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Abstract

The growth of metropolitan areas steadily pushes governments to restructure and ex-
pand their public transport networks in order to improve urban mobility and lower
traffic problems. In particular, reduce traffic congestion, energy consumption, air pol-
lution, and vehicle accidents. Recently a new set of resources, based on the ideas of
hub-and-spoke networks, has been cleverly incorporated into the design of public trans-
portation systems. In hub-and-spoke systems, commodities from different origins are
sent to intermediate facilities, known as hubs, which are responsible for the aggrega-
tion and distribution of the flows to multiple destinations. The use of hubs allows the
connection of a large number of origin/destination (O/D) nodes with a small number
of arcs. In this way, it is possible reduce the infrastructure and operational cost, be-
sides enabling economies of scale to be applied to the transportation cost (or travel
time) between hubs. In this work, different hub-and-spoke network design problems
focused on public transportation system are proposed. Furthermore, mathematical
programming formulations are presented to model the proposed problems while exact
and heuristic algorithms are proposed to tackle them. Computational results obtained
on benchmark instances confirm the efficiency of the proposed algorithms.
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Resumo

O crescimento das grande áreas metropolitanas tem exigido dos governantes uma
reestruturação e expansão de sua rede de transporte público com a finalidade de mel-
horar a mobilidade urbana e reduzir problemas no tráfico, tais como congestionamento,
consumo de energia, poluição do ar e acidentes de veículos. Recentemente um novo
conjunto de recursos, baseado na ideia de redes eixo-raio, tem sido inteligentemente
incorporado ao projeto de sistemas de transporte público. Sistemas eixo-raio são fre-
quentemente utilizados no desenho de redes de grande porte tais como aquelas en-
contradas no transporte de passageiros e cargas, serviços postais, telecomunicações, e
sistemas de trânsito rápido. Nestas redes, fluxos de diferentes origens são enviadas a
facilidade intermediárias, conhecidas como concentradores, que são responsáveis pela
agregação e distribuição dos fluxos para múltiplos destinos. Isto permite a conexão
entre um grande número de pares de nodos origem/destino (O/D) com um pequeno
número de arcos, reduzindo os custos operacionais e de infraestrutura, além de pos-
sibilitar que economias de escalas sejam aplicadas no custo de transporte (ou tempo
de viagem) entre concentradores. Neste trabalho, diferentes problemas de desenho de
redes eixo-raio aplicado a sistema de transporte público são propostos. Para modelar
os problemas propostos, formulações de programação matemática são apresentadas,
enquanto algoritmos exatos e heurísticos são propostos para resolver os problemas.
Resultados computacionais obtidos em instâncias padrão da literatura confirmam a
eficiência dos algoritmos propostos.

iv



Resumo estendido

Introdução

O crescimento das grandes áreas metropolitanas tem exigido dos governantes uma
reestruturação e expansão de sua rede de transporte público com a finalidade de mel-
horar a mobilidade urbana e reduzir problemas no tráfego, tais como congestionamento,
consumo de energia, poluição do ar e acidentes. Ao mesmo tempo, os usuários tem
constantemente pressionado por melhores níveis de serviço e sistemas custo-eficientes
(Gendreau et al., 1995; Bruno et al., 1998). Estas questões dão origem a um problema
complexo que requer uma considerável quantia de recursos financeiros e um esforço sig-
nificativo para gerenciá-la. Recentemente um novo conjunto de recursos, baseado na
ideia de redes eixo-raio (do inglês, hub-and-spoke networks), tem sido inteligentemente
incorporado ao projeto de sistemas de transporte público (Nickel et al., 2001; Gelareh
and Nickel, 2011; Martins de Sá et al., 2013a).

Sistemas eixo-raio são frequentemente utilizados no desenho de redes de grande
porte tais como aquelas encontradas no transporte de passageiros e de cargas, serviços
postais, telecomunicações, e sistemas de trânsito rápido. Nessas redes, fluxos de
diferentes origens são enviados a facilidades intermediárias, conhecidas como concen-
tradores, que são responsáveis pela agregação e distribuição dos fluxos para múlti-
plos destinos. Isso permite a conexão entre um grande número de pares de nós
origem/destino (O/D) com um pequeno número de arcos, reduzindo os custos opera-
cionais e de infraestrutura (O’Kelly and Miller, 1994). Outra importante vantagem de
redes eixo-raio é a possibilidade de conexão dos concentradores por vias altamente efi-
cientes, possibilitando que economias de escalas sejam aplicadas no custo de transporte
(ou tempo de viagem) entre concentradores.

Originalmente (O’Kelly, 1986, 1987), supunha-se que redes eixo-raio possuíam: uma
conexão direta entre todos os pares de concentradores; nenhuma conexão direta entre
qualquer par de nós não concentradores; e um caminho com no máximo dois con-
centradores para rotear o fluxo entre qualquer par de origem e destino. Além disso,
duas diferentes estratégias para alocação de nós não concentradores a concentradores
eram permitidas. Os nós não concentradores poderiam interagir com apenas um único
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concentrador resultando em variantes com alocação simples; ou eles poderiam ser conec-
tados a mais de um concentrador resultando em variantes com alocação múltipla.

Recentemente, suposições mais flexíveis foram propostas (Nickel et al., 2001; Labbé
et al., 2004; Campbell et al., 2005a,b; Contreras et al., 2009; Alumur et al., 2009; Calık
et al., 2009; Contreras et al., 2010) com a finalidade de ampliar a aplicabilidade de
sistemas eixo-raio a determinadas áreas. Ao descartar a imposição de que todos os pares
de concentradores estão conectados, e adaptar o desenho da rede a características da
aplicação sendo abordada, diferentes problemas podem ser vistos como um caso especial
de redes eixo-raio: (i) localização de concentradores em árvore (Contreras et al., 2009,
2010; Martins de Sá et al., 2013b), (ii) desenho de redes anel-estrela (Labbé et al.,
2004) e (iii) redes incompletas de concentradores (Campbell et al., 2005a,b; Alumur
et al., 2009), dentre outros. Uma revisão exaustiva das variantes de redes eixo-raio
pode ser encontrada em Campbell et al. (2002), Alumur and Kara (2008), e Farahani
et al. (2013).

Neste trabalho, diferentes problemas envolvendo o desenho de redes eixo-raio apli-
cadas a sistemas de transporte público são propostos. Estes problemas consideram o
desenho de uma rede de concentradores ao selecionar um conjunto de nós para localizar
os concentradores, ativar um conjunto de conexões, e rotear o fluxo através da rede
enquanto otimizam uma função objetivo baseada em custos ou serviços. Um exemplo
concreto de uma aplicação desse tipo de problema a sistemas de transporte público é
a modificação de uma rede de transporte público já estabelecida. Planejadores da rede
geralmente enfrentam problemas para expandirem uma rede existente em uma região
metropolitana de forma a reduzir o tempo de viagem ou o custo total do sistema. Uma
alternativa para resolver este problema é a instalação de redes de trânsito rápido, tais
como, metrô, trem ou corredores exclusivos para ônibus. Concentradores correspon-
dem a estações centrais, tais como, estações de ônibus ou de metrô, onde mudanças
de modais de transporte geralmente estão disponíveis. Os nós não concentradores
representam distritos urbanos, ponto de ônibus ou de táxi.

Os problemas propostos são modelados através de formulações de programação
matemática adaptadas a partir de formulações tradicionais da área de localização
de concentradores. Para resolver este problemas, algoritmos exatos e heurísticos são
propostos. Resultados de experimentos computacionais obtidos utilizando instâncias
padrão da literatura comprovam a eficiência dos algoritmos propostos ao comparar com
o aplicativo comercial CPLEX.

Esta tese é basicamente constituída por três artigos científicos e está organizada
da seguinte forma. Os Capítulos 2–4 apresentam cada um destes artigos, enquanto o
Capítulo 5 apresenta uma conclusão geral deste trabalho, bem como, possíveis trabalhos
futuros. Um resumo de cada um destes capítulos é apresentado nas próximas seções.
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The hub line location problem

O Capítulo 2 apresenta o artigo intitulado ”The hub line location problem”. Esse
manuscrito introduz o problema de localização de concentradores em linha (HLLP)
que consiste em localizar um conjunto de concentradores conectados por meio de um
trajeto simples (ou linha). Potenciais aplicações surgem no desenho de sistemas de
transporte público onde o custo de instalação da infraestrutura necessária domina con-
sideravelmente os custos de roteamento e assim, a completa interconexão dos concen-
tradores é irrealística. Considerando a otimização do tempo de serviço como o objetivo
predominante neste tipo de aplicação, o problema considera a minimização do tempo
total de viagem ponderado pela demanda entre os pares de nós de O/D, enquanto leva
em conta o tempo gasto para acessar e deixar a rede de concentradores.

Este artigo tem três principais contribuições: i) introdução do HLLP, um novo
problema na área de localização de concentradores, ii) formulação de programação
inteira mista para o HLLP, e iii) o desenvolvimento de algoritmos de decomposição
de Benders (Benders, 1962) baseados nesta formulação. A implementação básica do
algoritmo é melhorada através da inclusão de vários recursos algorítmicos, tais como,
estratégias de múltiplos cortes, um eficiente algoritmo para resolver o subproblema e
obter cortes de otimalidade mais fortes, e uma variante Benders-branch-and-cut que
requer a solução de um único problema mestre.

Dois conjuntos de experimentos usando instâncias padrão da literatura foram re-
alizados. O primeiro conjunto de experimentos tem como objetivo analisar como o
fator de economia de escala e o tempo de espera para acessar/deixar a rede de con-
centradores afetam as configurações da rede sendo projetada. De acordo com os ex-
perimentos quanto maior a economia de escala, bem como, quanto menor o tempo de
espera para acessar a linha, maior é a utilização da redes de concentradores e menos
fluxo é roteado via conexão direta. Além disso, a configuração da rede, concentradores
e arcos instalados, é profundamente afetada por estes dois parâmetros, demonstrando
a importância de se considerá-los durante o projeto da rede. O segundo conjunto de
experimentos tem como objetivo avaliar a eficiência dos algoritmos propostos. Este
conjunto de experimentos foi dividido em duas fases. A primeira fase tem como ob-
jetivo descobrir qual é a melhor variante do método de decomposição ao combinar
diferentes estratégias para melhoria da performance do método. A segunda fase con-
siste em comparar a melhor variante encontrada com o aplicativo comercial CPLEX.
Resultados experimentais obtidos em instâncias padrão da literatura com até 50 nós
confirmam que a variante de Benders que apresenta o melhor desempenho é a versão
que i) adiciona um corte para cada par origem e destino por rodada, ou seja, múltiplos
cortes,; ii) adiciona cortes de Benders dentro da árvore de branch-and-bound a partir
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de soluções fracionárias no nó raiz e de potenciais soluções incumbentes; e iii) filtra
os cortes adicionando apenas cortes violados. Finalmente, resultados computacionais
obtidos em instâncias com até 100 nós confirmam a eficiência desta variante do método
de decomposição de Benders. Esta variante resolve as instâncias testadas considerav-
elmente mais rápido que o CPLEX, além de ser capaz de encontrar a solução ótima
para a maioria das instâncias testadas.

Nesse artigo é apresentado um problema voltado ao projeto de sistemas de trans-
porte público compostos por uma única linha, tais como, uma linha de metrô, ônibus e
etc. Além disso, um eficiente algoritmo para resolver o problema é apresentado. Resul-
tados experimentais confirmam a eficiência do algoritmo proposto ao resolver instâncias
de grande porte para o problema. Apesar do potencial de aplicação deste problema, ele
pode ser estendido a um problema um pouco mais complexo que consiste em localizar
um conjunto de linhas de concentradores (apresentado no Capítulo 3) ao invés de se
localizar uma única linha.

Exact and Heuristic Algorithms for the Design of Hub

Networks with Multiple Lines

O Capítulo 3 apresenta o artigo intitulado ”Exact and Heuristic Algorithms for the
Design of Hub Networks with Multiple Lines”. Esse artigo introduz o problema de
localização de q-linhas de concentradores (q-HLLP). Este problema é uma extensão do
HLLP para o caso em que a rede de concentradores é composta por mais de uma linha.
O q-HLLP consiste em localizar um conjunto de q linhas que minimize o tempo total
de viagem entre os pares de origem e destino, enquanto satisfaz uma restrição orçamen-
tária para instalação da rede, i.e. localizar os concentradores e instalar os arcos entre
concentradores. Com o intuito de modelar o tempo total de viagem adequadamente,
quando mais de uma linha é utilizada, um tempo de espera para fazer a transferência
entre linhas também é levado em consideração.

Uma formulação de programação inteira mista que é usada em um algoritmo de
decomposição de Benders é proposta. A versão de Benders usada é baseada na melhor
variante de Benders encontrada para resolver o HLLP (vide seção anterior). Além
disso, são desenvolvidas três heurísticas diferentes para fornecer soluções viáveis para
instâncias grandes baseadas nas metaheurísticas: i) Método de Descida em Vizinhança
Variável (Variable Neighborhood Descent, VND), iii) Procedimento de busca adaptativa
gulosa e randômica (greedy randomized adaptive search procedure, GRASP) e, ii) uma
busca em vizinhança de grande porte (adaptive large neighborhood search, ALNS).

Foram realizados um conjunto de experimentos considerando dois conjuntos de
instâncias padrão da literatura com até 70 nós e até três linhas. Resultados dos exper-
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imentos comparando a variante de Benders e o aplicativo comercial CPLEX mostram
que ambos apresentam um comportamento bem similar quando aplicados na resolução
de instâncias com 10 e 20 nós. Entretanto, a variante do método de decomposição de
Benders se destaca ao resolver instâncias de 25 e 40 nós. Apesar deste algoritmo não
ser capaz de encontrar a solução ótima para todas as instâncias testadas, ele fornece
um limitante inferior para estas instâncias, além de uma solução viável para a maior-
ias delas. Por outro lado o CPLEX não é capaz de encontrar um limitante inferior e
nem uma solução viável para nenhuma instância com 40 nós. Desta forma, a variante
de Benders apresenta ser a melhor ferramenta para fornecer limitantes inferiores que
podem ser utilizados para avaliar a qualidade de soluções viáveis para o problema.

Devido a dificuldade para resolver o problema de forma exata, as heurísticas pro-
postas são aplicadas para encontrar boas soluções para instâncias com 10 a 70 nós.
Inicialmente, estas heurísticas são aplicadas para resolver o HLLP, onde uma única
linha deve ser instalada, a quantidade de concentradores a ser instalada é fixa e não
existe uma limitação de capital para instalar a infraestrutura necessária. Resultados
dos experimentos mostram que as heurísticas baseadas em GRASP e ALNS são capazes
de encontrar a solução ótima para maioria das instâncias testadas apresentando um
baixo gap de otimalidade quando a solução ótima não é encontrada. Resulstados dos
experimentos aplicados na resolução de instâncias do q-HLLP, confirmam a eficiência
das heurísticas baseadas em GRASP e ALNS que apresentam o menor desvio médio
entre a solução encontrada pela heurística e a melhor solução encontrada durantes os
experimentos.

Esse artigo apresenta uma extensão do HLLP que localiza múltiplas linhas de con-
centradores. Eficientes algoritmos para resolver o problema são propostos. Algoritmos
exatos foram capazes de resolverem apenas instâncias pequenas para o problema. No
entanto apesar da variante do método de decomposição de Benders não ser capaz de
resolver instâncias grandes, ele fornece limitantes inferiores que são úteis para analisar
soluções viáveis para o problema. Métods heurísticos são propostos para encontrar
soluções para instâncias de grande porte. Resultados experimentais confirmam a efi-
ciência destas heurítiscas ao encontrar boas soluções (ótimas ou próximas do ótimo)
para instâncias grandes do problema.

Exact algorithms to solve the hub location problem under

congestion

O Capítulo 4 apresenta o artigo intitulado ”Exact algorithms to solve the hub location
problem under congestion’. Este artigo aborda o desenho de uma rede incompleta
de concentradores sob efeito de congestionamento (IHLPC). Este problema consiste
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em desenhar uma rede eixo-raio em que os concentradores podem ser parcialmente
interconectados, nós não concentradores devem ser alocados a um único concentrador
e conexões diretas entre nós não concentradores não são permitidas. A rede é projetada
visando minimizar o custo total que é gual a soma dos custos para transportar todas
as demandas e instalar a infraestrutura necessária, i.e. localizar os concentradores e os
arcos entre concentradores; além dos custos associados a congestionamentos na rede.
Este problema tem um grande apelo no desenho de sistemas de transporte onde o
custo de congestionamento tem um papel muito importante, tal como, em redes de
transporte público.

Uma importante contribuição desse artigo é a abordagem do congestionamento as-
sociado a três diferentes situações frequentemente encontradas em redes de transporte
público: entrada no sistema, embarque nos veículos de transporte e transferência entre
estações (concentradores). Para modelar o custo de congestionamento, duas funções
não-lineares convexas são utilizadas: função Kleinrock e função power law. Baseado
nestas funções para o cálculo do custo de congestionamento e na formulação para a
versão não congestionada do problema, proposta por Alumur et al. (2009), uma formu-
lação não-linear inteira mista é apresentada para modelar o problema. Algoritmos ex-
atos baseados no método de aproximação externa (OA) (Outer approximation) (Duran
and Grossmann, 1986; Fletcher and Leyffer, 1994), decomposição de Benders general-
izada (GBD) (Generalized Benders decomposition) Geoffrion (1972) e uma versão que
hibridiza ambos os métodos (OA/GBD) são propostos para resolver o problema. Com
intuito de melhorar a convergência dos métodos propostos vários mecanismos como
adição de cortes dentro da árvore de branch-and-bound, bem como adição de corte
GBD Pareto-ótimo são testados.

Dois conjuntos de experimentos foram realizados. O primeiro conjunto tem como
objetivo analisar como a configuração da rede sendo projetada é afetada pelos principais
parâmetros do problema: fator de congestionamento, custo de instalação dos arcos e
fator de capacidade. De acordo com os resultados, ao ignorar o congestionamento
associado a único serviço provido pelo sistema, as soluções ótimas resultam em redes
eixo-raio que tendem a sobrecarregar este serviço. Enquanto, que ao considerar todos os
tipos de congestionamento simultâneamente a rede ótima tende a balancear a utilização
da capacidade associada a cada um destes serviços. Em geral, conforme o fator de
custo de instalação dos arcos aumenta, arcos mais baratos e menos concentradores são
instalados.

O segundo conjunto de experimentos tem como objetivos avaliar a performance
dos algoritmos propostos. Estes experimentos foram realizados em duas fases. A
primeira fase é baseada em testes computacionais usando instâncias pequenas, com 10
nós, e tem como objetivo encontrar as variantes dos métodos mais promissoras para
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resolver o problema. Na segunda fase, as duas melhores variantes encontradas são
comparadas com o aplicativo comercial CPLEX levando em consideração funções de
custo de congestionamento quadráticas representadas por um power law para resolver
instâncias com até 20 nodos de demanda. Em seguida a melhor variante é testada em
instâncias com até 25 nós de demanda considerando dois tipos de função de custo de
congestionamento: power law e Kleinrock.

Resultados experimentais mostram que as variantes que adicionam cortes dentro
da árvore de branch-and-bound apresentam melhor performance que as variantes clás-
sicas. Além disso, a adição de cortes GBD Pareto-ótimo melhoram a performance dos
métodos baseados em GBD. Na primeira fase de testes as variantes que apresentam
melhores performances são as variantes OA que adiciona cortes dentro da árvore de
branch-and-bound e variante hibrida de OA/GBD que além de adicionar cortes na
árvore de branch-and-bound, adiciona cortes GBD Pareto-ótimo. Ao comparar estas
duas variantes com o aplicativo CPLEX, resultados experimentais mostram que os al-
goritmos OA e OA/GBD apresentam melhor desempenho que o aplicativo comercial
CPLEX. Ao comparar as duas variantes de OA, percebe-se que o algoritmo híbrido se
comporta melhor quando o congestionamento associado ao serviço de embarque ou ao
serviço de transferência é ignorado. Estes serviços estão associados aos congestionamen-
tos tratados pelo GBD no algoritmo. Enquanto, a variante baseada no OA apresenta
melhor desempenho quando todos os congestionamentos são considerados. Uma vez
que esta varianta apresenta um melhor desempenho em média, então ela é utilizada nos
experimentos finais para resolver instâncias com até 25 nodes considerando funções de
custo de congestionamento baseadas na power law e na Kleinrock. Resultados destes
experimentos mostram que este algoritmo é capaz de resolver aproximadamente 90%
das instância baseadas na formulação usando power law e 77% das instâncias baseadas
na formulação usando Kleinrock. Ao comparar a formulação usando a função baseada
power law e a formulação que utiliza a função de Kleinrock, esta última apresenta-se
mais difícil de se resolver provavelmente devido a adaptação feita na power law que
contabiliza os custos de congestionamento a partir de um determinado limiar da ca-
pacidade de serviço. Além disso, a função Kleinrock cresce exponencialmente conforme
o fluxo se aproxima de sua capacidade.

Nesse trabalho é apresentado o problema de projetar um sistema eixo-raio levando
em consideração efeitos de congestionamentos associado a diferentes serviços geral-
mente fornecidos por sistemas de transporte público. O efeito do congestionamento é
abordado através da adição de um componente associado ao custo do congestionamento
na função objetivo. Uma vez que o custo de congestionamento é modelado através de
uma função não linear convexa, a adição desta nova parcela resulta em um problema
não linear inteira mista. Eficientes algoritmos baseados em decomposição são propos-
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tos para resolver o problema. Resultados de experimentos computacionais confirmam
a performance destes algoritmos comparados com o aplicativo comercial CPLEX.

Considerações finais

Nesta tese foram apresentados vários problemas de desenho de redes eixo-raio aplicadas
a projeto de sistemas de transporte público. Estes problemas abordam o desenho de
uma rede eixo raio levando em consideração não apenas o custo para instalação de
infraestrutura e custos (tempo) de transporte, mas também, os atrasos sofridos pelos
usuários para acessar/deixar o sistema ou devido a congestionamentos na rede. Estes
problemas são de considerável importância para a literatura de problemas de desenho de
redes eixo-raio por apresentar um potencial de aplicação prática ao considerar diversas
características de sistemas de transporte públicos reais.

Para cada problema proposto, uma formulação de programação matemática, bem
como, métodos de resolução são propostos. Dentre os métodos propostos temos méto-
dos exatos baseados em decomposição, método de decomposição de Benders, aproxi-
mação externa e decomposição de Benders generalizadas. Para melhorar a convergência
destes métodos, algumas estratégias para este fim são implementadas. Experimentos
computacionais comprovam o desempenho destes métodos comparados com o aplica-
tivo comercial CPLEX. Dentre os mecanismos para melhoria da convergência destes
métodos de decomposição, a adição de cortes (de Benders, OA ou GBD), gerados a
partir de uma potencial solução incumbente, dentro da árvore de branch-and-bound se
mostrou bastante eficiente para todos os métodos testados. A vantagem desta estraté-
gia é que estes métodos convergem em uma única iteração sendo necessário, portanto,
a resolução de um único problema mestre. Outro mecanismo eficaz para fortalecer
os métodos de decomposição é a seleção dos cortes a serem adicionados no problema
meste. Uma vez que os subproblemas responsáveis por gerar os cortes, em geral, são
degenerados, então diferentes cortes podem ser gerados. Investir na seleção dos cortes
a serem gerados dentre os cortes possíveis, buscando adicionar ao problema mestre
cortes mais fortes resultam em melhores convergências. No caso do Benders aplicado
na resolução do HLLP, um algoritmo para seleção de cortes é o proposto. Os algorit-
mos baseados no GBD resolvem um subproblema linear adicional para gerar cortes não
dominados, ou seja, Pareto-ótimos.

Apesar do potencial de aplicação dos problemas propostos, algumas extensões destes
problemas podem ser exploradas em trabalhos futuros. Dentre as possíveis pesquisas
futuras associadas ao problema de localização de linhas de concentradores, pode-se
citar a modelagem do comportamento dos usuários ao escolher a rota de deslocamento,
ao invés de assumir que o usuário escolhe sempre a menor rota dentre todas as rotas
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disponíveis. Uma pesquisa futura associada ao problema com congestionamento é o
estudo da modelagem da rede de concentradores através de redes de filas generalizadas.
Nesta caso ao invés de assumir que a cada serviço fornecido por um concentrador pode
ser modelado usando um sistema de filas M/M/1, a modelagem é feita usando um sis-
tema de fila cuja distribuição do tempo de atendimento e intervalos entre chegadas são
genéricas. A partir desta modelagem os custos de congestionamento são computados.
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Chapter 1

Introduction

The growth of metropolitan areas steadily pushes governments to restructure and ex-
pand their public transport networks in order to improve urban mobility and lower
traffic problems. In particular, to reduce traffic congestion, energy consumption, air
pollution, and vehicle accidents. At the same time, users constantly pressure for better
service levels, while taxpayers request for more cost-efficient systems (Gendreau et al.,
1995; Bruno et al., 1998). These give rise to a complex problem which requires con-
siderable amounts of financial resources and a significant effort to manage it. Recently
a new set of resources, based on the ideas of hub-and-spoke networks, has been clev-
erly incorporated into the design of public transportation systems (Nickel et al., 2001;
Gelareh and Nickel, 2011; Martins de Sá et al., 2013a).

Hub-and-spoke architectures are often used in the design of large-scale networks
such as those found in passenger and freight transportation, postal services, telecom-
munications, and rapid transit systems. In these networks, commodities from different
origins are sent to intermediate facilities, known as hubs, which are responsible for the
aggregation and distribution of the flows to multiple destinations. The use of hubs al-
lows the connection of a large number of origin/destination (O/D) nodes with a small
number of arcs, reducing the infrastructure and operational cost (O’Kelly and Miller,
1994). Another important advantage of hub-and-spoke networks is that hub facilities
can be connected with highly efficient pathways, enabling economies of scale to be
applied to the transportation cost (or travel time) between hubs.

Originally (O’Kelly, 1986, 1987), hub-and-spoke networks were assumed to have: an
inter-hub connection between every hub pair; no direct link between any two non-hub
nodes; and a path with one or at most two hubs for routing demand flows between all
origin and destination pair. Further, two different schemes for allocating the non-hub
nodes to hubs were allowed: the non-hub nodes could interact with a single hub only,
i.e., be single allocated to a hub, or they could be connected to more than one hub or
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1. Introduction 2

be multiple allocated.
Recently, more flexible assumptions were proposed (Nickel et al., 2001; Labbé et al.,

2004; Campbell et al., 2005a,b; Contreras et al., 2009; Alumur et al., 2009; Calık et al.,
2009; Contreras et al., 2010) in order to broaden the applicability of hub-and-spoke
networks to other areas. By disregarding the restriction that every pair of hubs has to
be directly connected and by adapting the design of the network to the characteristics
of the application being addressed, different problems can now be seen as special cases
of hub-and-spoke networks: (i) tree-shaped facilities location (Contreras et al., 2009,
2010; Martins de Sá et al., 2013b), (ii) ring-star network designs (Labbé et al., 2004),
(ii) lines (Martins de Sá et al., 2013a), (v) incomplete hub networks (Campbell et al.,
2005a,b; Alumur et al., 2009). For exhaustive surveys on the variants of hub-and-spoke
networks please refer to Campbell et al. (2002), Alumur and Kara (2008), and Farahani
et al. (2013).

In this thesis, different hub-and-spoke network design problems applied to pub-
lic transportation system are proposed. These problems consider the design of hub
networks by selecting a set of nodes to locate hubs, activating a set of links, and rout-
ing commodities through the network while optimizing a cost-based (or service-based)
objective function. A concrete example of an application of this kind of problem ap-
plied to public transportation system is the modification of already established public
transportation networks. Network planners usually face the problem of expanding an
existing network in a metropolitan region so as to reduce the users’ travel times or
costs by locating a rapid transit line, such as a subway, tram or light rail line, or an
express bus lane. Hub facilities correspond to central stations such as subway or bus
stations, where a change of mode of transportation is usually available. Non-hub nodes
represent urban districts, bus stops or taxi stations. Furthermore, mathematical pro-
gramming formulations are presented to model the proposed problems while exact and
heuristic algorithms are proposed to tackle them.

The following section presents how this thesis is organized.

1.1 Thesis organization

This thesis is a collection of three articles, presented on Chapter 2-4, addressing hub-
and-spoke network design to project public transportation systems and it is organized
as following.

Chapter 2 presents the article entitled ”The hub line location problem”. This arti-
cle introduces the hub line location problem (HLLP) in which the location of a set of
hub facilities connected by means of a path (or line) is considered. Potential applica-
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tions arise in the design of public transportation, where network design costs greatly
dominate routing costs and thus, full interconnection of hub facilities is unrealistic.
Assuming that service time is the predominant objective in these applications, the
problem considers the minimization of the total weighted travel time between ori-
gin/destination nodes while taking into account the time spent to access and exit the
hub line. The main contributions of this chapter are threefold: (i) the introduction of
the HLLP, a new hub location problem, (ii) a mixed-integer programming formulation
for the HLLP, and (iii) the development of a Benders decomposition algorithm based
on this formulation to obtain optimal HLLP solutions. The basic implementation of
the algorithm is enhanced through the inclusion of several algorithmic features such
as a multi-cut strategy, an efficient algorithm to solve the subproblem and to obtain
stronger optimality cuts, and a Benders-branch-and-cut scheme that requires the so-
lution of only one master problem. Computational results obtained on benchmark
instances with up to 100 nodes confirm the efficiency of the proposed algorithm, which
is considerably faster and able to solve larger instances than a general purpose solver.

Chapter 3 presents the article entitled ”Exact and Heuristic Algorithms for the De-
sign of Hub Networks with Multiple Lines”. This paper generalizes the HLLP to the
case in which the hub network is composed of more than one line by introducing the
q-line hub location problem (q-HLLP). This problem consists of locating a set of q lines
that minimizes the total travel time between O/D pairs, while satisfying a budget con-
straint on the total setup cost of the network associated with the location of hub nodes
and hub arcs. In order to properly model the total travel time when using more than
one hub line, the waiting time associated with transference between lines needs to be
taken into account. To tackle the problem, exact and heuristic algorithms for designing
hub line networks with multiple lines are proposed. In particular, a mixed-integer pro-
gramming (MIP) formulation for the q-HLLP which is used in a Benders decomposition
algorithm to obtain optimal solutions for small instances and to provide bounds for
larger instances is presented. We also develop three different metaheuristics to provide
feasible solutions to large instances: i) a variable neighborhood descent (VND), ii)
a greedy randomized adaptive search procedure (GRASP) and, iii) an adaptive large
neighborhood search (ALNS). Numerical results on two sets of benchmark instances
with up to 70 nodes and three lines confirm the efficiency of the proposed solution
algorithms.

