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Abstract

The underdevelopment of Brazilian rural families is largely explained by their historical
process of formation and by their poor access to a functional education and transportation
systems. In the last decade, the federal government has been encouraging the nucleation of
rural schools to offer better structured schools to the rural students. Multi-grade rural schools,
often located closer to the rural families but with students of different grades being taught
by the same teacher at the same class, are being shutdown and transfered to bigger, better
installed facilities located near to the counties’ downtown area. The success of such endeavor
relies on offering a transportation system for the rural students. Hence the Brazilian federal
government has been making a great effort to support local administrators to provide better
transport to rural students. One of such efforts gave rise to a central decision support system
which solves the mixed load capacitated rural school bus routing problem with heterogeneous
fleet. The mixed load feature allows students from different schools to ride the same bus during
at the same time. This is an important but neglected problem in vehicle routing literature. In
this thesis, four based meta-heuristic algorithms are devised and embedded into the support
system. The computation performance of the proposed algorithms was assessed on solving
four different datasets, including a real case from Brazil. The proposed methods were also
compared with one known method from the literature. The attained cost savings and reduction
of the number of buses required to serve the rural students showed the suitability of the mixed
load approach over the single load one for the Brazilian rural context. Furthermore four based
meta-heuristic based multi-objective algorithms to solve the multi-objective capacitated mixed
load rural bus routing problem with heterogeneous fleet were also devised. The three involved
objectives were the routing costs, the average weighted riding distances and the routes balance.
The proposed multi-objective methods were compared with one from literature adapted for the
problem and evaluated by assessing the metrics of cardinality, coverage and hyper-volume,
followed by a statistical analyses. The work also introduces a new approach to help decision
makers to selected a suitable solution from a Pareto set. All of the four devised multi-objective
heuristics outperformed the literature procedure.

Keywords: Capacitated rural school bus routing problem, mixed loading, heterogeneous fleet,
Meta-heuristic methods, multi-objective, decision support systems.
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Chapter 1

Introduction

1.1 Background

With 27 states, Brazil has a remarkable feature which is its diversity, revealed in a rich variety
of cultures wide spread on an extensive territory and an area bigger than 8.500 millions km2 di-
vided in 5.560 counties. The cultural differences and contrast among counties can be perceived
in its population density due to its colonial occupation and to the trend of having economic
activities concentrated in great urban areas.

This thesis comprises one of the biggest states in Brazil: Minas Gerais (figure 1.1). Its area
represents 7% of Brazilian territory, equal to 2.55 times the size of Great Britain and 0.92 times
the size of France, the state ranks as the second most populous and the fourth largest by area
in the country. It has over 20 millions inhabitants of which 85.3% live in urban centers and 14%
live in rural areas (IBGE, 2014).

BRAZIL BRAZIL

MINAS GERAIS

Figure 1.1: Brazil and Minas Gerais state.

For being less densely populated, rural areas has been forgotten by social and political
policies leading to less opportunities of growth and development. However, besides having
a smaller number of inhabitants the rural community have the same citizens rights of been
benefited with basic infrastructure and services such as health, public transport and education
(Carvalho et al., 2010).
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1. INTRODUCTION 2

To reverse the actual scenario is necessary to facilitate the access to education once the
development of a municipality or county is directly connected with the education of their
dwellers. With good education is possible to ensure good jobs opportunities, a better life qual-
ity and a promising future.

Unfortunately, the access to school of many rural students has been prevented due to the
nucleation process. The schools used to be located in small cities and villages and have students
of many grades in the same class. In order to organize the educational system in rural areas and
increase the technical and economical support to the children and teachers, those units were
shutdown and the teaching were concentrated in central schools.

The process, exemplified in figure 1.2, represents the schools before being closed, where
students could attend classes close to their residences and all the children were taught at the
same classroom (a). After the nucleation process, the students start to be settled in different
classes according to their grades, in a central and farthest schools, figure (b).

Figure 1.2: (a) Multi-graded classes before nucleation process, (b) Single graded classes after
nucleation process.

So, the feasibility of the nucleation process and the development of rural areas are highly
dependent of the students and rural community transportation. Then, to make up the lack of
schools, a free public transportation is guaranteed by law for students who assist classes in
urban areas, but it is one of the biggest barriers they face to attend classes in distant schools.

Although been guaranteed by law, the provided rural transportation has a very low qual-
ity, which is consequence of a set of factors. The routes, defined annually according to the
children’s residences, ought to have a suitable service level such as maximum travel time and
maximum number of students per vehicle (Sanches and Ferreira, 2003).

However, due to the lack of a good system and qualified technicians, those limits are often
disregarded and the students have to endure long travel times along unpaved roads (figure 1.3)
and overcrowded vehicles without maintenance or any convenience (figure 1.4). The students
dispersion force them to make long walks to reach the school or the bus stop, reducing their
performance at classes.



1. INTRODUCTION 3

The schools starting times also increases the difficulty of defining routes. In countries such
as United States (Park et al., 2012) or Germany (Fügenschuh, 2009) the schools have its classes
starting at different times so it is possible to have reuse of buses with short distance and time
travels. But in Brazil, besides having the classes starting at the same time, the distances to be
traveled are bigger, so the fleet must have higher number of buses to attend all of the students,
increasing the final costs, distance and time travels. This scenario suggest the consideration of
a heterogeneous fleet to attend more than one school at a time, i.e., transporting students from
multiple schools.

Figure 1.3: Roads on raining season.

Figure 1.4: Overcrowded buses in Minas Gerais state.



1. INTRODUCTION 4

In most Brazil rural counties the transportation system is deficient and the final expenses for
it are high because there is a lack of qualified workers to manage the transportation network
which includes: establish routes, select students, designate and assign buses to the routes,
consider cost, safety, time window, travel time and vehicles capacity. Instead, the work is per-
formed by the “feeling” of the responsible for the transportation. Thus, the task of routing is
barely done, increasing the expenses, the travel time, number of required buses and its main-
tenance, the drivers work hours and reducing the students performance and their assiduity to
classes.

Therefore, research about rural transportation is helpful for social and spatial integration.
According to Thangiah et al. (2013), the significance of the school bus routing problem is di-
rectly attributed to its social impact, besides the economic objectives. So, the purpose of this
thesis is to contribute to increase the service level of the rural transportation related to travel
time, safety, routes planning and final costs in order to increase the life quality of rural popula-
tion. Also, present mathematical models, single and multi-objective heuristics to represent and
solve the rural student transportation problem.

1.2 Purpose of the thesis

1.2.1 General

The main objective of this thesis is to develop approaches to solve the capacitated rural
school bus transportation problem in Brazil by respecting the envolved constraints so that good
solutions in a reasonable time with lower costs and adequate service level.

1.2.2 Specifics

Specifically it is intended to:

• study the literature about school vehicle routing problem and focusing in the rural trans-
portation,

• propose mathematical formulations for the problem,

• implement heuristic algorithms single objective case of the problem,

• analyze the impact of using single and mixed load in the final costs,

• propose a multi-objective version to solve the problem,

• propose enhancement features for a meta-heristc iterades local search framework.
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1.3 Thesis Organization

At chapter 2 a literature review is presented with specific topics of rural transportation and
the Brazilian problem addressing mainly the papers which deal with school routing problem,
the chapters in sequence present a deeper review about the related issue.

Chapter 3 presents the related works and a heuristic methods to deal with a single objective
problem. Five meta-heuristics are presented to solve the problem and tested with four data
sets. Chapter 4 shows a review and a solution approach for multi-objective rural school bus
vehicle routing problem, where more then one function is managed at the same time. A new
approach for helping decision makers to find good solutions among Pareto set is also presented
in this chapter. Finally, chapter 5 brings the findings, conclusions and future research for the
work.



Chapter 2

Literature Review

2.1 The School Bus Routing Problem

2.1.1 Introduction

This section brings a literature review about the School Bus Routing Problem (SBRP). The
concerned issue is related to the process of routes construction for the rural school transporta-
tion which has its own particularities and requirements.

Schittekat et al. (2013) divide the problem in three subproblems: find a set of bus stop to
visit, determine the bus stop to which each student should be moved to and determine routes
to visit the defined bus stops minimizing the total distance traveled by buses.

Desrosiers et al. (1981) divide the problem in five subproblems, allowing it to be solved in
steps, which are: data preparation, bus stop selection, routes generation, time windows adjust-
ment and route scheduling (buses assignment). The literature review is based on Desrosiers
et al. (1981) division because, besides being more complete, encompasses larger amount of
papers enabling a better state of the art about the problem.

The first step, data preparation, specify the data network and is compounded by the stu-
dents, schools and garage geographic locations and an origin-destination matrix. In bus stop
selection step, the bus stops for boarding and drop-off the children are defined according to
the easiness access to it. Depending on the classes starting time it is required to adjust the
routes with the time windows and then, is necessary to assign the buses to the routes. The
subproblems are detailed below.

Data preparation: The first stage is to prepare the data to the following subproblems. The
roads are specified in addition to the students and schools geographic locations, kind of fleet
and distance matrix which must include the lowest times or the distance between two pair
of nodes. It can be calculated through geographic information systems (GIS) or shortest path
algorithms (Gallo and Pallottino, 1988).

The students data include their residence location, the destination school and if the student
is handicapped or not. Schools information include its location, the maximum student riding

6



2. LITERATURE REVIEW 7

time and the classes starting and ending times to define the buses arrival. In a few works, this
information is given by schools, but when is not available it can be settle by the author. The
fleet information comprehend their original point (garage) and capacities.

Bus stop selection: The bus stop selection phase defines the bus stops (pick up and drop-off
points) and assign the students to it. In rural school bus routing problem authors consider that
the bus stops are the students residences (Park and Kim, 2010), while in a urban problem the
children are allowed to walk to the stops. This consideration is made because the distances
that rural students need to travel are already too long to and back from school, if they still need
to walk to get the bus, the travel would be even longer and weariness what can reduce their
performance in school or increase school dropout.

However, in some cases, the buses access might be unfeasible due to the roads condition,
so it is acceptable to settle a common board point to the students, which is also an alternative
when the students residences are close to each other. So, as in the urban cases, the children
walk from their houses to the bus stop.

Only few authors apply heuristics to calculate the points (Desrosiers et al. (1981), Bowerman
et al. (1995), Schittekat et al. (2006), Schittekat et al. (2013)), but usually, this step is disregarded
because it is considered that the bus stops are given.

Routes generation: The heuristics used to construct the routes are classified in “cluster-first,
route-second” or “route-first, cluster-second” approach (Bodin and Berman, 1979b). “Cluster-
first” is based on the method proposed by Min et al. (1998) and has two phases. First build
clusters of students then, for each cluster, a TSP is solved to build the routes respecting the
problems constraints (Dulac et al. (1980), Chapleau et al. (1985) and Bowerman et al. (1995)).

“Route-first” approach, also known as route partitioning, is based on the method proposed
by Beasley (1983) for the Vehicle Routing Problem (VRP). As the former this is also com-
pounded by two phases, initially the vehicle capacity is relaxed and a “giant tour” is build
(TSP tour), then the TSP tour is split into feasible trips applying different operators (Newton
and Thomas (1969) and Bodin and Berman (1979b)).

In both cases, after define the initial solution, improvement heuristics are applied to en-
hance the solution. Newton and Thomas (1969), Dulac et al. (1980), Chapleau et al. (1985) and
Desrosiers et al. (1986) apply 2-opt method, while Bennett and Gazis (1972) and Bodin and
Berman (1979b) apply 3-opt. The author define whether use best or first improvement and the
search stops in a local optimum when none improvement can be made.

Time window adjustment: Many works treat the starting and ending times as constraints of
the problem, however, some authors consider that those times are different for each school,
allowing them to adjust the buses travel according with the starting and ending time classes.

Considering that times are different, the buses can be schedule to more then one trip, reduc-
ing the travel costs. This flexibility does not exist in Brazil the vehicle can only be used in one
route and the fact of having long routes can increase the final costs. Fügenschuh (2009) deal
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with the problem of scheduling school starting times allowing student transshipment from a
route to another, but the transshipment issue is discussed latter.

Route scheduling: This stage aim to define the routes sequence. Some authors specify the
start and ending time of each route to create a sequence of routes for the same bus.

Newton and Thomas (1974) admit different period times for the classes, so they develop a
model for multiple schools to construct routes for a scholar district using less buses and saving
in final costs.

Bodin and Berman (1979b) does the same assumption so his problem could be solved by
time period. The final route is combined with a posterior step or with the starting time of the
next class, allowing use buses in two or more routes. This approach can not be applied if the
starting times overlap, because the time required for one path may exceed the start time of the
next school class leading to children delay.

Braca et al. (1997) adopt a different method from literature to solve the problem. While the
most works solve the problem for each school separately, they deal with it considering the set
of schools of New York at the same time. Li and Fu (2002) apply the shortest path algorithm to
generate the initial route and an improvement algorithm to enhance it.

Spada et al. (2005) consider multiple schools and presented a heuristic method to solve
the problem. The schools are arranged according to its starting times and the routes are con-
structed considering a greedy method. If possible the routes are moved in together and the
result improvement is made using Simulated Annealing or Tabu Search.

Most of the works about school transportation deal with those subproblems separately and
in sequence, what does not mean they are independents. Rather, they are highly correlated,
however, need to be solved in stages because of their complexity (NP-hard) (Park and Kim,
2010). Although being complex they can be applied as a combination of two or more subprob-
lems and can be considered as a variant of a known optimization problem, what makes hard
to define them some times.

2.1.2 Classification

The target of this section is review the technical features of the School Bus Vehicle Routing
Problem. Among a countless number of approaches for the SBRP, only few of them were chosen
to be reviewed, the choice was made based on the most important works found in the literature
and those which are more relevant to this research.

Number of schools: The SBRP can be solved considering one school or multiple schools at
the same time. Real problems usually deals with a network compounded by several schools,
however, for the simplicity of deal with one school at a time, this approach is more common in
the literature (Gavish and Shlifer (1978), Bowerman et al. (1995), Corberán et al. (2002), Li and
Fu (2002), Andersson and Lindroth (2005), Schittekat et al. (2006), Pacheco and Martí (2006),
Martinez and Viegas (2011), Ledesma and Gonzalez (2012) and Euchi and Mraihi (2012)).
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To solve multiple schools problems and generate the routes the author can consider the
students residences or the schools (Spada et al., 2005). For students residences approach, the
nodes are inserted in the routes in order to attain the best arrangement of visits (Braca et al.,
1997). The set of nodes include the schools which is also inserted where the result for cost is
smaller. This method allows students from different schools to be transported by the same bus
what is called in literature by mixed load and is applied by Verderber (1974), Chen et al. (1990),
Braca et al. (1997), Thangiah et al. (2008), Spada et al. (2005), Andersson and Lindroth (2005)
and Park et al. (2012). When considering the schools, the set of routes is generated for each
school at a time, the buses are assigned to them and the school bell time adjustment is made
according to their time windows and constraints.

Urban and Rural problem: The solution method to be applied depends on the context of the
problem. Urban and rural areas are manage differently because they have distinct characteris-
tics mentioned by several authors.

Bodin and Berman (1979b), Chapleau et al. (1985), Bowerman et al. (1995) and Simchi-Levi
et al. (2005) state that in urban areas the bus capacity is reached before the limit travel time due
to the high volume of students in those areas. This statement can not be applied to rural areas,
because the population density in rural areas is smaller and even if the maximum riding time
is exceeded is unusual to reach the bus capacity.

In Brazilian rural areas, however, the bus capacity is frequently reached and there are cases
that students have no option but travel standing. The lack of buses to attend the demand
has increased because of the nucleation process that rural areas have being passing through
(Sanches and Ferreira (2006), Sales (2013)) and will be explained latter in this chapter.

Single and Mixed loads: This characteristic covers the allowance of students from different
schools travel in the same bus or not. The single load plan does not allow the transportation
of students from different schools at the same bus. This hypotheses is very restrictive and can
lead to an excessive use of buses when the students are further afield.

When mixed load is allowed the routes flexibility and the use of buses are increased and the
final costs tend to reduce (Braca et al., 1997). Bodin and Berman (1979b) claim that because of
the low population density and the possibility of using fewer buses, the mixed load system is
more suitable in rural than urban areas. Despite being addressed by several authors (Verderber
(1974), Chen et al. (1990), Spasovic et al. (2001), Thangiah et al. (2008), Park et al. (2012) and
Ledesma and Gonzalez (2012)), only Braca et al. (1997) has proposed an algorithm to solve it.
His approach is based initially in a insertion rule, verifying two consecutive nodes and if a bus
stop can be inserted between them.

Chen and Kallsen (1988) developed a system for rural schools considering routing and bus
scheduling. The routing phase define routes for each bus and school, while the scheduling
consider the operational time of the buses. The vehicles can be used in multiple travels and
mixed load is allowed, the solution has to attend the routes balance, satisfy the constraints of
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bus capacity, students travel time and time window and has to minimize the number of vehicles
and total travel time.

Fleet: When adopting homogeneous fleet, the author assumes that the fleet has the same
characteristics (Corberán et al. (2002), Pacheco and Martí (2006), Martinez and Viegas (2011),
Euchi and Mraihi (2012), Kim et al. (2012)).

Newton and Thomas (1974) consider a homogeneous fleet capacity, however, the maximum
load of each bus is defined according to the schools policies about the number of students
sitting or standing. Bowerman et al. (1995) do the same assumption, but they consider that each
children has different weight, so each one represent a different type of load. For the authors, a
student in the first grade occupies just 2/3 of a regular student, therefore, two buses with same
capacity can transport different amount of students.

Problems that admit heterogeneous fleet assume that vehicles have different characteristics
such as capacity, fixed and variable cost and riding times (Li and Fu (2002), Thangiah et al.
(2008), Spada et al. (2005), Andersson and Lindroth (2005), Fügenschuh (2009) e Ledesma and
Gonzalez (2012)). The heterogeneous fleet problem is similar to the VRP whit heterogeneous
fleet, thus, is considered its variant.

Transshipment: This assumption allows that students transshipment from one route to an-
other. Usually, a small vehicle performs the first stage of the travel, taking the students who live
in remote places or whose residences are located in roads of difficult access . They are driven
to a transfer point where a bigger vehicle gather all the students from that area and does the
last part to school.

There is not many works about transshipment for school bus routing problem. In the per-
formed literature review only three papers about the theme were found: Baldacci et al. (2004),
Andersson and Lindroth (2005) and Fügenschuh (2009).

Objectives: The objectives to be adopted depend on the problem and the priorities of the
decision maker. The objective function in mathematical models ensure that limited resources
are being used in the best way in order to attend the demand, reducing costs, increasing profits
or service level.

Usually, the minimization of the number of buses (Li and Fu (2002) and Pacheco and Martí
(2006)) and the total travel time or distance (Li and Fu (2002) and Schittekat et al. (2006)) are
the most common objectives adopted, separately or together (Corberán et al. (2002), Li and Fu
(2002), Thangiah et al. (2008), Schittekat et al. (2006), Fügenschuh (2009), Park et al. (2012) e
Ledesma and Gonzalez (2012)).

Despite not being the most explored objective, some articles address methodologies to an-
alyze the quality of the service level, after all, school transportation is a public service and
it might be verified. Savas (1978) and Bowerman et al. (1995) discuss about three factors to
evaluate the service level: efficiency, effectiveness and equity.
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Efficiency is defined as the ratio of the service level to the cost of the resources required to
provide such service. For a fixed service level, the efficiency can be determined by its cost.

Effectiveness can be measured by customer satisfaction, how good the demand is attended.
An effective school bus system should be available to all eligible student with a great service
level. The effectiveness of a school network service can be determined measuring the total
riding time Spada et al. (2005) or the total walking distance from his residence to the pick up
point (Chapleau et al. (1985) and Bowerman et al. (1995)).

