
FEDERAL UNIVERSITY OF MINAS GERAIS

SCHOOL OF ENGINEERING

DEPARTMENT OF MANUFACTURING ENGINEERING

Gabriela Naves Maschietto

Scheduling problem in a distribution
center with two cranes subject to

non-interference constraints

Belo Horizonte

2015

Gabriela Naves Maschietto

Scheduling problem in a distribution
center with two cranes subject to

non-interference constraints

Project Report submitted to the Graduate

Program in fulfillment of the requirements

of a Master degree in Manufacturing Engi-

neering of the Federal University of Minas

Gerais.

Supervisor: Prof. Dr. Mart́ın Gomez

Ravetti

Belo Horizonte

2015

Naves Maschietto, Gabriela.

Scheduling problem on two machines

99 pages

Dissertation (Master) - School of Engineering, Federal

University of Minas Gerais. Belo Horizonte. Department of

Manufacturing Engineering.

1. Scheduling problems

2. Parallel machines

3. Multiprocessors

4. Non-interference constraints

5. Genetic algorithm

I. Federal University of Minas Gerais. School of Engineering.

Department of Manufacturing Engineering.

ii

Abstract

This work is motivated by the economic impact of scheduling problems on a company’s supply

chain and by its applicability on the industrial and service environments. It addresses jobs

sequencing on two cranes subject to non-interference constraints, while considering different

modeling perspectives and storage policies. The problem is based on a real case at a distribution

center of steel coils, where two cranes sharing the same rail must load a sequence of trucks,

which have a defined demand of coils. A distribution center is taken as a scenario due to its

logistic importance for companies from different sectors and due to the lake of research works

in this field. This dissertation evaluates two types of parallel machine problems and one type

of multiprocessors problem. And finally, two genetic algorithms are developed in order to find

a good feasible solutions for the parallel machine cases.

Keywords: Mathematical Approaches for Scheduling, Warehouse Management Systems, Cranes

Scheduling, non-Interference Constraints, Genetic Algorithm.

Resumo

Este trabalho é motivado pelo impacto econômico de problemas de sequenciamento na cadeia de

suprimento e pela sua aplicabilidade em ambientes industriais e de serviços. Este estudo trata do

sequenciamento de tarefas em dois guindastes sujeitos a restrições de não interferência, enquanto

considera diferentes abordagens de modelagem e de poĺıticas de estocagem. O problema é

baseado em um caso real de um centro de distribuição de bobinas de aço, onde duas pontes, que

compartilham o mesmo trilho, devem carregar uma sequência de caminhões. Esses por sua vez,

têm uma demanda predefinida de bobinas. Um centro de distribuição foi tomado como base

devido à sua importância loǵıstica para empresas de diferentes setores, assim como devido à falta

de pesquisas nesta área. Esse trabalho avalia dois tipos de problemáticas de máquinas paralelas

e um problema de multiprocessadores. Finalmente, dois algoritmos genéticos são desenvolvidos

para encontrar boas soluções viáveis para os problemas de máquinas paralelas.

Palavras chaves: Abordagens Matemáticas para o Problema de Sequenciamento, Sistemas de

Gestão de Armazéns, Sequenciamento de Guindastes, Restrições de não interferência, Algoritmo

Genético.

Acknowledgments

I acknowledge my advisor, Prof. Mart́ın Gómez Ravetti, for sharing with me his knowledge and

lead me in the direction of personal and professional development.

To Prof. Farouk Yalaoui and LOSI laboratory for the exchange opportunity and precious advices.

To Prof. Mauŕıcio Cardoso de Souza and Prof. Yassine Ouazene for their helpful comments.

To my family, especially my parents and my sister, for the support and encouragement through-

out my academic career.

To my friends, especially Babi, for the advices and friendship and to Vince for the inspiration.

And finally, I acknowledge CNPQ for the financial support.

ii

Contents

1 Introduction 9

1.1 Goals . 11

1.2 Published works . 11

1.3 Organization of the dissertation . 12

2 Context of the study 13

2.1 The distribution center scenario . 13

2.1.1 Operations of the distribution center . 14

2.2 Analyzed scenario . 16

2.2.1 Machine environments . 17

3 Literature review 21

3.1 Scheduling problems . 21

3.1.1 Minimizing
∑︀

𝑤𝑗𝐶𝑗 . 24

3.1.2 Parallel machines . 27

3.1.3 Multiprocessors . 28

3.1.4 Non-interference constraints . 30

3.1.5 Synthesis of the literature reviews . 34

3.1.6 Evaluation of the computational complexity hierarchy 37

3.2 Genetic algorithm . 39

3.2.1 Parameters setting . 43

4 Mathematical formulations 48

4.1 Notation . 49

4.2 Parallel machine paradigm . 50

4.2.1 MP1 configuration . 50

4.2.2 MP2 configuration . 56

4.3 Multiprocessors paradigm . 58

4.3.1 MULTI configuration . 58

4.4 Computational experiments . 61

4.4.1 Instances definition . 61

4.4.2 Results of the mathematical models . 64

5 Genetic algorithms 70

5.1 Parameters definition . 70

5.1.1 Parameters tuning . 71

5.2 Genetic algorithm to solve 𝑀𝑃1 . 73

5.2.1 Assignement heuristic . 74

5.3 Genetic algorithm to solve 𝑀𝑃2 . 75

5.3.1 Assignement heuristic . 77

5.4 Results of the genetic algorithms . 78

6 Conclusions and further works 85

Bibliography 88

A Sequential Parameter Optimization 94

A.1 Experimental setup . 95

A.2 Results of the experiment . 97

iv

List of Figures

2.1 Storage shed of steel coils . 14

2.2 The steel coils storage shed and the railway lines 14

2.3 Loading example . 15

2.4 Machines configuration definition . 18

2.5 Sequencing of trucks by MP1 and MP2 problems, respectively 18

2.6 Example of the displacement time spent by each crane to load the same coil . . . 19

2.7 The truck processing by the multiprocessors configuration 20

2.8 The truck processing by the flow shop approach 20

3.1 Complexity hierarchy of the fields 𝛼, 𝛽 and 𝛾, respectively 38

3.2 Representation of the order crossover method . 42

4.1 Machines configuration definition . 48

4.2 Explanatory example to the constraints (4.15). 𝑟𝑚𝑖𝑛
𝑗 and 𝑟𝑚𝑎𝑥

𝑗 indicate, respec-

tively, minimum and maximum row of a coil from truck 𝑗. 53

4.3 Explanatory example to the constraints (4.20) . 57

4.4 Explanatory example to the constraints (4.23) . 57

4.5 Explanatory example to the constraints (4.24) . 58

4.6 Explanatory example to the constraints (4.25) . 58

4.7 Explanatory example to the constraints (4.38) . 61

5.1 Flowchart of the proposed sequencing heuristic for the GA1 74

5.2 Example of GA2 chromosome representation . 75

5.3 Example of trucks crossover considering coils crossover 76

5.4 Flowchart of the proposed sequencing heuristic for the GA2 77

5.5 Example of sequencing trucks and coils . 78

vi

List of Tables

2.1 Loading example of the Figure 2.3 . 16

2.2 Legend to Figure 2.5 . 18

3.1 Problems and techniques covered by the analyzed articles 36

4.1 Ranges of displacement times . 54

4.2 Average results of the time index formulation (𝑀𝑃1𝑡) and the precedence index

formulation (𝑀𝑃1𝑝).
∑︀

𝑆*: amount of instances solved optimally; 𝑆*: average

weighted completion time found in the optimal cases; 𝑆𝑓 : average solution val-

ues found in the feasible non-optimal cases after 1h of CPU time; 𝑆*𝑓 : average

solution values found in the optimal cases of the 𝑀𝑃1𝑡 for the instances which

give feasible non-optimal solutions for the 𝑀𝑃1𝑝. CT: average CPU time; Node:

average B&B nodes explored by CPLEX; GAP: average optimality gap. 55

4.3 Availability of trucks by amount of products and restrictive level 62

4.4 Travel time according to the ranges of displaced rows 63

4.5 Parameters values for the paradigms’ evaluation 63

4.6 Random Scenario (Scenario 𝑅) - Average results of the 𝑀𝑃1, 𝑀𝑃2 and 𝑀𝑈𝐿𝑇𝐼

problems. 67

4.7 Scenario of customers rows (Scenario 𝐶) - Average results of the 𝑀𝑃1, 𝑀𝑃2 and

𝑀𝑈𝐿𝑇𝐼 problems . 68

4.8 Scenario of grouping customers rows (Scenario 𝐺𝐶) - Average results of the 𝑀𝑃1,

𝑀𝑃2 and 𝑀𝑈𝐿𝑇𝐼 problems . 69

5.1 Parameters tuned the GA1 . 73

5.2 Parameters tuned the GA2 . 75

5.3 Results of the 𝐺𝐴1 by scenario of coil storage . 81

5.4 Results of the 𝐺𝐴2 by scenario of coil storage . 82

5.5 Data of the last improved solution for the 𝐺𝐴1 83

5.6 Data of the last improved solution for the 𝐺𝐴2 84

A.1 sampling of instances . 97

A.2 Parameter bounds for tuning the genetic algorithms 97

A.3 Five best parameters settings for the 𝐺𝐴1 . 99

A.4 Five best parameters settings for the 𝐺𝐴2 . 99

viii

Chapter 1

Introduction

The companies have sought to gain competitive advantages over their competitors such as

streamlining costs and improving service level. Optimization processes play a crucial role in

the effective management of the Supply Chain, justifying the development of studies in this

field.

The economic impact on different information processing, industrial and service environments

motivates our interest in scheduling problems. Studies on this topic deal with the allocation of

limited resources to tasks in a given time period, aiming to optimize some criteria. Such problems

are present in manufacturing companies, as well as in other sectors, since the beginning of the

first industries and have been quite explored by the operational research since the 1950s.

A distribution center is chosen as a scenario for analysis due to its logistic importance for

companies from different sectors. It is important to highlight that the movement and handling

of materials require resources that do not add value to the final product. The studied scenario

considers the process of loading steel coils of a steelmaker’s distribution center. According to

Zäpfel and Wasner (2006), although the sequencing of the warehouse activities is considered

critical to the supply chain competitiveness of steel, this problem has not yet received academic

attention.

The scenario covers the sequencing of trucks’loading processes within the shed of the distribution

center. The demanded load of each truck is defined by the lot sizing model of da Silva Neto

(2013), who studied the same scenario, and whose instances were generated from real data. Each

demanded load defines how many and which steel coils each truck should carry. Each coil is

unique and has a known location in the shed.

From the foregoing, this study analyzes the cranes scheduling problem on a steelmaker’s distri-

bution center by different modeling perspectives. As the same scenario, can be understood as

different environments of scheduling problems, in which exists several mathematical formulations

with different computational complexity and difficulty of implementation.

Similarly, it is defined the arrangement policy of steel coils in the shed. This allows us to

evaluate the impact of different forms of storing products while considering different machine

environments problems. Thus, one is able to define the benefits of using each mathematical

configuration, select and improve the best problem.

It is important to note that the trucks loading process is done by two cranes whose displacement

are subject to non-interference constraints. It happens because both machines move on the same

track inside the shed. According to Xie et al. (2014) there are few studies about cranes scheduling

on steel warehouses. Few of them aim to sequence the loading and unloading of coils by single

cranes, without considering non-interference constraints. The interference between machinery

often appears at logistic centers, such as warehouses, stockyards and depots. They are especially

found at port terminals, on both loading and unloading of ships, as on the handling area of the

stockyards.

This study evaluates two modeling paradigms with different understanding of the studied envi-

ronment. The first paradigm considers the parallel machines environment in which two problems

are proposed. The second one considers a multiprocessors setting, in which two machines simul-

taneously process a single job; this is a variation of the parallel machines problem.

Mathematical models are proposed for the paradigms, in order to represent them properly. The

problems of the parallel machine paradigm present the best performance, as indicated by the

evaluation of the results. Because of that, this paradigm is taken as basis for the development of

the next analysis. The mathematical models are not able to optimally solve real size instances

due to the high computational time. Therefore, we decided to heuristically solve the selected

problems.

Thereby, genetic algorithms are set to find good solutions, without guaranteeing the optimality,

10

within a reduced computational time. Genetic algorithms belong to the class of evolutionary

algorithms, which are inspired by models of the natural species evolution. They allow more

direct interaction with the population of candidate solutions, to select suitable candidates to

find the best solution.

1.1 Goals

This study aims to model and solve the scheduling problem in a two machines environment

of a steel coils distribution center. Each machine corresponds to a crane, each job to a truck

and each item to a coil. The mathematical models must consider the processing time of each

job, which varies by machine and job. Intending to determine the best loading sequencing for

each coil storage policy, one must analyze the best representation of the addressed scenario.

One paradigm is selected to have its problems heuristically solved by a genetic algorithm. The

paradigms considered in this work are: multiprocessors and unrelated parallel machines.

Seeking to meet the overall objective, the following specific objectives are outlined: i) contex-

tualization of the studied scenario to define the problem; ii) development, implementation and

selection of mathematical models able to represent the scenario and solve the truck scheduling

problem subject to non-interference constraints. iii) Development and implementation of the

genetic algorithms; iv) evaluation of the relationship between the modeling problems and the

coils storage policies; and finally v) the literature review.

1.2 Published works

As a result of this dissertation, we have published two articles in two international conferences,

(Maschietto et al., 2014) and (Maschietto et al., 2015). The first work presents the results

obtained from the comparison between the mathematical model results of parallel machines

problem and multiprocessors problem. The second one presents the results of two formulation

perspectives of the parallel machine problem subject to non-interference constraints: using time-

index and precedence index variables. As a final output, we expect to submit a journal article

in 2015 integrating the results achieved in this work.

11

1.3 Organization of the dissertation

This work is divided into six chapters. The first one introduces the study, describes and justifies

which are the expected goals.

The second chapter presents the based scenario and the operational characteristics of the distri-

bution center of this study, as well as the focus area. It also describes the machine environments

that will be addressed in this work.

Chapter 3 is devoted to the bibliography review about scheduling problems, weighted completion

time optimization criterion, parallel machines, multiprocessor problems and non-interference

constraints. As well as the review about computational complexities hierarchy evaluation and

genetic algorithm heuristics.

Chapter 4 presents the considerations and formulations of the proposed paradigms. It also

presents the instances definitions, results and analysis of the mathematical models performance

with different instances configurations and steel coils arrangement policies.

Finally, in chapter 5 is presented the genetic algorithms, the parameters definitions and evalua-

tion of their results. Chapter 6 concludes this dissertation and presents further works.

12

Chapter 2

Context of the study

This chapter contextualizes the studied scenario which addresses the cranes scheduling problem

in a steel coils distribution center, while considering different policies of products arrangement

in the shed. First of all, it will be presented the distribution center characteristics and its

operations, then the target problem and the machines configurations will be defined.

2.1 The distribution center scenario

The scenario of the proposed work is based on the distribution center (DC) operation of a

steelmaker company. According to the Brazil Steel Institute (Instituto Aço Brasil), IAB (2013),

this sector currently has 29 plants in Brazil, which produce 34.5 million tonnes of crude steel

every year. The based steelmaker produces steel coils and steel sheets of different compositions,

thicknesses and weights, which are mainly delivered to the automotive industry, construction

and consumer goods sectors.

The products are sent to the distribution center via railroad and then they are sent to cus-

tomers via road transportation. All the stock’s material movements are made by cranes. A

representation of the distribution center’s warehouse can be seen in Figure 2.1. The picture

shows the cranes, which move through the same track inside the shed and therefore are subject

to displacement interference. It shows the storage rows of the steel coils, as well as the area

where the trucks must go through for loading.

Xie et al. (2014), p.p. 2875, adapted.

Figure 2.1: Storage shed of steel coils

Basically, the whole physical structure of the distribution center is composed by a storage shed

and an administrative building. There is a staging area to receive the truck before the loading

process and another one to release it. There is also an outdoor area, with three railway lines,

where the arrived loaded wagons are held until the products are unloaded. The Figure 2.2

illustrates the distribution center’s shed and the external railway lines.

da Silva Neto (2013), p.p. 31, adapted.

Figure 2.2: The steel coils storage shed and the railway lines

2.1.1 Operations of the distribution center

At the distribution center, the products must pass through the steps of receiving, handling,

storing, picking and shipping, which are detailed below.

(a) Receiving: the wagons arrive from the steel mill with products and stand outside to wait

14

the unloading process.

(b) Handling: the unloading process usually follows the arrival order of the trains, according to

the FIFO rule (First In First Out). Each wagon is discharged by one of the two cranes at the

night time, this operation do not interfere the loading’s worktime.

(c) Storing: the materials are stacked into rows, which are indexed and separated by the following

criteria: type (steel coil or sheet), size, destination (depending on the volume), client (depending

on the volume) and weight. The last criterion sets the level at which the coil should be placed

on the row. Heavier coils can not stay on the top of lighter coils due to issues of product quality

and safety. Each coil has its row recorded for future location, but its exactly position into the

row is not registered.

(d) Picking: this process considers the dispatch report, whose lots are defined by customers

for delivery over the next 24 hours. During the process an operator must also scheduled the

order’s products into the designated truck at a specific time. The products must be checked

and loaded into the trucks. One of the cranes is designed to retrieve the coils, depending on the

coil location inside the warehouse and the machines availability. The truck loading can be done

by one of the cranes, or by both of them, as can be seen at the example shown on Figure 2.3.

The coil processing time varies according to its row position, which increases with the number

of movements.

(e) Shipping: the truck passes through the steps of shipping preparation and release of material

invoice.

da Silva Neto (2013), p.p. 31, adapted.

Figure 2.3: Loading example

Where 𝐶 indicates truck, 𝐵 steel coil and 𝑃 crane. The numbers that follow 𝐶 and 𝑃 are,

respectively, the truck and the crane identifier. The number that follows 𝐵 is the steel coil’s

15

Table 2.1: Loading example of the Figure 2.3

Truck Number of coils Rows of the coils Used crane

C1 4 B45 — B50 — B80 — B93 P2 — P2 — P2 — P2
C2 3 B5 — B16 — B14 P1 — P1 — P2
C3 2 B2 — B90 P1 — P2
C4 2 B4 — B10 P1 — P1

elaborated by the author.

row.

It should be highlighted that the movement of material absorbs resources that do not add

value to the product, hence the minimization of the handling implicates avoiding unnecessary

movement and reduces the risk of damage or loss of product.

2.2 Analyzed scenario

The main scenario addressed in this study covers the picking stage with focus on the loading of

trucks. Intending to get the best use of the distribution center, it shall be defined the policies

of arrangement of steel coils and the machine environments to represent the trucks loading.

This study assesses different approaches of coils storage inside the shed and models the scenario

as different machines environments to enable the evaluation of the configurations’ benefits. Since

cranes are expensive equipments, an effective solution to the scheduling problem should increase

their utilization rate and provide better logistical support for the steel manufacturing process.

This work looks at the planning of coils, as they represent more than 90% of the materials in

stock. Thus, the proposed models assume that each coil has a known location into the shed and

each truck has a defined load demand, such as the specifications of how many and which coils

should be loaded. The load demand of each truck is a parameter given by the lot sizing problem

of da Silva Neto (2013), who studied the cargo assignment considering the same scenario.

This dissertation also assumes that the coil processing time is variable and depends on the coil

location (row) on the shed, but it independs of the coil row level. The row level of the coils

is disregarded because such information is nonexistent in the considered distribution center.

However, once this data is available, the model could be adapted, and works as Zäpfel and

Wasner (2006), Tang et al. (2014) and Xie et al. (2014), may be useful to underlie the study.

16

The analyzed scenario considers the interference between cranes, where one crane bounds the

operational area of the other one, since both move through the same track inside the shed,

see Figure 2.1. Interference between machinery often appears at logistic centers, such as ware-

houses, stockyards and depots. They are especially found at port terminals on both loading and

unloading of ships, and on the material handling at stock yards.

Extensions can be identified from the analysed scenario, as (i) the consideration of more ma-

chines; or (ii) the assumption of row level of coils; (iii) the integration between arrivals and

deliveries of steel coils; or (iv) the integration between the operations of steel coils and steel

sheets. Moreover, future studies can focus on other areas of distribution centers, or on other

steel production process. Likewise, other perspectives of the operational research can be ad-

dressed in the distribution center’s scenario, such as lot sizing.

2.2.1 Machine environments

Before presenting the machine configurations; it is important to define the optimization criterion.

As in the real case several clients have higher priorities, we opt to work with the minimization

of the total weighted completion time. With this objective function we are able to distribute

the work among the machines weighting at the same time jobs to prioritize its completion.

Seeking to find the best representation of the chosen scenario, two modeling paradigms are

proposed, Figure 2.4. The first one considers a parallel machine environment and the second

one a multiprocessor setting. Paradigm P1 defines two parallel machine problems, in which

𝑀𝑃1 considers only the trucks scheduling and 𝑀𝑃2 considers the trucks and coils scheduling.

Paradigm P2 addresses a multiprocessors configuration, in which coils and trucks have to be

sequenced. A paradigm P3 could also be defined as a flow shop machine environment. These

machine configurations are detailed below.

I. Paradigm P1: Parallel machines

The problem can be modeled as a parallel machines if each truck must be processed by a single

crane. This paradigm includes the interference between cranes during the removal of coils, as

both machines move through the same track. P1 is subdivided into two problems: MP1 considers

17

Figure 2.4: Machines configuration definition

truck interference, that is, if the cargo of two trucks contains incompatible coils, the trucks can

not be processed at the same time. MP2 considers that the coils it-selves need to be scheduled,

thus there is coils’ interference.

In the 𝑀𝑃1 problem, when truck 𝑗 starts, it prevents other trucks 𝑓 ̸= 𝑗 to be processed if 𝑓

has coils in some row between the area bounded by the rows of the coils from 𝑗.

In 𝑀𝑃2 problem, the processing of a coil blocks the crane’s operational area corresponding to

the coil’s storing position. Considering the example shown in Figure 2.3, one can sequence the

jobs processing through 𝑀𝑃1, Figure 2.5 (𝑎), and through 𝑀𝑃2, Figure 2.5 (𝑏):

Figure 2.5: Sequencing of trucks by MP1 and MP2 problems, respectively

Table 2.2: Legend to Figure 2.5

𝐶𝑗 : Truck 𝑗 𝐵𝑓 : coil in the row 𝑓

C1 B45 — B50 — B80 — B93
C2 B5 — B16 — B14
C3 B90 — B2
C4 B4 — B10

18

As can be seen on Figures 2.5, (𝑎) and (𝑏), the coils of the same truck are made without

preemption. The processing time of each coil is considered equal to one unit of time to facilitate

the understanding.

As observed in Figure 2.5 (𝑎), truck 𝐶2 has coils in rows 5, 14 and 16. So, when 𝐶2 starts

processing, any other truck which has coils between the rows 5 and 16 can be processed simul-

taneously. Thus, only 𝐶1 can be loaded by crane 2 while 𝐶2 is processed by crane 1, because

its operational area, row 45 to 93, does not match with the one of 𝐶2. Because of that, crane 2

can operate 𝐶1 without colliding with crane 1.

Furthermore, although these cranes are considered identical (both have the same technology), the

time spent to remove a coil depends on the crane. It happens because there is a displacement

time performed by the crane to move from the truck to the coil’s row. Figure 2.6 shows an

example of the removal of a coil stored in row 12. It is possible to see that the machine 2

takes longer to process this coil than machine 1, since the truck loading position depends on the

machine.

Xie et al. (2014), p.p. 2875, adapted .

Figure 2.6: Example of the displacement time spent by each crane to load the same coil

II. Paradigm P2: Multiprocessors

The studied scenario can be modeled as a multiprocessors problem, in which the two cranes can

process different coils from the same truck simultaneously, Figure 2.7. In this paradigm, the

cranes are treated as identical machines, because of their need to load the same truck, which is

always in an established loading position, so that the distance between the vehicle and a coil

is independent of the machine. Furthermore, it is considered the nonfix feature, since trucks

with only one coil must be processed by one of the cranes, but it is not specified which one;

19

and trucks with two or more coils must be processed by the two bridges together (details will

be given further on this work, at Chapter 3). This approach is called 𝑀𝑈𝐿𝑇𝐼.

Xie et al. (2014), p.p. 2875, adapted .

Figure 2.7: The truck processing by the multiprocessors configuration

III. Paradigm P3: Flow shop

Another configuration, identified and contemplated by the work of da Silva Neto (2013), not

included at this dissertation, is the flow shop environment. The scenario can be formulated as

flow shop problem if the storage shed is divided into two parts, illustrated by the blue cut on

Figure 2.8, where each machine is responsible for each subdivision. Thus, the trucks would enter

the shed to be processed firstly by the crane 1 with the coils that are in the first subdivision,

and finaly on the second one. In this case, each cranes is responsible for the coils stocked in

their corresponding section.

Xie et al. (2014), p.p. 2875, adapted .

Figure 2.8: The truck processing by the flow shop approach

20

Chapter 3

Literature review

This chapter reviews the literature that guided this study. It focuses on scheduling problems with

non-interference constraints and those minimizing the weighted completion time with parallel

machine and multiprocessors settings. Moreover, it summarizes the differential of this study in

relation to literature, reviews the complexity of these problems and concludes with the literature

review on genetic algorithms.

3.1 Scheduling problems

The scheduling problems can be defined as the allocation of resources to tasks in a given period

of time, in order to optimize one or more goals. Such problems are present in manufacturing

companies since the rise of the first industries in the mid-eighteenth century. At the beginnings

it was only listed the start of an order processing or the deadline of an order delivery (Herrmann,

2006).

In the early twentieth century, when production systems became more complex and large, Fred-

erick Taylor proposed the creation of a production planning office, which would justify the use

of formal methods for scheduling. At about the same time Henry L. Gantt created production

control tables, which allowed to visualize the scheduling and validate the production status (Her-

rmann, 2006). Later, the computerized programming would appear, and the first approaches

to scheduling problems would be made in the mid-1950s (Graham et al., 1979) and (Allahverdi

et al., 2008).

