UNIVERSIDADE FEDERAL DE MINAS GERAIS

PROGRAMA DE PÓS-GRADUAÇÃO EM SANEAMENTO, MEIO AMBIENTE E RECURSOS HÍDRICOS

AVALIAÇÃO DA QUALIDADE DAS ÁGUAS SUPERFICIAIS DA SUB-BACIA DO RIO PARACATU EM FUNÇÃO DO USO E OCUPAÇÃO DO SOLO

Thaís Baêta Costa Barbosa

Belo Horizonte 2015

AVALIAÇÃO DA QUALIDADE DAS ÁGUAS SUPERFICIAIS DA SUB-BACIA DO RIO PARACATU EM FUNÇÃO DO USO E OCUPAÇÃO DO SOLO

Thaís Baêta Costa Barbosa

AVALIAÇÃO DA QUALIDADE DAS ÁGUAS SUPERFICIAIS DA SUB-BACIA DO RIO PARACATU EM FUNÇÃO DO USO E OCUPAÇÃO DO SOLO

Dissertação apresentada ao Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Mestre em Saneamento, Meio Ambiente e Recursos Hídricos.

Área de concentração: Meio Ambiente Linha de pesquisa: Avaliação e gerenciamento de impactos e de riscos ambientais

Orientadora: Sílvia Maria Alves Corrêa Oliveira

Belo Horizonte
Escola de Engenharia da UFMG
2015

B238a

Barbosa, Thaís Baêta Costa.

Avaliação da Qualidade das Águas Superficiais da Sub-bacia do rio Paracatu em função do Uso e Ocupação do Solo [manuscrito] / Thaís Baêta Costa Barbosa.- 2015.

156 f., enc.: il.

Orientadora: Sílvia Maria Alves Corrêa Oliveira.

Mestrado (dissertação) - Universidade Federal de Minas Gerais, Escola de Engenharia.

Apêndices: f.86-156.

Bibliografia: f.81-85.

1. Engenharia sanitária - Teses. 2. Meio ambiente - Teses. 3. Água - Qualidade - Teses. 4. Solo – Uso - Teses. 5. Análise multivariada - Teses. 6. Paracatu, Rio (MG) -Teses. I. Oliveira, Sílvia Maria Alves Corrêa. II. Universidade Federal de Minas Gerais, Escola de Engenharia. III. Título.

CDU: 628(043)

UFMG

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Engenharia

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos Avenida Antônio Carlos, 6627 - 4º andar - 31270-901 - Belo Horizonte - BRASIL Telefax: 55 (31) 3409-1882 - posgrad@desa.ufmg.br http://www.smarh.eng.ufmg.br

FOLHA DE APROVAÇÃO

Avaliação da qualidade das águas Superficiais da sub-bacia do rio Paracatu em função do uso e ocupação do solo.

THAÍS BAÊTA COSTA BARBOSA

Dissertação defendida e aprovada pela banca examinadora constituída pelos Senhores:

Prof^a Sílvia Maria Alves Corrêa Oliveira - Orientador

Prof Mônica Maria Diniz Leão

Prof. CRISTIANO CHRISTOFARO MATOSINHOS

Prof Wanderlene Ferreira Nacif

Aprovada pelo Colegiado do PG SMARH

Profa. Juliana Calábria de Araújo

Coordenadora

Belo Horizonte, 26 de fevereiro de 2015.

Versão Final aprovada por

Profa. Sílvia Maria Alves Corrêa Oliveira

Orientadora

AGRADECIMENTOS

Agradeço em primeiro lugar à Sílvia, minha orientadora e primeira incentivadora no PPGSMARH. Agradeço pelo carinho, pelos ensinamentos, pela disponibilidade e até pelos "puxões de orelha" merecidos. Agradeço à ela e também à professora Camila que me apoiaram quando passei por um momento difícil durante a realização do mestrado. Agradeço aos demais professores por todos ensinamentos e aos funcionários do Departamento pelo apoio.

Agradeço também à Giovanna, à Malu e à Elizângela que foram companheiras da "salinha", compartilharam medos, dúvidas, gargalhadas, cookies e pães de mel, além é claro das ajudas essenciais nas análises estatísticas que não acabavam nunca. Sem elas, o mestrado não teria a mesma graça. Agradeço também à Dayse que compartilhou com a gente a sua sala e também aos demais colegas do mestrado pela amizade e companheirismo do dia-a-dia.

Agradeço ainda ao IGAM que forneceu os dados essenciais para elaboração desse estudo, ao Politácito e ao Alessandro que tão prontamente nos receberam e nos ajudaram com a obtenção das imagens de satélite. Agradeço, primeiramente, à Dalila por ter me apresentado o professor Rodrigo e agradeço imensamente ao professor Rodrigo, do IGC, que me recebeu sem nem saber quem eu era e teve um papel essencial na elaboração dos mapas, agradeço pelos ensinamentos e pela disponibilidade em me atender. Agradeço também à Joselaine, do IGAM, que me cedeu dados importantes para a elaboração da dissertação. Agradeço ao CNPq, à Fapemig e a banca que aceitou o convite e teve a disponibilidade de avaliar essa dissertação.

Agradeço imensamente à minha mãe pelo apoio total e incondicional, pelo amor e carinho nas horas que mais precisei e pensei em desistir e por não ter me deixado desistir também. Agradeço ao meu pai, companheiro de todas as horas e que soube entender minha ausência em alguns momentos, agradeço também pelo amor, carinho e paciência de sempre e também por ter me ensinado há muito tempo atrás a importância do Excel, meu fiel companheiro dessa dissertação. Agradeço ao Rômulo por todo o amor e carinho e pelas palavras que sempre me acalmam e me tranquilizam. Agradeço a Tê, minha "boadrasta", por todo o carinho, paciência e ensinamentos e também por ter me apresentado o DESA. Agradeço aos demais familiares e amigos que mesmo que não saibam tiveram um papel importantíssimo na realização desse mestrado.

i

RESUMO

O monitoramento das águas superficiais é uma importante atividade para análise de qualidade das mesmas, porém o monitoramento gera um banco de dados muito extenso e complexo que na maioria das vezes é subutilizado. Esses bancos de dados podem fornecer informações importantes sobre a qualidade das águas de determinado curso d'água se forem tratados e interpretados corretamente. A análise dessas séries históricas geradas em programas de monitoramento podem revelar tendências de elevação ou redução de parâmetros de qualidade e semelhanças entre diferentes estações de monitoramento. Muitas vezes esses resultados podem apontar uma otimização da rede de monitoramento proposta e, consequentemente, a redução dos custos associados aos programas de monitoramento.

Nesse estudo buscou-se relacionar o uso e ocupação do solo da bacia do rio Paracatu com a qualidade das águas superficiais. Essa bacia foi escolhida para análise no presente estudo por ser uma das mais importantes sub-bacias do rio São Francisco. Para a realização dessa análise foram avaliados 34 parâmetros de qualidade das águas em 27 estações de monitoramento controladas pelo IGAM (Instituto Mineiro de Gestão das Águas) entre o período de 2006 a 2013.

Técnicas estatísticas, análise de violações de parâmetros de acordo com a legislação específica e análises temporais aliadas aos dados demográficos, de saneamento, de outorgas concedidas, de atividades licenciadas e a elaboração de mapas temáticos de cobertura do solo permitiram a análise do banco de dados de qualidade da água da bacia do rio Paracatu relacionando-o ao uso e ocupação do solo local. A análise forneceu importantes informações como por exemplo, a atividade mais comum na bacia é a agricultura e essa atividade impacta a qualidade da água, porém, não tanto quanto a falta de saneamento básico nos municípios pertencentes à bacia que acabam elevando os níveis de coliformes termotolerantes. Outra atividade que tem grande impacto na bacia é a mineração, que eleva os níveis de arsênio em algumas estações de monitoramento. Todas os resultados da metodologia utilizada nesse estudo foram congruentes e complementares, além de corroborarem o fato de que o uso e ocupação do solo tem impacto direto na qualidade da água superficial.

ABSTRACT

Monitoring of surface water is an important activity for analysis of its quality, but it generates a very large and complex database that most often is underutilized. These databases provide important information on water quality when they are compiled and interpreted correctly. The analysis of the data generated during long-term monitoring programs reveals a tendency for elevation or reduction of the quality parameters and similarities between different monitoring sites. Often they result in an optimization of the monitoring program, and consequently a reduction in the costs of these programs.

In this study, the objective was to relate the use and occupation of the land of the Paracatu river basin with the quality of surface water. The basin is evaluated in this study because of it's the significance, being one of the most important river sub-basins of the São Francisco river, which is one of the most important rivers in Brazil. In this analysis, 34 parameters of water quality in 27 monitoring sites controlled by IGAM (*Instituto Mineiro de Gestão das Águas*) between 2006 and 2013 were evaluated.

Statistical techniques, analysis of the violations of the parameters established by specific legislation and temporal analysis combined with information regarding demographics, sanitation, grants which have been awarded, licensed activities and thematic maps have allowed us to relate the water quality in the basin of the Paracatu river to the use and occupation of its land. These analyses have provided important information, such as the fact that the most common activity in the basin is agriculture. This activity has an impact on water quality, but not as much as the lack of sanitation in the cities of the basin, which ends up raising fecal coliform levels. Another activity that has impact in the basin is mining, which raises the arsenic levels at some monitoring sites. All the methodology used in this study produced congruent and complementary results, and corroborate the conclusion that land use has a direct impact on the quality of surface waters.

SUMÁRIO

			JRAS	
			ADROS	
			ELAS	
LIS	STA D	DE ABR	EVIATURAS, SIGLAS E SÍMBOLOS	X
1	II	NTROE	PUÇÃO	1
2			/OS	
	2.1		TIVO GERAL	
	2.2	OBJE	TIVOS ESPECÍFICOS	3
3	R	EVISÃ	O BIBLIOGRÁFICA	4
	3.1	QUA	IDADE DAS ÁGUAS	4
	3.2	Mon	ITORAMENTO DA QUALIDADE DAS ÁGUAS	
	3	.2.1	Monitoramento da qualidade das águas no estado de Minas Gerais	
	3.3	TÉCN	ICAS ESTATÍSTICAS MULTIVARIADAS PARA A ANÁLISE DE DADOS DE QUALIDADE DA ÁGUA	
	_	.3.1	Análise de Cluster	
	_	.3.2	Análise de Componentes Principais	
	3.4		ise de Tendência de Séries Temporais de qualidade da água	
			OCUPAÇÃO DO SOLO E QUALIDADE DA ÁGUA	
	_	.5.1	Mapas temáticos de cobertura do solo	
	3	.5.2	Estudos que relacionaram uso e ocupação do solo com qualidade das águas	14
4	N	/IETOD	OLOGIA	16
	4.1	ÁREA	DE ESTUDO	16
	4	.1.1	Localização	17
	4	.1.2	Características	
	4	.1.3	Estações de Monitoramento	
	4.2		NIZAÇÃO E SISTEMATIZAÇÃO DOS DADOS DE MONITORAMENTO DE QUALIDADE DAS ÁGUAS	
	4.3		ULO DA ESTATÍSTICA DESCRITIVA	
	4.4		E OCUPAÇÃO DO SOLO NA BACIA DO RIO PARACATU	
		.4.1	Dados demográficos	
		.4.2	Dados de Saneamento	
		.4.3	Atividades Licenciadas	
		.4.4	Outorgas Concedidas	
		.4.5	Elaboração de Mapas Temáticos	
	4.5		IAÇÃO ESPACIAL DA QUALIDADE DA ÁGUA NA BACIA DO RIO PARACATU	
		.5.1	Agrupamento das estações de monitoramento segundo suas similaridades	
		.5.2	Determinação dos parâmetros responsáveis pelos agrupamentos	
	4.6	.5.3 Anál	Análise do percentual de violações ISE DE TENDÊNCIA TEMPORAL	
5			ADOS / DISCUSSÃO	
	5.1		ULO DA ESTATÍSTICA DESCRITIVA	
	5.2		OCUPAÇÃO DO SOLO NA BACIA DO RIO PARACATU	
	_	.2.1	Dados de Sanagmento	
	_	.2.2	Dados de Saneamento	
	_	.2.3	Atividades Licenciadas	
	_	.2.4	Outorgas Concedidas	
		.2.5	Elaboração de Mapas Temáticos	
			IAÇÃO ESPACIAL DA QUALIDADE DA ÁGUA NA BACIA DO RIO PARACATU	
	5	.3.1	Agrupamento das estações de monitoramento segundo suas similaridades	51

5.3.2 D	eterminação dos parâmetros responsáveis pelos agrupamentos	55
5.3.2.1	Grupo 6 (duas estações de monitoramento)	55
5.3.2.2	Grupo 7 (oito estações de monitoramento)	58
5.3.2.3		
5.3.3 A	nálise do percentual de violações	
	DE TENDÊNCIA TEMPORAL	
6 CONSIDER	AÇÕES FINAIS	78
7 RECOMEN	DAÇÕES	80
REFERÊNCIAS BI	BLIOGRÁFICAS	81
APÊNDICES		86
APÊNDICE I		87
APÊNDICE II		115
APÊNDICE IV		119

LISTA DE FIGURAS

Figura 4.1 Mapa de localização da bacia do rio Paracatu
Figura 4.2 Mapa de localização dos municípios da bacia do rio Paracatu e das estações de monitoramento
Figura 5.1 Gráfico da população dos municípios pertencentes à bacia do rio Paracatu nos anos de 2007, 2010 e 2014
Figura 5.2 Gráfico da Densidade Demográfica (hab/km²) para os municípios da bacia do rio Paracatu com base em dados do ano de 2010
Figura 5.3 Gráfico das atividades licenciadas na bacia do rio Paracatu (1984 a 2014)43
Figura 5.4 Imagem de satélite da atividade minerária em Paracatu
Figura 5.5 Imagens históricas de satélite mostrando a evolução da atividade minerária em Paracatu nos anos de 2003, 2010 e 2014
Figura 5.6 Imagem de satélite dos pivôs centrais próximos ao rio Paracatu em Brasilândia de Minas
Figura 5.7 Imagem de satélite dos pivôs centrais próximos ao ribeirão Entre Ribeiros e o rio Paracatu
Figura 5.8 Percentual das vazões outorgadas nos municípios da bacia do rio Paracatu de acordo com o uso da água
Figura 5.9 Percentual das vazões outorgadas na bacia do rio Paracatu
Figura 5.10 Gráfico das Distâncias de Ligação nas quais os grupos foram formados ao longo dos passos de agrupamentos
Figura 5.11 Dendograma da Análise de Cluster para as coletas trimestrais do período de 2006 a 2013: 27 estações, 8 anos de série histórica e 13 parâmetros
Figura 5.12 Localização das estações de monitoramento representadas de acordo com o resultado da Análise de Cluster
Figura 5.13 Gráfico <i>Scree Plot</i> com os autovalores e a variabilidade acumulada dos CP obtidos na ACP para o Grupo 6

Figura 5.14 Gráfico das cargas dos dois primeiros Componentes Principais (CP1 x CP2) do Grupo 6
Figura 5.15 Gráfico <i>Scree Plot</i> com os autovalores e a variabilidade acumulada dos CP obtidos na ACP para o Grupo 7
Figura 5.16 Gráficos das cargas dos dois primeiros Componentes Principais (CP1 x CP2) do grupo 7
Figura 5.17 Gráfico <i>Scree Plot</i> com os autovalores e a variabilidade acumulada dos CPs obtidos na ACP para o Grupo 8
Figura 5.18 Gráficos das cargas dos dois primeiros Componentes Principais (CP1 x CP2) do grupo 8
Figura 5.19 Gráficos <i>box-plot</i> para o parâmetro Coliformes termotolerantes
Figura 5.20 Gráfico da Tendência Temporal do parâmetro Arsênio Total nas estações PT005 e PTE023 entre os anos de 2006 e 2013
Figura 5.21 Gráfico da Tendência Temporal do parâmetro Coliformes Termotolerantes nas estações PT011, PTE015 e PTE033 em escala logarítmica entre os anos de 2006 e 201372
Figura 5.22 Gráfico da Tendência Temporal do parâmetro Coliformes Termotolerantes nas estações PT011, PTE015 e PTE033 em escala logarítmica entre os anos de 2006 e 201373
Figura 5.23 Mapa representando a tendência temporal do parâmetro Cloreto total para as estações de monitoramento da bacia do rio Paracatu
Figura 5.24 Mapa representando a tendência temporal do parâmetro Coliformes termotolerantes para as estações de monitoramento da bacia do rio Paracatu
Figura 5.25 Mapa representando a tendência temporal do parâmetro Cor verdadeira para as estações de monitoramento da bacia do rio Paracatu
Figura 5.26 Mapa representando a tendência temporal do parâmetro Fenóis totais para as estações de monitoramento da bacia do rio Paracatu
Figura 5.27 Mapa representando a tendência temporal do parâmetro Fósforo total para as estações de monitoramento da bacia do rio Paracatu
Figura 5.28 Mapa representando a tendência temporal do parâmetro Oxigênio dissolvido para as estações de monitoramento da bacia do rio Paracatu
774

LISTA DE QUADROS

Quadro 3.1 Estudos que avaliaram a qualidade das águas e suas relações com o uso e ocupação
do solo local
Quadro 4.1 Estações de monitoramento na bacia do rio Paracatu, cursos d'água, descrição, data
de implantação e municípios onde estão localizadas
Quadro 4.2 Nome, notação de referência e unidade dos parâmetros selecionados para análise
no presente estudo
Quadro 4.3 Classes de Enquadramento dos corpos d'água onde estão localizadas as estações
de monitoramento da bacia do rio Paracatu
Quadro 4.4 Definição dos resultados da análise de tendência temporal

LISTA DE TABELAS

Tabela 4.1 Áreas dos municípios pertencentes à bacia do rio Paracatu e participação desses municípios na bacia 25
Tabela 4.2 Limites preconizados pela Deliberação Normativa COPAM/CERH nº01/0833
Tabela 5.1 Dados de captação de água e índices de coleta e tratamento de esgoto dos 16 municípios da bacia do rio Paracatu 40
Tabela 5.2 Coleta e destinação de resíduos sólidos nos municípios da bacia do Paracatu 41
Tabela 5.3 Atividades licenciadas por município na bacia do rio Paracatu 43
Tabela 5.4 Áreas das classes identificadas nos mapas temáticos de cobertura do solo nos anos de 2006 e 2013
Tabela 5.5 Índice Kappa e o correspondente desempenho da classificação 50
Tabela 5.6 Matriz de Confusão da Classificação para o mapa temático do ano de 200651
Tabela 5.7 Matriz de Confusão da Classificação para o mapa temático do ano de 201351
Tabela 5.8 Valores das distâncias de ligação nas quais os agrupamentos foram formados ao longo dos passos de agrupamento 52
Tabela 5.9 Estações de monitoramento dentro de cada agrupamento da AC
Tabela 5.10 Resultado da ACP com as cargas obtidas para cada CP no grupo 6
Tabela 5.11 Resultado da ACP com as cargas obtidas para cada CP no grupo 759
Tabela 5.12 Resultado da ACP com as cargas obtidas para cada CP no grupo 862
Tabela 5.13 Quantidade de estações de monitoramento que tiveram o parâmetro de qualidade de água violado 64
Tabela 5.14 Porcentagem de ocorrência de violações por estação de monitoramento na bacia do rio Paracatu 67
Tabela 5.15 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PT001 – período de 2006 a 2013
Tabela 5.16 Resultados dos testes de tendência temporal das concentrações dos 18 parâmetros analisados na sub-bacia do rio Paracatu no período de 2006 e 201371

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

°C Graus Celsius

μ Média

σ Desvio-padrão

μg/L Microgramas por litro

μmho/cm Micromhos por centímetro

AAF Autorização Ambiental de Funcionamento

AC Análise de Cluster

ACP Análise de Componentes Principais

AIQ Amplitude interquartis

Al Alumínio

Al_{diss} Alumínio dissolvido

As Arsênio

As_T Arsênio total

ANA Agência Nacional de Águas

Ba Bário

Ba_T Bário total

B Boro

B_T Boro total

C₆H₅OH Fenol (ácido fênico)

Cd Cádmio

Cd_T Cádmio total

CE Condutividade elétrica in loco

CERH Conselho Estadual de Recursos Hídricos

Cl-a Clorofila a

Cl Cloro

Cl⁻T Cloreto total

CN Cianeto

CN⁻ Cianeto livre

Coli. term. Coliformes termotolerantes

COPAM Conselho Estadual de Política Ambiental

Cor Cor verdadeira

CP Componente Principal

Cr Cromo

Cr_T Cromo total

Cu Cobre

Cu_{diss} Cobre dissolvido

DBO Demanda Bioquímica de Oxigênio

DN Deliberação Normativa

EPA Environmental Protection Agency

FEAM Fundação Estadual do Meio Ambiente

Fe Ferro

Fediss Ferro dissolvido Fen_T Fenóis totais

hab/km² Habitantes por quilômetro quadrado

Ho Hipótese nula

IBGE Instituto Brasileiro de Geografia e Estatística

IGAM Instituto Mineiro de Gestão das Águas

km Quilômetros

km² Quilômetros quadrados

LD Limite de detecção

m Metros

mg/L Miligrama por litro

Mn Manganês

Mn_T Manganês total

N Nitrogênio

NASA National Aeronautics and Space Administration

Ni Níquel

Ni_T Níquel total

NMP/100 ml Número mais provável de coliformes termotolerantes em 100 mL da amostra

N-NH₄⁺_T Nitrogênio amoniacal total

N-NO₃ Nitrato NO₂ Nitrito O₂ Oxigênio

OD Oxigênio dissolvido

P Fósforo

Pb Chumbo

Pb_T Chumbo total

pH pH in loco

Pt Platina

P_T Fósforo total

Q₁ Primeiro quartil

Q₃ Terceiro quartil

S Enxofre

S⁻² Sulfeto

SDT Sólidos dissolvidos totais

Se Selênio

Se_T Selênio total

SIG Sistema de Informações Geográficas

SNIS Sistema Nacional de Informações sobre Saneamento

SO₄ Sulfato

SO₄-2_T Sulfato total

SST Sólidos Suspensos totais

ST Sólidos totais

SUPRAM NOR Superintendência Regional de Meio Ambiente e Desenvolvimento

Sustentável do Noroeste de Minas Gerais

T_{H2O} Temperatura da água

Turb. Turbidez

UNT Unidades Nefelométricas de Turbidez

UPGRH Unidade de Planejamento e Gestão de Recursos Hídricos

USGS United States Geological Survey

Zn Zinco

Zn_T Zinco total

1 INTRODUÇÃO

A vida humana, assim como a de todos os seres vivos depende da água. O homem utiliza água para diversas atividades do dia-a-dia, seja água para beber, tomar banho ou para lavar as casas, roupas e equipamentos. Cada uma dessas atividades exige um nível de qualidade de água mínimo, por exemplo, para beber, é necessário que a água seja potável, ou seja, ela deve ser incolor, insipida e inodora, além de ter que estar livre de materiais tóxicos e de microrganismos.

As próprias atividades realizadas pelo homem utilizando a água, acabam por comprometer a qualidade das mesmas, uma vez que essas águas retornam, se não forem antes tratadas, com pior qualidade para o corpo d'água mais próximo. Por isso é importante que sejam realizados programas de monitoramento e análises constantes nos corpos d'água para avaliar se a qualidade do corpo d'água atende ao uso que será feito dela.

Em outras palavras, o monitoramento e a avaliação da qualidade das águas são de extrema importância para a gestão dos recursos hídricos. Porém, programas de monitoramento de qualidade de águas geram matrizes muito extensas, complexas e de difícil interpretação. Muitas vezes, o monitoramento não atinge o seu principal objetivo que é o de analisar de maneira mais profunda o nível de qualidade das águas de um corpo d'água, sendo também, os bancos de dados gerados pelos programas de monitoramento, na maioria das vezes, subutilizados. Dessa forma, são necessários estudos que envolvam técnicas avançadas de análise desse extenso banco de dados, para que esses dados brutos coletados pelas estações de monitoramento se transformem em resultados que interessam à população próxima desses cursos d'água.

O Instituto Mineiro de Gestão das Águas (IGAM) é o responsável pelo monitoramento das águas superficiais e subterrâneas do estado de Minas Gerais e desde 1997 realiza o monitoramento da bacia do rio São Francisco através do Projeto Águas de Minas. O presente estudo tem o objetivo principal de realizar uma análise do banco de dados de monitoramento gerado pelo IGAM para a sub-bacia do rio São Francisco, a bacia do rio Paracatu, em relação ao uso e ocupação do solo do local.

Para a realização dessa análise foram coletados dados de uso e ocupação do solo da região, como dados demográficos, dados de saneamento, atividades licenciadas e outorgas concedidas.

Esses dados foram analisados a fim de confirmar os resultados de testes estatísticos realizados para avaliar a qualidade das águas superficiais da bacia do rio Paracatu. Além da estatística descritiva e da análise do percentual de violações dos parâmetros de acordo com a Deliberação Normativa Conjunta COPAM/CERH 01/08 (COPAM/CERH, 2008), os testes estatísticos realizados foram: Análise de Cluster e Análise de Componentes Principais, para avaliação espacial da qualidade da água; além dos testes de Correlação de Spearman, Teste de Kruskal-Wallis, Teste de Mann-Kendall e Teste Sazonal de Mann-Kendall para avaliação de tendência temporal dos dados de monitoramento da bacia do rio Paracatu.

Essa dissertação foi organizada em sete capítulos, a saber: Introdução, Objetivos, Revisão Bibliográfica, Metodologia, Resultados/Discussão, Considerações Finais e Recomendações. Os testes estatísticos e a análise de uso e ocupação do solo foram avaliados em conjunto em todos os capítulos, de modo que um sempre foi complementar ao outro, confirmando as interpretações dos resultados.

2 OBJETIVOS

2.1 Objetivo geral

O objetivo geral dessa pesquisa é avaliar a qualidade das águas superficiais da sub-bacia do rio Paracatu, inserida na bacia do rio São Francisco, em função do uso e ocupação do solo.

2.2 Objetivos específicos

- Avaliar espacialmente as estações de monitoramento da sub-bacia de acordo com os parâmetros de qualidade monitorados e o uso e ocupação do solo;
- identificar os parâmetros com maiores porcentagens de violações em cada estação de monitoramento da bacia;
- estudar as tendências temporais dos parâmetros de qualidade de água da bacia do rio
 Paracatu em função do uso e ocupação do solo.

3 REVISÃO BIBLIOGRÁFICA

3.1 Qualidade das águas

A qualidade da água de um rio pode variar de acordo com diversos fatores incluindo o clima da região, o relevo e as atividades antrópicas. A qualidade da água é um termo amplo que abrange todas as características físicas, químicas e biológicas de um corpo d'água. Sendo assim, a qualidade da água de uma região pode ser influenciada tanto por processos naturais (erosão, precipitação) como por processos antrópicos (lançamento de esgotos, irrigação, indústrias, mineração). Dessa forma, pode-se inferir que o uso e ocupação dos solos afetam diretamente a qualidade das águas do local.

A ação humana pode causar pequenas ou grandes alterações nos corpos d'água, dependendo da atividade. Em geral, a presença de industrialização acarreta as maiores cargas de poluentes para os ambientes aquáticos, mas a simples presença da urbanização e as atividades agrícolas são também importantes geradores de poluição (BECHINI & CASTOLDI, 2009; MADRID *et al.*, 2008; SANTOS *et al.*, 2006 *apud* SCHNEIDER *et al*, 2011). A água utilizada nas cidades retorna modificada, e muitas vezes, contaminadas aos rios, consequência do alto nível de urbanização e de atividades antrópicas como a industrialização e a agricultura.

Sendo assim, observa-se também que a poluição das águas tem como origem diversas fontes associadas ao tipo de uso e ocupação do solo. Nesse sentido, destaca-se entre outros setores industriais, a mineração, pela significativa interação com os recursos hídricos superficiais e subterrâneos e as especificidades do uso da água.

Alguns parâmetros frequentemente utilizados para análises de qualidade de águas são: oxigênio dissolvido, temperatura, alcalinidade, coliformes termotolerantes, condutividade, DBO (Demanda Bioquímica de Oxigênio), DQO (Demanda Química de Oxigênio), entre outros. Esses indicadores de qualidade são bastante conhecidos, porém a forma como eles interagem e o resultado dessa interação varia de local para local devido às influências naturais e antrópicas, sendo difícil generalizar ou predizer os resultados das análises de qualidade de água (ZHANG *et al.*, 2011). A importância da análise temporal desses dados é devido às influências exteriores ao corpo d'água, de modo a analisar os fatores que beneficiam ou que prejudicam a qualidade

das águas. Por isso, surge a importância de um programa de monitoramento cuidadoso da qualidade da água que, segundo Simeonov *et al* (2002), é uma das maiores prioridades em termos de política de proteção ambiental.

3.2 Monitoramento da qualidade das águas

O monitoramento e a avaliação da qualidade das águas superficiais e subterrâneas são fatores primordiais para a adequada gestão dos recursos hídricos. Permitem a caracterização e a análise de tendências em bacias hidrográficas, sendo essenciais para várias atividades, tais como planejamento, outorga, cobrança, enquadramento dos cursos de água (ANA, 2009) e estratégias importantes para o manejo sustentável do uso da água (BU *et al.*, 2010). A avaliação da qualidade da água inclui monitoramento, análise dos dados, elaboração de relatórios e disseminação de informações sobre as condições do ambiente aquático (BOYACIOGLU & BOYACIOGLU, 2008).

Os programas de monitoramento geram bancos de dados extensos e complexos que permitem fazer uma avaliação temporal dos parâmetros de qualidade das águas, além de criar um banco de dados de séries históricas de diversos parâmetros. É essa grande quantidade de dados que possibilita a realização de estudos como esse, a fim de analisar a qualidade das águas.

A existência dessas séries históricas de dados e sua interpretação permitem uma melhor compreensão da evolução temporal da qualidade ambiental e sua correlação com outros fenômenos, climáticos ou econômicos, indicando prioridades para a elaboração de ações de controle, fiscalização, investimentos ou de legislações específicas que levem à proteção e/ou à melhoria da qualidade ambiental (LAMPARELLI, 2004).

Além de servirem para o estabelecimento de políticas ambientais, os resultados do monitoramento devem ser utilizados para informar o público em geral. Este tipo de informação tem sido cada vez mais cobrado das agências ambientais governamentais, uma vez que há uma crescente consciência de que estes aspectos estão vinculados à qualidade de vida da população (LAMPARELLI, 2004).

Programas de monitoramento por um longo período e em vários pontos de amostragem produzem uma grande e complexa matriz de dados contendo diversos parâmetros físico-químicos, que são difíceis de interpretar para chegar a conclusões compreensíveis e significativas (ZHANG *et al.*, 2011). Além disso, os dados ambientais são caracterizados pela sua alta variabilidade, devido às diferentes influências naturais e antropogênicas (SIMEONOV *et al.*, 2002). Sendo assim, o grande desafio no âmbito do monitoramento é a armazenagem e análise eficiente dos dados obtidos (CARLETON *et al.*, 2005).

As técnicas estatísticas multivariadas são ferramentas apropriadas para uma redução significativa das medidas físico-químicas, permitindo a análise e interpretação desses complexos conjuntos de dados de qualidade de água e a compreensão das variações temporais e espaciais (ZHOU *et al.*, 2007). Aliado às técnicas estatísticas estão os estudos espaciais de uso e ocupação dos solos através de dados georreferenciados utilizando o SIG (Sistema de Informações Geográficas) que podem fornecer significativos resultados de análise da qualidade da água em função do uso e ocupação do solo de um determinado local.

3.2.1 Monitoramento da qualidade das águas no estado de Minas Gerais

O Instituto Mineiro de Gestão das Águas (IGAM) é o responsável pelo monitoramento da qualidade das águas superficiais e subterrâneas no estado de Minas Gerais através do Projeto Águas de Minas. O programa disponibiliza dados de uma série histórica dos parâmetros da qualidade das águas no Estado e gera informações indispensáveis ao gerenciamento correto dos recursos hídricos desde 1997 (IGAM, 2013).

O Projeto Águas de Minas vem atender a uma das ações previstas na Lei 12.584 (Lei que altera a denominação do Departamento de Recursos Hídricos do Estado de Minas Gerais – DRH – MG para Instituto Mineiro de Gestão das Águas – IGAM), em seu Art. 5° inciso X, que determina que o IGAM deve proceder à avaliação da rede de monitoramento da qualidade das águas no Estado, além de também contribuir para a implementação da Política Estadual de Recursos Hídricos (MINAS GERAIS, 1997). A rede de monitoramento coordenada pelo IGAM é composta atualmente de 546 estações de amostragem que abrangem as oito maiores bacias hidrográficas do estado de Minas Gerais cobrindo 98% de sua área total. Para a operação da rede é adotada uma frequência trimestral de coleta para alguns parâmetros e semestral para

outros. Em alguns casos também é feita a coleta mensal, como é o caso da bacia do rio das Velhas. No monitoramento são analisados parâmetros físicos, químicos, microbiológicos e bioensaios ecotoxicológicos de qualidade de água, levando em conta os mais representativos (IGAM, 2013).

Para avaliar a situação da qualidade dos recursos hídricos no estado de Minas Gerais, o Projeto Águas de Minas utiliza, além dos parâmetros monitorados, os indicadores: Índice de Qualidade das Águas (IQA), Contaminação por Tóxicos (CT), Índice de Estado Trófico (IET), Densidade de Cianobactérias e Ensaios de Ecotoxicidade, sendo que os dois últimos são realizados apenas em alguns pontos específicos de determinadas bacias (IGAM, 2013).

3.3 Técnicas estatísticas multivariadas para a análise de dados de qualidade da água

As técnicas de estatística multivariada têm sido muito utilizadas em estudos que buscam avaliar a qualidade das águas superficiais e explicar as variações temporais e espaciais de uma bacia hidrográfica. Segundo Nonato *et al.* (2007), essas técnicas, consideradas exploratórias, podem ajudar também na otimização da rede de amostragem proposta, bem como da frequência de amostragem e do número de parâmetros analisados, sem perda da informação, resultando em redução dos custos associados aos programas de monitoramento.

A seguir serão apresentados aspectos teóricos das duas ferramentas escolhidas para auxiliar na análise espacial da qualidade da água na bacia do rio Paracatu (Análise de Cluster e Análise de Componentes Principais).

3.3.1 Análise de Cluster

A Análise de Cluster (AC) ou Análise de Agrupamento tem como objetivo principal reunir os objetos (indivíduos, elementos) em grupos (ou *clusters*) em que exista alta homogeneidade dentro dos grupos e heterogeneidade entre os grupos formados, objetivando propor classificações (VICINI, 2005). Em estudos de avaliação de qualidade de água, a AC é bastante utilizada a fim de agrupar estações de monitoramento semelhantes quando se quer compará-las em relação aos parâmetros de qualidade, como é o caso desse estudo.

A AC, como já foi dito, tem o objetivo de reunir objetos semelhantes, tornando-se necessária alguma medida para avaliar o quão semelhante, ou diferente são os objetos. De acordo com Vicini (2005), a distância euclidiana é a medida de semelhança mais utilizada em termos de distância de pares de objetos, onde os objetos que possuem a menor distância entre si são mais semelhantes, um do outro, do que os objetos com a maior distância. Considerando o caso mais simples, no qual existem n indivíduos, onde cada um dos quais possuem valores para p variáveis, a distância euclidiana entre eles é obtida mediante o teorema de Pitágoras para um espaço multidimensional.

A Análise de Cluster gera um dendograma (ou Fenograma ou ainda, gráfico em árvore) que representa uma síntese gráfica do trabalho desenvolvido (VICINI, 2005), onde as amostras são aglomeradas através de um critério de similaridade com respeito aos parâmetros medidos. A proximidade das estações no dendograma indica a similaridade em relação aos parâmetros (NONATO, *et al.*, 2007). Ainda de acordo com Vicini (2005), esse gráfico, por ser uma síntese das informações, ele ocasiona uma pequena perda da mesma, e mesmo com essa perda, esse gráfico é de grande utilidade para a classificação, comparação e discussão de agrupamentos, podendo ser representado horizontal e verticalmente.

No dendograma vertical, escolhido para ser utilizado nesse estudo, o eixo *x* representa os grupos unidos por ordem decrescente de semelhança e o eixo *y* indica as distâncias entre os grupos que foram formados. As variáveis que apresentam a maior semelhança são aquelas que possuem a menor distância euclidiana no dendograma gerado. A leitura desse tipo de dendograma é feita da direita para a esquerda.

De acordo com Vicini (2005), não existe uma teoria que diga em qual altura deve ser feito o corte no gráfico para a formação dos grupos (ou *clusters*). Essa altura deve ser decidida levando em consideração os critérios adotados pelo pesquisador. A linha que representa esse corte é paralela ao eixo horizontal do dendograma, denominada Linha Fenon ou Linha de Corte, ela pode ser traçada em relação às maiores distâncias em que os grupos foram formados. Caso essa distância não esteja clara no dendograma, podem ser utilizados gráficos das distâncias nas quais os grupos foram formados para identificar onde ocorre o maior salto.

É importante transformar os dados brutos em escala Z (média 0 e desvio padrão $1: Z = [(X - \mu)/\sigma]$, onde X é o dado bruto e Z é o dado padronizado), de modo que eles fiquem padronizados evitando classificações erradas devido às diferenças naturais nas dimensões dos dados. Além de eliminar a influência de unidades diferentes, a padronização também torna os dados adimensionais (SIMEONOV *et al.*, 2002; SINGH *et al.*, 2004; ZHANG *et al.*, 2011).

3.3.2 Análise de Componentes Principais

A Análise de Componentes Principais (ACP) é uma técnica matemática da análise multivariada que permite investigações em um grande número de dados disponíveis. A ACP transforma o banco de dados original em outro conjunto, o de Componentes Principais (CP) de dimensões equivalentes. Essa transformação ocorre com a menor perda de dados possíveis e também com a eliminação de algumas variáveis que não possuem muitas informações (VICINI, 2005).

O objetivo da ACP é reduzir a complexidade dos dados multivariados e detectar a estrutura na relação entre os dados. Os CP são escritos como uma combinação linear das variáveis originais. As contribuições de cada variável nas CP correspondem às cargas. Nos novos componentes gerados, as *n* componentes que explicam a maior variabilidade dos dados são escolhidas de modo a caracterizar a base de dados. A primeira CP explica a maior proporção da variância total entre todas as combinações lineares dos dados originais, a segunda terá menor proporção de variância total que a primeira e assim sucessivamente (NONATO, *et al.*, 2007).

3.4 Análise de Tendência de Séries Temporais de qualidade da água

A análise de tendência temporal é uma ferramenta importante para analisar banco de dados extensos e com muitas variáveis de forma resumida e completa. Ela é capaz de verificar possíveis alterações (tendências de elevação ou redução de concentração, por exemplo) que estão acontecendo em ambientes aquáticos ao longo do tempo. Segundo a *Environmental Protection Agency*, EPA (2006), a detecção e estimativa de tendências temporais são importantes para vários estudos ambientais e programas de monitoramento. Christofaro & Leão (2009) ainda completaram destacando que esses estudos podem ser necessários para acompanhamento da evolução da qualidade da água. Dessa forma, medidas preventivas, corretivas e emergenciais podem ser tomadas, objetivando o equilíbrio do ecossistema.

De acordo com Helsel & Hirsch (1992), para a avaliação estatística de tendência temporal de variáveis, considera-se como hipótese nula (H₀) a não existência de tendência. Os testes estatísticos utilizados nessa análise avaliam a rejeição ou não da hipótese nula. A falha em rejeitar a hipótese nula não comprova que não existe a tendência, mas é uma conformação de que não foi possível concluir se há tendência devido à insuficiência de evidências.

O significado estatístico da tendência aponta se uma variável apresentou tendência significativa de elevação ou redução quando a sua distribuição de probabilidade ou alguma medida de tendência central, como média ou mediana, modificou-se ao longo do tempo, (HELSEL; HIRSCH, 1992).

De acordo com Trindade (2013), o teste estatístico escolhido para a análise de tendência temporal deve levar em consideração características comumente encontradas em dados de qualidade da água, como a presença de *outliers*, de ciclos (sazonal, mensal, diário), valores faltantes, dados censurados e correlação serial.

O teste de Mann-Kendall, muito utilizado em análises de tendência, é um teste não paramétrico que foi proposto por Mann, em 1945 (TRINDADE, 2013). De acordo com Helsel & Hirsch (1992), o teste tem como objetivo definir se os valores de Y (parâmetro) tendem a diminuir ou aumentar com o T (tempo), ou seja, para determinar se o valor central muda ao longo do tempo. Para realização do teste de Mann-Kendall são calculados os valores de S e o de τ (Tau), valores estatísticos do teste apresentados a seguir (TRINDADE, 2013) nas equações 3.1 e 3.2:

$$S = P - M \tag{3.1}$$

Onde:

P: número de pares (Y, T) nos quais Y aumenta quando T aumenenta M: número de pares (Y, T) nos quais Y diminui quando T aumenta, e

$$\tau = \frac{S}{\frac{n(n-1)}{2}} \tag{3.2}$$

Onde:

$$\frac{n(n-1)}{2}$$
: número de comparações possíveis de serem feitas entre os pares.

A hipótese de não haver tendência (ou hipótese nula, H_o) é rejeitada quando S é significativamente diferente de zero. Dessa forma, pode-se concluir que existe uma tendência do parâmetro analisado sobre o tempo.

De acordo com a EPA (2006), o teste Sazonal de Mann-Kendall é uma modificação ou extensão do teste de Mann-Kendall que leva em consideração a sazonalidade dos parâmetros ao realizar o teste em cada uma das n estações do ano separadamente. Esse método é considerado um método robusto para estimativa de tendência em registros de qualidade da água.

De acordo com Helsel & Hirsch (1992), existem várias maneiras de determinar a sazonalidade de um conjunto de dados, como por exemplo os gráficos *box-plots*. Chistofaro & Leão (2009) e Groppo (2005) utilizaram além de gráficos *box-plots*, o teste de Kruskal-Wallis, teste de hipótese não paramétrico que identifica diferenças significativas entre os dados estudados em diferentes estações do ano. Dessa forma, pode-se definir qual teste será usado, se o teste de Mann-Kendall ou teste Sazonal de Mann-Kendall.

Outro teste não paramétrico comumente utilizado em análises de tendência temporal é o teste de correlação de Spearman, que, segundo Naghettini & Pinto (2007), também avalia a tendência do parâmetro Y ao longo do tempo T. De acordo com Trindade (2013), por ser uma técnica que utiliza o ranqueamento de dados, ela é relativamente insensível à presença de *outliers*. É importante destacar que a Correlação de Spearman, por ser uma técnica exploratória, deve ser utilizada em conjunto com outras técnicas. Trindade (2013) utilizou a Correlação de Spearman para corroborar a rejeição ou não da hipótese nula no teste de Mann-Kendall, identificando assim, a presença ou ausência de tendência, e ainda, as tendências inconclusivas com possibilidade de elevação ou redução, no caso em que os testes de Mann-Kendall e da Correlação de Spearman tiveram seus resultados contrários.

3.5 Uso e Ocupação do Solo e Qualidade da água

Vários estudos mostram que o uso e ocupação do solo tem impacto na qualidade das águas e que existe uma correlação entre os parâmetros de qualidade e o uso do solo do local. Os impactos do uso do solo na qualidade das águas são, em sua maioria, causados por atividades antrópicas, incluindo a agricultura, atividades industriais e a urbanização.

De acordo com Tu (2011), geralmente o uso do solo está relacionado com atividades econômicas e o desenvolvimento dessas terras tem impacto adverso na qualidade da água, ou seja, terras muito desenvolvidas estão relacionadas com altas concentrações de poluentes (pior qualidade de água). Ao contrário disso, as terras que não são muito desenvolvidas (florestas, por exemplo) têm baixos percentuais de concentração de poluentes indicando a relação dessas terras com uma boa qualidade de água.

Comparando dois estudos diferentes (Tong & Chen, 2002 e Williams *et al.*, 2005 *apud* Tu, 2011), Tu (2011) demonstrou ainda que nem sempre a relação entre os parâmetros de qualidade de água e o uso do solo local são os mesmos. Tong & Chen (2002 *apud* Tu, 2011) examinaram a relação do uso e ocupação do solo com a qualidade da água em Ohio, nos Estados Unidos. Eles encontraram quatro parâmetros (nitrogênio total, fósforo total, condutividade elétrica e coliformes termotolerantes) que estavam correlacionados significativamente e positivamente com áreas comerciais, residenciais e de agricultura e negativamente relacionadas com áreas de florestas. Sódio e metais pesados tiveram correlações significativamente positivas com áreas residenciais e comerciais, significativamente negativas com agricultura e não tiveram correlações significativas com áreas de florestas. A DBO teve uma correlação significativamente positiva com áreas comerciais e residenciais, significativamente negativas com áreas florestais e não significativas com áreas de agricultura.

Em contrapartida, Williams *et al.* (2005 *apud* Tu, 2011) apresentou resultados opostos aos do estudo anterior. Eles estudaram a relação do uso do solo com a qualidade da água no rio Ipswich em Massachusetts, também nos Estados Unidos. Os resultados apresentados indicam que os parâmetros nitrogênio total e fósforo total não tem correlações significativas com áreas urbanas e de agricultura, mas concentrações de alguns nutrientes e íons como é o caso da amônia, nitrato,

cloreto, sulfato, sódio, cálcio e magnésio mostraram correlações significativamente positivas com áreas urbanas e de agricultura.

Sendo assim, observa-se que a relação entre o uso do solo e a qualidade da água não é constante em diferentes áreas por causa das características das bacias hidrográficas e das fontes de poluição que não são as mesmas em locais diferentes. Deve-se portanto, levar em consideração características específicas do local do estudo.

A seguir será apresentado um referencial teórico sobre elaboração de mapas temáticos, uma das metodologias utilizadas nesse estudo a fim de identificar o uso do solo na bacia do rio Paracatu e também serão apresentados alguns estudos que relacionaram uso e ocupação do solo com qualidade de águas superficiais.

3.5.1 Mapas temáticos de cobertura do solo

As técnicas de sensoriamento remoto proporcionam a elaboração e atualização de mapas com maior rapidez e economia de acordo com Nascimento & Garcia (2006). As imagens orbitais podem ser processadas por algoritmos que visam melhorar a fidelidade da cena para as análises visual e automática para obter, por exemplo, mapas temáticos de cobertura do solo.

As ferramentas de um Sistema de Informação Geográfica (SIG) permitem realizar operações analíticas em grandes conjuntos de dados, como a combinação de vários mapas com intuito de obter informações da superfície terrestre. O sensoriamento remoto aliado às técnicas de SIG são importantes ferramentas que auxiliam na análise de extensos resultados que são gerados a partir de longas análises de banco de dados de programas de monitoramento de qualidade das águas.

Para elaboração de mapas temáticos no presente estudo foram utilizadas imagens dos satélites Landsat 5 e Landsat 8. Esses satélites têm suas operações em órbita administradas pela NASA (National Aeronautics and Space Administration – Administração Nacional da Aeronáutica e do Espaço) e a produção e comercialização das imagens fica sob os cuidados da USGS (United States Geological Survey - Pesquisa Geológica dos Estados Unidos).

3.5.2 Estudos que relacionaram uso e ocupação do solo com qualidade das águas

Apesar de não terem utilizado as mesmas metodologias selecionadas para essa análise, os estudos apresentados a seguir, apontam diversos resultados importantes sobre a qualidade da água relacionada com o uso e ocupação do solo.

Bu *et al.*(2014) afirmam que ferramentas espaciais avançadas (SIG) em conjunto com técnicas de avaliação de qualidade das águas produzem resultados significativamente bons e que podem explicar a variação da qualidade da água ao longo de um rio dentro de uma bacia hidrográfica. Em seus estudos, Bu e colaboradores observaram, através de análises espaciais e estatísticas, que áreas vegetadas tiveram uma contribuição positiva para a qualidade de água do rio, mas a área urbana influenciou fortemente as concentrações dos parâmetros fósforo e nitrogênio. Os autores observaram ainda que o uso do solo para agricultura foi associado com a maioria das variáveis físico-químicas e de nitrogênio durante a estação chuvosa.

Já Gyawali e colaboradores (2013a e 2013b), em seus estudos através de modelos de regressão múltipla e correlação linear de Pearson, observaram que áreas urbanas e de agricultura são as que impactam de maneira mais significativa as águas superficiais. O contrário acontece em áreas de florestas que impactam positivamente as águas superficiais. Seeboonruang (2012) e Wan *et al.* (2014) também chegaram ao mesmo resultado nos seus estudos com regressão linear múltipla e análise espacial com regressão hierárquica. Wan e colaboradores (2014) concluíram ainda que áreas urbanas são importantes fontes de nitrogênio total e áreas agrícolas são importantes fontes de fósforo, além do nitrogênio total.

Li *et al.* (2012) conseguiram mostrar, através de correlações e regressões, resultados que também confirmam a significativa poluição de águas superficiais próximas de áreas agrícolas. Os autores concluíram que os parâmetros DBO, DQO, nitrato e sólidos dissolvidos totais estão significativamente relacionados com terras usadas para agricultura.

O Quadro 3.1 apresenta, de maneira sintética, diversos trabalhos que utilizaram análise estatística multivariada com o apoio de ferramentas espaciais de SIG para atingirem os seus objetivos de relacionar a qualidade das águas com o uso e ocupação do solo local.