Equity analyze the fairness or impartiality of providing the service in question. An effi-
cient solution can offer lower costs and travel times, however it can be unacceptable due to
the unequal service level, such as uncomfortable trips. The measure of service level has been
omitted in school transportation so as in others public services as education and health. How-
ever its importance has been recognized with the increasing amount of papers which consider
this parameter as objective functions or constraints (Chapleau et al. (1985), Li and Fu (2002),
Bowerman et al. (1995) and Jozefowiez et al. (2009)).

Constraints: So as objective functions, the constraints can vary with the problem specificities.
There is a large number of constraints in literature once most papers deal with specific problems
leading to an wide variety of them. Braca et al. (1997) and Spada et al. (2005) show some
examples:

• vehicle capacity - refers to the maximum number of students that can be transported in
a bus at the same time (Baldacci et al. (2004),Schittekat et al. (2006), Baldacci et al. (2007),
Euchi and Mraihi (2012)),

• maximum riding or travel time - refers to the maximum time that the student can stay in
a bus to reach the school (Verderber (1974), Chen et al. (1990), Martinez and Viegas (2011),
Park et al. (2012)),

• maximum walking distance - refers to the limit distance the student can walk to the bus
stop (Bowerman et al. (1995), Braca et al. (1997)),

• time window - refers to the time range within the buses has to drop of the student at the
school (Braca et al. (1997), Spada et al. (2005), Andersson and Lindroth (2005), Kim et al.
(2012)),

• constraint about the minimum number of students necessary to create a route (Braca et al.
(1997)),

• boarding time - is related to the earlier time that a bus can pick up the first student (Braca
et al. (1997), Martinez and Viegas (2011)).

Occasionally, those constraints can be found as objective functions. Bennett and Gazis
(1972) and Li and Fu (2002), for instance, consider the maximum travel time as objective in
order to minimize the total riding time spent by the students. Bowerman et al. (1995) adopt
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as objective function the total walk distance, while Desrosiers et al. (1981), Bodin et al. (1983)
and Fügenschuh (2009) assume as decision variable the school time window, they claim that
adjusting the school time window can reduce the number of buses needed.

2.1.3 Mathematical formulations and Solutions methodology

Bowerman et al. (1995) prove that the two subproblems, bus stops selection and routes gen-
eration, combined or not, are NP-hard problems. In bus stops selection each student has to
be assigned to a bus stop and each bus stop has its capacity. Using this constraints, the sub-
problem can be converted in a generalized assignment problem which is also NP-hard (Fisher
et al., 1986). The problem of routes generation with capacity constraint and maximum travel
time corresponds to the capacity and distance constrained Open VRP which is also known as
a NP-hard problem. Because of the computational complexity of those problem, most authors
use to solve them with heuristic approaches rather than exact.

Usually, mathematical models are developed as mixed integer programming (MIP) or as
nonlinear mixed integer programming (NLMIP). However, most of them have not been used
directly to solve the problem but only as part of it.

Gavish and Shlifer (1978) consider for a single school problem a column generation and
present a NLMIP for the problem, generate upper bounds and solve a sequence of assignment
problem, the optimal solution is define using branch-and-bound procedure. Bowerman et al.
(1995) consider simultaneously the bus stop selection and routes generation subproblems. He
present a NLMIP model but the mathematical formulation is not used to solve the problem.

Li and Fu (2002) develop a multi-objective NLMIP to generate routes, while Ripplinger
(2005) develop a MIP model for the SBRP, however, the mathematical formulation also is not
used to solve none of the both problems. The mathematical formulation of Kara and Bektas
(2006) is assumed for a single school as a travel salesman problem with multiples depots and
single destination. Bektas and Elmastas (2007) work in a formulation for single school and use
it to solve the problem.

Schittekat et al. (2006) assume a homogeneous fleet and that school and garage are located
at the same location, i.e., the starting and ending points of the routs are the same, however, the
model is very simple and do not consider practical constraints as maximum travel time. A MIP
model is developed to solve a problem with 10 stops and 50 students.

Ledesma and Gonzalez (2012) address the Multiple Vehicle Traveling Purchaser Problem,
a variation of the school routing problem, that considers certain constraints on each bus route,
such as bounds on the distances traveled by the students, bounds on the number of visited bus
stops, and bounds on the minimum number of students that a vehicle has to pick up. They
propose a branch-and-price algorithm to solve a three index variable formulation. Park et al.
(2012) propose a mixed load improvement algorithm and some benchmark problems. They
measure its effects on the number of required vehicles.

Schittekat et al. (2013) develop a mixed integer problem model where they have to decide
the set of stops to visit, the routes along the stops and assign the students. They apply an exact



2. LITERATURE REVIEW 13

algorithm to assign the students and a meta-heuristic GRASP+VND to define the stops and
routes.

The most common heuristic methods used to solve the SBRP are reviewed in section 2.1.2
in bus stop selection and routes generation section. The application of meta-heuristics such
as Simulated Annealing (SA), Deterministic Annealing (DA), Tabu Search (TS), Genetic Algo-
rithms (GA), Ant Colony Optimization (ACO) and Neural Networks (NN), have been proved
to be a good approach to solve combinatorial optimization and more specifically VRP problems
(Gendreau et al. (2002), Langevin and Riopel (2005), Bin et al. (2009)), however, few papers ap-
ply them to solve school bus routing problems.

Thangiah and Nygard (1992) apply Genetic Algorithms (GA) to minimize the vehicle fleet
and the travel distance using the GENROUTE system to generate the routes of two scholar
districts, while Corberán et al. (2002) apply a Scatter Search to improve the initial solution
generated by two heuristics based on clustering mechanisms.

Spada et al. (2005) use Simulated Annealing and Tabu Search to improve the initial solution
generated by heuristic insertion. Ripplinger (2005) use the clustering algorithm to generate
an initial feasible solution and Tabu Search is used to improve it. Pacheco and Martí (2006)
construct a set of feasible initial solution using heuristics from Corberán et al. (2002) and Fisher
et al. (1986) besides an insertion mechanisms, the obtained solutions are improved using Tabu
Search. Thangiah et al. (2013) propose a formulation to the problem and use Genetic Algorithm
to find the initial solution and improve it with intra and inter routes movements.

2.2 The rural bus vehicle routing problem and similar problems

Many real problems involve the issue of vehicle routing, thus the increasing of scientific
studies about the theme has led to an indescribable use of terminologies to define different
classes of it. Therefore, the aim of this section is not to do a review about the School Bus Vehicle
Routing similar problems but elucidate the differences between them.

The definition of the Vehicle Routing Problem (VRP) (Dantzig and Ramser, 1959) states
that m vehicle located at the depot have to attend n customers aiming to minimize the overall
transportation cost. The solution is a set of routes starting and ending at the depot, satisfying
the constraints of capacity and that all the customers must be visited only once.

Another intensively studied problem in Combinatorial Optimization is the Traveling Sales-
man Problem (TSP), which consists in finding among a set of nodes the shortest route that
visits each one exactly once and returns to the original point. There is no capacity constraint or
previous known demand (Gendreau et al., 2002).

The Capacitated Vehicle Routing Problem has a deterministic demand, previously known,
which has to be attended. Its definition consider the Vehicle Routing Problem (VRP), however
the m vehicles have identical capacity C which can not be exceed. The delivery has to be ac-
complished at a minimum total cost and does not have any other constraint such as maximum
travel time, time window or maximum riding time.
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2.2.1 Pick up and Delivery

For pick up and delivery problems different approaches are observed, all of them, however,
focus on the efficient use of a vehicles fleet that must meet the customers demands. Because
of the similarities of the pick up and delivery problems, Savelsbergh and Sol (1995) established
the General Pick up and Delivery Problem which associates several features found between
these problems, whose objective is define a set of routes that meet the demands of pick up
and/or delivery minimizing the transportation costs.

Parragh et al. (2008) divide the General Pick up and Delivery Problem into two classes. In
the first class, denoted as Vehicle Routing Problems with Back-hauls (VRPB), the transporta-
tion is made between customers and depot, i.e., the goods are transported from the depot to
line-haul customers and from back-haul customers to the depot. For this class the author con-
sider four subtypes which are: Vehicle Routing Problem with Divisible Delivery and Pickup
(VRPDDP), the customers which demand delivery and pickup service can be visited twice,
the Vehicle Routing Problem with Simultaneous Delivery and Pickup (VRPSDP), where the
customers demanding both services have to be visited exactly once, the Vehicle Routing Prob-
lem with Clustered Back-hauls (VRPCB) where all line-hauls are executed before back-hauls,
and the Vehicle Routing Problem with Mixed line-hauls and Back-hauls (VRPMB), allows any
sequence of line-hauls and back-hauls permitted.

The second class, deals with those problems where goods are transported between pick up
and delivery nodes, which are divided into three types of problems: the Pickup and Delivery
Vehicle Routing Problem (PDVRP), where pick up and delivery nodes are unpaired, identical
good is considered and each unit picked up can be used to fulfill the demand of any other de-
livery customer, the classical Pickup and Delivery Problem (PDP) and the Dial-A-Ride Problem
(DARP). Both types consider requests associated with an origin and a destination, resulting in
paired pickup and delivery nodes. The PDP deals with the transportation of goods while the
DARP deals with passenger transportation.

2.2.2 Ring-star

The Capacitated m-Ring-star problem (CmRSP) is a variation of the Capacitated Vehicle
Routing Problem with single depot, where the customer can be at the route, connected to an-
other customer or to a node denoted Steiner node, defined as a transition points (Hoshino and
Souza, 2012).

The problem consists of designing a set of m cycles (rings), corresponding to the number of
buses, with capacity Q to attend all customers and minimize the final costs, which is computed
by the costs related to edges in the route and the arcs connected to the points in the ring (Bal-
dacci et al., 2007). Each solution includes a central depot, a certain number of customers, and
maybe the transition points that can be used to save routing costs.
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2.2.3 Multi-echelon Vehicle Routing Problem

In multi-echelon Vehicle Routing Problems, the delivery from the depot to the customers is
managed by rerouting and consolidating the freight through different intermediate satellites.
The general objective is to ensure an efficient and low-cost operation of the system, while the
freight is delivered on time and the total cost of the traffic on the overall transportation network
is minimized. Usually, capacity constraints on the vehicles and the satellites are considered
(Baldacci et al., 2007).

More precisely, in the Multi-echelon VRPs the network can be decomposed into k ≥ 2
levels. The 1st level connects the depots to the first level satellites, the intermediate levels
interconnecting the satellites and the last level the freight is delivered from the satellites to the
customers. Each transportation level has its own fleet to manage the delivery and the vehicles
assigned to a level can not be reassigned to another one. The most common version of multi-
echelon VRPs applied is the Two-Echelon Vehicle Routing Problem, where just two levels are
considered (Perboli et al., 2011).

2.3 The rural bus vehicle routing problem in Brazil

Transport student to and from school is one of the biggest challenges for the Brazilian edu-
cational authorities. In urban centers the issue is not that serious, the students receive tickets
for free or with discounts to get the shuttle transportation to go to and back school.

The deal is, indeed, in rural areas where education units have been shut down for eco-
nomics and social reasons and the students have been moved to school in central areas. This
transportation is constitutionally guaranteed but in most rural counties they are deficient and
the expenses are too high in order of the low population density and bad roads conditions. It
is one of the most big barriers that students face to attend classes.

Many of those counties do not have qualified workers to define routes, select students,
designate and assign buses to the routes and still consider cost, safety, time window, travel
time and vehicles capacity. Thus, the task of routing is barely done in those areas increasing
the expenses, travel time, buses use and its maintenance, drivers work hours and reducing the
students performance and their assiduity to classes.

Besides, the rural school bus transport has some negative aspects such as poor roads con-
dition, inappropriate and old vehicles, overcrowded buses and a lack of proper planning of
routes evidenced by excessive long paths. Long distances is a critical factor in Brazilian ru-
ral areas because, eventually, children need to walk to the bus stops. The maximum allowed
walking distance found in literature was around 2 or 3 kilometers (GEIPOT (1995), Vasconcel-
los (1997)) and 45 minutes was the maximum travel time (Arantes, 1986). However, in Brazil,
some routes has over 140 kilometers, of which 30% of those has more than 50 Km, 32% are 60
and 90 minutes long, 13% has routes over 2 hours and a few of them last more than 4 hours one
way (CEFTRU (2007), CEFTRU (2009)).

More than 90% of the roads used by the rural scholar buses are unpaved or does not receive
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maintenance very frequently, so the uncomfortable travels let the children stressed and tired
reducing their performance or their assiduity to school (Carvalho et al., 2010). Depending on
the season the buses have to cross muddy roads requiring special kind of fleet. When the roads
are impassible and the buses are not able to cross it, the students remain unable to go to school
until the season ends.

The students dispersion is another particularity of the Brazilian problem. This factor re-
duces the number of children per stop and increases the travel time because the buses have to
stop in a higher number of nodes and travel longer distances to pick up the infants. Thus it de-
mand higher number of vehicles to attend all the students. The fixed starting and ending times
and the short time window between the morning and afternoon classes of Brazilian schools
avoid the reuse of buses requiring, then, a bigger fleet for this scenario.

An approach which could deal with the students dispersion and small time windows would
be he transshipment points strategically located and where the students would be transfered
from a vehicle to another. The small vehicle would pick up the children and bring them to the
transfer points where a bigger bus would make the remaining way to school.

People are convinced that urban transportation requires a special attention because its im-
portance in facilitating the transport of people, and reducing traffic and hazard gases emission.
However the efforts for rural community has not to be smaller, the needy of investments is so
big as it is in urban transportation because this service can avoid the spacial segregation, rural
flight and support their inclusion in urban areas and maintain the cultural and social life of
rural community.

However, only few studies has being conducted in Brazil about the access and transporta-
tion of students to school in rural areas. The pioneer studies were conducted by an already
closed Enterprise of Transportation Planning (GEIPOT) in 1995 (Carvalho et al., 2010) followed
by Vasconcellos (1997), Pegoretti and Sanches (2004), Carvalho et al. (2010), Carvalho and Ya-
mashita (2011) and Mandujano et al. (2012).

Therefore, studies in rural transportation are helpful in social and spatial integration. For
that purpose this thesis aim to present mathematical models, single and multi-objective heuris-
tics to represent and solve the rural student transportation problem.

2.4 Research Opportunities

Many efforts have been made to improve the service level, routing costs and travel times in
rural school transportation system, but this service has a lot to be improved yet. Thus, several
issues still remain open for future research.

Because of its computational complexity, few papers deal with exact methods (Letchford
et al. (2006) and Bektas and Elmastas (2007)) what makes it a promising field of research. The
incorporation of school location decisions combined with maximum riding distance constraints
is one of the propositions which can be made for rural areas.

Another especial issue for those areas is the possibility of creating transition points. The
transshipment allows that smaller vehicles reach areas that bigger ones can not, driving the
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students from home to these points where buses with higher capacity would do the second
part until the school. The needy of studies about transshipment is stated by Park and Kim
(2010) and Park et al. (2012). For extensive areas where students and schools are dispersed,
as the Brazilian case, the schools could work as transshipment points reducing the number of
required buses.



Chapter 3

Heuristic algorithms for the Brazilian
context

Chapter information
The content of this chapter was subjected to the Expert Systems with Applications journal

on january 24th of 2015 and was slightly modified in order to suit the thesis standard.

3.1 Introduction

Brazil has over 50 million students enrolled in a complex public educational system that
encompasses more than 198 thousand state and municipal public schools (elementary, middle
and high schools). 14% of these pupils are located on rural areas which are usually served
by multigrade rural public schools (24% of the total number of schools), i.e. schools in which
groups of students of different grades are placed in a single classroom and are typically taught
by only one teacher (INEP, 2013; Carvalho et al., 2010).

On one hand multigrade schools have the advantages of having: flexible schedules, prox-
imity to the community where they are placed, and the development of unique programs to
meet student’s individual needs in order to offer opportunity for them to become independent
learners. On the other, multigrade schools generally have the disadvantages of having: inad-
equate facilities, poor trained teachers, scarcity of varied levels and types of materials, limited
or no access to different types of more advanced curriculum activities, and the absence of sport
infra-structure (Vincent, 1999).

Concerned with these downsides, the Brazilian federal government has been making a
great effort over the last twelve years to provide a better education to the rural population
by encouraging and financing state and municipal authorities to close their multigrade rural
schools and transfer those affected students to better structured, centrally located, school facili-
ties with single-grade classes. To achieve that several government programs have been devised
to assist this endeavor. One in particular referred to as the Way to School program is responsible
for improving the mobility of the students by providing new better adapted to the often severe
operational conditions buses to the municipal administrations. The city is then responsible to
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carry back and forth the students from their homes to their respective public schools (state and
municipal).

However, due to the lack of qualified technicians, to the great social and cultural diversity
found in many regions of Brazil, and to its extensive land, it has been a great challenge for
public authorities to manage rural school transportation services (Carvalho et al., 2010). As
the provided resources are scarce, it has not been possible to dedicate buses to a single school
as typically found in the school bus routing literature (Park and Kim, 2010). Public managers
are having to deal with a more complex problem in which buses are required to serve to both
state and municipal schools at the same time. Students from different schools have to ride on
the same bus at the same time in order to go to their respective schools, i.e. buses carry mixed
loads of students prior to drop them off at different destinations before returning to the garage.
To complicate matters even more, managers have often to plan the routing for a heterogeneous
fleet.

Figure 3.1 illustrates an example of such problem: Thirteen students (stick figures) scattered
in six bus stops must be carried to their respective schools represented by triangles numbered
7-9. The students are associated to each school by a color scheme, e.g. filled stick students
go to the filled triangle, unfilled stick students go to the unfilled triangle and so on. Two bus
routes leaving the garage (square node), picking up the students and delivering them to their
respective schools prior to returning to the garage are pictured as filled and dotted arrows.
Note that (i) students of different schools are carried by the same bus, (ii) the picking operation
is carried out prior of the delivery, (iii) each student bus stop is visited exactly once; (iv) each
school node can be visited by more than one bus, though each bus can visit a school only once;
(v) the schools visited by a bus depend only on the students being carried by it, i.e. a bus is not
required to visit all of the schools. These features give raise to a problem known as the rural
school bus routing problem with heterogeneous fleet and with mixed loading (Park and Kim,
2010).

Garage

Schools

Students and routes
1

2

3

4

5 6

7

8
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Figure 3.1: Example of a school bus routing problem with mixed loading.

The mixed loading assumption is first considered by Bodin and Berman (1979b) who point
out that it can occur frequently in rural areas, however they do not present any methodology
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to deal with it. Chen and Kallsen (1988) also remark that having buses to transport students
of just one school at time (single load) can result in the deployment of an excessive number
of vehicles, specially when dealing with remote pupils who live in low density areas. They
propose an expert system to aid the routing and scheduling of buses for a rural school system
in which routes are manually generated.

Actually Braca et al. (1997) are the first authors to directly address the mixed load bus rout-
ing problem by proposing an insertion procedure. The devised method constructs each route
by randomly selecting a bus stop and inserting it and its respective associated school into the
route at the best cost estimation possible, but making sure that the time window and capacity
constraints are satisfied. The objective is to minimize the number of used buses only, and not
the routing costs. The authors also state, without reporting quantitative data, that an increase
of flexibility and cost savings can be achieved whenever buses carry mixed loadings.