Nowadays, scheduling problems play a crucial role in the production planning of a successful

company, since the requirements for production flexibility and costumer satisfaction is always

increasing. Scheduling problems have been widely explored in the literature and can be applied in

several areas and types of industrial environments, services and information processing. General

references about scheduling problems include the books of Baker (1974), Conway et al. (1967)

and Pinedo (2008). Readings such as Lenstra et al. (1977), Graham et al. (1979), Cheng and

Sin (1990), Hall and Sriskandarajah (1996), Drozdowski (1996), Lee et al. (1997), Allahverdi

et al. (1999), Gupta and Stafford Jr (2006), Allahverdi et al. (2008) and Bierwirth and Meisel

(2010) allows us to understand some specific schedule issues that are currently addressed.

Lenstra et al. (1977) study the complexity of some scheduling problems, such as parallel ma-

chines, flow shop, permutation flow shop and job shop. Graham et al. (1979) interpret the

computational complexities and review studies about optimization algorithms, enumeration and

approximation algorithms for the same deterministic scheduling problems addressed by Lenstra

et al. (1977), as well as to single machines and open shop problems.

Cheng and Sin (1990) survey the parallel machine problem literature since its beginnings until

1990s. Hall and Sriskandarajah (1996) review problems about blocking and no-waiting processes.

Drozdowski (1996) and Lee et al. (1997) investigate problems about 1-job-on-r-machines=, called

multiprocessor task scheduling. Lee et al. (1997) also study scheduling problems with availability

constraints and present works on local search techniques.

Allahverdi et al. (1999) and Allahverdi et al. (2008) compile existing literature between 1960

and 2008 on scheduling problems with setups for distinct machine configurations. While Gupta

and Stafford Jr (2006) review studies about flow shop since the development of Johnson’s rule

in 1954. Bierwirth and Meisel (2010) review scheduling problems in port environments.

To facilitate the understanding of this work, the main elements that make up scheduling problems

are presented:

• Resources: these are goods or services with limited or unlimited availability. These can be

machines, workforces, tools, etc.. The studied resources are the two cranes of the storage

shed of the distribution center.

22

• Tasks: these are the operations that must be performed in the production process. Each

task requires =a certain amount of time and/ or resources. The task in the addressed

problem is the loading of steel coils.

• Job: it is the set of tasks or operations that must be executed in a sequence, it must

represent the technological order of a product. For each task of a job there is an associated

processing time. Thus, in the covered scenario the trucks are the jobs.

• Objective function: generally corresponds to the company’s main performance objective, it

can take different shapes and have one or more optimization criterion. The most common

criterion is the minimization of the makespan (𝐶𝑚𝑎𝑥), which is the maximum completion

time of a job between all the jobs to be process. According to Pinedo (2008), this has

considerable practical interest, as its minimization is somewhat equivalent to the maximum

machine utilization. The objective function addressed in this study is to minimize the sum

of the weighted completion time because on the based scenario, some customers have

priority among others.

According to the classical literature, scheduling problems can be classified into single machine,

parallel machines or serial machines, such as flow shop, flexible flow shop, job shop, flexible job

shop and open shop.

This study focus on modeling and implementing a scheduling problem of a distribution center

scenario with two machines. The configurations analyzed are: I. two unrelated parallel machines

and II. multiprocessor in which two servers process the same job.

The notation of three fields of Graham et al. (1979) will be used, 𝛼|𝛽|𝛾, where 𝛼 represents

the configuration of machines or resources, and it may take only one feature; 𝛽 represents the

characteristics of the process and problem’s constraints, and can take more than one feature at

the same time; and 𝛾 represents the performance measure to be optimized, which may have only

one feature.

Once the cranes move on the same track, their displacement may interfere on each other’s

operation since one can not overtake the other. In addition, some coils can not be loaded

simultaneously when their rows are very close, because the bridges should keep a safety distance

between them. This are the non-interference constraints which will be defined by 𝑖𝑡𝑓 , to be

23

included in the 𝛽 field when needed. Thus, the literary review of the main topics covered

by this study will be presented in the following order: weighted completion time objective

function, parallel machine problems, multiprocessors problems, problems with non-interference

constraints, synthesis, computational complexities and genetic algorithms.

3.1.1 Minimizing
∑︀

𝑤𝑗𝐶𝑗

The weighted shortest processing time (WSPT) rule can find optimal solutions for 1||
∑︀

𝑤𝑗𝐶𝑗

problem (Skutella and Woeginger, 1999) and (Pinedo, 2008). According to this rule, the jobs

must be ordered in decreasing order of
𝑤𝑗

𝑝𝑗
. The computational time needed to sequence the jobs

on the 1||
∑︀

𝑤𝑗𝐶𝑗 problem according to WSPT is the time required to sort the jobs according

to the ratio of the two parameters.

The 1|𝑝𝑟𝑒𝑐|
∑︀

𝑤𝑗𝐶𝑗 problem can be solved in polynomial time if the problem presents chain

precedence constraints, but the problem is strongly NP-hard if it has arbitrary precedence

constraints (Pinedo, 2008). The 1|𝑟𝑗 , 𝑝𝑟𝑚𝑝|
∑︀

𝐶𝑗 can be solved in polynomial time, but its

weighted version is strongly NP-hard, as well as the 1|𝑟𝑗 |
∑︀

𝐶𝑗 problem (Lenstra et al., 1977).

Belouadah et al. (1992) propose a new branch-and-bound (B&B) algorithm for the 1|𝑟𝑗 |
∑︀

𝑤𝑗𝐶𝑗

problem. Their B&B incorporates three special features that contribute to its efficiency: lower

bounds based on the idea of job splitting; restriction of its search tree, by the release date

adjustments incorporated into the branching rule; and their dominance theorem. The authors

also present a greedy heuristic which uses a list scheduling procedure that gives priority to job

𝑗 for which 𝑝𝑗/𝑤𝑗 is minimal. It uses sufficient conditions to generate optimal schedules.

According to the classical theory, the shortest processing time (SPT) rule can optimally solve

the 𝑃𝑚||
∑︀

𝐶𝑗 problem. According to the SPT rule, the smallest job has to go on machine 1 at

time zero, the second smallest one on machine 2, and so on. Then the (𝑚 + 1)𝑡ℎ smallest job

goes through machine 1, the (𝑚+ 2)𝑡ℎ on machine 2, and so on. However, the SPT rule can not

optimally solve some problems with the addition of other features in the 𝛽 field, which can turn

it into a NP-hard problem. The 𝑃𝑚|𝑠𝑑𝑠,𝑟𝑗 |
∑︀

𝐶𝑗 problem, where 𝑠𝑑𝑠 is the sequence-dependent

setup time, for example, is known to be strongly NP-hard, since the single machine approach

1|𝑟𝑖|
∑︀

𝐶𝑗 is NP-hard in the strong sense.

24

Nessah et al. (2007) develop a B&B algorithm for the 𝑃𝑚|𝑠𝑑𝑠,𝑟𝑗 |
∑︀

𝐶𝑗 problem. It can efficiently

solve problems up to 40 jobs in the case of 2, 3 and 5 machines. The authors prove conditions for

local optimality which is used to develop the lower bound. Nessah et al. (2007) also develop a

dominance of partial schedules theorem in which the nodes of the B&B tree are removed. Their

lower bound is computed by relaxing the considered problem such that it turns into a single

machine problem. Then the modified SPRT rule (shortest processing remaining time rule) is

applied to optimally schedule the jobs.

If the parallel machine problem has the
∑︀

𝑤𝑗𝐶𝑗 optimization criterion, the WSPT rule can not

solve it optimally. Nonetheless, according to Pinedo (2008), it can provide a good approximation

for the 𝑃𝑚||
∑︀

𝑤𝑗𝐶𝑗 problem and its worst case analysis yields the lower bound
∑︀

𝑤𝑗𝐶𝑗(𝑊𝑆𝑃𝑇)∑︀
𝑤𝑗𝐶𝑗(𝑂𝑃𝑇) <

1
2(1+

√
2). According to Skutella and Woeginger (1999), as the 𝑃2||

∑︀
𝑤𝑗𝐶𝑗 problem is NP-hard

in the ordinary sense, it can be solved in pseudopolynomial time. When more than 2 machines

are considered (𝑃𝑚||
∑︀

𝑤𝑗𝐶𝑗), the problem is NP-hard in the strong sense, excepting for the

case of 𝑤𝑗 = 1.

According to Li and Yang (2009), the majority of the researches about parallel machine problem

with minimization of
∑︀

𝑤𝑗𝐶𝑗 focus on studying the case of identical machines. Belouadah and

Potts (1994), for example, propose a B&B with lower bounds based on Lagrangean relaxation

for the 𝑃 ||
∑︀

𝑤𝑗𝐶𝑗 problem. The formulation of their problem has unit time intervals and time

index variables.

To compute the lower bound, Belouadah and Potts (1994) firstly schedule the jobs by a simple

WSPT heuristic and then compute the multipliers of the Lagrangean relaxation. Some properties

are defined to solve the relaxation, these properties must restrict the search for its optimal

solution, which is a lower bound to the original problem. The authors prove that their bound

is the optimal solution if the problem has one machine or 𝑝𝑗 = 1 for all jobs 𝑗. They show

some dominance rules and apply the WSPT heuristic at each node of the search tree to generate

upper bounds.

Skutella and Woeginger (1999) give a PTAS (Polynomial Time Approximation Scheme) for the

problem 𝑃 ||
∑︀

𝑤𝑗𝐶𝑗 , which is based on ratio-partitioning. The PTAS implies that for any given

𝜀 > 0 it will produce a solution within a performance guarantee or performance ratio of (1 + 𝜀)

of the optimum value. The authors derive a PTAS for the case in which the largest job ratio is

25

a constant factor away from the smallest job ratio (there are a bounded weight to length ratios

of jobs). And they also present a similar result for the general problem. The idea is to find near

optimal schedules for the subsets of jobs, which were partitioned according to their 𝑝𝑗/𝑤𝑗 ratios

and then were geometrically rounded. These subsets can be later concatenated according to the

WSPT rule.

In the same way Afrati et al. (1999) develop a PTAS for the 1/𝑃/𝑅𝑚|𝑟𝑗 |
∑︀

𝑤𝑗𝐶𝑗 problems.

According to them, 𝑅||
∑︀

𝐶𝑗 can be solved by matching techniques, and the 𝑅𝑚||
∑︀

𝑤𝑗𝐶𝑗 by

PTAS. The authors perform several transformations that simplifies the input problem with-

out dramatically increasing the objective value, such that the final result is amenable to a fast

dynamic programming solution. They make a geometric rounding, which breaks time into geo-

metrically increasing intervals; a time stretching, by adding small amounts of idle time spreaded

throughout the schedule; and a weight-shifting, which moves the excess jobs to the next interval.

Their small jobs are scheduled by WSPT rule at the identical parallel machine problem, but it

does not hold for unrelated machines.

Pfund et al. (2004) survey the literature about solving traditional unrelated parallel machine

scheduling problems, including the studies on minimization of the total weighted completion

times. Although the problem 𝑅𝑚||
∑︀

𝐶𝑗 can be solved optimally in polynomial time, the

𝑅𝑚||
∑︀

𝑤𝑗𝐶𝑗 is NP-hard (Pinedo, 2008).The authors show that an optimal schedule of this

problem would have not any idle time within the schedule and the jobs must be ordered on each

machine in WSPT order.

Li and Yang (2009) collect and classify models and relaxations, and survey some familiar heuristic

algorithms and optimizing techniques for the 𝑄/𝑅| . . . |
∑︀

𝐶𝑗/
∑︀

𝑤𝑗𝐶𝑗 problems. They review

some exact methods for these problems in which some authors developed a B&B or a decom-

position approach involving dynamic programming algorithms for solving the subproblem. The

methods evaluated by them use the idea of WSPT in some of their parts. Li and Yang (2009)

claim that there are few works about exact algorithms to the 𝑄/𝑅| . . . |
∑︀

𝑤𝑗𝐶𝑗/
∑︀

𝐶𝑗 problems.

According to Li and Yang (2009), some general heuristics make use of WSPT rule directly or

indirectly to obtain good solutions. They claim that there are few 𝑄/𝑅| . . . |
∑︀

𝑤𝑗𝐶𝑗/
∑︀

𝐶𝑗 prob-

lems that are solved by local search techniques. According to them, the 𝑄| . . . |
∑︀

𝐶𝑗/
∑︀

𝑤𝑗𝐶𝑗

problems have not received much attention; there is no paper in which Lagrangean relaxation

26

is used for 𝑄/𝑅| . . . |
∑︀

𝐶𝑗/
∑︀

𝑤𝑗𝐶𝑗 problems; it is important to develop exact algorithms for

𝑄/𝑅| . . . |
∑︀

𝐶𝑗/
∑︀

𝑤𝑗𝐶𝑗 problems; and there are few papers involving metaheuristics for the

𝑅||
∑︀

𝑤𝑗𝐶𝑗 problem.

3.1.2 Parallel machines

These scenarios are important because the occurrence of resources in parallel is common in real

world applications, being found in various industrial segments. Cheng and Sin (1990) review

the studies about parallel machines since its earliest days. According to them, the studies in

this area began in 1959 with the publication of the first article (McNaughton, 1959).

The parallel machines configuration can be found as identical or non-identical machines due

to the need to produce products with some differences, or due to the level of the equipments

technology. The parallel machine problems can be classified as:

(a) Identical machines: machines with the same processing speed. The jobs require only one

operation and can be processed in any of the 𝑚 machines, or any one of which belongs a

particular subset.

(b) Uniform machines: parallel machines with different processing speeds and setups, such that

𝑝𝑖𝑗 = 𝑝𝑗/𝑠𝑖 where 𝑝𝑗 is the processing time of job 𝑗 and 𝑠𝑖 is the speed of machine 𝑖. It happens

due to the characteristics of the jobs or the machine technology. This type of problem is common

because the industries typically buy new equipments with advanced technology, but retains the

old machinery.

(c) Unrelated machines: the processing time speed of each job is arbitrary and depends on the

job and the machine where it is processed.

For problems with identical, uniform and unrelated parallel machines we add, respectively,

𝑃𝑚,𝑄𝑚 and 𝑅𝑚 in the 𝛼 field of the used notation, where 𝑚 denotes the amount of considered

machines.

Parallel machines scheduling problems should be treated as a two-stage process (Shim and

Kim, 2007) and (Pinedo, 2008). It must be determined which jobs should be allocated on each

machine and then sequencing them. The makespan minimization ensures a good load balance

27

on the machines of the parallel machine problems (Pinedo, 2008).

Some authors, such as Yalaoui and Chu (2002) and Shim and Kim (2007), study the identical

parallel machine problem with minimization of the total tardiness. They propose a B&B and

present dominance properties of partial schedules to increase its speed. These properties allow

the identification of jobs and partial scheduling that should be prioritized. Both papers present

efficient algorithms.

Rocha et al. (2008) study the 𝑅𝑚|𝑠𝑑𝑠|𝐶𝑚𝑎𝑥 +
∑︀

𝑤𝑗𝑇𝑗 problem. The authors present two mixed

integer programming (MIP) models, based on Manne and Wagner models for job shop. They

develop a B&B algorithm with better performance than the two models.

de Paula et al. (2010) study the 𝑅𝑚|𝑆𝑇𝑠𝑑, 𝑑𝑗 |
∑︀

𝑤𝑗𝑇𝑗 problem and suggest a non-delayed relax-

and-cut algorithm based on Lagrangean relaxation with a time-indexed formulation. A La-

grangean heuristic is also designed to obtain approximated solutions. The proposed methods

generate optimal solutions within a feasible computational time, and obtain good optimality

gaps for non-optimal solutions.

Other references on parallel machines include Pfund et al. (2004) and Kravchenko and Werner

(2011), who survey, respectively, the literature of traditional scheduling problems about unre-

lated parallel machine and studies involving identical and uniform machines problems with the

same processing times. Other reviews that also cover parallel machines include Lenstra et al.

(1977), Graham et al. (1979), Allahverdi et al. (1999) and Allahverdi et al. (2008).

3.1.3 Multiprocessors

Classical scheduling problems consider that a machine handles only one job, and the processing

of a job is made by only one machine, in a given time period. Unlike such problems, in multi-

processors problems a job must be processed simultaneously by 𝑟 machines, where 𝑟 ∈ Z (case

addressed in this study), or many jobs can be processed by a single processor simultaneously

(0 < 𝑟 ≤ 1).

According to Lee et al. (1997), the problems of processing jobs by 𝑟 machines simultaneously

have gained importance from the 1980s, with the development of parallel computing systems.

28

These authors have interesting results showing that the increasing value of r generally increases

the problem complexity. Lee et al. (1997) define two categories of multiprocessors: nonfix, or

size, and fix. The former assumes that each job requires a fixed number of machines working

simultaneously, but the required machines are not specified. The latter category fixates the set

of machines for each job.

Basically, these scheduling problems are a variation of parallel machine problems, because they

include one of both features on 𝛽 field of the used notation. According to Lee and Cai (1999),

the nonfix problem, for example, may be equivalent to the traditional parallel machine problem

or the single machine problem, depending on the configuration of the nonfix. According to Lee

et al. (1997), there is no clear relationship between the complexity of nonfix and fix models.

Drozdowski (1996) reviews studies about multiprocessors problem with parallel machines char-

acteristics or dedicated processors characteristics. Similarly to the classical parallel machines

theory, the multiprocessors can be classified as identical, uniform or unrelated machines.

An important study about jobs processed simultaneously by 𝑟 machines can be found in Lee and

Cai (1999). The authors study the 𝑃2|nonfix𝑗 |
∑︀

𝑤𝑗𝐶𝑗 and 𝑃2|nonfix𝑗 |𝐿𝑚𝑎𝑥 problems, in which

the tasks must be performed by one or two processor simultaneously. They show the strong NP-

hardness of these problems even when 𝑤𝑗 = 𝑤. For the first problem, they establish optimality

properties and find a dynamic programming algorithm to solve it optimally. A heuristic is

developed as the computation time of the dynamic algorithm is relatively large. The authors

also create an algorithm to find optimal solutions when all processing times (pj) are equal 𝑝.

Hoogeveen et al. (1994) investigate the computational complexity of multiprocessor schedul-

ing problems with the fix characteristic. They evaluate the complexity of 𝑃𝑚|𝑓𝑖𝑥𝑗 |𝐶𝑚𝑎𝑥 and

𝑃𝑚|𝑓𝑖𝑥𝑗 | 𝑠𝑢𝑚𝐶𝐽 problems, as well as their complexity when there are precedence constraints or

jobs availability constraints. According to them, the introduction of release dates or precedence

constraints usually makes the problem NP-hard. Furthermore, few attention has been done to

the complexity of multiprocessors scheduling problems.

Lee et al. (1997) also distinguish the sets category, in which few attention had been given until

the publication of their work. In the set type, one job can choose a set of alternative which

has several dedicated machines. Consider, for example, a 𝑚 = 3 machines problem and a job

29

𝑗 which can be processed by the set of alternatives 𝑆𝑗 = {(𝑀1,𝑀2,𝑀3), (𝑀1,𝑀2), (𝑀2,𝑀3),

(𝑀2)}. Both fix and nonfix, are special cases of sets, which is reviewed by Chen and Lee (1999).

Chen and Lee (1999) prove that the problem 𝑃𝑚|𝑠𝑒𝑡𝑗 |𝐶𝑚𝑎𝑥 is NP-hard even for 𝑚 = 2. A

pseudopolynomial algorithm can solve it by assigning a set of alternatives for each job and

sequencing them. The lower bound generated by the algorithm is the optimal solution of the

𝑃2|𝑠𝑒𝑡𝑗 |𝐶𝑚𝑎𝑥 problem, when assuming any slack time on the machines. For a three machine

problem, a fully polynomial algorithm in combination with a heuristic is elaborated to solve

allocation and sequencing, respectively. Their results are extended to a general problem of 𝑚

machines.

3.1.4 Non-interference constraints

According to Xie et al. (2014), there are few studies about crane scheduling in warehouses of steel

coils, and there are even fewer about scheduling the shuffling operations of coils. The shuffling

operation is the removal of coils that block the demanded coils which are in a lower level.

According to the authors, researches about scheduling problems in warehouses are generally

about sequencing the loading and unloading of coils on single machines, such as Zäpfel and

Wasner (2006) and Tang et al. (2014), without considering the non-interference constraints or

the interrelationship between transport and shuffling operations.

Zäpfel and Wasner (2006) study the crane scheduling problem, where the crane needs to store,

remove and shuffle coils. The problem is treated as a job shop problem and is formulated as

a nonlinear integer programming model. This model is difficult to solve, it has many restric-

tions and many variables, which are mutually dependent. Therefore, the authors propose an

approximate method based on a local search algorithm.

Tang et al. (2014) study the single crane scheduling problem to minimize the makespan. The

authors subdivide the warehouse such that a single machine must perform the pickup and

shuffling operations into one of the subsets. Their problem should determine the coils removal

sequence and the new positions for the blocking coils. They formulate a new mixed integer

linear programming (MILP) model, prove the NP-hardness of the problem and propose an

approximate algorithm to solve it. In this approach, the problem is divided into stages of

30

shuffling and sequencing the loading of demanded coils. The coils exchange decision is taken

at each stage with the support of the reduced MILP model. The authors propose a dynamic

programming algorithm to optimally solve the restricted case and approximately solve a general

case. They also present an heuristic to solve the general problem with good quality solutions.

Xie et al. (2014) have an interesting study about multiple cranes scheduling problem on a distri-

bution center of steel coils. They know the exact position (row and level) of each coil and assume

shuffling operations, once one coil can be blocked by other superiorly. Their problem, as well as

in Zäpfel and Wasner (2006) and Tang et al. (2014), do not consider the coils weight related to

their level, nor the non-preemption of the truck loading. The proposed model determines the

position to send the blocking coils and sequences the transporting of the demanded coils and

blocking coils. Xie et al. (2014) consider the interference on cranes displacement and the safety

distance between them. As in Tang et al. (2014), each crane has retrieval time and placing time

associated, as well as a travel speed along the track and movement speed along the support of

the bridges. Such speeds assumes different values for loaded and unloaded displacements.

Xie et al. (2014) formulate the problem as a MILP model to minimize the makespan. They use

positional variables and present some properties of viability and optimality in order to avoid

interference between the cranes. As this problem is NP-hard, the authors propose a heuristic

based on these properties and calculate the lower bound. The heuristic considers each type of

operation (coil transportation or empty movement) as a scheduling problem. The performance

of the heuristics is analyzed for the worst case, and computational experiments are generated

for the MILP model and the heuristic with instances of 2 to 6 coils. The performance of the

heuristic is evaluated for bigger instances. It solves all instances almost instantly and is able to

generate good quality solutions.

Although references about scheduling problems with non-interference constraints are not com-

monly found for warehouses environments, this kind of problems have been widely discussed

in port terminal environments. At this context, the problem can be treated as the materials

exchange process between vessels and piers by quay cranes, which are specialized cranes that

displace through rails next to the pier. Or as the loading process at the storage yards by yard

cranes, which are container handling equipments which load and unload containers on trucks.

According to Kim and Park (2004) and Bierwirth and Meisel (2010), the quay cranes scheduling

31

problem with non-interference constraints differs from the parallel machine problem due to

precedence constraints of unloading and loading of vessels and due to the presence of interference

on the displacement of the cranes. Quay crane studies include Bierwirth and Meisel (2010), Kim

and Park (2004), Zhu and Lim (2006), Lim et al. (2007), Lee et al. (2008), Bierwirth and Meisel

(2009) and Chung and Choy (2012). And Ng (2005) and Li et al. (2009) exemplify works about

yard cranes.

A survey about berth allocation, quay crane allocation and quay crane scheduling problems at

port terminals can be found in Bierwirth and Meisel (2010). The authors suggest a classification

scheme for the addressed problems and conclude that the trend is the integration of these

problems.

According to Bierwirth and Meisel (2009) and Bierwirth and Meisel (2010), makespan is the

most common optimization criterion found in the literature about cranes scheduling. The au-

thors claim that the non-interference constraints are present in the majority of the studies,

although there are few when considering the safety distance of the cranes displacement. The

crane attributes, such as travel speed and availability, are also quite neglected.

Non-interference constraints were first included in the quay crane scheduling problem model of

Kim and Park (2004) who studied the scheduling of loading containers on a single ship, with

two optimization criterion. They formulate a MIP model with linear ordering variables, propose

a branch-and-bound and a GRASP heuristic (greedy randomized adaptive search procedure).

They consider the location and release date of quay cranes as well as the presence of sets of

tasks which can not be processed simultaneously.

Zhu and Lim (2006) formulate the 𝑃2|𝑖𝑡𝑓 |𝐶𝑚𝑎𝑥 as an integer programming problem with linear

ordering variables. After prove its NP-hardness, they create a B & B algorithm to obtain the

optimal solution and develop a simulated annealing metaheuristic to solve large problems.

Lim et al. (2007) develop a MIP model for the 𝑃𝑚|𝑖𝑡𝑓 |𝐶𝑚𝑎𝑥 problem. They consider each

task as the whole compartment of certain vessel, and containers arranged in stock on ascending

order of the compartments location, characterized into a unidirectional scheduling problem. The

authors show that the problem can be decomposed: given the jobs allocation to cranes, the jobs

sequencing will minimize the makespan. Thus, there will always be an optimal schedule among

32

the unidirectional sequences. They also prove the complexity of the problem when 𝑚 ≥ 2 and

develop a simulated annealing to solve larger instances.

