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Abstract

This thesis proposes a new necessary condition for the infeasibility of non-linear
optimization problems (that becomes necessary under convexity assumption) which
is stated as a Pareto-criticality condition of an auxiliary multiobjective optimization
problem. This condition can be evaluated, in a given problem, using multiobjective
optimization algorithms, in a search that either leads to a feasible point or to a point in
which the infeasibility conditions holds. The resulting infeasibility certificate, which
is built with primal variables only, has global validity in convex problems and has
at least a local meaning in generic nonlinear optimization problems. In the case of
noisy problems, in which gradient information is not available, the proposed condition
can still be employed in a heuristic flavor, as a by-product of the expected features
of the Pareto-front of the auxiliary multiobjective problem.

Key-words: nonlinear programming, multiobjective programming, infeasibility cer-
tificate, noisy problems.
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Resumo

Esta tese propõe uma nova condição necessária para a infactibilidade de problemas
de otimização não lineares (que se torna necessária sob suposição de convexi-
dade) que é estabelecida como uma condição crítica de Pareto de um problema de
otimização multi-objetivo auxiliar. Esta condição pode ser avaliada, em um dado
problema, utilizando algoritmos de otimização multi-objetivo, em uma busca que
leva ou para um ponto viável ou para um ponto em que as condições de inviabili-
dade são asseguradas. O certificado de inviabilidade resultante, que é construído
somente com variáveis primais, possui validade global em problemas convexos e
possui no mínimo um significado local em problemas genéricos de otimização não
linear. No caso de problemas ruidosos, em que a informação de gradiente não é
disponível, a condição proposta ainda pode ser aplicada sob uma noção heurís-
tica, como um produto das características da fronteira-Pareto do problema auxiliar
multi-objetivo.

Palavras-chave: programação não linear, programação multi-objetivo, certificação
de inviabilidade, problemas ruidosos.
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List of Symbols

The following notations are employed here.

1. (. ≤ .) Each coordinate of the first argument is less than or equal to the corre-
sponding coordinate of the second argument.

2. (. < .) Each coordinate of the first argument is smaller than the corresponding
coordinate of the second argument.

3. (. ≺ .) Each coordinate of the first argument is less than or equal to the cor-
responding coordinate of the second argument, and at least one coordinate of
the first argument is strictly smaller than the corresponding coordinate of the
second argument.

4. the operators (. ≥ .), (. > .) and (. � .) are defined in the analogous way.

5. R is the set of real numbers.

6. AT is the transpose of matrix A.

7. N (·), stands for the null space of a matrix.

8. K+, denotes the cone of the positive octant of suitable dimension.
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Chapter 1

Introduction

What will happen when an optimization algorithm is unable to find a feasible solu-
tion? How could we know what went wrong? The question about feasibility and
infeasibility of an optimization problem in order to know it’s status is the main theme
of this thesis.

There has been a lot of work related to feasibility and infeasibility in optimization
in the last two decades. This effort is still going on even today. Why are we inter-
ested in feasibility and infeasibility of an optimization problem? Certainly it is most
important according to the situation to find the best (optimum or efficient) solution,
in place of any feasible solution. The detection of an optimization problem to be
feasible or infeasible are indeed the two sides of the same coin. The existence of
a feasible solution of a constrained optimization problem precedes the question of
determining the best solution.

In recent years, the question of establishing if a problem is feasible or infeasible
has grown in importance as the optimization models have grown larger and more
complex in step with the phenomenal increase in expensive computing power. One
of the approaches for such problems is to isolate an irreducible subset (IIS) of the
constraints. In other words a subset of constraints that is itself infeasible, but that
becomes feasible by removing one or more constraints. This type of approach is
helpful in large optimization problems.

Certificates of infeasibility can be useful, within optimization algorithms, in order
to allow the fast determination of the inconsistency of the problem constraints, avoid-
ing spending large computational times in infeasible problems, and also providing a
guarantee that a problem is indeed not solvable. A series of results in interior-
point based linear programming has been related to the construction of infeasibility
certificates (Ben-Tal and Nemirovskiı̆, 2001). The issue of detecting infeasibility in
optimization problems has been particularly important in the context of mixed inte-

10



1. INTRODUCTION 11

ger linear programming (Andersen et al., 2008). In recent convex analysis literature,
some infeasibility certificates have been derived for conic programming (Nesterov
et al., 1999; Ben-Tal and Nemirovskiı̆, 2001) and for the monotone complementarity
problem (Andersen and Ye, 1999). This last result has been extended to general
convex optimization problems (Andersen, 2000). More general studies involving
general nonlinear programming were presented in (Nocedal et al., 2014).

The problem of quick infeasibility detection has been considered by Byrd et al.
(2010) in the context of sequential quadratic programming (SQP) method. The de-
tection of minimizer of infeasibility has been presented in (Benson et al., 2002), (Byrd
et al., 2006), (Fletcher et al., 2002) and (Wächter and Biegler, 2006), which apply
SQP filters or interior point procedures. In (Martínez and da Fonseca Prudente,
2012), an augmented Lagrangian algorithm is presented to enhance asymptotic in-
feasibility. Their algorithm preserve the property of convergence to stationary points
of the sum of squares of infeasibility without harming the convergence to Karush-
Kuhn-Tucker (KKT) points in the feasible cases. In (Byrd et al., 2010), a nonlinear
programming algorithm is presented which provide fast local convergence guaran-
tees regardless if a problem is feasible or infeasible.

The main purpose of this thesis is to characterize infeasibility of non-linear op-
timization problems as a Pareto-criticality of an auxiliary problem. It is shown here
a structural similarity between the Kuhn-Tucker condition for Efficiency (KTE) and a
new necessary condition for infeasibility (INF) which also becomes sufficient under
the assumption of problem strict convexity. The infeasibility condition proposed in
this thesis is a new infeasibility certificate in finite-dimensional spaces, and uses the
original (primal) variable only. The application of the proposed certificate is straight-
forward even in the case of generic non-linear functions, without the assumption of
convexity. In such cases, the certificate has local meaning only. The procedure used
in this thesis will be carried in this way: (i) An auxiliary unconstrained multiobjective
optimization problem is defined. (ii) A Pareto-critical point of this auxiliary problem is
determined. (iii) This point is either a feasible point of the original problem or a point
in which the (INF) condition holds. (iv) In the case of (INF) being satisfied at any
point, a necessary condition for the problem infeasibility becomes established (such
condition is also sufficient in convex problems). Such verification is straightforward,
leading to a potentially useful primal variable infeasibility certificate.

The procedure used in this thesis will be carried in this way: (i) An auxiliary un-
constrained multiobjective optimization problem is defined. (ii) A Pareto-critical point
of this auxiliary problem is determined. (iii) This point is either a feasible point of
the original problem or a point in which the (INF) condition holds. (iv) In the case
of (INF) being satisfied at any point, a necessary condition for the problem infea-
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sibility becomes established (such condition is also sufficient in convex problems).
Such verification is straightforward, leading to a potentially useful primal variable
infeasibility certificate.

Finally, this thesis also considers the situation in which no gradient information is
available, what occurs, for instance, in noisy problems. In this case, no usual infea-
sibility certificate can be applied. However, the auxiliary multiobjective optimization
problem still holds, and the verification of its regularity can still be performed (in a
heuristic sense). This allows to define another version of the proposed infeasibility
certificate.

1.1 Research Contributions and Objectives

This study consider a constrained non-linear optimization problem and characterize
its infeasibility as a Pareto-criticality condition of an auxiliary problem. This con-
dition is evaluated by the use of non-linear unconstrained algorithms, in a search
that either leads to a feasible point or to a point in which the infeasibility condition
holds. The proposed new infeasibility certificate showed global validity in the case of
convex problems and has at least a local meaning in generic nonlinear optimization
problems. The following, to the best of author’s knowledge, are the basic contribu-
tions that this dissertations incorporates.

1. The proposed algorithm generates either a solution converging towards feasi-
bility and complementarity simultaneously or a certificate providing infeasibility.

2. If the original optimization problem is feasible, then this algorithm provides a
single feasible optimal solution. On the other hand, if the original problem is
infeasible then the proposed algorithm provide a certificate of infeasibility.

3. This algorithm provides an infeasibility certificate on primal variables, different
from other existing certificates of infeasibility, which may be important both for
theoretical and practical reasons.

1.2 Thesis Outline

This thesis is divided into six chapters. In this chapter, the importance of infeasibility
certificates in optimization problems is introduced. The present chapter also high-
lights the benefits of certification in order to avoid spending a lot of computational
time on infeasible problems. In the next chapter, a brief introduction has been in-
cluded about multiobjective optimization and about a numerical method for solving
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optimization problems. This material is necessary in order to provide the tools that
are used in the problem formulation to be presented later. Chapter three describes
some infeasibility certificates that were presented in literature. Chapter four presents
the infeasibility certificates proposed here, which constitute the main results of this
thesis. Chapter five presents the actual algorithms that are constructed on the basis
of the proposed infeasibility certificate. Numerical tests are also conducted in that
chapter. The sixth and final chapter summarizes and concludes this work. A few
suggestions regarding further possible exploration of this research area have been
included too.
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Chapter 2

Prelliminary Discussion

This chapter presents some prelliminary material that is necessary for the develop-
ment of the infeasibility certificates that are proposed in this thesis. The issue of
multiobjective optimization is discussed first. A specific method of numerical opti-
mization that will be employed in the numerical experiments to be presented later is
also discussed.

2.1 Multiobjective Optimization

Problems which involve simultaneous optimization of more than one objective func-
tion that are competing are called multiobjective optimization problems. Mathemat-
ically, the general form of a multiobjective optimization problem (MOOP) is given
by,

(MOOP) min /max fk(x) k = 1, 2, . . . , t, (2.1)

s.t. gj(x) ≤ 0 j = 1, 2, . . . , m̄,

hj(x) = 0 j = m̄+ 1, . . . ,m,

xLi ≤ xi ≤ xUi i = 1, 2, . . . , n.