Quadro 3.1 Estudos que avaliaram a qualidade das águas e suas relações com o uso e ocupação do solo local

REFERÊNCIA	LOCAL DE ESTUDO	DADOS ANALISADOS	OBJETIVOS DO ESTUDO	METODOLOGIA UTILIZADA	RESULTADOS GERAIS
BU, et al., 2014	Bacia do Rio Taizi, China	69 locais de amostragem; 15 parâmetros de qualidade de água; 2 coletas em 1 ano; 11 tipos de uso do solo	Avaliar as relações entre a qualidade de água do rio e tipos de uso do solo; detectar as correlações; identificar as principais fontes de poluentes.	Análise Espacial e Análise Estatística (Correlação e Regressão Linear Múltipla)	Áreas vegetadas tiveram uma contribuição positiva para a qualidade de água; a área urbana influenciou fortemente os parâmetros de fósforo e nitrogênio.
GYAWALI et al., 2013a	Bacia do Rio U- Tapao, Tailândia	10 locais de amostragem; 13 parâmetros de qualidade de água; 37 tipos de uso do solo (agrupados em 5 categorias)	Avaliar as variações espaciais e temporais do uso da terra; e investigar sua relação com a qualidade da água.	Modelos de Regressão Múltipla	Terras de agricultura mostraram significativas correlações positivas com sólidos suspensos e sólidos dissolvidos; e correlações negativas com temperatura e oxigênio dissolvido.
GYAWALI et al., 2013b	Bacia do Rio U- Tapao, Tailândia	9 locais de amostragem; 6 parâmetros de qualidade de água; 4 tipos de uso do solo	Examinar a possível relação estatística e espacial do uso do solo com a qualidade das águas superficias.	Análise Espacial e Análise Estatística (Correlação Linear de Pearson e ANOVA)	Áreas urbanas e de agricultura mostraram relação com a concentração de poluentes nas águas, já as áreas de vegetação nativa mostraram relações positivas com a qualidade das águas.
LI, et al., 2012	Bacia do Rio Liao, China	76 locais de amostragem; 58 coletas (2010) e 42 coletas (2009); 6 tipos de uso do solo	Investigar a variabilidade espaço-temporal do Rio Basin em relação ao uso e ocupação do solo	Correlações e Regressões	Os parâmetros DBO, DQO, nitrato e sólidos dissolvidos totais estão significativamente relacionados com terras usadas para agricultura.
SEEBOONRUANG, 2012	Província Nakhon Nayok, Tailândia	33 locais de amostragem; 6 coletas; 4 tipos de uso do solo	Avaliar relações entre índices de qualidade de água e índices de contaminações potenciais de atividades de uso da terra.	Regressão Linear Múltipla	Três tipos de uso do solo (agricultura de entressafra do arroz, criação de aves e atividade residencial) afetam a qualidade das águas.
WAN, et al., 2014	Bacia do Rio Xitiaoxi, China	41 locais de amostragem; coletas mensais	Avaliar o impacto do uso e ocupação do solo na qualidade do fluxo de água numa escala de sub-bacias.	Análise Espacial e Regressão Hierárquica Bayesiana	Áreas urbanas e de agricultura são importantes fontes de concentração de nitrogênio total e de fósforo total.

4 METODOLOGIA

4.1 Área de estudo

A área definida para o presente estudo foi a bacia hidrográfica do rio Paracatu que é uma importante sub-bacia da bacia do rio São Francisco, terceira maior do Brasil, em extensão. A bacia do rio São Francisco drena uma área de 639.219 km² e ocupa 7,5% do território nacional. Cerca de 37% da bacia encontra-se no estado de Minas Gerais. Entre as cabeceiras, na Serra da Canastra, em Minas Gerais, e a foz, no Oceano Atlântico, localizada entre os estados de Sergipe e Alagoas, o rio São Francisco percorre cerca de 2.700 km (IGAM, 2013).

A bacia hidrográfica do rio São Francisco é importante não só por sua extensão e volume de água transportado em uma região semi-árida, mas também pelo seu potencial hídrico passível de aproveitamento e por sua contribuição histórica e econômica com o desenvolvimento de importantes projetos de agricultura (ANA, 2005). Em Minas Gerais, a bacia do rio São Francisco engloba 10 sub-bacias, divididas em Unidades de Planejamento e Gestão dos Recursos Hídricos (UPGRHs): Alto rio São Francisco (SF1), rio Pará (SF2), rio Paraopeba (SF3), entorno da represa de Três Marias (SF4), rio das Velhas (SF5), rios Jequitaí e Pacuí (SF6), rio Paracatu (SF7), rio Urucuia (SF8), rio Pandeiros (SF9) e rio Verde Grande (SF10).

O Rio Paracatu (UPGRH SF7), situado no Médio São Francisco, drena uma área de aproximadamente 45.600 km², sendo o maior e mais caudaloso afluente do rio São Francisco, e contribuindo com 40% da vazão no ponto de interseção dos dois rios, além de representar 20,8% na formação da vazão total do rio São Francisco, caracterizando assim, a importância da bacia (MELO & ASSUNÇÃO, 2011). De acordo com o IGAM (2006), dessa área de drenagem da bacia, aproximadamente 92% (41.600 km²) pertencem ao estado de Minas Gerais, os outros 8% estão divididos no estado de Goiás (5%) e no Distrito Federal (3%).

O aumento da demanda pelo uso da água na bacia do rio Paracatu vem ocasionando sérios impactos ambientais e conflitos entre os usuários, o que tem motivado alguns estudos sobre a disponibilidade hídrica da bacia hidrográfica do rio Paracatu (MELLO *et al.*, 2008; SILVA *et al.*, 2009). No entanto, estudos que analisem a qualidade das águas superficiais da Bacia são escassos e quase todas as informações sobre a região estão disponíveis na forma de relatórios periódicos da ANA (2004) e do IGAM (2013). A escolha dessa área de estudo busca diminuir essa escassez de pesquisas, contribuindo com a análise de qualidade de água em relação ao uso

e ocupação do solo, uma vez que esses dados em conjunto podem fornecer diversas informações sobre as características dos corpos d'água.

4.1.1 Localização

A bacia do rio Paracatu é uma sub-bacia do rio São Francisco e está localizada entre os paralelos 15°30' e 19°30' de latitude sul e os meridianos 45°10' e 47°30' de longitude oeste (VASCONCELOS, *et al.*, 2012). Encontra-se inserida quase totalmente no estado de Minas Gerais (região Noroeste do estado), como é apresentado na Figura 4.1. Para esse estudo foi considerada apenas a porção mineira da bacia do rio Paracatu, em função da dificuldade de obtenção de dados de outros estados e aos diferentes modelos de monitoramento adotados. A bacia limita-se, ao sul, pela bacia do rio Paranaíba, que integra a bacia hidrográfica do rio Paraná; a oeste, pela bacia do rio São Marcos, que, por sua vez, é afluente do rio Paranaíba; a leste, pelas bacias dos rios Formoso e Jatobá, e, ao norte, pela bacia do rio Urucuia, sendo as últimas três bacias também afluentes do rio São Francisco.

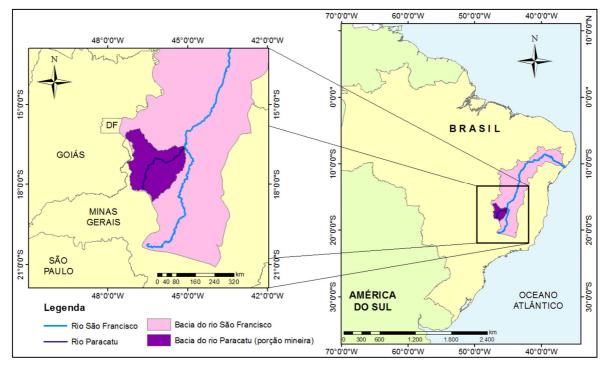


Figura 4.1 Mapa de localização da bacia do rio Paracatu

4.1.2 Características

De acordo com Melo e Assunção (2011), a colonização da região, na qual está localizada a bacia do Rio Paracatu, se deu pelos bandeirantes, pecuaristas e aventureiros durante o período colonial, ou seja, no final do século XVI. Em meados do século XVIII, o povoamento da região foi acelerado com o descobrimento de minas no vale do Paracatu, já que essa região foi a última

descoberta aurífera do estado de Minas Gerais. Anos depois, somente na década de 1950, outro fator que proporcionou o aumento do desenvolvimento do local foi a construção de Brasília.

Com o declínio da produção de ouro, a região passou a desenvolver a agropecuária. Na bacia do rio Paracatu, a agricultura tem papel essencial e é bastante rentável, sendo que se destacam as culturas de grãos, como a de soja e a de milho. Em grande parte das áreas cultivadas são utilizadas tecnologias de irrigação, tendo o pivô central como principal método de irrigação (MELO & ASSUNÇÃO, 2011).

Até 1975, predominava na maior parte da bacia do Paracatu, uma região conhecida como Sertões, que são vastas áreas utilizadas para pecuária extensiva de baixa tecnologia, em pastagens naturais, fato evidenciado por análise de imagens de satélite Landsat 1 (VASCONCELOS *et al.*, 2012).

Os processos de conversão de uso do solo foram iniciados pelo reflorestamento de *Pinus* e *Eucaliptus*. Além disso, o preço relativamente irrisório das terras foi um dos motivos determinantes na ocupação dos cerrados (SILVA, 2000). Com os programas e incentivos de ocupação do Noroeste de Minas Gerais, a partir da década de 1970, houve uma aceleração brusca da expansão agropecuária na região (VASCONCELOS *et al.*, 2012).

As condições planas do relevo na região da bacia do rio Paracatu permitiram o uso de mecanização agrícola, modificando-se rapidamente a paisagem através da retirada expressiva da cobertura vegetal natural (SILVA, 2000).

O clima na bacia do rio Paracatu é denominado megatérmico chuvoso do tipo Aw (IGAM, 2006), ou seja, a bacia tem um clima tropical chuvoso típico, com temperaturas elevadas, e precipitações concentradas no período de outubro a abril, quando chove em média 93% do total anual (VASCONCELOS *et al.*, 2012). Somente os meses de dezembro e janeiro são responsáveis por 60% do total do excedente hídrico da região (MELO & ASSUNÇÃO, 2011).

Ainda de acordo com Vasconcelos *et al.* (2012), o bioma existente na bacia do rio Paracatu é o Cerrado. Nele, estão presentes os seguintes tipos de vegetação: veredas, cerradão, campo cerrado e parque cerrado, além dos ecossistemas de mata fluvial, mata seca e os sistemas hidromórficos como lagoas marginais e campos hidromórficos.

Segundo dados do Plano Diretor da Bacia do Rio Paracatu, observa-se que em toda bacia a predominância do uso do solo é com pastagem e áreas de mata (vegetação nativa), com 29% e 19% respectivamente; e apenas 1% da área total é destinada à irrigação com uso de pivô central. Nota-se que na sub-bacia do ribeirão Entre Ribeiros está a maior concentração de pivô central, nos municípios de Paracatu e Unaí (MELO & ASSUNÇÃO, 2011).

4.1.3 Estações de Monitoramento

A bacia do rio Paracatu é monitorada pelo IGAM desde o ano de 1997, quando foram implantadas sete estações de monitoramento ao longo da bacia (estações com o prefixo PT e com o final ímpar - PT001, PT003, PT005, PT007, PT009, PT011, PT013). Em 2005, a bacia ganhou mais uma estação de monitoramento (PT010) e, em 2006, outras 19 estações foram implantadas (as de prefixo PTE - PTE001, PTE003, PTE005, PTE007, PTE009, PTE011, PTE013, PTE015, PTE017, PTE019, PTE021, PTE023, PTE025, PTE027, PTE029, PTE031, PTE033, PTE035 e PTE037). Inicialmente as estações de prefixo PTE pertenciam à rede dirigida para enquadramento, mas logo foram incorporadas à rede básica (IGAM, 2013). Serão estudados dados de monitoramento gerados a partir das 27 estações de monitoramento do IGAM na bacia do rio Paracatu. A localização dessas estações é apresentada no mapa a seguir (FIG. 4.2) juntamente com os 16 municípios mineiros que fazem parte dessa bacia.

O rio Paracatu tem uma extensão de aproximadamente 485 km. Ele tem a sua nascente no município de Lagamar, no povoado de Almas e desagua no rio São Francisco, na localidade de Cachoeira da Manteiga, no município de São Romão, ao norte do município de Santa Fé de Minas (SANTOS, *et al.*, 2007).

A bacia do rio Paracatu conta também com outras quatro estações de monitoramento, as de prefixo SFH (SFH10, SFH11, SFH13 e SFH24). Essas estações pertenciam à Rede Dirigida (pontos específicos e intermitentes para cada tipo de pressão antrópica) quando foram concebidas e só no ano de 2013 passaram a pertencer à Rede Básica (pontos fixos de monitoramento do IGAM) junto às demais estações de monitoramento da bacia do Paracatu. Essas estações não serão contempladas no presente estudo, pois tiveram sua implantação entre os anos de 2007 e 2008 (entre um e dois anos após o início do período definido para esse estudo), sendo assim essas estações tem muitos parâmetros com alta porcentagem de dados faltantes, ficando inviável a análise das mesmas. Essa alta porcentagem de dados faltantes pode ser explicada também pelo fato delas serem estações de monitoramento pertencentes à Rede

Dirigida e por isso possuírem alguns parâmetros que não eram analisados até o momento em que passaram a pertencer à Rede Básica, no ano de 2013.



Figura 4.2 Mapa de localização dos municípios da bacia do rio Paracatu e das estações de

O Quadro 4.1 apresenta as 27 estações de monitoramento da bacia hidrográfica do rio Paracatu, os corpos d'água onde estão localizadas, bem como a data de seu estabelecimento e o município em que estão inseridas. Pode-se observar que todas as estações de monitoramento selecionadas para avaliação no presente estudo possuem datas de estabelecimento do ano de 2006 ou anterior ao mesmo e estão localizadas em municípios do estado de Minas Gerais.

Quadro 4.1 Estações de monitoramento na bacia do rio Paracatu, cursos d'água, descrição, data de implantação e municípios onde estão localizadas

Estação	Curso Diágue	Dosswicão	Data de	Município
	Curso D'água	Descrição	Estabelecimento	(Estado de Minas Gerais)
PT001	Rio da Prata	Rio da Prata a jusante da cidade de João Pinheiro	01/08/1997	João Pinheiro, Lagoa Grande
PT003	Rio Paracatu	Rio Paracatu a montante da foz do rio da Prata	01/08/1997	Lagoa Grande, Paracatu
PT005	Córrego Rico	Córrego Rico a jusante da cidade de Paracatu	18/08/1997	Paracatu
PT007	Rio Preto	Rio Preto a jusante da cidade de Unaí	01/08/1997	Unaí
PT009	Rio Paracatu	Rio Paracatu a jusante da cidade de Brasilândia de Minas	19/08/1997	Brasilândia de Minas
PT010	Rio Caatinga	Rio Caatinga a montante da sua confluência com o rio Paracatu	29/09/2005	João Pinheiro
PT011	Rio do Sono	Rio do Sono próximo de sua foz no Rio Paracatu	19/08/1997	Buritizeiro, João Pinheiro
PT013	Rio Paracatu	Rio Paracatu próximo de sua foz no rio São Francisco	01/08/1997	Buritizeiro, Santa Fé de Minas
PTE001	Rio da Prata	Rio da Prata próximo a localidade de Galena	01/03/2006	Presidente Olegário
PTE003	Rio Santa Catarina	Rio Santa Catarina a montante do município de Vazante	01/03/2006	Vazante
PTE005	Rio Santa Catarina	Rio Santa Catarina a jusante do ribeirão São Pedro	01/03/2006	Lagamar, Vazante
PTE007	Rio Paracatu	Rio Paracatu a montante da confluência do rio Santa Catarina	01/03/2006	Lagamar, Lagoa Grande
PTE009	Rio Claro	Rio Claro a montante da confluência com o ribeirão Arrenegado	01/03/2006	Guarda-Mor, Vazante
PTE011	Ribeirão Arrenegado	Ribeirão Arrenegado a jusante do córrego Guarda-Mor	01/03/2006	Guarda-Mor
PTE013	Ribeirão Escurinho	Ribeirão Escurinho após a confluência com o ribeirão Jambreiro	01/03/2006	Paracatu
PTE015	Rio Escuro	Rio Escuro próximo a sua confluência com o rio Paracatu	01/03/2006	Paracatu, Vazante
PTE017	Rio da Prata	Rio da Prata a jusante do ribeirão da Extrema	01/03/2006	João Pinheiro, Lagoa Grande
PTE019	Rio do Sono	Rio do Sono a montante da confluência do rio Santo Antônio	01/03/2006	João Pinheiro
PTE021	Rio Santo Antônio	Rio Santo Antônio a montante da sua confluência com o rio do Sono	01/03/2006	João Pinheiro
PTE023	Córrego Rico	Córrego Rico logo a jusante do município de Paracatu	01/03/2006	Paracatu
PTE025	Ribeirão São Pedro	Ribeirão São Pedro a montante da confluência com o ribeirão Santa Rita	01/03/2006	Paracatu
PTE027	Rio Preto	Rio Preto a montante do município de Unaí	01/03/2006	Unaí
PTE029	Ribeirão São Pedro	Ribeirão São Pedro a jusante do ribeirão Santa Rita	01/03/2006	Paracatu
PTE031	Ribeirão Entre Ribeiros	Ribeirão Entre Ribeiros próximo a sua foz no rio Paracatu	01/03/2006	Paracatu, Unaí
PTE033	Rio Paracatu	Rio Paracatu a montante do ribeirão Entre Ribeiros	01/03/2006	João Pinheiro, Paracatu
PTE035	Rio Verde	Rio Verde próximo de sua foz no rio Paracatu	01/03/2006	Brasilândia de Minas, João Pinheir
PTE037	Ribeirão Santa Fé	Ribeirão Santa Fé no município de Santa Fé de Minas	01/03/2006	Santa Fé de Minas

4.2 Organização e sistematização dos dados de monitoramento de qualidade das águas

Os dados analisados nesse estudo são os de monitoramento da qualidade das águas da bacia do rio Paracatu, realizado pelo IGAM dentro do Projeto Águas de Minas, desde o ano de 1997, tratando-se, portanto, de uma análise de dados secundários. A planilha inicial fornecida pelo IGAM continha dados de monitoramento de 31 estações de monitoramento para 90 parâmetros de qualidade das águas da bacia do rio Paracatu. Como já foi explicado, esse estudo contemplou apenas as 27 estações de monitoramento já citadas anteriormente (vide Quadro 4.1e Figura 4.2).

A coleta das amostras para análise do IGAM é feita quatro vezes ao ano (coletas trimestrais). É importante destacar que alguns desses parâmetros são analisados apenas duas vezes ao ano (semestralmente), outros são específicos para algumas estações de monitoramento ou bacias diferentes. Ou seja, nem todos os parâmetros possuem dados de todas as coletas e em todas as estações de monitoramento analisadas. Dessa forma, foi preciso fazer uma análise nos dados para selecionar os parâmetros e o período que seriam realmente avaliados no presente estudo.

O período definido para a análise foi entre os anos de 2006 e 2013 por apresentarem maior regularidade de dados mensurados e menor porcentagem de dados faltantes. Optou-se por diminuir o período estudado para que mais estações de monitoramento pudessem ser contempladas no estudo, já que grande parte delas teve seu estabelecimento apenas no segundo trimestre do ano de 2006.

Para selecionar os parâmetros que seriam estudados foram realizadas diversas análises no banco de dados inicial. Primeiramente, foram excluídos todos os parâmetros que não tinham nenhum dado coletado. Dessa forma, o banco de dados ficou reduzido a 62 parâmetros de qualidade.

É importante destacar que desde o primeiro trimestre do ano de 2013 o parâmetro Coliformes Termotolerantes foi substituído na rede de monitoramento do IGAM pelo parâmetro *Escherichia Coli*. Dessa maneira, foram utilizados os resultados de *E. Coli* em conjunto com os resultados de Coliformes Termotolerantes para complementar a série histórica deste indicador de contaminação de origem fecal.

Dois conceitos bastante utilizados na presente dissertação são o de dados faltantes e dados censurados. Foram considerados como dados faltantes aqueles valores não computados quando

da realização de uma coleta, esses dados foram calculados em relação ao total de coletas para cada parâmetro em cada estação de monitoramento. Já os dados censurados são os dados que possuem valores abaixo do limite de detecção (LD) dos métodos analíticos, esses dados foram substituídos pelo próprio LD, caracterizando o pior cenário possível em termos de qualidade das águas.

Dessa forma, diante dos 62 parâmetros restantes, foi realizada uma análise geral, a fim de calcular a porcentagem de dados faltantes e de dados censurados para todos os parâmetros em todas as estações de monitoramento da bacia, para avaliar se seria possível o estudo desses dados. Assim, foi realizada uma análise de cada estação de monitoramento, em particular, para cada parâmetro analisado, avaliando a frequência de monitoramento dos dados (semestral ou trimestral) e o período de amostragem (mês e ano), para posterior análise da porcentagem de dados faltantes e de dados censurados.

Os parâmetros que possuíam mais de 60% de dados faltantes foram excluídos da avaliação proposta considerando que, nesta situação, mais da metade das campanhas não foi efetuada no ano, o que acarretaria a perda importante de informações e a impossibilidade de analisar o efeito de sazonalidade sobre esse parâmetro, segundo metodologia proposta por Trindade (2013). Parâmetros com mais de 90% de dados censurados também foram excluídos da análise com base na mesma metodologia. De acordo com essa metodologia, os parâmetros que só possuíam coletas semestrais tiveram que ser excluídos da análise por apresentar alta porcentagem de dados faltantes.

A partir dessas análises, os dados foram sistematizados e os períodos e parâmetros a serem tratados estatisticamente foram selecionados para posterior comparação com o uso e ocupação do solo do local, de forma que foi definido analisar os dados trimestrais das 27 estações de monitoramento para 34 parâmetros de qualidade da água no período de 2006 a 2013. Os parâmetros de qualidade de água selecionados para serem analisados no presente estudo, bem como sua notação de referência e sua unidade de medida são apresentados no Quadro 4.2.

Quadro 4.2 Nome, notação de referência e unidade dos parâmetros selecionados para análise no presente estudo

Parâmetro	Notação de referência	Unidade	Parâmetro	Notação de referência	Unidade
Alumínio dissolvido	AI_{diss}	mg/LAI	Fósforo total	P_{T}	mg/LP
Arsênio total	As_T	mg/L As	Manganês total	Mn_T	mg/L Mn
Bário total	Ba_T	mg/L Ba	Níquel total	Ni _T	mg/L Ni
Boro total	B_T	mg/LB	Nitrato	N-NO ₃	mg/L N
Cádmio total	Cd_T	mg/L Cd	Nitrito	NO_2	mg/L N
Chumbo total	Pb_T	mg/L Pb	Nitrogênio Amoniacal total	$N-NH_4^+$	mg/L N
Cianeto livre	CN ⁻	mg/L CN	Oxigênio Dissolvido	OD	mg/LO_2
Cloreto total	ClT	mg/L Cl	pH <i>in loco</i>	рН	
Clorofila a	Cl-a	μg/L	Selênio total	Se_{T}	mg/L Se
Cobre dissolvido	Cu_{diss}	mg/L Cu	Sólidos dissolvidos totais	SDT	mg/L
Coliformes termotolerantes	Coli. term.	NMP/100 ml	Sólidos em suspensão totais	SST	mg/L
Condutividade Elétrica in loco	CE	μmho/cm	Sólidos totais	ST	mg/L
Cor verdadeira	Cor	mg Pt/L	Sulfato total	SO_4^{-2} T	mg/LSO_4
Cromo total	Cr_{T}	mg/L Cr	Sulfeto	S ⁻²	mg/LS
Demanda Bioquímica de Oxigênio	DBO	mg/LO_2	Temperatura da Água	T _{H2O}	°C
Fenóis totais	Fen_T	mg/L C ₆ H ₅ OH	Turbidez	Turb.	UNT
Ferro dissolvido	Fe _{diss}	mg/L Fe	Zinco total	Zn _T	mg/L Zn

4.3 Cálculo da estatística descritiva

O cálculo da estatística descritiva foi realizado para todos os parâmetros selecionados no presente estudo e para todas as estações de monitoramento analisadas na bacia do rio Paracatu (27 estações de monitoramento) no período definido para esse estudo de 2006 a 2013. Foram calculados a média, o desvio padrão, a média geométrica, os percentis (10, 25, 50 ou mediana, 75 e 90), os coeficientes de assimetria e de curtose, os *outliers* inferiores e superiores, a quantidade de *outliers* presente em cada série e a porcentagem dos mesmos para cada parâmetro, em cada estação de monitoramento da sub-bacia do rio Paracatu.

As estatísticas descritivas foram realizadas após sistematização dos dados em planilhas do Excel e para a detecção dos *outliers* foi utilizado o método exploratório da amplitude interquartis (NAGHETTINI & PINTO, 2007), que é dada pela diferença entre quartis, indicando quais são os valores atípicos superiores e inferiores (Q₃ + 1,5AIQ e Q₁ – 1,5AIQ, respectivamente, onde AIQ = Q₃ – Q₁ = Percentil 75 – Percentil 25). Em seguida, os dados foram verificados quanto à presença e ao percentual de *outliers*. Todas as ocorrências foram analisadas individualmente para a verificação da necessidade ou não de sua exclusão, com o intuito de evitar distorções nos resultados. No entanto, somente em caso de inconsistência comprovada estes dados seriam excluídos do banco de dados, já que eles podem ocorrer naturalmente em dados ambientais (TRINDADE, 2013).

4.4 Uso e ocupação do solo na bacia do rio Paracatu

A bacia do rio Paracatu abrange áreas totais ou parciais de 16 municípios do estado de Minas Gerais, a saber: Bonfinópolis de Minas, Brasilândia de Minas, Buritizeiro, Cabeceira Grande, Dom Bosco, Guarda-Mor, João Pinheiro, Lagamar, Lagoa Grande, Natalândia, Paracatu, Patos de Minas, Presidente Olegário, Santa Fé de Minas, Unaí e Vazante.

A Tabela 4.1 apresenta as áreas, em km², dos municípios pertencentes à bacia do rio Paracatu, além das áreas dos municípios inseridas dentro da bacia. A partir dessas áreas e da área total da bacia também foi possível calcular a participação, em porcentagem, de cada município na bacia do rio Paracatu e da bacia na área total do município.

Tabela 4.1 Áreas dos municípios pertencentes à bacia do rio Paracatu e participação

desses municípios na bacia

Municípios da Bacia	Área Total do Município (km²)	Área do Município na Bacia (km²)	Participação do Município na Área Total da Bacia (%)	Participação da Bacia na Área Total do Município (%)	Sede dentro da Área da Bacia
Bonfinópolis de Minas	1.795,10	157,94	0,4	8,8	Não
Brasilândia de Minas	2.520,87	2.520,87	6,1	100,0	Sim
Buritizeiro	7.253,26	3.178,37	7,7	43,8	Não
Cabeceira Grande	1.035,12	1.035,12	2,5	100,0	Sim
Dom Bosco	817,70	817,70	2,0	100,0	Sim
Guarda Mor	2.069,58	1.161,07	2,8	56,1	Sim
João Pinheiro	10.745,18	10.745,18	25,9	100,0	Sim
Lagamar	1.478,27	1.151,81	2,8	77,9	Sim
Lagoa Grande	1.240,48	1.240,48	3,0	100,0	Sim
Natalândia	472,85	472,85	1,1	100,0	Sim
Paracatu	8.255,81	6.356,04	15,3	77,0	Sim
Patos de Minas	3.197,26	78,64	0,2	2,5	Não
Presidente Olegário	3.529,36	2.998,54	7,2	85,0	Não
Santa Fé de Minas	2.923,38	2.237,12	5,4	76,5	Sim
Unaí	8.468,26	5.445,53	13,1	64,3	Sim
Vazante	1.914,97	1.914,97	4,6	100,0	Sim
Total	57.717,45	41.512,23	100	-	-

Fonte: Adaptado de IGAM, 2006.

Pode-se observar, ainda pela análise da Tabela 4.1, que apenas quatro municípios (Bonfinópolis de Minas, Buritizeiro, Patos de Minas e Presidente Olegário) não tem suas sedes localizadas dentro da bacia do rio Paracatu.

A fim de relacionar os dados de qualidade de água com o uso e ocupação do solo na bacia, foi realizada uma pesquisa abordando dados demográficos, de serviços de saneamento, de atividades licenciadas e de outorgas concedidas para cada um dos municípios citados, além da elaboração de mapas temáticos de cobertura do solo na região para os anos de 2006 e 2013 (anos de início e final do período em estudo).

4.4.1 Dados demográficos

Para análise dos dados demográficos foram coletados dados dos últimos Censos demográficos realizados pelo Instituto Brasileiro de Geografia e Estatística (IBGE) a fim de levantar dados como população, área territorial e densidade demográfica de cada um dos 16 municípios da bacia do rio Paracatu. Assim foi possível fazer uma análise preliminar para conhecimento da área de estudo, além de identificar informações úteis para a posterior interpretação dos resultados de qualidade da água e de uso e ocupação do solo.

De posse desses dados, foi elaborado um gráfico da evolução da população dos municípios nos anos de 2007, 2010 e projeção da população para o ano de 2014. Esses anos foram escolhidos por serem os anos existentes nos últimos, censo demográfico e contagem da população (IBGE, 2010 e 2007, respectivamente), além de serem os mais próximos do início e do final do período estudado. Foi elaborado também um gráfico da densidade demográfica da população.

4.4.2 Dados de Saneamento

Os dados de saneamento foram pesquisados junto à Agência Nacional de Águas – ANA, ao Sistema Nacional de Informações sobre Saneamento - SNIS e à Fundação Estadual do Meio Ambiente – FEAM. Esses dados são referentes aos índices de coleta e de tratamento de esgoto, de atendimento urbano de água e da taxa de cobertura do serviço de coleta domiciliar, bem como a destinação dos resíduos sólidos urbanos e os locais de captação de água para abastecimento. Esses dados são apresentados em quadros, contendo essas informações para cada um dos 16 municípios da bacia do rio Paracatu.

4.4.3 Atividades Licenciadas

A série histórica de dados de licenciamento foi obtida através da Superintendência Regional de Meio Ambiente e Desenvolvimento Sustentável do Noroeste de Minas (SUPRAM NOR) para o período entre os anos de 1984 e 2014. Como o objetivo do estudo é relacionar a ocupação do solo ao impacto ambiental da região, foram usados somente os dados dos empreendimentos com a licença para operação concedida.

A partir desses dados, os empreendimentos foram agrupados de acordo com a sua tipologia (atividades minerárias, atividades industriais/indústria metalúrgica e outras, atividades industriais/indústria alimentícia, atividades de infraestrutura, serviços e comércio atacadista e atividade agrossilvipastoril) conforme é

definido pela DN COPAM 74/2004 (MINAS GERAIS, 2004). Com os dados organizados foram elaborados gráficos e também uma tabela, com o percentual e a quantidade, respectivamente, de cada tipo de atividade licenciada na bacia do rio Paracatu.

4.4.4 Outorgas Concedidas

Foi obtida, junto ao IGAM, uma série histórica de outorgas dos direitos de uso de recursos hídricos concedidas dentro da bacia do rio Paracatu entre os anos de 1998 e 2014. A outorga de direito de uso de recursos hídricos é um dos seis instrumentos da Política Nacional de Recursos Hídricos definida no inciso III, do art. 5º da Lei Federal nº 9.433, de 08 de janeiro de 1997. Esse instrumento tem como objetivo assegurar o controle quantitativo e qualitativo dos usos da água e o efetivo exercício dos direitos de acesso aos recursos hídricos (BRASIL, 1997).

Os dados das outorgas foram agrupados de acordo com as finalidades definidas pelo Manual Técnico e Administrativo de Outorga de Direito de Uso de Recursos Hídricos no Estado de Minas Gerais (IGAM, 2010) que são divididas em: saneamento (consumo humano e abastecimento público); indústria (atividades ligadas ao consumo industrial); mineração (atividades ligadas à extração mineral); irrigação; criação de animais (consumo agroindustrial e dessedentação de animais); aquicultura; e outros (envolve usos diversos não especificados pelo IGAM, como lavagem de veículos, disposição de rejeitos, urbanização).

Foram elaborados gráficos considerando a vazão de utilização de águas dessas outorgas para cada atividade listada anteriormente e para cada cidade da bacia do rio Paracatu, além de um gráfico geral para toda a bacia do rio Paracatu.

4.4.5 Elaboração de Mapas Temáticos

Foram obtidas imagens dos satélites Landsat 5 e Landsat 8 diretamente do *site* de Pesquisa Geológica dos Estados Unidos (USGS – *United States Geological Survey*) para a região da bacia do rio Paracatu nos anos de 2006 e 2013, respectivamente. As imagens obtidas têm resolução espacial de 30m e estão localizadas nas órbitas 219 e 220 e nos pontos 71, 72 e 73. Essas imagens foram obtidas entre maio e julho de cada um dos anos citados, pois nesse período é menor a presença de nuvens na região, de modo que facilita a visualização das imagens e a posterior classificação para elaboração dos mapas temáticos. Foram necessárias cinco imagens de cada ano para cobrir toda a área da bacia do rio Paracatu.

Essas imagens obtidas diretamente do USGS já vêm com as correções geométricas realizadas para os dois anos e com correções radiométricas e atmosféricas para o ano de 2013 (Landsat 8). Para o ano de 2006 (Landsat 5), não se sabe se foram feitas as correções radiométricas e atmosféricas, porém, esse fato é irrelevante, uma vez que as imagens foram trabalhadas como mosaicos. De posse dessas imagens, foram elaborados mapas temáticos de cobertura do solo na bacia do rio Paracatu para os anos citados, através da utilização dos Softwares Envi v. 4.5, ArcGIS 10.1 e eCognition, de acordo com a metodologia a seguir:

- 1. Empilhamento de bandas para composição das imagens multiespectrais: o empilhamento de bandas é realizado por se tratar de imagens de satélite, que possuem sete bandas, e todas as cinco imagens de cada ano devem ser empilhadas na mesma ordem. Foram empilhadas 35 bandas para cada ano, sendo sete bandas em cinco cenas adjacentes. Para o ano de 2006, adotou-se a ordem de bandas 1, 2, 3, 4, 5 e 7 (sendo seis bandas ao todo); e, para o ano de 2013, adotou-se a ordem de bandas 7, 6, 5, 4, 3, 2 e 1 (sendo sete bandas ao todo). O empilhamento de todas as imagens foi realizado no Envi v. 4.5 através da ferramenta de *Layer Stracking*.
- 2. Mosaico das cinco cenas: o mosaico também foi realizado no Envi v. 4.5, a fim de unir as cinco cenas de um ano em uma só imagem. As cenas foram radiometricamente balanceadas, a faixa de emenda entre as cenas adjacentes foi estabelecida com 200 pixels e a resolução original foi mantida (pixel equivalente a 30m no terreno).
- 3. Recorte: Utilizando a ferramenta *Clip* do ArcGIS 10.1 foi feito o recorte do mosaico para a área total da bacia do rio Paracatu.
- 4. Classificação da imagem: a classificação das imagens foi realizada no eCognition, através da GEOBIA (Geographical Object Based Image Analysis), levando em consideração as seguintes classes: agricultura, água, mata, gramínea e solo exposto. A ocorrência de sombras e nuvens foram consideradas apenas na imagem do ano de 2013, pois a presença dessas não foi significativa no ano de 2006. Para a identificação das classes, foram feitas diversas amostras, manualmente, levando em consideração a média, o desvio-padrão, o número de pixels, a área, assimetria, densidade, ajuste elíptico, ajuste retangular, compactação, arredondamento e o índice NDVI, de cada uma delas para que o software pudesse fazer a classificação mais próxima do real possível.

- 5. Delimitação da área urbana: pelo fato da área urbana poder ser facilmente confundida com a classe de solo exposto classificada na etapa anterior, a delimitação da mesma só foi realizada após a classificação da imagem, manualmente, no próprio ArcGIS 10.1.
- 6. Edição das imagens: os mapas temáticos foram editados no ArcGIS 10.1.

Após todas essas etapas, as imagens classificadas foram organizadas para a elaboração dos mapas temáticos e também foram geradas tabelas com as áreas totais de cada uma das classes encontradas na classificação das imagens. Tendo em vista o pouco tempo para a realização de todas as análises e a dificuldade na elaboração dos mapas, considerou-se apenas o ano inicial e o ano final para a elaboração dos mapas temáticos de cobertura do solo. O ideal seria se pudessem ser feitos mapas para cada um dos anos dentro do período estudado.

Como já foi mencionado, os mapas foram elaborados considerando seis classes de cobertura do solo, sendo elas: agricultura, água, mata, gramínea, solo exposto e área urbana. A classe denominada agricultura engloba além dos campos de cultivo, os pivôs centrais e plantações de eucalipto, bem como os solos que estão sendo preparados para a agricultura, que são solos com forma definida e bastante homogêneos. A classe de água considerou todos os corpos d'água que puderam ser identificados na área estudada, desde rios e pequenos cursos d'água até barragens e reservatórios. A classe de mata engloba as matas ciliares e remanescentes florestais. A classe de gramínea identificou as áreas de campo com vegetação rasteira e não homogênea, incluindo pasto, campo e cerrado. A classe de solo exposto considerou os solos naturalmente expostos ou expostos devido à atividade antrópica como é o caso da mineração. Nessa classe foi considerada ainda, a área urbana que não pôde ser identificada em uma classe separada por ser facilmente confundida pelo *software* com solo exposto. Esse solo exposto, quando natural, é bastante heterogêneo e de forma não definida. A classe de área urbana foi posteriormente delimitada, manualmente, considerando os perímetros urbanos de cada município dentro do limite da bacia.

Para a avaliação da precisão temática dos mapas elaborados, foi feita uma matriz de confusão e, a partir dela, foram calculados a exatidão global, a precisão de usuário, a precisão de produtor e o índice kappa. Esses índices possibilitam verificar erros oriundos do processo de atribuição dos *pixels* às classes pré-determinadas (FIGUEIREDO & VIEIRA, 2007).

4.5 Avaliação espacial da qualidade da água na bacia do rio Paracatu

A avaliação espacial da qualidade das águas superficiais na bacia do rio Paracatu contou com três análises diferentes. As duas primeiras utilizaram técnicas estatísticas multivariadas, que são consideradas exploratórias na avaliação dos dados de monitoramento da qualidade das águas, e a terceira foi a análise do percentual de violações dos parâmetros com limites preconizados na Deliberação Normativa Conjunta da COPAM e CERH-MG N°01/08 (COPAM/CERH, 2008). Ambas as análises têm como objetivo verificar a qualidade das águas e relacionar essas características com o uso e ocupação do solo na região.

Para as análises multivariadas foram contempladas todas as estações de monitoramento presentes nesse estudo (27 estações) e 13 parâmetros físico-químicos e microbiológicos de qualidade das águas, a saber: Cloreto total (Cl-T), Coliformes termotolerantes (Coli. term.), Condutividade elétrica *in loco* (CE), Fenóis totais (FenT), Ferro dissolvido (Fediss), Fósforo total (PT), Nitrato (N-NO3-), Oxigênio dissolvido (OD), pH *in loco* (pH), Sólidos em suspensão (SST), Sólidos totais (ST), Temperatura da água (TH2O) e Turbidez (Turb.). A quantidade de parâmetros na análise multivariada é menor do que a quantidade total de parâmetros selecionados para o presente estudo pelo fato dela ter seus resultados facilmente alterados pela quantidade de dados faltantes na amostra, por isso foi preciso selecionar os parâmetros com menor quantidade de dados faltantes possível.

Para aplicação das técnicas estatísticas multivariadas (Análise de Cluster -AC- e Análise de Componentes Principais -ACP-), os dados foram padronizados, isto é, as variáveis foram transformadas em escala Z (média 0 e desvio padrão 1: $Z = [(X - \mu)/\sigma]$, onde X é o dado bruto e Z é o dado padronizado), a fim de se evitar interferências no resultado devido às diferentes unidades de medida dos parâmetros.

4.5.1 Agrupamento das estações de monitoramento segundo suas similaridades

Após organização e padronização do banco de dados em planilhas do Excel, a Análise de Cluster foi realizada a fim de agrupar as estações de monitoramento segundo suas similaridades no software *Statistica 8.0*, a partir de aglomeração hierárquica, que se caracteriza pelo estabelecimento de uma hierarquia ou estrutura em forma de árvore, pelo método de encadeamento completo (*Complete Linkage*) que, segundo Vicini (2005), se baseia na distância máxima entre os objetos. Foi utilizada a distância euclidiana como medida de similaridade.

Ainda segundo Vicini (2005), o agrupamento aglomerativo, realizado nesse estudo, tem início em um grupo separado. Formam-se os grupos reunindo-se os objetos em grupos cada vez maiores. O processo continua até que todos os objetos sejam membros de um único grupo, sendo esse método sequencial, onde os objetos são reunidos um após o outro, respeitando uma determinada sequência de aglomeração.

A AC foi realizada com o objetivo de agrupar as estações de monitoramento da bacia do Paracatu quanto à similaridade da qualidade das águas superficiais (em função dos parâmetros de qualidade da água) de forma que os elementos pertencentes a um mesmo grupo (*cluster*) apresentem alta homogeneidade entre si e os elementos em grupos diferentes sejam heterogêneos.

4.5.2 Determinação dos parâmetros responsáveis pelos agrupamentos

Após a realização da AC, foi efetuada a Análise de Componentes Principais nos *clusters* gerados, visando identificar os Componentes Principais (CP) da bacia do rio Paracatu, ou seja, quais parâmetros foram os mais significativos e que descrevem o conjunto de dados dos grupos formados, proporcionando a redução do banco de dados com o mínimo de perda da informação original (VICINI, 2005). Essa análise foi realizada no *software* Xlstat®.

Cada componente principal pode receber uma identificação (rotulação) relacionada às diversas fontes de poluição que afetam a qualidade da água (ex: agricultura, esgoto, efluentes industriais, etc.), o que auxilia na identificação das principais fontes de poluição atuantes. A análise desses resultados buscou justificar os agrupamentos encontrados na AC e identificar os principais fatores responsáveis pela poluição/degradação em cada um dos grupos.

4.5.3 Análise do percentual de violações

A análise do percentual de violações foi realizada levando-se em consideração o limite preconizado na Deliberação Normativa do COPAM/CERH Nº 01/08 (COPAM/CERH, 2008) e as classes de enquadramento dos cursos d'água onde estão localizadas as estações de monitoramento. A bacia do rio Paracatu possui cursos d'água com classes 1 e 2 de enquadramento (IGAM, 2013). Os cursos d'água de Classe 1 estão destacados no Quadro 4.3 apenas para melhor identificação das diferentes classes existentes na bacia do rio Paracatu.

Quadro 4.3 Classes de Enquadramento dos corpos d'água onde estão localizadas as estações de monitoramento da bacia do rio Paracatu

Estações	Curso D'água	Classe de Enquadramento	Estações	Curso D'água	Classe de Enquadramento
PT001	Rio da Prata	Classe 2	PTE013	Ribeirão Escurinho	Classe 2
PT003	Rio Paracatu	Classe 2	PTE015	Rio Escuro	Classe 2
PT005	Córrego Rico	Classe 2	PTE017	Rio da Prata	Classe 2
PT007	Rio Preto	Classe 2	PTE019	Rio do Sono	Classe 1
PT009	Rio Paracatu	Classe 2	PTE021	Rio Santo Antônio	Classe 2
PT010	Rio Caatinga	Classe 2	PTE023	Córrego Rico	Classe 2
PT011	Rio do Sono	Classe 2	PTE025	Ribeirão São Pedro	Classe 2
PT013	Rio Paracatu	Classe 2	PTE027	Rio Preto	Classe 2
PTE001	Rio da Prata	Classe 2	PTE029	Ribeirão São Pedro	Classe 2
PTE003	Rio Santa Catarina	Classe 2	PTE031	Ribeirão Entre Ribeiros	Classe 2
PTE005	Rio Santa Catarina	Classe 2	PTE033	Rio Paracatu	Classe 2
PTE007	Rio Paracatu	Classe 1	PTE035	Rio Verde	Classe 2
PTE009	Rio Claro	Classe 2	PTE037	Ribeirão Santa Fé	Classe 1
PTE011	Ribeirão Arrenegado	Classe 1			

Para a análise de percentual de violações foram selecionados 31 parâmetros de qualidade das águas, que são aqueles que possuem limites estabelecidos na legislação e que estão entre os 34 parâmetros selecionados para esse estudo monitorados pelo IGAM, a saber: Alumínio dissolvido (Al_{diss}), Arsênio total (As_T), Bário total (Ba_T), Boro total (B_T), Cádmio total (Cd_T), Chumbo total (Pb_T), Cianeto livre (CN⁻), Cloreto total (Cl⁻_T), Clorofila a (Cl-*a*), Cobre dissolvido (Cu_{diss}), Coliformes termotolerantes (Coli. term.), Cor verdadeira (Cor), Cromo total (Cr_T), Demanda Bioquímica de Oxigênio (DBO), Fenóis totais (Fen_T), Ferro dissolvido (Fe_{diss}), Fósforo total (P_T), Manganês total (Mn_T), Níquel total (Ni_T), Nitrato (N-NO₃⁻), Nitrito (NO₂⁻), Nitrogênio Amoniacal total (N-NH₄⁺_T), Oxigênio dissolvido (OD), pH *in loco* (pH), Selênio total (Se_T), Sólidos dissolvidos totais (SDT), Sólidos em suspensão totais (SST), Sulfato total (SO₄⁻²_T), Sulfeto (S⁻²), Turbidez (Turb.) e Zinco total (Zn_T).

Os 31 parâmetros analisados, foram então avaliados em relação ao percentual de violação dos limites legais, levando em consideração a legislação específica para a classe de enquadramento correspondente. O objetivo dessa análise foi de identificar os principais parâmetros responsáveis pela degradação ambiental em cada estação de monitoramento. Os limites legais estabelecidos pela DN COPAM/CERH-MG Nº 01/08 (COPAM/CERH, 2008) para os parâmetros analisados, por classe de enquadramento, estão apesentados na Tabela 4.2.

Tabela 4.2 Limites preconizados pela Deliberação Normativa COPAM/CERH nº01/08

DADÂMETDO	CLASSE 1	CLASSE 2	- UNIDADE	
PARÂMETRO	Valor Máximo	Valor Máximo		
Alumínio dissolvido	0,1	0,1	mg/L Al	
Arsênio total	0,01	0,01	mg/L As	
Bário total	0,7	0,7	mg/L Ba	
Boro total	0,5	0,5	mg/LB	
Cádmio total	0,001	0,001	mg/L Cd	
Chumbo total	0,01	0,01	mg/L Pb	
Cianeto Livre	0,005	0,005	mg/L CN	
Cloreto total	250	250	mg/L Cl	
Clorofila a	10	30	μg/L	
Cobre dissolvido	0,009	0,009	mg/L Cu	
Coliformes termotolerantes	200	1000	NMP/100 mL	
Cor verdadeira	75	75	mg Pt/L	
Cromo total	0,05	0,05	mg/L Cr	
DBO	3	5	mg/LO_2	
Densidade de cianobactérias	20000	50000	cel/mL	
Fenóis totais	0,003	0,003	mg/L C ₆ H ₅ OH	
Ferro dissolvido	0,3	0,3	mg/L Fe	
Fósforo total	0,1	0,1	mg/L P	
Manganês total	0,1	0,1	mg/L Mn	
Mercúrio total	0,0002	0,0002	mg/L Hg	
Níquel total	0,025	0,025	mg/L Ni	
Nitrato	10	10	mg/L N	
Nitrito	1	1	mg/L N	
Nitrogênio amoniacal total	3,7: pH ≤ 7,5 2,0: 7,5 < pH ≤ 8,0 1,0: 8,0 < pH ≤ 8,5 0,5: pH > 8,5	3,7: pH ≤ 7,6 2,0: 7,5 < pH ≤ 8,1 1,0: 8,0 < pH ≤ 8,6 0,5: pH > 8,6	mg/L N	
Óleos e Graxas	virtualmente ausentes	virtualmente ausentes		
Oxigênio dissolvido	>6	>5	mg/LO_2	
pH in loco	entre 6 e 9	entre 6 e 9		
Selênio total	0,01	0,01	mg/L Se	
Sólidos dissolvidos totais	500	500	mg/L	
Sólidos em suspensão totais	50	100	mg/L	
Sulfato total	250	250	mg/LSO_4	
Sulfeto	0,002	0,002	mg/LS	
Turbidez	40	100	UNT	
Zinco total	0,18	0,18	mg/L Zn	

Limites diferentes para as duas classes

Observa-se que apenas sete dos 34 parâmetros analisados têm diferentes limites de concentração preconizados pela legislação específica da Classe 1 para a Classe 2 de

enquadramento dos cursos d'água. Esses parâmetros são os destacados pela cor de rosa na Tabela 4.2.

É importante destacar que os parâmetros Óleos e graxas, Densidade de Cianobactérias e Mercúrio total, apesar de terem seus limites preconizados pela DN citada anteriormente e de serem parâmetros monitorados pelo IGAM, foram excluídos dessa análise. O parâmetro óleos e graxas tem uma análise muita subjetiva por ter seu limite definido como virtualmente ausente, a densidade de cianobactérias foi excluída por ter um alto percentual de dados faltantes na maioria das estações de monitoramento e o parâmetro de Mercúrio total teve 100% de seus dados violados, apesar de ter 100% de seus dados também censurados, o que indica uma falha no seu método analítico.