Motivated by Kim and Park (2004), Lee et al. (2008) and Chung and Choy (2012) present a

MIP model with precedence index variables and propose a genetic algorithm heuristic for the

quay cranes scheduling problem with non-interference constraints. As in Kim and Park (2004),

their models sequence only the loading of one ship, such that each quay crane must work on a

single partition of the vessel until fulfill it. Lee et al. (2008) also prove the NP-hardness of the

problem.

Bierwirth and Meisel (2009) present a revised optimization model for the 𝑃𝑚|𝑖𝑡𝑓, 𝑝𝑟𝑒𝑐|𝐶𝑚𝑎𝑥

problem and propose a heuristic in which a B&B is applied to exhaustively search the space

of unidirectional schedules. This algorithm considers the non-interference constraints. The

assignments of jobs to machines are generated through the B&B search tree and allow the

unidirectional movement of cranes. A task sequence is determined by a disjunctive graph model

for each crane such that an unidirectional schedule is given. The B&B of Bierwirth and Meisel

(2009) does not find the tighter lower bounds but it optimally solves all instances or finds the

best known solution quality. Their procedure allows to enumerate good schedules very fast.

Ng (2005) formulates the 𝑃𝑚|𝑖𝑡𝑓, 𝑟𝑗 |
∑︀

𝐶𝑗 problem as an integer program with time index

variables. A heuristic of two phases is proposed: firstly, the problem of 𝑚 yard cranes is

decomposed into 𝑚 single machine problems, by partitioning the covered area of the cranes.

Then a dynamic programming approach is used to determine an effective partition where a

greedy heuristic is proposed to solve the yard cranes scheduling problem. The second phase

reassigns the jobs to improve the schedule obtained on the first phase. The computational

results show that the total completion time found by the heuristic is on average 7.3% above the

lower bound developed to evaluate its performance.

Li et al. (2009) are the first to consider the safety distance between yard cranes, the simultaneous

container storage/retrieval, and non-interference constraints, which was already addressed in

previous studies. They develop a MIP model with few integer variables, due to the use of

decision variables with only two indexes. They address three optimization criteria, develop

heuristics and a rolling-horizon algorithm.

33

3.1.5 Synthesis of the literature reviews

The addressed problem of this dissertation is defined by two modeling paradigms: paradigm 𝑃1,

defined by two unrelated parallel machine problems; and paradigm 𝑃2, represented by a mul-

tiprocessor problem with two identical machines. These problems consider the non-interference

constraints and aim to minimize the total weighted completion time. As presented on this chap-

ter, SPT rule can solve some problems with minimization of completion time, and its weighted

version can be solved by WSPT rule. However these methods can not optimally solve our

problems.

Furthermore, most researches on parallel machine problems with minimization of
∑︀

𝑤𝑗𝐶𝑗 fo-

cus on identical machines (Li and Yang, 2009). This literature review shows that 89% of the

addressed works on non-interference constraints consider the identical parallel machines. More-

over, according to Bierwirth and Meisel (2009) and Bierwirth and Meisel (2010), makespan is the

most common optimization criterion on cranes scheduling problems. As observed in the litera-

ture review, 78% of the adressed studies on non-interference constraints consider the makespan,

fully or partially, as the optimization criterion. As example of Kim and Park (2004), Bierwirth

and Meisel (2009) and Xie et al. (2014).

Our research did not show works that address exactly the same crane scheduling problem sub-

jected to non-interference constraints, but there are researches that address problems with some

similarity. Few studies consider the crane scheduling problem for steel coils warehouses, such as

Zäpfel and Wasner (2006), Tang et al. (2014) and Xie et al. (2014), and most of them deal with

single crane scheduling. Differently than discussed in this dissertation, these works consider the

row and level known of each coil and the presence of shuffling operations. Our dissertation does

not consider shuffling because the coils level information is unknown in the proposed scenario.

Moreover, these three works do not consider that the trucks have defined coils demands and

must be processed without preemption. The preemption feature is considered when, in quay

cranes scheduling problems, trucks are assumed to be holds of vessels. It is also assumed in yard

cranes problems, because every truck can only carry one container at a time.

Xie et al. (2014) study multiple cranes subject to non-interference on warehouse environments,

but most of the researches on this constraints are into port terminal environment. Studies about

34

quay cranes scheduling problems usually regard the interference into holds of ships, as example

of Zhu and Lim (2006), Lee et al. (2008) and Bierwirth and Meisel (2009). Generally, they do

not consider interference on storage field, nor the area bounded by the rows of hold’s products,

as addressed in 𝑀𝑃1 problem of the parallel machine paradigm. On the other hand, Kim and

Park (2004) treat the non interference by considering sets of tasks that can not be processed

simultaneously.

The literature review also points out that these studies do not analyse the impact of different

modeling configurations, nor the influence of products arrangement on the problems perfor-

mance. The studied problems on port and warehouse environments do not consider scheduling

of the combination of products, nor their vehicles, as addressed by 𝑀𝑃2 and 𝑀𝑈𝐿𝑇𝐼 problems.

They generally only consider the holds or products scheduling.

According to Bierwirth and Meisel (2009) and Bierwirth and Meisel (2010), there are few studies

considering the safety distance of cranes displacement. The crane attributes, such as travel speed

and availability are also neglected. This project considers the safety distance between cranes

and the travel time of the cranes is summed to the retrieval time of each coil. This can be

assumed as the trucks are loaded in a position that depends on the crane and each travel time

depends on the coils location (further explanation is on Chapter 4).

Kim and Park (2004), Bierwirth and Meisel (2009) and Chung and Choy (2012), for example,

consider travel time separetly of the processing time, because the loading holds are not in a

established position and the crane must move to each hold position to fulfill it. Lee et al. (2008)

only consider the holds processing time.

The problems treated by the analysed literature are summarized in Table 3.1, as well as the

related techniques to solve them. There are, in average, two papers regarding B&B, genetic

algorithm, greedy heuristics, simulated annealing or developed their own heuristics.

35

Table 3.1: Problems and techniques covered by the analyzed articles

Work Problem Technique

Belouadah et al. (1992) 1|𝑟𝑗 |
∑︀

𝑤𝑗𝐶𝑗 B&B
Belouadah and Potts (1994) 𝑃 ||

∑︀
𝑤𝑗𝐶𝑗 B&B

Skutella and Woeginger (1999) 𝑃 ||
∑︀

𝑤𝑗𝐶𝑗 PTAS
Afrati et al. (1999) 1/𝑃/𝑅𝑚|𝑟𝑗 |

∑︀
𝑤𝑗𝐶𝑗 PTAS

Lee and Cai (1999) 𝑃2|nonfix𝑗 |
∑︀

𝑤𝑗𝐶𝑗 dynamic programming

𝑃2|nonfix𝑗 |𝐿𝑚𝑎𝑥 and heuristic

Yalaoui and Chu (2002) 𝑃𝑚||
∑︀

𝑇𝑗 B&B
Kim and Park (2004) 𝑃𝑚|𝑖𝑡𝑓 |𝐶𝑚𝑎𝑥 +

∑︀
𝐶𝑗 B&B and GRASP

Ng (2005) 𝑃𝑚|𝑖𝑡𝑓, 𝑟𝑗 |
∑︀

𝐶𝑗 heuristic based in dynamic pro-
gramming and greedy heuristic

Zhu and Lim (2006) 𝑃2|𝑖𝑡𝑓 |𝐶𝑚𝑎𝑥 B&B and simulated annealing
Zäpfel and Wasner (2006) 1||𝐶𝑚𝑎𝑥 heuristic based on local search

Lim et al. (2007) 𝑃𝑚|𝑖𝑡𝑓 |𝐶𝑚𝑎𝑥 simulated annealing
Shim and Kim (2007) 𝑃𝑚||

∑︀
𝑇𝑗 B&B

Nessah et al. (2007) 𝑃𝑚|𝑠𝑑𝑠,𝑟𝑗 |
∑︀

𝐶𝑗 B&B
Rocha et al. (2008) 𝑅𝑚|𝑠𝑑𝑠|𝐶𝑚𝑎𝑥 +

∑︀
𝑤𝑗𝑇𝑗 B&B

Lee et al. (2008) 𝑃𝑚|𝑖𝑡𝑓 |𝐶𝑚𝑎𝑥 genetic algorithm
Bierwirth and Meisel (2009) 𝑃𝑚|𝑖𝑡𝑓, 𝑝𝑟𝑒𝑐|𝐶𝑚𝑎𝑥 heuristic with B&B

Li et al. (2009) 1/𝑃𝑚|𝑖𝑡𝑓, 𝑑𝑗 |
∑︀

𝐸𝑚 +
∑︀

𝐿𝑚 rolling-horizon algorithm
and heuristics

de Paula et al. (2010) 𝑅𝑚|𝑠𝑑𝑠, 𝑑𝑗 |
∑︀

𝑤𝑗𝑇𝑗 relax-and-cut algorithm
Chung and Choy (2012) 𝑃𝑚|𝑖𝑡𝑓, 𝑟𝑚|𝐶𝑚𝑎𝑥 +

∑︀
𝐶𝑚 genetic algorithm

Tang et al. (2014) 1||𝐶𝑚𝑎𝑥 dynamic programming
and heuristics

Xie et al. (2014) 𝑅𝑚|𝑖𝑡𝑓 |𝐶𝑚𝑎𝑥 greedy heuristic

36

3.1.6 Evaluation of the computational complexity hierarchy

To assess the complexity of the addressed paradigms it is considered the complexity hierarchy

presented by Lenstra et al. (1977) and Pinedo (2008). In such hierarchy, a problem 𝑃1 may

be reduced to 𝑃2 if, for any instance of 𝑃1, a instance of 𝑃2 can be constructed in limited

polynomial time, such that solving the instance of 𝑃2 will solve the instance of 𝑃1. Thus, a

procedure for a scheduling problem 𝑃1 can be applied to 𝑃2 if this is a special case of 𝑃2.

Similarly, if 𝑃1 is NP-hard then 𝑃2 will also be NP-hard, but the reverse is not true. This

relationship can be denoted by:

𝑃1 ∝ 𝑃2

Lenstra et al. (1977), Graham et al. (1979) and Pinedo (2008) show the relationship between

different scheduling problems given the change in the elements of the problem classification.

Figures 3.1 𝑎, 𝑏 and 𝑐 show the elementary reductions between deterministic scheduling problems

and indicate the consequences of the development of a new polynomial algorithm or proof of

NP-hardness.

Defining the problem’s complexity can justify the use of enumerative and heuristic methods.

The yard cranes and quay cranes scheduling problems are NP-hard, according to, respectively,

Ng (2005) and Lee et al. (2008). Ng (2005) further states that even if the problem is partitioned

into 𝑚 operational areas, in which each of the 𝑚 machines is responsible for one of them, then

each sub-problem is a NP-hard problem.

From the foregoing, this dissertation shows the complexity of the addressed paradigms.

I. Parallel machines paradigm

The problems 𝑃2||𝐶𝑚𝑎𝑥, (Graham et al., 1979) and (Pinedo, 2008), and 𝑃2||
∑︀

𝑤𝑗𝐶𝑗 , (Graham

et al., 1979) are NP-hard. Zhu and Lim (2006) show that the 𝑃2|𝑖𝑡𝑓 |𝐶𝑚𝑎𝑥 problem is strongly

NP-hard, and Lim et al. (2007) prove the NP-hardness to problems of the same type but with

37

Figure 3.1: Complexity hierarchy of the fields 𝛼, 𝛽 and 𝛾, respectively

(𝑎)

(𝑏)

(𝑐)
Pinedo (2008), p.p 27.

𝑚 ≥ 2 machines.

Given the addressed problem, 𝑅2|𝑖𝑡𝑓 |
∑︀

𝑤𝑗𝐶𝑗 , a special case can be derived by considering the

same job processing time on each machine and the makespan as the optimization criterion.

Thus, as the special case is strongly NP-hard, the 𝑅2|𝑖𝑡𝑓 | 𝑠𝑢𝑚𝑤𝑗𝐶𝑗 problem is also strongly

NP-hard.

This can be verified by the following relation:

𝑃2|𝑖𝑡𝑓 |𝐶𝑚𝑎𝑥 ∝ 𝑃2|𝑖𝑡𝑓 |
∑︁

𝑤𝑗𝐶𝑗 ∝ 𝑅2|𝑖𝑡𝑓 |
∑︁

𝑤𝑗𝐶𝑗

II. Multiprocessors paradigm

According to Drozdowski (1996), the problem 𝑃𝑚|nonfix𝑗 , 𝑝𝑗 = 1|𝐶𝑚𝑎𝑥 is strongly NP-hard. Lee

and Cai (1999) show that the problems 𝑃2|nonfix𝑗 |
∑︀

𝐶𝐽 , 𝑃2|nonfix𝑗 |
∑︀

𝑤𝑗𝐶𝑗 and 𝑃2|nonfix𝑗 |𝐿𝑚𝑎𝑥

38

are also strongly NP-hard, although 𝑃2|nonfix𝑗 , 𝑝𝑗 = 𝑝|
∑︀

𝑤𝑗𝐶𝑗 can be solved in polynomial

time.

The following relationship exists:

𝑃2|nonfix𝑗 |
∑︁

𝑤𝑗𝐶𝑗 ∝ 𝑃2|nonfix𝑗 ,𝑖𝑡𝑓 |
∑︁

𝑤𝑗𝐶𝑗

Thus, given the multiprocessor approach studied in this dissertation, 𝑃2|nonfix𝑗 , 𝑖𝑡𝑓 |
∑︀

𝑤𝑗𝐶𝑗 ,

one can consider the special case where the cranes can move freely in the shed. In this case,

there is no interference and the problem is reduced to 𝑃2|nonfix𝑗 |
∑︀

𝑤𝑗𝐶𝑗 . As this problem is

strongly NP-hard, the one subject to non-interference constraints will also be.

3.2 Genetic algorithm

As the two adressed parallel machine problems are strongly NP-hard, an effort should be taken

to solve the real size instances. According to that, this work addresses the genetic algorithm as

the heuristic method to solve the problems. Genetic algorithm (GA) is an iterative population-

based search method that leads to high search diversification, due to the use of a population of

candidate solutions. Because of that, and because of the ability of the GA to allow worsening

search steps to escape from local optimum, this method can well adapt to our problems, once it

can find the best scheduling of trucks by the evolution of the population of candidate solutions

through the promising regions. In this way, a good scheduling of trucks has higher survival

probability and can generate offsprings with good genes in order to find the best configuration

of trucks sequence.

We acknowledge that there are many other heuristics which could find best results or present

better representation of the parallel machine problems with non-interference constraints than

genetic algorithm. But at this work we have decided to carry only the genetic algorithm perfor-

mance due to a time restriction.

Genetic algorithms belong to the class of evolutionary algorithms (EAs). These EAs provide a

direct interaction with a population of candidate solutions. Evolutionary algorithms are a large

39

and diverse class of algorithms based on the principles of natural evolution models of biological

species. The principle of evolution is to find, through the steps of recombination, selection and

mutation, the best species to generate optimal results.

An evolutionary algorithm basically starts with a set of candidate solutions (the initial popula-

tion) and then performs a serie of three genetic operators: selection, mutation and recombination.

In each EA’s iteration, these operators are used to replace the current population by a new set

of candidate solutions. The new population of each iteration is called generation.

EAs are a class of metaheuristic algorithms, which are most commonly used to solve NP-hard

problems because they present a good performance (Gaiu, 2013). Within this class, the genetic

algorithm is chosen to solve the analysed problem because it has been the most prominent type

of EA for combinatorial problems (Bäck and Schütz, 1996) and (Hoos and Stützle, 2004). The

GA has also been commonly applied to solve optimization problems in the field of industrial

engineering (Gen and Cheng, 2000).

The GA works in the same way: it starts with a random initial population and then the three

operators are performed: selection, crossover and mutation. Each candidate solution is called

chromosome, and each population of chromosomes is called population. A simple GA presented

by Mitchell (1998) works as follows:

Algorithm 1 General genetic algorithm

1: Randomly generate a population of 𝜇 chromosomes of 𝑙 bit
2: Calculate the fitness 𝑓(𝜔) of each chromosome 𝜔 of the population.
3: Repeat the following steps until 𝜇 offspring have been created:

• Select a pair of parent chromosomes from the current population, the selection proba-
bility is an increasing function of fitness. Selection is done “with replacement”, meaning
that the same chromosome can be selected more than once.

• With probability 𝑝𝑐 (“crossover probability”), cross over the pair at a randomly chosen
point to form two offspring. If no crossover takes place, form two offspring that are
exact copies of their respective parents.

• Mutate the two offspring at each locus with probability 𝑝𝑚 (“mutation probability”)
and place the resulting chromosomes in the new population.

4: Replace the current population with the new population. If 𝜇 is odd, one new population
member can be discarded at random.

5: Go to step 2.

The selection step is responsible to select the fittest chromosomes in the current population for

the reproduction. At the reproduction step, the parents (a pair of chromosomes) are selected to

crossover. The crossover randomly chooses a locus and exchanges the subsequences to create

40

the offspring. The offspring generated can suffer mutation at some position according to some

small probability.

Consider the example in which the chromosomes are jobs assignments to machines. Consider

they are represented by a vector where the positions are the jobs and each position value corre-

sponds to the job’s machine assignment. Assume as well that the chromosomes are subjected to

one-point crossover and mutation randomly reverses its bit values. For a problem with 𝑀 = 4

machines and 𝐽 = 7 jobs, we can have the chromosome 1312434, where job 1 is assigned to ma-

chine 1, job 2 to machine 3, and so on. If that chromosome is chosen to crossover the 4221134

chromosome at locus 3, for example, then the offspring generated are 1321134 and 4212434. If

the last offspring suffers mutation at its second position, then it can turn into 4312434.

According to Gen and Cheng (2000), genetic algorithms work on two types of spaces alterna-

tively: genotype space (coding space), and phenotype space (solution space). Genetic operators,

such as crossover and mutation, work on genotype space, and evaluation and selection work on

phenotype space. The GA provides a good balance between exploration and exploitation of the

search space (Gen and Cheng, 2000). The genetic operators are responsible for exploring new

regions of the space but can not guarantee the generation of improved offspring, because they

perform a random search. On the other hand, the selection exploits the available information

by directing the genetic search towards promising regions in the search space.

References about genetic algorithms and stochastic local search methods include the books

of Michalewicz (1996), Mitchell (1998), Gen and Cheng (2000) and Hoos and Stützle (2004).

Examples of genetic algorithms applied to solve parallel machine problems can be obtained on

Glass et al. (1994), Min and Cheng (1999), Lee et al. (2008) and Chung and Choy (2012).

Glass et al. (1994) compare different local search methods for the 𝑅𝑚||𝐶𝑚𝑎𝑥 problems, such

as simulated annealing, tabu search and genetic algorithm. Their results show that genetic

algorithms, implemented with genetic descent algorithm, are as good as simulated annealing and

tabu search. Min and Cheng (1999) develop a genetic algorithm for the identical parallel machine

problem with makespan minimization. Their GA configuration represents the assignment of

jobs to machines and its solution’s quality has advantage over the LPT rule and the simulated

annealing method.

41

Lee et al. (2008) develop an efficient genetic algorithm in the case of quay crane scheduling with

non-interference constraints and makespan minimization. They consider each chromosome as

a sequence of jobs, which are scheduled on the machines in the same order. The assignment

strategy of jobs to cranes considers the interference that it may cause. It also considers the

earliest available crane and its position before processing the job. The authors adopt the order

crossover, which ensures a valid sequence of jobs, and a mutation process that exchanges the

place of two jobs in the sequence. The order crossover has the following major steps:

Step 1: randomly select a substring from one of the parents;

Step 2: copy the substring in the offspring at the same position that it is in the parent;

Step 3: copy the symbols of the second parent from left to right, excluding the symbols that are

already in the substring.

These steps can be summarized in Figure 3.2. For other crossover methods please consult Gen

and Cheng (2000).

Lee et al. (2008), p.p 132.

Figure 3.2: Representation of the order crossover method

Chung and Choy (2012) present a modified genetic algorithm for the 𝑃𝑚|𝑝𝑟𝑒𝑐,𝑟𝑗 ,𝑝𝑗 |𝑤1𝐶𝑚𝑎𝑥 +

𝑤2
∑︀

𝐶𝑚 problem, where 𝐶𝑚 is the completion time of the quay crane 𝑚; and 𝑤1 and 𝑤2

are, respectively, the weight of the makespan and the weight of the sum of cranes completion

42

time. Their chromosomes are represented by two segments: the first one is the jobs processing

sequence, and the second one is the machine assignment. They are validated and corrected after

each creation, in order to not violate the precedence and the non-interference constraints. Their

results are slightly better than the ones found by ancient methods, but their proposed model is

much faster.

3.2.1 Parameters setting

In order to find good solutions, the genetic algorithm must be set according to the particular

problem. The design of an algorithm is an optimization problem itself, where parameters design

strongly affect its performance. Defining appropriate parameters is one of the main challenges

in evolutionary computing.

The parameters can be classified as representation, which defines the configuration of the can-

didate solution in a binary or some finite alphabet encoded chromosome; evaluation function of

the chromosome, or fitness, which is related to the objective function. The fitness can also be

a function of an associated penalty that can change according to the best feasible solution, the

actual candidate solution and its violated constraints. Michalewicz (1995) reviews and tests six

methods for handling constraints by genetic algorithms. According to the author, the process

of evaluating an individual in a population may be quite complex, especially in the presence of

feasible and infeasible solutions of a constrained problem.

Parent selection strategy is responsible for selecting the chromosomes to reproduction according

to their fitness. Population size is the amount of chromosomes at each generation, which is

usually empirically defined. According to Michalewicz (1996), populations too small may lead to

quick convergence and too large may waste computational resources. Population size influences

the population diversity and the selective pressure, because of that, the amount of offspring

(𝜆) should be greater than the 𝜇 available parents to allow diversity (Gaiu, 2013). Eiben et al.

(2007) suggest that putting effort into adapting the population size could be more effective than

trying to adjust mutation and crossover operators.

However, according to Eiben et al. (2007), most studies on adaptive or self-adaptive EA’s pa-

rameters concerns mutation and crossover operators. Mutation operators introduce modification

43

into the population by inverting bits of the chromosome with probability 𝑝𝑚. There has been

significant efforts in finding static optimal values for mutation rates (Eiben et al., 1999). But

Bäck (1992) shows that the mutation rate should not be constant and should decrease over time

during the search. A comparison between a constant setting of mutation rate, a deterministic

and a self-adaptation control schemes can be obtained in Bäck and Schütz (1996).

Giving a probability 𝑝𝑐 the crossover operator selects chromosomes that undergoes crossover

following a certain mechanism. According to Eiben et al. (1999), crossover rate should not be

too low and the value is rarely below 0.6. Crossover mechanism is the system responsible for

reproduction, which includes, for example, the decision of the number of parents, the number

and location of crossover points or the type of crossover. And finally, the replacement operator

decides which chromosomes will belong to the population of the next generation in order to

ensure a certain diversity of population.

These parameters are subdivided into qualitative and quantitative parameters. Qualitative ones

are symbolic and define the main structure of an evolutionary algorithm, for example, crossover

mechanism and parent selection structure. Quantitative parameters define a specific variant of

this EA by setting parameter values, as for example mutation and crossover rates.

There are two approaches of setting parameter values: parameter tuning and parameter control.

Parameter tuning is a common practice which defines the parameters values before the run of

the algorithm and keeps them fixated while running. Their values are determined by iteratively

generating and testing parameter vectors while seeking the one with high quality. This quality

is called utility and is based on the performance and robustness of the EA, using the best

parameter values. The insights about the EA with “optimal” parameters are obtained from the

data collected while traversing the search space of parameter values.

In parameter tuning, the parameter values can be obtained by competitive testing, which aims

to obtain an algorithm setup that meets some success criterion, as discussed by Eiben and

Smit (2012). Or it can be obtained by scientific testing, which aims to gain insights into an

EA through tuning algorithms and to provide superior parameter values. Tuning methods can

facilitate well-funded experimental comparisons and algorithm analysis, as example of Meta-

GA, REVAC, SPOT and F-Race. An extensive research on parameter tuning for evolutionary

algorithms is given by Eiben and Smit (2011) and Eiben and Smit (2012). Gaiu (2013) evaluates

44

the performance of tuning algorithms (REVAC, SPOT and F-Race) for the VRP (vehicle routing

problem) solved by genetic algorithm and by multiple ant colony systems.

SPOT is the method selected to configurate the parameter vectors of the genetic algorithms ad-

dressed on this project, because of its high quality results. According to Eiben and Smit (2011)

and Gaiu (2013), SPOT is one of the most efficient methods, as it is able to determine good

parameter values while offering detailed information. Among other advantages, this method

demands a low computational cost, requires the specification of few parameters and has an ex-

tensive documentation available. Bartz-Beielstein (2010) provides an explanation about SPOT,

which is synthesized on Appendix A.

According to Eiben and Smit (2011), although the most promising developments on scientific

testing happened after middle 2000s, parameter values are mostly conducted manually. On this

context, the parameters values are not necessarily optimal, trying all the different combinations

by hand is time-consuming and practically impossible. However, using tuning algorithms is

highly rewarding, the efforts are moderate, the gains in performance can be very significant and

it can obtain much information about parameter values and algorithm performance.

But, fixated parameters values are not in consonance with the dynamic and adaptative nature

of genetic algorithms, the parameters should be modified during the run of the algorithm to lead

to better performance. Eiben et al. (1999) and Eiben et al. (2007) demonstrate that different

parameter values might be optimal in different stages of the evolutionary process.

Parameter control defines the change of parameters that influences the evolutionary process

during the run. The definition of parameter control is even more difficult than defining static

parameters, because they depend on the objective function and the used representation. Much

research into this field has been done during the last decade (Eiben and Smit, 2011) and show

that parameter control can speed up the convergence, improve robustness of evolutionary opti-

mizations and avoiding suboptimal algorithm performance resulting from suboptimal parameter

values set by the user.