Spada et al. (2005) devise a decision-aiding methodology for a school bus routing and
scheduling system in which the number and the types of buses are given a priori. The authors
explicitly optimize the level of service provided by the bus operator while allowing mixed
loading. The level of service is represented by two objectives: the student’s time loss and the
maximum time loss. The time loss of a student is calculated as the sum of the delays and the
waiting time. The delays are the difference between the actual journey time of each student
and the shortest possible time between their bus stop and their respective school. While the
waiting time is the time spent by the pupils waiting for class to begin at their school. Spada
et al. construct initial routes by sorting the bus stops associated to each school in decreasing
order of their distance to their respective school. Then the bus stops are inserted in a greedy
fashion to form the routes, while respecting the considered constraints (time and capacity). A
local search which exchanges non-bus stops from different routes is then applied to improve
the initial solution. This local search is embedded into two heuristic strategies (simulated an-
nealing and tabu search) to see which one perform better (simulated annealing).

Park et al. (2012) improve the method of Braca et al. (1997) by devising a post improve-
ment procedure similar to the neighborhood of Spada et al. (2005). Starting from a solution
with a dedicate fleet per school obtained from a sweep based algorithm (Gillett and Miller,
1974a), the procedure reallocates one bus stop at a time in a greedy way until routes can be
merged or deleted. Time windows and capacity constraints are respected during the bus stop
reassignments. They also adapt a formulation for the pickup and delivery problem with time
windows and heterogeneous fleet. They split each bus stop with students of different schools
into new stops, one for each school, while preserving the location of the original bus stop (e.g.
in Figure 3.1 node one would be divided into two new nodes, one for each school). Then, for
each student bus stop, a virtual node is created having the location of the school associated
to the student bus stop so that precedence constraints can be imposed in order to ensure that
these virtual nodes are only visited after their respective student bus stops. Buses’ capacities,
time windows for each school, and the maximum riding time for the students are enforced by
proper constraints. The objective of the formulation is to find a set of feasible routes with a
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minimum number of vehicles while allowing mixed loads. The proposed formulation allows
for a bus to visit the same school several times if the time constraints permit.

In most mixed loading problem variants addressed in the literature (Bodin and Berman,
1979b; Chen and Kallsen, 1988; Braca et al., 1997; Spada et al., 2005; Park et al., 2012), it is as-
sumed that schools have different starting times spanned in a large time interval. For instance,
Park et al. (2012) consider on their computational tests that the starting time of each school
can occur on an interval from 7 to 11AM with a 30 minute time window; while Fügenschuh
(2009) uses an interval from 5 to 9AM. This allows for buses to be reused on different routes
at the same day, though school time window constraints need to be imposed. By exploiting
these large time spans, some authors (Desrosiers et al., 1981,9; Fügenschuh, 2009) have an indi-
rect way to minimize the number of vehicles. They propose methods to adjust the school bell
times, i.e. to determine new starting and ending times for schools in order to maximize the
number of routes that can be done by the same bus. That way, the number of buses employed
can be reduced.

Unfortunately, the aforementioned assumptions are not valid for all contexts, specially in
Brazil where all (municipal or state) schools start at the same time because of labor regulations.
Moreover due to Brazil’s road conditions and to the dispersion of the population on its rural ar-
eas, the imposition of maximum riding times for the students is not always possible. Carvalho
et al. (2010) present a good description of the situation of the Brazilian rural bus school trans-
portation services. According to them, 92% of the rural roads are unpaved and ill maintained,
being one of the main reasons for the large riding times, e.g. 33% of the rides last from 60 to
90 minutes, but there are travels with time lengths greater than 2 hours (15% of them). Further,
28% of the routes are longer than 37 miles, with many routes being as long as 125 miles.

Moreover, as all Brazilian’s public schools start at the same time, it is not on the best interest
of the welfare of the students to arrive early at the schools so that buses can be reused to do
other routes. So Brazil has adopted the policy that all buses must pick the students up first and
then deliver them to their respective schools with no student pickups between schools. One
may wonder about how this policy may shorten the possibility of cost savings when student
pickups between school deliveries are disregarded. In fact, this is indeed true. Nevertheless
cost savings can still be achieved if fleet and routing costs are both taken into account in a mixed
load routing plan. Though Braca et al. (1997) and Park et al. (2012) state that the reduction of
one bus results in a larger cost savings than reducing the routing costs; for the Brazilian context,
this turned out to be the opposite. In fact, for low density populated regions with student bus
stops scattered far apart from each other and far from the school locations, the routing costs
play an important role in the overall costs, as can be seen in a real case presented in Section
3.4.5.

In the present article, five different meta-heuristics are devised to solve the rural school
bus routing problem with heterogeneous fleet and with mixed loads for the Brazilian context:
The first one is an adaptation of the Record-to-Record Travel algorithm for solving the hetero-
geneous fleet vehicle routing problem proposed by Li et al. (2007); the other two are based
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on an Iterated Local Search (ILS) meta-heuristic (Lourenço et al., 2010); while the last two use
a Variable Neighborhood Search (VNS) (Hansen and Mladenović, 2001; Hansen et al., 2010)
strategy. All meta-heuristics employ five neighborhood structures which are organized or in
a fixed or in a random Variable Neighborhood Descent (VND) local search (Mladenović and
Hansen, 1997). To assess the performance of the devised algorithms, three different types of
data sets, totaling 150 test problems ranging from 250 to 2000 bus stops and transporting from
3,204 to 27,594 students, are used on the computational experiments. Besides showing that the
ILS algorithm with a random VND out-performs the other methods, the results also show that
the policy of having mixed loads on the buses, while minimizing fleet and routing costs, allows
for greater saving costs when compared with the procedure of Park et al. (2012) for minimiz-
ing the number of vehicles or with solutions having buses with single loads, and a dedicated
fleet per school. Furthermore, a real instance extracted from a county located in the state of
Minas Gerais, Brazil, is presented to illustrate the suitability of the aforementioned policy for
the Brazilian context.

The remainder of this chapter is organized as follows. Section 3.2 presents the notation and
the proposed formulation for the problem. In Section 3.3, the developed meta-heuristics are de-
scribed, while Section 3.4 reports the achieved results on the benchmark instances. Concluding
remarks are drawn in the last Section 3.5.

3.2 Notation, definitions and formulation

The rural school bus routing problem with heterogeneous fleet and with mixed loads can
be defined on an undirected graph G = (N, E) in which the set of nodes N = {0} ∪ P∪H is the
union of the garage node with the sets of nodes P = {1, . . . , np} and H = {np + 1, . . . , np + ns}
representing where the students (pupils) and schools are located, respectively; and E is the set
of edges. For each node i ∈ P, there is a set of schools requisitions Ki ⊆ H in which dik > 0
students from node i ∈ P must be driven to school k ∈ Ki. All of the qi = ∑k∈Ki

dik students of
node i ∈ P must be picked up by the same bus at the same time and driven to the schools of set
Ki. Let B be a set of heterogeneous buses stationed at garage node 0 and with capacities Qb and
fixed costs ab, for all b ∈ B. Without loss of generality we assume that Q1 ≤ Q2 ≤ . . . ≤ Q|B|
and a1 ≤ a2 ≤ . . . ≤ a|B|. Let also every edge (i, j) ∈ E have a nonnegative cost cb

ij = τb`ij

associated to it depending on which bus b ∈ B is using it, where τb is the cost per unit of
traveled distance for bus b ∈ B and `ij is the distance between nodes i and j, (i, j) ∈ E.

For a subset F of E, let Gb(F) denote the subgraph Gb(N(F), F) of bus b ∈ B induced by F,
in which N(F) is the set of nodes incident to at least one edge of F. A route of a bus b ∈ B is
then defined as a nonempty subset Rb ⊂ E of edges for which the induced subgraph Gb(Rb) is
a simple cycle having node 0 and such that the total demand of nodes in N(F) \ ({0} ∪H) does
not exceed the capacity of bus b. Such cycle represents the route of bus b leaving the garage,
picking up the students at nodes in N(F) \ ({0} ∪ H) first, delivering them to the school nodes
in N(F) \ ({0} ∪ P) and returning to the garage. The cost of such a route is given by the sum
of the costs of the edges forming the cycle and by the fixed cost of bus b. The problem objective
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is then to design the least cost routes such that all of the student nodes are visited exactly once
and delivery to their respective school nodes.

One way of formulating the aforementioned problem is by extending the two index for-
mulation introduced by Laporte et al. (1985) for the capacitated vehicle routing problem and
combining it with a variable size bin packing model (Dyckhoff, 1990). Let yb

i ∈ {0, 1} be a inte-
ger variable equal to 1 if node i ∈ N \ {0} is assigned to bus b ∈ B; 0, otherwise. Let zb ∈ {0, 1}
be a integer variable equal to 1 if bus b ∈ B is set to do a route; 0, otherwise. Let xb

ij ∈ {0, 1} be
an integer variable equal to 1 if edge (i, j) ∈ E is used on the route of bus b ∈ B; 0, otherwise;
The formulation for the mixed load capacitated rural bus routing problem can be formulated
as:

min φ(z, y, x) = ∑
b∈B

abzb + ∑
(i,j)∈E

cb
ijx

b
ij

 (3.1)

s.t.: ∑
b∈B

yb
i = 1 ∀i ∈ P (3.2)

∑
i∈P

qiyb
i ≤ Qbzb ∀b ∈ B (3.3)

yb
i ≤ yb

k ∀i ∈ P, k ∈ Ki, b ∈ B (3.4)

∑
(i,j)∈E

xb
ij + ∑

(j,i)∈E
xb

ji = 2yb
j ∀j ∈ N \ {0}, b ∈ B (3.5)

∑
(0,j)∈E

xb
ij = 2zb ∀b ∈ B (3.6)

∑
(i,j)∈E:i∈P,j∈H

xb
ij = zb ∀b ∈ B (3.7)

∑
(i,j)∈E:i,j∈S

xb
ij ≤ ∑

i∈S\{k}
yb

i ∀b ∈ B, k ∈ S, S ⊆ N \ {0} (3.8)

xb
ij ∈ {0, 1} ∀(i, j) ∈ E, b ∈ B (3.9)

yb
i ∈ {0, 1} ∀i ∈ N \ {0}, b ∈ B (3.10)

zb ∈ {0, 1} ∀b ∈ B (3.11)

The objective function (3.1) minimizes the total cost of setting the buses and forming the
routes. Constraints (3.2) assure that each student node is assigned to a bus, while constraints
(3.3) ensure that the capacity of each bus is not exceeded. Constraints (3.4) guarantee that
whenever a student node is assigned to a bus, the schools associated to this node will also be
visited by the same bus. Constraints (3.5) and (3.6) are the degree constraint for each customer
visited by a bus and for the garage node whenever a bus is set. Constraints (3.7) allow for only
one edge connecting student to school nodes to be used whenever a bus is set. This guarantees
that the picking operation is carried out prior to the delivery of the students to their schools.
Constraints (3.8) are the well-known sub-tour elimination constraints (SECs) which ensure that
the nodes assigned to a bus are connected. Finally, (3.9)-(3.11) are domain constraints.
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3.3 Solution approaches

Five meta-heuristics are devised to solve the mixed load rural bus routing problem with het-
erogeneous fleet. The proposed algorithms are thought to have the least number of parameters
to be tunned and to be easy of implementation and use. Further, all designed methods em-
ploy an adapted Clark and Wright savings algorithm (Clark and Wright, 1964) for generating
a starting solution. Before presenting the devised methods, a few remarks about the employed
solution representation are in order.

3.3.1 Solution Representation

Each solution consists of a set of routes which are stored as a doubly-linked list structure
proposed by Li et al. (2007). Each route has two parts: one for the student bus stops, and
another for the school nodes. This division is important because each student node is visited
only once in a solution, while each school can be visited multiple times. Further, this structure
stores the routes as the predecessor and the successor nodes of each bus stop of a route, greatly
reducing the computational time when performing the local search movements. Moreover, a
sorted list of the closest bus stops to each node is assembled. This list speeds up the search pro-
cess during the local search. Each list has the nodes that are within 60% of the largest distance
between the bus stops of the instance being addressed. The aforementioned representation is
used in the developed algorithms which require a starting feasible solution.

3.3.2 Starting Solution

To generate a starting feasible solution s, a modified Clark and Wright savings procedure,
depicted in Algorithm 1, is developed. Initially, each node i ∈ P is assigned to an individual
route ri with the smallest vehicle capacity available and capable of accommodating the number
of students qi at node i (line 1). Route ri is constructed such that it visits all of the schools
associated to node i, i.e. schools in the set Ki. An estimation of the savings (γij) of merging each
pair of routes ri and rj is calculated by pondering a parameter λ (line 2), where φ(·) is the cost
function. Parameter λ implicitly controls the number of route pairs which will be candidates
for merging. For small (large) values, λ increases (decreases) the number of pair candidates to
be merged. It is then possible to produce many different initial solutions by varying a single
parameter (λ). The symbol ‖ (line 2) represents the best possible merge of the routes respecting
the bus capacity and schools to be visited. A student bus stop of rj is inserted into a route ri

by observing the cheapest insertion possible and the bus capacity. If necessary and possible, a
larger bus can be used, though having its cost accounted for. School nodes are also inserted, if
required, in the cheapest way possible. Recall that the student bus stops are visited first, and
school nodes later. After computing the savings γ, pairs of routes are merged in a descending
order (lines 3-4) of the savings.

To merge two routes, say ri and rj, each rj student bus stop is attempted to be inserted
into another route ri by observing its list of closest nodes which are already in route ri, and
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then choosing the cheapest insertion cost. If necessary and possible, a larger bus can be set.
Otherwise, the node is not inserted. If all of rj nodes are inserted into ri, route rj is deleted.
Otherwise route rj is left with the nodes not inserted. A smaller bus for route rj can also be
set in place of the previous one if necessary and possible. In case school nodes are supposed
to be inserted into route ri, these insertions are carried out in the cheapest way. The algorithm
continues with the next pair of routes until no more routes can be merged. Whenever a route
can not be further merged, a 2Opt optimization procedure (please refer to subsection 3.3.3) is
performed to improve the final cost of the resulting route (line 5). During the merge process,
it is always observed that the student bus stops are visited first, before the school nodes. At
the end, the route is appended to solution S (line 6). This adaptation of the Clark and Wright
savings procedure is embedded in all of the devised meta-heuristics which employ, following
their respective strategies of solution, neighborhood structures to improve the initial solution.

Algorithm 1 Generating an initial feasible solution

Require: λ
Ensure: s

1: Assign one bus to each node i ∈ P to obtain route Ri
2: ∀i, j ∈ P : i 6= j do γij ← φ(Ri) + φ(Rj)− λ φ(Ri ‖ Rj)
3: Sort γij in a descending order
4: Merge routes in the savings order respecting the buses’ capacities, to form a new route Rb
5: Improve each route Rb by performing a 2Opt(Rb) procedure
6: s← ⋃

b∈B Rb

3.3.3 Neighborhood Structures

Four neighborhood structures were adapted from the capacitated vehicle routing problem
literature (Laporte and Semet (2002), Gendreau et al. (2002)) to improve the initial solution s:

• One Point Move - N 1(s): this neighborhood structure reallocates a student bus stop in a
different position on the solution. It can be applied within and between routes (Li et al.,
2007). When performed within a route, this neighborhood may not have a significant
impact on the solution or its cost. However when carried on between routes, both affected
routes may be significantly altered afterwards, because a group of schools associated to
the node being moved may now be required to be visited in the inserted route. Likewise
this same group of schools may not need to be visited anymore on the previous route. In
Figure 3.2, the left original solution consists of two routes formed by dashed and straight
arcs. The routes start and end at the garage (black square), though returning arcs to the
garage are not here represented for sake of presentation. The routes visit the student
nodes (circles) first and then the school nodes (triangles). Each student node is associated
to a school by a color scheme. For instance, gray nodes 1, 2 and 5 go to the gray triangle.
In the example, node 5 is moved from the dashed to the straight arc route yielding the
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solution in Figure 3.2(a). Note that now the dashed route does not visit the gray triangle
school anymore.

• Two Point Move - N 2(s): this neighborhood structure swaps one student node from a
route for another one of a different route. Once again, both affected routes may be very
different in the end given the group of schools associated to the nodes being moved. In
Figure 3.2, student nodes 3 and 5 are swapped in the left original solution obtaining the
solution of Figure 3.2(b). Note that the gray triangle school is removed from the dashed
arc route, as it is the black triangle for the straight arc route.

• Cross-Exchange - N 3(s): this neighborhood structure removes one arc from two differ-
ent routes and reconnects the involved nodes by cross-linking the heads and tails. For
instance, if two arcs (i, j) and (i′, j′) from two different routes are selected, the cross-
exchange neighborhood would reconnect the nodes as (i′, j) and (i, j′) forming two dif-
ferent routes. In Figure 3.2, arcs (3, grayschool) and (6, 4) are selected from the left original
solution to be removed and the involved nodes are reconnected as (6, whiteschool) and
(3, 4) forming the solution of Figure 3.2(c). Note also that schools are removed and/or
inserted on the involved routes.

• 2Opt - N 4(s): this neighborhood structure removes two non-consecutive arcs of a route
and reconnects the involved nodes by linking the heads and the tails together, e.g. given
arcs (i, j) and (i′, j′), the nodes would be reconnected as (i, i′) and (j, j′). An example is
provided in Figure 3.2 on the right. Arcs (5, 6) and (4, 7) of the right original solution are
removed from the route and the nodes are reconnected as (5, 4) and (6, 7) as illustrated
in Figure 3.2(d).

Besides the task of selecting among the nodes or arcs which will produce a better solu-
tion than the current one, the first three neighborhood structures require also an extra effort
of checking if schools will be inserted into or removed from the affected routes whenever a
movement is evaluated. These insertions and removals are very time consuming, and repre-
sent a further computational burden. To speed up the process, each neighborhood structure is
implemented as a combination of two procedures: one for evaluating the move and another
to execute it. It’s important to notice that most of the evaluated movements are not executed.
So the first function does only the absolutely necessary tasks to assess the feasibility and the
improvement on the solution. Once an evaluated move is allowed, the function to execute it
does not need to recalculate the savings and how the nodes and arcs will be affected. Further,
bus capacities are increased or decreased as needed and possible, but the proper corresponding
costs are always accounted for. Finally, though there are other more elaborated neighborhood
structures that can be adapted from the capacitated vehicle routing problem literature (Laporte
and Semet, 2002; Gendreau et al., 2002), these required adaptations represent a computational
challenge that needs to be overcome due to the further effort of the school removals and inser-
tions.
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Figure 3.2: Result examples for the local search operators.

3.3.4 Variable Neighborhood Descend Local Search Methods

The four neighborhood structures are organized in a Variable Neighborhood Descend (VND)
local search procedure (Mladenović and Hansen, 1997). VND is a meta-heuristic which consists
of a permutation P = {p1, . . . , p|N |} of a set N = {N1, . . . , N|N |} of neighborhood structures.
These local searches are applied to an initial solution s, one at a time in the order defined by the
permutation P, with the objective of finding better solutions. Starting at p1, the VND algorithm
goes from a local search pi to the next pi+1, whenever pi fails to find an improving solution.
Every time a better solution than s is found, s is updated and the procedure recommences the
search at p1. The algorithm stops when no improving solution is found by p|N |. Algorithm 2
illustrates the aforementioned steps.

As a complete exploration of a neighborhood pi on s may be too time consuming, an al-
ternative adopted policy is to accept the first improved move by a local search rather than the
overall best (Mladenović and Hansen, 1997). Furthermore, permutation P is usually sorted a
priori by the increasing complexity of computation in finding improved solutions. However a
random arrangement of P is also possible originating what is known as the Random Variable
Neighborhood Descend (RVND) algorithm.