Chapter 4 presents the article entitled ”Exact algorithms to solve the hub location
problem under congestion”. In this paper, the incomplete hub location problem under
congestion (IHLPC) is addressed. This problem consists in designing a hub-and-spoke
network in which the hub-level network can be partially interconnected and a non-hub
node must be allocated to a single hub. The network is designed aiming to minimize
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the total cost which is composed of the sum of (i) the total transportation costs which
consider the economies of scale achieved by routing flows between hubs; (ii) the total
infrastructure costs for locating hubs and hub arcs; and (iii) the total cost regard-
ing network congestions. This problem has a great appeal in designing transportation
system where congestion cost plays an important role, such as public transportation
networks. An important contribution of this article is to consider congestion in three
different services provided by hub-and-spoke system: entrance, boarding and trans-
ferring services. A mixed integer nonlinear formulation and exacts algorithms based
on Outer Approximation (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994)
and Generalized Benders decomposition (Geoffrion, 1972) are proposed. Experiments
on benchmark instances with up to 25 nodes confirm the efficiency of the proposed
algorithms.

Finally, Chapter 5 presents a general conclusion of this thesis and possible future
research.



Chapter 2

The Hub Line Location Problem

Chapter information

This chapter presents the article accepted for publication in Transportation Science:
Martins de Sá, E., Contreras, I., Cordeau, J.-F., de Camargo, R.S., de Miranda,G.,
Forthcoming. The hub line location problem. Transportation Science. Forthcoming.

Abstract
This paper presents the hub line location problem in which the location of a set

of hub facilities connected by means of a path (or line) is considered. Potential appli-
cations arise in the design of public transportation and rapid transit systems, where
network design costs greatly dominate routing costs and thus, full interconnection of
hub facilities is unrealistic. Given that service time is the predominant objective in
these applications, the problem considers the minimization of the total weighted travel
time between origin/destination nodes while taking into account the time spent to ac-
cess and exit the hub line. An exact algorithm based on a Benders decomposition of
a strong path-based formulation is proposed. The standard decomposition method is
enhanced through the incorporation of several features such as a multi-cut strategy, an
efficient algorithm to solve the subproblem and to obtain stronger optimality cuts, and
a Benders-branch-and-cut scheme that requires the solution of only one master prob-
lem. Computational results obtained on benchmark instances with up to 100 nodes
confirm the efficiency of the proposed algorithm, which is considerably faster and able
to solve larger instances than a general purpose solver.

Keywords: Hub location, line networks, Benders decomposition method.
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2.1 Introduction

Hub-and-spoke networks enable the routing of flows between many origin/destination
pairs in a more efficient way than by directly connecting each O/D pair. In these
systems, flows from different origins are sent to intermediate facilities, known as hubs,
which are responsible for their aggregation and distribution. The main advantage of
hub-and-spoke networks is their improved efficiency due to economies of scale by the
bundling of flows at hubs. Moreover, network design costs can be considerably reduced
since hub-and-spoke network topologies have fewer connections than fully connected
networks (O’Kelly and Miller, 1994).

Hub location problems (HLPs) concern the design of hub-and-spoke networks by
locating a set of hub facilities and selecting a set of links to route flows between O/D
pairs. Objectives which are commonly considered include the minimization of the sum
of set-up and/or transportation costs (minsum); the minimization of the maximum
transportation cost or travel time (minimax); and coverage related objectives that
may consider distance, time, cost or other attributes relevant to the application (see,
for instance, Campbell, 1994). In addition, classical HLPs assume that hubs are fully
interconnected and that direct connections between non-hub nodes are not allowed,
i.e., O/D paths must contain at least one hub node. Although these classical variants
of HLPs have attracted most of the attention in the literature since the seminal work of
O’Kelly (1986), the study of real-world transportation/distribution systems giving rise
to particular network topologies have recently become an important area of research.
For recent surveys on hub location problems, please refer to Alumur and Kara (2008),
Campbell and O’Kelly (2012), and Farahani et al. (2013).

Flexibility issues in hub network topologies were initially addressed by O’Kelly and
Miller (1994) who proposed different protocols to classify hub networks according to: (i)
whether non-hub nodes are singly allocated (non-hub nodes are assigned to exactly one
hub) or multiply allocated (non-hub nodes may be assigned to more than one hub); (ii)
whether hubs are fully or partially interconnected; and (iii) whether direct connections
are allowed or not between pairs of non-hub nodes. The implications of the relaxation
or imposition of these common assumptions has been addressed in some works. Nickel
et al. (2001) address the design of public transportation systems by presenting HLPs
in which the hubs are not fully interconnected and direct connections between pairs of
non-hub nodes are allowed. Campbell et al. (2005a,b) and Contreras and Fernández
(2013) study extensions of HLPs, referred to as hub arc location problems, in which
additional network design decisions are incorporated to select a set of hub arcs whose
end nodes are hubs which are not necessarily fully interconnected. Alumur et al. (2009)
also relax the assumptions of full interconnection of hub nodes and do not assume any
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topological structure.
Some authors have addressed the design of specific topological hub networks. Lee

et al. (1993), Contreras et al. (2009) and Martins de Sá et al. (2013b), consider tree-star
topologies in which the hub-level network is a tree and each non-hub node is assigned
to exactly one hub. Lee et al. (1993) and Contreras et al. (2013b) study ring-star
topologies, in which hubs are connected by means of a ring and each non-hub node is
assigned to exactly one hub. Star-star topologies in which all hubs are connected to a
central hub while non-hub nodes are singly allocated, resulting in a star configuration
in both levels, are considered in Labbé and Yaman (2008) and Yaman (2008). Hub
network topologies with more than two layers have also been introduced. Yaman (2009)
studies the problem of designing a three-level hub network, where the top level consists
of a complete network connecting the central hubs, and the second and third layers are
unions of star networks connecting the remaining hubs to central hubs and the non-hub
nodes to hubs or central hubs, respectively.

In this paper we introduce the Hub Line Location Problem (HLLP) which consists
of locating a set of p hubs and of connecting them by means of a path (or line) using a
set of p−1 hub arcs. We assume that each O/D node can be assigned to more than one
hub node, i.e. a multiple allocation. Contrary to most p-hub median type problems
considering a cost-based objective, the HLLP incorporates a service-based objective
that focuses on the minimization of the total travel time between O/D pairs. Flows
must be routed through the hub network via either a path containing a set of hub arcs (a
segment of the hub line), or with a direct connection between origins and destinations,
depending on whichever route provides the smallest travel time. Because of the use of a
high-speed mode of transportation at the hub arcs, it is assumed that their associated
travel speed is faster than on the other links of the network. Time savings are thus
perceived when traveling on the hub line. However, in order to properly model the total
travel time when using the hub line, other times incurred during the traveling process
need to be taken into account. In particular, access and exit times may exist when
using the hub line due to a change of mode of transportation or to waiting because
of frequency or congestion related issues. The trade-off between the benefit of using a
high-speed mode of transportation to efficiently travel on the network and the added
time for interacting with it makes the design of this class of hub networks particularly
challenging.

According to the classification scheme proposed by O’Kelly and Miller (1994), the
HLLP fits in the H protocol, i.e., multiple-allocation hub location problems with incom-
plete hub-level network in which direct connections between non-hub nodes are allowed.
The HLLP can also be seen as a q-hub arc location problem in which q = p − 1 hub
arcs need to be located and connected by means of a path (see, Campbell et al., 2005a,
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for details). Figure 2.1 illustrates a hub line network with six hub nodes and five hub
arcs.

Hub nodes
Demand nodes
Line connections

Allocation connections
Direct connections

Figure 2.1: A hub line network with six hub nodes and five hub arcs.

Potential applications where the location of a hub line is required arise in pub-
lic transportation planning, in particular in the design of rapid transit systems and
highway networks. A concrete example of an application of the HLLP appears when
modifying already established public transportation networks. Network planners usu-
ally consider the expansion of an existing (physical) network in a metropolitan region
to improve its overall efficiency (users’ travel times), by locating a rapid transit line,
such as a subway, tram or light rail line, or an express bus lane with a fixed number of
hub stations. This number is predetermined by considering budget restrictions or due
to political reasons. Hub facilities correspond to different types of central stations such
as subway, tram, bus and/or train stations, where a change of mode of transportation
is usually possible. Non-hub nodes can be seen as bus stops, taxi stations or urban
districts. The flows represent users traveling between O/D pairs who wish to arrive
to their destinations in the smallest amount of time, that is, they want to minimize
their travel (or commute) time. When the new rapid transit line is built, they will use
the hub line if there is an improvement in their travel time or they will keep using the
shortest route on the existing physical network. In order to more accurately represent
the travel time of users, the time taken to access and exit the hub line needs to be
incorporated. These times are usually observed when a change of transportation mode
occurs. For instance, when arriving at a metro station by bus, the walking time be-
tween the bus terminal and the gates of the subway depend on the station and may be
significant (i.e. 5 to 10 minutes). Moreover, when accessing the hub line the average
time spent at the gate waiting for the next subway train to pass, which depends on
the hub line frequency and congestion factors, could also be significant. These times
might not compensate the reduction of travel time from using the hub line and thus,
users may continue traveling as before. In the case of public transportation networks,
the main goal is not the optimization of the transportation costs but rather the opti-
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mization of the overall efficiency of the system, measured by the travel times between
O/D pairs. Given that the number of users associated with different O/D pairs is
usually substantially different, that minimization of the total weighted travel time of
the system is an appropriate measure of its efficiency (see, for instance, Church and
ReVelle, 1976; Current et al., 1987).

Additional applications for the location of hub lines appear in the design of road
networks. In this case, network planners may be interested in studying the impact of
extending current road networks in urban, suburban or rural regions when constructing
a new path-shaped highway or express lane. Current travel times between O/D pairs
may be improved by using the hub line, were time savings are observed due to higher
speed limits associated with such lanes. Hub nodes can be seen as a set of interchanges
between highways and other existing roads (see, Lari et al., 2008).

The design of path-shaped networks has been studied in the context of classical
facility location and of network design problems. In the former case, Slater (1982)
introduces facility location problems in which facilities are located on nodes that must
constitute a path. Current et al. (1987) present the median shortest path problem which
consists of designing a path-shaped facility such that the total weighted travel time to
reach the line is minimized. Hakimi et al. (1993) analyze the complexity of several
variants of the path-shaped facility location problem by taking into account four types
of objective function: the minimization (maximization) of the maximum (minimum)
distance, and the minimization (maximization) of the sum of the total distance to
the line. Extensive facility location problems (see, Mesa and Brian Boffey, 1996) are
generalizations of these problems that consider the location of facilities too large to be
represented as a single point comparing its scale with its interaction environment. The
interested reader is referred to Hakimi et al. (1993) and Labbé et al. (1998) for details
on potential applications and modeling assumptions on path-shaped facilities.

In a context of rapid transit network design, Dufourd et al. (1996) study the problem
of designing a line in a rapid transit network with the objective of maximizing the
coverage of demand points. A demand point is covered by a line if it is within a given
distance from a station on the line. Bruno et al. (1998) propose a bi-criterion model
for designing a line for a rapid transit system to be integrated into a multi-modal
topology composed by pedestrian and private networks. The objective is to minimize
the total weighted travel costs and the construction costs, where the weights are related
to an origin-destination demand matrix. Laporte et al. (2002) introduce the problem of
maximizing the coverage of a continuous demand by installing stations on pre-defined
alignments.

To the best of our knowledge, the design of hub line networks has not been pre-
viously addressed in the literature. Gelareh and Nickel (2011) study a related hub



2. The Hub Line Location Problem 10

location problem arising in the design of transportation networks, in particular in ur-
ban transport and liner shipping networks. In this problem, the full interconnection
assumption is relaxed but no specific topology is required, other than connectivity,
and direct connections between non-hub nodes are allowed. Their model rather focus
on the minimization of the total set-up and transportation cost of the network and
does not consider any access or exit time for interacting with the hub-level network. A
Benders decomposition algorithm is used to obtain optimal solutions.

The main contributions of this paper are threefold: i) the introduction of the HLLP,
a new hub location problem that considers the design of a hub line network topology,
ii) a mixed-integer programming formulation for the HLLP, and iii) the development of
a Benders decomposition algorithm based on this formulation to obtain optimal HLLP
solutions. The basic implementation of the algorithm is enhanced through the inclu-
sion of several algorithmic features such as a multi-cut strategy, an efficient algorithm
to solve the subproblem and to obtain stronger optimality cuts, and a Benders-branch-
and-cut scheme that requires the solution of only one master problem. In order to
evaluate the efficiency and limitations of our algorithm, extensive computational ex-
periments were performed on benchmark instances with up to 100 nodes.

The remainder of the paper is organized as follows. Section 2.2 provides a formal
definition of the problem and introduces the MIP formulation. The standard Benders
reformulation, the Benders decomposition algorithm, and several features that improve
its convergence are described in Section 2.3. The results of extensive computational
experiments are reported in Section 2.4. Conclusions follow in Section 2.5.

2.2 Definition and Formulation of the Problem

Let G = (N,A) be a complete directed graph, where N and A are the sets of nodes
and arcs, respectively. The demand to be routed from origin i ∈ N to destination
j ∈ N is denoted by wij > 0, (i 6= j). The travel time of arc (i, j) ∈ A, represented
by tij > 0, is defined as the shortest time required to travel from i to j using one or
more modes of transportation, other than the one associated with the hub line, on the
original (physical) network. Without lost of generality, tij also incorporates any average
transfer time required when changing modes of transportation from i to j. Note that
this definition of travel times leads to tij values that satisfy the triangle inequality
property. When a hub arc is located between hub nodes i, j ∈ N , the travel time
between i and j is computed as αijtij, where αij is a reduction factor that models the
use of a faster transport technology to connect i and j. Depending on the considered
application, this percent reduction time αij may be link dependent, as the shortest
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path between node pairs may use different combinations of modes of transportation.
The access and exit times to enter the first hub k and last hub node m of each O/D
path are given by t̃ak ≥ 0 and t̃em ≥ 0, respectively. The access time t̃ak incorporates
both the time required to change the mode of transportation between an access arc
and a hub arc at node k and the average waiting time to access the first hub arc on
the O/D path. The exit time t̃em only includes the time required to change the mode
of transportation at last hub node m, as the waiting time associated with the access
arc (if any) is already considered in tmj.

The HLLP consists of locating p hub facilities connected by means of a line using
a set of p − 1 hub arcs, while allocating every non-hub node to at least one hub in
such a way that the weighted sum of the total travel time is minimized. It is assumed
that the demand from origin i ∈ N to destination j ∈ N (i.e. passengers) will use the
fastest possible route on the solution network. That is, wij will travel either directly
from i to j using the shortest path on the physical network, resulting in a travel time
of tij, or it will use a combination of access arcs and hub arcs, in which the total travel
time is equal to the sum of:

(i) the travel time from origin i to its closest hub k on the line,

(ii) the time to access the hub line at hub k,

(iii) the travel time between hubs k and m connected through a set of hub arcs,

(iv) the exit time to leave the hub line at hub m,

(v) the travel time from the closest hub m on the line to destination j.

Note that because of the triangle inequality property of travel times tij, a solution
network of the HLLP will route demands wij either with a direct connection between i
and j or with a path containing at most two access arcs and at least two hub nodes and
one hub arc. That is, travel times associated with direct connections will be always
smaller than or equal to any O/D path containing one hub node and no hub arcs.

In what follows, we introduce an MIP formulation for the HLLP based on the
so-called path-based formulations commonly used in hub location research to model
incomplete hub networks (see, Contreras et al., 2009; Gelareh and Nickel, 2011; Contr-
eras and Fernández, 2012, and references therein). We define binary location variables
zk, k ∈ N , equal to 1 if and only if a hub is located at node k. We introduce binary
hub arc variables ykm, (k,m) ∈ A, k < m, equal to 1 if and only if a hub arc is located
between hubs k and m, enabling flows to be routed in both directions. We also define
four sets of routing variables to model various structures of O/D paths arising in the
HLLP. In particular, we introduce continuous variables aijk ≥ 0 and bijm ≥ 0 equal to
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the fraction of the demand wij that enters and exits the hub line through hubs k ∈ N
and m ∈ N , respectively, while continuous variables xijkm ≥ 0 denote the percentage of
the demand wij routed on hub arc (k,m) ∈ A. Finally, we define continuous variables
eij, i, j ∈ N , equal to the fraction of flow wij sent directly from i to j. To simplify the
presentation, we assume i, j, k,m ∈ N and i 6= j henceforth. The HLLP can then be
formulated as:

minimize
∑
i

∑
j

wij

[∑
k

(
tik + t̃ak

)
aijk +

∑
k

∑
m:m6=k

αkmtkmxijkm +
∑
m

(
tmj + t̃em

)
bijm + tijeij

]
(2.1)

subject to
∑
k

aijk + eij = 1 ∀i, j (2.2)∑
m

bijm + eij = 1 ∀i, j (2.3)

aijk +
∑
m

m 6=k

xijmk = bijk +
∑
m

m 6=k

xijkm ∀i, j, k (2.4)

aijk ≤ zk ∀i, j, k (2.5)

bijm ≤ zm ∀i, j,m (2.6)

xijkm + xijmk ≤ ykm ∀i, j, k,m : k < m (2.7)∑
k

zk = p (2.8)∑
k

∑
m:m>k

ykm = p− 1 (2.9)∑
m:m>k

ykm +
∑

m:m<k

ymk ≤ 2zk ∀k (2.10)∑
k∈S

∑
m∈S:m>k

ykm ≤
∑

k∈S\{s}

zk ∀S ⊆ N, s ∈ S (2.11)

ykm, zk ∈ {0, 1} ∀k,m : k < m (2.12)

xijkm, eij, aijk, bijm ≥ 0 ∀ i, j, k,m : k 6= m. (2.13)

The objective function (2.1) minimizes the total weighted travel time. Constraints
(2.2)-(2.4) are flow conservation constraints which ensure that the demand wij leaves
node i and arrives at node j, and properly account for flows whenever a hub k is
used, respectively. Constraints (2.5) only allow the demand between nodes i and j to
enter the hub line through hub k if this hub is installed. Likewise, constraints (2.6)
guarantee that this demand can only leave the hub line via hub m if this hub is located.
Constraints (2.7) assure that inter-hub traffic can only flow through installed inter-hub
connections. Constraints (2.8) and (2.9) state the exact number of hubs and inter-hub
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links to be installed.
The hub line design is enforced by constraints (2.10) and (2.11). Constraints (2.10)

only permit each hub to be linked to at most two other hubs, while constraints (2.11)
are the well-known subtour elimination constraints (SECs) which assure that the hub
line is always connected. Since pairs of demand nodes can be directly connected in
this problem, constraints (2.2)-(2.10) are not sufficient to warrant the connectivity of
the line. Therefore, SECs are required to do that. Further, as the number of SECs is
exponential with respect to the number of nodes, they are not explicitly considered in
the model, but are generated only as needed. Finally, constraints (2.12)-(2.13) show
the domain of the decision variables.

Observing the constraint matrix of formulation (2.1)-(2.13), it is possible to see that
it has a staircase structure, which makes the model amenable to solution by a Benders
decomposition algorithm, the subject of the next section.

2.3 Benders Decomposition

The Benders decomposition method (Benders, 1962) is a partitioning procedure for
solving mixed integer-linear and mixed integer non-linear programs with complicating
variables. A given set of variables is considered to be complicating when, after tem-
porarily setting these variables to some value, the obtained problem is easier to solve
than the original one. For instance, variables zk and ykm of the proposed formulation
(2.1)-(2.13) can be considered as complicating variables since, after fixing them, it is
possible to decompose the remaining problem into n(n − 1) shortest path problems,
one for each OD pair.

The main idea of the method is to reformulate the problem by projecting out
the set of non-complicating variables—which is assumed to have a larger cardinality
than the set of complicating variables—with the objective of obtaining a problem with
fewer variables but many more constraints. Since most of these constraints, known as
Benders Cuts (BC), are not active in an optimal solution, all but a few of them are
ignored in order to attain a relaxed version of the reformulation: the master problem
(MP). By iteratively solving the MP, violated BCs are separated through the solution
of a Benders subproblem (SP)—which is the original problem with the complicating
variables temporarily held to values supplied by the MP—and added to the MP.

As the MP is a relaxation of the reformulation, it provides a lower bound (LB)
for the original problem, while an upper bound (UB) is readily available through the
conjunction of the solutions of the master problem and the subproblem. With the
addition of BCs at each iteration, new tentative solutions are generated by the MP
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and new cuts are produced until the convergence of the bounds is obtained, if an
optimal solution exists.

In this section, efficient variants of the Benders decomposition method for the HLLP
are presented.

2.3.1 Benders reformulation

By considering variables z and y as the complicating ones, it is possible to reformulate
model (2.1)-(2.13) to obtain an equivalent problem. In order to achieve this, the non-
complicating variables e, a, b and x are projected out through the parameterization of
variables z and y, which results in the following primal linear SPs, one for each pair i,
j:

min wij

[∑
k

(
tik + t̃ak

)
aijk +

∑
k

∑
m:m 6=k

αkmtkmxijkm +
∑
m

(
tmj + t̃em

)
bijm + tijeij

]
(2.14)

s.t.:
∑
k

aijk + eij = 1 (2.15)∑
m

bijm + eij = 1 (2.16)

aijk +
∑
m

m6=k

xijmk − bijk −
∑
m

m6=k

xijkm = 0 ∀k (2.17)

− aijk ≥ −zhk ∀k (2.18)

− bijm ≥ −zhm ∀m (2.19)

− xijkm − xijmk ≥ −yhkm ∀k,m : k < m (2.20)

xijkm, eij, aijk, bijm ≥ 0 ∀ k,m : k 6= m, (2.21)

where zh and yh are fixed vectors for the complicating variables.
After associating the dual variables θij ∈ R, Γij ∈ R, βijk ∈ R, uijk ≥ 0, vijm ≥ 0

and δijkm ≥ 0 to constraints (2.15)-(2.20), respectively, the dual linear Benders SPs for
each i, j can be written as:

max θij + Γij −
∑
k

zhkuijk −
∑
m

zhmvijm −
∑
k

∑
m:m>k

δijkmy
h
km (2.22)

s.t.: θij + Γij ≤ wijtij (2.23)

− βijk + βijm − δijkm ≤ wijαkmtkm ∀k,m : k < m (2.24)

− βijk + βijm − δijmk ≤ wijαkmtkm ∀k,m : k > m (2.25)
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θij + βijk − uijk ≤ wij
(
tik + t̃ak

)
∀k (2.26)

Γij − βijm − vijm ≤ wij
(
tmj + t̃em

)
∀m (2.27)

uijk, vijk ≥ 0 and βijk ∈ R ∀ k (2.28)

δijkm ≥ 0 ∀ k,m : k < m (2.29)

Γij, θij ∈ R. (2.30)

It is worth noting that the dual SP (2.22)-(2.30) is always feasible and bounded.

Proposition 1. For any fixed vectors zh and yh, the optimal value of the SP (2.22)-
(2.30) is always bounded.

Proof. Proof. Since direct connections are allowed to link pairs i, j of OD demand nodes
for the HLLP, there is at least one path consisting of arc (i, j) to connect any pair i,
j. Hence the primal SP (2.14)-(2.21) is always feasible and bounded. Then, by strong
duality, the solution of the dual SP (2.22)-(2.30) is always feasible and bounded.

Since the dual SP (2.22)-(2.30) is a linear program and from Proposition ??, at least
one extreme point of the polyhedron (2.23)-(2.30) corresponds to an optimal solution.
As there is a finite number of such extreme points, it is possible to write the BC to be
added to the MP as:

η ≥
∑
i

∑
j

Γgij + θgij −
∑
k

(ugijk + vgijk)zk −
∑
k

∑
m

k<m

δgijkmykm

 ∀g ∈ G, (2.31)

where η is an under-estimator variable for the total weighted travel time and G is the
set of extreme points of polyhedron (2.23)-(2.30).

The complicating variables, their respective constraints, the η variable, and the BC
compose the Benders MP, which can be written as:

min η (2.32)

s.t.: Constraints (2.8)− (2.11) (2.33)

η ≥
∑
i

∑
j

[Γgij + θgij −
∑
k

(ugijk + vgijk)zk −
∑
k

∑
m:m>k

δgijkmykm] ∀g ∈ G (2.34)

η ≥ 0 (2.35)

ykm, zk ∈ {0, 1} ∀k,m : k < m.

(2.36)

The Benders MP (2.32)-(2.36) is equivalent to formulation (2.1)-(2.13) sharing
therefore the same set of optimal solutions. On the one hand, the Benders MP has
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fewer variables, but many more constraints (2.34) due to the possibly extremely large
cardinality of set G; on the other hand, in an optimal solution, just a few of these cuts
will be active, allowing for a solution strategy based on relaxation, in which all but a
few cuts are ignored, but added on the fly through an iterative procedure.

Furthermore, due to the presence of the SECs (2.11), the MP is solved by means
of a branch-and-cut framework in which SECs are separated for every potential in-
cumbent solution having a subtour, where by incumbent solution we mean the current
best known feasible solution of the MP. The subtours are identified by detecting the
connected components of the current line, and violated SECs are then added by con-
sidering all nodes of each connected component S. The Concorde callable library by
Applegate et al. (2012) can be used to determine these connected components.

An outline of a classical Benders decomposition method for the HLLP is depicted in
Algorithm 1, in which ν(MP ) and ν(SP ) denote the current optimal solution of the MP
and SP, respectively; LB and UB are the current lower and upper bounds, respectively;
and ε is a given tolerance. Furthermore, (zh, yh) and (Γh, θh, βh, uh, vh, δh) are the
solutions supplied for the Benders MP and the dual SP at iteration h, respectively,
and Gh is the restricted set of extreme points of G generated up to iteration h.

Algorithm 1 Classical Benders decomposition algorithm
Let UB = +∞, LB = −∞, h = 1, Gh = ∅
while UB − LB > ε do

Solve the MP (2.32)-(2.36)
LB ← ν(MP )
zhk ← zk
yhkm ← ykm
for all (i, j) ∈ N ×N : i 6= j} do

Solve the SP (2.22)-(2.30)
end for
Gh+1 ← Gh ∪ {(Γh, θh, βh, uh, vh, δh)}
UB ←min{UB , ν(SP )}
h← h+ 1

end while

The algorithm stops when the UB and LB converge to the optimal solution value
with a tolerance ε. In the next section, several strategies to improve this classical
version of Benders decomposition are presented.

2.3.2 Benders decomposition enhancements

Although Benders decomposition can be successful even in its classical form (see, e.g.,
Geoffrion and Graves (1974)), several techniques to make the method perform better
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have been proposed in the literature. Most of these techniques focus on one of the
major bottlenecks of the method which is the need of solving several instances of the
Benders MP. That is, the traditional way to design a Benders decomposition algorithm
requires the solution of an integer (NP -hard) optimization problem at each iteration
of the algorithm.

In order to improve the performance of the method, McDaniel and Devine (1977)
proposed to relax the integrality constraints of the MP during the first iterations of the
method. In this way, Benders cuts can be generated without solving an integer program.
Geoffrion and Graves (1974) proposed to generate BCs without solving the master
problem to optimality by stopping using a tolerance. More recently, Rei et al. (2009)
integrated Benders decomposition with a local branching algorithm on the Benders MP
to improve the upper bound and to find potential new cuts by solving several master
problems in a restricted search space.

Magnanti and Wong (1981) proposed a strategy to improve the convergence of
the method based on the generation of strong cuts at each iteration. The idea is
to generate Pareto-optimal cuts, i.e., cuts that are not dominated by any other one.
Another strategy that can reduce the number of iterations is to add multiple Benders
cuts at each iteration (Birge and Louveaux, 1988). One can also generate cuts inside
the branch-and-cut tree of a single Benders MP (Codato and Fischetti, 2006; Fortz and
Poss, 2009; Naoum-Sawaya and Elhedhli, 2013) to avoid solving the MP from scratch
at each iteration.

In this paper, three kinds of improvements are considered in order to speed up the
convergence of the method: multiple cuts strategy, Benders decomposition within a
branch-and-cut framework, and the use of a specialized algorithm to solve the dual
subproblem.

2.3.2.1 Multiple cuts strategy:

The first enhancement is to add multiple Benders cuts to the MP at each iteration.
Given that the Benders SP can be decomposed in n(n − 1) smaller subproblems,
two strategies can be considered. The first consists of adding n Benders cuts at
each iteration, i.e., one for each origin i. Therefore, for any optimal dual solution
(Γh, θh, βh, uh, vh, δh) the following set of cuts can be defined:

ηi ≥
∑
j

[Γgij + θgij −
∑
k

(ugijk + vgijk)zk −
∑
k

∑
m:m>k

δgijkmykm] ∀i ∈ N, g ∈ G. (2.37)

In this case, the Benders MP objective function can be rewritten as min η =
∑

i ηi.

The second strategy is to add n(n − 1) cuts at each iteration, i.e., to add the
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following set of cuts for each pair i, j:

ηij ≥ Γgij + θgij −
∑
k

(ugijk + vgijk)zk −
∑
k

∑
m:m>k

δgijkmykm ∀i, j ∈ N, g ∈ G, (2.38)

where the Benders MP objective consists of minimizing η =
∑

i

∑
j ηij.

2.3.2.2 Benders-branch-and-cut scheme:

The Benders-branch-and-cut (BBC) approach consists in adding Benders cuts within a
standard branch-and-cut framework. This idea has been used by Codato and Fischetti
(2006) who add combinatorial Benders cuts (i) before updating the incumbent solution;
(ii) for all fractional solutions in nodes with a tree depth up to 10; and (iii) after
each backtracking step. On a related note, Fortz and Poss (2009) and Gelareh and
Nickel (2011) designed a Benders-branch-and-cut framework which add Benders cuts
for each potential incumbent solution. Naoum-Sawaya and Elhedhli (2013) presented a
Benders-branch-and-cut framework which add Benders cuts at every node of the tree.
Adulyasak et al. (2012) proposed a Benders-branch-and-cut approach considering three
cut generation strategies: adding Benders cuts at every node in the branch-and-bound
tree, adding Benders cuts at the root node and for all potential incumbent solutions
found and adding Benders cuts only when a potential incumbent solution is found. All
of these strategies result in a single Benders iteration.