The vector x is a vector of n decision variables: x = (x1, x2, ...xn)T . The decision
variable search region is bounded by a set of box constraints i.e. xLi and xUi are the
lower and upper bounds for the decision variable xi respectively. Those points which
satisfy all the constraints and variables are said to be feasible solutions and in the
case of violations of the constraints they are said to be infeasible solutions. The set
of points which satisfy all constraints is said to be the feasible region.

The above MOOP has t objective functions f(x) = (f1(x), f2(x), . . . , ft(x))T , each
of them can be either minimized or maximized at the same time. By convention,

15



2. PRELLIMINARY DISCUSSION 16

and w.l.g., minimization problems will be considered here. A difference between
single-objective and multi-objective problems is that, in the multi-objective case the
objective functions constitute a multi-dimensional space (space Z). Each solution
under any mapping have an image z in the objective space, where f(x) = z =

(z1, z2, ..., zt)
T . Under any mapping the n-dimensional solution vector from the deci-

sion space has a t-dimensional objective vector in the objective space as its image.
A typical diagram explains the case as follows.

Figure 2.1: Mapping between decision and objective space

2.1.1 Dominance concept

The concept of dominance is central in multiobjective optimization, in order to define
the solutions of the problems (Deb, 2001; Miettinen, 1999).

Definition 2.1 A solution x(1) is said to dominate the other solution x(2) if both of the
following conditions are true.

1. The solution x(1) is not worse than x(2) in all objectives. i.e.

f(x(1)) ≤ f(x(2))

2. The solution x(1) is strictly better than x(2) in at least one objective, or

fk(x
(1)) < fk(x

(2)) for at least one k=1,2,. . . ,t.

If either of the above conditions is violated, the solution x(1) does not dominate
the solution x(2). The situation in which x(1) dominates the solution x(2) is denoted
by x(1) ≺ x(2).
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2.1.2 Pareto Optimality

The solutions of a multiobjective optimization problem are defined using the concept
of dominance.

Definition 2.2 Non-Dominated set: Considering a set of solutions P, the non-dominated
set P ′ contains those solutions that are not dominated by any member of the set P.

When P is the entire set of feasible solutions, the resulting non-dominated set
P ′ is called the Pareto-optimal set. The solutions in P ′ are called Pareto-optimal
solutions, or efficient solutions.

2.1.3 Methods for the Solution of Multiobjective Optimization

Several formulations can be used for dealing with multiobjective optimization prob-
lems. In this subsection, we present the ones which are relevant for the develop-
ments that are presented in this thesis.

2.1.3.1 The Scalarization Method

A multiobjective optimization problem can be approached by combining its multi-
ple objectives into one single scalar objective function. This approach is known
as scalarization or weighted sum approach. More specifically, the weighted sum
method minimizes a positively weighted convex sum of the objectives, that is, that
represents a new optimization problem with a unique objective function. The mini-
mizer of this single objective function is an efficient solution for the original multiob-
jective problem, i.e. its image belongs to the Pareto curve.

min
t∑

k=1

γk · fk(x)

t∑
k=1

γk = 1

γk ≥ 0, k = 1, . . . , t

x ∈ S

Particularly we can say that if the γ weight vector is strictly greater than zero,
then the minimizer of the problem is a strict Pareto optimum. While in the case of
at least one γk = 0, then the minimizer of the problem may become a weak Pareto
optimum.
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The result by Geoffrion (1968) states necessary and sufficient conditions in the
case of convexity as: If the solution set S is convex and the t-objectives fk are convex
on S, then x∗ is a strictly Pareto optimum if and only if it exists γ such that x∗ is an
optimal solution of problem P (γ). Similarly: If the solution set S is convex and the
t objectives fk are convex on S, x∗ is a weakly Pareto optimum if and only if there
exists γ, such that x∗ is an optimal solution of problem P (γ).

If the convexity hypothesis does not hold, then only the necessary condition re-
mains valid, i.e., the optimal solutions of P (γ) is strict Pareto optimum if γ > 0 and
on the other hand it’s weak Pareto optimum if at least one γ ≤ 0.

2.1.3.2 ε-constraints Method

Another solution technique to multiobjective optimization is the ε-constraints method
(Chankong and Haimes, 1983). Here, the decision maker chooses one objective
out of t to be minimized; the remaining objectives are constrained to be less than or
equal to given target values. In mathematical terms, if we let f1(x) to be the objective
function chosen to be minimized, we have the following problem:

min f1(x)

fk(x) ≤ εk, for all k ∈ {1, . . . , t}

x ∈ S

The solution for this problem is called an weak solution, which may be, under
additional conditions, an efficient solution.

2.2 The Nonlinear Simplex Search

In this section, we present the specific optimization method that will be employed in
the numerical experiments that are conducted in this thesis.

The simplex search method was firstly proposed by Spendley, Hext, and Himsworth
in 1962, (Spendley et al. (1962)) and later refined by Nelder and Mead (1965), it
is also known as Nelder Simplex Search (NSS) or Downhill Simplex Search. The
method was introduced for the minimization of multi-dimensional and non-linear un-
constrained optimization problems. It is an algorithm based on the simplex algorithm
of Spendley et al. (1962)). The geometrical structure of a simplex is composed of
(n + 1) points in n dimensions. If any point x of a simplex is taken as the origin,
the n other points define vector directions which span the n-dimension vector space
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(Durand and Alliot (1999)). By taking successive elementary geometric transforma-
tions, the initial simplex converges towards a minimum value at each iteration. This
method is carried out by four movements, namely reflection, expansion, contraction
and shrinkage in a geometric shape called simplex.

Definition 2.3 A simplex or n-simplex ∆ is a convex hull of a set of n + 1 affine
independent points ∆i (i=1, . . . ,n+1), in some Euclidean space of dimension n.

Definition 2.4 A simplex is called non-degenerated, if and only if, the vectors in
the simplex denote a linearly independent set. Otherwise, the simplex is called
degenerated, and then, the simplex will be defined in a lower dimension than n.

If the vertices of the simplex are all mutually equidistant, then the simplex is said
to be regular. Thus, in two dimensions, a regular simplex is an equilateral triangle,
while in three dimensions a regular simplex is a regular tetrahedron. The conver-
gence towards a minimum value at each iteration of Nelder and Mead’s method is
conducted by four scalar parameters to control the movements performed in the
simplex: Reflection (α), Expansion (γ), Contraction (β) and shrinkage σ. At each
iteration, the n + 1 vertices ∆i of the simplex represent solutions which are evalu-
ated and sorted according to monotonicity value f(∆1) ≤ f(∆2) ≤ . . . ≤ f(∆n+1).
In which ∆ = {∆1,∆2, . . .∆n+1} is a set of vertices that define a nondegenerate
simplex. According to Nelder and Mead, these parameters should satisfy:

α > 0, γ > 1, γ > α, 0 < β < 1 and 0 < σ < 1 (2.2)

Actually, there is no method that can be used to establish these parameters. How-
ever, the nearly universal choices used in Nelder and Mead’s method (Nelder and
Mead (1965)) are:

α = 1, γ = 2, β = 0.5 and σ = 0.5 (2.3)

The transformations performed into the simplex by the Nelder and Mead method are
defined as:

1. Reflection: xr = (1 + α)∆c − α∆n+1

2. Expansion: xe = (1 + αγ)∆c − αγ∆n+1

3. Contraction:

a) Outside Contraction: xoc = (1 + αβ)xc − αβ∆n+1
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b) Inside Contraction: xic = (1− β)xc + β∆n+1

4. Shrinkage: Each vertex of the simplex is transformed by the geometric shrink-
age defined by: ∆i = ∆1 + σ(∆i−∆1), i= 1, . . . , n+1, and the new vertices are
evaluated, see figure (2.2).

Where xc = 1
n

∑n
i=1 ∆i is the centroid of the n best points except ∆n+1, which is the

worst function value and ∆1 is the best solution identified within the simplex. The
figure (2.2) shows all the possible movements performed by the method.

Figure 2.2: Geometrical representation illustrate all possible movements in the sim-
plex performed by the NSS method. This simplex corresponds to an optimization
problem with two decision variables.

The simplex corresponds to an optimization problem with two decision variables,
where ∆1 and ∆3 are the best and worst points respectively. At each iteration, the
simplex is modified by one of the above movements, according to the following rules:

1. If f(∆1) ≤ f(xr) ≤ f(∆n), then ∆n+1 = xr

2. If f(xe) < f(xr) < f(∆1), then ∆n+1 = xe, otherwise ∆n+1 = xr

3. If f(∆n) ≤ f(xr) < f(∆n+1) and f(xoc) ≤ f(xr) then ∆n+1 = xoc
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4. If f(xr) ≥ f(∆n+1) and f(xic) < f(∆n+1), then ∆n+1 = xic; otherwise, perform
shrinkage.

The stopping criteria employed by Nelder and Mead, and commonly adopted in
many optimization problems is defined by:√√√√ 1

n+ 1

n+1∑
i=1

(f(∆i)− f̄)2 ≤ ε (2.4)

In which f̄ = 1
n+1

∑n+1
i=1 f(∆i) and ε is a predefined constant. When equation (2.4)

satisfies, then ∆c of the smallest simplex can be taken as the optimum point.





Chapter 3

Infeasibility Certificates

In this chapter, some existing approaches for the formulation of infeasibility certifi-
cates are presented.

As an optimization model becomes larger and more complex, infeasibility hap-
pens more often during the process of model formulation, and it becomes more
difficult to diagnose the problem. A linear program may have thousands of con-
straints or even more: which of these are causing the infeasibility and how should
the problem be repaired? In the case of nonlinear programs the issue becomes
more complex. The problem may be entirely infeasible or the solver may just have
been given a poor starting point from which it is unable to reach feasibility.