3.3.5 Implemented meta-heuristics

Five different meta-heuristics are implemented. The first to be presented is an adaptation of
the Record-to-Record Travel (RRT) method proposed by Li et al. (2007) for the heterogeneous
fleet vehicle routing problem; followed by the other four algorithms which are the result of
embedding the VND and RVND approaches as the local search method into an Iterated Local
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Algorithm 2 Variable Neighborhood Descend Algorithm

Require: P = {p1, . . . , p|N |}, s
1: k← 1
2: while k ≤ |P| do
3: s′ ← pk(s)
4: if φ(s′) < φ(s) then
5: s← s′

6: k← 1
7: else
8: k← k + 1
9: end if

10: end while

Search (ILS) (Lourenço et al., 2010) and a Variable Neighborhood Search (VNS) (Hansen and
Mladenović, 2001; Hansen et al., 2010) strategies.

3.3.5.1 A Record-to-Record Travel algorithm

The implemented RRT algorithm (Li et al., 2007), illustrated in Algorithm 3, resembles a
deterministic simulated annealing methodology which iterates between two phases: an Uphill
(lines 5-8), which can be considered as a perturbation stage; and a Downhill (lines 11-20), which
can be seen as an intensification, refinement step. In both phases, the neighborhood structures
are used as a local search method to improve a given solution. Though instead of functioning as
in a VND algorithm, each neighborhood structure is applied only once in the order prescribed
by the permutation P given rise to the function OnePass (lines 6 and 12). Further, each phase
adopts a different acceptance criterion for updating the current best solution. While during
the Uphill phase, solutions worst than the best current solution, but within a given threshold
(δ), are accepted as candidate solutions to be further improved; on the Downhill phase only
solutions better than the overall best are accepted. The method iterates for a maximum of
MaxIter iterations without improvements; while the Uphill phase lasts for MaxPert iterations.
The simplicity behind the method and its fast running times for generating good solutions
for instances of the classical vehicle routing problem with hundreds of nodes are the main
motivations for the RRT procedure to be here adapted for the mixed load rural school bus
routing problem with heterogeneous fleet.

Algorithm 3 Record-to-Record Travel Algorithm

Require: P, s, MaxIter, MaxPert
1: i← 0
2: while i < MaxIter do
3: p← 0
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4: {Uphill}
5: while p < MaxPert do
6: s← OnePass(s, P, δ)
7: p← p + 1
8: end while
9: stop← FALSE
10: {Downhill}
11: while stop = FALSE do
12: s′ ← OnePass(s, P)
13: if φ(s′) < φ(s) then
14: s← s′

15: i← 0
16: else
17: i← i + 1
18: stop← TRUE
19: end if
20: end while
21: end while

3.3.5.2 An Iterated Local Search algorithm

The implemented Iterated Local Search (ILS) (Lourenço et al., 2010), represented in Algo-
rithm 4, starts with a solution s and performs, at each iteration, a perturbation followed by a
local search procedure. The perturbation function (line 3) randomly selects any neighborhood
structure of P, but the N 4(s) (2Opt), and executes a randomly move. As suggested by Li et al.
(2007), the 2Opt was set to be the last neighborhood structure to be executed since it is more
interesting to change the nodes of the routes before optimizing the order of visitation. The local
search function (line 4) can be based on the VND or on the RVND of Section 3.3.4, resulting then
into two different meta-heuristic algorithms. After the excution of the local search function, the
current best solution s is updated if the attained solution s′ is better than it (lines 5-10). The
algorithm iterates for a maximum of MaxIter iterations without improving the current best
solution.

Algorithm 4 Iterated Local Search Algorithm

Require: P, s, MaxIter
1: i← 0
2: while i < MaxIter do
3: s′ ← Perturbation(s, P)
4: s′ ← LocalSearch(s′, P)
5: if φ(s′) < φ(s) then
6: s← s′

7: i← 0
8: else
9: i← i + 1

10: end if
11: end while
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3.3.5.3 A Variable Neighborhood Search algorithm

The Variable Neighborhood Search (VNS), shown in Algorithm 5, deploys a different strat-
egy than the ILS for reducing the risk of being trapped in non-promising search areas. Instead
of randomly selecting a neighborhood structure from permutation P to perform the perturba-
tion of a solution s as in the ILS method (line 3 of Algorithm 4), the VNS procedure applies
one neighborhood structure for the perturbation and the local search functions at a time (lines
3 and 4 of Algorithm 5) following the order of permutation P. Further, while in the ILS algo-
rithm the local search function (line 4 of Algorithm 4) is actually a VND method, in the VNS
the local search function consists in the use of only one neighborhood at a time. Whenever a
neighborhood structure is able to find an improving solution (lines 5-10 of Algorithm 5), the
VNS algorithm restarts the procedure by applying the neighborhood structure of the first po-
sition of permutation P. The method stops when no further improvement on solution s can be
achieved. When using the RVND version, the local search function randomly selects a neigh-
borhood structure which will be used.

Algorithm 5 Variable Neighborhood Search Algorithm

Require: P, s
1: k← 1
2: while k ≤ |P| do
3: s′ ← Perturbation(s, pk)
4: s′ ← LocalSearch(s′, pk)
5: if φ(s′) < φ(s) then
6: s← s′

7: k← 1
8: else
9: k← k + 1

10: end if
11: end while

3.3.6 A Mixed Load Improvement Algorithm (Park et al., 2012)

In the rural school bus routing problem literature, the works of Park et al. (2012) and Braca
et al. (1997) are the only ones which address the mixed load rural bus routing problem with
heterogeneous fleet. Actually, the mixed load improvement (MLI) procedure of Park et al. can
be considered as an enhancement to the algorithm devised by Braca et al.. It starts with a set
of single load routes constructed by using a variant of the sweep algorithm (Gillett and Miller,
1974a) followed by an assignment problem of routes to buses. Then the method attempts to
move all student bus stops from a route to other routes through a relocation operator. If it
succeeds, the empty route is deleted from the solution. Otherwise, it restores the stops to the
original route and selects a different one. The algorithm then iterates until no further routes
can be eliminated. Student bus stops are inserted into the other routes at the best possible
saving costs, though no further optimization is performed on the routes. One of the key steps
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of the relocation operator is the feasibility checking of the routes. After moving a bus stop from
one route to another, the algorithm has to check whether the bus capacity and the maximum
riding time are exceeded or not, and if a new school will be required to be visited or not.
When a route is set to stop at a new school, the school node is usually appended to the end
of the trip. All of these operations of performing the node relocations without the guarantee
of the suppression of the route at the end, together with the route feasibility testings, require a
great deal of computational effort, being critical to the method. It is important to remark that
Park et al. (2012)’s MLI procedure minimizes the number of buses only, not performing route
optimization.

3.4 Computational results

All six algorithms (RRT,ILS-VND,ILS-RVND,VNS-VND,VNS-RVND,MLI) were coded in
C++, compiled with GCC 4.8.1., and tested on an Intel Xeon 2.53 GHz with 24GB RAM running
Linux Mint 16. For the experiments, three bus types with capacities of 20, 30 and 40 seats
were made available to transport the students. The daily fixed depreciation costs (fixed costs)
and the routing costs were set to $100, $150, and $200, and $1.00, $1.20 and $1.40 per unit of
traveled distance, respectively, for each bus type. The daily depreciation costs were estimated
by assuming a bus lifespan of 10 years, while the distances between nodes were considered to
be Euclidean.

Four data sets were used in the experiments: (a) PARK - 24 instances of Park et al. (2012)
were used in the calibration phase. These instances are classified into two types: (i) one with
randomly distributed schools and bus stops, and (ii) other with schools and bus stops gath-
ered in several clusters. The number of students ranges from 3, 204 to 27, 594 scattered in bus
stops within the set {250, 500, 1000, 2000}. The number of schools varies according to the set
{6, 12, 25, 50, 100}. All bus stops are dispersed in an area of 960mi2. (b) MOD - from each PARK
instance 5 new ones were created by modifying node demands. For each node i, the number
of associated schools |Ki| was uniformly generated from 1 up to 3 schools. The schools were
then uniformly selected among the available schools to form set Ki. For each school k ∈ Ki,
a new demand dik was uniformly created within the range of 1 to 3 students. A total of 120
new instances were built and used on the comparison tests. (c) RAND - although instances
from Park et al. (2012) are considered to be rural, they do not represent the Brazilian reality.
So, besides the PARK and the MOD instances, five new ones were also created to characterize
Brazilian counties of different sizes. A total of 2000 students were randomly placed on bus
stops scattered over an area with sizes ranging in the set {3, 6, 12.5, 18.5, 31} (mi2). From 10%
up to 30% of the bus stops as well as all of the 10 available schools were located inside an imag-
inary downtown area with a radius of 1.85 miles. The remaining nodes were located on the
outskirts of this radius. The demands were randomly set following the same logic of the MOD
instances, that is, from 1 up to 3 students were allowed for each bus stop. (d) REAL - a real case
for the city of Governador Valadares, located in the state of Minas Gerais, Brazil (please refer
to Section 3.4.5), was studied.
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As four (ILS-VND,ILS-RVND,VNS-VND,VNS-RVND) of the five proposed methods have a
random nature, each one of the instances was executed 30 times with a different seed ({1, . . . , 30})
being supplied to the generator of random numbers for each run. Altogether more than 4,500
runs were executed to assess the computational performance of the devised meta-heuristics.
Differences in the solution costs and in the average weighted riding distance of the students
were also recorded to compare the mixed load approach with single load solutions. Further,
the overall best proposed method was compared with the MLI procedure presented by Park
et al. (2012).

3.4.1 Calibration phase

To calibrate the proposed meta-heuristics, the PARK dataset (Park et al., 2012) was used
as the control instances to set the main parameters or configurations. The idea is to identify
which parameter value and/or settings perform better for the methods. Park et al. devise their
instances to allow bus stops with demands up to 66 students. In the present experiments, the
used bus capacities were smaller (20, 30 and 40 available seats), so bus stops with demands
greater than 40 pupils were split into new nodes according to respective their schools, but
respecting the least feasible capacity available.

a) Parameter λ of Algorithm 1: values in the set {0.4, 0.6, . . . , 2.0} were used for λ as sug-
gested by Li et al. (2007). Of the 24 instances, λ = 0.4 returned 19 best solutions, i.e., the
best solution was found in 79.17% of the times, against 5 (20.83%) for the value λ = 0.6.
For higher values for λ, the obtained solutions were worse 5.43% in average than the best
ones found. This is somehow expected since λ controls the number of pairs of routes to be
candidates to be merged. Larger values of λ imply that bus stops which are far apart may
now be selected to be grouped, which per se may greatly increase the routing distances.
Based on these results, λ was set to 0.4.

b) Neighborhood structure search order for the VND: Numbering the neighborhood struc-
tures as 1 for OnePointMove, 2 for TwoPointMove, 3 for CrossExchange, and 4 for 2Opt,
and leaving the 2Opt search structure as the last neighborhood to be executed, six possi-
ble orders for the VND were investigated to assess which one performs better when an
initial solution is provided. The 2Opt was set to be the last one because as pointed out by
(Li et al., 2007) it is more interesting to change the nodes of the routes prior to optimize the
sequence of visitation. Though statistically equivalent, the order 2314 performed slightly
better than the other orders, presenting an improvement of 0.64% on average over the
supplied initial solutions.

c) RRT Parameter MaxIter of Algorithm 3: The values 5, 10, 15 were assessed as the max-
imum number of iterations (MaxIter) for the RRT algorithm, while adopting the order
2314 on the permutation set P for the OnePass function. Value 15 was able to return the
best solutions for all instances of the PARK dataset when compared with the values 5 and
10. These values were only able to find the best solutions in 87.5% of the cases. For sake of
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fairness in the comparison, the parameter MaxIter of the ILS meta-heuristic (Algorithm
4) was set also to 15.

The number of perturbation iterations MaxPert was set to 5 as suggested by Li et al.
(2007). Recall that during the Uphill phase, solutions up to 10% worse than the current
solution are allowed as new current solutions. If the number of perturbation iterations is
greatly increased, a random search behavior may be perceived, yielding probably a poor
behavior of the algorithm.

3.4.2 Heuristics performance on the MOD dataset

The MOD dataset has 120 instances. Each one was solved 30 times for each method (ILS-
VND,ILS-RVND,VNS-VND,VNS-RVND), but the RRT, with a different seed being supplied to
the random generator of numbers for each run. As the RRT procedure is a deterministic algo-
rithm, each instance was solved only once by it. Given the large number of executions and the
obtained records, a more interesting and compact presentation of the results was here favored.
Ribeiro et al. (2002) propose a concise and elegant methodology to report computational exper-
iments of different meta-heuristics with a random nature. Prior to introduce the used metrics
to assess the performance of the methods, some notation is required. Let I = {1, . . . , 120},
R = {1, . . . , 30}, and M = {ILS-VND,ILS-RVND, VNS-VND,VNS-RVND, RRT} be the sets of
instances, runs, and evaluated methods, respectively. Let also φ(sirm) and φ(s∗i ) be the costs of
the solution of run r ∈ R for instance i ∈ I by method m ∈M , and of the overall best solution
for instance i ∈ I (φ(s∗i ) = minr∈R,m∈M {φ(sirm)}), respectively.

Ribeiro et al. (2002) show that is possible to assess how good a heuristic is when compared
with others whenever optimal solutions are not available for the instances. They suggest the
use of the overall best solution (s∗i ) for each instance as reference during the computation of
the following metrics:

− #Best: it is the number of instances in which the regarded method finds the overall best
solution after all the runs for each instance. More precisely,

#Bestm = |{i ∈ I : φ(s∗i ) = min
r∈R

φ(sirm)}| ∀m ∈M .

A large value indicates a good performance by the studied heuristic.
− %Best: it represents the same of #Best, but in a percentage format.
− %DevMed: it estimates the precision of the regarded method. It is the average percentage

of the deviations of the achieved solutions for each run from the overall best solution of
each instance, or:

%DevMedm = 100
∑i∈I ∑r∈R

(
φ(sirm)−φ(s∗i )

φ(s∗i )

)
|I | |R| ∀m ∈M
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A small value indicates a more precise method.
− %DevMin: it assesses the accuracy of the referred algorithm. It is the average percentage

of the deviations of the best solution obtained by the procedure from the overall best
solution for each instance, or:

%DevMinm = 100
∑i∈I

(
minr∈R φ(sirm)−φ(s∗i )

φ(s∗i )

)
|I | ∀m ∈M

A small value indicates a more accurate algorithm.
− Score: it indicates how the other methods performed better than the referred algorithm

over the instances. For each instance, it is computed how many algorithms obtained a
better solution than the observed method. These values are then summed to represent
the final score of the procedure, or:

Scorem = ∑
i∈I

|{j ∈M : j 6= m ∧min
r∈R

φ(sirj) < min
r∈R

φ(sirm)}| ∀m ∈M

The lower the score value the better the performance of the algorithm. For example, for a
given instance, if four methods obtained a better solution then the current algorithm, its
score would be equal to four.

− %∆(s0): it indicates the average percentage on how much the initial solution (s0) was
improved by the referred method or

%∆(s0)m = 100
∑i∈I ∑r∈R

(
φ(s0

irm)−φ(sirm)

φ(s0
irm)

)
|I | |R| ∀m ∈M

− min %∆(s0): it indicates the minimum percentage on how much the initial solution (s0)
was improved by the referred method or

min %∆(s0)m = 100 min
i∈I ,r∈R

(
φ(s0

irm)− φ(sirm)

φ(s0
irm)

)
∀m ∈M

− max %∆(s0): likewise, it indicates the maximum percentage on how much the initial
solution (s0) was improved by the referred method or

max %∆(s0)m = 100 min
i∈I ,r∈R

(
φ(s0

irm)− φ(sirm)

φ(s0
irm)

)
∀m ∈M

Table 3.1 shows the attained results for the RAND instances. Though the four first methods
presented similar results, the ILS-RVND had the overall best values for the considered metrics;
while the RRT algorithm got worst. ILS-RVND was able to provide the greatest improvements
on the given initial solutions. The performance of the ILS-RVND can be explained by observing
Table 3.2 which presents the averages of the averages of the best solutions obtained by each
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method and of the averages of the running times, group by the instance indexes of the PARK
data set (Park et al., 2012). The numbers of student bus stops and schools are also displayed for
each group. The ILS-RVND expended more time in the search in half of the groups, taking on
average 15.10% more time on average than the other methods.

Table 3.1: Summarized results for the MOD instances.

ILS-VND ILS-RVND VNS-VND VNS-RVND RRT
%∆(s0) 3.02 3.07 3.02 2.97 2.24

min %∆(s0) 1.20 1.20 1.03 1.20 0.88
max %∆(s0) 6.96 8,24 6.90 6.24 4.76
%DevMin 0.26 0.21 0.27 0.31 1.07
%DevMed 0.86 0.85 0.89 0.89 1.07

%Best 28.33 33.33 18.33 15.83 4.17
#Best 34 40 22 19 5
Score 190 143 196 224 444
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Table 3.2: Average solution costs and running times for the MOD instances.

ILS-VND ILS-RVND VNS-VND VNS-RVND RRT

Group |P| |H| φ̄(s) T̄ φ̄(s) T̄ φ̄(s) T̄ φ̄(s) T̄ φ̄(s) T
# [secs.] [secs.] [secs.] [secs.] [secs.]
1 250 6 9740.12 0.86 9742.97 0.83 9748.43 0.80 9740.02 0.83 9730.55 0.70
2 250 12 12231.41 0.77 12233.02 0.80 12231.86 0.73 12239.92 0.70 12214.07 0.71
3 500 12 24556.08 7.55 24563.39 7.46 24573.99 7.66 24568.42 7.69 24694.69 4.07
4 500 25 31324.25 6.62 31311.68 6.81 31331.86 6.39 31343.41 6.13 31429.03 4.12
5 1000 25 59480.14 57.78 59447.84 59.35 59466.17 58.82 59486.20 55.70 59605.21 25.05
6 1000 50 65529.26 60.72 65516.16 61.15 65521.43 58.55 65522.01 58.67 65474.12 32.25
7 2000 50 118913.06 364.10 118917.64 359.70 118944.60 342.36 118935.49 353.81 119080.07 122.20
8 2000 100 137804.13 481.62 137842.42 440.13 137813.47 496.34 137755.46 485.05 137937.14 207.88
9 250 6 9581.32 0.94 9584.42 0.92 9582.34 0.90 9582.62 0.90 9614.87 0.73

10 250 12 14001.53 0.97 14015.44 0.93 14019.46 0.84 14021.71 0.89 14074.93 0.75
11 500 12 27119.63 6.13 27112.65 6.05 27132.14 5.94 27127.14 5.85 27175.41 3.73
12 500 25 33084.98 5.81 33076.05 6.09 33091.71 5.41 33089.59 5.66 33181.48 3.55
13 1000 25 64099.23 49.40 64079.12 50.44 64091.54 50.06 64106.90 49.82 64287.94 21.54
14 100 50 68091.49 46.66 68065.75 47.93 68115.86 43.33 68129.75 43.15 68114.90 23.80
15 2000 50 127711.59 464.96 127736.95 475.29 127801.76 432.96 127771.51 436.62 128042.89 154.70
16 2000 100 136756.13 480.19 136859.17 413.62 136885.88 410.32 136858.99 427.54 136942.61 189.30
17 250 6 16139.34 0.91 16137.11 0.90 16151.68 0.82 16141.08 0.85 16226.56 0.63
18 250 12 19460.62 1.08 19447.12 1.07 19457.36 1.01 19478.22 0.98 19561.92 0.76
19 500 12 34140.12 5.81 34139.02 5.85 34133.50 5.85 34151.52 5.62 34242.59 2.97
20 500 25 37421.48 6.86 37435.20 6.85 37461.24 6.36 37453.64 6.76 37455.58 3.87
21 1000 25 68487.04 67.80 68457.63 70.34 68498.86 65.85 68495.21 67.22 68570.18 30.06
22 1000 50 75930.22 69.70 75914.02 69.49 75946.30 65.98 75938.44 67.75 75848.57 31.52
23 2000 50 141522.49 384.21 141363.28 450.40 141477.10 415.37 141446.48 413.63 142000.92 123.42
24 2000 100 146317.18 444.21 146231.92 486.00 146269.62 466.71 146276.14 479.51 146402.66 191.97

Average 61643.45 125.65 61634.58 126.18 61656.17 122.89 61652.49 124.22 61746.20 49.18



3. HEURISTIC ALGORITHMS FOR THE BRAZILIAN CONTEXT 37

3.4.3 ILS-RVND-ML vs ILS-RVND-SL vs MLI

The MLI procedure of Park et al. (2012) does not take into account the routing costs, having
the only objective of minimizing the number of used buses. Park et al. argue that the routing
costs can be disregarded because they are much smaller than the fixed bus costs. Unfortunately
this is not true for all the situations. Given the lifespan of a bus and as the picking and delivery
of students are routinely done over the school year, on the long run, the routing costs may start
to weight on public spendings. Further, when they are not taken into account, some collateral
distortions may occur. For instance, the average weighted riding distance of the students may
be much larger than when these costs are embedded into the solution process. Recall that the
average weighted riding distance of the students is the sum of all of the traveled distance of
each student from his bus stop to his school divided by the total number of pupils. These
effects are more widely perceived when schools do not have the flexibility of having different
starting times, as it assumed in the study of Park et al. (2012). Due to labor policies and union
treats, schools in Brazil have to start at the same time. To show the influence of these effects,
the PARK dataset was solved by the ILS-RVND with mixed load (ML) of students, and by
a modified version of the ILS-RVND allowed to handle only single load (SL). The attained
results were compared with the ones obtained by the MLI procedure configured to disregard
time windows. The same homogeneous fleet of Park et al. with capacity of 66 seats was used
during the experiments. The fixed and the routing costs per unit of traveled distance were set
to $200 and $1.00, respectively. Each instance of the PARK dataset was solved 30 times by the
ILS-RVND-ML and ILS-RVND-SL with a different seed for each run.