Além de tabelas com os resultados de violações dos limites legais, foram elaborados também, gráficos de frequência de ocorrência de parâmetros fora dos limites legais preconizados para cada estação de monitoramento da bacia do rio Paracatu.

4.6 Análise de Tendência Temporal

A análise de tendência temporal, para cada uma das 27 estações de monitoramento foi avaliada individualmente para cada um dos 18 parâmetros selecionados para essa análise: Arsênio total (As_T), Chumbo total (Pb_T), Cloreto total (Cl_T), Clorofila a (Cl-*a*), Coliformes termotolerantes (Coli. term.), Condutividade elétrica *in loco* (CE), Cor verdadeira (Cor), Fenóis totais (Fen_T), Ferro dissolvido (Fe_{diss}), Fósforo total (P_T), Manganês total (Mn), Nitrato (N-NO₃-), Oxigênio dissolvido (OD), pH *in loco* (pH), Sólidos em suspensão totais (SST), Sólidos totais (ST), Temperatura da água (T_{H2O}) e Turbidez (Turb.).

Esses parâmetros foram selecionados em função da maior regularidade dos dados mensurados e menor porcentagem de dados faltantes para o período selecionado no presente estudo (entre os anos de 2006 e 2013). Os dados analisados possuem frequência trimestral de coleta.

Para avaliação da tendência de qualidade das águas na bacia do rio Paracatu foram realizados testes estatísticos utilizando o software Xlstat® conforme as etapas apresentadas a seguir, de acordo com metodologia já estabelecida por Christofaro & Leão (2009) e Trindade (2013):

- 1. Realizou-se o teste de Kruskal-Wallis (seguido de teste de comparações múltiplas) ao nível de significância α de 5%. Os resultados significativos (aqueles que apresentam p-valor menor que 0,05) indicam a influência de sazonalidade.
- 2. Realizou-se também o teste de Correlação de Spearman. A Correlação de Spearman foi determinada relacionando os dados de monitoramento do parâmetro com o tempo, sendo que as coletas foram ordenadas da mais antiga para a mais recente. Correlações com p-valor menor que 0,05 (nível de significância α = 5%) foram consideradas significativas, ou seja, houve uma tendência ao longo do tempo para o parâmetro analisado em determinada estação.
- 3. Em seguida, levando em consideração o resultado do teste de Kruskal-Wallis que indica a influência da sazonalidade na análise temporal de cada parâmetro, foram realizados os testes de Mann-Kendall ou o Sazonal de Mann-Kendall a fim de corroborar os resultados encontrados na Correlação. Para os parâmetros que apresentaram diferença significativa entre os trimestres (p<0,05) no teste de Kruskal-Wallis, foi considerada a existência da influência da sazonalidade nos dados, sendo assim, foi realizado o teste Sazonal de Mann-Kendall. Ao contrário, para os parâmetros nos quais não foi verificada a existência da influência da sazonalidade no teste de Kruskal-Wallis (p>0,05), foi realizado o teste de Mann-Kendall para análise de tendência temporal.

Todos os testes utilizados (Kruskal-Wallis, Correlação de Spearman, Mann-Kendall e Sazonal Mann-Kendall) são testes não paramétricos, por estarem sendo analisados dados que não seguem a distribuição normal, o que é comum em dados ambientais. Os resultados destes testes foram confrontados a fim de buscar conclusões sobre a tendência dos parâmetros ao longo da série histórica de dados de monitoramento da bacia do rio Paracatu.

Para interpretação dos resultados da análise de tendência temporal foi utilizada a metodologia estabelecida por Trindade (2013), na qual são considerados como tendência significativa, de elevação ou de redução, os resultados cujos p-valores foram, simultaneamente, menores que 0,05 para o teste de Correlação de Spearman e Mann-Kendall ou Sazonal de Mann-Kendall, sendo que na maioria dos casos analisados, esses testes foram coincidentes, indicando ou não a existência de tendência. Nos casos em que apenas um dos dois testes apresentou resultado significativo (p<0,05), a tendência foi considerada como inconclusiva com possibilidade de elevação ou de redução. Quando ambos os testes apresentaram resultados não significativos

(p>0,05), os parâmetros foram considerados como sem tendência significativa ao longo do período estudado.

Os valores de Tau de Kendall e de S, calculados nos testes de Mann-Kendall ou Sazonal de Mann-Kendall e relacionados entre si, indicam o sentido da tendência do parâmetro ao longo do tempo, podendo ser de elevação (valores positivos) ou de redução (valores negativos). O Quadro 4.4 apresenta um resumo da metodologia utilizada para interpretação dos resultados dos testes da análise de tendência temporal.

Quadro 4.4 Definição dos resultados da análise de tendência temporal

Teste de Mann- Kendall ou Sazonal de Mann-Kendall	p-valo	r < 0,05	p-valor > 0,05		
Teste de Correlação de Spearman	S ¹ < 0	S ¹ > 0	S ¹ < 0	S ¹ > 0	
p-valor < 0,05	Tendência significativa de redução	Tendência significativa de elevação	Inconclusivo com possibilidade de redução	Inconclusivo com possibilidade de elevação	
p-valor > 0,05	Inconclusivo com possibilidade de redução	Inconclusivo com possibilidade de elevação	Sem tendência	Sem tendência	

As observações de tendência temporal permitiram apontar a evolução da qualidade da água nas estações de monitoramento ao longo do período de 2006 a 2013. Pode-se indicar a melhora ou a piora em determinados pontos e assim identificar o que contribui para tais situações. Os resultados das séries históricas das estações relevantes para cada parâmetro foram representados em gráficos de modo a observar suas variações ao longo do período analisado, confirmando assim a indicação de tendência apontada pelas análises estatísticas.

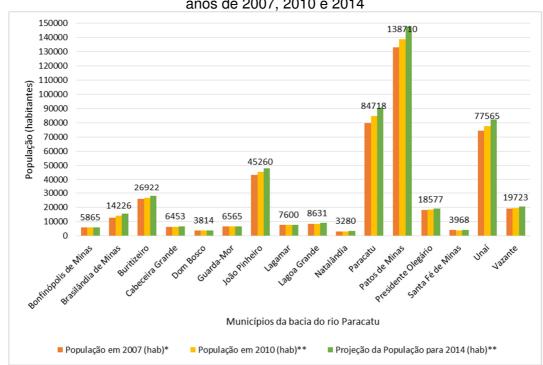
Foram elaborados, também, mapas para melhor visualização da tendência temporal de cada parâmetro utilizando o software ArcGIS 10.1. Com esses resultados, representados em mapas, individuais para cada parâmetro, buscou-se contribuir para a melhor visualização das tendências ao longo dos corpos d'água e juntamente com a avaliação dos resultados obtidos pelos testes estatísticos permitir uma visão mais ampliada do comportamento de cada parâmetro analisado.

5 RESULTADOS / DISCUSSÃO

5.1 Cálculo da estatística descritiva

As tabelas da estatística descritiva dos dados para cada parâmetro são apresentadas no Apêndice I (Tabelas I.1 a I.27) por estação de monitoramento. A análise dos resultados da estatística descritiva deve ser considerada uma análise preliminar para conhecimento do banco de dados em estudo, porém ela também pode fornecer algumas informações importantes para a interpretação dos dados. Analisando os resultados da estatística descritiva, pode-se observar, por exemplo, que o parâmetro coliformes termotolerantes tem altos níveis de concentração em praticamente todas as estações de monitoramento da bacia do rio Paracatu, uma vez que apenas quatro estações possuem coliformes termotolerantes com médias de concentrações pouco abaixo de 1000 NMP/ 100 mL. As demais estações possuem médias de concentrações acima de 1000 NMP / 100 mL, variando até o valor de 52000 NMP / 100 mL.

Em alguns parâmetros, para algumas estações de monitoramento, não puderam ser calculados os coeficientes de assimetria e de curtose pelo fato de terem o desvio padrão igual a zero. Isso ocorre principalmente em estações que tiveram poucas coletas do parâmetro em questão ou com parâmetros que tiveram a maior parte dos seus resultados abaixo do limite de detecção, uma vez que, nesses casos, é adotado o valor do limite de detecção para essas observações.


Também foram analisadas a quantidade de *outliers* e a sua porcentagem em relação ao total de dados válidos para cada parâmetro de cada estação de monitoramento. Porém, nenhum *outlier* foi excluído por terem sido considerados como passíveis de ocorrer e não como erros de mensuração, uma vez que em dados ambientais podem existir grandes variações (NAGHETTINI & PINTO, 2007). A maior porcentagem de *outliers* em relação aos dados válidos encontrada nas análises foi de 26,92% para o parâmetro Sólidos dissolvidos totais na estação de monitoramento PTE019.

5.2 Uso e Ocupação do Solo na bacia do rio Paracatu

5.2.1 Dados demográficos

A análise dos dados demográficos foi realizada com base em dados do IBGE, como população, área territorial e densidade demográfica de cada um dos 16 municípios da bacia do rio Paracatu. O gráfico da Figura 5.1 apresenta a evolução da população desses municípios no período estudado. Estão representadas no gráfico três colunas para cada município referentes aos anos

de 2007 (contagem da população no mesmo ano), 2010 (censo demográfico realizado no mesmo ano) e 2014 (projeção da população calculada no censo demográfico de 2010); e também, um valor referente à população do município no ano de 2010 apenas para facilitar a visualização dos resultados.

Figura 5.1 Gráfico da população dos municípios pertencentes à bacia do rio Paracatu nos anos de 2007, 2010 e 2014

Fonte: Dados do IBGE: * Contagem da população, 2007; ** Censo demográfico, 2010.

A partir da análise do gráfico (FIG. 5.1), pode-se inferir que os municípios da bacia do rio Paracatu são municípios com poucos habitantes, sendo que a metade desses municípios (8) têm população inferior a 10.000 habitantes, inclusive na projeção feita para o ano de 2014. O município com maior número de habitantes é Patos de Minas. Porém, vale ressaltar que o município de Patos de Minas não possui sua sede localizada dentro da bacia, além de possuir uma pequena área de seu município dentro da bacia do rio Paracatu, sendo a menor porcentagem de participação da bacia na área total do município, conforme Tabela 4.1.

Depois de Patos de Minas, os municípios com maiores populações são Paracatu e Unaí com menos de 90.000 habitantes. Outros cinco municípios têm suas populações entre 10.000 e 50.000 habitantes.

Ainda com base em dados do Censo demográfico de 2010, é apresentado o gráfico de densidade demográfica (hab/km²) dos municípios pertencentes à bacia do rio Paracatu (FIG. 5.2).

Paracatu com base em dados do ano de 2010 Bonfinópolis de Minas Brasilândia de Minas 5,67 Buritizeiro 3,73 Cabeceira Grande 6,26 Municípios da bacia do rio Paracatu Dom Bosco 4,67 Guarda-Mor 3.17 João Pinheiro 4.22 Lagamar Lagoa Grande 6,98 Natalândia 7,00 10,29 Paracatu Patos de Minas 43.49 Presidente Olegário 5.30 Santa Fé de Minas Vazante 10,31 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 Densidade Demográfica (hab/km²)

Figura 5.2 Gráfico da Densidade Demográfica (hab/km²) para os municípios da bacia do rio Paracatu com base em dados do ano de 2010

Fonte: Dados do IBGE, 2010.

Com base no gráfico apresentado (FIG. 5.2), pode-se concluir que os municípios da bacia do rio Paracatu possuem baixa densidade demográfica. Quando comparados à capital do estado, Belo Horizonte, esse dado fica ainda mais claro. Em 2010, a densidade demográfica da capital era de 7167 hab/km² (IBGE, 2010), valor que não é nem próximo da maior densidade demográfica da bacia do rio Paracatu de 43,49 hab/km² no município de Patos de Minas, que além de ser o município com maior população é também o mais povoado da região e com menor parte de seu território inserido na bacia.

Os demais municípios possuem densidades menores que 10,5 hab/km². Novamente se destacam os municípios de Paracatu e Unaí, com 10,29 e 9,18 hab/km² respectivamente. O município de Vazante também tem uma densidade próxima desses municípios, 10,31 hab/km², apesar de ter uma população baixa (19.723 habitantes). Santa Fé de Minas é o município com menor densidade demográfica, apenas 1,36 hab/km².

5.2.2 Dados de Saneamento

Os dados de saneamento obtidos conforme explicado na metodologia são apresentados nas Tabelas 5.1 (água e esgoto) e 5.2 (resíduos sólidos) para cada um dos municípios da bacia do rio Paracatu. Os dados do local de captação de água para abastecimento foram coletados no Atlas Brasil de Abastecimento Urbano de Água (ANA, 2014), no qual são citados os mananciais

de cada município brasileiro. Os dados sobre esgoto, coleta de resíduos sólidos e porcentagem da população atendida com água tratada foram obtidos junto ao SNIS (2012), na série histórica existente de cada município. Já os dados de destinação de resíduos sólidos foram obtidos junto à FEAM (2013).

Tabela 5.1 Dados de captação de água e índices de coleta e tratamento de esgoto dos 16 municípios da bacia do rio Paracatu

	municipios da bacia	Índice de	Índice de	Índice de
Município	Local de captação de água para	atendimento	coleta de	tratamento
	abastecimento	urbano de água (%)	esgoto (%)	de esgoto (%)
Bonfinópolis de Minas	s Ribeirão das Almas	100	49,24	0
Brasilândia de Minas	Rio Paracatu	100	-	-
Buritizeiro	Rio São Francisco (93%) e Poços de Buritizeiro (7%)	99,8	-	-
Cabeceira Grande	Córrego Cabeceira Grande (67%) e Poços de Cabeceira Grande (33%)	98,5	-	-
Dom Bosco	Poços de Dom Bosco e Córrego Gado Bravo	-	-	-
Guarda-Mor	Córrego de Guarda-Mor (50%) e Poços de Guarda-Mor (50%)	100	74,33	46,32
João Pinheiro	Ribeirão dos Órfãos	100	69,3	86,12
Lagamar	Córrego Carrapato (57%) e Poços Lagamar (43%)	100	95,87	0
Lagoa Grande	Poços de Lagoa Grande	100	88,41	0
Natalândia	Poços de Natalândia	-	80	100
Paracatu	Rio Santa Isabel (71%) e poços de Paracatu (29%)	100	70,59	100
Patos de Minas	Rio Paranaíba	100	77,97	0,01
Presidente Olegário	Poços do município (42%)e Ribeirão Três Barras (58%)	100	-	-
Santa Fé de Minas	Poços de Santa Fé de Minas e Ribeirão Santa Fé	100	-	-
Unaí	Rio Preto (90%) e os Poços de Unaí (10%)	98,4	85,65	100
Vazante	Poços de Vazante	100	-	-

⁻ Não existem dados na fonte pesquisada

Fonte: ANA, 2014 & SNIS, 2012.

Pode-se observar que dos 14 munícipios que têm informações do índice de atendimento de água, a maioria tem 100% de abastecimento de água para a população urbana. Os municípios que não tem 100% (Buritizeiro, Cabeceira Grande e Unaí), estão bem próximos desse valor, sendo assim, pode-se concluir que o abastecimento de água é eficiente na bacia do rio Paracatu. Vale ressaltar, ainda, que os municípios da região têm poucos habitantes, como foi identificado nos dados demográficos, sendo assim muitos deles têm como mananciais os poços da cidade, que são suficientes para atender a população urbana do município.

Analisando os índices relativos ao esgoto, verifica-se que os municípios de Lagamar e Lagoa Grande, apesar de obterem os maiores índices de coleta, 95,87% e 88,41%, respectivamente, não possuem nenhum tipo de tratamento desse esgoto, assim como Bonfinópolis de Minas. Observou-se também que dos 16 municípios, apenas seis possuem algum tipo de tratamento desse esgoto, dentre os quais, somente Natalândia, Paracatu e Unaí possuem 100% de seu esgoto coletado tratado. Vale salientar que o município mais populoso da região, Patos de Minas trata apenas 0,01% de seu esgoto, resultando em altos níveis de poluentes no corpo receptor.

Tabela 5.2 Coleta e destinação de resíduos sólidos nos municípios da bacia do Paracatu

	Taxa de cobertura do serviço de coleta	a
Município	domiciliar direta (porta-a-porta) da	Destinação dos Resíduos sólidos
	população urbana do município (%)	
Bonfinópolis de Minas	100	Aterro controlado
Brasilândia de Minas	100	AAF em verificação
Buritizeiro	75,7	Aterro controlado
Cabeceira Grande	100	Aterro Controlado
Dom Bosco	-	Aterro Controlado
Guarda-Mor	100	Usina de triagem e compostagem não regularizada
João Pinheiro	100	Lixão
Lagamar	-	Usina de triagem e compostagem regularizada
Lagoa Grande	100	AAF em verificação
Natalândia	96,4	Lixão
Paracatu	96	Aterro controlado
Patos de Minas	96	Aterro sanitário regularizado
Presidente Olegário	99,4	Usina de triagem e compostagem regularizada
Santa Fé de Minas	-	Aterro controlado
Unaí	99,3	Lixão
Vazante	99,4	Aterro controlado

⁻ Não existem dados na fonte pesquisada

AAF Autorização Ambiental de Funcionamento

Fonte: SNIS, 2012 & FEAM, 2013.

Os municípios nos quais a destinação dos resíduos sólidos possui a sigla AAF (Autorização Ambiental de Funcionamento) estão aguardando a verificação para terem seu local de destinação dos resíduos sólidos efetivado. Esses empreendimentos de destinação dos resíduos referem-se aos empreendimentos de classe 1 e 2, de acordo com classificação feita pelo COPAM, os quais são considerados como empreendimentos de impacto ambiental não significativo, ficando dispensados do processo de licenciamento ambiental (MINAS GERAIS, 2004). Os municípios que não possuem índices de coleta de esgoto e os demais dados de saneamento são aqueles que não possuem esses dados na série histórica do SNIS.

No que se refere ao tratamento e destinação de resíduos sólidos urbanos, nota-se que apesar da taxa de cobertura do serviço de coleta domiciliar direta (porta-a-porta) da população urbana da maioria dos municípios serem próximas a 100%, nem sempre a destinação final ocorre de maneira adequada. De acordo com dados da FEAM (2013), apenas o município de Patos de Minas contém aterro sanitário regularizado, que, diferente do aterro controlado, possui coleta e tratamento do chorume, assim como da drenagem e queima do biogás produzido.

5.2.3 Atividades Licenciadas

Os licenciamentos ambientais da bacia do rio Paracatu foram agrupados de acordo com a sua tipologia, conforme definido pela DN COPAM 74/2004 (MINAS GERAIS, 2004). Sendo assim, os empreendimentos foram divididos em sete categorias, a saber: atividades minerárias, atividades industriais/indústria metalúrgica e outras, atividades industriais/indústria química, atividades industriais/indústria alimentícia, atividades de infraestrutura, serviços e comércio atacadista e atividade agrossilvipastoril. Foram usados somente os dados dos empreendimentos com a licença para operação concedida, conforme explicado na metodologia.

Considerando os empreendimentos formalizados entre os anos de 1984 e 2014, observou-se que as atividades agrossilvipastoris representaram a maior porcentagem dentre as atividades licenciadas, somando 38% dos empreendimentos, a segunda maior atividade foi a mineração com 29 % dos empreendimentos licenciados na bacia do rio Paracatu (FIG. 5.3).

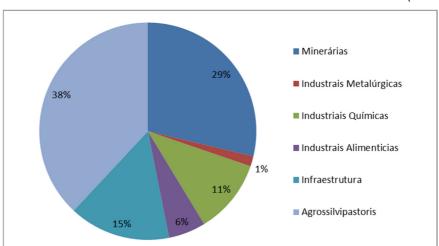


Figura 5.3 Gráfico das atividades licenciadas na bacia do rio Paracatu (1984 a 2014)

Tanto as atividades agrossilvipastoris como as atividades minerárias, principais atividades licenciadas em toda a bacia do rio Paracatu, possuem grande potencial (dependendo do seu porte) de ser um agente poluidor dos cursos d'águas da bacia do rio Paracatu e por isso devem ser monitoradas constantemente. As indústrias também representam uma forte atividade na região, somando os diferentes ramos da indústria, observa-se que 17% das atividades licenciadas na bacia são empreendimentos industriais.

Dos 397 empreendimentos analisados na bacia do rio Paracatu, as atividades agrossilvipastoris também representaram a maior porcentagem das atividades licenciadas nos municípios individualmente, como é o caso de Bonfinópolis de Minas, Cabeceira Grande, Dom Bosco, Guarda-Mor, João Pinheiro, Lagoa Grande (mesma porcentagem das atividades minerárias) e Unaí. Essas porcentagens estão apresentadas nas Figuras II.1 a II.6, no Apêndice II, em forma de gráficos. A Tabela 5.3 apresenta a quantidade de atividades licenciadas por município, bem como o total de atividades licenciadas por tipo em toda a bacia do rio Paracatu.

Tabela 5.3 Atividades licenciadas por município na bacia do rio Paracatu

		Total de atividades					
MUNICÍPIOS	Minerárias	Industrais Metalúrgicas	Industrais Industriais Industrais Infraestrutura A Metalúrgicas Químicas Alimentícias		Agrossilvipastoris	licenciadas por município	
Bonfinópolis de Minas	0	0	0	0	0	7	7
Brasilândia de Minas	0	0	0	2	2	2	6
Cabeceira Grande	0	0	0	1	0	5	6
Dom Bosco	0	0	0	0	0	1	1
Guarda-Mor	7	0	0	1	2	12	22
João Pinheiro	7	0	19	5	4	25	60
Lagamar	9	0	3	2	1	1	16
Lagoa Grande	6	0	0	2	0	6	14
Paracatu	51	2	10	3	30	47	143
Unaí	2	0	10	3	16	40	71
Vazante	32	4	2	3	5	5	51
Bacia do rio Paracatu	114	6	44	22	60	151	397

Fonte: SUPRAM NOR, 2014.

Observa-se que, nos municípios de Lagamar, Paracatu e Vazante, as atividades minerárias superam as atividades agrossilvipastoris. A cidade de Paracatu possui uma atividade minerária bastante próxima à área urbanizada do município e que consiste na lavra, no beneficiamento e na hidrometalurgia de minério de ouro (FIG. 5.4).

• Paracatu

Figura 5.4 Imagem de satélite da atividade minerária em Paracatu

Fonte: Google Maps, 2014.

Como pode ser visualizado na Figura 5.4, a mineração situa-se próximo a um curso d'água, representado pela linha vermelha na Figura. O corpo d'água em questão é o Córrego Rico. A Figura 5.5 mostra o rápido crescimento da atividade minerária em Paracatu ao longo dos anos.



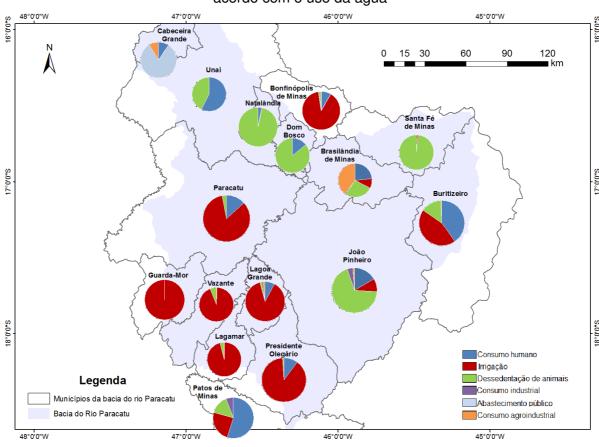
Figura 5.5 Imagens históricas de satélite mostrando a evolução da atividade minerária em Paracatu nos anos de 2003, 2010 e 2014

Fonte: Google Earth, 2014.

Ainda analisando as imagens de satélite (Google Maps®, 2014), foi observada a existências de vários pivôs centrais, sistema muito utilizado na irrigação de culturas, em toda a extensão do rio Paracatu, o que confirma a predominância da agricultura como principal atividade econômica da região (FIG. 5.6 e 5.7).

Figura 5.6 Imagem de satélite dos pivôs centrais próximos ao rio Paracatu em Brasilândia de Minas

Fonte: Google Maps, 2014.


Figura 5.7 Imagem de satélite dos pivôs centrais próximos ao ribeirão Entre Ribeiros e o rio Paracatu

Fonte: Google Maps, 2014.

5.2.4 Outorgas Concedidas

As outorgas concedidas na bacia do rio Paracatu são mais uma fonte de informação importante que contribui para a análise do uso do solo local. Ao todo, foram analisadas 128 outorgas concedidas na bacia, e, como foi descrito na metodologia, as outorgas foram agrupadas, por município, de acordo com as classes: consumo humano, irrigação, dessedentação de animais, consumo industrial, abastecimento público, consumo agroindustrial e outras atividades. Os gráficos gerados de acordo com essas classes estão representados no mapa a seguir em seus respectivos municípios onde tiveram suas outorgas concedidas (FIG. 5.8). Os gráficos foram elaborados de acordo com a porcentagem da vazão concedida, conforme já mencionado na metodologia.

Figura 5.8 Percentual das vazões outorgadas nos municípios da bacia do rio Paracatu de acordo com o uso da água

Analisando o mapa de vazões outorgadas concedidas por município da bacia do rio Paracatu pode-se observar que a irrigação é a classe que teve maior vazão outorgada, seguida pela dessedentação de animais, o que faz com que se possa inferir que as atividades de agricultura e agropecuária são as que mais ocorrem na bacia.

A alta porcentagem de volumes outorgados para o uso da irrigação, confirma a agricultura como principal atividade econômica da região. Atualmente as terras do Noroeste de Minas Gerais são exploradas por atividades econômicas, com potencial para crescer mais. Há forte presença da agricultura empresarial, com destaque na produção de grãos nas chapadas e presença de grandes áreas irrigadas, da pecuária e da agricultura familiar (JESUS *et al.*, 2011).

Outro gráfico gerado foi o de percentual de vazões outorgadas concedidas em todos os municípios da bacia do rio Paracatu (FIG. 5.9). Esse gráfico também foi elaborado levando-se em consideração a porcentagem da vazão de água outorgada para cada uso, a fim de saber sobre as finalidades de utilização de água na região como um todo.

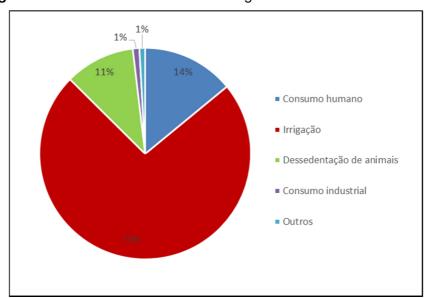


Figura 5.9 Percentual das vazões outorgadas na bacia do rio Paracatu

A análise do gráfico de todos os municípios corroborou o que já tinha sido observado no mapa anterior, ou seja, a irrigação tem a maior porcentagem de vazão de água outorgada (73%), seguido pelo consumo humano (14%) e dessedentação de animais (11%). O fato da irrigação ter a maior porcentagem de outorgas concedidas confirma o que já havia sido analisado nas atividades licenciadas na bacia, a agricultura é a principal atividade desenvolvida na bacia do rio Paracatu, em relação ao uso da água.

O consumo industrial aparece no gráfico representado por apenas 1% da vazão de outorgas concedidas, o que indica que a indústria não é a principal atividade da bacia.

5.2.5 Elaboração de Mapas Temáticos

Os mapas temáticos da cobertura do solo da região da bacia do rio Paracatu, elaborados de acordo com a metodologia descrita, são apresentados no Apêndice III no formato ISO A2. Foram elaborados mapas dos anos de 2006 e de 2013, início e fim do período analisado no presente estudo, respectivamente.

A Tabela 5.4 foi gerada a partir da contagem de pixels classificados em cada imagem. Cada pixel corresponde à uma área real de 900 m² (30m x 30m). Apesar de ter sido analisado a mesma área nos dois anos, a soma das áreas de cada classe em cada um dos anos é diferente, pois nem sempre o *software* consegue classificar todos os pixels da imagem real. Além disso, no mapa de 2013 alguns pixels foram classificados como nuvens ou sombras, classe que não foi relevante na classificação do mapa do ano de 2006.

Tabela 5.4 Áreas das classes identificadas nos mapas temáticos de cobertura do solo nos anos de 2006 e 2013

CLASSE	ANO 2006		ANO	2013	% DE VARIAÇÃO DAS
CLASSE	Área (km²)	% Total	Área (km²)	% Total	ÁREAS ENTRE OS ANOS
Mata	12.107,65	29,25	10.482,79	25,33	-13,42%
Água	134,52	0,32	145,91	0,35	8,47%
Agricultura	4.261,46	10,30	8.053,79	19,46	88,99%
Gramínea	23.432,01	56,61	21.314,55	51,50	-9,04%
Solo Exposto	1.419,86	3,43	1.169,47	2,83	-17,63%
Área Urbana	36,29	0,09	45,85	0,11	26,34%
Nuvem/Sombra	0,00	0,00	171,74	0,41	-
TOTAL	41.391,80	100,00	41.384,11	100,00	-

Pela análise da Tabela 5.4, entre os anos de 2006 e 2013, pode-se observar o crescimento das classes de água, agricultura, e da área urbana. Já as outras três classes (mata, gramínea e solo exposto) tiveram a sua área reduzida entre os dois anos citados.

As classes de agricultura e área urbana tiveram os maiores percentuais de aumento de área, 88,99% e 26,34%, respectivamente. Esse aumento já era esperado devido ao constante crescimento das áreas urbanas e também devido ao fato de a agricultura ser uma importante atividade econômica da região e com potencial para crescer ainda mais. A classe de água que também aumentou (8,47% de sua área) pode ser justificada por fatores climáticos que não foram levados em consideração.

Uma análise pontual que também pode ser observada na classe de águas é o aumento nítido dessa classe, próxima à área urbana de Paracatu, onde, na região, existe um grande empreendimento de mineração de ouro. Esse fato pode ser devido ao enchimento de reservatório onde antes era uma cava de mineração e essa encontra-se já exaurida. A partir dessa análise pode-se observar a dimensão dessa mina a céu aberto, que, visualmente, apresenta quase o mesmo tamanho da área urbana total de Paracatu.

A área de mata, que é uma área natural, teve uma redução que também já era esperada, devido ao crescimento urbano e consequente desmatamento e antropização dos ambientes. Já a área classificada como solo exposto, que pode ser considerada tanto como uma área natural de afloramentos rochosos, como uma área antrópica, como é o caso da mineração, teve uma redução de 17,63% de sua área. A área de gramínea também teve uma redução considerável de 9,04% de sua área. Essa classe também pode ser natural como é o caso de campos e de vegetação nativa do cerrado, ou antrópica no caso de pastos para criação de gados. Essa redução deve ter acontecido devido ao desmatamento de vegetação nativa para aumento da agricultura e/ou área urbana.

É importante destacar que as imagens obtidas do satélite foram selecionadas para a mesma época nos dois anos, entre os meses de maio e julho, quando é menor a ocorrência de nuvens, porém, nem sempre os ciclos de cultivo coincidem nos dois mapas, essa pequena diferença de dois meses pode ser essencial para identificar diferentes áreas entre os dois mapas. Além disso, fatores climáticos, que não foram levados em consideração nos dois anos, também influenciam bastante nas plantações e nos cursos d'água.

Observando os mapas gerados (Apêndice III), identifica-se claramente o crescimento da área de agricultura, o que corrobora as análises das outorgas concedidas e das atividades licenciadas, ou seja, a agricultura realmente é a principal atividade econômica da bacia e com maior tendência de crescimento, principalmente na região nordeste do município de Paracatu, onde se encontra grande quantidade de pivôs centrais.

A exatidão de um mapa indica a proximidade de uma determinada medida ao seu valor real, logo, a confiabilidade de um mapa está vinculada à sua exatidão (FIGUEIREDO & VIEIRA, 2007). Para avaliação do erro na classificação foram elaboradas matrizes de confusão para os dois anos em estudo (Tabela 5.6 para o ano de 2006 e Tabela 5.7 para o ano de 2013). Através

da matriz de confusão é possível derivar medidas e consequentemente verificar erros oriundos do processo de atribuição dos pixels a determinadas classes.

A partir da matriz de confusão, formada por um arranjo quadrado de números dispostos em linhas e colunas que expressam o número de unidades de amostras de uma categoria particular relativa, pode-se extrair a Exatidão Global, a Precisão de Produtor, a Precisão de Usuário e o índice Kappa. Todas essas medidas e índices são apresentados para os mapas de 2006 e 2013, nas Tabelas 5.6 e 5.7, respectivamente.

De acordo com Figueiredo & Vieira (2007), a Exatidão Global apresenta a precisão global, ela não é capaz de apresentar a distribuição da precisão ao longo das categoriais individuais. Já a precisão de produtor e a precisão de usuário são maneiras de representar a precisão de uma categoria ou classe individualmente, referindo às amostras que não foram classificadas corretamente como pertencendo àquela categoria sendo omitidas de sua categoria correta e a probabilidade que um pixel classificado na imagem de fato representa aquela categoria no campo, respectivamente.

O índice Kappa é uma técnica multivariada discreta usada na avaliação de precisão e que utiliza todos os elementos da matriz de confusão no seu cálculo, sendo uma medida do quanto a classificação está de acordo com os dados de referência. O índice Kappa avalia o desempenho da classificação de acordo com a Tabela 5.5 (FIGUEIREDO & VIEIRA, 2007).

Tabela 5.5 Índice Kappa e o correspondente desempenho da classificação

Índice Kappa	Desempenho
< 0	Péssimo
$0 < k \le 0,2$	Ruim
$0,2 < k \le 0,4$	Razoável
$0,4 < k \le 0,6$	Bom
$0.6 < k \le 0.8$	Muito Bom
0,8 < k ≤ 1,0	Excelente

Fonte: Figueiredo & Vieira, 2007.

As matrizes de confusão elaboradas para os mapas dos anos de 2006 e 2013 são apresentadas a seguir (TAB. 5.6 e 5.7), juntamente com a precisão de produtor, a precisão de usuário, a exatidão global e o índice Kappa. Analisando essas matrizes juntamente com a Tabela 5.5, de desempenho do índice Kappa, pode-se observar que ambas as classificações tiveram seus desempenhos classificados como "Muito Bom", sendo assim, um resultado bastante confiável.

Tabela 5.6 Matriz de Confusão da Classificação para o mapa temático do ano de 2006

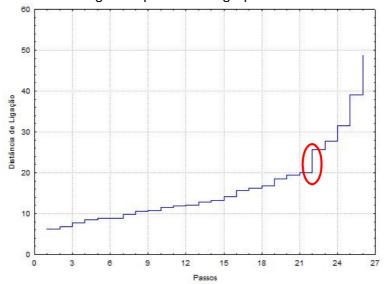
RESULTANTE DA CLASSIFICAÇÃO - ANO 2006								
	CLASSE Agricultura Mata Solo Exposto Água Gramínea TOTAL							
0	Agricultura	40473900	9558900	2529000	27	4257900	56819727	0,288
ència alidação	Mata	11043900	125405100	19800	60300	5538600	142067700	0,883
ência valida	Solo Exposto	275400	30600	3242700	2407500	698400	6654600	0,487
	Água	102	121500	21600	239400	71	382673	0,626
Refer para v	Gramínea	580500	1865700	1298700	85	15822900	19567885	0,809
	TOTAL	52373802	136981800	7111800	2707312	26317871	225492585	
Precisã	ăo de Usuário	0,773	0,915	0,456	0,088	0,601		•

Exatidão Global 0,821 Kappa 0,674

Tabela 5.7 Matriz de Confusão da Classificação para o mapa temático do ano de 2013

RESULTANTE DA CLASSIFICAÇÃO - ANO 2013								
	CLASSE	Agricultura	Mata	Solo Exposto	Água	Gramínea	TOTAL	Produtor
Referência para validação	Agricultura	35679600	9714600	630900	56	10964700	56989856	0,626
	Mata	9384300	124999200	41400	382500	7594200	142401600	0,878
	Solo Exposto	98	4500	3043800	45	1199700	4248143	0,717
	Água	562	3052	256	2395500	10003	2409373	0,994
	Gramínea	360900	688500	1485900	1325	17167500	19704125	0,871
	TOTAL	45425460	135409852	5202256	2779426	36936103	225753097	
Precisão de Usuário		0.785	0.923	0.585	0.862	0.465		-

Exatidão Global 0,812 Kappa 0,662


5.3 Avaliação espacial da qualidade da água na bacia do rio Paracatu

5.3.1 Agrupamento das estações de monitoramento segundo suas similaridades

A Análise de Cluster (AC) realizada nessa etapa teve a finalidade de agrupar as estações de monitoramento de acordo com suas similaridades. A AC, realizada no Statistica 8.0, levou em consideração o gráfico das "Distâncias de Ligação X Passos" (FIG. 5.10) e também os valores das distâncias de ligação entre as variáveis (TAB. 5.8) para calcular a altura da Linha Fenon, que determina a quantidade de grupos no dendograma gerado. Essa metodologia para cálculo da linha Fenon (ou linha de corte) está de acordo com o proposto por Vicini (2005).

Observou-se que, na AC, houveram três grandes saltos (9,74; 7,57 e 6,12). Optou-se por selecionar o terceiro maior salto (6,12) destacado no gráfico (FIG. 5.10) para traçar a linha Fenon. O salto de 6,12 ocorre entre os passos de agrupamento 21 e 22, que corresponde às distâncias de ligação 19,59 e 25,71; respectivamente. Sendo assim, a linha Fenon foi traçada entre essas duas distâncias, no valor de 19,80 no dendograma. (FIG. 5.11).

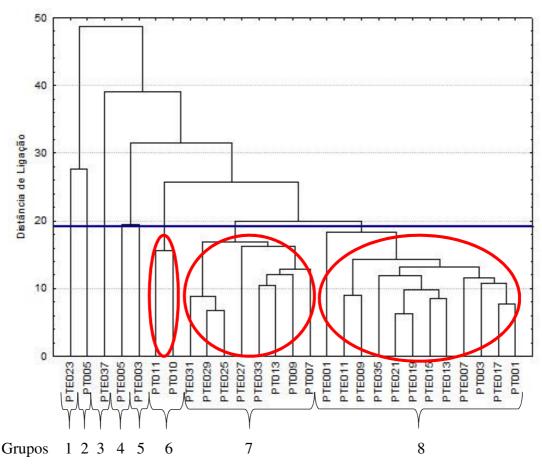

Figura 5.10 Gráfico das Distâncias de Ligação nas quais os grupos foram formados ao longo dos passos de agrupamentos

Tabela 5.8 Valores das distâncias de ligação nas quais os agrupamentos foram formados ao longo dos passos de agrupamento

Distância de ligação	Agrupamentos			
6,31	PTE019, PTE021	-		
6,81	PTE025, PTE029	0,50		
7,71	PTE017	0,90		
8,52	PTE013, PTE015	0,80		
8,90	PTE025, PTE029, PTE031			
8,94	PTE009, PTE011			
9,84	PTE013, PTE015, PTE019, PTE021			
10,53	PT013, PTE033			
10,78	PT001, PTE017, PT003	0,25		
11,52	PT001, PTE017, PT003, PTE007	0,74		
11,88	PTE013, PTE015, PTE019, PTE021, PTE035	0,35		
12,00	PT009, PT013, PTE033	0,12		
12,89	PT007, PT009, PT013, PTE033	0,89		
13,16	PT001, PTE017, PT003, PTE007, PTE013, PTE015, PTE019, PTE021, PTE035			
14,24	PT001, PTE017, PT003, PTE007, PTE013, PTE015, PTE019, PTE021, PTE035, PTE009, PTE011			
15,66	PT010, PT011	1,42		
16,17	PT007, PT009, PT013, PTE033, PTE027			
16,89	PT007, PT009, PT013, PTE033, PTE027, PTE025, PTE029, PTE031			
18,41	PT001, PTE017, PT003, PTE007, PTE013, PTE015, PTE019, PTE021, PTE035, PTE009, PTE011, PTE001			
19,52	PTE003, PTE005	1,11		
19,59	PT001, PTE017, PT003, PTE007, PTE013, PTE015, PTE019, PTE021, PTE035, PTE009, PTE011, PTE001, PT007, PT009, PT013, PTE033, PTE027, PTE025, PTE029, PTE031			
25,71	PT001, PTE017, PT003, PTE007, PTE013, PTE015, PTE019, PTE021, PTE035, PTE009, PTE011, PTE001, PT007, PT009, PT013, PTE033, PTE037, PTE025, PTE029, PTE031, PT010, PT011			
27,71	PT005, PTE023	2,00		
31,48	PT001, PTE017, PT003, PTE007, PTE013, PTE015, PTE019, PTE021, PTE035, PTE009, PTE011, PTE001, PT007, PT009, PT013, PTE033, PTE037, PTE025, PTE029, PTE031, PT010, PT011, PTE003, PTE005			
39,05	PT001, PTE017, PT003, PTE007, PTE013, PTE015, PTE019, PTE021, PTE035, PTE009, PTE011, PTE001, PT007, PT009, PT013, PTE033, PTE037, PTE025, PTE029, PTE031, PT010, PT011, PTE003, PTE005, PTE037			
48,79	PT001, PTE017, PT003, PTE007, PTE013, PTE015, PTE019, PTE021, PTE035, PTE009, PTE011, PTE001, PT007, PT009, PT013, PTE033, PTE037, PTE025, PTE029, PTE031, PT010, PT011, PTE003, PTE005, PTE037, PT005, PTE023	9,74		

A Análise de Cluster agrupou as 27 estações de monitoramento da bacia do rio Paracatu em oito grupos, como pode ser observado no dendograma representado na Figura 5.11. Cinco grupos foram compostos por apenas uma estação cada, ficando isolados no dendograma, o que indica grande diferença entre eles e os demais agrupamentos. Esses grupos (1 a 5) são os das estações de monitoramento PT005, PTE023, PTE037, PTE003 e PTE005. Três agrupamentos maiores (grupos 6, 7 e 8) foram circulados em vermelho, e a estes foram aplicadas a ACP.

Figura 5.11 Dendograma da Análise de Cluster para as coletas trimestrais do período de 2006 a 2013: 27 estações, 8 anos de série histórica e 13 parâmetros

Para facilitar a visualização do resultado apresentado no dendograma, foi elaborado também, um mapa (FIG. 5.12) com as estações de monitoramento coloridas de acordo com os grupos obtidos pela AC.

Ainda pela análise do dendograma (FIG. 5.11), e também analisando o mapa com os resultados (FIG. 5.12) pode-se observar que as estações PTE019 e PTE021 são as estações com maior similaridade entre todas as estações da bacia do Paracatu analisadas. Ambas as estações se encontram isoladas geograficamente das demais e localizadas na cidade de João Pinheiro. As

outras estações com maior similaridade, de acordo com a distância euclidiana apresentada no dendograma, são as estações PTE025 e PTE029. Essas estações, assim como as citadas anteriormente, também estão localizadas próximas uma da outra, porém, localizadas no município de Paracatu.

Figura 5.12 Localização das estações de monitoramento representadas de acordo com o resultado da Análise de Cluster

Outro fato que pode ser observado analisando o dendograma (FIG. 5.11) e o mapa (FIG. 5.12) é a localização dos maiores agrupamentos obtidos na AC. O grupo 7 (representado pela cor vinho), segundo maior agrupamento de estações, está localizado na porção norte da bacia, já o grupo 8 (representado pelo verde escuro), maior *cluster* obtido pela AC, encontra-se localizado na porção sul da bacia. O terceiro grupo formado, grupo 6 com apenas duas estações de monitoramento, encontra-se localizado entre esses dois grandes agrupamentos de acordo com o mapa elaborado.

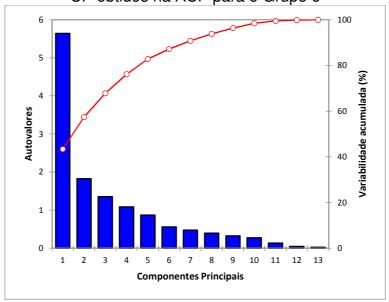
Pode-se observar também que das cinco estações que ficaram isoladas no dendograma devido à altura da linha de corte, dois grupos de duas estações estão próximas uma da outra, tanto pela distância euclidiana no dendograma, quanto geograficamente dentro da bacia do rio Paracatu,

PT005 e PTE023 (representadas pelas cores roxa e rosa, respectivamente, no mapa da Figura 5.12), na cidade de Paracatu, e PTE003 e PTE005 (representadas pelas cores laranja e amarela, respectivamente, no mapa da Figura 5.12) na cidade de Vazante.

5.3.2 Determinação dos parâmetros responsáveis pelos agrupamentos

A Análise de Componentes Principais (ACP) foi aplicada nos três *clusters* com mais de uma estação de monitoramento, individualmente, ou seja, nos grupos 6, 7 e 8 indicados no dendograma da Figura 5.11. A ACP teve como objetivo identificar quais foram os parâmetros mais importantes e responsáveis pelos agrupamentos formados (TAB. 5.9), bem como eliminar a informação redundante e obter um pequeno número de variáveis não correlacionadas que representasse toda a estrutura dos dados originais e a maioria da variância encontrada nos mesmos.

Tabela 5.9 Estações de monitoramento dentro de cada agrupamento da AC


GRUPO 6	GRU	PO 7	GRUPO 8		
PT011	PTE031	PTE033	PTE001	PTE021	PTE007
PIUII	PTE029	PT013	PTE011	PTE019	PT003
PT010	PTE025	PT009	PTE009	PTE015	PTE017
F 1010	PTE027	PT007	PTE035	PTE013	PT001

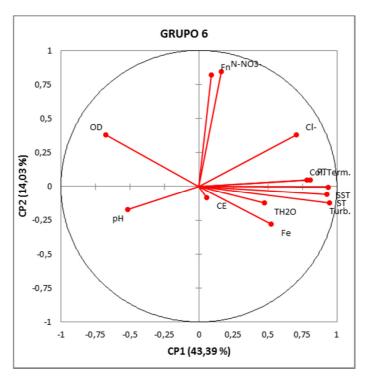
Ao extrair os Componentes Principais (CP) dos três agrupamentos maiores, foram encontrados 13 CP (como era esperado pelo fato de estarem sendo analisados 13 parâmetros). A seguir será apresentado, individualmente para cada agrupamento, a análise dos resultados da ACP.

5.3.2.1 Grupo 6 (duas estações de monitoramento)

Para o grupo 6, quatro CP apresentaram autovalores maiores que um, sendo que esses CP explicam 76,16% da variância encontrada na qualidade das águas da bacia (TAB. 5.10). A Figura 5.13 apresenta o gráfico do tipo *Scree Plot*, com os autovalores em ordem decrescente, e, inversamente proporcional à eles, representado pela linha em vermelho, estão apresentadas as porcentagens da variabilidade acumulada. Nesse gráfico, observa-se uma "quebra" após o primeiro autovalor, indicando que o primeiro CP deve ser retido ou considerado na análise.

Figura 5.13 Gráfico *Scree Plot* com os autovalores e a variabilidade acumulada dos CP obtidos na ACP para o Grupo 6

Os resultados da ACP podem ser visualizados também na Tabela 5.10, que apresenta a matriz de correlação entre os CP e as variáveis originais (cargas dos Componentes Principais). Em negrito estão indicadas as maiores correlações entre a variável e o CP, ou seja, para qual CP o parâmetro mais contribui, e sublinhados estão os valores de carga maiores que 0,75, em módulo, que foram consideradas como "fortes" (LIU, *et al.*, 2003), sendo assim consideradas também como as mais importantes para a variância encontrada nos dados.


Tabela 5.10 Resultado da ACP com as cargas obtidas para cada CP no grupo 6

PARÂMETROS			CAR	GAS FATO	RIAIS - Gru	ро 6		
PARAIVIETROS	CP1	CP2	CP3	CP4	CP5	CP6	CP7	CP8
Cl ⁻ T	0,706	0,378	0,004	0,218	0,172	-0,280	0,038	0,253
Col. term.	<u>0,805</u>	0,048	-0,140	-0,140	-0,088	0,090	-0,109	0,427
CE	0,056	-0,082	0,827	0,319	0,064	0,397	-0,175	0,071
Fen⊤	0,088	0,820	0,179	0,110	0,246	0,101	0,398	-0,040
Fe _{diss}	0,523	-0,279	0,209	-0,024	0,687	-0,252	-0,134	-0,142
P_{T}	0,784	0,050	-0,247	0,351	-0,101	-0,027	-0,262	-0,185
N ⁻ NO ₃ ⁻	0,160	0,843	0,143	0,042	-0,248	-0,144	-0,314	-0,118
OD	-0,674	0,381	-0,285	-0,292	0,173	0,217	-0,146	-0,106
рН	-0,516	-0,171	-0,139	<u>0,758</u>	-0,162	-0,107	0,126	-0,023
SST	<u>0,934</u>	-0,005	-0,117	0,016	-0,051	0,163	0,135	-0,182
ST	<u>0,926</u>	-0,061	-0,166	0,009	-0,014	0,254	0,056	-0,109
T _{H2O}	0,474	-0,123	0,566	-0,343	-0,406	-0,249	0,144	-0,126
Turb.	<u>0,945</u>	-0,121	-0,169	-0,006	-0,031	0,096	0,087	-0,039
Autovalores	5,640	1,823	1,352	1,085	0,870	0,560	0,474	0,395
% da variância explicada	43,39	14,03	10,40	8,34	6,70	4,31	3,65	3,04
% acumulada de variância	43,39	57,41	67,81	76,16	82,85	87,16	90,80	93,84

Observa-se que só existem cargas fortes (maiores que 0,75 – valores em negrito e sublinhados) nos quatro primeiros CP, o que não coincide com a decisão de reter apenas o primeiro Componente Principal, de acordo com o gráfico *Scree Plot*. As maiores correlações entre a variável e o CP (valores em negrito) ocorrem até o quinto CP.