In modern optimization models, it is necessary to diagnose and repair infeasi-
bility in face of the complexity of the models. In the last two decades, algorithmic
approaches have been introduced for the solution of such problems. The following
three main approaches are used to handle such issues (Greenberg, 1983):

(i) Identification of irreducible subset (IIS) within the larger set of constraints defining
the model. This approach has the property that the IIS is irreducible, but it
becomes feasible if one or more of its constraints are removed. Identifying an
IIS permits the modeler to focus attention on a small set of conflicting functions
within the larger model. Further improvement of the base algorithms try to
return IISs that are of small cardinality.

(ii) The second approach of analyzing infeasibility is to identify the maximum feasi-
ble subset of constraints within the larger set of constraints defining the prob-
lem, or the minimum cardinality set of constraints that must be removed so that
the remainder constitutes a feasible set.

(iii) The third approach seeks to suggest the best repair for the problem, where
’best’ can be defined in various ways that can be handled algorithmically, e.g.

23



3. INFEASIBILITY CERTIFICATES 24

the fewest changes to constraint right hand side values. The suggested repair
can of course be accepted, modified or rejected by the modeler.

The above methods for analyzing infeasibility as described above mostly depend
on the ability of the solver to determine the feasibility or infeasibility of a problem
subject to an arbitrary set of constraints with very high accuracy. This ability and
skills are easily available for a linear problem, but on the other hand it is much more
problematic for mixed integer and nonlinear problems.

This chapter starts from the result known as Farkas lemma, that certifies that an
optimization problem is indeed infeasible. An easy example deals with the case in
detail. The rest of the chapter presents different methods and infeasibility certificates
for linear and non-linear optimization problems. This part is a gateway to our work
which is described in the next chapters.

Example 3.1 The linear optimization problem given by:

minimize x1 (3.1)

subject to x1 ≤ 1,

x1 ≥ 2,

This problem is clearly infeasible, i.e. the problem has no solution. In other
words the problem does not have a solution. To find the possible solution for the
above problem, there are several possible ways to repair the problem. For example,
the right hand side of the constraints may be changed appropriately, or one of the
constraints may be removed. In the above simple example it is easy to discover the
infeasibility and figure out a repair. Generally infeasibility problems are much more
larger and complex to figure out it by hand.

3.1 The Farkas’ certificate of primal infeasibility

If (3.1) is feasible, then it will be enough to have a feasible solution x to certify this
claim. On the other hand, if (3.1) is not feasible, how can somebody claim that it
is infeasible? Luckily there exist a well known certificate of infeasibility to answer
this question, known as Farkas’ lemma (Erling D. Andersen, 2011). Lets explain this
certificate of infeasibility by taking a linear optimization problem.
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(P ) minimize cTx (3.2)

subject to Ax = b,

x ≥ 0,

In which b ∈ Rm, A ∈ Rm×n, and c, x ∈ Rn. The problem (3.2) is infeasible if and
only if there exist a y such that

bTy > 0 (3.3)

ATy ≤ 0

In other words any y satisfying (3.3) is a certificate of primal infeasibility. Notice
that it is easy to verify that a Farkas’ certificate y∗ is valid because it corresponds to
checking the conditions

bTy∗ > 0 (3.4)

and

ATy∗ ≤ 0 (3.5)

Which shows that y∗ is a certificate of infeasibility. It is easy to prove that in-
deed it is the case. Therefore, if an infeasibility certificate exists, then (3.2) can’t
be a feasible problem since we would have a contradiction of proving them. The
generalization of (3.2) is given by

minimize cTx (3.6)

subject to A1x = b1,

A2x ≤ b2,

A3x ≥ b3,

x ≥ 0,

The equation (3.6) is infeasible if and only if there exists a (y1, y2, y3) such that
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bT1 y1 + bT2 y2 + bT3 y3 > 0, (3.7)

AT1 y1 + AT2 y2 + AT3 y3 ≤ 0,

y2 ≤ 0,

y3 ≥ 0.

The above generalized Farkas’ certificate of infeasibility for (3.1) is given by

y1 + 2y2 > 0, (3.8)

y1 ≤ 0,

y2 ≥ 0.

And hence the valid certificate for it is y1 = −1 and y2 = 1. It is notable here
that an infeasibility certificate is not unique because if it is multiplied by any strictly
positive number, then it is still a certificate of infeasibility. Actually the infeasibility
certificate of an optimization problem is a property of it rather than of the algorithm.
Therefore it is good enough to request an infeasibility certificate from an algorithm
whenever it claims a problem is infeasible. Since the properties of an infeasibility
certificate are algorithm independent, decision based on infeasibility certificates will
be similarly algorithm independent.

3.2 Validity of Farkas’ certificate for relaxed

problems

Farkas’ certificate is not only used to certify that an optimization problem is infeasi-
ble, it can also be used to find out the case of infeasibility. In common practice if a
problem is infeasible we would like to repair it, or on the other hand to know at least
which part of the problem causing infeasibility. For example a simple approach is
the case of problem (3.1). If we change the right-hand of the second constraint to
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x1 ≥ 1.2 then the revised Farkas’ conditions are

y1 + 2y2 > 0, (3.9)

y1 ≤ 0,

y2 ≥ 0.

It is still very clear that the previous certificate of infeasibility y1 = −1 and y2 = 1 is
still a valid certificate for the changed problem as well. If we further change the right-
hand side of the second constraint to 1, then the Farkas’ certificate of infeasibility
is no longer valid. Generally, when repairing an infeasibility problem it should be
change as much as the infeasibility certificate remain invalid because otherwise the
problem stays infeasible. All yi are non zero in the infeasibility certificate. If any
yi = 0, then the i-th constraint is not involved in the infeasibility since if the i-th
constraint is removed from the problem and yi is removed from the vector y, then
the reduced y is still an infeasibility certificate.

3.3 Primal or Dual infeasibility in Linear Case

In this section, the certificate of primal and dual infeasibility (Andersen, 2001) is
discussed. Furthermore, a definition of a basis certificate and strongly polynomial
algorithm of Farkas’ type for the computation of the basis certificate of infeasibility
have been included.

Generally, if a linear program has an optimal solution, then the certificate of feasi-
bility status are the primal and dual optimal solutions. It is well known, in the solvable
cases that the linear program must have a basic optimal solution. We know that if a
linear program is primal or dual infeasible, then the Farkas lemma (as discussed in
the previous section) provides the basic infeasibility certificate.

Interior-point methods have emerged as an efficient alternative to simplex based
solution methods for linear programming. Unluckily some of these methods such as
the primal-dual algorithms discussed in (Wright, 1997) do not handle primal or dual
infeasible linear programs very well, but interior-point methods based on the homo-
geneous model find a possible infeasible status both in theory and practice (Ander-
sen and Andersen, 2000; Roos et al., 1997). In their approach they used Farkas’
lemma to generate these infeasibility certificates from the interior-point methods.

Consider problem (3.2). For convenience and without loss of generality the rank
of A is assumed as rank(A) = m. The dual problem corresponding to (3.2) is
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(D) maximize bTy

subject to ATy + s = c

s ≥ 0,

In which y ∈ Rm and s ∈ Rn. Problem (3.2) is said to be feasible if a solution
that satisfies the constraints of (3.2) exists. Similarly (D) is said to be feasible if (D)

has at least one solution satisfying the constraints of (D). The following Lemma is a
well-known fact of linear programming.

Lemma 3.3.1

a. (P ) has an optimal solution if and only if there exist (x∗, y∗, s∗) such that

Ax∗ = b, ATy∗ + s∗ = c, cTx∗ = bTy∗, x∗, s∗ ≥ 0.

b. (P ) is infeasible if and only if there exists y∗ such that

ATy∗ ≤ 0, bTy∗ > 0. (3.10)

c. (D) is infeasible if and only if there exists x∗ such that

Ax∗ = 0, cTx∗ < 0, x∗ ≥ 0. (3.11)

Proof See (Roos et al., 1997).

Therefore, (P ) has an optimal solution if and only if (P ) and (D) are both feasible.
Apart from this, a primal and dual optimal solution is a certificate that the problem
has an optimal solution. If the problem is primal or dual infeasible, then any y∗ satis-
fying (3.10) and any x∗ satisfying (3.11) is a certificate of primal and dual infeasibility.
A linear programming problem may be both primal and dual infeasible and in that
case both a certificate for the primal and dual infeasibility exists. It is interesting to
note that, if a linear optimization problem is solved by the method of column gen-
eration, and for example the first sub-problem is infeasible, then any column of this
sub-problem having a positive inner product with the infeasibility certificate y∗ of pri-
mal infeasibility is suitable to be included in the next sub problem. At the end of this
search, if no such a column exists, then the whole problem can be concluded to be
infeasible with the non-unique infeasibility certificate y∗.
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In the following, the definition of an optimal basic partition of the indices of the
variables for a primal infeasible program is taken from (Andersen, 2001) in order
to know that whether an LP has a feasible or an infeasible solution. The phase 1
problem corresponding to (3.2) is

maximize z1p = eT t+ + eT t− (3.12)

subject to Ax+ It+ − It− = b,

x, t+, t− ≥ 0.

in which e is a vector of appropriate dimension containing all ones. Problem (3.13)
has clearly a feasible solution and the purpose of the objective function in this form is
to minimize the sum of infeasibility. The primal problem (3.2) has a feasible solution
if and only if z∗1p = 0. The basic partition (β,N) of the indices of the variables taken
from (Andersen, 2001) is a certificate of primal infeasibility if it satisfies the following
definition.

Definition 3.1 A basic partition (β,N) of the indices of the variables to (3.2) is a
certificate of primal infeasibility if

∃i : eTi B
−1A ≥ 0, eTi B

−1b < 0 (3.13)

It is notable that any infeasible linear program has a basic partition of the indices
of the variables which satisfies the above definition. The following result is stated in
(Andersen, 2001).