Table 3.3 presents the total costs, the routing and the fixed costs, the number of buses, and
the average weighted riding distance of the students (ω̄`) for the obtained results. The MLI
procedure provided solutions with the smaller number of buses for every instance. However,
by disregarding the routing costs during the search, it achieved solutions with the largest total
costs when these costs are considered afterwards. For all methods, it is interesting to note that
whenever the number of bus stops are large, (e.g. instances 6 − 9, 15 − 16 and 23 − 24) the
routing costs are larger than the fixed costs, contradicting the assumptions of Park et al. (2012).
The attained ω̄` for the ILS-RVND-SL and ILS-RVND-ML algorithms were much smaller than
the MLI procedure. This metric indicates that more students are riding for longer distances in
the MLI’s solutions than in the other two methods. Furthermore, the approach with a SL of
students had a tendency to provide the best ω̄`, but, depending on how the bus stops were
scattered over the studied region, the ML version provided smaller values (e.g. instances 2,
3, 4, 7, and 11). On average, the ω̄` values of the SL solutions were only %6.33 smaller than
the ML ones, though the ML solutions had total costs and the number of buses that were on
average %6,53 and %7.72 smaller. Another interesting fact worth of remarking is that the MLI’s
solutions were worse than the ones got by ILS-RVND-SL. In only three instances, the MLI
algorithm generated a better solution (see rows 2, 6 and 9). This indicates that for the cases in
which schools start at the same time, there is no advantage of adopting the MLI procedure over
a strategy of having a dedicate fleet per school.
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Table 3.3: ILS-RVND-SL vs. ILS-RVND-ML vs. RC.

ILS-RVND-SL ILS-RVND-ML MLI
Park TC1 RC2 FC3 ω̄` TC RC FC ω̄` TC RC FC ω̄`

inst. |P| |H| ($) ($) ($) #B4 (mi.) ($) ($) ($) #B (mi.) ($) ($) ($) #B (mi.)
1 250 6 20424.43 7024.43 13400 67 43.60 20067.13 7067.13 13000 65 45.47 20934.86 8734.86 12200 61 70.26
2 250 12 21974.96 10574.96 11400 57 52.18 19760.28 9560.28 10200 51 48.24 21613.38 11413.38 10200 51 72.39
3 500 12 42368.23 19368.23 23000 115 53.65 39503.67 17703.67 21800 109 50.40 42913.56 21913.56 21000 105 85.25
4 500 25 52866.31 27066.31 25800 129 55.26 48408.95 24408.95 24000 120 51.57 57228.13 34028.13 23200 116 116.95
5 1000 25 109422.58 52622.58 56800 284 46.12 103059.18 50059.18 53000 265 47.62 118645.05 66245.05 52400 262 93.54
6 1000 50 130939.52 65139.52 65800 329 44.98 120480.16 60680.16 59800 299 46.87 130876.78 72876.78 58000 290 76.59
7 2000 50 181398.64 89398.64 92000 460 52.34 169529.73 83329.73 86200 431 48.23 218427.35 134427.35 84000 420 134.37
8 2000 100 204615.44 105215.44 99400 497 53.50 181895.45 94695.45 87200 436 56.21 222124.30 136324.30 85800 429 117.53
9 250 6 22530.63 7930.63 14600 73 32.84 21998.29 7598.29 14400 72 34.01 22369.92 9169.92 13200 66 63.88
10 250 12 27424.85 12224.85 15200 76 49.68 25546.57 11546.57 14000 70 51.44 27706.06 14306.06 13400 67 81.82
11 500 12 37681.59 17681.59 20000 100 54.38 35557.67 16557.67 19000 95 52.79 42062.04 23662.04 18400 92 110.71
12 500 25 44437.74 23037.74 21400 107 54.39 40820.82 21820.82 19000 95 60.64 56226.92 37426.92 18800 94 171.53
13 1000 25 98227.06 50627.06 47600 238 49.24 93064.34 48464.34 44600 223 49.95 109750.06 66350.06 43400 217 110.02
14 1000 50 124985.90 66585.90 58400 292 47.42 114404.48 61204.48 53200 266 47.19 129038.29 78038.29 51000 255 98.74
15 2000 50 187061.08 94661.08 92400 462 49.21 176985.20 90985.20 86000 430 52.51 219547.53 135947.53 83600 418 128.54
16 2000 100 175446.78 88846.78 86600 433 59.43 155747.12 80947.12 74800 374 62.89 200766.59 127166.59 73600 368 147.51
17 250 6 22212.15 10812.15 11400 57 39.58 22127.96 11127.96 11000 55 48.69 24167.34 13567.34 10600 53 82.44
18 250 12 27645.70 14645.70 13000 65 35.46 25954.49 14154.49 11800 59 42.56 29335.98 17735.98 11600 58 88.15
19 500 12 44840.37 21840.37 23000 115 41.77 43276.21 21476.21 21800 109 49.47 56951.70 36151.70 20800 104 142.48
20 500 25 48723.59 24723.59 24000 120 47.52 46044.94 23444.94 22600 113 56.32 59195.54 38395.54 20800 104 146.85
21 1000 25 95364.69 47764.69 47600 238 36.16 89591.24 45991.24 43600 218 45.06 114951.72 72751.72 42200 211 128.32
22 1000 50 91896.77 47496.77 44400 222 45.32 83724.96 44724.96 39000 195 57.26 108247.07 70647.07 37600 188 140.28
23 2000 50 186682.92 95882.92 90800 454 38.74 178230.70 93630.70 84600 423 45.75 230430.42 148230.42 82200 411 133.81
24 2000 100 228412.04 115212.04 113200 566 37.83 207849.95 107249.95 100600 503 45.45 242955.51 144155.51 98800 494 94.52

1: Total cost. 2: Routing Costs. 3: Fixed Costs. 4: Number of buses.
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3.4.4 Comparisons for the RAND instances

Most of Brazil’s counties had their rural schools transfered to their urban limits. So to
mimic this situation the RAND dataset was constructed. Each instance was then solved 30
times by the ILS-RVND-SL and ILS-RVND-ML algorithms to assess which strategy (SL or ML)
was more suitable to the Brazilian context. Once again, a different seed was used for each run.
The obtained results are presented in Table 3.4 where, besides the involved costs, some other
metrics are also shown.

The ILS-RVND-ML algorithm was able to generate solutions with much lower costs than
the ILS-RVND-SL. On average they were 8.77% cheaper; though requiring much more com-
puter running time to be obtained. On average, 3.67 more time was required to solve an in-
stance than its counterpart. The school insertion and checking after each neighborhood struc-
ture moves of the ILS-RVND-ML method is indeed very time consuming. The average number
of students per bus (avg. stdt./bus column) was also greater for the ML’s solutions than the
SL ones. On average, the SL solutions had 7.26% less students per vehicle than the ML. This
indicates that the ML approach allows for a better use of the installed bus infra-structure. The
average weighted riding distance of the students (ω̄`) as well as the average route length were
much lower in the ML case, on average 33.75% and 28.07%, respectively. This implies that stu-
dents tend to ride less time on the ML solutions than on the SL ones. Furthermore, not only
the obtained solutions had a smaller number of buses (on average 7.25% smaller), but the ML
approach was able to induce solutions with a more homogeneous fleet, which would proba-
bly ease the maintenance and the management of the transportation system. For this type of
instances, the ML approach was able to provide very interesting solutions.

Table 3.4: ILS-RVND-SL vs. ILS-RVND-ML for the RAND instances.

Avg. Avg. Total # buses/type
Inst. Time TC1 RC2 FC3 stdt ω̄` RL4 capacity 20 30 40

(secs.) ($) (mi.) ($) /bus (mi.) (mi.) (seats) (seats) #B5

ILS-RVND-SL
R1 42.33 11224.30 874.30 10350 35.71 17.00 15.60 2070 5 7 44 56
R2 41.44 11574.40 1274.40 10300 37.04 27.20 23.60 2060 3 4 47 54
R3 56.38 12503.30 2103.30 10400 35.71 42.10 37.60 2080 6 4 46 56
R4 62.96 13060.40 2860.40 10200 36.36 59.10 52.00 2040 6 4 45 55
R5 38.72 14923.40 4723.40 10200 37.04 95.50 87.50 2040 3 6 45 54

ILS-RVND-ML
R1 113.09 10786.60 736.60 10050 39.22 14.50 14.40 2010 1 1 49 51
R2 167.32 10958.80 908.80 10050 39.22 18.90 17.80 2010 1 1 49 51
R3 232.92 11494.30 1444.30 10050 39.22 29.70 28.30 2010 1 1 49 51
R4 154.73 11647.50 1597.50 10050 39.22 30.80 31.30 2010 1 1 49 51
R5 195.55 12568.80 2518.80 10050 39.22 51.40 49.40 2010 1 1 49 51

1: Total cost. 2: Routing Costs. 3: Fixed Costs. 4: Average route length. 5: Number of buses.

3.4.5 Real case: the city of Governador Valadares, Minas Gerais, Brazil

Located in South America, Brazil is the largest country of the continent. It has 26 states,
being Minas Gerais the fourth largest state by area. Minas Gerais has an area equal to 2.55
(0.92) times the size of Great Britain (France). The state ranks as the fourth largest by area and
the second most populous in the country. It has a total of 853 municipalities, being Governador
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Valadares the ninth most populous of these cities. Governador Valadares, depicted in Figure
3.3, has a population size of 275,000 inhabitants and an area of 906.61 mi2 (2,348.1 km2) of which
9.42 mi2 (24.4 km2) (IBGE, 2014) correspond to the urban center of the county, represented by
the dark gray shape in Figure 3.3. The geographic coordinates of 541 rural residences, scattered
in the rural area of the county, were collected. These bus stops correspond to a demand of 944
students which were attended by 25 different schools located near or at the urban center in the
year of 2014. In Figure 3.3, the red dots represent the bus stops, while the empty triangles and
circle are the schools and the county’s bus garage, respectively.

Garage

School

Student

Figure 3.3: The county of Governador Valadares, Minas Gerais, Brazil.

For the test problem of Governador Valadares, it was investigated which policy was more
suitable: the single or mixed load approaches. The instance was then solved by the ILS-RVND-
SL and ILS-RVND-ML algorithms as well as by the MLI procedure. Once again, 30 runs were
carried out with different seeds. Table 3.5 shows the obtained results. Both the ILS-RVND-ML
and MLI methods provided cheaper solutions than the single load scheme. To have a single
fleet per school requires much more buses of different types, being ridden by fewer students
(row avg stdt./bus), i.e. buses did not have their full capacities used. The only advantages
of the SL approach were the average weighted riding distance of the students (row µ̄`) and
average route length (row avg. route length) which were much smaller than the other two
methods. Note that though the MLI procedure attained a solution with fewer buses than the
ILS-RVND-ML algorithm, the fixed costs were the same. Further, the routing cost of the MLI’s
solution was much worse (69.68%) than the one got by the ILS-RVND-ML algorithm. Observe
also that students rode for much more time and for longer distances in the MLI’s solution.

The results for Governador Valadares were similar to those of the RAND dataset. The adop-
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tion of a mixed load transportation has many advantages when compared with a single load
approach. It is less expensive, it requires less buses, and it allows for the management of a
more homogeneous fleet. However the large values for the average route length and for the
average weighted riding distance may suggest that constraints for limiting the maximum rid-
ing distance should be enforced. This may be indeed true for most cases, but for the instance of
Governador Valadares this would be worthless since there is a considerable group of bus stops
(34.38%) which are far apart (distances greater than 50 miles) from the downtown area. In
other words, it would be more effective and better for the students if the Brazilian government
would review its efforts of moving the rural schools to the urban centers.

Table 3.5: Results for Governador Valadares instance

ILS-RVND-SL ILS-RVND-ML MLI
Time (secs.) 11.67 40.69 2.03
Total cost 8716.02 6629.93 7939.86
Fixed cost 6150.00 4750.00 4750.00
Routing cost 2566.02 1879.93 3189.86
# buses 40 25 24
avg. stdt./bus 23.60 37.76 39.33
µ̄` (mi) 47.28 67.03 151.52
avg. route length (mi) 64.15 75.20 132.91
Total capacity 1230 950 950
# buses (20 seats) 15 2 0
# buses (30 seats) 7 1 1
# buses (40 seats) 18 22 23

3.5 Final Remarks

Five meta-heuristics were proposed for the mixed load capacitated rural school bus routing
problem with heterogeneous fleet. This is an important problem that has been neglected by
the routing literature. The adoption of mixed loads has shown to be very effective and cost
savings, specially for the Brazilian context. Of the five devised methods, the ILS-RVND-ML
has provided the best results given the analyzed metrics. The attained solutions by the ILS-
RVND-ML have proved to be better than the ones got by the MLI procedure of Park et al.
(2012). The statement of Park et al. that routing costs can be disregarded turn out to be not so
true for larger instances. For these cases, the routing costs play an important role which can
not be disregarded. Some insights have also been provided about the Brazilian policy of trans-
ferring the rural schools to the urban areas. Given Brazil’s dimensions, this policy should be
revised or carried out more judiciously, because the riding distances can be prohibitively long
even if limiting constraints are imposed, in which case infeasible solutions would be probably
rendered.



Chapter 4

A Multi-objective capacitated rural
school bus routing problem with
heterogeneous fleet and mixed loads

4.1 Introduction

Brazil has around 50 million elementary students enrolled in its public educational system.
Of these students, 13% are located on rural areas (INEP, 2013) that are served by schools with
multi-grade classes, i.e. pupils from different grades are arranged in the same classroom and
taught by the same teacher. Tough debatable, this type of classrooms is often considered to be
unsuitable for todays advanced curricula, because the classrooms have usually fewer resources
than necessary. Further it is often difficult to attract qualified, skilled teachers to these schools
due to their usually remote location from larger towns (Vincent, 1999).

To offer a more suitable environment with better school infrastructures, a richer curriculum
with more courses and activities, and single-grade classrooms, the federal government has
been doing a great effort to nucleate some rural schools by placing them closer to the counties
downtown area. This endeavor is allowing students to have access to better, larger facilities
and better teaching. But, at the same time, it has transfered the burden of the transportation of
the rural students to the local municipality, which has now to provide a transportation system.
Students are required to be picked up at their homes, brought to their respective schools, and
delivered back to their residence later on the day.

To easy the process and facilitate for public servants to plan the local bus routes, the Brazil-
ian government is not only financially supporting the acquisition of new buses, but it is also
encouraging the use and development of decision support systems. The idea is to guarantee
a suitable transportation service level for the students, while observing the drivers working
hours and labor union polices, and keeping the involved costs at their lowest possible. This
gives rise to a multi-objective optimization problem with three distinct and conflicting objec-
tives that must be optimized all together.

42
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The rich literature of rural school bus routing problems (Park and Kim, 2010) has some
interesting works– e.g. Thangiah and Nygard (1992), Corberán et al. (2002), Schittekat et al.
(2006), and Pacheco et al. (2013)– that deal with a single objective only. Though of great value
and importance, these works fall short to support decision makers who often have to handle
more than one objective. In real cases, the problem scope often goes beyond one goal.

Fewer authors have addressed a multi-objective approach. Bowerman et al. (1995) devise
a multi-objective framework to solve an urban school bus routing problem with four different
objectives: total bus route length, student walking distance, load balancing, length balancing.
Assuming a homogeneous fixed size fleet and known weights of importance for each objective,
they propose to first group the students into clusters in each district, and then plan the bus stops
and routes by a set covering algorithm followed by a traveling salesman procedure. They apply
their method to an instance extracted from the Wellington County, Ontario, with 138 students,
3 buses with 50 available seats.

Recently, Pacheco et al. (2013) propose a bi-objective procedure for school buses in rural
areas which seeks the minimization of a normalized objective function consisted of the longest
route and the total distance traveled. Like Bowerman et al. (1995), the weights are also as-
sumed to be known a priori. They devise a solution algorithm based on a tabu search with a
multi-objective adaptive memory programming and compare it with an implementation of a
non-dominated sorting genetic algorithm. Assuming also a homogeneous fixed size fleet, the
framework is used to solved 16 instances corresponding to middle schools in the Province of
Burgos, Spain. The largest test set has 57 bus stops, 429 students, and 15 buses. The results
show that their approach dominates the general framework based on genetic algorithm.

Both aforementioned works adopted the weighted sum form of multi-objective optimiza-
tion. Though largely employed because its simplicity, the gathering of the multiple objectives
into a single weighted objective requires the previous knowledge of importance of each ob-
jective and, as consequence, the values for their weights. The selection of these values can be
difficult and trick because one has to discern between setting weights to compensate for dif-
ferences in magnitudes of the objectives and setting weights to indicate the importance of an
objective over the others (Marler and Arora, 2010). One alternative is to find multiple trade-off
solutions with a wide range of values for the objectives and to let the decision makers chose
the most suitable solution for their needs.

Corberán et al. (2002) use an evolutionary method to solve a multi-objective rural school
bus routing problem with heterogeneous fleet, single load and destination for which the fleet is
dedicated. seeking minimizing the number of buses and the time that a given student spends
in route.

However, given the large dimensions of Brazil and how rural students are sparsely scat-
tered over it, the deployment of a homogeneous fleet as well as the idea of having a dedicate
fleet per school may not the most adequate for the Brazilian context (Carvalho et al., 2010). A
homogeneous fleet with large vehicles will most likely have many routes with vacant seats.
Filling these vacant seats by increasing the length of the journeys so that more students can be
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picked up may not be in the best interests of the pupils and the drivers. Long routes on poorly
maintained roads are usually tiresome. On the other hand, adopting small or mid-sized buses
in a homogeneous fleet may result in numerous vehicles with many drivers. Hence the use of
heterogeneous fleets allows balancing the length of the routes, and the sizes of the vehicles and
fleets. One way to further improve the capacity utilization of the buses is by using mixed loads
during the rides. Instead of having a dedicated fleet per school (i.e. vehicles carry a single type
of load), students of different ages and schools are transported at the same time on the same
vehicle (i.e. mixed load).