The parameters values can be changed by a deterministic method if they are altered by a de-

terministic rule without considering the actual process; or by a feedback adaptation if some

information can be gathered from the evolutionary process, such as population diversity mea-

45

sures, relative improvements, absolute solution quality, etc. These informations are used to

determine the direction and the magnitude of the change in the strategy parameter, and to

decide if the new parameters values propagate throughout the population.

Finally, the parameter values can be determined by self-adaptation, which is quite recent in

the EA history (Eiben et al., 2007). In this principle the strategy parameters evolve with the

evolutionary process. It exploits the indirect link between favorable strategy parameters and

objective function values, such that the convergence velocity is optimized and the stochastic

local optimization qualities of the algorithm are emphasized.

The behavior of evolutionary algorithms control parameters is complex. Examples on this field

includes the works of Bäck (1992), Michalewicz (1995), Bäck and Schütz (1996), Lis and Lis

(1996), Thierens (2002).

Bäck (1992) studies the convergence rates and the success probabilities for mutation-selection

schemes, in which mutation is the only search operator in the GA. He addresses two types

of selection: (𝜇, 𝜆)−selection, in which 𝜇 best individuals are selected from the 𝜆 offspring to

become parents in the next generation; or (𝜇 + 𝜆)−selection (elitist selection) in which 𝜇 best

individuals are selected from the set of 𝜇 parents and 𝜆 offspring. The study shows that the

elitist selection is advantageous for convergence velocity but disadvantageous when convergence

reliability and self-adaptation of mutation rates are desired. It is observed that if the number

of offspring increases, the expected progress increases. The selection schemes do not present

difference for small mutation rates, but their progress decreases for growing rates. The author

also gives a self-adaptation mechanims for controlling mutation in a bit-string GA.

Michalewicz (1995) reviews six methods for handling constraints by genetic algorithms for nu-

merical optimization problems. These methods assume different ways to compute the penalties

of the fitness function. The author tests the methods with five selected problems taking into

account the type of the objective function, the number of variables and constraints, the types

and the number of active constraints at the optimum, the ratio between the sizes of the feasible

search space and the whole search space. Their strengths and weaknesses are then discussed.

Bäck and Schütz (1996) investigate the mutation rate in genetic algorithms using binary strings

by comparing a constant mutation setting, a deterministic time-dependent and a self-adaptation

46

mutation rate. The strengths of the proposed deterministic schedule and the self-adaptation

method are demonstrated by a comparison of their performance on difficult combinatorial opti-

mization problems. Both methods are shown to perform significantly better than the standard

genetic algorithm, but the deterministic schedule yields the best average optimal objective func-

tion value and the lower number of runs to find the best optimum.

Lis and Lis (1996) propose a new dynamic method for parallel processing of genetic algorithms,

which aims to control the mutation rate, crossover rate and population size during the run.

The population is subdivided and evolves independently during some iterations (epoch). Their

results are assemble by the algorithm and then re-divided. For each parameter a few possible

probability values are defined in advance and three of them are chosen at the beginning of each

epoch. Each subdivision executes the algorithm with a set of parameters that assumes only

one of these three values. After each epoch the best results are evaluated: if it is given by the

highest parameter, the probability of each subdivision is shifted up one level, other wise, it is

shifted toward lower values.

Thierens (2002) evaluates two adaptive mutation rate control schemes in genetic algorithms:

constant gain and declining adaptive rate control. The author shows their feasibility in compar-

ison with a fixed mutation rate, a self-adaptive and a deterministic mutation rate. The schemes

performance are evaluated into experiments with a counting ones problem and a zero/one mul-

tiple knapsack problem. The constant gain schemes performance is comparable to self-adaptive

mutation, and has number of generations less sensitive to the initial mutation probability than

fixed rate. The dynamic and declining adaptive schemes have comparable performance, they

can match the optimal rate even when started from high initial 𝑝𝑚 values.

47

Chapter 4

Mathematical formulations

This chapter presents the mathematical models subject to each paradigm of non-interference

constraints. Two unrelated parallel machine problems are proposed for the first paradigm, 𝑀𝑃1

and 𝑀𝑃2. And one is proposed for the second paradigm which is related to multiprocessors

problem. The 𝑀𝑃1 problem is formulated with precedence index variables and with time index

variables, and is called 𝑀𝑃1𝑝 and 𝑀𝑃1𝑡 respectively. This relation is contextualized on Figure

4.1.

Figure 4.1: Machines configuration definition

All the presented models can well represent the problem. They are constructed with the same

parameters, which are contextualized below. This chapter also presents the set of instances and

the computational results of the formulations for different coil arrangements in the shed.

4.1 Notation

Before presenting the formulations, it is important to remember that the coils are the items,

trucks are the jobs and cranes are the machines. Each coil is unique, i.e. there are not two similar

coils in the shed. Without loss of generality, it is assumed that cranes and rows are indexed

sequentially from left to right in increasing order. Each machine is considered to be always

available to process jobs over a period of sequencing and they are not subject to disruptions,

such as breakdowns, maintenance, among others. We assume that each job is available at

time zero and must be completely processed without preemption. The cranes displacement are

subject to interference because they move on the same trail. The processing time of each coil is

composed by its retrieval time summed to the crane’s displacement time between the truck and

the row of that coil, and vice versa.

Given a set of items ℬ, that must be shipped by the set of machines ℳ = {1,2}. 𝑄𝑗 ⊆ ℬ, is

the set of items that must be loaded by these machines on job 𝑗 ∈ 𝒥 , where 𝒥 is the set of

available trucks. The items 𝑖 ∈ ℬ have machine dependent processing times 𝑝𝑖𝑔 = 𝑝0 +𝑢𝑔𝑖 , where

𝑝0 represents the retrieval time of the coils, which is the same for all of them. 𝑔 ∈ {ℳ
⋃︀
𝜃}

indicates the designated position of the truck processed by the machine 𝑚 ∈ ℳ or by both of

them (𝜃).

Before explaining 𝑢𝑔𝑖 , we assume that each item 𝑖 has its row position in the shed given by 𝑙𝑖

and that the trucks have to be positioned in 𝑙𝑔 if it is processed by machine 𝑔 = 𝑚 or by both of

them (𝑔 = 𝜃). Then 𝑢𝑔𝑖 is given by the idled travel time from position 𝑙𝑔 to position 𝑙𝑖 summed to

the loaded travel time from position 𝑙𝑖 to 𝑙𝑔. The processing time of each job 𝑗 ∈ 𝒥 can be given

by 𝑝𝑗𝑔 =
∑︀

𝑖∈𝑄𝑗
𝑝𝑖𝑔, and it is valid when considering no idle time between the processing of coils

from the same truck. It is important to point out that 𝑔 = 𝜃 is related to the multiprocessors

paradigm, and it is not considered in the parallel machines configuration, where 𝑔 ∈ {ℳ
⋃︀
𝜃}

is substituted by 𝑚 ∈ ℳ to facilitate the undestanding.

To each job 𝑗 is associated a 𝑟𝑚𝑖𝑛
𝑗 = 𝑚𝑖𝑛𝑖∈𝑄𝑗 (𝑙𝑖) and a 𝑟𝑚𝑎𝑥

𝑗 = 𝑚𝑎𝑥𝑖∈𝑄𝑗 (𝑙𝑖) which represents,

respectively, the minimum and the maximum row of one of the coils from truck 𝑗. The parameter

49

𝑤𝑗 is the weight, or priority factor, of a job 𝑗 and ∆ is the safety operational distance of the

cranes. 𝐺 is a very large integer given by the time horizon 𝐻, where 𝐻 =
∑︀

𝑖∈ℬ 𝑚𝑎𝑥𝑚∈ℳ(𝑝𝑖𝑚)

and �̄� is a large integer given by the amount of rows in the shed plus one. The problem is to

find completion times 𝐶𝑗 for all jobs 𝑗 ∈ 𝒥 with respect to the constraints such that the total

weighted completion time is minimized.

4.2 Parallel machine paradigm

Parallel machine paradigm considers that each truck is processed by only one of the cranes,

independently of the amount of coils. This paradigm is represented by two problems: 𝑀𝑃1 and

𝑀𝑃2 configurations, which are subject to non-interference constraints.

4.2.1 MP1 configuration

The unrelated parallel machines configuration 𝑀𝑃1 disregards the removal sequence of each

coil assigned to a truck, and bounds an area in the storage shed for the loading. I.e., when

processing a job 𝑗, the processing of other trucks 𝑓 ∈ 𝒥 is prevented in an area bounded by the

rows of the demanded coils of job 𝑗. This problem is formulated with precedence index variables

(𝑀𝑃1𝑝 configuration) and with time index variables (𝑀𝑃1𝑡 configuration) in order to evaluate

the best type of mathematical formulation.

Formulation with precedence index variables

In the first formulation, we consider binary linear ordering variables, such as in the works of

Rocha et al. (2008) and Lee et al. (2008). The variables 𝑠𝑓𝑗 are equal to 1 when job 𝑓 precedes

job 𝑗, and equal to 0 otherwise; and 𝑦𝑗𝑚 = 1 if crane 𝑚 processes job 𝑗, and equal to 0 otherwise.

The start time of the truck 𝑗 is computed by 𝑡𝑗 ≥ 0. The model is written as follow.

50

𝑀𝑖𝑛
∑︁
𝑗∈𝒥

𝑤𝑗 * (𝑡𝑗 +
∑︁
𝑚∈ℳ

𝑝𝑗𝑚𝑦𝑗𝑚) (4.1)

∑︁
𝑚∈ℳ

𝑦𝑗𝑚 = 1, ∀𝑗 ∈ 𝒥 (4.2)

𝑡𝑓 + 𝑝𝑓𝑚 ≤ 𝑡𝑗 + 𝐺(1 − 𝑦𝑓𝑚) + 𝐺(1 − 𝑦𝑗𝑚) + 𝐺(1 − 𝑠𝑓𝑗),

∀𝑓 ∈ 𝒥 , ∀𝑗 ∈ 𝒥 | 𝑓 ̸= 𝑗, ∀𝑚 ∈ ℳ (4.3)

𝑡𝑗 + 𝑝𝑗𝑚 ≤ 𝑡𝑓 + 𝐺(1 − 𝑦𝑓𝑚) + 𝐺(1 − 𝑦𝑗𝑚) + 𝐺𝑠𝑓𝑗 ,

∀𝑓 ∈ 𝒥 , ∀𝑗 ∈ 𝒥 | 𝑓 ̸= 𝑗, ∀𝑚 ∈ ℳ (4.4)

𝑡𝑓 +
∑︁
𝑚∈ℳ

𝑝𝑓𝑚𝑦𝑓𝑚 − 𝑡𝑗 + 𝐺𝑠𝑓𝑗 > 0, ∀𝑓 ∈ 𝒥 , ∀𝑗 ∈ 𝒥 (4.5)

𝑡𝑓 +
∑︁
𝑚∈ℳ

𝑝𝑓𝑚𝑦𝑓𝑚 − 𝑡𝑗 −𝐺(1 − 𝑠𝑓𝑗) ≤ 0, ∀𝑓 ∈ 𝒥 , ∀𝑗 ∈ 𝒥 (4.6)

�̄�(𝑠𝑓𝑗 + 𝑠𝑗𝑓) ≥ 𝑦𝑗𝑚𝑟𝑚𝑎𝑥
𝑗 − 𝑦𝑓𝑚+1(𝑟

𝑚𝑖𝑛
𝑓 − ∆), ∀𝑓 ∈ 𝒥 , ∀𝑗 ∈ 𝒥 | 𝑓 ̸= 𝑗, ∀𝑚 ∈ ℳ (4.7)

𝑦𝑗𝑚 ∈ {0,1}, ∀𝑗 ∈ 𝒥 , ∀𝑚 ∈ ℳ (4.8)

𝑠𝑓𝑗 ∈ {0,1}, ∀𝑓 ∈ 𝒥 , ∀𝑗 ∈ 𝒥 (4.9)

𝑡𝑗 ≥ 0, ∀𝑗 ∈ 𝒥 (4.10)

The objective function is given by (4.1) and should minimize the total weighted completion time

of the jobs. The set of constraints (4.2) states that each truck must be processed by exactly

one machine. Constraints (4.3) and (4.4) compute the start time of each truck 𝑗. The sets of

constraints (4.5) and (4.6) define the values for the precedence variable 𝑠𝑓𝑗 . (4.5) forces 𝑠𝑓𝑗 = 1

when 𝑓 is concluded before 𝑗 starts, independently of the machine where they are being pro-

cessed. But (4.5) does not force 𝑠𝑓𝑗 = 0 when the jobs 𝑓 and 𝑗 are simultaneously processed,

or when 𝑗 precedes 𝑓 . The set of constraints (4.6) is supplementary to (4.5) and forces 𝑠𝑓𝑗 = 0

when precedence does not occur. The set of constraints (4.7) prevents interference between the

cranes. If (𝑠𝑓𝑗 + 𝑠𝑗𝑓) = 0 then the jobs 𝑓 and 𝑗 are processed simultaneously by the machines.

The sets of constraints (4.8) to (4.10) define the domain of the variables.

51

Formulation with time index variables

For the second formulation, we consider time index variables, in which the planning horizon 𝐻

is discretized into several periods, where period 𝑡 starts at time 𝑡 = 0 and ends at time 𝑡 = 𝐻.

We introduce a binary time index variable, 𝑦𝑚𝑗𝑡 which is equal to 1 if truck 𝑗 begins its processing

at time 𝑡 by crane 𝑚, and it is equal to 0 otherwise. Then the same problem can be modeled as:

𝑀𝑖𝑛
∑︁
𝑗∈𝒥

𝑤𝑗𝐶𝑗 (4.11)

∑︁
𝑚∈ℳ

𝐻−𝑝0∑︁
𝑡=0

𝑦𝑚𝑗𝑡 = 1, ∀𝑗 ∈ 𝒥 (4.12)

𝑦𝑚𝑗𝑡 +

𝑚𝑖𝑛(𝑡+𝑝𝑚𝑗 −1,𝐻−𝑝𝑚𝑓)∑︁
𝑧=𝑡

𝑦𝑚𝑓𝑧 ≤ 1, ∀𝑚 ∈ ℳ, ∀𝑡 ∈ ℋ, ∀𝑗 ∈ 𝒥 , ∀𝑓 ∈ 𝒥 | 𝑗 ̸= 𝑓 (4.13)

∑︁
𝑚∈ℳ

𝐻−𝑝0∑︁
𝑡=0

(𝑡 + 𝑝𝑚𝑗)𝑦𝑚𝑗𝑡 − 𝐶𝑗 = 0, ∀𝑗 ∈ 𝒥 (4.14)

𝑦𝑚𝑗𝑡 +

𝑚𝑖𝑛(𝑡+𝑝𝑚𝑗 −1,𝐻−𝑝𝑛𝑓)∑︁
𝑧=𝑚𝑎𝑥(0,𝑡−𝑝𝑛𝑣+1)

𝑦𝑛𝑓𝑧 ≤ 1, ∀𝑗 ∈ 𝒥 ,

∀𝑓 ∈ 𝒥 , ∀𝑡 ∈ {0, . . . ,𝐻 − 𝑝𝑚𝑗 }, ∀𝑚 ∈ ℳ, ∀𝑛 ∈ ℳ | 𝑛 > 𝑚, 𝑟𝑚𝑎𝑥
𝑗 ≥ (𝑟𝑚𝑖𝑛

𝑓 − ∆) (4.15)

𝑦𝑚𝑗𝑡 ∈ {0,1}, ∀𝑗 ∈ 𝒥 , ∀𝑡 ∈ ℋ, ∀𝑚 ∈ ℳ (4.16)

𝐶𝑗 ≥ 0, ∀𝑗 ∈ 𝒥 (4.17)

The objective function is given by (4.11) and should minimize the total weighted completion

time of the jobs. The set of constraints (4.12) ensures that each truck is processed by only one

machine at a period of time. The constraints (4.13) certify that at each time only one truck is

performed by each machine and (4.14) compute the completion time of each truck 𝑗.

The set of constraints (4.15) prevents interference between cranes, Figures 4.2 (𝑎) and (𝑏). Con-

sider that truck 𝑓 has its minimum row leftmost the maximum row of truck 𝑗 (𝑟𝑚𝑎𝑥
𝑗 > 𝑟𝑚𝑖𝑛

𝑓 +∆,

where ∆ is the safety distance). When truck 𝑗 is processed on machine 1, then no truck 𝑓 can be

processed by machine 2 during the operational time of 𝑗 by crane 1. Figure 4.2 (𝑎) shows how

the set of constraints (4.15) prevents the crossing of cranes; and Figure 4.2 (𝑏) shows how such

set of constraints prevents the intercession of the trucks’ areas. The sets of constraints (4.16)

52

(a)

(b)

Figure 4.2: Explanatory example to the constraints (4.15). 𝑟𝑚𝑖𝑛
𝑗 and 𝑟𝑚𝑎𝑥

𝑗 indicate, respectively,
minimum and maximum row of a coil from truck 𝑗.

and (4.17) define the domain of the model variables.

Comparison between the formulations

The evaluation of the two formulations are executed with different set of parameters. The

instances were obtained from the load allocation model of da Silva Neto (2013) who considers

three levels of availability of trucks, which can assume different values for each quantity of

products. The availability are classified as very restrictive (vr), somewhat restrictive (sr), and

not restrictive (nr) availability of trucks. As considered by da Silva Neto (2013), we also consider

that the coils are randomly arranged in the shed.

For each group of instances, 10 replications were generated with different seeds, totaling 150

53

artificial instances. Furthermore, it is considered a safety distance of one row, and 𝑤𝑗 is generated

from the uniform distribution [0, 1]. The average retrieval time of a coil is 4, which was obtained

from the data collected at a distribution center of a steelmaker company. The travel time

between 𝑛 consecutive rows is presented in Table 4.1.

Table 4.1: Ranges of displacement times

range of displacement one way displacement time complete displacement time

between 1 and 19 rows 0.5 minutes 1 minute
between 20 and 39 rows 1.5 minutes 3 minutes
between 40 and 58 rows 2.5 minutes 5 minutes
between 59 and 78 rows 3.5 minutes 7 minutes

Further explanation about the parameters generation are given on Section 4.4. Both mathemat-

ical models were implemented and solved using the CPLEX 12.5 optimization software in the

default configuration, through the AMPL language. The computer used in the tests is an Intel

(R) Xeon (R) CPU X5690 @ 3.47GHz with 24 processors, 132 GB of RAM in Ubuntu Linux

operating system. The runs were terminated after one hour of CPU time.

Small instances were used to evaluate the performance of both models, which must find the

same optimal solution value. To compare the different formulations we look at the number of

test cases unsolved within one hour of CPU time, the average computational time of solved

instances, the number of explored B&B nodes and the gap of optimality of feasible non-optimal

solutions.

Table 4.2 is a compilation of the results of the ordering formulation and the time index for-

mulation. The first column indicates the group of instances, the
∑︀

𝑆* column is the amount

of instances solved optimally; 𝑆* represents the average weighted completion time found in

the optimal cases; 𝑆𝑓 represents the average weighted completion time found in the feasible

non-optimal cases after one hour of CPU time.

𝑆*𝑓 column presents the average solution values found in the optimal cases of the time index

formulation for the instances which give feasible non-optimal solutions for the precedence for-

mulation. For example, for the group of instances nr 30 of the 𝑀𝑃1𝑡, 𝑆
* represents the average

of the solutions found by the time index formulation of the same 9 instances considered at

the 𝑆* column of 𝑀𝑃1𝑝, and 𝑆*𝑓 represents the optimal 𝑀𝑃1𝑡 solution for the same instance

considered in 𝑆𝑓 of 𝑀𝑃1𝑝.

54

CT (s) represents the average computation time; Node is the average amount of B&B nodes

explored by CPLEX and GAP indicates the distance between the current best integer solution

and the best bound found within the time limit.

Table 4.2: Average results of the time index formulation (𝑀𝑃1𝑡) and the precedence index
formulation (𝑀𝑃1𝑝).

∑︀
𝑆*: amount of instances solved optimally; 𝑆*: average weighted com-

pletion time found in the optimal cases; 𝑆𝑓 : average solution values found in the feasible non-
optimal cases after 1h of CPU time; 𝑆*𝑓 : average solution values found in the optimal cases
of the 𝑀𝑃1𝑡 for the instances which give feasible non-optimal solutions for the 𝑀𝑃1𝑝. CT:
average CPU time; Node: average B&B nodes explored by CPLEX; GAP: average optimality
gap.

𝑀𝑃1𝑝 𝑀𝑃1𝑡
Inst. ∑︀

𝑆* 𝑆* 𝑆𝑓 CT (s) Node GAP
∑︀

𝑆* 𝑆* 𝑆*𝑓 𝑆𝑓 CT (s) Node GAP
nr 10 10 42.5 0 0 0.0% 10 42.5 0.0 1 0 0.0%
sr 10 10 47.6 0 0 0.0% 10 47.6 0.0 2 0 0.0%
vr 10 10 49.5 1 0 0.0% 10 49.5 0.0 2 0 0.0%
nr 15 10 71.3 1 743 0.0% 10 71.3 0.0 2 39 0.0%
sr 15 10 85.5 2 5602 0.0% 10 85.5 0.0 3 39 0.0%
vr 15 10 107.3 7 36707 0.0% 10 107.3 0.0 3 109 0.0%
nr 20 10 129.8 1 4066 0.0% 10 129.8 0.0 12 0 0.0%
sr 20 10 114.6 90 384750 0.0% 10 114.6 0.0 15 1 0.0%
vr 20 10 139.6 122 415815 0.0% 10 139.6 0.0 15 0 0.0%
nr 25 9 194.3 254.5 49 1101710 22.4% 10 194.3 254.5 0.0 40 10 0.0%
sr 25 10 161.7 161 773150 0.0% 10 161.7 0.0 33 0 0.0%
vr 25 8 186.2 258.2 32 1835365 21.5% 10 186.2 257.4 0.0 41 4 0.0%
nr 30 9 252.5 345.4 749 3016753 27.6% 10 252.5 345.4 0.0 58 27 0.0%
sr 30 4 250.3 344.8 491 4398141 31.7% 10 250.3 344.1 0.0 174 789 0.0%
vr 30 5 253.3 321.7 428 3376496 32.7% 10 253.3 321.2 0.0 109 860 0.0%

Although the traditional parallel machine problem can be usually better formulated by prece-

dence index variables, the results showed that the parallel machine problem with non-interference

constraints does not present a good performance with this formulation. As expected, in all opti-

mal cases, the solutions of the formulations are exactly the same. The time indexed formulation

demands fewer CPU time and can solve all the small instances within 1 hour of CPU time, while

the ordering indexed approach can not solve some instances with more than 25 coils within the

time limit. Furthermore, the time index formulation explores fewer nodes of Branch & Bound

than the precedence index formulation. Because of that, the 𝑀𝑃1𝑡 is the formulation considered

in the 𝑀𝑃1 problem.

As can be seen, in the set of instances nr 25 there is one instance that is not called optimal and

has a 22.4% GAP. The solution found for this instance is the same in both formulations, but

the CPLEX was not able to prove the optimality for this solution in the first formulation. The

same happens for some other instances where the optimality was not proved after one hour of

run.

55

4.2.2 MP2 configuration

The uniform parallel machines configuration 𝑀𝑃2 considers that each machine shall completely

process a truck. The problem must schedule the processing of trucks and each one of their coils.

A new decision variable is defined as 𝑥𝑒𝑚𝑖𝑡 , which is equal to 1 if coil 𝑖 is assigned to position 𝑒

and starts in 𝑡 by crane 𝑚, otherwise it equals zero. Position data 𝑒 is the available processing

order for each truck.