Theorem 3.3.2 Given any certificate (y∗, s∗) of primal infeasibility (Andersen and
Andersen, 2000), then a basis certificate satisfying definition (3.1) can be computed
in strongly polynomial time.

3.4 Infeasibility certificate for monotone

complementarity problem

Andersen and Ye (1999) presented the generalization of a homogeneous self-dual
linear programming (LP) algorithm for the solution of monotone complementarity
problem (MCP). Their algorithm generates either a solution converging towards fea-
sibility and complementarity or a certificate proving infeasibility of the problem. The
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monotone complementarity problem in the standard form is given by

(MCP ) minimize xT s (3.14)

subject to s = f(x), (x, s) ≥ 0

In the above equation f(x) is a continuous monotone mapping i.e. f : Rn
+ → Rn,

where Rn
+ := {x ∈ Rn : x ≥ 0} and x, s ∈ Rn. Equation (3.14) can be written as: for

every x1, x2 ∈ Rn
+, we have

(x1 − x2)T (f(x1)− f(x2)) ≥ 0

The problem (3.14) is said to be (asymptotically) feasible if and only if there exist
a bounded sequence {(xt, st)} ⊂ R2n

++, t = 1, 2 . . . , such that

lim
t→∞

st − f(xt) −→ 0,

Any limit point (x̂, ŝ) of the above sequence is called an (asymptotically) feasi-
ble point for the monotone complementarity problem (3.14). Moreover the prob-
lem (3.14) has an interior feasible point if it has an (asymptotically) feasible point
(x̂ > 0, ŝ > 0). Equation (3.14) is called to be (asymptotically) solvable if there exist
an (asymptotically) feasible point (x̂ > 0, ŝ > 0) such that x̂T ŝ = 0, where (x̂, ŝ) is
called optimal or the monotone complementarity solution for (3.14). The monotone
complementarity problem (3.14) is said to be strongly infeasible if and only if there
is no sequence {(xt, st)} ⊂ R2n

++, t = 1, 2 . . . , such that

lim
t→∞

st − f(xt) −→ 0,

The monotone complementarity problem (MCP) algorithm (Andersen and Ye,
1999) has the following features:

• It achieves O( n
√

log(1/ε)) iteration complexity if f satisfies the scaled Lipschitz
condition.

• It solves the problem without any regularity assumption concerning the exis-
tence of optimal, feasible, or interior feasible points.

• It can start at a positive point, feasible or infeasible, near the central ray of
the positive orthant (cone), and it does not need to use any big-M penalty
parameter or lower bound.



3. INFEASIBILITY CERTIFICATES 31

• If (MCP) has a solution, the algorithm generates a sequence that approaches
feasibility and optimality simultaneously; if the problem is (strongly) infeasible,
the algorithm generates a sequence that converges to a certificate proving
infeasibility.

3.5 Infeasibility certificate in homogenous model for

convex optimization

The previous section was about the certificate of monotone complementarity prob-
lem (MCP). The good thing about (MCP) is that it is either solvable or (strongly) infea-
sible, which provides a certificate of optimality or infeasibility. In (Andersen, 2000),
the suggested formulation of (Andersen and Ye, 1999) is applied to the Karush-
Kuhn-Tucker optimality condition corresponding to a homogenous model for convex
optimization problem which provides an infeasibility certificate. This (MCP) corre-
sponding certificate provides information about whether the primal or dual problem
is infeasible given certain assumptions.

The convex optimization problems have an optimal solution that can be found
by most of the interior point methods. If the problem is primal or dual infeasible,
then the optimal solution is not possible. Andersen and Ye (1999) handled this issue
and generalized it for the linear problems as a monotone complementarity problem
(MCP). This larger class contains all convex optimization problems, because the
Karush-kuhn-Tucker conditions corresponding to a convex optimization problems
form an MCP. In the previous section, in the certificate of (Andersen and Ye, 1999),
it is not stated whether an infeasibility certificate indicates primal or dual infeasibility
when the homogenous model is applied to the optimality conditions of a convex
optimization problem. This issue is handled in (Andersen, 2000), which shows that
an infeasibility certificate in some cases indicates whether the primal or dual problem
is infeasible. The optimization problem in (Andersen, 2000) is given by

minimize c(x) (3.15)

subject to ai(x) ≥ 0, i = 1, . . . ,m,

in which x ∈ Rn. The function c : Rn → R is assumed to be convex, and the
component function ai : Rn → R, i = 1, . . . ,m, are assumed to be concave. All
functions in (3.15) are assumed to be once differentiable. Hence, the problem (3.15)
minimizes a convex function over a convex set. The Lagrange function is defined
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as:

L(x, y) := c(x)− yTa(x)

The Wolf dual corresponding to (3.15) is defined as

maximize L(x, y) (3.16)

subject to ∇xL(x, y)T = 0

y ≥ 0

The combined equations (3.15) and (3.16) give the MCP

minimize yT z (3.17)

subject to ∇xL(x, y)T = 0

a(x) = z

y, z ≥ 0

in which z ∈ Rm is a vector of slack variables. A solution to (3.17) is said to be
complementarity if the corresponding objective value is zero.

In the following, the homogenous model suggested in (Andersen and Ye, 1997;
Andersen, 2000) is applied to this problem, the obtained homogenized MCP is

minimize zTy + τκ (3.18)

subject to τ∇xL(x/τ, y/τ)T = 0,

τa(x/τ) = z

−xT∇xL(x/τ, y/τ)T − yTa(x/τ) = κ,

z, τ, y, κ ≥ 0

in which τ and κ are additional variables. From (Andersen and Ye, 1999), equation
(3.18) is said to be asymptotically feasible if and only if a convergent sequence
(xk, zk, τ k, yk, κk) exists for k = 1, 2 . . . such that

lim
k→∞

 τ k∇xL(xk/τ k, yk/τ k)T ,

τ ka(xk/τ k)− zk,
−(xk)T∇xL(xk/τ k, yk/τ k)T − (yk)Ta(xk/τ k)− τ k

 = 0 (3.19)
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and

(xk, zk, τ k, zk, κk) ∈ Rn ×Rm
+ ×R++ ×Rm

+ ×R++ ∀k, (3.20)

in which the limit point of the (xk, zk, τ k, yk, κk) is called an asymptotically feasible
point. Also this limit point is said to be asymptotically complementary if

(y∗)T z∗ + τ ∗κ∗ = 0

Theorem 3.5.1 Equation (3.18) is asymptotically feasible, and every asymptotically
feasible point is an asymptotically complementarity solution.

Proof . See (Andersen and Ye, 1997)

This result implies that the objective function (3.18) is redundant, and hence the
problem is a feasibility problem. The following lemma from (Andersen, 2000) possi-
bly concludes that either the primal or the dual problem is infeasible.

Lemma 3.5.2 Let (xk, zk, τ k, yk, κk) be any bounded sequence satisfying (3.20) such
that

lim
k→∞

(xk, zk, τ k, yk, κk) = (x∗, z∗, τ ∗, y∗, κ∗)

is an asymptotically feasible and maximally complementarity solution to (3.18). Given

lim
k→∞
−(xk)T∇xL(xk/τ k, yk/τ k)T − (yk)Ta(xk/τ k) = κ∗ > 0, (3.21)

then

lim
k→∞

sup (∇a(xk/τ k)(yk/τ k)− a(xk/τ k))T (yk) > 0 (3.22)

or

lim
k→∞

sup −∇c(xk/τ k)xk > 0 (3.23)

holds true. Moreover, if

lim
k→∞

τ k∇c(xk/τ k) = 0, (3.24)

then the primal problem (3.15) is infeasible if (3.22) holds and the dual (3.16) is
infeasible if (3.23) holds.
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Proof . (Andersen, 2000)

3.6 Infeasibility detection in Nonlinear Optimization

Problems

Byrd et al. (2010) address the need for optimization algorithms that can solve fea-
sible problems and detect when a given optimization problem is infeasible. For
this purpose an active-set sequential quadratic programming method was proposed,
which is derived from an exact penalty approach that adjusts the penalty parameter
appropriately to emphasize optimality over feasibility. In this approach, the updating
process of penalty parameter is used in every iteration, particularly in the case of
infeasible problems. The optimization problem in (Byrd et al., 2010) is given by

min
x∈Rn

f(x)

s.t. gi(x) ≥ 0, i ∈ I = {1, . . . , t} (3.25)

in which f : Rn → R and gi : Rn → R are smooth functions. When there is no
feasible point of (3.25), then the algorithm returns a solution of the problem

min
x
ν(x) ,

∑
x∈I

max{−gi(x), 0} (3.26)

When problem (3.25) is infeasible, the iterations converge quickly to an infeasible
stationary point x̂, which is defined as a stationary point of problem (3.26) such that
ν(x̂) ≥ 0. The problem (3.25) is locally infeasible if there is an infeasible stationary
point x̂ for it. The general form of the Penalty-SQP framework in (Byrd et al., 2010)
is given below:

φ(x; ρ) = ρf(x) + ν(x)

in which ν is the infeasibility measure as defined in (3.26) and ρ > 0 is a penalty
parameter updated dynamically within the approach. If the penalty parameter is very
small, then the stationary points of the non-linear program (3.25) are also stationary
points of the penalty function φ as in (Han and Mangasarian, 1979). Given a value
for ρk and an iterate xk, the appropriate step dk is defined as a solution to the sub-
problem
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min
x∈Rn

qk(d; ρk) (3.27)

in which

qk(d; ρk) = ρk∇f(xk)
Td+ 1/2dTW (xk, λK ; ρk)d+

∑
x∈I

max{−gi(xk)