Como pode ser observado na Tabela 5.10, o CP1 do grupo 6 explica 43,39% da variância e tem a contribuição positiva dos parâmetros cloreto total, coliformes termotolerantes, fósforo total, Sólidos suspensos totais, sólidos totais e turbidez, além da contribuição negativa do OD. O CP2 explica 14,03% da variância e tem a participação positiva dos parâmetros fenóis totais e nitrato. O CP3 (10,40% da variância) tem contribuição positiva dos parâmetros condutividade elétrica *in loco* e temperatura da água. Já o CP 4 (8,34% da variância) tem influência do pH e o CP 5 (6,70% da variância) está positivamente relacionado com o ferro dissolvido.

Figura 5.14 Gráfico das cargas dos dois primeiros Componentes Principais (CP1 x CP2) do Grupo 6


Analisando os parâmetros correlacionados com cada CP, pode-se interpretar que o CP1 diz respeito à poluição das águas devido ao esgoto doméstico, uma vez que estão muito altos os parâmetros a seguir: coliformes termotolerantes, fósforo total, sólidos suspensos, sólidos totais e turbidez da água. Ainda, para o CP1, pode-se observar que o oxigênio dissolvido foi o único parâmetro negativo, mas que também apresentou valor alto, em módulo, reiterando o fato do

CP1 estar relacionado à poluição por esgotos. O CP2 pode representar a contaminação por efluentes industriais, uma vez que estão altos os valores dos fenóis e dos nitratos.

A Figura 5.14 mostra a projeção das variáveis em relação aos dois primeiros CP do grupo 6. Quanto menor é o ângulo entre o vetor de peso e o eixo do CP, maior é a importância do parâmetro correspondente (NONATO *et al.*, 2007). Pode-se concluir que a maioria dos parâmetros apresentados se relaciona positivamente com o CP1, exceto pelo OD e pH. Já com o CP2, os parâmetros ficaram divididos. O oxigênio dissolvido está em oposição à maioria dos parâmetros, já que sua concentração diminui em função do aumento de contaminantes na água, assim como o pH que se relaciona negativamente tanto para o CP1 quanto para o CP2.

5.3.2.2 Grupo 7 (oito estações de monitoramento)

Para o grupo 7, cinco CP apresentaram autovalores maiores que um, sendo que esses CP explicam 73,23% da variância encontrada na qualidade das águas da bacia. (TAB. 5.11). A Figura 5.15 apresenta o gráfico do tipo *Scree Plot*, com os autovalores em ordem decrescente, e, inversamente proporcional à eles, representado pela linha em vermelho, estão apresentadas as porcentagens da variabilidade acumulada, assim como foi apresentado no grupo 6. Nesse gráfico, observa-se uma "quebra" após o primeiro autovalor, o que indica que somente esse CP já explica grande parte do agrupamento. Outra "quebra" menor pode ser vista após o terceiro autovalor, indicando que os três primeiros CP devem ser retidos ou considerados na análise.

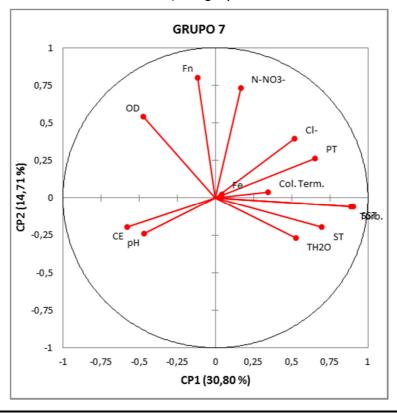
Figura 5.15 Gráfico *Scree Plot* com os autovalores e a variabilidade acumulada dos CP obtidos na ACP para o Grupo 7

Os resultados da ACP para o grupo 7 podem ser visualizados também na Tabela 5.11, que apresenta a matriz de correlação entre os CP e as variáveis originais (cargas dos Componentes Principais). Em negrito, assim como foi feito para o grupo 6, estão indicadas as maiores correlações entre a variável e o CP, ou seja, para qual CP o parâmetro mais contribui, e sublinhados estão os valores de carga maiores que 0,75, em módulo, que foram consideradas como "fortes" (LIU, *et al.*, 2003), sendo assim consideradas também como as mais importantes para a variância encontrada nos dados.

Tabela 5.11 Resultado da ACP com as cargas obtidas para cada CP no grupo 7

PARÂMETROS				GAS FATO				no grapo
PARAIVIETROS	CP1	CP2	CP3	CP4	CP5	CP6	CP7	CP8
Cl _T	0,520	0,393	-0,082	0,383	0,352	0,131	0,403	-0,173
Col. term.	0,347	0,036	0,575	-0,314	-0,404	-0,022	0,454	0,241
CE	-0,577	-0,194	0,606	0,296	-0,069	0,114	0,000	-0,197
Fen⊤	-0,118	<u>0,803</u>	0,185	0,095	-0,113	0,022	-0,134	0,324
Fe _{diss}	0,041	0,026	0,514	-0,260	0,741	0,202	0,003	0,022
P_{T}	0,653	0,265	0,079	0,226	0,259	-0,303	-0,162	0,312
$N^{T}NO_{3}^{T}$	0,165	0,732	0,172	0,208	-0,295	0,257	-0,170	-0,264
OD	-0,472	0,540	-0,266	-0,247	0,062	-0,298	0,296	-0,220
рН	-0,471	-0,238	0,112	0,635	0,013	-0,395	0,170	0,100
SST	<u>0,887</u>	-0,058	-0,072	-0,040	-0,073	-0,257	-0,005	-0,137
ST	0,697	-0,198	0,530	0,064	-0,097	-0,141	-0,109	-0,229
T _{H2O}	0,528	-0,268	-0,315	0,267	-0,099	0,537	0,162	0,171
Turb.	<u>0,903</u>	-0,061	-0,110	-0,053	-0,031	-0,143	-0,039	-0,107
Autovalores	4,004	1,912	1,520	1,048	1,037	0,868	0,598	0,569
% da variância explicada	30,80	14,71	11,69	8,06	7,98	6,68	4,60	4,38
% acumulada de variância	30,80	45,50	57,19	65,25	73,23	79,91	84,51	88,89

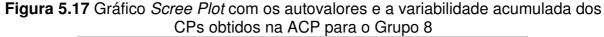
Observa-se que só existem cargas fortes (maiores que 0,75 – valores em negrito e sublinhados) nos dois primeiros CP, coincidindo com a decisão de reter os três primeiros Componentes Principais, de acordo com o gráfico *Scree Plot*. As maiores correlações entre a variável e o CP (valores em negrito), assim como no grupo 6, ocorrem entre os cinco primeiros CP.

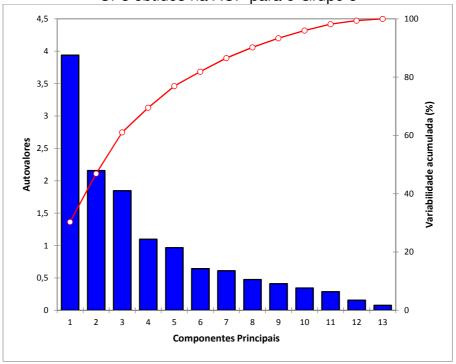

Ainda analisando a Tabela 5.11, observa-se que o CP1 do grupo 7 explica 30,80% da variância e tem a contribuição positiva dos parâmetros cloreto total, fósforo total, Sólidos suspensos totais, sólidos totais, temperatura da água e turbidez. O CP2 explica 14,71% da variância e tem a participação positiva dos parâmetros fenóis totais, nitrato e OD. O CP3 (11,69% da variância) tem contribuição positiva dos parâmetros coliformes totais e condutividade elétrica *in loco*. Já o CP4 (8,06%), tem contribuição positiva do pH e o CP5 (7,98%), do ferro dissolvido. Esses

dois últimos CP (CP4 e CP5) do grupo 7 estão relacionados da mesma forma no grupo 6, com o pH e o ferro dissolvido, respectivamente.

Assim como foi rotulado no CP1 do grupo 6, o CP1 do grupo 7 parece estar representando a contaminação por esgoto doméstico, uma vez que os parâmetros cloreto total, fósforo total, sólidos suspensos totais, sólidos totais, temperatura da água e turbidez estão positivamente relacionados e o OD está negativamente relacionado. A diferença que ocorre no grupo 7 é o fato dos coliformes termotolerantes terem a sua maior carga no CP3, o que não impede o fato do CP1 estar relacionado com a contaminação devido ao esgoto doméstico.

A Figura 5.16 mostra a projeção das variáveis em relação aos dois primeiros CP do grupo 7. Assim como foi explicado para o grupo 6, quanto menor é o ângulo entre o vetor de peso e o eixo do Componente Principal, maior é a importância do parâmetro correspondente (NONATO *et al.*, 2007). Pode-se concluir que a maioria dos parâmetros apresentados se relaciona positivamente com o CP1, exceto pelo OD e fenóis totais que também se relacionam positivamente com o CP2 e a condutividade elétrica e o pH que também se relacionam negativamente com o CP2.


Figura 5.16 Gráficos das cargas dos dois primeiros Componentes Principais (CP1 x CP2) do grupo 7



5.3.2.3 Grupo 8 (doze estações de monitoramento)

A Figura 5.17 apresenta o gráfico do tipo *Scree Plot*, para o *cluster* 8, com os autovalores em ordem decrescente, e, inversamente proporcional à eles, representado pela linha em vermelho, estão apresentadas as porcentagens da variabilidade acumulada. Para o grupo 8, quatro CP apresentaram autovalores maiores que um, sendo que esses CP explicam 69,53% da variância encontrada na qualidade das águas da bacia (TAB. 5.12), sendo essa, a menor porcentagem quando comparada aos outros dois grupos.

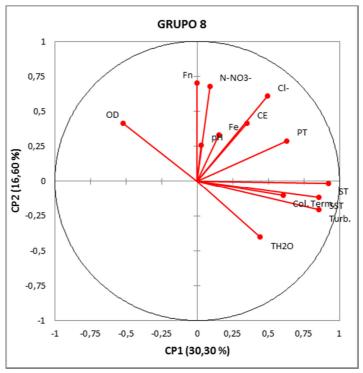
Observando o gráfico pode-se perceber que existe uma "quebra" após o terceiro autovalor, o que indica que os três primeiros CPs devem ser retidos ou considerados na análise. A "quebra" maior pode ser percebida após o primeiro autovalor, indicando que somente o primeiro CP já explica grande parte do agrupamento realizado na Análise de Cluster. Outra "quebra" menor ocorre após o quinto autovalor.

A Tabela 5.12, assim com as duas outras Tabelas (Tabelas 5.10 e 5.11), apresenta os resultados da ACP, só que para o grupo 8. O CP1 desse grupo explica 30,30% da variância e tem contribuição de quase os mesmos parâmetros citados no CP1 dos demais grupos (Col. term., P_T, OD, SST, ST, T_{H20} e Turb.) Já o CP2 explica 16,60% da variância e tem contribuição do cloreto total, fenóis totais e nitrato. Para o CP3 (14,20% da variância) a contribuição é do CE e

do pH. E para o CP4 (8,44%) a contribuição é do ferro dissolvido. Diferente dos demais grupos, o grupo 8 só apresentou as maiores correlações (valores em negrito) até o quarto CP. Já as cargas fortes (maiores que 0,75 – valores em negrito e sublinhados) só foram encontradas até o terceiro CP, coincidindo com a decisão de reter os três primeiros Componentes Principais, de acordo com o gráfico *Scree Plot*.

Tabela 5.12 Resultado da ACP com as cargas obtidas para cada CP no grupo 8

PARÂMETROS			CAR	GAS FATO	RIAIS - Gru	po 8		grape e
PARAIVIETROS	CP1	CP2	CP3	CP4	CP5	CP6	CP7	CP8
Cl ⁻ T	0,495	0,609	0,027	-0,040	0,072	-0,394	-0,110	0,369
Col. term.	0,602	-0,102	-0,326	0,257	0,270	0,399	0,249	0,366
CE	0,351	0,415	0,627	0,104	-0,304	0,204	-0,256	-0,006
Fen⊤	-0,002	0,702	-0,330	-0,268	0,296	0,186	0,187	-0,306
Fe _{diss}	0,151	0,332	0,177	0,706	0,488	-0,113	-0,132	-0,215
P_{T}	0,627	0,290	0,266	-0,053	-0,080	-0,296	0,507	-0,054
N ⁻ NO ₃	0,090	0,679	-0,420	-0,325	0,054	0,135	-0,286	0,072
OD	-0,522	0,416	-0,364	0,131	-0,419	-0,105	0,131	-0,022
рН	0,027	0,257	<u>0,803</u>	-0,227	0,008	0,289	0,164	0,019
SST	<u>0,857</u>	-0,116	-0,313	-0,032	-0,178	0,027	-0,021	-0,137
ST	<u>0,921</u>	-0,013	-0,015	0,092	-0,219	0,070	-0,126	-0,082
T _{H2O}	0,443	-0,402	0,170	-0,511	0,409	-0,180	-0,133	-0,054
Turb.	<u>0,856</u>	-0,208	-0,232	0,032	-0,192	0,004	-0,024	-0,160
Autovalores	3,939	2,157	1,845	1,097	0,965	0,642	0,609	0,474
% da variância explicada	30,30	16,60	14,20	8,44	7,42	4,94	4,69	3,64
% acumulada de variância	30,30	46,90	61,09	69,53	76,95	81,89	86,58	90,22


Considerando os parâmetros correlacionados com cada CP, pode-se verificar uma semelhança entre os dois primeiros CP entre todos os grupos testados. Em ambos os grupos, o CP1 diz respeito à poluição das águas devido ao esgoto doméstico, conforme influência dos parâmetros já descritos anteriormente. Essa similaridade entre os CP formados indica que o lançamento de esgoto doméstico é a principal fonte de poluição em todas as estações de monitoramento na bacia utilizada como forma de agrupamento na AC. O CP2 de todos os grupos analisados pode representar a contaminação por efluente industrial, pelo fato de todos estarem relacionados com fenóis totais.

O CP5 dos grupos 6 e 7 e o CP4 do grupo 8 indicam que as estações de monitoramento também apresentam altos valores de ferro dissolvido na água, o que pode indicar impactos de atividades

minerárias e/ou processos erosivos. Dessa forma, pode-se observar que a bacia do rio Paracatu é afetada por lançamento de esgoto doméstico, indústria, mineração e agricultura.

A Figura 5.18 mostra a projeção das variáveis em relação aos dois primeiros CP do grupo 8. Como já foi explicado para os demais grupos, quanto menor é o ângulo entre o vetor de peso e o eixo do Componente Principal, maior é a importância do parâmetro correspondente.

Figura 5.18 Gráficos das cargas dos dois primeiros Componentes Principais (CP1 x CP2) do grupo 8

Pode-se concluir que a maioria dos parâmetros apresentados se relaciona positivamente com o CP1 em relação ao grupo 8, exceto para o oxigênio dissolvido, que se relaciona negativamente com o CP1 e positivamente com o CP2.

Um fato interessante que pôde ser observado nos gráficos de carga de todos os grupos analisados na ACP é a relação inversa do oxigênio dissolvido com a temperatura da água. Esse é um processo natural, que já era esperado, pelo fato de que águas quentes ficam saturadas mais facilmente com o oxigênio, e, dessa forma, elas possuem menor quantidade de oxigênio dissolvido.

5.3.3 Análise do percentual de violações

Os cálculos dos percentuais de violação dos parâmetros em relação à DN COPAM/CERH 01/08 (COPAM/CERH, 2008) foi realizado por estações de monitoramento. Foram analisados 31 parâmetros de qualidade das águas, que são aqueles que possuem o seu limite estabelecido na legislação e que estão entre os 34 parâmetros selecionados para esse estudo, conforme descrito na metodologia.

A Tabela 5.13 apresenta os parâmetros de qualidade analisados e a quantidade de estações de monitoramento que teve esse parâmetro violado pelo menos uma vez ao longo do período analisado (2006-2013).

Tabela 5.13 Quantidade de estações de monitoramento que tiveram o parâmetro de qualidade de água violado

	<u> </u>	alluade de	agua violauo		
PARÂMETROS	VIOLAÇÕES DOS I	PARÂMETROS	PARÂMETROS	VIOLAÇÕES DOS I	PARÂMETROS
PARAMETROS	Qntde de estações	% das estações	FANAIVIETROS	Qntde de estações	% das estações
Alumínio dissolvido	7	25,93	Fósforo total	22	81,48
Arsênio total	2	7,41	Manganês total	25	92,59
Bário total	0	0,00	Níquel total	2	7,41
Boro total	0	0,00	Nitrato	0	0,00
Cádmio total	1	3,70	Nitrito	0	0,00
Chumbo total	21	77,78	Nitrogênio amoniacal total	1	3,70
Cianeto Livre	9	33,33	Oxigênio dissolvido	3	11,11
Cloreto total	0	0,00	pH in loco	11	40,74
Clorofila a	12	44,44	Selênio total	0	0,00
Cobre dissolvido	12	44,44	Sólidos dissolvidos totais	1	3,70
Coliformes termotolerantes	27	100,00	Sólidos em suspensão totais	23	85,19
Cor verdadeira	26	96,30	Sulfato total	0	0,00
Cromo total	2	7,41	Sulfeto	8	29,63
DBO	7	25,93	Turbidez	26	96,30
Fenóis totais	11	40,74	Zinco total	1	3,70
Ferro dissolvido	26	96,30			

De acordo com os resultados apresentados, pode-se observar que apenas sete dos 31 parâmetros analisados não apresentaram nenhuma violação dos limites legais. Esses parâmetros foram: bário total, boro total, cloreto total, nitrato, nitrito, selênio total e sulfato total. Outros sete parâmetros (arsênio total, cádmio total, cromo total, níquel total, nitrogênio amoniacal total, sólidos dissolvidos totais e zinco total) apresentaram violações em uma ou duas estações de monitoramento.

É importante destacar aqui, que apesar de o arsênio total ter violado o limite legal apenas em duas estações, essa violação ocorreu em quase todas as observações dessas estações. As duas estações que tiveram violação do arsênio, PT005 e PTE023, estão localizadas na cidade de Paracatu e estão relativamente próximas geograficamente uma da outra. O arsênio, que pode

ocorrer naturalmente em alguns locais, também pode ser liberado ao ambiente através de atividades como a mineração. Sua alta porcentagem de violação pode ser explicada pela grande quantidade de empreendimentos de mineração licenciados no município de acordo com dados obtidos junto à SUPRAM NOR. Também pode estar relacionada à mineração próxima à cidade de Paracatu, uma vez que essas duas estações estão localizadas no Córrego Rico. Esse córrego já foi citado no item de atividades licenciadas na região, por estar próximo ao maior empreendimento de mineração da bacia do rio Paracatu.

Dos 31 parâmetros analisados, oito tiveram violações dos limites legais em todas ou quase todas as estações de monitoramento (mais de 75% das estações), sendo eles: chumbo total, coliformes termotolerantes, cor verdadeira, ferro dissolvido, fósforo total, manganês total, sólidos suspensos totais e turbidez. Esses parâmetros podem ser considerados como parâmetros de grande contribuição para a degradação ambiental na bacia do rio Paracatu. Com esse resultado, ressalta-se a influência do aporte de matéria orgânica, em especial das atividades pecuaristas e do lançamento de esgotos domésticos nos corpos d'água da bacia do rio Paracatu. A maioria desses parâmetros também apresentam contribuição nos CP1, resultado da ACP realizada nos grupos 6, 7 e 8, que foi rotulado como contaminação por esgoto doméstico.

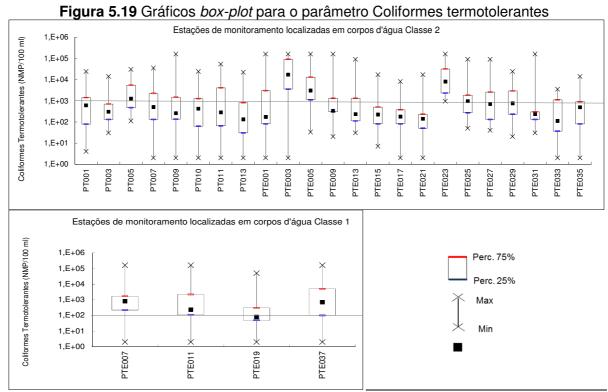
Os coliformes termotolerantes com violações de limites legais em todas as estações de monitoramento presentes na bacia do rio Paracatu confirmam a presença de esgoto doméstico nos corpos d'água, fato que pode ser comprovado pelos dados pesquisados junto ao SNIS (2012) que indicam a baixa porcentagem de tratamento de esgoto nos municípios pertencentes à bacia do rio Paracatu. E, mesmo onde há o tratamento, não há a desinfecção, ou seja, não é realizado o tratamento adequado (terciário) para que essas águas tenham condição de retornar para um corpo d'água com menores concentrações de coliformes termotolerantes. Outro fato que corrobora essa observação é a Análise de Componentes Principais (ACP) que confirmou a contaminação por esgoto doméstico como a principal contribuição para a degradação ambiental da bacia.

Os dados brutos foram analisados um a um e a porcentagem de violação dos limites legais em todas as estações de monitoramento do rio Paracatu é apresentada na Tabela 5.14 para cada parâmetro. Os números em negrito são aqueles que violaram o limite legal preconizado pela Deliberação Normativa Conjunta COPAM/CERH nº 01/08 (COPAM/CERH, 2008). Já os

valores em negrito e sublinhados representam violações em mais de 50% das observações analisadas, mostrando condições mais degradadas das águas superficiais.

Com a Tabela 5.14, pode-se observar que a estação de monitoramento que teve maior número de parâmetros violados foi a PT010 com 15 parâmetros violados. Essa estação está localizada no Rio Caatinga a montante da sua confluência com o rio Paracatu, no município de João Pinheiro. Já a estação com menor número de parâmetros violados foi a PTE029, localizada no Ribeirão São Pedro, a jusante do ribeirão Santa Rita, no município de Paracatu, com 6 parâmetros violados.

É importante ressaltar também que o parâmetro Sulfeto teve uma alta porcentagem de violação nas oito primeiras estações de monitoramento, porém, observando os dados brutos desse parâmetro verificou-se que todos que foram violados em relação à legislação, estavam também censurados, ou seja, abaixo do limite de detecção do método analítico. Observou-se ainda que a partir do ano de 2012, o LD diminuiu, e, a partir dessa data, não houve nenhuma violação. Sendo assim, a porcentagem de violação desse parâmetro não pode ser levada em consideração.


As frequências de ocorrências dos parâmetros acima dos limites estabelecidos na legislação ao longo da série histórica 2006-2013, em cada uma das estações de monitoramento da bacia do rio Paracatu, estão apresentadas nas Figuras IV.1 a IV.5, no Apêndice IV.

Após uma análise do percentual de violações pelo órgão responsável pelo monitoramento na bacia, é possível identificar os parâmetros sem violações e estes poderiam ser excluídos da rede de monitoramento, adequando o programa de monitoramento às reais necessidades da bacia. Outro fato que pode ser levado em consideração, pelo órgão responsável pelo monitoramento, são as estações que menos têm parâmetros violados, a fim de avaliar se essas são realmente necessárias dentro do programa de monitoramento.

Tabela 5.14 Porcentagem de ocorrência de violações por estação de monitoramento na bacia do rio Paracatu

2.22												PO	RCENTA	GEM DE	VIOLAÇ	ÕES											
PARÂMETROS	PT001	PT003	PT005	PT007	PT009	PT010	PT011	PT013	PTE001	PTE003	PTE005	PTE007	PTE009	PTE011	PTE013	PTE015	PTE017	PTE019	PTE021	PTE023	PTE025	PTE027	PTE029	PTE031	PTE033	PTE035	PTE037
Alumínio dissolvido	25,00	0,00	0,00	8,33	8,33	25,00	33,33	23,81	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	5,00	0,00	0,00	0,00	0,00	0,00
Arsênio total	0,00	0,00	82,14	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	95,24	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Bário total	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Boro total	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cádmio total	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	19,35	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Chumbo total	5,56	6,67	0,00	6,67	6,67	11,11	13,33	6,45	3,23	3,23	16,13	9,68	6,45	3,23	3,23	0,00	3,33	3,23	3,23	0,00	3,23	9,68	0,00	0,00	3,23	0,00	17,86
Cianeto Livre	45,45	33,33	31,25	33,33	33,33	25,00	33,33	33,33	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	40,00	0,00	0,00	0,00	0,00	0,00
Cloreto total	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Clorofila a	3,70	0,00	7,41	0,00	3,57	0,00	0,00	14,29	5,56	5,88	0,00	22,22	0,00	5,56	0,00	0,00	17,65	5,56	0,00	0,00	0,00	0,00	0,00	5,26	0,00	0,00	22,22
Cobre dissolvido	0,00	0,00	0,00	0,00	0,00	5,56	0,00	3,23	3,23	3,23	0,00	3,23	0,00	0,00	0,00	0,00	6,67	3,23	0,00	3,23	3,23	0,00	0,00	0,00	3,23	6,45	7,14
Coliformes termotolerantes	17,24	17,24	<u>53,57</u>	35,71	26,67	40,00	41,94	26,67	31,03	86,21	79,31	75,86	27,59	58,62	27,59	10,34	17,86	27,59	6,90	96,43	50,00	39,29	42,86	17,24	25,81	24,14	66,67
Cor verdadeira	28,57	22,58	0,00	25,00	29,03	46,67	35,48	25,81	9,68	3,23	6,45	25,81	6,45	9,68	6,45	16,13	23,33	19,35	19,35	3,23	3,23	19,35	6,45	22,58	22,58	38,71	28,57
Cromo total	0,00	0,00	0,00	0,00	0,00	6,67	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	9,09	0,00	0,00	0,00	0,00	0,00
DBO	0,00	0,00	0,00	3,33	0,00	0,00	0,00	0,00	3,23	16,13	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,23	3,23	0,00	0,00	0,00	9,68	0,00	0,00	3,57
Fenóis totais	0,00	6,45	6,45	3,23	0,00	0,00	3,23	0,00	3,23	0,00	3,23	3,23	0,00	0,00	0,00	3,23	0,00	0,00	0,00	6,45	0,00	9,68	6,45	0,00	0,00	0,00	0,00
Ferro dissolvido	6,67	8,33	7,14	11,11	10,71	16,67	16,67	7,41	3,23	3,23	3,23	6,45	6,45	6,45	6,45	6,45	3,33	3,23	3,23	12,90	9,68	3,23	0,00	3,23	9,68	51,61	10,71
Fósforo total	12,90	9,68	9,68	9,68	19,35	25,81	19,35	19,35	19,35	12,90	3,23	9,68	9,68	9,68	3,23	0,00	23,33	0,00	3,23	16,13	0,00	6,45	0,00	0,00	12,90	6,45	25,00
Manganês total	19,35	14,29	0,00	32,26	29,03	35,48	32,26	38,71	12,90	12,90	16,13	<u>51,61</u>	6,45	9,68	6,45	0,00	16,67	3,23	3,23	16,13	3,23	35,48	6,45	6,45	25,81	9,68	25,00
Níquel total	0,00	0,00	0,00	0,00	0,00	11,11	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	4,35	0,00	0,00	0,00	0,00	0,00
Nitrato	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nitrito	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nitrogênio amoniacal total	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	19,35	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Oxigênio dissolvido	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	22,58	0,00	16,13	0,00	0,00	0,00	0,00	0,00	0,00	0,00	19,35	0,00	0,00	0,00	0,00	0,00	0,00	0,00
pH in loco	0,00	9,68	0,00	0,00	0,00	6,45	0,00	0,00	0,00	0,00	0,00	3,23	12,90	38,71	9,68	6,45	3,33	6,45	9,68	0,00	0,00	0,00	0,00	0,00	0,00	0,00	10,71
Selênio total	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sólidos dissolvidos totais	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,85	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sólidos em suspensão totais	22,58	12,90	0,00	29,03	32,26	35,48	35,48	38,71	16,13	16,13	12,90	35,48	9,68	25,81	9,68	9,68	23,33	12,90	3,23	0,00	6,45	12,90	16,13	0,00	29,03	0,00	32,14
Sulfato total	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sulfeto	73,33	80,00	71,43	73,33	73,33	73,33	73,33	73,33	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Turbidez	22,58	16,13	3,23	29,03	32,26	35,48	41,94	38,71	12,90	12,90	12,90	41,94	9,68	22,58	9,68	6,45	30,00	12,90	3,23	0,00	6,45	12,90	9,68	6,45	32,26	6,45	32,14
Zinco total	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	9,68	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
TOTAL Parâmetros violados	12	12	9	13	12	15	12	13	12	12	11	14	9	10	9	7	11	10	10	11	8	13	6	7	9	7	12

Uma maneira de localizar e analisar a variação de um parâmetro é através da representação dos dados em gráficos *box-plot*. O *box-plot* permite conhecer importantes aspectos de um conjunto de dados através do valor mínimo, primeiro quartil, mediana, terceiro quartil e valor máximo. A Figura 5.19 apresenta os gráficos *box-plot* para o parâmetro Coliformes termotolerantes, que foi considerado o parâmetro com maior número de violações de acordo com a legislação específica.

Obs.: Limite preconizado pela DN COPAM/CERH nº 01/08 para Coliformes termotolerantes: 1000 NMP/100 ml (Classe 2) e 200 NMP/100 ml (Classe 1).

Nos gráficos *box-plot* para o parâmetro de Coliformes termotolerantes (FIG. 5.19), foi traçada ainda uma linha que representa o valor máximo de coliformes termotolerantes preconizado pela DN COPAM/CERH nº 01/08 (COPAM/CERH, 2008) para as duas classes de água existentes na bacia do rio Paracatu (Classe 1 e Classe 2). Através da análise desses gráficos, é possível perceber que o parâmetro coliformes termotolerantes, além de ter tido violações em todas as estações de monitoramento da bacia do rio Paracatu, teve ainda grande parte de seus dados acima do que é permitido na legislação, sugerindo assim, uma poluição devido ao lançamento de esgoto doméstico em toda a bacia. É possível verificar que a estação PTE023, por exemplo, teve todas as suas observações acima do que é permitido pela legislação. Já a estação PTE031 teve apenas o seu valor máximo acima do que é permitido pela legislação.

5.4 Análise de Tendência Temporal

As análises de tendência temporal foram realizadas individualmente para cada estação. Os resultados dos testes estatísticos descritos na Metodologia (Correlação de Spearman, Testes de Kruskal-Wallis, de Mann-Kendall e Sazonal de Mann-Kendall) foram organizados em planilhas por estação, conforme apresentado na Tabela 5.15, para a estação PT001. As Tabelas com os resultados das demais estações estão apresentadas nas Tabelas V.1 a V.26 do Apêndice V. Esses resultados indicam a tendência temporal do parâmetro, por estação, ao longo da série histórica de oito anos (2006 a 2013).

Os resultados estatisticamente significativos (p < 0,05) dos testes de Correlação de Spearman e Mann-Kendall ou Sazonal de Mann-Kendall (valores em negrito) indicam que existe uma tendência de alteração das concentrações do parâmetro ao longo do tempo (entre 2006 e 2013) em determinada estação. Os valores de Tau de Kendall e de S (ou S'), calculados no teste de Mann-Kendall (ou Sazonal de Mann-Kendall), indicam o sentido da tendência do parâmetro ao longo do tempo, podendo ser de elevação (valores de S ou S' positivos) ou tendência de redução (valores de S ou S' negativos).

Tabela 5.15 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PT001 – período de 2006 a 2013

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	Mann-	Tau de Kendall ²	S²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	0,261	0,350	Não	0,298	-0,261	-10				Sem tendência
Chumbo total	0,729	0,344	Não	0,779	0,070	5				Sem tendência
Cloreto total	0,058	0,637	Não	0,061	0,241	111				Sem tendência
Clorofila a	0,017	0,009	Sim				0,222	-0,233	-14	Inconclusivo com possibilidade de Redução
Coliformes termotolerantes	0,577	0,041	Sim				1,000	0,000	0	Sem tendência
Condutividade elétrica in loco	0,403	0,046	Sim				0,409	0,143	12	Sem tendência
Corverdadeira	0,001	0,045	Sim				0,000	-0,644	-51	Redução
Fenóis totais	0,000	0,876	Não	0,000	0,544	190				Elevação
Ferro dissolvido	0,862	0,063	Não	0,881	-0,039	-4				Sem tendência
Fósforo total	0,415	0,016	Sim				1,000	-0,013	-1	Sem tendência
Manganês total	0,588	0,000	Sim				0,409	-0,143	-12	Sem tendência
Nitrato	0,000	0,633	Não	0,000	0,478	216				Elevação
Oxigênio dissolvido	0,101	0,010	Sim				0,047	0,334	27	Inconclusivo com possibilidade de Elevação
pH in loco	0,653	0,857	Não	0,596	0,071	32				Sem tendência
Sólidos em suspensão totais	0,587	0,001	Sim				0,940	0,024	2	Sem tendência
Sólidos totais	0,615	0,000	Sim				0,940	0,024	2	Sem tendência
Temperatura da água	0,710	0,000	Sim				0,599	0,095	8	Sem tendência
Turbidez	0,411	0,001	Sim				0,940	0,024	2	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

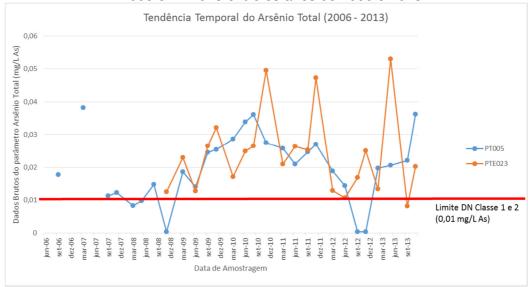
² Valores da estatística do teste.

Na maioria dos casos analisados, os testes de Correlação de Spearman e Mann-Kendall ou Sazonal de Mann-Kendall foram coincidentes, indicando ou não a existência de tendência. Porém, foram encontradas situações, como para a Clorofila-*a* na estação PT001, indicada na Tabela 5.15, em que os testes não apontaram o mesmo resultado quanto à significância da tendência temporal. Esses casos foram apontados como inconclusivos, mas com possibilidade de redução ou de elevação, de acordo com o resultado do teste significativo.

É interessante observar que, dos 32 casos inconclusivos, considerando todos os parâmetros e todas as estações, nove deles ocorreram com o teste de correlação fornecendo resultados significativos, enquanto os testes de tendência Mann-Kendall/Sazonal de Mann-Kendall forneceram resultados não significativos (p > 0,05). Entre os 23 casos restantes, apenas dois apresentaram resultado significativo para Mann-Kendall e 21 apresentaram resultados significativos para o Sazonal de Mann-Kendall, mas não significativos para a correlação de Spearman. Essa última observação, de acordo com Trindade (2013), pode ser explicada pela influência da sazonalidade nas análises: enquanto o teste Sazonal de Mann-Kendall consegue verificar a existência de tendência, retirando a interferência da sazonalidade nos dados, a correlação não diferencia uma tendência temporal ao longo dos anos de uma tendência sazonal.

O resultado final das tendências, baseado na análise dos testes estatísticos, foi apresentado na última coluna da Tabela 5.15, podendo ser definida como "Redução", "Inconclusivo com possibilidade de redução", "Elevação", "Inconclusivo com possibilidade de elevação" ou "Sem tendência". A análise final, com a indicação de todos resultados dos testes de tendência na bacia do rio Paracatu, ao longo dos anos de 2006 a 2013, é apresentada na Tabela 5.16. Foi adotada a mesma forma de apresentação sugerida por Trindade (2013).

Tabela 5.16 Resultados dos testes de tendência temporal das concentrações dos 18 parâmetros analisados na sub-bacia do rio Paracatu no período de 2006 e 2013


Estações	As _T	Pb _T	Cl ⁻ T	Cl-a	Coli. term.	CE	Cor	Fen _T	Fe _{diss}	P _T	Mn _T	N-NO ₃	OD	рН	SST	ST	T _{H2O}	Turb.
PT001	-	-	-	?↓	-	-	\downarrow	\uparrow	-	-	-	↑	?↑	-	-	-	-	-
PT003	-	-	\uparrow	-	-	?↑	\downarrow	\uparrow	-	-	-	\uparrow	\uparrow	-	-	-	-	-
PT005	-	-	-	-	-	?↑	?↓	\uparrow	-	-	-	\uparrow	-	-	-	-	-	-
PT007	-	-	-	-	-	-	?↓	\uparrow	-	-	-	\uparrow	-	-	-	-	-	-
PT009	-	-	\uparrow	\downarrow	-	-	\downarrow	\uparrow	-	-	-	\uparrow	?↑	-	-	-	?↑	-
PT010	-	-	\uparrow	-	-	-	?↓	-	-	-	-	\uparrow	-	-	-	-	-	-
PT011	-	-	\uparrow	-	?↑	-	\downarrow	\uparrow	-	-	-	\uparrow	-	-	-	-	-	-
PT013	-	-	-	-	-	-	?↓	\uparrow	-	-	-	\uparrow	?↑	-	-	-	-	-
PTE001	-	-	\uparrow	-	-	-	\downarrow	\uparrow	-	-	-	\uparrow	-	-	-	-	?↑	-
PTE003	-	-	\uparrow	-	-	-	\downarrow	\uparrow	\uparrow	-	-	\uparrow	-	-	-	-	-	-
PTE005	-	-	\uparrow	-	-	?个	\downarrow	\uparrow	\uparrow	-	-	\uparrow	-	-	-	-	-	-
PTE007	-	-	\uparrow	-	-	-	\downarrow	\uparrow	\uparrow	-	-	?↑	-	-	-	-	-	-
PTE009	-	-	\uparrow	-	-	-	\downarrow	\uparrow	-	-	-	\uparrow	-	-	?个	-	-	-
PTE011	-	-	-	-	-	-	\downarrow	\uparrow	-	-	-	\uparrow	?↑	-	-	-	-	-
PTE013	-	-	\uparrow	-	-	-	\downarrow	\uparrow	-	?↑	-	\uparrow	-	-	-	-	-	-
PTE015	-	-	\uparrow	-	\uparrow	?个	\downarrow	\uparrow	-	-	-	\uparrow	?↑	-	-	-	-	?↑
PTE017	-	-	\uparrow	-	-	-	\downarrow	\uparrow	-	-	-	\uparrow	-	-	-	-	-	-
PTE019	-	-	\uparrow	-	-	-	\downarrow	\uparrow	-	-	?↓	\uparrow	?↑	-	-	-	-	?↓
PTE021	-	-	-	-	-	-	\downarrow	\uparrow	-	\uparrow	-	\uparrow	-	-	-	-	-	-
PTE023	-	-	-	?↓	-	\uparrow	\downarrow	\uparrow	-	-	\downarrow	\uparrow	-	-	-	-	-	-
PTE025	-	-	?↑	-	-	-	\downarrow	\uparrow	-	\uparrow	-	\uparrow	-	-	-	-	?↑	-
PTE027	-	-	\uparrow	-	-	?↑	\downarrow	-	-	-	-	\uparrow	-	-	-	-	\uparrow	-
PTE029	-	-	\uparrow	-	-	-	\downarrow	\uparrow	-	\uparrow	-	\uparrow	-	-	-	-	?↑	-
PTE031	-	-	\uparrow	-	-	-	\downarrow	↑	-	-	-	1	?↑	-	-	-	-	-
PTE033	-	-	\uparrow	-	?↑	-	\downarrow	\uparrow	-	-	-	\uparrow	-	-	-	-	\uparrow	-
PTE035	-	-	-	-	-	-	\downarrow	\uparrow	-	-	-	\uparrow	-	-	-	-	-	-
PTE037	-	-	\uparrow	-	-	-	-	↑	-	-	-	?↑	\uparrow	-	-	-	-	-
Legenda:	?个 Inco	onclusiv	o com p	osssibil	idade de	elevaç	ão		个 Eleva	ıção			- Sem t	endênc	ia			

?↓ Inconclusivo com possibilidade de redução

↓ Reducão

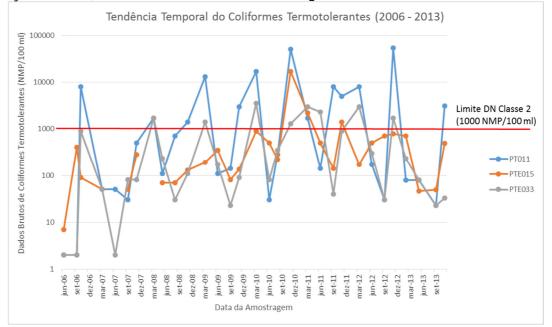

Apesar da concentração do parâmetro Arsênio Total não ter apresentado tendência em nenhuma das estações de monitoramento da bacia do rio Paracatu, foi elaborado um gráfico da tendência das duas estações, PT005 e PTE023, que tiveram os limites de arsênio violados de acordo com a DN COPAM/CERH 01/08 (COPAM/CERH, 2008) ao longo do período estudado (2006 a 2013). Observa-se, na Figura 5.20, que o limite de arsênio foi violado em todas as observações da estação PTE023 ao longo da série histórica e apenas três observações da estação PT005 ficaram abaixo do limite preconizado pela legislação.

Figura 5.20 Gráfico da Tendência Temporal do parâmetro Arsênio Total nas estações PT005 e PTE023 entre os anos de 2006 e 2013

Outro gráfico de tendência temporal elaborado foi para o parâmetro de coliformes termotolerantes (FIG. 5.21) que apresenta uma grande contribuição na degradação ambiental da bacia do rio Paracatu já que, em todas as estações de monitoramento, houve violação dos limites legais. Observa-se nesse gráfico a tendência de elevação das concentrações na estação PTE015, resultado também dos testes realizados na análise de tendência temporal. As outras duas estações representadas no gráfico, PT011 e PTE033, tiveram resultados inconclusivos com tendência de elevação nos testes aplicados na análise temporal.

Figura 5.21 Gráfico da Tendência Temporal do parâmetro Coliformes Termotolerantes nas estações PT011, PTE015 e PTE033 em escala logarítmica entre os anos de 2006 e 2013

Ainda para o parâmetro de Coliformes termotolerantes, foi traçado um outro gráfico para as estações PTE003, PTE011 e PTE023 (FIG. 5.22). Essas estações de monitoramento, apesar de não terem apresentado tendência na análise temporal, apresentaram altos percentuais de violação na análise realizada de acordo com a DN COPAM/CERH nº 01/08 (COPAM/CERH, 2008), o que significa que existe sim a degradação nessas estações e elas não tem tendência de aumento ou de redução, porém a degradação existente está sendo mantida.

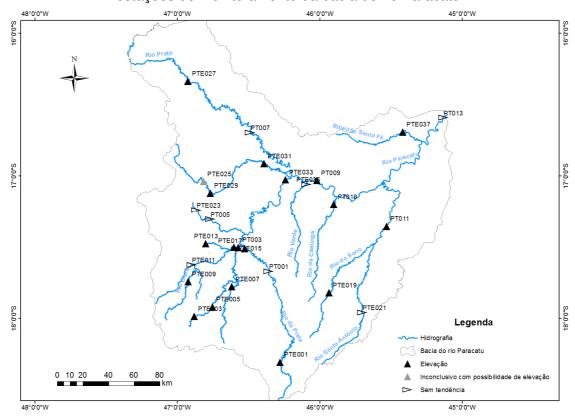
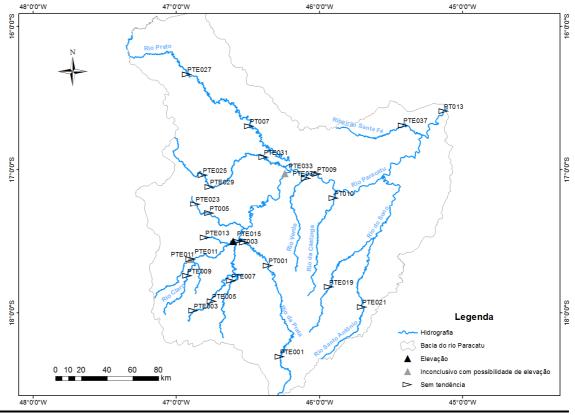
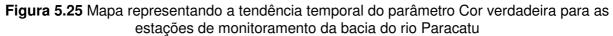
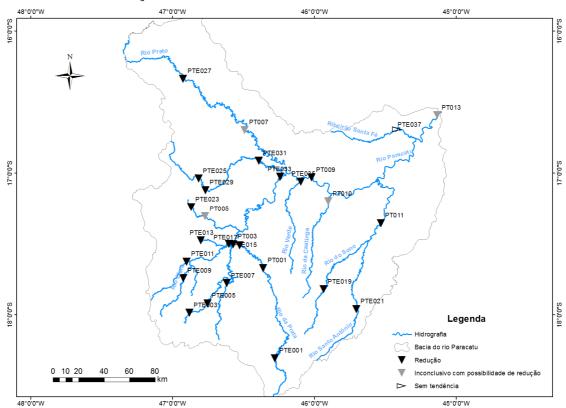
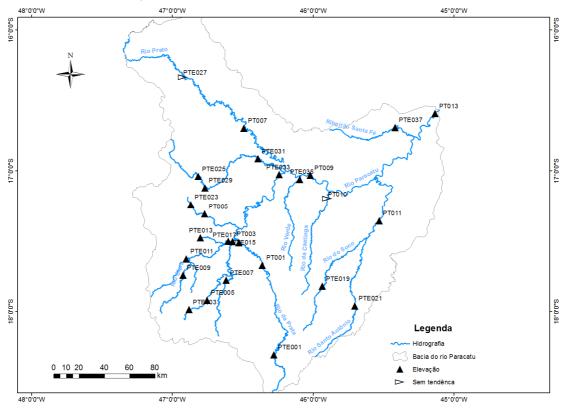


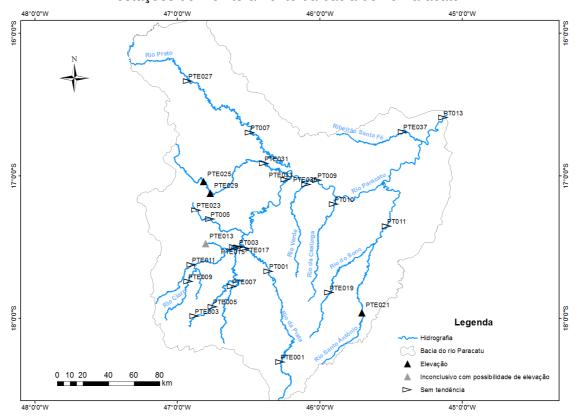
Figura 5.22 Gráfico da Tendência Temporal do parâmetro Coliformes Termotolerantes nas estações PT011, PTE015 e PTE033 em escala logarítmica entre os anos de 2006 e 2013


Usando ainda os resultados identificados nas análises de tendência temporal (Tabela 5.16), foram elaborados mapas para melhor visualização ao longo da bacia do rio Paracatu, um para cada parâmetro. Nesses mapas é possível visualizar como a concentração de alguns parâmetros se comportou ao longo da bacia, uma vez que foram representadas as tendências temporais, por estação. Os mapas das Figuras 5.23 a 5.28 apresentam os resultados para os parâmetros Cloreto total, Coliformes termotolerantes, Cor verdadeira, Fenóis totais, Fósforo total e Oxigênio dissolvido, parâmetros considerados como os de maior influência na bacia.


Os mapas dos demais parâmetros estão apresentados nas Figuras V.1 a V.8, no Apêndice V.


Figura 5.23 Mapa representando a tendência temporal do parâmetro Cloreto total para as estações de monitoramento da bacia do rio Paracatu


Figura 5.24 Mapa representando a tendência temporal do parâmetro Coliformes termotolerantes para as estações de monitoramento da bacia do rio Paracatu



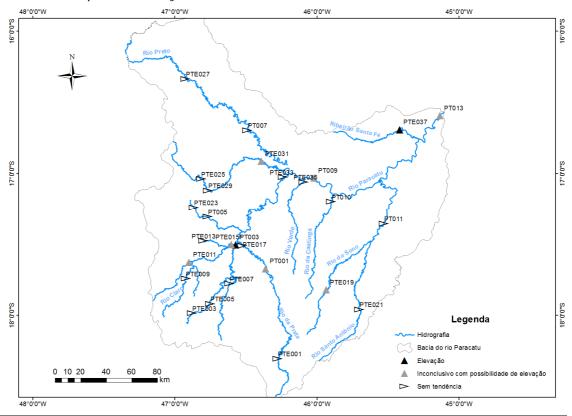

Figura 5.26 Mapa representando a tendência temporal do parâmetro Fenóis totais para as estações de monitoramento da bacia do rio Paracatu

Figura 5.27 Mapa representando a tendência temporal do parâmetro Fósforo total para as estações de monitoramento da bacia do rio Paracatu

Figura 5.28 Mapa representando a tendência temporal do parâmetro Oxigênio dissolvido para as estações de monitoramento da bacia do rio Paracatu

Analisando os mapas elaborados, é possível tirar algumas conclusões sobre a qualidade geral da água ao longo da bacia do rio Paracatu. Primeiramente, os parâmetros Arsênio total, Chumbo total, pH e Sólidos totais não apresentaram nenhuma tendência significativa de comportamento na bacia, bem como os parâmetros Clorofila a, Coliformes termotolerantes, Ferro dissolvido, Manganês total, Sólidos suspensos totais e Turbidez apresentaram mudanças ao longo do tempo em estações pontuais, não indicando a existência de tendência.