Min
∑︁
𝑗∈𝒥

𝑤𝑗𝐶𝑗 (4.18)

∑︁
𝑗∈𝒥

𝑞𝑗∑︁
𝑒=1

∑︁
𝑚∈ℳ

𝐻−𝑝𝑚𝑖∑︁
𝑡=0

𝑥𝑒𝑚𝑖𝑡 = 1, ∀𝑖 ∈ ℬ (4.19)

∑︁
𝑚∈ℳ

𝐻−𝑝𝑚𝑖∑︁
𝑡=0

∑︁
𝑖∈𝑄𝑗

𝑥𝑒𝑚𝑖𝑡 = 1, ∀𝑗 ∈ 𝒥 , ∀𝑒 ∈ {1, . . . ,𝑞𝑗} (4.20)

∑︁
𝑒∈ℬ

𝑥𝑒𝑚𝑣𝑡 +
∑︁
𝑗∈𝒥

𝑞𝑗∑︁
𝑒=1

𝑚𝑖𝑛(𝑡+𝑝𝑚𝑣 −1,𝐻−𝑝𝑚𝑖)∑︁
𝑧=𝑡

𝑥𝑒𝑚𝑖𝑧 ≤ 1,

∀𝑚 ∈ ℳ, ∀𝑡 ∈ {0, . . . ,𝐻 − 𝑝𝑚𝑣 }, ∀𝑣 ∈ ℬ, ∀𝑖 ∈ ℬ | 𝑣 ̸= 𝑖 (4.21)

∑︁
𝑚∈ℳ

𝐻−𝑝0∑︁
𝑡=0

𝑦𝑚𝑗𝑡 = 1, ∀𝑗 ∈ 𝒥 (4.22)

𝑦𝑚𝑗𝑡 −
∑︁
𝑖∈𝑄𝑗

𝑥1𝑚𝑖𝑡 = 0, ∀𝑚 ∈ ℳ, ∀𝑗 ∈ 𝒥 , ∀𝑡 ∈ {0, . . . ,𝐻 − 𝑝0} (4.23)

𝑥𝑒𝑚𝑖𝑡 −
∑︁

𝑣∈𝑄𝑗 |𝑖 ̸=𝑣

𝑥𝑒+1𝑚
𝑣𝑚𝑖𝑛(𝑡+𝑝𝑚𝑖 ,𝐻−𝑝𝑚𝑣) ≤ 0, ∀𝑚 ∈ ℳ, ∀𝑗 ∈ 𝒥 ,

∀𝑖 ∈ 𝑄𝑗 , ∀𝑒 ∈ {1, . . . , 𝑞𝑗 − 1}, ∀𝑡 ∈ {0, . . . ,𝐻 − 𝑝𝑚𝑖 } | 𝑞𝑗 ≥ 2 (4.24)

∑︁
𝑒∈ℬ

𝑥𝑒𝑚𝑖𝑡 +
∑︁
𝑗∈𝒥

𝑞𝑗∑︁
𝑒=1

𝑚𝑖𝑛(𝑡+𝑝𝑚𝑖 −1,𝐻−𝑝𝑛𝑣)∑︁
𝑧=𝑚𝑎𝑥(0,𝑡−𝑝𝑛𝑣+1)

𝑥𝑒𝑛𝑣𝑧 ≤ 1,

∀𝑡 ∈ {0, . . . ,𝐻 − 𝑝𝑚𝑖 }, ∀𝑣 ∈ ℬ, ∀𝑖 ∈ ℬ, ∀𝑚 ∈ ℳ, ∀𝑛 ∈ ℳ | 𝑛 > 𝑚, 𝑙𝑖 ≥ 𝑙𝑣 − ∆ (4.25)∑︁
𝑚∈ℳ

∑︁
𝑡∈0,...,𝐻−𝑝0

(𝑡 +
∑︁

𝑖 ∈ 𝑄𝑗𝑝
𝑚
𝑖)𝑦𝑚𝑗𝑡 − 𝐶𝑗 = 0, ∀𝑗 ∈ 𝒥 (4.26)

𝑥𝑒𝑚𝑖𝑡 ∈ {0,1}, ∀𝑖 ∈ ℬ, ∀𝑗 ∈ 𝒥 , ∀𝑒 ∈ {1, . . . , 𝑞𝑗}, ∀𝑡 ∈ ℋ, ∀𝑚 ∈ ℳ (4.27)

𝑦𝑚𝑗𝑡 ∈ {0,1}, ∀𝑗 ∈ 𝒥 , ∀𝑡 ∈ ℋ, ∀𝑚 ∈ ℳ (4.28)

𝐶𝑗 ≥ 0, ∀𝑗 ∈ 𝒥 (4.29)

56

The objective function is given by (4.18) and aims to minimize the total weighted completion

time of the jobs. The set of constraints (4.19) ensures that each item is processed only once;

(4.20) requires that each coil of a truck is made at only one processing position. This can be

exemplified on Figure 4.3, in which a truck needs to be loaded with three coils, thereby, one of

its coils (called coil 𝑎) might be processed firstly, secondly or thirdly.

Figure 4.3: Explanatory example to the constraints (4.20)

The set of constraints (4.21) certifies that each machine processes at most one item in each

period. The constraints (4.22) ensure that each job is processed only once. Constraints (4.23)

require item 𝑖 ∈ 𝑄𝑗 of position 𝑒 = 1 to begin exactly when its job starts to be processed. This

relationship can be verified on Figure 4.4, where coil 𝑖 ∈ 𝑄𝑗 of position 𝑒 = 1 begins exactly

when truck 𝑗 starts.

Figure 4.4: Explanatory example to the constraints (4.23)

The set of constraints (4.24) ensures that: the coils of the same truck 𝑗 are performed without

idle time or interruption to process a coil 𝑣 ∋ 𝑄𝑗 between the processing of coils 𝑖 ∈ 𝑄𝑗 . Figure

4.5 shows an example of a truck with 3 coils processed in sequence, without preemption.

Constraints (4.26) compute the completion time of each truck 𝑗. The set of constraints (4.25)

prevents interference on the cranes displacement, illustrated on Figure 4.6 (𝑎). If coil 𝑖 is

processed on machine 1 , then any coil 𝑣 , which is in a leftmost row (𝑙𝑖 > 𝑙𝑣) , can be

processed by machine 2 while coil 𝑖 is performed by crane 1. Remember that rows and cranes

are indexed on increasing order from left to right in the shed. Similarly, Figure 4.6 (𝑏), if coil 𝑣

57

Figure 4.5: Explanatory example to the constraints (4.24)

is processed by the crane 2 , then no coil 𝑖, such that 𝑙𝑖 > 𝑙𝑣, can be processed by machine 1.

The sets of constraints (4.27) to (4.29) define the domain of the model variables.

(a)

(b)
Xie et al. (2014), p.p. 2875, adapted.

Figure 4.6: Explanatory example to the constraints (4.25)

4.3 Multiprocessors paradigm

4.3.1 MULTI configuration

In the multiprocessor configuration (𝑀𝑈𝐿𝑇𝐼) each truck is simultaneously processed by two

identical machines. At this problem, we assume parameter 𝑞𝑗 which is the half amount of coils

demanded by truck 𝑗. This parameter aims to divide the amount of coils from truck 𝑗 between

the two cranes. 𝑆𝑘 is the group of machines contained into the set of machines 𝑘, such that

58

𝑘 ∈ 𝒦 = {1, . . . ,𝐾}, where 𝐾 is the amount of groups of machines.

The 𝑀𝑈𝐿𝑇𝐼 model is an extension of the 𝑀𝑃2 model, where the decision variables 𝑥𝑒𝑚𝑖𝑡 are

defined in the same way, i.e. they are equal to 1 if coil 𝑖, that is processed at the position 𝑒,

starts processing in 𝑡 by the crane 𝑚, or zero otherwise. The 𝑦 variables are changed by 𝑦𝑘𝑗𝑡,

which are equal to 1 if truck 𝑗 begins processing in 𝑡 by the set of machines 𝑘, or 0 otherwise.

𝐶𝑖 ≥ 0 represents the completion time of coil 𝑖.

Min
∑︁
𝑗∈𝒥

𝑤𝑗𝐶𝑗 (4.30)

∑︁
𝑗∈𝒥

𝑞𝑗∑︁
𝑒=1

∑︁
𝑚∈ℳ

𝐻∑︁
𝑡=0

𝑥𝑒𝑚𝑖𝑡 = 1, ∀𝑖 ∈ ℬ (4.31)

∑︁
𝑖∈𝑄𝑗

∑︁
𝑚∈ℳ

𝐻−𝑝*𝑖∑︁
𝑡=0

𝑥𝑒𝑚𝑖𝑡 = 1, ∀𝑗 ∈ 𝒥 , ∀𝑒 ∈ {1, . . . , 𝑞𝑗} (4.32)

∑︁
𝑗∈𝒥

𝑞𝑗∑︁
𝑒=1

𝑥𝑒𝑚𝑣𝑡 +
∑︁
𝑗∈𝒥

𝑞𝑗∑︁
𝑒=1

𝑚𝑖𝑛(𝑡+𝑝*𝑣−1,𝐻−𝑝*𝑖)∑︁
𝑧=𝑡

𝑥𝑒𝑚𝑖𝑧 ≤ 1,

∀𝑚 ∈ ℳ, ∀𝑣 ∈ ℬ, ∀𝑖 ∈ ℬ, ∀𝑡 ∈ {0, . . . ,𝐻 − 𝑝*𝑣} | 𝑣 ̸= 𝑖 (4.33)

𝐾∑︁
𝑘=1

𝐻−𝑝0∑︁
𝑡=0

𝑦𝑘𝑗𝑡 = 1, ∀𝑗 ∈ 𝒥 (4.34)

∑︁
𝑖∈𝑄𝑗

𝐾−1∑︁
𝑘=1

𝐻−𝑝*𝑖∑︁
𝑡=0

𝑦𝑘𝑗𝑡 = 1, ∀𝑗 ∈ 𝒥 | 𝑞𝑗 = 1 (4.35)

𝐻−𝑝0∑︁
𝑡=0

𝑦𝐾𝑗𝑡 = 1, ∀𝑗 ∈ 𝒥 | 𝑞𝑗 ≥ 2 (4.36)

𝑦𝑘𝑗𝑡 −
∑︁
𝑚∈𝑆𝑘

∑︁
𝑖∈𝑄𝑗

𝑥1𝑚𝑖𝑡 ≤ 0, ∀𝑘 ∈ {1, . . . ,𝐾}, ∀𝑗 ∈ 𝒥 , ∀𝑡 ∈ {0, . . . ,𝐻 − 𝑝0} (4.37)

𝑥1𝑚𝑗𝑡 −
∑︁
𝑣∈𝑄𝑗

𝑚𝑖𝑛(𝑡+𝑝*𝑖 ,𝐻−𝑝*𝑣)∑︁
𝑧=𝑡

𝑥
𝑞𝑗+1𝑛
𝑣𝑧 ≤ 0, ∀𝑗 ∈ 𝒥 ,

∀𝑡 ∈ {0, . . . ,𝐻 − 𝑝0}, ∀𝑖 ∈ 𝑄𝑗 , ∀𝑚 ∈ ℳ, ∀𝑛 ∈ ℳ | 𝑚 ̸= 𝑛, 𝑞𝑗 ≥ 2 (4.38)

𝑥𝑒𝑚𝑖𝑡 −
∑︁

𝑣∈𝑄𝑗 |𝑖 ̸=𝑣

𝑥𝑒+1𝑚
𝑣𝑚𝑖𝑛(𝑡+𝑝*𝑖 ,𝐻−𝑝*𝑣)

≤ 0, ∀𝑗 ∈ 𝒥 , ∀𝑒 ∈ {1, . . . ,𝑞𝑗 − 1},

∀𝑖 ∈ 𝑄𝑗 , ∀𝑡 ∈ {0, . . . ,𝐻 − 𝑝*𝑖 }, ∀𝑚 ∈ ℳ | 𝑞𝑗 ≥ 3 (4.39)

59

𝑥𝑒𝑚𝑖𝑡 −
∑︁

𝑣∈𝑄𝑗 |𝑖 ̸=𝑣

𝑥𝑒+1𝑚
𝑣𝑚𝑖𝑛(𝑡+𝑝*𝑖 ,𝐻−𝑝*𝑣)

≤ 0, ∀𝑗 ∈ 𝒥 , ∀𝑒 ∈ {𝑞𝑗 + 1, . . . , 𝑞𝑗 − 1},

∀𝑖 ∈ 𝑄𝑗 , ∀𝑡 ∈ {0, . . . ,𝐻 − 𝑝*𝑖 }, ∀𝑚 ∈ ℳ | 𝑞𝑗 ≥ 3 (4.40)

∑︁
𝑒∈ℬ

𝑥𝑒𝑚𝑖𝑡 +
∑︁
𝑒∈ℬ

𝑚𝑖𝑛(𝑡+𝑝*𝑖−1,𝐻−𝑝*𝑣)∑︁
𝑧=𝑚𝑎𝑥(0,𝑡−𝑝*𝑣+1)

𝑥𝑒𝑛𝑣𝑧 ≤ 1, ∀𝑣 ∈ ℬ,

∀𝑖 ∈ ℬ, ∀𝑡 ∈ {0, . . . ,𝐻 − 𝑝*𝑖 }, ∀𝑚 ∈ ℳ, ∀𝑛 ∈ ℳ | 𝑛 > 𝑚, (𝑙𝑖 ≥ 𝑙𝑣 − ∆) (4.41)

𝐶𝑖 − 𝑥𝑒𝑚𝑖𝑡 (𝑡 + 𝑝*𝑖) ≥ 0, ∀𝑗 ∈ 𝒥 ,

∀𝑒 ∈ {1, . . . , 𝑞𝑗}, ∀𝑖 ∈ 𝑄𝑗 , ∀𝑡 ∈ {0, . . . ,𝐻 − 𝑝3𝑖 }, ∀𝑚 ∈ ℳ (4.42)

𝐶𝑖 − 𝐶𝑗 ≤ 0, ∀𝑗 ∈ 𝒥 , ∀𝑖 ∈ 𝑄𝑗 (4.43)

𝑥𝑒𝑚𝑖𝑡 ∈ {0,1}, ∀𝑖 ∈ ℬ, ∀𝑗 ∈ 𝒥 , ∀𝑒 ∈ {1, . . . , 𝑞𝑗}, ∀𝑡 ∈ ℋ, ∀𝑚 ∈ ℳ (4.44)

𝑦𝑘𝑗𝑡 ∈ {0,1}, ∀𝑗 ∈ 𝒥 , ∀𝑡 ∈ ℋ, ∀𝑘 ∈ {1, . . . ,𝐾} (4.45)

𝐶𝑗 ≥ 0, ∀𝑗 ∈ 𝒥 (4.46)

𝐶𝑖 ≥ 0, ∀𝑖 ∈ ℬ (4.47)

The objective function is given by (4.30) and aims to minimize the weighted completion time

of jobs. Constraints (4.31) ensure that each coil is processed only once and (4.32) require that

only one coil is processed at each position of the truck’s processing. The set of constraints (4.33)

certifies that each machine processes at most one coil at each period. Constraints (4.34) ensure

that each truck is processed only once. The set of constraints (4.35) requires that only one

machine processes trucks with only one coil, but it does not specify which is the machine. The

set of constraints (4.36) ensures that trucks with more than one coil are processed by more than

one machine.

The set of constraints (4.37) forces coil at position 1 to begin when its truck starts processing.

To explain the constraints (4.38) consider a truck with 𝑞𝑗 ≥ 2, then half of its coils must be

processed on crane 𝑚 (coils between positions 1 and 𝑞𝑗) and the other half on machine 𝑛 (coils

between positions 𝑞𝑗 +1 and 𝑞𝑗). Thus (4.38) states that the coil at the first position on machine

𝑛 (position 𝑞𝑗 + 1) shall start while the coil on position 1 is performed, Figure 4.7 exemplifies

this relation.

Considering the assumption described above, the constraints (4.39) and (4.40) ensure that coils

of the same truck are processed without preemption. The non-interference constraints (4.41) are

60

Figure 4.7: Explanatory example to the constraints (4.38)

identical to the non-interference constraints of the 𝑀𝑃2 model and can be explained exactly on

the same way. The constraints (4.42) and (4.43) compute, respectively, the completion time of

each coil 𝑖 and the completion time of each truck 𝑗. Constraints (4.44) to (4.47) set the model’s

domain variables.

4.4 Computational experiments

Several sets of instances were defined to analyze the performance of the paradigms. At most

one input is changed at each group of instance.

4.4.1 Instances definition

The instances were obtained from the load allocation model of da Silva Neto (2013), who de-

veloped instances considering real data provided by a steelwork company from Minas Gerais,

Brazil, between November 2011 and March 2012. To evaluate the mathematical models and the

heuristic performance are considered 15 groups of artificial instances: there are five amounts of

coils, {10, 20, 50, 100, 200}, and three levels of trucks availability. These levels are defined for

each amount of coils and are identified as very restrictive (vr), somewhat restrictive (sr) and

not restrictive (nr). The very restrictive level represents the low availability of trucks and the

“nr” level represents the wide availability. These definitions are used in the generation of our

instances. Their uniform distribution can be verified on Table 4.3, in which the minimum and

maximum values are specified in 𝑈(𝑚𝑖𝑛,𝑚𝑎𝑥).

61

Table 4.3: Availability of trucks by amount of products and restrictive level

Level of restriction according to trucks availability:
amount of products very restrictive somewhat restrictive not restrictive

10 U(1,3) U(2,6) 200
20 U(1,5) U(6,10) 200
50 U(3,8) U(10,15) 200
100 U(7,12) U(15,20) 200
200 U(15,20) U(30,40) 200

da Silva Neto (2013), p.p 44, adapted.

Although the model developed by da Silva Neto (2013) considers that coils are randomly ar-

ranged in the shed (scenario 𝑅), this study also addresses two other cases: the storage of coils

into rows belonging to their client (scenario 𝐶), and storing into rows belonging to a client group

(scenario 𝐶𝐺). The amount of rows demanded by the set of products of each client is defined

in function to its share in the distribution center.

In scenario 𝐶, the coils storage considers the client who they belong to. It is defined the amount

of rows demanded to store coils of the same client. These coils are then grouping in the same

row(s). In scenario 𝐺𝐶, the coils storage considers a group of customers. The storage shed of

the distribution center is divided into 10 parts and the clients’ demands are accumulated. The

groups are built considering the aggregate demand of customers: in group 1 there are clients

in which the sum of their coils’ demand does not exceed 10% of the available rows; group 2 is

formed with clients to whom the sum of their aggregate demands does not exceed 20%; and

so on. For each configuration 10 replications are generated with different seeds, totaling 450

artificial instances.

The average retrieval time of each coil is 3.4 minutes. This value was obtained from the data

collected at a distribution center of a steelmaker company, where a total of 40 trucks and 103

steel coils were monitored. The average retrieval time disregards the information about the

level of the coil in the row, because the considered scenario does not have this data. Thus, the

average simplification tends to nullify the errors associated with this measure. Intending to be

conservative, the average retrieval time is rounded upwards to 4 minutes / coil.

The setup time between the consecutive loading of two coils is not considered, but we consider

the displacement time spent by the cranes to move between the truck and the row of the coil,

and between the row of the coil and its truck. The displacement time added to the retrieval

time, results in the processing time of each coil which varies from coil to coil and the designated

62

position of the truck.

To calculate the displacement time, the trucks are assumed to be in a designated position:

rows 23 and 70, respectively, for the cranes 1 and 2 of the problems from the parallel machines

paradigm; and on row 42 for the multiprocessors paradigm. This study considers 95 rows in

the shed. It is assumed the distance of 2 meters between two consecutive rows. The cranes

speed, 38.5 meters / minute, is resulting from 50% of the average of maximum speeds provided

by three distributors of such equipments (Igus, Eurocrane and Schneider-Electric). In this way,

the travel time depends on the range of displaced rows, presented on Table 4.4.

Table 4.4: Travel time according to the ranges of displaced rows

range of displacement one way displacement time complete displacement time

between 1 and 19 rows 0.5 minutes 1 minute
between 20 and 39 rows 1.5 minutes 3 minutes
between 40 and 58 rows 2.5 minutes 5 minutes
between 59 and 78 rows 3.5 minutes 7 minutes

The displacement time of the first range, for example, is the result of the average travel times

through one row, two rows, and so on, until 19 rows of distance between the coil and the

designated place of the truck. The same applies to the other ranges of rows. The crane always

starts on the designated position of the truck (e.g. if crane 1, then the truck designated position

is row 23, as defined previously) and moves toward the row of the demanded coil and returns

to its designated position. Because of that, the displacement time is considered twice, as shown

on third column of Table 4.4.

Coils of the same truck are made without preemption and trucks are loaded without idle time

between this process. The safety distance of the cranes displacement is one row. The time

horizon is given by the sum of the maximum processing time of the coils. The priority weight

of each truck is randomly generated by a uniform distribution between zero and one. The

parameters can be verified on Table 4.5.

Table 4.5: Parameters values for the paradigms’ evaluation

Parameter Value

amount of coils {10, 20, 50, 100, 200}
retrieval time of each coil (𝑝0) 4

time horizon (𝐻)
∑︀

𝑖∈ℬ 𝑚𝑎𝑥𝑚∈ℳ𝑝𝑚𝑖
weight (𝑤𝑗) 𝑈(0,1)

safety distance (Δ) 1 row

To analyze the difference between the formulations, we evaluate the solutions generated by the

63

models after 3600 seconds of CPU time. The proposed mathematical models were implemented

and solved using the CPLEX 12.5 optimization software in the default configuration, it was used

the AMPL language. The computer used in the tests is an Intel (R) Xeon (R) CPU X5690 @

3.47GHz with 24 processors, 132 GB of RAM in Ubuntu Linux operating system.

4.4.2 Results of the mathematical models

This section aims to present the results generated by the three problems. It is expected that

𝑀𝑃1 model find optimal values greater than or equal to the 𝑀𝑃2 optimal values, because the

bounding area defined by the rows of the coils of each truck makes the cranes have more idle

time. To compare between the different formulations, it is observed the number and the results

of tested cases with optimal solutions, feasible non-optimal solutions or without solution after 1

hour of CPU time. As well as the computational time spent by the optimal cases, the average

number of explored nodes and the average optimality gap given by the solver within 1 hour of

CPU time.

The Tables 4.6, 4.7 and 4.8 are a compilation of the results of 𝑀𝑃1, 𝑀𝑃2 and 𝑀𝑈𝐿𝑇𝐼 problems

for three scenarios. Scenario 𝑅 represents the random arrangement of coils in the storage shed.

On scenario 𝐶 the coils are arranged by customers’ row(s) and on scenario 𝐺𝐶 by a customer

grouping arrangement. The performance of each model is evaluated in order to identify which

one best fits each kind of storage scenario.

The first column of the tables represents the instance, which is codified by the availability of

trucks: nr, sr and vr, respectively level not restrictive, somewhat restrictive and very restrictive;

and by the amount of steel coils: {10, 20, 50, 100, 200}. The
∑︀

𝑆* column is the amount of

instances solved optimally;
∑︀

𝑛𝑏 is the amount of instances without basis after one hour of

CPU time. 𝑆* column presents the average weighted completion time found in the optimal

cases; 𝑆𝑓 represents the average weighted completion time found in the feasible non-optimal

cases after one hour of CPU time. CT (s) represents the average computation time of the

optimal solutions; if this field contains “-” the time limit of 3600 seconds is reached. Node is

the average amount of B&B nodes explored by CPLEX for the optimal and non-optimal cases;

and GAP indicates the average distance between the current best integer solution and the best

bound found within the time limit for the feasible non-optimal solutions.

64

In the 𝑀𝑃1 partition, the column 𝑆*2 represents the average of optimal solution values given by

𝑀𝑃1 model for the same instances optimally solved by 𝑀𝑃2, or by 𝑀𝑈𝐿𝑇𝐼 when appropriate.

𝑆*𝑓 represents the average of optimal results given by 𝑀𝑃1 for the instances which are feasible

non-optimally solved by 𝑀𝑃2 or 𝑀𝑈𝐿𝑇𝐼 model. The column 𝑆*𝑛𝑏 represents the average of

optimal solutions given by 𝑀𝑃1 for instances that could not be solved by 𝑀𝑃2 problem, or

by 𝑀𝑈𝐿𝑇𝐼 when appropriate. E.g., for the group of instances sr 20 at the random scenario,

Table 4.6, 𝑆*2 represents the average of solutions values found by 𝑀𝑃1 for the same 4 instances

optimally solved by 𝑀𝑃2 and considered in its 𝑆* column. 𝑆*𝑓 represents the optimal solution

given gy 𝑀𝑃1 for the instance that is non-optimally solved by 𝑀𝑃2; and 𝑆*𝑛𝑏 represents the

average of optimal solutions of 𝑀𝑃1 for the 5 instances without basis when solved by 𝑀𝑃2.

The analysis of the results shows that model 𝑀𝑃1 is able to find optimal solutions faster than

𝑀𝑃2 and 𝑀𝑈𝐿𝑇𝐼. 𝑀𝑃2 finds slightly better optimal solutions than 𝑀𝑃1, but 𝑀𝑃1 has

better computational performance 1. 𝑀𝑃1 can find optimal solutions for instances of up to 100

coils within the time limit. The 𝑀𝑃1 model optimally solve all the tested instances up to 20

coils, and all instances of 50 coils of the scenarios 𝐶 and 𝐺𝐶. The 𝑀𝑃1 model can optimally

solve 67% of the instances of 50 coils of the 𝑅 scenario, and 35% of the instances of 100 coils of

𝐶 and 𝐺𝐶 scenarios. 𝑀𝑃2 can solve optimally only 69% of the instances up to 20 coils and can

not find solutions for larger instances within the time limit. 𝑀𝑈𝐿𝑇𝐼 can solve optimally only

57% of the instances of 10 coils and can not find solutions for 93% of the instances of 20 coils.

While the 𝑀𝑃1 can not find solutions for 43% of the instances of 200 coils.

In general, the non-optimal feasible solutions found by 𝑀𝑃2 for instances of 20 coils are worse

than those found by 𝑀𝑃1. However, the solutions found by 𝑀𝑃2 on 𝐺𝐶 scenario for instances

up to 20 coils are better than those found optimally by 𝑀𝑃1. Both models present better

optimal solutions for the scenario 𝐺𝐶 and worst solutions for the scenario 𝑅. The 𝑀𝑈𝐿𝑇𝐼

model finds better solutions than 𝑀𝑃2 for scenarios 𝑅 and 𝐺𝐶, but worst ones for scenario 𝐶.

This is because on this scenario the coils of the same truck are in the same row(s), thus, in order

to avoid interference, the machines must have more idle times.

The results show that 𝑀𝑃2 and 𝑀𝑈𝐿𝑇𝐼 models can optimally solve very small problems, while

𝑀𝑃1 can solve small and medium size ones, however with a dramatic CPU time increased for

1The reader must remember that the MP1, MP2 and MULTI, are different problems. Thus different optimal
solutions are expected.

65

larger instances. When the amount of coils increases from 10 units to 50, the CPU time of the

𝑀𝑃1 increases by 690 times, 𝑀𝑃2 is unable to find feasible solutions for 22% of the instances

with 20 coils, and 𝑀𝑈𝐿𝑇𝐼 can not find feasible solutions for 93% of these instances within the

time limit. 𝑀𝑃2 and 𝑀𝑈𝐿𝑇𝐼 are unable to find feasible solutions for instances greater than

20 coils. This shows the importance of developing techniques for improving the computational

performance when solving medium or larger size instances.

Throughout the analysis and validation process, we have decided to no continue to expand the

MULTI model, as it presents a higher complexity and the worst performance. On its place, it

may be considered the single machine paradigm, since it is possible to admit two cranes as a

single processor. In this way, both cranes could process each truck, regardless the number of

coils in each one. In order to solve real size instances, we decided to work only with the parallel

machine paradigm by developing two genetic algorithms.