−∇gi(xk)Td, 0} (3.28)

is a local model of the penalty function φ(.; ρ) about xk. W (xk, λk; ρk) is the Hessian
matrix given as follows

W (xk, λk; ρk) = ρk∇2f(xk)−
∑
x∈I

λik∇2gi(xk) (3.29)

The Hessian used here is different from that used in the standard penalty meth-
ods (Nocedal and Wright, 2006) in that the penalty parameter only multiplies the
Hessian of the objective but not the term involving the Hessian of the constraints.
The smooth reformulation of (3.27) is given below

min
x∈Rn,s∈Rt

ρk∇f(xk)
T + 1/2dTW (xk, λ; ρk)d+

∑
i∈I

si (3.30a)

s.t. gi(xk) +∇gi(xk)Td+ si ≥ 0, i ∈ I, (3.30b)

si ≥ 0, i ∈ I, (3.30c)

in which si are slack variables. The sub-problem (3.30) is the focal point of this
approach which seeks optimality and feasibility with evolution of the value for ρ.
With a solution dk to problem (3.30), the iterate is updated as

xk+1 = xk + αkdk

in which αk is a steplength parameter that ensures sufficient reduction in (φ(.; ρk)).
The constraints (3.30) are always feasible, which was one of the main motivations

for the Sl1QP approach proposed by Fletcher in 1980s.
The rules described by Byrd et al. (2008b) were designed to ensure global con-

vergence (even in the infeasible case) and (Byrd et al., 2003, 2008a) show the ef-
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fectiveness in practice. However the problem was that it did not produce a fast rate
of convergence in the infeasible case.

Properties for penalty SQP algorithms applied to feasible problems have been
studied in (Fletcher, 1987), but in (Byrd et al., 2010), the authors focused their anal-
ysis on the infeasible case. In the infeasible case, many others like Gill et al. (2002)
make no attempt to make a fast rate of convergence to stationary points. For this,
Byrd et al. (2010) focused their analysis on the infeasible case for the following
penalty problem.

min
x,r

ρf(x) +
∑
i∈I

ri

s.t. gi(x) + ri ≥ 0, ri ≥ 0, i ∈ I (3.31)

in which ri are slack variables. If xρ is defined as a first-order optimal solution of
problem (3.31) for a given value of ρ, then there exist slack variables rρ and Lagrange
multipliers λρ, σρ such that (xρ, λρ, rρ, σρ) satisfy the KKT system

ρ∇f(x)−
∑
i∈I

λi∇gi(x) = 0, (3.32a)

1− λi − σi = 0, i ∈ I, (3.32b)

λi(gi(x) + ri) = 0, i ∈ I, (3.32c)

σiri = 0, i ∈ I, (3.32d)

gi(x) + ri ≥ 0, (3.32e)

r, λ, σ ≥ 0. (3.32f)

Particularly, if ρ > 0 such a solution has rρ = 0, then xρ is a first order optimal
solution for the non-linear problem (3.25). The following lemma (Byrd et al., 2010) is
an alternative way of characterizing solutions of the penalty problem (3.31).

Lemma 3.6.1 Suppose that (xρ, λρ, rρ, σρ) is a primal-dual KKT point for problem
(3.31) and that the strict complementarity conditions

rρ + σρ > 0, λρi + (gi(x
ρ) + rρi ) > 0 (3.33)
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hold for all i ∈ I. Then (xρ, λρ) satisfy the system

ρ∇f(x)−
∑
i∈I

λi∇gi(x) = 0, (3.34a)

and either 1− λi − σi = 0, i ∈ I, (3.34b)

gi(x) < 0, and λi = 1, or (3.34c)

gi(x) > 0, and λi = 0, or (3.34d)

gi(x) = 0, and λi ∈ (0, 1). (3.34e)

Conversely, if (x, λ) satisfy (3.34), it also satisfies (3.32) together with ri = max(0,−gi(x))

and σi = 1− λi

Proof See (Byrd et al., 2010)

3.7 Modified Lagrangian Approach

In (Martínez and da Fonseca Prudente, 2012), a modified augmented Lagrangian
algorithm is presented for handling asymptotic infeasibility. Their modified algorithm
preserves the property of convergence to stationary points of the sum of squares
of infeasibility, while it does not affect those points in the feasible cases which con-
verges to the KKT points.

Many of the global optimization algorithms converge to KKT in the best case,
while in the worst case these algorithms converge to infeasible points (stationary
points for some infeasibility measure). In this case, one expects that the problem
is infeasible. However, every affordable optimization algorithm can converge to an
infeasible point, even when the feasible points exist. Therefore optimizers that wish
to find feasible and optimal solutions of practical problems usually change the initial
approximation and/or the algorithmic parameters of the algorithm when an almost in-
feasible point is found. On the other hand, practical optimization algorithm should be
effective not only for finding solutions of the problems but also for finding infeasibility
certificates when there is no alternative.

Augmented Lagrangian type algorithms are studied in (Andreani et al., 2007;
Rockafellar, 1974). In particular, in the algorithm introduced in (Andreani et al.,
2007), the iterates xk are computed as approximate minimizers of Augmented La-
grangian in which multipliers and penalty parameters are updated. The increas-
ing precision requirements makes it very difficult to solve sub-problems when the
penalty parameters go to infinity, which is necessarily the case when a feasible point
is not found. In this paper it was observed that, in that case, the same convergence



3. INFEASIBILITY CERTIFICATES 38

results are obtained using bounded away from zero tolerances for solving the sub-
problems. This fact motivates the employment of dynamic adaptive tolerances that
depend on the degree of infeasibility and complementarity at each iterate xk. Adap-
tive precision control for optimality depending on infeasibility measures has been
considered, with different purposes. The problem in (Martínez and da Fonseca Pru-
dente, 2012) is given by:

Minimize f(x) (3.35)

subject to h(x) = 0

g(x) ≤ 0

x ∈ Ω

in which h : Rn → Rm, g : Rn → Rp, f : Rn → R are smooth and Ω ⊂ Rn is a
bounded n-dimensional box given by:

Ω = {x ∈ Rn | ai ≤ xi ≤ bi ∀ i = 1, . . . , n}

The Augmented Lagrangian function given in (Rockafellar, 1974) is defined as:

Lp(x, λ, µ) = f(x) +
ρ

2
{
m∑
i=1

[hi(x) +
λi
ρ

]2 +

p∑
i=1

[max(0, gi(x) +
µi
ρ

)]2}

for all x ∈ Ω, ρ > 0, λ ∈ Rm, µ ∈ Rp
+

This algorithm (Martínez and da Fonseca Prudente, 2012) is similar to the one
in (Andreani et al., 2007), but the difference is in the stopping criterion for the sub-
problem. The original algorithm imposes that the convergence tolerance {εk} for the
sub-problems should tend to zero while this condition on stopping criteria is relaxed
in (Martínez and da Fonseca Prudente, 2012).





Chapter 4

A new Certificate of Infeasibility for
Non-linear Optimization Problems

In this chapter we propose a new necessary condition for the infeasibility of non-
linear optimization problems which is stated as Pareto-criticality condition of an aux-
iliary multiobjective optimization problem.

4.1 Preliminary Statements

Consider the optimization problem defined by:

min
x
f(x)

subject to: g(x) ≤ 0
(4.1)

in which f(·) : Rn 7→ Rp and g(·) : Rn 7→ Rm are vector functions. The set of feasible
points is denoted by

Ω , {x ∈ Rn | g(x) ≤ 0} (4.2)

In particular case if p = 1, the problem (4.1) is a conventional mono-objective op-
timization problem. When p > 1 the problem becomes multi-objective. In this last
case, a feasible point x̃ ∈ Rn of the decision variable space is said to be dominated
by another feasible point x̄ ∈ Rn if f(x̄) ≺ f(x̃). The solution set of the multiob-
jective optimization problem is defined as the set P ⊂ Ω of feasible points that are
not dominated by any other feasible point. This set is called the efficient solution
set, or the Pareto-optimal set. In order to state general results, the solution set of a
mono-objective problem is also denoted by P.

The following compactness assumption will be necessary for the derivation of
our results:

40
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Assumption 4.1.1 Assume that there is a subset of the constraint functions, {g1(·), g2(·), . . . , gk(·)},
with k ≤ m, such that the set Ωc ⊂ Rn defined by

Ωc = {x | g1(x) ≤ 0, g2(x) ≤ 0, . . . , gk(x) ≤ 0}

is a non-empty compact set. ♦

This assumption holds in a large class of problems, for instance when there is
a “box” in the decision variable space in which the search is to be conducted. The
issue of feasibility/infeasibility can become a difficult question only w.r.t. the other
constraint functions, gk+1(·), . . . , gm(·).

4.2 Infeasibility Condition

Let λ ∈ Rp and µ ∈ Rm. The Kuhn-Tucker conditions for efficiency at a solution x̄ of
problem (4.1) is stated as (Luc, 1988; Marusciac, 1989):

(KTE)


F (x̄)λ+G(x̄)µ = 0

λ � 0 , µ ≥ 0

g(x̄) ≤ 0

µi gi(x̄) = 0 ; ∀ i = 1, . . . ,m

(4.3)

Notice that the Karush-Kuhn-Tucker conditions for optimality of the single-objective
case is a particular case of KTE.

For problem (4.1), given a point x̄ ∈ Rn, one of the four possibilities below must
happen (by exhaustion):

(a) x̄ ∈ P, it means that the Kuhn-Tucker necessary conditions for Efficiency (KTE)
hold

(b) x̄ ∈ Λ, with Λ defined as the set of points for which hold:

(INF)


∃ i | gi(x̄) > 0

G(x̄)µ = 0

µ � 0

gj(x̄) < 0 ⇒ µj = 0

(4.4)

for some vector of multipliers µ ∈ Rm.

(c) x̄ ∈ Ω and x̄ 6∈ P.