In order to solve the HLLP, the three cut generation strategies adopted by Adulyasak
et al. (2012) are also tested in this paper. Let ncomp denote the number of connected
components of the current line. Then, Algorithm 2 presents the modifications to the
standard branch-and-cut framework needed to implement the Benders-branch-and-cut
by adding cuts only from potential incumbent solutions. When adding Benders cuts
from fractional solutions, however, the step of finding the connected components is
ignored.

2.3.2.3 Algorithm to solve the subproblem:

Finally, to avoid using a general-purpose solver to find the dual SP solution, an algo-
rithm to solve the dual SP is proposed. The purpose of such a procedure is twofold. The
first one takes into account that the dual subproblem related to network flow problems
is usually degenerated, i.e. it may have multiple optimal solutions, which allows for the
generation of different cuts at each round (Magnanti and Wong, 1981). Hence, instead
of using a general-purpose solver that finds an arbitrary optimal solution, the idea is
to design a method that is able to select dual optimal values such that the resulted
coefficients of the Benders cuts are closer to zero allowing then to obtain large values
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Algorithm 2 Adaptation of a standard branch-and-cut framework for the BBC im-
plementation
h = 1, Gh = ∅
for all Potential incumbent solution (z, y) do

Find the connected components of the line by means of Concorde
if ncomp > 1 then

Add SECs to MP
else

zhk ← zk
yhkm ← ykm
for all (i, j) ∈ N ×N : i 6= j do

Solve the SP (??)-(??)
end for
Gh+1 ← Gh ∪ {(Γh, θh, βh, uh, vh, δh)}
h← h+ 1

end if
end for

for ηij variables. Furthermore, the other goal of designing a specialized algorithm is to
solve the SP faster than by means of a solver.

The main idea of this algorithm is to take advantage of the fact that if the Benders
MP solution is known, then the solution of the primal SP (2.14)-(2.21) consists in
finding the shortest path between each pair i, j. After finding the solution of the primal
SP, the dual SP can be solved by exploiting the complementary slackness conditions
(CSCs).

let H1 = {k : zhk = 1} and H0 = {k : zhk = 0} be the set of open and closed hubs,
respectively. Similarly, let A1 = {(k,m) : yhkm = 1} and A0 = {(k,m) : yhkm = 0} be the
set of selected and not selected hub arcs, respectively. In addition, define SPath[k,m]

as the value of the travel time between the hubs k and m by means of the current hub
line network, where this value is already considering the access time t̃ak and exit time
t̃em. Let Akm denote the set of edges (r, s) ∈ A1 that is in the path between hubs k
and m by means of the current network. A procedure to find the primal subproblem
solution is presented in Algorithm 3.

This algorithm consists in finding the shortest path between each pair of hubs in
the line. After that, a complete enumeration of all pairs of hubs is done to determine
the first and the last hub that is on the shortest path from i to j by using the line.
Finally, the shortest path between the path that uses the line and the direct connection
is chosen.

Let (ehij, a
h
ijk, b

h
ijk, x

h
ijkm) be the optimal solution of the primal SP. Furthermore, let

H1
ij and A1

ij denote the sets of hubs and hub arcs, respectively, that form the path from
i to j. According to the CSCs, the optimal solution of the dual subproblem at iteration
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Algorithm 3 Solving the primal subproblem
eij = aijk = bijk = xijkm = 0
for all (k,m) ∈ H1 ×H1 : k 6= m do

Find SPath[k,m]
xkmrs = 1, ∀(r, s) ∈ Akm

end for
for all (i, j) ∈ N ×N : i < j do

(k,m) = arg(r,s)∈H1×H1 min(tir + SPath[r, s] + tsj)
if tij < (tik + SPath[k,m] + tmj) then

eij = 1
else

aijk = bijm = 1
xijrs = xkmrs for r, s ∈ N : r 6= s

end if
end for

h is a feasible dual solution (Γ, θ, β, u, v, δ) that satisfies the following set of equations
for each pair i, j:

(−ahijk + zhk )uijk = 0 ∀k ∈ N

(−bhijk + zhk )vijk = 0 ∀k ∈ N

(−xhijkm − xhijmk + yhkm)δijkm = 0 ∀k,m ∈ N : k < m

(θij + Γij − wijtij)ehij = 0

(θij + βijk − uijk − wij
(
tik + t̃ak

)
)ahijk = 0 ∀k ∈ N

(Γij − βijk − vijk − wij
(
tkj + t̃ek

)
)bhijk = 0 ∀k ∈ N

(−βijk + βijm − δijkm − wijαkmtkm)xhijkm = 0 ∀k,m ∈ N : k < m

(−βijk + βijm − δijmk − wijαkmtkm)xhijkm = 0 ∀k,m ∈ N : k > m.

These set of conditions imply that:

uijk = 0 ∀k ∈ H1 : aijk = 0 (2.39)

vijk = 0 ∀k ∈ H1 : bijk = 0 (2.40)

δijkm = 0 ∀(k,m) ∈ A1 \ A1
ij : k < m (2.41)

θij + Γij = wijtij if H1
ij = ∅ (2.42)

θij + βijk − uijk = wij
(
tik + t̃ak

)
∀k ∈ H1

ij : aijk = 1 (2.43)

Γij − βijk − vijk = wij
(
tkj + t̃ek

)
∀k ∈ H1

ij : bijk = 1 (2.44)

− βijk + βijm − δijkm = wijαkmtkm ∀(k,m) ∈ A1
ij : k < m (2.45)

− βijk + βijm − δijmk = wijαkmtkm ∀(k,m) ∈ A1
ij : m < k. (2.46)

Taking into account the feasibility requirement for the SP dual solutions, given by



2. The Hub Line Location Problem 21

constraints (2.24)-(2.30) and (2.39)-(2.41), the set of optimal dual solutions must also
satisfies the following set of constraints:

θij + βijk ≤ wij
(
tik + t̃ak

)
∀k ∈ H1 : aijk = 0 (2.47)

Γij − βijk ≤ wij
(
tkj + t̃ek

)
∀k ∈ H1 : bijk = 0 (2.48)

− βijk + βijm ≤ wijαkmtkm ∀(k,m) ∈ A1 \ A1
ij : k < m (2.49)

− βijm + βijk ≤ wijαkmtmk ∀(m, k) ∈ A1 \ A1
ij : m < k. (2.50)

Therefore, any optimal dual solution must satisfies constraints (2.24)-(2.30) and
(2.39)-(2.50). An optimal dual solution can be found in three steps. The first step
consists in finding a feasible solution for the system of equations (2.39)-(2.46). In this
phase, we propose a natural solution for this system in which the variable Γij is given
as the weighted shortest travel time from i to j, the variables βijk, such that k ∈ H1

ij,
are set as the weighted shortest path from i to k in the optimal path from i to j and
the others variables is fixed to zero. After setting the value of the variables in the first
step, the second step is responsible for computing a proper value of variables βijk for
all k ∈ N \H1

ij. As will be shown later, this phase is the most challenging part of the
procedure because of the difficulty of finding a dual solution that satisfies the system
of constraints (2.47)-(2.50) and the impact of these set of variables in the quality of
the Benders cuts. Finally, the value of the other dual variables, uijk, vijk for all k ∈ H0

and δijkm for all (k,m) ∈ A0, can be set such as to satisfies the set of dual solution
given by constraint (2.24)-(2.29). This step is easier to perform since all of the others
variables are already known.

Solving the system of equations (2.39)-(2.46). The solution of this system can
be separated in two cases: the case where the flow from i to j is sent through a direct
connection and the case where this flow uses the hub line. In the first case, no hub
is used to route the flow from i to j, i.e. A1

ij = ∅ and H1
ij = ∅. Hence the problem

reduces to finding a solution for equation (2.42). Possible values for the variables Γij

and θij that satisfy this equation are:

θij = 0 and Γij = wijtij. (2.51)

In the second case, where the flow is routed through the line, at least one hub is
used. Let L = {r1, r2, ..., rp−1, rp} denote an ordered set of open hubs, where the hubs
are ordered according to the position in which they appear on the line. Let rs and rq
be the first and the last hubs in the path between i and j. For the sake of simplicity,
let β̂k = βijk. By constraints (2.43)-(2.46), the value of the variables Γij, θij, uijrs , vijrq ,
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β̂rl for s ≤ l ≤ q and δijkm ∈ A1
ij must satisfy the following equations:

θij + β̂rs − uijrs = wij(tirs + t̃ars)

−β̂rl + β̂rl+1
− δijrlrl+1

= wijαrlrl+1
trlrl+1

where s ≤ l < q and rl < rl+1

−β̂rl + β̂rl+1
− δijrl+1rl = wijαrlrl+1

trlrl+1
where s ≤ l < q and rl+1 < rl

Γij − β̂rq − vijrq = wij(trqj + t̃erq).

Letting θij = uijrs = vijrq = 0 and δijkm = 0 for all (k,m) ∈ A1
ij, a solution for the

above systems of equations can be found recursively by the following equations:

β̂rs = wij(tirs + t̃ars) (2.52)

β̂rl+1
= β̂rl + wijαrlrl+1

trlrl+1
, for s ≤ l < q (2.53)

Γij = wij(trqj + t̃erq) + β̂rq = wij(trqj + t̃erq) +
∑
l

wijαrl−1rltrl−1rl +wij(tirs + t̃ars). (2.54)

It is interesting note, that the variable β̂rl is set as the weighted shortest travel time
from origin i to hub rl in the path from i to j. While, the value of the variable Γij is
set as the value of the weighted shortest travel time from i to j.

Solving the system of inequalities (2.47)-(2.50). This phase can also be separated
in the case where the flow from i to j is sent through a direct connection and the case
where this flow uses the hub line.

In the first case, the values of β̂k for k ∈ H1 need to satisfy the bound constraints
(2.47)-(2.48) and the set of constraints (2.49)-(2.50), where this set of constraints relates
each variable β̂k to a β̂m such that m is adjacent to k on the hub line. One strategy
to solve this system of equations is to give a convenient feasible value to β̂k associated
with a k that is in one of the line ends. After that, giving a value to the variable
β̂k associated with the hub that is next to the previous hub in the line can be done
recursively until the other end of the line is reached. However, before setting a value
to a variable β̂k it is necessary to ensure that this value belongs to a feasibility interval
FIk, where FIk is an interval of possible values for β̂k such that the system resulting
from fixing the value of this variable remains feasible.

Let Φi
l and Φj

l be the shortest travel time from i to hub rl and from hub rl to
j, respectively, in the line segment Ll = {r1, r2, ..., rl−1, rl}. Φi

l can be computed
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recursively by means of Φi
1 = tir1 + t̃ar1 and Φi

l = min{t̃arl + tirl ,Φ
i
l−1 + αrl−1rltrl−1rl}, for

all 1 < l ≤ p, which set Φi
l as the shortest travel time among the path that send the

flow to rl from the line segment Ll−1 and the path that send the flow to rl through
the acess arc (i, rl). In the same way, Φj

l can be set by means of Φj
1 = tr1j + t̃er1 and

Φj
l = min{trlj + t̃erl , αrlrl−1

trlrl−1
+ Φj

l−1}, for all 1 < l ≤ p. The following proposition
shows how to find the feasibility interval for β̂k.

Proposition 2. A feasibility interval for β̂k, for k ∈ L, can be set as follows:

LBp ≤ β̂rp ≤ UBp

max{LBl,−wijαrlrl+1
trlrl+1

+β̂rl+1
} ≤ β̂rl ≤ min{UBl, wijαrl+1rltrl+1rl+β̂rl+1

}, ∀l ∈ 1..(p−1),

where UBl = wijΦ
i
l − θij and LBl = Γij − wijΦj

l .

A proof of this proposition can be found in the Appendix A.
These results can also be used to find a feasibility interval for β̂k, such that k ∈

H1 \ H1
ij, when the flow is routed through the line. In this situation, the line L can

be partitioned into three line segments. The first line segment is from the hub at the
extremity r1 to rs (Seg. 1), the second line segment is between hub rs and rq (Seg. 2)
and the third one (Seg. 3) is from rq to rp. The solution of the system of inequalities
(2.47)-(2.50) consists in finding feasible values for β̂k such that hub k is in Seg. 1 or Seg.
3. Taking into account that a line segment is also a line, then the previous proposition
can be used to find the feasibility interval for these variables. However, before using
these results it is necessary to prove that the value already given to β̂rq and β̂rs is in
their feasibility interval. A proof of this statement can be found in the Appendix B.

Despite Proposition 2 presents a mechanism to find feasible values for β̂k, setting
arbitrary values for theses variables in their feasibility interval can result into weak
Benders cuts. It is possible however to exploit the strategy of the first step to select
good optimal values for the dual variables which allows for a more suitable Benders
cut form. For instance, after fixing variables θij = 0, uijk = vijk = 0 for all k ∈ H1

and Γij = ν(SP ), which is the value of the optimal solution of the SP, the Benders cut
(2.38) can be rewritten as:

ηij ≥ ν(SP )−
∑
k∈H0

(uijk + vijk)zk −
∑

(k,m)∈A0

δijkmykm. (2.55)

We are only presenting here the multiple cuts version for the sake of simplicity, but the
idea can be employed in all versions of the cut in a straightforward way. One can note
that the coefficients of the master variables zk and ykm will always be non-positive. So
the closer these coefficients values are to zero the larger the values of variables ηij may
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be, resulting thus in potentially larger values for the lower bound of the MP.
Although these coefficients are directly dependent to the values of variables uijk,

vijk for all k ∈ H0 and δijkm forall (k,m) ∈ A0, these variables for their turn are also
tied to the values of variables θij, Γij and β̂k by means of the dual SP constraints
(2.24)-(2.30). That is, if the values of variables θij, Γij and β̂k are already known, then
the largest values for the coefficients of zk and ykm in the BC can be attained by:

uijk = max{0, θij + β̂k − wij
(
tik + t̃ak

)
} ∀k ∈ H0 (2.56)

vijk = max{0,Γij − β̂k − wij
(
tkj + t̃ek

)
} ∀k ∈ H0 (2.57)

δijkm = max{0,−β̂k + β̂m − wijαkmtkm, β̂k − β̂m − wijαkmtmk} ∀(k,m) ∈ A0 : k < m.

(2.58)

A proper value to β̂k can be chosen from the feasibility interval with the objective
to make the values of the variables u, v and δ closer to zero. In order to obtain the
smallest values for the variables uijk and vijk, which increase the coefficient of zk, it is
necessary that the second component of the maximization function of equations (2.56)
and (2.57), respectively, to be non-positive. This is attained when β̂k satisfies

β̂k ≤ −θij + wij
(
tik + t̃ak

)
∀k ∈ H0 (2.59)

and
β̂k ≥ Γij − wij

(
tkj + t̃ek

)
∀k ∈ H0, (2.60)

respectively.
While the lowest possible value for δijkm, which increases the coefficient of ykm, can

be obtained when the second and the third components of the maximization function
of equation (2.58) is non-positive, i.e., when β̂k satisfies the following inequalities:

β̂m − wijαkmtkm ≤ β̂k ≤ β̂m + wijαmktmk.

It is important to note that the value of β̂k affects both the coefficients of zk and ykm.
Since we can not guarantee that there is a valid β̂k that makes both set of coefficients
to be zero, we can define a priority variable to tackle. After some empirical tests, we
have chosen to prioritize the reduction of the coefficients of variables ykm when setting
the values for the β̂k. Furthermore, we can also observe that the values of a given β̂k
can affect the values for δkm for all m. Hence, we can set this value taking into account
the impact on the set of variables δkm for all m < k such that (k,m) ∈ A0 and for all
m > k such that (m, k) ∈ A0.

Let
β1
k = max

m 6=k
{β̄1

m − wijαkmtkm : β̄1
m − wijαkmtkm ∈ FIk}, (2.61)



2. The Hub Line Location Problem 25

and
β2
k = min

m6=k
{β̄2

m + wijαmktmk : β̄2
m + wijαmktmk ∈ FIk}, (2.62)

be a possible value of β̂k that tries to reduce the second component and third component
of the maximization function of equation (2.58), respectively, where the value of β̄1

m

and β̄2
m is equal to β̂m when this value is already known or they are assumed to be equal

to LBm and UBm, respectively, otherwise. Despite LBm and UBm for m ∈ H0 to be
originally defined as LBm = −∞ and UBm =∞ (remember that Proposition 2 is only
applied to LBm and UBm for m ∈ H1), we assume that LBm = Γij − wij

(
tkj + t̃ek

)
to

satisfies at least constraints (2.60) in order to also increase the coefficients of zm.
Define

Rk(β̂k) =
∑
m

max{0,−β̂k + β̄m − wijαkmtkm,−β̄m + β̂k − wijαmktmk : (k,m) ∈ A0}

(2.63)
as an estimator of the sum of δkm for a given value of β̂k. A proper value for β̂k can be
chosen among the values β1

k and β2
k that results in the smallest Rk. After fixing this

variable, the other set of variable can be set by means of equations (2.56)-(2.58).
Algorithm 4 presents a general framework to find the optimal dual solutions. Where,

SEGSET is equal to the whole line, when the flow is sent by means of a direct con-
nection and SEGSET is composed by the segments Seg. 1 and Seg. 3, when the flow
is sent by means of the line. In this case, step (6) and (7) can be ignored since the
value of these variables have already been fixed in line 1.

Algorithm 4 Algorithm to find the optimal dual solutions for a given pair i,j
1: Set Γij, θij, βijk ∈ H1

ij, uijk ∈ H1 and vijk ∈ H1 by means of (2.51) and (2.52)-(2.54).

2: for all k ∈ r1 . . . rp do
3: Find the feasibility interval [UBk, LBk]
4: end for
5: for all L′ = {r1, . . . , rp′}′ ∈ SEGSET do
6: Find β̂1

rp′
and β̂2

rp′
by means of (2.61) and (2.62)

7: Set β̂rp′ as the argument β̂k ∈ {β1
rp′
, β2

rp′
} that minimizes Rk given by Equation

(2.63).
8: for all k ∈ (p′ − 1) . . . 1 do
9: Update the feasibility interval to β̂rk by using equation (A.13)
10: Find β̂1

rk
and β̂2

rk
by means of (2.61) and (2.62)

11: Set β̂rk as the argument β̂s ∈ {β1
rk
, β2

rk
} that minimize Rk.

12: end for
13: end for
14: Find the value of variables uijk, vijk and δijkm by means of equations (2.56)-(2.58)
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2.4 Computational Experiments

Computational experiments were performed by using two standard benchmark in-
stances for hub location: the CAB data set of the US Civil Aeronautics Board and
the Australian Post (AP) data set first used in Ernst and Krishnamoorthy (1996).
CAB data set is a set of instances introduced by O’Kelly (1987) that has instances
with 10, 15, 20, 25 node with a symmetric origin-destination demand matrix, while
AP set of instances, first used in Ernst and Krishnamoorthy (1996), has instances
ranging from 10 up to 200 nodes with an asymmetric origin-destination demand ma-
trix. Tests were carried out by considering the following parameters: discount factor
αij = α = {0.2, 0.5, 0.8} and number of hubs p = {5, 8}. In all the test, we considered
a access and exit times that does not depend on the node, i.e., t̃ak = t̃a and exit times
t̃ek = t̃e. In this particular case, using the hub line induces a total transfer time t̃ given
as the sum of the access time and exit time, that is t̃ = t̃a + t̃e. This transfer time is
controlled by means of the parameter ϑ = {0, 0.1, 0.25} which sets this time interval
as a proportion of the average travel time t̄ computed as

t̄ =

∑
i

∑
j tij

n(n− 1)
.

For example, setting ϑ = 0.1 means that the transfer time is 10% of t̄.
To analyze how the parameters α and ϑ affect the configuration of the hub line net-

work, Figures 2.2 and 2.3 present different network configurations obtained by varying
these parameters, considering a network with 20 demand nodes, using an AP instance,
and 8 hubs. We also report some information about the designed system such as the
percentage of flow that uses the line and the number of direct connections and alloca-
tions. Figure 2.2 presents the characteristics of the system when the economies of scale
factor α is equal to 0.2. According to this figure the flow that uses the line decreases
as the waiting time increases. Furthermore, the number of allocations of non-hub to
hub nodes increases as the waiting time increases from ϑ = 0.0 to ϑ = 0.1. On the
other hand, this number decreases for a large waiting time, likely because the use of
the line may be less attractive. Figure 2.3 presents the network configurations by fixing
the parameter of waiting time ϑ = 0 and changing the value of α. In this case, the
demand flow using the line decreases when α increases. Furthermore, the number of
direct connections and the number of allocations increase as α increases.
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Figure 2.2: Configurations of the hub line for α = 0.2 and p = 8.
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Figure 2.3: Configurations of the hub line for ϑ = 0.0 and p = 8.
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Computational tests were performed in three steps. In the first step, several variants
of the Benders decomposition method were tested using AP instances with 10 to 50
nodes. These first tests were performed in order to find the most promising method
for solving the problem. After that, the best algorithm was compared with the use
of the general-purpose solver CPLEX in an effort to solve AP instances with up 100
nodes and the CAB instances. In the last step, the best algorithm was used to solve a
particular case of the problem in which one hub is known. This case is applied when
a central hub is already given and we wish to design a hub line that pass for this hub.

All tests were performed on an 1260 Xeon Westmere 2.66 GHz computer with 24
GB of memory, running Linux. Furthermore, all variants tested were coded in C++
using the Concert Technology (CPLEX 12.5) to solve the Benders MPs and some SPs
with a time limit of 24 hours (86,400 seconds). Since the path used to route the flow
from i to j is the same (in the opposite direction) used to route the flow from j to
i, only one direction (direction i − j (i < j)) is taken into account. In this way, the
number of subproblems solved by iteration can be reduced to n(n− 1)/2.

To compare the single-cut variant of Benders decomposition method (BD-1) and
multiple-cuts strategies, two variants were implemented: BD-n, which adds n cuts
at each iteration, and BD-n2, where n(n − 1)/2 cuts are added, one for each pair i,
j (i < j). The three variants were implemented by using Algorithm 4 to find the value
of the optimal dual variables. A summary of the results is presented in Table 2.1.
This table reports the average CPU time in seconds to solve the problem, the average
number of iterations (#iter) and the number of problems solved to optimality (#Opt).
The instances are grouped by number of nodes and number of opened hubs. According
to this table, the classical version that adds only one cut per iteration is able to solve
only instances with 10 and 20 nodes. Furthermore, this variant spends more time to
solve these instances than the other two variants. One can see that the variant that
adds more cuts per iteration is able to solve more instances, spending smaller average
CPU time. For this reason, the strategy with n(n−1)/2 cuts per iteration was adopted
in the following tests.

The second set of tests aims to analyze the benefits of using a special algorithm to
solve the Benders SP instead of using CPLEX for this purpose. Table 2.2 presents the
results of tests comparing the variant using CPLEX to find the optimal dual solution,
BD-cpx-n2, and the variant using Algorithm 4 for this, BD-alg-n2. This table presents
an additional column to compare the CPU time spent by CPLEX and by the proposed
algorithm to solve the Benders SP. Let τcpx and τalg denote the average time that
CPLEX and the proposed algorithm, respectively, spent to solve the subproblem by
iteration, which can be given as (the average total time spent solving subproblems)/(the
average number of iterations), where the computation of the averages takes into account
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Table 2.1: Comparison of single-cut and multiple-cuts versions.

n p BD-alg-1 BD-alg-n BD-alg-n2
#Opt Time[s] #iter #Opt Time[s] #iter #Opt Time[s] #iter

10 5 9/9 34.40 158.78 9/9 1.95 16.78 9/9 0.90 9.11
10 8 9/9 13343.35 782.22 9/9 61.62 45.00 9/9 4.38 13.78
20 5 3/9 64081.77 659.00 9/9 53.57 25.56 9/9 24.72 13.22
20 8 0/9 86400.00 — 6/9 35202.03 69.17 9/9 3732.17 28.56
25 5 0/9 86400.00 — 9/9 243.15 34.00 9/9 131.71 15.56
25 8 0/9 86400.00 — 3/9 59352.94 59.00 7/9 26737.37 28.00
40 5 0/9 86400.00 — 9/9 7450.89 45.11 9/9 3858.55 17.78
40 8 0/9 86400.00 — 0/9 86400.00 — 2/9 75272.74 46.00
50 5 0/9 86400.00 — 8/9 36056.43 56.38 9/9 34278.75 23.22
50 8 0/9 86400.00 — 0/9 86400.00 — 1/9 85410.28 45.00
Average 21/90 68225.95 533.33 62/90 31122.26 43.87 73/90 22945.16 24.02

– time limit exceeded for all instances.

only solved problems. Hence τcpx/τalg shows how much faster the proposed algorithm
is compared to the CPLEX solver. According to the table, the variant BD-alg-n2

solves more instances, spending less time and iterations to find the optimal solution.
Furthermore, CPLEX spends on average more than twice (2.30) the time to solve the
SP compared with the specialized algorithm. Therefore, the proposed algorithm was
used to solve the SP in subsequent tests.

Table 2.2: Comparison of Benders decomposition method using the proposed algorithm
to solve the SP and by using the CPLEX.

n p Bd-cpx-n2 Bd-alg-n2
τcpx/τalg#Opt Time[s] #iter #Opt Time[s] #iter

10 5 9/9 1.40 11.67 9/9 0.90 9.11 3.99
10 8 9/9 22.33 20.56 9/9 4.38 13.78 3.74
20 5 9/9 63.27 19.89 9/9 24.72 13.22 2.03
20 8 6/9 18495.91 39.89 9/9 3732.17 28.56 2.04
25 5 9/9 314.54 21.22 9/9 131.71 15.56 1.89
25 8 4/9 54760.36 32.75 7/9 26737.37 28.00 1.71
40 5 9/9 15113.93 21.78 9/9 3858.55 17.78 2.24
40 8 1/9 77920.90 69.00 2/9 75272.74 46.00 1.79
50 5 6/9 44694.39 24.33 9/9 34278.75 23.22 2.08
50 8 1/9 77190.60 43.00 1/9 85410.28 45.00 1.49
Average 61/90 28857.76 30.41 73/90 22945.16 24.02 2.30

A third set of experiments was performed in order to compare several Benders-
branch-and-cut strategies. However, since a large number of Benders cuts are some-
times added at each branching node (O(n2)), some tests were also performed to analyze
the convenience of filtering the cuts before adding them to the MP, i.e., selecting which
cuts will be added to the model. This test is based on the variant that adds Benders
cuts only at the root node and every time a potential incumbent solution is found. In-
stead of adding all Benders cuts obtained from the SP solution, the algorithm retains
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only those that are violated by the current MP solution. Two filtering strategies were
analyzed: filter only the cuts from fractional solutions (BDCF1) and filter cuts from
fractional solutions and from potential incumbents (BDCF2). These two strategies are
compared with the strategy of not filtering (BDCF). Table 2.3 presents the results of
the tests. Column #cut shows the average number of cuts added and column #No
presents the average number of expanded B&B tree nodes, i.e., the number of nodes
of the B&B tree that was examined. According to the table, filtering increases the
average number of expanded nodes. However, the average CPU time and the average
total number of cuts decrease. Since the variant BDCF2 spends less CPU time to solve
the problem, this strategy is used in all Benders-branch-and-cut variants.

Table 2.3: Comparison of a variant without filtering of cuts and two strategies of cut
filtering.

n p BDCF BDCF1 BDCF2
Time[s] #Cut #No Time[s] #Cut #No Time[s] #Cut #No

10 5 0.20 775.00 1.89 0.18 644.67 2.00 0.19 707.78 1.89
10 8 0.55 1185.00 88.33 0.53 1002.44 96.11 0.50 1038.89 100.11
20 5 3.55 3757.78 3.22 3.23 3092.67 2.11 3.32 3808.44 82.11
20 8 78.16 6375.56 942.22 63.43 5202.67 1115.44 54.33 5554.67 991.00
25 5 11.82 6000.00 6.44 8.97 4673.67 9.56 9.07 5018.33 9.44
25 8 485.80 10766.67 1940.22 251.63 8235.56 1685.78 216.72 7246.44 1895.78
40 5 108.44 16640.00 10.44 87.39 14797.22 5.11 94.95 17123.67 11.33
40 8 4843.92 31893.33 1041.89 1768.72 22248.11 1008.11 1908.43 23110.78 1264.44
50 5 279.15 24636.11 3.89 277.05 20612.89 12.78 291.17 20659.67 14.44
50 8 *39164.77 45733.33 810.50 16518.12 37471.44 2543.00 12764.70 37749.33 2242.44
Average 4497.64 14776.28 484.91 1897.93 11798.13 648 1534.34 12201.80 661.30

* Only 6/9 instances are solved to optimality.