Both assumptions (heterogeneous fleet and mixed loads) have been addressed for single
objective optimization problems only. Pacheco and Martí (2006) adapt four known different
heuristics for the same problem. Bodin and Berman (1979a) are the first authors to discuss
about mixed loads. They point out that mixed loads occur frequently in rural areas, though
they do not devise any procedure to handle mixed load buses. Chen et al. (1988) state that an
excessive number of buses can occur when single loads are adopted, specially when dealing
with remote rural students located in poorly populated areas. Braca et al. (1997) address the
mixed load bus routing problem by proposing an insertion procedure. The method constructs
each route by randomly selecting a bus stop and inserting it and its respective associated school
into the route at the best cost estimation possible, but enforcing the capacity constraints. The
single objective minimizes the number of used buses. Park et al. (2012) improve the method
of Braca et al. (1997) by devising a post improvement procedure. Starting from a solution with
a dedicate fleet per school obtained from a sweep based algorithm (Gillett and Miller, 1974b),
the procedure reallocates one bus stop at a time in a greedy way until routes can be merged or
deleted.

Li and Fu (2002) claim to have addressed a multi-objective optimization algorithm for the
urban bus school routing problem with heterogeneous fleet in which four different objectives
are minimized: the total number of buses; the students waiting time at the bus stops; the to-
tal riding time; and the load unbalance of the routes. However they neither use a objective
function consisted of a weighted sum of objective functions during; nor they supply a pool of
non-dominated solutions so that the decision maker can select one from them at the end. They
devise one optimization heuristic for each adopted objective. The procedures are then executed
sequentially sorted by the relative relevance of each objective. Each procedure receives as in-
put the solution obtained by the immediate predecessor procedure. At the end of Li and Fu
framework, only one solution is returned. Neither the decision maker has opportunity to pre-
scribe weights for the objective functions, nor he is able to select from a pool of non-dominated
solutions the one that is the most interesting for him.

Motivated by the social relevance of the application, and the scarce literature on the theme,
four multi-objective heuristics are here devised for the rural school bus routing problem with
heterogeneous fleet and mixed loads. The problem seeks the minimization of three conflicting
objectives: the total routing and fixed costs; the total weighted traveling time of the students;
and the unbalance riding time of the routes. The devised methods return non-dominated solu-
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tions in a set named Pareto frontier from which the decision maker can select the most suitable
one for his problem.

The first heuristic is based on the multi-objective iterated local search (MOILS) framework
proposed by Assis et al. (2013). The second method is an improved version of the MOILS.
The last three heuristics have different strategies embedded into the second version to improve
the quality of the achieved frontier of non-dominated solutions. The third one has a procedure
which is based on a simple idea which resembles a path-relinking procedure (PR) (Glover et al.,
2000); while the fourth has an actual PR procedure. The last version combines the two PR
schemes. Statistical analysis on three known metrics (cardinality, coverage, hyper-volume)
used in multi-objective optimization followed by graphical analysis are carried out to assess
the performance of the proposed heuristics. As the number of candidate solutions in a Pareto
frontier can be large, finding a satisfactory one among them becomes a burden to the decision
maker. Therefore, besides the devised heuristics, a simple new visual approach to support
decision makers on selecting a good solution is also proposed.

The next sections are divided as follows. §4.2 describes the problem and its mathematical
formulation. §4.3 explains the implementation details of the procedures used in the solution
approaches devised to solve the problem §4.4. §4.5 presents the new approach for helping
decision makers to find good solutions. §4.6 shows the attained results. Finally in Section 4.7
conclusions and future researches are presented.

4.2 Notation, definitions and formulation

The problem consists in transporting rural students geographically dispersed with a het-
erogeneous fleet back and forth from their homes to their respective schools every day. The
problem seeks the minimization of the unbalance riding time of the routes, of the total weighted
students riding time, and of the total routing and fixed costs. As there are more than one school
involved, mixed loads are allowed.

The problem uses the following definitions: Let G = (N, A) be an directed graph with
N = {0} ∪ P ∪ H, where 0 represents the garage node; P = {1, . . . , np} be the set of student
nodes, where np is the number of student nodes; H = {np + 1, . . . , np + ns} be the set of schools,
where ns is the number of schools; and B = {1, . . . , nb} be the set of available buses, where nb

is the number of buses. Let also A = {(i, j) : i, j ∈ N, i 6= j} and E = {(i, j) ∈ A : i < j} be
the arc and edge sets. Let d(i) = s be a function which given a student node i ∈ P returns the
school s ∈ S associated to it. Here it is assumed that each student node has only one school
associated to it. If a student node has more than one school associated to it, this node is then
split into other student nodes, one per school. Each node i ∈ P has number of students qi to be
picked up and delivered to their respective schools. There are also an associated riding time ti,j

to arc (i, j) ∈ A, and a cost cb
ij ≥ 0 for a bus b ∈ B to ride edge (i, j) ∈ E. The capacity and the

fixed costs of the buses are given by Qb and ab, respectively.
The following decision variables are used to model the problem. zb ∈ {0, 1} is equal to one

if bus b ∈ B is used; zero otherwise. yb
i ∈ {0, 1} is equal to one if the node i ∈ P ∪ H is visited
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by bus b ∈ B; zero otherwise. xb
ij ∈ {0, 1} is equal to one if the edge (i, j) ∈ E is crossed by

bus b ∈ B; zero otherwise. f lb
ij ≥ 0 is the percentage of the the demand ql of node l ∈ P which

rides on bus b ∈ B over arc (i, j) ∈ A. τb ≥ 0 is used to measure the travel time of bus b ∈ B.
Function Γ(τ) computes the difference of the longest by the shortest riding time of the routes.
Given these parameters and variables, the mixed load, multiple destination rural school bus
with heterogeneous fleet and three objectives can be formulated as follows:

min F(x, y, z, f , τ) =(ϕ1, ϕ2, ϕ3) (4.1)

ϕ1(z, y, x) = ∑
b∈B

abzb + ∑
(i,j)∈E

cb
ijx

b
ij

 (4.2)

ϕ2(z, y, x, f ) = ∑
b∈B

∑
l∈P

∑
(i,j)∈A

qltij f lb
ij (4.3)

ϕ3(z, y, x, τ) =Γ(τ) (4.4)

s.t.: ∑
b∈B

yb
i = 1 ∀i ∈ P (4.5)

∑
i∈P

qiyb
i ≤ Qbzb ∀b ∈ B (4.6)

yb
i ≤ yb

d(i) ∀i ∈ P, b ∈ B (4.7)

∑
(i,j)∈E

xb
ij + ∑

(j,i)∈E
xb

ji = 2yb
j ∀j ∈ N \ {0}, b ∈ B (4.8)

∑
(0,j)∈E

xb
ij = 2zb ∀b ∈ B (4.9)

∑
(i,j)∈E:
i∈P,j∈H

xb
ij = zb ∀b ∈ B (4.10)

∑
(i,j)∈E:

i,j∈S

xb
ij ≤ ∑

i∈S\{k}
yb

i ∀b ∈ B, k ∈ S, S ⊆ N \ {0} (4.11)

∑
(i,j)∈E

tijxb
ij = τb ∀b ∈ B (4.12)

∑
(l,j)∈A

f lb
lj = yb

l ∀l ∈ P, b ∈ B (4.13)

∑
(i,j)∈A:
i 6=d(l)

f lb
ij = ∑

(j,i)∈A:
i 6=l

f lb
ji ∀l ∈ P, j ∈ N \ {0, l, d(l)}, b ∈ B (4.14)

∑
(i,d(l))∈A

f lb
id(l) = yb

d(l) ∀l ∈ P, b ∈ B (4.15)

f lb
ij + f lb

ji ≤ xb
ij ∀l ∈ P, (i, j) ∈ E, b ∈ B (4.16)

xb
ij ∈ {0, 1} ∀(i, j) ∈ E, b ∈ B (4.17)

yb
i ∈ {0, 1} ∀i ∈ N \ {0}, b ∈ B (4.18)

zb ∈ {0, 1} ∀b ∈ B (4.19)
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f lb
ij ≥ 0 ∀l ∈ P, (i, j) ∈ A, b ∈ B (4.20)

τb ≥ 0 ∀b ∈ B (4.21)

The objective function (4.1) is consisted of three objectives which minimize: the fixed and
routing costs (4.2), the total weighted traveling time (4.3) and the unbalance of the riding time
of the routes (4.4). Constraints (4.5)-(4.7) ensure that each student node has to be visited by
some vehicle; that the bus capacity can not be exceeded by the students riding on it; and that
if a student node i ∈ P is visited by a bus b ∈ B, then the associated school d(i) ∈ H to this
node has to be also visited by the same bus, respectively. Constraints (4.8)-(4.11) are responsi-
ble for forming the bus routes. Constraints (4.8) guarantee the degree of a bus stop if this node
is visited by a bus b ∈ B. Constraints (4.9) assures that if a bus b ∈ B is activated then it has
to leave and return to the garage node. Constraints (4.10) prevent intermediate deliveries prior
of picking up more students. In other words, the students have to be picked up first and then
delivered to their respective schools. Constraints (4.11) are sub-tour elimination constraints.
Constraints (4.12) compute the bus riding time of each bus. Constraints (4.13)-(4.16) are flow
balancing constraints responsible for computing the path riding time from each student node
to their respective schools. Constraints (4.17)-(4.21) show the domain of the variables. Formu-
lation (4.1)-(4.21) is a multi-objective mixed integer mathematical program of difficult solution.

4.3 Implementation details

Four heuristics based on the MOILS framework introduced by Assis et al. (2013) are de-
vised to solve the multi-objective mixed load rural bus routing problem with heterogeneous
fleet. The algorithms are thought to have the least number of parameters to be tunned and to
be easy of implementation and use. Before presenting the proposed heuristics, some impor-
tant concepts and implementation details have to be introduced. The MOILS general idea is
depicted in Figure 4.1 for two objectives. A solution with the largest crowding distance (Deb
et al., 2002) is selected from a non-dominated frontier set (Figure 4.1(a)). The selected solu-
tion is randomly perturbed to obtain a new solution that is most likely to be dominated by the
others in the non-dominated frontier set (Figure 4.1(b)). Then a local search is applied on this
new solution (Figure 4.1(c)) to get an improved solution. A dominance checking (Figure 4.1(d))
is performed to verify if the attained solution is dominated or dominates any solution in the
non-dominated solution set.

The proper functioning of the MOILS is depicted in Algorithm 6. The method starts with the
set of non-dominated solutions containing only extreme solutions (line 3). How these extreme
solutions are got is explained in §4.3.2. For a fixed number of iterations Hmax, a solution with
the largest crowding distance (see §4.3.3) is selected from the frontier set S of non-dominated
solutions (line 6). The crowding distance allows less explored regions to have higher selection
priority during the search. Given a selected solution, the method iterates between a pertur-
bation phase (line 9) followed by a local search step (line 10) as long as it is possible to insert
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(a) selection (b) perturbation (c) local search (d) frontier insertion

Figure 4.1: MOILS general ideal.

non-dominated solutions in the frontier S (line 11) or the maximum number of iterationsCmax

without updating the frontier is reached. The attained solution after the local search is only in-
serted into the frontier set if Pareto dominance checking is successful (§4.3.3). Assis et al. (2013)
suggest to perform the local search and then do the dominance checking as well as the use
of several neighborhood structures for each considered objective. These suggestions are here
altered and improved given rise to four different heuristics based on the MOILS framework of
Algorithm 6.

Algorithm 6 MOILS framework

1: Hmax : maximum number of iterations
2: Cmax : maximum number of iterations without frontier insertion
3: S← InitialExtremeSolutions()
4: h← 0
5: while h < Hmax do
6: s← CrowdingDistanceSelection(S)
7: c← 0
8: while c < Cmax do
9: s′ ← Perturbation(s)

10: s”← LocalSearch(s′)
11: if DominanceCheckingInsertion(S, s”) = True then
12: s← s”
13: c← 0
14: else
15: c← c + 1”
16: end if
17: end while
18: h← h + 1
19: end while

4.3.1 Solution representation

Each solution consists of a set of routes with a double-linked structure as proposed by Li
et al. (2007). This structure reduces computational time because it stores the routes as the pre-



4. A MULTI-OBJECTIVE CAPACITATED RURAL SCHOOL BUS ROUTING PROBLEM WITH

HETEROGENEOUS FLEET AND MIXED LOADS 49

decessor and the successor nodes of each bus stop of a route. Moreover a sorted, fixed-length
neighbor list is assembled for each node with the bus stops that are within 60% of the largest
distance among the bus stops of the instance being addressed. This neighbor list is restricted
to have at most 20% of the number of total nodes.

4.3.2 Extreme solutions: initial solutions

The first solutions to be inserted in the frontier of non-dominated solutions are the extreme
solutions, i.e. solutions posited as the best ones for each objective. They represent the extremest
points of the Pareto set for each objective. When an extreme solution for a particular objective is
calculated, the other two objective are set to zero. To generate each extreme solution, different
strategies are adopted:

Total routing and fixed costs: The extreme solution for the total cost is obtained after run-
ning a heuristic devised at chapter 3 for the mixed load capacitated rural school bus routing
problem with heterogeneous fleet problem. The heuristic is based on a Iterated Local Search
(ILS) meta-heuristic which combines a Clark and Wright savings procedure (Clark and Wright,
1964) to generate the initial solutions and a random variable neighborhood descent (Hansen
and Mladenović, 2001) search with four different neighborhood structures. The best overall
solution is inserted into the frontier of non-dominated solutions.

Total weighted traveling time: To generate routes with the least weighted traveling time,
one bus is assigned to each student node. This bus has the smallest capacity possible such that
it can still serve the student node demand.

Routes riding time unbalance: To generate the extreme solution for the routes length un-
balance objective, one bus is firstly allocated for each student node. Each bus is selected with
the smallest possible capacity such that it can still serve the student node demand. Pair of
routes are then merged, followed by a 2Opt procedure to avoid artificial balancing. If the
merge improves the overall balance then this merge is executed and the balance is updated.
If the merge exceeds the bus capacity, a larger available bus is used. Otherwise the merge is
not carried on. The procedure keeps verifying the merge of pair of routes until no balance bet-
terment is possible. The routes riding time unbalance is measured by subtracting the largest
riding time by the shortest one.

4.3.3 Crowding distance and dominance checking

The crowding distance ωs of a solution s of a set S of non-dominated solutions provides an
estimation of the density of the solutions surrounding solution s (Deb, 2001). It is computed
as the summation of each normalized distance v

j
s for each objective j = 1..no, where no is the

number of objectives. v
j
s is calculated as the distance difference of the two adjacent solutions

of a solution s normalized by the largest distance of the referred objective j being addressed.
Distance is interpreted as the difference in value of the objective function of two different solu-
tions. Algorithm 7 describes how the crowding distance is computed for each solution s ∈ S.
Lines 7 and 8 computes the normalized distances on the borders; while line 10 computes the
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normalized value from adjacent solutions to a solution s. Line 14 shows the summation of
the crowding distance for solution s. A larger crowding distance indicates a solution which
has fewer solutions around it, being a natural candidate to have its neighborhood searched for
other solutions. This way the diversity of the frontier set of non-dominated solutions is most
likely to be increased.

Algorithm 7 Crowding Distance

1: no : number of objectives
2: S : set of non-dominated solutions
3: ns ← |S|
4: for j = 1 to no do
5: sort S in non-descending order by ϕj

6: maxϕ ← ϕ
j
ns − ϕ

j
1

7: v
j
1 ← 2(ϕ

j
2 − ϕ

j
1)/ maxϕ

8: v
j
ns ← 2(ϕ

j
ns − ϕ

j
(ns−1))/ maxϕ

9: for s = 2 to (ns − 1) do
10: v

j
s ← (ϕ

j
(s+1) − ϕ

j
(s−1))/ maxϕ

11: end for
12: end for
13: for s = 1 to ns do
14: ωs ← ∑no

j=1 v
j
s

15: end for

When a new solution is obtained, it has to be verified if it is dominated or not by the other
solutions in the frontier set of non-dominated solutions. Hence during the search for non-
dominated solutions, a dominance checking is performed every time a candidate solution is
found. This dominance checking is based on the Pareto dominance of Definition 1.

Definição 1. Pareto Dominance: A solution s1(ϕ1
1, . . . , ϕno

1 ) dominates a solution s2(ϕ1
2, . . . , ϕno

2 ),
denoted by s1 ≺ s2, if and only if ϕ

j
1 ≤ ϕ

j
2, ∀ j ∈ {1, . . . , no}, and ∃r ∈ {1, . . . , no} such that ϕr

1 < ϕr
2

(Deb, 2001).

4.3.4 Neighborhood Structures

Six neighborhood structures inspired on the works of Laporte and Semet (2002) and Gen-
dreau et al. (2002) are used to find non-dominated solutions to populate the frontier of solu-
tions. The structures are divided in two types: inter-routes (Figure 4.2) and intra-routes (Figure
4.3).

Inter-routes structures search for improving solutions doing movements between pair of
routes. Four different structures are proposed: (a) The one-point move relocates a student
node from a route to a different route. The Figure 4.2(a) shows that the student node 5 is
moved from a dashed line route to the bold line route. The order of the visited schools needs
to be rearranged since the bold line route is not required to visit the gray school anymore. (b)
The two-point move exchanges one student node of a route by another of a different routes.
In the example on Figure 4.2(b), the student nodes 5 and 3 are exchanged from their original
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routes. The order of schools visit has also to be rearranged. (c) cross-exchange move removes
arcs (i, j) of (i′, j′) two different nodes and replace them by reconnecting as (i, j′) and (i′, j).
Figure 4.2(c) shows that arcs (6, 4) and (3, school) are reconnect as two new arcs (6, school) and
(3, 4). (d) merge routes move two random routes are chosen and merged respecting the largest
bus capacity. The last node of a route is connected with the first one of another route. If the
movement improves the objective function than it is executed; otherwise, another merge is
tried. In Figure 4.2(d) dashed and bold line routes are merged through the connection of nodes
3 with node 7.
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Figure 4.2: Inter-routes local search operators.
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Figure 4.3: Intra-routes local search operators.

Intra-routes apply a movement in a route. Only two structures are devised: (a) 2opt move
removes two non-consecutive arcs,e.g. (i, j) and (i′, j′), of a route and reconnects them by
linking the heads and the tails together, or (i, i′) and (j, j′). In Figure 4.3(a), the original solution
is modified by removing arcs (5, 6) and (4, 7), replacing them for new ones (5, 4) and (6, 7). (b)
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split move randomly selects a route and divides it into two new routes on the arc next to the
middle of the route. In Figure 4.3(b) the original solution has its route split into two new ones
by removing the arc (3, 5), the arc closest to the middle of the route.

Is important to remark that the split move is applied for all of the objectives but the total
cost one, because this movement does not improve the total cost function. One has to pay for an
additional bus. The first improving movement strategy is used for all the neighborhood struc-
tures. The movements are applied in the pickup section, and for each considered movement
some modifications in the delivery section may be necessary. For that purpose it is observed
that there are only three cases where the delivery section of the route will need to be changed:
(i) if schools are no longer needed to be visited in a route; (ii) if new schools are required to be
visited in a route; and (iii) if the last visited student node is changed. Checking for these three
cases is very time consuming. These neighborhood structures are organized in a random VND.