(d) x̄ 6∈ Ω and x̄ 6∈ Λ.
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Points that satisfy the condition (KTE) are Pareto-critical for problem (4.1). The
condition (INF) is very similar to (KTE). It will be shown that points that satisfy (INF)
are also Pareto-critical w.r.t. another auxiliary problem. For this we define the fol-
lowing vector function ĝ(·) : Rn 7→ Rm as follows:

ĝi(x) =

{
0 , ∀ x | gi(x) ≤ 0

gi(x) , ∀ x | gi(x) > 0

i = 1, . . . ,m

(4.5)

The following unconstrained auxiliary problem is defined:

min
x
ĝ(x) (4.6)

and the corresponding efficient solution set of this problem is denoted by A:

A = {x ∈ Rn | 6 ∃ x̄ ∈ Rn such that ĝ(x̄) ≺ ĝ(x)} (4.7)

In the case of feasibility of problem (4.1), the efficient solution setA have feasible so-
lution points only. On the other hand, if (4.1) is strictly infeasible then A is composed
on those points for which the INF condition holds.

It should be noticed that, under assumption 4.1.1, it can be stated that: A 6= ∅
and A ⊂ Ωc. Denote by ĝ(A) the image set of function ĝ(·) over A. The following
lemma comes directly from the definition of the function ĝ(·):

Lemma 4.2.1 The following statements hold:

(i) Ω 6= ∅ ⇒ ĝ(A) ≡ 0 , Ω ≡ A

(ii) Ω = ∅ ⇒ ĝ(x) � 0 ∀ x ∈ A

♦

The next lemma states a relation between the set Λ and the set A.

Lemma 4.2.2 The following statement holds:

Ω = ∅ ⇒ Λ ⊃ A

♦

Proof The condition (INF), which holds for the points of Λ, corresponds to the KTE neces-
sary condition for the Pareto-optimality w.r.t. problem (4.6) when problem (4.1) is infeasible,
which holds for the points of A. �
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Under convexity assumption, a stronger result can be obtained as:

Lemma 4.2.3 Suppose that the functions f(·) : Rn 7→ Rp and g(·) : Rn 7→ Rm are
convex. In this case, the following statements hold:

(i) Ω = ∅ ⇒ Λ ≡ A

(ii) Ω 6= ∅ ⇒ Λ = ∅

♦

Proof Both statements come from the fact that A is the Pareto-optimal set of the auxiliary
problem (4.6), which means that the points in this set must satisfy a Pareto-criticality con-
dition for this problem. If the problem (4.1) is infeasible, as in case (i), the Pareto-criticality
condition becomes (INF). In this case, the problem convexity leads to the sufficiency of the
Pareto-criticality for a point to belong to A. Otherwise, in case (ii), the Pareto-criticality con-
dition only holds for feasible points (see Lemma 4.2.1-(i)), and (INF) does not hold for any
point. �

The following Corollary of Lemmas 4.2.1 and 4.2.2 can be stated, without as-
suming convexity:

Corollary 4.2.4 Consider any point x̄ ∈ Rn. The following relations hold:

(i) x̄ ∈ (Λ ∩ A)⇒ Ω = ∅

(ii) Ω = ∅ ⇒ (Λ ∩ A) 6= ∅

♦

It should be noticed that the verification of criticality condition x̄ ∈ Λ depends only
on local gradient evaluation on point x̄. On the other hand, the efficiency condition
x̄ ∈ A has a global meaning, and cannot be evaluated on the basis of local informa-
tion only. However, an assumption of convexity leads to an equivalence of criticality
and efficiency. In this way, the following Corollary of Lemmas 4.2.1 and 4.2.3 holds
under convexity:

Corollary 4.2.5 Consider any point x̄ ∈ Rn. Suppose that the functions f(·) : Rn 7→
Rp and g(·) : Rn 7→ Rm are convex. The following relations hold:

(i) x̄ ∈ Λ⇒ Ω = ∅

(ii) Ω = ∅ ⇒ A = Λ 6= ∅

♦



4. A NEW CERTIFICATE OF INFEASIBILITY FOR NON-LINEAR OPTIMIZATION
PROBLEMS 44

The main result of this work is stated, in the version without convexity, as the
conjunction of the Lemmas 4.2.1, 4.2.2 and Corollary 4.2.4:

Theorem 4.2.6 Consider the optimization problem defined by (4.1). Then:

A = Ω 6= ∅ ⇔ (Λ ∩ A) = ∅

(A ∩ Λ) 6= ∅ ⇔ Ω = ∅
(4.8)

♦

The stronger version of this theorem, assuming convexity, is the conjunction of
the Lemmas 4.2.1, 4.2.3 and Corollary 4.2.5:

Theorem 4.2.7 Consider the optimization problem defined by (4.1), and assume
that the functions f(·) : Rn 7→ Rp and g(·) : Rn 7→ Rm are convex. Then:

A = Ω 6= ∅ ⇔ Λ = ∅

A = Λ 6= ∅ ⇔ Ω = ∅
(4.9)

♦

As a consequence of theorem 4.2.7, valid for the convex case, the search for a
point inside the feasible set Ω of problem (4.1) can be stated as a multiobjective op-
timization on the auxiliary problem (4.6), which performs a search for Pareto-critical
points xa ∈ A. Once any point xa ∈ A has been found, there are two possibilities: (i)
xa ∈ Ω, or (ii) xa ∈ Λ. At this point, either xa is feasible, or a certificate of infeasibility
has been found.





Chapter 5

Results and Discussions

This chapter deals with the numerical implementation of the proposed infeasibility
certificate.

5.1 Verification of INF Condition

In this work, we applied a scalarization strategy for solving the auxiliary problem
which is related to the infeasibility certificate. A mathematical programming method
is employed for finding a Pareto optimal solution.

5.1.1 Noise-free problems

First, consider the usual situation of noise-free problems (problems for which it is
possible to obtain gradient information), which is the traditional setting of optimiza-
tion problems. This means that it will be possible to calculate the function deriva-
tives, which will allow the definition of gradient-based tests. In order to implement
the search for a point xa inside the set A leading either to a feasible point or to a
certificate of infeasibility, it is enough to find a single Pareto-optimal solution to the
auxiliary problem. A scalarized version of the multi-objective auxiliary problem (4.6)

is stated as:

min
x

max
i
wi ĝi(x) (5.1)

Each optimal solution of (5.1) is a Pareto-optimal solution of (4.6). For each Pareto
optimal point x̄ there exists a weight vector wi such that x̄ is the optimum solution
of (5.1). The meaning of the solutions of problem (5.1), in its non-convex flavor, is
stated as:

46
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Theorem 5.1.1 Consider a solution xa of problem (5.1). Then:

xa 6∈ Ω⇒ Ω = ∅ (5.2)

♦

Under the assumption of convexity:

Theorem 5.1.2 Consider a solution xa of problem (5.1). Then:

xa ∈ Ω⇔ Ω 6= ∅ (5.3)

♦

To check the feasibility or infeasibility of the original problem on the basis of this
solution, it is necessary to check the conditions described in section 4.2. If the
obtained solution x̄ is feasible, then the feasibility problem is solved. Otherwise, if x̄
solution is infeasible, it is necessary to check the INF conditions numerically on x̄.
Define:

Ĝ(x̄) =
[
∇ĝ1 ∇ĝ2 . . . ∇ĝk

]
(5.4)

in which k denotes the number of violated constraints in point x̄, which were as-
sumed to occupy the first k indices of the constraint set, w.l.g.. Suppose x̄ ∈ Λ, then
it comes from equation (4.4):

Ĝ(x̄) µ = 0 (5.5)

Suppose w.l.g. that ∇ĝ1 6= 0, and assume that µ1 = 1. Then:

[
∇ĝ2 . . . ∇ĝk

] 
µ2

...
µk

 = −∇ĝ1 (5.6)

Now, assume provisionally that matrix H =
[
∇ĝ2 . . . ∇ĝk

]
has full column rank.

The case in which n = k − 1 leads to a straightforward solution:
µ2

...
µk

 = −
[
∇ĝ2 . . . ∇ĝk

]−1
∇ĝ1 (5.7)
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In the case of n > k − 1 a least-squares solution can be expressed as:
µ2

...
µk

 = −
([
∇ĝ2 . . . ∇ĝk

]T [
∇ĝ2 . . . ∇ĝk

])−1 [
∇ĝ2 . . . ∇ĝk

]T
∇ĝ1

(5.8)
In both cases, if all the components of µ given by equations (5.7) and (5.8) are

positive, then the condition (INF) will hold and the problem will be strictly infeasible.
On the other hand, if there is at least one negative multiplier, it is not possible to de-
clare that the original problem is infeasible. In order to remove the assumption of full
column rank of H, consider the submatrices composed by subsets of the columns
of H, such that they attain the largest possible column rank. All such matrices can
be evaluated, using the suitable criterion, either (5.7) or (5.8). If the INF condition is
verified for any such a matrix, then the problem can be declared to be infeasible.

Now, in the case of n < k − 1,

[
∇ĝ1 ∇ĝ2 . . . ∇ĝk

]

µ1

µ2

...
µk

 = 0 (5.9)

which means that µ ∈ N (Ĝ), in which N (·) stands for the null space of the argument
matrix. Let K+ denote the cone of the positive octant of suitable dimension. In this
case, if

N (Ĝ) ∩ K+ 6= 0 (5.10)

then the condition (INF) will hold, and the problem will be strictly infeasible.

5.1.2 Noisy problems

Now, consider the situation of noisy problems, in which the function values are sup-
posed to be corrupted by some noise. In this case, the computation of derivatives
should be avoided, since the noise would be amplified in that computation. In this
situation, the proposed indicator is still suitable for providing an infeasibility certifi-
cate. The kind of evidence to be employed, in this case, relies on the description of
the Pareto-front of the auxiliary problem (4.6) (the image of the set A, in the space
of constraint function values), denoted by g(A). The following theorem states the
facts that support the proposed procedure.