Using the filter strategy BDCF2, the three strategies for adding Benders cuts within
a B&C tree were compared: adding BCs only for potential incumbent solutions (BDC);
adding BCs for any potential incumbent and for any fractional solution at the root node
(BDCFR); adding BCs for every solution (BDCFA). Table 2.4 reports the results.
According to this table, the variant that adds Benders cuts only from integer MP
solutions and in the root node is the most efficient and effective. This variant is able to
solve all tested instances and the CPU time required to solve these instances is lower
than for the other variants. Furthermore, the strategy of adding BCs at every node of
the tree explores few nodes, but requires a lot of CPU time to solve the problem.
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Table 2.4: Comparison of three strategies for adding cuts in the B&B tree: only for integer solutions (BDC), for all integer solutions
and fractional solutions at the root node (BDCFR) and for all integer and fractional solutions (BDCFA).

n p BDC BDCFR BDCFA
Time[s] #Cut #No Time[s] #Cut #No Time[s] #Cut #No

10 5 0.16 1078.67 95.11 0.19 707.78 1.89 0.20 712.33 1.33
10 8 0.70 1575.78 591.22 0.50 1038.89 100.11 1.93 1614.11 34.89
20 5 4.56 8590.78 790.33 3.32 3808.44 82.11 3.37 2998.67 2.67
20 8 123.65 16772.44 7877.67 54.33 5554.67 991.00 1124.94 23174.89 138.89
25 5 19.64 15607.33 1683.22 9.07 5018.33 9.44 11.48 5195.11 3.22
25 8 985.20 31116.00 29189.44 216.72 7246.44 1895.78 1613.68 28343.44 180.44
40 5 410.71 55444.78 5109.56 94.95 17123.67 11.33 92.30 17569.00 1.56
40 8 22002.45 104146.33 89013.22 1908.43 23110.78 1264.44 14025.38 44254.44 214.78
50 5 1707.22 93310.11 11384.22 291.17 20659.67 14.44 271.34 20949.89 2.00
50 8 71795.79a 211062.00a 306365.33a 12764.70 37749.33 2242.44 40015.34b 29068.00b 41.60b

Average 9705.01 53870.42 45209.93 1534.34 12201.80 661.30 5716.00 17387.99 62.14
* a: Only 3/9 instances are solved to optimality.
* b: Only 5/9 instances are solved to optimality.
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The second phase of the tests aims to compare the best Benders decomposition
variant, BDCFR, and the CPLEX solver to tackle instances with up 100 nodes. Ta-
ble 2.5 and Table 2.6 presents the results of the experiments for all AP and CAB
instances, respectively. The smallest time to find the optimal solution is in boldface.
The optimality gap for instances not solved to optimality is presented.
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Table 2.5: Comparison of the best Benders decomposition variant and CPLEX using AP data set.

n p ϑ
α = 0.2 α = 0.5 α = 0.8

CPLEX BDCFR CPLEX BDCFR CPLEX BDCFR
Time[s] Time[s] #No Time[s] Time[s] #No Time[s] Time[s] #No

10 5 0 0.46 0.27 1 0.27 0.13 1 0.13 0.1 1
10 5 0.1 1.23 0.31 1 0.17 0.15 1 0.13 0.12 1
10 5 0.25 2.1 0.33 7 0.46 0.24 3 0.08 0.1 1
10 8 0 5.11 1.06 174 1.21 0.28 10 1.03 0.2 43
10 8 0.1 6.23 0.69 88 2.19 0.38 55 1.14 0.21 34
10 8 0.25 13.27 0.99 226 3.41 0.51 191 0.64 0.16 80
20 5 0 72.83 4.25 4 38.56 2.53 13 13.73 1.43 1
20 5 0.1 45.55 4.05 11 38.3 2.35 1 21.06 1.26 12
20 5 0.25 44.94 4.31 17 324.81 6.34 35 3.75 3.34 645
20 8 0 2279.1 32.36 319 898.06 19.02 500 56.25 2.38 6
20 8 0.1 4525.01 200.57 3122 910.55 14.42 218 34.43 2.61 5
20 8 0.25 6771.1 193.91 4131 660.18 21.64 610 12.69 2.08 8
25 5 0 609.74 12.19 1 338.04 7.3 6 78.26 2.85 6
25 5 0.1 456.68 12.6 1 422.78 6.76 1 107.51 3.64 12
25 5 0.25 686.39 13.41 3 1820.28 20.64 50 28.55 2.21 5
25 8 0 28829.4 132.5 715 2880.62 31.39 229 236.34 6.47 16
25 8 0.1 58465 884.7 5760 7253.66 101.17 1186 274.08 8.09 15
25 8 0.25 61911.6 587.85 6128 15787.7 195.06 2977 52.86 3.23 36
40 5 0 time 237.31 31 time 91.03 3 5770.48 25.17 1
40 5 0.1 33116.1 160.98 20 34651.4 78.86 43 4124.06 37.7 1
40 5 0.25 33347.1 149.51 1 14750.4 50.33 1 814.14 23.62 1
40 8 0 time 2018.81 590 time 834.89 688 23292.3 95.71 23
40 8 0.1 time 898.95 137 time 1501.84 1331 57783.5 161.65 193
40 8 0.25 time 3711.55 1827 time 7843.22 6117 7167.99 109.22 474
50 5 0 time 657.96 1 time 322.53 21 time 78.42 15
50 5 0.1 time 550.45 4 time 154.74 1 46729.1 103.96 19
50 5 0.25 time 493.28 1 time 220.67 5 6087.26 38.54 63
50 8 0 time 3560.09 104 time 1996.59 648 time 142.98 14
50 8 0.1 time 32423.9 2139 time 16446.8 4755 time 402.82 124
50 8 0.25 time 45321.1 5759 time 14467.9 6432 37545.8 120.08 207
75 5 0 mem 34047.7 1 time 3673.9 1 time 729.05 1
75 5 0.1 mem 8843.2 1 time 1966.25 1 time 780.76 1
75 5 0.25 time 7779.53 1 time 1432.37 1 time 732.62 105
75 8 0 time 48390.2 409 time time (1.29%) 269 mem 8950.62 425
75 8 0.1 time time (1.36%) 47 time time(0.76%) 663 time 15368.4 891
75 8 0.25 time time 0 time time (0.19%) 690 time 4049.04 1225

100 5 0 mem time 0 mem 23542.6 2 mem 7646.86 1
100 5 0.1 mem time 0 mem 32253.2 1 mem 7347.17 1
100 5 0.25 mem 65749.4 1 mem 15796.8 1 mem 4688.35 10
100 8 0 mem time 0 mem time (2.64%) 0 mem 23062.5 1
100 8 0.1 mem time (13%) 0 mem time 0 mem time(0.22%) 60
100 8 0.25 mem time 0 mem time 0 mem time (0.02%) 1508

time: 24h time limit exceeded.
mem: 24Gb memory exceeded.
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Table 2.6: Comparison of the best Benders decomposition variant and CPLEX using CAB data set.

n p ϑ
α = 0.2 α = 0.5 α = 0.8

CPLEX BDCFR CPLEX BDCFR CPLEX BDCFR
Time[s] Time[s] #No Time[s] Time[s] #No Time[s] Time[s] #No

10 5 0 0.36 0.19 1 1.34 0.78 1 739.22 198.71 291
10 5 0.1 0.36 0.22 1 0.77 0.41 1 308.97 72.67 33
10 5 0.25 0.4 0.2 1 0.6 0.52 1 130.95 8.07 2
10 8 0 0.36 0.13 1 1230.44 157.94 3491 31.38 2.65 14
10 8 0.1 1.44 0.23 1 1727.58 464.54 6630 10.02 2.02 1
10 8 0.25 1.76 0.25 11 1812 631.99 14241 118.06 5.94 216
15 5 0 1.06 0.18 14 57.5 7.19 177 1114.08 89.7 11
15 5 0.1 0.87 0.19 1 94.93 9.74 295 628.23 55.02 1
15 5 0.25 0.12 0.09 10 53.62 3.76 116 780.32 80.96 1
15 8 0 14.17 2.11 582 1.1 0.42 1 274.74 23.21 1
15 8 0.1 24.36 5.01 1140 0.81 0.63 1 339.94 25.2 1
15 8 0.25 28.8 14.91 2924 6.23 1.08 89 1436.21 212.28 51
20 5 0 6.02 1 335 34.13 12.22 4 75.27 5.6 1
20 5 0.1 11.69 2.95 1304 23.51 5.98 1 286.75 76.62 12
20 5 0.25 8.53 2.76 1087 20.03 9.23 1 213.17 9.73 207
20 8 0 2.12 0.38 73 32.77 8.11 1 3720.43 579.69 154
20 8 0.1 1.82 0.3 102 30.46 2.86 1 9730.08 1379.46 470
20 8 0.25 1 0.25 78 10.38 2.22 2 25523.4 2574.82 2187
25 5 0 9.7 3.72 1 7.06 1.36 1 8512.97 859.7 335
25 5 0.1 24.69 17.71 17 4.85 1.65 1 19396.7 6217.05 1849
25 5 0.25 31.3 7.65 21 30.33 2.72 5 13041 2335.17 1260
25 8 0 5.1 1.28 1 2454.24 305.64 995 1127 117.08 225
25 8 0.1 5.94 1.54 1 2938.52 213.46 1143 1918.12 380.59 1256
25 8 0.25 2.19 0.83 1 12144.3 2479.78 8358 2121.11 195.91 3208
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According to Table 2.5, CPLEX is not able to solve some instances with 40 and 50
nodes, and all instances with more than 50 nodes exceed the time limit or the memory.
On the other hand, the Benders variant is able to solve all instances with up 50 nodes,
most instances with 75 nodes and eight instances with 100 nodes. In addition, nine of
the fifteen instances that were not solved by this algorithm present an optimality gap
lower than 1.36%. The variant BDCFR solves the problem faster than CPLEX for all
CAB instances and for all AP instances solved.

By means of Table 2.5 and Table 2.6, it is possible to analyze how the parameters
α and p affect the difficulty of each set of instances. The instances with α = 0.2,
with high economies of scale, seem to be more difficult than the instances with lower
economies of scale (the majority of solved instance have α = 0.8) for AP instances.
On the other hand, CAB instances with high economies of scale presents to be easier
to solve than instance with lower economies of scale. Another parameter that largely
affects the difficulty of the problem is the number of open hubs. The solution of the
problem is harder for instances AP that open eight hubs than for five hubs. Most
instances with 100 nodes for p = 5 are solved, while for instances for p = 8 only one
instance is solved. However, for CAB data set the impact of this parameter depends
of the value of parameter α and the set of datas.

Finally, the last phase of the tests was performed to analyze the performance of
BDCFR algorithm when the location of a hub is already known. Let OP denote the
original problem in which the location of no hub is known beforehand. Define EP as
the problem in which the location of an arbitrary hub that was in an extremity of the
optimal line of OP is known, and denote MP as the problem in which the location of
an arbitrary hub of the optimal line of OP that was not in an extremities is fixed. The
results of the test using AP instance with 50 nodes and p = 8 is presented on Table
2.7, where the largest time to find the optimal solution is in boldface. According to the
table the problems that the location of one hub is fixed is in average faster to solve than
the original problem. However, for some instances the computational time required to
solve the problems MP and EP is larger than the computational time spent to solve
the original problem, see for example the instance α = 0.2 and ϑ = 0.1 or ϑ = 0.25.
The difference in the performance of the algorithm to solve the three problem may be
the results of the high-sensitivity of tree search methods to initial conditions (Fischetti
and Monaci, 2014).
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Table 2.7: Performance of BDCFR variants when the location of one hub is known.

n p α ϑ
Time [s]

OP EP MP
50 8 0.2 0.0 3560.09 3465.53 1251.42
50 8 0.2 0.1 32423.9 5612.54 67760
50 8 0.2 0.25 45321.1 73180.4 3740.06
50 8 0.5 0.0 1996.59 1843.38 1192.42
50 8 0.5 0.1 16446.8 14681.5 2543.75
50 8 0.5 0.25 14467.9 6760.05 6810.39
50 8 0.8 0.0 142.98 180.24 160.79
50 8 0.8 0.1 402.82 484.18 241.46
50 8 0.8 0.25 120.08 172.15 123.76

Average 12764.69 11819.99 9313.78

2.5 Conclusion

We have presented a new variant of the HLP in which the hubs are required to be
connected by means of a line. The HLLP is suitable for some public transportation
systems, in which a more flexible hub-and-spoke network allowing direct interactions
between non-hub nodes and multiple assignments is desired. An exact algorithm based
on Benders decomposition was proposed to optimally solve the problem. The basic
Benders decomposition was enhanced through the incorporation of algorithmic features
to improve its convergence and efficiency. Extensive computational experiments were
performed to analyze the effectiveness of each of the proposed algorithmic refinements.
The results show that the addition of multiple cuts per iteration is better than the
traditional single-cut approach. Furthermore, the specialized algorithm to solve the
dual problem and the integration of Benders decomposition in a B&C framework show
a considerable improvement in the convergence of the method. The results confirm
the efficiency of the algorithm, which is much faster than CPLEX and able to solve
instances with up to 100 nodes.
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Abstract
In this paper we study a hub location problem arising in the design of public trans-

portation networks, where the hub-level network is composed by a set of lines. The
objective is to minimize the total weighted travel time between pairs of nodes while
taking into account a budget constraint on the total set-up cost of the hub network. A
mathematical programming formulation, a Benders-branch-and-cut algorithm and sev-
eral heuristic algorithms, based on variable neighborhood descent, greedy randomized
adaptive search, and adaptive large neighborhood search, are presented and compared
to solve the problem. Numerical results on two sets of benchmark instances with up
to 70 nodes and three lines confirm the efficiency of the proposed solution algorithms.

Keywords: Hub location, hub-and-spoke networks, rapid transit networks.

38



3. Exact and Heuristic Algorithms for the Design of Hub Networks
with Multiple Lines 39

3.1 Introduction

Hub-and-spoke architectures are often used in the design of large-scale networks such
as those found in passenger and freight transportation, postal services, telecommu-
nications, and rapid transit systems. In these networks, commodities from different
origins are sent to intermediate facilities, known as hubs, which are responsible for
the aggregation and distribution of the flows to multiple destinations. This allows the
connection of a large number of origin/destination (O/D) nodes with a small number
of arcs, reducing the infrastructure and operational cost (O’Kelly and Miller, 1994).
Another important advantage of hub-and-spoke networks is that hub facilities can be
connected with highly efficient pathways, enabling economies of scale to be applied on
the transportation cost (or travel time) between hubs. Hub location problems (HLPs)
consider the design of hub networks by selecting a set of nodes to locate hubs, acti-
vating a set of links, and routing commodities through the network while optimizing
a cost-based (or service-based) objective function. We refer the reader to Alumur and
Kara (2008), Campbell and O’Kelly (2012), and Farahani et al. (2013) for surveys on
hub location.

Given the inherent difficulty of HLPs, most of the fundamental HLPs consider a fully
interconnected hub-level network to simplify the network design decisions. However,
it is known that this can be an oversimplification in applications where there is a
considerable set-up cost associated with the inter-hub links (see O’Kelly and Miller,
1994). Several HLPs considering incomplete hub-level networks have thus been studied.
These problems can be seen from a hub arc location perspective (see Campbell et al.,
2005a,b; Contreras and Fernández, 2014), in which the location of a set of hub arcs and
their associated hub nodes is considered. Motivated by specific applications, some of
these models require the hub-level network to have a particular topological structure,
such as cycles (Lee et al., 1993; Contreras et al., 2013a), stars (Labbé and Yaman, 2008),
trees (Contreras et al., 2009, 2010; Martins de Sá et al., 2013b), or lines (Martins de Sá
et al., 2013a). Some other models do not even require the hub arcs to define a single
connected component (Campbell et al., 2005a; Contreras and Fernández, 2014).

The hub line location problem (HLLP), introduced in Martins de Sá et al. (2013a),
consists of designing a hub network in which p hubs are located and connected by
means of a single line. Contrary to most p-hub median models considering a cost-
based objective, the HLLP uses a service-based objective that aims at minimizing the
total weighted travel time between O/D pairs. It considers that a high-speed mode
of transportation is available on the hub arcs and thus, their travel speed is faster
than on the other links of the network. The total travel time when using the hub
line takes into account the access and exit times that may exist when using the hub
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line due to a change in mode of transportation or to waiting because of frequency or
congestion related issues. The trade-off between the benefit of using a high-speed mode
of transportation to efficiently travel and the added time for interacting with the hub
line make the routing decisions more involved. Demand flow must be routed via either
a path using a segment of the hub line or with a direct connection between origin and
destination, depending on whichever route provides the smallest travel time.

Potential applications of hub line networks arise in public transportation planning,
in particular in the design and modification of rapid transit systems and highway
networks. A concrete example of an application of the HLLP is the modification of
already established public transportation networks. Network planners usually face the
problem of expanding an existing network in a metropolitan region so as to reduce
the users’ travel times by locating a rapid transit line, such as a subway, tram or
light rail line, or an express bus lane with a fixed number of stations. Hub facilities
correspond to central stations such as subway or bus stations, where a change of mode
of transportation is usually available. Non-hub nodes represent urban districts, bus
stops or taxi stations. Users will employ the hub line if there is a reduction in their
travel time or they will keep using the shortest route on the existing network. For
additional details and other applications of HLLP the reader is referred to Martins de
Sá et al. (2013a).

One of the limiting aspects of the HLLP is that it is only applicable to situations
in which the design of a hub network having exactly one line with a predetermined
number of hubs is sought. In this paper we generalize the HLLP to the case in which
the hub network is composed by more than one line. In particular, we introduce the
q-line hub location problem (q-HLLP) which consists of locating a set of q lines that
minimize the total travel time between O/D pairs, while satisfying a budget constraint
on the total setup cost of the network associated with the location of hub nodes and
hub arcs. As in the HLLP, we assume that O/D nodes can be assigned to more than
one hub node, i.e. a multiple allocation pattern. However, instead of considering a
predetermined number of hub nodes in a line, the q-HLLP considers as part of the
decision process the determination of the number of hubs contained in each line, while
respecting lower and upper limits on this number and the budget constraint for the total
setup cost. In order to properly model the total travel time when using more than one
hub line, a waiting time to transfer between lines needs to be taken into account. For
instance, when transferring lines at a subway station, the average time spent walking
between gates and waiting for the next subway train to pass, which depend on the size
of the station and train frequency, could be significant. These transfer times might not
compensate the reduction of travel time from using the subway, especially if transferring
more than once, and thus users may continue traveling as before. These times make
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the q-HLLP more general and thus, more challenging to formulate and solve.
Figure 3.1 illustrates two different 2-line hub networks that have the same topolog-

ical structure, but actually represent different systems when transfer times are taken
into account. For example, if transfer times are strictly positive, the travel time from
hub node 1 to hub node 3 in hub network 1 is smaller than in hub network 2, since the
latter implies a transfer from line 2 to line 1 at hub node 2.
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Figure 3.1: Ilustration of a 2-line hub network.

To the best of our knowledge, the design of transportation networks considering mul-
tiple lines has not been previously addressed from a hub location perspective. However,
it has been considered in the context of extensive facility location and rapid transit
systems design. An extensive facility is a facility considered to be too large for being
represented as a single point when comparing its scale with its interaction environ-
ment (Mesa and Brian Boffey, 1996). A review of extensive facility location problems
can be found in Mesa and Brian Boffey (1996), who also cover multiple path location
problems.

In the context of the design of rapid transit systems, Bruno et al. (1998) address
the design of a multi-modal rapid transit line. The problem consists of designing a
bi-modal pedestrian-public network and considers a bi-objective function composed of
the minimization of the construction costs and the minimization of the total weighted
travel cost. The public network refers to a single rapid transit line whose extremities are
given. It is assumed that the total travel cost associated with each O/D pair is equal
to the minimum between the shortest path covered by means of the private system
and the shortest path in the pedestrian-public network, which account for the total
travel cost to transit between two nodes of the network and the costs associated to the
waiting times to boarding and alighting in a station of the rapid transit line. García
et al. (2006) address the design of a rapid transit system composed of multiple lines
that maximizes the total weighted trip coverage by the system, where the extremities
of each line are given. It is assumed that the total cost to satisfy the demand of each
O/D pair by the system is equal to the sum of the total travel cost to move in the
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transit vehicle and the costs associated with transferring from one line to another. In
this case, a demand is covered by the system if the total travel cost is lower than the
travel cost associated to a competitive private system.

Laporte et al. (2007) study a maximal coverage problem to select a set of potential
stations that will be used to design a rapid transit system. They present a mathematical
formulation for the problem of designing a multiple line network that maximizes the trip
coverage in competition with a private mode taking into account a budget constraint.
Marín (2007) presents an extension to the problem proposed by Laporte et al. (2007),
where stations are not determined a priori and the number of lines is free but has an
upper bound. The problem aims to maximize the public coverage (the main objective)
and to minimize the routing cost. Marín and Jaramillo (2008) propose a long term
planning model that aims to determine a network capacity expansion plan, i.e., to
install additional lines or stations. Marín and Jaramillo (2009) present a Benders
decomposition algorithm to solve the urban rapid transit design proposed by Marín
(2007). It is important to note that all of these papers about rapid transit system
design based on multiple line networks consider the maximization of demand coverage
as the main component of the objective function. Consequently, the optimal solution
using the proposed models may result in a multiple-line network that does not provide
the minimum total weighted travel time, which is the objective of the q-HLLP.

As noted by Martins de Sá et al. (2013a), the design of hub line networks is a very
challenging optimization problem, even for the case of a single line. The best Benders
decomposition variant presented by the authors for the HLLP can consistently solve to
optimality instances with up to 50 nodes and for some particular configurations of the
parameters of the HLLP, it can solve instances with up to 100 nodes in one day of CPU
time. In this paper, we present exact and heuristic algorithms for designing hub line
networks with multiple lines. In particular, we present a mixed-integer programming
(MIP) formulation for the q-HLLP which is used in a Benders decomposition algo-
rithm to obtain optimal solutions for small instances and to provide bounds for larger
instances. We also develop three different metaheuristics to provide feasible solutions
to large instances: i) a variable neighborhood descent (VND), ii) a greedy randomized
adaptive search procedure (GRASP) and, iii) an adaptive large neighborhood search
(ALNS). In order to evaluate the efficiency and limitations of our algorithms, exten-
sive computational experiments were performed on benchmark instances with up to 70
nodes and three lines.

The remainder of the paper is organized as follows. Section 3.2 provides a formal
definition of the problem and introduces the MIP formulation. The Benders decom-
position algorithm and the metaheuristics are presented in Sections 3.3 and 3.4, re-
spectively. The results of the computational experiments are reported in Section 3.5.
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Conclusions follow in Section 3.6.

3.2 Definition and Formulation of the Problem

Let G = (N,A) be a complete digraph, where N is the set of nodes and A is the set of
arcs. For each pair of nodes i, j ∈ N , we define wij as the amount of flow to be routed
from the origin i ∈ N to the destination j ∈ N . Let tij ≥ 0 be the travel time defined
as the shortest time required to travel from node i to j using one or more modes
of transportation, other than the one associated with the hub lines, on the original
network. Without loss of generality, tij also incorporates any average transfer time
required when changing modes of transportation from i to j. Note that this definition
of travel times ensures the tij values will satisfy the triangle inequality property. When
a hub arc is used to connect hub nodes i, j ∈ N , the travel time is computed as αijtij,
where αij is a reduction factor that models the use of a faster transport technology to
connect i and j. Let also t̃ak ≥ 0 and t̃em ≥ 0 denote the access and exit times to enter
a hub line at node k and leave a hub line at node m, respectively. The access time
t̃ak represents both the time required to change the mode of transportation between
an access and a hub arc and the average waiting time to access the first hub line on
the O/D path at hub k. The exit time t̃em only represents the time needed to change
the mode of transportation at the last hub node m on the last hub line used on the
O/D path. Note that in this case, the waiting time associated with the access arc (if
any) is already considered in tmj. Let t̃sk ≥ 0 denote the transfer time at hub node
k, which represents the average time to change from one line to another at hub node
k. Furthermore, for k,m ∈ N , let fk and ckm denote the fixed setup cost to locate a
hub node and a hub arc, respectively. Let p and p be the bounds on the minimum
and maximum number of hub nodes on each line, respectively, and let B denote the
available budget to design the hub network.

The q-HLLP consists of locating q hub lines, each of them containing between p

and p hub nodes, while allocating every non-hub node to at least one hub in such
a way that the weighted sum of the total travel time is minimized and the budget
constraint on the total network design cost is satisfied. It is assumed that the demand
(i.e. passengers) from origin i ∈ N to destination j ∈ N will use the fastest possible
route on the solution network. That is, wij will travel either directly from i to j using
a shortest path on the original network resulting in a travel time of tij, or it will use
a combination of access arcs and hub arcs associated with one or more hub nodes, in
which case the total travel time is equal to the sum of:

(i) the travel time from origin i to the first visited hub k,
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(ii) the time to access a hub line at hub k,

(iii) the travel time between the first hub k and the last hub m connected through a
set of hub arcs associated with one or more hub lines,

(iv) the transfer time for changing lines at one or more hub nodes,

(v) the exit time to leave the hub line at the last visited hub m,

(vi) the travel time from hub m to destination j.

Because of the triangle inequality property of tij, a solution network of the q-HLLP will
route wij either with a direct connection between i and j or with a path containing at
most two access arcs and at least one hub arc and one hub line. That is, travel times
associated with direct connections will always be smaller than or equal to any O/D
path containing one hub node and no hub arcs.

We next introduce a MIP formulation for the q-HLLP based on the formulation
proposed by Martins de Sá et al. (2013a) for the single line case. However, the charac-
terization of O/D paths becomes more involved given that we now have to consider the
possibility of transfers between two lines at the hub nodes. We define binary location
variables zlk, k ∈ N , equal to 1 if and only if a hub is located at node k and is part of
line l. We introduce binary hub arc variables ylkm, l = 1, . . . , q and (k,m) ∈ A, k < m,
equal to 1 if and only if a hub arc is located between hubs k and m and is part of line
l, enabling flows to be routed in both directions. We also define five sets of continuous
routing variables to model various structures of O/D paths arising in the q-HLLP. In
particular, we introduce variables aijk ≥ 0 and bijm ≥ 0 equal to the fraction of the
demand wij that enters and exits the q-line hub network through hubs k ∈ N and
m ∈ N , respectively, while variables xlijkm ≥ 0 denote the percentage of the demand
wij routed on hub arc (k,m) ∈ A of line l. We define variables τijk equal to the fraction
of demand wij changing hub lines at hub k, while variables eij, i, j ∈ N are equal to the
fraction of flow wij sent directly from i to j. To simplify the presentation, we assume
i, j, k,m ∈ N , i 6= j, and l = 1, . . . , q henceforth. The q-HLLP can then be formulated
as:

minimize
∑
i

∑
j

wij

[∑
k

(tik + t̃ak)aijk +
∑
l

∑
k

∑
m:m 6=k

αkmtkmx
l
ijkm

+
∑
k

t̃skτijk +
∑
m

(tmj + t̃em)bijm + tijeij

]
(3.1)

subject to p ≤
∑
k

zlk ≤ p ∀l (3.2)



3. Exact and Heuristic Algorithms for the Design of Hub Networks
with Multiple Lines 45∑

k

∑
m:m>k

ylkm =
∑
k

zlk − 1 ∀l (3.3)∑
k

∑
m:m>k

ylkm +
∑

m:m<k

ylmk ≤ 2zlk ∀k, l (3.4)∑
k∈S

∑
m∈S:m>k

ylkm ≤
∑

k∈S\{s}

zlk ∀l,∀S ⊆ N, s ∈ S (3.5)

∑
l

∑
m:m>k

clkmy
l
km +

∑
l

∑
k

f lkz
l
k ≤ B (3.6)∑

k

aijk + eij = 1 ∀i, j (3.7)∑
m

bijm + eij = 1 ∀i, j (3.8)

aijk +
∑
l

∑
m

m 6=k

xlijmk = bijk +
∑
l

∑
m

m 6=k

xlijkm ∀i, j, k (3.9)

aijk ≤
∑
l

zlk ∀i, j, k (3.10)

bijm ≤
∑
l

zlm ∀i, j,m (3.11)

xlijkm + xlijmk ≤ ylkm ∀l, i, j, k < m (3.12)∑
m

xlijkm −
∑
m

xlijmk ≤ τijk + aijk ∀l, i, j, k (3.13)

xlijkm, eij, aijk, bijm, τijk ≥ 0 ∀i, j, k,m (3.14)

ylkm, z
l
k ∀k,m, k < m. (3.15)

The objective function (3.1) minimizes the total weighted travel time. Constraints
(3.2) guarantee that at least p and at most p hubs are located on each line l. Constraints
(3.3) guarantee that the number of hub arcs on each line is equal to the number of hubs
minus one. Constraints (3.4) enforce a line topology for every l by allowing each hub
to be connected to at most two others hubs. Constraints (3.5) are subtour elimination
constraints which guarantee that each hub line does not contain cycles. The budget
constraint (3.6) limits the total network construction cost. Constraints (3.7)-(3.9) are
flow conservation constraints which ensure that all flow from i to j leaves node i, arrives
at node j, and is properly accounted for whenever a hub k is used. Constraints (3.10)
and (3.11) guarantee that the demand from i to j can only access or leave the hub
lines through installed hubs. Constraints (3.12) ensure that only installed hub arcs
can be used. Constraints (3.13) force the variables τijk to take value 1 if the flow
from i to j changes lines at node k. Finally, constraints (3.14)-(3.15) are the standard
non-negativity and integrality constraints.
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3.3 An Exact Algorithm

Benders decomposition is a partitioning procedure for solving mixed-integer linear and
non-linear programs (Benders, 1962). The main idea is decompose the original problem
into two simpler problems: an integer master problem (MP) and a linear subproblem
(SP). In this section, we introduce a Benders reformulation of the q-HLLP, based on
the formulation (3.1)-(3.15). We then describe a Benders decomposition algorithm to
solve the reformulation. Martins de Sá et al. (2013a) present a comparison of several
Benders decomposition variants for the single line problem based on a similar path-
based MIP formulation. In particular, a multiple-cut strategy that adds a cut for each
O/D pair showed better performance as compared to the single-cut variant in which
only one cut is added per iteration. This version was embedded in a Benders-branch-
and-cut scheme (BBC) in which Benders cuts are added within the branch-and-cut
tree for every potential incumbent solution as well as at the root node, resulting in a
single Benders iteration. Given that this BBC strategy provided the best results, we
also adopt it for the q-HLLP.