66

T
a
b

le
4.

6
:

R
a
n

d
om

S
ce

n
ar

io
(S

ce
n

ar
io

𝑅
)

-
A

ve
ra

ge
re

su
lt

s
of

th
e
𝑀

𝑃
1,

𝑀
𝑃

2
an

d
𝑀

𝑈
𝐿
𝑇
𝐼

p
ro

b
le

m
s.

𝑀
𝑃

1
𝑀

𝑃
2

In
st

.
∑︀ 𝑆

*
∑︀ 𝑛

𝑏
𝑆
*

𝑆
𝑓

𝑆
*2

𝑆
*𝑓

𝑆
*𝑛

𝑏
C

T
N

o
d

e
G

A
P

∑︀ 𝑆
*

∑︀ 𝑛
𝑏

𝑆
*

𝑆
𝑓

C
T

N
o
d

e
G

A
P

n
r

1
0

10
0

4
2.

5
4
2.

5
1

0
0%

10
0

3
8
.7

2
1

9
9

0
%

sr
1
0

10
0

4
7.

6
4
7.

6
1

0
0%

10
0

4
4
.5

1
6

5
0

0
%

v
r

1
0

10
0

4
9.

5
4
9.

5
1

0
0%

10
0

4
7
.1

1
0

8
6

0
%

n
r

2
0

10
0

12
9.

8
1
38

.4
12

4.
1

11
0

0%
0

6
2
5
9
.8

-
4

5
4
.2

%
sr

2
0

10
0

11
4.

6
14

0.
2

1
03

.2
96

.3
14

1
0%

4
5

1
3
6
.2

9
8
.0

1
0
3
0

2
5
8

2
.4

%
v
r

2
0

10
0

13
9.

6
14

6.
2

1
50

.4
58

.4
14

0
0%

4
1

1
3
9
.2

1
4
2
.5

1
2
3
6

6
3
5

5
.3

%

n
r

5
0

6
0

5
22

.3
70

6.
8

52
2.

3
14

16
.5

52
45

.2
3%

1
0

-
sr

5
0

7
0

6
08

.4
76

5.
7

60
8.

4
16

10
.6

12
86

.0
9%

1
0

-
v
r

5
0

7
0

5
83

.6
77

9.
2

58
3.

6
10

76
.4

57
09

.9
7%

1
0

-

n
r

10
0

0
0

5
08

4.
2

-
0.

0
56

%
1
0

-
sr

10
0

0
0

4
62

4.
0

-
0.

0
55

%
1
0

-
v
r

1
00

0
0

3
93

7.
4

-
0.

0
44

%
1
0

-

n
r

20
0

0
6

7
90

87
.8

-
0.

0
10

0%
1
0

-
sr

20
0

0
1
0

-
1
0

-
v
r

2
00

0
1
0

-
1
0

-

𝑀
𝑃

1
𝑀

𝑈
𝐿
𝑇
𝐼

In
st

.
∑︀ 𝑆

*
∑︀ 𝑛

𝑏
𝑆
*

𝑆
𝑓

𝑆
*2

𝑆
*𝑓

𝑆
*𝑛

𝑏
C

T
N

o
d

e
G

A
P

∑︀ 𝑆
*

∑︀ 𝑛
𝑏

𝑆
*

𝑆
𝑓

C
T

N
o
d

e
G

A
P

n
r

1
0

10
0

4
2.

5
3
8.

6
4
6.

3
1

0
0%

5
0

3
2
.7

3
8
.0

1
7
2
4

2
8
5
9
3

5
2
.7

%
sr

1
0

10
0

4
7.

6
3
6.

3
6
4.

7
1

0
0%

6
0

3
3
.9

5
8
.6

1
5
7
6

5
4
1
2
4

5
8
.7

%
v
r

1
0

10
0

4
9.

5
4
6.

1
5
4.

6
1

0
0%

6
0

4
3
.6

5
3
.6

8
9
1

9
8
0
1
1

4
4
.7

%

n
r

2
0

10
0

12
9.

8
12

9.
8

11
0

0%
0

1
0

-
sr

2
0

10
0

11
4.

6
1
45

.6
11

1.
1

14
1

0%
0

9
3
4
8
.2

-
8
0

9
8
.4

%
v
r

2
0

10
0

13
9.

6
1
76

.4
13

5.
5

14
0

0%
0

9
2
9
2
.0

-
1
0
3
1

9
7
.4

%

n
r

5
0

6
0

5
22

.3
70

6.
8

52
2.

3
14

16
.5

52
45

.2
3%

1
0

-
sr

5
0

7
0

6
08

.4
76

5.
7

60
8.

4
16

10
.6

12
86

.0
9%

1
0

-
v
r

5
0

7
0

5
83

.6
77

9.
2

58
3.

6
10

76
.4

57
09

.9
7%

1
0

-

n
r

10
0

0
0

5
08

4.
2

-
0.

0
56

%
1
0

-
sr

10
0

0
0

4
62

4.
0

-
0.

0
55

%
1
0

-
v
r

1
00

0
0

3
93

7.
4

-
0.

0
44

%
1
0

-

n
r

20
0

0
6

7
90

87
.8

-
0.

0
10

0%
1
0

-
sr

20
0

0
1
0

-
1
0

-
v
r

2
00

0
1
0

-
1
0

-

67

T
ab

le
4
.7

:
S

ce
n

a
ri

o
of

cu
st

o
m

er
s

ro
w

s
(S

ce
n

ar
io

𝐶
)

-
A

ve
ra

ge
re

su
lt

s
of

th
e
𝑀

𝑃
1
,
𝑀

𝑃
2

a
n

d
𝑀

𝑈
𝐿
𝑇
𝐼

p
ro

b
le

m
s

𝑀
𝑃

1
𝑀

𝑃
2

In
st

.
∑︀ 𝑆

*
∑︀ 𝑛

𝑏
𝑆
*

𝑆
𝑓

𝑆
*2

𝑆
*𝑓

𝑆
*𝑛

𝑏
C

T
N

o
d

e
G

A
P

∑︀ 𝑆
*

∑︀ 𝑛
𝑏

𝑆
*

𝑆
𝑓

C
T

N
o
d

e
G

A
P

n
r

1
0

10
0

4
0.

6
4
0.

6
1

0
10

0
3
7
.6

1
3

8
sr

1
0

10
0

4
2.

1
4
2.

1
1

0
10

0
4
1
.8

1
2

2
1

v
r

10
10

0
4
6.

2
4
6.

2
1

0
10

0
4
6
.1

1
1

1
6

n
r

2
0

10
0

1
05

.6
1
02

.9
98

.6
12

9.
3

7
0

2
2

1
0
1
.1

1
3
1
.4

1
3
4
2

1
8
3

2
2
.2

%
sr

2
0

10
0

1
03

.7
1
20

.4
90

.2
82

.3
9

0
5

2
1
1
9
.2

8
9
.2

7
4
9

1
7
7

1
.5

%
v
r

20
10

0
1
27

.7
1
25

.3
13

3.
2

10
0

7
0

1
2
4
.3

1
5
0
.6

7
8
1

4
1
1

1
3
.8

%

n
r

5
0

10
0

4
79

.4
47

9.
4

19
6

14
4

1
0

-
sr

5
0

10
0

5
21

.2
52

1.
2

26
7

80
1
0

-
v
r

50
10

0
5
49

.8
54

9.
8

24
9

59
2

1
0

-

n
r

1
00

3
0

18
59

.0
19

75
.6

18
59

.0
22

01
54

22
2.

0%
1
0

-
sr

10
0

3
0

19
11

.2
18

13
.8

19
11

.2
20

15
35

06
2.

2%
1
0

-
v
r

1
00

4
0

18
18

.7
19

26
.2

18
18

.7
16

18
29

75
1.

9%
1
0

-

n
r

2
00

0
0

79
39

9.
3

-
0.

0
10

0.
0%

1
0

-
sr

20
0

0
5

82
23

0.
5

-
0.

0
10

0.
0%

1
0

-
v
r

2
00

0
8

84
47

5.
5

-
0.

0
10

0.
0%

1
0

-

𝑀
𝑃

1
𝑀

𝑈
𝐿
𝑇
𝐼

In
st

.
∑︀ 𝑆

*
∑︀ 𝑛

𝑏
𝑆
*

𝑆
𝑓

𝑆
*2

𝑆
*𝑓

𝑆
*𝑛

𝑏
C

T
N

o
d

e
G

A
P

∑︀ 𝑆
*

∑︀ 𝑛
𝑏

𝑆
*

𝑆
𝑓

C
T

N
o
d

e
G

A
P

n
r

1
0

10
0

4
0.

6
3
5.

3
4
6.

0
1

0
5

0
3
2
.7

4
0
.7

1
4
1
7

2
7
4
5
6

5
9
.4

%
sr

1
0

10
0

4
2.

1
3
8.

3
4
7.

8
1

0
6

0
4
0
.0

5
7
.5

1
3
8
0

5
4
5
7
7

4
5
.5

%
v
r

10
10

0
4
6.

2
4
2.

6
5
1.

6
1

0
6

0
4
9
.2

6
9
.7

5
4
3

7
0
2
1
8

5
4
.8

%

n
r

2
0

10
0

1
05

.6
10

5.
6

7
0

0
1
0

-
sr

2
0

10
0

1
03

.7
13

9.
9

99
.7

9
0

0
9

2
9
0
.2

-
2

9
7
.9

%
v
r

20
10

0
1
27

.7
14

6.
7

12
5.

5
10

0
0

9
3
8
6
.8

-
2

9
7
.9

%

n
r

5
0

10
0

4
79

.4
47

9.
4

19
6

14
4

1
0

-
sr

5
0

10
0

5
21

.2
52

1.
2

26
7

80
1
0

-
v
r

50
10

0
5
49

.8
54

9.
8

24
9

59
2

1
0

-

n
r

1
00

3
0

18
59

.0
19

75
.6

18
59

.0
22

01
54

22
2.

0%
1
0

-
sr

10
0

3
0

19
11

.2
18

13
.8

19
11

.2
20

15
35

06
2.

2%
1
0

-
v
r

1
00

4
0

18
18

.7
19

26
.2

18
18

.7
16

18
29

75
1.

9%
1
0

-

n
r

2
00

0
0

79
39

9.
3

-
0.

0
10

0.
0%

1
0

-
sr

20
0

0
5

82
23

0.
5

-
0.

0
10

0.
0%

1
0

-
v
r

2
00

0
8

84
47

5.
5

-
0.

0
10

0.
0%

1
0

-

68

T
ab

le
4
.8

:
S

ce
n

a
ri

o
of

g
ro

u
p

in
g

cu
st

om
er

s
ro

w
s

(S
ce

n
ar

io
𝐺
𝐶

)
-

A
ve

ra
ge

re
su

lt
s

of
th

e
𝑀

𝑃
1
,
𝑀

𝑃
2

a
n

d
𝑀

𝑈
𝐿
𝑇
𝐼

p
ro

b
le

m
s

𝑀
𝑃

1
𝑀

𝑃
2

In
st

.
∑︀ 𝑆

*
∑︀ 𝑛

𝑏
𝑆
*

𝑆
𝑓

𝑆
*2

𝑆
*𝑓

𝑆
*𝑛

𝑏
C

T
N

o
d

e
G

A
P

∑︀ 𝑆
*

∑︀ 𝑛
𝑏

𝑆
*

𝑆
𝑓

C
T

N
o
d

e
G

A
P

n
r

1
0

10
0

3
9.

7
3
9.

7
1

0
1
0

0
3
7
.3

1
5

8
sr

10
10

0
4
1.

6
4
1.

6
1

0
1
0

0
4
1
.3

1
3

2
8

v
r

1
0

10
0

4
6.

1
4
6.

1
1

0
1
0

0
4
5
.9

1
0

5
2

n
r

2
0

10
0

1
04

.4
1
11

.2
10

2.
4

10
8.

2
8

0
1

2
1
1
1
.2

1
1
6
.7

1
3
0
7

3
8
4

1
9
.6

%
sr

20
10

0
1
01

.8
1
09

.9
83

.6
82

.0
8

0
7

1
1
0
8
.8

1
0
6
.7

1
0
4
9

4
4
1

2
1
.9

%
v
r

2
0

10
0

1
27

.6
1
28

.9
12

8.
0

11
9.

9
11

0
5

1
1
2
6
.0

1
2
4
.1

1
1
7
8

2
0
1

3
.1

%

n
r

5
0

10
0

4
82

.0
48

2.
0

34
5

21
31

1
0

-
sr

50
10

0
5
22

.1
52

2.
1

31
1

64
8

1
0

-
v
r

5
0

10
0

5
52

.2
55

2.
2

26
1

16
03

1
0

-

n
r

10
0

3
0

18
22

.1
19

94
.3

18
22

.1
26

13
31

40
1.

7%
1
0

-
sr

10
0

4
0

19
46

.7
17

25
.1

19
46

.7
24

16
27

74
2.

1%
1
0

-
v
r

10
0

4
0

18
19

.2
19

23
.2

18
19

.2
20

00
43

28
2.

2%
1
0

-

n
r

20
0

0
0

85
67

9.
2

-
0.

0
10

0%
1
0

-
sr

20
0

0
0

84
47

1.
8

-
0.

0
10

0%
1
0

-
v
r

20
0

0
0

85
62

8.
8

-
0.

0
10

0%
1
0

-

𝑀
𝑃

1
𝑀

𝑈
𝐿
𝑇
𝐼

In
st

.
∑︀ 𝑆

*
∑︀ 𝑛

𝑏
𝑆
*

𝑆
𝑓

𝑆
*2

𝑆
*𝑓

𝑆
*𝑛

𝑏
C

T
N

o
d

e
G

A
P

∑︀ 𝑆
*

∑︀ 𝑛
𝑏

𝑆
*

𝑆
𝑓

C
T

N
o
d

e
G

A
P

n
r

1
0

10
0

3
9.

7
4
3.

1
34

.7
1

0
4

0
2
8
.8

4
3
.3

1
3
3
3

3
3
5
5
8

5
4
.4

%
sr

10
10

0
4
1.

6
4
4.

8
36

.8
1

0
6

0
3
6
.1

6
2
.3

1
7
3
0

7
1
4
9
0

5
9
.4

%
v
r

1
0

10
0

4
6.

1
4
7.

2
42

.2
1

0
7

0
5
3
.6

6
2
.9

6
3
4

4
4
3
3
1

5
0
.0

%

n
r

2
0

10
0

1
04

.4
10

3.
1

8
0

0
1
0

-
sr

20
10

0
1
01

.8
71

.4
10

2.
0

8
0

0
9

3
4
5
.3

-
3

9
8
.1

%
v
r

2
0

10
0

1
27

.6
11

5.
4

13
2.

4
11

0
0

9
4
1
3
.7

-
2

9
8
.0

%

n
r

5
0

10
0

4
82

.0
48

2.
0

34
5

21
31

1
0

-
sr

50
10

0
5
22

.1
52

2.
1

31
1

64
8

1
0

-
v
r

5
0

10
0

5
52

.2
55

2.
2

26
1

16
03

1
0

-

n
r

10
0

3
0

18
22

.1
19

94
.3

18
22

.1
26

13
31

40
1.

7%
1
0

-
sr

10
0

4
0

19
46

.7
17

25
.1

19
46

.7
24

16
27

74
2.

1%
1
0

-
v
r

10
0

4
0

18
19

.2
19

23
.2

18
19

.2
20

00
43

28
2.

2%
1
0

-

n
r

20
0

0
0

85
67

9.
2

-
0.

0
10

0%
1
0

-
sr

20
0

0
0

84
47

1.
8

-
0.

0
10

0%
1
0

-
v
r

20
0

0
0

85
62

8.
8

-
0.

0
10

0%
1
0

-

69

Chapter 5

Genetic algorithms

Two genetic algorithm are implemented to solve the probems addressed by the parallel machine

paradigm. It is called 𝐺𝐴1 when applied to solve the 𝑀𝑃1 problem and 𝐺𝐴2 to solve the 𝑀𝑃2

problem. This chapter aims to present the two genetic algorithms structures, explain and define

their strategy parameters and present the results obtained with the tuned parameters.

5.1 Parameters definition

The genetic algorithms presented in this chapter are constructed based in the approach of

Lee et al. (2008). The algorithm developed by the authors can solve the crane scheduling

problem to fill the holds of vessels effectively and efficiently, with a gap lower than 2.7% from

the lower bound. Thus, our genetic algorithm is based on their work, arbitrarily fixing some

algorithmic structure and parameters. However, we are aware that there exist a multitude of

genetic algorithms settings and, recognizing that other algorithm structures may lead to better

results.

Each candidate solution is called chromosome, each group of chromosomes is called population

and each iteration of the algorithm is called generation. Following the approach of Lee et al.

(2008), we represent each chromosome as a permutation encoding which is a string of a sequence

of numbers. In this way, each candidate solution of the 𝐺𝐴1 represents a possible solution for

the sequence of 𝐽 trucks; the chromosome of the 𝐺𝐴2 represents the possible solution for the

trucks sequencing and their coils sequencing (defined on Section 5.3).

Fitness is a quality function of the chromosomes, which indicates the best species acording to

their results. Fitness is a simple transformation of the objective function, which is calculated by

a simple assignment heuristic. It assigns jobs to machines following the sequence given by the

chromosome and considering the non-interference constraints. In this dissertation, we work only

with feasible solutions. This function is not penalised because the constraints are guaranteed

to be satisfied during the scheduling of the given candidate solution. Since the goal is to find

the problem’s minimum solution, GA increases the survival chances of individuals with higher

fitness. The fitness function is given by:

𝑓(𝜔) =
1∑︀

𝑗∈𝒥 𝑤𝑗𝐶𝑗

where 𝐶𝑗 is the completion time of job 𝑗 ∈ 𝒥 and 𝑤𝑗 is the priority factor of job 𝑗.

To create the next generation, a pair of chromosomes (parents) are selected to create the off-

spring, i.e. they are selected to crossover. The offspring generated can suffer mutation at some

position according to some probability 𝑝𝑚. Also following the approach of Lee et al. (2008),

the parents are selected to crossover by roulette wheel selection. In this method, the selection

probability is proportional to the fitness value of each chromosome and the selection of parents

considers the replacement of the already selected ones. An order crossover is applied to generate

two offsprings. It is done by randomly choosing a substring (subsequence of the sequence of

trucks) where the beginning and the tail of the substring are chosen with equal uniform proba-

bility. The mutation mechanism consists of randomly choosing two points, or trucks, and change

their positions into the sequence.

5.1.1 Parameters tuning

In order to obtain good solutions in feasible computation time, some parameters are tuned for

the proposed GAs by the SPOT method (Appendice A). To assure a good balance between

exploration, exploitation and diversity of the search space, the following components of the

71

genetic algorithm are determined by a parameter tuning algorithm.

Mutation and crossover operators are tested because they are responsible for exploring new re-

gions by a random search; and population selection is tested because it exploits the available

information by directing the genetic search towards promising evolution, (Gen and Cheng, 2000).

Eiben et al. (1999) and Eiben and Smit (2011) consider these as the main components of evolu-

tionary algorithms. Population size is also evaluated because of its influence in the population

diversity and selective pressure. And the number of generations is evaluated due to its influence

in the algorithm’s computational time.

The GA inputs of the SPOT tuning algorithm are the lower and upper bound of the parameter

values which will be defined in the following. The population size is assumed as a function of

the instance size (𝜇 = 𝑑𝐵/2) where 𝐵 is the amount of coils that must be delivered and 𝑑 is an

integer that varies between 1 and 10. In the same way, the number of generations is assumed as

a function of 𝐵, 𝑁𝑚𝑎𝑥 = 𝑔𝐵 where 𝑔 is an integer that varies between 1 and 50. These ranges

are assumed because the reviwed works consider very different population levels and amount of

generations, for example, Lee et al. (2008) consider population size of 300 and 1000 generations

for instances with up to 35 holds and 4 quay cranes; and Chung and Choy (2012) considers

population size of 50 and 30000 generations for instances with up to 25 tasks and 3 quay cranes.

Replacement operator is related to the selection of chromosomes to survive in the next genera-

tion. In this work, the SPOT algorithm evaluates the GA’s performance between two determin-

istic procedures that select the best chromosomes from parents and offspring: (𝜇+𝜆)−selection

and (𝜇, 𝜆)−selection. According to Gen and Cheng (2000), these methods prohibit selection of

duplicate chromosomes from a population. As defined by Bäck (1992), (𝜇 + 𝜆)−selection is an

elitist selection and (𝜇, 𝜆)−selection addresses the complete replacement of the parents by the

best individuals of the offspring.

The lower bound of 𝑝𝑐 in the tunning algorithm is assumed equal to 0.6, rate indicated by Eiben

et al. (1999) as the lower limit for the crossover probability, and the upper bound is equal to 1, as

it is not specified an upper limit. To tune mutation probability it is considered 𝑝𝑚 ∈ [0.001,0.01].

This is the range of small values considered by most of the genetic algorithms works (Bäck and

Schütz, 1996).

72

5.2 Genetic algorithm to solve 𝑀𝑃1

The unrelated parallel machine problem 𝑀𝑃1 disregards the removal sequence of each coil from

each truck and bounds an area in the storage shed delimited by the processing of truck 𝑗 ∈ 𝒥

(from 𝑟𝑚𝑖𝑛
𝑗 to 𝑟𝑚𝑎𝑥

𝑗 , as defined in Chapter 4). The genetic algorithm developed to solve 𝑀𝑃1 is

called 𝐺𝐴1 and has five parameters tuned to improve its performance. The tuned parameters

indicated by the analisys of the results of SPOT (Appendix A), are given in the last column of

Table 5.1.

Table 5.1: Parameters tuned the GA1

Evaluated region
Parameter Lower bound Upper bound Indicated value

Population size (𝜇) 𝐵/2 10𝐵 8𝐵
Replacement operator (𝑟𝑜) 0 = (𝜇+ 𝜆)−selection 1 = (𝜇, 𝜆)−selection 1
Crossover probability (𝑝𝑐) 0.6 1 0.9705
Mutation probability (𝑝𝑚) 0.001 0.01 0.0037

Amount of generations (𝑁𝑚𝑎𝑥) 1𝐵 50𝐵 31𝐵
where 𝐵 is the size of the instance, given by the amount of coils to be delivered

The best parameter values defined by SPOT tuning algorithm are: population size (𝜇) equals

8𝐵/2 and amount of generations (𝑁𝑚𝑎𝑥) equals 31𝐵, where 𝐵 represents the size of the instance.

Replacement operator (𝑟𝑜) given by (𝜇, 𝜆)−selection, crossover probability (𝑝𝑐) and mutation

probability (𝑝𝑚) equal 97.05% and 0.37%, respectively. These parameters help to characterize

the genetic algorithm summarized on Algorithm 2.

Algorithm 2 Genetic algorithm for the MP1 configuration

1: Randomly generate a population of 𝜇 chromosomes of 𝐽 trucks.
2: Calculate the fitness 𝑓(𝜔) of each chromosome 𝜔 of the population.
3: Create 𝜆 offspring.

• Select a pair of parents.
• Generate two offspring with order crossover probability 𝑝𝑐.
• With mutation probability 𝑝𝑚, two randomly chosen points of the sequence change

their position.
4: Replace the population.
5: Return to step 2.

Fitness is a function of the weighted completion time value of the candidate solution. The

weighted completion time of each chromosome is computed by assigning each truck to the

cranes following the sequence of them given by the chromosome. This heuristic is defined in the

following section.

73

5.2.1 Assignement heuristic

This is a simple heuristic, developed to compute the solution value of the assignment of jobs to

machines, following the sequence given by each chromosome. Consider 𝑐𝑡𝑚 and 𝑐𝑡𝑛 as the current

completion time of machine 𝑚 and 𝑛, both ∈ ℳ, and 𝑐𝑡𝑚 = 𝑐𝑡𝑛 = 0 at time zero. Consider the

set 𝒥 ⊆ 𝒥 of unassigned jobs. The crane schedule can be built using the procedure given on

Figure 5.1.

Figure 5.1: Flowchart of the proposed sequencing heuristic for the GA1

The jobs are assigned to the first available machine following the same order given by the trucks

sequence of a chromosome. This scheduling process considers the non-interference constraints.

E.g. if machine 𝑚 is the first one available, and if the assignment of the next job 𝑗 to machine

𝑚 leads to interference on the working space of machine 𝑛, then, the algorithm considers that

machine 𝑚 should have an idle time instead of processing 𝑗 in order to avoid interference. If both

machines are available, then the job 𝑗 is assigned to machine 𝑚 if the factor 𝑤𝑗/𝑝𝑗𝑚 > 𝑤𝑗/𝑝𝑗𝑛,

or to 𝑛 otherwise, where 𝑤𝑗 is the weight of job 𝑗 and 𝑝𝑗𝑚 is the processing time of truck 𝑗 on

machine 𝑚.

74

5.3 Genetic algorithm to solve 𝑀𝑃2

As defined previously, the genetic algorithm to solve the 𝑀𝑃2 problem is called 𝐺𝐴2. It

considers the scheduling of trucks and their coils, in which the interference between cranes is a

function of the coil position in the shed (𝑙𝑖). The candidate solution of the 𝐺𝐴2 is represented

as a permutation encoding of the possible solution for the trucks sequencing and their coils

sequencing, as presented on Figure 5.2.

Figure 5.2: Example of GA2 chromosome representation

where 𝐶𝑓 is the ID of truck 𝑓 and 𝐵𝑙 is the ID of the coil that is on row 𝑙. E.g. {𝐶4, 𝐶3, 𝐶2, 𝐶1}

is a possible scheduling of trucks and {𝐵16, 𝐵14, 𝐵5} is a possible retrieval sequence of the

coils from truck 𝐶2.