Houve uma tendência de elevação em quase todas as estações de monitoramento da bacia para os parâmetros Cloreto total, Fenóis totais e Nitrato, indicando o aumento da atividade de agricultura na região. Houve também uma tendência de redução ou possibilidade de redução para todas as estações de monitoramento da bacia para o parâmetro Cor verdadeira.

Apenas o parâmetro Turbidez apresentou duas tendências completamente diferentes, que foi o caso das estações PTE015 e PTE019, com casos inconclusivos e possibilidade de elevação e redução, respectivamente. Todas os demais parâmetros tiveram apenas resultados de elevação e inconclusivo com possibilidade de elevação ou de redução e inconclusivos com possibilidade de redução.

6 CONSIDERAÇÕES FINAIS

Os programas de monitoramento de qualidade das águas geram matrizes muito extensas e complexas. Para análise desses dados, a aplicação de técnicas estatísticas é essencial, bem como o uso de mapas para melhor visualização dos resultados. O uso dessas técnicas, aliadas ao Sistema de Informações Geográficas (SIG), evidenciou os principais parâmetros responsáveis pela degradação ambiental na bacia, bem como as estações com melhores e piores qualidades de águas superficiais.

Os resultados de todas as técnicas estatísticas utilizadas foram congruentes e complementares, bem como todas as informações adquiridas sobre uso e ocupação do solo da região. Os mapas gerados a partir desses resultados corroboram todas as interpretações realizadas e os dados adquiridos na revisão bibliográfica da área de estudo.

O grande volume de dados analisados, também gera um grande volume de resultados. Os principais resultados observados no presente estudo foram sobre os parâmetros que mais contribuem com a degradação ambiental dos corpos d'água na bacia do rio Paracatu.

Observou-se que as estações de monitoramento próximas geograficamente umas das outras têm características semelhantes, o que confirma o fato do uso e ocupação do solo do local estar diretamente relacionado à qualidade da água. As estações próximas a grandes empreendimentos de mineração tiveram altas concentrações de parâmetros como o Arsênio total. O arsênio total, que não apresentou nenhuma tendência de elevação ou redução ao longo de toda a bacia, merece atenção especial por ter altos níveis de concentração principalmente em duas estações de monitoramento, a PT005 (localizada no Córrego Rico a jusante da cidade de Paracatu) e a PTE023 (também localizada no Córrego Rico logo a jusante do município de Paracatu), tendo inclusive, violado os limites legais para esse parâmetro.

Observou-se também que a agricultura e a criação de animais são as principais atividades econômicas da região. Isso foi observado conforme a tipologia dos empreendimentos que foram licenciados e também conforme o uso das águas de outorgas concedidas. Esse fato foi confirmado ainda pelos agrupamentos obtidos das estações de monitoramento que tiveram semelhanças quanto aos seus parâmetros que indicam a presença de agricultura na região, como fósforo total e nitrato. Essas atividades também puderam ser evidenciadas nos mapas elaborados a partir de imagens de satélite que tiveram grandes áreas de agricultura e também

de solos preparados para a mesma. Outro fato que corrobora essa análise é a quantidade de pivôs centrais existentes na região, que tem muitas de suas outorgas concedidas para irrigação.

As altas concentrações de coliformes termotolerantes em todas as estações de monitoramento da bacia confirmam o fato de que, segundo SNIS (2012), poucos municípios da bacia coletam o esgoto, e, dentre estes municípios, poucos são aqueles que fazem o tratamento do seu esgoto antes de lançá-los nos corpos d'água.

7 RECOMENDAÇÕES

- Proposição de uma adequação da rede de monitoramento da bacia do rio Paracatu a partir dos resultados desse estudo e de demais análises, com redução ou aumento de parâmetros, estações, frequência de coleta e, também dos custos envolvidos em programas de monitoramento, a fim de minimizar os mesmos.
- Analisar os resultados, avaliando os períodos de seca e de chuva separadamente, para inferir se essas características hidrológicas interferem nas análises dos parâmetros de qualidade da água.
- Identificar estações de monitoramento existentes em locais de lançamento de esgotos e realizar uma análise a montante e a jusante desses pontos, principalmente avaliando os parâmetros de Coliformes termotolerantes e Oxigênio dissolvido.
- Utilização de cargas, e não de concentrações, dos parâmetros de interesse, principalmente para as análises de tendência.
- Elaborar mapas temáticos de cobertura do solo com maiores quantidades de classes, redividindo as apresentadas aqui para dar maior riqueza de detalhes nas análises de uso e ocupação do solo. Um exemplo que seria interessante é dividir a classe de mata em mata de reflorestamento, mata ciliar e mata natural. Ou a classe de Solo Claro, em Solos expostos naturalmente e Solos antropizados. Também seria interessante analisar um mapa por ano durante todo o período estudado.
- Analisar o solo da bacia do rio Paracatu de acordo com suas características específicas, risco
 de erosão, áreas sensíveis e relevo, a fim de identificar possíveis relações entre os
 parâmetros estudados e as características existentes do local.

REFERÊNCIAS BIBLIOGRÁFICAS

ANA/GEF/PNUMA/OEA. PROJETO DE GERENCIAMENTO INTEGRADO DAS ATIVIDADES DESENVOLVIDAS EM TERRA NA BACIA DO SÃO FRANCISCO - *Plano Decenal de Recursos Hídricos da Bacia Hidrográfica do Rio São Francisco -PBHSF (2004-2013)*. Belo Horizonte: Instituto Mineiro de Gestão das Águas. Relatório trimestral. 3º Trimestre de 2004.

ANA - AGÊNCIA NACIONAL DAS ÁGUAS. *Panorama da Qualidade das Águas Superficiais no Brasil*. Caderno de Recursos Hídricos. Superintendência de Planejamento de Recursos Hídricos. Brasília, DF. 2005.

ANA - AGÊNCIA NACIONAL DAS ÁGUAS. *Portal da Qualidade das Águas*. 2009. Disponível em < http://pnqa.ana.gov.br/rede/rede_avaliacao.aspx>. Acesso em: 20 set. 2013.

ANA - AGÊNCIA NACIONAL DE ÁGUAS. *Atlas Brasil*. Abastecimento Urbano de Água. Situação até 2014. Disponível em: http://atlas.ana.gov.br/Atlas/forms/analise/Geral.aspx? est=8>. Acesso em: 02 Mai. 2014.

BECHINI, L.; CASTOLDI, N. On-farm monitoring of economic and environmental performances of cropping systems: Results of a 2-year study at the field scale in northern Italy. *Ecological Indicators*, v. 9, n. 6, p. 1096-1113, 2009 *apud* SCHNEIDER, R. M.; FREIRE, R.; COSSICH, E. S.; SOARES, P. F.; FREITAS, F. H.; TAVARES, C. R. G. *Estudo da influência do uso e ocupação de solo na qualidade da água de dois córregos da Bacia hidrográfica do rio Pirapó*. Acta Scientiarum. Technology. Maringá, v. 33, n. 3, p. 295-303, 2011.

BOYACIOGLU, H.; BOYACIOGLU, H. Investigation of Temporal Trends in Hydrochemical Quality of Surface Water in Western Turkey. *Bull Environ Contam Toxicol*, v. 80, p. 469–474, 2008.

BRASIL. *Lei Nº 9.433 de 8 de Janeiro de 1997*. Da Política Nacional de Recursos Hídricos. Brasília: Jan, 1997.

BU, H.; TAN, X.; LI, S.; ZHANG, Q. Temporal and spatial variations of water quality in the Jinshui River of the South Qinling Mts., China. *Ecotoxicology and Environmental Safety*, v. 73, p. 907-913, 2010.

BU, H.; MENG, W.; ZHANG, Y.; WAN, J. Relationships between land use patterns and water quality in the Taizi River basin, China. Ecological Indicators 41,187-197, 2014.

CARLETON, Christian; DAHLGREN, Randy; TATE, Kenneth. A relational database for the monitoring and analysis of watershed hydrologic functions: I. Database design and pertinent queries. *Computers & Geosciences*, Califórnia, v. 31, p.393-402, 2005.

CHRISTOFARO, C.; LEÃO, M. M. D. Caracterização temporal do arsênio nos cursos d'água da bacia hidrográfica do rio das Velhas, MG, Brasil, ao longo de uma década (1998-2007). *Ambiente e Água – Na Interdisciplinar Journal of Applied Science*, Universidade de Taubaté, v.4, n.3, p 54-66, 2009.

COPAM/CERH – CONSELHO ESTADUAL DE POLÍTICA AMBIENTAL; CONSELHO ESTADUAL DE RECURSOS HÍDRICOS DE MINAS GERAIS. *Deliberação Normativa Conjunta COPAM/CERH-MG* nº 01, de 05 de maio de 2008. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento e estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Belo Horizonte: COPAM, 2008.

- EPA UNITED STATE ENVIRONMENTAL PROTECTION AGENCY. *Data Quality Assessment: Statistical Methods for Practitioners*. Washignton, DC: Office of Environmental Information, 2006. 190 p. Quality management guidance documents EPA QA/G-9S (Manual de gestão da qualidade). Disponível em: http://www.epa.gov/QUALITY/qs-docs/g9s-final.pdf Acesso em: 10 Jan. 2015.
- FEAM FUNDAÇÃO ESTADUAL DE MEIO AMBIENTE. *Minas sem Lixões*. Situação de Tratamento e/ou Disposição Final dos Resíduos Sólidos Urbanos de Minas Gerais em 2012. Janeiro, 2013. Disponível em: http://www.feam.br/images/stories/minas_sem_lixoes/2013/novo/rsu_2012_final_300dpi.pdf> Acesso em: 02 Mai. 2014.
- FIGUEIREDO, G. C; VIEIRA, C. A. O. Estudo do Comportamento dos índices de Exatidão Global, Kappa e Tau, comumente usados para avaliar a classificação de imagens do sensoriamento remoto. Anais do XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, 21-26 abril 2007, INPE, p. 5755-5762.
- GOOGLE EARTH, 2014. Disponível em: https://www.google.com/aps Acesso em: 30 Jul. 2014 GOOGLE MAPS, 2014. Disponível em: https://www.google.com/maps Acesso em: 30 Jul. 2014.
- GROPPO, J. D. Estudo de tendências nas séries temporais de qualidade de água de rios do estado de São Paulo com diferentes graus de intervenção antrópica. 2005. 86f. Dissertação (Mestrado em Ecologia de Agroecossistemas) Escola Superior de Agricultura, Universidade de São Paulo, São Paulo, 2005.
- GYAWALI, S.; TECHATO, K.; YUANGYAI, C.; MUSIKAVONG, C. Assessment of Relantionship between land uses of riparian zone and water quality of river for sustainable development of river basin, A case study of U-Tapao river basin, Thailand. Procedia Environmental Sciences 17, 291-297, 2013a.
- GYAWALI, S.; TECHATO, K.; MONPRAPUSSORN, S.; YUANGYAI, C. *Integrating Land use and Water quality for Environmental based land use planning for U-tapao River Basin, Thailand.* Procedia Social and Behavioral Sciences 91, 556 563, 2013b.
- HELSEL, D. R.; HIRSCH, R. M. Trend Analysis. In: HELSEL, D. R.; HIRSCH, R. M. *Statistical methods in water resources*. Amsterdam: Elsevier Science Publishers B. V., 1992. Cap. 12, p. 323-355.
- IBGE INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. *Contagem da População*. 2007. Disponível em: http://www.ibge.gov.br/home/estatistica/populacao/contagem2007/contagem_final/tabela1_1_17.pdf Acesso em: 06 jun. 2014.
- IBGE INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. *Censo Demográfico*. 2010. Disponível em: < http://cidades.ibge.gov.br/xtras/home.php> Acesso em: 06 jun. 2014.
- IGAM INSTITUTO MINEIRO DE GESTÃO DAS ÁGUAS. *Plano Diretor de Recursos Hídricos do rio Paracatu:* Resumo Executivo. Governo de Minas Gerais. Comitê da Sub-bacia Hidrográfica do rio Paracatu. Belo Horizonte: Instituto Mineiro de Gestão das Águas, 2006. 384p.
- IGAM INSTITUTO MINEIRO DE GESTÃO DAS ÁGUAS. Manual Técnico e Administrativo de Outorga de Direitos de Uso de Recursos Hídricos no estado de Minas Gerais. Belo Horizonte, 2010.

- IGAM INSTITUTO MINEIRO DE GESTÃO DAS ÁGUAS. *Monitoramento da Qualidade das Águas Superficiais no Estado de Minas Gerais*. Gerência de Monitoramento Hidrometeorológico. Belo Horizonte. Relatório Trimestral, 3º trimestre de 2013.
- JESUS, C. M.; FILHO, J. F. F.; RIBEIRO, L. S. M. R.; CARDOSO, S. A. *Relatório Analítico do Território Rural do Noroeste de Minas*. Projeto de Pesquisa e Extensão Tecnológica para o estabelecimento do Sistema de Gestão Estratégica do Programa de Desenvolvimento Sustentável de Território Rurais PDSTR, monitoramento e avaliação dos resultados do programa, no Território Rural Noroeste de Minas MG. Uberlândia, Outubro de 2011. Disponível em: http://sit.mda.gov.br/download/ra/ra063.pdf>. Acesso em: 30 Jul. 2014.
- LAMPARELLI, Marta Condé. *Grau de Trofia em Corpos d'água do Estado de São Paulo:* Avaliação dos métodos de monitoramento. 2004. 238 f. Tese (Doutorado) Universidade de São Paulo, São Paulo, 2004.
- LI, Y. L.; LIU, K.; LI, L.; XU, Z. X. Relationship of land use/cover on water quality in the Liao River basin, China. Procedia Environmental Sciences 13,1484-1493, 2012.
- LIU, Cheng-Wuing; LIN, Kao-Hung; KUO, Yi-Ming. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. *The Science of Total Environment*, n. 313, p. 77-89, 2003.
- MADRID, F.; BIASIOLI, M.; AJMONE-MARSAN, F. Availability and Bioaccessibility of Metals in Fine Particles of Some Urban Soils. Archives of Environmental Contaminant Toxicology, v. 55, n. 1, p. 21-32, 2008 apud SCHNEIDER, R. M.; FREIRE, R.; COSSICH, E. S.; SOARES, P. F.; FREITAS, F. H.; TAVARES, C. R. G. Estudo da influência do uso e ocupação de solo na qualidade da água de dois córregos da Bacia hidrográfica do rio Pirapó. Acta Scientiarum. Technology. Maringá, v. 33, n. 3, p. 295-303, 2011.
- MELO, M. C. A.; ASSUNÇÃO, W. L. Bacia do Rio Paracatu: Regime Pluviométrico X Consumo de Água por Pivô Central. 26 p. 2011.
- MELLO, E, L.; OLIVEIRA, F. A.; PRUSKI, F. F.; FIGUREIREDO, J. C. Efeito das mudanças climáticas na disponibilidade hídrica da bacia hidrográfica do rio Paracatu. *Eng. Agric., Jaboticabal*, v.28, n.4, p.635-644, out./dez. 2008.
- MINAS GERAIS. Lei nº12.584/1997. Diário do Executivo. 17 de julho de 1997.
- MINAS GERAIS. *Deliberação Normativa Nº 74, de 09 de setembro de 2004*. COPAM. Minas Gerais: 2004. 61p.
- NAGHETTINI, M.; PINTO, É. J. D. A. *Hidrologia Estatística*. Belo Horizonte: CPRM, 2007. 561f.
- NASCIMENTO, P. S. R.; GARCIA, G. J. Mapa de Sustentabilidade Territorial gerado por Técnicas de Geoprocessamento e de Sensoriamento Remoto. *HOLOS Enviroment*, v. 6, n. 1, 2006. P. 42.
- NONATO, E. A.; VIOLA, Z. G. G.; ALMEIDA, K. C. B.; SCHOR, H. H. R. Tratamento Estatístico dos Parâmetros da Qualidade das Águas da Bacia do Alto Curso do rio das Velhas. *Quim. Nova.* Vol. 30, N°4, 797-804, 2007.
- SANTOS, N. A. P.; CAMARGOS, L. de M. M.; SERPA, C. F. O uso de técnicas de geoprocessamento como subsídio para a elaboração de propostas de enquadramento dos corpos de água: o caso da bacia hidrográfica do rio Paracatu. Anais do XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, 21-26 abril 2007, INPE, p. 3533-3540.

- SANTOS, I. N.; HORBE, A. M. C.; SILVA, M. S. R.; MIRANDA, S. A. F. Influência de um aterro sanitário e de efluentes domésticos nas águas superficiais do Rio Tarumã e afluentes AM. *Acta Amazonica*, v. 36, n. 2, p. 229-236, 2006 *apud* SCHNEIDER, R. M.; FREIRE, R.; COSSICH, E. S.; SOARES, P. F.; FREITAS, F. H.; TAVARES, C. R. G. *Estudo da influência do uso e ocupação de solo na qualidade da água de dois córregos da Bacia hidrográfica do rio Pirapó*. Acta Scientiarum. Technology. Maringá, v. 33, n. 3, p. 295-303, 2011.
- SCHNEIDER, R. M.; FREIRE, R.; COSSICH, E. S.; SOARES, P. F.; FREITAS, F. H.; TAVARES, C. R. G. Estudo da influência do uso e ocupação de solo na qualidade da água de dois córregos da Bacia hidrográfica do rio Pirapó. *Acta Scientiarum*. Technology. Maringá, v. 33, n. 3, p. 295-303, 2011.
- SEEBOONRUANG, U. A statistical assessment of the impact of land uses on surface water quality indexes. Journal of Environmental Management 101, 134-142, 2012.
- SILVA, L. O. Papel do Estado no Processo de Ocupação das Áreas de Cerrado entre as Décadas de 60 e 80. Programa de Pós-Graduação em Geografia. Instituto de Geografia UFU. Revista Caminhos da Geografia, n.1, v. 2, p. 24-36, dez, 2000.
- SILVA, R. F.; MELLO, E. L.; JUSTINO, F. B. J.; PRUSKI, F. F.; SANTOS, F. M. P. Efeito das mudanças climáticas na disponibilidade hídrica da bacia hidrográfica do rio Paracatu In: *XVI Congresso Brasileiro de Agrometeorologia*, 22 a 25 de Setembro de 2009, Belo Horizonte, MG.
- SIMEONOV, V.; EINAX, J.; STANIMIROVA, I.; KRAF, J. Environmental modeling and interpretation of river water monitoring data. *Anal. Bioanal. Chem.* v.374, p.898–905, 2002.
- SNIS SISTEMA NACIONAL DE INFORMAÇÃO SOBRE SANEAMENTO. *Série Histórica referente ao ano de 2012*. Disponível em: http://www.cidades.gov.br/serieHistorica/. Acesso em 30 Abr. 2014.
- SINGH, K. P.; MALIK, A.; MOHAN, D.; SINHA, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) a case study. *Water Research*, n. 38, p. 3980-3992, 2004.
- SUPRAM NOR SUPERINTENDÊNCIA REGIONAL DE MEIO AMBIENTE E DESENVOLVIMENTO SUSTENTÁVEL DO NOROESTE DE MINAS GERAIS. Dados cedidos de Licenciamento Ambiental entre os anos de 1984 e 2014. Minas Gerais, 2014.
- TONG, S. T. Y.; CHEN, W. Modeling the relationship between land use and surface water quality. *Journal of Environmental Management*, 66, 377-393, 2002 *apud* TU, J. Spatially varying relationships between land use and water quality across na urbanization gradiente explored by geographically weighted regression. *Applied Geography*, 31, 376-392, 2011.
- TRINDADE, A. L. C. Aplicação de Técnicas Estatísticas para Avaliação de Dados de Monitoramento de Qualidade das Águas Superficiais da porção mineira da Bacia do rio São Francisco. 2013.165f. Dissertação (Mestrado em Saneamento, Meio Ambiente e Recursos Hídricos) Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, 2013.
- TU, J. Spatially varying relationships between land use and water quality across na urbanization gradiente explored by geographically weighted regression. *Applied Geography*, 31, 376-392, 2011.
- VASCONCELOS, V. V.; JUNIOR, P. P. M.; HADAD, R. M. Caracterização Ambiental da Bacia do Rio Paracatu. Projeto Sistemas de Arquitetura de Conhecimentos e de Auxílio à

Decisão na Gestão Geo-ambiental e Econômica da Bacias Hidrográficas e Propriedades Rurais. Universidade Federal de Ouro Preto e Fundação CETEC: Junho de 2012.

VICINI, L. *Análise multivariada da teoria à prática*. 2005. Monografia (Especialização) – Universidade Federal de Santa Maria, 2005.

WAN, R.; CAI, S.; LI, H.; YANG, G.; LI, Z. Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China. Journal of Environmental Management 133, 1-11, 2014.

WILLIAMS, M.; HOPKINSON, C.; RASTETTER, E.; VALLINO, J.; CLAESSENS, L. Relationships of land use and stream solute concentrations in the Ipswich River basin, Northeastern Massachusetts. *Water, Air, and Soil Pollution,* 161, 55e74, 2005 *apud* TU, J. Spatially varying relationships between land use and water quality across na urbanization gradiente explored by geographically weighted regression. *Applied Geography,* 31, 376-392, 2011.

ZHANG, Xuan; WANG, Qishan; LIU, Yanfang; WU, Jing; YU, Miao. Application of multivariate statistical techniques in the assessment of water quality in the Southwest New Territories and Kowloon, Hong Kong. *Environ Monit Assess*, n. 173, p. 17-27, 2011.

ZHOU, Feng; LIU, Yong; GUO, Huaicheng. Application of Multivariate Statistical Methods to Water Quality Assessment of the ;Watercourses in Northwestern New Territories, Hong Kong. *Environ Monit Assess*, n. 132, p. 1-13, 2007.

APÊNDICES

APÊNDICE I

Tabelas com resultados relacionados ao cálculo da Estatística Descritiva.

Tabela I.1 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PT001

Parâmetros	Média	Desvio	Média			Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parametros	iviedia	Padrão	geométric	a Percentii 10	Percentii 25	(mediana)	Percentii 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,11	0,03	0,11	0,10	0,10	0,10	0,11	0,16	1,92	2,36	0,09	0,11	3	25,00
Arsênio total	0,0005	0,0006	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	3,8730	15,0000	0,0003	0,0003	0	0,00
Bário total	0,06	0,03	0,05	0,03	0,04	0,05	0,08	0,11	0,81	-0,79	-0,03	0,15	0	0,00
Boro total	0,07	2,9E-17	0,07	0,07	0,07	0,07	0,07	0,07	-1,11	-2,33	0,07	0,07	0	0,00
Cádmio total	0,0005	2,2E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,1147	-2,3333	0,0005	0,0005	0	0,00
Chumbo total	0,005	0,001	0,005	0,005	0,005	0,005	0,005	0,005	4,127	17,246	0,005	0,005	0	0,00
Cianeto Livre	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,14	-2,37	-0,01	0,02	0	0,00
Cloreto total	0,80	0,39	0,71	0,30	0,57	0,69	1,05	1,33	0,78	0,07	-0,14	1,76	1	3,23
Clorofila a	8,47	9,72	3,75	0,96	2,14	3,67	10,55	26,35	1,30	0,20	-10,47	23,16	5	18,52
Cobre dissolvido	0,004	2,6E-04	0,004	0,004	0,004	0,004	0,004	0,004	3,873	15,000	0,004	0,004	0	0,00
Coliformes termotolerantes	2216	9218	210	32	50	170	800	1820	5	29	-1075	1925	3	10,34
Condutividade elétrica in loco	57,2	11,2	56,2	47,0	50,4	54,0	61,0	74,8	1,2	1,5	34,5	76,9	2	6,45
Cor verdadeira	78	118	35	10	10	28	78	210	2	4	-91	179	3	10,71
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,1	2,0	2,0	2,0	2,0	2,0	2,0	5,6	31,0	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,001	0,002	0,002	0,809	-0,252	-0,001	0,004	0	0,00
Ferro dissolvido	0,10	0,11	0,07	0,03	0,05	0,08	0,09	0,18	2,78	8,42	-0,03	0,16	2	13,33
Fósforo total	0,06	0,04	0,04	0,02	0,03	0,04	0,07	0,11	1,45	2,05	-0,03	0,13	2	6,45
Manganês total	0,060	0,061	0,042	0,022	0,024	0,032	0,050	0,176	1,761	1,872	-0,016	0,089	7	22,58
Níquel total	0,007	0,007	0,006	0,004	0,004	0,004	0,005	0,019	1,929	2,310	0,003	0,005	3	20,00
Nitrato	0,10	0,12	0,05	0,01	0,02	0,07	0,12	0,21	2,47	7,61	-0,12	0,26	3	9,68
Nitrito	0,004	0,002	0,003	0,002	0,002	0,003	0,004	0,007	1,560	2,193	-0,001	0,007	2	12,50
Nitrogênio amoniacal total	0,12	0,06	0,11	0,10	0,10	0,10	0,10	0,13	4,33	20,33	0,10	0,10	0	0,00
Oxigênio dissolvido	7,6	0,7	7,6	6,8	7,2	7,7	7,9	8,2	0,3	0,1	6,0	9,0	1	3,23
pH in loco	7,0	0,4	6,9	6,4	6,8	6,9	7,3	7,4	0,4	0,5	6,0	8,0	1	3,23
Selênio total	0,0005	2,2E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,1147	-2,3333	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	54	18	52	37	40	49	61	72	1	2	9	93	1	5,26
Sólidos em suspensão totais	55	67	28	9	16	23	52	182	1	1	-39	107	7	22,58
Sólidos totais	107	79	87	49	57	67	112	248	2	1	-26	195	6	19,35
Sulfato total	2,8	2,0	2,1	1,0	1,0	1,5	5,0	5,0	0,2	-2,2	-5,0	11,0	0	0,00
Sulfeto	0,4	0,2	0,2	0,0	0,3	0,5	0,5	0,5	-1,2	-0,7	-0,1	0,9	0	0,00
Temperatura da água	23,7	2,6	23,6	20,2	22,0	23,4	25,8	27,2	-0,1	-1,0	16,2	31,6	0	0,00
Turbidez	76,2	125,8	32,3	8,9	12,8	22,1	75,1	215,0	3,2	12,1	-80,7	168,5	5	16,13
Zinco total	0,034	0,014	0,031	0,020	0,020	0,033	0,042	0,052	0,372	-1,488	-0,013	0,075	0	0,00

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.2 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PT003

Parâmetros	Média	Desvio	Média	Dorce stil 10) Percentil 25	Percentil 50	Percentil 75	Docortil 00	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parametros	iviedia	Padrão	geométric	a Percentii 10	Percentii 25	(mediana)	Percentii 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	1,4E-17	0,10	0,10	0,10	0,10	0,10	0,10	1,15	-2,44	0,10	0,10	0	0,00
Arsênio total	0,0004	0,0002	0,0003	0,0003	0,0003	0,0003	0,0003	0,0004	3,5313	12,8223	0,0003	0,0003	0	0,00
Bário total	0,04	0,03	0,03	0,02	0,02	0,03	0,05	0,09	1,38	0,48	-0,03	0,10	1	6,67
Boro total	0,07	2,9E-17	0,07	0,07	0,07	0,07	0,07	0,07	-1,11	-2,33	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0679	-2,1905	0,0005	0,0005	0	0,00
Chumbo total	0,006	0,003	0,005	0,005	0,005	0,005	0,005	0,005	3,873	15,000	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,71	-1,61	-0,01	0,02	0	0,00
Cloreto total	0,75	0,35	0,68	0,42	0,52	0,66	0,98	1,17	1,05	1,21	-0,16	1,66	1	3,23
Clorofila a	3,72	2,64	2,36	1,00	1,50	3,34	4,88	7,72	0,79	-0,02	-3,58	9,96	0	0,00
Cobre dissolvido	0,004	2,6E-04	0,004	0,004	0,004	0,004	0,004	0,004	3,873	15,000	0,004	0,004	0	0,00
Coliformes termotolerantes	1239	2897	354	66	130	300	700	2440	4	15	-725	1555	4	13,79
Condutividade elétrica in loco	67,9	16,6	65,7	45,1	60,6	67,9	82,8	86,5	-0,4	-0,2	27,2	116,2	0	0,00
Cor verdadeira	107	205	42	10	18	36	55	222	3	9	-38	111	6	19,35
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,0	2,0	2,0	2,0	2,0	2,0	2,0	*	*	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,001	0,002	0,002	1,846	3,711	-0,001	0,004	2	6,45
Ferro dissolvido	0,21	0,21	0,16	0,08	0,10	0,18	0,22	0,26	4,04	18,25	-0,09	0,42	1	4,17
Fósforo total	0,05	0,05	0,03	0,02	0,02	0,03	0,06	0,10	2,45	6,54	-0,03	0,11	3	9,68
Manganês total	0,059	0,047	0,050	0,032	0,035	0,040	0,057	0,102	2,516	6,512	0,002	0,089	4	19,05
Níquel total	0,005	0,004	0,005	0,004	0,004	0,004	0,004	0,010	3,267	11,297	0,004	0,004	0	0,00
Nitrato	0,14	0,10	0,10	0,03	0,07	0,11	0,18	0,30	1,06	0,56	-0,10	0,34	2	6,45
Nitrito	0,005	0,003	0,004	0,003	0,003	0,003	0,004	0,009	1,785	2,777	0,001	0,006	4	25,00
Nitrogênio amoniacal total	0,12	0,04	0,12	0,10	0,10	0,10	0,13	0,20	1,68	1,71	0,06	0,16	4	12,90
Oxigênio dissolvido	7,1	0,6	7,0	6,2	6,6	7,2	7,5	7,7	0,2	-0,2	5,2	8,8	0	0,00
pH in loco	6,8	0,6	6,8	6,1	6,5	6,7	7,2	7,5	0,2	-0,1	5,4	8,2	0	0,00
Selênio total	0,0005	2,2E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,1147	-2,3333	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	57	15	55	44	49	53	59	82	1	1	33	75	3	15,79
Sólidos em suspensão totais	48	66	25	7	14	24	43	150	2	6	-30	86	4	12,90
Sólidos totais	103	75	88	58	63	76	98	210	2	5	11	151	4	12,90
Sulfato total	3,2	1,7	2,8	1,2	1,7	3,0	5,0	5,0	0,0	-1,8	-3,3	10,0	0	0,00
Sulfeto	0,4	0,2	0,2	0,0	0,3	0,5	0,5	0,5	-1,2	-0,7	-0,1	0,9	0	0,00
Temperatura da água	24,2	2,5	24,1	21,0	22,5	24,1	26,6	27,0	-0,2	-1,2	16,2	32,8	0	0,00
Turbidez	75,4	131,2	33,5	12,3	15,0	20,2	57,5	276,0	3,0	9,5	-48,9	121,3	4	12,90
Zinco total	0,036	0,018	0,032	0,020	0,020	0,027	0,043	0,058	1,149	0,816	-0,015	0,078	1	6,67

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.3 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PT005

Parâmetros	Média	Desvio	Média	Dorce stil 10	Percentil 25	Percentil 50	Percentil 75	Docortil 00	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parametros	iviedia	Padrão	geométric	a Percentii 10	Percentii 25	(mediana)	Percentii 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	1,4E-17	0,10	0,10	0,10	0,10	0,10	0,10	1,15	-2,44	0,10	0,10	0	0,00
Arsênio total	0,0197	0,0105	0,0130	0,0059	0,0136	0,0201	0,0261	0,0346	-0,1934	-0,3895	-0,0053	0,0450	0	0,00
Bário total	0,02	0,01	0,02	0,02	0,02	0,02	0,02	0,03	3,00	9,46	0,01	0,03	3	10,71
Boro total	0,07	4,2E-17	0,07	0,07	0,07	0,07	0,07	0,07	-1,06	-2,16	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,005	2,5E-04	0,005	0,005	0,005	0,005	0,005	0,005	4,690	22,000	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	1,02	-0,90	-0,01	0,01	0	0,00
Cloreto total	4,80	1,47	4,58	3,00	3,66	4,73	5,55	6,81	0,65	0,38	0,82	8,39	0	0,00
Clorofila a	9,89	9,82	6,23	2,46	3,47	4,98	11,57	24,46	1,45	1,09	-8,67	23,71	3	11,11
Cobre dissolvido	0,004	2,7E-18	0,004	0,004	0,004	0,004	0,004	0,004	-1,075	-2,211	0,004	0,004	0	0,00
Coliformes termotolerantes	5390	8808	1372	152	468	1250	5500	18500	2	2	-7081	13049	5	17,86
Condutividade elétrica in loco	167,6	32,2	164,4	130,0	145,5	166,2	189,5	206,0	-0,2	-0,2	79,5	255,5	0	0,00
Cor verdadeira	20	14	17	10	12	18	21	30	3	8	-2	34	1	6,67
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,1	0,3	2,0	2,0	2,0	2,0	2,0	2,0	5,6	31,0	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,001	0,002	0,002	1,753	3,468	-0,001	0,004	2	6,45
Ferro dissolvido	0,15	0,17	0,11	0,06	0,08	0,10	0,17	0,19	4,27	20,27	-0,06	0,31	2	7,14
Fósforo total	0,07	0,03	0,06	0,03	0,05	0,06	0,10	0,10	0,24	-0,20	-0,02	0,16	0	0,00
Manganês total	0,024	0,010	0,022	0,014	0,018	0,020	0,028	0,039	0,910	0,102	0,002	0,044	1	3,57
Níquel total	0,004	2,6E-18	0,004	0,004	0,004	0,004	0,004	0,004	-1,058	-2,160	0,004	0,004	0	0,00
Nitrato	1,20	1,02	0,76	0,14	0,54	0,91	1,48	3,08	1,08	0,11	-0,88	2,89	4	12,90
Nitrito	0,014	0,014	0,010	0,004	0,006	0,009	0,017	0,031	2,025	4,314	-0,012	0,035	2	12,50
Nitrogênio amoniacal total	0,11	0,02	0,11	0,10	0,10	0,10	0,12	0,14	2,02	4,08	0,08	0,14	7	22,58
Oxigênio dissolvido	7,2	0,6	7,2	6,5	6,7	7,4	7,6	7,9	0,0	-0,2	5,4	9,0	0	0,00
pH in loco	7,2	0,4	7,2	6,8	6,9	7,1	7,4	7,5	0,6	2,0	6,2	8,2	1	3,23
Selênio total	0,0005	7,7E-06	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	3,8730	15,0000	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	97	18	95	77	88	102	109	115	-1	0	57	139	1	5,26
Sólidos em suspensão totais	13	9	11	4	7	13	18	24	1	1	-10	34	1	3,23
Sólidos totais	111	15	110	92	97	114	125	131	0	-1	56	166	0	0,00
Sulfato total	4,0	2,6	3,3	1,5	2,0	3,0	5,0	7,2	0,9	0,4	-2,5	9,5	1	6,67
Sulfeto	0,4	0,2	0,2	0,0	0,0	0,5	0,5	0,5	-1,0	-1,1	-0,7	1,2	0	0,00
Temperatura da água	22,7	3,1	22,5	20,0	20,5	23,6	24,5	25,3	-0,5	1,5	14,4	30,6	1	3,23
Turbidez	23,1	76,1	7,2	2,9	3,3	5,4	11,0	22,0	5,4	29,6	-8,3	22,6	3	9,68
Zinco total	0,029	0,011	0,027	0,020	0,020	0,027	0,033	0,042	1,408	1,982	0,001	0,052	1	3,57

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.4 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PT007

Parâmetros	Média	Desvio	Média	Dorce stil 10) Percentil 25	Percentil 50	Percentil 75	Docontil 00	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parametros	iviedia	Padrão	geométric	a Percentii 10	Percentii 25	(mediana)	Percentii 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,01	0,10	0,10	0,10	0,10	0,10	0,10	3,46	12,00	0,10	0,10	0	0,00
Arsênio total	0,0004	0,0005	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	3,8730	15,0000	0,0003	0,0003	0	0,00
Bário total	0,05	0,03	0,05	0,03	0,03	0,04	0,07	0,10	1,14	-0,05	-0,03	0,14	0	0,00
Boro total	0,07	2,9E-17	0,07	0,07	0,07	0,07	0,07	0,07	-1,11	-2,33	0,07	0,07	0	0,00
Cádmio total	0,0005	2,2E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,1147	-2,3333	0,0005	0,0005	0	0,00
Chumbo total	0,006	0,004	0,006	0,005	0,005	0,005	0,005	0,005	3,873	15,000	0,005	0,005	0	0,00
Cianeto Livre	0,01	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,65	-1,83	-0,01	0,02	0	0,00
Cloreto total	0,72	0,33	0,66	0,30	0,53	0,68	0,91	1,15	0,90	1,19	-0,05	1,49	1	3,23
Clorofila a	3,97	4,05	1,92	0,46	1,81	2,67	4,81	7,24	2,52	8,32	-2,70	9,31	2	7,41
Cobre dissolvido	0,004	1,8E-18	0,004	0,004	0,004	0,004	0,004	0,004	-1,115	-2,333	0,004	0,004	0	0,00
Coliformes termotolerantes	4130	8728	521	44	130	500	2225	14200	3	7	-3013	5368	4	14,29
Condutividade elétrica in loco	110,1	25,3	107,5	82,7	95,0	111,0	120,0	134,0	1,2	3,5	57,5	157,5	1	3,23
Cor verdadeira	94	158	32	10	10	24	48	341	2	3	-47	106	3	18,75
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,3	0,9	2,2	2,0	2,0	2,0	2,0	3,3	3,3	11,7	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,001	0,002	0,003	1,347	1,351	-0,001	0,004	1	3,23
Ferro dissolvido	0,13	0,22	0,06	0,03	0,03	0,05	0,08	0,29	2,65	5,85	-0,05	0,16	2	11,11
Fósforo total	0,05	0,05	0,03	0,01	0,02	0,03	0,06	0,10	2,01	3,71	-0,03	0,11	3	9,68
Manganês total	0,111	0,117	0,075	0,032	0,038	0,064	0,152	0,218	2,456	7,194	-0,134	0,324	2	6,45
Níquel total	0,005	0,005	0,005	0,004	0,004	0,004	0,004	0,005	3,838	14,800	0,004	0,004	0	0,00
Nitrato	0,16	0,13	0,11	0,03	0,07	0,12	0,21	0,36	1,36	1,27	-0,15	0,42	2	6,45
Nitrito	0,005	0,003	0,004	0,003	0,003	0,004	0,007	0,009	0,797	0,005	-0,003	0,013	0	0,00
Nitrogênio amoniacal total	0,12	0,06	0,11	0,10	0,10	0,10	0,10	0,18	3,41	12,31	0,10	0,10	0	0,00
Oxigênio dissolvido	7,3	0,6	7,3	6,7	6,9	7,3	7,8	7,9	0,2	0,5	5,6	9,0	0	0,00
pH in loco	7,3	0,4	7,3	6,8	7,1	7,3	7,6	7,7	0,2	1,3	6,4	8,4	1	3,23
Selênio total	0,0005	2,2E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,1147	-2,3333	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	79	21	77	52	66	78	91	108	0	0	29	127	0	0,00
Sólidos em suspensão totais	125	193	49	9	16	39	128	319	2	6	-151	295	5	16,13
Sólidos totais	206	202	154	86	91	113	202	435	2	5	-76	369	5	16,13
Sulfato total	3,0	1,8	2,5	1,0	1,5	2,2	5,0	5,0	0,3	-2,0	-3,8	10,3	0	0,00
Sulfeto	0,4	0,2	0,2	0,0	0,3	0,5	0,5	0,5	-1,2	-0,7	-0,1	0,9	0	0,00
Temperatura da água	25,6	2,5	25,5	22,5	23,6	26,0	27,1	28,3	0,2	-0,6	18,2	32,4	0	0,00
Turbidez	174,6	304,2	47,7	7,5	13,1	35,8	158,5	557,0	2,3	4,7	-205,0	376,6	5	16,13
Zinco total	0,032	0,016	0,029	0,020	0,020	0,029	0,030	0,055	1,896	2,884	0,005	0,046	2	13,33

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.5 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PT009

Parâmetros	Média	Desvio	Média	Dorcontil 10	Percentil 25	Percentil 50	Percentil 75	Docontil 00	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parametros	iviedia	Padrão	geométric	a Percentii 10	Percentii 25	(mediana)	Percentii 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,12	0,05	0,11	0,10	0,10	0,10	0,10	0,10	3,46	12,00	0,10	0,10	0	0,00
Arsênio total	0,0007	0,0012	0,0004	0,0003	0,0003	0,0003	0,0003	0,0008	3,7647	14,3713	0,0003	0,0003	0	0,00
Bário total	0,06	0,04	0,05	0,03	0,03	0,04	0,06	0,14	1,40	0,43	-0,01	0,10	3	20,00
Boro total	0,07	2,9E-17	0,07	0,07	0,07	0,07	0,07	0,07	-1,11	-2,33	0,07	0,07	0	0,00
Cádmio total	0,0005	0,0001	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	3,8730	15,0000	0,0005	0,0005	0	0,00
Chumbo total	0,007	0,005	0,006	0,005	0,005	0,005	0,005	0,008	3,653	13,653	0,005	0,005	0	0,00
Cianeto Livre	0,00	3,9E-03	0,00	0,00	0,00	0,00	0,01	0,01	0,83	-1,72	-0,01	0,02	0	0,00
Cloreto total	0,78	0,42	0,69	0,41	0,48	0,73	0,92	1,11	2,07	6,17	-0,18	1,58	1	3,23
Clorofila a	11,43	10,73	7,29	1,79	3,90	5,75	17,08	26,74	1,34	1,47	-15,87	36,85	1	3,57
Cobre dissolvido	0,004	1,8E-18	0,004	0,004	0,004	0,004	0,004	0,004	-1,115	-2,333	0,004	0,004	0	0,00
Coliformes termotolerantes	5978	29102	291	48	133	255	1475	2210	5	30	-1879	3488	1	3,33
Condutividade elétrica in loco	84,4	14,8	82,9	65,9	77,7	87,4	93,0	100,0	-1,0	1,6	54,6	116,0	2	6,45
Cor verdadeira	110	204	40	10	13	36	90	275	3	8	-103	205	4	12,90
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,1	0,2	2,1	2,0	2,0	2,0	2,0	2,0	3,7	12,7	2,0	2,0	0	0,00
Fenóis totais	0,001	0,001	0,001	0,001	0,001	0,001	0,002	0,002	0,784	-0,358	-0,001	0,004	0	0,00
Ferro dissolvido	0,15	0,25	0,10	0,05	0,06	0,08	0,14	0,26	4,42	21,22	-0,05	0,25	3	10,71
Fósforo total	0,05	0,05	0,04	0,02	0,02	0,03	0,07	0,11	1,71	2,34	-0,05	0,13	3	9,68
Manganês total	0,090	0,080	0,066	0,030	0,035	0,064	0,109	0,205	1,645	2,107	-0,075	0,219	3	9,68
Níquel total	0,007	0,006	0,005	0,004	0,004	0,004	0,004	0,015	2,436	4,777	0,004	0,004	0	0,00
Nitrato	0,13	0,13	0,08	0,01	0,06	0,10	0,14	0,21	2,14	4,81	-0,07	0,27	3	9,68
Nitrito	0,004	0,002	0,003	0,002	0,002	0,003	0,005	0,006	1,066	0,934	-0,003	0,010	0	0,00
Nitrogênio amoniacal total	0,11	0,04	0,11	0,10	0,10	0,10	0,10	0,18	2,59	5,72	0,10	0,10	0	0,00
Oxigênio dissolvido	7,2	0,7	7,1	6,1	6,7	7,2	7,6	7,9	-0,1	-0,2	5,4	9,0	0	0,00
pH in loco	7,2	0,4	7,2	6,8	7,0	7,3	7,5	7,8	-0,1	-0,8	6,3	8,3	0	0,00
Selênio total	0,0005	2,2E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,1147	-2,3333	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	68	12	67	57	63	68	70	78	1	2	53	81	3	15,79
Sólidos em suspensão totais	98	114	54	16	24	44	154	204	2	3	-172	349	3	9,68
Sólidos totais	167	121	138	81	84	114	217	278	2	3	-115	415	3	9,68
Sulfato total	2,9	1,8	2,3	1,0	1,3	2,3	5,0	5,0	0,3	-2,0	-4,4	10,6	0	0,00
Sulfeto	0,4	0,2	0,2	0,0	0,3	0,5	0,5	0,5	-1,2	-0,7	-0,1	0,9	0	0,00
Temperatura da água	26,7	2,2	26,6	23,6	25,1	26,7	28,2	29,6	0,0	-0,8	20,5	32,9	0	0,00
Turbidez	122,8	176,2	56,1	15,1	18,5	49,6	154,0	260,0	2,2	4,2	-184,9	357,3	3	9,68
Zinco total	0,038	0,025	0,032	0,020	0,020	0,027	0,053	0,069	1,361	0,850	-0,030	0,103	0	0,00

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.6 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PT010

Parâmetros	Média	Desvio	Média	Dorcontil 10	Percentil 25	Percentil 50	Percentil 75	Docontil 00	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parametros	iviedia	Padrão	geométric	a Percentii 10	Percentii 25	(mediana)	Percentii 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,15	0,11	0,13	0,10	0,10	0,10	0,11	0,22	2,81	8,19	0,08	0,14	3	25,00
Arsênio total	0,0010	0,0014	0,0005	0,0003	0,0003	0,0003	0,0009	0,0029	1,8441	2,5769	-0,0006	0,0019	3	20,00
Bário total	0,08	0,10	0,03	0,01	0,01	0,02	0,11	0,22	1,49	0,93	-0,13	0,25	1	6,67
Boro total	0,07	0,01	0,07	0,07	0,07	0,07	0,07	0,07	3,87	15,00	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0679	-2,1905	0,0005	0,0005	0	0,00
Chumbo total	0,007	0,008	0,006	0,005	0,005	0,005	0,005	0,009	3,421	11,964	0,005	0,005	0	0,00
Cianeto Livre	0,00	3,5E-03	0,00	0,00	0,00	0,00	0,01	0,01	1,21	-0,54	0,00	0,01	0	0,00
Cloreto total	0,71	0,35	0,64	0,35	0,48	0,53	0,97	1,26	0,71	-0,98	-0,26	1,70	0	0,00
Clorofila a	4,02	4,79	0,75	0,01	0,24	2,67	5,47	8,31	2,07	5,23	-7,62	13,33	2	7,14
Cobre dissolvido	0,005	0,003	0,005	0,004	0,004	0,004	0,004	0,006	3,387	11,880	0,004	0,004	0	0,00
Coliformes termotolerantes	2483	6051	331	33	63	415	1250	3500	3	10	-1719	3031	3	10,00
Condutividade elétrica in loco	24,5	7,3	23,6	16,9	20,5	22,5	26,2	35,9	1,1	0,7	11,9	34,7	4	12,90
Cor verdadeira	258	508	60	10	13	70	90	812	3	6	-102	204	3	20,00
Cromo total	0,04	0,01	0,04	0,04	0,04	0,04	0,04	0,04	3,87	15,00	0,04	0,04	0	0,00
DBO	2,0	0,2	2,0	2,0	2,0	2,0	2,0	2,0	5,6	31,0	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,002	0,001	0,001	0,002	0,002	0,003	0,628	-0,654	-0,001	0,004	0	0,00
Ferro dissolvido	0,24	0,29	0,18	0,10	0,11	0,15	0,22	0,34	3,74	14,85	-0,06	0,39	1	5,56
Fósforo total	0,08	0,08	0,05	0,02	0,02	0,03	0,11	0,20	1,28	0,28	-0,11	0,23	2	6,45
Manganês total	0,145	0,196	0,076	0,029	0,031	0,044	0,194	0,328	2,166	4,218	-0,214	0,439	3	9,68
Níquel total	0,010	0,011	0,006	0,004	0,004	0,004	0,010	0,026	1,893	2,567	-0,004	0,018	3	16,67
Nitrato	0,12	0,24	0,07	0,02	0,06	0,08	0,10	0,13	5,25	28,50	-0,01	0,17	3	9,68
Nitrito	0,005	0,004	0,004	0,002	0,003	0,004	0,009	0,009	0,669	-0,626	-0,005	0,017	0	0,00
Nitrogênio amoniacal total	0,13	0,06	0,12	0,10	0,10	0,10	0,15	0,20	3,03	11,50	0,03	0,21	1	3,23
Oxigênio dissolvido	7,4	0,8	7,3	6,3	6,8	7,5	7,9	8,1	0,0	-0,4	5,2	9,6	0	0,00
pH in loco	6,6	0,4	6,6	6,1	6,4	6,6	6,9	7,1	-0,1	-0,6	5,7	7,7	0	0,00
Selênio total	0,0005	2,2E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,1147	-2,3333	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	48	24	43	26	29	37	68	78	1	1	-29	126	0	0,00
Sólidos em suspensão totais	174	306	42	7	13	21	209	457	3	7	-280	502	3	9,68
Sólidos totais	222	322	105	35	42	53	267	524	2	6	-295	603	3	9,68
Sulfato total	2,7	2,0	2,0	1,0	1,0	1,4	5,0	5,0	0,4	-2,1	-5,0	11,0	0	0,00
Sulfeto	0,4	0,2	0,2	0,0	0,3	0,5	0,5	0,5	-1,2	-0,7	-0,1	0,9	0	0,00
Temperatura da água	26,6	2,9	26,5	23,4	24,9	26,2	28,2	30,8	0,5	0,5	20,0	33,2	1	3,23
Turbidez	218,9	355,1	62,1	12,9	15,8	25,9	316,5	587,0	2,3	5,3	-435,3	767,6	2	6,45
Zinco total	0,042	0,037	0,032	0,020	0,020	0,021	0,046	0,107	1,585	1,108	-0,019	0,084	3	16,67