By fixing the variables z = zh and y = yh, we have the following primal linear SPs,
one for each pair i, j:

minimize wij

[∑
k

(tik + t̃ak)aijk +
∑
l

∑
k

∑
m:m6=k

αkmtkmx
l
ijkm +

∑
k

t̃skτijk

+
∑
m

(tmj + t̃em)bijm + tijeij

]
(3.16)

subject to
∑
k

aijk + eij = 1 (3.17)∑
m

bijm + eij = 1 (3.18)

aijk +
∑
l

∑
m

m6=k

xlijmk − bijk −
∑
l

∑
m

m 6=k

xlijkm = 0 ∀k (3.19)

− aijk ≥ −
∑
l

zhkl ∀k (3.20)

− bijm ≥ −
∑
l

zhml ∀m (3.21)

− xlijkm − xlijmk ≥ −yhkml ∀l, k < m (3.22)

aijk +
∑
m

xlijmk −
∑
m

xlijkm + τijk ≥ 0 ∀l, i, j, k (3.23)

xlijkm, eij, aijk, bijm, τijk ≥ 0 ∀k,m. (3.24)
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After associating dual variables θij ∈ R, Γij ∈ R, βijk ∈ R, uijk ≥ 0, vijk ≥ 0,
δlijkm ≥ 0 and πlijk ≥ 0 to constraints (3.17)-(3.23), respectively, the dual linear Benders
SP for each i, j can be written as:

maximize Γij + θij −
∑
k

∑
l

zhkluijk −
∑
m

∑
l

zhmlvijm

−
∑
l

∑
k

∑
m:m>k

yhkmlδijkml (3.25)

s.t. Γij + θij ≤ wijtij (3.26)

− βijk + βijm − πijkl + πijml − δijkml ≤ αkmwijtkm ∀l, k,m : k < m (3.27)

− βijk + βijm − πijkl + πijml − δijmkl ≤ αkmwijtkm ∀l, k,m : k > m (3.28)

θij + βijk − uijk +
∑
l

πlijk ≤ wij(tik + t̃ak) ∀k (3.29)

Γij − βijm − vijm ≤ wij(tmj + t̃ek) ∀m (3.30)∑
l

πijkl ≤ wij t̃
s
k ∀k (3.31)

uijk, vijk ≥ 0 ∀k (3.32)

δijkml ≥ 0 ∀k,m. (3.33)

It is worth noting that the primal SP is always feasible, since the direct connection
between every pair i, j is a feasible solution. Therefore, the dual SP (3.25)-(3.32) is
always feasible and bounded. Hence, an optimal solution can always be found at an
extreme point of the polyhedron (3.26)-(3.32). As there are a finite number of such
extreme points, it is possible to write the BC to be added to the MP, for each pair i,
j, as:

ηij ≥ Γgij + θgij −
∑
k

∑
l

(
ugijk + vgijk

)
zlk −

∑
k

∑
m

k<m

∑
l

δgijkmly
l
km ∀g ∈ Gij, (3.34)

where ηij is an under-estimator variable for the weighted travel time from origin i to
destination j and Gij is the set of extreme points of polyhedron (3.26)-(3.32) associated
with the pair i, j.

The binary variables and their respective constraints, the ηij variables, and the BC
compose the Benders MP, which can be written as:

maximize
∑
i

∑
j

ηij

subject to (3.2)− (3.6)
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ηij ≥ Γgij + θgij −
∑
k

∑
l

(ugijk + vgijk)z
l
k

−
∑
k

∑
m

k<m

∑
l

δgijkmly
l
km

∀g ∈ Gij (3.35)

ηij ≥ 0 ∀i, j (3.36)

ykm, zk ∈ {0, 1} ∀k,m : k < m. (3.37)

The MP can be solved by means of a BBC framework in which SECs (3.5) are
separated for every potential incumbent solution having a subtour. Subtours are iden-
tified by detecting the connected components of the current line, and violated SECs
are then added by considering all nodes of each connected component. The Concorde
callable library by Applegate et al. (2012) can be used to determine these connected
components. Furthermore, the Benders cuts (3.35) are separated for every potential
incumbent solution and for every fractional solution at the root node. The BBC algo-
rithm is outlined in Algorithm 5, where C is the number of connected components in
the current network.

Algorithm 5 Branch-and-cut framework for the BBC implementation
h = 1, Gh

ij = ∅
for all Incumbent solution or fractional solution at root node (z, y) do

flag ← false

for l = 1, . . . , q do
Find the connected components of l
if C > 1 then

Add SECs to MP and flag ← true

end if
end for
if flag = false then

zh ← z and yh ← y

for all (i, j) ∈ N ×N : i 6= j do
Solve the SP (3.25)-(3.32)
Gh+1
ij ← Gh

ij ∪ {(Γh, θh, βh, uh, vh, δh, πh)}
h← h+ 1

end for
end if

end for
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3.4 Heuristic Algorithms

We next present three different metaheuristic algorithms to obtain feasible solutions
for the q-HLLP, especially for large-size instances: i) a variable neighborhood decent
(VND), ii) a greedy randomized adaptive search procedure (GRASP), and iii) an
adaptive large neighborhood search (ALNS). Before describing these algorithms, we
introduce a deterministic constructive heuristic to design an initial q-line hub network
that satisfies the design constraints and an efficient combinatorial algorithm to solve
the routing subproblem. These two algorithms play and important role in the efficiency
and effectiveness of the proposed metaheuristics.

3.4.1 A Constructive Procedure

A constructive heuristic is an iterative procedure that aims to construct an initial
feasible solution. The main idea is to start with an empty solution, and iteratively
add new elements to the current solution until a feasible solution is obtained. We
propose a deterministic constructive method based on an insertion criterion that takes
into account the design constraints, i.e. the budget constraint on the total setup cost
and the lower and upper limits on the number of hub nodes in each line, to obtain an
initial feasible q-line hub network. It is an iterative greedy-type procedure in which at
each iteration a cost-benefit ratio function is used to determine which hub node, and
associated hub arc(s), should be added to the current solution.

Let s be the current solution and s′kl the solution obtained by adding hub node k
in line l to solution s. Also, let C(s) and f(s) be the setup cost and the objective
function value associated with solution s, respectively. The cost-benefit of an insertion
is measured as the ratio of the increase in the setup cost, C(s′kl)−C(s), and the decrease
in the objective function value, f(s) − f(s′kl), associated with s and s′kl when adding
hub k in the best feasible position in line l, i.e. the one that minimizes this ratio and
does not exceed the budget constraint. Therefore, the insertion cost of hub k in the
best position of line l of solution s can be given by:

IC(k, l, s) =
C(s′kl)− C(s)

f(s)− f(s′kl)
. (3.38)

Let F(s) denote the set of feasible pairs (k, l) that are candidates to be inserted
in the partial solution s, i.e., node k does not belong to line l, the current number of
hubs in line l (denoted by pl) is strictly lower than the upper bound p, and the setup
cost after adding k in the best position in line l does not exceed the budget. In the
first part of the constructive heuristic, we iteratively add hubs to the network until we
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have a feasible q-line hub network satisfying the design constraints. In the second part
of the heuristic, we iteratively try to add additional hubs to some lines as long as we
are able to keep improving the objective function or until there are no candidates left.
The constructive procedure is outlined in Algorithm 6.

Algorithm 6 A deterministic constructive heuristic.
while pl < p for any l and F(s) 6= ∅ do

(k′, l′)← argmin
{(k,l) ∈ F(s): pl<p}

IC(k, l, s)

s← Insert (k′, l′) in s

end while
while F(s) 6= ∅ do

(k′, l′)← argmin
{(k,l) ∈ F(s)}

IC(k, l, s)

s← Insert (k′, l′) in s

end while

If Algorithm 6 does not result in a feasible q-line hub network because of the budget
constraint, then the insertion cost function (3.38) is replaced by

IC
′
(k, l, s) = C(s′kl)− C(s),

which accounts only for the infrastructure cost and the algorithm is repeated.

3.4.2 Solving the Routing Subproblem

Once an initial q-line hub network is built, we still need to solve the routing subproblem
to determine the optimal paths of O/D pairs that minimize the total weighted travel
time. This subproblem can be seen as an extension of the all-pairs shortest path
problem where the transfer time between hub lines and the existence of four types of
arcs between nodes (access, hub and bridge arcs, and direct connections) needs to be
taken into account. In Section 3.3 we showed how this problem can be formulated and
solved as a linear program. However, it can actually be solved more efficiently by using
an adaptation of the well-know Floyd-Warshall (FW) algorithm. This adaptation, it
first computes the shortest path between all pairs of hub nodes, taking into account
the transfer time between lines, and then computes the shortest path between all pairs
of nodes using this information.

Let dkij denote the shortest distance between the pair i, j using only nodes from
{1, . . . , k} as intermediate nodes. In the case of the FW algorithm, the shortest path
from i to j using all nodes in a set N , dnij, can be found by means of the recursive
equation dkij = min{dk−1ij , dk−1ik + dk−1kj }. That is, the shortest path from i to j using
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nodes {1, . . . , k} is equal to the minimum between the shortest path that has k as an
internal node and the one that does not have k as an intermediate node. Moreover,
the length of the shortest path from i to j having k as an internal node is equal to the
concatenation of the shortest path from i to k and the shortest path from k to j.

Our adaptation of the FW algorithm needs to take into account that in the shortest
path from a hub i to a hub j: a) only hub nodes are allowed to be internal nodes, b)
the shortest path length depends on whether an internal hub node k is a transfer node
for this path, and c) hub arcs, with a reduced discount factor, can only be considered.
Let H1 and A1 denote the set of open hub nodes and open hub arcs in all the lines,
respectively, of the current solution network. For every i, j ∈ N we denote as P 0

ij the
shortest path from i to j where no node is used as intermediate node. If (i, j) ∈ A1,
then P 0

ij is equal to αijtij, otherwise it is equal to ∞. The algorithm then adds one
node k ∈ H1 at a time as candidate internal node and finishes after |H1| iterations
with the shortest paths between all hub nodes. The shortest path in the q-line hub
network between every node pair (i, j) ∈ N × N , denoted as SPij, is then computed
by selecting the minimum of either the direct connection between i and j, or a path
that uses a combination of access and bridge arcs and one or more hub lines. Access
and bridge arcs can only be used as the first or last leg of an OD path. The modified
FW algorithm is outlined in Algorithm 7.

Algorithm 7 A modified FW algorithm
r = 0
for all k ∈ H1 do

r = r + 1
for all (i, j) ∈ H1 ×H1 do

if a transfer is required between paths [i, k] and [k, j] then
P r
ij = min{P r−1

ij , P r−1
ik + P r−1

kj + t̃sk}
else

P r
ij = min{P r−1

ij , P r−1
ik + P r−1

kj }
end if

end for
end for
for all (i, j) ∈ N ×N do

SPij = min
{
tij,min

{
tik + t̃ak + P r

km + t̃em + tmj : k,m ∈ H1, k 6= m
}}

end for

3.4.3 A Variable Neighborhood Descent Method

Local search techniques are iterative procedures based on the improvement of a given
solution s by finding a new solution s′ in a neighborhood N (s) of s with a lower
objective function value (for a minimization problem). This procedure stops when
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no such solution can be found, in which case the current solution is called a local
optimum. We now propose a local search procedure based on a VND method for the
q-HLLP. The VND paradigm was proposed by Hansen and Mladenović (2001) and is
based on a systematic local search in a set of m neighborhoods, N1,N2, . . . ,Nm. The
main idea is to perform a local search in a neighborhood N1 until a local optimum is
found. After that, the search switches to neighborhoods N2, . . . ,Nm, sequentially, until
an improved solution is found. When an improvement is achieved, the search restarts
using the neighborhood N1. Our implementation of the VND algortihm considers the
following three neighborhoods:

• N1: The set of feasible solutions that can be reached by either closing one hub or
opening one hub. Closing a hub consists of removing the hub from its associated
line and removing the arcs connecting it to the other hubs on that line. If the
closed hub is not an extremity of the line, the two hubs that were connected to it
will then be connected to each other. Opening a hub consists of inserting a hub
in any position of a line;

• N2: The set of feasible solutions that can be reached by swapping two hubs in the
network. Swapping consists of selecting two hubs in the same line or in different
lines, and exchanging their position;

• N3: The set of feasible solutions that can be reached by simultaneously closing
and opening one hub in the network. The new hub can be placed in any position
of a line.

All these neighborhoods consider only feasible movements with respect to the design
constraints. Moreover, since closing a hub usually results in a worse solution, the local
search in N1 allows closing a hub if the cost of the new solution is within γ% of the
best known solution value, where γ ≥ 0 is a parameter of the algorithm.

3.4.4 A Greedy Randomized Adaptive Search Procedure

GRASP is a multi-start metaheuristic proposed by Feo and Resende (1989), in which
each iteration consists of two phases: a constructive phase and a local search phase.
In the constructive phase, an initial solutions is built, iteratively, by adding at random
an element from a restricted candidate list (RCL) until a feasible solution is obtained.
A local search phase is later used to improve the initial solution by exploring different
neighborhoods but always considering feasible solutions. As before, let s denote the
current partial solution.
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In our GRASP algorithm, we use the cost-benefit ratio function (3.38) presented
in Section 3.4.1 as the greedy function to construct the RCL. At each iteration,
one element is randomly selected, according to a discrete uniform probability dis-
tribution, from the RCL to become a hub in a given line. The RCL is updated
at each iteration of the constructive phase and contains the best candidate elements
F(s) with respect to function (3.38). Let cmin = min {IC(k, l, s) : (k, l) ∈ F(s)} and
cmax = max {IC(k, l, s) : (k, l) ∈ F(s)}, then

RCL = {(k, l) : IC(s, k, l) ≤ cmin + ν(cmax − cmin)} ,

where 0 ≤ ν ≤ 1 is a parameter that controls how greedy or randomized the heuristic
is. For instance, when ν = 0 the algorithm is completely greedy, while when ν = 1 the
algorithm is completely random. Given that the GRASP algorithm is sensitive to this
parameter, we use a reactive GRASP method, proposed by Prais and Ribeiro (1999), to
achieve a good trade-off between the quality and diversity of the constructed solutions.
This method consists of choosing at random a value for ν from a set of potential values
{ν1, ν2, . . . , νm}. Let z∗ be the value of the incumbent solution and Ati be the average
value of all solutions found so far using ν = νi at iteration t. The probability of
choosing a value νi is then equal to wi/

∑m
j=1wj, where wi = z∗/Ati.

Once an initial feasible solution is obtained, we use the VND algorithm presented
in Section 3.4.3 in the local search phase to improve this solution.

3.4.5 An Adaptive Large Neighborhood Search Method

The ALNS method, proposed by Ropke and Pisinger (2006), is a metaheuristic based
on performing a search in a large neighborhood by partially destroying the current
solution and reconstructing it by applying some heuristic rules. Given a set of removal
operators and a set of insertion operators, the destroy and repair phases consist of
choosing at random a removal and an insertion operator, respectively. Let wi be the
weight associated to operator i. The probability of choosing operator i is given by
wi/

∑
j wj. The adaptive part of the algorithm is given by the dynamic updating of

these weights. The update of the weight of each operator is done according to the
performance of each operator in a time interval (segment) by means of scores, where
the score measures the contribution of the operator to the improvement in the objective
function. The score of each operator is initially set to zero, in the beginning of the
segment, and can be increased at each iteration by: a) σ1 if the removal-insertion
operation pair results in a new best solution, b) σ2 if the removal-insertion operation
pair results in a new solution worse than the minimum, but better than the current
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one, and c) σ3 if the removal-insertion operation pair results in a solution that is worse
than the current one, but satisfies the acceptance criterion. In practice, σ1 ≥ σ2 ≥ σ3.
The weight associated to operator i can be updated through

wi = wi(1− r) + r
si
oi
,

where si is the score associated to operator i, oi is the number of times that operator
i was used in the last segment, and r is the reaction factor parameter that indicates
how fast the weights change according to the last segment’s performance.

In our ALNS algorithm, we consider the following removal operators:

(a) Random removal operator. This operator consists of removing m hubs chosen
randomly according to a discrete uniform probability distribution.

(b) Minimum deterioration removal operator. This operator consists of removing,
iteratively, m hub nodes that yield the smallest increase in the objective function
value.

(c) Cost-benefit removal operator. This operator is similar to the previous one, but it
also takes into account the infrastructure cost associated to each node. It consists
of removing m hub nodes with the worst (i.e., largest) cost-benefit ratio. The idea
behind considering the infrastructure cost in the destroy phase aims to make the
repair phase more flexible in relation to the budget.

(d) Proximity removal operator. The idea is to remove m hub nodes that are geo-
graphically close to each other. The first hub node is chosen at random and after
that we remove, iteratively, m − 1 hubs that are the closest to the set of hubs
already removed. The distance between a hub node and a set of nodes is measured
as the distance between this hub and the closest node of the set.

(e) Cost-benefit relatedness operator. This operator consists in removing a segment of
a line withm hub nodes. The first hub node is chosen randomly and the otherm−1

are chosen among the hub nodes that were connected to the previously removed
hub and that have the worst cost-benefit ratio. If the chosen line has fewer than
m hub nodes, the other hub nodes are removed by selecting a new initial hub node
randomly.

Since most of these operators are deterministic, we introduce some randomness in
the algorithm by including a parameter ρ > 1 in the removal operators (b)-(e), as
suggested by Ropke and Pisinger (2006). Let H be a sorted set of hub nodes ordered
according to the removal operator’s main criterion and let R be a random number from
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the interval [0, 1). The idea is to remove the [Rρ|H|]−th element ofH, instead of always
removing the first one. Observe that the parameter ρ controls how much randomness
is added to these operators, where small values of ρ result in more randomness.

In order to reconstruct the network so as to obtain a feasible solution, we use the
following two insertion operators:

(a) Savings insertion operator. Insert, iteratively, hub nodes that will result in the
largest improvement in the objective function value.

(b) Cost-benefit insertion operator. Insert iteratively hubs with the lowest cost-benefit
ratio (3.38).

Finally, a solution s′ is accepted according to a simulated annealing acceptance
criterion, i.e. we accept a new solution s′ with probability ef(s

′)−f(s))/T , where T >

0 is the temperature. The temperature starts with a value T = T0 and decreases
periodically at a cooling rate c.

3.5 Computational Experiments

We next present the results of extensive computational experiments performed to assess
the behaviour of our exact and heuristic algorithms. In the first part of the experi-
ments, we compare the Benders-branch-and-cut method with a general-purpose solver
for instances with up to 40 nodes. The second part of the experiments focuses on the
comparison of the proposed heuristic methods. We first apply the metaheuristics to
solve the case of q = 1, i.e. the single-line HLLP introduced by Martins de Sá et al.
(2013a). We then use the metaheuristics to solve the q-HLLP. In the third part of
the experiments, we analyze how the discount factor, the transfer time and the budget
parameters affect the topology of q-line hub networks. All experiments were performed
on a 1260 Xeon Westmere 2.66 GHz computer with 24 GB of memory and running
Linux. The BBC was coded in C++ using the Concert Technology of CPLEX 12.5 to
solve the Benders MPs and SPs.

We have used two standard benchmark instances for hub location in our compu-
tational experiments: the Australian Post (AP) data set introduced by Ernst and
Krishnamoorthy (1996) and the CAB data set of the US Civil Aeronautics Board first
used in O’Kelly (1987). Both data sets provide an OD demand matrix and coordinates
for each OD node. The AP instances also provide a fixed cost associated to the instal-
lation of each potential hub node. Since CAB instances do not provide these data, we
use the fixed setup cost generated by Camargo et al. (2008). Furthermore, the cost for
opening a hub arc (k,m), which is not provided in the two data sets, is assumed to be



3. Exact and Heuristic Algorithms for the Design of Hub Networks
with Multiple Lines 56

equal to 2000 tkm for AP instances and to 500 tkm for CAB instances. As in other hub
location problems, the travel time between a pair of nodes is assumed to be equal to
the Euclidean distance between them.

Tests were carried out by considering the discount factor values of αij = α in
{0.2, 0.4, 0.6, 0.8}. Moreover, in all experiments we consider that the access, exit and
transfer times are the same for every node k ∈ N , and controlled by means of the
parameter ϑ = {0, 0.1, 0.25}, which is used to set the transfer time as t̃sk = ϑt̄ij, where t̄ij
is the average travel time between all node pairs computed as t̄ij =

∑
i

∑
j tij/n(n−1).

The access and exit times are assumed to be equal to 90% and 10% of the transfer time,
respectively. Furthermore, we consider the budget constraint to be proportional to the
total design cost of the network in which each line has p = b(p+ p)/2c hubs, where the
hub node and hub arc setup costs are assumed to be equal to the average hub node
setup cost f̄ and the average hub arc installation cost c̄, respectively. A proportionality
factor β = {0.6, 1.0, 2.0} is used to vary the budget as B = βq

(
pf̄ + (p− 1)c̄

)
, where

pf̄ is the average cost to install the hubs and (p− 1)c̄ is the average cost to install the
hub arcs.

3.5.1 Benders-branch-and-cut Performance

Tables 3.1 and 3.2 present the computational results comparing the BBC and CPLEX
for instances with n = {10, 20}, ϑ = {0.0, 0.1, 0.2} and β = {0.6, 1.0, 2.0} for both
the AP and CAB data sets. Each line of these tables presents the average CPU time,
the average optimality gap and the number of solved instances aggregated by the ϑ
and β parameters. Table 3.3 presents the computational results for instances with
n = {25, 40}, ϑ = 0.1 and β = 1.0 for AP instances. We consider instances with
q = {2, 3}, p = 2 and p = 6 for n = 10, and p = 3 and p = 8 for the other values of
n, and α = {0.2, 0.4, 0.6, 0.8}. In all the experiments, we use a CPU time limit of 24
hours.

According to Tables 3.1 and 3.2, BBC solves the problem slightly faster on average.
Furthermore, CPLEX presents a better average optimality gap for AP instances with
up to 20 nodes, while BBC presents a better average optimality gap for CAB instances.
It is important to mention that for instances with up to 20 nodes, CPLEX cannot obtain
a feasible solution for three CAB instances and BBC cannot obtain a feasible solution
for one CAB instance. For the case of larger instances with 25 and 40 nodes, Table 3.3
shows that only one of these instances is solved to optimality by both CPLEX and BBC.
However, BBC is able to provide a lower bound for all considered instances whereas
CPLEX fails to even solve LP relaxation after 24 hours for the 40 node instances. In the
case of 25-node instances, the BBC presents better optimality gap than CPLEX. These
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Table 3.1: Comparison of the Benders-branch-and-cut algorithm with CPLEX for AP
instances with 10 and 20 nodes.

n q α
CPLEX BBC

Time gap # Opt Time gap # Opt

10

2

0.2 249.02 0.00% 9 241.17 0.00% 9
0.4 59.78 0.00% 9 29.92 0.00% 9
0.6 21.15 0.00% 9 5.28 0.00% 9
0.8 6.49 0.00% 9 1.61 0.00% 9

3

0.2 13173.96 0.00% 9 36157.91 0.63% 7
0.4 2337.32 0.00% 9 11428.68 0.06% 8
0.6 387.87 0.00% 9 393.56 0.00% 9
0.8 111.25 0.00% 9 51.82 0.00% 9

20

2

0.2 86400.00 9.73% 0 80391.28 7.90% 1
0.4 78006.76 2.39% 4 51139.57 1.30% 4
0.6 34377.73 0.17% 7 20953.81 0.14% 7
0.8 2731.06 0.00% 9 376.92 0.00% 9

3

0.2 86400.00 27.51% 0 86400.00 28.17% 0
0.4 86400.00 8.94% 0 86400.00 14.49% 0
0.6 80356.67 1.68% 1 86400.00 6.56% 0
0.8 46651.40 0.02% 5 28551.60 0.03% 7

Avg/Sum 32354.40 3.15% 98 30557.70 3.70% 97

Table 3.2: Comparison of the Benders-branch-and-cut algorithm with CPLEX for CAB
instances with 10 and 20 nodes.

n q α
CPLEX BBC

Time[s] gap # Opt Time[s] gap # Opt

10

2

0.2 561.83 0.00% 9 3004.45 0.00% 9
0.4 90.43 0.00% 9 81.72 0.00% 9
0.6 25.12 0.00% 9 15.20 0.00% 9
0.8 11.33 0.00% 9 2.85 0.00% 9

3

0.2 26284.55 0.21% 7 39997.25 1.60% 5
0.4 8189.68 0.00% 9 22574.43 0.12% 8
0.6 596.70 0.00% 9 1123.05 0.00% 9
0.8 134.66 0.00% 9 64.80 0.00% 9

20

2

0.2 86400.00 9.59% 0 86400.00 12.37% 0
0.4 75938.97 2.36% 2 60226.78 7.84% 3
0.6 53972.09 0.32% 5 33287.15 0.48% 7
0.8 15610.31 0.00% 8 12978.63 0.01% 8

3

0.2 86400.00 43.48% 0 86400.00 29.26% 0
0.4 86400.00 30.41% 0 86400.00 18.20% 0
0.6 86400.00 2.32% 0 86400.00 6.42% 0
0.8 73179.74 0.16% 2 71354.21 0.80% 2

Avg/Sum 37512.21 5.55% 87 36894.41 4.82% 87
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Table 3.3: Comparison of the Benders-branch-and-cut algorithm with CPLEX for in-
stances with 25 and 40 nodes.

n L α CPLEX gap BBC gap

25

2

0.2 31.97% 8.14%
0.4 5.18% 2.28%
0.6 1.27% 0.15%
0.8 0.00% 0.00%

3

0.2 – –
0.4 – 13.09%
0.6 12.07% 3.02%
0.8 0.43% 0.34%

40

2

0.2 * –
0.4 * 15.89%
0.6 * 0.93%
0.8 * 0.10%

3

0.2 * –
0.4 * –
0.6 * –
0.8 * 0.56%

Avg 8.49% 3.71%

– No feasible solution was found.
* No feasible solution neither a LB was found.

results provide an indication of the increased complexity of solving to optimality the
q-HLLP as compared to the single line case. We recall that the Benders decomposition
presented in Martins de Sá et al. (2013a) for the HLLP can solve instances to optimality
with up to 100 nodes. Our BBC algorithm for the q-HLLP can still be used for
larger instances to obtain lower bounds on the optimal solution value to evaluate the
performance of the proposed heuristic algorithms.

3.5.2 A Comparison of Metaheuristics

We now present a comparison between the three metaheuristic algorithms presented in
Section 3.4. After some preliminary computational experiments, we set the values of
the parameters used in the algorithms as:

VND: The value of γ is equal to 2, which allows the selected solution from N1 to be
at most 2% worse than the current one.

GRASP: The value for ν is chosen at random from {0.01, 0.02, . . . , 0.1} and the weights
wj, for j = 1, . . . , 10, associated with each of these values are updated every 10
iterations as described in Section 3.4.4. Furthermore, the termination criteria
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used are the maximum number of iterations equal to 40 or a time limit of 3,600
seconds.

ALNS: The values for the σi parameters are σ1 = 10, σ2 = 7, σ3 = 5, ρ = 3, and
r = 0.3. Furthermore, we set the initial temperature T0 = 10,000 and the cooling
rate c = 0.990822, so as to obtain a maximum number of iterations of 1000.
Finally, the parameterm was chosen randomly considering values between [1, (p+

p)/2], where the weight associated with each value is updated adaptively. Finally,
the termination criteria used are the temperature T becoming smaller than the
threshold ε = 1 or a time limit of 3,600 seconds.

We first focus on analyzing the performance of our algorithms for the single line case,
i.e. the HLLP. We use the Benders-branch-and-cut algorithm presented in Martins de
Sá et al. (2013a) to provide the optimal solutions or lower bounds for the considered
instances. Since the HLLP has a fixed value for the number of hubs on the line and
no budget constraint, the tests were performed considering p = p ∈ {5, 8}, f 1

i = 0, for
i ∈ N and c1km = 0, for k,m ∈ N . Furthermore, the tests consider the following param-
eter values: α = {0.2, 0.5, 0.8}, ϑ = {0.0, 0.1, 0.2} and n = {10, 20, 25, 40, 50, 75, 100}.
Table 3.4 presents the average gap and number of instances solved for each meta-
heuristic. For comparative purposes, we also present the results from the constructive
heuristic from Section 3.4.1. Each row aggregates the results by α and ϑ parameters.

Table 3.4: Comparison between the proposed heuristics for the HLLP.

n p BBC Constructive VND GRASP ALNS
#Opt gap #Opt gap #Opt gap #Opt gap #Opt

10 5 9/9 2.22% 3/9 0.06% 8/9 0.00% 9/9 0.00% 9/9
10 8 9/9 0.08% 6/9 0.05% 7/9 0.00% 9/9 0.00% 9/9
20 5 9/9 0.81% 2/9 0.18% 5/9 0.00% 9/9 0.00% 9/9
20 8 9/9 0.99% 0/9 0.23% 4/9 0.00% 9/9 0.00% 9/9
25 5 9/9 1.53% 0/9 0.14% 7/9 0.00% 9/9 0.00% 9/9
25 8 9/9 2.00% 0/9 0.67% 2/9 0.00% 9/9 0.03% 5/9
40 5 9/9 1.37% 0/9 0.00% 8/9 0.00% 9/9 0.00% 9/9
40 8 9/9 1.10% 0/9 0.01% 7/9 0.00% 9/9 0.01% 8/9
50 5 9/9 1.82% 0/9 0.00% 9/9 0.00% 9/9 0.00% 9/9
50 8 9/9 1.98% 0/9 0.37% 4/9 0.00% 9/9 0.01% 8/9
75 5 9/9 1.43% 0/9 0.05% 5/9 0.00% 9/9 0.00% 8/9
75 8 4/9 1.80% 0/9 0.31% 0/9 0.24% 3/9 0.24% 2/9
100 5 7/9 2.05% 0/9 0.23% 8/9 0.23% 8/9 0.23% 8/9
100 8 1/9 3.70% 0/9 2.11% 1/9 1.82% 1/9 1.88% 0/9

111/126 1.63% 11/126 0.31% 75/126 0.16% 111/126 0.17% 102/126

According to Table 3.4, the GRASP and ALNS algorithms present the best perfor-
mance. The GRASP is able to obtain the optimal solution in 111 out of 114 instances in
which the optimal solution is known, whereas the ALNS obtains 102 optimal solutions.
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Furthermore, the solutions provided by both metaheuristics present a small gap with
the optimal solution (or best lower bound) of less than 0.17% deviation, confirming
that these heuristics can successfully solve the HLLP.

The comparison of the proposed heuristics to solve the q-HLLP is presented in
Tables 3.5, 3.6 and 3.7. The results presented in these tables use the same set of
instances as in Tables 3.1, 3.2 and 3.3, respectively. Table 3.7 also presents results
for instances with n = 50 and n = 70. In order to better compare the solutions
produced by each algorithm, we take into account two different performance measures:
gap is the deviation between the optimal solution (or the best lower bound found by
CPLEX and BBC) and the best solution found in any algorithm; %Dev is the percent
deviation between the solution found by each algorithm and the best solution found
in any algorithm. To compute the average %Dev for BBC and CPLEX, we consider
only the instances for which the method obtain a feasible solution.