Given a current or initial solution and a list of available neighborhood structures, in a ran-
dom VND, a neighborhood structure is randomly selected among the list of available struc-
tures. Then a local search is performed in this neighborhood with the hope of improving the
current solution. If successful, the current solution is updated. The list of available movement
structures is also augmented with any removed neighborhoods. In case of not getting a better
solution, the current movement structure is removed from the list and the process restarted.
These steps go on until the list of available neighborhood structures is not empty.

4.3.5 Walk procedure

Generally speaking, the Path Relinking (PR) (Glover et al., 2000) strategy consists in gener-
ating new solutions from a given solution, but having as target a solution randomly selected
from an elite set. The elite set usually has a restricted number of the best overall solutions that
are structurally different, i.e. that have some degree of dissimilarity. The idea is to “walk”
from a guided solution over a path of solutions towards a guiding solution in the elite set by
performing small structural changes in each step. At each step, a local search is carried out
with the hope of obtaining better solutions. In the present case, the dissimilarity of a pair of
solutions is measured by the summation of the total number of different arcs used in the routes.

For the devised heuristics, two different schemes based on the PR method are implemented.
One is an actual PR phase embedded into MOILS based heuristics. This PR phase maintains an
elite set for each objective which is constantly updated if necessary. The other scheme resembles
a PR method, but instead of keeping an elite set for each objective, the adjacent solutions of the
solution selected by the crowding distance procedure is used as guiding and guided solutions.
This scheme greatly increases the diversity of the frontier set of non-dominated solutions.

Both PR based schemes rely on a Walk procedure. This procedure executes the best possible
movement among splitting or merging routes, and inter and intra node moves. These move-
ment structures are done in separated phases. In the beginning, the Walk procedure effort is
toward having the guided solution with the same number of routes of the guiding solution.
This is accomplished by applying splitting or merging routes routines. After that, routes in
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the guided solution are relabeled so that each route has a correspondent route in the guid-
ing solution. Inter route node movements are then performed so that at the end routes of the
guided solution will have the same nodes of the guiding solution. A node is inserted in a
route after observing the best improvement possible. Finally, intra route node movements are
done so that the routes will have the same order of visitation. After each phase, a random
VND is realized with the hope of obtaining better solutions and improving the quality of the
frontier set of non-dominated solutions. As the PR based schemes are computationally time
consuming, a pre-specified number of iterations is actually set to limit this effort. So at the end
the implemented PR based procedures may not have an exact match, but a guided solution
that resembles the guiding solution. At each non-dominated solution found during the Walk
procedure, the frontier of non-dominated solutions is updated accordingly.

4.4 Proposed heuristics based on the MOILS

The four devised heuristics are based on the MOILS framework of Assis et al. (2013) il-
lustrated in Algorithm 6, but with minor modifications and enhanced procedures to improve
the overall quality of the attained solutions. Assis et al. suggest the adoption of many dis-
tinct specialized neighborhoods for each addressed objective. They propose the use of all of
these movement structures during the local search phase which can possibly result in a zigzag
phenomenon. Depending on how the neighborhood structures are organized or selected, a
neighborhood may improve one objective, while the next one to be used in sequence will most
likely go in a different direction, i.e. it will improve a conflicting different objective, and will
most probably worsen the previous gain obtained by the former movement structure. Further,
as the achieved solution is only verified to be inserted into the frontier of non-dominated solu-
tions at the end of the local search phase, a failure in this test results in a waste of computational
effort and time. To circumvent the implementation of many different neighborhood structures,
the zigzag phenomenon, and the possibility of failure after the local search phase, a modified
MOILS algorithm is proposed.

4.4.1 A modified multi-objective iterated local search (MOILS-M)

To increase the success rate of generating good non-dominated solutions, the neighborhood
structures of §4.3.4 were slightly modified. The policy of adopting the first improving move
was changed to the first improving move which results in a non-dominated solution, i.e. the
frontier set is passed as an input to the local search phase so that the dominance checking
(§4.3.3) can be done along the search inside the neighborhood structure. Further, instead of
having different specialized neighborhood structures for each objective, each neighborhood is
set to work with any objective. To accomplish that, the search direction (e.g. the objectives
costs, weighted riding time, routes unbalancing) has to be inform in the beginning of the local
search. For instance, the one point move in Figure 4.2(a) modifies a route in its cost, in the total
weighted traveling time, and the unbalance of the routes. Hence it can be used to obtain good
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solutions with respect to any of the objectives, given that the appropriate direction is adopted.
So when trying to improve the unbalance of the routes, the search direction of the moves carried
out by the one point move has to be in this direction, and not, for example, toward decreasing
the costs. To prevent the zigzag phenomenon, the local search is performed separately for each
objective one at a time.

The aforementioned gives rise to the modified MOILS presented in Algorithm 8. This
pseudo-algorithm has the same steps of Algorithm 6, but with the difference depicted by lines
11-14, and variables I and Υ. The local search is done in lines 11-14. Note that it receives as in-
put not only the perturbed solution but the frontier set of non-dominated solutions, the current
objective being addressed, and variable I and parameter Imax. As the added enhancements to
the MOILS greatly increases the cardinality of the frontier (see §4.6.3 for the results), parameter
I counts the number of insertions made for the current objective. An insertion limit Imax is
established to prevent too many insertions in the neighborhood of a single solution. If any so-
lution is added to the frontier set S, then variable Υ receives the value true. Otherwise Υ is set
to false. If the maximum number of insertions are made, then Υ is also set to false. Whenever
the number of unsuccessful insertions reach Cmax, a new solution is selected by the crowding
distance selection procedure of line 7. The algorithm iterates forHmax iterations when it returns
the frontier set to the decision maker for analysis.

Algorithm 8 Modified MOILS (MOILS-M)

1: Hmax : maximum number of iterations
2: Cmax : maximum number of iterations without frontier insertion
3: Imax : maximum number of insertions in the frontier
4: S← InitialExtremeSolutions()
5: h← 0
6: while h < Hmax do
7: s← CrowdingDistanceSelection(S)
8: c← 0
9: while c < Cmax do

10: s′ ← Perturbation(s)
11: for j = 1 to no do
12: I← 0
13: Υ← LocalSearch(s′, ϕj,S, I, Imax)
14: end for
15: if Υ = True then
16: c← 0
17: else
18: c← c + 1
19: end if
20: end while
21: h← h + 1
22: end while
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4.4.2 Multi-objective iterated local search with a standard path relinking
(MOILS-PR)

In this variant of the MOILS-M (Algorithm 8), a standard path relinking (PR) procedure
(Martí et al., 2011) is embedded into the method. The PR integrates intensification and diversi-
fication in the search process, exploring paths that connect previously found solutions (guided
solutions) with high quality solutions (guiding solutions) stored in an elite set (Ξ). The idea is
similar to the MOILS-PRA (Algorithm 10). However in the standard PR, the guiding solution
is chosen from an elite set (see lines 13 of Algorithm 9) instead of the adjacent solutions of the
solution with the largest crowding distance. At every W iterations, an elite set Ξ is assembled
for every objective (line 12). Then an elite solution se is randomly selected from the elite set Ξ
(line 13). Then the method proceeds in the same way as Algorithm 10. The elite set Ξ is assem-
bled with the best overall solutions of the frontier Swith respect with every objective, but with
at least 10% of dissimilarity.

Algorithm 9 MOILS with standard path relinking procedure (MOILS-PR)

1: Hmax : maximum number of iterations
2: Cmax : maximum number of iterations without frontier insertion
3: Imax : maximum number of insertions in the frontier
4: S← InitialExtremeSolutions()
5: h← 0
6: w← 0
7: while h < Hmax do
8: s← CrowdingDistanceSelection(S)
9: if w =W then

10: w← 0
11: for j = 1 to no do
12: Ξ← EliteSet(S, ϕj)
13: se ← RandomSelection(Ξ)
14: D← DissimilarityDegree(s, se)
15: Walk(s, se, ϕj,S, Imax,D)
16: Walk(se, s, ϕj,S, Imax,D)
17: end for
18: else
19: w← w + 1
20: end if
21: c← 0
22: while c < Cmax do
23: s′ ← Perturbation(s)
24: for j = 1 to no do
25: I← 0
26: Υ← LocalSearch(s′, ϕj,S, I, Imax)
27: end for
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28: if Υ = True then
29: c← 0
30: else
31: c← c + 1
32: end if
33: end while
34: h← h + 1
35: end while

4.4.3 A multi-objective iterated local search with a path relinking procedure for
the crowding distance adjacency (MOILS-PRA)

An enhanced feature is added to Algorithm 8 given rise to Algorithm 10. A path relink-
ing based procedure or Walk procedure (§4.3.5) is executed every W iterations. The idea is
to increase the diversity of the frontier S on its most sparse regions. Further, by doing a ran-
dom VND along the Walk procedure, not only diversification but intensification as well is also
sought to further improve the quality of the frontier set. In Algorithm 10, the immediate pre-
decessor (sp) and successor (sp) solutions (i.e. adjacent solutions) of the solution (s) with the
current largest crowding distance, see lines 10-20, are selected to be used as the guiding and
guided solutions. The degree of dissimilarity D (line 10) between both solutions is used as a
stopping criterion for the Walk procedure. If inDmoves the solutions do not match, the proce-
dure is stopped. The walk along the “path” of solutions from sp to ss is done in both directions
for every objective. Recall from §4.3.5 that on every change of movement phase of the Walk
procedure, a random VND is executed. The number of allowed insertions into the frontier of
non-dominated solutions S during the random VND calls is given by Imax. The remainder of
the algorithm is the same of Algorithm 8.

Algorithm 10 MOILS with a path relinking procedure for the criterion of the crowding
distance adjacency (MOILS-PRA)

1: Hmax : maximum number of iterations
2: Cmax : maximum number of iterations without frontier insertion
3: Imax : maximum number of insertions in the frontier
4: S← InitialExtremeSolutions()
5: h← 0
6: w← 0
7: while h < Hmax do
8: s← CrowdingDistanceSelection(S)
9: if w =W then

10: w← 0
11: sp ← pred(s)
12: ss ← succ(s)
13: D← DissimilarityDegree(sp, ss)
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14: for j = 1 to no do
15: Walk(sp, ss, ϕj,S, Imax,D)
16: Walk(ss, sp, ϕj,S, Imax,D)
17: end for
18: else
19: w← w + 1
20: end if
21: c← 0
22: while c < Cmax do
23: s′ ← Perturbation(s)
24: for j = 1 to no do
25: Υ← LocalSearch(s′, ϕj,S, Imax)
26: end for
27: if Υ = True then
28: c← 0
29: else
30: c← c + 1
31: end if
32: end while
33: h← h + 1
34: end while

4.4.4 Multi-objective iterated local search combining MOILS-PRA with
MOILS-PR (MOILS-PRA-PR)

The last devised algorithm is a combination of both Algorithms 10 and 9. For sake of pre-
sentation, it is not shown here. Basically, the algorithm executes both path relinking strategies
at everyW iterations.

4.5 Visualization tool for selecting solutions

At the end of a multi-objective optimization, a decision maker is often faced with a great
number of different non-dominated solutions from which he has to chose the most suitable
for his needs. This process is not an easy task given the many possibilities available. The
complexity further increases when the studied problem has a combinatorial nature. In these
cases, graphical representations of the objectives do not show any clear tendency on which
solution to pick up. This is specially true when the number of addressed objectives grow as in
the present work.

Though there is a rich literature (Gettinger et al., 2013; Freitas et al., 2014) about develop-
ing elaborated tools for selecting the most suitable solution; a simple, easy to use method has a
great appealing motivation. The general idea of the tool here introduced relies on a hierarchiza-
tion of the frontier solutions after the computation of a weight for each solution. The weights
are calculated by computing the area formed by polygon originated from the normalization of
the objectives plotted in polar graph. This area is then elevated to a scalar which represents
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the total unbalance length (pairwise difference of the sides’ length) of the sides of this polygon.
In other words, the weights are a power law function of the area of the polygon by the total
unbalance of the sides.

The rationality behind such scheme is simple, but intuitive. Usually, the objectives have
different scale magnitudes what makes difficult to compare them. To understand the suitability
of a solution against others the objective function values can be normalized, i.e. the values on
different scales can be adjusted into a common one. After normalized, a given solution can be
plotted in a polar graph to obtain a polygon. The closer this polygon is to the origin (zero value
for the axis) the more suitable is the solution, since all objectives are at their minimum value.
Here it is assumed that all objectives are of a minimization type; otherwise one has just to
invert the axis orientation. Instead of browse every single polar plot for the most suitable (note
that the number of solutions is more likely in the thousands), one can rely on a hierarchization
of the area of the polygon formed by the plot elevated to the power of the unbalance of the
sides. And then, only the first on this hierarchy will be analyzed. Using only the area in the
hierarchization process is not enough to assess the quality of the solution since. For instance, in
the present work which there is three objectives, it is possible to have two objectives closer to
the zero and the remaining objective at its worst possible value. This will most likely generate
an area with a small value, putting this solution at the top of the hierarchy list. To prevent these
cases the area value is elevated to the total pairwise unbalance length of the polygon sides. This
way the larger the absolute difference of the sides, the larger will be the weight.

More specifically, given the frontier set S of non-dominated solutions obtained after a multi-
objective optimization. Let ns = |S| be the number of solutions in S, no be the number ob-
jectives or (ϕ1, . . . , ϕno ). The normalization is done by dividing the values of each solution
objective ϕj by the difference between the maximum by the minimum for each objective or
∆j = maxs∈S s(ϕj)−mins∈S s(ϕj), for all j = 1, . . . , no ors:

sN(ϕ1, . . . , ϕno) = (
ϕ1

∆1 , ...,
ϕno

∆no
) ∀s ∈ S (4.22)

With the solutions normalized, each objective can be assessed by visualizing them in a polar
graphic. For a problem with three objectives, the polar graph shape is a triangle. Hence the
weight ws of a solution s ∈ S is set to be:

ws = (Aδs
s )

where As is the area of the polygon in the polar graph and δs is the given by

δ = 1 + ∑
i∈S

∑
j∈S :i 6=j

|`i − `j|

where S is the set of sides of the polygon of the polar graph, and `i is the length of the side
i of the polygon. After calculating the weights ws for each solution s ∈ S, they solutions can
be sorted in an increasing order. The first solutions can then be chosen to be plotted for the
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decision maker screening.

4.6 Computational experiments

This section describes the computational experiments performed to test the efficiency of the
aforementioned heuristics. All algorithms were coded in C++, compiled with GCC 4.8.1., and
tested on an Intel Xeon 2.53 GHz with 24GB RAM running Linux Mint 16. For the experiments,
three bus types with capacities of 20, 30 and 40 seats were made available to transport the stu-
dents. The fixed costs (daily fixed depreciation costs) and the routing costs for each bus type
were set to $100, $150, and $200, and $1.00, $1.20 and $1.40 per unit of traveled distance, re-
spectively. The daily depreciation costs (fixed costs) were estimated by assuming a bus lifespan
of 10 years and the distances between nodes were considered to be Euclidean.

To test the devised heuristics, 15 random instances were generated to depict Brazilian coun-
ties with different sizes. The bus stops were scattered within the set {50, 75, 100, 150} in an area
of 155mi2(12,5mi x 12,5mi). The number of schools were varied according to the set {5, 10, 20}.
A total of 12 instances were generated for assessing the devised heuristics. For the calibration
phase, three instances with the number of stops and schools set to (50, 5), (75, 5) and (100, 10)
were also created. A total of 15 random instances were devised. Moreover 20% of the bus stops
as well as all of 100% of the schools were located inside an imaginary downtown area with a
radius of 1.24 miles. The remaining nodes were located on the outside of the radius. For each
node, a school and its respective demand were uniformly selected. The demands ql , l ∈ P,
were generated within the range of 1 to 3 students.

In multi-objective optimization, one is interested in finding the set of frontier non-dominated
solutions, which keeps the best compromise solutions among all the objectives. In most cases,
it is not possible to compute the Pareto optimal set, thus the problems try to computing a set
of non-dominated solutions which is as close as possible to the Pareto optimal set, which is a
set of non-dominated solutions which is never been dominated by another explored solutions
(Batista et al., 2014).

As the obtained subset of non-dominated solutions typically contains worse solutions than
the Pareto optimal frontiers, there is a need to analyze the quality of these frontiers. One can
use a metric for diversity or convergence to measure the Pareto set quality but once they can
be conflicting, is advised to use more than one (Deb, 2001). For that purpose three metrics are
considered:

1. Cardinality (Car): Number of solutions in the Pareto frontier. Its purpose is to verify the
efficiency of the developed algorithm in finding non-dominated points. It is assumed that
the decision maker prefer rather more options than fewer efficient solutions (Martí et al.,
2011).

2. Coverage of many sets(CS): This metric was proposed by Batista et al. (2014) and is a
generalization of the Coverage of Two Sets (Zitzler and Thiele, 1999). This metric indi-
cates the percentage of a set U that is dominated by a set S. It quantifies the domination
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of a frontier over the union of the remaining ones. The function which gives this value is
stated as:

CS(Si,Ui) =
|{s1 ∈ Ui : ∃s2 ∈ Si ∧ s2 � s1}|

|Ui|

where Si represents the Pareto frontier of algorithm i, for all i = 1, . . . , na, and na is the
number of available algorithms, andUi is the union of all Pareto frontier of all algorithms
except algorithm i. This super set is defined as:

Ui =
na⋃
j=1
j 6=i

Aj ∀i = 1, . . . , na

The expression s2 � s1 means that the solution s2 is no worse than s1 in all objectives
and the solution s2 is strictly better than s1 in at least one objective. This concept defines
weakly dominance. The function CS maps the pair (Si,Ui) within the interval [0, 1]. The
value CS(Si,Ui) equal to 1 means that all points in Ui are dominated by or equal to the
points of Si. The opposite result CS(Si,Ui) to 0 represents that the frontier Si of the
algorithm ß is dominated by the others.

3. Hyper-volume: Introduced by Zitzler and Thiele (1999), this indicator measures the vol-
ume of the region dominated by the Pareto front with respect to a reference point which
can be defined by a vector of the worst values for the objective function. In this work the
results of hyper-volume metrics were normalized by dividing the difference between the
current value and the minimum value of the objective function by the difference of the
maximum and minimum value of the objective function. The reference point was set to
H0(1, 1, 1).

Mathematically, for each solution s ∈ S, a hyper-cube Vs is created accordingly to the
reference point H0. The final result is the sum of all obtained hyper-cubes. Assuming
minimization objectives, a higher value for the hyper-volume evinces a higher spread
among solutions of the Pareto front as well as a higher convergence. A more detailed
explanation about how to compute hyper-volume please refer to Beume et al. (2009) and
Bradstreet (2011).

4.6.1 Calibration phase

1. Maximum number of iterations (Hmax): To define the parameter Hmax, required by all
algorithms, 15 runs were executed with the values {50, 100, 150} for each one of the three
calibration instances. The results showed that Hmax = 100 presented better results than
Hmax = 50 for cardinality, hyper-volume and coverage in most methods. Hmax = 100 also
had better performance than Hmax = 150 except for cardinality. For this metric, it was
expected because the higher number of iterations ofHmax = 150 allows more solutions to
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get into the Pareto set increasing its result. Thus, based on the results theHmax parameter
was settled as 100.

2. Maximum number of iterations without insertion (Cmax): The parameter Cmax (maxi-
mum number of iterations without any insertion in the front, algorithm 6) was tested at
the same aforementioned calibration instances with the values {1, 2} and 5 execution for
each algorithm and each instance. The best values for cardinality, coverage and hyper-
volume were obtained when Cmax = 1 mainly because as many solutions are inserted in
the frontier S, the counter c takes a long time to reach the value Cmax = 2. In this case,
many solutions are also inserted, however, they are close to each other, which does not
improve the hyper-volume or the spread, besides preventing farther neighborhoods to be
visited. Thus, this metric was settled in Cmax = 1.