To build the 𝐺𝐴2, the selection of parents, replacement, mutation and crossover operators are the

same as defined previously. However, it is assumed that the sequence of demanded coils of each

truck is also subject to order crossover with probability 𝑝𝑐 and to mutation with probability 𝑝𝑚.

We consider that the coils sequence subject to crossover and mutation are those from the trucks

that do not belong to the substring delimited by the order crossover of the trucks’ sequence,

Figure 5.3 exemplify this procedure.

With probability 𝑝𝑚, we assume that two randomly chosen coils of a truck change their position

into the coils sequence. And with the same probability, two randomly chosen trucks change their

sequencing position. The tuned parameters indicated by the analisys of the results of SPOT

(Appendix A), are given on Table 5.2.

Table 5.2: Parameters tuned the GA2

Evaluated region
Parameter Lower bound Upper bound Indicated value

Population size (𝜇) 𝐵/2 10𝐵 10
Replacement operator (𝑟𝑜) 0 = (𝜇+ 𝜆)−selection 1 = (𝜇, 𝜆)−selection 0
Crossover probability (𝑝𝑐) 0.6 1 0.8973
Mutation probability (𝑝𝑚) 0.001 0.01 0.0064

Amount of generations (𝑁𝑚𝑎𝑥) 1𝐵 50𝐵 46𝐵
where 𝐵 is the size of the instance, given by the amount of coils to be delivered

The best parameter values defined by SPOT tuning algorithm are: population size (𝜇) equals

75

Figure 5.3: Example of trucks crossover considering coils crossover

10𝐵/2 and number of generations (𝑁𝑚𝑎𝑥) equals 46𝐵, where 𝐵 represents the size of the instance.

Replacement operator (𝑟𝑜) given by (𝜇 + 𝜆)−selection, crossover probability (𝑝𝑐) and mutation

probability (𝑝𝑚) equal 89.73% and 0.64%, respectively. These parameters help characterize

𝐺𝐴2 summarized on Algorithm 3.

Algorithm 3 Genetic algorithm for the MP2 configuration

1: Randomly generate a population of 𝜇 chromosomes of 𝐽 trucks, each one with 𝑄𝑗 coils.
Each chromosome represents a candidate solution for the trucks sequencing which have an
associated sequence of their demanded coils.

2: Calculate the fitness 𝑓(𝜔) of each chromosome 𝜔 of the population.
3: Create 𝜆 offsprings.

• Select a pair of parents chromosomes.
• With probability 𝑝𝑐, an order crossover is applied to generate two offspring.

With probability 𝑝𝑚, two randomly chosen coils 𝑖 ∈ 𝑄𝑗 change their processing
position order.

• Two randomly chosen trucks change their position with probability 𝑝𝑚.
4: Replace the population.
5: Return to step 2.

The fitness is calculated as a simple transformation of the objective function in the same way

as in 𝐺𝐴1. But differently, in 𝐺𝐴2 the scheduling process of trucks and coils considers the

non-interference constraints in function of the coil’s storing position in the shed. The weighted

completion time is the value obtained after assigning the trucks to cranes following the sequence

given by the chromosome. This simple heuristic is defined in the following section.

76

5.3.1 Assignement heuristic

This heuristic should compute the weighted completion time value obtained from the assign-

ment of jobs to machines, following the sequence given by each chromosome. The assignment

procedure considers 𝑐𝑡𝑚 and 𝑐𝑡𝑛 as the current completion time of machine 𝑚 and 𝑛, both ∈ ℳ,

and 𝑐𝑡𝑚 = 𝑐𝑡𝑛 = 0 at time zero. It considers the set 𝒥 ⊆ 𝒥 of unassigned jobs and the set

𝑄𝑗 ⊆ ℬ of demanded coils from job 𝑗, where ℬ is the set of items that must be delivered in

the period of analysis. Consider the set �̄�𝑗 ⊆ 𝑄𝑗 of non-evaluated items. For example, if we

evaluate and decide where coil 𝑖 ∈ �̄�𝑗 can be processed without activating the non-interference

constraints, then 𝑖 is removed from set �̄�𝑗 . This procedure can be verified on Figure 5.4.

all the items 𝑖 ∈ 𝑄𝑗 must be processed without preemption

Figure 5.4: Flowchart of the proposed sequencing heuristic for the GA2

Returning to the example given on Table 2.1, consider that job 𝐶2 has coils sequence given

by {𝐵14, 𝐵5, 𝐵16} and 𝐶3 has items sequence equals to {𝐵90, 𝐵2}. Now consider that 𝐶2

is already assigned to machine 1 and that we need to choose the period to start processing

77

𝐶3 by machine 2. Remember that the number after 𝐵 is the row of the coil and assume

𝑝𝑖𝑚 = 1,∀𝑖 ∈ ℬ, ∀𝑚 ∈ ℳ. Then, 𝐶3 starts only when the processing of 𝐵2 and 𝐵90 on crane 2

is not blocked by crane 1, while it processes truck 𝐶2, as exemplified on Figure 5.5.

Figure 5.5: Example of sequencing trucks and coils

5.4 Results of the genetic algorithms

The genetic algorithm heuristics are implemented in C language and the computer used in the

tests is an Intel (R) Xeon (R) CPU X5690 @ 3.47GHz with 24 processors, 132 GB of RAM in

Ubuntu Linux operating system. The heuristics are tested in the same artificial instances used

in 𝑀𝑃1 and 𝑀𝑃2 problems. All of the presented results are the average of 10 replications. It

is also considered the following coils arrangement scenarios: random scenario (𝑅); scenario of

clients (𝐶); customers group scenario (𝐺𝐶), in which 𝑅 represents the random arrangement of

coils in the storage shed; 𝐶 represents the coils arrangement by customers’ row(s) and on 𝐺𝐶

scenario the coils are arranged by customer groups.

Intending to enable the performance evaluation of 𝐺𝐴1 and 𝐺𝐴2, the lower bound is considered

as the value of the objective function of a parallel machine problem, without non-interference

constraints (𝑃𝑀). However, for the 𝐺𝐴1’s evaluation, we consider that there is, in 𝑃𝑀 , a set

Ω ⊆ 𝒥 of jobs that must be processed alone, because their loading prevents the processing of all

the other jobs. In this way, the optimal solution value of this problem (𝑆𝑅) is greater than or

equals the optimal solution value obtained by the parallel machine problem without interference

78

(𝑆𝑃𝑀). Considering 𝑆* as the optimal solution obtained by the 𝑀𝑃1 problem, the relation can

be summarized as 𝑆𝑃𝑀 ≤ 𝑆𝑅 ≤ 𝑆*.

Table 5.3 and 5.4 are, respectively, a compilation of 𝐺𝐴1 and 𝐺𝐴2 performance on scenarios

𝑅, 𝐶 and 𝐺𝐶. The first column of the table represents the instance groups, which are coded

by the availability of trucks: nr, sr and vr; and by the amount of steel coils to be delivered:

{10, 20, 50, 100, 200}. The
∑︀

𝑆* column is the amount of instances optimally solved by the

mathematical model;
∑︀

𝑛𝑏 is the amount of instances without feasible solution found after

one hour of the model’s run. GAx𝑆* column presents the average gap between the optimal

solutions found by the mathematical model and the solutions value found by the GAs for the

same instances; GAx𝑆𝑓 represents the average gap between the feasible non-optimal solutions

found by the model after one hour of CPU time and the GAs’ solutions of the same instances.

Column GAx𝑆𝑅* represents the average gap between the lower bound solutions obtained for

the same optimally solved instances and the GAs solutions of the same instances; GAx𝑆𝑅𝑓

represents the average gap between the lower bound solutions obtained for the same instances

non-optimally solved with the mathematical model and the solution found by the GAs; and

GAxLB represents the average gap between the lower bound solutions value and the solutions

found by the GAs. 𝐶𝑇 * represents the average computation time spent by the mathematical

model for the optimal solved cases; and 𝐶𝑇 𝑔𝑎 represents the average computation time spent

by the GAs.

The analysis of the results show that 𝐺𝐴1 and 𝐺𝐴2 present a high gap when related with the

lower bounds from the 𝑅 scenario. This is due to the high amount of active non-interference

constraints caused by the arrangement of coils on this scenario, and the considered lower bounds

might present a high gap solution in relation to the real problem optimal solution. This can be

seen on the evaluation of the solutions of small size instances, obtained from the comparison

of column GAx𝑆* and GAx𝑆𝑅*. The 𝐺𝐴1 presents an optimality gap lower than 1.9% when

compared with optimal solutions, but has optimality gap up to 10% when compared with the

lower bounds of the same group of instances.

However, the genetic algorithms solutions are better than the feasible non-optimal solutions

found by the mathematical models. This can be seen through the negative values given on the

GAx𝑆𝑓 column.

79

𝐺𝐴1 presents better results than 𝐺𝐴2, their results are an average of 4% better than the ones

of 𝐺𝐴2. It is easy to see that both GAs’s computation time increases with the size of the

instance, this is because the amount of generations is defined as a function of the amount of

coils. 𝐺𝐴2 is slower than 𝐺𝐴1 because crossover and mutation operations are performed to the

coils sequences as well. If we limit the running time in 10 minutes, the gaps of the 200 coils’

instances will only increase an average of 0.5%. Tables 5.5 and 5.6 present the iteration and the

time in which occurred the last improvement o each group of instances.

80

Table 5.3: Results of the 𝐺𝐴1 by scenario of coil storage

GAP
inst.

∑︀
𝑆* ∑︀

𝑛𝑏 GAx𝑆* GAx𝑆𝑓 GAx𝑆𝑅* GAx𝑆𝑅𝑓 GAxLB 𝐶𝑇 * 𝐶𝑇 𝑔𝑎

Random Scenario (Scenario 𝑅)
mpr 10 10 0 0.0% 7.7% 7.7% 1 0
pr 10 10 0 0.0% 5.5% 5.5% 1 0
mr 10 10 0 0.0% 6.1% 6.1% 1 0
mpr 20 10 0 0.0% 10.0% 10.0% 11 0
pr 20 10 0 0.6% 6.8% 6.8% 14 0
mr 20 10 0 0.8% 7.5% 7.5% 14 0
mpr 50 6 0 0.8% 0.4% 6.0% 4.7% 10.8% 1417 4
pr 50 7 0 1.9% 0.3% 7.5% 6.2% 13.7% 1611 5
mr 50 7 0 0.9% 0.1% 7.0% 3.7% 10.7% 1076 5

mpr 100 0 0 -116.8% 11.3% 11.3% 47
pr 100 0 0 -103.7% 13.3% 13.3% 48
mr 100 0 0 -69.9% 12.3% 12.3% 47

mpr 200 0 6 -947.5% 13.7% 13.7% 565
pr 200 0 10 13.4% 508
mr 200 0 10 15.1% 510

Scenario of customers rows (Scenario 𝐶)

mpr 10 10 0 0.0% 5.3% 5.3% 1 0
pr 10 10 0 0.0% 1.0% 1.0% 1 0
mr 10 10 0 0.0% 1.8% 1.8% 1 0
mpr 20 10 0 0.0% 3.5% 3.5% 7 0
pr 20 10 0 0.0% 2.4% 2.4% 9 0
mr 20 10 0 0.0% 1.9% 1.9% 10 0
mpr 50 10 0 0.4% 3.0% 3.0% 196 4
pr 50 10 0 0.9% 1.6% 1.6% 267 5
mr 50 10 0 0.4% 2.9% 2.9% 249 5

mpr 100 3 0 0.2% -0.5% 0.1% 1.4% 1.6% 2201 47
pr 100 3 0 0.1% -0.7% 0.1% 1.0% 1.1% 2015 46
mr 100 4 0 0.3% -0.5% 0.3% 1.0% 1.3% 1618 45

mpr 200 0 0 -1075.2% 1.2% 1.2% 511
pr 200 0 5 -1157.9% 1.3% 1.3% 507
mr 200 0 8 -1224.9% 1.6% 1.6% 523

Scenario of grouping customers rows (Scenario 𝐺𝐶)

mpr 10 10 0 0.0% 4.3% 4.3% 1 0
pr 10 10 0 0.0% 1.2% 1.2% 1 0
mr 10 10 0 0.1% 0.5% 0.5% 1 0
mpr 20 10 0 0.0% 4.2% 4.2% 8 0
pr 20 10 0 0.0% 2.3% 2.3% 8 0
mr 20 10 0 0.2% 2.8% 2.8% 11 0
mpr 50 10 0 0.1% 2.8% 2.8% 345 5
pr 50 10 0 0.9% 1.5% 1.5% 311 5
mr 50 10 0 0.6% 3.1% 3.1% 261 5

mpr 100 3 0 0.3% -0.2% 0.2% 1.2% 1.4% 2613 50
pr 100 4 0 0.2% -0.7% 0.2% 1.0% 1.2% 2416 49
mr 100 4 0 0.2% -0.4% 0.2% 1.3% 1.5% 2000 48

mpr 200 0 0 -1201.9% 1.2% 1.2% 538
pr 200 0 6 -1161.3% 1.4% 1.4% 533
mr 200 0 8 -1215.9% 1.6% 1.6% 534

81

Table 5.4: Results of the 𝐺𝐴2 by scenario of coil storage

GAP
inst.

∑︀
𝑆* ∑︀

𝑛𝑏 GAx𝑆* GAx𝑆𝑓 GAx𝑆𝑅* GAx𝑆𝑅𝑓 GAxLB 𝐶𝑇 * 𝐶𝑇 𝑔𝑎

Random Scenario (Scenario 𝑅)
mpr 10 10 0 0.0% 2.7% 2.7% 21 0
pr 10 10 0 0.1% 4.4% 4.4% 16 0
mr 10 10 0 0.5% 1.8% 1.8% 10 0

mpr 20 0 6 -138.4% 5.6% 5.6% 1
pr 20 4 5 0.2% 0.1% 0.8% 2.4% 3.2% 1030 1
mr 20 4 1 0.8% -0.9% 0.7% 2.5% 3.2% 1236 1

mpr 50 0 10 5.3% 24
pr 50 0 10 4.2% 26
mr 50 0 10 3.3% 25

mpr 100 0 10 3.5% 242
pr 100 0 10 4.5% 315
mr 100 0 10 4.3% 233
mpr 200 0 10 4.3% 2580
pr 200 0 10 5.0% 2701
mr 200 0 10 5.0% 2704

Scenario of customers rows (Scenario 𝐶)

mpr 10 10 0 0.0% 1.2% 1.2% 13 0
pr 10 10 0 0.0% 0.7% 0.7% 12 0
mr 10 10 0 0.0% 1.7% 1.7% 11 0

mpr 20 2 2 0.0% -45.3% 0.0% 0.8% 0.8% 1342 1
pr 20 5 2 0.5% 0.1% 0.8% 0.3% 1.1% 749 2
mr 20 7 0 0.0% -13.7% 0.3% 0.3% 0.6% 781 2

mpr 50 0 10 0.7% 26
pr 50 0 10 0.4% 28
mr 50 0 10 0.7% 27

mpr 100 0 10 0.5% 253
pr 100 0 10 0.4% 251
mr 100 0 10 0.4% 249
mpr 200 0 10 0.4% 2768
pr 200 0 10 0.5% 2721
mr 200 0 10 0.6% 2744

Scenario of grouping customers rows (Scenario 𝐺𝐶)

mpr 10 10 0 0.0% 1.2% 1.2% 15 0
pr 10 10 0 0.3% 1.2% 1.2% 13 0
mr 10 10 0 0.0% 1.0% 1.0% 10 0

mpr 20 1 2 0.0% -18.5% 0.0% 1.2% 1.2% 1307 1
pr 20 7 1 0.1% -33.1% 0.4% 0.1% 0.6% 1049 2
mr 20 5 1 0.0% -0.3% 0.2% 0.1% 0.3% 1178 2

mpr 50 0 10 0.6% 25
pr 50 0 10 0.5% 28
mr 50 0 10 1.1% 27

mpr 100 0 10 0.6% 259
pr 100 0 10 0.3% 253
mr 100 0 10 0.5% 252
mpr 200 0 10 0.6% 2670
pr 200 0 10 0.6% 2594
mr 200 0 10 0.7% 2473

82

Table 5.5: Data of the last improved solution for the 𝐺𝐴1

Generation of the last improve Time of the last improve
instances Minimum Average Maximum Minimum Average Maximum

Random Scenario (Scenario 𝑅)
mpr 10 1 2 7 0 0 0
pr 10 1 31 284 0 0 0
mr 10 1 10 52 0 0 0
mpr 20 4 74 485 0 0 0
pr 20 8 62 476 0 0 0
mr 20 4 13 19 0 0 0
mpr 50 25 122 466 0 0 2
pr 50 44 324 736 0 1 3
mr 50 38 152 434 0 1 1

mpr 100 183 899 1660 3 14 27
pr 100 155 1083 2375 2 17 39
mr 100 97 1199 1917 1 18 30
mpr 200 3391 4567 5954 267 431 829
pr 200 2341 4429 5681 182 367 495
mr 200 1543 4004 5488 121 332 461

Scenario of customers rows (Scenario 𝐶)
mpr 10 1 3 6 0 0 0
pr 10 1 3 7 0 0 0
mr 10 1 5 12 0 0 0
mpr 20 6 10 18 0 0 0
pr 20 5 32 166 0 0 0
mr 20 11 106 494 0 0 1
mpr 50 22 291 1088 0 1 2
pr 50 51 373 1469 0 1 5
mr 50 44 264 1008 0 1 4

mpr 100 323 1791 2702 5 28 43
pr 100 405 1610 3071 6 24 44
mr 100 179 1594 2998 2 24 45
mpr 200 3068 4811 5887 263 396 480
pr 200 3392 5073 5995 304 413 475
mr 200 2731 4294 5240 224 363 421

Scenario of grouping customers rows (Scenario 𝐺𝐶)
mpr 10 1 2 5 0 0 0
pr 10 1 2 4 0 0 0
mr 10 1 28 241 0 0 0
mpr 20 4 14 63 0 0 0
pr 20 6 18 70 0 0 0
mr 20 8 16 25 0 0 0
mpr 50 24 123 585 0 1 2
pr 50 47 502 1508 0 2 5
mr 50 35 216 1472 0 1 6

mpr 100 147 1381 2725 3 22 43
pr 100 377 1901 2731 6 31 51
mr 100 391 1831 2978 7 28 45
mpr 200 1908 4314 6161 172 375 536
pr 200 2402 4685 6157 193 406 545
mr 200 2359 4367 6076 194 377 519

83

Table 5.6: Data of the last improved solution for the 𝐺𝐴2

Generation of the last improve Time of the last improve
instances Minimum Average Maximum Minimum Average Maximum

Random Scenario (Scenario 𝑅)
mpr 10 1 3 9 0 0 0
pr 10 1 4 9 0 0 0
mr 10 1 8 21 0 0 0
mpr 20 9 131 655 0 0 1
pr 20 12 48 197 0 0 1
mr 20 9 52 203 0 0 0
mpr 50 42 468 2017 0 5 20
pr 50 42 538 2219 0 6 23
mr 50 43 269 743 0 3 9

mpr 100 754 1479 2552 39 79 136
pr 100 388 1817 4007 20 171 950
mr 100 263 2085 4489 14 106 225
mpr 200 1807 5213 8585 479 1469 2387
pr 200 3063 5776 8673 869 1698 2560
mr 200 5928 7692 9138 1758 2262 2775

Scenario of customers rows (Scenario 𝐶)
mpr 10 1 3 6 0 0 0
pr 10 1 3 5 0 0 0
mr 10 1 4 8 0 0 0
mpr 20 1 27 195 0 0 1
pr 20 9 24 125 0 0 1
mr 20 8 17 45 0 0 0
mpr 50 25 155 464 0 2 6
pr 50 34 332 1119 0 4 14
mr 50 30 144 423 0 2 5

mpr 100 357 1950 4581 19 109 253
pr 100 387 870 1758 21 48 93
mr 100 432 1283 4073 24 70 217
mpr 200 3253 7364 9166 993 2224 2866
pr 200 2102 5694 9154 631 1697 2675
mr 200 1661 6036 9194 497 1817 2923

Scenario of grouping customers rows (Scenario 𝐺𝐶)
mpr 10 1 2 6 0 0 0
pr 10 1 3 6 0 0 0
mr 10 3 9 51 0 0 0
mpr 20 5 38 298 0 0 1
pr 20 7 13 24 0 0 1
mr 20 8 14 22 0 0 1
mpr 50 31 143 773 0 2 8
pr 50 38 269 808 0 4 11
mr 50 34 209 700 0 3 8

mpr 100 394 1080 2166 22 61 121
pr 100 194 1675 4215 11 93 236
mr 100 96 1250 3818 6 69 205
mpr 200 5116 7307 9157 1530 2130 2758
pr 200 2114 7077 9055 587 2011 2721
mr 200 3150 6651 8787 777 1813 2537

84

Chapter 6

Conclusions and further works

This work focuses on the two cranes scheduling problem of a steelmaker’s distribution center,

while considers the different coils arrangement policies in the storage shed. The cranes must

load the trucks with their demanded coils and, on this process, one crane can not overtake the

other because both move on the same trail. This crane’s displacement relation is treated through

non-interference constraints, which often appears at logistic centers and are especially found at

port terminals.

In this way, the study analyzes the scenario by different modeling perspectives, which results

in different problems with different solutions and computational complexities. We propose two

machine configuration paradigms to represent the scenario: parallel machine problems and mul-

tiprocessors problem. The scheduling problem can be understood as a multiprocessor problem,

if each truck is processed by two machines simultaneously. It also can be considered as parallel

machine problem, if each truck is completely loaded by only one of the cranes.

The multiprocessors paradigm addresses one problem referred as 𝑀𝑈𝐿𝑇𝐼, and the parallel

machine paradigm addresses two problems: 𝑀𝑃1 and 𝑀𝑃2. 𝑀𝑃1 considers only the trucks

scheduling and disregards the retrieval sequence of each coil from a truck. Because of that, it

bounds an area in the storage shed for the processed truck and prohibits the other crane to

process jobs that have coils in this area. 𝑀𝑃1 problem is formulated with time index variables

and with precedence index variables, but the computational experiments pointed out the time

index formulation as the one with best performance. In another way, 𝑀𝑃2 and 𝑀𝑈𝐿𝑇𝐼 consider

the scheduling of trucks and each one of their coils, which leads the non-interference constraints

to be function of the coils’ position into the shed.

The problems are mathematically modeled and implemented in order to concisely represent and

optimally solve the scheduling problems. The optimization criterion is defined as the minimiza-

tion of the sum of the weighted completion time of jobs, as in the real case, some customers may

have processing priorities. All the formulations are implemented in AMPL language, using the

routines of the CPLEX 12.5 in standard configuration and the developed tests from da Silva Neto

(2013) results.

The 𝑀𝑃1 configuration presents the best computational performance, since it is able to find

optimal solutions for all the instances of up to 20 coils. It can find optimal solutions for 78%

of the instances up to 100 coils, and it is able to find non-optimal feasible solutions for larger

instances than the other models. 𝑀𝑃2 finds an average of 2.9% better optimal solutions values

than 𝑀𝑃1 for small instances. 𝑀𝑈𝐿𝑇𝐼 problem is a 𝑀𝑃2 more complex version and can only

find optimal solutions for 10 coils instances. Coils arrangement by rows of customers groups

(𝐺𝐶 scenario) generates better results for all the models, while grouping coils by customers’

rows (𝐶 scenario) generates the worst solutions for 𝑀𝑈𝐿𝑇𝐼.

Even if the mathematical models can not optimally solve real size instances, they are important

in the problem’s characterization and in the evaluation process of heuristic methods. Two genetic

algorithms are developed based on the work of Lee et al. (2008) to heuristically solve the parallel

machine problems. In order to increase their performance, five genetic algorithm’s parameters

are tuned with the SPOT method. Both algorithms are implemented in C language and tested

in the same artificial instances developed for testing the mathematical models.

The two genetic algorithms present worst solutions for scenario of random coils arrangement (𝑅

scenario). This might be because the 𝑅 scenario is characterized by many active non-interference

constraints, and the considered lower bound might present high gap in relation to the optimal

solution. This does not necessarily indicates that the genetic algorithms did not find near optimal

or optimal solutions.

The genetic algorithm developed to solve the 𝑀𝑃1 problem presents results with an average of

10.5% gap from the lower bound in the 𝑅 scenario, and with an average of 2.1% gap in the 𝐶

86

and 𝐺𝐶 scenarios. While the genetic algorithm for solving the 𝑀𝑃2 problem presents results

with an average of 4% gap from the lower bound in the 𝑅 scenario, and 0.7% gap in the in the

𝐶 and 𝐺𝐶 scenarios. These high gaps resulted from the 𝑅 scenario are due to the high amount

of active non-interference constraints caused by the arrangement of coils.

There are several possible research directions to expand the work made in this dissertation, we

can mention, novel reformulation schemes for modeling the non-interference constraints, new

algorithms and approaches to efficiently solve real size instances, consideration of more real

characteristics, such as stochastic processing times, breakdowns, etc and the integration of the

scheduling decisions in the company’s Supply Chain Management.

87

Bibliography

Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne,

M., Skutella, M., Stein, C., et al. (1999). Approximation schemes for minimizing average

weighted completion time with release dates. In Foundations of Computer Science, 1999.

40th Annual Symposium on, pages 32–43. IEEE.

Allahverdi, A., Gupta, J. N. D., and Aldowaisan, T. (1999). A review of scheduling research

involving setup considerations. Omega, 27(2):219–239.

Allahverdi, A., Ng, C. T., Cheng, T. C. E., and Kovalyov, M. Y. (2008). A survey of scheduling

problems with setup times or costs. European Journal of Operational Research, 187(3):985–

1032.

Bäck, T. (1992). The interaction of mutation rate, selection and self-adaptation within a genetic

algorithm. Parallel Problem Solving from Nature 2, pages 85–94.

Bäck, T. and Schütz, M. (1996). Intelligent mutation rate control in canonical genetic algorithms.