Table 3.5: Comparison of exact and heuristic algorithms for the q-HLLP for AP in-
stances with 10 and 20 nodes.

n q α gap # Opt CPLEX BBC Const VND GRASP ALNS
%Dev # %Dev # %Dev # %Dev # %Dev # %Dev #

10

2

0.2 0.00% 9 0.00% 9 0.00% 9 7.37% 0 1.69% 4 0.33% 8 0.33% 8
0.4 0.00% 9 0.00% 9 0.00% 9 3.84% 0 1.42% 2 0.20% 8 0.41% 7
0.6 0.00% 9 0.00% 9 0.00% 9 1.39% 1 0.84% 1 0.00% 9 0.03% 7
0.8 0.00% 9 0.00% 9 0.00% 9 0.40% 3 0.26% 3 0.00% 8 0.01% 7

3

0.2 0.00% 9 0.05% 8 0.00% 9 5.47% 0 2.51% 0 1.46% 5 0.49% 6
0.4 0.00% 9 0.00% 9 0.03% 8 3.24% 0 1.50% 1 0.17% 4 0.16% 6
0.6 0.00% 9 0.00% 9 0.00% 9 1.12% 0 0.71% 0 0.09% 7 0.11% 7
0.8 0.00% 9 0.00% 9 0.00% 9 0.54% 1 0.29% 1 0.01% 8 0.00% 8

20

2

0.2 6.72% 1 2.72% 1 3.21% 1 4.41% 0 3.00% 0 0.00% 1 0.52% 0
0.4 1.30% 4 0.70% 4 0.22% 4 2.77% 1 1.72% 1 0.01% 4 0.16% 4
0.6 0.09% 7 0.00% 7 0.06% 7 0.98% 1 0.34% 3 0.00% 6 0.03% 6
0.8 0.00% 9 0.00% 9 0.00% 9 0.31% 0 0.24% 0 0.04% 4 0.03% 7

3

0.2 24.18% 0 17.47% 0 18.25% 0 5.35% 0 3.74% 0 0.15% 0 0.12% 0
0.4 8.90% 0 3.78% 0 9.62% 0 1.96% 0 1.24% 0 0.20% 0 0.00% 0
0.6 1.50% 1 0.46% 1 5.42% 0 0.62% 0 0.30% 0 0.10% 1 0.00% 1
0.8 0.01% 7 0.00% 7 0.02% 7 0.47% 1 0.30% 1 0.05% 1 0.05% 4

Avg 2.67% 101 1.57% 101 2.30% 98 2.52% 8 1.26% 17 0.18% 74 0.15% 78

Once more, from Tables 3.5, 3.6 and 3.7 we observe that the GRASP and ALNS
algorithms present better performance than the constructive heuristic and the VND
procedure. The average gap between the best solution found and the lower bound
is 1.38% for CAB instances, 2.67% for AP instances with up to 20 nodes and 6.38%

for the larger AP instances. Furthermore, for instances where we do not know the
optimal solution, the solution of GRASP and ALNS is, on average, better than the
best incumbent found by both CPLEX and BBC. By comparing the ALNS and GRASP
algorithms, GRASP presents a better performance than ALNS with the CAB instances
by solving more instances and presenting a better gap. On the other hand, ALNS
presents a better performance than GRASP for the experiments using the AP instances.
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Table 3.6: Comparison between heuristic algorithms to solve the q-HLLP for CAB
instances with 10 and 20 nodes.

n q α gap # Opt CPLEX BBC Const VND GRASP ALNS
%Dev # %Dev # %Dev # %Dev # %Dev # %Dev #

10

2

0.2 0.00% 9 0.00% 9 0.00% 9 5.89% 0 1.54% 1 0.00% 9 0.76% 2
0.4 0.00% 9 0.00% 9 0.00% 9 2.84% 2 1.67% 3 0.00% 9 0.83% 4
0.6 0.00% 9 0.00% 9 0.00% 9 1.04% 3 0.66% 3 0.00% 9 0.12% 6
0.8 0.00% 9 0.00% 9 0.00% 9 0.56% 1 0.32% 2 0.00% 9 0.06% 4

3

0.2 0.21% 7 0.00% 7 0.37% 5 7.22% 0 2.48% 1 0.11% 6 1.37% 1
0.4 0.00% 9 0.00% 9 0.03% 8 2.36% 0 1.47% 0 0.01% 7 0.07% 7
0.6 0.00% 9 0.00% 9 0.00% 9 1.28% 0 0.77% 0 0.04% 5 0.17% 5
0.8 0.00% 9 0.00% 9 0.00% 9 0.33% 0 0.24% 0 0.00% 8 0.08% 2

20

2

0.2 4.85% 0 3.49% 0 7.97% 0 6.35% 0 3.38% 0 0.00% 0 0.38% 0
0.4 1.12% 3 0.54% 3 6.83% 3 4.09% 0 2.34% 0 0.00% 3 0.48% 2
0.6 0.11% 7 0.06% 5 0.37% 7 2.48% 0 0.75% 0 0.07% 4 0.19% 3
0.8 0.00% 8 0.00% 8 0.00% 8 0.84% 0 0.34% 0 0.04% 3 0.07% 1

3

0.2 9.90% 0 28.86% 0 21.40% 0 8.17% 0 4.09% 0 0.17% 0 0.50% 0
0.4 4.43% 0 6.00% 0 8.91% 0 4.42% 0 2.07% 0 0.15% 0 0.29% 0
0.6 1.27% 0 1.05% 0 5.08% 0 2.00% 0 1.08% 0 0.09% 0 0.11% 0
0.8 0.13% 3 0.00% 3 0.61% 2 1.45% 0 0.55% 0 0.04% 1 0.08% 1

Average 1.38% 91 2.50% 89 3.22% 87 3.21% 6 1.49% 10 0.05% 73 0.35% 38

In particular for instances with 25 up to 70 nodes, ALNS provides in most cases the
best known solution.

3.5.3 Analyzing Network Configurations

To analyze how the parameters α, ϑ and β affect the configuration of the hub line
network, Figures 3.2, 3.3 and 3.4 present different network configurations obtained
by varying these parameters, considering a network with 25 nodes and 3 lines having
between 3 and 8 hubs each. We also report information about the designed system
such as the percentage of flow that uses the line and the number of direct connections
and access edges. Since we do not have an optimal solution for all of these instances,
we are using the solution provided by the ALNS algorithm.

Figure 3.2 presents the system configuration when the economies of scale factor α
is set to 0.2 and the budget factor β is set to 1.0, while we vary the value for ϑ.

According to Figure 3.2, these parameters have a substantial impact on the number
of transfer hub nodes, i.e., nodes that are at the intersection of two or more lines. For
small transfer times, the network has two transfer hub nodes, while for medium and
large transfer times we have just one transfer hub node. Furthermore, the number of
access edges increases as the transfer time increases.

Figure 3.3 presents the network configurations by fixing the transfer time parameter
ϑ = 0.1 and the budget parameter β = 1.0, and changing the value of α. In this case,
the parameter has a great impact on the number of access edges, i.e., the number of
access edges increases as the economies of scale factor increases.
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Table 3.7: Comparison between the heuristic algorithms to solve the q-HLLP for AP
instances with 25, 40, 50 and 70 nodes.

n q α LB gap BBC Constructive VNS GRASP ALNS
%Dev Time %Dev Time %Dev Time %Dev Time %Dev

25

2

0.2 33051.4 6.21% 2.05% 3.26 12.07% 3.26 1.56% 589.61 0.51% 362.05 0.00%
0.4 43909.3 1.54% 0.76% 2.13 6.75% 2.13 2.33% 624.66 0.00% 419.73 0.00%
0.6 51980.5 0.15% 0.00% 4.71 2.10% 4.71 0.06% 650.12 0.00% 432.64 0.00%
0.8 56801.4 0.00% 0.00% 2.35 0.48% 2.35 0.05% 514.64 0.00% 316.88 0.00%

3

0.2 24812.2 15.94% – 8.1 14.72% 8.1 1.10% 3601.67 0.00% 1021.41 0.07%
0.4 38410.5 6.84% 6.70% 7.64 6.72% 7.64 0.70% 3610.91 0.69% 779.73 0.00%
0.6 49259.1 1.88% 1.17% 13.12 3.15% 13.12 0.42% 2402.13 0.31% 806.55 0.00%
0.8 56279.0 0.18% 0.15% 7.11 0.54% 7.11 0.00% 1676.89 0.00% 807.74 0.00%

40

2

0.2 37877.1 5.40% – 9.03 8.15% 9.03 2.28% 2279.88 0.11% 1334.06 0.00%
0.4 47308.4 2.27% 13.94% 8.23 4.37% 8.23 2.23% 2467.76 0.05% 1618.1 0.00%
0.6 54070.9 0.65% 0.28% 25.23 2.33% 25.23 0.00% 2450.97 0.00% 1594.98 0.00%
0.8 58453.9 0.09% 0.01% 9.16 0.59% 9.16 0.13% 2277.7 0.00% 1345.31 0.00%

3

0.2 31643.6 10.82% – 44.89 10.12% 44.89 4.35% 3669.51 1.20% 3007.86 0.00%
0.4 43155.7 4.93% – 30.07 5.91% 30.07 1.93% 3607.29 0.00% 3510.89 0.00%
0.6 52108.3 1.68% – 66.66 2.63% 66.66 0.14% 3604.67 0.09% 3602.27 0.00%
0.8 57930.5 0.37% 0.19% 37.45 0.85% 37.45 0.04% 3642.73 0.06% 3028.83 0.00%

50

2

0.2 38667.5 5.55% – 24.39 8.11% 24.39 0.23% 3627.87 0.00% 2752.6 0.00%
0.4 47884.5 1.95% 16.77% 18.1 4.82% 18.1 0.88% 3614.51 0.01% 3034.72 0.00%
0.6 54383.9 0.45% 8.32% 16.22 2.28% 16.22 0.31% 3660.83 0.00% 2898.02 0.02%
0.8 58459.2 0.10% 0.36% 30.92 0.42% 30.92 0.03% 3639.07 0.03% 2646.5 0.00%

3

0.2 32907.0 9.77% – 50.94 10.30% 50.94 0.82% 3731.04 2.14% 3605.93 0.00%
0.4 44047.6 4.03% – 71.86 6.24% 71.86 1.89% 3656 1.16% 3602.83 0.00%
0.6 52581.5 1.33% – 148.87 2.53% 148.87 0.18% 3738.08 0.15% 3601.6 0.00%
0.8 58035.7 0.28% – 61.79 0.48% 61.79 0.19% 3657.11 0.00% 3606.98 0.00%

70

2

0.2 35689.6 11.61% – 45.14 7.66% 45.14 3.48% 3734.38 1.53% 3605.26 0.00%
0.4 46060.8 5.74% – 63.43 4.00% 63.43 0.17% 3716.78 1.05% 3611.33 0.00%
0.6 54611.2 0.96% – 97.61 2.30% 97.61 0.08% 3631.24 0.39% 3605.38 0.00%
0.8 58899.4 0.14% 1.96% 68.48 0.33% 68.48 0.02% 3736.81 0.01% 3609.03 0.00%

3

0.2 14925.0 59.59% – 133.61 10.54% 133.61 1.04% 3757.14 0.71% 3621.76 0.00%
0.4 30860.7 33.80% – 214.07 5.85% 214.07 0.56% 4399.35 2.71% 3607.46 0.00%
0.6 48760.8 9.34% – 464.78 2.32% 464.78 0.43% 3720.12 0.76% 3634.07 0.00%
0.8 58278.7 0.72% – 207.59 0.45% 207.59 0.02% 3696.67 0.15% 3602.22 0.00%
Average 6.38% 3.51% 62.40 4.83% 62.40 0.89% 3043.38 0.44% 2457.34 0.00%

– No feasible solution was found.

Figure 3.4 presents the network configuration when we fix the waiting time pa-
rameter ϑ = 0.1 and the economies of scale factor α = 0.2 and just vary the budget
parameter. The figures confirm that this parameter has a great impact on the network
topology. The number of installed hubs and the amount of flow using the multiple
hub line network is directly proportional to the budget available to design the network.
Furthermore, the number of direct connections decreases and the number of access
edges increases as the budget increases.

3.6 Conclusion

In this paper we have studied the q-line hub location problem in which the hub-level
network is now composed by a set of q lines. A mathematical formulation and an
algorithm based on Benders decomposition were proposed. Although the BBC algo-
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Figure 3.2: Configurations of the hub lines for α = 0.2 and β = 1.0.

rithm can optimally solve instances with up to 20 nodes, this method is able to provide
good lower bounds for larger size instances. Three metaheuristc algorithms were also
introduced to obtain feasible solutions for the HLLP and the q-HLLP for larger-size in-
stances. The results from the computational experiments show that, for the considered
instances, the ALNS and GRASP algorithms are able to find high quality solutions for
the HLLP and the q-HLLP in reasonable CPU times.
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Figure 3.3: Configurations of the hub lines for ϑ = 0.1 and β = 1.0.
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Exact algorithms to solve the hub
location problem under congestion
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Abstract This paper addresses the single allocation incomplete hub location prob-
lem under congestion. This problem consists in designing a hub-and-spoke network
in which the hub-level network can be partially interconnected, and a non-hub node
must be allocated to a single hub. The network is designed aiming to minimize the
total cost which is composed of the sum of the transportation cost; the fixed cost for
locating hubs and hub arcs; and the total cost regarding network congestions. This
problem has a great appeal in designing transportation system where congestion cost
plays an important role, such as public transportation networks. An important con-
tribution of this paper is to consider congestion in three different services provided by
hub-and-spoke systems: entrance, boarding and transferring services. A mixed integer
nonlinear formulation and exacts algorithms based on outer approximation framework,
and generalized Benders decomposition are proposed. Experiments on benchmark in-
stances with up to 25 nodes confirm the efficiency of the proposed solution algorithms.

Keywords: Hub Location Problem, Generalized Benders Decomposition, Outer Ap-
proximation, Congestion cost.
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4.1 Introduction

The growth of metropolitan areas steadily pushes governments to restructure and ex-
pand their public transport networks in order to improve urban mobility and lower
traffic problems, such as traffic congestion, energy consumption, air pollution, and ve-
hicle accidents. At the same time, users constantly pressure for better service levels,
while taxpayers request for more cost-efficient systems (Gendreau et al., 1995; Bruno
et al., 1998). These give rise to a complex problem which requires considerable amounts
of financial resources and a significant effort to manage it.

Over the years, the Operational Research community has provided tools to tackle
different aspects of this complex problem. Mathematical programming formulations,
specialized solution methods, and decision support systems were developed to facilitate
the network design process; the combination of topological and transport technology
configurations; the determination of frequencies and timetabling; and the daily op-
erations management such as vehicle and crew scheduling (Guihaire and Hao, 2008;
Schöbel, 2012). Recently a new set of resources, based on the ideas of hub-and-spoke
systems, has been cleverly incorporated into the design of public transportation net-
works (Nickel et al., 2001; Gelareh and Nickel, 2011; Martins de Sá et al., 2013a).

Hub-and-spoke systems have attracted the interest of many researchers due to their
wide and successful applicability in different economic areas, which require the trans-
portation of goods or persons from many origins to many destinations or a many-to-
many distribution system (Campbell, 1992, 1994; Campbell et al., 2002; Alumur and
Kara, 2008). Instead of connecting each pair of origin and destination directly, which is
usually prohibitively expensive and, in most times, it is not even technological feasible,
intermediate facilities are used for aggregating, routing and disseminating the traffic in
a hub-and-spoke network. These intermediate facilities are known as hub nodes or just
hubs and, together with their respective inter-hub connections or hub arcs, they form
the hub-level network. Further, the non-hub nodes or spoke nodes or just spokes, once
allocated to the hubs, constitute the local access network. Hub-and-spoke networks are
then a hierarchical network with the hub and the local networks at the top and bot-
tom levels, respectively, and having a distinctive economical appeal: As consolidated
flows are transported by larger, more efficient, higher volume carriers in the top level
(hub-level network), lower unitary transportation costs can be achieved, allowing thus
the exploitation of scale economies (O’Kelly, 1998).

Originally (O’Kelly, 1986, 1987), hub-and-spoke networks were assumed to have: an
inter-hub connection between every hub pair; no direct link between any two non-hub
nodes; and a path with one or at most two hubs for routing demand flows between all
origin and destination pair. Further, two different schemes for allocating the non-hub
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nodes to hubs were allowed: the non-hub nodes could interact with a single hub only,
i.e., be single allocated to a hub, or they could be connected to more than one hub or
be multiple allocated.

Recently, more flexible assumptions were proposed (Nickel et al., 2001; Labbé et al.,
2004; Campbell et al., 2005a,b; Contreras et al., 2009; Alumur et al., 2009; Calık et al.,
2009; Contreras et al., 2010) in order to broaden the applicability of hub-and-spoke
networks to other areas. By disregarding the imposing restriction that every pair of
hub has to be directly connected and by adapting the design of the network to the
characteristics of the application being addressed, different problems can now be seen
as special cases of hub-and-spoke networks: (i) tree-shaped facilities location (Contreras
et al., 2009, 2010; Martins de Sá et al., 2013b), (ii) ring-star network designs (Labbé
et al., 2004), (ii) Lines (Martins de Sá et al., 2013a), (v) incomplete hub networks
(Campbell et al., 2005a,b; Alumur et al., 2009). For exhaustive surveys on the variants
of hub-and- spoke networks please refer to Campbell et al. (2002) and Alumur and
Kara (2008).

This paper addresses the incomplete hub location problem under congestions (IHLPC).
This problem consists in selecting a set of nodes to install hubs and installing a set of
hub arcs, where a hub-level network partially interconnected are allowed, and allocat-
ing each non-hub node to a single hub. The network is designed aiming to minimize
the total cost which is composed of the sum of (i) the total transportation costs which
consider the economies of scale achieved by routing flows between hubs; (ii) the total
infrastructure costs for locating hubs and hub arcs; and (iii) the total cost regard-
ing network congestions. This problem has a great appeal in designing transportation
system where congestion cost plays an important role, such as public transportation
networks. When designing this kind of systems, it is important to take into account
other aspects, as congestion costs, than just transportation, operational and installa-
tion costs since these costs can be very conflicting. When only theses costs are observed,
networks with flow overloaded hubs may be induced, which may implicate in network
users experiencing congestion effects. On a daily basis, users may then be discouraged
to use the public transportation system and may rely on private means of transport,
which may produce an increase in the cities traffic, and consequently worsening urban
mobility. Hence, congestion effects have to be addressed during the modeling of public
transportation networks. The design of an incomplete hub-and-spoke network has al-
ready been applied to public transportation system by Nickel et al. (2001) and Gelareh
and Nickel (2011), but congestion effects are not taken into account.

The effects of congestion in hub and spoke systems have already been addressed
by several authors, where the majority address a standard hub system that assumes a
hub level network fully interconnected. O’Kelly (1986) presents a heuristic approach
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to analyzing hub networks taking into account transportation costs, the total usage of
hubs and the variability of the hubs usage. He shows that minimizing only transporta-
tion costs can result in high total usage of hubs and high variability of the hub usage.
Guldmann and Shen (1997) proposes a general hub network design problem that install
hubs and hub arcs assigning capacities to them. The objective of this network design
problem is to minimize the sum of infrastructure costs to locate hubs and activate
arcs, the total capacities installation costs, and the total operational costs of hubs and
arcs, where operational costs relates to system congestions. They model the congestion
effects by means of a convex nonlinear function of the flow. To model the proposed
problem, they present a mixed-integer nonlinear programming (MINLP) formulation.
Marianov and Serra (2003) address congestion in air passenger transportation systems,
where the airports are modeled as a M/D/c queue. Assuming that the airport have a
fixed number of runways, they propose a congested model that extends the formulation
for a classical uncapacited multiple allocation problem (Campbell, 1994). The conges-
tion is addressed by adding a set of probabilistic constraints that bound the probability
that the number of airplane waiting, in a queue, to land in a given hub is lower than
a given limit. A linearization of this model replacing probabilistic constraints with
deterministic capacity constraints on the arrival rate, to each hub, is proposed. A tabu
search procedure is proposed to find good solutions for the problem. Elhedhli and Hu
(2005) propose a hub location problem considering congestion effects by addressing the
congestion cost in the objective function. Modeling the congestion cost as a convex
nonlinear function, they present a MINLP formulation. A linearization of the model
and a Lagrangean heuristic are proposed to tackle the problem. The proposed heuristic
can solve instances with up to 25 nodes with an average optimality gap of less than
1%. Comparing the congestion model to the classical one, they show that congestion
model achieves a balanced distribution of flows. Camargo et al. (2009) address the
uncapacited multiple allocations hub-and-spoke network design under hub congestion
problem. To solve the nonlinear problem, they propose a generalized Benders decompo-
sition approach. By considering congestion costs represented by a power law function,
computational experiments using a standard data set of hub location problems, they
confirm the efficiency of the proposed algorithm which is able to solve instances with
up to 81 nodes.

Recent papers had addressed more realistic characteristics of congestion. Elhedhli
and Wu (2010) presents a problem that takes into account the relationship between
the routing decisions, capacity and congestion of the network. Camargo et al. (2011)
address a single allocation hub location problem under congestion considering, only,
congestion associated with flows coming from the local network. In order to solve
the problem, they propose a hybrid algorithm that integrate a Benders decomposition
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to solve linear MIP problems and an outer approximation (OA) algorithm to solve
nonlinear MIP problems. Computational experiments verify the performance of the
proposed algorithm which can solve instances with up to 200 nodes. Miranda Junior
et al. (2011) present a single allocation hub location problem under congestion and
demand uncertainty problem. This model is applied to propose a redesign of the
Brazilian Air Transportation Network. Camargo and Miranda (2012) address a single
allocation hub location under congestion considering two different perspective: the
network owner who aims a system with the least cost and the network user who is
willing to accept the minimum of congestion effect at a reasonable cost.

This paper extends the formulation for the incomplete hub location problem (IHLP)
proposed by Alumur et al. (2009) to properly account for the congestion effects. The
main contribution of this paper is twofold. The congestion costs are considered when
designing an incomplete hub-and-spoke system and congestion associated with three
different situations found transportation system are taken into account: access the
system, boarding in a vehicle and transferring demand flows between hubs. Further,
efficient exact methods, based on Outer Approximation (Duran and Grossmann, 1986;
Fletcher and Leyffer, 1994) and Generalized Benders decomposition Geoffrion (1972)
are developed to tackle the proposed congested problem. The proposed approaches is
capable of solving to optimality instances ranging from 10 to 25 nodes in a reasonable
time.

The paper is organized as follows. In section 4.2, the definitions and the notation
used for the IHLPC are presented. In Section 4.3, an outer approximation and gen-
eralized Benders decomposition cut selection schemes are explained. Computational
analysis are shown in Section 4.4. Finally, final remarks and possible future research
lines are presented in section 4.5.

4.2 Notation and definitions

In order to model the IHLPC, a mathematical formulation based on the formulation
for the IHLP, introduced by Alumur et al. (2009), are proposed. Before introducing
the formulation for the congested version, the formulation for the IHLP is presented.
Both formulations requires the following definitions: Let G = (N,A) be a complete
graph, where N is the set of demand node, and A is the set of arcs. For each node
k ∈ N , let Hk be the fixed cost of locating a hub at node k ∈ N . Furthermore, let Akm
denote the fixed cost of locating a hub arc (k,m) between hubs k and m.

For each origin/destination pairs i, j ∈ N , let wij represents the demand that has
to be routed from origin node i to destination node j. Let also Oi =

∑
j∈N wij and
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Di =
∑

j∈N wji be the total demand that is originated from and destined to node i ∈ N ,
respectively. Each segment arc (u, v) ∈ A of a path has an unitary transportation cost
cuv > 0 associated to it. When u and v are hubs, u = k and v = m, then a discount
factor 0 ≤ α ≤ 1, representing the scale economies, is applied, resulting in αckm.

The IHLP consists in selecting some nodes to become hub, installing some connec-
tion between hub nodes, and allocating each non-hub to a single hub such that the
total cost to install the infrastructure, i.e. locating hubs and hub arcs, and the total
transportation cost to routing the demand flows between all origin and destination
pair are minimized. The hub-level network can be partially interconnected, i.e., there
are some hub that is not interconnected. Further, direct connection between non-hub
nodes are not allowed.

The mixed integer linear programming (MILP) formulation to model the IHLP uses
the following set of variables. Flow variables fikm ≥ 0 to represent the total demand
originated at node i that is routed through the hub arc (k,m) ∈ A. Binary variables
zik ∈ {0, 1}, for i, k ∈ N , to indicate if a node i ∈ N is allocated to a hub k ∈ N

(zik = 1) or not (zik = 0). When a hub is located at node k ∈ N , then zkk = 1;
otherwise zkk = 0. Binary variables ykm ∈ {0, 1} to indicate if the hub arc (k,m) ∈ A
is selected to link the hubs k and m (ykm = 1) or not (ykm = 1), respectively. The
formulation for the IHLPC with fixed cost can be formulated as:

min
∑
k

Hkzkk +
∑
k

∑
m:m>k

Akmykm +
∑
i

∑
k
k 6=i

(Oi +Di)cikzik+

∑
i

∑
k

∑
m

m6=k

αckmfikm
(4.1)

s.t.: zik ≤ zkk ∀i, k ∈ N : i 6= k (4.2)∑
k

zik = 1 ∀i ∈ N (4.3)

zmk + ykm ≤ zkk ∀k,m ∈ N : k < m (4.4)

zmk + ymk ≤ zkk ∀k,m ∈ N : k > m (4.5)∑
k

k 6=m

fikm + oizim =
∑
k

k 6=m

fimk +
∑
j
i 6=j

wijzjm ∀i, m ∈ N (4.6)

fikm + fimk ≤ oiykm ∀i, k,m ∈ N : k < m (4.7)

fikm ≥ 0 ∀ i, k,m ∈ N : i, k 6= m (4.8)

ykm ∈ {0, 1} ∀k,m ∈ N : k < m (4.9)
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zik ∈ {0, 1} ∀ i, k ∈ N. (4.10)

The objective function (4.1) minimizes the sum of the total cost to install the hubs,
the total cost to install the hub arcs and the total transportation costs. Constraints
(4.2) ensure that a node i can be allocated to a hub k only if k is installed. Constraints
(4.3) guarantee that each node must be assigned to a single hub. Constraints (4.4) and
(4.5) ensure that demand nodes and hub nodes can be linked by means of access arcs
and hub arcs, respectively, only to installed hubs. Constraints (4.48) are flow balancing
constraints. Constraints (4.7) guarantee that the flow originated at node i ∈ N can
use a hub arc (k,m) ∈ A only if (k,m) is installed. Finally, constraints (4.8)-(4.10) are
the standard non-negativity and integrality constraints.

4.2.1 Assessing the congestion effects

One of the most common measure of congestion impacts on transportation systems
is the cost associated with users delay, i.e. the waiting time imposed on users due to
congestion in a service. The users delay was already used by Guldmann and Shen (1997)
and Elhedhli and Hu (2005) to compute congestion costs in hub systems by charging
congestion delays. A similar approach will be addressed. Assuming that customers
arrive at a given service center according to a Poisson process with the arrival rate
of x customers per time unit. Each hub service can be seen as a single server with
exponential service times and service rate of Γ customers per time unit. Hence, the
hub-and-spoke system can be modeled as M/M/1 network queue. From the M/M/1

queueing theory, the average waiting time in a service center can be given as

1

Γ− x
.

Hence, the congestion cost can be computed by means of the Kleinrock function (Klein-
rock, 1964) given as

kl(x) = ak
x

Γ− x
, (4.11)

where the arrival rate x can be given as the total flow enter in a given process center
and the service rate Γ can be given as the service capacity. In this case, the parameter
ak is the cost charged per unit of waiting time. It’s important to note that this function
is very useful to measure a congestion since it can represent the explosive growth of
congestion cost, where the congestion costs become larger as the flow is closer to service
capacity.

Another very common function used to model congestion cost in hub-and-spoke
systems is the power law function. This function was introduced by Gillen and Levinson
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(1999) to model congestion effects in air transportation systems and was first used, to
model congestion costs, in an hub-and-spoke system by Elhedhli and Hu (2005) and
Camargo et al. (2009). It can be defined as following. Let x be the total flow, the
power law function can be given as: pl(x) = axb, where a and b are positive parameters
(b ≥ 1).

In order to model the connection between congestion in given service center and
its capacity, an adaptation of the power law function, as proposed by Camargo et al.
(2011), is used. This new function takes into account that congestion effects begin to
deteriorate the level of service when the flow reaches a given threshold of m% of the
system capacity. The congestion cost based on the adapted power law function can be
given as

apl(x) = max{0, a(x− m

100
Γ)b}. (4.12)

In this paper, we consider a quadratic apl(x), i.e. b = 2, and a threshold of 80% of the
service center capacity. Further, as proposed by Camargo et al. (2011), the parameter
a are set by means of a curve fitting procedure based on a least squares approach to
find a good fit of the apl(x) function into a kl(x) function. Please, refer to Figure
4.1 to see an illustration of an approximation of an adapted power law function and a
Kleinrock function.
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Figure 4.1: A graph of an adapted Power law function of a Kleinrock function.

Another important issue to address when dealing with network design under con-
gestion is which flows impact on system congestion. Depending on the application
being dealt with, different schemes are applied for computing the value of x. Some
authors (Ernst and Krishnamoorthy, 1999; Marianov and Serra, 2003; Elhedhli and
Hu, 2005; Elhedhli and Wu, 2010) only account for flows originated from the local
access network; while others (Aykin, 1994; Labbé et al., 2005) consider these flows
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(a) Purchase of ticket congestion (b) Congestion to enter into a station

(c) Vehicle boarding congestion

Figure 4.2: Illustration of different kinds of congestion that can be found in hub-and-
spoke networks applied to public transport systems.

plus the traffic incoming from the inter-connections. Further, Guldmann and Shen
(1997) also account the flow that is routed through a hub arc. The former is more
common in postal services in which sorting activities are the most demanding tasks
in a hub, and the others can be found in air and freight transportation systems, and
telecommunication networks.

Nevertheless, for public transportation networks, one must observe that the con-
gestion effects may be caused by three distinct situations that are present in a hub:
Waiting lines for the users to enter the station (hub) due to congestion on system ac-
cess service (Figure 4.2(a) and 4.2(b)), and, once inside, the users difficulty or easiness
in embarking and disembarking at the platform due to a crowded or empty vehicle
regarding congestion on boarding service (Figure 4.2(c)). Finally, the users may be
faced with congestion on transfer service associated with roads due to the amount of
vehicle using the same path.