3. Maximum insertion (Imax): The value of Imax is set to the number of stops of the instance.
As the instance size increases, the number of values to be inserted also increases.

4. Iterations between Walk procedure calls (W): The Walk procedure is very time con-
suming procedure, thus it can not be applied at each iteration. However the number of
iterations should not be set as a fixed number, instead it should vary with the instance
size. Three different values were tried d(n/2)e, d(n/4)e and d(n/8)e. The value d(n/8)e
presented the best overall results.

4.6.2 Statistical Analysis

To evaluate the performance of the methods, a statistical analysis was made to identify
its differences and magnitude, if exists. For each metric a pairwise comparison was applied
independently through T test, summing ten null hypothesis of absence of difference between
algorithms.

Once many tests were performed a correction on alpha level was necessary to prevent Type
I error, reject null hypothesis when it is true, caused by the inflation of the alpha level. This
problem usually happens when many tests are executed and the more test are performed on
a set of data, the more likely is to reject the null hypothesis as a consequence of the logic of
hypothesis test which is: a null hypothesis is rejected if a rare event is witnessed. But the larger
the number of tests, the easier is to find a rare event and therefore to think that there is an effect
when there is none. Thus, making the alpha level smaller less error will be accepted, despite of
also making harder to detect real effects (Salkind (2006)).

The solution for the alpha inflation was the Bonferroni correction (Hochberg, 1988) which
consists on divide the final alpha significance level by the number of tests. As the final signifi-
cance level desired is 5% and 10 hypothesis has to be tested, the significance level of 0.005 was
applied for each T test. The statistical analysis were applied in the average of the results of 8
replication and 5 heuristics applied in the 12 instances in aleatory mode.
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Table 4.1: Average (standard deviation) of cardinality.

Cardinality
Instance MOILS-PRA-PR MOILS-PR MOILS-PRA MOILS-M MOILS Smallest

A50 12.74 (1.08) 11.70 (1.70) 11.53 (1.25) 8.29 (1.59) 1.50 (0.32) 67
B50 11.59 (1.34) 11.79 (0.87) 10.31 (1.47) 8.19 (0.88) 1.33 (0.28) 79
C50 12.76 (1.56) 11.68 (1.22) 11.85 (1.71) 9.66 (1.72) 1.63 (0.47) 67
A75 20.45 (1.59) 17.13 (2.67) 17.51 (3.12) 13.72 (2.05) 1.45 (0.37) 73
B75 22.66 (3.03) 23.01 (3.73) 18.81 (2.34) 16.77 (2.38) 1.74 (0.37) 62
C75 22.05 (1.48) 20.57 (3.01) 18.29 (1.83) 15.77 (1.02) 1.25 (0.23) 59

A100 17.62 (2.46) 18.39 (3.29) 17.35 (2.21) 13.81 (2.12) 1.20 (0.16) 89
B100 16.98 (2.15) 17.36 (2.75) 16.42 (3.50) 12.08 (1.94) 1.37 (0.26) 101
C100 16.93 (2.62) 14.70 (2.54) 15.25 (1.19) 12.03 (1.54) 1.21 (0.19) 105
A150 54.52 (9.30) 48.38 (11.92) 41.38 (6.31) 34.74 (3.83) 1.51 (0.38) 55
B150 29.08 (5.08) 28.04 (5.58) 24.68 (3.39) 20.72 (2.96) 1.44 (0.30) 95
C150 31.97 (3.62) 31.94 (4.55) 27.52 (4.86) 23.96 (3.01) 1.52 (0.49) 81

Average 22.45 (2.94) 21.22 (3.65) 19.24 (2.77) 15.81 (2.09) 1.43 (0.32) 77.75

Table 4.2: Average (standard deviation) of coverage.

Coverage
Instance MOILS-PRA-PR MOILS-PR MOILS-PRA MOILS-M MOILS

A50 0.60 (0.18) 0.46 (0.14) 0.40 (0.15) 0.19 (0.05) 0.06 (0.05)
B50 0.61 (0.13) 0.44 (0.14) 0.39 (0.20) 0.27 (0.15) 0.03 (0.01)
C50 0.57 (0.15) 0.42 (0.17) 0.41 (0.13) 0.26 (0.08) 0.09 (0.04)
A75 0.51 (0.10) 0.37 (0.17) 0.52 (0.20) 0.24 (0.12) 0.04 (0.03)
B75 0.55 (0.16) 0.40 (0.14) 0.45 (0.16) 0.24 (0.05) 0.06 (0.03)
C75 0.53 (0.07) 0.37 (0.09) 0.39 (0.14) 0.33 (0.04) 0.04 (0.03)

A100 0.40 (0.11) 0.37 (0.14) 0.50 (0.12) 0.29 (0.16) 0.06 (0.03)
B100 0.47 (0.14) 0.31 (0.12) 0.48 (0.17) 0.28 (0.11) 0.10 (0.06)
C100 0.42 (0.22) 0.34 (0.18) 0.51 (0.09) 0.32 (0.11) 0.05 (0.03)
A150 0.46 (0.16) 0.33 (0.14) 0.38 (0.08) 0.32 (0.14) 0.03 (0.02)
B150 0.39 (0.16) 0.29 (0.15) 0.45 (0.11) 0.38 (0.08) 0.06 (0.04)
C150 0.41 (0.13) 0.28 (0.08) 0.46 (0.13) 0.36 (0.10) 0.07 (0.05)

Average 0.51 (0.14) 0.38 (0.14) 0.44 (0.14) 0.27 (0.10) 0.06 (0.03)

4.6.3 Results

The results obtained from the computational tests are depicted at Tables 4.1-4.4 which report
the average for the executions of each instance by each algorithm and the standard deviation, in
parenthesis, for the metrics of cardinality, coverage and hyper-volume. The statistical analysis
are summarized in Table 4.5.

For each instance, the results of cardinality (see Table 4.1) and time (refer to Table 4.4) were
divided by the smallest value obtained among the 8 executions of the five methods to make
easier the comparison between them. Observing the statistical analyze in Table 4.5, one can
conclude that all proposed methods overcame the literature framework MOILS in all met-
rics. For the cardinality metric, the algorithm MOILS-M was outperformed by the variants
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Table 4.3: Average (standard deviation) of hyper-volume.

Hyper-volume
Instance MOILS-PRA-PR MOILS-PR MOILS-PRA MOILS-M MOILS

A50 0.93 (0.01) 0.92 (0.01) 0.92 (0.01) 0.90 (0.01) 0.87 (0.04)
B50 0.92 (0.01) 0.91 (0.01) 0.91 (0.01) 0.90 (0.01) 0.85 (0.03)
C50 0.92 (0.01) 0.92 (0.01) 0.92 (0.01) 0.92 (0.01) 0.89 (0.01)
A75 0.94 (0.01) 0.93 (0.01) 0.94 (0.01) 0.93 (0.01) 0.88 (0.02)
B75 0.93 (0.02) 0.93 (0.02) 0.92 (0.02) 0.92 (0.02) 0.86 (0.04)
C75 0.91 (0.01) 0.91 (0.01) 0.91 (0.01) 0.91 (0.01) 0.84 (0.03)

A100 0.90 (0.01) 0.89 (0.02) 0.90 (0.02) 0.90 (0.01) 0.85 (0.03)
B100 0.91 (0.01) 0.91 (0.01) 0.91 (0.02) 0.90 (0.02) 0.87 (0.03)
C100 0.90 (0.01) 0.90 (0.02) 0.91 (0.01) 0.91 (0.02) 0.86 (0.03)
A150 0.90 (0.02) 0.89 (0.02) 0.90 (0.01) 0.90 (0.02) 0.82 (0.04)
B150 0.91 (0.02) 0.90 (0.01) 0.91 (0.01) 0.91 (0.01) 0.86 (0.02)
C150 0.91 (0.01) 0.90 (0.01) 0.92 (0.01) 0.92 (0.01) 0.87 (0.03)

Average 0.92 (0.01) 0.91 (0.01) 0.92 (0.01) 0.91 (0.01) 0.86 (0.03)

Table 4.4: Average (standard deviation) of time.

Time
Instance MOILS-PRA-PR MOILS-PR MOILS-PRA MOILS-M MOILS Smallest

A50 20.19 (3.34) 17.87 (2.27) 7.95 (3.80) 3.38 (1.41) 1.46 (0.43) 19.12
B50 11.44 (2.35) 11.56 (2.04) 5.74 (1.88) 3.00 (1.24) 1.56 (0.71) 33.35
C50 15.04 (2.04) 12.44 (2.02) 7.49 (1.33) 4.05 (1.39) 1.89 (0.98) 23.09
A75 14.06 (2.93) 13.02 (3.01) 8.22 (1.44) 4.23 (1.29) 1.37 (0.48) 60.16
B75 18.61 (4.10) 15.81 (4.26) 6.23 (1.84) 4.20 (1.10) 1.80 (0.71) 75.97
C75 10.33 (1.38) 8.63 (2.27) 4.80 (1.19) 4.15 (1.53) 1.18 (0.21) 83.55

A100 11.61 (3.05) 13.17 (4.22) 7.69 (2.59) 3.75 (0.83) 1.80 (0.67) 143.05
B100 16.66 (6.89) 12.88 (4.06) 6.17 (2.62) 3.14 (1.32) 2.19 (0.81) 203.61
C100 13.81 (4.70) 10.76 (3.14) 6.66 (1.46) 3.33 (1.08) 2.02 (1.69) 161,10
A150 9.55 (1.64) 9.06 (1.31) 4.56 (1.49) 3.76 (1.56) 1.65 (0.63) 706.02
B150 8.60 (1.81) 7.00 (1.35) 4.39 (2.33) 2.78 (0.88) 1.68 (0.55) 1033.51
C150 9.86 (3.39) 9.56 (1.68) 4.41 (0.89) 3.10 (0.45) 1.56 (0.45) 743.29

Average 13.31 (3.13) 11.81 (2.64) 6.19 (1.90) 3.57 (1.17) 1.68 (0.69) 273.82

MOILS-PRA-PR, MOILS-PRA and MOILS-PR. Among these three methods, the MOILS-PRA
was outperformed by the versions MOILS-PRA-PR and MOILS-PR, which was able to generate
7.12 and 5.61 times more solutions than MOILS-PRA, respectively. However, these last heuris-
tics MOILS-PRA, MOILS-PRA-PR and MOILS-PR are statistically equal. Therefore is possi-
ble to conclude that the MOILS-PR heuristic embedded in the MOILS-M allows the proposed
method to return more non-dominated solutions. Between MOILS-PRA-PR and MOILS-PR,
the MOILS-PR is more interesting once it requires smaller computational time to find a better
frontier, please refer to Table 4.4.

To examine the results for coverage (see Table 4.2) one can follow the same reasoning above.
The MOILS-M was outperformed by the variants MOILS-PRA-PR, MOILS-PR and MOILS-
PRA. The frontier of these later methods were cover 20%, 8% and 16% more solutions, re-
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Table 4.5: Estimated difference in average performance between the row and column algo-
rithms for the performance metrics.

Cardinality Coverage Hyper-volume
MOILS PR PRA M MOILS PR PRA M MOILS PR PRA M MOILS

PRA-PR n.s.1 7.12 9.74 11.63 0.13 n.s. 0.20 0.44 0.004 n.s. n.s. 0.054
PR 5.61 8.24 10.13 -0.08 0.08 0.31 -0.004 n.s. 0.049
PRA 2.62 4.50 0.16 0.39 0.005 0.054
A 1.89 0.23 0.049

1: not statistically significant.
OBS: Only results significant at 95% of confidence level adjusted for multiple hypothesis
testing using Bonferroni correction (Hochberg, 1988) are shown. Positive values indicate
higher average value for the algorithm in the row.

spectively, than of the version MOILS-M. MOILS-PR was outperformed by MOILS-PRA and
MOILS-PRA-PR, which are not different statistically at 5% of significance. Thus, the MOILS-
PRA has better performance for the coverage metric. Once MOILS-PR does not get to improve
this metric, and that the MOILS-PRA took half of the time to return a good frontier, the MOILS-
PRA is considered the best method for this metric.

The last metric to be evaluated is the hyper-volume (see Table 4.3). The statistical analyze
showed that the MOILS-PRA-PR and MOILS-PR have no significant difference from MOILS-
M. MOILS-PRA had a better performance than MOILS-M and MOILS-PR, with 0.5% and 0.4%
bigger hyper-volume, respectively, and no significant difference from MOILS-PRA-PR, which
in turn outperformed the MOILS-PR with 0.4% larger hyper-volume. The MOILS-PRA heuris-
tic showed to be once again more interesting. The values obtained for this metrics confirm the
above conclusion about the advantage got by MOILS-PRA to the coverage metric. With those
results one can also state that the MOILS-PRA has also a better performance for the hyper-
volume, which estimates both convergence and spread of the solutions.

The MOILS-PRA is considered the overall best proposed meta-heuristic. Even better than
MOILS-PRA-PR because if one consider the three multi-objective metrics, which are coverage,
spread and time, the former presented better performance for all of them. Figures 4.4 and
4.5 depict the obtained frontiers by MOILS and MOILS-PRA-PR for the instance A150. The
graphics show the relation between each pair of objectives demonstrated by the six different
view points of the frontier. The picture confirm the better performance of MOILS-PRA-PR
over MOILS. Observing them one can state that MOILS-PRA-PR was able to return a more
populated frontier than MOILS with higher diversity of solutions, which in turn are also closer
to the axis showing a better convergence of the devised method.

The better performance of MOILS-PRA over MOILS-PR can be explained by the fact that
MOILS-PRA explores new empty spaces guided by the crowding distance procedure while
MOILS-PR might be exploring a space of good solutions, but already populated by others, not
improving thus the hyper-volume or the coverage. Moreover, once the solution of the elite set
for the MOILS-PR has to have 10% of different edges and the space of the extreme solution can



4. A MULTI-OBJECTIVE CAPACITATED RURAL SCHOOL BUS ROUTING PROBLEM WITH

HETEROGENEOUS FLEET AND MIXED LOADS 65

be over crowded the solutions of the elite set might be not that good. Because if it space is over
crowded, a solution with 10% of different edges can be far from the extreme one, so there is a
likelihood of the search has been exploring poor paths.

COST

TIME

BALANCE

Figure 4.4: MOILS non-dominated solution frontier for instance A150.

COST

TIME

BALANCE

Figure 4.5: MOILS-PRA-PR non-dominated solution frontier for instance A150.

After generating the non-dominated frontiers, the decision maker has to find among all
of the results that solution which best suits him. An example of the introduced approach is
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depicted in Figure 4.6 which shows the polar graphics for the three overall best solution for
instance A150. Note that the first and second graphs are similar with a higher value for time
and smaller values for cost, while the third has smaller value for time but higher for cost and
the balance has values with a slightly difference in all of them. Thus the final conclusion about
the result depends on the scenario and which objective will the decision maker prioritize.

0 0.25 0.5 0.75 1
Cost

Time

Balance

0 0.25 0.5 0.75 1
Cost

Time

Balance

0 0.25 0.5 0.75 1
Cost

Time

Balance

Figure 4.6: Polar graphs for the three best solutions of instance A150 for the MOILS-PRA
method.

4.7 Final Remarks

A multi-objective approach for the capacitated rural school bus routing problem with het-
erogeneous fleet and mixed loads was proposed. The problem considers not only costs, but the
average weighted riding distances as well as distance balance among drivers. This is an im-
portant problem that has been neglected by the government and literature. It is very common
to have short and long routes in the set of paths, given rise to labor complains from the drivers,
increasing the hazards for children, due to weariness of drivers and a source of nuisance to
public management. However routing costs and travel time play an important role and can
not be disregarded. So, a multi-objective problem comes to help decision makers on solving
this tough issue. Four meta-heuristics (MOILS-M, MOILS-PR, MOILS-PRA, MOILS-PRA-PR)
were proposed and compared among them on a test set of 15 instances randomly generated. A
new approach to chose a good solution after generating the non-dominated solution frontier is
also introduced. All of the proposed heuristics outperformed the framework proposed by the
literature (Assis et al., 2013). The heuristic MOILS-PRA presented the overall best results in the
metrics of coverage, spread and time, followed closely by MOILS-PRA-PR. Several issues still
remain open for future research. The incorporation of school location decisions combined with
maximum riding distance constraints is one of the propositions which can be made for rural
areas. Another especial issue for those areas is the possibility of creating transition points. The
transshipment allows that smaller vehicles reach areas that larger ones can not, driving the stu-
dents from home to these points where buses with higher capacity would do the second part
of the route until the school.



Chapter 5

Conclusion

This thesis aimed to propose a mathematical formulation and solution methodologies still
not found in literature for the Brazilian rural school bus routing problem considering heteroge-
neous fleet and mixed load. The devised methods seek for a minimum cost routes generation,
respecting the specific problem constraints, in order to automate the routes planning, decrease
students travel time enabling them to have a higher performance at school. Besides the liter-
ature contribution, it also intend to provide better service level for rural population allowing
the families of these regions having access to better education systems, life quality and equal
opportunities.

To reach the intended goals the thesis presented heuristic and multi-objective methodolo-
gies to deal with the referred problem. For the heuristic approach five meta-heuristics were
devised: The first one is an adaptation of the Record-to-Record Travel algorithm for solving the
heterogeneous fleet vehicle routing problem proposed by Li et al. (2007). The others had as it
main structure the Iterated Local Search (ILS) meta-heuristic and the Variable Neighborhood
Search (VNS) strategy. Both had the Variable Neighborhood Descent (VND) and the Random
Variable Neighborhood Descent (RVND) local search procedures embedded on it separately,
giving rise to four meta-heuristics.

The work also introduce four multi-objective meta-heuristics for the . One adapted from lit-
erature, named modified multi-objective iterated local search (MOILS-M). The other three have
the first one as its main structure with the following procedures: a path relinking procedure for
the crowding distance adjacency (MOILS-PRA), the standard path relinking (MOILS-PR) and
both of them embedded in MOILS-M. The methods were compared with a heuristc from litera-
ture, adapted for this problem, defined as Multi-objective Iterated Local Search (MOILS, Assis
et al. (2013)) through statistical analysis and three metrics (cardinality, coverage of many sets
and hyper-volume). The work also proposes a new approach to support decision makers on
selecting a good solution.

The proposed methodologies has returned good solution for the Brazilian problem, thus
attained the expected objectives. The mixed load approach appraised by the heuristic methods
showed to be more suitable over the single one, because it attained lower cost savings and
number of buses required to serve the students. Among the devised meta-heuristics, the the
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ILS-RVND-ML has provided the best results, even than the literature procedure, given the
analyzed metrics. An important statement to be done is that for large instances the routing
costs matters at the final costs, not allowing it to be disregarded.

For the multi-objective approach, all of the proposed heuristics outperformed the literature
one. The MOILS-PRA presented better results in most of the metrics (coverage and hyper-
volume) followed by MOILS-PRA-PR. The devised new method to help decision makers find
a good solution had good performance as expected.

The main limitations of this work were the difficulty to adapt the formulations and find
a good procedure that would suits the Brazilian needs. The referred issues might seem easy
to deal, but when one have a problem such as the Brazilian, where there are many different
scenarios with many different situations, the problem gets bigger and more complicated. So,
the procedures devised at this work may not be able to solve the routing problem for all the
Brazilian regions.

Thus, besides different scenarios to be investigated, another issues also remain open for fu-
ture research such as the exact approach to solve smaller instances, exact approach associated
with heuristc one. Implementation of transshipment points allowing smaller buses to reach
farther students and driving them to the transition station. Also, the decision of school loca-
tions with students maximum riding distance as constraint would be a suitable issue for rural
areas.
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