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.7 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PT011

		Desvio	Média			Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométric	a Percentii 10	Percentil 25	(mediana)	Percentil 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,20	0,20	0,15	0,10	0,10	0,10	0,20	0,39	2,48	6,21	-0,05	0,34	2	16,67
Arsênio total	0,0003	0,0001	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	3,8730	15,0000	0,0003	0,0003	0	0,00
Bário total	0,06	0,04	0,05	0,03	0,03	0,04	0,08	0,13	1,25	-0,20	-0,03	0,14	1	6,67
Boro total	0,07	2,9E-17	0,07	0,07	0,07	0,07	0,07	0,07	-1,11	-2,33	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0679	-2,1905	0,0005	0,0005	0	0,00
Chumbo total	0,006	0,004	0,006	0,005	0,005	0,005	0,005	0,008	3,209	10,549	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,86	-1,71	-0,01	0,02	0	0,00
Cloreto total	0,71	0,58	0,58	0,30	0,42	0,51	0,70	1,36	2,48	6,28	-0,01	1,13	4	12,90
Clorofila a	2,97	3,36	0,79	0,01	0,46	2,04	3,77	6,99	1,68	2,82	-4,51	8,73	2	7,41
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,006	2,061	3,193	0,004	0,004	0	0,00
Coliformes termotolerantes	5691	13057	440	30	65	280	4050	13000	3	10	-5914	10028	4	12,90
Condutividade elétrica in loco	25,2	7,0	24,1	14,0	22,4	26,1	29,7	31,5	-0,5	0,1	11,5	40,5	2	6,45
Cor verdadeira	184	276	60	10	16	44	240	596	2	1	-320	576	4	12,90
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,2	2,0	2,0	2,0	2,0	2,0	2,0	5,6	31,0	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,001	0,002	0,002	1,549	4,150	-0,001	0,004	1	3,23
Ferro dissolvido	0,16	0,18	0,11	0,05	0,06	0,09	0,19	0,37	2,42	6,23	-0,13	0,38	2	11,11
Fósforo total	0,07	0,10	0,04	0,01	0,02	0,03	0,09	0,16	3,34	13,21	-0,08	0,18	2	6,45
Manganês total	0,097	0,115	0,052	0,014	0,018	0,039	0,179	0,239	1,917	4,513	-0,222	0,419	1	3,23
Níquel total	0,006	0,005	0,005	0,004	0,004	0,004	0,004	0,007	3,676	13,840	0,004	0,004	0	0,00
Nitrato	0,09	0,22	0,04	0,01	0,02	0,04	0,10	0,11	5,18	27,91	-0,10	0,22	1	3,23
Nitrito	0,005	0,006	0,003	0,002	0,002	0,003	0,005	0,008	3,109	10,791	-0,003	0,010	1	6,25
Nitrogênio amoniacal total	0,13	0,08	0,12	0,10	0,10	0,10	0,10	0,20	3,35	12,66	0,10	0,10	0	0,00
Oxigênio dissolvido	7,8	0,7	7,7	7,0	7,3	7,7	8,1	8,6	0,4	0,2	6,0	9,4	1	3,23
pH in loco	6,8	0,4	6,8	6,4	6,6	6,8	7,0	7,2	0,0	0,3	6,0	7,6	1	3,23
Selênio total	0,0005	2,2E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,1147	-2,3333	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	45	19	41	29	31	42	53	66	1	1	-2	86	1	5,26
Sólidos em suspensão totais	160	220	38	3	7	46	269	516	1	0	-387	662	1	3,23
Sólidos totais	210	240	110	34	37	85	353	580	1	0	-437	827	0	0,00
Sulfato total	2,7	1,9	2,1	1,0	1,1	1,6	5,0	5,0	0,4	-2,1	-4,8	10,9	0	0,00
Sulfeto	0,4	0,2	0,2	0,0	0,3	0,5	0,5	0,5	-1,2	-0,7	-0,1	0,9	0	0,00
Temperatura da água	26,1	3,1	25,9	22,4	24,3	26,1	28,1	29,9	0,2	-0,3	18,7	33,7	0	0,00
Turbidez	172,1	227,4	50,0	5,3	11,7	51,1	352,0	511,0	1,4	1,0	-498,8	862,5	0	0,00
Zinco total	0,034	0,018	0,030	0,020	0,020	0,022	0,042	0,055	1,350	1,473	-0,013	0,075	1	6,67

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.8 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PT013

B. A	na/ II	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentii 10	Percentil 25	(mediana)	Percentil 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,13	0,08	0,12	0,10	0,10	0,10	0,10	0,23	2,46	5,58	0,10	0,10	0	0,00
Arsênio total	0,0005	0,0007	0,0004	0,0003	0,0003	0,0003	0,0003	0,0009	4,3690	20,5273	0,0003	0,0003	0	0,00
Bário total	0,06	0,04	0,05	0,03	0,03	0,04	0,10	0,12	0,53	-1,36	-0,08	0,21	0	0,00
Boro total	0,07	4,3E-17	0,07	0,07	0,07	0,07	0,07	0,07	-1,07	-2,21	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,006	0,003	0,006	0,005	0,005	0,005	0,005	0,008	4,363	20,844	0,005	0,005	0	0,00
Cianeto Livre	0,00	3,8E-03	0,00	0,00	0,00	0,00	0,01	0,01	0,75	-1,60	-0,01	0,02	0	0,00
Cloreto total	0,92	0,79	0,77	0,45	0,54	0,71	1,02	1,30	3,78	17,00	-0,19	1,74	2	6,45
Clorofila a	13,39	13,83	5,48	2,11	5,01	6,77	19,36	34,33	1,38	0,98	-16,51	40,88	2	7,14
Cobre dissolvido	0,005	0,002	0,004	0,004	0,004	0,004	0,004	0,005	4,597	22,814	0,004	0,004	0	0,00
Coliformes termotolerantes	1292	4030	146	2	30	225	1025	1430	5	26	-1463	2518	2	6,67
Condutividade elétrica in loco	67,7	16,2	65,5	43,6	57,9	74,2	80,0	84,7	-0,7	-0,8	24,7	113,1	0	0,00
Cor verdadeira	126	215	41	10	14	31	88	443	2	5	-96	198	6	19,35
Cromo total	0,04	1,4E-17	0,04	0,04	0,04	0,04	0,04	0,04	-1,06	-2,16	0,04	0,04	0	0,00
DBO	2,0	1,8E-02	2,0	2,0	2,0	2,0	2,0	2,0	5,6	31,0	2,0	2,0	0	0,00
Fenóis totais	0,001	0,001	0,001	0,001	0,001	0,001	0,002	0,002	0,068	-2,138	-0,001	0,004	0	0,00
Ferro dissolvido	0,14	0,17	0,09	0,03	0,05	0,08	0,14	0,26	3,34	12,88	-0,08	0,27	3	11,11
Fósforo total	0,05	0,05	0,04	0,01	0,02	0,03	0,09	0,13	1,08	-0,25	-0,08	0,18	0	0,00
Manganês total	0,108	0,101	0,067	0,019	0,032	0,054	0,199	0,239	1,025	0,054	-0,220	0,451	0	0,00
Níquel total	0,006	0,004	0,005	0,004	0,004	0,004	0,005	0,010	2,899	9,075	0,002	0,007	6	22,22
Nitrato	0,16	0,25	0,09	0,02	0,06	0,10	0,13	0,32	4,08	19,03	-0,06	0,24	5	16,13
Nitrito	0,006	0,004	0,005	0,002	0,003	0,004	0,008	0,011	1,834	4,014	-0,005	0,016	1	4,76
Nitrogênio amoniacal total	0,13	0,06	0,12	0,10	0,10	0,10	0,12	0,18	2,74	7,49	0,08	0,14	6	19,35
Oxigênio dissolvido	7,1	0,8	7,1	6,1	6,6	7,3	7,7	7,9	0,0	0,3	5,0	9,4	0	0,00
pH in loco	7,0	0,4	7,0	6,6	6,8	7,0	7,3	7,5	0,2	-1,0	5,9	8,1	0	0,00
Selênio total	0,0005	2,2E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,1147	-2,3333	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	64	20	62	50	53	60	66	83	2	6	35	85	2	9,09
Sólidos em suspensão totais	128	143	59	16	21	28	254	336	1	-1	-328	602	0	0,00
Sólidos totais	195	158	143	68	76	86	340	419	1	-1	-320	736	0	0,00
Sulfato total	2,9	1,7	2,4	1,0	1,4	2,2	5,0	5,0	0,3	-1,8	-4,1	10,4	0	0,00
Sulfeto	0,4	0,2	0,2	0,0	0,3	0,5	0,5	0,5	-1,2	-0,7	-0,1	0,9	0	0,00
Temperatura da água	26,9	2,2	26,8	24,1	25,5	27,0	28,6	29,3	0,0	-0,4	20,8	33,2	0	0,00
Turbidez	166,1	197,0	63,3	9,6	18,9	40,3	294,0	477,0	1,0	-0,4	-393,8	706,7	0	0,00
Zinco total	0,034	0,019	0,030	0,020	0,020	0,027	0,039	0,063	1,415	0,935	-0,009	0,068	2	7,41

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.9 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE001

- ·	/ II	Desvio	Média			Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentil 1	Percentil 25	(mediana)	Percentil 75	Pecentil 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	0,0000	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	*	*	0,0003	0,0003	0	0,00
Bário total	0,04	0,00	0,04	0,03	0,04	0,04	0,04	0,04	*	*	0,03	0,05	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,006	0,003	0,005	0,005	0,005	0,005	0,005	0,006	5,096	26,919	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	1,08	0,53	0,96	0,45	0,69	1,02	1,35	1,79	0,84	0,48	-0,31	2,34	1	3,23
Clorofila a	4,59	7,38	1,48	0,75	1,28	2,14	4,15	9,62	2,95	9,18	-3,03	8,45	2	11,11
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,004	5,015	26,059	0,004	0,004	0	0,00
Coliformes termotolerantes	11385	31234	476	29	80	170	3000	31000	4	19	-4300	7380	7	24,14
Condutividade elétrica in loco	55,4	14,5	53,7	39,8	47,2	54,4	58,8	73,2	0,9	1,3	29,8	76,2	3	9,68
Cor verdadeira	116	391	37	15	17	33	58	71	5	30	-45	120	2	6,45
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,3	1,0	2,2	2,0	2,0	2,0	2,0	2,5	3,9	15,6	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,002	0,002	0,002	1,448	3,949	-0,001	0,004	1	3,23
Ferro dissolvido	0,14	0,12	0,12	0,06	0,10	0,12	0,15	0,18	4,49	23,00	0,01	0,24	1	3,23
Fósforo total	0,09	0,07	0,07	0,03	0,05	0,08	0,10	0,23	1,67	2,18	-0,04	0,18	4	12,90
Manganês total	0,081	0,161	0,042	0,016	0,025	0,036	0,056	0,165	4,404	21,137	-0,022	0,102	4	12,90
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,15	0,14	0,10	0,04	0,06	0,10	0,13	0,38	1,76	2,09	-0,04	0,22	6	19,35
Nitrito	0,005	0,003	0,005	0,003	0,003	0,005	0,006	0,009	1,066	0,879	-0,002	0,011	1	4,00
Nitrogênio amoniacal total	0,12	0,05	0,12	0,10	0,10	0,10	0,10	0,17	2,24	5,00	0,10	0,10	0	0,00
Oxigênio dissolvido	7,5	0,9	7,5	6,6	6,9	7,6	8,0	8,7	0,2	-0,3	5,3	9,5	0	0,00
pH in loco	6,9	0,4	6,9	6,4	6,7	7,0	7,2	7,3	-0,2	0,0	6,0	8,0	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	51	17	49	35	41	49	55	68	2	7	19	77	1	3,85
Sólidos em suspensão totais	77	179	25	6	11	18	41	246	4	20	-34	86	5	16,13
Sólidos totais	126	191	84	46	55	64	97	303	4	20	-9	160	4	12,90
Sulfato total	5,0	0,0	5,0	5,0	5,0	5,0	5,0	5,0	*	*	5,0	5,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	24,4	3,9	24,1	18,1	22,7	24,3	27,5	28,2	-0,4	-0,2	15,4	34,8	0	0,00
Turbidez	81,4	205,6	30,4	10,2	15,6	22,5	43,9	117,0	4,7	23,5	-26,9	86,4	4	12,90
Zinco total	0,026	0,013	0,024	0,020	0,020	0,020	0,026	0,030	3,222	10,659	0,011	0,035	3	9,68

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.10 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE003

D. A	na/ II	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentii 1	Percentil 25	(mediana)	Percentil 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	0,0000	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	*	*	0,0003	0,0003	0	0,00
Bário total	0,05	0,00	0,04	0,04	0,04	0,05	0,05	0,05	*	*	0,03	0,07	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,005	0,002	0,005	0,005	0,005	0,005	0,005	0,005	5,025	26,419	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	1,95	1,14	1,68	0,78	1,24	1,76	2,43	2,99	1,49	2,72	-0,55	4,22	2	6,45
Clorofila a	6,04	10,95	2,35	0,33	1,07	2,20	5,16	12,56	3,37	12,31	-5,07	11,30	3	17,65
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,004	5,351	29,163	0,004	0,004	0	0,00
Coliformes termotolerantes	52114	65059	11551	696	3500	17000	90000	160000	1	-1	-126250	219750	0	0,00
Condutividade elétrica in loco	198,4	45,2	192,4	118,0	176,5	208,0	227,0	248,0	-0,9	-0,1	100,8	302,8	1	3,23
Cor verdadeira	58	187	23	10	12	24	30	53	6	31	-14	56	3	9,68
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	3,8	3,3	3,0	2,0	2,0	2,1	3,6	8,0	2,3	4,8	-0,4	6,0	4	12,90
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,002	0,002	0,002	0,569	-0,507	-0,001	0,004	0	0,00
Ferro dissolvido	0,09	0,07	0,07	0,03	0,05	0,07	0,11	0,16	2,03	4,33	-0,04	0,20	3	9,68
Fósforo total	0,05	0,04	0,04	0,01	0,02	0,04	0,07	0,12	1,68	2,89	-0,05	0,13	1	3,23
Manganês total	0,070	0,056	0,057	0,030	0,041	0,051	0,066	0,182	2,187	3,843	0,002	0,104	4	12,90
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,20	0,19	0,12	0,03	0,07	0,16	0,25	0,40	1,69	2,92	-0,19	0,51	3	9,68
Nitrito	0,006	0,002	0,005	0,003	0,004	0,005	0,007	0,009	1,265	2,493	-0,001	0,012	1	4,00
Nitrogênio amoniacal total	0,20	0,11	0,17	0,10	0,11	0,17	0,22	0,29	1,94	3,99	-0,05	0,38	2	7,69
Oxigênio dissolvido	6,2	1,2	6,1	4,8	5,9	6,3	7,1	7,6	-0,8	0,6	4,0	9,0	1	3,23
pH in loco	7,1	0,4	7,1	6,9	7,0	7,1	7,3	7,4	-0,1	2,8	6,4	7,8	2	6,45
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	117	21	115	88	100	117	131	143	0	-1	55	177	0	0,00
Sólidos em suspensão totais	59	100	21	5	9	15	37	231	2	3	-32	78	5	16,13
Sólidos totais	174	90	159	117	127	141	159	315	2	3	78	208	5	16,13
Sulfato total	3,1	1,8	2,5	1,0	1,5	2,1	5,0	5,0	0,1	-2,0	-3,8	10,3	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	22,6	2,8	22,4	19,9	20,8	23,6	24,5	24,9	-1,7	4,7	15,2	30,0	1	3,23
Turbidez	65,5	140,9	16,5	4,5	6,7	9,4	26,1	252,0	2,6	5,6	-22,5	55,3	5	16,13
Zinco total	0,032	0,011	0,031	0,020	0,022	0,031	0,038	0,041	1,301	2,715	-0,002	0,062	1	3,23

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.11 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE005

- ^ .	24/ !!	Desvio	Média		2 0000111110	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentil 10	Percentil 25	(mediana)	Percentil 75	Pecentil 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	0,0000	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	*	*	0,0003	0,0003	0	0,00
Bário total	0,16	0,00	0,15	0,12	0,13	0,16	0,18	0,20	*	*	0,06	0,26	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0007	0,0003	0,0006	0,0005	0,0005	0,0005	0,0007	0,0012	1,7108	1,8686	0,0001	0,0011	4	12,90
Chumbo total	0,008	0,005	0,007	0,005	0,005	0,005	0,007	0,013	2,317	4,985	0,002	0,010	5	16,13
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	1,71	0,53	1,62	1,07	1,43	1,70	2,13	2,46	-0,11	-0,70	0,38	3,18	0	0,00
Clorofila a	5,58	4,40	2,44	0,75	3,21	4,94	6,88	10,23	1,31	2,16	-2,29	12,37	2	11,11
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,004	4,356	19,459	0,004	0,004	0	0,00
Coliformes termotolerantes	24286	49897	3316	290	1100	3000	13000	104000	2	4	-16750	30850	4	13,79
Condutividade elétrica in loco	248,0	65,2	237,0	153,0	219,0	264,0	296,5	316,0	-1,0	0,4	102,8	412,8	1	3,23
Cor verdadeira	39	95	20	10	10	19	25	47	5	29	-12	46	4	12,90
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,2	2,0	2,0	2,0	2,0	2,0	2,0	5,6	31,0	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,002	0,001	0,001	0,002	0,002	0,002	2,992	12,411	-0,001	0,004	1	3,23
Ferro dissolvido	0,07	0,07	0,05	0,03	0,03	0,04	0,07	0,15	2,49	5,96	-0,03	0,13	4	12,90
Fósforo total	0,04	0,03	0,03	0,01	0,02	0,03	0,05	0,08	1,35	1,16	-0,03	0,10	1	3,23
Manganês total	0,100	0,187	0,054	0,026	0,035	0,047	0,067	0,156	4,052	17,648	-0,014	0,115	4	12,90
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,40	0,36	0,23	0,05	0,14	0,27	0,59	0,84	1,42	2,19	-0,54	1,27	1	3,23
Nitrito	0,010	0,004	0,009	0,005	0,008	0,010	0,013	0,015	0,510	1,669	0,001	0,021	1	4,00
Nitrogênio amoniacal total	0,12	0,05	0,12	0,10	0,10	0,10	0,10	0,20	2,70	7,63	0,10	0,10	0	0,00
Oxigênio dissolvido	7,1	0,5	7,1	6,6	6,7	7,1	7,5	7,8	0,4	-0,1	5,6	8,6	0	0,00
pH in loco	7,6	0,4	7,6	7,1	7,3	7,6	7,8	8,0	0,1	0,0	6,6	8,6	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	150	31	146	108	125	157	176	181	-1	0	50	252	0	0,00
Sólidos em suspensão totais	92	216	33	13	16	28	42	116	4	12	-22	80	4	12,90
Sólidos totais	240	204	204	149	160	182	213	239	4	12	79	293	3	9,68
Sulfato total	9,9	4,1	9,1	5,0	6,8	9,7	13,0	15,1	0,2	-0,8	-2,5	22,3	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	24,1	2,6	23,9	20,9	22,3	24,4	25,8	27,3	0,0	-0,2	16,9	31,1	0	0,00
Turbidez	105,3	272,3	26,2	10,0	12,9	17,7	28,3	103,0	3,4	11,5	-10,3	51,5	6	19,35
Zinco total	0,095	0,052	0,082	0,040	0,063	0,084	0,115	0,160	1,217	1,676	-0,014	0,192	2	6,45

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.12 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE007

B. A	na/ II	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentil 10	Percentil 25	(mediana)	Percentil 75	Pecentil 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	0,0001	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	3,7093	14,1911	0,0003	0,0003	0	0,00
Bário total	0,02	0,00	0,02	0,02	0,02	0,02	0,02	0,02	*	*	0,01	0,03	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	4,7E-05	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	5,5678	31,0000	0,0005	0,0005	0	0,00
Chumbo total	0,006	0,004	0,006	0,005	0,005	0,005	0,005	0,010	3,726	15,592	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,66	0,60	0,55	0,30	0,38	0,50	0,67	1,00	3,95	18,12	-0,07	1,11	3	9,68
Clorofila a	27,38	69,31	2,89	1,18	2,14	2,80	6,20	61,46	3,00	8,62	-3,95	12,28	3	16,67
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,004	4,081	16,960	0,004	0,004	0	0,00
Coliformes termotolerantes	8341	30583	664	96	220	800	1700	4400	5	24	-2000	3920	3	10,34
Condutividade elétrica in loco	41,3	9,8	40,3	32,0	33,5	39,1	46,8	54,3	0,9	0,4	13,6	66,6	1	3,23
Cor verdadeira	107	175	45	11	17	39	76	412	2	4	-71	163	5	16,13
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,0	2,0	2,0	2,0	2,0	2,0	2,0	*	*	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,002	0,001	0,001	0,002	0,002	0,002	1,062	1,652	-0,001	0,004	1	3,23
Ferro dissolvido	0,16	0,08	0,14	0,07	0,08	0,14	0,22	0,26	0,76	-0,36	-0,12	0,42	0	0,00
Fósforo total	0,05	0,04	0,04	0,01	0,02	0,03	0,06	0,10	1,61	2,46	-0,04	0,12	2	6,45
Manganês total	0,170	0,216	0,119	0,058	0,071	0,104	0,154	0,302	3,562	13,902	-0,053	0,279	4	12,90
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,09	0,08	0,06	0,02	0,04	0,07	0,13	0,21	1,65	2,89	-0,10	0,26	2	6,45
Nitrito	0,004	0,003	0,003	0,001	0,002	0,003	0,004	0,009	1,701	2,228	-0,001	0,007	4	16,00
Nitrogênio amoniacal total	0,13	0,05	0,13	0,10	0,10	0,10	0,19	0,20	1,35	1,17	-0,03	0,31	0	0,00
Oxigênio dissolvido	6,7	0,9	6,7	5,9	6,2	6,9	7,2	7,6	-1,8	6,2	4,7	8,7	1	3,23
pH in loco	6,6	0,4	6,6	6,1	6,3	6,6	6,9	7,2	0,4	-0,2	5,4	7,8	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	68	108	48	30	34	43	53	79	5	24	6	81	3	11,54
Sólidos em suspensão totais	99	147	48	16	19	29	119	254	3	7	-131	269	3	9,68
Sólidos totais	163	233	102	47	57	72	167	335	4	16	-108	332	4	12,90
Sulfato total	2,9	1,9	2,2	1,0	1,0	2,0	5,0	5,0	0,2	-2,1	-5,0	11,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	24,6	2,6	24,5	21,0	22,3	24,6	27,2	27,6	-0,2	-1,5	14,8	34,6	0	0,00
Turbidez	121,3	162,5	53,3	14,8	19,8	28,0	155,5	384,0	1,5	0,9	-183,8	359,1	4	12,90
Zinco total	0,030	0,019	0,027	0,020	0,020	0,020	0,028	0,060	2,032	3,674	0,007	0,041	7	22,58

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.13 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE009

D. A	na/ II	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentii 1	Percentil 25	(mediana)	Percentil 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	0,0000	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	*	*	0,0003	0,0003	0	0,00
Bário total	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	*	*	0,01	0,01	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,005	0,002	0,005	0,005	0,005	0,005	0,005	0,005	3,934	14,964	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,58	0,40	0,50	0,30	0,35	0,50	0,61	0,74	2,92	9,00	-0,03	0,99	2	6,45
Clorofila a	1,66	1,88	0,41	0,01	0,52	1,19	2,01	3,31	2,31	7,02	-1,70	4,23	1	5,26
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,004	5,568	31,000	0,004	0,004	0	0,00
Coliformes termotolerantes	11893	34258	802	138	300	330	1300	21200	4	13	-1200	2800	6	20,69
Condutividade elétrica in loco	19,9	2,6	19,8	16,9	18,3	19,3	21,9	22,7	0,4	-0,1	12,8	27,4	0	0,00
Cor verdadeira	50	87	30	10	14	33	57	64	5	27	-52	122	1	3,23
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,0	2,0	2,0	2,0	2,0	2,0	2,0	*	*	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,002	0,002	0,002	0,569	-0,507	-0,001	0,004	0	0,00
Ferro dissolvido	0,16	0,09	0,14	0,09	0,10	0,12	0,21	0,25	1,76	3,23	-0,07	0,38	2	6,45
Fósforo total	0,04	0,05	0,03	0,01	0,02	0,02	0,04	0,10	3,07	10,61	0,00	0,06	5	16,13
Manganês total	0,048	0,056	0,037	0,023	0,027	0,031	0,044	0,069	3,795	15,284	0,001	0,070	3	9,68
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,10	0,12	0,07	0,02	0,05	0,08	0,11	0,11	4,76	24,97	-0,03	0,19	1	3,23
Nitrito	0,003	0,002	0,003	0,001	0,002	0,002	0,004	0,005	2,358	6,472	-0,001	0,007	2	8,00
Nitrogênio amoniacal total	0,17	0,10	0,15	0,10	0,10	0,10	0,26	0,29	0,74	-2,56	-0,14	0,50	0	0,00
Oxigênio dissolvido	7,3	0,6	7,3	6,7	6,9	7,3	7,6	8,0	0,4	-0,6	5,7	8,7	0	0,00
pH in loco	6,4	0,4	6,4	5,9	6,1	6,3	6,6	6,9	0,4	-0,2	5,4	7,4	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	28	7	27	21	22	26	31	39	1	1	10	44	1	3,85
Sólidos em suspensão totais	57	147	16	5	6	14	34	90	4	21	-36	76	4	12,90
Sólidos totais	84	152	51	28	35	38	63	117	4	21	-8	105	4	12,90
Sulfato total	5,0	0,0	5,0	5,0	5,0	5,0	5,0	5,0	*	*	5,0	5,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	24,6	3,0	24,4	21,3	22,6	25,2	26,5	27,6	0,4	0,4	16,8	32,2	0	0,00
Turbidez	58,7	180,6	16,8	7,4	7,9	10,3	22,8	52,9	5,0	25,8	-14,4	45,0	5	16,13
Zinco total	0,024	0,009	0,023	0,020	0,020	0,020	0,020	0,040	2,326	4,213	0,020	0,020	0	0,00

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.14 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE011

B. A	na/ II	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentii 1	Percentil 25	(mediana)	Percentil 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	0,0000	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	*	*	0,0003	0,0003	0	0,00
Bário total	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	*	*	0,01	0,01	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,005	0,002	0,005	0,005	0,005	0,005	0,005	0,005	5,568	31,000	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,57	0,27	0,52	0,30	0,37	0,50	0,69	0,84	2,08	6,55	-0,12	1,17	1	3,23
Clorofila a	4,82	10,54	1,25	0,15	0,92	2,27	3,38	6,14	3,99	16,47	-2,76	7,07	2	11,11
Cobre dissolvido	0,004	2,6E-04	0,004	0,004	0,004	0,004	0,004	0,004	3,744	12,888	0,004	0,004	0	0,00
Coliformes termotolerantes	8629	29826	517	50	110	230	2200	15600	5	26	-3025	5335	5	17,24
Condutividade elétrica in loco	13,3	1,8	13,2	11,4	12,4	12,8	14,9	15,6	0,1	0,1	8,7	18,7	0	0,00
Cor verdadeira	58	127	30	10	12	34	53	73	5	28	-49	113	1	3,23
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,0	2,0	2,0	2,0	2,0	2,0	2,0	*	*	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,002	0,002	0,002	0,382	-0,812	-0,001	0,004	0	0,00
Ferro dissolvido	0,14	0,10	0,12	0,07	0,09	0,11	0,16	0,26	2,52	7,98	-0,01	0,26	2	6,45
Fósforo total	0,03	0,03	0,02	0,01	0,02	0,02	0,04	0,07	2,09	3,56	0,00	0,06	4	12,90
Manganês total	0,043	0,027	0,038	0,024	0,025	0,034	0,046	0,076	1,953	2,981	-0,005	0,077	3	9,68
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,07	0,04	0,06	0,02	0,04	0,08	0,10	0,11	0,35	0,28	-0,05	0,19	0	0,00
Nitrito	0,003	0,002	0,003	0,001	0,002	0,002	0,005	0,007	1,012	-0,057	-0,003	0,010	0	0,00
Nitrogênio amoniacal total	0,12	0,06	0,12	0,10	0,10	0,10	0,10	0,20	2,24	3,94	0,10	0,10	0	0,00
Oxigênio dissolvido	7,3	0,6	7,3	6,6	6,9	7,4	7,7	8,0	0,3	-0,2	5,6	9,0	0	0,00
pH in loco	6,1	0,4	6,1	5,6	5,9	6,1	6,3	6,7	0,1	-0,1	5,2	7,0	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	24	11	22	16	17	22	28	35	2	3	1	43	2	7,69
Sólidos em suspensão totais	53	89	22	8	10	14	46	145	3	7	-44	100	4	12,90
Sólidos totais	77	96	50	24	31	38	68	203	3	7	-26	124	4	12,90
Sulfato total	5,0	0,0	5,0	5,0	5,0	5,0	5,0	5,0	*	*	5,0	5,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	24,8	3,1	24,6	21,5	22,6	24,6	26,6	29,0	0,9	0,6	16,7	32,5	1	3,23
Turbidez	46,5	93,0	20,3	8,2	9,1	12,8	24,9	89,2	3,6	14,1	-14,7	48,6	6	19,35
Zinco total	0,027	0,017	0,024	0,020	0,020	0,020	0,020	0,060	2,246	3,572	0,020	0,020	0	0,00

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.15 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE013

D. A	5.0 (dt .	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentii 1	Percentil 25	(mediana)	Percentil 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	0,0000	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	*	*	0,0003	0,0003	0	0,00
Bário total	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	*	*	0,01	0,01	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,006	0,002	0,006	0,005	0,005	0,005	0,005	0,008	2,565	6,270	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,53	0,29	0,47	0,30	0,30	0,50	0,62	0,72	2,27	5,97	-0,17	1,09	2	6,45
Clorofila a	2,64	3,96	0,94	0,24	0,53	1,69	2,42	4,13	2,59	5,92	-2,30	5,26	2	10,00
Cobre dissolvido	0,004	3,7E-04	0,004	0,004	0,004	0,004	0,004	0,004	5,049	27,709	0,004	0,004	0	0,00
Coliformes termotolerantes	7703	19703	488	64	110	230	1300	26200	3	11	-1675	3085	5	17,24
Condutividade elétrica in loco	26,3	6,0	25,7	19,5	21,2	27,2	30,5	35,1	0,5	-0,7	7,3	44,5	0	0,00
Cor verdadeira	38	26	29	10	15	37	54	73	1	1	-44	113	1	3,23
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,0	2,0	2,0	2,0	2,0	2,0	2,0	*	*	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,001	0,002	0,002	0,686	-0,404	-0,001	0,004	0	0,00
Ferro dissolvido	0,17	0,12	0,14	0,08	0,10	0,13	0,21	0,26	2,97	11,56	-0,05	0,36	1	3,23
Fósforo total	0,02	0,02	0,02	0,01	0,01	0,02	0,03	0,04	3,31	13,96	-0,01	0,05	2	6,45
Manganês total	0,035	0,025	0,030	0,016	0,022	0,028	0,036	0,048	2,259	4,576	0,001	0,058	3	9,68
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,09	0,12	0,05	0,01	0,03	0,06	0,10	0,12	4,23	20,80	-0,08	0,21	2	6,45
Nitrito	0,003	0,002	0,003	0,001	0,002	0,003	0,004	0,005	0,668	0,292	-0,001	0,007	0	0,00
Nitrogênio amoniacal total	0,16	0,07	0,15	0,10	0,10	0,15	0,18	0,24	1,19	1,17	-0,02	0,30	0	0,00
Oxigênio dissolvido	7,6	0,6	7,5	6,9	7,1	7,5	7,9	8,3	0,2	-0,6	5,8	9,2	0	0,00
pH in loco	6,6	0,5	6,6	6,1	6,3	6,6	6,9	7,2	0,0	0,9	5,5	7,7	2	6,45
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	32	9	31	24	25	31	35	40	2	3	11	49	2	7,69
Sólidos em suspensão totais	33	54	14	3	6	11	27	95	2	5	-27	59	4	12,90
Sólidos totais	64	57	51	30	36	39	59	128	2	4	1	93	5	16,13
Sulfato total	5,0	0,0	5,0	5,0	5,0	5,0	5,0	5,0	*	*	5,0	5,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	25,5	3,0	25,3	22,3	22,8	25,6	27,2	28,7	0,7	0,5	16,3	33,7	1	3,23
Turbidez	34,1	59,6	16,3	5,9	7,8	12,3	22,3	79,7	3,2	10,5	-13,9	44,0	5	16,13
Zinco total	0,024	0,008	0,023	0,020	0,020	0,020	0,024	0,040	1,897	2,317	0,014	0,030	5	16,13

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.16 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE015

D. A	5.0 (dt .	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentii 1	0 Percentil 25	(mediana)	Percentil 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	0,0001	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	5,4046	29,6352	0,0003	0,0003	0	0,00
Bário total	0,01	0,00	0,01	0,01	0,01	0,01	0,01	0,01	*	*	0,01	0,02	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,005	0,001	0,005	0,005	0,005	0,005	0,005	0,005	4,863	24,971	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,53	0,26	0,48	0,30	0,33	0,50	0,66	0,86	1,60	3,27	-0,18	1,16	1	3,23
Clorofila a	2,12	2,14	0,41	0,01	0,29	1,85	3,29	5,04	0,91	0,05	-4,21	7,78	0	0,00
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,004	5,568	31,000	0,004	0,004	0	0,00
Coliformes termotolerantes	973	3119	240	50	80	220	500	1000	5	28	-550	1130	3	10,34
Condutividade elétrica in loco	37,1	7,7	36,3	27,5	31,7	36,0	44,0	47,1	-0,3	-0,6	13,2	62,4	0	0,00
Cor verdadeira	67	147	35	10	19	34	52	104	5	28	-32	102	4	12,90
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,0	2,0	2,0	2,0	2,0	2,0	2,0	*	*	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,002	0,001	0,001	0,002	0,002	0,003	0,786	-0,418	-0,001	0,004	1	3,23
Ferro dissolvido	0,19	0,08	0,17	0,09	0,14	0,21	0,25	0,28	-0,15	-0,80	-0,03	0,41	0	0,00
Fósforo total	0,02	0,02	0,02	0,01	0,01	0,02	0,03	0,05	1,72	3,69	-0,02	0,06	1	3,23
Manganês total	0,036	0,016	0,033	0,023	0,026	0,032	0,043	0,059	1,363	1,565	0,001	0,068	2	6,45
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,13	0,20	0,07	0,02	0,04	0,08	0,12	0,24	4,28	21,01	-0,08	0,24	3	9,68
Nitrito	0,003	0,002	0,003	0,001	0,002	0,003	0,005	0,006	0,600	-0,552	-0,003	0,010	0	0,00
Nitrogênio amoniacal total	0,12	0,02	0,11	0,10	0,10	0,10	0,13	0,14	1,02	-1,01	0,06	0,18	0	0,00
Oxigênio dissolvido	7,3	0,6	7,3	6,6	6,9	7,4	7,6	7,8	0,2	0,2	5,7	8,7	1	3,23
pH in loco	6,6	0,5	6,5	6,1	6,2	6,4	7,0	7,2	0,2	0,6	5,1	8,1	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	38	13	37	27	31	36	42	50	2	6	16	57	1	3,85
Sólidos em suspensão totais	32	33	20	7	10	20	40	75	2	1	-36	85	3	9,68
Sólidos totais	69	42	61	38	45	52	76	110	2	3	-2	123	3	9,68
Sulfato total	2,6	1,9	2,0	1,0	1,0	1,6	5,0	5,0	0,5	-1,8	-5,0	11,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	24,5	2,4	24,4	21,6	22,8	25,4	26,4	27,5	-0,2	-0,9	17,5	31,7	0	0,00
Turbidez	37,8	51,8	24,5	10,3	11,6	23,3	42,1	66,1	3,9	18,0	-34,1	87,7	2	6,45
Zinco total	0,023	0,007	0,022	0,020	0,020	0,020	0,020	0,029	3,133	9,501	0,020	0,020	0	0,00

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.17 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE017

- ·	24/ !!	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentil 1	Percentil 25	(mediana)	Percentil 75	Pecentil 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	4,5E-05	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	4,4721	20,0000	0,0003	0,0003	0	0,00
Bário total	0,04	0,00	0,04	0,03	0,04	0,04	0,05	0,05	*	*	0,02	0,06	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0534	-2,1481	0,0005	0,0005	0	0,00
Chumbo total	0,006	0,003	0,005	0,005	0,005	0,005	0,005	0,005	4,960	25,500	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,77	0,34	0,70	0,44	0,53	0,68	1,00	1,17	1,02	0,43	-0,18	1,71	0	0,00
Clorofila a	21,59	33,20	10,47	1,34	5,93	12,68	24,92	33,22	3,44	12,98	-22,56	53,41	1	5,88
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,005	3,547	11,781	0,004	0,004	0	0,00
Coliformes termotolerantes	900	1828	188	41	80	175	373	2660	3	9	-359	811	5	17,86
Condutividade elétrica in loco	57,4	13,6	55,9	45,4	50,2	54,3	62,9	78,5	0,6	0,8	31,1	82,0	3	10,00
Cor verdadeira	83	110	41	10	13	37	73	253	2	2	-76	161	6	20,00
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,0	2,0	2,0	2,0	2,0	2,0	2,0	*	*	2,0	2,0	0	0,00
Fenóis totais	0,001	0,001	0,001	0,001	0,001	0,001	0,002	0,002	0,732	-0,429	-0,001	0,004	0	0,00
Ferro dissolvido	0,10	0,06	0,09	0,05	0,06	0,08	0,13	0,15	1,81	4,22	-0,04	0,23	2	6,67
Fósforo total	0,06	0,05	0,05	0,02	0,03	0,05	0,09	0,13	1,35	1,22	-0,06	0,19	1	3,33
Manganês total	0,086	0,071	0,069	0,038	0,046	0,058	0,090	0,194	2,117	3,648	-0,020	0,156	4	13,33
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,11	0,18	0,06	0,01	0,02	0,07	0,14	0,18	4,42	22,05	-0,16	0,32	1	3,33
Nitrito	0,003	0,002	0,002	0,001	0,002	0,002	0,003	0,006	1,460	1,668	0,000	0,005	5	20,83
Nitrogênio amoniacal total	0,10	4,5E-03	0,10	0,10	0,10	0,10	0,10	0,11	2,24	5,00	0,10	0,10	0	0,00
Oxigênio dissolvido	7,3	0,7	7,2	6,6	6,9	7,4	7,6	7,8	-0,4	1,0	5,7	8,7	1	3,33
pH in loco	6,8	0,5	6,7	6,1	6,5	6,7	7,1	7,3	0,2	0,1	5,6	7,9	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	54	15	53	38	42	52	60	74	1	1	15	87	1	4,00
Sólidos em suspensão totais	86	102	51	18	24	45	95	213	2	4	-82	200	5	16,67
Sólidos totais	139	111	112	63	72	92	143	286	2	3	-35	250	5	16,67
Sulfato total	2,6	1,9	2,0	1,0	1,0	1,4	5,0	5,0	0,5	-1,9	-5,0	11,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	24,9	2,5	24,8	21,4	23,3	24,6	27,2	28,3	0,0	-1,1	17,6	32,9	0	0,00
Turbidez	100,5	131,9	51,3	14,9	19,1	37,5	124,0	286,7	1,9	3,0	-138,3	281,4	4	13,33
Zinco total	0,034	0,028	0,028	0,020	0,020	0,020	0,032	0,061	2,763	7,605	0,003	0,049	4	13,33

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.18 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE019

D. A	na/ II	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentii 1	Percentil 25	(mediana)	Percentil 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	0,0000	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	*	*	0,0003	0,0003	0	0,00
Bário total	0,04	0,00	0,03	0,03	0,03	0,04	0,04	0,04	*	*	0,01	0,06	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,006	0,002	0,005	0,005	0,005	0,005	0,005	0,006	5,083	26,985	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,42	0,12	0,40	0,30	0,30	0,45	0,50	0,52	0,29	-1,33	0,00	0,80	0	0,00
Clorofila a	10,75	42,63	0,38	0,01	0,46	0,75	1,02	1,53	4,24	17,99	-0,40	1,88	1	5,56
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,004	5,364	29,275	0,004	0,004	0	0,00
Coliformes termotolerantes	2375	9320	128	23	49	80	300	2760	5	27	-328	677	6	20,69
Condutividade elétrica in loco	16,8	3,7	16,4	12,6	14,1	15,6	18,9	21,7	0,9	0,1	6,9	26,1	0	0,00
Cor verdadeira	49	55	30	10	11	30	58	100	2	5	-59	127	2	6,45
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,1	0,2	2,1	2,0	2,0	2,0	2,0	2,0	3,7	12,7	2,0	2,0	0	0,00
Fenóis totais	0,001	0,001	0,001	0,001	0,001	0,001	0,002	0,002	0,644	-0,569	-0,001	0,004	0	0,00
Ferro dissolvido	0,08	0,06	0,06	0,03	0,04	0,06	0,09	0,11	3,27	13,77	-0,03	0,16	1	3,23
Fósforo total	0,02	0,01	0,02	0,01	0,01	0,02	0,03	0,04	1,18	0,80	-0,02	0,06	0	0,00
Manganês total	0,038	0,052	0,028	0,014	0,019	0,024	0,035	0,060	4,786	24,843	-0,005	0,059	4	12,90
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,10	0,12	0,06	0,02	0,04	0,05	0,10	0,18	3,59	15,36	-0,05	0,19	3	9,68
Nitrito	0,003	0,004	0,002	0,001	0,001	0,002	0,003	0,005	3,863	17,032	-0,002	0,006	1	4,00
Nitrogênio amoniacal total	0,15	0,10	0,13	0,10	0,10	0,10	0,10	0,24	2,24	5,00	0,10	0,10	0	0,00
Oxigênio dissolvido	7,4	0,7	7,4	6,6	7,0	7,5	7,8	8,1	0,2	0,1	5,7	9,1	0	0,00
pH in loco	6,4	0,4	6,4	6,1	6,2	6,3	6,8	7,0	0,3	-0,7	5,4	7,6	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	30	10	28	20	26	28	32	42	1	3	18	40	7	26,92
Sólidos em suspensão totais	41	101	19	7	11	15	30	61	5	28	-19	59	4	12,90
Sólidos totais	70	108	50	29	36	43	60	108	5	27	-1	97	4	12,90
Sulfato total	5,0	0,0	5,0	5,0	5,0	5,0	5,0	5,0	*	*	5,0	5,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	25,8	3,0	25,7	21,6	23,9	26,5	28,1	30,0	-0,3	-0,7	17,6	34,4	0	0,00
Turbidez	43,1	108,8	20,1	9,2	12,8	15,4	24,8	81,1	5,2	27,8	-5,2	42,8	4	12,90
Zinco total	0,023	0,006	0,022	0,020	0,020	0,020	0,020	0,031	2,178	3,460	0,020	0,020	0	0,00

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.19 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE021

D. A	na/ II	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentii 1	Percentil 25	(mediana)	Percentil 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	0,0000	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	*	*	0,0003	0,0003	0	0,00
Bário total	0,02	0,00	0,02	0,02	0,02	0,02	0,02	0,02	*	*	0,02	0,03	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,006	0,002	0,005	0,005	0,005	0,005	0,005	0,008	2,855	7,662	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,55	0,27	0,50	0,30	0,32	0,50	0,62	1,04	1,41	1,50	-0,14	1,08	2	6,45
Clorofila a	1,07	1,47	0,13	0,01	0,01	0,74	1,85	2,42	2,05	5,22	-2,76	4,61	1	5,56
Cobre dissolvido	0,004	4,0E-04	0,004	0,004	0,004	0,004	0,004	0,004	4,356	19,459	0,004	0,004	0	0,00
Coliformes termotolerantes	798	3134	122	29	50	140	230	460	5	28	-220	500	3	10,34
Condutividade elétrica in loco	14,9	3,2	14,6	12,0	12,8	14,1	16,0	19,5	1,2	1,6	7,9	20,8	2	6,45
Cor verdadeira	49	41	34	10	15	39	73	108	1	0	-72	160	0	0,00
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,3	1,3	2,1	2,0	2,0	2,0	2,0	2,0	5,4	29,6	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,002	0,002	0,002	0,382	-0,812	-0,001	0,004	0	0,00
Ferro dissolvido	0,09	0,06	0,08	0,05	0,06	0,08	0,11	0,14	2,35	6,07	-0,01	0,17	2	6,45
Fósforo total	0,03	0,03	0,02	0,01	0,01	0,02	0,03	0,05	2,63	7,67	-0,02	0,06	3	9,68
Manganês total	0,026	0,026	0,021	0,013	0,014	0,018	0,028	0,045	4,063	19,220	-0,007	0,049	2	6,45
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,09	0,08	0,06	0,02	0,03	0,05	0,11	0,21	1,31	0,97	-0,09	0,23	2	6,45
Nitrito	0,005	0,004	0,004	0,001	0,002	0,004	0,006	0,009	1,803	3,232	-0,004	0,012	2	8,00
Nitrogênio amoniacal total	0,11	0,03	0,11	0,10	0,10	0,10	0,10	0,14	2,24	5,00	0,10	0,10	0	0,00
Oxigênio dissolvido	7,6	0,7	7,5	6,9	7,1	7,6	7,9	8,3	0,5	0,6	5,9	9,1	1	3,23
pH in loco	6,4	0,4	6,4	6,0	6,2	6,5	6,6	6,8	-0,9	1,8	5,6	7,2	3	9,68
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	28	13	25	18	23	25	29	33	2	7	14	38	4	15,38
Sólidos em suspensão totais	32	68	14	3	6	12	31	45	5	25	-32	68	3	9,68
Sólidos totais	59	76	45	26	31	39	52	76	4	22	-1	84	3	9,68
Sulfato total	5,0	0,0	5,0	5,0	5,0	5,0	5,0	5,0	*	*	5,0	5,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	26,2	3,0	26,0	22,0	24,3	26,6	28,4	29,4	0,0	-0,3	18,0	34,6	0	0,00
Turbidez	38,1	66,8	23,0	10,3	13,8	17,2	38,4	66,4	4,8	24,7	-23,1	75,3	3	9,68
Zinco total	0,022	0,007	0,021	0,020	0,020	0,020	0,020	0,023	5,176	27,763	0,020	0,020	0	0,00

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.20 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE023

- ·	24/ 11	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentil 10	Percentil 25	(mediana)	Percentil 75	Pecentil 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0241	0,0126	0,0213	0,0125	0,0134	0,0230	0,0265	0,0473	1,1401	0,7494	-0,0062	0,0461	3	14,29
Bário total	0,03	0,01	0,02	0,02	0,02	0,02	0,03	0,04	1,77	3,22	0,01	0,04	1	20,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,005	2,2E-04	0,005	0,005	0,005	0,005	0,005	0,005	3,742	12,873	0,005	0,005	0	0,00
Cianeto Livre	0,00	1,0E-03	0,00	0,00	0,00	0,00	0,00	0,00	2,00	4,00	0,00	0,00	1	25,00
Cloreto total	5,47	2,19	5,05	3,36	3,90	5,24	6,65	7,51	1,13	2,97	-0,23	10,78	1	3,23
Clorofila a	4,79	4,27	2,44	0,82	1,87	2,49	8,46	10,40	0,78	-0,85	-8,02	18,34	0	0,00
Cobre dissolvido	0,004	0,002	0,004	0,004	0,004	0,004	0,004	0,004	4,767	23,639	0,004	0,004	0	0,00
Coliformes termotolerantes	35816	56784	9473	1700	2275	7950	31500	160000	2	1	-41563	75338	6	21,43
Condutividade elétrica in loco	111,2	36,3	105,6	68,1	87,4	113,0	130,5	150,0	0,8	1,5	22,8	195,2	1	3,23
Cor verdadeira	25	17	20	10	11	21	37	45	1	1	-29	76	1	3,23
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,8	2,8	2,3	2,0	2,0	2,0	2,0	4,0	5,0	26,0	2,0	2,0	0	0,00
Fenóis totais	0,002	0,002	0,002	0,001	0,001	0,002	0,002	0,003	3,867	17,972	-0,001	0,004	2	6,45
Ferro dissolvido	0,17	0,16	0,11	0,07	0,09	0,14	0,20	0,31	3,15	12,75	-0,08	0,37	2	6,45
Fósforo total	0,09	0,17	0,06	0,02	0,04	0,05	0,08	0,12	5,05	26,89	-0,01	0,13	3	9,68
Manganês total	0,074	0,043	0,062	0,027	0,041	0,071	0,091	0,129	1,196	1,934	-0,035	0,166	1	3,23
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,88	0,80	0,56	0,17	0,32	0,58	1,16	2,24	1,31	0,82	-0,95	2,43	2	6,45
Nitrito	0,075	0,076	0,052	0,021	0,037	0,050	0,059	0,206	1,853	2,250	0,004	0,092	4	16,00
Nitrogênio amoniacal total	0,76	1,12	0,38	0,10	0,15	0,30	0,85	1,70	2,71	8,04	-0,89	1,89	3	9,68
Oxigênio dissolvido	6,2	1,6	5,9	4,8	5,2	6,4	7,1	8,0	-0,6	1,8	2,3	9,9	1	3,23
pH in loco	6,8	0,4	6,8	6,3	6,5	6,8	7,0	7,2	0,8	1,1	5,7	7,7	2	6,45
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	70	19	68	50	58	69	78	91	1	3	29	108	1	3,85
Sólidos em suspensão totais	14	16	9	2	6	8	17	38	2	4	-11	34	4	12,90
Sólidos totais	82	23	79	59	67	77	91	108	1	2	30	128	3	9,68
Sulfato total	11,8	9,5	9,6	6,4	8,4	11,8	15,1	17,2	*	*	-1,8	25,3	0	0,00
Sulfeto	0,0	5,0E-03	0,0	0,0	0,0	0,0	0,0	0,0	2,0	4,0	0,0	0,0	1	25,00
Temperatura da água	24,5	3,0	24,3	20,3	22,6	23,8	26,3	27,9	0,3	-0,4	17,0	31,8	0	0,00
Turbidez	8,6	12,2	5,9	3,1	3,6	5,8	7,5	13,3	4,6	23,2	-2,1	13,2	4	12,90
Zinco total	0,024	0,010	0,023	0,020	0,020	0,020	0,025	0,030	3,360	12,859	0,013	0,031	3	9,68