These cases suggest then the consideration of three different points for assessing
the congestion effects in a hub. In other words, three different variables are required
to account for the total flow at a hub: One gk ≥ 0 to represent the total flow that
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comes from the local network (users accessing the station); q̃k ≥ 0 to represent the
flow leaving the hub by means of any inter-hub connections (the users difficulty or
easiness to board) and, qkm ≥ 0, to characterize the total flow using a particular inter-
hub connections (the users difficulty or easiness to be transfered between to hubs). In
the same manner, three different congestion cost functions τ(gk), υ̃(q̃k) and υ(qkm) are
needed.

The IHLPC is a extension of the IHLP which design a incomplete hub-and-spoke
network such that minimize the total cost to install infrastructure, total transportation
costs and total cost associated to congestion cost, where the congestion cost is equal
the sum of the congestion associated to system access services, boarding services and
transfer services. Since the congestion cost are compute through nonlinear functions
a mixed integer nonlinear programming (MINLP) formulation is used to model the
IHLPC. The formulation for the IHLPC considering the congestion effects is given as:

min
∑
k

Hkzkk +
∑
k

∑
m:m>k

Akmykm +
∑
k

τ(gk) +
∑
k

∑
m6=k

υ(qkm)

+
∑
k

υ̃(q̃k) +
∑
i

∑
k
k 6=i

(Oi +Di)cikzik +
∑
i

∑
k

∑
m

m 6=k

αckmfikm
(4.13)

s.t.: Constraints (4.2)− (4.10) (4.14)

gk ≥
∑
i

Oizik ∀k ∈ N (4.15)

qkm ≥
∑
i

fikm ∀k,m ∈ N : k 6= m (4.16)

q̃k ≥
∑
i

∑
m:m6=k

fikm ∀k ∈ N (4.17)

The objective function (4.13) is the same as the previous one (4.1), but with three
additional terms accounting for the costs of the congestion effects. Constraints (4.15)-
(4.17) properly account the total flow coming from a hub local network, traveling in a
hub arc and boarding in a given hub, respectively. This formulation is a huge MINLP
model and very hard to solve, even for small size instances. Hence, a specialized tailored
method is then required to tackle it. Two procedures to solve the problem are described
in the following section.

4.3 Exact algorithm

This paper address two classical methods available to address convex MINLPs, the Gen-
eralized Benders Decomposition (GBD) (Geoffrion, 1972) and the Outer-Approximation
(OA) technique (Duran and Grossmann, 1986; Fletcher and Leyffer, 1996), that have
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been successfully applied to solve hub location problem modeled as MINLPs (Camargo
et al., 2009, 2011; Miranda Junior et al., 2011; Camargo and Miranda, 2012). Both ap-
proaches are based on a decomposition procedure which consists in solving iteratively
a relaxed master problem (RMP) and a subproblem (SP). The former is a relaxed ver-
sion of a mixed integer program (MIP) reformulation of the original problem with an
exponential number of additional constraints, known as cut, where the most of them
are relaxed. The SP is a nonlinear problem (NLP) from which violated cuts can be
generated to be added to the RMP at each iteration. The stopping criterion normally
used for both methods is the convergence of the lower and upper bounds to an optimal
solution, if one exists.

When comparing both techniques, the OA approach has the advantage of provides
the same or better lower bound than the ones obtained by the GBD method if the
same set of subproblems is considered (Grossmann, 2002), requiring fewer iterations
to converge to the optimal solution. On the other hand, this advantage related to
convergence of OA methods may be achieved at a price of dealing with an RMP larger
than the one of the GBD. In this way, it can restrict the size of problems that can be
solved by an OA based algorithm. For these reasons, exact algorithms based on OA
and GBD are developed to tackle the proposed problem.

4.3.1 Outer approximation method

The OA method is an exact technique proposed by Duran and Grossmann (1986);
Fletcher and Leyffer (1996) to solve mixed integer nonlinear problem (MINLP) and
can be formalized as following. Let f : Rq 7→ R e g : Rq 7→ Rm be two convex and
continuously differentiable functions. Further, let X ⊆ Rq and Y ⊆ Rr be convex sets.
Consider, the following MINLP:

min cTy + f(x) (4.18)

s.t.: By + g(x) ≤ 0 (4.19)

x ∈ X, y ∈ Y. (4.20)

Let ȳ be a fixed value of variables y ∈ Y, then the problem can be reduced to a
pure nonlinear problem (NLP), the OA subproblem (OASP), given as:

min cT ȳ + f(x) (4.21)

s.t.: Bȳ + g(x) ≤ 0 (4.22)
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x ∈ X. (4.23)

Let xh be the solution for the OASP to a given ȳ at a given iteration h. Further, let
∇gj(xh) and ∇f(xh) denote the gradient of the functions gj(x) and f(x), respectively,
at xh. Hence, an OA master problem (OAMP) associated to formulation (4.18)-(4.20)
can be given as:

min cTy + η (4.24)

s.t.: η ≥ f(xh) +∇f(xh)T
(
x− xh

)
∀h ∈ H (4.25)

0 ≥ By + g(xh) +∇g(xh)T
(
x− xh

)
∀h ∈ H (4.26)

x ∈ X, y ∈ Y. (4.27)

Here H is the number of iterations and η is a variable that underestimate the value
of the nonlinear part of the objective function by means of constraints (4.25). While,
constraints (4.26) are used to represents the feasibility set, respectively.

Let ν(OAMP ) and ν(OASP ) denote the optimal value of the objective function
for OAMP and OASP, respectively. Hence, a classical OA framework is presented on
Algorithm 8.

Algorithm 8 Classical outer approximation algorithm
Let UB ← +∞, LB ← −∞ h← 1
while UB − LB > ε do
Solve the OAMP
LB ← ν(OAMP )
ȳ ← y
Solve the OASP
Add OA cuts
UB ← min{UB, ν(OASP )}
h← h+ 1

end while

As mentioned by Grossmann (2002), an OA approach can be embedded in a branch-
and-cut scheme in which OA cuts are added within the branch-and-cut tree of the
OAMP for every potential incumbent solution. The advantage of this strategy is that
by adding OA cut for every potential incumbent solution the OA algorithm converges
in only one iteration which can improve the OA algorithm convergence. This approach
referred as OA-branch-and-cut is outlined in Algorithm 9.

Since the nonlinearity of the proposed formulation (4.13)-(4.17) refers only to objec-
tive function, a reformulation based on outer approximation gives rise to the following
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Algorithm 9 Branch-and-cut framework for an OA algorithm implementation.
for all incumbent solutions (z, y) at the OAMP branch-and-cut tree do
ȳ ← y
Solve the OASP
Add OA cuts

end for

OAMP:

min
∑
k

Hkzkk +
∑
k

∑
m:m>k

Akmykm +
∑
k

[ξ1k + ξ̃2k] +
∑
k

∑
m:m6=k

ξ2km+∑
i

∑
k
k 6=i

(Oi +Di)cikzik +
∑
i

∑
k

∑
m

m6=k

αckmfikm
(4.28)

s.t.: Constraints (4.2)− (4.10), (4.15)− (4.17) (4.29)

ξ1k ≥ τ(ghk ) +∇τT (ghk )(ghk − gk) ∀k ∈ N, h ∈ H (4.30)

ξ2km ≥ υ(qhkm) +∇υT (qhkm)(qhkm − qkm) ∀k,m ∈ N, h ∈ H : k 6= m (4.31)

ξ̃2k ≥ υ̃(q̃k
h) +∇υ̃T (q̃k

h)(q̃k
h − q̃k) ∀k ∈ N, h ∈ H (4.32)

ξ1k, ξ̃
2
k ≥ 0 ∀k ∈ N (4.33)

ξ2km ≥ 0 ∀k,m ∈ N : k 6= m. (4.34)

By fixing the variables z̄ = z and f̄ = f , the following OASP is obtained.

min
∑
k

τ(gk) +
∑
k

∑
m 6=k

υ(qkm) +
∑
k

υ̃(q̃k) (4.35)

s.t.: gk ≥
∑
i

Oiz̄ik ∀k ∈ N (4.36)

qkm ≥
∑
i

f̄hikm ∀k,m ∈ N : k 6= m (4.37)

q̃k ≥
∑
i

∑
m:m6=k

f̄ikm ∀k ∈ N (4.38)

gk, qkm, q̃k ≥ 0 ∀ k ∈ N. (4.39)

Observe that this subproblem is trivial to solve when the values of variables zik and
fikm are known.
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4.3.2 Generalized Benders decomposition (GBD)

The generalized Benders decomposition is an extension of a classical method to solve
mixed integer linear problem, the Benders decomposition method (Benders, 1962),
to be applied to solve MINLP. The basic idea behind Benders decomposition is to
project the original problem on the space of complicating variables, usually integer
variables, resulting in a formulation with fewer variables by with an exponential number
of additional constraints, known as Benders cuts. Since, the most of these constraints
are not active in the optimal solution, the most of them are relaxed and added to
the Benders master problem only when violated. To find the violated constraints a
subproblem with only noncomplicated variables are solved.

The idea behind the GBD is very similar to OA. The method consists in reformu-
lation of the problem (4.18)-(4.20) yielding a linear formulation with an exponential
number of additional constraints. The main difference is that the GBD is based on a
linear reformulation of the original MINLP that are projected on the space of variables
y which results in a RMP with fewer variables. Depending on the size of the vector of
variables x, the RMP of GBD is smaller than the one of OA. The reformulation based
on GBD give rise the following the GBD master problem (GBDMP):

min cTy + η (4.40)

s.t.: η ≥ f(xh) + (µh)T [By + g(xh)] ∀h ∈ H (4.41)

0 ≥ (µh)T [By + g(xh)] ∀h ∈ G (4.42)

y ∈ Y, (4.43)

where xh and µh are the primal and dual optimal variables associated to the NLP
(4.21)-(4.23).

Let ν(GBDMP ) and ν(GBDSP ) denote the optimal value of the objective func-
tion for GBD MP and GBD SP, respectively. Algorithm 10 presents a framework to
solve the problem by means of GBD considering the previously presented formulations.
As presented in the previous section, a GBD-branch-and-cut version can be devised
by adding GBD cuts inside the branch-and-cut tree of the GBD MP resulting in a
convergence with only one iteration.

The GBD framework for the formulation (4.13)-(4.17) can be developed by keeping
the set of fractional variables fikm and their respective objective function component
and constraints in the nonlinear subproblem. Further, let fhikm, ghk , qhkm and q̃hk to be
the optimal value of the primal variables of the nonlinear subproblem at iteration h.
Define βhim, δhikm, ωhk , ψhkm and ψ̃hk as the optimal dual variables at a given iteration h.
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Algorithm 10 Classical generalized Benders decomposition algorithm.
Let UB ← +∞, LB ← −∞ h← 1
while UB − LB > ε do
Solve the GBD MP
LB ← ν(GBDMP )
Let ȳ ← y
Solve the NLP
Set values for xh and µh variables
Add GBD cuts
UB ← min{UB, ν(GBDSP )}
h← h+ 1

end while

Hence, the GBD master problem associated to formulation (4.13)-(4.17) can be given
as:

min
∑
k

Hkzkk +
∑
k

∑
m:m>k

Akmykm +
∑
i

∑
k
k 6=i

(Oi +Di)cikzik + η (4.44)

s.t.: Constraints (4.2)− (4.5), (4.9)− (4.10) (4.45)

η ≥ νh +
∑
i

∑
m

(
∑
j
i 6=j

wijzjm − oizim)βhim −
∑
i

∑
k

∑
m:k<m

ykmδ
h
ikm

+
∑
k

ωk(
∑
i

Oizik − ghk ) +
∑
k

∑
m

φhkm(
∑
i

oif
h
ikm − qhkm)

+
∑
k

φ̃hk(
∑

m:m 6=k

∑
i

oif
h
ikm − q̃hk ) ∀h ∈ H

(4.46)

∑
k∈S

∑
m∈N\S

ykm ≥ zss + zrr − 1 ∀S ⊆ N, s ∈ S, r ∈ N \ S (4.47)

∑
k

∑
m

m>k

ykm ≥
∑
m

zmm − 1, (4.48)

where H is the maximum number of iterations and νh is the optimal value of the SP
objective function at iteration h. Constraints (4.46) refer to GBD cuts. Constraints
(4.47) are cut set constraints (CSCs) which guarantee that the GBD MP solution refers
to a connected network. Since, there are a exponential number of these constraints,
the most of them are ignored and added to the GBD MP only when they are violated
by means of a branch-and-cut framework. These constraints are identified by usign
the Concorde callable library by Applegate et al. (2012) to determine the connected
components. Finally, constraint (4.48) are added to the GBD MP to ensure that the
solutions have enough hub arcs to be connected.
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Observe that since fikm variables are kept in the nonlinear subproblem, GBD algo-
rithm deals with a MP smaller than the one dealt with the OA framework. Considering
a given (z̄, ȳ), the primal variables of the GBD SP can be found by solving the primal
nonlinear SP, while the dual variables can be obtained by dualizing the constraints
of the GBD SP related to gk, qkm and q̃k variables by associating Lagrangean multi-
plies vectors ωhk , ψhkm and ψ̃hk , respectively. The resulting problem can be separated
into a linear SP having only fikm variables, and three nonlinear SPs associated with
gk, qkm and q̃k variables, respectively. By differential calculus, the optimal dual vari-
ables value for the nonlinear SPs at iteration h can be given as

ωhk = τ ′(ghk ), ψhkm = υ′(qhkm) and ψ̃hk = υ̃′(q̃hk ), (4.49)

respectively. While, the dual variables βim and δikm associated to the linear SP for a
given origin i can be obtained by means of the following linear dual SP:

max
∑
m

(
∑
j
i 6=j

wij z̄jm − oiz̄im)βim −
∑
k

∑
m:k<m

oiȳkmδikm (4.50)

s. t: βim − βik − δikm ≤ oi(αckm + ψhkm + ψ̃hk )) ∀k,m ∈ N : k < m (4.51)

βim − βik − δimk ≤ oi(αcmk + ψhmk + ψ̃hm) ∀k,m ∈ N : k > m (4.52)

βim ∈ R ∀m ∈ N (4.53)

δikm ≥ 0 ∀k,m ∈ N : k < m. (4.54)

As mentioned by Camargo and Miranda Jr (2012), the performance of a GBD
algorithm mostly depends on the total number of iterations to find the optimal solution.
On the other hand, this amount is directly related to cuts quality, where good cuts
results in better convergence. Magnanti and Wong (1981) propose a cut selection
scheme to accelerate the convergence of Benders decomposition by adding in each
iteration Pareto-optimal cuts, i.e. cuts that are not dominated by any other cut.
Aiming to improve the convergence of the GBD algorithm, the idea of adding Pareto-
optimal GBD cuts in GBDMP will be embedded to the algorithm. These auxiliary
cuts can be generated by means of the idea proposed by Papadakos (2008) for Benders
decomposition which consists in solving an auxiliary subproblem, known as independent
Magnanti-Wong problem. This subproblem is very similar to the subproblem but
instead to be parameterized by a fixed MP solution (z̄, ȳ), it is parameterized by a
core point (z0, y0) which is a point that belongs to the relative interior of the convex
hull of master problem feasibility space. The optimal dual solution associated with the
following independent Magnanti-Wong problem is used to generated the Pareto-optimal
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cuts for the GBD algorithm:

max
∑
i

∑
m

(
∑
j
i 6=j

wijz
0
jm − oiz0im)βim −

∑
i

∑
k

∑
m:k<m

oiy
0
kmδikm (4.55)

s. t: (4.51)− (4.54). (4.56)

Observe that to generate different cuts in each iteration different core points are
necessary. A set of core points can be generated as following. Assuming that a valid
initial core point is available, Papadakos (2008) proposes to use the convex combination
of the current core point and the current master solution to generate a new valid core
point. In this way, the most challenge task, to generate a set of core points, is to find a
valid initial core point. In this paper, the core point proposed by Martins de Sá et al.
(2013b) for the three of hub location problem is used as an initial core point. A three
of hubs is a hub-and-spoke network where the hubs are connected by means of a tree.
Hence, a tree of hubs is a particular case of an incomplete hub-level network. Thus,
the proposed initial core point is a valid one. This core point is given as

z0kk = 1/2 ∀ k (4.57)

z0ik = 1/(2 n− 2) ∀ i 6= k (4.58)

y0km = (n− 2)/(n2 − n) ∀ k < m. (4.59)

Algorithm 11 outline a framework of a generalized Benders decomposition algorithm
with addition of Pareto-optimal cuts.

4.3.3 Hybrid outer approximation/generalized Benders

decomposition strategy

As previously mentioned, outer approximation and generalized Benders decomposition
are among the strategies most commonly used to solve MINLPs. As described in
preceding sections, each one of these methodologies has advantage and disadvantage
when tackling this kind of problems. If for one hand, OA methods provides tighter
lower bounds than GBD, on the other hand, a high price for dealing with a large master
problem, i.e. a formulation that keeps all fikm fractional variables, must to be paid.
An idea to improve the algorithms proposed in previous sections is by devising a new
algorithm that hybridize both approaches.

This hybrid strategy is based on the following observation. The congested problem
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Algorithm 11 Generalized Benders decomposition algorithm with addition Pareto-
optimal cuts.

Let UB ← +∞, LB ← −∞, h← 1, y0 ← valid initial core point
while UB − LB > ε do
Solve the GBD MP
LB ← ν(GBDMP )
Let ȳ ← y
Solve the NLP
Set values for xh and µh variables
Add a GBD cut
UB ← {UB, ν(GBDSP )}
Let ȳ ← y0

Solve the NLP
Set values for xh and µh variables
Add a GBD Pareto-optimal cut
Update the core point: y0 ← 0.5y0 + 0.5y
h← h+ 1

end while

has three set of flow variables, gk, qkm and q̃k, where each one is associated with three
different nonlinear congestion cost functions τ(gk), υ̃(q̃k) and υ(qkm). By the previously
developed algorithms, when OA aproach tackle all these nonlinearities, it is necessary
to keep all this flow variables and the fikm flow variables in the master problem which
can results in heavy master problem. A smaller master problem can be obtained by
using OA approach to deal with the nonlinearities of τ(gk), while GBD method are
used to tackle the nonlinearities regarding to υ̃(q̃k) and υ(qkm) congestion functions.
The advantage of this approach is to keep good bounds. Most likely this bound are
not better than the one provide by OA method, however probably it will be better
than the one of GBD approaches. Further, this approach will deal with smaller master
problem than OA algorithm.

A similar approach, the OA/BD framework, has been proposed by Camargo et al.
(2011) to solve the single allocation hub location problem under congestion. This
problem refers to a single allocation hub location problem, where the hub network
is fully interconnected. The hybrid method proposed integrates the OA algorithm
with Benders decomposition (BD). The main idea is to apply the OA approach in the
original formulation which results in reformulation with more variables and constraints
than the original one. Since, the flow variables associated with the transportation
component was not directly linked to flow variables related to congestion component,
they project out the former set of flow variables by applying BD. In this case, the
OA Framework handles with congestion component while BD decomposition manages
the transportation component which has fractional variables with four indexes. This
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approach is not suitable to tackle the IHLPC because the total transportation cost
depends on congestion costs related to boarding and transfer service, i.e. transportation
cost may vary according to the congestion level associated with these services. For this
reason, variables related to transportation costs and variables related to boarding and
transfer congestion service have to be dealt with the same approach, the GBD. This is
the major contribution of the OA/GBD approach.

By integrating OA MP reformulation and GBD reformulation, the OA-GBD master
problem reformulation can be given as:

min
∑
k

Hkzkk +
∑
k

∑
m:m>k

Akmykm +
∑
i

∑
k
k 6=i

(Oi +Di)cikzik+

∑
k

ξ1k + η

(4.60)

s.t.: Constraints (4.2)− (4.10) and (4.15) (4.61)

ξ1k ≥ τ(ghk ) +∇τT (ghk )(ghk − gk) ∀k ∈ N, h ∈ H (4.62)

η ≥ νh +
∑
i

∑
m

(
∑
j
i 6=j

wijzjm − oizim)βhim −
∑
i

∑
k

∑
m:k<m

ykmδ
h
ikm

+
∑
k

(∑
m

φkm(
∑
i

oifikm − qkm) + φ̃k(
∑

m:m 6=k

∑
i

oifikm − q̃k)

)
∀h ∈ H

(4.63)

ξ1k ≥ 0 ∀k. (4.64)

Here H is the maximum number of iteration and νh is the optimal value of subproblem
objective function at iteration h. The dual variables βim and δikm for a given (z̄, ȳ) can
be obtained by means of the linear dual subproblem (4.50)-(4.54), where the optimal
dual variables value for the variables ψhkm and ψ̃hm at iteration h can be given as

ψhkm = υ′(qhkm) and ψ̃hk = υ̃′(q̃hk ),

respectively.
The hybrid OA/GBD approach is outlined in Algorithm 12. Using the same idea

of the algorithms proposed in the previous sections, an OA/GBD-branch-and-cut ap-
proach and an OA/GBD approach with Pareto-optimal cuts can be devised.

In the next section, the results of computational experiments are presented.
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Algorithm 12 Hybrid OA/GBD algorithm.
Let UB ← +∞, LB ← −∞, h← 1
while UB − LB > ε do
Solve the OA/GBD MP
LB ← ν(GBDMP )
Let ȳ ← y
Add OA cut for ξ1
Solve the NLP
Set values for the optimal primal and dual variables
Add a GBD cut
UB ← {UB, ν(GBDSP ) + ν(OASP )}
h← h+ 1

end while

4.4 Computational results

Two types of experiments were carried out. The first set of experiments aims to analyze
the system configuration considering different levels of congestion. The second set of
experiments aims to evaluate the efficiency of the proposed algorithms. The tests were
performed using a standard set of instances from the literature: AP data set from
Australian postal service introduced by Ernst and Krishnamoorthy (1996). This data
set provide a flow matrix with the demand for each origin and destination pair and the
Euclidean distances between each pair of nodes. It also provides the set of fixed cost
to install a hub. The capacity of incoming flows was generated as been the sum of the
total flow originated at that node and a random fraction, between 15% and 50%, of
the total demand. Let w denote the total demand flow. Hence, the capacity associated
to a potential hub k is generated as

Γk = Ok + Unif[0.15, 0.50]w.

The same idea are used to generate the capacity associated with boarding service. The
capacity associated the hub arcs are assumed to be equal 50% of the average capacity
of the boarding capacity. In order to analyze how the capacities affect the design of
the system, we consider two level of capacities by multiplying the capacities previously
defined by a parameter: β ∈ {0.7, 1.0}. In addition, since AP data set does not provide
a fixed cost to install a hub arc, these data was generated in the following way. The
cost of opening a hub arc between hubs k and m are assumed to be proportional to
the Euclidean distance between k and m. On the experiments a proportional factor
ϑ ∈ {0, 1, 4} is considered, where ϑ = 0 means no arc installation cost. Different
congestion level are achieved by varying the congestion cost parameter described on
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Section 4.2.1. Let ac ∈ {5, 5000}, ab ∈ {5, 5000} and at ∈ {5, 5000} be the system
access, boarding and transfer service congestion cost parameter, respectively. Finally,
the experiments consider discount factor α ∈ {0.2, 0.5, 0.8}.

The first set of experiments aims to analyze how the system being designed is
affected by the parameters. Since the total congestion cost is affected by the capacities
of the system, congestion cost level, and the network topology, these experiments take
into account the variation of parameters associated with capacity represented by β,
congestion costs that is influenced by the delay cost given by parameters ac, ab and at
and the cost to install each hub arc that is controlled by the parameters ϑ. All the
tests were performed considering the adapted power law function presented on Section
4.2.1 to measure congestion costs. The characteristics to be observed in tests related
to: (i) the network topology; (ii) the cost distribution concerning to transportation
costs, infrastructure costs and congestion costs; and (iii) the percentage of flow related
to the available capacity associated with the solution. The results of the experiments
are presented on Figure 4.3-4.5 and on Table 4.1.

Figure 4.3 presents the networks configuration considering different combinations
of congestion level for system access service, boarding service, and transfer service.
This figure presents different system configuration obtained by ignoring the congestion
related to only one kind of service Figure 4.3-a, Figure 4.3-b and Figure 4.3-c and the
system configuration when all congestion service are taken into account. According to
figures, when only congestion related to access service are ignored (Figure 4.3-a), the
optimal network has only one hub installed which have to provide access to all flows,
while no boarding or transference between hubs is possible. When only transference
congestion is disregarded (Figure 4.3-b), two hubs are located and the allocation to this
hub is made to balance the use of capacities associated with the others hub services, but
since there is only one hub arc, all flow pass trough this arc overloading it. When only
boarding congestion is disregarded (Figure 4.3-c), more hubs and hub arcs are installed
to reduce hub arc traffic. When the congestion related to all services are accounted, the
optimal network has three hub-arcs which reduce the hub traffic and the most nodes
are allocated to node 10 that is the node with more capacities associated with boarding
and access services (Figure 4.3-d).

To realize the service load related to the previous figure (Figure 4.3), Table 4.1
shows how loaded the hubs are regarding the capacity of each of these services. This
table is presented as following. Column C∗5000/C∗ presents the ratio between the total
cost associated with the optimal configuration found when considering aggressive con-
gestion costs for all service provided by the hubs and the congestion level used to solve
the problem. Hence, this column gives a measure of the solution quality when exists
congestion in a given service, but it is not taken into account when designing the net-
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work. In this way, we can confirm the importance of considering all kind of congestion
to design the transportation system. The columns associated to Capacity utilization,
Local, Board and Arc, present the average capacity utilization associated to system
access, boarding and transfer service, respectively. According to these columns, when
the congestion function associated with a given service are not accounted and the con-
gestion associated to the other two are more aggressive, the optimal solution overload
the first service. However, when the congestion associated with the three services are
accounted, the optimal solution tends to balance the use of capacity in the three ser-
vices provided by hub. Showing again how important is to address the three kind of
congestion.
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Figure 4.3: System configurations for a 10 nodes instance with loose capacities (β =
1.0), high economies of scale (α = 0.2) and high arc installation costs (ϑ = 4) for
different congestion factors.

Besides the congestion parameters other parameters have a profound impact in the
analyze of the system in a presence of congestion. Figure 4.4 presents the system
configuration considering a 10 nodes instance with a loose capacity (β = 1.0) for high
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Table 4.1: Comparison of capacity loading associated with access, boarding and transfer
service for different congestion level.

ac ab at C∗5000/C
∗ Capacity utilization

Access Board Transf.
0 5000 5000 23.70 117.00% 0.00% 0.00%

5000 5000 0 3.32 76.00% 40.00% 93.00%
5000 0 5000 1.93 67.00% 64.00% 60.00%
5000 5000 5000 1 47.00% 39.00% 56.00%

level of congestion considering different hub arc installation cost. In general, as the
installation costs factor increase, cheaper (shorter) and less number of hub arcs are
installed. Observe on this figure that when hub arc installation costs are accounted the
hub arcs of the optimal network have almost the same size (installation cost). However,
when a medium installation cost is considered the hub network is fully interconnected
but a shorter hub arc is installed (the arc (4,6)), while for high installation cost the
hub network is partially interconnected. Furthermore, for lower installation cost the
load of all service of the optimal network tends to be balanced, i.e. the allocation of
non-hub nodes are better distributed between the hubs which results in better loaded of
capacities associated with all services provided by the hubs. On the other hand, for high
installation cost the system must take into account the trade-off between congestion
cost and the cost to install the infrastructure which can overload some services.

Finally, Figure 4.5 presents different configuration considering different level of ca-
pacities for a 10 nodes instances with high economies of scale (α = 0.2), medium and
high arc installation cost (ϑ ∈ {1, 4}) which shows the dependence of the total flow
using a given service and the service capacity. Comparing Figure 4.5-a and Figure
4.5-b, when the capacity is tight a different network topology and allocation scheme
is necessary to avoid congestion. Observe, that is this case fewer non-hub nodes are
allocated to hub 10 which is the hub with more capacity. Comparing Figure 4.5-c and
Figure 4.5-d, instances with high arc installation costs and small capacities provide an
optimal network such that the loading of flows are balanced resulting in lower con-
gestion costs. However, when dealing with loose capacities the arc installation costs
predominate the other costs.

To evaluate the performance of proposed algorithms, a set of computational ex-
periments on AP instances ranging from 10 to 25 nodes were performed. The first
set of experiments are performed to compare three OA based algorithms. The second
set of experiments aims to compare GBD and OA/GBD versions. The third set of
experiments compare the best proposed exact methods and the general purpose solver
CPLEX to solve the problem considering an adapted power law function on benchmark-
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Figure 4.4: System configurations for a 10 nodes instance with loose capacity(β = 1.0),
high economies of scale (α = 0.2) and aggressive congestion costs (ac = ab = at = 5000)
for different arc installation cost parameter ϑ.

ing instances with up to 20 nodes. After that, the performance of the best algorithm
found is evaluated to solve instances with up to 25 nodes considering Kleinrock con-
gestion cost function. All tests were run on a GenuineIntel CPU E5530 with 2.4GHz
and 94 GB memory computer using the Linux operating system. The OA and GBD
based algorithms were implemented in C ++ using the CPLEX 12.5 to solve linear
and nonlinear SPs, if needed, and MIP master problems.

Table 4.2 summarizes the computational results comparing three OA approaches:
a classical OA implementation (Algorithm 8), an OA-branch-and-cut implementation
(Algorithm 9) that adds cuts in the OAMP branch-and-cut tree for every potential
incumbent solution (OABC) and an OA-branch-and-cut that adds OA cuts for all
potential incumbent solution e for fractional solution in the root node (OABC root
cut). The experiments was performed for solving 10 nodes instances considering power
law congestion function, where the data are aggregated by economies of scale factor
α ∈ {0.2, 0.5, 0.8} and congestion factors ã ∈ {5, 5000)} such that the congestion
cost parameters ac = ab = at are equal to ã. The table of results can be described
as following. Columns referring to Time[s] show the average computational time in
seconds, columns #cuts show the average number of OA cuts, while columns referring
to #BS presents the total number of best solutions found, where each row of the table
is associated with a set of six instances. According to the table, OABC root tree
approach is on average faster than the other approaches for the most tested instances,
i.e. for 17 of 36 instances. Furthermore, the addition of OA cuts for fractional solution
results in lower average number of cuts added. Therefore, this OA variants is used in



4. Exact algorithms to solve the hub location problem under
congestion 89

1

2

3
4

5 6

7 8

9 10

1

2

3
4

5
6

7
8

9 10

a) ϑ = 1.0 and β = 0.7 b) ϑ = 1.0 and β = 1.0

1

2

3
4

5 6

7 8

9 10

1

2

3 4

5
6

7 8

9 10

c) ϑ = 4.0 and β = 0.7 d) ϑ = 4.0 and β = 1.0

Figure 4.5: System configurations for a 10 nodes instance with high economies of scale
(α = 0.2), medium and high arc installation cost (ϑ ∈ {1, 4}) for different capacity
level parameter β.

subsequent experiments. Only to simplify the notation, this version will be referred as
OA.