Theorem 5.1.3 Let y = g(x) for some x ∈ A. The following statements hold:
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(i) y ≺ 0 ⇒ x ∈ Ω

(ii) 0 ≺ y ⇒ Ω = ∅

♦

The reasoning that was implicit, in the former subsection, was that: (i) An op-
timization algorithm should be executed in order to solve problem (5.1). (ii) After
the solution is found, if it is not feasible, a criticality test is performed, in order to
ensure that it is indeed a solution. Once the criticality test returns a positive answer,
the (INF) condition is considered to hold, and the infeasibility of the problem (4.1) is
declared.

Now, in order to replace the criticality test as the additional evidence that sup-
ports the declaration of infeasibility of problem (4.1), it is adopted a regularity test.

Definition 5.1 Let F denote the intersection of the Pareto-front of 4.6 with the pos-
itive orthant of the space of constraint function values:

F = g(A) ∩ K+ (5.11)

Let C(F) denote the convex hull of F , and let ∂C(F) denote the boundary of the set
C(F). The surface F is said to be regular if:

(i) It has no holes.

(ii) Every point y ∈ F belongs to ∂C(F).

♦

Of course, the regularity is not a necessary attribute of F . However, the features
(i) and (ii) are rather usual in the context of constraint functions. Therefore, the
regularity provides support to the declaration of infeasibility of problem (4.1).

The regularity test procedure is stated as:

(a) Find a description of the Pareto-front of the auxiliary problem (4.6) in the positive
orthant.

(b) If such a description is consistent with a regular Pareto-front surface, then de-
clare that the (4.1) is infeasible.

Step (a) should be performed using a derivative-free multiobjective optimization
algorithm. For this purpose, the evolutionary multiobjective algorithms are well-
suited. For instance, the NSGA-II algorithm (Deb et al., 2002) and the SPEA-2
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algorithm (Zitzler et al., 2002) both provide suitable mechanisms for producing a
uniform sampling of F . However, for problems with a large number of constraint
functions, a better choice would be a decomposition-based evolutionary algorithm,
such as MOEA-D (Zhang and Li, 2007), due to the many-objective degradation ef-
fect on algorithms that use Pareto-based selection (such as NSGA-II or SPEA-2).

Step (b) can be performed according to the following steps: (i) The existence
of holes is tested with the use of a goal attainment scalarization, defining a test
direction pointing to the region in which there could be a hole. If a new point is
found by this procedure, there is no hole, and the point is added to the Pareto-set
sampling. Otherwise, there is a hole, and the surface is not regular. (ii) The condition
that every point belonging to the Pareto-front sample also belongs to the boundary
of its convex hull is tested by verifying if every point has a hyperplane that separates
it from the other ones.

If step (b) finishes with a positive answer about the regularity of the F surface,
the problem (4.1) is declared infeasible.

5.2 Illustrative Examples

In order to perform computational tests involving the proposed infeasibility condition,
a simple computational framework has been defined. Since problem (5.1) is a single
objective problem involving non-differentiable functions, the Non-linear Nelder-Mead
Simplex Method Nelder and Mead (1965) can be used to solve it, as discussed in
chapter two. For this purpose, a random starting point x0 is considered. The non-
linear programming problem results into a solution x̄. Finally, the obtained solution
x̄ is checked for the infeasibility certificate.

Here, the proposed algorithm is explained graphically with the help of some sim-
ple examples. Each example show that the problem is feasible or strictly infeasible
at the solution point x̄ and consequently the obtained solutions belong to the feasible
set Ω or to the set of points Λ respectively.

Example 5.1 Consider the following optimization problem with three constraints:

min
x
f(x)

subject to:

g1(x) = −x1 + x2
2 ≤ 0

g2(x) = x1
2 + 3x2

2 − 4 ≤ 0

g3(x) = x1
2 + (x2 − 5)2 − 4 ≤ 0
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In this example, f(x) could be a single or multiobjective function.
For this, we can define the vector function like (4.5) as follows;

ĝi(x) =

{
0 , ∀ x | gi(x) ≤ 0

gi(x) , ∀ x | gi(x) > 0

i = 1, . . . , 3

From the above vector function, the following auxiliary problem is defined as:

min
x
ĝ(x)

The auxiliary problem for the above example is given by

min
x
ĝ(x) = min

 ĝ1(x)

ĝ2(x)

ĝ3(x)


Using minmax formulation we have

min
x

max
i
wiĝi(x)

Applying Nelder Mead Simplex method to solve this minmax problem, we get
different solutions depending on the values of weights wi. In the following figure, the
dense area shows the INF solutions of this problem.

Figure 5.1: Pareto critical solutions of the problem

This problem is strictly infeasible with trade off solutions near to the boundaries
of the constraints.
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Example 5.2 Consider the same example with the first two constraints:

min
x
f(x))

Subject to:

g1(x) = −x1 + x2
2 ≤ 0

g2(x) = x1
2 + 3x2

2 − 4 ≤ 0

Applying the same procedure as in the previous example, we have the following
figure.

Figure 5.2: Shows a single feasible solution of the problem

Figure (5.2), shows that the problem is feasible and we end up with one feasible
solution. Here we can write A = Ω 6= ∅ and Λ = ∅

Example 5.3 Consider the same example with the last two constraints.

min
x
f(x)

subject to:

g2(x) = x1
2 + 3x2

2 − 4 ≤ 0

g3(x) = x1
2 + (x2 − 5)2 − 4 ≤ 0

Figure 5.3 shows a beam of INF solutions, and consequently the problem is
strictly infeasible again.
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Figure 5.3: The dense area in the figure shows a beam of INF solutions.

Example 5.4 Consider the following optimization problem taken from (Byrd et al.,
2010) with four constraints:

min
x
f(x)

subject to:

g1(x) = x1
2 + x2 + 1 ≤ 0

g2(x) = x1
2 + x2 + 1 ≤ 0

g3(x) = −x12 + x2
2 + 1 ≤ 0

g4(x) = x1 + x2
2 + 1 ≤ 0

Figure 5.4 shows that the problem is strictly infeasible with four objective func-
tions.

5.3 Algorithms

The whole computational procedure is summarized in the following algorithms.
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Figure 5.4: Infeasible (INF) solutions with four objective functions.

Input: Function g(.), iterMax

Output: Certificate c

1 iter ← 0

2 while Certificate c does not give a conclusion and iter <= iterMax do
3 Initialize weights wi for the auxiliary problem
4 x0 is initialized at random
5 x← solver(auxObjFun(x,w), x0)

6 c← checkingCertificate(x)

7 iter ← iter + 1;

8 end
9 return c ;

Algorithm 1: Main Loop

In Line 5 of Algorithm 1, a solution x is obtained by the use of solver Nelder Mead
Simplex (Nelder and Mead, 1965) from a random starting point x0, with random
weights w composing the auxiliary objective function. The obtained solution x is
checked for certificate (line 6 of algorithm 1).

By arbitrarily choosing µ1 = 1, a linear system is solved for the Lagrange multi-
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pliers. If all the Lagrange multipliers are greater than 0 then the solution x will result
into an infeasible certificate.

5.4 Performance on Test Problems

The proposed algorithm was implemented in MATLAB (2013). Computational exper-
iments were carried out on a Pentium Core 2 Quad (Q6600) computer with 8GB of
RAM and operating system of Windows 7. The algorithm is tested on five examples
as introduced in Section 5.2 on a batch of different number of executions for each
instance. The initial points were selected at random.

The computational results of batches of 30 executions are given in Tables 5.1, 5.2
and 5.3 for four different scenarios, with maximum number of iterations (iterMax)
equal to 30, 50, 200 and 500. In the tables of computational results, lines “FC”
and “IC” indicate the number of feasibility and infeasibility certificates obtained for
each problem. Line “NC” indicates the number of iterations in which any certificate is
obtained. Line “#x̄” indicates the average number of solutions obtained for achieving
the feasibility or infeasibility certificates for each example.

Example 5.5 Consider the following example with 6 constraints.

min
x
f(x)

Subject to:

g1(x) = x21 − x2 + 1 ≤ 0

g2(x) = x21 − x42 ≤ 0

g3(x) = 2x21x
expx1
2 − x42 ≤ 0

g4(x) = −x1 + x22 ≤ 0

g5(x) = x21 + (x2 − 5)2 − 4 ≤ 0

g6(x) = x21 + 3x22 − 4 ≤ 0
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Example 5.6 Consider the following example with 7 constraints.

min
x
f(x)

Subject to:

g1(x) = xx34 e
x4 ≤ 0

g2(x) = +x21 + x2 + x53 + x24 + 1 ≤ 0

g3(x) = x21 − x42 ≤ 0

g4(x) = 2x21x
expx4
2 − x42 ≤ 0

g5(x) = −x1 + x22 ≤ 0

g6(x) = x21 + (x3 − 5)2 − 4 ≤ 0

g7(x) = x21 + 3x22 − 4 ≤ 0

Finally, three more examples are included in order to further validate the pro-
posed algorithm. These quadratic examples are taken from Byrd et al. (2010) having
2, 4 and 5 constraints respectively, and so-known as example 1, 3 and 5, and called
in this thesis as Byrd 1, 2 and 3 respectively.