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.21 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE025

- ·		Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentil 10	Percentil 25	(mediana)	Percentil 75	Pecentil 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	0,0000	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	*	*	0,0003	0,0003	0	0,00
Bário total	0,02	0,00	0,02	0,02	0,02	0,02	0,02	0,02	*	*	0,01	0,03	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,005	0,002	0,005	0,005	0,005	0,005	0,005	0,005	5,348	29,134	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,53	0,28	0,48	0,30	0,35	0,50	0,57	0,71	3,45	15,40	0,02	0,90	1	3,23
Clorofila a	1,58	1,54	0,91	0,48	0,53	1,09	2,20	3,21	1,92	4,12	-1,97	4,70	1	5,56
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,004	4,039	16,537	0,004	0,004	0	0,00
Coliformes termotolerantes	6338	17788	974	124	268	950	1825	16300	4	19	-2069	4161	4	14,29
Condutividade elétrica in loco	140,3	39,5	134,3	81,8	118,0	139,0	175,5	191,0	-0,2	-0,8	31,8	261,8	0	0,00
Cor verdadeira	40	68	26	11	16	23	43	55	5	27	-26	84	1	3,23
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,0	2,0	2,0	2,0	2,0	2,0	2,0	*	*	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,002	0,001	0,001	0,002	0,002	0,003	0,460	-0,760	-0,001	0,004	0	0,00
Ferro dissolvido	0,17	0,09	0,12	0,07	0,10	0,16	0,24	0,30	0,25	-0,78	-0,10	0,44	0	0,00
Fósforo total	0,02	0,02	0,02	0,01	0,01	0,02	0,02	0,04	2,15	4,00	-0,01	0,04	5	16,13
Manganês total	0,035	0,023	0,031	0,019	0,021	0,026	0,041	0,058	2,533	8,028	-0,008	0,070	2	6,45
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,13	0,15	0,08	0,02	0,04	0,09	0,16	0,25	1,97	3,41	-0,14	0,34	3	9,68
Nitrito	0,005	0,003	0,004	0,002	0,002	0,004	0,006	0,008	1,732	3,436	-0,004	0,012	1	4,00
Nitrogênio amoniacal total	0,16	0,09	0,15	0,10	0,10	0,14	0,17	0,25	1,64	2,76	-0,01	0,28	1	20,00
Oxigênio dissolvido	6,8	0,5	6,8	6,2	6,4	6,7	7,1	7,5	0,5	-0,6	5,4	8,2	0	0,00
pH in loco	7,1	0,4	7,1	6,7	6,9	7,2	7,3	7,5	-0,1	1,5	6,3	7,9	2	6,45
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	87	19	85	61	75	82	98	112	0	-1	40	132	0	0,00
Sólidos em suspensão totais	27	41	14	4	8	11	22	60	3	9	-14	44	6	19,35
Sólidos totais	112	37	107	79	92	99	121	143	2	7	47	165	2	6,45
Sulfato total	5,0	0,0	5,0	5,0	5,0	5,0	5,0	5,0	*	*	5,0	5,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	25,3	2,9	25,2	22,3	23,2	25,5	26,4	28,0	1,2	2,4	18,3	31,3	2	6,45
Turbidez	29,4	47,5	13,3	4,1	6,0	8,8	27,1	73,4	2,7	7,2	-25,6	58,7	5	16,13
Zinco total	0,032	0,019	0,029	0,020	0,020	0,030	0,031	0,042	3,502	14,641	0,003	0,048	2	6,45

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.22 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE027

D. A	20/11	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentii 1	Percentil 25	(mediana)	Percentil 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,02	0,10	0,10	0,10	0,10	0,10	0,10	4,47	20,00	0,10	0,10	0	0,00
Arsênio total	0,0004	0,0005	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	5,0166	26,1186	0,0003	0,0003	0	0,00
Bário total	0,05	0,08	0,03	0,02	0,02	0,03	0,03	0,09	4,19	18,74	0,00	0,05	4	17,39
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,007	0,007	0,006	0,005	0,005	0,005	0,005	0,008	3,799	14,456	0,005	0,005	0	0,00
Cianeto Livre	0,01	3,9E-03	0,00	0,00	0,00	0,00	0,01	0,01	0,39	-2,07	-0,01	0,02	0	0,00
Cloreto total	0,55	0,24	0,50	0,30	0,34	0,50	0,72	0,86	1,01	0,67	-0,24	1,29	0	0,00
Clorofila a	3,54	3,34	1,46	0,24	1,08	3,17	4,67	6,11	1,63	3,62	-4,32	10,07	1	5,00
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,004	5,568	31,000	0,004	0,004	0	0,00
Coliformes termotolerantes	5216	17006	696	64	130	700	2550	8000	5	25	-3500	6180	4	14,29
Condutividade elétrica in loco	71,4	15,0	70,2	60,2	64,0	68,5	74,1	88,3	2,6	9,5	48,9	89,3	3	9,68
Cor verdadeira	173	675	31	10	12	18	58	166	5	30	-58	128	4	12,90
Cromo total	0,05	0,02	0,04	0,04	0,04	0,04	0,04	0,04	4,12	17,60	0,04	0,04	0	0,00
DBO	2,0	0,2	2,0	2,0	2,0	2,0	2,0	2,0	5,6	31,0	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,002	0,001	0,001	0,002	0,002	0,003	1,427	2,241	-0,001	0,004	3	9,68
Ferro dissolvido	0,10	0,12	0,07	0,03	0,03	0,06	0,14	0,21	3,39	14,35	-0,13	0,30	1	3,23
Fósforo total	0,03	0,03	0,02	0,01	0,02	0,02	0,04	0,07	2,01	3,85	-0,02	0,08	3	9,68
Manganês total	0,141	0,228	0,083	0,026	0,053	0,078	0,111	0,141	3,465	11,512	-0,034	0,198	3	9,68
Níquel total	0,007	0,011	0,005	0,004	0,004	0,004	0,004	0,004	4,048	16,975	0,004	0,004	0	0,00
Nitrato	0,12	0,12	0,07	0,02	0,03	0,10	0,15	0,21	2,25	6,44	-0,14	0,32	2	6,45
Nitrito	0,004	0,002	0,003	0,002	0,002	0,003	0,005	0,006	1,083	1,273	-0,002	0,009	1	3,33
Nitrogênio amoniacal total	0,12	0,03	0,12	0,10	0,10	0,10	0,14	0,17	1,40	0,54	0,05	0,19	2	8,70
Oxigênio dissolvido	7,1	0,6	7,1	6,4	6,6	7,0	7,6	7,9	0,3	-0,7	5,2	9,0	0	0,00
pH in loco	7,1	0,3	7,1	6,8	6,8	7,0	7,3	7,5	0,5	0,1	6,1	8,1	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	60	24	57	43	48	54	63	79	3	8	25	85	2	7,69
Sólidos em suspensão totais	145	446	30	8	12	24	51	110	5	21	-47	110	4	12,90
Sólidos totais	203	466	99	54	60	74	113	171	4	21	-20	193	3	9,68
Sulfato total	2,8	2,0	2,2	1,0	1,0	1,7	5,0	5,0	0,8	-0,6	-4,9	11,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	25,7	2,7	25,5	22,3	24,2	25,4	27,4	28,3	0,9	2,3	19,3	32,3	1	3,23
Turbidez	151,5	447,5	26,3	6,3	9,5	16,9	47,7	101,0	3,9	14,8	-47,7	104,9	3	9,68
Zinco total	0,038	0,029	0,031	0,020	0,020	0,024	0,039	0,084	1,999	3,357	-0,009	0,068	5	16,13

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.23 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE029

	24/ 11	Desvio	Média			Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentil 1	0 Percentil 25	(mediana)	Percentil 75	Pecentil 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0041	0,0000	0,0015	0,0011	0,0022	0,0041	0,0060	0,0072	*	*	-0,0035	0,0118	0	0,00
Bário total	0,02	0,00	0,02	0,02	0,02	0,02	0,02	0,03	*	*	0,02	0,03	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,005	0,001	0,005	0,005	0,005	0,005	0,005	0,005	4,864	24,596	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,53	0,16	0,51	0,30	0,44	0,51	0,65	0,69	0,19	-0,33	0,13	0,95	0	0,00
Clorofila a	3,51	4,66	1,19	0,37	0,73	1,47	3,99	7,44	2,58	7,98	-4,17	8,88	1	5,56
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,004	4,739	23,817	0,004	0,004	0	0,00
Coliformes termotolerantes	3559	6048	910	158	230	745	2900	11600	2	4	-3775	6905	5	17,86
Condutividade elétrica in loco	173,1	44,8	166,8	110,0	148,0	177,0	211,5	226,0	-0,3	-0,7	52,8	306,8	0	0,00
Cor verdadeira	40	62	26	10	14	25	44	56	5	25	-31	89	1	3,23
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,1	0,2	2,1	2,0	2,0	2,0	2,0	2,0	3,7	12,7	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,002	0,001	0,001	0,002	0,002	0,003	1,153	0,776	-0,001	0,004	2	6,45
Ferro dissolvido	0,12	0,07	0,10	0,05	0,09	0,11	0,15	0,23	0,60	-0,14	-0,01	0,25	2	6,45
Fósforo total	0,03	0,02	0,02	0,01	0,01	0,02	0,03	0,08	1,57	1,30	-0,02	0,06	4	12,90
Manganês total	0,044	0,025	0,040	0,024	0,029	0,035	0,045	0,079	1,758	2,493	0,005	0,069	4	12,90
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,13	0,14	0,08	0,02	0,05	0,10	0,14	0,30	2,11	4,21	-0,09	0,27	4	12,90
Nitrito	0,004	0,002	0,003	0,002	0,003	0,003	0,004	0,007	1,335	1,548	0,002	0,006	5	20,00
Nitrogênio amoniacal total	0,14	0,07	0,13	0,10	0,10	0,10	0,12	0,20	2,15	4,68	0,07	0,15	1	20,00
Oxigênio dissolvido	7,0	0,5	7,0	6,4	6,6	7,0	7,3	7,7	0,0	-0,1	5,5	8,3	0	0,00
pH <i>in loco</i>	7,3	0,4	7,3	6,9	7,1	7,3	7,6	7,6	0,6	1,4	6,3	8,3	1	3,23
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	103	21	101	72	93	103	113	131	0	0	63	142	2	7,69
Sólidos em suspensão totais	53	89	23	7	12	20	41	115	3	9	-32	84	5	16,13
Sólidos totais	154	82	143	105	114	134	150	177	3	12	60	204	3	9,68
Sulfato total	5,0	0,0	5,0	5,0	5,0	5,0	5,0	5,0	*	*	5,0	5,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	24,7	2,6	24,5	21,8	22,7	25,0	25,9	26,8	0,8	0,6	17,9	30,7	2	6,45
Turbidez	35,7	59,4	15,7	5,3	6,7	10,5	29,3	96,9	2,7	7,3	-27,2	63,1	5	16,13
Zinco total	0,036	0,021	0,032	0,020	0,020	0,030	0,041	0,050	2,706	9,561	-0,012	0,074	2	6,45

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.24 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE031

D. A	na/ II	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentii 1	Percentil 25	(mediana)	Percentil 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0014	0,0027	0,0005	0,0003	0,0003	0,0003	0,0005	0,0032	2,8974	8,6265	0,0000	0,0007	3	25,00
Bário total	0,02	0,00	0,02	0,02	0,02	0,02	0,02	0,02	*	*	0,02	0,02	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	0,0001	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	5,5678	31,0000	0,0005	0,0005	0	0,00
Chumbo total	0,005	3,6E-04	0,005	0,005	0,005	0,005	0,005	0,005	5,568	31,000	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,56	0,30	0,50	0,30	0,30	0,50	0,66	0,99	1,48	1,61	-0,24	1,20	2	6,45
Clorofila a	3,43	6,70	1,47	0,75	1,29	1,42	2,31	4,81	4,07	17,17	-0,23	3,83	4	21,05
Cobre dissolvido	0,004	4,0E-04	0,004	0,004	0,004	0,004	0,004	0,004	4,356	19,459	0,004	0,004	0	0,00
Coliformes termotolerantes	7357	30081	354	102	130	230	300	4000	5	26	-125	555	6	20,69
Condutividade elétrica in loco	153,3	46,4	145,5	88,1	119,0	156,0	187,0	216,0	-0,2	-0,7	17,0	289,0	0	0,00
Cor verdadeira	59	93	32	10	15	28	61	98	4	14	-55	131	3	9,68
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,7	1,3	2,5	2,0	2,0	2,0	2,8	4,0	2,7	7,9	0,8	4,0	3	9,68
Fenóis totais	0,001	0,001	0,001	0,001	0,001	0,001	0,002	0,002	0,068	-2,138	-0,001	0,004	0	0,00
Ferro dissolvido	0,12	0,10	0,09	0,04	0,05	0,08	0,16	0,21	2,67	9,79	-0,11	0,33	1	3,23
Fósforo total	0,02	0,02	0,02	0,01	0,01	0,02	0,03	0,05	1,34	1,18	-0,02	0,06	1	3,23
Manganês total	0,047	0,025	0,043	0,030	0,033	0,038	0,050	0,088	1,846	2,769	0,007	0,076	4	12,90
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,15	0,16	0,10	0,03	0,06	0,09	0,14	0,41	1,86	2,47	-0,06	0,26	5	16,13
Nitrito	0,004	0,002	0,003	0,001	0,002	0,003	0,005	0,007	0,806	-0,475	-0,003	0,010	0	0,00
Nitrogênio amoniacal total	0,11	0,03	0,11	0,10	0,10	0,10	0,11	0,14	2,36	4,76	0,09	0,11	6	19,35
Oxigênio dissolvido	6,8	0,7	6,7	5,9	6,4	6,7	7,2	7,4	-0,3	0,5	5,2	8,4	1	3,23
pH in loco	7,3	0,5	7,3	6,7	7,0	7,2	7,6	7,8	0,0	0,1	6,1	8,5	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	99	21	96	76	81	97	117	125	0	-1	26	171	0	0,00
Sólidos em suspensão totais	24	18	18	7	14	18	30	55	1	1	-10	54	4	12,90
Sólidos totais	120	18	119	96	107	121	132	142	0	-1	68	170	0	0,00
Sulfato total	4,7	1,2	4,4	5,0	5,0	5,0	5,0	5,0	-3,5	12,0	5,0	5,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	25,2	2,7	25,0	22,2	22,7	25,2	26,8	28,2	0,4	-0,5	16,5	32,9	0	0,00
Turbidez	36,5	54,9	21,6	9,0	11,9	18,0	35,3	68,5	3,8	16,3	-23,3	70,5	3	9,68
Zinco total	0,028	0,008	0,027	0,020	0,020	0,026	0,033	0,039	0,908	-0,079	0,001	0,051	0	0,00

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.25 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE033

Dovêmenture	Média	Desvio	Média	Daveautil 1) Percentil 25	Percentil 50	Percentil 75	Decembel 00	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	iviedia	Padrão	geométrica	Percentii 1	Percentii 25	(mediana)	Percentii 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0005	0,0010	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	4,5826	21,0000	0,0003	0,0003	0	0,00
Bário total	0,04	0,00	0,04	0,03	0,04	0,04	0,05	0,05	*	*	0,02	0,06	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,005	0,002	0,005	0,005	0,005	0,005	0,005	0,005	4,822	24,302	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,82	0,34	0,76	0,41	0,64	0,77	1,01	1,26	1,16	2,55	0,09	1,57	1	3,23
Clorofila a	7,17	6,18	3,80	1,57	2,62	5,06	10,15	14,76	1,31	1,81	-8,66	21,43	1	5,56
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,004	5,568	31,000	0,004	0,004	0	0,00
Coliformes termotolerantes	701	1029	150	23	37	110	1100	2300	2	1	-1559	2695	3	9,68
Condutividade elétrica in loco	64,2	13,6	62,6	47,5	55,8	64,6	75,1	79,2	-0,4	-0,2	26,9	103,9	0	0,00
Cor verdadeira	77	121	39	10	15	43	68	174	3	12	-66	148	4	12,90
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,0	2,0	2,0	2,0	2,0	2,0	2,0	*	*	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,001	0,002	0,002	0,511	-0,718	-0,001	0,004	0	0,00
Ferro dissolvido	0,13	0,11	0,10	0,05	0,06	0,10	0,14	0,22	2,30	5,64	-0,06	0,26	3	9,68
Fósforo total	0,05	0,05	0,04	0,02	0,02	0,04	0,06	0,11	2,64	8,92	-0,04	0,12	3	9,68
Manganês total	0,089	0,089	0,061	0,027	0,031	0,040	0,103	0,236	1,673	2,010	-0,077	0,210	4	12,90
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,11	0,11	0,07	0,02	0,05	0,10	0,12	0,23	2,55	8,21	-0,06	0,22	4	12,90
Nitrito	0,006	0,008	0,004	0,001	0,002	0,004	0,007	0,012	3,218	12,052	-0,006	0,015	3	12,00
Nitrogênio amoniacal total	0,13	0,09	0,12	0,10	0,10	0,10	0,10	0,18	3,48	12,08	0,10	0,10	0	0,00
Oxigênio dissolvido	7,1	0,7	7,1	6,2	6,7	7,1	7,7	8,0	0,0	-0,6	5,2	9,2	0	0,00
pH <i>in loco</i>	7,1	0,4	7,0	6,4	6,8	7,1	7,5	7,6	0,0	-0,8	5,8	8,4	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	62	15	60	46	53	59	66	79	1	1	34	85	2	7,69
Sólidos em suspensão totais	96	120	54	18	24	46	119	234	2	4	-120	262	3	9,68
Sólidos totais	155	130	123	66	76	95	170	314	2	4	-66	312	4	12,90
Sulfato total	3,1	1,7	2,6	1,0	1,4	2,5	5,0	5,0	0,1	-1,9	-4,0	10,4	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	26,8	2,7	26,6	23,7	25,1	26,5	28,7	30,1	-0,1	-0,3	19,7	34,1	0	0,00
Turbidez	107,1	149,9	51,5	17,1	20,3	29,4	116,0	253,0	2,1	3,7	-123,3	259,6	3	9,68
Zinco total	0,034	0,024	0,029	0,020	0,020	0,020	0,036	0,080	1,978	3,013	-0,004	0,060	4	12,90

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.26 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE035

D. A	na/ II	Desvio	Média		2 000011111	Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentii 1	Percentil 25	(mediana)	Percentil 75	Pecentii 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0004	0,0002	0,0003	0,0003	0,0003	0,0003	0,0003	0,0005	3,4815	12,5642	0,0003	0,0003	0	0,00
Bário total	0,02	0,00	0,02	0,02	0,02	0,02	0,02	0,02	*	*	0,01	0,02	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0516	-2,1429	0,0005	0,0005	0	0,00
Chumbo total	0,005	1,8E-18	0,005	0,005	0,005	0,005	0,005	0,005	-1,052	-2,143	0,005	0,005	0	0,00
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,79	0,56	0,66	0,30	0,48	0,57	0,94	1,24	1,86	3,04	-0,20	1,62	3	9,68
Clorofila a	2,32	2,14	1,28	0,48	0,87	1,62	3,55	4,18	1,71	3,63	-3,14	7,56	1	5,26
Cobre dissolvido	0,004	0,001	0,004	0,004	0,004	0,004	0,004	0,005	3,307	10,240	0,004	0,004	0	0,00
Coliformes termotolerantes	1384	3066	267	50	79	490	900	2440	3	11	-1153	2132	3	10,34
Condutividade elétrica in loco	48,7	6,4	48,3	40,5	44,6	47,4	52,7	57,7	0,4	-0,8	32,5	64,9	0	0,00
Cor verdadeira	71	52	52	15	27	65	101	143	1	0	-85	212	0	0,00
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,1	0,4	2,1	2,0	2,0	2,0	2,0	2,0	4,4	19,5	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,001	0,001	0,001	0,002	0,002	0,002	0,569	-0,507	-0,001	0,004	0	0,00
Ferro dissolvido	0,40	0,29	0,32	0,15	0,20	0,34	0,54	0,67	1,82	4,56	-0,30	1,05	1	3,23
Fósforo total	0,04	0,03	0,03	0,02	0,02	0,03	0,05	0,07	1,47	1,86	-0,02	0,08	2	6,45
Manganês total	0,053	0,035	0,046	0,029	0,032	0,044	0,056	0,073	2,708	8,157	-0,003	0,091	3	9,68
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,07	0,08	0,05	0,01	0,04	0,05	0,10	0,11	3,59	16,21	-0,05	0,19	1	3,23
Nitrito	0,004	0,006	0,003	0,001	0,002	0,003	0,004	0,006	4,062	18,311	-0,001	0,007	2	8,00
Nitrogênio amoniacal total	0,24	0,25	0,18	0,10	0,10	0,14	0,19	0,48	2,12	4,54	-0,04	0,33	1	20,00
Oxigênio dissolvido	6,9	0,7	6,8	5,8	6,3	7,0	7,3	7,7	-0,3	-0,7	4,8	8,8	0	0,00
pH in loco	6,7	0,4	6,7	6,2	6,5	6,7	7,0	7,4	0,4	-0,7	5,6	7,8	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	53	10	52	44	47	52	60	65	0	0	28	80	0	0,00
Sólidos em suspensão totais	14	13	9	2	6	9	19	29	2	2	-13	37	2	6,45
Sólidos totais	67	20	64	45	52	63	77	89	1	0	14	114	2	6,45
Sulfato total	2,6	1,9	2,0	1,0	1,0	1,5	5,0	5,0	0,5	-1,8	-5,0	11,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	26,0	2,5	25,9	22,3	24,2	26,2	27,3	29,0	0,1	-0,2	19,4	32,0	0	0,00
Turbidez	36,8	81,9	18,5	8,4	10,2	14,0	23,6	42,2	4,8	24,5	-9,8	43,6	3	9,68
Zinco total	0,022	0,006	0,021	0,020	0,020	0,020	0,020	0,026	4,078	18,390	0,020	0,020	0	0,00

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

Tabela I.27 Resultados da estatística descritiva de 34 parâmetros para a estação de monitoramento PTE037

	24/ 11	Desvio	Média			Percentil 50		•	Coeficiente	Coeficiente	Outlier	Outlier	Número	% de
Parâmetros	Média	Padrão	geométrica	Percentil 10	Percentil 25	(mediana)	Percentil 75	Pecentil 90	de assimetria	de curtose	inferior	superior	de outliers	outliers
Alumínio dissolvido	0,10	0,00	0,10	0,10	0,10	0,10	0,10	0,10	*	*	0,10	0,10	0	0,00
Arsênio total	0,0003	0,0000	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	*	*	0,0003	0,0003	0	0,00
Bário total	0,03	0,00	0,03	0,03	0,03	0,03	0,03	0,03	*	*	0,03	0,04	0	0,00
Boro total	0,07	0,00	0,07	0,07	0,07	0,07	0,07	0,07	*	*	0,07	0,07	0	0,00
Cádmio total	0,0005	3,3E-19	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	-1,0575	-2,1600	0,0005	0,0005	0	0,00
Chumbo total	0,009	0,008	0,007	0,005	0,005	0,005	0,007	0,021	2,348	4,631	0,002	0,009	6	21,43
Cianeto Livre	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	*	*	0,00	0,00	0	0,00
Cloreto total	0,76	0,80	0,57	0,30	0,30	0,50	0,96	1,20	3,36	13,40	-0,69	1,94	2	7,14
Clorofila a	7,41	13,19	1,19	0,01	0,95	1,75	6,34	21,18	2,39	5,00	-7,14	14,43	2	11,11
Cobre dissolvido	0,005	0,003	0,005	0,004	0,004	0,004	0,004	0,007	2,898	8,374	0,004	0,005	7	25,00
Coliformes termotolerantes	9133	30470	830	75	100	700	5000	13000	5	26	-7250	12350	4	14,81
Condutividade elétrica in loco	22,3	4,9	21,7	14,7	19,9	22,4	25,1	29,1	-0,3	-0,7	12,1	33,0	0	0,00
Cor verdadeira	212	526	37	10	13	26	77	512	3	6	-84	173	3	10,71
Cromo total	0,04	0,00	0,04	0,04	0,04	0,04	0,04	0,04	*	*	0,04	0,04	0	0,00
DBO	2,0	0,2	2,0	2,0	2,0	2,0	2,0	2,0	5,3	28,0	2,0	2,0	0	0,00
Fenóis totais	0,002	0,001	0,002	0,001	0,001	0,002	0,002	0,002	0,070	-0,738	-0,001	0,004	0	0,00
Ferro dissolvido	0,18	0,29	0,11	0,05	0,07	0,09	0,16	0,26	4,48	21,67	-0,07	0,30	3	10,71
Fósforo total	0,08	0,10	0,04	0,01	0,02	0,03	0,10	0,22	1,65	1,67	-0,10	0,21	4	14,29
Manganês total	0,144	0,245	0,038	0,009	0,013	0,020	0,111	0,568	1,841	2,189	-0,135	0,258	6	21,43
Níquel total	0,004	0,000	0,004	0,004	0,004	0,004	0,004	0,004	*	*	0,004	0,004	0	0,00
Nitrato	0,08	0,07	0,06	0,01	0,03	0,08	0,10	0,19	1,18	0,90	-0,08	0,21	3	10,71
Nitrito	0,004	0,003	0,003	0,002	0,002	0,003	0,005	0,009	1,556	1,589	-0,002	0,009	3	13,64
Nitrogênio amoniacal total	0,13	0,03	0,13	0,11	0,12	0,12	0,14	0,16	0,81	0,67	0,09	0,17	0	0,00
Oxigênio dissolvido	7,9	0,7	7,8	7,1	7,5	7,8	8,1	8,6	0,9	1,6	6,5	9,1	2	7,14
pH <i>in loco</i>	6,8	0,5	6,7	6,0	6,5	6,8	7,1	7,5	0,0	-0,4	5,4	8,1	0	0,00
Selênio total	0,0005	0,0000	0,0005	0,0005	0,0005	0,0005	0,0005	0,0005	*	*	0,0005	0,0005	0	0,00
Sólidos dissolvidos totais	55	37	47	31	33	38	56	99	2	3	-1	90	4	16,67
Sólidos em suspensão totais	309	601	19	2	3	8	166	1303	2	2	-242	411	6	21,43
Sólidos totais	361	632	98	32	37	42	219	1448	2	2	-236	491	6	21,43
Sulfato total	5,0	0,0	5,0	5,0	5,0	5,0	5,0	5,0	*	*	5,0	5,0	0	0,00
Sulfeto	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	*	*	0,0	0,0	0	0,00
Temperatura da água	25,7	3,0	25,6	22,4	24,0	25,5	27,7	29,9	0,2	0,1	18,6	33,2	0	0,00
Turbidez	315,3	594,2	26,5	3,2	4,7	7,7	161,5	1172,8	1,9	2,3	-230,5	396,7	6	21,43
Zinco total	0,034	0,029	0,028	0,020	0,020	0,020	0,034	0,058	2,488	5,114	-0,001	0,055	3	10,71

^{*} Os coeficientes de assimetria e de curtose não puderam ser calculados devido ao fato do desvio-padrão ser igual a zero.

APÊNDICE II

Figuras com resultados relacionados às atividades licenciadas na bacia do rio Paracatu.

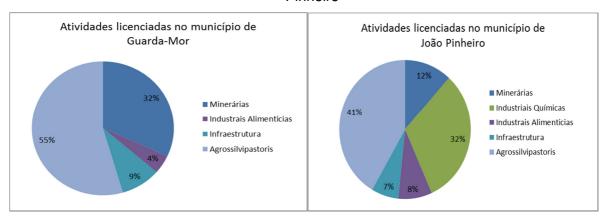
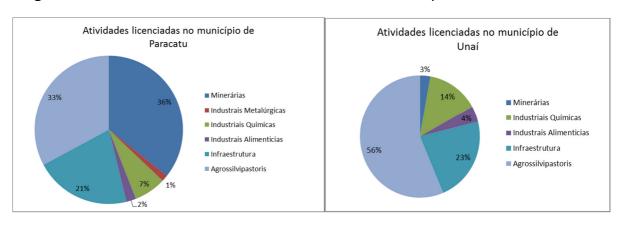
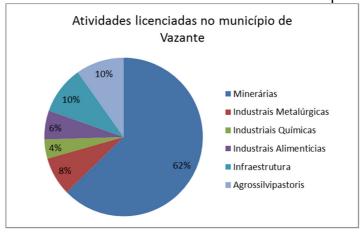
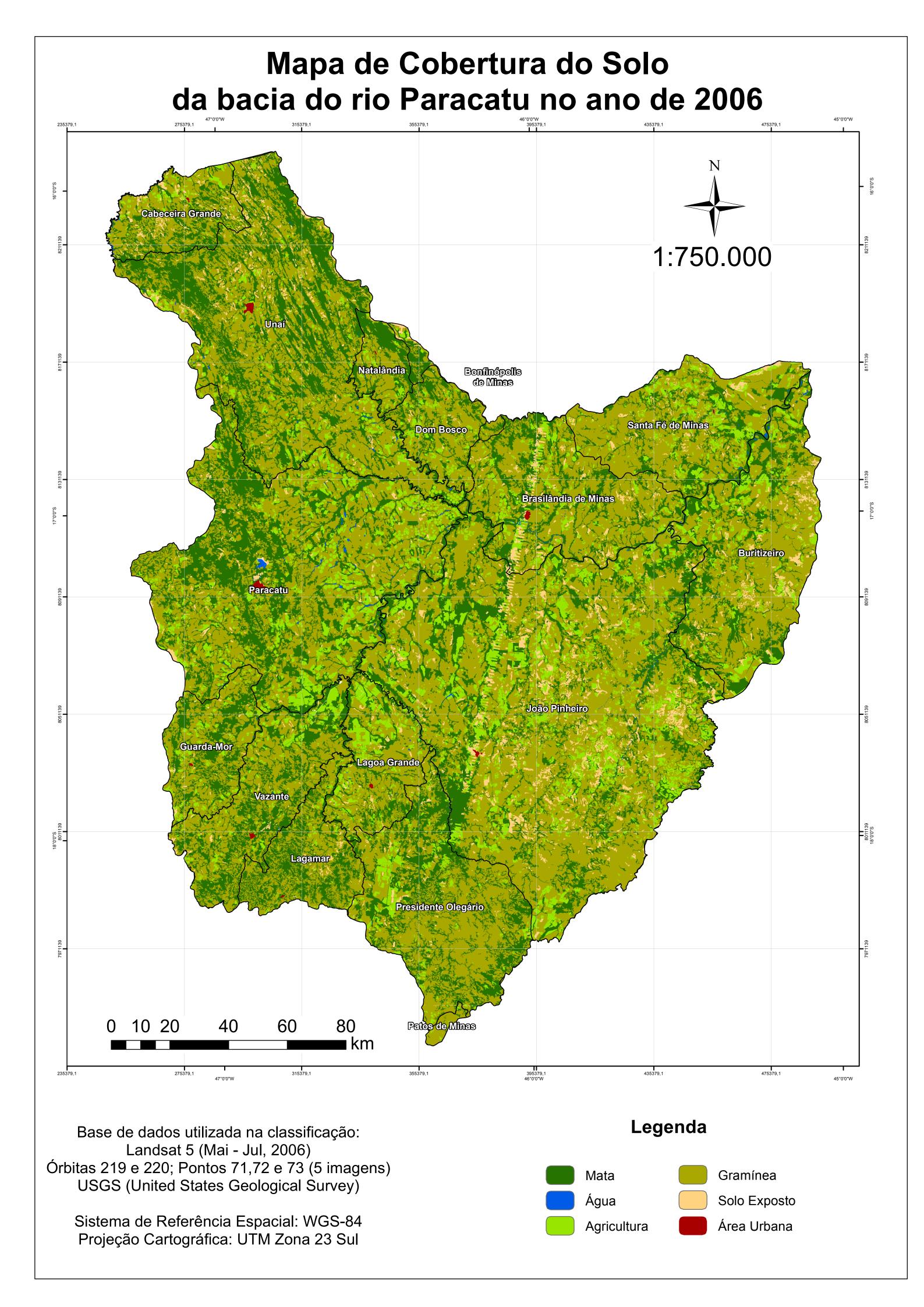

Figura II.1 Gráficos das atividades licenciadas nos municípios de Bonfinópolis de Minas e Brasilândia de Minas

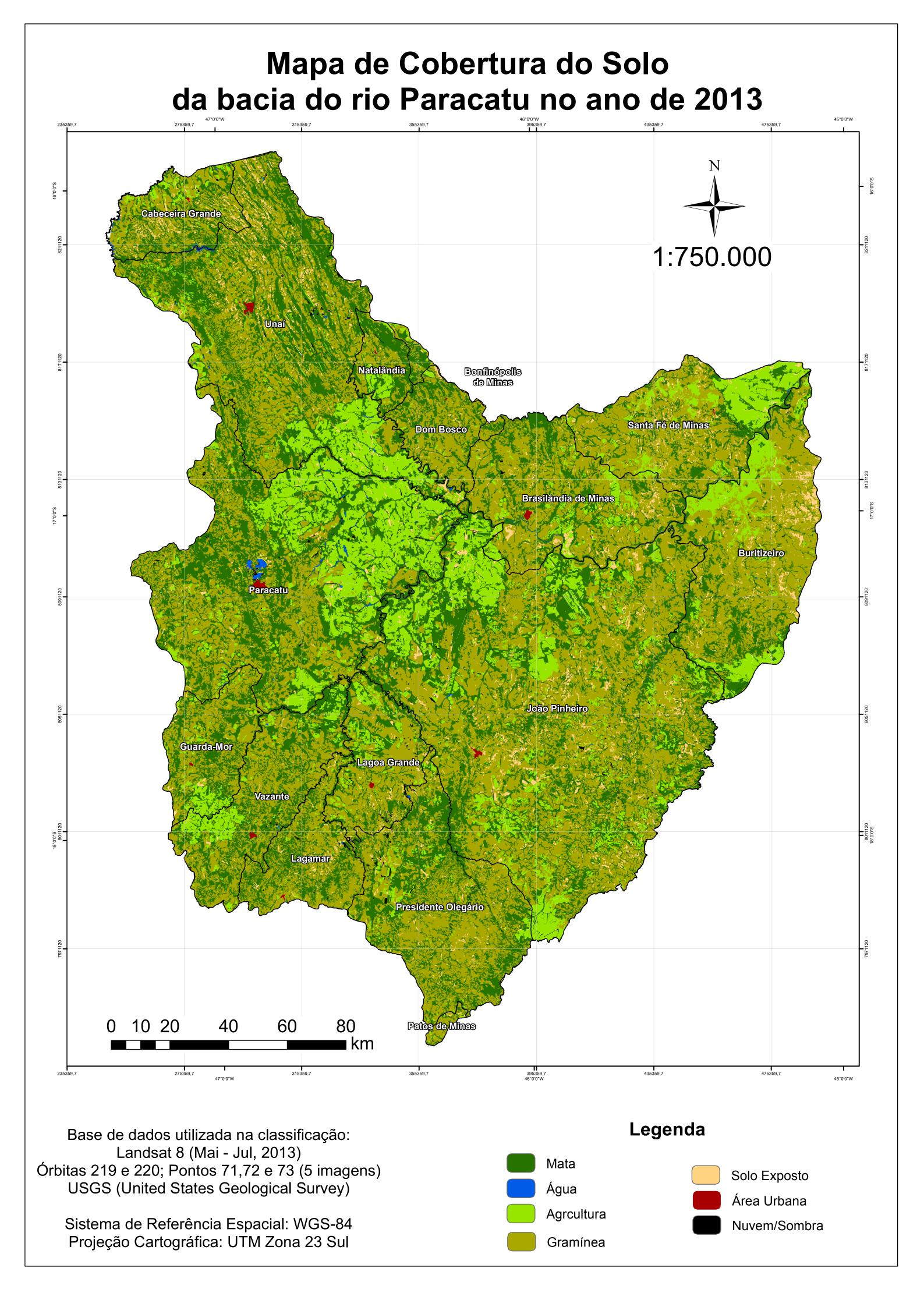
Figura II.2 Gráficos das atividades licenciadas nos municípios de Cabeceira Grande e Dom Bosco

Figura II.3 Gráficos das atividades licenciadas nos municípios de Guarda-Mor e João Pinheiro

Figura II.4 Gráficos das atividades licenciadas nos municípios de Lagamar e Lagoa Grande

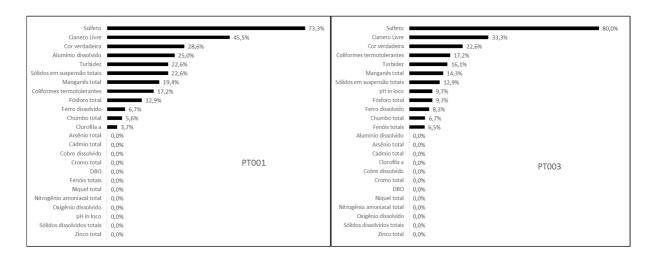
Figura II.5 Gráficos das atividades licenciadas nos municípios de Paracatu e Unaí

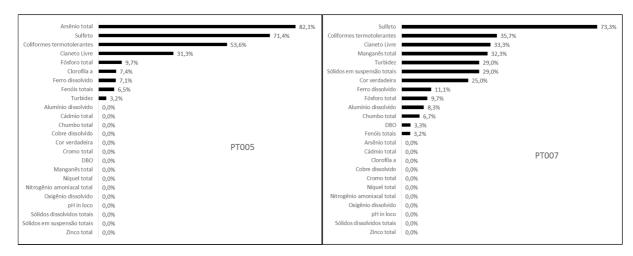




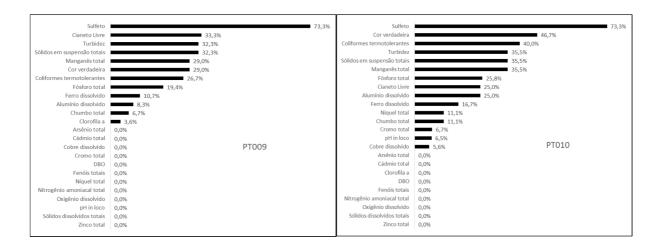

Figura II.6 Gráficos das atividades licenciadas no município de Vazante

APÊNDICE III

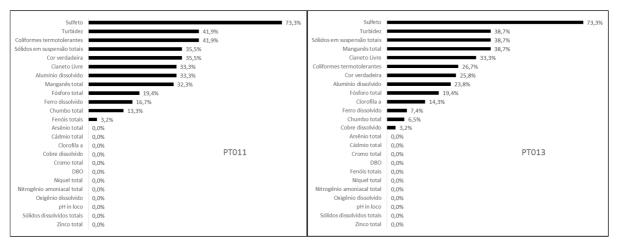
Mapas temáticos de cobertura do solo para a bacia do rio Paracatu dos anos 2006 e 2013 (em formato A2).

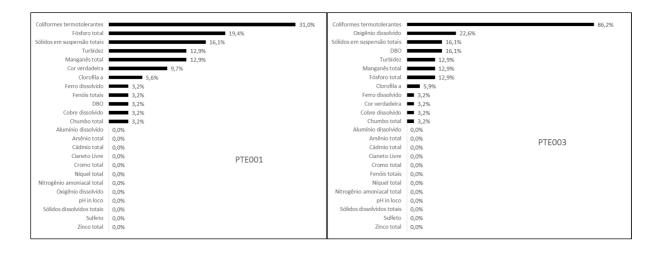


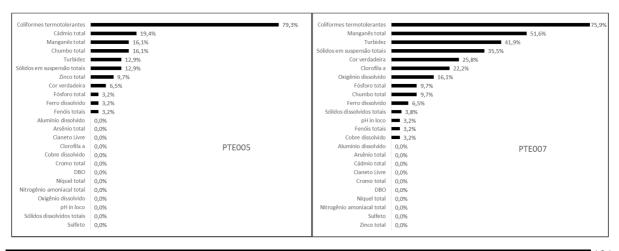


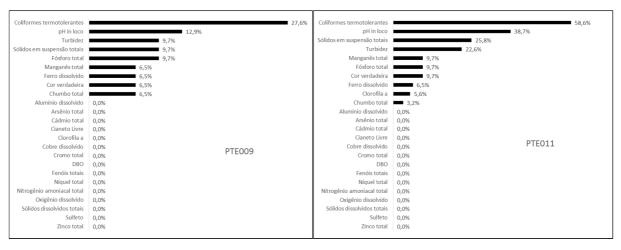

APÊNDICE IV

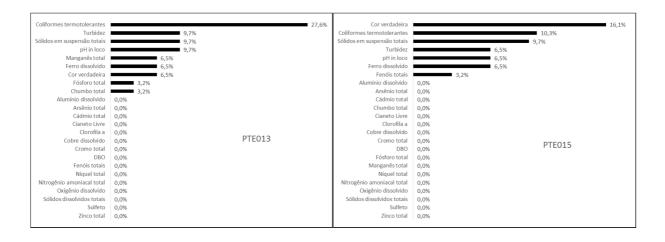
Figuras com resultados relacionados à análise do percentual de violações.

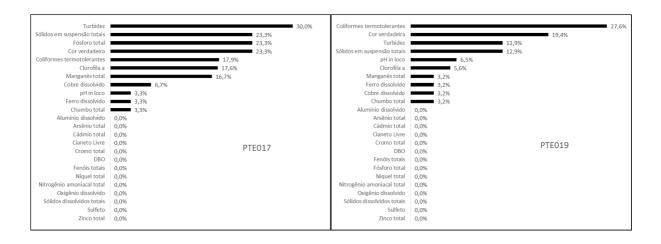

Figura IV.1 Gráficos das frequências de ocorrência de violações dos limites legais estabelecidos pela DN COPAM/CERH 01/08 dos parâmetros analisados ao longo da série histórica nas estações PT001, PT003, PT005, PT007, PT009 e PT010 da bacia do rio Paracatu

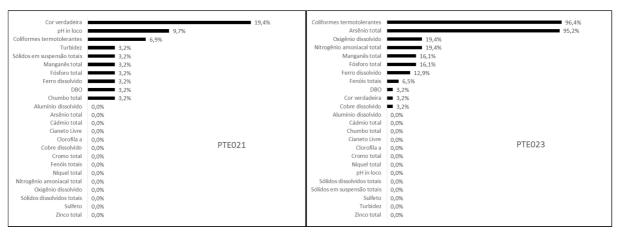


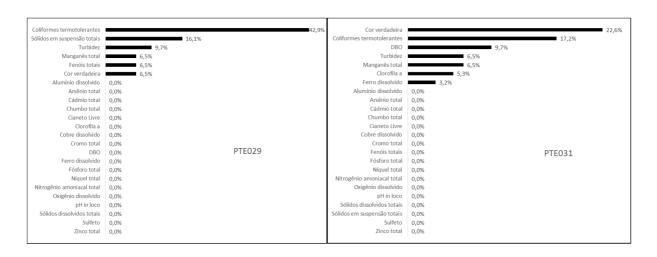


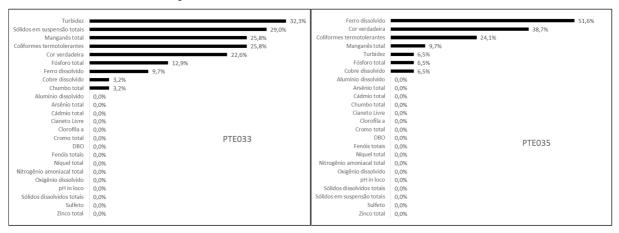

Figura IV.2 Gráficos das frequências de ocorrência de violações dos limites legais estabelecidos pela DN COPAM/CERH 01/08 dos parâmetros analisados ao longo da série histórica nas estações PT011, PT013, PTE001, PTE003, PTE005 e PTE007 da bacia do rio Paracatu






Figura IV.3 Gráficos das frequências de ocorrência de violações dos limites legais estabelecidos pela DN COPAM/CERH 01/08 dos parâmetros analisados ao longo da série histórica nas estações PTE009, PTE011, PTE013, PTE015, PTE017 e PTE019 da bacia do rio Paracatu




Figura IV.4 Gráficos das frequências de ocorrência de violações dos limites legais estabelecidos pela DN COPAM/CERH 01/08 dos parâmetros analisados ao longo da série histórica nas estações PTE021, PTE023, PTE025, PTE027, PTE029 e PTE031 da bacia do rio Paracatu

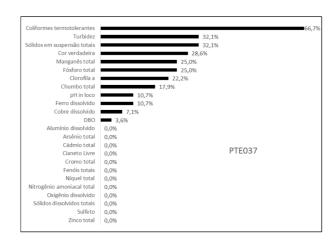


Figura IV.5 Gráficos das frequências de ocorrência de violações dos limites legais estabelecidos pela DN COPAM/CERH 01/08 dos parâmetros analisados ao longo da série histórica nas estações PTE033, PET035 e PTE037 da bacia do rio Paracatu

APÊNDICE V

Tabelas e Figuras com resultados relacionados à análise de tendência temporal.

