A theorem prover is a computer program that uses search,

heuristics, and user-suppUed hints to guide its attempt to discover a proof. A proof

checker is a computer program that is used interactively: a human user proposes

proof steps and the proof checker checks they are valid and carries them out. The

most effective automated assistance for formal methods is generally obtained by a

hybrid combination of these approaches: the user proposes fairly big steps and the

proof checker uses theorem proving techniques to fill in the gaps and take care of

the details. Examples of theorem provers include Otter, Nqthm, PTTP, RRL, and

TPS. Examples of proof checkers include Automath, Coq, HOL, Isabelle, and Nuprl.

Hybrids include Eves, IMPS, PC-Nqthm, and PVS. Other forms of automated anal-

ysis that can be applied to formal specifications include model checking, language

inclusion, and state exploration, examples of systems that perform these analysis are

SMV [67], NuSMV [17, 18], COSPAN [81], Verus [90], and Mur(^ [27].