Table 5.1: Computational results for maximum 30 iterations

Ex. 5 Ex. 6 Byrd 1 Byrd 2 Byrd 3
FC 0 0 0 0 0
IC 0 6 30 28 30
NC 30 24 0 2 0
#x̄ 3,00 2,90 1,00 1,86 1,00

Table 5.2: Computational results for maximum 50 iterations

Ex. 5 Ex. 6 Byrd 1 Byrd 2 Byrd 3
FC 0 0 0 0 0
IC 15 29 30 30 30
NC 15 1 0 0 0
#x̄ 36,93 13,83 1,00 2,03 1,00

Analyzing tables 5.1, 5.2 and 5.3 it can be seen that the proposed algorithm
is capable to provide feasibility or infeasibility certificates for the given maximum
numbers of iterations. When the number of iteration is 30 i.e. iterMax = 30, the
algorithm produces 100% of accuracy for instances Byrd 1 and Byrd 3. Considering
50 iterations, the algorithm results into 50% of its executions in infeasibility for Ex.5
and this percentage is 99% in case of example Ex.6. Table 5.3 is considered for 500
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Table 5.3: Computational results for maximum 200 and 500 iterations

Ex. 5 Ex. 6 Ex. 5
FC 0 0 0
IC 26 30 30
NC 4 0 0
#x̄ 88.46 15.36 74.73

maxIter 200 200 500

iterations, where EX.5 shows different results in case of 200 and 500 iterations. In
the case of 500 iterations, EX.5 produces 100% infeasibility.





Chapter 6

Conclusion

In this thesis, a new infeasibility certificate for non-linear optimization problems on
the basis of Pareto-criticality condition of an auxiliary multiobjective optimization
problem was developed. The main result presented here is a new necessary con-
dition (that becomes necessary and sufficient under convexity assumptions) for the
infeasibility of finite-dimensional optimization problems, which is related to the Kuhn-
Tucker conditions for efficiency in multi-objective problems. By defining a suitable
auxiliary vector function, the search for the feasible set can be stated as the search
for a point that is Pareto-critical for such an auxiliary problem. Once a Pareto-critical
point w.r.t. the auxiliary problem is found, it is either a feasible solution of the orig-
inal problem or brings a certificate of infeasibility (which is globally valid for convex
problems). Differently from other existing certificates of infeasibility, the proposed
one relies on primal variables only.

Another important difference of the proposed methodology is that it admits a
modified version that does not rely on gradient information. In this case, the criticality
test is replaced by a heuristic regularity test.

The performance of the proposed methodology was tested on some functions,
and it delivered promising results.

59





Bibliography

Andersen, E. D. (2000). On primal and dual infeasibility certificates in a homoge-
neous model for convex optimization. SIAM Journal on Optimization, 11(2):380–
388.

Andersen, E. D. (2001). Certificates of primal or dual infeasibility in linear program-
ming. Computational Optimization and Applications, 20(2):171–183.

Andersen, E. D. and Andersen, K. D. (2000). The MOSEK interior point optimizer for
linear programming: an implementation of the homogeneous algorithm. In High
Performance Optimization, pages 197–232. Springer.

Andersen, E. D. and Ye, Y. (1997). On a homogeneous algorithm for a monotone
complementarity problem with nonlinear equality constraints. In Complementarity
and Variational Problems: State of the Art, pages 1–11. SIAM Philadelphia, PA.

Andersen, E. D. and Ye, Y. (1999). On a homogeneous algorithm for the monotone
complementarity problem. Mathematical Programming, 84(2):375–399.

Andersen, K., Louveaux, Q., and Weismantel, R. (2008). Certificates of linear mixed
integer infeasibility. Operations Research Letters, 36(6):734–738.

Andreani, R., Birgin, E. G., Martínez, J. M., and Schuverdt, M. L. (2007). On aug-
mented Lagrangian methods with general lower-level constraints. SIAM Journal
on Optimization, 18(4):1286–1309.

Ben-Tal, A. and Nemirovskiı̆, A. S. (2001). Lectures on Modern Convex Optimization:
analysis, algorithms, and engineering applications. SIAM.

Benson, H. Y., Vanderbei, R. J., and Shanno, D. F. (2002). Interior-point methods for
nonconvex nonlinear programming: Filter methods and merit functions. Compu-
tational Optimization and Applications, 23(2):257–272.

Byrd, R. H., Curtis, F. E., and Nocedal, J. (2010). Infeasibility detection and SQP
methods for nonlinear optimization. SIAM Journal on Optimization, 20(5):2281–
2299.

61



REFERENCES 62

Byrd, R. H., Gould, N. I., Nocedal, J., and Waltz, R. A. (2003). An algorithm for
nonlinear optimization using linear programming and equality constrained sub-
problems. Mathematical Programming, 100(1):27–48.

Byrd, R. H., Lopez-Calva, G., and Nocedal, J. (2008a). A line search penalty method
for nonlinear optimization. Technical report, Technical Report 08/05, Optimization
Technology Center, Northwestern University.

Byrd, R. H., Nocedal, J., and Waltz, R. A. (2006). Knitro: An integrated package
for nonlinear optimization. In Large-scale nonlinear optimization, pages 35–59.
Springer.

Byrd, R. H., Nocedal, J., and Waltz, R. A. (2008b). Steering exact penalty methods
for nonlinear programming. Optimization Methods and Software, 23(2):197–213.

Chankong, V. and Haimes, Y. (1983). Multiobjective Decision Making: theory and
methodology. Noth-Holland.

Deb, K. (2001). Multi-objective Optimization Using Evolutionary Algorithms, vol-
ume 16. John Wiley & Sons.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiob-
jective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions
on, 6(2):182–197.

Durand, N. and Alliot, J.-M. (1999). A combined Nelder-Mead simplex and genetic
algorithm. In GECCO’99: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 921–928.

Erling D. Andersen, M. A. (2011). How to use Farkas’ lemma to say something
important about infeasible linear problems.

Fletcher, R. (1987). Practical Methods of Optimization. Wiley.

Fletcher, R., Gould, N. I., Leyffer, S., Toint, P. L., and Wächter, A. (2002). Global
convergence of a trust-region SQP-filter algorithm for general nonlinear program-
ming. SIAM Journal on Optimization, 13(3):635–659.

Geoffrion, A. M. (1968). Proper efficiency and the theory of vector maximization.
Journal of Mathematical Analysis and Applications, 22(3):618–630.

Gill, P. E., Murray, W., and Saunders, M. A. (2002). SNOPT: An SQP algorithm for
large-scale constrained optimization. SIAM Journal on Optimization, 12(4):979–
1006.



REFERENCES 63

Greenberg, H. (1983). A functional description of ANALYZE: A computer-assisted
analysis system for linear programming models. ACM Transactions on Mathemat-
ical Software (TOMS), 9(1):18–56.

Han, S.-P. and Mangasarian, O. L. (1979). Exact penalty functions in nonlinear
programming. Mathematical programming, 17(1):251–269.

Luc, D. T. (1988). Theory of Vector Optimization. Springer-Verlag, Berlin.

Martínez, J. M. and da Fonseca Prudente, L. (2012). Handling infeasibility in a large-
scale nonlinear optimization algorithm. Numerical Algorithms, 60(2):263–277.

Marusciac, I. (1989). On Fritz-John-type optimality criterion in multi-objective opti-
mization. Revue d ’Analyse Numerique et de Theorie de l’Approximation, 11:109–
114.

MATLAB (2013). version 7.10.0 (R2013a). The MathWorks Inc., Natick, Mas-
sachusetts.

Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Springer.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The
Computer Journal, 7(4):308–313.

Nesterov, Y., Todd, M., and Ye, Y. (1999). Infeasible-start primal-dual methods and
infeasibility detectors for nonlinear programming problems. Mathematical Pro-
gramming, 84(2):227–267.

Nocedal, J., Öztoprak, F., and Waltz, R. A. (2014). An interior point method for non-
linear programming with infeasibility detection capabilities. Optimization Methods
and Software, 29(4):837–854.

Nocedal, J. and Wright, S. J. (2006). Penalty and Augmented Lagrangian Methods.
Springer.

Rockafellar, R. T. (1974). Augmented Lagrange multiplier functions and duality in
nonconvex programming. SIAM Journal on Control, 12(2):268–285.

Roos, C., Terlaky, T., and Vial, J.-P. (1997). Theory and algorithms for linear opti-
mization: an interior point approach. Wiley Chichester.

Spendley, W., Hext, G. R., and Himsworth, F. (1962). Sequential application of sim-
plex designs in optimisation and evolutionary operation. Technometrics, 4(4):441–
461.



REFERENCES 64

Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical
Programming, 106(1):25–57.

Wright, S. J. (1997). Primal-Dual Interior-Point Methods. SIAM.

Zhang, Q. and Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based
on decomposition. Evolutionary Computation, IEEE Transactions on, 11(6):712–
731.

Zitzler, E., Laumanns, M., and Thiele, L. (2002). SPEA 2: Improving the Strenght
Pareto Evolutionary Algorithms. In EUROGEN 2001. Evolutionary Methods for
Design, Optimization and Control with Applications to Industrial Problems, pages
95–100.


	1 Introduction
	1.1 Research Contributions and Objectives 
	1.2 Thesis Outline

	2 Prelliminary Discussion
	2.1 Multiobjective Optimization
	2.1.1 Dominance concept
	2.1.2 Pareto Optimality
	2.1.3 Methods for the Solution of Multiobjective Optimization

	2.2 The Nonlinear Simplex Search

	3 Infeasibility Certificates
	3.1 The Farkas' certificate of primal infeasibility
	3.2 Validity of Farkas' certificate for relaxed problems 
	3.3 Primal or Dual infeasibility in Linear Case
	3.4 Infeasibility certificate for monotone complementarity problem
	3.5 Infeasibility certificate in homogenous model for convex optimization
	3.6 Infeasibility detection in Nonlinear Optimization Problems
	3.7 Modified Lagrangian Approach

	4 A new Certificate of Infeasibility for Non-linear Optimization Problems
	4.1 Preliminary Statements 
	4.2 Infeasibility Condition

	5 Results and Discussions
	5.1 Verification of INF Condition
	5.1.1 Noise-free problems
	5.1.2 Noisy problems

	5.2 Illustrative Examples
	5.3 Algorithms
	5.4 Performance on Test Problems 

	6 Conclusion
	Bibliography