Tabela V.1 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PT003

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	0,097	0,118	Não	0,128	-0,357	-19				Sem tendência
Chumbo total	0,373	0,285	Não	0,418	-0,209	-8				Sem tendência
Cloreto total	0,013	0,071	Não	0,017	0,305	141				Elevação
Clorofila a	0,053	0,009	Sim				0,511	-0,133	-8	Sem tendência
Coliformes termotolerantes	0,362	0,022	Sim				0,762	-0,059	-5	Sem tendência
Condutividade elétrica in loco	0,770	0,000	Sim				0,020	0,381	32	Inconclusivo com possibilidade de Elevação
Cor verdadeira	0,001	0,097	Não	0,007	-0,345	-159				Redução
Fenóis totais	0,000	0,877	Não	0,000	0,614	212				Elevação
Ferro dissolvido	0,360	0,426	Não	0,308	0,154	42				Sem tendência
Fósforo total	0,661	0,021	Sim				0,936	-0,006	-2	Sem tendência
Manganês total	0,550	0,002	Sim				0,903	0,050	2	Sem tendência
Nitrato	0,000	0,928	Não	0,000	0,508	233				Elevação
Oxigênio dissolvido	0,041	0,001	Sim				0,001	0,539	44	Elevação
pH in loco	0,954	0,022	Sim				0,317	-0,176	-14	Sem tendência
Sólidos em suspensão totais	0,523	0,000	Sim				0,707	0,071	6	Sem tendência
Sólidos totais	0,762	0,000	Sim				0,599	0,095	8	Sem tendência
Temperatura da água	0,971	0,000	Sim				0,647	0,092	7	Sem tendência
Turbidez	0,986	0,001	Sim				0,260	0,190	16	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

Tabela V.2 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PT005

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I IMann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	0,294	0,864	Não	0,304	0,141	53	Keridan			Sem tendência
Chumbo total	0,137	0,626	Não	0,156	0,273	19				Sem tendência
Cloreto total	0,198	0,004	Sim		·		0,499	-0,119	-10	Sem tendência
Clorofila a	0,149	0,665	Não	0,234	-0,166	-58				Sem tendência
Coliformes termotolerantes	0,391	0,309	Não	0,303	0,142	53				Sem tendência
Condutividade elétrica in loco	0,082	0,000	Sim				0,002	0,500	42	Inconclusivo com possibilidade de Elevação
Cor verdadeira	0,020	0,129	Não	0,051	-0,394	-40				Inconclusivo com possibilidade de Redução
Fenóis totais	0,000	0,826	Não	0,001	0,504	176				Elevação
Ferro dissolvido	0,247	0,888	Não	0,243	0,160	60				Sem tendência
Fósforo total	0,132	0,986	Não	0,180	0,179	79				Sem tendência
Manganês total	0,666	0,475	Não	0,621	0,069	26				Sem tendência
Nitrato	0,000	0,256	Não	0,000	0,475	220				Elevação
Oxigênio dissolvido	0,265	0,008	Sim				0,068	0,309	25	Sem tendência
pH in loco	0,772	0,054	Não	0,864	-0,025	-11				Sem tendência
Sólidos em suspensão totais	0,751	0,518	Não	0,733	0,046	21				Sem tendência
Sólidos totais	0,187	0,000	Sim				0,098	0,274	23	Sem tendência
Temperatura da água	0,906	0,001	Sim				0,763	-0,060	-5	Sem tendência
Turbidez	0,560	0,005	Sim				1,000	0,000	0	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

Tabela V.3 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PT007

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall²	S' ²	Tendência
Arsênio total	0,373	0,285	Não	0,418	-0,209	-8				Sem tendência
Chumbo total	0,373	0,285	Não	0,418	-0,209	-8				Sem tendência
Cloreto total	0,172	0,072	Não	0,207	0,164	75				Sem tendência
Clorofila a	0,307	0,947	Não	0,348	-0,132	-46				Sem tendência
Coliformes termotolerantes	0,940	0,248	Não	0,874	-0,024	-9				Sem tendência
Condutividade elétrica in loco	0,720	0,137	Não	0,658	0,058	27				Sem tendência
Cor verdadeira	0,033	0,124	Não	0,060	-0,366	-42				Inconclusivo com possibilidade de Redução
Fenóis totais	0,000	0,870	Não	0,000	0,570	203				Elevação
Ferro dissolvido	0,176	0,441	Não	0,169	-0,250	-37				Sem tendência
Fósforo total	0,704	0,011	Sim				0,938	-0,020	-2	Sem tendência
Manganês total	0,511	0,011	Sim				0,202	-0,214	-18	Sem tendência
Nitrato	0,004	0,317	Não	0,007	0,349	160				Elevação
Oxigênio dissolvido	0,507	0,014	Sim				0,094	0,281	23	Sem tendência
pH in loco	0,244	0,217	Não	0,236	-0,158	-70				Sem tendência
Sólidos em suspensão totais	0,707	0,001	Sim				1,000	0,000	0	Sem tendência
Sólidos totais	0,612	0,000	Sim				0,547	-0,109	-9	Sem tendência
Temperatura da água	0,979	0,006	Sim				0,706	-0,074	-6	Sem tendência
Turbidez	0,909	0,001	Sim				0,547	-0,106	-9	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

Tabela V.4 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PT009

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I N/lann_	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	0,198	0,047	Sim					*		Sem tendência
Chumbo total	0,172	0,047	Sim					*		Sem tendência
Cloreto total	0,043	0,057	Não	0,027	0,283	131				Elevação
Clorofila a	0,014	0,428	Não	0,010	-0,347	-131				Redução
Coliformes termotolerantes	0,266	0,012	Sim				0,098	0,276	23	Sem tendência
Condutividade elétrica in loco	0,982	0,016	Sim				0,707	-0,071	-6	Sem tendência
Cor verdadeira	0,000	0,149	Não	0,002	-0,410	-186				Redução
Fenóis totais	0,000	0,725	Não	0,000	0,597	202				Elevação
Ferro dissolvido	0,220	0,089	Não	0,295	-0,144	-54				Sem tendência
Fósforo total	0,982	0,010	Sim				0,809	-0,062	-4	Sem tendência
Manganês total	0,650	0,000	Sim				0,651	-0,083	-7	Sem tendência
Nitrato	0,000	0,643	Não	0,000	0,590	268				Elevação
Oxigênio dissolvido	0,129	0,003	Sim				0,015	0,413	33	Inconclusivo com possibilidade de Elevação
pH in loco	0,943	0,121	Não	0,959	-0,009	-4				Sem tendência
Sólidos em suspensão totais	0,848	0,000	Sim				1,000	0,000	0	Sem tendência
Sólidos totais	0,964	0,000	Sim				0,939	0,032	2	Sem tendência
Temperatura da água	0,058	0,007	Sim				0,008	0,444	36	Inconclusivo com possibilidade de Elevação
Turbidez	0,856	0,000	Sim				0,707	-0,071	-6	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{*} Porque algumas sequências são constantes, o teste Sazonal de Mann-Keldall não pôde ser computado.

Tabela V.5 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PT010

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹		S' ²	Tendência
Arsênio total	0,649	0,017	Sim					*		Sem tendência
Chumbo total	0,928	0,344	Não	1,000	0,014	1				Sem tendência
Cloreto total	0,023	0,025	Sim				0,024	0,373	31	Elevação
Clorofila a	0,556	0,594	Não	0,485	0,098	36				Sem tendência
Coliformes termotolerantes	0,865	0,004	Sim				1,000	0,014	1	Sem tendência
Condutividade elétrica in loco	0,958	0,001	Sim				0,707	-0,071	-6	Sem tendência
Cor verdadeira	0,007	0,048	Sim				0,192	-0,500	-6	Inconclusivo com possibilidade de Redução
Fenóis totais	0,316	0,114	Não	0,251	0,260	22				Sem tendência
Ferro dissolvido	0,233	0,498	Não	0,240	-0,210	-32				Sem tendência
Fósforo total	0,873	0,003	Sim				0,298	-0,173	-14	Sem tendência
Manganês total	0,554	0,000	Sim				0,071	-0,301	-25	Sem tendência
Nitrato	0,000	0,741	Não	0,000	0,530	233				Elevação
Oxigênio dissolvido	0,187	0,000	Sim				0,067	0,301	25	Sem tendência
pH in loco	0,821	0,767	Não	0,932	-0,014	-6				Sem tendência
Sólidos em suspensão totais	0,705	0,000	Sim				0,880	0,037	3	Sem tendência
Sólidos totais	0,928	0,000	Sim				0,706	0,076	6	Sem tendência
Temperatura da água	0,228	0,086	Não	0,168	0,177	82				Sem tendência
Turbidez	0,748	0,000	Sim				0,707	-0,071	-6	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{*} Porque algumas sequências são constantes, o teste Sazonal de Mann-Keldall não pôde ser computado.

Tabela V.6 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PT011

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	0,174	0,285	Não	0,203	-0,313	-12				Sem tendência
Chumbo total	0,489	0,118	Não	0,498	-0,169	-9				Sem tendência
Cloreto total	0,044	0,078	Não	0,025	0,289	132				Elevação
Clorofila a	0,195	0,398	Não	0,180	-0,189	-65				Sem tendência
Coliformes termotolerantes	0,221	0,002	Sim				0,010	0,424	35	Inconclusivo com possibilidade de Elevação
Condutividade elétrica in loco	0,923	0,001	Sim				0,763	0,057	5	Sem tendência
Cor verdadeira	0,001	0,096	Não	0,003	-0,381	-176				Redução
Fenóis totais	0,000	0,830	Não	0,000	0,646	222				Elevação
Ferro dissolvido	0,521	0,125	Não	0,820	0,046	7				Sem tendência
Fósforo total	0,723	0,001	Sim				0,433	-0,124	-11	Sem tendência
Manganês total	0,814	0,000	Sim				0,260	-0,190	-16	Sem tendência
Nitrato	0,007	0,962	Não	0,000	0,525	232				Elevação
Oxigênio dissolvido	0,177	0,026	Sim				0,760	0,056	5	Sem tendência
pH in loco	0,087	0,372	Não	0,127	-0,201	-90				Sem tendência
Sólidos em suspensão totais	0,577	0,000	Sim				1,000	0,012	1	Sem tendência
Sólidos totais	0,756	0,000	Sim				0,822	-0,048	-4	Sem tendência
Temperatura da água	0,760	0,029	Sim				0,599	0,095	8	Sem tendência
Turbidez	0,963	0,000	Sim				0,175	-0,226	-19	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

Tabela V.7 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PT013

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹		S' ²	Tendência
Arsênio total	0,996	0,097	Não	0,975	-0,010	-2				Sem tendência
Chumbo total	0,740	0,002	Sim					*		Sem tendência
Cloreto total	0,658	0,045	Sim				0,763	0,060	5	Sem tendência
Clorofila a	0,604	0,012	Sim				0,707	-0,071	-6	Sem tendência
Coliformes termotolerantes	0,182	0,002	Sim				0,148	0,256	20	Sem tendência
Condutividade elétrica in loco	0,764	0,001	Sim				0,409	-0,143	-12	Sem tendência
Cor verdadeira	0,021	0,004	Sim				0,050	-0,323	-27	Inconclusivo com possibilidade de Redução
Fenóis totais	0,000	0,783	Não	0,001	0,515	172				Elevação
Ferro dissolvido	0,644	0,071	Não	0,616	0,072	25				Sem tendência
Fósforo total	0,842	0,001	Sim				1,000	0,018	1	Sem tendência
Manganês total	0,311	0,000	Sim				0,292	-0,181	-15	Sem tendência
Nitrato	0,001	0,709	Não	0,002	0,410	187				Elevação
Oxigênio dissolvido	0,331	0,000	Sim				0,007	0,441	36	Inconclusivo com possibilidade de Elevação
pH in loco	0,298	0,018	Sim				0,252	-0,200	-16	Sem tendência
Sólidos em suspensão totais	0,526	0,000	Sim				0,821	0,048	4	Sem tendência
Sólidos totais	0,982	0,000	Sim				0,228	-0,204	-17	Sem tendência
Temperatura da água	0,781	0,005	Sim				0,409	0,143	12	Sem tendência
Turbidez	0,796	0,000	Sim				0,499	-0,119		Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{*} Porque algumas sequências são constantes, o teste Sazonal de Mann-Keldall não pôde ser computado.

Tabela V.8 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE001

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	**		**		**			**		-
Chumbo total	0,602	0,538	Não	0,660	0,069	16				Sem tendência
Cloreto total	0,000	0,929	Não	0,000	0,452	210				Elevação
Clorofila a	0,464	0,895	Não	0,404	-0,151	-23				Sem tendência
Coliformes termotolerantes	0,141	0,009	Sim				0,499	0,119	10	Sem tendência
Condutividade elétrica in loco	0,085	0,208	Não	0,114	0,203	94				Sem tendência
Cor verdadeira	0,000	0,472	Não	0,001	-0,419	-193				Redução
Fenóis totais	0,000	0,731	Não	0,000	0,555	191				Elevação
Ferro dissolvido	0,744	0,980	Não	0,785	0,037	17				Sem tendência
Fósforo total	0,634	0,127	Não	0,632	-0,064	-29				Sem tendência
Manganês total	0,564	0,001	Sim				0,154	-0,238	-20	Sem tendência
Nitrato	0,000	0,942	Não	0,000	0,567	258				Elevação
Oxigênio dissolvido	0,924	0,016	Sim				0,815	0,070	4	Sem tendência
pH in loco	0,058	0,295	Não	0,051	0,257	115				Sem tendência
Sólidos em suspensão totais	0,648	0,018	Sim				0,880	0,037	3	Sem tendência
Sólidos totais	0,304	0,001	Sim				0,547	0,107	9	Sem tendência
Temperatura da água	0,055	0,002	Sim				0,010	0,419	35	Inconclusivo com possibilidade de Elevação
Turbidez	0,762	0,004	Sim				1,000	-0,015	-1	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{**} Não pôde ser calculado devido à ausência de dados (somente três coletas foram feitas).

Tabela V.9 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE003

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	**		**		**			**		-
Chumbo total	0,367	0,214	Não	0,386	0,134	27				Sem tendência
Cloreto total	0,001	0,847	Não	0,000	0,446	207				Elevação
Clorofila a	0,543	0,434	Não	0,742	-0,066	-9				Sem tendência
Coliformes termotolerantes	0,515	0,414	Não	0,520	0,089	35				Sem tendência
Condutividade elétrica in loco	0,560	0,000	Sim				0,082	-0,287	-24	Sem tendência
Cor verdadeira	0,001	0,083	Não	0,007	-0,349	-159				Redução
Fenóis totais	0,000	0,490	Não	0,000	0,555	196				Elevação
Ferro dissolvido	0,009	0,580	Não	0,013	0,321	146				Elevação
Fósforo total	0,086	0,658	Não	0,096	0,221	98				Sem tendência
Manganês total	0,263	0,001	Sim				0,499	0,119	10	Sem tendência
Nitrato	0,000	0,026	Sim				0,001	0,528	44	Elevação
Oxigênio dissolvido	0,145	0,028	Sim				0,406	-0,149	-12	Sem tendência
pH in loco	0,616	0,361	Não	0,440	-0,104	-46				Sem tendência
Sólidos em suspensão totais	0,352	0,002	Sim				0,199	0,217	18	Sem tendência
Sólidos totais	0,567	0,220	Não	0,454	0,097	45				Sem tendência
Temperatura da água	0,731	0,001	Sim				0,406	-0,147	-12	Sem tendência
Turbidez	0,217	0,000	Sim				0,071	0,298	25	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{**} Não pôde ser calculado devido à ausência de dados (somente duas coletas foram feitas).

Tabela V.10 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE005

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	**		**		**			**		-
Chumbo total	0,485	0,253	Não	0,555	0,084	32				Sem tendência
Cloreto total	0,023	0,308	Não	0,022	0,293	136				Elevação
Clorofila a	0,717	0,984	Não	0,850	-0,039	-6				Sem tendência
Coliformes termotolerantes	0,846	0,264	Não	0,895	-0,020	-8				Sem tendência
Condutividade elétrica in loco	0,533	0,000	Sim				0,024	0,371	31	Inconclusivo com possibilidade de Elevação
Cor verdadeira	0,000	0,326	Não	0,001	-0,428	-188				Redução
Fenóis totais	0,001	0,655	Não	0,001	0,483	171				Elevação
Ferro dissolvido	0,013	0,639	Não	0,032	0,283	125				Elevação
Fósforo total	0,725	0,218	Não	0,652	0,063	27				Sem tendência
Manganês total	0,422	0,064	Não	0,444	-0,099	-46				Sem tendência
Nitrato	0,000	0,215	Não	0,000	0,523	242				Elevação
Oxigênio dissolvido	0,480	0,011	Sim				0,128	0,262	21	Sem tendência
pH in loco	0,477	0,083	Não	0,472	-0,096	-43				Sem tendência
Sólidos em suspensão totais	0,562	0,000	Sim				0,499	-0,119	-10	Sem tendência
Sólidos totais	0,407	0,010	Sim				0,366	0,155	13	Sem tendência
Temperatura da água	0,939	0,000	Sim				0,202	-0,214	-18	Sem tendência
Turbidez	0,524	0,001	Sim				0,940	-0,024	-2	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{**} Não pôde ser calculado devido à ausência de dados (somente duas coletas foram feitas).

Tabela V.11 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE007

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	0,510	0,097	Não	0,530	-0,131	-11				Sem tendência
Chumbo total	0,952	0,196	Não	0,921	0,018	5				Sem tendência
Cloreto total	0,019	0,461	Não	0,012	0,328	147				Elevação
Clorofila a	0,223	0,301	Não	0,239	-0,211	-32				Sem tendência
Coliformes termotolerantes	0,222	0,870	Não	0,215	0,166	67				Sem tendência
Condutividade elétrica in loco	0,857	0,004	Sim				0,880	0,035	3	Sem tendência
Cor verdadeira	0,004	0,093	Não	0,011	-0,325	-150				Redução
Fenóis totais	0,002	0,977	Não	0,005	0,412	149				Elevação
Ferro dissolvido	0,023	0,724	Não	0,033	0,273	126				Elevação
Fósforo total	0,927	0,013	Sim				0,939	0,037	2	Sem tendência
Manganês total	0,942	0,000	Sim				0,154	-0,238	-20	Sem tendência
Nitrato	0,000	0,967	Não	< 0,0001	0,599	272				Inconclusivo com possibilidade de Elevação
Oxigênio dissolvido	0,723	0,000	Sim				0,588	0,109	8	Sem tendência
pH in loco	0,310	0,760	Não	0,282	-0,141	-64				Sem tendência
Sólidos em suspensão totais	0,476	0,001	Sim				0,762	-0,059	-5	Sem tendência
Sólidos totais	0,576	0,000	Sim				0,940	0,024	0,94	Sem tendência
Temperatura da água	0,543	0,000	Sim				0,497	-0,120	-10	Sem tendência
Turbidez	0,839	0,000	Sim				0,707	-0,071	-6	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

Tabela V.12 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE009

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	**		**		**			**		-
Chumbo total	0,776	0,530	Não	0,810	0,042	7				Sem tendência
Cloreto total	0,001	0,548	Não	0,005	0,364	164				Elevação
Clorofila a	0,408	0,319	Não	0,416	-0,145	-24				Sem tendência
Coliformes termotolerantes	0,517	0,144	Não	0,546	0,083	33				Sem tendência
Condutividade elétrica in loco	0,807	0,000	Sim				0,366	-0,155	-13	Sem tendência
Cor verdadeira	0,000	0,188	Não	0,002	-0,407	-182				Redução
Fenóis totais	0,000	0,960	Não	0,001	0,487	172				Elevação
Ferro dissolvido	0,661	0,951	Não	0,586	0,071	33				Sem tendência
Fósforo total	0,419	0,050	Sim				0,469	0,155	10	Sem tendência
Manganês total	0,323	0,000	Sim				0,154	-0,238	-20	Sem tendência
Nitrato	0,001	0,417	Não	0,000	0,475	211				Elevação
Oxigênio dissolvido	0,990	0,004	Sim				0,494	0,122	10	Sem tendência
pH in loco	0,185	0,169	Não	0,166	-0,181	-82				Sem tendência
Sólidos em suspensão totais	0,146	0,002	Sim				0,033	0,361	29	Inconclusivo com possibilidade de Elevação
Sólidos totais	0,343	0,001	Sim				0,173	0,228	19	Sem tendência
Temperatura da água	0,748	0,000	Sim				0,545	-0,107	-9	Sem tendência
Turbidez	0,303	0,000	Sim				0,098	0,273	23	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{**} Não pôde ser calculado devido à ausência de dados (somente duas coletas foram feitas).

Tabela V.13 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE011

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	**		**		**			**		-
Chumbo total	0,379	0,330	Não	0,402	-0,135	-16				Sem tendência
Cloreto total	0,191	0,107	Não	0,156	0,185	84				Sem tendência
Clorofila a	0,614	0,486	Não	0,790	0,053	8				Sem tendência
Coliformes termotolerantes	0,299	0,086	Não	0,284	0,144	58				Sem tendência
Condutividade elétrica in loco	0,937	0,008	Sim				0,762	-0,063	-5	Sem tendência
Cor verdadeira	0,000	0,505	Não	0,000	-0,495	-223				Redução
Fenóis totais	0,002	0,904	Não	0,004	0,439	151				Elevação
Ferro dissolvido	0,941	0,273	Não	0,959	0,009	4				Sem tendência
Fósforo total	0,344	0,018	Sim				0,309	0,209	13	Sem tendência
Manganês total	0,079	0,003	Sim				0,154	-0,238	-20	Sem tendência
Nitrato	0,002	0,249	Não	0,001	0,441	198				Elevação
Oxigênio dissolvido	0,077	0,001	Sim				0,004	0,483	39	Inconclusivo com possibilidade de Elevação
pH in loco	0,411	0,154	Não	0,384	-0,115	-52				Sem tendência
Sólidos em suspensão totais	0,734	0,000	Sim				0,445	0,134	11	Sem tendência
Sólidos totais	0,998	0,000	Sim				0,449	0,133	11	Sem tendência
Temperatura da água	0,829	0,000	Sim				0,940	-0,024	-2	Sem tendência
Turbidez	0,416	0,000	Sim				0,329	0,167	14	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{**} Não pôde ser calculado devido à ausência de dados (somente duas coletas foram feitas).

Tabela V.14 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE013

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	**		**		**			**		-
Chumbo total	0,112	0,879	Não	0,113	0,233	69				Sem tendência
Cloreto total	0,001	0,353	Não	0,001	0,425	187				Elevação
Clorofila a	0,121	0,476	Não	0,144	-0,243	-46				Sem tendência
Coliformes termotolerantes	0,526	0,014	Sim				0,082	0,286	24	Sem tendência
Condutividade elétrica in loco	0,571	0,007	Sim				0,154	0,238	20	Sem tendência
Cor verdadeira	0,000	0,365	Não	0,000	-0,535	-243				Redução
Fenóis totais	0,000	0,724	Não	0,000	0,540	190				Elevação
Ferro dissolvido	0,288	0,239	Não	0,227	0,155	72				Sem tendência
Fósforo total	0,047	0,075	Não	0,057	0,270	106				Inconclusivo com possibilidade de Elevação
Manganês total	0,527	0,001	Sim				0,409	-0,143	-12	Sem tendência
Nitrato	0,000	0,873	Não	0,000	0,522	234				Elevação
Oxigênio dissolvido	0,424	0,001	Sim				0,079	0,295	24	Sem tendência
pH in loco	0,646	0,051	Não	0,619	-0,067	-30				Sem tendência
Sólidos em suspensão totais	0,382	0,001	Sim				0,255	0,199	16	Sem tendência
Sólidos totais	0,611	0,001	Sim				0,597	0,101	8	Sem tendência
Temperatura da água	0,405	0,000	Sim				0,175	0,230	19	Sem tendência
Turbidez	0,225	0,000	Sim				0,202	0,214	18	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{**} Não pôde ser calculado devido à ausência de dados (somente duas coletas foram feitas).

Tabela V.15 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE015

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	0,760	0,530	Não	0,810	0,042	7				Sem tendência
Chumbo total	0,403	0,234	Não	0,424	-0,124	-25				Sem tendência
Cloreto total	0,000	0,218	Não	0,001	0,453	202				Elevação
Clorofila a	0,879	0,249	Não	0,970	0,013	2				Sem tendência
Coliformes termotolerantes	0,033	0,264	Não	0,019	0,313	126				Elevação
Condutividade elétrica in loco	0,348	0,000	Sim				0,009	0,429	36	Inconclusivo com possibilidade de Elevação
Cor verdadeira	0,001	0,307	Não	0,001	-0,408	-188				Redução
Fenóis totais	0,034	0,841	Não	0,029	0,314	119				Elevação
Ferro dissolvido	0,201	0,029	Sim				0,050	0,326	27	Sem tendência
Fósforo total	0,319	0,085	Não	0,338	0,135	55				Sem tendência
Manganês total	0,628	0,000	Sim				0,821	-0,051	-4	Sem tendência
Nitrato	0,000	0,762	Não	0,000	0,578	263				Elevação
Oxigênio dissolvido	0,108	0,002	Sim				0,029	0,373	29	Inconclusivo com possibilidade de Elevação
pH in loco	0,757	0,032	Sim				0,542	-0,109	-9	Sem tendência
Sólidos em suspensão totais	0,166	0,000	Sim				0,154	0,238	20	Sem tendência
Sólidos totais	0,546	0,001	Sim				0,113	0,264	22	Sem tendência
Temperatura da água	0,878	0,000	Sim				0,821	0,049	4	Sem tendência
Turbidez	0,375	0,000	Sim				0,043	0,333	28	Inconclusivo com possibilidade de Elevação

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

Tabela V.16 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE017

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I IMann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	0,448	0,506	Não	0,488	-0,150	-9				Sem tendência
Chumbo total	0,924	0,199	Não	0,972	-0,010	-2				Sem tendência
Cloreto total	0,020	0,645	Não	0,028	0,285	124				Elevação
Clorofila a	0,156	0,570	Não	0,151	-0,265	-36				Sem tendência
Coliformes termotolerantes	0,213	0,018	Sim				0,323	0,177	14	Sem tendência
Condutividade elétrica in loco	0,391	0,027	Sim				0,260	0,190	16	Sem tendência
Cor verdadeira	0,011	0,205	Não	0,033	-0,280	-120				Redução
Fenóis totais	0,000	0,907	Não	0,000	0,606	193				Elevação
Ferro dissolvido	0,182	0,444	Não	0,198	0,170	73				Sem tendência
Fósforo total	0,456	0,003	Sim				0,648	0,097	7	Sem tendência
Manganês total	0,410	0,002	Sim				0,202	0,214	18	Sem tendência
Nitrato	0,000	0,578	Não	0,000	0,474	199				Elevação
Oxigênio dissolvido	0,180	0,001	Sim				0,056	0,320	26	Sem tendência
pH in loco	0,651	0,580	Não	0,733	0,047	20				Sem tendência
Sólidos em suspensão totais	0,801	0,000	Sim				0,940	-0,024	-2	Sem tendência
Sólidos totais	0,645	0,000	Sim				0,329	0,167	14	Sem tendência
Temperatura da água	0,482	0,000	Sim				0,499	0,119	10	Sem tendência
Turbidez	0,868	0,003	Sim				0,599	-0,095	-8	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

Tabela V.17 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE019

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹		S' ²	Tendência
Arsênio total	**		**		**			**		-
Chumbo total	0,784	0,541	Não	0,814	-0,039	-9				Sem tendência
Cloreto total	0,001	0,691	Não	0,006	0,392	151				Elevação
Clorofila a	0,315	0,185	Não	0,222	-0,222	-33				Sem tendência
Coliformes termotolerantes	0,924	0,015	Sim				0,702	0,081	6	Sem tendência
Condutividade elétrica in loco	0,955	0,093	Não	0,986	0,004	2				Sem tendência
Cor verdadeira	0,000	0,491	Não	0,000	-0,486	-219				Redução
Fenóis totais	0,000	0,955	Não	0,000	0,618	211				Elevação
Ferro dissolvido	0,153	0,430	Não	0,147	0,188	86				Sem tendência
Fósforo total	0,077	0,934	Não	0,110	0,225	90				Sem tendência
Manganês total	0,052	0,000	Sim				0,001	-0,524	-44	Inconclusivo com possibilidade de Redução
Nitrato	0,000	0,769	Não	0,000	0,502	226				Elevação
Oxigênio dissolvido	0,095	0,006	Sim				0,016	0,391	33	Inconclusivo com possibilidade de Elevação
pH in loco	0,980	0,265	Não	0,959	-0,009	-4				Sem tendência
Sólidos em suspensão totais	0,593	0,001	Sim				0,547	-0,108	-9	Sem tendência
Sólidos totais	0,443	0,000	Sim				0,326	-0,165	-14	Sem tendência
Temperatura da água	0,760	0,006	Sim				0,940	-0,024	-2	Sem tendência
Turbidez	0,114	0,001	Sim				0,020	-0,381	-32	Inconclusivo com possibilidade de Redução

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{**} Não pôde ser calculado devido à ausência de dados (somente duas coletas foram feitas).

Tabela V.18 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE021

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	**		**		**			**		-
Chumbo total	0,075	0,484	Não	0,083	-0,261	-60				Sem tendência
Cloreto total	0,146	0,416	Não	0,157	0,188	83				Sem tendência
Clorofila a	0,809	0,804	Não	0,811	0,051	7				Sem tendência
Coliformes termotolerantes	0,976	0,003	Sim				0,449	0,134	11	Sem tendência
Condutividade elétrica in loco	0,776	0,221	Não	0,747	-0,043	-20				Sem tendência
Cor verdadeira	0,000	0,320	Não	0,000	-0,544	-250				Redução
Fenóis totais	0,000	0,904	Não	0,001	0,520	179				Elevação
Ferro dissolvido	0,079	0,452	Não	0,109	0,207	95				Sem tendência
Fósforo total	0,010	0,292	Não	0,013	0,345	139				Elevação
Manganês total	0,403	0,001	Sim				0,292	-0,179	-15	Sem tendência
Nitrato	0,000	0,738	Não	0,000	0,568	257				Elevação
Oxigênio dissolvido	0,117	0,025	Sim				0,173	0,223	19	Sem tendência
pH in loco	0,785	0,826	Não	0,694	-0,053	-24				Sem tendência
Sólidos em suspensão totais	0,917	0,005	Sim				0,651	0,085	7	Sem tendência
Sólidos totais	0,593	0,000	Sim				0,880	-0,034	-3	Sem tendência
Temperatura da água	0,974	0,005	Sim				0,707	0,071	6	Sem tendência
Turbidez	0,643	0,002	Sim				0,880	0,039	3	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{**} Não pôde ser calculado devido à ausência de dados (somente duas coletas foram feitas).

Tabela V.19 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE023

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹		S' ²	Tendência
Arsênio total	0,674	0,516	Não	0,763	-0,053	-11				Sem tendência
Chumbo total	0,183	0,523	Não	0,199	0,199	33				Sem tendência
Cloreto total	0,295	0,055	Não	0,255	0,146	68				Sem tendência
Clorofila a	0,045	0,528	Não	0,054	-0,328	-56				Inconclusivo com possibilidade de Redução
Coliformes termotolerantes	0,596	0,108	Não	0,565	0,082	30				Sem tendência
Condutividade elétrica in loco	0,032	0,089	Não	0,024	0,288	134				Elevação
Cor verdadeira	0,000	0,237	Não	0,001	-0,433	-198				Redução
Fenóis totais	0,022	0,127	Não	0,038	0,300	113				Elevação
Ferro dissolvido	0,157	0,796	Não	0,155	-0,183	-85				Sem tendência
Fósforo total	0,431	0,906	Não	0,430	-0,106	-47				Sem tendência
Manganês total	0,003	0,376	Não	0,004	-0,359	-167				Redução
Nitrato	0,000	0,055	Não	0,000	0,522	242				Elevação
Oxigênio dissolvido	0,272	0,244	Não	0,214	0,161	74				Sem tendência
pH in loco	0,336	0,063	Não	0,365	0,120	54				Sem tendência
Sólidos em suspensão totais	0,967	0,140	Não	0,946	-0,011	-5				Sem tendência
Sólidos totais	0,518	0,752	Não	0,496	0,089	41				Sem tendência
Temperatura da água	0,690	0,001	Sim				0,326	0,168	14	Sem tendência
Turbidez	0,284	0,014	Sim				0,060	-0,310	-26	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

Tabela V.20 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE025

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	**		**		**			**		-
Chumbo total	0,210	0,069	Não	0,228	-0,187	-31				Sem tendência
Cloreto total	0,062	0,790	Não	0,021	0,303	135				Inconclusivo com possibilidade de Elevação
Clorofila a	0,419	0,561	Não	0,305	-0,185	-28				Sem tendência
Coliformes termotolerantes	0,544	0,207	Não	0,477	0,099	37				Sem tendência
Condutividade elétrica in loco	0,885	0,000	Sim				0,499	0,119	10	Sem tendência
Cor verdadeira	0,001	0,030	Sim				0,001	-0,548	-46	Redução
Fenóis totais	0,001	0,825	Não	0,004	0,419	154				Elevação
Ferro dissolvido	0,318	0,203	Não	0,454	0,097	45				Sem tendência
Fósforo total	0,004	0,717	Não	0,008	0,381	143				Elevação
Manganês total	0,269	0,012	Sim				0,060	-0,310	-26	Sem tendência
Nitrato	0,001	0,153	Não	0,002	0,393	180				Elevação
Oxigênio dissolvido	0,188	0,003	Sim				0,251	0,208	16	Sem tendência
pH in loco	0,800	0,055	Não	0,945	-0,011	-5				Sem tendência
Sólidos em suspensão totais	0,943	0,075	Não	1,000	0,000	0				Sem tendência
Sólidos totais	0,955	0,004	Sim				0,451	0,129	11	Sem tendência
Temperatura da água	0,548	0,000	Sim				0,049	0,329	27	Inconclusivo com possibilidade de Elevação
Turbidez	0,679	0,001	Sim				0,763	-0,060	-5	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{**} Não pôde ser calculado devido à ausência de dados (somente duas coletas foram feitas).

Tabela V.21 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE027

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I IMann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	0,481	0,585	Não	0,500	0,104	24	Kendali			Sem tendência
Chumbo total	0,075	0,452	Não	0,083	-0,261	-60				Sem tendência
Cloreto total	0,002	0,648	Não	0,004	0,381	171				Elevação
Clorofila a	0,765	0,246	Não	1,000	0,005	1				Sem tendência
Coliformes termotolerantes	0,867	0,127	Não	0,737	-0,048	-18				Sem tendência
Condutividade elétrica in loco	0,043	0,311	Não	0,055	0,245	114				Inconclusivo com possibilidade de Elevação
Cor verdadeira	0,000	0,036	Sim	5,555	J,= 15		0,003	-0,490	-41	Redução
Fenóis totais	0,243	0,890	Não	0,248	0,168	63		.,		Sem tendência
Ferro dissolvido	0,276	0,157	Não	0,212	-0,163	-74				Sem tendência
Fósforo total	0,363	0,167	Não	0,481	0,098	41				Sem tendência
Manganês total	0,363	0,039	Sim	,	·		0,154	-0,238	-20	Sem tendência
Nitrato	0,009	0,324	Não	0,009	0,338	154		·		Elevação
Oxigênio dissolvido	0,301	0,030	Sim	-			1,000	0,016	1	Sem tendência
pH in loco	0,819	0,664	Não	0,810	0,034	15				Sem tendência
Sólidos em suspensão totais	0,521	0,006	Sim				0,880	0,036	3	Sem tendência
Sólidos totais	0,724	0,001	Sim				0,326	0,178	14	Sem tendência
Temperatura da água	0,002	0,058	Não	0,005	0,361	166				Elevação
Turbidez	0,572	0,001	Sim				0,822	-0,048	-4	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

Tabela V.22 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE029

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	**		**		**			**		-
Chumbo total	0,076	0,523	Não	0,077	-0,272	-45				Sem tendência
Cloreto total	0,002	0,313	Não	0,003	0,383	174				Elevação
Clorofila a	0,599	0,568	Não	0,543	-0,113	-17				Sem tendência
Coliformes termotolerantes	0,189	0,247	Não	0,220	0,168	63				Sem tendência
Condutividade elétrica in loco	0,575	0,000	Sim				0,050	0,326	27	Sem tendência
Cor verdadeira	0,001	0,063	Não	0,002	-0,400	-184				Redução
Fenóis totais	0,007	0,133	Não	0,010	0,372	139				Elevação
Ferro dissolvido	0,244	0,264	Não	0,208	0,162	75				Sem tendência
Fósforo total	0,048	0,307	Não	0,048	0,275	112				Elevação
Manganês total	0,432	0,006	Sim				0,084	-0,286	-24	Sem tendência
Nitrato	0,001	0,126	Não	0,002	0,408	186				Elevação
Oxigênio dissolvido	0,122	0,004	Sim				0,143	0,258	20	Sem tendência
pH in loco	0,610	0,021	Sim				0,276	-0,189	-15	Sem tendência
Sólidos em suspensão totais	0,693	0,006	Sim				1,000	-0,012	-1	Sem tendência
Sólidos totais	0,721	0,046	Sim				0,499	0,119	10	Sem tendência
Temperatura da água	0,634	0,000	Sim				0,035	0,347	29	Inconclusivo com possibilidade de Elevação
Turbidez	0,590	0,000	Sim				0,822	0,048	4	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

^{**} Não pôde ser calculado devido à ausência de dados (somente duas coletas foram feitas).

Tabela V.23 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE031

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall²	S' ²	Tendência
Arsênio total	0,963	0,067	Não	1,000	0,000	0				Sem tendência
Chumbo total	0,379	0,330	Não	0,402	-0,135	-16				Sem tendência
Cloreto total	0,026	0,103	Não	0,034	0,285	123				Elevação
Clorofila a	0,316	0,521	Não	0,381	-0,153	-26				Sem tendência
Coliformes termotolerantes	0,892	0,953	Não	0,985	0,005	2				Sem tendência
Condutividade elétrica in loco	0,593	0,000	Sim				0,132	0,253	21	Sem tendência
Cor verdadeira	0,001	0,028	Sim				0,002	-0,505	-42	Redução
Fenóis totais	0,000	0,783	Não	0,000	0,617	206				Elevação
Ferro dissolvido	0,281	0,078	Não	0,262	0,145	67				Sem tendência
Fósforo total	0,118	0,176	Não	0,137	0,207	85				Sem tendência
Manganês total	0,437	0,001	Sim				0,202	-0,214	-18	Sem tendência
Nitrato	0,000	0,951	Não	0,000	0,486	222				Elevação
Oxigênio dissolvido	0,205	0,000	Sim				0,039	0,347	28	Inconclusivo com possibilidade de Elevação
pH in loco	0,700	0,008	Sim				0,218	-0,201	-17	Sem tendência
Sólidos em suspensão totais	0,655	0,000	Sim				0,706	0,071	6	Sem tendência
Sólidos totais	0,556	0,003	Sim				0,706	0,072	6	Sem tendência
Temperatura da água	0,687	0,000	Sim				0,449	-0,133	-11	Sem tendência
Turbidez	0,776	0,000	Sim				0,940	-0,024	-2	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

Tabela V.24 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE033

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	0,257	0,475	Não	0,283	-0,216	-14				Sem tendência
Chumbo total	0,554	0,290	Não	0,548	0,094	19				Sem tendência
Cloreto total	0,000	0,712	Não	0,000	0,474	220				Elevação
Clorofila a	0,182	0,931	Não	0,293	-0,190	-29				Sem tendência
Coliformes termotolerantes	0,235	0,006	Sim				0,028	0,366	30	Inconclusivo com possibilidade de Elevação
Condutividade elétrica in loco	0,783	0,000	Sim				0,940	-0,024	-2	Sem tendência
Cor verdadeira	0,000	0,082	Não	0,000	-0,468	-215				Redução
Fenóis totais	0,004	0,288	Não	0,004	0,431	148				Elevação
Ferro dissolvido	0,951	0,994	Não	0,959	-0,009	-4				Sem tendência
Fósforo total	0,878	0,000	Sim				1,000	-0,013	-1	Sem tendência
Manganês total	0,672	0,000	Sim				0,260	-0,190	-16	Sem tendência
Nitrato	0,000	0,793	Não	0,000	0,514	232				Elevação
Oxigênio dissolvido	0,658	0,000	Sim				0,257	0,198	16	Sem tendência
pH in loco	0,791	0,117	Não	0,891	-0,020	-9				Sem tendência
Sólidos em suspensão totais	0,442	0,000	Sim				0,706	0,070	6	Sem tendência
Sólidos totais	0,500	0,000	Sim				0,228	0,206	17	Sem tendência
Temperatura da água	0,045	0,005	Sim				0,010	0,419	35	Elevação
Turbidez	0,675	0,001	Sim				0,151	0,243	20	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

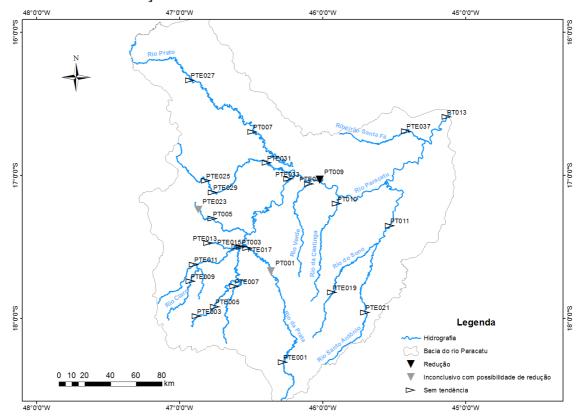
Tabela V.25 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE035

Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I IMann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	0,303	0,840	Não	0,317	-0,197	-20				Sem tendência
Chumbo total	0,188	0,411	Não	0,105	0,254	30				Sem tendência
Cloreto total	0,211	0,028	Sim				0,226	0,210	17	Sem tendência
Clorofila a	0,143	0,416	Não	0,220	-0,211	-36				Sem tendência
Coliformes termotolerantes	0,259	0,111	Não	0,221	0,166	66				Sem tendência
Condutividade elétrica in loco	0,522	0,308	Não	0,475	0,093	43				Sem tendência
Cor verdadeira	0,001	0,123	Não	0,001	-0,423	-196				Redução
Fenóis totais	0,000	0,948	Não	0,001	0,487	172				Elevação
Ferro dissolvido	0,821	0,005	Sim				0,497	-0,115	-10	Sem tendência
Fósforo total	0,333	0,025	Sim				0,210	-0,217	-17	Sem tendência
Manganês total	0,383	0,000	Sim				0,060	-0,310	-26	Sem tendência
Nitrato	0,000	0,860	Não	0,000	0,529	233				Elevação
Oxigênio dissolvido	0,122	0,001	Sim				0,057	0,307	26	Sem tendência
pH in loco	1,000	0,372	Não	0,959	0,009	4				Sem tendência
Sólidos em suspensão totais	0,828	0,000	Sim				0,760	-0,063	-5	Sem tendência
Sólidos totais	0,595	0,000	Sim				0,499	-0,119	-10	Sem tendência
Temperatura da água	0,372	0,000	Sim				0,071	0,300	25	Sem tendência
Turbidez	0,822	0,001	Sim				0,499	-0,119	-10	Sem tendência

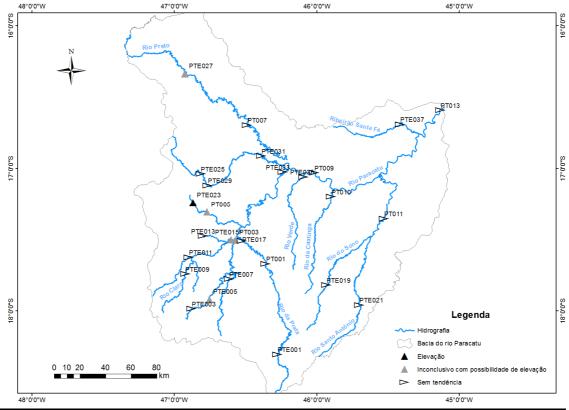
¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).

² Valores da estatística do teste.

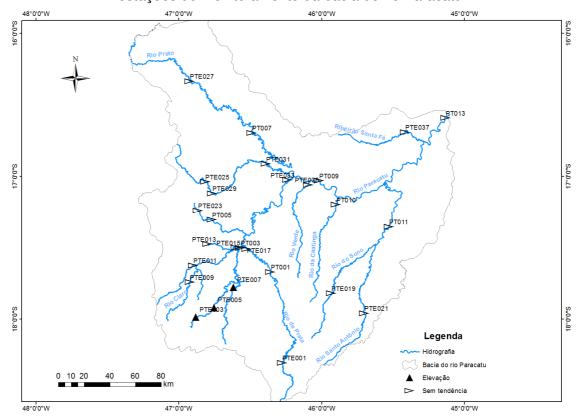
Tabela V.26 Resultados das análises de tendência temporal de 18 parâmetros estudados na estação de monitoramento PTE037


Parâmetros	Correlação de Spearman ¹	Teste de Kruskal- Wallis ¹	Influência da Sazonalidade	I Mann-	Tau de Kendall ²	S ²	Teste Sazonal de Mann- Kendall ¹	Tau de Kendall ²	S' ²	Tendência
Arsênio total	**		**		**			**		-
Chumbo total	0,291	0,025	Sim				0,334	-0,176	-11	Sem tendência
Cloreto total	0,006	0,006	Sim				0,011	0,433	33	Elevação
Clorofila a	0,741	0,024	Sim				1,000	-0,054	-1	Sem tendência
Coliformes termotolerantes	0,839	0,010	Sim				0,568	0,113	7	Sem tendência
Condutividade elétrica in loco	0,416	0,156	Não	0,323	0,136	51				Sem tendência
Cor verdadeira	0,174	0,001	Sim				0,222	-0,214	-17	Sem tendência
Fenóis totais	0,002	0,439	Não	0,004	0,458	127				Elevação
Ferro dissolvido	0,980	0,002	Sim				0,763	0,062	5	Sem tendência
Fósforo total	0,851	0,017	Sim				1,000	1,000	0	Sem tendência
Manganês total	0,874	0,000	Sim				1,000	0,000	0	Sem tendência
Nitrato	0,050	0,760	Não	0,034	0,297	107				Inconclusivo com possibilidade de Elevação
Oxigênio dissolvido	0,015	0,145	Não	0,019	0,320	119				Elevação
pH in loco	0,126	0,107	Não	0,184	-0,183	-68				Sem tendência
Sólidos em suspensão totais	0,512	0,001	Sim				0,497	0,116	10	Sem tendência
Sólidos totais	0,303	0,000	Sim				0,257	0,189	16	Sem tendência
Temperatura da água	0,313	0,002	Sim				0,409	-0,143	-12	Sem tendência
Turbidez	0,940	0,000	Sim				0,499	0,119	10	Sem tendência

¹ p-valores relacionados à estatística do teste. Valores em negrito são estatisticamente significativos (p<0,05).


² Valores da estatística do teste.

^{**} Não pôde ser calculado devido à ausência de dados (somente duas coletas foram feitas).


Figura V.1 Mapa representando a tendência temporal do parâmetro Clorofila a para as estações de monitoramento da bacia do rio Paracatu

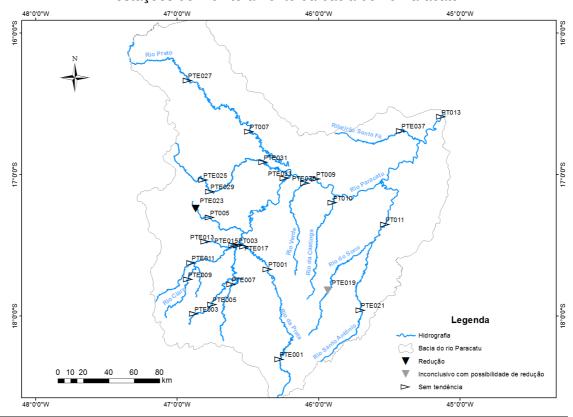

Figura V.2 Mapa representando a tendência temporal do parâmetro Condutividade Elétrica *in loco* para as estações de monitoramento da bacia do rio Paracatu

Figura V.3 Mapa representando a tendência temporal do parâmetro Ferro dissolvido para as estações de monitoramento da bacia do rio Paracatu

Figura V.4 Mapa representando a tendência temporal do parâmetro Manganês total para as estações de monitoramento da bacia do rio Paracatu

Figura V.5 Mapa representando a tendência temporal do parâmetro Nitrato para as estações de monitoramento da bacia do rio Paracatu

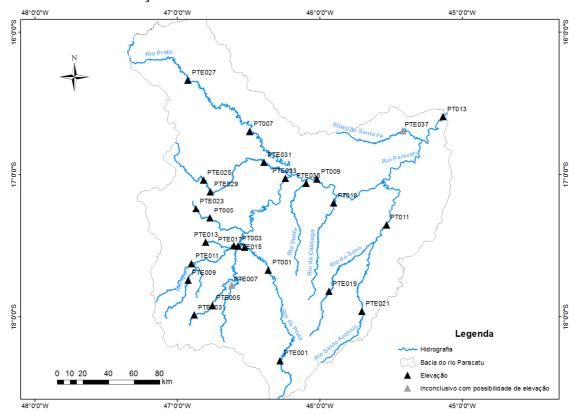
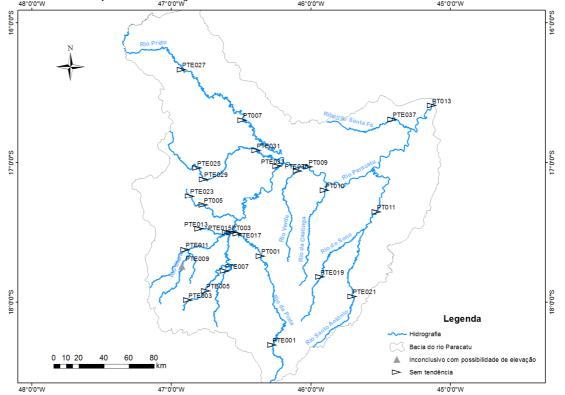



Figura V.6 Mapa representando a tendência temporal do parâmetro Sólidos em suspensão totais para as estações de monitoramento da bacia do rio Paracatu

Figura V.7 Mapa representando a tendência temporal do parâmetro Temperatura da água para as estações de monitoramento da bacia do rio Paracatu

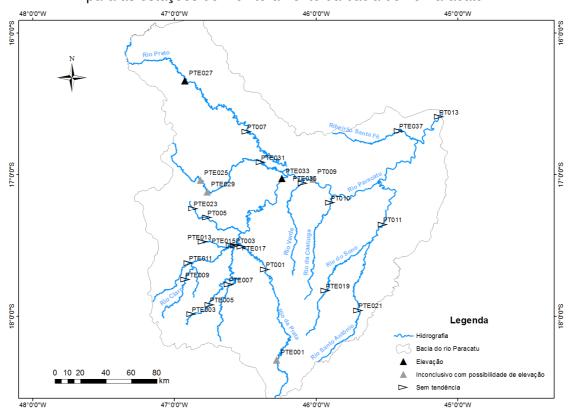
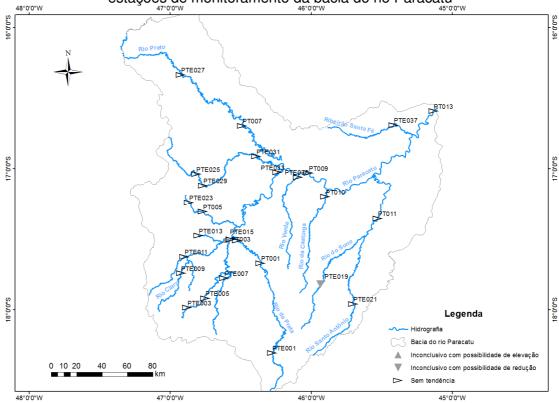



Figura V.8 Mapa representando a tendência temporal do parâmetro Turbidez para as estações de monitoramento da bacia do rio Paracatu