In Foundations of intelligent systems, pages 158–167. Springer.

Baker, K. R. (1974). Introduction to sequencing and scheduling, volume 31. Wiley New York.

Bartz-Beielstein, T. (2010). Spot: An r package for automatic and interactive tuning of opti-

mization algorithms by sequential parameter optimization. arXiv preprint arXiv:1006.4645.

Bartz-Beielstein, T. (2014). Package spot. Reference manual, http: // cran. r-project. org/

web/ packages/ SPOT/ index. html . Cited 11 January 2015.

Bartz-Beielstein, T. and Zaefferer, M. (2012). A gentle introduction to sequential parameter

optimization. Technical Report 2, Bibliothek der Fachhochschule Koeln.

http://cran.r-project.org/web/packages/SPOT/index.html
http://cran.r-project.org/web/packages/SPOT/index.html

Belouadah, H., Posner, M. E., and Potts, C. N. (1992). Scheduling with release dates on a

single machine to minimize total weighted completion time. Discrete Applied Mathematics,

36(3):213–231.

Belouadah, H. and Potts, C. N. (1994). Scheduling identical parallel machines to minimize total

weighted completion time. Discrete Applied Mathematics, 48(3):201–218.

Bierwirth, C. and Meisel, F. (2009). A fast heuristic for quay crane scheduling with interference

constraints. Journal of Scheduling, 12(4):345–360.

Bierwirth, C. and Meisel, F. (2010). A survey of berth allocation and quay crane scheduling

problems in container terminals. European Journal of Operational Research, 202(3):615–627.

Chen, J. and Lee, C.-Y. (1999). General multiprocessor task scheduling. Naval Research Logis-

tics, 46(1):57–74.

Cheng, T. C. E. and Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine scheduling

research. European Journal of Operational Research, 47(3):271–292.

Chung, S. H. and Choy, K. L. (2012). A modified genetic algorithm for quay crane scheduling

operations. Expert Systems with Applications, 39:4213—-4221.

Conway, R. W., Maxwell, W. L., and Miller, L. W. (1967). Theory of scheduling. DoverPubli-

cations. com.

da Silva Neto, J. P. (2013). Montagem de cargas e sequenciamento de caminhões em um centro

de distribuição. Universidade Federal de Minas Gerais, Brasil. Dissertação de Mestrado.

de Paula, M. R., Mateus, G. R., and Ravetti, M. G. (2010). A non-delayed relax-and-cut

algorithm for scheduling problems with parallel machines, due dates and sequence-dependent

setup times. Computers & Operations Research, 37(5):938–949.

Drozdowski, M. (1996). Scheduling multiprocessor tasks—an overview. European Journal of

Operational Research, 94(2):215–230.

Eiben, A. and Smit, S. (2012). Evolutionary algorithm parameters and methods to tune them.

In Autonomous Search, pages 15–36. Springer.

Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in evolutionary

algorithms. Evolutionary Computation, IEEE Transactions on, 3(2):124–141.

89

Eiben, A. E., Michalewicz, Z., Schoenauer, M., and Smith, J. E. (2007). Parameter control

in evolutionary algorithms. In Parameter setting in evolutionary algorithms, pages 19–46.

Springer.

Eiben, A. E. and Smit, S. K. (2011). Parameter tuning for configuring and analyzing evolutionary

algorithms. Swarm and Evolutionary Computation, 1(1):19–31.

Gaiu, A. F. (2013). Sequential parameter tuning of algorithms for the vehicle routing problem.

Leiden Institute of Advanced Computer Science, Netherlands. Master’s Thesis.

Gen, M. and Cheng, R. (2000). Genetic algorithms and engineering optimization, volume 7.

John Wiley & Sons.

Glass, C., Potts, C., and Shade, P. (1994). Unrelated parallel machine scheduling using local

search. Mathematical and Computer Modelling, 20(2):41–52.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. (1979). Optimization

and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete

Mathematics. v5, pages 287–326.

Gupta, J. N. D. and Stafford Jr, E. F. (2006). Flowshop scheduling research after five decades.

European Journal of Operational Research, 169(3):699–711.

Hall, N. G. and Sriskandarajah, C. (1996). A survey of machine scheduling problems with

blocking and no-wait in process. Operations research, 44(3):510–525.

Herrmann, J. W. (2006). A history of production scheduling. In Handbook of Production

Scheduling, pages 1–22. Springer.

Hoogeveen, J. A., van de Velde, S. L., and Veltman, B. (1994). Complexity of scheduling

multiprocessor tasks with prespecified processor allocations. Discrete Applied Mathematics,

55(3):259–272.

Hoos, H. H. and Stützle, T. (2004). Stochastic local search: Foundations & applications. Elsevier.

IAB (2013). Instituto aço brasil, relatório de sustentabilidade. Dispońıvel em:

http://www.acobrasil.org.br. Acessado em 22 de janeiro de 2014.

Kim, K. H. and Park, Y.-M. (2004). A crane scheduling method for port container terminals.

European Journal of operational research, 156(3):752–768.

90

Kravchenko, S. A. and Werner, F. (2011). Parallel machine problems with equal processing

times: a survey. Journal of Scheduling, 14(5):435–444.

Lee, C.-Y. and Cai, X. (1999). Scheduling one and two-processor tasks on two parallel processors.

IIE transactions, 31(5):445–455.

Lee, C.-Y., Lei, L., and Pinedo, M. (1997). Current trends in deterministic scheduling. Annals

of Operations Research, 70:1–41.

Lee, D.-H., Wang, H. Q., and Miao, L. (2008). Quay crane scheduling with non-interference

constraints in port container terminals. Transportation Research Part E: Logistics and Trans-

portation Review, 44(1):124–135.

Lenstra, J. K., Kan, A. H. G. R., and Brucker, P. (1977). Complexity of machine scheduling

problems. Annals of Discrete Mathematics, 1:343–362.

Li, K. and Yang, S.-l. (2009). Non-identical parallel-machine scheduling research with minimizing

total weighted completion times: Models, relaxations and algorithms. Applied mathematical

modelling, 33(4):2145–2158.

Li, W., Wu, Y., Petering, M. E., Goh, M., and Souza, R. d. (2009). Discrete time model and

algorithms for container yard crane scheduling. European Journal of Operational Research,

198(1):165–172.

Lim, A., Rodrigues, B., and Xu, Z. (2007). A m-parallel crane scheduling problem with a

non-crossing constraint. Naval Research Logistics (NRL), 54(2):115–127.

Lis, J. and Lis, M. (1996). Self-adapting parallel genetic algorithm with the dynamic mutation

probability, crossover rate and population size. In Proceedings of the 1st Polish National

Conference on Evolutionary Computation, pages 324–329. Oficina Wydawnica Politechniki

Warszawskiej.

Maschietto, G., Ouazene, Y., Yalaoui, F., de Souza, M., and Ravetti, M. (2015). Two for-

mulations for non-interference parallel machine scheduling problems. 15th Symposium on

Information Control Problems in Manufacturing, Ottawa, Canada.

Maschietto, G., Ravetti, M., and de Souza, M. (2014). Two approaches of scheduling problems

in a distribution center with two cranes and interference constraint. 20th Conference of The

International Federation of Operational Research Societies, Barcelona, Spain.

91

McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management Science,

6(1):1–12.

Michalewicz, Z. (1995). Genetic algorithms, numerical optimization, and constraints. In Proceed-

ings of the Sixth International Conference on Genetic Algorithms, volume 195, pages 151–158.

Morgan Kaufmann, San Mateo, CA.

Michalewicz, Z. (1996). Genetic algorithms+ data structures= evolution programs. springer.

Min, L. and Cheng, W. (1999). A genetic algorithm for minimizing the makespan in the case of

scheduling identical parallel machines. Artificial Intelligence in Engineering, 13(4):399–403.

Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

Nessah, R., Chu, C., and Yalaoui, F. (2007). An exact method for problem. Computers &

Operations Research, 34(9):2840–2848.

Ng, W. (2005). Crane scheduling in container yards with inter-crane interference. European

Journal of Operational Research, 164(1):64–78.

Pfund, M., Fowler, J. W., and Gupta, J. N. (2004). A survey of algorithms for single and

multi-objective unrelated parallel-machine deterministic scheduling problems. Journal of the

Chinese Institute of Industrial Engineers, 21(3):230–241.

Pinedo, M. (2008). Scheduling: theory, algorithms, and systems. Springer.

Rocha, P. L., Ravetti, M. G., Mateus, G. R., and Pardalos, P. M. (2008). Exact algorithms for

a scheduling problem with unrelated parallel machines and sequence and machine-dependent

setup times. Computers & Operations Research, 35(4):1250–1264.

Shim, S.-O. and Kim, Y.-D. (2007). Scheduling on parallel identical machines to minimize total

tardiness. European Journal of Operational Research, 177(1):135–146.

Skutella, M. and Woeginger, G. J. (1999). A ptas for minimizing the weighted sum of job com-

pletion times on parallel machines. In Proceedings of the thirty-first annual ACM symposium

on Theory of computing, pages 400–407. ACM.

Tang, L., Xie, X., and Liu, J. (2014). Crane scheduling in a warehouse storing steel coils. IIE

Transactions, 46(3):267–282.

92

Thierens, D. (2002). Adaptive mutation rate control schemes in genetic algorithms. In Evolu-

tionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, volume 1, pages

980–985. IEEE.

Xie, X., Zheng, Y., and Li, Y. (2014). Multi-crane scheduling in steel coil warehouse. Expert

Systems with Applications, 41(6):2874–2885.

Yalaoui, F. and Chu, C. (2002). Parallel machine scheduling to minimize total tardiness. Inter-

national Journal of Production Economics, 76(3):265–279.

Zäpfel, G. and Wasner, M. (2006). Warehouse sequencing in the steel supply chain as a gener-

alized job shop model. International Journal of Production Economics, 104(2):482–501.

Zhu, Y. and Lim, A. (2006). Crane scheduling with non-crossing constraint. Journal of the

Operational Research Society, 57(12):1464–1471.

93

Appendix A

Sequential Parameter Optimization

Due to its high efficiency, the Sequential Parameter Optimization Toolbox (SPOT) is the defined

method to determine the parameters vector of the genetic algorithm (GA) to solve the 𝑀𝑃1

problem (𝐺𝐴1) and the 𝑀𝑃2 problem (𝐺𝐴2), described on Chapter 5. A parameters vector

comprises the values of different parameters of the GA, i.e. it represents a candidate solution

of a parameter setting. SPOT is an implementation of the Sequential Parameter Optimization

(SPO), which is an iterative model-based method of tuning algorithms. The tuning process

is based on the parameters data, and their utility delivered by the performance of the genetic

algorithm. SPO performs a multi-stage procedure where the model is updated at each iteration

with a set of new vectors and new predictions of utility in order to improve the algorithm’s

efficiency.

The goal of SPOT is the determination of good parameters settings for heuristic algorithms.

It provides statistical tools for analyzing and understanding algorithm’s performance. SPOT

is implemented as a R package, and is available in the R archive network at http://cran.

r-project.org/web/packages/SPOT/index.html. Further explanation about SPOT can be

obtained from Bartz-Beielstein (2010), which provides an exemplification on how SPOT can

be used for automatic and iterative tuning. Bartz-Beielstein and Zaefferer (2012) also give an

introductory overview about tuning with SPOT.

The key elements of the SPOT methodology are algorithm design (𝐷𝑎) and problem design

(𝐷𝑝). The first one defines ranges of parameter values that influence the behaviour of an

http://cran.r-project.org/web/packages/SPOT/index.html
http://cran.r-project.org/web/packages/SPOT/index.html

algorithm, such as crossover rate. These parameters are treated as variables 𝑝𝑎 ∈ 𝐷𝑎 in the

tuning algorithm, where 𝑝𝑎 represents the vector of parameters settings. 𝐷𝑝 refers to variables

related to the tuning optimization problem, e.g. the search space dimension.

SPOT is composed by two phases: the build of the model and its sequential improvement, as can

be see on Algorithm 4. Phase 1 determinates an initial designs population from the algorithm’s

parameter space. The observed algorithm is run 𝑘 times for each design, where 𝑘 is the number

of repetitions performed for each parameter setting and is increased in each run. Phase 2 leads

to the efficiency of the approach and is characterized by the following loop:

• update the model given the obtained data;

• generate design points and predict their utility by sampling the model;

• choose the best design vectors and run 𝑘 + 1 times the algorithm for each of them;

• new design points are added to the population and the loop restarts if the termination

criteria is not reached.

The loop simulates the use of different parameters settings, it is subject to interactions between

parameters and random effects into the experiment. SPOT uses results from algorithm runs

to build up a meta model to tune algorithms in a reproductible way. The SPOT algorithm is

exemplified by Algorithm 4.

A.1 Experimental setup

Classical works about SPOT define three different layers to analyse parameter tuning. The

first one is the application layer, considered in our case as the parallel machines paradigm with

non-interference constraints. The objective function and the problem parameters are defined at

this layer. The algorithm layer, is related to the representation of the heuristic algorithm and its

required parameters are the ones that determine the algorithm’s performance. And finally, the

design layer, where is the tuning method, tries to find good parameter settings for the algorithm

layer.

In this way we face two optimization problems: problem solving and parameter tuning. The

95

Algorithm 4 SPOT pseudocode (Bartz-Beielstein, 2010)

Phase 1: building the model
1: let 𝐴 be the tuned algorithm;
2: generate an initial population 𝑃 = {𝑝1, . . . ,𝑝𝑚} of 𝑚 parameter vectors;
3: for each 𝑝𝑖 ∈ 𝑃 do

• run 𝐴 with 𝑝𝑖 𝑘 times to determine the estimated utility 𝑢𝑖 (e.g., average function value
from 10 runs) of 𝑝𝑖;

Phase 2: using and improving the model
4: while termination criterion not true do

• let 𝑝* denote the parameter vector from 𝑃 with best estimated utility;
• let 𝑘 the number of repeats already computed for 𝑝*;

• build prediction model 𝐹 based on 𝑃 and 𝑢1, . . . ,𝑢|𝑃 |;
• generate a set 𝑃 ′ of 𝑙 new parameter vectors by random sampling;
• for each 𝑝𝑖 ∈ 𝑃 ′ do

calculate 𝑓(𝑝𝑖) to determine the predicted utility 𝐹 (𝑝𝑖);
• select set 𝑃” of 𝑑 parameter vectors from 𝑃 ′ with best predicted utility (𝑑 << 𝑙);
• run 𝐴 with 𝑝* once and recalculate its estimated utility using all 𝑘 + 1 test results;

//(improve confidence)
• update 𝑘, e.g., let 𝑘 = 𝑘 + 1;
• run 𝐴 𝑘 time with each 𝑝𝑖 ∈ 𝑃” to determine the estimated utility 𝐹 (𝑝𝑖); extend the

population by 𝑃 = 𝑃 ∪ 𝑃”;

problem solving covers the application layer and the GA of the algorithm layer and aims to

find an optimal solution for the paradigm. The parameters tuning uses a tuning method to

find the best parameter values for the GA. The fitness value is the quality measure of the first

optimization, which depends on the problem instance to be solved. Utility is the quality measure

for parameter tuning, which reflects the performance of the GA for a vector of parameters.

Thereby, the experimental setup consists of an application layer represented by six instances of

the parallel machine paradigm, showed on Table A.1. We randomly select two instances from the

group of size 20,100 and 200 coils. The genetic algorithm for the 𝑀𝑃1 problem (𝐺𝐴1) and for

the 𝑀𝑃2 problem (𝐺𝐴2) are in the algorithm layer. On the tuning layer is the SPOT method

with default SPOT-parameters, which works well for 90% of the users (Bartz-Beielstein, 2014),

their default values can be checked on the SPOT manual. To define the region of interest (ROI)

of the tuning algorithm, the type and the lower and upper bounds of the GA’s parameters are

determined as explained on Chapter 5 and are summarized on Table A.2.

96

Table A.1: sampling of instances

Type Instances from GA1 Instances from GA2

𝑌 1 t3 1 20 7 t2 1 20 8
𝑌 2 t3 1 100 2 t1 2 100 1
𝑌 3 t1 3 200 1 t2 3 200 6
𝑌 4 t1 2 20 2 t1 1 20 10
𝑌 5 t1 3 100 9 t1 2 100 5
𝑌 6 t2 1 200 8 t3 2 200 5

Table A.2: Parameter bounds for tuning the genetic algorithms

Parameter Lower bound Upper bound Type

Population size (𝜇) 𝐵/2 10𝐵 integer
Replacement operator (𝑟𝑜) 0 = (𝜇+ 𝜆)−selection 1 = (𝜇, 𝜆)−selection integer
Crossover probability (𝑝𝑐) 0.6 1 float
Mutation probability (𝑝𝑚) 0.001 0.01 float

Amount of generations (𝑁𝑚𝑎𝑥) 1𝐵 50𝐵 integer
where 𝐵 is the size of the instance, given by the amount of coils to be delivered

A.2 Results of the experiment

The SPOT algorithm, implemented in R package, is connected with the genetic algorithms

implemented on C with the aid of two callStrings, as presented bellow. The computer used in

the tests is an Intel (R) Xeon (R) CPU X5690 @ 3.47GHz with 24 processors, 132 GB of RAM,

and Ubuntu Linux operating system.

setwd(“/home/Documents/GA SPOT/”)
callString1 < − paste(“gcc -o comp main.c”)
call1 < − system(callString1, intern=TRUE)

callString2 < − paste(“./comp”, 𝜇, ro, pc, pm, 𝑁𝑚𝑎𝑥)
call2 < − system(callString2, intern=TRUE)

read the results
setwd(“/home/Documents/GA SPOT/”)
y = read.table(“result.txt”)

The results obtained by the six instances in each iteration are normalized, in order to allow

their comparison. In the normalization, given by 𝑌𝑖, zero represents the lowest value found by

instance 𝑖 in the test, and 1 represents the highest value found by this instance. All the other

values are obtained from the relation 𝑌 𝑖𝑝−𝑚𝑖𝑛𝑖

𝑚𝑎𝑥𝑖−𝑚𝑖𝑛𝑖
, where 𝑌𝑖𝑝 is the solution value of instance 𝑖

for the set of parameters 𝑝. 𝑚𝑖𝑛𝑖 and 𝑚𝑎𝑥𝑖 are, respectively, the minimun and the maximum

solution values of instance 𝑖 found in the tuning process.

We aim to find the best group of parameters, which we assume as the one with the lowest sum

of the normalized solution values of the six instances. This might not be the best statistical

97

solution, but it is the best solution indicated by the experiment without any statistical analysis.

Table A.3 and A.4 presents the five best results found by SPOT method for 𝐺𝐴1 and 𝐺𝐴2,

repectively. The first column indicates the iteration of SPOT, the second one presents the

indicated parameters vector. Columns three to eight indicate the solution value obtained by the

tested instance, columns nine to fourteen indicate the normalized solution value of the respective

instances and finally, column fifteen presents the sum of the normalized results.

The best parameters vector indicated for 𝐺𝐴1 is population size (𝜇) = 7𝐵/2, and amount

of generations (𝑁𝑚𝑎𝑥) equals 41𝐵, where 𝐵 represents the size of the instance. Replacement

operator (𝑟𝑜) is given by (𝜇+𝜆)−selection, crossover probability (𝑝𝑐) equals 0.8827 and mutation

probability (𝑝𝑚) equals 0.0057. For 𝐺𝐴2 the best vector is given by population size 𝜇 = 7𝐵/2,

amount of generations 𝑁𝑚𝑎𝑥 = 41𝐵, replacement operator 𝑟𝑜 = (𝜇 + 𝜆)−selection, crossover

probability 𝑝𝑐 = 0.8827, and mutation probability 𝑝𝑚 = 0.0057.

98

T
ab

le
A

.3
:

F
iv

e
b

es
t

p
ar

am
et

er
s

se
tt

in
gs

fo
r

th
e
𝐺
𝐴

1

it
e-

p
ar

a
m

et
er

s
se

t
so

lu
ti

on
va

lu
e

of
th

e
in

st
an

ce
s

n
o
rm

a
li

ze
d

so
lu

ti
o
n

va
lu

e
o
f

th
e

in
st

a
n

ce
s

ra
ct

io
n

p
z/

ro
/

p
c/

p
m

/
n

g
𝑌

1
𝑌

2
𝑌

3
𝑌

4
𝑌

5
𝑌

6
𝑌

1
𝑌

2
𝑌

3
𝑌

4
𝑌

5
𝑌

6
su

m

1
22

8
/

1
/

0.
9
70

5
/

0.
0
03

7
/

31
1
04

.8
4

1
77

4.
23

65
84

.0
5

15
2.

52
25

72
.1

6
73

16
.6

5
0

0
.0

2
8
9

0
.0

4
6
7

0
0
.0

2
4
1

0
.0

0
4
2

0
.1

0
3
9

1
66

1
0

/
0

/
0.

8
33

8
/

0.
0
04

3
/

27
1
04

.8
4

1
77

4.
93

66
19

.3
0

15
2.

52
25

62
.1

9
73

33
.4

5
0

0
.0

3
3
5

0
.0

5
9
5

0
0
.0

0
4
9

0
.0

1
0
6

0
.1

0
8
6

1
62

1
0

/
0

/
0.

8
33

8
/

0.
0
04

3
/

27
1
04

.8
4

1
77

6.
85

65
59

.8
5

15
2.

52
25

59
.6

1
73

96
.6

7
0

0
.0

4
6
1

0
.0

3
7
9

0
0
.0

0
0
0

0
.0

3
5
0

0
.1

1
9
0

1
21

1
0

/
1

/
0.

9
72

4
/

0.
0
02

6
/

46
1
04

.8
4

1
77

5.
89

65
10

.3
4

15
2.

52
25

84
.8

8
73

50
.3

5
0

0
.0

3
9
8

0
.0

1
9
9

0
0
.0

4
8
5

0
.0

1
7
1

0
.1

2
5
4

31
1
0

/
0

/
0.

9
94

7
/

0.
0
03

5
/

39
1
04

.8
4

1
77

4.
55

65
71

.7
6

15
2.

52
25

73
.7

3
73

94
.4

8
0

0
.0

3
1
0

0
.0

4
2
3

0
0
.0

2
7
1

0
.0

3
4
1

0
.1

3
4
5

T
ab

le
A

.4
:

F
iv

e
b

es
t

p
ar

am
et

er
s

se
tt

in
gs

fo
r

th
e
𝐺
𝐴

2

it
e-

p
ar

a
m

et
er

s
se

t
so

lu
ti

on
va

lu
e

of
th

e
in

st
an

ce
s

n
o
rm

a
li

ze
d

so
lu

ti
o
n

va
lu

e
o
f

th
e

in
st

a
n

ce
s

ra
ct

io
n

p
z/

ro
/

p
c/

p
m

/
n

g
𝑌

1
𝑌

2
𝑌

3
𝑌

4
𝑌

5
𝑌

6
𝑌

1
𝑌

2
𝑌

3
𝑌

4
𝑌

5
𝑌

6
su

m

1
34

1
0

/
0

/
0.

8
97

3
/

0.
0
06

4
/

46
8
6.

7
2

19
66

.8
2

57
59

.1
8

12
6.

62
20

74
.0

0
57

51
.4

0
0

0
.0

1
4
1

0
.0

2
6
1

0
.1

0
7
3

0
0
.0

3
1
6

0
.1

7
9
1

1
28

1
0

/
0

/
0.

8
97

3
/

0.
0
06

4
/

46
8
6.

7
2

19
99

.1
9

57
33

.9
0

12
4.

88
20

97
.9

2
56

82
.2

0
0

0
.1

0
0
7

0
.0

0
9
9

0
.0

2
9
2

0
.0

7
7
5

0
0
.2

1
7
4

1
42

1
0

/
0

/
0.

7
59

0
/

0.
0
03

5
/

30
8
6.

7
2

19
61

.5
6

57
46

.4
1

12
6.

26
21

06
.4

2
57

13
.5

7
0

0
0
.0

1
7
9

0
.0

9
1
0

0
.1

0
5
0

0
.0

1
4
3

0
.2

2
8
3

1
31

1
0

/
0

/
0.

8
97

3
/

0.
0
06

4
/

46
8
6.

7
2

19
78

.2
3

57
40

.6
1

12
6.

62
20

87
.3

0
57

51
.5

1
0

0
.0

4
4
6

0
.0

1
4
2

0
.1

0
7
3

0
.0

4
3
1

0
.0

3
1
7

0
.2

4
0
9

1
78

1
0

/
0

/
0.

8
52

5
/

0.
0
05

6
/

37
8
6.

7
2

19
91

.5
4

57
42

.3
8

12
6.

62
20

82
.9

2
57

48
.2

3
0

0
.0

8
0
3

0
.0

1
5
3

0
.1

0
7
3

0
.0

2
8
9

0
.0

3
0
2

0
.2

6
1
9

99

	Introduction
	Goals
	Published works
	Organization of the dissertation

	Context of the study
	The distribution center scenario
	Operations of the distribution center

	Analyzed scenario
	Machine environments

	Literature review
	Scheduling problems
	Minimizing wjCj
	Parallel machines
	Multiprocessors
	Non-interference constraints
	Synthesis of the literature reviews
	Evaluation of the computational complexity hierarchy

	Genetic algorithm
	Parameters setting

	Mathematical formulations
	Notation
	Parallel machine paradigm
	MP1 configuration
	MP2 configuration

	Multiprocessors paradigm
	MULTI configuration

	Computational experiments
	Instances definition
	Results of the mathematical models

	Genetic algorithms
	Parameters definition
	Parameters tuning

	Genetic algorithm to solve MP1
	Assignement heuristic

	Genetic algorithm to solve MP2
	Assignement heuristic

	Results of the genetic algorithms

	Conclusions and further works
	Bibliography
	Sequential Parameter Optimization
	Experimental setup
	Results of the experiment