The following set of experiments is focused on compare the GBD based versions.
The first set of experiments compare the classical version (GBD) and the GBD-branch-
and-cut version (GBD BC) that add GBD cuts inside the branch-and-cut tree of the MP
for each potential incumbent solution. The results using instances with 10 nodes are
summarized on Table 4.3, where the data are aggregated considering three economies of
scale factor α ∈ {0.2, 0.5, 0.8} and congestion factor ã = ac = ab = at ∈ {5, 5000}. For
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Table 4.2: Comparison between the classical OA approach, the OA-branch-and-cut
algorithm and the OA-branch-and-cut with addition of cut from fractional solution in
the root nodes of the MP branch-and-cut tree.

n ϑ β
Classic OABC OABC root cut

Time # # Time # # Time # #
[s] cuts BS [s] cuts BS [s] cuts BS

100 0.7 11.92 215.0 1 16.74 13407.3 4 7.61 10137.50 2
100 1 21.35 220.0 1 11.41 12357.7 3 27.54 9072.00 2
101 0.7 48.90 193.3 3 39.96 17142.7 2 6.61 11292.50 4
101 1 73.46 276.7 1 9.84 15437.7 1 20.85 13309.00 3
104 0.7 75.18 263.3 3 25.51 14484.3 0 4.93 10246.50 3
104 1 60.59 270.0 1 5.81 13072.7 3 22.61 8243.00 3

48.57 239.7 10 18.21 14317.0 13 15.03 10383.4 17

The data are aggregated considering three economies of scale factor α ∈
{0.2, 0.5, 0.8} and two congestion factor ac = ab = at ∈ {5, 5000)}

all these experiments, a CPU time limit of 1 hours is used. According this table, GBD
BC version presents to be substantially better than the classical one by solving the
tested instances on average faster than it. It’s important to observe that the average
number of added cuts by GBD BC variant is higher than by the classical one, however
the need for solving only a single master problem for the branch-and-cut version may
explain the faster convergence.

Due to the performance of GBD BC version, a new variant of this method that
also adds Pareto-optimal cuts inside the branch-and-cut tree of the master problem
is tested. This new variant (GBD PO) is compared with similar versions of hybrid
OA/GBD approaches: OA/GBD-branch-and-cut (OA-GBD BC) and an OA/GBD-
branch-and-cut approach with Pareto-optimal cuts (OA-GBD PO). Computational
results are presented on Table 4.4. According the table, the addition of Pareto-optimal
cuts improves GBD and OA/GBD convergence solving the problem faster than when
this kind of cuts is not added. Further, proposed approaches based on the integration
of OA and GBD methods presents better performance than approaches that are only
based on GBD method. The efficiency of the OA-GBD algorithms is confirmed by the
lower average CPU times and by fewer average number of cuts added.

The following set of experiments aims to compare the performance of the best ex-
act algorithms found, OABC variant and OA/GBD PO, and the solver CPLEX. Since
CPLEX is only able to solve quadratics nonlinear MIP problems, these experiments
were performed considering an adapted power law congestion function. Table 4.7, 4.6
and 4.5 summarize the experiment results for 10 and 20 nodes AP instances considering
data aggregated by economies of scale factor α ∈ {0.2, 0.5, 0.8}. These tables present
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Table 4.3: Comparison of the classical GBD variant and GBD-branch-and-cut version
considering a 10 node instances.

α ϑ β
Classical GBD GBD BC
Time[s] # cuts Time[s] # cuts

0.20 0 0.7 1591.44 240.00 310.13 1261.00
0.50 0 1.0 1800.03 270.83 759.81 2603.67
0.80 1 0.7 1800.90 251.50 132.32 1119.50
0.20 1 1.0 1800.02 273.50 801.21 2720.17
0.50 4 0.7 1800.82 254.17 507.69 1595.17
0.80 4 1.0 1800.03 275.17 819.83 2587.33

Average: 1765.54 260.86 555.16 1981.14

The data are aggregated considering three economies of scale factor α ∈
{0.2, 0.5, 0.8} and congestion factor ã = ac = ab = at ∈ {5, 5000}.

Table 4.4: Comparison of the GBD-branch-and-cut variant, GBD-branch-and-cut ver-
sion with Pareto-optimal cuts, the OA-GBD-branch-and-cut variant and the OA-GBD-
branch-and-cut variant with Pareto-optimal cuts considering a 10 node instances.

ϑ β
GBD BC GBD PO OA-GBD BC OA-GBD PO

Time[s] #cuts Time[s] #cuts Time[s] #cuts Time[s] #cuts
0 0.7 55.68 756.83 16.34 307.17 9.30 245.00 6.38 154.50
0 1 7.79 327.00 7.86 248.00 5.06 206.50 6.24 178.67
1 0.7 886.68 2891.83 151.62 1192.83 324.37 1459.00 60.31 593.83
1 1 372.97 1701.50 79.42 805.33 226.62 1233.33 82.04 679.33
4 0.7 1800.04 4739.33 364.72 1521.17 864.78 1944.33 152.43 816.00
4 1 207.84 1470.33 58.27 770.17 80.93 917.00 39.79 545.17
Average: 555.16 1981.14 113.04 807.44 251.84 1000.86 57.86 494.58

The data are aggregated considering three economies of scale factor α ∈
{0.2, 0.5, 0.8} and congestion factor ã = ac = ab = at ∈ {5, 5000}.

the average CPU time and the average optimality gap, when any instance of the set is
not solved to optimality. The first table consider the case where there congestion in all
the three services provided by the hub. Table 4.7 and 4.6 presents results for the case
where traffic congestion and boarding congestion are ignored, respectively. According
the tables, OA approach and OA-GBD is faster and presents better optimality gap
than CPLEX. Further, both exact methods are very competitive. Observing the table,
it’s possible note that OA-GBD becomes more competitive with the OA approach for
instance with 20 nodes in which the OA MP becomes larger. Further, OA-GBD ap-
proach presents better performance for instances where congestion on boarding service
or transfer service are ignored, in this case the congestion each method handly only one
kind of congestion, i.e. when OA deals with system access service, while GBD deals
with only one other kind of service, boarding or transferring. In this case, there are a



4. Exact algorithms to solve the hub location problem under
congestion 92

balance on the characteristics of both methods, advantage and disadvantage.

Table 4.5: Comparison of the best OA variant, the best OA-GBD variant and CPLEX
considering the three kinds of congestion.

N ã ϑ β
OA OA-GBD CPLEX

Time[s] GAP Time[s] GAP Time[s] GAP
10 5 0 0.7 0.90 – 0.20 – 2.59 –
10 5000 0 0.7 6.30 – 13.72 – 52.78 –
10 5 1 0.7 0.17 – 0.06 – 1.24 –
10 5000 1 0.7 23.31 – 108.63 – 153.21 –
10 5 4 0.7 0.16 – 0.06 – 0.52 –
10 5000 4 0.7 63.54 – 193.46 – 296.23 –
10 5 0 1 0.10 – 0.06 – 0.34 –
10 5000 0 1 6.60 – 11.77 – 44.84 –
10 5 1 1 0.08 – 0.04 – 0.33 –
10 5000 1 1 34.74 – 140.99 – 228.50 –
10 5 4 1 0.07 – 0.04 – 0.18 –
10 5000 4 1 39.70 – 69.83 – 181.72 –
20 5 0 0.7 67.69 – 29.10 – 7228.16 –
20 5000 0 0.7 822.85 – 482.36 – 28628.52 –
20 5 1 0.7 49.23 – 28.90 – 1840.11 –
20 5000 1 0.7 71089.41 1.75 84600.05 11.68 84600.01 7.74
20 5 4 0.7 13.11 – 5.73 – 1587.80 –
20 5000 4 0.7 75600.38 4.33 84600.08 25.42 84600.01 22.42
20 5 0 1 8.97 – 2.03 – 1800.35 –
20 5000 0 1 188.80 – 47.21 – 12195.10 –
20 5 1 1 2.26 – 4.16 – 1351.81 –
20 5000 1 1 9910.66 – 69768.91 0.96 83219.41 6.80
20 5 4 1 1.03 – 3.72 – 283.50 –
20 5000 4 1 11697.78 – 81149.93 0.95 45335.99 –

Average: 7067.82 0.25 13385.88 1.63 14734.72 1.54

The data are aggregated considering three economies of scale factor α ∈
{0.2, 0.5, 0.8}
In all experiments ac = ab = at = ã.



4.
E
x
ac

t
a
lg

o
r
it

h
m

s
t
o

so
lv

e
t
h
e

h
u
b

lo
c
at

io
n

pro
blem

u
n
d
er

c
o
n
g
est

io
n

93

Table 4.6: Comparison of the best OA variant, the best OA-GBD variants and CPLEX considering only system access and boarding
congestion (at = 0).

n ac ab ϑ
β=Tight β=Loose

OA OA-GBD CPLEX OA OA-GBD CPLEX
Time[s] GAP Time[s] GAP Time[s] GAP Time[s] Times[s] Times[s]

10 5 5 0 0.78 0.00 0.23 0.00 1.19 0.00 0.09 0.06 0.36
10 5 5000 0 0.87 0.00 0.16 0.00 1.74 0.00 0.09 0.06 0.35
10 5000 5 0 2.02 0.00 1.69 0.00 16.46 0.00 0.77 0.56 4.36
10 5000 5000 0 3.21 0.00 6.56 0.00 33.28 0.00 1.78 1.72 11.43
10 5 5 1 0.15 0.00 0.06 0.00 0.67 0.00 0.08 0.04 0.26
10 5 5000 1 0.14 0.00 0.07 0.00 0.69 0.00 0.08 0.04 0.25
10 5000 5 1 6.00 0.00 2.68 0.00 56.91 0.00 2.30 0.72 7.61
10 5000 5000 1 14.04 0.00 45.00 0.00 116.59 0.00 3.49 1.90 11.26
10 5 5 4 0.15 0.00 0.06 0.00 0.36 0.00 0.08 0.04 0.31
10 5 5000 4 0.15 0.00 0.06 0.00 0.36 0.00 0.08 0.04 0.31
10 5000 5 4 5.11 0.00 1.97 0.00 35.51 0.00 1.65 1.14 11.85
10 5000 5000 4 36.70 0.00 86.10 0.00 203.02 0.00 1.91 1.36 11.99
20 5 5 0 23.56 0.00 5.51 0.00 1806.69 0.00 6.78 1.53 1333.60
20 5 5000 0 26.78 0.00 5.85 0.00 1893.14 0.00 6.75 1.49 1348.04
20 5000 5 0 1028.15 0.00 415.82 0.00 84600 1.87 122.77 42.14 14850.15
20 5000 5000 0 350.74 0.00 479.89 0.00 33277.22 0.00 135.50 57.20 16727.16
20 5 5 1 22.69 0.00 7.10 0.00 2700.42 0.00 2.25 4.30 572.76
20 5 5000 1 25.94 0.00 7.85 0.00 2810.42 0.00 2.20 4.33 566.28
20 5000 5 1 4856.55 0.00 368.79 0.00 66063.75 2.19 385.69 32.44 42116.41
20 5000 5000 1 43015.92 0.00 84600 12.84 83344.71 5.96 694.42 53.76 37013.19
20 5 5 4 13.74 0.00 5.80 0.00 767.91 0.00 0.68 3.70 445.46
20 5 5000 4 13.73 0.00 5.77 0.00 777.16 0.00 0.69 3.83 445.99
20 5000 5 4 5612.45 0.00 139.36 0.00 17156.84 0.00 473.44 8.98 21685.24
20 5000 5000 4 84600 5.65 84600 29.96 84600 25.78 926.71 28.89 16395.51

Average: 5819.15 0.26 7116.11 1.78 15844.38 1.49 115.43 10.43 6398.34

The data are aggregated considering three economies of scale factor α ∈ {0.2, 0.5, 0.8}
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Table 4.7: Comparison of the best OA variant, the best OA-GBD variants and CPLEX considering only system access and transfer
congestion (ab = 0).

n ac at ϑ
β=Tight β=Loose

OA OA-GBD CPLEX OA OA-GBD CPLEX
Time[s] GAP Time[s] GAP Time[s] GAP Time[s] Times[s] Times[s] GAP

10 5 5 0 0.99 – 0.21 – 1.75 – 0.07 0.06 0.25 –
10 5 5000 0 1.14 – 0.24 – 2.14 – 0.07 0.07 0.25 –
10 5000 5 0 2.13 – 1.86 – 10.79 – 0.93 0.67 3.18 –
10 5000 5000 0 3.14 – 3.05 – 16.26 – 7.41 6.94 33.89 –
10 5 5 1 0.16 – 0.07 – 0.77 – 0.07 0.04 0.21 –
10 5 5000 1 0.17 – 0.06 – 0.85 – 0.07 0.05 0.21 –
10 5000 5 1 15.49 – 8.26 – 84.39 – 1.62 0.85 6.03 –
10 5000 5000 1 14.94 – 35.55 – 88.07 – 30.55 56.40 167.72 –
10 5 5 4 0.16 – 0.06 – 0.45 – 0.07 0.05 0.26 –
10 5 5000 4 0.15 – 0.06 – 0.45 – 0.07 0.04 0.26 –
10 5000 5 4 12.38 – 2.29 – 58.25 – 1.98 1.27 8.81 –
10 5000 5000 4 27.48 – 124.78 – 148.41 – 34.65 77.87 138.71 –
20 5 5 0 62.41 – 31.30 – 13247.36 – 9.29 2.01 2498.28 –
20 5 5000 0 336.36 – 1000.69 – 17667.50 – 10.95 2.58 2568.07 –
20 5000 5 0 1241.50 – 482.12 – 75667.96 – 260.55 42.84 22820.64 –
20 5000 5000 0 964.46 – 505.68 – 76449.56 0.13 183.00 48.24 11771.22 –
20 5 5 1 59.23 – 28.37 – 2707.48 – 2.92 4.21 509.74 –
20 5 5000 1 345.54 – 887.60 – 12771.24 – 2.79 4.32 515.19 –
20 5000 5 1 9217.82 – 2399.71 – 71675.03 0.63 989.41 32.47 37617.89 –
20 5000 5000 1 19733.62 – 64607.67 1.60 84600 4.61 5355.58 2740.45 56186.12 1.93
20 5 5 4 15.80 – 5.59 – 1446.38 – 0.82 4.03 218.48 –
20 5 5000 4 16.30 – 5.61 – 1420.47 – 0.82 4.08 219.10 –
20 5000 5 4 2231.88 – 252.69 – 23102.19 – 689.42 31.27 12462.15 –
20 5000 5000 4 74797.24 4.63 84600 8.24 84600 11.18 2793.43 4794.12 3291 –

Average: 4545.85 0.19 6457.67 0.41 19406.99 0.69 432.36 327.29 7527.36 0.08

The data are aggregated considering three economies of scale factor α ∈ {0.2, 0.5, 0.8}
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Finally, a set of experiments was performed for solving instances with up to 25
nodes for power law and Kleinrock congestion functions. The OA variant was used in
this version since your nonlinear SPs are trivial to solve and do not need the CPLEX
solve which is not able to solve a problem with the Kleinronck nonlinear function.
This set of experiments are presented on Figure 4.8-4.9. According these tables the
algorithm is able to solve the most proposed instances of the problem, i.e., more than
90% of problem using power law based congestion function and 77% of problems using
Kleinrock based congestion function with a lower optimality gap. When, comparing
both congestion functions, the problem using power law function is on average easier
to solve than by Kleinrock function.

Table 4.8: Performance of the best OA variant for Power law and Kleinrock function
considering only system access and boarding congestion (at = 0).

n ac ab
Power law function Kleinrock function

Time[s] # Opt. gap Time[s] # Opt. gap
10 5 5 1.64 18 0.00 1.56 18 0.00
10 5 5000 1.56 18 0.00 2.35 18 0.00
10 5000 5 3.35 18 0.00 3.51 18 0.00
10 5000 5000 7.07 18 0.00 13.11 18 0.00
20 5 5 1010.08 18 0.00 13.27 18 0.00
20 5 5000 1081.37 18 0.00 4155.37 18 0.00
20 5000 5 7260.27 17 0.00 2382.18 17 0.00
20 5000 5000 14372.96 15 0.08 13187.87 14 0.42
25 5 5 12422.00 16 0.94 24739.09 11 2.53
25 5 5000 18086.53 15 0.18 47098.08 6 8.87
25 5000 5 28404.24 13 0.50 65003.35 11 15.88
25 5000 5000 36915.50 12 3.39 42225.11 6 9.28

Aver./sum 9963.88 196 0.42 16568.74 173 3.08

4.5 Conclusion

This paper addresses a congested version of the incomplete hub location problem, where
congestions in different service provided for hub-and-spoke system are explored. A non-
linear mixed integer formulation were proposed to model the problem. Furthermore,
some exact algorithms based on outer approximation and generalized Benders decom-
position were proposed. All of the algorithms are tested and the best algorithms are
compared to the general purpose solver CPLEX presenting better performance than
this one. Furthermore, the best OA exact algorithm, the OA-branch-and-cut approach,
is able to solve instances with up to 25 nodes considering two kind of congestion cost
functions.
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Table 4.9: Performance of the best OA variant for Power law and Kleinrock function
considering only system access and transfer congestion (ab = 0).

n ac at
Power law function Kleinrock function

Time[s] # Opt. gap Time[s] # Opt. gap
10 5 5 0.25 18 0.00 6.47 18 0.00
10 5 5000 0.28 18 0.00 12.63 18 0.00
10 5000 5 5.76 18 0.00 107.64 18 0.00
10 5000 5000 19.70 18 0.00 17.87 18 0.00
20 5 5 25.08 18 0.00 88.40 17 0.00
20 5 5000 118.79 18 0.00 8198.61 12 0.44
20 5000 5 2438.43 18 0.00 49415.40 15 1.82
20 5000 5000 17304.55 16 0.00 17133.15 15 1.50
25 5 5 13313.47 16 0.77 29923.11 12 1.80
25 5 5000 40681.28 12 2.16 37080.33 3 6.09
25 5000 5 28412.88 14 6.59 77911.70 11 18.90
25 5000 5000 59481.41 6 0.89 42189.39 5 4.79

Aver./sum 13483.49 190 0.87 21840.39 162 2.95

As possible future research, generalized queueing system can be addressed to com-
pute the congestion costs instead to assume Poisson process which results in Kleinrock
delay function.



Chapter 5

Final remarks

This thesis addresses three hub-and-spoke networks design problems focuses on public
transportation systems. The first problem, presented in Chapter 2, consists in designing
a hub-and-spoke system in which hubs are connected by means of a line minimizing
the total weighted travel time. The travel time associated with a given origin and
destination pair are assumed to be shortest travel between the travel through a hub
networks or a direct connection. This problem accounts the trade-off between the
economies of scale to travel in an interhub link which and the time spent to access and
leave a given hub line which can make the hub line more and less attractive, respectively.
Analyses of the system configurations for differents economies of scale and access/exit
times factor shows the impact of these parameters on the network configuration and the
use of the hub lines network, where, as more economies of scale and as less access/exit
times, higher is the usage of the hub network. Exact algorithms based on Benders
decomposition method are proposed to solve the problem. Preliminary experiments
shows that the best Benders variant to tackle the proposed instances of the problem
is a multiple cuts strategy that one cut for each origin and destination pair; design a
specialized algorithm to generate the Benders cuts; and adds Benders cuts inside the
branch-and-bound tree. Experiments on benchmark instances show that the Benders
variant presents better performance when compared with the solver CPLEX, where
instances with up to 100 nodes are solved.

The second problem, presented in Chapter 3, is an extension of the previous one
in which consists of locating a set of hub lines considering a budget constraint to
install the infrastructure necessary. Exact algorithm based on the best Benders variant
proposed for the HLLP are presented (Chapter 2). Computational results shows that
the Benders variant and CPLEX present slightly the same performance for instance
with up to 20 nodes, however for instances with 25 to 40 nodes the Benders variant
can provide lower bound for all instances. For the other hand, CPLEX fails to find a

97



5. Final remarks 98

feasible solution and lower bound for the most of these instances. This lower bound
can be used as important tool to evaluate the quality of feasible solutions for the
problem. Since this problem is more complex than the variant with single line, three
heuristics based on metaheuristics variable neighborhood descent (VND), a greedy
randomized adaptive search procedure (GRASP) and an adaptive large neighborhood
search (ALNS) is proposed to find near optimal feasible solution for instances with up
75 nodes. Using the Benders decomposition to provide lower bounds, experiments on
benchmark instances show that the proposed metaheuristics can find good solutions
for the instances. In particular, the GRASP and ALNS can find most best solutions.

The last problem addressed, presented in Chapter 4, consists in design a hub-and-
spoke network taking into account the costs to install the necessary infrastructure (hubs
and hub arcs), to transport all demand and associated with congestion in systems.
One of the main contributions of this Chapter is to consider the congestion effects
related to three differents services provided by the hub network: access, boarding
and transference. The analyze of the system configurations shows the importance of
considering the congestion associated to the three services. Assuming that the hub-
and-spoke system can be modeled as a M/M/1 network queue, two convex nonlinear
function are used to model the congestion costs: the Kleinrock function and an adapted
power law function. The problem is modeled by mixed integer nonlinear formulation.
Due the complexity of the problem, exacts algorithms based on Outer Approximation
(OA) and Generalized Benders decomposition (GBD) are proposed. Computational
results show that the addition of cut for each potential incumbent solution improves
the convergence of OA and GBD based algorithms. Further, the addition of Pareto-
optimal cuts improves the convergence of GBD based algorithms. The best performance
algorithms of these preliminary experiments, a branch-and-cut based variant of OA and
a method that hybridize the OA and GBD, are compared with the solver CPLEX. The
results of computational experiments confirm the efficiency of the proposed algorithm
that can solve the most instance with up to 25 nodes and present better performance
than CPLEX.

This thesis presents three hub-and-spoke network design problems with high poten-
tial for practical application by considering several characteristics of real public trans-
portation systems. Mathematical formulations were proposed to model these problems
while exact algorithms, based on decomposition methods, and heuristics methods are
proposed to solve them. Analysis of system configurations show how the main param-
eters impact on the optimal solution and how it is important to consider all of them
when designing the network. Further, a set of computational experiments is performed
to confirm the performance of proposed algorithms. To improve the convergence of the
decomposition methods, different mechanisms were explored. Among the mechanisms
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for improving the performance of these methods, the addition of cuts (Benders, OA or
GBD) inside the branch-and-bound tree from potential incumbent solutions was very
successful for all them. The advantage of this strategy is that these methods converge
in a single iteration. Hence, the solution of only a single master problem is needed.
Another effective mechanism for strengthening the decomposition methods is the se-
lection of cuts to be added in the master problem. Since subproblems responsible for
generating the cuts are, in general, degenerate, then different cuts can be generated.
Investing in cut selection for adding stronger cuts results in better convergence. For the
Benders decomposition applied to solve the HLLP, an algorithm for selection of cuts
is proposed. Further, algorithms based on GBD solve additional linear subproblems to
generate non-dominated cuts, i.e. Pareto-optimal cuts.

Possible future research associated to locate hub line network is to model the be-
havior of users to choose possible routes, instead of assuming that the user always
chooses the smallest route among all the available one. Future research related to the
problem considering congestion effects is modeling the hub-and-spoke system as a gen-
eralized queueing network. It can be done, by considering each service as a queueing
system whose distribution of service time and intervals between arrivals are generic.
The queueing network can then used to compute congestion costs.



Appendix A

Proof of Proposition 2

Proof. Proof. The subsystem of inequalities (2.47)-(2.50) can be rewritten as:

β̂r1 ≤ UB1 = wijΦ
i
1 − θij (A.1)

β̂r1 ≥ LB1 = Γij − wijΦj
1 (A.2)

β̂r1 ≥ β̂r2 − wijαr1r2tr1r2 (A.3)

β̂r1 ≤ wijαr2r1tr2r1 + β̂r2 (A.4)

β̂r2 ≤ wij(tir2 + t̃ar2)− θij (A.5)

β̂r2 ≥ Γij − wij(tr2j + t̃er2) (A.6)

β̂r2 ≥ β̂r3 − wijαr2r3tr2r3 (A.7)

β̂r2 ≤ wijαr3r2tr3r2 + β̂r3 (A.8)
...

... (A.9)

β̂rp ≤ wij(tirp + t̃arp)− θij (A.10)

β̂rp ≥ Γij − wij(trpj + t̃erp). (A.11)

This subsystem of inequalities can be solved by a procedure based on Fourier-Motzkin
elimination (see, Martin, 1999, for details). Since the variable β̂r1 appears only in the
first four inequalities, the constraints related to this variable are equivalent to:

max{LB1,−wijαr1r2tr1r2 + β̂r2} ≤ β̂r1 ≤ min{UB1, wijαr2r1tr2r1 + β̂r2}. (A.12)

Using the above equation, the variable β̂r1 can be eliminated from the original
system giving place to the following constraints:

β̂r2 ≤ wijαr1r2tr1r2 + UB1 = wijαr1r2tr1r2 + wijΦ
i
1 − θij

β̂r2 ≥ LB1 − wijαr2r1tr2r1 = Γij − wijΦj
1 − wijαr2r1tr2r1 ,
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where the other constraints that can be derived from Equation (A.12), i.e., LB1 ≤
UB1 and −αwijtr1r2 + β̂r2 ≤ αwijtr2r1 + β̂r2 are redundant.

We can observe that the new constraints may only affect the UB and the LB of the
variable β̂r2 . Hence, the original bound constraints (A.5) and (A.6) can be substituted
by the following bound constraints:

β̂r2 ≤min{wij(tir2 + t̃ar2)− θij, wijαr1r2tr1r2 + wijΦ
i
1 − θij}

=wij min{(tir2 + t̃ar2), αr1r2tr1r2 + Φi
1} − θij = wijΦ

i
2 − θij.

β̂r2 ≥max{Γij − wij(tr2j + t̃er2),Γij − wij(αr2r1tr2r1 + Φj
1)}

= Γij + wij max{−(tr2j + t̃er2),−(αr2r1tr2r1 + Φj
1)}

= Γij − wij min{(tr2j + t̃er2), (αr2r1tr2r1 + Φj
1)} = Γij − wijΦj

2

The value of the other variables in the original system can be found by solving the
following subsystem:

β̂r2 ≤ UB2 = wijΦ
i
2 − θij

β̂r2 ≥ LB2 = Γij − wijΦj
2

β̂r2 ≥ β̂r3 − wijαr2r3tr2r3
β̂r2 ≤ wijαr3r2tr3r2 + β̂r3

...
...

β̂rp ≤ wij(tirp + t̃arp)− θij
β̂rp ≤ Γij − wij(trpj + t̃erp).

Comparing the new subsystem with the previous one, it is possible to see that the
β̂r2 variable can be eliminated in the same way that the variable β̂r1 was eliminated.
Therefore, all variables β̂rl , for l ∈ 1 . . . (p− 1), can be eliminated iteratively by means
of the following set of inequalities:

max{LBl,−wijαrlrl+1
trlrl+1

+β̂rl+1
} ≤ β̂rl ≤ min{UBl, wijαrl+1rltrl+1rl+β̂rl+1

}, ∀1 ≤ l < p.

(A.13)
This results in a new upper bound UBl+1 and lower bound LBl+1 for the variables
β̂rl+1

given by:

UBl+1 = wijΦ
i
l+1 − θ = min{wij(tirl+1

+ t̃arl+1
), wijαrlrl+1

trlrl+1
+ wijΦ

i
l} − θ
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and

LBl+1 = Γij − wijΦj
l+1 = Γij −min{wij(trl+1j + t̃erl+1

), wijαrlrl+1
trlrl+1

+ wijΦ
j
l }.

In the case l equal to p− 1, the feasibility interval to β̂rp is given by:

Γij − wijΦj
p = LBp ≤ β̂rp ≤ UBp = wijΦ

i
p − θ.



Appendix B

Proof that Proposition 2 can be used
to find β̂k for k ∈ H1 \H1

ij

Let Φ1i
s and Φ1j

s be the shortest path from i to s and from s to j, respectively, using
only hubs in the line Seg. 1. In the same way, define Φ3i

q and Φ3j
q as the shortest path

from i to q and from q to j, respectively, using only hubs in the line Seg. 3. Proposition
3 shows that the values of β̂q and β̂s are in their feasibility interval.

Proposition 3. Let β̂s = wij(tirs + t̃ars) and β̂q =
∑q

l=s+1wijαrl−1rltrl−1rl +wij(tirs + t̃ars)

where s and q are the first hub and last hub, respectively, on the path from i to j, then

Γij − Φ1j
s ≤ β̂s ≤ Φ1i

s − θij

and
Γij − Φ3j

q ≤ β̂q ≤ Φ3i
q − θij.

Proof. Proof.
Let Φi∗

s and Φi∗
q be the shortest path on the line from i to s and from i to q,

respectively. Therefore, Φi∗
s = wij(tirs + f) = β̂s and Φi∗

q =
∑q

l=s+1wijαrl−1rltrl−1rl +

wij(tirs + f) = β̂q.
Since θij = 0 and the shortest path from i to s and from i to q in direction of j

does not use hubs that are on line Seg. 1 or line Seg. 3, then

β̂s = Φi∗
s ≤ Φ1i

s = Φ1i
s − θij, and

β̂q = Φi∗
q ≤ Φ3i

q = Φ3i
q − θij.

However, since Γij is the value of the shortest path from i to j, this path is always
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shorter than a path where j is connected to a hub on line Seg. 1 or Seg. 3:

Γij ≤ Φi∗
s + Φ1j

s = β̂s + Φ1j
s , and

Γij ≤ Φi∗
q + Φ3j

q = β̂q + Φ1j
q .
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